Czech Academy of Sciences Publication Activity Database
Čelikovský, Sergej; Papáček, Štěpán; Cervantes-Herrera, A.; Ruiz-León, J.
2010-01-01
Roč. 55, č. 3 (2010), s. 767-772 ISSN 0018-9286 R&D Projects: GA ČR(CZ) GA102/08/0186 Institutional research plan: CEZ:AV0Z10750506; CEZ:AV0Z50200510 Keywords : Photosynthetic factory (PSF) * singular perturbation * optimal control Subject RIV: BC - Control Systems Theory Impact factor: 1.950, year: 2010 http://library.utia.cas.cz/separaty/2010/TR/celikovsky-0342103.pdf
Local and nonlocal space-time singularities
International Nuclear Information System (INIS)
Konstantinov, M.Yu.
1985-01-01
The necessity to subdivide the singularities into two classes: local and nonlocal, each of them to be defined independently, is proved. Both classes of the singularities are defined, and the relation between the definitions introduced and the standard definition of singularities, based on space-time, incompleteness, is established. The relation between definitions introduced and theorems on the singularity existence is also established
Singular Nonlinear H∞ Optimal Control Problem
Schaft, A.J. van der
1996-01-01
The theory of nonlinear H∞ optimal control for affine nonlinear systems is extended to the more general context of singular H∞ optimal control of nonlinear systems using ideas from the linear H∞ theory. Our approach yields under certain assumptions a necessary and sufficient condition for
The analysis of optimal singular controls for SEIR model of tuberculosis
Marpaung, Faridawaty; Rangkuti, Yulita M.; Sinaga, Marlina S.
2014-12-01
The optimally of singular control for SEIR model of Tuberculosis is analyzed. There are controls that correspond to time of the vaccination and treatment schedule. The optimally of singular control is obtained by differentiate a switching function of the model. The result shows that vaccination and treatment control are singular.
Numerical static state feedback laws for closed-loop singular optimal control
Graaf, de S.C.; Stigter, J.D.; Straten, van G.
2005-01-01
Singular and non-singular control trajectories of agricultural and (bio) chemical processes may need to be recalculated from time to time for use in closed-loop optimal control, because of unforeseen changes in state values and noise. This is time consuming. As an alternative, in this paper,
Space-time singularities in Weyl manifolds
Energy Technology Data Exchange (ETDEWEB)
Lobo, I.P. [CAPES Foundation, Ministry of Education of Brazil, Brasilia (Brazil); Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); Barreto, A.B.; Romero, C. [Universidade Federal da Paraiba, Departamento de Fisica, C. Postal 5008, Joao Pessoa, PB (Brazil)
2015-09-15
We extend one of the Hawking-Penrose singularity theorems in general relativity to the case of some scalar-tensor gravity theories in which the scalar field has a geometrical character and space-time has the mathematical structure of a Weyl integrable space-time. We adopt an invariant formalism, so that the extended version of the theorem does not depend on a particular frame. (orig.)
Singular nonlinear H-infinity optimal control problem
Maas, W.C.A.; Maas, W.C.A.; van der Schaft, Arjan
1996-01-01
The theory of nonlinear H∞ of optimal control for affine nonlinear systems is extended to the more general context of singular H∞ optimal control of nonlinear systems using ideas from the linear H∞ theory. Our approach yields under certain assumptions a necessary and sufficient condition for
Ardema, M. D.
1979-01-01
Singular perturbation techniques are studied for dealing with singular arc problems by analyzing a relatively low-order but otherwise general system. This system encompasses many flight mechanic problems including Goddard's problem and a version of the minimum time-to-climb problem. Boundary layer solutions are constructed which are stable and reach the outer solution in a finite time. A uniformly valid composite solution is then formed from the reduced and boundary layer solutions. The value of the approximate solution is that it is relatively easy to obtain and does not involve singular arcs. To illustrate the utility of the results, the technique is used to obtain an approximate solution of a simplified version of the aircraft minimum time-to-climb problem.
Singularities in Structural Optimization of the Ziegler Pendulum
Directory of Open Access Journals (Sweden)
O. N. Kirillov
2011-01-01
Full Text Available Structural optimization of non-conservative systems with respect to stability criteria is a research area with important applications in fluid-structure interactions, friction-induced instabilities, and civil engineering. In contrast to optimization of conservative systems where rigorously proven optimal solutions in buckling problems have been found, for nonconservative optimization problems only numerically optimized designs have been reported. The proof of optimality in non-conservative optimization problems is a mathematical challenge related to multiple eigenvalues, singularities in the stability domain, and non-convexity of the merit functional. We present here a study of optimal mass distribution in a classical Ziegler pendulum where local and global extrema can be found explicitly. In particular, for the undamped case, the two maxima of the critical flutter load correspond to a vanishing mass either in a joint or at the free end of the pendulum; in the minimum, the ratio of the masses is equal to the ratio of the stiffness coefficients. The role of the singularities on the stability boundary in the optimization is highlighted, and an extension to the damped case as well as to the case of higher degrees of freedom is discussed.
A singularity-free WEC-respecting time machine
Krasnikov, S. V.
1997-01-01
A time machine (TM) is constructed whose creating in contrast to all TMs known so far requires neither singularities, nor violation of the weak energy condition (WEC). The spacetime exterior to the TM closely resembles the Friedmann universe.
Geomechanical time series and its singularity spectrum analysis
Czech Academy of Sciences Publication Activity Database
Lyubushin, Alexei A.; Kaláb, Zdeněk; Lednická, Markéta
2012-01-01
Roč. 47, č. 1 (2012), s. 69-77 ISSN 1217-8977 R&D Projects: GA ČR GA105/09/0089 Institutional research plan: CEZ:AV0Z30860518 Keywords : geomechanical time series * singularity spectrum * time series segmentation * laser distance meter Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.347, year: 2012 http://www.akademiai.com/content/88v4027758382225/fulltext.pdf
Optimal control of dissipative nonlinear dynamical systems with triggers of coupled singularities
International Nuclear Information System (INIS)
Hedrih, K
2008-01-01
This paper analyses the controllability of motion of nonconservative nonlinear dynamical systems in which triggers of coupled singularities exist or appear. It is shown that the phase plane method is useful for the analysis of nonlinear dynamics of nonconservative systems with one degree of freedom of control strategies and also shows the way it can be used for controlling the relative motion in rheonomic systems having equivalent scleronomic conservative or nonconservative system For the system with one generalized coordinate described by nonlinear differential equation of nonlinear dynamics with trigger of coupled singularities, the functions of system potential energy and conservative force must satisfy some conditions defined by a Theorem on the existence of a trigger of coupled singularities and the separatrix in the form of 'an open a spiral form' of number eight. Task of the defined dynamical nonconservative system optimal control is: by using controlling force acting to the system, transfer initial state of the nonlinear dynamics of the system into the final state of the nonlinear dynamics in the minimal time for that optimal control task
Optimal control of dissipative nonlinear dynamical systems with triggers of coupled singularities
Energy Technology Data Exchange (ETDEWEB)
Hedrih, K [Faculty of Mechanical Engineering University of Nis, Mathematical Institute SANU, ul. Vojvode Tankosic 3/V/22, 18000-Nis (Serbia)], E-mail: katica@masfak.ni.ac.yu, E-mail: khedrih@eunet.yu
2008-02-15
This paper analyses the controllability of motion of nonconservative nonlinear dynamical systems in which triggers of coupled singularities exist or appear. It is shown that the phase plane method is useful for the analysis of nonlinear dynamics of nonconservative systems with one degree of freedom of control strategies and also shows the way it can be used for controlling the relative motion in rheonomic systems having equivalent scleronomic conservative or nonconservative system For the system with one generalized coordinate described by nonlinear differential equation of nonlinear dynamics with trigger of coupled singularities, the functions of system potential energy and conservative force must satisfy some conditions defined by a Theorem on the existence of a trigger of coupled singularities and the separatrix in the form of 'an open a spiral form' of number eight. Task of the defined dynamical nonconservative system optimal control is: by using controlling force acting to the system, transfer initial state of the nonlinear dynamics of the system into the final state of the nonlinear dynamics in the minimal time for that optimal control task.
The Singular Universe and the Reality of Time
Mangabeira Unger, Roberto; Smolin, Lee
2015-01-01
Introduction; Part I. Roberto Mangabeira Unger: 1. The science of the one universe in time; 2. The context and consequences of the argument; 3. The singular existence of the universe; 4. The inclusive reality of time; 5. The mutability of the laws of nature; 6. The selective realism of mathematics; Part II. Lee Smolin: 1. Cosmology in crisis; 2. Principles for a cosmological theory; 3. The setting: the puzzles of contemporary cosmology; 4. Hypotheses for a new cosmology; 5. Mathematics; 6. Approaches to solving the metalaw dilemma; 7. Implications of temporal naturalism for philosophy of mind; 8. An agenda for science; 9. Concluding remarks; A note concerning disagreements between our views.
Cosmological solutions and finite time singularities in Finslerian geometry
Paul, Nupur; de, S. S.; Rahaman, Farook
2018-03-01
We consider a very general scenario of our universe where its geometry is characterized by the Finslerian structure on the underlying spacetime manifold, a generalization of the Riemannian geometry. Now considering a general energy-momentum tensor for matter sector, we derive the gravitational field equations in such spacetime. Further, to depict the cosmological dynamics in such spacetime proposing an interesting equation of state identified by a sole parameter γ which for isotropic limit is simply the barotropic equation of state p = (γ ‑ 1)ρ (γ ∈ ℝ being the barotropic index), we solve the background dynamics. The dynamics offers several possibilities depending on this sole parameter as follows: (i) only an exponential expansion, or (ii) a finite time past singularity (big bang) with late accelerating phase, or (iii) a nonsingular universe exhibiting an accelerating scenario at late time which finally predicts a big rip type singularity. We also discuss several energy conditions and the possibility of cosmic bounce. Finally, we establish the first law of thermodynamics in such spacetime.
Topological Field Theory of the Initial Singularity of Space-Time
Bogdanoff, I
2000-01-01
Here we suggest a possible resolution of the initial space-time singularity. In this novel approach, the initial singularity of space-time corresponds to a 0 size singular gravitational instanton, characterised by a Riemannian metric configuration (++++) in dimension D = 4. Associated with the 0 scale of space-time, the initial singularity is thus not considered in terms of divergences of physical fields but can be resolved in terms of topological field symmetries and associated invariants (in particular the first Donaldson invariant ). In this perspective, we here introduce a new topological invariant, associated with 0 scale, of the form Z = Tr (-1)s which we call "singularity invariant".
Pan, Supriya
2018-01-01
Cosmological models with time-dependent Λ (read as Λ(t)) have been investigated widely in the literature. Models that solve background dynamics analytically are of special interest. Additionally, the allowance of past or future singularities at finite cosmic time in a specific model signals for a generic test on its viabilities with the current observations. Following these, in this work we consider a variety of Λ(t) models focusing on their evolutions and singular behavior. We found that a series of models in this class can be exactly solved when the background universe is described by a spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) line element. The solutions in terms of the scale factor of the FLRW universe offer different universe models, such as power-law expansion, oscillating, and the singularity free universe. However, we also noticed that a large number of the models in this series permit past or future cosmological singularities at finite cosmic time. At last we close the work with a note that the avoidance of future singularities is possible for certain models under some specific restrictions.
Directory of Open Access Journals (Sweden)
Khaled Loukhaoukha
2013-01-01
Full Text Available We present a new optimal watermarking scheme based on discrete wavelet transform (DWT and singular value decomposition (SVD using multiobjective ant colony optimization (MOACO. A binary watermark is decomposed using a singular value decomposition. Then, the singular values are embedded in a detailed subband of host image. The trade-off between watermark transparency and robustness is controlled by multiple scaling factors (MSFs instead of a single scaling factor (SSF. Determining the optimal values of the multiple scaling factors (MSFs is a difficult problem. However, a multiobjective ant colony optimization is used to determine these values. Experimental results show much improved performances of the proposed scheme in terms of transparency and robustness compared to other watermarking schemes. Furthermore, it does not suffer from the problem of high probability of false positive detection of the watermarks.
Optimal control of singularly perturbed nonlinear systems with state-variable inequality constraints
Calise, A. J.; Corban, J. E.
1990-01-01
The established necessary conditions for optimality in nonlinear control problems that involve state-variable inequality constraints are applied to a class of singularly perturbed systems. The distinguishing feature of this class of two-time-scale systems is a transformation of the state-variable inequality constraint, present in the full order problem, to a constraint involving states and controls in the reduced problem. It is shown that, when a state constraint is active in the reduced problem, the boundary layer problem can be of finite time in the stretched time variable. Thus, the usual requirement for asymptotic stability of the boundary layer system is not applicable, and cannot be used to construct approximate boundary layer solutions. Several alternative solution methods are explored and illustrated with simple examples.
Balder, E.J.
1984-01-01
This note presents a new, quick approach to existence results without convexity conditions for optimal control problems with singular components in the sense of [11.], 438–485). Starting from the resolvent kernel representation of the solutions of a linear integral equation, a version of Fatou's
Directory of Open Access Journals (Sweden)
Yanbo Li
2014-01-01
Full Text Available This paper is devoted to the investigation of the design of robust guaranteed cost observer for a class of linear singular Markovian jump time-delay systems with generally incomplete transition probability. In this singular model, each transition rate can be completely unknown or only its estimate value is known. Based on stability theory of stochastic differential equations and linear matrix inequality (LMI technique, we design an observer to ensure that, for all uncertainties, the resulting augmented system is regular, impulse free, and robust stochastically stable with the proposed guaranteed cost performance. Finally, a convex optimization problem with LMI constraints is formulated to design the suboptimal guaranteed cost filters for linear singular Markovian jump time-delay systems with generally incomplete transition probability.
Time optimal paths for a constant speed unicycle
Energy Technology Data Exchange (ETDEWEB)
Reister, D.B.
1991-01-01
This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed unicycle. The time optimal paths consist of sequences of arcs of circles and straight lines. The maximum principle introduced concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature of the time optimal paths. 10 refs., 6 figs.
Time optimal paths for high speed maneuvering
Energy Technology Data Exchange (ETDEWEB)
Reister, D.B.; Lenhart, S.M.
1993-01-01
Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature of the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.
Finite-Time Stability Analysis of Discrete-Time Linear Singular Systems
Directory of Open Access Journals (Sweden)
Songlin Wo
2014-01-01
Full Text Available The finite-time stability (FTS problem of discrete-time linear singular systems (DTLSS is considered in this paper. A necessary and sufficient condition for FTS is obtained, which can be expressed in terms of matrix inequalities. Then, another form of the necessary and sufficient condition for FTS is also given by using matrix-null space technology. In order to solve the stability problem expediently, a sufficient condition for FTS is given via linear matrix inequality (LMI approach; this condition can be expressed in terms of LMIs. Finally, an illustrating example is also given to show the effectiveness of the proposed method.
Directory of Open Access Journals (Sweden)
Songlin Wo
2018-01-01
Full Text Available Singular systems arise in a great deal of domains of engineering and can be used to solve problems which are more difficult and more extensive than regular systems to solve. Therefore, in this paper, the definition of finite-time robust H∞ control for uncertain linear continuous-time singular systems is presented. The problem we address is to design a robust state feedback controller which can deal with the singular system with time-varying norm-bounded exogenous disturbance, such that the singular system is finite-time robust bounded (FTRB with disturbance attenuation γ. Sufficient conditions for the existence of solutions to this problem are obtained in terms of linear matrix equalities (LMIs. When these LMIs are feasible, the desired robust controller is given. A detailed solving method is proposed for the restricted linear matrix inequalities. Finally, examples are given to show the validity of the methodology.
Fuzzy Stochastic Optimal Guaranteed Cost Control of Bio-Economic Singular Markovian Jump Systems.
Li, Li; Zhang, Qingling; Zhu, Baoyan
2015-11-01
This paper establishes a bio-economic singular Markovian jump model by considering the price of the commodity as a Markov chain. The controller is designed for this system such that its biomass achieves the specified range with the least cost in a finite-time. Firstly, this system is described by Takagi-Sugeno fuzzy model. Secondly, a new design method of fuzzy state-feedback controllers is presented to ensure not only the regularity, nonimpulse, and stochastic singular finite-time boundedness of this kind of systems, but also an upper bound achieved for the cost function in the form of strict linear matrix inequalities. Finally, two examples including a practical example of eel seedling breeding are given to illustrate the merit and usability of the approach proposed in this paper.
Relative Error Model Reduction via Time-Weighted Balanced Stochastic Singular Perturbation
DEFF Research Database (Denmark)
Tahavori, Maryamsadat; Shaker, Hamid Reza
2012-01-01
A new mixed method for relative error model reduction of linear time invariant (LTI) systems is proposed in this paper. This order reduction technique is mainly based upon time-weighted balanced stochastic model reduction method and singular perturbation model reduction technique. Compared...
Liang, Bin; Li, Yongbao; Wei, Ran; Guo, Bin; Xu, Xuang; Liu, Bo; Li, Jiafeng; Wu, Qiuwen; Zhou, Fugen
2018-01-01
With robot-controlled linac positioning, robotic radiotherapy systems such as CyberKnife significantly increase freedom of radiation beam placement, but also impose more challenges on treatment plan optimization. The resampling mechanism in the vendor-supplied treatment planning system (MultiPlan) cannot fully explore the increased beam direction search space. Besides, a sparse treatment plan (using fewer beams) is desired to improve treatment efficiency. This study proposes a singular value decomposition linear programming (SVDLP) optimization technique for circular collimator based robotic radiotherapy. The SVDLP approach initializes the input beams by simulating the process of covering the entire target volume with equivalent beam tapers. The requirements on dosimetry distribution are modeled as hard and soft constraints, and the sparsity of the treatment plan is achieved by compressive sensing. The proposed linear programming (LP) model optimizes beam weights by minimizing the deviation of soft constraints subject to hard constraints, with a constraint on the l 1 norm of the beam weight. A singular value decomposition (SVD) based acceleration technique was developed for the LP model. Based on the degeneracy of the influence matrix, the model is first compressed into lower dimension for optimization, and then back-projected to reconstruct the beam weight. After beam weight optimization, the number of beams is reduced by removing the beams with low weight, and optimizing the weights of the remaining beams using the same model. This beam reduction technique is further validated by a mixed integer programming (MIP) model. The SVDLP approach was tested on a lung case. The results demonstrate that the SVD acceleration technique speeds up the optimization by a factor of 4.8. Furthermore, the beam reduction achieves a similar plan quality to the globally optimal plan obtained by the MIP model, but is one to two orders of magnitude faster. Furthermore, the SVDLP
Shocks and finite-time singularities in Hele-Shaw flow
Energy Technology Data Exchange (ETDEWEB)
Teodorescu, Razvan [Los Alamos National Laboratory; Wiegmann, P [UNIV OF MONTREAL; Lee, S-y [UNIV OF CHICAGO
2008-01-01
Hele-Shaw flow at vanishing surface tension is ill-defined. In finite time, the flow develops cusplike singularities. We show that the ill-defined problem admits a weak dispersive solution when singularities give rise to a graph of shock waves propagating in the viscous fluid. The graph of shocks grows and branches. Velocity and pressure jump across the shock. We formulate a few simple physical principles which single out the dispersive solution and interpret shocks as lines of decompressed fluid. We also formulate the dispersive solution in algebro-geometrical terms as an evolution of Krichever-Boutroux complex curve. We study in details the most generic (2,3) cusp singularity which gives rise to an elementary branching event. This solution is self-similar and expressed in terms of elliptic functions.
Stability bound analysis of singularly perturbed systems with time-delay
Directory of Open Access Journals (Sweden)
Sun Fengqi
2013-01-01
Full Text Available This paper considers the stability bound problem of singularly perturbed systems with time-delay. Some stability criteria are derived by constructing appropriate Lyapunov-Krasovskii functionals. The proposed criteria are less conservative than the existing ones. Two numerical examples are given to illustrate the advantages and effectiveness of the proposed methods.
Greiner, G.; Heesterbeek, J.A.P.; Metz, J.A.J.
1994-01-01
In this paper we present a generalization of a finite dimensional singular perturbation theorem to Banach spaces. From this we obtain sufficient conditions under which a faithful simplification by a time-scale argument is justified for age-structured models of slowly growing populations. An explicit
Homogenization in time of singularly perturbed mechanical systems
Bornemann, Folkmar
1998-01-01
This book is about the explicit elimination of fast oscillatory scales in dynamical systems, which is important for efficient computer-simulations and our understanding of model hierarchies. The author presents his new direct method, homogenization in time, based on energy principles and weak convergence techniques. How to use this method is shown in several general cases taken from classical and quantum mechanics. The results are applied to special problems from plasma physics, molecular dynamics and quantum chemistry. Background material from functional analysis is provided and explained to make this book accessible for a general audience of graduate students and researchers.
A Singular Differential Equation Stemming from an Optimal Control Problem in Financial Economics
Energy Technology Data Exchange (ETDEWEB)
Brunovsky, Pavol, E-mail: brunovsky@fmph.uniba.sk [Comenius University Bratislava, Department of Applied Mathematics and Statistics (Slovakia); Cerny, Ales, E-mail: ales.cerny.1@city.ac.uk [City University London, Cass Business School (United Kingdom); Winkler, Michael, E-mail: michael.winkler@uni-due.de [Universitaet Paderborn, Institut fuer Mathematik (Germany)
2013-10-15
We consider the ordinary differential equation x{sup 2} u'' = axu'+bu-c(u'-1){sup 2}, x Element-Of (0,x{sub 0}), with a Element-Of R, b Element-Of R , c>0 and the singular initial condition u(0)=0, which in financial economics describes optimal disposal of an asset in a market with liquidity effects. It is shown in the paper that if a+b<0 then no continuous solutions exist, whereas if a+b>0 then there are infinitely many continuous solutions with indistinguishable asymptotics near 0. Moreover, it is proved that in the latter case there is precisely one solution u corresponding to the choice x{sub 0}={infinity} which is such that 0{<=}u(x){<=}x for all x>0, and that this solution is strictly increasing and concave.
DEFF Research Database (Denmark)
Haldrup, Kristoffer
2014-01-01
The development of new X-ray light sources, XFELs, with unprecedented time and brilliance characteristics has led to the availability of very large datasets with high time resolution and superior signal strength. The chaotic nature of the emission processes in such sources as well as entirely nov...... on singular-value decomposition of no-signal subsets of acquired datasets in combination with model inputs and appears generally applicable to time-resolved X-ray diffuse scattering experiments....
Quasi-Optimal Elimination Trees for 2D Grids with Singularities
Paszyńska, A.
2015-04-22
We construct quasi-optimal elimination trees for 2D finite element meshes with singularities.These trees minimize the complexity of the solution of the discrete system. The computational cost estimates of the elimination process model the execution of the multifrontal algorithms in serial and in parallel shared-memory executions. Since the meshes considered are a subspace of all possible mesh partitions, we call these minimizers quasi-optimal.We minimize the cost functionals using dynamic programming. Finding these minimizers is more computationally expensive than solving the original algebraic system. Nevertheless, from the insights provided by the analysis of the dynamic programming minima, we propose a heuristic construction of the elimination trees that has cost O(log(Ne log(Ne)), where N e is the number of elements in the mesh.We show that this heuristic ordering has similar computational cost to the quasi-optimal elimination trees found with dynamic programming and outperforms state-of-the-art alternatives in our numerical experiments.
Quasi-Optimal Elimination Trees for 2D Grids with Singularities
Directory of Open Access Journals (Sweden)
A. Paszyńska
2015-01-01
Full Text Available We construct quasi-optimal elimination trees for 2D finite element meshes with singularities. These trees minimize the complexity of the solution of the discrete system. The computational cost estimates of the elimination process model the execution of the multifrontal algorithms in serial and in parallel shared-memory executions. Since the meshes considered are a subspace of all possible mesh partitions, we call these minimizers quasi-optimal. We minimize the cost functionals using dynamic programming. Finding these minimizers is more computationally expensive than solving the original algebraic system. Nevertheless, from the insights provided by the analysis of the dynamic programming minima, we propose a heuristic construction of the elimination trees that has cost ONelogNe, where Ne is the number of elements in the mesh. We show that this heuristic ordering has similar computational cost to the quasi-optimal elimination trees found with dynamic programming and outperforms state-of-the-art alternatives in our numerical experiments.
Real time production optimization
Energy Technology Data Exchange (ETDEWEB)
Saputelli, Luigi; Otavio, Joao; Araujo, Turiassu; Escorcia, Alvaro [Halliburton, Houston, TX (United States). Landmark Division
2004-07-01
Production optimization encompasses various activities of measuring, analyzing, modeling, prioritizing and implementing actions to enhance productivity of a field. We present a state-of-the-art framework for optimizing production on a continuous basis as new sensor data is acquired in real time. Permanently acquired data is modeled and analyzed in order to create predictive models. A model based control strategy is used to regulate well and field instrumentation. The optimum field operating point, which changes with time, satisfies the maximum economic return. This work is a starting point for further development in automatic, intelligent reservoir technologies which get the most out of the abilities of permanent, instrumented wells and remotely activated downhole completions. The strategy, tested with history-matched data from a compartmentalised giant field, proved to reduce operating costs while increasing oil recovery by 27% in this field. (author)
Pravda-Starov, Karel
2017-01-01
We study evolution equations associated to time-dependent dissipative non-selfadjoint quadratic operators. We prove that the solution operators to these non-autonomous evolution equations are given by Fourier integral operators whose kernels are Gaussian tempered distributions associated to non-negative complex symplectic linear transformations, and we derive a generalized Mehler formula for their Weyl symbols. Some applications to the study of the propagation of Gabor singularities (characte...
String theory and cosmological singularities
Indian Academy of Sciences (India)
time' can have a beginning or end. Well-known examples are singularities inside black holes and initial or final singularities in expanding or contracting universes. In recent times, string theory is providing new perspectives of such singularities ...
Time-Space Topology Optimization
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard
2008-01-01
A method for space-time topology optimization is outlined. The space-time optimization strategy produces structures with optimized material distributions that vary in space and in time. The method is demonstrated for one-dimensional wave propagation in an elastic bar that has a time-dependent Young...
Time-Space Topology Optimization
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard
2008-01-01
A method for space-time topology optimization is outlined. The space-time optimization strategy produces structures with optimized material distributions that vary in space and in time. The method is demonstrated for one-dimensional wave propagation in an elastic bar that has a time-dependent Young......’s modulus and is subjected to a transient load. In the example an optimized dynamic structure is demonstrated that compresses a propagating Gauss pulse....
On the Optimal Singularity-Free Trajectory Planning of Parallel Robot Manipulators
Chen, Chun-Ta; Liao, Te-Tan
2010-01-01
In this chapter, a numerical technique is presented to determine the singularity-free trajectories of a parallel robot manipulator. The required closed-form dynamic equations for the parallel manipulator with a completely general architecture and inertia distribution are
Singular lensing from the scattering on special space-time defects
Mavromatos, Nick E.; Papavassiliou, Joannis
2018-01-01
It is well known that certain special classes of self-gravitating point-like defects, such as global (non gauged) monopoles, give rise to non-asymptotically flat space-times characterized by solid angle deficits, whose size depends on the details of the underlying microscopic models. The scattering of electrically neutral particles on such space-times is described by amplitudes that exhibit resonant behaviour when thescattering and deficit angles coincide. This, in turn, leads to ring-like structures where the cross sections are formally divergent ("singular lensing"). In this work, we revisit this particular phenomenon, with the twofold purpose of placing it in a contemporary and more general context, in view of renewed interest in the theory and general phenomenology of such defects, and, more importantly, of addressing certain subtleties that appear in the particular computation that leads to the aforementioned effect. In particular, by adopting a specific regularization procedure for the formally infinite Legendre series encountered, we manage to ensure the recovery of the Minkowski space-time, and thus the disappearance of the lensing phenomenon, in the no-defect limit, and the validity of the optical theorem for the elastic total cross section. In addition, the singular nature of the phenomenon is confirmed by means of an alternative calculation, which, unlike the original approach, makes no use of the generating function of the Legendre polynomials, but rather exploits the asymptotic properties of the Fresnel integrals.
Singularity of the time-energy uncertainty in adiabatic perturbation and cycloids on a Bloch sphere
Oh, Sangchul; Hu, Xuedong; Nori, Franco; Kais, Sabre
2016-02-01
Adiabatic perturbation is shown to be singular from the exact solution of a spin-1/2 particle in a uniformly rotating magnetic field. Due to a non-adiabatic effect, its quantum trajectory on a Bloch sphere is a cycloid traced by a circle rolling along an adiabatic path. As the magnetic field rotates more and more slowly, the time-energy uncertainty, proportional to the length of the quantum trajectory, calculated by the exact solution is entirely different from the one obtained by the adiabatic path traced by the instantaneous eigenstate. However, the non-adiabatic Aharonov- Anandan geometric phase, measured by the area enclosed by the exact path, approaches smoothly the adiabatic Berry phase, proportional to the area enclosed by the adiabatic path. The singular limit of the time-energy uncertainty and the regular limit of the geometric phase are associated with the arc length and arc area of the cycloid on a Bloch sphere, respectively. Prolate and curtate cycloids are also traced by different initial states outside and inside of the rolling circle, respectively. The axis trajectory of the rolling circle, parallel to the adiabatic path, is shown to be an example of transitionless driving. The non-adiabatic resonance is visualized by the number of cycloid arcs.
Edge, E. R.; Powers, W. F.
1976-01-01
Two existing function-space quasi-Newton algorithms, the Davidon algorithm and the projected gradient algorithm, are modified so that they may handle directly control-variable inequality constraints. A third quasi-Newton-type algorithm, developed by Broyden, is extended to optimal control problems. The Broyden algorithm is further modified so that it may handle directly control-variable inequality constraints. From a computational viewpoint, dyadic operator implementation of quasi-Newton methods is shown to be superior to the integral kernel representation. The quasi-Newton methods, along with the steepest descent method and two conjugate gradient algorithms, are simulated on three relatively simple (yet representative) bounded control problems, two of which possess singular subarcs. Overall, the Broyden algorithm was found to be superior. The most notable result of the simulations was the clear superiority of the Broyden and Davidon algorithms in producing a sharp singular control subarc.
Mirmomeni, M.; Kamaliha, E.; Shafiee, M.; Lucas, C.
2009-09-01
Of the various conditions that affect space weather, Sun-driven phenomena are the most dominant. Cyclic solar activity has a significant effect on the Earth, its climate, satellites, and space missions. In recent years, space weather hazards have become a major area of investigation, especially due to the advent of satellite technology. As such, the design of reliable alerting and warning systems is of utmost importance, and international collaboration is needed to develop accurate short-term and long-term prediction methodologies. Several methods have been proposed and implemented for the prediction of solar and geomagnetic activity indices, but problems in predicting the exact time and magnitude of such catastrophic events still remain. There are, however, descriptor systems that describe a wider class of systems, including physical models and non-dynamic constraints. It is well known that the descriptor system is much tighter than the state-space expression for representing real independent parametric perturbations. In addition, the fuzzy descriptor models as a generalization of the locally linear neurofuzzy models are general forms that can be trained by constructive intuitive learning algorithms. Here, we propose a combined model based on fuzzy descriptor models and singular spectrum analysis (SSA) (FD/SSA) to forecast a number of geomagnetic activity indices in a manner that optimizes a fuzzy descriptor model for each of the principal components obtained from singular spectrum analysis and recombines the predicted values so as to transform the geomagnetic activity time series into natural chaotic phenomena. The method has been applied to predict two solar and geomagnetic activity indices: geomagnetic aa and solar wind speed (SWS) of the solar wind index. The results demonstrate the higher power of the proposed method-- compared to other methods -- for predicting solar activity.
TimeNET Optimization Environment
Directory of Open Access Journals (Sweden)
Christoph Bodenstein
2015-12-01
Full Text Available In this paper a novel tool for simulation-based optimization and design-space exploration of Stochastic Colored Petri nets (SCPN is introduced. The working title of this tool is TimeNET Optimization Environment (TOE. Targeted users of this tool are people modeling complex systems with SCPNs in TimeNET who want to find parameter sets that are optimal for a certain performance measure (fitness function. It allows users to create and simulate sets of SCPNs and to run different optimization algorithms based on parameter variation. The development of this tool was motivated by the need to automate and speed up tests of heuristic optimization algorithms to be applied for SCPN optimization. A result caching mechanism is used to avoid recalculations.
Time-Optimal Quantum Evolution
Carlini, Alberto; Hosoya, Akio; Koike, Tatsuhiko; Okudaira, Yosuke
2006-02-01
We present a general framework for finding the time-optimal evolution and the optimal Hamiltonian for a quantum system with a given set of initial and final states. Our formulation is based on the variational principle and is analogous to that for the brachistochrone in classical mechanics. We reduce the problem to a formal equation for the Hamiltonian which depends on certain constraint functions specifying the range of available Hamiltonians. For some simple examples of the constraints, we explicitly find the optimal solutions.
Improving time-frequency domain sleep EEG classification via singular spectrum analysis.
Mahvash Mohammadi, Sara; Kouchaki, Samaneh; Ghavami, Mohammad; Sanei, Saeid
2016-11-01
Manual sleep scoring is deemed to be tedious and time consuming. Even among automatic methods such as time-frequency (T-F) representations, there is still room for more improvement. To optimise the efficiency of T-F domain analysis of sleep electroencephalography (EEG) a novel approach for automatically identifying the brain waves, sleep spindles, and K-complexes from the sleep EEG signals is proposed. The proposed method is based on singular spectrum analysis (SSA). The single-channel EEG signal (C3-A2) is initially decomposed and then the desired components are automatically separated. In addition, the noise is removed to enhance the discrimination ability of features. The obtained T-F features after preprocessing stage are classified using a multi-class support vector machines (SVMs) and used for the identification of four sleep stages over three sleep types. Furthermore, to emphasise on the usefulness of the proposed method the automatically-determined spindles are parameterised to discriminate three sleep types. The four sleep stages are classified through SVM twice: with and without preprocessing stage. The mean accuracy, sensitivity, and specificity for before the preprocessing stage are: 71.5±0.11%, 56.1±0.09% and 86.8±0.04% respectively. However, these values increase significantly to 83.6±0.07%, 70.6±0.14% and 90.8±0.03% after applying SSA. The new T-F representation has been compared with the existing benchmarks. Our results prove that, the proposed method well outperforms the previous methods in terms of identification and representation of sleep stages. Experimental results confirm the performance improvement in terms of classification rate and also representative T-F domain. Copyright © 2016 Elsevier B.V. All rights reserved.
Space-time slicing in Horndeski theories and its implications for non-singular bouncing solutions
Ijjas, Anna
2018-02-01
In this paper, we show how the proper choice of gauge is critical in analyzing the stability of non-singular cosmological bounce solutions based on Horndeski theories. We show that it is possible to construct non-singular cosmological bounce solutions with classically stable behavior for all modes with wavelengths above the Planck scale where: (a) the solution involves a stage of null-energy condition violation during which gravity is described by a modification of Einstein's general relativity; and (b) the solution reduces to Einstein gravity both before and after the null-energy condition violating stage. Similar considerations apply to galilean genesis scenarios.
DROP: Dimensionality Reduction Optimization for Time Series
Suri, Sahaana; Bailis, Peter
2017-01-01
Dimensionality reduction is critical in analyzing increasingly high-volume, high-dimensional time series. In this paper, we revisit a now-classic study of time series dimensionality reduction operators and find that for a given quality constraint, Principal Component Analysis (PCA) uncovers representations that are over 2x smaller than those obtained via alternative techniques favored in the literature. However, as classically implemented via Singular Value Decomposition (SVD), PCA is incredi...
String theory and cosmological singularities
Indian Academy of Sciences (India)
Well-known examples are singularities inside black holes and initial or final singularities in expanding or contracting universes. In recent times, string theory is providing new perspectives of such singularities which may lead to an understanding of these in the standard framework of time evolution in quantum mechanics.
Energy Technology Data Exchange (ETDEWEB)
Xing, Zhanqiang; Qu, Jianfeng; Chai, Yi; Tang, Qiu; Zhou, Yuming [Chongqing University, Chongqing (China)
2017-02-15
The gear vibration signal is nonlinear and non-stationary, gear fault diagnosis under variable conditions has always been unsatisfactory. To solve this problem, an intelligent fault diagnosis method based on Intrinsic time-scale decomposition (ITD)-Singular value decomposition (SVD) and Support vector machine (SVM) is proposed in this paper. The ITD method is adopted to decompose the vibration signal of gearbox into several Proper rotation components (PRCs). Subsequently, the singular value decomposition is proposed to obtain the singular value vectors of the proper rotation components and improve the robustness of feature extraction under variable conditions. Finally, the Support vector machine is applied to classify the fault type of gear. According to the experimental results, the performance of ITD-SVD exceeds those of the time-frequency analysis methods with EMD and WPT combined with SVD for feature extraction, and the classifier of SVM outperforms those for K-nearest neighbors (K-NN) and Back propagation (BP). Moreover, the proposed approach can accurately diagnose and identify different fault types of gear under variable conditions.
Holographic complexity and spacetime singularities
International Nuclear Information System (INIS)
Barbón, José L.F.; Rabinovici, Eliezer
2016-01-01
We study the evolution of holographic complexity in various AdS/CFT models containing cosmological crunch singularities. We find that a notion of complexity measured by extremal bulk volumes tends to decrease as the singularity is approached in CFT time, suggesting that the corresponding quantum states have simpler entanglement structure at the singularity.
Singular Spectrum Analysis for Astronomical Time Series: Constructing a Parsimonious Hypothesis Test
Greco, G.; Kondrashov, D.; Kobayashi, S.; Ghil, M.; Branchesi, M.; Guidorzi, C.; Stratta, G.; Ciszak, M.; Marino, F.; Ortolan, A.
We present a data-adaptive spectral method - Monte Carlo Singular Spectrum Analysis (MC-SSA) - and its modification to tackle astrophysical problems. Through numerical simulations we show the ability of the MC-SSA in dealing with 1/f β power-law noise affected by photon counting statistics. Such noise process is simulated by a first-order autoregressive, AR(1) process corrupted by intrinsic Poisson noise. In doing so, we statistically estimate a basic stochastic variation of the source and the corresponding fluctuations due to the quantum nature of light. In addition, MC-SSA test retains its effectiveness even when a significant percentage of the signal falls below a certain level of detection, e.g., caused by the instrument sensitivity. The parsimonious approach presented here may be broadly applied, from the search for extrasolar planets to the extraction of low-intensity coherent phenomena probably hidden in high energy transients.
Directory of Open Access Journals (Sweden)
Zhongrong Zhang
2016-01-01
Full Text Available Wind energy has increasingly played a vital role in mitigating conventional resource shortages. Nevertheless, the stochastic nature of wind poses a great challenge when attempting to find an accurate forecasting model for wind power. Therefore, precise wind power forecasts are of primary importance to solve operational, planning and economic problems in the growing wind power scenario. Previous research has focused efforts on the deterministic forecast of wind power values, but less attention has been paid to providing information about wind energy. Based on an optimal Adaptive-Network-Based Fuzzy Inference System (ANFIS and Singular Spectrum Analysis (SSA, this paper develops a hybrid uncertainty forecasting model, IFASF (Interval Forecast-ANFIS-SSA-Firefly Alogorithm, to obtain the upper and lower bounds of daily average wind power, which is beneficial for the practical operation of both the grid company and independent power producers. To strengthen the practical ability of this developed model, this paper presents a comparison between IFASF and other benchmarks, which provides a general reference for this aspect for statistical or artificially intelligent interval forecast methods. The comparison results show that the developed model outperforms eight benchmarks and has a satisfactory forecasting effectiveness in three different wind farms with two time horizons.
Ling, Eric
The big bang theory is a model of the universe which makes the striking prediction that the universe began a finite amount of time in the past at the so called "Big Bang singularity." We explore the physical and mathematical justification of this surprising result. After laying down the framework of the universe as a spacetime manifold, we combine physical observations with global symmetrical assumptions to deduce the FRW cosmological models which predict a big bang singularity. Next we prove a couple theorems due to Stephen Hawking which show that the big bang singularity exists even if one removes the global symmetrical assumptions. Lastly, we investigate the conditions one needs to impose on a spacetime if one wishes to avoid a singularity. The ideas and concepts used here to study spacetimes are similar to those used to study Riemannian manifolds, therefore we compare and contrast the two geometries throughout.
Ju, Jinyong; Li, Wei; Wang, Yuqiao; Fan, Mengbao; Yang, Xuefeng
2016-10-28
Effective feedback control requires all state variable information of the system. However, in the translational flexible-link manipulator (TFM) system, it is unrealistic to measure the vibration signals and their time derivative of any points of the TFM by infinite sensors. With the rigid-flexible coupling between the global motion of the rigid base and the elastic vibration of the flexible-link manipulator considered, a two-time scale virtual sensor, which includes the speed observer and the vibration observer, is designed to achieve the estimation for the vibration signals and their time derivative of the TFM, as well as the speed observer and the vibration observer are separately designed for the slow and fast subsystems, which are decomposed from the dynamic model of the TFM by the singular perturbation. Additionally, based on the linear-quadratic differential games, the observer gains of the two-time scale virtual sensor are optimized, which aims to minimize the estimation error while keeping the observer stable. Finally, the numerical calculation and experiment verify the efficiency of the designed two-time scale virtual sensor.
Wrapper Feature Extraction for Time Series Classification Using Singular Value Decomposition
Hui, Zhang; Tu, Bao Ho; Kawasaki, Saori
2005-01-01
Time series classification is an important aspect of time series mining. Recently, time series classification has attracted increasing interests in various domains. However, the high dimensionality property of time series makes time series classification a difficult problem. The so-called curse of dimensionality not only slows down the process of classification but also decreases the classification quality. Many dimensionality reduction techniques have been proposed to circumvent the curse of...
String theory and cosmological singularities
Indian Academy of Sciences (India)
recent times, string theory is providing new perspectives of such singularities which may lead to an understanding of these in the standard framework of time evolution in quantum mechanics. In this article, we describe some of these approaches. Keywords. String theory; cosmological singularities. PACS Nos 11.25.
Plane waves with weak singularities
International Nuclear Information System (INIS)
David, Justin R.
2003-03-01
We study a class of time dependent solutions of the vacuum Einstein equations which are plane waves with weak null singularities. This singularity is weak in the sense that though the tidal forces diverge at the singularity, the rate of divergence is such that the distortion suffered by a freely falling observer remains finite. Among such weak singular plane waves there is a sub-class which does not exhibit large back reaction in the presence of test scalar probes. String propagation in these backgrounds is smooth and there is a natural way to continue the metric beyond the singularity. This continued metric admits string propagation without the string becoming infinitely excited. We construct a one parameter family of smooth metrics which are at a finite distance in the space of metrics from the extended metric and a well defined operator in the string sigma model which resolves the singularity. (author)
Singularities in FLRW spacetimes
het Lam, Huibert; Prokopec, Tomislav
2017-12-01
We point out that past-incompleteness of geodesics in FLRW spacetimes does not necessarily imply that these spacetimes start from a singularity. Namely, if a test particle that follows such a trajectory has a non-vanishing velocity, its energy was super-Planckian at some time in the past if it kept following that geodesic. That indicates a breakdown of the particle's description, which is why we should not consider those trajectories for the definition of an initial singularity. When one only considers test particles that do not have this breakdown of their trajectory, it turns out that the only singular FLRW spacetimes are the ones that have a scale parameter that vanishes at some initial time.
Distributed Algorithms for Time Optimal Reachability Analysis
DEFF Research Database (Denmark)
Zhang, Zhengkui; Nielsen, Brian; Larsen, Kim Guldstrand
2016-01-01
Time optimal reachability analysis is a novel model based technique for solving scheduling and planning problems. After modeling them as reachability problems using timed automata, a real-time model checker can compute the fastest trace to the goal states which constitutes a time optimal schedule....... We propose distributed computing to accelerate time optimal reachability analysis. We develop five distributed state exploration algorithms, implement them in \\uppaal enabling it to exploit the compute resources of a dedicated model-checking cluster. We experimentally evaluate the implemented...
Analysis of local ionospheric time varying characteristics with singular value decomposition
DEFF Research Database (Denmark)
Jakobsen, Jakob Anders; Knudsen, Per; Jensen, Anna B. O.
2010-01-01
in Denmark located in the midlatitude region. The station separation between the three stations is 132–208 km (the time series of the TEC can be freely downloaded at http://www.heisesgade.dk). For each year, a SVD has been performed on the TEC time series in order to identify the three time varying (daily...... filter processing making it more robust, but can also be used as starting values in the initialization phase in case of gaps in the data stream. Furthermore, the models can be used to detect variations from the normal local ionospheric activity....
Denoising time-resolved microscopy image sequences with singular value thresholding
Energy Technology Data Exchange (ETDEWEB)
Furnival, Tom, E-mail: tjof2@cam.ac.uk; Leary, Rowan K., E-mail: rkl26@cam.ac.uk; Midgley, Paul A., E-mail: pam33@cam.ac.uk
2017-07-15
Time-resolved imaging in microscopy is important for the direct observation of a range of dynamic processes in both the physical and life sciences. However, the image sequences are often corrupted by noise, either as a result of high frame rates or a need to limit the radiation dose received by the sample. Here we exploit both spatial and temporal correlations using low-rank matrix recovery methods to denoise microscopy image sequences. We also make use of an unbiased risk estimator to address the issue of how much thresholding to apply in a robust and automated manner. The performance of the technique is demonstrated using simulated image sequences, as well as experimental scanning transmission electron microscopy data, where surface adatom motion and nanoparticle structural dynamics are recovered at rates of up to 32 frames per second. - Highlights: • Correlations in space and time are harnessed to denoise microscopy image sequences. • A robust estimator provides automated selection of the denoising parameter. • Motion tracking and automated noise estimation provides a versatile algorithm. • Application to time-resolved STEM enables study of atomic and nanoparticle dynamics.
The singular universe and the reality of time a proposal in natural philosophy
Unger, Roberto Mangabeira
2015-01-01
Cosmology is in crisis. The more we discover, the more puzzling the universe appears to be. How and why are the laws of nature what they are? A philosopher and a physicist, world-renowned for their radical ideas in their fields, argue for a revolution. To keep cosmology scientific, we must replace the old view in which the universe is governed by immutable laws by a new one in which laws evolve. Then we can hope to explain them. The revolution that Roberto Mangabeira Unger and Lee Smolin propose relies on three central ideas. There is only one universe at a time. Time is real: everything in the structure and regularities of nature changes sooner or later. Mathematics, which has trouble with time, is not the oracle of nature and the prophet of science; it is simply a tool with great power and immense limitations. The argument is readily accessible to non-scientists as well as to the physicists and cosmologists whom it challenges.
Singularities in FLRW Spacetimes
Lam, Huibert het; Prokopec, Tom
2017-01-01
We point out that past-incompleteness of geodesics in FLRW spacetimes does not necessarily imply that these spacetimes start from a singularity. Namely, if a test particle that follows such a trajectory has a non-vanishing velocity, its energy was super-Planckian at some time in the past if it kept
Time-optimal control with finite bandwidth
Hirose, M.; Cappellaro, P.
2018-04-01
Time-optimal control theory provides recipes to achieve quantum operations with high fidelity and speed, as required in quantum technologies such as quantum sensing and computation. While technical advances have achieved the ultrastrong driving regime in many physical systems, these capabilities have yet to be fully exploited for the precise control of quantum systems, as other limitations, such as the generation of higher harmonics or the finite response time of the control apparatus, prevent the implementation of theoretical time-optimal control. Here we present a method to achieve time-optimal control of qubit systems that can take advantage of fast driving beyond the rotating wave approximation. We exploit results from time-optimal control theory to design driving protocols that can be implemented with realistic, finite-bandwidth control fields, and we find a relationship between bandwidth limitations and achievable control fidelity.
Optimizing Departure Times in Vehicle Routes
Kok, A.L.; Hans, Elias W.; Schutten, Johannes M.J.
2011-01-01
Most solution methods for the vehicle routing problem with time windows (VRPTW) develop routes from the earliest feasible departure time. In practice, however, temporary traffic congestion make such solutions non-optimal with respect to minimizing the total duty time. Furthermore, the VRPTW does not
Optimal integration time in OCT imaging
Martin, Lorenz; Gräub, Stephan; Meier, Christoph
2015-07-01
When measuring static objects with 3D OCT, two opposing trends occur: If the integration time is too short, the measurement is noisy resulting in granulated textures on measured objects. If the integration time is too long, drifts e.g. due to thermal effects or unstable laser sources lead to blurred images. The Allan variance is a scheme to find the optimal integration time in terms of reducing noise without picking up signal drift. A long-term measurement with short integration time of a reference target under realistic conditions is needed to obtain the database for the calculation of the Allan variance. Longer integration times are simulated by taking averages of subsequent samples. The Allan variance being the mean of the squared differences between two consecutive averages is calculated for different integration times. The optimal integration time is achieved for minimal Allan variance. First, the scheme is explained and discussed with simulated data. Then, reference measurements of layers of adhesive tape made with a 3D OCT device are analysed to find the optimal integration time of the device. Finally, the findings are applied to the detection of water inclusions in calcite. With too short integration time the water inclusions appear with a stained surface. With the integration time increased towards the optimal time, the surfaces of the water inclusions get smoother and easier to discriminate from the background. Ready-to-use Octave code for the computation of the Allan variance is provided.
Optimization of time characteristics in activation analysis
International Nuclear Information System (INIS)
Gurvich, L.G.; Umaraliev, A.T.
2006-01-01
Full text: The activation analysis temporal characteristics optimization methods developed at present are aimed at determination of optimal values of the three important parameters - irradiation time, cooling time and measurement time. In the performed works, especially in [1-5] the activation analysis processes are described, the optimal values of optimization parameters are obtained from equations solved, and the computational results are given for these parameters for a number of elements. However, the equations presented in [2] were inaccurate, did not allow one to have optimization parameters results for one element content calculations, and it did not take into account background dependence of time. Therefore, we proposed modified equations to determine the optimal temporal parameters and iteration processes for the solution of these equations. It is well-known that the activity of studied sample during measurements does not change significantly, i.e. measurement time is much shorter than the half-life, thus the processes taking place can be described by the Poisson probability distribution, and in general case one can apply binomial distribution. The equation and iteration processes use in this research describe both probability distributions. Expectedly, the cooling time iteration expressions obtained for one element analysis case are similar for the both distribution types, as the optimised time values occurred to be of the same order as half-life values, whereas the cooling time, as we observed, depends on the ratio of the studied sample's peak value to the background peak, and can be significantly larger than the half-life value. This pattern is general, and can be derived from the optimized time expressions, which is supported by the experimental data on short-living isotopes [3,4]. For the isotopes with large half-lives, up to years, like cobalt-60, the cooling time values given in the above mentioned works are equal to months which, apparently
Time Optimal Reachability Analysis Using Swarm Verification
DEFF Research Database (Denmark)
Zhang, Zhengkui; Nielsen, Brian; Larsen, Kim Guldstrand
2016-01-01
and planning problems, response time optimization etc. We propose swarm verification to accelerate time optimal reachability using the real-time model-checker Uppaal. In swarm verification, a large number of model checker instances execute in parallel on a computer cluster using different, typically randomized...... search strategies. We develop four swarm algorithms and evaluate them with four models in terms scalability, and time- and memory consumption. Three of these cooperate by exchanging costs of intermediate solutions to prune the search using a branch-and-bound approach. Our results show that swarm...
Time-optimal control of rolling bodies
Perantoni, Giacomo; Limebeer, David J. N.
2013-11-01
The brachistochrone problem is usually solved in classical mechanics courses using the calculus of variations, although it is quintessentially an optimal control problem. In this paper, we address the classical brachistochrone problem and two vehicle-relevant generalisations from an optimal control perspective. We use optimal control arguments to derive closed-form solutions for both the optimal trajectory and the minimum achievable transit time for these generalisations. We then study optimal control problems involving a steerable disc rolling between prescribed points on the interior surface of a hemisphere. The effects of boundary and control constraints are examined. For three-dimensional problems of this type, which involve rolling bodies and nonholonomic constraints, numerical solutions are used.
Time optimal movement of cooperating robots
Mccarthy, J. M.; Bobrow, J. E.
1989-01-01
The maximization of the speed of movement along a prescribed path, of the system formed by a set of robot arms and the object they hold is examined. The actuator torques that maximize the acceleration of the system are shown to be determined by the solution to a standard linear programming problem. The combination of this result with the known control strategy for time optimal movement of a single robot arm yields an algorithm for time optimal movement of multiple robot arms holding the same workpiece.
Argos: An Optimized Time-Series Photometer
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... We designed a prime focus CCD photometer, Argos, optimized for high speed time-series measurements of blue variables (Nather & Mukadam 2004) for the 2.1 m telescope at McDonald Observatory. Lack of any intervening optics between the primary mirror and the CCD makes the instrument highly ...
Investment under uncertainty : Timing and capacity optimization
Wen, Xingang
2017-01-01
This thesis consists of three chapters on analyzing the optimal investment timing and investment capacity for the firm(s) undertaking irreversible investment in an uncertain environment. Chapter 2 studies the investment decision of a monopoly firm when it can adjust output quantity in a market with
Loop quantum cosmology and singularities.
Struyve, Ward
2017-08-15
Loop quantum gravity is believed to eliminate singularities such as the big bang and big crunch singularity. This belief is based on studies of so-called loop quantum cosmology which concerns symmetry-reduced models of quantum gravity. In this paper, the problem of singularities is analysed in the context of the Bohmian formulation of loop quantum cosmology. In this formulation there is an actual metric in addition to the wave function, which evolves stochastically (rather than deterministically as the case of the particle evolution in non-relativistic Bohmian mechanics). Thus a singularity occurs whenever this actual metric is singular. It is shown that in the loop quantum cosmology for a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker space-time with arbitrary constant spatial curvature and cosmological constant, coupled to a massless homogeneous scalar field, a big bang or big crunch singularity is never obtained. This should be contrasted with the fact that in the Bohmian formulation of the Wheeler-DeWitt theory singularities may exist.
Optimal initial condition of passive tracers for their maximal mixing in finite time
Farazmand, Mohammad
2017-11-01
The efficiency of fluid flow for mixing passive tracers is often limited by fundamental laws and/or design constraints, such that a perfectly homogeneous mixture cannot be obtained in finite time. Here we address the natural corollary question: Given a fluid flow, what is the optimal initial tracer pattern that leads to the most homogeneous mixture after a prescribed finite time? We show that this optimal initial condition coincides with the right singular vector (corresponding to the smallest singular value) of a suitably truncated Perron-Frobenius (PF) operator. The truncation of the PF operator is made under the assumption that there is a small length-scale threshold under which the tracer blobs are considered, for all practical purposes, completely mixed. We demonstrate our results on two examples: a prototypical model known as the sine flow and a direct numerical simulation of two-dimensional turbulence. Evaluating the optimal initial condition through this framework requires only the position of a dense grid of fluid particles at the final instance and their pre-images at the initial instance of the prescribed time interval. As such, our framework can be readily applied to flows where such data are available through numerical simulations or or experimental measurements.
Real-Time Optimization Of Receiver Bandwidth
Vilnrotter, V. A.; Hurd, W. J.; Brown, D. H.
1989-01-01
Estimates of signal and noise spectra enhance reception of weak signals. Carrier-tracking phase-locked loop represented by linear mathematical model at small rms phase errors. Loop continuously generates estimates of received phase. Bandwidth (in effect, scale of complex-frequency variable p) optimized to minimize rms phase error. Minimum signals tracked 5 to 15 dB below those tracked by current receivers. Improvement accomplished by use of bandwidths of 0.1 to 1.0 Hz, in contrast with 3-Hz bandwidth in current use. Principle of real-time optimization of bandwidth adapted to other situations to enhance reception of weak signals otherwise "buried" in noise.
Infinitesimal Structure of Singularities
Directory of Open Access Journals (Sweden)
Michael Heller
2017-02-01
Full Text Available Some important problems of general relativity, such as the quantisation of gravity or classical singularity problems, crucially depend on geometry on very small scales. The so-called synthetic differential geometry—a categorical counterpart of the standard differential geometry—provides a tool to penetrate infinitesimally small portions of space-time. We use this tool to show that on any “infinitesimal neighbourhood” the components of the curvature tensor are themselves infinitesimal, and construct a simplified model in which the curvature singularity disappears, owing to this effect. However, one pays a price for this result. Using topoi as a generalisation of spaces requires a weakening of arithmetic (the existence of infinitesimals and of logic (to the intuitionistic logic. Is this too high a price to pay for acquiring a new method of solving unsolved problems in physics? Without trying, we shall never know the answer.
Belinski, Vladimir
2018-01-01
Written for researchers focusing on general relativity, supergravity, and cosmology, this is a self-contained exposition of the structure of the cosmological singularity in generic solutions of the Einstein equations, and an up-to-date mathematical derivation of the theory underlying the Belinski–Khalatnikov–Lifshitz (BKL) conjecture on this field. Part I provides a comprehensive review of the theory underlying the BKL conjecture. The generic asymptotic behavior near the cosmological singularity of the gravitational field, and fields describing other kinds of matter, is explained in detail. Part II focuses on the billiard reformulation of the BKL behavior. Taking a general approach, this section does not assume any simplifying symmetry conditions and applies to theories involving a range of matter fields and space-time dimensions, including supergravities. Overall, this book will equip theoretical and mathematical physicists with the theoretical fundamentals of the Big Bang, Big Crunch, Black Hole singula...
A Feedback Optimal Control Algorithm with Optimal Measurement Time Points
Directory of Open Access Journals (Sweden)
Felix Jost
2017-02-01
Full Text Available Nonlinear model predictive control has been established as a powerful methodology to provide feedback for dynamic processes over the last decades. In practice it is usually combined with parameter and state estimation techniques, which allows to cope with uncertainty on many levels. To reduce the uncertainty it has also been suggested to include optimal experimental design into the sequential process of estimation and control calculation. Most of the focus so far was on dual control approaches, i.e., on using the controls to simultaneously excite the system dynamics (learning as well as minimizing a given objective (performing. We propose a new algorithm, which sequentially solves robust optimal control, optimal experimental design, state and parameter estimation problems. Thus, we decouple the control and the experimental design problems. This has the advantages that we can analyze the impact of measurement timing (sampling independently, and is practically relevant for applications with either an ethical limitation on system excitation (e.g., chemotherapy treatment or the need for fast feedback. The algorithm shows promising results with a 36% reduction of parameter uncertainties for the Lotka-Volterra fishing benchmark example.
Ozkan, Guner; Ahmet, Bekir
2016-04-01
In this article, we establish exact solutions for the variable-coefficient Fisher-type equation. The solutions are obtained by the modified sine-cosine method and ansatz method. The soliton and periodic solutions and topological as well as the singular 1-soliton solution are obtained with the aid of the ansatz method. These solutions are important for the explanation of some practical physical problems. The obtained results show that these methods provide a powerful mathematical tool for solving nonlinear equations with variable coefficients.
Cosmological models without singularities
International Nuclear Information System (INIS)
Petry, W.
1981-01-01
A previously studied theory of gravitation in flat space-time is applied to homogeneous and isotropic cosmological models. There exist two different classes of models without singularities: (i) ever-expanding models, (ii) oscillating models. The first class contains models with hot big bang. For these models there exist at the beginning of the universe-in contrast to Einstein's theory-very high but finite densities of matter and radiation with a big bang of very short duration. After short time these models pass into the homogeneous and isotropic models of Einstein's theory with spatial curvature equal to zero and cosmological constant ALPHA >= O. (author)
Time Optimal Quantum Control of Mixed States
Carlini, Alberto; Hosoya, Akio; Koike, Tatsuhiko; Okudaira, Yosuke
2008-03-01
We formulate a variational principle for finding the time-optimal quantum evolution of mixed states governed by the master equation, when the Hamiltonian H and the Lindblad operators Lj are subject to certain constraints. We show that the problem can be reduced to solving first a fundamental equation (the "quantum brachistochrone") for H(t), which can be written down once the constraints are specified, and then solving the constraints and the master equation for the Lj(t)s and the density operator ρ(t). As an application of our formalism, we analytically solve a simple one qubit model where the optimal Lindblad operators correspond either to a continuous Markovian measurement or to a decoherence process by the environment.
PROCESS TIME OPTIMIZATION IN DEPOSITOR AND FILLER
Directory of Open Access Journals (Sweden)
Jesús Iván Ruíz-Ibarra
2017-07-01
Full Text Available As in any industry, in soft drink manufacturing demand, customer service and production is of great importance that forces this production to have their equipment and production machines in optimal conditions for the product to be in the hands of the consumer without delays, therefore it is important to have the established times of each process, since the syrup is elaborated, packaged, distributed, until it is purchased by the consumer. After a chronometer analysis, the most common faults were detected in each analyzed process. In the filler machine the most frequent faults are: accumulation of bottles in the subsequent and previous processes to filling process, which in general the cause of the collection of bottles is due to failures in the other equipment of the production line. In the process of unloading the most common faults are: boxes jammed in bump and pusher (pushing boxes; boxes fallen in rollers and platforms transporter. According to observations in each machine, the actions to be followed are presented to solve the problems that arise. Also described the methodology to obtain results, to data analyze and decisions. Firstly an analysis of operations is done to know each machine, supported by the manuals of the machines and the operators themselves a study of times is done by chronometer to determine the standard time of the process where also they present the most common faults, then observations are made on the machines according to the determined sample size, thus obtaining the information necessary to take measurements and to make the study of optimization of the production processes. An analysis of the predetermined process times is also performed by the MTM methods and the MOST time analysis. The results of operators with MTM: Fault Filler = 0.846 minutes, Faultless Filler = 0.61 minutes, Fault Breaker = 0.74 minutes and Fault Flasher = 0.45 minutes. The results of MOST operators are: Fault Filler = 2.58 minutes, Filler Fails
On important precursor of singular optics (tutorial)
Polyanskii, Peter V.; Felde, Christina V.; Bogatyryova, Halina V.; Konovchuk, Alexey V.
2018-01-01
The rise of singular optics is usually associated with the seminal paper by J. F. Nye and M. V. Berry [Proc. R. Soc. Lond. A, 336, 165-189 (1974)]. Intense development of this area of modern photonics has started since the early eighties of the XX century due to invention of the interfrence technique for detection and diagnostics of phase singularities, such as optical vortices in complex speckle-structured light fields. The next powerful incentive for formation of singular optics into separate area of the science on light was connectected with discovering of very practical technique for creation of singular optical beams of various kinds on the base of computer-generated holograms. In the eghties and ninetieth of the XX century, singular optics evolved, almost entirely, under the approximation of complete coherency of light field. Only at the threshold of the XXI century, it has been comprehended that the singular-optics approaches can be fruitfully expanded onto partially spatially coherent, partially polarized and polychromatic light fields supporting singularities of new kinds, that has been resulted in establishing of correlation singular optics. Here we show that correlation singular optics has much deeper roots, ascending to "pre-singular" and even pre-laser epoch and associated with the concept of partial coherence and polarization. It is remarcable that correlation singular optics in its present interpretation has forestalled the standard coherent singular optics. This paper is timed to the sixtieth anniversary of the most profound precursor of modern correlation singular optics [J. Opt. Soc. Am., 47, 895-902 (1957)].
Optimal Time to Enter a Retirement Village
Directory of Open Access Journals (Sweden)
Jinhui Zhang
2017-03-01
Full Text Available We consider the financial planning problem of a retiree wishing to enter a retirement village at a future uncertain date. The date of entry is determined by the retiree’s utility and bequest maximisation problem within the context of uncertain future health states. In addition, the retiree must choose optimal consumption, investment, bequest and purchase of insurance products prior to their full annuitisation on entry to the retirement village. A hyperbolic absolute risk-aversion (HARA utility function is used to allow necessary consumption for basic living and medical costs. The retirement village will typically require an initial deposit upon entry. This threshold wealth requirement leads to exercising the replication of an American put option at the uncertain stopping time. From our numerical results, active insurance and annuity markets are shown to be a critical aspect in retirement planning.
Directory of Open Access Journals (Sweden)
Chao Sun
2016-01-01
Full Text Available The problem of delay-dependent robust fault estimation for a class of Takagi-Sugeno (T-S fuzzy singular systems is investigated. By decomposing the delay interval into two unequal subintervals and with a new and tighter integral inequality transformation, an improved delay-dependent stability criterion is given in terms of linear matrix inequalities (LMIs to guarantee that the fuzzy singular system with time-varying delay is regular, impulse-free, and stable firstly. Then, based on this criterion, by considering the system fault as an auxiliary disturbance vector and constructing an appropriate fuzzy augmented system, a fault estimation observer is designed to ensure that the error dynamic system is regular, impulse-free, and robustly stable with a prescribed H∞ performance satisfied for all actuator and sensor faults simultaneously, and the obtained fault estimates can practically better depict the size and shape of the faults. Finally, numerical examples are given to show the effectiveness of the proposed approach.
Directory of Open Access Journals (Sweden)
Cheng Gong
2014-01-01
Full Text Available This paper investigates the H∞ filtering problem of discrete singular Markov jump systems (SMJSs with mode-dependent time delay based on T-S fuzzy model. First, by Lyapunov-Krasovskii functional approach, a delay-dependent sufficient condition on H∞-disturbance attenuation is presented, in which both stability and prescribed H∞ performance are required to be achieved for the filtering-error systems. Then, based on the condition, the delay-dependent H∞ filter design scheme for SMJSs with mode-dependent time delay based on T-S fuzzy model is developed in term of linear matrix inequality (LMI. Finally, an example is given to illustrate the effectiveness of the result.
Singular multiparameter dynamic equations with distributional ...
African Journals Online (AJOL)
In this paper, we consider both singular single and several multiparameter second order dynamic equations with distributional potentials on semi-innite time scales. At rst we construct Weyl's theory for the single singular multiparameter dynamic equation with distributional potentials and we prove that the forward jump of at ...
Building Reproducible Science with Singularity Containers
CERN. Geneva
2018-01-01
Michael Bauer first began working with containers at GSI national lab in Darmstadt, Germany, in 2017 while taking a semester off of school at the University of Michigan. Michael met Greg Kurtzer, project lead of Singularity, during his time at GSI and he began contributing heavily to the Singularity project. At the start of summer 2017, Greg hired Michael to work at the ...
String theory and cosmological singularities
Indian Academy of Sciences (India)
of space and time needs revision near these singularities where quantum effects of gravity become important, it is still not clear what structure could replace space ..... The dimensionful parameter μ is a Lagrange multiplier which ensures that the total number of eigenvalues is fixed. 98. Pramana – J. Phys., Vol. 69, No. 1, July ...
Geodesic fields with singularities
International Nuclear Information System (INIS)
Kafker, A.H.
1979-01-01
The question considered is whether or not a Riemannian metric can be found to make a given curve field on a closed surface into geodesics. Allowing singularities removes the restriction to Euler characteristic zero. The main results are the following: only two types of isolated singularities can occur in a geodesic field on a surface. No geodsic fields exist on a surface with Euler characteristic less than zero. If the Euler characteristic is zero, such a geodesic field can have only removable singularities. Only a limited number of geodesic fields exist on S 2 and RP 2 . A closed geodesic (perhaps made from several curves and singularities) always appears in such a field
Run-time Optimization for Pipelined Systems
Abdel Kader, R.; van Keulen, Maurice; Boncz, Peter; Manegold, Stefan
2010-01-01
Traditional optimizers fail to pick good execution plans, when faced with increasingly complex queries and large data sets. This failure is even more acute in the context of XQuery, due to the structured nature of the XML language. To overcome the vulnerabilities of traditional optimizers, we have
Directory of Open Access Journals (Sweden)
Yuancheng Sun
2016-01-01
Full Text Available For the non-Gaussian singular time-delayed stochastic distribution control (SDC system with unknown external disturbance where the output probability density function (PDF is approximated by the rational square-root B-spline basis function, a robust fault diagnosis and fault tolerant control algorithm is presented. A full-order observer is constructed to estimate the exogenous disturbance and an adaptive observer is used to estimate the fault size. A fault tolerant tracking controller is designed using the feedback of distribution tracking error, fault, and disturbance estimation to let the postfault output PDF still track desired distribution. Finally, a simulation example is included to illustrate the effectiveness of the proposed algorithms and encouraging results have been obtained.
Value Function and Optimal Rule on the Optimal Stopping Problem for Continuous-Time Markov Processes
Directory of Open Access Journals (Sweden)
Lu Ye
2017-01-01
Full Text Available This paper considers the optimal stopping problem for continuous-time Markov processes. We describe the methodology and solve the optimal stopping problem for a broad class of reward functions. Moreover, we illustrate the outcomes by some typical Markov processes including diffusion and Lévy processes with jumps. For each of the processes, the explicit formula for value function and optimal stopping time is derived. Furthermore, we relate the derived optimal rules to some other optimal problems.
Isotopy of Morin singularities
Saji, Kentaro
2015-01-01
We define an equivalence relation called A-isotopy between finitely determined map-germs, which is a strengthened version of A-equivalence. We consider the number of A-isotopy classes of equidimensional Morin singularities, and some other well-known low-dimensional singularities. We also give an application to stable perturbations of simple equi-dimensional map-germs.
Ishii, Shihoko
2014-01-01
This book is an introduction to singularities for graduate students and researchers. It is said that algebraic geometry originated in the seventeenth century with the famous work Discours de la méthode pour bien conduire sa raison, et chercher la vérité dans les sciences by Descartes. In that book he introduced coordinates to the study of geometry. After its publication, research on algebraic varieties developed steadily. Many beautiful results emerged in mathematicians’ works. Most of them were about non-singular varieties. Singularities were considered “bad” objects that interfered with knowledge of the structure of an algebraic variety. In the past three decades, however, it has become clear that singularities are necessary for us to have a good description of the framework of varieties. For example, it is impossible to formulate minimal model theory for higher-dimensional cases without singularities. Another example is that the moduli spaces of varieties have natural compactification, the boundar...
Huang, Kuan-Ju; Shih, Wei-Yeh; Chang, Jui Chung; Feng, Chih Wei; Fang, Wai-Chi
2013-01-01
This paper presents a pipeline VLSI design of fast singular value decomposition (SVD) processor for real-time electroencephalography (EEG) system based on on-line recursive independent component analysis (ORICA). Since SVD is used frequently in computations of the real-time EEG system, a low-latency and high-accuracy SVD processor is essential. During the EEG system process, the proposed SVD processor aims to solve the diagonal, inverse and inverse square root matrices of the target matrices in real time. Generally, SVD requires a huge amount of computation in hardware implementation. Therefore, this work proposes a novel design concept for data flow updating to assist the pipeline VLSI implementation. The SVD processor can greatly improve the feasibility of real-time EEG system applications such as brain computer interfaces (BCIs). The proposed architecture is implemented using TSMC 90 nm CMOS technology. The sample rate of EEG raw data adopts 128 Hz. The core size of the SVD processor is 580×580 um(2), and the speed of operation frequency is 20MHz. It consumes 0.774mW of power during the 8-channel EEG system per execution time.
Simulation-based robust optimization for signal timing and setting.
2009-12-30
The performance of signal timing plans obtained from traditional approaches for : pre-timed (fixed-time or actuated) control systems is often unstable under fluctuating traffic : conditions. This report develops a general approach for optimizing the ...
Optimal time travel in the Godel universe
Natario, Jose
2011-01-01
Using the theory of optimal rocket trajectories in general relativity, recently developed in arXiv:1105.5235, we present a candidate for the minimum total integrated acceleration closed timelike curve in the Godel universe, and give evidence for its minimality. The total integrated acceleration of this curve is lower than Malament's conjectured value (Malament, 1984), as was already implicit in the work of Manchak (Manchak, 2011); however, Malament's conjecture does seem to hold for periodic ...
Wang, Yang; Liu, Zhiwen; Ma, Shaodong
2018-02-28
This paper proposes an unobtrusive blood pressure (BP) measurement system design with a motion artifact (MA) compensation strategy as a potential surrogate to the traditional cuff-based sphygmomanometer for self-monitoring in a less restricted environment. A dual-channel photoplethysmographic signal acquisition system is designed and implemented for cuff-less BP measurement based on the peripheral pulse transit time (PPTT) acquired from the forearm and wrist. Comprising a motion decision, singular spectrum analysis, PPTT calculation and BP measurement, a novel approach is proposed to realize BP measurements and suppress MA interference. Compared with the reference BP recorded by a cuff-based sphygmomanometer, our preliminary examinations on 30 subjects found that the correlation coefficients for systolic BP estimation and diastolic BP estimation were 0.75 and 0.78, and the mean absolute differences were 7.61 mmHg and 6.82 mmHg, respectively. Meanwhile, the proposed approach was compared with the other most widely used pulse transit time (PTT) measuring methods and BP-PTT models. All the results indicate that our work was highly effective in realizing the BP measurement. The proposed system and approach have resulted in remarkable progress in cuff-less BP measurements with MA removal, and have great potential value in wearable applications without environmental restrictions.
Directory of Open Access Journals (Sweden)
Gabriel Martínez-Niconoff
2012-01-01
Full Text Available With the purpose to compare the physical features of the electromagnetic field, we describe the synthesis of optical singularities propagating in the free space and on a metal surface. In both cases the electromagnetic field has a slit-shaped curve as a boundary condition, and the singularities correspond to a shock wave that is a consequence of the curvature of the slit curve. As prototypes, we generate singularities that correspond to fold and cusped regions. We show that singularities in free space may generate bifurcation effects while plasmon fields do not generate these kinds of effects. Experimental results for free-space propagation are presented and for surface plasmon fields, computer simulations are shown.
Dallaston, M. C.; Tseluiko, D.; Zheng, Z.; Fontelos, M. A.; Kalliadasis, S.
2017-07-01
A thin liquid film coating a planar horizontal substrate may be unstable to perturbations in the film thickness due to unfavourable intermolecular interactions between the liquid and the substrate, which may lead to finite-time rupture. The self-similar nature of the rupture has been studied before by utilising the standard lubrication approximation along with the Derjaguin (or disjoining) pressure formalism used to account for the intermolecular interactions, and a particular form of the disjoining pressure with exponent n = 3 has been used, namely, \\Pi(h)\\propto -1/h3 , where h is the film thickness. In the present study, we use a numerical continuation method to compute discrete solutions to self-similar rupture for a general disjoining pressure exponent n (not necessarily equal to 3), which has not been previously performed. We focus on axisymmetric point-rupture solutions and show for the first time that pairs of solution branches merge as n decreases, starting at nc ≈ 1.485 . We verify that this observation also holds true for plane-symmetric line-rupture solutions for which the critical value turns out to be slightly larger than for the axisymmetric case, n_cplane≈ 1.499 . Computation of the full time-dependent problem also demonstrates the loss of stable similarity solutions and the subsequent onset of cascading, increasingly small structures.
Directory of Open Access Journals (Sweden)
Hans Schonemann
1996-12-01
Full Text Available Some algorithms for singularity theory and algebraic geometry The use of Grobner basis computations for treating systems of polynomial equations has become an important tool in many areas. This paper introduces of the concept of standard bases (a generalization of Grobner bases and the application to some problems from algebraic geometry. The examples are presented as SINGULAR commands. A general introduction to Grobner bases can be found in the textbook [CLO], an introduction to syzygies in [E] and [St1]. SINGULAR is a computer algebra system for computing information about singularities, for use in algebraic geometry. The basic algorithms in SINGULAR are several variants of a general standard basis algorithm for general monomial orderings (see [GG]. This includes wellorderings (Buchberger algorithm ([B1], [B2] and tangent cone orderings (Mora algorithm ([M1], [MPT] as special cases: It is able to work with non-homogeneous and homogeneous input and also to compute in the localization of the polynomial ring in 0. Recent versions include algorithms to factorize polynomials and a factorizing Grobner basis algorithm. For a complete description of SINGULAR see [Si].
Optimal Control with Time Delays via the Penalty Method
Directory of Open Access Journals (Sweden)
Mohammed Benharrat
2014-01-01
Full Text Available We prove necessary optimality conditions of Euler-Lagrange type for a problem of the calculus of variations with time delays, where the delay in the unknown function is different from the delay in its derivative. Then, a more general optimal control problem with time delays is considered. Main result gives a convergence theorem, allowing us to obtain a solution to the delayed optimal control problem by considering a sequence of delayed problems of the calculus of variations.
Numerical Approaches to Spacetime Singularities
Directory of Open Access Journals (Sweden)
Beverly K. Berger
1998-05-01
Full Text Available This review updates a previous review article. Numerical explorationof the properties of singularities could, in principle, yield detailed understanding of their nature in physically realistic cases. Examples of numerical investigations into the formation of naked singularities, critical behavior in collapse, passage through the Cauchy horizon, chaos of the Mixmaster singularity, and singularities in spatially inhomogeneous cosmologies are discussed.
Time is on my side: optimism in intertemporal choice
Berndsen, M.; van der Pligt, J.
2001-01-01
The present research, using data from 163 undergraduates, examines the role of optimism on time preferences for both losses and gains. It is argued that optimism has asymmetric effects on time preferences for gains versus losses: one reason why decision makers prefer immediate gains is because they
On the application of Discrete Time Optimal Control Concepts to ...
African Journals Online (AJOL)
On the application of Discrete Time Optimal Control Concepts to Economic Problems. ... Journal of the Nigerian Association of Mathematical Physics ... Abstract. An extension of the use of the maximum principle to solve Discrete-time Optimal Control Problems (DTOCP), in which the state equations are in the form of general ...
Optimal Breeding Time Determination in Bitch Using Vaginal Cytology
African Journals Online (AJOL)
Optimal Breeding Time Determination in Bitch Using Vaginal Cytology: Case Report. ... This result once again emphasized the accuracy of vaginal cytology as a useful tool to determine an optimal breeding time in bitch. Hence, vaginal cytology, though can not detect ovulation day, will continue to be patronized by small ...
Optimal control of impulsive Volterra equations with variable impulse times
Belbas, S. A.; Schmidt, W. H.
2008-01-01
We obtain necessary conditions of optimality for impulsive Volterra integral equations with switching and impulsive controls, with variable impulse time-instants. The present work continues and complements our previous work on impulsive Volterra control with fixed impulse times.
Real-Time Mapping Using Stereoscopic Vision Optimization
National Research Council Canada - National Science Library
Biggs, Kevin M
2005-01-01
... to locate during processing. Since all real-time vision processing endeavors are extremely computationally intensive, numerous optimization techniques are applied to allow for a real-time application...
Discrete-time optimal control and games on large intervals
Zaslavski, Alexander J
2017-01-01
Devoted to the structure of approximate solutions of discrete-time optimal control problems and approximate solutions of dynamic discrete-time two-player zero-sum games, this book presents results on properties of approximate solutions in an interval that is independent lengthwise, for all sufficiently large intervals. Results concerning the so-called turnpike property of optimal control problems and zero-sum games in the regions close to the endpoints of the time intervals are the main focus of this book. The description of the structure of approximate solutions on sufficiently large intervals and its stability will interest graduate students and mathematicians in optimal control and game theory, engineering, and economics. This book begins with a brief overview and moves on to analyze the structure of approximate solutions of autonomous nonconcave discrete-time optimal control Lagrange problems.Next the structures of approximate solutions of autonomous discrete-time optimal control problems that are discret...
Optimal Infinite Runs in One-Clock Priced Timed Automata
DEFF Research Database (Denmark)
David, Alexandre; Ejsing-Duun, Daniel; Fontani, Lisa
We address the problem of finding an infinite run with the optimal cost-time ratio in a one-clock priced timed automaton and pro- vide an algorithmic solution. Through refinements of the quotient graph obtained by strong time-abstracting bisimulation partitioning, we con- struct a graph with time...... of the one-clock priced timed automaton....
One Critical Case in Singularly Perturbed Control Problems
Sobolev, Vladimir
2017-02-01
The aim of the paper is to describe the special critical case in the theory of singularly perturbed optimal control problems. We reduce the original singularly perturbed problem to a regularized one such that the existence of slow integral manifolds can be established by means of the standard theory. We illustrate our approach by an example of control problem.
OPTIMAL GUARANTEED SERVICES TIMED TOKEN (OGSTT ...
African Journals Online (AJOL)
eobe
automation, embedded real-time distributed systems, space vehicle systems, and the integration of expert systems into avionics and industrial process controls. The situation has placed an increasing demand for effective and efficient multi- services local area networks. Such networks' MAC protocols must deal with different ...
Engineering applications of discrete-time optimal control
DEFF Research Database (Denmark)
Vidal, Rene Victor Valqui; Ravn, Hans V.
1990-01-01
of some well-known and new results in discrete time optimal control methods applicable to practical problem solving within engineering. Emphasis is placed on dynamic programming, the classical maximum principle and generalized versions of the maximum principle for optimal control of discrete time systems......Many problems of design and operation of engineering systems can be formulated as optimal control problems where time has been discretisized. This is also true even if 'time' is not involved in the formulation of the problem, but rather another one-dimensional parameter. This paper gives a review...
Optimal timing for intravenous administration set replacement.
Gillies, D; O'Riordan, L; Wallen, M; Morrison, A; Rankin, K; Nagy, S
2005-10-19
Administration of intravenous therapy is a common occurrence within the hospital setting. Routine replacement of administration sets has been advocated to reduce intravenous infusion contamination. If decreasing the frequency of changing intravenous administration sets does not increase infection rates, a change in practice could result in considerable cost savings. The objective of this review was to identify the optimal interval for the routine replacement of intravenous administration sets when infusate or parenteral nutrition (lipid and non-lipid) solutions are administered to people in hospital via central or peripheral venous catheters. We searched The Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, CINAHL, EMBASE: all from inception to February 2004; reference lists of identified trials, and bibliographies of published reviews. We also contacted researchers in the field. We did not have a language restriction. We included all randomized or quasi-randomized controlled trials addressing the frequency of replacing intravenous administration sets when parenteral nutrition (lipid and non-lipid containing solutions) or infusions (excluding blood) were administered to people in hospital via a central or peripheral catheter. Two authors assessed all potentially relevant studies. We resolved disagreements between the two authors by discussion with a third author. We collected data for the outcomes; infusate contamination; infusate-related bloodstream infection; catheter contamination; catheter-related bloodstream infection; all-cause bloodstream infection and all-cause mortality. We identified 23 references for review. We excluded eight of these studies; five because they did not fit the inclusion criteria and three because of inadequate data. We extracted data from the remaining 15 references (13 studies) with 4783 participants. We conclude that there is no evidence that changing intravenous administration sets more often than every 96 hours
Observational constraints on cosmological future singularities
Energy Technology Data Exchange (ETDEWEB)
Beltran Jimenez, Jose [Aix Marseille Univ, Universite de Toulon CNRS, CPT, Marseille (France); Lazkoz, Ruth [Euskal Herriko Unibertsitatea, Fisika Teorikoaren eta Zientziaren Historia Saila, Zientzia eta Teknologia Fakultatea, Bilbao (Spain); Saez-Gomez, Diego [Faculdade de Ciencias da Universidade de Lisboa, Departamento de Fisica, Instituto de Astrofisica e Ciencias do Espaco, Lisbon (Portugal); Salzano, Vincenzo [University of Szczecin, Institute of Physics, Szczecin (Poland)
2016-11-15
In this work we consider a family of cosmological models featuring future singularities. This type of cosmological evolution is typical of dark energy models with an equation of state violating some of the standard energy conditions (e.g. the null energy condition). Such a kind of behavior, widely studied in the literature, may arise in cosmologies with phantom fields, theories of modified gravity or models with interacting dark matter/dark energy. We briefly review the physical consequences of these cosmological evolution regarding geodesic completeness and the divergence of tidal forces in order to emphasize under which circumstances the singularities in some cosmological quantities correspond to actual singular spacetimes. We then introduce several phenomenological parameterizations of the Hubble expansion rate to model different singularities existing in the literature and use SN Ia, BAO and H(z) data to constrain how far in the future the singularity needs to be (under some reasonable assumptions on the behavior of the Hubble factor). We show that, for our family of parameterizations, the lower bound for the singularity time cannot be smaller than about 1.2 times the age of the universe, what roughly speaking means ∝2.8 Gyrs from the present time. (orig.)
Real-time optimization of nuclear magnetic resonance experiments
Song, Y.-Q.; Tang, Yiqiao; Hürlimann, M. D.; Cory, D. G.
2018-04-01
Nuclear Magnetic Resonance (NMR) experiments are typically performed with predetermined pulse sequences and acquisition parameters, and are oftentimes sub-optimal for individual samples under investigation. Here we explore a class of real-time optimization methods that conducts stochastic analyses on the acquired data and in turn updates and optimizes the subsequent measurements. We show superiority of the method to static approaches, both in the efficiency and quality of data acquisition, for a wide range of experiments.
Optimal Time of Tracheotomy in Infants
Directory of Open Access Journals (Sweden)
Sevim Unal MD
2015-01-01
Full Text Available Objective. Infants with respiratory failure may require prolonged intubation. There is no consensus on the time of tracheotomy in neonates. Methods. We evaluated infants applied tracheotomy, time of procedure, and early complications in our neonatal intensive care unit (NICU retrospectively from January 2012 to December 2013. Results. We identified 9 infants applied tracheotomy with gestational ages 34 to 41 weeks. Their diagnoses were hypotonic infant, subglottic stenosis, laryngeal cleft, neck mass, and chronic lung disease. Age on tracheotomy ranged from 4 to 10 weeks. Early complication ratio was 33.3% with minimal bleeding (1, air leak (1, and canal revision requirement (1. We discharged 7 infants, and 2 infants died in the NICU. Conclusion. Tracheotomy makes infant nursing easy for staff and families even at home. If carried out by a trained team, the procedure is safe and has low complication. When to apply tracheotomy should be individualized, and airway damage due to prolonged intubation versus risks of tracheotomy should be taken into consideration.
Technological Singularity: What Do We Really Know?
Directory of Open Access Journals (Sweden)
Alexey Potapov
2018-04-01
Full Text Available The concept of the technological singularity is frequently reified. Futurist forecasts inferred from this imprecise reification are then criticized, and the reified ideas are incorporated in the core concept. In this paper, I try to disentangle the facts related to the technological singularity from more speculative beliefs about the possibility of creating artificial general intelligence. I use the theory of metasystem transitions and the concept of universal evolution to analyze some misconceptions about the technological singularity. While it may be neither purely technological, nor truly singular, we can predict that the next transition will take place, and that the emerged metasystem will demonstrate exponential growth in complexity with a doubling time of less than half a year, exceeding the complexity of the existing cybernetic systems in few decades.
Topological Signals of Singularities in Ricci Flow
Directory of Open Access Journals (Sweden)
Paul M. Alsing
2017-08-01
Full Text Available We implement methods from computational homology to obtain a topological signal of singularity formation in a selection of geometries evolved numerically by Ricci flow. Our approach, based on persistent homology, produces precise, quantitative measures describing the behavior of an entire collection of data across a discrete sample of times. We analyze the topological signals of geometric criticality obtained numerically from the application of persistent homology to models manifesting singularities under Ricci flow. The results we obtain for these numerical models suggest that the topological signals distinguish global singularity formation (collapse to a round point from local singularity formation (neckpinch. Finally, we discuss the interpretation and implication of these results and future applications.
Fundamental solutions of singular SPDEs
Energy Technology Data Exchange (ETDEWEB)
Selesi, Dora, E-mail: dora@dmi.uns.ac.rs [Department of Mathematics and Informatics, University of Novi Sad (Serbia)
2011-07-15
Highlights: > Fundamental solutions of linear SPDEs are constructed. > Wick-convolution product is introduced for the first time. > Fourier transformation maps Wick-convolution into Wick product. > Solutions of linear SPDEs are expressed via Wick-convolution with fundamental solutions. > Stochastic Helmholtz equation is solved. - Abstract: This paper deals with some models of mathematical physics, where random fluctuations are modeled by white noise or other singular Gaussian generalized processes. White noise, as the distributional derivative od Brownian motion, which is the most important case of a Levy process, is defined in the framework of Hida distribution spaces. The Fourier transformation in the framework of singular generalized stochastic processes is introduced and its applications to solving stochastic differential equations involving Wick products and singularities such as the Dirac delta distribution are presented. Explicit solutions are obtained in form of a chaos expansion in the Kondratiev white noise space, while the coefficients of the expansion are tempered distributions. Stochastic differential equations of the form P({omega}, D) Lozenge u(x, {omega}) = A(x, {omega}) are considered, where A is a singular generalized stochastic process and P({omega}, D) is a partial differential operator with random coefficients. We introduce the Wick-convolution operator * which enables us to express the solution as u = s*A Lozenge I{sup Lozenge (-1)}, where s denotes the fundamental solution and I is the unit random variable. In particular, the stochastic Helmholtz equation is solved, which in physical interpretation describes waves propagating with a random speed from randomly appearing point sources.
Fundamental solutions of singular SPDEs
International Nuclear Information System (INIS)
Selesi, Dora
2011-01-01
Highlights: → Fundamental solutions of linear SPDEs are constructed. → Wick-convolution product is introduced for the first time. → Fourier transformation maps Wick-convolution into Wick product. → Solutions of linear SPDEs are expressed via Wick-convolution with fundamental solutions. → Stochastic Helmholtz equation is solved. - Abstract: This paper deals with some models of mathematical physics, where random fluctuations are modeled by white noise or other singular Gaussian generalized processes. White noise, as the distributional derivative od Brownian motion, which is the most important case of a Levy process, is defined in the framework of Hida distribution spaces. The Fourier transformation in the framework of singular generalized stochastic processes is introduced and its applications to solving stochastic differential equations involving Wick products and singularities such as the Dirac delta distribution are presented. Explicit solutions are obtained in form of a chaos expansion in the Kondratiev white noise space, while the coefficients of the expansion are tempered distributions. Stochastic differential equations of the form P(ω, D) ◊ u(x, ω) = A(x, ω) are considered, where A is a singular generalized stochastic process and P(ω, D) is a partial differential operator with random coefficients. We introduce the Wick-convolution operator * which enables us to express the solution as u = s*A ◊ I ◊(-1) , where s denotes the fundamental solution and I is the unit random variable. In particular, the stochastic Helmholtz equation is solved, which in physical interpretation describes waves propagating with a random speed from randomly appearing point sources.
Optimal capacitor sizing and placement based on real time analysis ...
African Journals Online (AJOL)
In this paper, optimal capacitor sizing and placement method was used to improve energy efficiency. It involves the placement of capacitors in a specific location with suitable sizing based on the current load of the electrical system. The optimization is done in real time scenario where the sizing and placement of the ...
Can non-commutativity resolve the big-bang singularity?
Energy Technology Data Exchange (ETDEWEB)
Maceda, M.; Madore, J. [Laboratoire de Physique Theorique, Universite de Paris-Sud, Batiment 211, 91405, Orsay (France); Manousselis, P. [Department of Engineering Sciences, University of Patras, 26110, Patras (Greece); Physics Department, National Technical University, Zografou Campus, 157 80, Zografou, Athens (Greece); Zoupanos, G. [Physics Department, National Technical University, Zografou Campus, 157 80, Zografou, Athens (Greece); Theory Division, CERN, 1211, Geneva 23 (Switzerland)
2004-08-01
A possible way to resolve the singularities of general relativity is proposed based on the assumption that the description of space-time using commuting coordinates is not valid above a certain fundamental scale. Beyond that scale it is assumed that the space-time has non-commutative structure leading in turn to a resolution of the singularity. As a first attempt towards realizing the above programme a modification of the Kasner metric is constructed which is commutative only at large time scales. At small time scales, near the singularity, the commutation relations among the space coordinates diverge. We interpret this result as meaning that the singularity has been completely delocalized. (orig.)
Optimal timing for intravascular administration set replacement.
Ullman, Amanda J; Cooke, Marie L; Gillies, Donna; Marsh, Nicole M; Daud, Azlina; McGrail, Matthew R; O'Riordan, Elizabeth; Rickard, Claire M
2013-09-15
populations, arterial and venous administration sets, parenteral nutrition, lipid emulsions and crystalloid infusions. Most studies were at moderate to high risk of bias or did not adequately describe the methods that they used to minimize bias. All included trials were unable to blind personnel because of the nature of the intervention.No evidence was found for differences in catheter-related or infusate-related bacteraemia or fungaemia with more frequent administration set replacement overall or at any time interval comparison (risk ratio (RR) 1.06, 95% confidence interval (CI) 0.67 to 1.69; RR 0.67, 95% CI 0.27 to 1.70). Infrequent administration set replacement reduced the rate of bloodstream infection (RR 0.73, 95% CI 0.54 to 0.98). No evidence revealed differences in catheter colonization or infusate colonization with more frequent administration set replacement (RR 1.08, 95% CI 0.94 to 1.24; RR 1.15, 95% CI 0.70 to 1.86, respectively). Borderline evidence suggested that infrequent administration set replacement increased the mortality rate only within the neonatal population (RR 1.84, 95% CI 1.00 to 3.36). No evidence revealed interactions between the (lack of) effects of frequency of administration set replacement and the subgroups analysed: parenteral nutrition and/or fat emulsions versus infusates not involving parenteral nutrition or fat emulsions; adult versus neonatal participants; and arterial versus venous catheters. Some evidence indicates that administration sets that do not contain lipids, blood or blood products may be left in place for intervals of up to 96 hours without increasing the risk of infection. Other evidence suggests that mortality increased within the neonatal population with infrequent administration set replacement. However, much the evidence obtained was derived from studies of low to moderate quality.
Real-Time Dosimetry and Optimization of Prostate Photodynamic Therapy
National Research Council Canada - National Science Library
Zhu, Timothy C
2005-01-01
.... We have also developed software to automatically optimize the light source weights, lengths, strengths in near real-time to improve the light fluence rate distribution in prostate and spare dose to critical...
Directory of Open Access Journals (Sweden)
Sangjun Park
2014-01-01
Full Text Available We consider a two-stage supply chain with one supplier and one retailer. The retailer sells a product to customer and the supplier provides a product in a make-to-order mode. In this case, the supplier’s decisions on service time and service level and the retailer’s decision on retail price have effects on customer demand. We develop optimization models to determine the optimal retail price, the optimal guaranteed service time, the optimal service level, and the optimal capacity to maximize the expected profit of the whole supply chain. The results of numerical experiments show that it is more profitable to determine the optimal price, the optimal guaranteed service time, and the optimal service level simultaneously and the proposed model is more profitable in service level sensitive market.
Singularity now: using the ventricular assist device as a model for future human-robotic physiology.
Martin, Archer K
2016-04-01
In our 21 st century world, human-robotic interactions are far more complicated than Asimov predicted in 1942. The future of human-robotic interactions includes human-robotic machine hybrids with an integrated physiology, working together to achieve an enhanced level of baseline human physiological performance. This achievement can be described as a biological Singularity. I argue that this time of Singularity cannot be met by current biological technologies, and that human-robotic physiology must be integrated for the Singularity to occur. In order to conquer the challenges we face regarding human-robotic physiology, we first need to identify a working model in today's world. Once identified, this model can form the basis for the study, creation, expansion, and optimization of human-robotic hybrid physiology. In this paper, I present and defend the line of argument that currently this kind of model (proposed to be named "IshBot") can best be studied in ventricular assist devices - VAD.
Timing optimization utilizing order statistics and multichannel digital silicon photomultipliers
Mandai, S.; Venialgo, E.; Charbon, E.
2014-01-01
We present an optimization technique utilizing order statistics with a multichannel digital silicon photomultiplier (MD-SiPM) for timing measurements. Accurate timing measurements are required by 3D rangefinding and time-of-flight positron emission tomography, to name a few applications. We have
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 9. Singularities in a Teacup: Good Mathematics from Bad Lenses. Rajaram Nityananda. General Article Volume 19 Issue 9 September 2014 pp 787-796. Fulltext. Click here to view fulltext PDF. Permanent link:
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 9. Singularities in a Teacup: Good ... Author Affiliations. Rajaram Nityananda1. Azim Premji University, PES Institute of Technology Campus, Pixel Park, B Block, Electronics City, Hosur Road (Beside NICE Road) Bangalore – 560100 ...
Indian Academy of Sciences (India)
IAS Admin
Standard presentations of optics concentrate on ideal systems made for imaging which bring all rays from a point ... One of the standard topics we study in school is the action of a spherical mirror. Figure 1 shows a set of ..... singularities of smooth maps, and the beauty of the mathematics needed to understand them, Arnold ...
CSIR Research Space (South Africa)
Roux, FS
2013-09-01
Full Text Available Roux Presented at the International Conference on Correlation Optics 2013 Chernivtsi, Ukraine 18-20 September 2013 CSIR National Laser Centre, Pretoria, South Africa – p. 1/24 Contents ⊲ Defining Stochastic Singular Optics (SSO) ⊲ Tools of Stochastic...
Pseudospherical surfaces with singularities
DEFF Research Database (Denmark)
Brander, David
2017-01-01
We study a generalization of constant Gauss curvature −1 surfaces in Euclidean 3-space, based on Lorentzian harmonic maps, that we call pseudospherical frontals. We analyse the singularities of these surfaces, dividing them into those of characteristic and non-characteristic type. We give methods...
Singularities in Free Surface Flows
Thete, Sumeet Suresh
Free surface flows where the shape of the interface separating two or more phases or liquids are unknown apriori, are commonplace in industrial applications and nature. Distribution of drop sizes, coalescence rate of drops, and the behavior of thin liquid films are crucial to understanding and enhancing industrial practices such as ink-jet printing, spraying, separations of chemicals, and coating flows. When a contiguous mass of liquid such as a drop, filament or a film undergoes breakup to give rise to multiple masses, the topological transition is accompanied with a finite-time singularity . Such singularity also arises when two or more masses of liquid merge into each other or coalesce. Thus the dynamics close to singularity determines the fate of about-to-form drops or films and applications they are involved in, and therefore needs to be analyzed precisely. The primary goal of this thesis is to resolve and analyze the dynamics close to singularity when free surface flows experience a topological transition, using a combination of theory, experiments, and numerical simulations. The first problem under consideration focuses on the dynamics following flow shut-off in bottle filling applications that are relevant to pharmaceutical and consumer products industry, using numerical techniques based on Galerkin Finite Element Methods (GFEM). The second problem addresses the dual flow behavior of aqueous foams that are observed in oil and gas fields and estimates the relevant parameters that describe such flows through a series of experiments. The third problem aims at understanding the drop formation of Newtonian and Carreau fluids, computationally using GFEM. The drops are formed as a result of imposed flow rates or expanding bubbles similar to those of piezo actuated and thermal ink-jet nozzles. The focus of fourth problem is on the evolution of thinning threads of Newtonian fluids and suspensions towards singularity, using computations based on GFEM and experimental
Time-optimal feedback control for linear systems
International Nuclear Information System (INIS)
Mirica, S.
1976-01-01
The paper deals with the results of qualitative investigations of the time-optimal feedback control for linear systems with constant coefficients. In the first section, after some definitions and notations, two examples are given and it is shown that even the time-optimal control problem for linear systems with constant coefficients which looked like ''completely solved'' requires a further qualitative investigation of the stability to ''permanent perturbations'' of optimal feedback control. In the second section some basic results of the linear time-optimal control problem are reviewed. The third section deals with the definition of Boltyanskii's ''regular synthesis'' and its connection to Filippov's theory of right-hand side discontinuous differential equations. In the fourth section a theorem is proved concerning the stability to perturbations of time-optimal feedback control for linear systems with scalar control. In the last two sections it is proved that, if the matrix which defines the system has only real eigenvalues or is three-dimensional, the time-optimal feedback control defines a regular synthesis and therefore is stable to perturbations. (author)
Optimal Time-Abstract Schedulers for CTMDPs and Markov Games
Directory of Open Access Journals (Sweden)
Markus Rabe
2010-06-01
Full Text Available We study time-bounded reachability in continuous-time Markov decision processes for time-abstract scheduler classes. Such reachability problems play a paramount role in dependability analysis and the modelling of manufacturing and queueing systems. Consequently, their analysis has been studied intensively, and techniques for the approximation of optimal control are well understood. From a mathematical point of view, however, the question of approximation is secondary compared to the fundamental question whether or not optimal control exists. We demonstrate the existence of optimal schedulers for the time-abstract scheduler classes for all CTMDPs. Our proof is constructive: We show how to compute optimal time-abstract strategies with finite memory. It turns out that these optimal schedulers have an amazingly simple structure---they converge to an easy-to-compute memoryless scheduling policy after a finite number of steps. Finally, we show that our argument can easily be lifted to Markov games: We show that both players have a likewise simple optimal strategy in these more general structures.
Singular potentials in quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Aguilera-Navarro, V.C. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Koo, E. Ley [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico). Inst. de Fisica
1995-10-01
This paper is a review of some mathematical methods as recently developed and applied to deal with singular potentials in Quantum Mechanics. Regular and singular perturbative methods as well as variational treatments are considered. (author). 25 refs.
Singularities: the Brieskorn anniversary volume
National Research Council Canada - National Science Library
Brieskorn, Egbert; Arnolʹd, V. I; Greuel, G.-M; Steenbrink, J. H. M
1998-01-01
...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Main theorem ... 3 Ideals of ideal-unimodal plane curve singularities. . . . . . . . . . . . . . . . References ... Gert-Martin Greuel and Gerhard Pfister...
Optimal Real-time Dispatch for Integrated Energy Systems
DEFF Research Database (Denmark)
Anvari-Moghaddam, Amjad; Guerrero, Josep M.; Rahimi-Kian, Ashkan
2016-01-01
into a cohesive, networked package that fully utilizes smart energy-efficient end-use devices, advanced building control/automation systems, and integrated communications architectures, it is possible to efficiently manage energy and comfort at the end-use location. In this paper, an ontology-driven multi......-agent control system with intelligent optimizers is proposed for optimal real-time dispatch of an integrated building and microgrid system considering coordinated demand response (DR) and DERs management. The optimal dispatch problem is formulated as a mixed integer nonlinear programing problem (MINLP...
Time dependent optimal switching controls in online selling models
Energy Technology Data Exchange (ETDEWEB)
Bradonjic, Milan [Los Alamos National Laboratory; Cohen, Albert [MICHIGAN STATE UNIV
2010-01-01
We present a method to incorporate dishonesty in online selling via a stochastic optimal control problem. In our framework, the seller wishes to maximize her average wealth level W at a fixed time T of her choosing. The corresponding Hamilton-Jacobi-Bellmann (HJB) equation is analyzed for a basic case. For more general models, the admissible control set is restricted to a jump process that switches between extreme values. We propose a new approach, where the optimal control problem is reduced to a multivariable optimization problem.
Real-time optimization of nuclear magnetic resonance experiments.
Song, Y-Q; Tang, Yiqiao; Hürlimann, M D; Cory, D G
2018-04-01
Nuclear Magnetic Resonance (NMR) experiments are typically performed with predetermined pulse sequences and acquisition parameters, and are oftentimes sub-optimal for individual samples under investigation. Here we explore a class of real-time optimization methods that conducts stochastic analyses on the acquired data and in turn updates and optimizes the subsequent measurements. We show superiority of the method to static approaches, both in the efficiency and quality of data acquisition, for a wide range of experiments. Copyright © 2018 Elsevier Inc. All rights reserved.
Optimal control for parabolic-hyperbolic system with time delay
International Nuclear Information System (INIS)
Kowalewski, A.
1985-07-01
In this paper we consider an optimal control problem for a system described by a linear partial differential equation of the parabolic-hyperbolic type with time delay in the state. The right-hand side of this equation and the initial conditions are not continuous functions usually, but they are measurable functions belonging to L 2 or Lsup(infinity) spaces. Therefore, the solution of this equation is given by a certain Sobolev space. The time delay in the state is constant, but it can be also a function of time. The control time T is fixed in our problem. Making use of the Milutin-Dubovicki theorem, necessary and sufficient conditions of optimality with the quadratic performance functional and constrained control are derived for the Dirichlet problem. The flow chart of the algorithm which can be used in the numerical solving of certain optimization problems for distributed systems is also presented. (author)
Discrete-time inverse optimal control for nonlinear systems
Sanchez, Edgar N
2013-01-01
Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller. Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems The book presents two approaches for controller synthesis: the first based on passivity theory and the second on a control Lyapunov function (CLF). Th
Kinematically optimal robot placement for minimum time coordinated motion
Energy Technology Data Exchange (ETDEWEB)
Feddema, J.T.
1995-10-01
This paper describes an algorithm for determining the optimal placement of a robotic manipulator within a workcell for minimum time coordinated motion. The algorithm uses a simple principle of coordinated motion to estimate the time of a joint interpolated motion. Specifically, the coordinated motion profile is limited by the slowest axis. Two and six degree of freedom (DOF) examples are presented. In experimental tests on a FANUC S-800 arm, the optimal placement of the robot can improve cycle time of a robotic operation by as much as 25%. In high volume processes where the robot motion is currently the limiting factor, this increased throughput can result in substantial cost savings.
An Optimization Framework for Dynamic, Distributed Real-Time Systems
Eckert, Klaus; Juedes, David; Welch, Lonnie; Chelberg, David; Bruggerman, Carl; Drews, Frank; Fleeman, David; Parrott, David; Pfarr, Barbara
2003-01-01
Abstract. This paper presents a model that is useful for developing resource allocation algorithms for distributed real-time systems .that operate in dynamic environments. Interesting aspects of the model include dynamic environments, utility and service levels, which provide a means for graceful degradation in resource-constrained situations and support optimization of the allocation of resources. The paper also provides an allocation algorithm that illustrates how to use the model for producing feasible, optimal resource allocations.
Time Optimized Algorithm for Web Document Presentation Adaptation
DEFF Research Database (Denmark)
Pan, Rong; Dolog, Peter
2010-01-01
Currently information on the web is accessed through different devices. Each device has its own properties such as resolution, size, and capabilities to display information in different format and so on. This calls for adaptation of information presentation for such platforms. This paper proposes...... content-optimized and time-optimized algorithms for information presentation adaptation for different devices based on its hierarchical model. The model is formalized in order to experiment with different algorithms....
Optimal Frequency Ranges for Sub-Microsecond Precision Pulsar Timing
Lam, Michael Timothy; McLaughlin, Maura; Cordes, James; Chatterjee, Shami; Lazio, Joseph
2018-01-01
Precision pulsar timing requires optimization against measurement errors and astrophysical variance from the neutron stars themselves and the interstellar medium. We investigate optimization of arrival time precision as a function of radio frequency and bandwidth. We find that increases in bandwidth that reduce the contribution from receiver noise are countered by the strong chromatic dependence of interstellar effects and intrinsic pulse-profile evolution. The resulting optimal frequency range is therefore telescope and pulsar dependent. We demonstrate the results for five pulsars included in current pulsar timing arrays and determine that they are not optimally observed at current center frequencies. We also find that arrival-time precision can be improved by increases in total bandwidth. Wideband receivers centered at high frequencies can reduce required overall integration times and provide significant improvements in arrival time uncertainty by a factor of $\\sim$$\\sqrt{2}$ in most cases, assuming a fixed integration time. We also discuss how timing programs can be extended to pulsars with larger dispersion measures through the use of higher-frequency observations.
Phantom cosmology without Big Rip singularity
Energy Technology Data Exchange (ETDEWEB)
Astashenok, Artyom V. [Baltic Federal University of I. Kant, Department of Theoretical Physics, 236041, 14, Nevsky st., Kaliningrad (Russian Federation); Nojiri, Shin' ichi, E-mail: nojiri@phys.nagoya-u.ac.jp [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Odintsov, Sergei D. [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Institucio Catalana de Recerca i Estudis Avancats - ICREA and Institut de Ciencies de l' Espai (IEEC-CSIC), Campus UAB, Facultat de Ciencies, Torre C5-Par-2a pl, E-08193 Bellaterra (Barcelona) (Spain); Tomsk State Pedagogical University, Tomsk (Russian Federation); Yurov, Artyom V. [Baltic Federal University of I. Kant, Department of Theoretical Physics, 236041, 14, Nevsky st., Kaliningrad (Russian Federation)
2012-03-23
We construct phantom energy models with the equation of state parameter w which is less than -1, w<-1, but finite-time future singularity does not occur. Such models can be divided into two classes: (i) energy density increases with time ('phantom energy' without 'Big Rip' singularity) and (ii) energy density tends to constant value with time ('cosmological constant' with asymptotically de Sitter evolution). The disintegration of bound structure is confirmed in Little Rip cosmology. Surprisingly, we find that such disintegration (on example of Sun-Earth system) may occur even in asymptotically de Sitter phantom universe consistent with observational data. We also demonstrate that non-singular phantom models admit wormhole solutions as well as possibility of Big Trip via wormholes.
Optimal time window for measurement of renal output parameters.
Kuyvenhoven, Jacob D; Ham, Hamphrey R; Piepsz, Amy
2002-01-01
Although normalised residual activity (NORA) and output efficiency (OE) are usually measured at a fixed time t, their dependency on t may affect the prediction of mean transit time (MTT). This study aimed to evaluate their degree of dependency on t and to determine an optimal time of measurement by assessment of their relationship with MTT for various times t. A simulation model generated 232 cortical renograms by convolving one plasma disappearance curve with 232 created cortical retention functions. The results show that considerable changes are observed for NORA and OE, depending on the time of measurement t. The choice of this time significantly influences the predictive value of these parameters for estimating MTT. The optimal time for measurement of NORA and OE should be close to the MTT, at the moment when emptying takes place. In the clinical practice, it should be adapted to the clinical problem under investigation.
Deformations of surface singularities
Szilárd, ágnes
2013-01-01
The present publication contains a special collection of research and review articles on deformations of surface singularities, that put together serve as an introductory survey of results and methods of the theory, as well as open problems, important examples and connections to other areas of mathematics. The aim is to collect material that will help mathematicians already working or wishing to work in this area to deepen their insight and eliminate the technical barriers in this learning process. This also is supported by review articles providing some global picture and an abundance of examples. Additionally, we introduce some material which emphasizes the newly found relationship with the theory of Stein fillings and symplectic geometry. This links two main theories of mathematics: low dimensional topology and algebraic geometry. The theory of normal surface singularities is a distinguished part of analytic or algebraic geometry with several important results, its own technical machinery, and several op...
DEFF Research Database (Denmark)
Somchaipeng, Kerawit; Sporring, Jon; Johansen, Peter
2007-01-01
We propose MultiScale Singularity Trees (MSSTs) as a structure to represent images, and we propose an algorithm for image comparison based on comparing MSSTs. The algorithm is tested on 3 public image databases and compared to 2 state-of-theart methods. We conclude that the computational complexity...... of our algorithm only allows for the comparison of small trees, and that the results of our method are comparable with state-of-the-art using much fewer parameters for image representation....
Infinite derivative gravity : non-singular cosmology & blackhole solutions
Mazumdar, Anupam
2017-01-01
Both Einstein's theory of General Relativity and Newton's theory of gravity possess a short dis- tance and small time scale catastrophe. The blackhole singularity and cosmological Big Bang singularity problems highlight that current theories of gravity are incomplete description at early times and
Optimization of recurrent neural networks for time series modeling
DEFF Research Database (Denmark)
Pedersen, Morten With
1997-01-01
The present thesis is about optimization of recurrent neural networks applied to time series modeling. In particular is considered fully recurrent networks working from only a single external input, one layer of nonlinear hidden units and a li near output unit applied to prediction of discrete time...... series. The overall objective s are to improve training by application of second-order methods and to improve generalization ability by architecture optimization accomplished by pruning. The major topics covered in the thesis are: 1. The problem of training recurrent networks is analyzed from a numerical...... of solution obtained as well as computation time required. 3. A theoretical definition of the generalization error for recurrent networks is provided. This definition justifies a commonly adopted approach for estimating generalization ability. 4. The viability of pruning recurrent networks by the Optimal...
Ruiz-Cruz, Riemann; Sanchez, Edgar N; Ornelas-Tellez, Fernando; Loukianov, Alexander G; Harley, Ronald G
2013-12-01
In this paper, the authors propose a particle swarm optimization (PSO) for a discrete-time inverse optimal control scheme of a doubly fed induction generator (DFIG). For the inverse optimal scheme, a control Lyapunov function (CLF) is proposed to obtain an inverse optimal control law in order to achieve trajectory tracking. A posteriori, it is established that this control law minimizes a meaningful cost function. The CLFs depend on matrix selection in order to achieve the control objectives; this matrix is determined by two mechanisms: initially, fixed parameters are proposed for this matrix by a trial-and-error method and then by using the PSO algorithm. The inverse optimal control scheme is illustrated via simulations for the DFIG, including the comparison between both mechanisms.
Analysis and Optimization of Distributed Real-Time Embedded Systems
DEFF Research Database (Denmark)
Pop, Paul; Eles, Petru; Peng, Zebo
2006-01-01
An increasing number of real-time applications are today implemented using distributed heterogeneous architectures composed of interconnected networks of processors. The systems are heterogeneous not only in terms of hardware and software components, but also in terms of communication protocols...... for such heterogeneous distributed real-time embedded systems. More specifically, we discuss the schedulability analysis of hard real-time systems, highlighting particular aspects related to the heterogeneous and distributed nature of the applications. We also introduce several design optimization problems...
Optimal estimation of recurrence structures from time series
beim Graben, Peter; Sellers, Kristin K.; Fröhlich, Flavio; Hutt, Axel
2016-05-01
Recurrent temporal dynamics is a phenomenon observed frequently in high-dimensional complex systems and its detection is a challenging task. Recurrence quantification analysis utilizing recurrence plots may extract such dynamics, however it still encounters an unsolved pertinent problem: the optimal selection of distance thresholds for estimating the recurrence structure of dynamical systems. The present work proposes a stochastic Markov model for the recurrent dynamics that allows for the analytical derivation of a criterion for the optimal distance threshold. The goodness of fit is assessed by a utility function which assumes a local maximum for that threshold reflecting the optimal estimate of the system's recurrence structure. We validate our approach by means of the nonlinear Lorenz system and its linearized stochastic surrogates. The final application to neurophysiological time series obtained from anesthetized animals illustrates the method and reveals novel dynamic features of the underlying system. We propose the number of optimal recurrence domains as a statistic for classifying an animals' state of consciousness.
Atomic Stretch: Optimally bounded real-time stretching and beyond
DEFF Research Database (Denmark)
Jensen, Rasmus Ramsbøl; Nielsen, Jannik Boll
2016-01-01
Atomic Stretch is a plugin for your preferred Adobe video editing tool, allowing real-time smooth and optimally bounded retarget-ting from and to any aspect ratio. The plugin allows preserving of high interest pixels through a protected region, attention redirection through color-modification, co......Atomic Stretch is a plugin for your preferred Adobe video editing tool, allowing real-time smooth and optimally bounded retarget-ting from and to any aspect ratio. The plugin allows preserving of high interest pixels through a protected region, attention redirection through color...
Optimal Conditional Reachability for Multi-Priced Timed Automata
DEFF Research Database (Denmark)
Larsen, Kim Guldstrand; Rasmussen, Jacob Illum
2005-01-01
In this paper, we prove decidability of the optimal conditional reachability problem for multi-priced timed automata, an extension of timed automata with multiple cost variables evolving according to given rates for each location. More precisely, we consider the problem of determining the minimal...... cost of reaching a given target state, with respect to some primary cost variable, while respecting upper bound constraints on the remaining (secondary) cost variables. Decidability is proven by constructing a zone-based algorithm that always terminates while synthesizing the optimal cost with a single...
Liu, Xinrui; Zhang, Guangru; Yang, Dongsheng; Shi, Tongyu; He, Xusheng
2014-01-01
This paper is concerned with the problem of optimal control of photovoltaic grid-connected inverter. Firstly, the discrete-time nonlinear mathematical model of single-phase photovoltaic grid-connected inverter in the rotating coordinate system is constructed by the Delta operator, which simplifies the control process and facilitates direct digital realization. Then, a novel optimal control method which is significant to achieve trajectory tracking for photovoltaic grid-connected inverte...
Setting the optimal type of equipment to be adopted and the optimal time to replace it
Albici, Mihaela
2009-01-01
The mathematical models of equipment’s wear and tear, and replacement theory aim at deciding on the purchase selection of a certain equipment type, the optimal exploitation time of the equipment, the time and ways to replace or repair it, or to ensure its spare parts, the equipment’s performance in the technical progress context, the opportunities to modernize it etc.
Real-time optimal guidance for orbital maneuvering.
Cohen, A. O.; Brown, K. R.
1973-01-01
A new formulation for soft-constraint trajectory optimization is presented as a real-time optimal feedback guidance method for multiburn orbital maneuvers. Control is always chosen to minimize burn time plus a quadratic penalty for end condition errors, weighted so that early in the mission (when controllability is greatest) terminal errors are held negligible. Eventually, as controllability diminishes, the method partially relaxes but effectively still compensates perturbations in whatever subspace remains controllable. Although the soft-constraint concept is well-known in optimal control, the present formulation is novel in addressing the loss of controllability inherent in multiple burn orbital maneuvers. Moreover the necessary conditions usually obtained from a Bolza formulation are modified in this case so that the fully hard constraint formulation is a numerically well behaved subcase. As a result convergence properties have been greatly improved.
Real Time Optimal Control of Supercapacitor Operation for Frequency Response
Energy Technology Data Exchange (ETDEWEB)
Luo, Yusheng; Panwar, Mayank; Mohanpurkar, Manish; Hovsapian, Rob
2016-07-01
Supercapacitors are gaining wider applications in power systems due to fast dynamic response. Utilizing supercapacitors by means of power electronics interfaces for power compensation is a proven effective technique. For applications such as requency restoration if the cost of supercapacitors maintenance as well as the energy loss on the power electronics interfaces are addressed. It is infeasible to use traditional optimization control methods to mitigate the impacts of frequent cycling. This paper proposes a Front End Controller (FEC) using Generalized Predictive Control featuring real time receding optimization. The optimization constraints are based on cost and thermal management to enhance to the utilization efficiency of supercapacitors. A rigorous mathematical derivation is conducted and test results acquired from Digital Real Time Simulator are provided to demonstrate effectiveness.
Real-time trajectory optimization on parallel processors
Psiaki, Mark L.
1993-01-01
A parallel algorithm has been developed for rapidly solving trajectory optimization problems. The goal of the work has been to develop an algorithm that is suitable to do real-time, on-line optimal guidance through repeated solution of a trajectory optimization problem. The algorithm has been developed on an INTEL iPSC/860 message passing parallel processor. It uses a zero-order-hold discretization of a continuous-time problem and solves the resulting nonlinear programming problem using a custom-designed augmented Lagrangian nonlinear programming algorithm. The algorithm achieves parallelism of function, derivative, and search direction calculations through the principle of domain decomposition applied along the time axis. It has been encoded and tested on 3 example problems, the Goddard problem, the acceleration-limited, planar minimum-time to the origin problem, and a National Aerospace Plane minimum-fuel ascent guidance problem. Execution times as fast as 118 sec of wall clock time have been achieved for a 128-stage Goddard problem solved on 32 processors. A 32-stage minimum-time problem has been solved in 151 sec on 32 processors. A 32-stage National Aerospace Plane problem required 2 hours when solved on 32 processors. A speed-up factor of 7.2 has been achieved by using 32-nodes instead of 1-node to solve a 64-stage Goddard problem.
Discount-Optimal Infinite Runs in Priced Timed Automata
DEFF Research Database (Denmark)
Fahrenberg, Uli; Larsen, Kim Guldstrand
2009-01-01
of a certain part of the behaviour to the overall cost depends on how far into the future this part takes place. We consider the optimal infinite run problem under this semantics: Given a priced timed automaton, find an infinite path with minimal discounted price. We show that this problem is computable...
Optimal Time Evolution for Hermitian and Non-Hermitian Hamiltonians
Bender, Carl M.; Brody, Dorje C.
Interest in optimal time evolution dates back to the end of the seventeenth century, when the famous brachistochrone problem was solved almost simultaneously by Newton, Leibniz, l`Hôpital, and Jacob and Johann Bernoulli. The word brachistochrone is derived from Greek and means shortest time (of flight). The classical brachistochrone problem is stated as follows: A bead slides down a frictionless wire from point A to point B in a homogeneous gravitational field. What is the shape of the wire that minimizes the time of flight of the bead? The solution to this problem is that the optimal (fastest) time evolution is achieved when the wire takes the shape of a cycloid, which is the curve that is traced out by a point on a wheel that is rollingon flat ground.
Holographic subregion complexity for singular surfaces
Energy Technology Data Exchange (ETDEWEB)
Bakhshaei, Elaheh [Isfahan University of Technology, Department of Physics, Isfahan (Iran, Islamic Republic of); Mollabashi, Ali [Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of); Shirzad, Ahmad [Isfahan University of Technology, Department of Physics, Isfahan (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of)
2017-10-15
Recently holographic prescriptions were proposed to compute the quantum complexity of a given state in the boundary theory. A specific proposal known as 'holographic subregion complexity' is supposed to calculate the complexity of a reduced density matrix corresponding to a static subregion. We study different families of singular subregions in the dual field theory and find the divergence structure and universal terms of holographic subregion complexity for these singular surfaces. We find that there are new universal terms, logarithmic in the UV cut-off, due to the singularities of a family of surfaces including a kink in (2 + 1) dimensions and cones in even dimensional field theories. We also find examples of new divergent terms such as squared logarithm and negative powers times the logarithm of the UV cut-off parameter. (orig.)
Resource-Optimal Scheduling Using Priced Timed Automata
DEFF Research Database (Denmark)
Larsen, Kim Guldstrand; Rasmussen, Jacob Illum; Subramani, K.
2004-01-01
In this paper, we show how the simple structure of the linear programs encountered during symbolic minimum-cost reachability analysis of priced timed automata can be exploited in order to substantially improve the performance of the current algorithm. The idea is rooted in duality of linear progr......-80 percent performance gain. As a main application area, we show how to solve energy-optimal task graph scheduling problems using the framework of priced timed automata....
On reliability of singular-value decomposition in attractor reconstruction
International Nuclear Information System (INIS)
Palus, M.; Dvorak, I.
1990-12-01
Applicability of singular-value decomposition for reconstructing the strange attractor from one-dimensional chaotic time series, proposed by Broomhead and King, is extensively tested and discussed. Previously published doubts about its reliability are confirmed: singular-value decomposition, by nature a linear method, is only of a limited power when nonlinear structures are studied. (author). 29 refs, 9 figs
Singularity Preserving Numerical Methods for Boundary Integral Equations
Kaneko, Hideaki (Principal Investigator)
1996-01-01
In the past twelve months (May 8, 1995 - May 8, 1996), under the cooperative agreement with Division of Multidisciplinary Optimization at NASA Langley, we have accomplished the following five projects: a note on the finite element method with singular basis functions; numerical quadrature for weakly singular integrals; superconvergence of degenerate kernel method; superconvergence of the iterated collocation method for Hammersteion equations; and singularity preserving Galerkin method for Hammerstein equations with logarithmic kernel. This final report consists of five papers describing these projects. Each project is preceeded by a brief abstract.
The structure of singularities in nonlocal transport equations
Energy Technology Data Exchange (ETDEWEB)
Hoz, F de la [Departamento de Matematica Aplicada, Universidad del PaIs Vasco-Euskal Herriko Unibertsitatea, Escuela Universitaria de IngenierIa Tecnica Industrial, Plaza de la Casilla 3, 48012 Bilbao (Spain); Fontelos, M A [Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, C/Serrano 123, 28006 Madrid (Spain)
2008-05-09
We describe the structure of solutions developing singularities in the form of cusps in finite time in nonlocal transport equations of the family: {theta}{sub t}-{delta}({theta}H({theta})){sub x}-(1-{delta})H({theta}){theta}{sub x}=0, 0<={delta}<=1, where H represents the Hilbert transform. Equations of this type appear in various contexts: evolution of vortex sheets, models for quasi-geostrophic equation and evolution equations for order parameters. Equation (1) was studied, and the existence of singularities developing in finite time was proved. The structure of such singularities was, nevertheless, not described. In this paper, we will describe the geometry of the solution in the neighborhood of the singularity once it develops and the (self-similar) way in which it is approached as t {yields} t{sub 0}, where t{sub 0} is the singular time.
Optimal Time to Invest Energy Storage System under Uncertainty Conditions
Directory of Open Access Journals (Sweden)
Yongma Moon
2014-04-01
Full Text Available This paper proposes a model to determine the optimal investment time for energy storage systems (ESSs in a price arbitrage trade application under conditions of uncertainty over future profits. The adoption of ESSs can generate profits from price arbitrage trade, which are uncertain because the future marginal prices of electricity will change depending on supply and demand. In addition, since the investment is optional, an investor can delay adopting an ESS until it becomes profitable, and can decide the optimal time. Thus, when we evaluate this investment, we need to incorporate the investor’s option which is not captured by traditional evaluation methods. In order to incorporate these aspects, we applied real option theory to our proposed model, which provides an optimal investment threshold. Our results concerning the optimal time to invest show that if future profits that are expected to be obtained from arbitrage trade become more uncertain, an investor needs to wait longer to invest. Also, improvement in efficiency of ESSs can reduce the uncertainty of arbitrage profit and, consequently, the reduced uncertainty enables earlier ESS investment, even for the same power capacity. Besides, when a higher rate of profits is expected and ESS costs are higher, an investor needs to wait longer. Also, by comparing a widely used net present value model to our real option model, we show that the net present value method underestimates the value for ESS investment and misleads the investor to make an investment earlier.
Optimal redundant systems for works with random processing time
International Nuclear Information System (INIS)
Chen, M.; Nakagawa, T.
2013-01-01
This paper studies the optimal redundant policies for a manufacturing system processing jobs with random working times. The redundant units of the parallel systems and standby systems are subject to stochastic failures during the continuous production process. First, a job consisting of only one work is considered for both redundant systems and the expected cost functions are obtained. Next, each redundant system with a random number of units is assumed for a single work. The expected cost functions and the optimal expected numbers of units are derived for redundant systems. Subsequently, the production processes of N tandem works are introduced for parallel and standby systems, and the expected cost functions are also summarized. Finally, the number of works is estimated by a Poisson distribution for the parallel and standby systems. Numerical examples are given to demonstrate the optimization problems of redundant systems
Dynamic ADMM for Real-time Optimal Power Flow: Preprint
Energy Technology Data Exchange (ETDEWEB)
Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2018-02-23
This paper considers distribution networks featuring distributed energy resources (DERs), and develops a dynamic optimization method to maximize given operational objectives in real time while adhering to relevant network constraints. The design of the dynamic algorithm is based on suitable linearizations of the AC power flow equations, and it leverages the so-called alternating direction method of multipliers (ADMM). The steps of the ADMM, however, are suitably modified to accommodate appropriate measurements from the distribution network and the DERs. With the aid of these measurements, the resultant algorithm can enforce given operational constraints in spite of inaccuracies in the representation of the AC power flows, and it avoids ubiquitous metering to gather the state of non-controllable resources. Optimality and convergence of the propose algorithm are established in terms of tracking of the solution of a convex surrogate of the AC optimal power flow problem.
Analysis and Optimization of Heterogeneous Real-Time Embedded Systems
DEFF Research Database (Denmark)
Pop, Paul; Eles, Petru; Peng, Zebo
2005-01-01
. The success of such new design methods depends on the availability of analysis and optimization techniques. In this paper, we present analysis and optimization techniques for heterogeneous real-time embedded systems. We address in more detail a particular class of such systems called multi-clusters, composed......An increasing number of real-time applications are today implemented using distributed heterogeneous architectures composed of interconnected networks of processors. The systems are heterogeneous not only in terms of hardware components, but also in terms of communication protocols and scheduling...... policies. Each network has its own communication protocol, each processor in the architecture can have its own scheduling policy, and several scheduling policies can share a processor. In this context, the task of designing such systems is becoming increasingly important and difficult at the same time...
Spectroscopic determination of optimal hydration time of zircon surface
Energy Technology Data Exchange (ETDEWEB)
Ordonez R, E. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Garcia R, G. [Instituto Tecnologico de Toluca, Division de Estudios del Posgrado, Av. Tecnologico s/n, Ex-Rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico); Garcia G, N., E-mail: eduardo.ordonez@inin.gob.m [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Av. Colon y Av. Tollocan, 50180 Toluca, Estado de Mexico (Mexico)
2010-07-01
When a mineral surface is immersed in an aqueous solution, it develops and electric charge produced by the amphoteric dissociation of hydroxyl groups created by the hydration of the solid surface. This is one influential surface property. The complete hydration process takes a time which is specific for each mineral species. The knowledge of the aqueous solution contact time for complete surface hydration is mandatory for further surface phenomena studies. This study deals with the optimal hydration time of the raw zircon (ZrSiO{sub 4}) surface comparing the classical potentiometric titrations with a fluorescence spectroscopy technique. The latter is easy and rea liable as it demands only one sample batch to determine the optimal time to ensure a total hydration of the zircon surface. The analytical results of neutron activation analysis showed the presence of trace quantities of Dy{sup 3+}, Eu{sup 3+} and Er{sup 3} in the bulk of zircon. The Dy{sup 3+} is structured in the zircon crystalline lattice and undergoes the same chemical reactions as zircon. Furthermore, the Dy{sup 3+} has a good fluorescent response whose intensity is enhanced by hydration molecules. The results show that, according to the potentiometric analysis, the hydration process for each batch (at least 8 sample batches) takes around 2 h, while the spectrometric method indicates only 5 minutes from only one batch. Both methods showed that the zircon surface have a 16 h optimal hydration time. (Author)
Spectroscopic determination of optimal hydration time of zircon surface
International Nuclear Information System (INIS)
Ordonez R, E.; Garcia R, G.; Garcia G, N.
2010-01-01
When a mineral surface is immersed in an aqueous solution, it develops and electric charge produced by the amphoteric dissociation of hydroxyl groups created by the hydration of the solid surface. This is one influential surface property. The complete hydration process takes a time which is specific for each mineral species. The knowledge of the aqueous solution contact time for complete surface hydration is mandatory for further surface phenomena studies. This study deals with the optimal hydration time of the raw zircon (ZrSiO 4 ) surface comparing the classical potentiometric titrations with a fluorescence spectroscopy technique. The latter is easy and rea liable as it demands only one sample batch to determine the optimal time to ensure a total hydration of the zircon surface. The analytical results of neutron activation analysis showed the presence of trace quantities of Dy 3+ , Eu 3+ and Er 3 in the bulk of zircon. The Dy 3+ is structured in the zircon crystalline lattice and undergoes the same chemical reactions as zircon. Furthermore, the Dy 3+ has a good fluorescent response whose intensity is enhanced by hydration molecules. The results show that, according to the potentiometric analysis, the hydration process for each batch (at least 8 sample batches) takes around 2 h, while the spectrometric method indicates only 5 minutes from only one batch. Both methods showed that the zircon surface have a 16 h optimal hydration time. (Author)
Optimal Real-time Dispatch for Integrated Energy Systems
Energy Technology Data Exchange (ETDEWEB)
Firestone, Ryan Michael [Univ. of California, Berkeley, CA (United States)
2007-05-31
This report describes the development and application of a dispatch optimization algorithm for integrated energy systems (IES) comprised of on-site cogeneration of heat and electricity, energy storage devices, and demand response opportunities. This work is intended to aid commercial and industrial sites in making use of modern computing power and optimization algorithms to make informed, near-optimal decisions under significant uncertainty and complex objective functions. The optimization algorithm uses a finite set of randomly generated future scenarios to approximate the true, stochastic future; constraints are included that prevent solutions to this approximate problem from deviating from solutions to the actual problem. The algorithm is then expressed as a mixed integer linear program, to which a powerful commercial solver is applied. A case study of United States Postal Service Processing and Distribution Centers (P&DC) in four cities and under three different electricity tariff structures is conducted to (1) determine the added value of optimal control to a cogeneration system over current, heuristic control strategies; (2) determine the value of limited electric load curtailment opportunities, with and without cogeneration; and (3) determine the trade-off between least-cost and least-carbon operations of a cogeneration system. Key results for the P&DC sites studied include (1) in locations where the average electricity and natural gas prices suggest a marginally profitable cogeneration system, optimal control can add up to 67% to the value of the cogeneration system; optimal control adds less value in locations where cogeneration is more clearly profitable; (2) optimal control under real-time pricing is (a) more complicated than under typical time-of-use tariffs and (b) at times necessary to make cogeneration economic at all; (3) limited electric load curtailment opportunities can be more valuable as a compliment to the cogeneration system than alone; and
Polynomial computation of Hankel singular values
Kwakernaak, H.
1992-01-01
A revised and improved version of a polynomial algorithm is presented. It was published by N.J. Young (1990) for the computation of the singular values and vectors of the Hankel operator defined by a linear time-invariant system with a rotational transfer matrix. Tentative numerical experiments
Combined methods for elliptic equations with singularities, interfaces and infinities
Li, Zi Cai
1998-01-01
In this book the author sets out to answer two important questions: 1. Which numerical methods may be combined together? 2. How can different numerical methods be matched together? In doing so the author presents a number of useful combinations, for instance, the combination of various FEMs, the combinations of FEM-FDM, REM-FEM, RGM-FDM, etc. The combined methods have many advantages over single methods: high accuracy of solutions, less CPU time, less computer storage, easy coupling with singularities as well as the complicated boundary conditions. Since coupling techniques are essential to combinations, various matching strategies among different methods are carefully discussed. The author provides the matching rules so that optimal convergence, even superconvergence, and optimal stability can be achieved, and also warns of the matching pitfalls to avoid. Audience: The book is intended for both mathematicians and engineers and may be used as text for advanced students.
Time-Optimal Real-Time Test Case Generation using UPPAAL
DEFF Research Database (Denmark)
Hessel, Anders; Larsen, Kim Guldstrand; Nielsen, Brian
2004-01-01
Testing is the primary software validation technique used by industry today, but remains ad hoc, error prone, and very expensive. A promising improvement is to automatically generate test cases from formal models of the system under test. We demonstrate how to automatically generate real......-time conformance test cases from timed automata specifications. Specifically we demonstrate how to fficiently generate real-time test cases with optimal execution time i.e test cases that are the fastest possible to execute. Our technique allows time optimal test cases to be generated using manually formulated...... test purposes or generated automatically from various coverage criteria of the model....
Hybrid switched time-optimal control of underactuated spacecraft
Olivares, Alberto; Staffetti, Ernesto
2018-04-01
This paper studies the time-optimal control problem for an underactuated rigid spacecraft equipped with both reaction wheels and gas jet thrusters that generate control torques about two of the principal axes of the spacecraft. Since a spacecraft equipped with two reaction wheels is not controllable, whereas a spacecraft equipped with two gas jet thrusters is controllable, this mixed actuation ensures controllability in the case in which one of the control axes is unactuated. A novel control logic is proposed for this hybrid actuation in which the reaction wheels are the main actuators and the gas jet thrusters act only after saturation or anticipating future saturation of the reaction wheels. The presence of both reaction wheels and gas jet thrusters gives rise to two operating modes for each actuated axis and therefore the spacecraft can be regarded as a switched dynamical system. The time-optimal control problem for this system is reformulated using the so-called embedding technique and the resulting problem is a classical optimal control problem. The main advantages of this technique are that integer or binary variables do not have to be introduced to model switching decisions between modes and that assumptions about the number of switches are not necessary. It is shown in this paper that this general method for the solution of optimal control problems for switched dynamical systems can efficiently deal with time-optimal control of an underactuated rigid spacecraft in which bound constraints on the torque of the actuators and on the angular momentum of the reaction wheels are taken into account.
Trajectory optimization for real-time guidance. I - Time-varying LQR on a parallel processor
Psiaki, Mark L.; Park, Kihong
1990-01-01
A key algorithmic element of a real-time trajectory optimization hardware/software implementation, the quadratic program (QP) solver element, is presented. The purpose of the effort is to make nonlinear trajectory optimization fast enough to provide real-time commands during guidance of a vehicle such as an aeromaneuvering orbiter. Many methods of nonlinear programming require the solution of a QP at each iteration. In the trajectory optimization case the QP has a special dynamic programming structure, a LQR-like structure. QP algorithm speed is increased by taking advantage of this special structure and by parallel implementation.
Residues and duality for singularity categories of isolated Gorenstein singularities
Murfet, Daniel
2009-01-01
We study Serre duality in the singularity category of an isolated Gorenstein singularity and find an explicit formula for the duality pairing in terms of generalised fractions and residues. For hypersurfaces we recover the residue formula of the string theorists Kapustin and Li. These results are obtained from an explicit construction of complete injective resolutions of maximal Cohen-Macaulay modules.
Directory of Open Access Journals (Sweden)
Fuyi Xu
2010-04-01
\\end{array}\\right.$$ where $1\\leq k\\leq s\\leq m-2, a_i, b_i\\in(0,+\\infty$ with $0<\\sum_{i=1}^{k}b_{i}-\\sum_{i=k+1}^{s}b_{i}<1, 0<\\sum_{i=1}^{m-2}a_{i}<1, 0<\\xi_1<\\xi_2<\\cdots<\\xi_{m-2}<\\rho(T$, $f\\in C( [0,+\\infty,[0,+\\infty$, $a(t$ may be singular at $t=0$. We show that there exist two positive solutions by using two different fixed point theorems respectively. As an application, some examples are included to illustrate the main results. In particular, our criteria extend and improve some known results.
Hard and Soft Sub-Time-Optimal Robust Controllers
DEFF Research Database (Denmark)
Kulczycki, Piotr; Wisniewski, Rafal; Kowalski, Piotr
2010-01-01
In many applicational tasks of motion control – fundamental for research in robotics – problems associated with uncertain and/or varying load (a mass or moment of inertia) can present a substantial difficulty during the synthesis of practical controlling systems. The random concept, where the load...... has been treated as a stochastic process, is presented in this paper. As a result, through a generalization of the classic switching curve occurring in the time-optimal approach, two control structures have been investigated: the hard, defined on the basis of the rules of the statistical decision...... theory, and also the soft, which additionally allows the elimination of rapid changes in control values. The methodology proposed here may be easily adopted for other elements commonly found in mechanical systems, e.g. parameters of drive or motion resistance, giving the sub-time-optimal controlling...
Dynamics of Learning in MLP: Natural Gradient and Singularity Revisited.
Amari, Shun-Ichi; Ozeki, Tomoko; Karakida, Ryo; Yoshida, Yuki; Okada, Masato
2018-01-01
The dynamics of supervised learning play a main role in deep learning, which takes place in the parameter space of a multilayer perceptron (MLP). We review the history of supervised stochastic gradient learning, focusing on its singular structure and natural gradient. The parameter space includes singular regions in which parameters are not identifiable. One of our results is a full exploration of the dynamical behaviors of stochastic gradient learning in an elementary singular network. The bad news is its pathological nature, in which part of the singular region becomes an attractor and another part a repulser at the same time, forming a Milnor attractor. A learning trajectory is attracted by the attractor region, staying in it for a long time, before it escapes the singular region through the repulser region. This is typical of plateau phenomena in learning. We demonstrate the strange topology of a singular region by introducing blow-down coordinates, which are useful for analyzing the natural gradient dynamics. We confirm that the natural gradient dynamics are free of critical slowdown. The second main result is the good news: the interactions of elementary singular networks eliminate the attractor part and the Milnor-type attractors disappear. This explains why large-scale networks do not suffer from serious critical slowdowns due to singularities. We finally show that the unit-wise natural gradient is effective for learning in spite of its low computational cost.
Optimal Timing for Oocyte Denudation and Intracytoplasmic Sperm Injection
Directory of Open Access Journals (Sweden)
Catherine Patrat
2012-01-01
Full Text Available Objectives. To analyze the impact of oocyte denudation and microinjection timings on intracytoplasmic sperm injection (ICSI outcomes. Study Design. We included ICSI cycles with the following parameters: rank 1 or 2, female age <36 years, male factor infertility, long protocol using GnRH agonist and rFSH for ovarian stimulation, and use of freshly ejaculated sperm (=110. Several ICSI parameters were analyzed according to the time between oocyte retrieval and denudation (1 and the time between denudation and ICSI (2 using a statistical logistic regression analysis. Results. Neither 1 nor 2 had a significant influence on the Metaphase II (MII rate but the fertilisation rate (FR showed a significant improvement when 1 was longer (optimal results at 1=3 hours while FR significantly decreased with the increase of 2. Optimal implantation (IR and pregnancy (PR rates were obtained when 1 was around 2 hours. Conclusion. Incubation of oocytes around 2 hours between retrieval and denudation may not increase MII rate but appears to lead to the optimal combination of FR and IR.
Optimal timing for oocyte denudation and intracytoplasmic sperm injection.
Patrat, Catherine; Kaffel, Aida; Delaroche, Lucie; Guibert, Juliette; Jouannet, Pierre; Epelboin, Sylvie; De Ziegler, Dominique; Wolf, Jean-Philippe; Fauque, Patricia
2012-01-01
Objectives. To analyze the impact of oocyte denudation and microinjection timings on intracytoplasmic sperm injection (ICSI) outcomes. Study Design. We included ICSI cycles with the following parameters: rank 1 or 2, female age <36 years, male factor infertility, long protocol using GnRH agonist and rFSH for ovarian stimulation, and use of freshly ejaculated sperm (n = 110). Several ICSI parameters were analyzed according to the time between oocyte retrieval and denudation (T(1)) and the time between denudation and ICSI (T(2)) using a statistical logistic regression analysis. Results. Neither T(1) nor T(2) had a significant influence on the Metaphase II (MII) rate but the fertilisation rate (FR) showed a significant improvement when T(1) was longer (optimal results at T(1) = 3 hours) while FR significantly decreased with the increase of T(2). Optimal implantation (IR) and pregnancy (PR) rates were obtained when T(1) was around 2 hours. Conclusion. Incubation of oocytes around 2 hours between retrieval and denudation may not increase MII rate but appears to lead to the optimal combination of FR and IR.
Optimal allocation of nuclear detector time for radioactive samples
International Nuclear Information System (INIS)
Aljohani, M.S.
2004-01-01
Accuracy in measuring radioactivity of a sample is directly proportional to the time allocated for that sample. With scarcity of time, laboratories are faced with huge number of samples to be analyzed in a limited span of time. Such a situation was encountered duping Chernobyl accident when many nuclear laboratories were flooded by foodstuffs and other samples for radioactivity analysis. This paper offers a methodology that arrives at the optimal allocation of nuclear detector time for a given number of samples, under time constraints. The methodology is based on minimizing the sum of associated standard deviations of the net counting rate of samples. This is done with the assumption that the background radiation is the same for all samples. For validation, an analytical solution was devised with the background radiation assumed negligible. Results found using this methodology were compared to those found analytically, both produced identical results. (Author)
Chaos Time Series Prediction Based on Membrane Optimization Algorithms
Directory of Open Access Journals (Sweden)
Meng Li
2015-01-01
Full Text Available This paper puts forward a prediction model based on membrane computing optimization algorithm for chaos time series; the model optimizes simultaneously the parameters of phase space reconstruction (τ,m and least squares support vector machine (LS-SVM (γ,σ by using membrane computing optimization algorithm. It is an important basis for spectrum management to predict accurately the change trend of parameters in the electromagnetic environment, which can help decision makers to adopt an optimal action. Then, the model presented in this paper is used to forecast band occupancy rate of frequency modulation (FM broadcasting band and interphone band. To show the applicability and superiority of the proposed model, this paper will compare the forecast model presented in it with conventional similar models. The experimental results show that whether single-step prediction or multistep prediction, the proposed model performs best based on three error measures, namely, normalized mean square error (NMSE, root mean square error (RMSE, and mean absolute percentage error (MAPE.
Inverting dedevelopment: geometric singularity theory in embryology
Bookstein, Fred L.; Smith, Bradley R.
2000-10-01
The diffeomorphism model so useful in the biomathematics of normal morphological variability and disease is inappropriate for applications in embryogenesis, where whole coordinate patches are created out of single points. For this application we need a suitable algebra for the creation of something from nothing in a carefully organized geometry: a formalism for parameterizing discrete nondifferentiabilities of invertible functions on Rk, k $GTR 1. One easy way to begin is via the inverse of the development map - call it the dedevelopment map, the deformation backwards in time. Extrapolated, this map will inevitably have singularities at which its derivative is zero. When the dedevelopment map is inverted to face forward in time, the singularities become appropriately isolated infinities of derivative. We have recently introduced growth visualizations via extrapolations to the isolated singularities at which only one directional derivative is zero. Maps inverse to these create new coordinate patches directionally rather than radically. The most generic singularity that suits this purpose is the crease f(x,y) equals (x,x2y+y3), which has already been applied in morphometrics for the description of focal morphogenetic phenomena. We apply it to embryogenesis in the form of its analytic inverse, and demonstrate its power using a priceless new data set of mouse embryos imaged in 3D by micro-MR with voxels smaller than 100micrometers 3.
Time-limited optimal dynamics beyond the Quantum Speed Limit
DEFF Research Database (Denmark)
Gajdacz, Miroslav; Das, Kunal K.; Arlt, Jan
2015-01-01
-off expressed in terms of the direct Hilbert velocity provides a robust prediction of the quantum speed limit and allows to adapt the control optimization such that it yields a predefined fidelity. The results are verified numerically in a multilevel system with a constrained Hamiltonian, and a classification......The quantum speed limit sets the minimum time required to transfer a quantum system completely into a given target state. At shorter times the higher operation speed has to be paid with a loss of fidelity. Here we quantify the trade-off between the fidelity and the duration in a system driven...
Gravitational collapse and naked singularities
Indian Academy of Sciences (India)
Recent developments have revealed that there are examples of naked singularity formation in the collapse of physically reasonable matter fields, although the stability of these examples is still uncertain. We propose the concept of `effective naked singularities', which will be quite helpful because general relativity has ...
Optimal Cotton Insecticide Application Termination Timing: A Meta-Analysis.
Griffin, T W; Zapata, S D
2016-08-01
The concept of insecticide termination timing is generally accepted among cotton (Gossypium hirsutum) researchers; however, exact timings are often disputed. Specifically, there is uncertainty regarding the last economic insecticide application to control fruit-feeding pests including tarnished plant bug (Lygus lineolaris (Palisot de Beauvois)), boll weevil (Anthonomus grandis), bollworm (Helicoverpa zea), tobacco budworm (Heliothis virescens), and cotton fleahopper (Pseudatomoscelis seriatus). A systematic review of prior studies was conducted within a meta-analytic framework. Nine publicly available articles were amalgamated to develop an optimal timing principle. These prior studies reported 53 independent multiple means comparison field experiments for a total of 247 trial observations. Stochastic plateau theory integrated with econometric meta-analysis methodology was applied to the meta-database to determine the shape of the functional form of both the agronomic optimal insecticide termination timing and corresponding yield potential. Results indicated that current university insecticide termination timing recommendations are later than overall estimated timing suggested. The estimated 159 heat units (HU) after the fifth position above white flower (NAWF5) was found to be statistically different than the 194 HU termination used as the status quo recommended termination timing. Insecticides applied after 159 HU may have been applied in excess, resulting in unnecessary economic and environmental costs. Empirical results also suggested that extending the insecticide termination time by one unit resulted in a cotton lint yield increase of 0.27 kilograms per hectare up to the timing where the plateau began. Based on economic analyses, profit-maximizing producers may cease application as soon as 124 HU after NAWF5. These results provided insights useful to improve production systems by applying inputs only when benefits were expected to be in excess of the
The Optimal Timing of Adoption of a Green Technology
International Nuclear Information System (INIS)
Cunha-e-Sa, M.A.; Reis, A.B.
2007-01-01
We study the optimal timing of adoption of a cleaner technology and its effects on the rate of growth of an economy in the context of an AK endogenous growth model. We show that the results depend upon the behavior of the marginal utility of environmental quality with respect to consumption. When it is increasing, we derive the capital level at the optimal timing of adoption. We show that this capital threshold is independent of the initial conditions on the stock of capital, implying that capital-poor countries tend to take longer to adopt. Also, country-specific characteristics, as the existence of high barriers to adoption, may lead to different capital thresholds for different countries. If the marginal utility of environmental quality decreases with consumption, a country should never delay adoption; the optimal policy is either to adopt immediately or, if adoption costs are t oo high , to never adopt. The policy implications of these results are discussed in the context of the international debate surrounding the environmental political agenda
Cool down time optimization of the Stirling cooler
Xia, M.; Chen, X. P.; Y Li, H.; Gan, Z. H.
2017-12-01
The cooling power is one of the most important performances of a Stirling cooler. However, in some special fields, the cool down time is more important. It is a great challenge to improve the cool down time of the Stirling cooler. A new split Stirling linear cryogenic cooler SCI09H was designed in this study. A new structure of linear motor is used in the compressor, and the machine spring is used in the expander. In order to reduce the cool down time, the stainless-steel mesh of regenerator is optimized. The weight of the cooler is 1.1 kg, the cool down time to 80K is 2 minutes at 296K with a 250J thermal mass, the cooling power is 1.1W at 80K, and the input power is 50W.
Optimal trading strategies—a time series approach
Bebbington, Peter A.; Kühn, Reimer
2016-05-01
Motivated by recent advances in the spectral theory of auto-covariance matrices, we are led to revisit a reformulation of Markowitz’ mean-variance portfolio optimization approach in the time domain. In its simplest incarnation it applies to a single traded asset and allows an optimal trading strategy to be found which—for a given return—is minimally exposed to market price fluctuations. The model is initially investigated for a range of synthetic price processes, taken to be either second order stationary, or to exhibit second order stationary increments. Attention is paid to consequences of estimating auto-covariance matrices from small finite samples, and auto-covariance matrix cleaning strategies to mitigate against these are investigated. Finally we apply our framework to real world data.
Locally optimal-digital redesign of continuous-time systems
Shieh, Leang-San; Zhao, Xiao-Ming; Zhang, Jian-Liang
1989-01-01
This paper presents a new optimal digital redesign technique for finding a dynamic digital control law from the given continuous-time counterpart by minimizing a local quadratic performance index. The quadratic performance index is chosen as the integral of the weighted squared difference between the states of the original closed-loop system and those of the digitally controlled closed-loop system at any instant between each sampling period. The developed optimal digital redesign control law enables the states of the digitally controlled closed-loop system 10 closely match those of the original closed-loop system at any instant between each sampling period, and it can easily be implemented using microcomputers with a relatively large sampling period.
Verhoeven, Ronald; Dalmau Codina, Ramon; Prats Menéndez, Xavier; de Gelder, Nico
2014-01-01
1 Abstract In this paper an initial implementation of a real - time aircraft trajectory optimization algorithm is presented . The aircraft trajectory for descent and approach is computed for minimum use of thrust and speed brake in support of a “green” continuous descent and approach flight operation, while complying with ATC time constraints for maintaining runway throughput and co...
The Analysis of Two-Way Functional Data Using Two-Way Regularized Singular Value Decompositions
Huang, Jianhua Z.
2009-12-01
Two-way functional data consist of a data matrix whose row and column domains are both structured, for example, temporally or spatially, as when the data are time series collected at different locations in space. We extend one-way functional principal component analysis (PCA) to two-way functional data by introducing regularization of both left and right singular vectors in the singular value decomposition (SVD) of the data matrix. We focus on a penalization approach and solve the nontrivial problem of constructing proper two-way penalties from oneway regression penalties. We introduce conditional cross-validated smoothing parameter selection whereby left-singular vectors are cross- validated conditional on right-singular vectors, and vice versa. The concept can be realized as part of an alternating optimization algorithm. In addition to the penalization approach, we briefly consider two-way regularization with basis expansion. The proposed methods are illustrated with one simulated and two real data examples. Supplemental materials available online show that several "natural" approaches to penalized SVDs are flawed and explain why so. © 2009 American Statistical Association.
The optimal time for conception after fallopian tube recanalization therapy
International Nuclear Information System (INIS)
Zhao Yufeng; Sun Yuqin; Han Xiaojing; Zhang Rui; Zhao Xiuhong; Cui Yanguo; Liu Xianming
2012-01-01
Objective: To discuss the optimal time for conception after fallopian tube recanalization therapy. Methods: Fallopian tube recanalization procedure was carried out on 950 obstructed fallopian tubes in 635 infertile women. All the patients were followed up. The time of getting conception after the procedure was observed and recorded in all patients, and the results were analyzed. Results: The pregnancy rate in the first four months was significantly different from the pregnancy rate after the first four months, while no significant difference in the pregnancy rate existed between the second four months and the third four months after the treatment. The pregnancy rate of the first six months after recanalization treatment was significantly higher than that of the second six months. The ectopic pregnancy rate was relatively high after the first four months and it gradually declined to a quite lower level after six months. Conclusion: The optimal time for conception after fallopian tube recanalization therapy is within the first four months after the interventional treatment. During the first six months after the treatment, the opportunities of getting pregnant should be actively created, and special measures for getting fertilization should be energetically adopted during the first four months after a successful recanalization procedure. (authors)
Time Optimal Synchronization Procedure and Associated Feedback Loops
Angoletta, Maria Elena; CERN. Geneva. ATS Department
2016-01-01
A procedure to increase the speed of currently used synchronization loops in a synchrotron by an order of magnitude is presented. Beams dynamics constraint imposes an upper limit on excursions in stable phase angle, and the procedure presented exploits this limit to arrive in the synchronized state from an arbitrary initial state in the fastest possible way. Detailed corrector design for beam phase loop, differential frequency loop and final synchronization loop is also presented. Finally, an overview of the synchronization methods currently deployed in some other CERN’s machines is provided, together with a brief comparison with the newly proposed time-optimal algorithm.
The timing of terrorist attacks: An optimal stopping approach
Directory of Open Access Journals (Sweden)
Thomas Jensen
2016-02-01
Full Text Available I use a simple optimal stopping model to derive policy relevant insights on the timing of one-shot attacks by small autonomous terrorist units or “lone wolf” individuals. A main insight is that an increase in proactive counterterrorism measures can lead to a short term increase in the number of attempted terrorist attacks because it makes it more risky for existing terrorist units to pursue further development of capabilities. This is consistent with the events in London in 2005 where a terrorist attack on 7 July was followed by a similar but unsuccessful attack two weeks later.
Optimization of Allowed Outage Time and Surveillance Test Intervals
International Nuclear Information System (INIS)
Al-Dheeb, Mujahed; Kang, Sunkoo; Kim, Jonghyun
2015-01-01
The primary purpose of surveillance testing is to assure that the components of standby safety systems will be operable when they are needed in an accident. By testing these components, failures can be detected that may have occurred since the last test or the time when the equipment was last known to be operational. The probability a system or system component performs a specified function or mission under given conditions at a prescribed time is called availability (A). Unavailability (U) as a risk measure is just the complementary probability to A(t). The increase of U means the risk is increased as well. D and T have an important impact on components, or systems, unavailability. The extension of D impacts the maintenance duration distributions for at-power operations, making them longer. This, in turn, increases the unavailability due to maintenance in the systems analysis. As for T, overly-frequent surveillances can result in high system unavailability. This is because the system may be taken out of service often due to the surveillance itself and due to the repair of test-caused failures of the component. The test-caused failures include those incurred by wear and tear of the component due to the surveillances. On the other hand, as the surveillance interval increases, the component's unavailability will grow because of increased occurrences of time-dependent random failures. In that situation, the component cannot be relied upon, and accordingly the system unavailability will increase. Thus, there should be an optimal component surveillance interval in terms of the corresponding system availability. This paper aims at finding the optimal T and D which result in minimum unavailability which in turn reduces the risk. Applying the methodology in section 2 to find the values of optimal T and D for two components, i.e., safety injection pump (SIP) and turbine driven aux feedwater pump (TDAFP). Section 4 is addressing interaction between D and T. In general
The theory of singular perturbations
De Jager, E M
1996-01-01
The subject of this textbook is the mathematical theory of singular perturbations, which despite its respectable history is still in a state of vigorous development. Singular perturbations of cumulative and of boundary layer type are presented. Attention has been given to composite expansions of solutions of initial and boundary value problems for ordinary and partial differential equations, linear as well as quasilinear; also turning points are discussed. The main emphasis lies on several methods of approximation for solutions of singularly perturbed differential equations and on the mathemat
Shattock, Andrew J; Kerr, Cliff C; Stuart, Robyn M; Masaki, Emiko; Fraser, Nicole; Benedikt, Clemens; Gorgens, Marelize; Wilson, David P; Gray, Richard T
2016-01-01
International investment in the response to HIV and AIDS has plateaued and its future level is uncertain. With many countries committed to ending the epidemic, it is essential to allocate available resources efficiently over different response periods to maximize impact. The objective of this study is to propose a technique to determine the optimal allocation of funds over time across a set of HIV programmes to achieve desirable health outcomes. We developed a technique to determine the optimal time-varying allocation of funds (1) when the future annual HIV budget is pre-defined and (2) when the total budget over a period is pre-defined, but the year-on-year budget is to be optimally determined. We use this methodology with Optima, an HIV transmission model that uses non-linear relationships between programme spending and associated programmatic outcomes to quantify the expected epidemiological impact of spending. We apply these methods to data collected from Zambia to determine the optimal distribution of resources to fund the right programmes, for the right people, at the right time. Considering realistic implementation and ethical constraints, we estimate that the optimal time-varying redistribution of the 2014 Zambian HIV budget between 2015 and 2025 will lead to a 7.6% (7.3% to 7.8%) decrease in cumulative new HIV infections compared with a baseline scenario where programme allocations remain at 2014 levels. This compares to a 5.1% (4.6% to 5.6%) reduction in new infections using an optimal allocation with constant programme spending that recommends unrealistic programmatic changes. Contrasting priorities for programme funding arise when assessing outcomes for a five-year funding period over 5-, 10- and 20-year time horizons. Countries increasingly face the need to do more with the resources available. The methodology presented here can aid decision-makers in planning as to when to expand or contract programmes and to which coverage levels to maximize impact.
Cirant, Marco
2016-11-22
Here, we prove the existence of smooth solutions for mean-field games with a singular mean-field coupling; that is, a coupling in the Hamilton-Jacobi equation of the form $g(m)=-m^{-\\\\alpha}$. We consider stationary and time-dependent settings. The function $g$ is monotone, but it is not bounded from below. With the exception of the logarithmic coupling, this is the first time that MFGs whose coupling is not bounded from below is examined in the literature. This coupling arises in models where agents have a strong preference for low-density regions. Paradoxically, this causes the agents to spread and prevents the creation of solutions with a very-low density. To prove the existence of solutions, we consider an approximate problem for which the existence of smooth solutions is known. Then, we prove new a priori bounds for the solutions that show that $\\\\frac 1 m$ is bounded. Finally, using a limiting argument, we obtain the existence of solutions. The proof in the stationary case relies on a blow-up argument and in the time-dependent case on new bounds for $m^{-1}$.
Classical resolution of black hole singularities via wormholes
Energy Technology Data Exchange (ETDEWEB)
Olmo, Gonzalo J. [Universidad de Valencia, Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Valencia (Spain); Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, Paraiba (Brazil); Rubiera-Garcia, D. [Universidade de Lisboa, Faculdade de Ciencias, Instituto de Astrofisica e Ciencias do Espaco, Lisbon (Portugal); Fudan University, Department of Physics, Center for Field Theory and Particle Physics, Shanghai (China); Sanchez-Puente, A. [Universidad de Valencia, Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Valencia (Spain)
2016-03-15
In certain extensions of General Relativity, wormholes generated by spherically symmetric electric fields can resolve black hole singularities without necessarily removing curvature divergences. This is shown by studying geodesic completeness, the behavior of time-like congruences going through the divergent region, and by means of scattering of waves off the wormhole. This provides an example of the logical independence between curvature divergences and space-time singularities, concepts very often identified with each other in the literature. (orig.)
Time Optimal Run-time Evaluation of Distributed Timing Constraints in Process Control Software
DEFF Research Database (Denmark)
Drejer, N.; Kristensen, C.H.
1993-01-01
This paper considers run-time evaluation of an important class of constraints; Timing constraints. These appear extensively in process control systems. Timing constraints are considered in distributed systems, i.e. systems consisting of multiple autonomous nodes......
Optimal timing of tracheostomy after trauma without associated head injury.
Keenan, Jeffrey E; Gulack, Brian C; Nussbaum, Daniel P; Green, Cindy L; Vaslef, Steven N; Shapiro, Mark L; Scarborough, John E
2015-10-01
Controversy exists over optimal timing of tracheostomy in patients with respiratory failure after blunt trauma. The study aimed to determine whether the timing of tracheostomy affects mortality in this population. The 2008-2011 National Trauma Data Bank was queried to identify blunt trauma patients without concomitant head injury who required tracheostomy for respiratory failure between hospital days 4 and 21. Restricted cubic spline analysis was performed to evaluate the relationship between tracheostomy timing and the odds of inhospital mortality. The cohort was stratified based on this analysis. Unadjusted characteristics and outcomes were compared. Multivariable logistic regression was used to evaluate the effect of tracheostomy timing on mortality after adjustment for age, gender, race, payor status, level of trauma center, injury severity score, presentation Glasgow coma scale, and thoracic and abdominal abbreviated injury score. There were 9662 patients included in the study. Restricted cubic spline analysis demonstrated a nonlinear relationship between timing of tracheostomy and mortality, with higher odds of mortality occurring with tracheostomy placement within 10 d of admission compared with later time points. The cohort was therefore stratified into early and delayed tracheostomy groups relative to this time point. The resulting groups contained 5402 (55.9%) and 4260 (44.1%) patients, respectively. After multivariable adjustment, the delayed tracheostomy group continued to have significantly reduced odds of mortality (Adjusted odds ratio, 0.82, 95% confidence interval, 0.71-0.95, C-statistic, 0.700). Among non-head injured blunt trauma patients with prolonged respiratory failure, tracheostomy placement within 10 d of admission may result in increased mortality compared with later time points. Copyright © 2015 Elsevier Inc. All rights reserved.
Singular traces theory and applications
Sukochev, Fedor; Zanin, Dmitriy
2012-01-01
This text is the first complete study and monograph dedicated to singular traces. For mathematical readers the text offers, due to Nigel Kalton's contribution, a complete theory of traces on symmetrically normed ideals of compact operators. For mathematical physicists and other users of Connes' noncommutative geometry the text offers a complete reference to Dixmier traces and the deeper mathematical features of singular traces. An application section explores the consequences of these features, which previously were not discussed in general texts on noncommutative geometry.
Dynkin graphs and quadrilateral singularities
Urabe, Tohsuke
1993-01-01
The study of hypersurface quadrilateral singularities can be reduced to the study of elliptic K3 surfaces with a singular fiber of type I * 0 (superscript *, subscript 0), and therefore these notes consider, besides the topics of the title, such K3 surfaces too. The combinations of rational double points that can occur on fibers in the semi-universal deformations of quadrilateral singularities are examined, to show that the possible combinations can be described by a certain law from the viewpoint of Dynkin graphs. This is equivalent to saying that the possible combinations of singular fibers in elliptic K3 surfaces with a singular fiber of type I * 0 (superscript *, subscript 0) can be described by a certain law using classical Dynkin graphs appearing in the theory of semi-simple Lie groups. Further, a similar description for thecombination of singularities on plane sextic curves is given. Standard knowledge of algebraic geometry at the level of graduate students is expected. A new method based on graphs wil...
Statistically defining optimal conditions of coagulation time of skim milk
International Nuclear Information System (INIS)
Celebi, M.; Ozdemir, Z.O.; Eroglu, E.; Guney, I
2014-01-01
Milk consist huge amount of largely water and different proteins. Kappa-kazein of these milk proteins can be coagulated by Mucor miehei rennet enzyme, is an aspartic protease which cleavege 105 (phenly alanine)-106 (methionine) peptide bond. It is commonly used clotting milk proteins for cheese production in dairy industry. The aim of this study to measure milk clotting times of skim milk by using Mucor Miehei rennet and determination of optimal conditions of milk clotting time by mathematical modelling. In this research, milk clotting times of skim milk were measured at different pHs (3.0, 4.0, 5.0, 6.0, 7.0, 8.0) and temperatures (20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75 degree C). It was used statistical approach for defining best pH and temperature for milk clotting time of skim milk. Milk clotting activity was increase at acidic pHs and high temperatures. (author)
FAME Storage Time in an Optimized Natural Antioxidant Mixture
Directory of Open Access Journals (Sweden)
Rodolfo Lopes Coppo
2013-01-01
Full Text Available The study of B100 biodiesel oxidation stability, and its conservation, is extremely important to control its quality, especially regarding storage. Many spices have shown antioxidant effect and are the targets of study. Knowing the oxidation process in greater detail allows a reliable storage period to be stipulated for the biodiesel without its degradation until the time of use. Results have shown that according to the accelerated stove method, the optimal mixture, composed of 100% of oregano extract, can confer a 535-day shelf life to biodiesel without evident oxidation. According to the results obtained by the Rancimat method, the ideal mixture consists of 100% rosemary, resulting in 483 days of storage. The application of the process variable showed that the accelerated stove method was more suitable to determine oxidative stability of biodiesel.
Real-Time Game Adaptation for Optimizing Player Satisfaction
DEFF Research Database (Denmark)
Yannakakis, Georgios; Hallam, John
2009-01-01
preferences for augmented-reality game players. An adaptive mechanism then adjusts controllable game parameters in real time in order to improve the entertainment value of the game for the player. The basic approach presented here applies gradient ascent to the user model to suggest the direction of parameter......'s accuracy. Performance of the adaptation mechanism is evaluated using a game survey experiment. Results indicate the efficacy and robustness of the mechanism in adapting the game according to a user's individual playing features and enhancing the gameplay experience. The limitations and the use......A methodology for optimizing player satisfaction in games on the "playware" physical interactive platform is demonstrated in this paper. Previously constructed artificial neural network user models, reported in the literature, map individual playing characteristics to reported entertainment...
Singularities and the geometry of spacetime
Hawking, Stephen
2014-11-01
the occurrence of singularities are discussed and then a number of theorems are presented which prove the occurrence of singularities in most cosmological solutions. A procedure is given which could be used to describe and classify the singularites and their expected nature is discussed. Sections 2 and 3 are reviews of standard work. In Section 4, the deviation equation is standard but the matrix method used to analyse it is the author's own as is the decomposition given of the Bianchi identities (this was also obtained independently by Trümper). Variation of curves and conjugate points are standard in a positive-definite metric but this seems to be the first full account for timelike and null curves in a Lorentz metric. Except where otherwise indicated in the text, Sections 5 and 6 are the work of the author who, however, apologises if through ignorance or inadvertance he has failed to make acknowledgements where due. Some of this work has been described in [Hawking S.W. 1965b. Occurrence of singularities in open universes. Phys. Rev. Lett. 15: 689-690; Hawking S.W. and G.F.R. Ellis. 1965c. Singularities in homogeneous world models. Phys. Rev. Lett. 17: 246-247; Hawking S.W. 1966a. Singularities in the universe. Phys. Rev. Lett. 17: 444-445; Hawking S.W. 1966c. The occurrence of singularities in cosmology. Proc. Roy. Soc. Lond. A 294: 511-521]. Undoubtedly, the most important results are the theorems in Section 6 on the occurrence of singularities. These seem to imply either that the General Theory of Relativity breaks down or that there could be particles whose histories did not exist before (or after) a certain time. The author's own opinion is that the theory probably does break down, but only when quantum gravitational effects become important. This would not be expected to happen until the radius of curvature of spacetime became about 10-14 cm.
Wave-breaking and generic singularities of nonlinear hyperbolic equations
International Nuclear Information System (INIS)
Pomeau, Yves; Le Berre, Martine; Guyenne, Philippe; Grilli, Stephan
2008-01-01
Wave-breaking is studied analytically first and the results are compared with accurate numerical simulations of 3D wave-breaking. We focus on the time dependence of various quantities becoming singular at the onset of breaking. The power laws derived from general arguments and the singular behaviour of solutions of nonlinear hyperbolic differential equations are in excellent agreement with the numerical results. This shows the power of the analysis by methods using generic concepts of nonlinear science. (open problem)
Singularity confinement for maps with the Laurent property
International Nuclear Information System (INIS)
Hone, A.N.W.
2007-01-01
The singularity confinement test is very useful for isolating integrable cases of discrete-time dynamical systems, but it does not provide a sufficient criterion for integrability. Quite recently a new property of the bilinear equations appearing in discrete soliton theory has been noticed: The iterates of such equations are Laurent polynomials in the initial data. A large class of non-integrable mappings of the plane are presented which both possess this Laurent property and have confined singularities
Study of orbital transfers with time constraint and fuel optimization
Meireles, L. G.; Rocco, E. M.
2017-10-01
Over the decades, with the advance in computational power and the development of new optimization techniques, a new opportunity arose for a reviewed approach and analysis of already existing solutions to orbital transfer problems. With that in mind, a study was proposed over Lambert’s problem of bi-impulsive orbital transfers with time constraint for the execution of minimum fuel maneuvers between coplanar and non coplanar elliptical orbits. In order to achieve this goal, a genetic search algorithm was developed to determine the minimum fuel trajectory with an iterative variation of two Keplerian elements of the final orbit, one of them being the mean anomaly and the other a choice between the eccentricity, the inclination or the argument of periapsis. A number of six simulations were performed under these conditions, using different values - on each simulation - for the Keplerian elements of the final orbits not being iteratively varied. Remarkable sections were noted regarding the behaviour of fuel consumption values of the minimum fuel trajectories. One of which was a noted relation between the lowest cost minimum fuel transfers and the ratio of the semi-major axis and eccentricity of these transfers’ initial and final orbits, considering both the orbits have the same value of argument of periapsis. Amongst all simulations, it was important to identify the choice between short or long way for the determination of the minimum fuel transfer, analysing the implications of that choice on the transfer time.
Development of a real-time transport performance optimization methodology
Gilyard, Glenn
1996-01-01
The practical application of real-time performance optimization is addressed (using a wide-body transport simulation) based on real-time measurements and calculation of incremental drag from forced response maneuvers. Various controller combinations can be envisioned although this study used symmetric outboard aileron and stabilizer. The approach is based on navigation instrumentation and other measurements found on state-of-the-art transports. This information is used to calculate winds and angle of attack. Thrust is estimated from a representative engine model as a function of measured variables. The lift and drag equations are then used to calculate lift and drag coefficients. An expression for drag coefficient, which is a function of parasite drag, induced drag, and aileron drag, is solved from forced excitation response data. Estimates of the parasite drag, curvature of the aileron drag variation, and minimum drag aileron position are produced. Minimum drag is then obtained by repositioning the symmetric aileron. Simulation results are also presented which evaluate the affects of measurement bias and resolution.
Brane singularities and their avoidance
International Nuclear Information System (INIS)
Antoniadis, Ignatios; Cotsakis, Spiros; Klaoudatou, Ifigeneia
2010-01-01
The singularity structure and the corresponding asymptotic behavior of a 3-brane coupled to a scalar field or to a perfect fluid in a five-dimensional bulk is analyzed in full generality using the method of asymptotic splittings. In the case of the scalar field, it is shown that the collapse singularity at a finite distance from the brane can be avoided only at the expense of making the brane world-volume positively or negatively curved. In the case where the bulk field content is parametrized by an analog of perfect fluid with an arbitrary equation of state P = γρ between the 'pressure' P and the 'density' ρ, our results depend crucially on the constant fluid parameter γ. (i) For γ > -1/2, the flat brane solution suffers from a collapse singularity at a finite distance that disappears in the curved case. (ii) For γ < -1, the singularity cannot be avoided and it becomes of the big rip type for a flat brane. (iii) For -1 < γ ≤ -1/2, the surprising result is found that while the curved brane solution is singular, the flat brane is not, opening the possibility for a revival of the self-tuning proposal.
Object detection with a multistatic array using singular value decomposition
Hallquist, Aaron T.; Chambers, David H.
2014-07-01
A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across a surface and that travels down the surface. The detection system converts the return signals from a time domain to a frequency domain, resulting in frequency return signals. The detection system then performs a singular value decomposition for each frequency to identify singular values for each frequency. The detection system then detects the presence of a subsurface object based on a comparison of the identified singular values to expected singular values when no subsurface object is present.
Time domain topology optimization of 3D nanophotonic devices
DEFF Research Database (Denmark)
Elesin, Yuriy; Lazarov, Boyan Stefanov; Jensen, Jakob Søndergaard
2014-01-01
We present an efficient parallel topology optimization framework for design of large scale 3D nanophotonic devices. The code shows excellent scalability and is demonstrated for optimization of broadband frequency splitter, waveguide intersection, photonic crystal-based waveguide and nanowire......-based waveguide. The obtained results are compared to simplified 2D studies and we demonstrate that 3D topology optimization may lead to significant performance improvements. © 2013 Elsevier B.V. All rights reserved....
A 1 + 5-dimensional gravitational-wave solution. Curvature singularity and spacetime singularity
International Nuclear Information System (INIS)
Chen, Yu-Zhu; Li, Wen-Du; Dai, Wu-Sheng
2017-01-01
We solve a 1 + 5-dimensional cylindrical gravitational-wave solution of the Einstein equation, in which there are two curvature singularities. Then we show that one of the curvature singularities can be removed by an extension of the spacetime. The result exemplifies that the curvature singularity is not always a spacetime singularity; in other words, the curvature singularity cannot serve as a criterion for spacetime singularities. (orig.)
A 1 + 5-dimensional gravitational-wave solution. Curvature singularity and spacetime singularity
Energy Technology Data Exchange (ETDEWEB)
Chen, Yu-Zhu [Tianjin University, Department of Physics, Tianjin (China); Li, Wen-Du [Tianjin University, Department of Physics, Tianjin (China); Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Dai, Wu-Sheng [Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Nankai University and Tianjin University, LiuHui Center for Applied Mathematics, Tianjin (China)
2017-12-15
We solve a 1 + 5-dimensional cylindrical gravitational-wave solution of the Einstein equation, in which there are two curvature singularities. Then we show that one of the curvature singularities can be removed by an extension of the spacetime. The result exemplifies that the curvature singularity is not always a spacetime singularity; in other words, the curvature singularity cannot serve as a criterion for spacetime singularities. (orig.)
Optimal timing for repair of peripheral nerve injuries.
Wang, Eugene; Inaba, Kenji; Byerly, Saskya; Escamilla, Diandra; Cho, Jayun; Carey, Joseph; Stevanovic, Milan; Ghiassi, Alidad; Demetriades, Demetrios
2017-11-01
Data regarding outcomes after peripheral nerve injuries is limited, and the optimal management strategy for an acute injury is unclear. The aim of this study was to examine timing of repair and specific factors that impact motor-sensory outcomes after peripheral nerve injury. This was a single-center, retrospective study. Patients with traumatic peripheral nerve injury from January 2010 to June 2015 were included. Patients who died, required amputation, suffered brachial plexus injury, or had missing motor-sensory examinations were excluded. Motor-sensory examinations were graded 0 to 5 by the Modified British Medical Research Council system. Operative repair of peripheral nerves was analyzed for patient characteristics, anatomic nerve injured, level of injury, associated injuries, days until repair, and repair method. Three hundred eleven patients met inclusion criteria. Two hundred fifty-eight (83%) patients underwent operative management, and 53 (17%) underwent nonoperative management. Those who required operative intervention had significantly more penetrating injuries 85.7% versus 64.2% (p undergoing laparotomy (p = 0.257) and days to nerve repair (p = 0.834) did not influence motor-sensory outcome. Outcomes did not differ significantly in patients who underwent repair 24 hours or longer versus those who were repaired later. Outcomes were primarily influenced by patient characteristics and injury level rather than operative characteristics. Peripheral nerve injuries can be repaired after damage control surgery without detriment to outcomes. Prognostic study, level III.
Signal integral for optimizing the timing of defibrillation.
Wu, Xiaobo; Bisera, Joe; Tang, Wanchun
2013-12-01
The possibility of successful defibrillation decreases with an increased duration of ventricular fibrillation (VF). Futile electrical shocks are inversely correlated with myocardial contractile function and long-term survival. Previous studies have demonstrated that various ECG waveform analyses predict the success of defibrillation. This study investigated whether the absolute amplitude of pre-shock VF waveform is likely to predict the success of defibrillation. ECG recordings of 350 out-of-hospital cardiac arrest (OOHCA) patients were obtained from the automated external defibrillator (AED) and analyzed by the method of signal integral. Successful defibrillation was defined as organized rhythm with heart rate ≥40beat/min commencing within one min of post-shock period and persisting for a minimum of 30s. Signal integral was significantly greater in successful defibrillation than unsuccessful defibrillation (81.76±32.3mV vs. 34.9±15.33mV, pdefibrillation were 90%, 86%, 80% and 93%, respectively. The receiver operator curve further revealed that signal integral predicted the likelihood of successful defibrillation (area under the curve=0.949). Signal integral predicted successful electrical shocks on patients with ventricular fibrillation and have potential to optimize the timing of defibrillation and reduce the number of electrical shocks. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Ambient cosmology and spacetime singularities
Antoniadis, Ignatios
2015-01-01
We present a new approach to the issues of spacetime singularities and cosmic censorship in general relativity. This is based on the idea that standard 4-dimensional spacetime is the conformal infinity of an ambient metric for the 5-dimensional Einstein equations with fluid sources. We then find that the existence of spacetime singularities in four dimensions is constrained by asymptotic properties of the ambient 5-metric, while the non-degeneracy of the latter crucially depends on cosmic censorship holding on the boundary.
Singularity Theory and its Applications
Stewart, Ian; Mond, David; Montaldi, James
1991-01-01
A workshop on Singularities, Bifuraction and Dynamics was held at Warwick in July 1989, as part of a year-long symposium on Singularity Theory and its applications. The proceedings fall into two halves: Volume I mainly on connections with algebraic geometry and volume II on connections with dynamical systems theory, bifurcation theory and applications in the sciences. The papers are original research, stimulated by the symposium and workshop: All have been refereed and none will appear elsewhere. The main topic of volume II is new methods for the study of bifurcations in nonlinear dynamical systems, and applications of these.
Ambient cosmology and spacetime singularities
Energy Technology Data Exchange (ETDEWEB)
Antoniadis, Ignatios [Bern University, Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern (Switzerland); Ecole Polytechnique, Palaiseau (France); Cotsakis, Spiros [CERN, Theory Division, Department of Physics, Geneva 23 (Switzerland); National Technical University, School of Applied Mathematics and Physical Sciences, Athens (Greece)
2015-01-01
We present a new approach to the issues of spacetime singularities and cosmic censorship in general relativity. This is based on the idea that standard 4-dimensional spacetime is the conformal infinity of an ambient metric for the 5-dimensional Einstein equations with fluid sources. We then find that the existence of spacetime singularities in four dimensions is constrained by asymptotic properties of the ambient 5-metric, while the non-degeneracy of the latter crucially depends on cosmic censorship holding on the boundary. (orig.)
How to decide the optimal scheme and the optimal time for construction
International Nuclear Information System (INIS)
Gjermundsen, T.; Dalsnes, B.; Jensen, T.
1991-01-01
Since the development in Norway began some 105 years ago the mean annual generation has reached approximately 110 TWh. This means that there is a large potential for uprating and refurbishing (U/R). A project undertaken by the Norwegian Water Resources and Energy Administration (NVE) has identified energy resources by means of U/R to about 10 TWh annual generation. One problem in harnessing the potential owned by small and medium sized electricity boards is the lack of simple tools to help us carry out the right decisions. The paper describes a simple model to find the best solution of scheme and the optimal time to start. The principle of present value is used. The main input is: production, price, annual costs of maintenance, the remaining lifetime and the social rate of return. The model calculates the present value of U/R/N for different points of time to start U/R/N. In addition the present value of the existing plant is calculated. Several alternatives can be considered. The best one will be the one which gives the highest present value according to the value of the existing plant. The internal rate of return is also calculated. To be aware of the sensitivity a star diagram is shown. The model gives the opportunity to include environmental charges and the value of effect (peak power). (Author)
Curing Black Hole Singularities with Local Scale Invariance
Directory of Open Access Journals (Sweden)
Predrag Dominis Prester
2016-01-01
Full Text Available We show that Weyl-invariant dilaton gravity provides a description of black holes without classical space-time singularities. Singularities appear due to the ill behaviour of gauge fixing conditions, one example being the gauge in which theory is classically equivalent to standard General Relativity. The main conclusions of our analysis are as follows: (1 singularities signal a phase transition from broken to unbroken phase of Weyl symmetry; (2 instead of a singularity, there is a “baby universe” or a white hole inside a black hole; (3 in the baby universe scenario, there is a critical mass after which reducing mass makes the black hole larger as viewed by outside observers; (4 if a black hole could be connected with white hole through the “singularity,” this would require breakdown of (classical geometric description; (5 the singularity of Schwarzschild BH solution is nongeneric and so it is dangerous to rely on it in deriving general results. Our results may have important consequences for resolving issues related to information loss puzzle. Though quantum effects are still crucial and may change the proposed classical picture, a position of building quantum theory around essentially regular classical solutions normally provides a much better starting point.
Gravitational collapse and naked singularities
Indian Academy of Sciences (India)
We propose the concept of 'effective naked singularities', which will be quite helpful ... If a pressure gradient force is not sufficiently strong, a body can continue collapsing due to its self-gravity. This phenomenon is called gravitational collapse. .... approaches a self-similar solution, which is called a critical solution, and then it.
Interval matrices: Regularity generates singularity
Czech Academy of Sciences Publication Activity Database
Rohn, Jiří; Shary, S.P.
2018-01-01
Roč. 540, 1 March (2018), s. 149-159 ISSN 0024-3795 Institutional support: RVO:67985807 Keywords : interval matrix * regularity * singularity * P-matrix * absolute value equation * diagonally singilarizable matrix Subject RIV: BA - General Mathematics Impact factor: 0.973, year: 2016
Gravitational collapse and naked singularities
Indian Academy of Sciences (India)
Abstract. Gravitational collapse is one of the most striking phenomena in gravitational physics. The cosmic censorship conjecture has provided strong motivation for research in this field. In the absence of a general proof for censorship, many examples have been proposed, in which naked singularity is the outcome of ...
Singularity: Raychaudhuri equation once again
Indian Academy of Sciences (India)
birth of the Universe in a Big Bang. Nothing could be happier and more persuasive than the observation verifying the prediction of theory. This gave rise to a general belief that singularities were inevitable in general relativity (GR) so long as the dynamics were governed by Einstein's equations and more over positive energy ...
Remarks on gauge variables and singular Lagrangians
International Nuclear Information System (INIS)
Chela-Flores, J.; Janica-de-la-Torre, R.; Kalnay, A.J.; Rodriguez-Gomez, J.; Rodriguez-Nunez, J.; Tascon, R.
1977-01-01
The relevance is discussed of gauge theory, based on a singular Lagrangian density, to the foundations of field theory. The idea that gauge transformations could change the physics of systems where the Lagrangian is singular is examined. (author)
Fayek, H M; Elamvazuthi, I; Perumal, N; Venkatesh, B
2014-09-01
A computationally-efficient systematic procedure to design an Optimal Type-2 Fuzzy Logic Controller (OT2FLC) is proposed. The main scheme is to optimize the gains of the controller using Particle Swarm Optimization (PSO), then optimize only two parameters per type-2 membership function using Genetic Algorithm (GA). The proposed OT2FLC was implemented in real-time to control the position of a DC servomotor, which is part of a robotic arm. The performance judgments were carried out based on the Integral Absolute Error (IAE), as well as the computational cost. Various type-2 defuzzification methods were investigated in real-time. A comparative analysis with an Optimal Type-1 Fuzzy Logic Controller (OT1FLC) and a PI controller, demonstrated OT2FLC׳s superiority; which is evident in handling uncertainty and imprecision induced in the system by means of noise and disturbances. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Singular cosmological evolution using canonical and ghost scalar fields
Energy Technology Data Exchange (ETDEWEB)
Nojiri, Shin' ichi [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Odintsov, S.D. [Institut de Ciencies de l' Espai (IEEC-CSIC), Campus UAB, Torre C5-Par-2a pl, E-08193 Bellaterra, Barcelona (Spain); Oikonomou, V.K. [Department of Theoretical Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Saridakis, Emmanuel N., E-mail: nojiri@gravity.phys.nagoya-u.ac.jp, E-mail: odintsov@ieec.uab.es, E-mail: v.k.oikonomou1979@gmail.com, E-mail: Emmanuel_Saridakis@baylor.edu [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece)
2015-09-01
We demonstrate that finite time singularities of Type IV can be consistently incorporated in the Universe's cosmological evolution, either appearing in the inflationary era, or in the late-time regime. While using only one scalar field instabilities can in principle occur at the time of the phantom-divide crossing, when two fields are involved we are able to avoid such instabilities. Additionally, the two-field scalar-tensor theories prove to be able to offer a plethora of possible viable cosmological scenarios, at which various types of cosmological singularities can be realized. Amongst others, it is possible to describe inflation with the appearance of a Type IV singularity, and phantom late-time acceleration which ends in a Big Rip. Finally, for completeness, we also present the Type IV realization in the context of suitably reconstructed F(R) gravity.
Singularities and Conjugate Points in FLRW Spacetimes
Lam, Huibert het; Prokopec, Tom
2017-01-01
Conjugate points play an important role in the proofs of the singularity theorems of Hawking and Penrose. We examine the relation between singularities and conjugate points in FLRW spacetimes with a singularity. In particular we prove a theorem that when a non-comoving, non-spacelike geodesic in a
Analysis of singularity in redundant manipulators
International Nuclear Information System (INIS)
Watanabe, Koichi
2000-03-01
In the analysis of arm positions and configurations of redundant manipulators, the singularity avoidance problems are important themes. This report presents singularity avoidance computations of a 7 DOF manipulator by using a computer code based on human-arm models. The behavior of the arm escaping from the singular point can be identified satisfactorily through the use of 3-D plotting tools. (author)
The Singularity May Never Be Near
Walsh, Toby
2017-01-01
There is both much optimisim and pessimism around artificial intelligence (AI) today. The optimists are investing millions of dollars, and even in some cases billions of dollars into AI. The pessimists, on the other hand, predict that AI will end many things: jobs, warfare, and even the human race. Both the optimists and the pessimists often appeal to the idea of a technological singularity, a point in time where machine intelligence starts to run away, and a new, more in- telligent “species”...
Experimental Time-Optimal Universal Control of Spin Qubits in Solids
Geng, Jianpei; Wu, Yang; Wang, Xiaoting; Xu, Kebiao; Shi, Fazhan; Xie, Yijin; Rong, Xing; Du, Jiangfeng
2016-10-01
Quantum control of systems plays an important role in modern science and technology. The ultimate goal of quantum control is to achieve high-fidelity universal control in a time-optimal way. Although high-fidelity universal control has been reported in various quantum systems, experimental implementation of time-optimal universal control remains elusive. Here, we report the experimental realization of time-optimal universal control of spin qubits in diamond. By generalizing a recent method for solving quantum brachistochrone equations [X. Wang et al., Phys. Rev. Lett. 114, 170501 (2015)], we obtained accurate minimum-time protocols for multiple qubits with fixed qubit interactions and a constrained control field. Single- and two-qubit time-optimal gates are experimentally implemented with fidelities of 99% obtained via quantum process tomography. Our work provides a time-optimal route to achieve accurate quantum control and unlocks new capabilities for the emerging field of time-optimal control in general quantum systems.
Optimization of roasting temperature and time during oil extraction ...
African Journals Online (AJOL)
on oil yield, free fatty acid, colour and specific gravity of the oil. However, nonsignificant (p > 0.05) effect was recorded on refractive index and pH of the extracted oil. The computer software package (Design-Expert) used for optimization gave four possible optimum conditions with desirability ranging from 0.50 to 0.68.
Optimal time policy for deteriorating items of two-warehouse ...
Indian Academy of Sciences (India)
We consider the problem of a two-warehouse inventory system under the effect of stock dependent demand. There are two warehouses to store the goods in which the first is rented warehouse and the second is own warehouse that deteriorates with two different rates. The aim of this study is to determine the optimal order ...
Real-Time Optimization for Economic Model Predictive Control
DEFF Research Database (Denmark)
Sokoler, Leo Emil; Edlund, Kristian; Frison, Gianluca
2012-01-01
In this paper, we develop an efficient homogeneous and self-dual interior-point method for the linear programs arising in economic model predictive control. To exploit structure in the optimization problems, the algorithm employs a highly specialized Riccati iteration procedure. Simulations show...
Optimal time policy for deteriorating items of two-warehouse
Indian Academy of Sciences (India)
... goods in which the first is rented warehouse and the second is own warehouse that deteriorates with two different rates. The aim of this study is to determine the optimal order quantity to maximize the profit of the projected model. Finally, some numerical examples and sensitivity analysis of parameters are made to validate ...
Optimal Designs for Discrete-time Survival Analysis with Heterogeneity
Safarkhani, M.
2015-01-01
An event history is a longitudinal record of timing of the occurrence of an event. The underlying event process usually operates in continuous time. In practice, event times are most often measured in time intervals leading to discrete-time or interval-censored event history data. Since only the
Singularities formation, structure, and propagation
Eggers, J
2015-01-01
Many key phenomena in physics and engineering are described as singularities in the solutions to the differential equations describing them. Examples covered thoroughly in this book include the formation of drops and bubbles, the propagation of a crack and the formation of a shock in a gas. Aimed at a broad audience, this book provides the mathematical tools for understanding singularities and explains the many common features in their mathematical structure. Part I introduces the main concepts and techniques, using the most elementary mathematics possible so that it can be followed by readers with only a general background in differential equations. Parts II and III require more specialised methods of partial differential equations, complex analysis and asymptotic techniques. The book may be used for advanced fluid mechanics courses and as a complement to a general course on applied partial differential equations.
Historical developments in singular perturbations
O'Malley, Robert E
2014-01-01
This engaging text describes the development of singular perturbations, including its history, accumulating literature, and its current status. While the approach of the text is sophisticated, the literature is accessible to a broad audience. A particularly valuable bonus are the historical remarks. These remarks are found throughout the manuscript. They demonstrate the growth of mathematical thinking on this topic by engineers and mathematicians. The book focuses on detailing how the various methods are to be applied. These are illustrated by a number and variety of examples. Readers are expected to have a working knowledge of elementary ordinary differential equations, including some familiarity with power series techniques, and of some advanced calculus. Dr. O'Malley has written a number of books on singular perturbations. This book has developed from many of his works in the field of perturbation theory.
Energy conditions and spacetime singularities
International Nuclear Information System (INIS)
Tipler, F.J.
1978-01-01
In this paper, a number of theorems are proven which collectively show that singularities will occur in spacetime under weaker energy conditions than the strong energy condition. In particular, the Penrose theorem, which uses only the weak energy condition but which applies only to open universes, is extended to all closed universes which have a Cauchy surface whose universal covering manifold is not a three-sphere. Furthermore, it is shown that the strong energy condition in the Hawking-Penrose theorem can be replaced by the weak energy condition and the assumption that the strong energy condition holds only on the average. In addition, it is demonstrated that if the Universe is closed, then the existence of singularities follows from the averaged strong energy condition alone. It is argued that any globally hyperbolic spacetime which satisfies the weak energy condition and which contains a black hole must be null geodesically incomplete
Numerical Quadrature of Periodic Singular Integral Equations
DEFF Research Database (Denmark)
Krenk, Steen
1978-01-01
This paper presents quadrature formulae for the numerical integration of a singular integral equation with Hilbert kernel. The formulae are based on trigonometric interpolation. By integration a quadrature formula for an integral with a logarithmic singularity is obtained. Finally it is demonstra......This paper presents quadrature formulae for the numerical integration of a singular integral equation with Hilbert kernel. The formulae are based on trigonometric interpolation. By integration a quadrature formula for an integral with a logarithmic singularity is obtained. Finally...... it is demonstrated how a singular integral equation with infinite support can be solved by use of the preceding formulae....
The Evolutionary Algorithm to Find Robust Pareto-Optimal Solutions over Time
Directory of Open Access Journals (Sweden)
Meirong Chen
2015-01-01
Full Text Available In dynamic multiobjective optimization problems, the environmental parameters change over time, which makes the true pareto fronts shifted. So far, most works of research on dynamic multiobjective optimization methods have concentrated on detecting the changed environment and triggering the population based optimization methods so as to track the moving pareto fronts over time. Yet, in many real-world applications, it is not necessary to find the optimal nondominant solutions in each dynamic environment. To solve this weakness, a novel method called robust pareto-optimal solution over time is proposed. It is in fact to replace the optimal pareto front at each time-varying moment with the series of robust pareto-optimal solutions. This means that each robust solution can fit for more than one time-varying moment. Two metrics, including the average survival time and average robust generational distance, are present to measure the robustness of the robust pareto solution set. Another contribution is to construct the algorithm framework searching for robust pareto-optimal solutions over time based on the survival time. Experimental results indicate that this definition is a more practical and time-saving method of addressing dynamic multiobjective optimization problems changing over time.
Why the Singularity Cannot Happen
Modis, Theodore
2012-01-01
The concept of a Singularity as described in Ray Kurzweil's book cannot happen for a number of reasons. One reason is that all natural growth processes that follow exponential patterns eventually reveal themselves to be following S-curves thus excluding runaway situations. The remaining growth potential from Kurzweil's ''knee'', which could be approximated as the moment when an S-curve pattern begins deviating from the corresponding exponential, is a factor of only one order of magnitude grea...
On singularities of lattice varieties
Mukherjee, Himadri
2013-01-01
Toric varieties associated with distributive lattices arise as a fibre of a flat degeneration of a Schubert variety in a minuscule. The singular locus of these varieties has been studied by various authors. In this article we prove that the number of diamonds incident on a lattice point $\\a$ in a product of chain lattices is more than or equal to the codimension of the lattice. Using this we also show that the lattice varieties associated with product of chain lattices is smooth.
Optimal finite-time erasure of a classical bit
Zulkowski, Patrick R.; DeWeese, Michael R.
2014-05-01
Information erasure inevitably leads to the generation of heat. Minimizing this dissipation will be crucial for developing small-scale information processing systems, but little is known about the optimal procedures required. We have obtained closed-form expressions for maximally efficient erasure cycles for deletion of a classical bit of information stored by the position of a particle diffusing in a double-well potential. We find that the extra heat generated beyond the Landauer bound is proportional to the square of the Hellinger distance between the initial and final states divided by the cycle duration, which quantifies how far out of equilibrium the system is driven. Finally, we demonstrate close agreement between the exact optimal cycle and the protocol found using a linear response framework.
Turnpike theory of continuous-time linear optimal control problems
Zaslavski, Alexander J
2015-01-01
Individual turnpike results are of great interest due to their numerous applications in engineering and in economic theory; in this book the study is focused on new results of turnpike phenomenon in linear optimal control problems. The book is intended for engineers as well as for mathematicians interested in the calculus of variations, optimal control, and in applied functional analysis. Two large classes of problems are studied in more depth. The first class studied in Chapter 2 consists of linear control problems with periodic nonsmooth convex integrands. Chapters 3-5 consist of linear control problems with autonomous nonconvex and nonsmooth integrands. Chapter 6 discusses a turnpike property for dynamic zero-sum games with linear constraints. Chapter 7 examines genericity results. In Chapter 8, the description of structure of variational problems with extended-valued integrands is obtained. Chapter 9 ends the exposition with a study of turnpike phenomenon for dynamic games with extended value integran...
Allowed outage time for test and maintenance - Optimization of safety
International Nuclear Information System (INIS)
Cepin, M.; Mavko, B.
1997-01-01
The main objective of the project is the development and application of methodologies for improvement and optimization of test and maintenance activities for safety related equipment in NPPs on basis of their enhanced safety. The probabilistic safety assessment serves as a base, which does not mean the replacement of the deterministic analyses but the consideration of probabilistic safety assessment results as complement to deterministic results. 15 refs, 2 figs
Illegal Immigration, Deportation Policy, and the Optimal Timing of Return
Vinogradova, Alexandra
2015-01-01
Countries with strict immigration policies often resort to deportation measures to reduce their stocks of illegal immigrants. Many of their undocumented foreign workers, however, are not deported but rather choose to return home voluntarily. This paper studies the optimizing behavior of undocumented immigrants who continuously face the risk of deportation, modeled by a stochastic process, and must decide how long to remain in the host country. It is found that the presence of uncertainty with...
Peeling Potatoes Near-optimally in Near-linear Time
Czech Academy of Sciences Publication Activity Database
Cabello, S.; Cibulka, J.; Kynčl, J.; Saumell, Maria; Valtr, P.
2017-01-01
Roč. 46, č. 5 (2017), s. 1574-1602 ISSN 0097-5397 R&D Projects: GA ČR GBP202/12/G061 Grant - others:GA MŠk(CZ) LO1506; GA MŠk(CZ) EE2.3.30.0038 Institutional support: RVO:67985807 Keywords : geometric optimization * potato peeling * visibility graph * geometric probability * approximation algorithm Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.433, year: 2016
Quantum propagation across cosmological singularities
Gielen, Steffen; Turok, Neil
2017-05-01
The initial singularity is the most troubling feature of the standard cosmology, which quantum effects are hoped to resolve. In this paper, we study quantum cosmology with conformal (Weyl) invariant matter. We show that it is natural to extend the scale factor to negative values, allowing a large, collapsing universe to evolve across a quantum "bounce" into an expanding universe like ours. We compute the Feynman propagator for Friedmann-Robertson-Walker backgrounds exactly, identifying curious pathologies in the case of curved (open or closed) universes. We then include anisotropies, fixing the operator ordering of the quantum Hamiltonian by imposing covariance under field redefinitions and again finding exact solutions. We show how complex classical solutions allow one to circumvent the singularity while maintaining the validity of the semiclassical approximation. The simplest isotropic universes sit on a critical boundary, beyond which there is qualitatively different behavior, with potential for instability. Additional scalars improve the theory's stability. Finally, we study the semiclassical propagation of inhomogeneous perturbations about the flat, isotropic case, at linear and nonlinear order, showing that, at least at this level, there is no particle production across the bounce. These results form the basis for a promising new approach to quantum cosmology and the resolution of the big bang singularity.
Flavour from partially resolved singularities
Energy Technology Data Exchange (ETDEWEB)
Bonelli, G. [International School of Advanced Studies (SISSA) and INFN, Sezione di Trieste, via Beirut 2-4, 34014 Trieste (Italy)]. E-mail: bonelli@sissa.it; Bonora, L. [International School of Advanced Studies (SISSA) and INFN, Sezione di Trieste, via Beirut 2-4, 34014 Trieste (Italy); Ricco, A. [International School of Advanced Studies (SISSA) and INFN, Sezione di Trieste, via Beirut 2-4, 34014 Trieste (Italy)
2006-06-15
In this Letter we study topological open string field theory on D-branes in a IIB background given by non-compact CY geometries O(n)-bar O(-2-n) on P{sup 1} with a singular point at which an extra fiber sits. We wrap N D5-branes on P{sup 1} and M effective D3-branes at singular points, which are actually D5-branes wrapped on a shrinking cycle. We calculate the holomorphic Chern-Simons partition function for the above models in a deformed complex structure and find that it reduces to multi-matrix models with flavour. These are the matrix models whose resolvents have been shown to satisfy the generalized Konishi anomaly equations with flavour. In the n=0 case, corresponding to a partial resolution of the A{sub 2} singularity, the quantum superpotential in the N=1 unitary SYM with one adjoint and M fundamentals is obtained. The n=1 case is also studied and shown to give rise to two-matrix models which for a particular set of couplings can be exactly solved. We explicitly show how to solve such a class of models by a quantum equation of motion technique.
Can noncommutativity resolve the Big-Bang singularity?
Maceda, M; Manousselis, P; Zoupanos, George
2004-01-01
A possible way to resolve the singularities of general relativity is proposed based on the assumption that the description of space-time using commuting coordinates is not valid above a certain fundamental scale. Beyond that scale it is assumed that the space-time has noncommutative structure leading in turn to a resolution of the singularity. As a first attempt towards realizing the above programme a noncommutative version of the Kasner metric is constructed which is nonsingular at all scales and becomes commutative at large length scales.
Wang, Xinghu; Hong, Yiguang; Yi, Peng; Ji, Haibo; Kang, Yu
2017-05-24
In this paper, a distributed optimization problem is studied for continuous-time multiagent systems with unknown-frequency disturbances. A distributed gradient-based control is proposed for the agents to achieve the optimal consensus with estimating unknown frequencies and rejecting the bounded disturbance in the semi-global sense. Based on convex optimization analysis and adaptive internal model approach, the exact optimization solution can be obtained for the multiagent system disturbed by exogenous disturbances with uncertain parameters.
Singularity free non-rotating cosmological solutions for perfect fluids ...
Indian Academy of Sciences (India)
Singularity free cosmological solutions of the type stated in the title known so far are of a very special class and have the following characteristics: (a) The space time is cylindrically symmetric. (b) In case the metric is diagonal, the μ's are of the form μ = a function of time multiplied by a function of the radial coordinate.
Numerical Simulation of Real-Time Trajectory Optimization for Helicopter Noise Abatement
Ikaida, Hiroshi; Tsuchiya, Takeshi; Ishii, Hirokazu; Gomi, Hiromi; Okuno, Yoshinori
This study was an attempt to obtain optimal landing approaches for helicopters to reduce ground noise impact. Simulations and real flight tests in our previous study confirmed that flights along pre-calculated optimal trajectories resulted in lower noise levels than flights along conventional approach paths. However, some experiments did not show the expected optimization effects because of unforeseen disturbances. This paper therefore improves the algorithms in order to realize practical real-time optimization, which can involve external disturbances. To validate the effect of the new method, various computer simulations were conducted under real flight experimental scenarios. The obtained optimal solutions were characterized by steep flight path angles, which can avoid the generation of loud noise, the avoidance of noise sensitive points, and short flight times. These are different from conventional landing approaches. The optimal trajectories resulted in noise reduction on the ground, which shows the effectiveness and potential of the proposed real-time trajectory optimization method.
Optimal time travel in the Gödel universe
Natário, José
2012-04-01
Using the theory of optimal rocket trajectories in general relativity, recently developed in Henriques and Natário (2011), we present a candidate for the minimum total integrated acceleration closed timelike curve in the Gödel universe, and give evidence for its minimality. The total integrated acceleration of this curve is lower than Malament's conjectured value (Malament 1984), as was already implicit in the work of Manchak (Gen. Relativ. Gravit. 51-60, 2011); however, Malament's conjecture does seem to hold for periodic closed timelike curves.
Optimal Guaranteed Services Timed Token (OGSTT) Media Access ...
African Journals Online (AJOL)
In networks that support real-time traffic and non-real-time traffic over the same physical infrastructure, the challenge to the Media Access Control (MAC) protocol of such network is the ability to support the different traffic without compromising quality of service (QoS) for any of them. Generally, timed-token MAC protocols ...
Mathematical models with singularities a zoo of singular creatures
Torres, Pedro J
2015-01-01
The book aims to provide an unifying view of a variety (a 'zoo') of mathematical models with some kind of singular nonlinearity, in the sense that it becomes infinite when the state variable approaches a certain point. Up to 11 different concrete models are analyzed in separate chapters. Each chapter starts with a discussion of the basic model and its physical significance. Then the main results and typical proofs are outlined, followed by open problems. Each chapter is closed by a suitable list of references. The book may serve as a guide for researchers interested in the modelling of real world processes.
Optimizing timing performance of CdTe detectors for PET
Nakhostin, M.
2017-10-01
Despite several attractive properties, the poor timing performance of compound semiconductor detectors such as CdTe and CdZnTe has hindered their use in commercial PET imaging systems. The standard method of pulse timing with such detectors is to employ a constant-fraction discriminator at the output of a timing filter which is fed by the pulses from a charge-sensitive preamplifier. The method has led to a time resolution of about 10 ns at full-width at half-maximum (FWHM) with 1 mm thick CdTe detectors. This paper presents a detailed investigation on the parameters limiting the timing performance of Ohmic contact planar CdTe detectors with the standard pulse timing method. The jitter and time-walk errors are studied through simulation and experimental measurements and it is revealed that the best timing results obtained with the standard timing method suffer from a significant loss of coincidence events (~50%). In order to improve the performance of the detectors with full detection efficiency, a new digital pulse timing method based on a simple pattern recognition technique was developed. A time resolution of 3.29 ± 0.10 ns (FWHM) in the energy range of 300-650 keV was achieved with an Ohmic contact planar CdTe detector (5 × 5 × 1 mm3). The digital pulse processing method was also used to correct for the charge-trapping effect and an improvement in the energy resolution from 4.83 ± 0.66% to 2.780 ± 0.002% (FWHM) at 511 keV was achieved. Further improvement of time resolution through a moderate cooling of the detector and the application of the method to other detector structures are also discussed.
Optimal replacement time estimation for machines and equipment based on cost function
Directory of Open Access Journals (Sweden)
J. Šebo
2013-01-01
Full Text Available The article deals with a multidisciplinary issue of estimating the optimal replacement time for the machines. Considered categories of machines, for which the optimization method is usable, are of the metallurgical and engineering production. Different models of cost function are considered (both with one and two variables. Parameters of the models were calculated through the least squares method. Models testing show that all are good enough, so for estimation of optimal replacement time is sufficient to use simpler models. In addition to the testing of models we developed the method (tested on selected simple model which enable us in actual real time (with limited data set to indicate the optimal replacement time. The indicated time moment is close enough to the optimal replacement time t*.
Optimal replacement time estimation for machines and equipment based on cost function
J. Šebo; J. Buša; P. Demeč; J. Svetlík
2013-01-01
The article deals with a multidisciplinary issue of estimating the optimal replacement time for the machines. Considered categories of machines, for which the optimization method is usable, are of the metallurgical and engineering production. Different models of cost function are considered (both with one and two variables). Parameters of the models were calculated through the least squares method. Models testing show that all are good enough, so for estimation of optimal replacement time is ...
Non-singular string-cosmologies from exact conformal field theories
International Nuclear Information System (INIS)
Vega, H.J. de; Larsen, A.L.; Sanchez, N.
2001-01-01
Non-singular two and three dimensional string cosmologies are constructed using the exact conformal field theories corresponding to SO(2,1)/SO(1,1) and SO(2,2)/SO(2,1). All semi-classical curvature singularities are canceled in the exact theories for both of these cosets, but some new quantum curvature singularities emerge. However, considering different patches of the global manifolds, allows the construction of non-singular space-times with cosmological interpretation. In both two and three dimensions, we construct non-singular oscillating cosmologies, non-singular expanding and inflationary cosmologies including a de Sitter (exponential) stage with positive scalar curvature as well as non-singular contracting and deflationary cosmologies. Similarities between the two and three dimensional cases suggest a general picture for higher dimensional coset cosmologies: Anisotropy seems to be a generic unavoidable feature, cosmological singularities are generically avoided and it is possible to construct non-singular cosmologies where some spatial dimensions are experiencing inflation while the others experience deflation
PT -symmetric spectral singularity and negative-frequency resonance
Pendharker, Sarang; Guo, Yu; Khosravi, Farhad; Jacob, Zubin
2017-03-01
Vacuum consists of a bath of balanced and symmetric positive- and negative-frequency fluctuations. Media in relative motion or accelerated observers can break this symmetry and preferentially amplify negative-frequency modes as in quantum Cherenkov radiation and Unruh radiation. Here, we show the existence of a universal negative-frequency-momentum mirror symmetry in the relativistic Lorentzian transformation for electromagnetic waves. We show the connection of our discovered symmetry to parity-time (PT ) symmetry in moving media and the resulting spectral singularity in vacuum fluctuation-related effects. We prove that this spectral singularity can occur in the case of two metallic plates in relative motion interacting through positive- and negative-frequency plasmonic fluctuations (negative-frequency resonance). Our work paves the way for understanding the role of PT -symmetric spectral singularities in amplifying fluctuations and motivates the search for PT symmetry in novel photonic systems.
Breakdown of predictability: an investigation on the nature of singularities
International Nuclear Information System (INIS)
Tahir Shah, K.
1980-12-01
When relations are extrapolated beyond their premises of discovery, the operation sometimes results in an undefined object, i.e., one which cannot be identified within the given structure. The thesis is put forth that the occurrence of singularities is due to ''incompleteness'' in knowledge. An intuitive answer on how to deal with singularities (in, for instance, the real number system, space-time, quantum field theory) is presented first. Then a quasi-formalistic approach, e.g. non-standard models in higher-order languages and Lawvere's axiomatic formulation of categories, is set out. The independence of singularity with respect to other primitive notions of the Universe of knowledge is noted
Optimization of time-correlated single photon counting spectrometer
International Nuclear Information System (INIS)
Zhang Xiufeng; Du Haiying; Sun Jinsheng
2011-01-01
The paper proposes a performance improving scheme for the conventional time-correlated single photon counting spectrometer and develops a high speed data acquisition card based on PCI bus and FPGA technologies. The card is used to replace the multi-channel analyzer to improve the capability and decrease the volume of the spectrometer. The process of operation is introduced along with the integration of the spectrometer system. Many standard samples are measured. The experimental results show that the sensitivity of the spectrometer is single photon counting, and the time resolution of fluorescence lifetime measurement can be picosecond level. The instrument could measure the time-resolved spectroscopy. (authors)
Harnack's Inequality for Degenerate and Singular Parabolic Equations
DiBenedetto, Emmanuele; Vespri, Vincenzo
2012-01-01
Degenerate and singular parabolic equations have been the subject of extensive research for the last 25 years. Despite important achievements, the issue of the Harnack inequality for non-negative solutions to these equations, both of p-Laplacian and porous medium type, while raised by several authors, has remained basically open. Recently considerable progress has been made on this issue, to the point that, except for the singular sub-critical range, both for the p-laplacian and the porous medium equations, the theory is reasonably complete. It seemed therefore timely to trace a comprehensive
Symmetry generators in singular theories
International Nuclear Information System (INIS)
Lavrov, P.M.; Tyutin, I.V.
1989-01-01
It is proved that in the singular nondegenerate theories any symmetry of the lagrangian under non-point transformations of lagrangian variables with the open (in the general case) algebra in the hamiltonian approach generates corresponding transformations of canonical variables the generator of which is the Noether charge with respect to the Dirac brackets. On the surface of all constraints these transformations leave the hamiltonian invariant and the algebra of the Noether charges is closed. As a consequence it is shown that the nilpotent BRST charge operator always exists in gauge theories of the general form (if possible anomalies are not taken into account)
Application of Minimum-time Optimal Control System in Buck-Boost Bi-linear Converters
Directory of Open Access Journals (Sweden)
S. M. M. Shariatmadar
2017-08-01
Full Text Available In this study, the theory of minimum-time optimal control system in buck-boost bi-linear converters is described, so that output voltage regulation is carried out within minimum time. For this purpose, the Pontryagin's Minimum Principle is applied to find optimal switching level applying minimum-time optimal control rules. The results revealed that by utilizing an optimal switching level instead of classical switching patterns, output voltage regulation will be carried out within minimum time. However, transient energy index of increased overvoltage significantly reduces in order to attain minimum time optimal control in reduced output load. The laboratory results were used in order to verify numerical simulations.
Hamada, Aulia; Rosyidi, Cucuk Nur; Jauhari, Wakhid Ahmad
2017-11-01
Minimizing processing time in a production system can increase the efficiency of a manufacturing company. Processing time are influenced by application of modern technology and machining parameter. Application of modern technology can be apply by use of CNC machining, one of the machining process can be done with a CNC machining is turning. However, the machining parameters not only affect the processing time but also affect the environmental impact. Hence, optimization model is needed to optimize the machining parameters to minimize the processing time and environmental impact. This research developed a multi-objective optimization to minimize the processing time and environmental impact in CNC turning process which will result in optimal decision variables of cutting speed and feed rate. Environmental impact is converted from environmental burden through the use of eco-indicator 99. The model were solved by using OptQuest optimization software from Oracle Crystal Ball.
On infrared and mass singularities of perturbative QCD in a quark-gluon plasma
International Nuclear Information System (INIS)
Altherr, T.; Aurenche, P.; Becherrawy, T.
1988-07-01
We discuss the radiative corrections to the production of lepton pairs in a quark-gluon plasma at finite temperature. The real-time formalism is used throughout the calculations. We show that both infrared and mass singularities cancel in the final result. In contrast to the zero-temperature case, no factorization theorem is required to deal with mass singularities
Topological resolution of gauge theory singularities
Energy Technology Data Exchange (ETDEWEB)
Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo
2013-08-21
Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric S U ( 2 ) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.
Topological resolution of gauge theory singularities
Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo
2013-08-01
Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric SU(2) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.
The geometry of warped product singularities
Stoica, Ovidiu Cristinel
In this article, the degenerate warped products of singular semi-Riemannian manifolds are studied. They were used recently by the author to handle singularities occurring in General Relativity, in black holes and at the big-bang. One main result presented here is that a degenerate warped product of semi-regular semi-Riemannian manifolds with the warping function satisfying a certain condition is a semi-regular semi-Riemannian manifold. The connection and the Riemann curvature of the warped product are expressed in terms of those of the factor manifolds. Examples of singular semi-Riemannian manifolds which are semi-regular are constructed as warped products. Applications include cosmological models and black holes solutions with semi-regular singularities. Such singularities are compatible with a certain reformulation of the Einstein equation, which in addition holds at semi-regular singularities too.
Christin, C.; Smilde, A.K.; Hoefsloot, H.C.J.; Suits, F.; Bischoff, R.; Horvatovich, P.L.
2008-01-01
Correlation optimized warping (COW) based on the total ion current (TIC) is a widely used time alignment algorithm (COW-TIC). This approach works successfully on chromatograms containing few compounds and having a well-defined TIC. In this paper, we have combined COW with a component detection
Christin, Christin; Smilde, Age K.; Hoefsloot, Huub C. J.; Suits, Frank; Bischoff, Rainer; Horvatovich, Peter L.
2008-01-01
Correlation optimized warping (COW) based on the total ion current (TIC) is a widely used time alignment algorithm (COW-TIC). This approach works successfully on chromatograms containing few compounds and having a well-defined TIC. In this paper, we have combined COW with a component detection
Design of one-dimensional optical pulse-shaping filters by time-domain topology optimization
DEFF Research Database (Denmark)
Yang, Lirong; Lavrinenko, Andrei; Hvam, Jørn Märcher
2009-01-01
Time-domain topology optimization is used here to design optical pulse-shaping filters in Si/SiO2 thin-film systems. A novel envelope objective function as well as explicit penalization are used to adapt the optimization method to this unique class of design problems.......Time-domain topology optimization is used here to design optical pulse-shaping filters in Si/SiO2 thin-film systems. A novel envelope objective function as well as explicit penalization are used to adapt the optimization method to this unique class of design problems....
Exact solutions and singularities in string theory
International Nuclear Information System (INIS)
Horowitz, G.T.; Tseytlin, A.A.
1994-01-01
We construct two new classes of exact solutions to string theory which are not of the standard plane wave of gauged WZW type. Many of these solutions have curvature singularities. The first class includes the fundamental string solution, for which the string coupling vanishes near the singularity. This suggests that the singularity may not be removed by quantum corrections. The second class consists of hybrids of plane wave and gauged WZW solutions. We discuss a four-dimensional example in detail
DEKOMPOSISI NILAI SINGULAR PADA SISTEM PENGENALAN WAJAH
Beni Utomo
2012-01-01
Dekomposisi Nilai Singular atau Singular Value Decomposition (SVD)merupakan salah satu cara untuk menyatakan Principal Component Analysis (PCA).PCA sendiri merupakan suatu proses untuk menemukan kontributor-kontributorpenting dari suatu data berdasarkan besaran statistika deviasi standart dan variansi.SVD merupakan proses untuk mendapatkan matriks diagonal yang elementak nolnya merupakan nilai singular yang akarnya merupakan eigenvalue.SVD atas matriks kovarian C berbentuk C = U?V T dengan ma...
Scheduling with Optimized Communication for Time-Triggered Embedded Systems
DEFF Research Database (Denmark)
Pop, Paul; Eles, Petru; Peng, Zebo
1999-01-01
We present an approach to process scheduling for synthesis of safety-critical distributed embedded systems.Our system model captures both the flow of data and that of control. The communication model is based on a time-triggered protocol. We take into consideration overheads due to communication...
Resource Optimization in Distributed Real-Time Multimedia Applications
Yang, R.; van der Mei, R.D.; Roubos, D.; Seinstra, F.J.; Bal, H.E.
2012-01-01
The research area of multimedia content analysis (MMCA) considers all aspects of the automated extraction of knowledge from multimedia archives and data streams. To adhere to strict time constraints, large-scalemultimedia applications typically are being executed on distributed systems consisting of
Optimizing a time-resolved X-ray absorption experiment
Bressler, C; Chergui, M; Abela, R; Pattison, P
2001-01-01
Calculations are presented of the optimum conditions for performing a laser-pump X-ray probe time-resolved X-ray absorption experiment. The results concerning sensitivity and feasibility for implementing the method are illustrated for the case of the nascent I radical environment following I sup - photolysis in H sub 2 O.
Probing singularities in quantum cosmology with curvature scalars
International Nuclear Information System (INIS)
Oliveira-Neto, G.; Correa Silva, E.V.; Lemos, N.A.; Monerat, G.A.
2009-01-01
We provide further evidence that the canonical quantization of cosmological models eliminates the classical Big Bang singularity, using the de Broglie-Bohm interpretation of quantum mechanics. We compute the 'local expectation value' of the Ricci and Kretschmann scalars, for some quantum FRW models. We show that they are finite for all time.
Discrete singular convolution for the generalized variable-coefficient ...
African Journals Online (AJOL)
Numerical solutions of the generalized variable-coefficient Korteweg-de Vries equation are obtained using a discrete singular convolution and a fourth order singly diagonally implicit Runge-Kutta method for space and time discretisation, respectively. The theoretical convergence of the proposed method is rigorously ...
Identifying secondary series for stepwise common singular spectrum ...
African Journals Online (AJOL)
Abstract. Common singular spectrum analysis is a technique which can be used to forecast a pri- mary time series by using the information from a secondary series. Not all secondary series, however, provide useful information. A first contribution in this paper is to point out the properties which a secondary series should ...
Pfister, Gerhard; Schulze, Mathias
2017-01-01
This book arose from a conference on “Singularities and Computer Algebra” which was held at the Pfalz-Akademie Lambrecht in June 2015 in honor of Gert-Martin Greuel’s 70th birthday. This unique volume presents a collection of recent original research by some of the leading figures in singularity theory on a broad range of topics including topological and algebraic aspects, classification problems, deformation theory and resolution of singularities. At the same time, the articles highlight a variety of techniques, ranging from theoretical methods to practical tools from computer algebra. Greuel himself made major contributions to the development of both singularity theory and computer algebra. With Gerhard Pfister and Hans Schönemann, he developed the computer algebra system SINGULAR, which has since become the computational tool of choice for many singularity theorists. The book addresses researchers whose work involves singularity theory and computer algebra from the PhD to expert level.
Box graphs and singular fibers
International Nuclear Information System (INIS)
Hayashi, Hirotaka; Lawrie, Craig; Morrison, David R.; Schäfer-Nameki, Sakura
2014-01-01
We determine the higher codimension fibers of elliptically fibered Calabi-Yau fourfolds with section by studying the three-dimensional N=2 supersymmetric gauge theory with matter which describes the low energy effective theory of M-theory compactified on the associated Weierstrass model, a singular model of the fourfold. Each phase of the Coulomb branch of this theory corresponds to a particular resolution of the Weierstrass model, and we show that these have a concise description in terms of decorated box graphs based on the representation graph of the matter multiplets, or alternatively by a class of convex paths on said graph. Transitions between phases have a simple interpretation as “flopping' of the path, and in the geometry correspond to actual flop transitions. This description of the phases enables us to enumerate and determine the entire network between them, with various matter representations for all reductive Lie groups. Furthermore, we observe that each network of phases carries the structure of a (quasi-)minuscule representation of a specific Lie algebra. Interpreted from a geometric point of view, this analysis determines the generators of the cone of effective curves as well as the network of flop transitions between crepant resolutions of singular elliptic Calabi-Yau fourfolds. From the box graphs we determine all fiber types in codimensions two and three, and we find new, non-Kodaira, fiber types for E 6 , E 7 and E 8
Naked singularity, firewall, and Hawking radiation.
Zhang, Hongsheng
2017-06-21
Spacetime singularity has always been of interest since the proof of the Penrose-Hawking singularity theorem. Naked singularity naturally emerges from reasonable initial conditions in the collapsing process. A recent interesting approach in black hole information problem implies that we need a firewall to break the surplus entanglements among the Hawking photons. Classically, the firewall becomes a naked singularity. We find some vacuum analytical solutions in R n -gravity of the firewall-type and use these solutions as concrete models to study the naked singularities. By using standard quantum theory, we investigate the Hawking radiation emitted from the black holes with naked singularities. Here we show that the singularity itself does not destroy information. A unitary quantum theory works well around a firewall-type singularity. We discuss the validity of our result in general relativity. Further our result demonstrates that the temperature of the Hawking radiation still can be expressed in the form of the surface gravity divided by 2π. This indicates that a naked singularity may not compromise the Hakwing evaporation process.
Spacetime averaging of exotic singularity universes
International Nuclear Information System (INIS)
Dabrowski, Mariusz P.
2011-01-01
Taking a spacetime average as a measure of the strength of singularities we show that big-rips (type I) are stronger than big-bangs. The former have infinite spacetime averages while the latter have them equal to zero. The sudden future singularities (type II) and w-singularities (type V) have finite spacetime averages. The finite scale factor (type III) singularities for some values of the parameters may have an infinite average and in that sense they may be considered stronger than big-bangs.
Dissipative control for singular impulsive dynamical systems
Directory of Open Access Journals (Sweden)
Li Yang
2012-04-01
Full Text Available The aim of this work is to study the dissipative control problem for singular impulsive dynamical systems. We start by introducing the impulse to the singular systems, and give the definition of the dissipation for singular impulsive dynamical systems. Then we discuss the dissipation of singular impulsive dynamical systems, we obtain some sufficient and necessary conditions for dissipation of these systems by solving some linear matrix inequalities (LMIs. By using this method, we design a state feedback controller to make the closed-loop system dissipative. At last, we testify the feasibility of the method by a numerical example.
On local invariants of singular symplectic forms
Domitrz, Wojciech
2017-04-01
We find a complete set of local invariants of singular symplectic forms with the structurally stable Martinet hypersurface on a 2 n-dimensional manifold. In the C-analytic category this set consists of the Martinet hypersurface Σ2, the restriction of the singular symplectic form ω to TΣ2 and the kernel of ω n - 1 at the point p ∈Σ2. In the R-analytic and smooth categories this set contains one more invariant: the canonical orientation of Σ2. We find the conditions to determine the kernel of ω n - 1 at p by the other invariants. In dimension 4 we find sufficient conditions to determine the equivalence class of a singular symplectic form-germ with the structurally smooth Martinet hypersurface by the Martinet hypersurface and the restriction of the singular symplectic form to it. We also study the singular symplectic forms with singular Martinet hypersurfaces. We prove that the equivalence class of such singular symplectic form-germ is determined by the Martinet hypersurface, the canonical orientation of its regular part and the restriction of the singular symplectic form to its regular part if the Martinet hypersurface is a quasi-homogeneous hypersurface with an isolated singularity.
Optimizing the Time Performance of Subcontractors in Building Projects
Directory of Open Access Journals (Sweden)
Andrew D.F Price
2010-07-01
Full Text Available The main contractors of Hong Kong building projects tend to subcontract most of their work. However, many of the subcontractors complain that they are not being fully utilized due main contractors’ poor site coordination of temporary works and interfacing works and plant supports etc. A list of critical site coordination problems caused by main contractors that had adversely influence to the time performance of subcontractors was prepared. A questionnaire survey was conducted to collect data to generate multiple regression equations that explain how the critical site coordination problems affected the time performance of different types of subcontractor. The survey results were validated by neural network analysis. Backward elimination method was adopted to identify the ‘most critical’ site coordination problems that enable main contractors to formulate measures to enhance their site management system.
Optimizing Maximum Flow Time and Maximum Throughput in Broadcast Scheduling
Im, Sungjin; Sviridenko, Maxim
2013-01-01
We consider the pull-based broadcast scheduling model. In this model, there are n unit-sized pages of information available at the server. Requests arrive over time at the server asking for a specific page. When the server transmits a page, all outstanding requests for the page are simultaneously satisfied, and this is what distinguishes broadcast scheduling from the standard scheduling setting where each job must be processed separately by the server. Broadcast scheduling has received a cons...
Operational Analysis of Time-Optimal Maneuvering for Imaging Spacecraft
2013-03-01
resolution is deforestation monitoring. A multi-temporal resolution can help to map out the rate of deforestation and provide consistent status updates [29...constraints and environmental conditions. Mission objectives are primarily driven by the customers’ order requirements while time constraints can be due...UK: Prentice Hall. [19] B. Yenne, The Encyclopedia of U.S. Spacecraft, 1st ed. New York, NY: Exeter Books . [20] Satellite Imaging Corporation
Approximate Range Emptiness in Constant Time and Optimal Space
DEFF Research Database (Denmark)
Goswami, Mayank; Jørgensen, Allan Grønlund; Larsen, Kasper Green
2015-01-01
{Bloom filters} from single point queries to any interval length L. Setting the false positive rate to ε/L and performing L queries, Bloom filters yield a solution to this problem with space O(nlg(L/ε)) bits, false positive probability bounded by ε for intervals of length up to L, using query time O......(Llg(L/ε)). Our first contribution is to show that the space/error trade-off cannot be improved asymptotically: Any data structure for answering approximate range emptiness queries on intervals of length up to L with false positive probability ε, must use space Ω(nlg(L/ε))−O(n) bits. On the positive side we show...... that the query time can be improved greatly, to constant time, while matching our space lower bound up to a lower order additive term. This result is achieved through a succinct data structure for (non-approximate 1d) range emptiness/reporting queries, which may be of independent interest....
Changes in Optimism Are Associated with Changes in Health Over Time Among Older Adults
Chopik, William J.; Kim, Eric S.; Smith, Jacqui
2016-01-01
Little is known about how optimism differs by age and changes over time, particularly among older adults. Even less is known about how changes in optimism are related to changes in physical health. We examined age differences and longitudinal changes in optimism in 9,790 older adults over a four-year period. We found an inverted U-shaped pattern between optimism and age both cross-sectionally and longitudinally, such that optimism generally increased in older adults before decreasing. Increases in optimism over a four-year period were associated with improvements in self-rated health and fewer chronic illnesses over the same time frame. The findings from the current study are consistent with changes in emotion regulation strategies employed by older adults and age-related changes in well-being. PMID:27114753
Directory of Open Access Journals (Sweden)
Mina Ghanbarikarekani
2016-06-01
Full Text Available Optimization of signal timing in urban network is usually done by minimizing the delay times or queue lengths. Sincethe effect of each intersection on the whole network is not considered in the mentioned methods, traffic congestion may occur in network links. Therefore, this paper has aimed to provide a timing optimization algorithm for traffic signals using internal timing policy based on balancing queue time ratio of vehicles in network links. In the proposed algorithm, the difference between the real queue time ratio and the optimum one for each link of intersection was minimized. To evaluate the efficiency of the proposed algorithm on traffic performance, the proposed algorithm was applied in a hypothetical network. By comparing the simulating software outputs, before and after implementing the algorithm, it was concluded that the queue time ratio algorithm has improved the traffic parameters by increasing the flow as well as reducing the delay time and density of the network.
Continuous-Time Multiobjective Optimization Problems via Invexity
Directory of Open Access Journals (Sweden)
Valeriano A. De Oliveira
2007-02-01
Full Text Available We introduce some concepts of generalized invexity for the continuous-time multiobjective programming problems, namely, the concepts of Karush-Kuhn-Tucker invexity and Karush-Kuhn-Tucker pseudoinvexity. Using the concept of Karush-Kuhn-Tucker invexity, we study the relationship of the multiobjective problems with some related scalar problems. Further, we show that Karush-Kuhn-Tucker pseudoinvexity is a necessary and suffcient condition for a vector Karush-Kuhn-Tucker solution to be a weakly efficient solution.
Liang, Zijun; Flötteröd, Yun-Pang; Chen, Hong; Sohr, Alexander; Bei, Xiaoxu; Bottazzi, Maximiliano; Trumpold, Jan
2018-01-01
In this paper, real-time vehicular data from video traffic detection (VTD) are used for minimizing the travel delay at intersections and a real-time traffic optimization model, based on the SUMO traffic simulation software, is established accordingly. The proposed model is implemented in a small industrial control computer which serves as the communication interface between the traffic signal control system, the traffic simulation and optimization model and the real-time video traffic detecti...
Applying Swarm Optimization Techniques to Calculate Execution Time for Software Modules
Nagy Ramadan Darwish; Ahmed A. Mohamed; Bassem S. M. Zohdy
2016-01-01
This research aims to calculate the execution time for software modules, using Particle Swarm Optimization (PSO) and Parallel Particle Swarm Optimization (PPSO), in order to calculate the proper time. A comparison is made between MATLAB Code without Algorithm (MCWA), PSO and PPSO to figure out the time produced when executing any software module. The proposed algorithms which include the PPSO increase the speed of executing the algorithm itself, in order to achieve quick results. This researc...
[Optimal timing of laparoscopic cholecystectomy in treatment of acute cholecystitis].
Rajčok, M; Danihel, Ľ; Bak, V; Oravský, M; Schnorrer, M
2016-03-01
Acute cholecystitis is one of the most frequent diseases occurring in developed countries of the world. Laparoscopic cholecystectomy is a treatment option for acute cholecystitis. Since the advent of laparoscopic cholecystectomy there has been a lack of agreement regarding the timing of the operation in the treatment of acute cholecystitis. From September 2012 to August 2015 we carried out a prospective randomized trial at the IIIrd Surgical Department of University Hospital Milosrdní bratia in Bratislava. We compared two basic approaches to the treatment of acute cholecystitis. During the trial, 64 patients with acute cholecystitis were admitted to the surgery department. 32 patients were treated with early laparoscopic cholecystectomy within 72 hours from the appearance of the symptoms. The other 32 patients were primarily treated with antibiotics and subsequently underwent delayed cholecystectomy after 68 weeks. Our results suggest several advantages of early laparoscopic cholecystectomy such as shorter operation time, lower conversion rate, shorter length of hospital stay, shorter postoperative convalescence and lower cost of hospitalisation. Based on these results we believe that immediate laparoscopic cholecystectomy (within 24 hours from the patients admission to hospital) should become a preferred method of treatment of patients with acute cholecystitis. acute cholecystectomy early and delayed laparoscopic cholecystectomy prospective randomized trial.
INTERVAL STATE ESTIMATION FOR SINGULAR DIFFERENTIAL EQUATION SYSTEMS WITH DELAYS
Directory of Open Access Journals (Sweden)
T. A. Kharkovskaia
2016-07-01
Full Text Available The paper deals with linear differential equation systems with algebraic restrictions (singular systems and a method of interval observer design for this kind of systems. The systems contain constant time delay, measurement noise and disturbances. Interval observer synthesis is based on monotone and cooperative systems technique, linear matrix inequations, Lyapunov function theory and interval arithmetic. The set of conditions that gives the possibility for interval observer synthesis is proposed. Results of synthesized observer operation are shown on the example of dynamical interindustry balance model. The advantages of proposed method are that it is adapted to observer design for uncertain systems, if the intervals of admissible values for uncertain parameters are given. The designed observer is capable to provide asymptotically definite limits on the estimation accuracy, since the interval of admissible values for the object state is defined at every instant. The obtained result provides an opportunity to develop the interval estimation theory for complex systems that contain parametric uncertainty, varying delay and nonlinear elements. Interval observers increasingly find applications in economics, electrical engineering, mechanical systems with constraints and optimal flow control.
On-Board Real-Time Optimization Control for Turbo-Fan Engine Life Extending
Zheng, Qiangang; Zhang, Haibo; Miao, Lizhen; Sun, Fengyong
2017-11-01
A real-time optimization control method is proposed to extend turbo-fan engine service life. This real-time optimization control is based on an on-board engine mode, which is devised by a MRR-LSSVR (multi-input multi-output recursive reduced least squares support vector regression method). To solve the optimization problem, a FSQP (feasible sequential quadratic programming) algorithm is utilized. The thermal mechanical fatigue is taken into account during the optimization process. Furthermore, to describe the engine life decaying, a thermal mechanical fatigue model of engine acceleration process is established. The optimization objective function not only contains the sub-item which can get fast response of the engine, but also concludes the sub-item of the total mechanical strain range which has positive relationship to engine fatigue life. Finally, the simulations of the conventional optimization control which just consider engine acceleration performance or the proposed optimization method have been conducted. The simulations demonstrate that the time of the two control methods from idle to 99.5 % of the maximum power are equal. However, the engine life using the proposed optimization method could be surprisingly increased by 36.17 % compared with that using conventional optimization control.
[Just-in-time initiation of optimal dialysis].
Cornelis, Tom; Kooman, Jeroen P; van der Sande, Frank M
2010-01-01
The IDEAL trial shows that the decision to start renal replacement treatment should not depend on GFR alone, but should be taken on the basis of clinical parameters. Quality of Life (QoL) questionnaires and bio-impedance analysis are potential tools for detecting subtle changes in the predialysis clinic. Too early an initiation of dialysis may be deleterious for the patient and the healthcare system. We are convinced that ESRD patients should be informed about intensive haemodialysis (HD), especially nocturnal (home) HD, as the best available dialysis modality. There is substantial evidence which shows that intensive HD improves clinical, biochemical and biological parameters, and may even prolong survival. We believe that 'just-in-time delivery of intensive haemodialysis' may result in optimised QoL and reduced economic burden.
Optimized fast mixing device for real-time NMR applications
Franco, Rémi; Favier, Adrien; Schanda, Paul; Brutscher, Bernhard
2017-08-01
We present an improved fast mixing device based on the rapid mixing of two solutions inside the NMR probe, as originally proposed by Hore and coworkers (J. Am. Chem. Soc. 125 (2003) 12484-12492). Such a device is important for off-equilibrium studies of molecular kinetics by multidimensional real-time NMR spectrsocopy. The novelty of this device is that it allows removing the injector from the NMR detection volume after mixing, and thus provides good magnetic field homogeneity independently of the initial sample volume placed in the NMR probe. The apparatus is simple to build, inexpensive, and can be used without any hardware modification on any type of liquid-state NMR spectrometer. We demonstrate the performance of our fast mixing device in terms of improved magnetic field homogeneity, and show an application to the study of protein folding and the structural characterization of transiently populated folding intermediates.
Sudden future singularities in quintessence and scalar-tensor quintessence models
Lymperis, A.; Perivolaropoulos, L.; Lola, S.
2017-10-01
We demonstrate analytically and numerically the existence of geodesically complete singularities in quintessence and scalar-tensor quintessence models with scalar field potential of the form V (ϕ )˜|ϕ |n with 0 equations and ts is the time of the singularity. In the case of quintessence we find q =n +2 (i.e. 2 equation of state w =p/ρ , is present. We find that the strength of the singularity (value of q ) remains unaffected by the presence of a perfect fluid. The linear and quadratic terms in (ts-t ) that appear in the expansion of the scale factor around ts are subdominant for the diverging derivatives close to the singularity, but can play an important role in the estimation of the Hubble parameter. Using the analytically derived relations between these terms, we derive relations involving the Hubble parameter close to the singularity, which may be used as observational signatures of such singularities in this class of models. For quintessence with matter fluid, we find that close to the singularity H ˙=3/2 Ω0 m(1 +zs)3-3 H2. These terms should be taken into account when searching for future or past time such singularities, in cosmological data.
Keren, Baruch; Pliskin, Joseph S
2011-12-01
The optimal timing for performing radical medical procedures as joint (e.g., hip) replacement must be seriously considered. In this paper we show that under deterministic assumptions the optimal timing for joint replacement is a solution of a mathematical programming problem, and under stochastic assumptions the optimal timing can be formulated as a stochastic programming problem. We formulate deterministic and stochastic models that can serve as decision support tools. The results show that the benefit from joint replacement surgery is heavily dependent on timing. Moreover, for a special case where the patient's remaining life is normally distributed along with a normally distributed survival of the new joint, the expected benefit function from surgery is completely solved. This enables practitioners to draw the expected benefit graph, to find the optimal timing, to evaluate the benefit for each patient, to set priorities among patients and to decide if joint replacement should be performed and when.
Li, Jinna; Kiumarsi, Bahare; Chai, Tianyou; Lewis, Frank L; Fan, Jialu
2017-12-01
Industrial flow lines are composed of unit processes operating on a fast time scale and performance measurements known as operational indices measured at a slower time scale. This paper presents a model-free optimal solution to a class of two time-scale industrial processes using off-policy reinforcement learning (RL). First, the lower-layer unit process control loop with a fast sampling period and the upper-layer operational index dynamics at a slow time scale are modeled. Second, a general optimal operational control problem is formulated to optimally prescribe the set-points for the unit industrial process. Then, a zero-sum game off-policy RL algorithm is developed to find the optimal set-points by using data measured in real-time. Finally, a simulation experiment is employed for an industrial flotation process to show the effectiveness of the proposed method.
Dwell time algorithm for multi-mode optimization in manufacturing large optical mirrors
Liu, Zhenyu
2014-08-01
CCOS (Computer Controlled Optical Surfacing) is one of the most important method to manufacture optical surface. By controlling the dwell time of a polishing tool on the mirror we can get the desired material removal. As the optical surface becoming larger, traditional CCOS method can't meet the demand that manufacturing the mirror in higher efficiency and precision. This paper presents a new method using multi-mode optimization. By calculate the dwell time map of different tool in one optimization cycle, the larger tool and the small one have complementary advantages and obtain a global optimization for multi tool and multi-processing cycles. To calculate the dwell time of different tool at the same time we use multi-mode dwell time algorithm that based on matrix calculation. With this algorithm we did simulation experiment, the result shows using multi-mode optimization algorithm can improve the efficiency maintaining good precision.
The optimal time path of clean energy R&D policy when patents have finite lifetime
Gerlagh, R.; Kverndokk, S.; Rosendahl, K.E.
We study the optimal time path for clean energy innovation policy. In a model with emission reduction through clean energy deployment, and with R&D increasing the overall productivity of clean energy, we describe optimal R&D policies jointly with emission pricing policies. We find that while
Free terminal time optimal control problem for the treatment of HIV infection
Directory of Open Access Journals (Sweden)
Amine Hamdache
2016-01-01
to provide the explicit formulations of the optimal controls. The corresponding optimality system with the additional transversality condition for the terminal time is derived and solved numerically using an adapted iterative method with a Runge-Kutta fourth order scheme and a gradient method routine.
Optimal timing of cholecystectomy in children with gallstone pancreatitis.
Badru, Faidah; Saxena, Saurabh; Breeden, Robert; Bourdillon, Maximillan; Fitzpatrick, Colleen; Chatoorgoon, Kaveer; Greenspon, Jose; Villalona, Gustavo
2017-07-01
Little data exist regarding the recurrence of pancreatitis in pediatric patients with gallstone pancreatitis awaiting cholecystectomy. This study evaluates the recurrence rate of pancreatitis after acute gallstone pancreatitis based on the timing of cholecystectomy in pediatric patients. A retrospective chart review of all patients admitted with gallstone pancreatitis from 2007 to 2015 was performed. Children were divided into the following five groups. Group 1 had surgery during the index admission. Group 2 had surgery within 2 wk of discharge. Group 3 had surgery between 2 and 6 wk postdischarge. Group 4 had surgery 6 wk after discharge, and group 5 patients had no surgery. The recurrence rates of pancreatitis were calculated for all groups. Forty-eight patients with gallstone pancreatitis were identified in this study. The 19 patients in group 1 had no recurrence of their pancreatitis. Of the remaining 29 patients, nine (31%) had recurrence of pancreatitis or required readmission for abdominal pain prior to their cholecystectomy. In group 2, two of the eight patients (25%) had recurrent pancreatitis. In group 3, three of eight patients (37.5%) developed recurrent pancreatitis. In group 4, three of five patients (60%), and in group 5, one of eight. No children in group 5 had demonstrable gallstones at presentation, only sludge in their gallbladder. Cholecystectomy during the index admission is associated with no recurrence or readmission for pancreatitis. Therefore, we recommend that cholecystectomy be performed after resolution of an episode of gallstone pancreatitis during index admission. Copyright © 2017 Elsevier Inc. All rights reserved.
Quantum transitions through cosmological singularities
Energy Technology Data Exchange (ETDEWEB)
Bramberger, Sebastian F.; Lehners, Jean-Luc [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), 14476 Potsdam-Golm (Germany); Hertog, Thomas; Vreys, Yannick, E-mail: sebastian.bramberger@aei.mpg.de, E-mail: thomas.hertog@kuleuven.be, E-mail: jlehners@aei.mpg.de, E-mail: yannick.vreys@kuleuven.be [Institute for Theoretical Physics, KU Leuven, 3001 Leuven (Belgium)
2017-07-01
In a quantum theory of cosmology spacetime behaves classically only in limited patches of the configuration space on which the wave function of the universe is defined. Quantum transitions can connect classical evolution in different patches. Working in the saddle point approximation and in minisuperspace we compute quantum transitions connecting inflationary histories across a de Sitter like throat or a singularity. This supplies probabilities for how an inflating universe, when evolved backwards, transitions and branches into an ensemble of histories on the opposite side of a quantum bounce. Generalising our analysis to scalar potentials with negative regions we identify saddle points describing a quantum transition between a classically contracting, crunching ekpyrotic phase and an inflationary universe.
Directory of Open Access Journals (Sweden)
Elvio Alccinelli
2001-07-01
Full Text Available En este artículo pretendemos mostrar que le conjunto de las economías singulares, si bien pequeño desde el punto de vista de la topología y/o desde el punto de vista de la teoría de la medida, tiene importantes efectos en el desarrollo de los regímenes económicos. Es el responsable de los cambios abruptos en los estados de equilibrio y de la multiplicidad de tales estados. Permite además establecer a partir de los tipos de singularidades posibles, una partición del conjunto de economías según tenga lugar uno u otro tipo de singularidad cuya presencia o no, caracteriza el comportamiento posible de la economía en cuestión.
Vector fields on singular varieties
Brasselet, Jean-Paul; Suwa, Tatsuo
2009-01-01
Vector fields on manifolds play a major role in mathematics and other sciences. In particular, the Poincaré-Hopf index theorem gives rise to the theory of Chern classes, key manifold-invariants in geometry and topology. It is natural to ask what is the ‘good’ notion of the index of a vector field, and of Chern classes, if the underlying space becomes singular. The question has been explored by several authors resulting in various answers, starting with the pioneering work of M.-H. Schwartz and R. MacPherson. We present these notions in the framework of the obstruction theory and the Chern-Weil theory. The interplay between these two methods is one of the main features of the monograph.
Optimal control of interacting particles: a multi-configuration time-dependent Hartree-Fock approach
International Nuclear Information System (INIS)
Mundt, Michael; Tannor, David J
2009-01-01
We combine optimal control theory with the multi-configuration time-dependent Hartree-Fock method to control the dynamics of interacting particles. We use the resulting scheme to optimize state-to-state transitions in a one-dimensional (1D) model of helium and to entangle the external degrees-of-freedom of two rubidium atoms in a 1D optical lattice. Comparisons with optimization results based on the exact solution of the Schroedinger equation show that the scheme can be used to optimize even involved processes in systems consisting of interacting particles in a reliable and efficient way.
Carpentier, Pierre; Cohen, Guy; De Lara, Michel
2015-01-01
The focus of the present volume is stochastic optimization of dynamical systems in discrete time where - by concentrating on the role of information regarding optimization problems - it discusses the related discretization issues. There is a growing need to tackle uncertainty in applications of optimization. For example the massive introduction of renewable energies in power systems challenges traditional ways to manage them. This book lays out basic and advanced tools to handle and numerically solve such problems and thereby is building a bridge between Stochastic Programming and Stochastic Control. It is intended for graduates readers and scholars in optimization or stochastic control, as well as engineers with a background in applied mathematics.
Cold atoms in singular potentials
International Nuclear Information System (INIS)
Denschlag, J. P.
1998-09-01
We studied both theoretically and experimentally the interaction between cold Li atoms from a magnetic-optical trap (MOT) and a charged or current-carrying wire. With this system, we were able to realize 1/r 2 and 1/r potentials in two dimensions and to observe the motion of cold atoms in both potentials. For an atom in an attractive 1/r 2 potential, there exist no stable trajectories, instead there is a characteristic class of trajectories for which atoms fall into the singularity. We were able to observe this falling of atoms into the center of the potential. Moreover, by probing the singular 1/r 2 potential with atomic clouds of varying size and temperature we extracted scaling properties of the atom-wire interaction. For very cold atoms, and very thin wires the motion of the atoms must be treated quantum mechanically. Here we predict that the absorption cross section for the 1/r 2 potential should exhibit quantum steps. These quantum steps are a manifestation of the quantum mechanical decomposition of plane waves into partial waves. For the second part of this work, we realized a two dimensional 1/r potential for cold atoms. If the potential is attractive, the atoms can be bound and follow Kepler-like orbits around the wire. The motion in the third dimension along the wire is free. We were able to exploit this property and constructed a novel cold atom guide, the 'Kepler guide'. We also demonstrated another type of atom guide (the 'side guide'), by combining the magnetic field of the wire with a homogeneous offset magnetic field. In this case, the atoms are held in a potential 'tube' on the side of the wire. The versatility, simplicity, and scaling properties of this guide make it an interesting technique. (author)
Spectral analysis for differential operators with singularities
Directory of Open Access Journals (Sweden)
Vjacheslav Anatoljevich Yurko
2004-01-01
Full Text Available Nonselfadjoint boundary value problems for second-order differential equations on a finite interval with nonintegrable singularities inside the interval are considered under additional sewing conditions for solutions at the singular point. We study properties of the spectrum, prove the completeness of eigen- and associated functions, and investigate the inverse problem of recovering the boundary value problem from its spectral characteristics.
Singularities in the nonisotropic Boltzmann equation
International Nuclear Information System (INIS)
Garibotti, C.R.; Martiarena, M.L.; Zanette, D.
1987-09-01
We consider solutions of the nonlinear Boltzmann equation (NLBE) with anisotropic singular initial conditions, which give a simplified model for the penetration of a monochromatic beam on a rarified target. The NLBE is transformed into an integral equation which is solved iteratively and the evolution of the initial singularities is discussed. (author). 5 refs
Timelike Constant Mean Curvature Surfaces with Singularities
DEFF Research Database (Denmark)
Brander, David; Svensson, Martin
2014-01-01
We use integrable systems techniques to study the singularities of timelike non-minimal constant mean curvature (CMC) surfaces in the Lorentz–Minkowski 3-space. The singularities arise at the boundary of the Birkhoff big cell of the loop group involved. We examine the behavior of the surfaces...
Reasons for singularity in robot teleoperation
DEFF Research Database (Denmark)
Marhenke, Ilka; Fischer, Kerstin; Savarimuthu, Thiusius Rajeeth
2014-01-01
In this paper, the causes for singularity of a robot arm in teleoperation for robot learning from demonstration are analyzed. Singularity is the alignment of robot joints, which prevents the configuration of the inverse kinematics. Inspired by users' own hypotheses, we investigated speed and delay...
On the genericity of spacetime singularities
Indian Academy of Sciences (India)
in terms of the incompleteness of non-space-like geodesics in spacetime. It is possible that such ... outside. The above discussion does not imply the absence of singularity-free solutions to Einstein's equations. ..... spherical collapse also turns out to be a stable feature as implied by the singularity theorems discussed above.
The Geometry of Black Hole Singularities
Directory of Open Access Journals (Sweden)
Ovidiu Cristinel Stoica
2014-01-01
Full Text Available Recent results show that important singularities in General Relativity can be naturally described in terms of finite and invariant canonical geometric objects. Consequently, one can write field equations which are equivalent to Einstein's at nonsingular points but, in addition remain well-defined and smooth at singularities. The black hole singularities appear to be less undesirable than it was thought, especially after we remove the part of the singularity due to the coordinate system. Black hole singularities are then compatible with global hyperbolicity and do not make the evolution equations break down, when these are expressed in terms of the appropriate variables. The charged black holes turn out to have smooth potential and electromagnetic fields in the new atlas. Classical charged particles can be modeled, in General Relativity, as charged black hole solutions. Since black hole singularities are accompanied by dimensional reduction, this should affect Feynman's path integrals. Therefore, it is expected that singularities induce dimensional reduction effects in Quantum Gravity. These dimensional reduction effects are very similar to those postulated in some approaches to make Quantum Gravity perturbatively renormalizable. This may provide a way to test indirectly the effects of singularities, otherwise inaccessible.
Nietzsche, immortality, singularity and eternal recurrence | Olivier ...
African Journals Online (AJOL)
Moreover, once anything has existed, it is in a certain sense, for Nietzsche, necessary despite its temporal singularity. Therefore, to be able to rise to the task of affirming certain actions or experiences in one's own life, bestows on it not merely this kind of necessary singularity, but what he thought of as 'eternal recurrence' –
Discrete variable representation for singular Hamiltonians
DEFF Research Database (Denmark)
Schneider, B. I.; Nygaard, Nicolai
2004-01-01
We discuss the application of the discrete variable representation (DVR) to Schrodinger problems which involve singular Hamiltonians. Unlike recent authors who invoke transformations to rid the eigenvalue equation of singularities at the cost of added complexity, we show that an approach based...
Singularity is the Future of ICT Research
African Journals Online (AJOL)
PROF. OLIVER OSUAGWA
2014-06-01
Jun 1, 2014 ... tech systems, and how in the near future. Artificial Intelligence may impact our lives, AI, Robotics, nanotechnology, mechatronics are collaborative agents of technological singularity. The singularity is already here! Think of modern houses now remotely controlled from far distances, think of e-commerce and.
Formation of current singularity in a topologically constrained plasma
Energy Technology Data Exchange (ETDEWEB)
Zhou, Yao [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences; Huang, Yi-Min [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences; Qin, Hong [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences; Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China.; Bhattacharjee, A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences
2016-02-01
Recently a variational integrator for ideal magnetohydrodynamics in Lagrangian labeling has been developed. Its built-in frozen-in equation makes it optimal for studying current sheet formation. We use this scheme to study the Hahm-Kulsrud-Taylor problem, which considers the response of a 2D plasma magnetized by a sheared field under sinusoidal boundary forcing. We obtain an equilibrium solution that preserves the magnetic topology of the initial field exactly, with a fluid mapping that is non-differentiable. Unlike previous studies that examine the current density output, we identify a singular current sheet from the fluid mapping. These results are benchmarked with a constrained Grad-Shafranov solver. The same signature of current singularity can be found in other cases with more complex magnetic topologies.
A Schwarz alternating procedure for singular perturbation problems
Energy Technology Data Exchange (ETDEWEB)
Garbey, M. [Universit Claude Bernard Lyon, Villeurbanne (France); Kaper, H.G. [Argonne National Lab., IL (United States)
1994-12-31
The authors show that the Schwarz alternating procedure offers a good algorithm for the numerical solution of singular perturbation problems, provided the domain decomposition is properly designed to resolve the boundary and transition layers. They give sharp estimates for the optimal position of the domain boundaries and present convergence rates of the algorithm for various second-order singular perturbation problems. The splitting of the operator is domain-dependent, and the iterative solution of each subproblem is based on a modified asymptotic expansion of the operator. They show that this asymptotic-induced method leads to a family of efficient massively parallel algorithms and report on implementation results for a turning-point problem and a combustion problem.
Khoshbin, Fatemeh; Bonakdari, Hossein; Hamed Ashraf Talesh, Seyed; Ebtehaj, Isa; Zaji, Amir Hossein; Azimi, Hamed
2016-06-01
In the present article, the adaptive neuro-fuzzy inference system (ANFIS) is employed to model the discharge coefficient in rectangular sharp-crested side weirs. The genetic algorithm (GA) is used for the optimum selection of membership functions, while the singular value decomposition (SVD) method helps in computing the linear parameters of the ANFIS results section (GA/SVD-ANFIS). The effect of each dimensionless parameter on discharge coefficient prediction is examined in five different models to conduct sensitivity analysis by applying the above-mentioned dimensionless parameters. Two different sets of experimental data are utilized to examine the models and obtain the best model. The study results indicate that the model designed through GA/SVD-ANFIS predicts the discharge coefficient with a good level of accuracy (mean absolute percentage error = 3.362 and root mean square error = 0.027). Moreover, comparing this method with existing equations and the multi-layer perceptron-artificial neural network (MLP-ANN) indicates that the GA/SVD-ANFIS method has superior performance in simulating the discharge coefficient of side weirs.
Stability of the turnpike phenomenon in discrete-time optimal control problems
Zaslavski, Alexander J
2014-01-01
The structure of approximate solutions of autonomous discrete-time optimal control problems and individual turnpike results for optimal control problems without convexity (concavity) assumptions are examined in this book. In particular, the book focuses on the properties of approximate solutions which are independent of the length of the interval, for all sufficiently large intervals; these results apply to the so-called turnpike property of the optimal control problems. By encompassing the so-called turnpike property the approximate solutions of the problems are determined primarily by the objective function and are fundamentally independent of the choice of interval and endpoint conditions, except in regions close to the endpoints. This book also explores the turnpike phenomenon for two large classes of autonomous optimal control problems. It is illustrated that the turnpike phenomenon is stable for an optimal control problem if the corresponding infinite horizon optimal control problem possesses an asymp...
Adaptive Optimal Designs for Dose-Finding Studies with Time-to-Event Outcomes.
Ryeznik, Yevgen; Sverdlov, Oleksandr; Hooker, Andrew C
2017-12-28
We consider optimal design problems for dose-finding studies with censored Weibull time-to-event outcomes. Locally D-optimal designs are investigated for a quadratic dose-response model for log-transformed data subject to right censoring. Two-stage adaptive D-optimal designs using maximum likelihood estimation (MLE) model updating are explored through simulation for a range of different dose-response scenarios and different amounts of censoring in the model. The adaptive optimal designs are found to be nearly as efficient as the locally D-optimal designs. A popular equal allocation design can be highly inefficient when the amount of censored data is high and when the Weibull model hazard is increasing. The issues of sample size planning/early stopping for an adaptive trial are investigated as well. The adaptive D-optimal design with early stopping can potentially reduce study size while achieving similar estimation precision as the fixed allocation design.
International Nuclear Information System (INIS)
Lee, Tsung-Ying; Chen, Chun-Lung
2007-01-01
This paper presents a new algorithm for solving the optimal contract capacities of a time-of-use (TOU) rates industrial customer. This algorithm is named iteration particle swarm optimization (IPSO). A new index, called iteration best is incorporated into particle swarm optimization (PSO) to improve solution quality and computation efficiency. Expanding line construction cost and contract recovery cost are considered, as well as demand contract capacity cost and penalty bill, in the selection of the optimal contract capacities. The resulting optimal contract capacity effectively reaches the minimum electricity charge of TOU rates users. A significant reduction in electricity costs is observed. The effects of expanding line construction cost and contract recovery cost on the selection of optimal contract capacities can also be estimated. The feasibility of the new algorithm is demonstrated by a numerical example, and the IPSO solution quality and computation efficiency are compared to those of other algorithms. (author)
DEFF Research Database (Denmark)
Cappellin, Cecilia; Breinbjerg, Olav; Frandsen, Aksel
2008-01-01
An effective technique for extracting the singularity of plane wave spectra in the computation of antenna aperture fields is proposed. The singular spectrum is first factorized into a product of a finite function and a singular function. The finite function is inverse Fourier transformed...... numerically using the Inverse Fast Fourier Transform, while the singular function is inverse Fourier transformed analytically, using the Weyl-identity, and the two resulting spatial functions are then convolved to produce the antenna aperture field. This article formulates the theory of the singularity...
Multiscale singular value manifold for rotating machinery fault diagnosis
Energy Technology Data Exchange (ETDEWEB)
Feng, Yi; Lu, BaoChun; Zhang, Deng Feng [School of Mechanical Engineering, Nanjing University of Science and Technology,Nanjing (United States)
2017-01-15
Time-frequency distribution of vibration signal can be considered as an image that contains more information than signal in time domain. Manifold learning is a novel theory for image recognition that can be also applied to rotating machinery fault pattern recognition based on time-frequency distributions. However, the vibration signal of rotating machinery in fault condition contains cyclical transient impulses with different phrases which are detrimental to image recognition for time-frequency distribution. To eliminate the effects of phase differences and extract the inherent features of time-frequency distributions, a multiscale singular value manifold method is proposed. The obtained low-dimensional multiscale singular value manifold features can reveal the differences of different fault patterns and they are applicable to classification and diagnosis. Experimental verification proves that the performance of the proposed method is superior in rotating machinery fault diagnosis.
Singularity: Scientific containers for mobility of compute.
Directory of Open Access Journals (Sweden)
Gregory M Kurtzer
Full Text Available Here we present Singularity, software developed to bring containers and reproducibility to scientific computing. Using Singularity containers, developers can work in reproducible environments of their choosing and design, and these complete environments can easily be copied and executed on other platforms. Singularity is an open source initiative that harnesses the expertise of system and software engineers and researchers alike, and integrates seamlessly into common workflows for both of these groups. As its primary use case, Singularity brings mobility of computing to both users and HPC centers, providing a secure means to capture and distribute software and compute environments. This ability to create and deploy reproducible environments across these centers, a previously unmet need, makes Singularity a game changing development for computational science.
Biclustering via Sparse Singular Value Decomposition
Lee, Mihee
2010-02-16
Sparse singular value decomposition (SSVD) is proposed as a new exploratory analysis tool for biclustering or identifying interpretable row-column associations within high-dimensional data matrices. SSVD seeks a low-rank, checkerboard structured matrix approximation to data matrices. The desired checkerboard structure is achieved by forcing both the left- and right-singular vectors to be sparse, that is, having many zero entries. By interpreting singular vectors as regression coefficient vectors for certain linear regressions, sparsity-inducing regularization penalties are imposed to the least squares regression to produce sparse singular vectors. An efficient iterative algorithm is proposed for computing the sparse singular vectors, along with some discussion of penalty parameter selection. A lung cancer microarray dataset and a food nutrition dataset are used to illustrate SSVD as a biclustering method. SSVD is also compared with some existing biclustering methods using simulated datasets. © 2010, The International Biometric Society.
Time Optimal Hybrid Sliding Mode-PI Control for an Autonomous Underwater Robot
Directory of Open Access Journals (Sweden)
Theerayuth Chatchanayuenyong
2008-03-01
Full Text Available This paper presents an underwater robot control system using combination principle among sliding mode control (SMC, Pontryagin maximum principle and linear PI control. The SMC switches according to the Pontryagin's time optimal control principle, in which the solution is obtained by using neural network approach to yield a time optimal response at its reaching phase. PI control is used in place of the SMC at the switching phase to avoid high undesired control activity. Performance of the proposed controller is compared with various classical SMCs and conventional linear control systems. Such comparisons ensure the implementation success and prove it as a real time-optimal controller. The results show the controller's good abilities to deal with plant nonlinearity and parameter uncertainties. The controller yields a time optimal control response without high control chattering.
Time Optimal Hybrid Sliding Mode-PI Control for an Autonomous Underwater Robot
Directory of Open Access Journals (Sweden)
Theerayuth Chatchanayuenyong
2008-11-01
Full Text Available This paper presents an underwater robot control system using combination principle among sliding mode control (SMC, Pontryagin maximum principle and linear PI control. The SMC switches according to the Pontryagin's time optimal control principle, in which the solution is obtained by using neural network approach to yield a time optimal response at its reaching phase. PI control is used in place of the SMC at the switching phase to avoid high undesired control activity. Performance of the proposed controller is compared with various classical SMCs and conventional linear control systems. Such comparisons ensure the implementation success and prove it as a real time-optimal controller. The results show the controller's good abilities to deal with plant nonlinearity and parameter uncertainties. The controller yields a time optimal control response without high control chattering.
Directory of Open Access Journals (Sweden)
Mingjian Sun
2015-01-01
Full Text Available Photoacoustic imaging is an innovative imaging technique to image biomedical tissues. The time reversal reconstruction algorithm in which a numerical model of the acoustic forward problem is run backwards in time is widely used. In the paper, a time reversal reconstruction algorithm based on particle swarm optimization (PSO optimized support vector machine (SVM interpolation method is proposed for photoacoustics imaging. Numerical results show that the reconstructed images of the proposed algorithm are more accurate than those of the nearest neighbor interpolation, linear interpolation, and cubic convolution interpolation based time reversal algorithm, which can provide higher imaging quality by using significantly fewer measurement positions or scanning times.
Worst-Case Execution Time Based Optimization of Real-Time Java Programs
DEFF Research Database (Denmark)
Hepp, Stefan; Schoeberl, Martin
2012-01-01
optimization is method in lining. It is especially important for languages, like Java, where small setter and getter methods are considered good programming style. In this paper we present and explore WCET driven in lining of Java methods. We use the WCET analysis tool for the Java processor JOP to guide...
Guthier, C V; Aschenbrenner, K P; Müller, R; Polster, L; Cormack, R A; Hesser, J W
2016-08-21
This paper demonstrates that optimization strategies derived from the field of compressed sensing (CS) improve computational performance in inverse treatment planning (ITP) for high-dose-rate (HDR) brachytherapy. Following an approach applied to low-dose-rate brachytherapy, we developed a reformulation of the ITP problem with the same mathematical structure as standard CS problems. Two greedy methods, derived from hard thresholding and subspace pursuit are presented and their performance is compared to state-of-the-art ITP solvers. Applied to clinical prostate brachytherapy plans speed-up by a factor of 56-350 compared to state-of-the-art methods. Based on a Wilcoxon signed rank-test the novel method statistically significantly decreases the final objective function value (p optimization times were below one second and thus planing can be considered as real-time capable. The novel CS inspired strategy enables real-time ITP for HDR brachytherapy including catheter optimization. The generated plans are either clinically equivalent or show a better performance with respect to dosimetric measures.
Kegl, Breda
2012-01-01
This paper discusses the influence of biodiesel on output characteristics of adiesel engine and optimal timing setup for its injection pump. The influence of biodiesel is studied by running experiments on an NA diesel bus engine MAN D2 2566 with a direct-injection M system. The fuel used is biodiesel produced from rapeseed. Special attention is focused on the determination of the optimal injection-pump timing with respect to engine harmful emissions, enginefuel consumption, and other engine p...
Optimal timing of coronary invasive strategy in non-ST-segment elevation acute coronary syndromes
DEFF Research Database (Denmark)
Navarese, Eliano P; Gurbel, Paul A; Andreotti, Felicita
2013-01-01
The optimal timing of coronary intervention in patients with non-ST-segment elevation acute coronary syndromes (NSTE-ACSs) is a matter of debate. Conflicting results among published studies partly relate to different risk profiles of the studied populations.......The optimal timing of coronary intervention in patients with non-ST-segment elevation acute coronary syndromes (NSTE-ACSs) is a matter of debate. Conflicting results among published studies partly relate to different risk profiles of the studied populations....
32 CFR 1602.22 - Singular and plural.
2010-07-01
....22 Singular and plural. Words importing the singular number shall include the plural number, and words importing the plural number shall include the singular, except where the context clearly indicates...
Zhang, Daojun; Cheng, Qiuming; Agterberg, Frits; Chen, Zhijun
2016-03-01
In this paper Excel VBA is used for batch calculation in Local Singularity Analysis (LSA), which is for the information extracting from different kinds of geoscience data. Capabilities and advantages of a new module called Batch Tool for Local Singularity Index Mapping (BTLSIM) are: (1) batch production of series of local singularity maps with different settings of local window size, shape and orientation parameters; (2) local parameter optimization based on statistical tests; and (3) provision of extra output layers describing how spatial changes induced by parameter optimization are related to spatial structure of the original input layers.
Non-perturbative string theories and singular surfaces
International Nuclear Information System (INIS)
Bochicchio, M.
1990-01-01
Singular surfaces are shown to be dense in the Teichmueller space of all Riemann surfaces and in the grasmannian. This happens because a regular surface of genus h, obtained identifying 2h disks in pairs, can be approximated by a very large genus singular surface with punctures dense in the 2h disks. A scale ε is introduced and the approximate genus is defined as half the number of connected regions covered by punctures of radius ε. The non-perturbative partition function is proposed to be a scaling limit of the partition function on such infinite genus singular surfaces with a weight which is the coupling constant g raised to the approximate genus. For a gaussian model in any space-time dimension the regularized partition function on singular surfaces of infinite genus is the partition function of a two-dimensional lattice gas of charges and monopoles. It is shown that modular invariance of the partition function implies a version of the Dirac quantization condition for the values of the e/m charges. Before the scaling limit the phases of the lattice gas may be classified according to the 't Hooft criteria for the condensation of e/m operators. (orig.)
Singular diffusionless limits of double-diffusive instabilities in magnetohydrodynamics.
Kirillov, Oleg N
2017-09-01
We study local instabilities of a differentially rotating viscous flow of electrically conducting incompressible fluid subject to an external azimuthal magnetic field. In the presence of the magnetic field, the hydrodynamically stable flow can demonstrate non-axisymmetric azimuthal magnetorotational instability (AMRI) both in the diffusionless case and in the double-diffusive case with viscous and ohmic dissipation. Performing stability analysis of amplitude transport equations of short-wavelength approximation, we find that the threshold of the diffusionless AMRI via the Hamilton-Hopf bifurcation is a singular limit of the thresholds of the viscous and resistive AMRI corresponding to the dissipative Hopf bifurcation and manifests itself as the Whitney umbrella singular point. A smooth transition between the two types of instabilities is possible only if the magnetic Prandtl number is equal to unity, Pm =1. At a fixed Pm ≠1, the threshold of the double-diffusive AMRI is displaced by finite distance in the parameter space with respect to the diffusionless case even in the zero dissipation limit. The complete neutral stability surface contains three Whitney umbrella singular points and two mutually orthogonal intervals of self-intersection. At these singularities, the double-diffusive system reduces to a marginally stable system which is either Hamiltonian or parity-time-symmetric.
Hybrid direct and iterative solvers for h refined grids with singularities
Paszyński, Maciej R.
2015-04-27
This paper describes a hybrid direct and iterative solver for two and three dimensional h adaptive grids with point singularities. The point singularities are eliminated by using a sequential linear computational cost solver O(N) on CPU [1]. The remaining Schur complements are submitted to incomplete LU preconditioned conjugated gradient (ILUPCG) iterative solver. The approach is compared to the standard algorithm performing static condensation over the entire mesh and executing the ILUPCG algorithm on top of it. The hybrid solver is applied for two or three dimensional grids automatically h refined towards point or edge singularities. The automatic refinement is based on the relative error estimations between the coarse and fine mesh solutions [2], and the optimal refinements are selected using the projection based interpolation. The computational mesh is partitioned into sub-meshes with local point and edge singularities separated. This is done by using the following greedy algorithm.
Minimal solution for inconsistent singular fuzzy matrix equations
Directory of Open Access Journals (Sweden)
M. Nikuie
2013-10-01
Full Text Available The fuzzy matrix equations $Ailde{X}=ilde{Y}$ is called a singular fuzzy matrix equations while the coefficients matrix of its equivalent crisp matrix equations be a singular matrix. The singular fuzzy matrix equations are divided into two parts: consistent singular matrix equations and inconsistent fuzzy matrix equations. In this paper, the inconsistent singular fuzzy matrix equations is studied and the effect of generalized inverses in finding minimal solution of an inconsistent singular fuzzy matrix equations are investigated.
International Nuclear Information System (INIS)
Wang, Hesheng; Lai, Yinping; Chen, Weidong
2016-01-01
In this paper, a new optimization model of time optimal trajectory planning with limitation of operating task for the Tokamak inspecting manipulator is designed. The task of this manipulator is to inspect the components of Tokamak, the inspecting velocity of manipulator must be limited in the operating space in order to get the clear pictures. With the limitation of joint velocity, acceleration and jerk, this optimization model can not only get the minimum working time along a specific path, but also ensure the imaging quality of camera through the constraint of inspecting velocity. The upper bound of the scanning speed is not a constant but changes according to the observation distance of camera in real time. The relation between scanning velocity and observation distance is estimated by curve-fitting. Experiment has been carried out to verify the feasibility of optimization model, moreover, the Laplace image sharpness evaluation method is adopted to evaluate the quality of images obtained by the proposed method.
OPTIMIZING TIME WINDOWS FOR MANAGING ARRIVALS OF EXPORT CONTAINERS AT CHINESE CONTAINER TERMINALS
DEFF Research Database (Denmark)
Chen, Gang; Yang, Zhongzhen
2009-01-01
Managing the truck transport in a port area is important for Chinese container ports as heavy traffic congestion not only limits the terminal capacity but also generates serious air pollution. This paper explores an effective way to manage the truck traffic of export containers based on a time...... of driver and truck waiting time, the cost of container cargo storage time, the truck idle cost and terminal yard fee. Secondly, to minimize the costs, a heuristic is developed based on a genetic algorithm to optimize the time window arrangement. The optimal solution involves the position and the length...
Singular Null Hypersurfaces in General Relativity
International Nuclear Information System (INIS)
Dray, T
2006-01-01
test particles in such a spacetime, in an initial attempt to outline a framework for the detection of impulsive gravitational waves. Subsequent chapters describe the singular null hypersurfaces obtained by boosting isolated gravitational sources, building on the work of Aichelburg and Sexl, and by colliding impulsive waves, building on the work of Khan and Penrose. In between, the special case of spherical symmetry is considered, both with and without collisions. There is also a short chapter discussing the effect of replacing GR by alternative theories of gravity, and an appendix which briefly summarizes the non-null case. The references are reasonably complete, from Synge and Penrose to the recent work of the authors. However, there are a few relatively minor errors and omissions. For instance, the results in chapter 3 about shells of matter in both Schwarzschild and Reissner-Nordstroem geometries are presented without reference or derivation. And I was disappointed to see that my own work with 't Hooft on the horizon shift due to the impulsive wave of a massless particle at the horizon of a Schwarzschild black hole-a direct generalization of the work by Aichelburg and Sexl-is not mentioned. But none of these minor complaints detracts from my appreciation of having a complete discussion of singular null hypersurfaces all in one place. The three fundamental papers which started this area of research all appeared at essentially the same time, 35 years ago; it is high time there was a unified presentation of the entire field. This book fills that need admirably, and could serve as the core of a graduate seminar for students having already taken a course in general relativity, or as a reference. My copy will have a treasured place in my library. References Penrose R 1972 The geometry of impulsive gravitational waves General Relativity: Papers in Honour of J L Synge ed L O Raifeartaigh (Oxford: Clarendon) pp 101-30 Aichelburg P C and Sexl R U 1971 On the gravitational
Time optimal trajectories for mobile robots with two independently driven wheels
Energy Technology Data Exchange (ETDEWEB)
Reister, D.B.; Pin, F.G.
1992-03-01
This paper addresses the problem of time-optional motions for a mobile platform in a planar environment. The platform has two non-steerable independently driven wheels. The overall mission of the robot is expressed in terms of a sequence of via points at which the platform must be at rest in a given configuration (position and orientation). The objective is to plan time-optimal trajectories between these configurations assuming an unobstructed environment. Using Pontryagin`s maximum principle (PMP), we formally demonstrate that all time optimal motions of the platform for this problem occur for bang-bang controls on the wheels (at each instant, the acceleration on each wheel is either at its upper or lower limit). The PMP, however, only provides necessary conditions for time optimality. To find the time optimal robot trajectories, we first parameterize the bang-bang trajectories using the switch times on the wheels (the times at which the wheel accelerations change sign). With this parameterization, we can fully search the robot trajectory space and find the switch times that will produce particular paths to a desired final configuration of the platform. We show numerically that robot trajectories with three switch times (two on one wheel, one on the other) can reach any position, while trajectories with four switch times can reach any configuration. By numerical comparison with other trajectories involving similar or greater numbers of switch times, we then identify the sets of time-optimal trajectories. These are uniquely defined using ranges of the parameters, and consist of subsets of trajectories with three switch times for the problem when the final orientation of the robot is not specified, and four switch times when a full final configuration is specified. We conclude with a description of the use of the method for trajectory planning for one of our robots.
Time optimal trajectories for mobile robots with two independently driven wheels
Energy Technology Data Exchange (ETDEWEB)
Reister, D.B.; Pin, F.G.
1992-03-01
This paper addresses the problem of time-optional motions for a mobile platform in a planar environment. The platform has two non-steerable independently driven wheels. The overall mission of the robot is expressed in terms of a sequence of via points at which the platform must be at rest in a given configuration (position and orientation). The objective is to plan time-optimal trajectories between these configurations assuming an unobstructed environment. Using Pontryagin's maximum principle (PMP), we formally demonstrate that all time optimal motions of the platform for this problem occur for bang-bang controls on the wheels (at each instant, the acceleration on each wheel is either at its upper or lower limit). The PMP, however, only provides necessary conditions for time optimality. To find the time optimal robot trajectories, we first parameterize the bang-bang trajectories using the switch times on the wheels (the times at which the wheel accelerations change sign). With this parameterization, we can fully search the robot trajectory space and find the switch times that will produce particular paths to a desired final configuration of the platform. We show numerically that robot trajectories with three switch times (two on one wheel, one on the other) can reach any position, while trajectories with four switch times can reach any configuration. By numerical comparison with other trajectories involving similar or greater numbers of switch times, we then identify the sets of time-optimal trajectories. These are uniquely defined using ranges of the parameters, and consist of subsets of trajectories with three switch times for the problem when the final orientation of the robot is not specified, and four switch times when a full final configuration is specified. We conclude with a description of the use of the method for trajectory planning for one of our robots.
Optimization of a blueprint for in vitro glycolysis by metabolic real-time analysis.
Bujara, Matthias; Schümperli, Michael; Pellaux, René; Heinemann, Matthias; Panke, Sven
2011-05-01
Recruiting complex metabolic reaction networks for chemical synthesis has attracted considerable attention but frequently requires optimization of network composition and dynamics to reach sufficient productivity. As a design framework to predict optimal levels for all enzymes in the network is currently not available, state-of-the-art pathway optimization relies on high-throughput phenotype screening. We present here the development and application of a new in vitro real-time analysis method for the comprehensive investigation and rational programming of enzyme networks for synthetic tasks. We used this first to rationally and rapidly derive an optimal blueprint for the production of the fine chemical building block dihydroxyacetone phosphate (DHAP) via Escherichia coli's highly evolved glycolysis. Second, the method guided the three-step genetic implementation of the blueprint, yielding a synthetic operon with the predicted 2.5-fold-increased glycolytic flux toward DHAP. The new analytical setup drastically accelerates rational optimization of synthetic multienzyme networks.
Topology of singular fibers of differentiable maps
Saeki, Osamu
2004-01-01
The volume develops a thorough theory of singular fibers of generic differentiable maps. This is the first work that establishes the foundational framework of the global study of singular differentiable maps of negative codimension from the viewpoint of differential topology. The book contains not only a general theory, but also some explicit examples together with a number of very concrete applications. This is a very interesting subject in differential topology, since it shows a beautiful interplay between the usual theory of singularities of differentiable maps and the geometric topology of manifolds.
Quantization function for attractive, singular potential tails
International Nuclear Information System (INIS)
Raab, Patrick N.
2010-01-01
The interaction between atoms and molecules with each other are deep potential wells with attractive, singular tails. Bound state energies are determined by a quantization function according to a simple quantization rule. This function is dominantly determined by the singular potential tail for near-threshold states. General expressions for the low- and high-energy contributions of the singular potential tail to the quantization function, as well as the connection to the scattering length are presented in two and three dimensions. Precise analytical expressions for the quantization function are determined for the case of potential tails proportional to -1/r 4 and -1/r 6 for three dimensions. (orig.)
DEKOMPOSISI NILAI SINGULAR PADA SISTEM PENGENALAN WAJAH
Directory of Open Access Journals (Sweden)
Beni Utomo
2012-11-01
Full Text Available Dekomposisi Nilai Singular atau Singular Value Decomposition (SVDmerupakan salah satu cara untuk menyatakan Principal Component Analysis (PCA.PCA sendiri merupakan suatu proses untuk menemukan kontributor-kontributorpenting dari suatu data berdasarkan besaran statistika deviasi standart dan variansi.SVD merupakan proses untuk mendapatkan matriks diagonal yang elementak nolnya merupakan nilai singular yang akarnya merupakan eigenvalue.SVD atas matriks kovarian C berbentuk C = U?V T dengan matriks U dan Vmemuat eigenvektor yang sudah terurut dari nilai variansi terbesar ke nilai variansiterkecilnya. Variansi terbesar memiliki arti eigenvektor menangkap ciri-ciri yangpaling banyak berubah. Sifat inilah yang dipakai untuk membentuk eigenface.
Directory of Open Access Journals (Sweden)
Valenko Tadej
2017-12-01
Full Text Available Successful performance and completion of construction projects highly depend on an adequate time scheduling of the project activities. On implementation of time scheduling, the execution modes of activities are most often required to be set in a manner that enables in achieving the minimum total project cost. This paper presents an approach to cost optimal time scheduling, which integrates a spreadsheet application and data transfer to project management software (PMS. At this point, the optimization problem of project time scheduling is modelled employing Microsoft Excel and solved to optimality using Solver while organization of data is dealt by macros. Thereupon, Microsoft Project software is utilized for further managing and presentation of optimized time scheduling solution. In this way, the data flow between programs is automated and possibilities of error occurrence during scheduling process are reduced to a minimum. Moreover, integration of spreadsheet and PMS for cost optimal time scheduling in construction is performed within well-known program environment that increases the possibilities of its wider use in practice. An application example is shown in this paper to demonstrate the advantages of proposed approach.
On the singular values decoupling in the Singular Spectrum Analysis of volcanic tremor at Stromboli
Directory of Open Access Journals (Sweden)
R. Carniel
2006-01-01
Full Text Available The well known strombolian activity at Stromboli volcano is occasionally interrupted by rarer episodes of paroxysmal activity which can lead to considerable hazard for Stromboli inhabitants and tourists. On 5 April 2003 a powerful explosion, which can be compared in size with the latest one of 1930, covered with bombs a good part of the normally tourist-accessible summit area. This explosion was not forecasted, although the island was by then effectively monitored by a dense deployment of instruments. After having tackled in a previous paper the problem of highlighting the timescale of preparation of this event, we investigate here the possibility of highlighting precursors in the volcanic tremor continuously recorded by a short period summit seismic station. We show that a promising candidate is found by examining the degree of coupling between successive singular values that result from the Singular Spectrum Analysis of the raw seismic data. We suggest therefore that possible anomalies in the time evolution of this parameter could be indicators of volcano instability to be taken into account e.g. in a bayesian eruptive scenario evaluator. Obviously, further (and possibly forward testing on other cases is needed to confirm the usefulness of this parameter.
Algorithms for large scale singular value analysis of spatially variant tomography systems
International Nuclear Information System (INIS)
Cao-Huu, Tuan; Brownell, G.; Lachiver, G.
1996-01-01
The problem of determining the eigenvalues of large matrices occurs often in the design and analysis of modem tomography systems. As there is an interest in solving systems containing an ever-increasing number of variables, current research effort is being made to create more robust solvers which do not depend on some special feature of the matrix for convergence (e.g. block circulant), and to improve the speed of already known and understood solvers so that solving even larger systems in a reasonable time becomes viable. Our standard techniques for singular value analysis are based on sparse matrix factorization and are not applicable when the input matrices are large because the algorithms cause too much fill. Fill refers to the increase of non-zero elements in the LU decomposition of the original matrix A (the system matrix). So we have developed iterative solutions that are based on sparse direct methods. Data motion and preconditioning techniques are critical for performance. This conference paper describes our algorithmic approaches for large scale singular value analysis of spatially variant imaging systems, and in particular of PCR2, a cylindrical three-dimensional PET imager 2 built at the Massachusetts General Hospital (MGH) in Boston. We recommend the desirable features and challenges for the next generation of parallel machines for optimal performance of our solver
Estimating the minimum delay optimal cycle length based on a time-dependent delay formula
Directory of Open Access Journals (Sweden)
Ahmed Y. Zakariya
2016-09-01
Full Text Available For fixed time traffic signal control, the well-known Webster’s formula is widely used to estimate the minimum delay optimal cycle length. However, this formula overestimates the cycle length for high degrees of saturation. In this paper, we propose two regression formulas for estimating the minimum delay optimal cycle length based on a time-dependent delay formula as used in the Canadian Capacity Guide and the Highway Capacity Manual (HCM. For this purpose, we develop a search algorithm to determine the minimum delay optimal cycle length required for the regression analysis. Numerical results show that the proposed formulas give a better estimation for the optimal cycle length at high intersection flow ratios compared to Webster’s formula.
An examination of dyadic changes in optimism and physical health over time.
Chopik, William J; Kim, Eric S; Smith, Jacqui
2018-01-01
Having a partner high in optimism is associated with better health in older adults. However, partners, just like individuals, are not static entities and likely change considerably over time. The current study examined whether changes in one person's optimism was associated with corresponding changes in his or her partner's health over a 4-year period. We employed a sample of 2,758 heterosexual couples (5,516 individuals; Mage = 65.81, SD = 9.00), married an average of 36.06 years. Median level of education was at least a high school education (13.0% had less than a high school education; 56.1% had a high school education; 30.9% had at least some college education). Both couple members filled out measures of optimism and health twice over a 4-year period. Having a partner high in optimism at baseline was associated with increases in an actor's optimism 4 years later, r = .08, p .05) and partner (rs > .03) changes in optimism were associated with changes in self-rated health and chronic illnesses over time. There was also some evidence for an interaction effect (rs > .03), such that the worst outcomes were experienced among couples in which both members decreased in optimism. This is the first study to examine how changes in psychological characteristics are associated with changes in health within and across romantic partners. Possible mechanisms are discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Simultaneous time-optimal control of the inversion of two spin-(1/2) particles
International Nuclear Information System (INIS)
Assemat, E.; Lapert, M.; Sugny, D.; Zhang, Y.; Braun, M.; Glaser, S. J.
2010-01-01
We analyze the simultaneous time-optimal control of two-spin systems. The two noncoupled spins, which differ in the value of their chemical offsets, are controlled by the same magnetic fields. Using an appropriate rotating frame, we restrict the study to the case of opposite shifts. We then show that the optimal solution of the inversion problem in a rotating frame is composed of a pulse sequence of maximum intensity and is similar to the optimal solution for inverting only one spin by using a nonresonant control field in the laboratory frame. An example is implemented experimentally using nuclear magnetic resonance techniques.
Discrete-time entropy formulation of optimal and adaptive control problems
Tsai, Yweting A.; Casiello, Francisco A.; Loparo, Kenneth A.
1992-01-01
The discrete-time version of the entropy formulation of optimal control of problems developed by G. N. Saridis (1988) is discussed. Given a dynamical system, the uncertainty in the selection of the control is characterized by the probability distribution (density) function which maximizes the total entropy. The equivalence between the optimal control problem and the optimal entropy problem is established, and the total entropy is decomposed into a term associated with the certainty equivalent control law, the entropy of estimation, and the so-called equivocation of the active transmission of information from the controller to the estimator. This provides a useful framework for studying the certainty equivalent and adaptive control laws.
Mean-Variance portfolio optimization when each asset has individual uncertain exit-time
Directory of Open Access Journals (Sweden)
Reza Keykhaei
2016-12-01
Full Text Available The standard Markowitz Mean-Variance optimization model is a single-period portfolio selection approach where the exit-time (or the time-horizon is deterministic. In this paper we study the Mean-Variance portfolio selection problem with uncertain exit-time when each has individual uncertain xit-time, which generalizes the Markowitz's model. We provide some conditions under which the optimal portfolio of the generalized problem is independent of the exit-times distributions. Also, it is shown that under some general circumstances, the sets of optimal portfolios in the generalized model and the standard model are the same.
International Nuclear Information System (INIS)
Doyle, E.K.; Jardine, A.K.S.
2001-01-01
The use of various maintenance optimization techniques at Bruce has lead to cost effective preventive maintenance applications for complex systems. As previously reported at ICONE 6 in New Orleans, 1996, several innovative practices reduced Reliability Centered Maintenance costs while maintaining the accuracy of the analysis. The optimization strategy has undergone further evolution and at the present an Integrated Maintenance Program (IMP) is in place where an Expert Panel consisting of all players/experts proceed through each system in a disciplined fashion and reach agreement on all items under a rigorous time frame. It is well known that there are essentially 3 maintenance based actions that can flow from a Maintenance Optimization Analysis: condition based maintenance, time based maintenance and time based discard. The present effort deals with time based discard decisions. Maintenance data from the Remote On-Power Fuel Changing System was used. (author)
Optimization of Time Structures in Manufacturing Management by using Scheduling Software Lekin
Directory of Open Access Journals (Sweden)
Michal Balog
2016-08-01
Full Text Available In each manufacturing plant it is one of the basic requirements to produce the largest quantity of products in the shortest time and at the lowest price. In performance of these requirements used are diverse modern methods, technologies and software which ensure the efficiency improvement of manufacturing, costs minimization, production time minimization etc. Presented article is focused on time structures optimization of real manufacturing process of engineering component by using scheduling software Lekin. It is based on theoretical scientific knowledge on which is afterwards found the optimal layout of the manufacturing process in practice. The optimal layout it created by construction and analysis of Gantt charts in scheduling software Lekin with minimum production time condition.
Real-Time Traffic Signal Control for Optimization of Traffic Jam Probability
Cui, Cheng-You; Shin, Ji-Sun; Miyazaki, Michio; Lee, Hee-Hyol
Real-time traffic signal control is an integral part of urban traffic control system. It can control traffic signals online according to variation of traffic flow. In this paper, we propose a new method for the real-time traffic signal control system. The system uses a Cellular Automaton model and a Bayesian Network model to predict probabilistic distributions of standing vehicles, and uses a Particle Swarm Optimization method to calculate optimal traffic signals. A simulation based on real traffic data was carried out to show the effectiveness of the proposed real-time traffic signal control system CAPSOBN using a micro traffic simulator.
International Nuclear Information System (INIS)
Jiang, R.
2009-01-01
It is difficult to find the optimal solution of the sequential age replacement policy for a finite-time horizon. This paper presents an accurate approximation to find an approximate optimal solution of the sequential replacement policy. The proposed approximation is computationally simple and suitable for any failure distribution. Their accuracy is illustrated by two examples. Based on the approximate solution, an approximate estimate for the total cost is derived.
Mean-variance Optimal Reinsurance-investment Strategy in Continuous Time
Daheng Peng; Fang Zhang
2017-01-01
In this paper, Lagrange method is used to solve the continuous-time mean-variance reinsurance-investment problem. Proportional reinsurance, multiple risky assets and risk-free asset are considered synthetically in the optimal strategy for insurers. By solving the backward stochastic differential equation for the Lagrange multiplier, we get the mean-variance optimal reinsurance-investment strategy and its effective frontier in explicit forms.
Mean-variance Optimal Reinsurance-investment Strategy in Continuous Time
Directory of Open Access Journals (Sweden)
Daheng Peng
2017-10-01
Full Text Available In this paper, Lagrange method is used to solve the continuous-time mean-variance reinsurance-investment problem. Proportional reinsurance, multiple risky assets and risk-free asset are considered synthetically in the optimal strategy for insurers. By solving the backward stochastic differential equation for the Lagrange multiplier, we get the mean-variance optimal reinsurance-investment strategy and its effective frontier in explicit forms.
1989-12-01
Time Systems Specified in a Prototyping Language by Julian Jaime Cervantes Capitao Engenheiro, Forga A~rea Brasileira B.S., Instituto Tecnologico de...a dynamic scheduling algorithm progressively determines the schedule for tasks on-line. A scheduling algorithm is said to guarantee a newly arriving...by finding optimal subsequences for progressively larger modules, until all the tasks are sequenced. To guarantee optimality of such algorithms, the
Optimizing Ship Speed to Minimize Total Fuel Consumption with Multiple Time Windows
Directory of Open Access Journals (Sweden)
Jae-Gon Kim
2016-01-01
Full Text Available We study the ship speed optimization problem with the objective of minimizing the total fuel consumption. We consider multiple time windows for each port call as constraints and formulate the problem as a nonlinear mixed integer program. We derive intrinsic properties of the problem and develop an exact algorithm based on the properties. Computational experiments show that the suggested algorithm is very efficient in finding an optimal solution.
Zhang, Xin; Liu, Zhiwen; Miao, Qiang; Wang, Lei
2018-03-01
A time varying filtering based empirical mode decomposition (EMD) (TVF-EMD) method was proposed recently to solve the mode mixing problem of EMD method. Compared with the classical EMD, TVF-EMD was proven to improve the frequency separation performance and be robust to noise interference. However, the decomposition parameters (i.e., bandwidth threshold and B-spline order) significantly affect the decomposition results of this method. In original TVF-EMD method, the parameter values are assigned in advance, which makes it difficult to achieve satisfactory analysis results. To solve this problem, this paper develops an optimized TVF-EMD method based on grey wolf optimizer (GWO) algorithm for fault diagnosis of rotating machinery. Firstly, a measurement index termed weighted kurtosis index is constructed by using kurtosis index and correlation coefficient. Subsequently, the optimal TVF-EMD parameters that match with the input signal can be obtained by GWO algorithm using the maximum weighted kurtosis index as objective function. Finally, fault features can be extracted by analyzing the sensitive intrinsic mode function (IMF) owning the maximum weighted kurtosis index. Simulations and comparisons highlight the performance of TVF-EMD method for signal decomposition, and meanwhile verify the fact that bandwidth threshold and B-spline order are critical to the decomposition results. Two case studies on rotating machinery fault diagnosis demonstrate the effectiveness and advantages of the proposed method.
Using real time traveler demand data to optimize commuter rail feeder systems.
2012-08-01
"This report focuses on real time optimization of the Commuter Rail Circulator Route Network Design Problem (CRCNDP). The route configuration of the circulator system where to stop and the route among the stops is determined on a real-time ba...
International Nuclear Information System (INIS)
Afrin, B.A.; Rechnov, A.V.; Usynin, G.B.
1987-01-01
The formulation and solution of optimization problem for parameters determining the layout of the central part of sodium cooled power reactor taking into account possible changes in fuel charge type during reactor operation time are performed. The losses under change of fuel composition type for two reactor modifications providing for minimum doubling time for oxide and carbide fuels respectively, are estimated
Real-time parameter optimization based on neural network for smart injection molding
Lee, H.; Liau, Y.; Ryu, K.
2018-03-01
The manufacturing industry has been facing several challenges, including sustainability, performance and quality of production. Manufacturers attempt to enhance the competitiveness of companies by implementing CPS (Cyber-Physical Systems) through the convergence of IoT(Internet of Things) and ICT(Information & Communication Technology) in the manufacturing process level. Injection molding process has a short cycle time and high productivity. This features have been making it suitable for mass production. In addition, this process is used to produce precise parts in various industry fields such as automobiles, optics and medical devices. Injection molding process has a mixture of discrete and continuous variables. In order to optimized the quality, variables that is generated in the injection molding process must be considered. Furthermore, Optimal parameter setting is time-consuming work to predict the optimum quality of the product. Since the process parameter cannot be easily corrected during the process execution. In this research, we propose a neural network based real-time process parameter optimization methodology that sets optimal process parameters by using mold data, molding machine data, and response data. This paper is expected to have academic contribution as a novel study of parameter optimization during production compare with pre - production parameter optimization in typical studies.
Optimization of human cytomegalovirus LightCycler real-time PCR.
Habbal, Wafa; Monem, Fawza; Gärtner, Barbara Christine
2008-10-01
Real-time PCR has been widely considered as a powerful tool for the evaluation of Human Cytomegalovirus (CMV) DNA kinetics. Successful PCR relies on optimization, which is an extremely demanding procedure. Nevertheless, certain values could be optimal for most primers in use. Seventeen CMV primer sets recommended in the literature were selected for optimization in terms of MgCl2 and primers concentrations as well as annealing temperature using the LightCycler instrument and SYBR Green I detection format. Optimal values were considered as those showing the lowest crossing point (Cp), the highest fluorescence intensity, the steepest sigmoid curve slope, and the absence of non-specific PCR products. Optimal values for most studied primers were found to be 3 mM for MgCl2 concentration, 0.5 microM and 0.6 microM for primers concentration, and 55 degrees C for annealing temperature. Adopting the resulting values for CMV-specific primers generally used in single-target real-time PCR assays with the same thermal cycler may guarantee their efficient performance minimizing cost and time needed for optimization.
Algunas aclaraciones acerca del conocimiento del singular.
Directory of Open Access Journals (Sweden)
Carlos Llano Cifuentes
2013-11-01
Full Text Available Llano tries to explain the main purpose of El Conocimiento del Singular, showing how the individuals about which the book is concerned are basically human individuals: people as decision makers.
Approximate Uniqueness Estimates for Singular Correlation Matrices.
Finkbeiner, C. T.; Tucker, L. R.
1982-01-01
The residual variance is often used as an approximation to the uniqueness in factor analysis. An upper bound approximation to the residual variance is presented for the case when the correlation matrix is singular. (Author/JKS)
Stable computation of generalized singular values
Energy Technology Data Exchange (ETDEWEB)
Drmac, Z.; Jessup, E.R. [Univ. of Colorado, Boulder, CO (United States)
1996-12-31
We study floating-point computation of the generalized singular value decomposition (GSVD) of a general matrix pair (A, B), where A and B are real matrices with the same numbers of columns. The GSVD is a powerful analytical and computational tool. For instance, the GSVD is an implicit way to solve the generalized symmetric eigenvalue problem Kx = {lambda}Mx, where K = A{sup {tau}}A and M = B{sup {tau}}B. Our goal is to develop stable numerical algorithms for the GSVD that are capable of computing the singular value approximations with the high relative accuracy that the perturbation theory says is possible. We assume that the singular values are well-determined by the data, i.e., that small relative perturbations {delta}A and {delta}B (pointwise rounding errors, for example) cause in each singular value {sigma} of (A, B) only a small relative perturbation {vert_bar}{delta}{sigma}{vert_bar}/{sigma}.
Finite conformal quantum gravity and spacetime singularities
Modesto, Leonardo; Rachwał, Lesław
2017-12-01
We show that a class of finite quantum non-local gravitational theories is conformally invariant at classical as well as at quantum level. This is actually a range of conformal anomaly-free theories in the spontaneously broken phase of the Weyl symmetry. At classical level we show how the Weyl conformal invariance is able to tame all the spacetime singularities that plague not only Einstein gravity, but also local and weakly non-local higher derivative theories. The latter statement is proved by a singularity theorem that applies to a large class of weakly non-local theories. Therefore, we are entitled to look for a solution of the spacetime singularity puzzle in a missed symmetry of nature, namely the Weyl conformal symmetry. Following the seminal paper by Narlikar and Kembhavi, we provide an explicit construction of singularity-free black hole exact solutions in a class of conformally invariant theories.
Real-time spatial optimization : based on the application in wood supply chain management
International Nuclear Information System (INIS)
Scholz, J.
2010-01-01
Real-time spatial optimization - a combination of Geographical Information Science and Technology and Operations Research - is capable of generating optimized solutions to given spatial problems in real-time. The basic concepts to develop a real-time spatial optimization system are outlined in this thesis. Geographic Information Science delivers the foundations for acquiring, storing, manipulating, visualizing and analyzing spatial information. In order to develop a system that consists of several independent components the concept of Service Oriented Architectures is applied. This facilitates communication between software systems utilizing standardized services that ensure interoperability. Thus, standards in the field of Geographic Information are inevitable for real-time spatial optimization. By exploiting the ability of mobile devices to determine the own position paired with standardized services Location Based Services are created. They are of interest in order to gather real-time data from mobile devices that are of importance for the optimization process itself. To optimize a given spatial problem, the universe of discourse has to be modeled accordingly. For the problem addressed in this thesis - Wood Supply Chain management - Graph theory is used. In addition, the problem of Wood Supply Chain management can be represented by a specific mathematical problem class, the Vehicle Routing problem - specifically the Vehicle Routing Problem with Pickup and Delivery and Time Windows. To optimize this problem class, exact and approximate solution techniques exist. Exact algorithms provide optimal solutions and guarantee their optimally, whereas approximate techniques - approximation algorithms or heuristics - do not guarantee that a global optimum is found. Nevertheless, the are capable of handling large problem instances in reasonable time. For optimizing the Wood Supply Chain Adaptive Large Neighborhood Search is selected as appropriate optimization technique
Fontes, Fernando A. C. C.; Paiva, Luís T.
2016-10-01
We address optimal control problems for nonlinear systems with pathwise state-constraints. These are challenging non-linear problems for which the number of discretization points is a major factor determining the computational time. Also, the location of these points has a major impact in the accuracy of the solutions. We propose an algorithm that iteratively finds an adequate time-grid to satisfy some predefined error estimate on the obtained trajectories, which is guided by information on the adjoint multipliers. The obtained results show a highly favorable comparison against the traditional equidistant-spaced time-grid methods, including the ones using discrete-time models. This way, continuous-time plant models can be directly used. The discretization procedure can be automated and there is no need to select a priori the adequate time step. Even if the optimization procedure is forced to stop in an early stage, as might be the case in real-time problems, we can still obtain a meaningful solution, although it might be a less accurate one. The extension of the procedure to a Model Predictive Control (MPC) context is proposed here. By defining a time-dependent accuracy threshold, we can generate solutions that are more accurate in the initial parts of the receding horizon, which are the most relevant for MPC.
Geometric Singularities of the Stokes Problem
Directory of Open Access Journals (Sweden)
Nejmeddine Chorfi
2014-01-01
Full Text Available When the domain is a polygon of ℝ2, the solution of a partial differential equation is written as a sum of a regular part and a linear combination of singular functions. The purpose of this paper is to present explicitly the singular functions of Stokes problem. We prove the Kondratiev method in the case of the crack. We finish by giving some regularity results.
Singularity analysis, Hadamard products, and tree recurrences
Fill, James Allen; Flajolet, Philippe; Kapur, Nevin
2005-02-01
We present a toolbox for extracting asymptotic information on the coefficients of combinatorial generating functions. This toolbox notably includes a treatment of the effect of Hadamard products on singularities in the context of the complex Tauberian technique known as singularity analysis. As a consequence, it becomes possible to unify the analysis of a number of divide-and-conquer algorithms, or equivalently random tree models, including several classical methods for sorting, searching, and dynamically managing equivalence relations.
Optimal Investment Timing and Size of a Logistics Park: A Real Options Perspective
Directory of Open Access Journals (Sweden)
Dezhi Zhang
2017-01-01
Full Text Available This paper uses a real options approach to address optimal timing and size of a logistics park investment with logistics demand volatility. Two important problems are examined: when should an investment be introduced, and what size should it be? A real option model is proposed to explicitly incorporate the effect of government subsidies on logistics park investment. Logistic demand that triggers the threshold for investment in a logistics park project is explored analytically. Comparative static analyses of logistics park investment are also carried out. Our analytical results show that (1 investors will select smaller sized logistics parks and prepone the investment if government subsidies are considered; (2 the real option will postpone the optimal investment timing of logistics parks compared with net present value approach; and (3 logistic demands can significantly affect the optimal investment size and timing of logistics park investment.
Optimized efficient liver T1ρ mapping using limited spin lock times
Yuan, Jing; Zhao, Feng; Griffith, James F.; Chan, Queenie; Wang, Yi-Xiang J.
2012-03-01
T1ρ relaxation has recently been found to be sensitive to liver fibrosis and has potential to be used for early detection of liver fibrosis and grading. Liver T1ρ imaging and accurate mapping are challenging because of the long scan time, respiration motion and high specific absorption rate. Reduction and optimization of spin lock times (TSLs) are an efficient way to reduce scan time and radiofrequency energy deposition of T1ρ imaging, but maintain the near-optimal precision of T1ρ mapping. This work analyzes the precision in T1ρ estimation with limited, in particular two, spin lock times, and explores the feasibility of using two specific operator-selected TSLs for efficient and accurate liver T1ρ mapping. Two optimized TSLs were derived by theoretical analysis and numerical simulations first, and tested experimentally by in vivo rat liver T1ρ imaging at 3 T. The simulation showed that the TSLs of 1 and 50 ms gave optimal T1ρ estimation in a range of 10-100 ms. In the experiment, no significant statistical difference was found between the T1ρ maps generated using the optimized two-TSL combination and the maps generated using the six TSLs of [1, 10, 20, 30, 40, 50] ms according to one-way ANOVA analysis (p = 0.1364 for liver and p = 0.8708 for muscle).
Robust Optimization for Time-Cost Tradeoff Problem in Construction Projects
Directory of Open Access Journals (Sweden)
Ming Li
2014-01-01
Full Text Available Construction projects are generally subject to uncertainty, which influences the realization of time-cost tradeoff in project management. This paper addresses a time-cost tradeoff problem under uncertainty, in which activities in projects can be executed in different construction modes corresponding to specified time and cost with interval uncertainty. Based on multiobjective robust optimization method, a robust optimization model for time-cost tradeoff problem is developed. In order to illustrate the robust model, nondominated sorting genetic algorithm-II (NSGA-II is modified to solve the project example. The results show that, by means of adjusting the time and cost robust coefficients, the robust Pareto sets for time-cost tradeoff can be obtained according to different acceptable risk level, from which the decision maker could choose the preferred construction alternative.
Optimization of Time-Partitions for Mixed-Criticality Real-Time Distributed Embedded Systems
DEFF Research Database (Denmark)
Tamas-Selicean, Domitian; Pop, Paul
2011-01-01
In this paper we are interested in mixed-criticality embedded real-time applications mapped on distributed heterogeneous architectures. The architecture provides both spatial and temporal partitioning, thus enforcing enough separation for the critical applications. With temporal partitioning, each...... application is allowed to run only within predefined time slots, allocated on each processor. The sequence of time slots for all the applications on a processor are grouped within a Major Frame, which is repeated periodically. We assume that the safety-critical applications (on all criticality levels......) are scheduled using static-cyclic scheduling and the noncritical applications are scheduled using fixed-priority preemptive scheduling. We consider that each application runs in a separate partition, and each partition is allocated several time slots on the processors where the application is mapped. We...
Singular perturbation method for evolution equations in Banach spaces
International Nuclear Information System (INIS)
Mika, J.
1976-01-01
The singular perturbation method is applied to linear evolution equations in Banach spaces containing a small parameter multiplying the time derivative. Outer and inner asymptotic solutions are formulated and the sense in which they converge to the exact solution is rigorously defined. It is then shown that the sum of the two asymptotic solutions converges uniformly to the exact solution. Possible applications to various physical situations are indicated. (Auth.)
A Parameter Robust Method for Singularly Perturbed Delay Differential Equations
Directory of Open Access Journals (Sweden)
Erdogan Fevzi
2010-01-01
Full Text Available Uniform finite difference methods are constructed via nonstandard finite difference methods for the numerical solution of singularly perturbed quasilinear initial value problem for delay differential equations. A numerical method is constructed for this problem which involves the appropriate Bakhvalov meshes on each time subinterval. The method is shown to be uniformly convergent with respect to the perturbation parameter. A numerical example is solved using the presented method, and the computed result is compared with exact solution of the problem.
A rapid local singularity analysis algorithm with applications
Chen, Zhijun; Cheng, Qiuming; Agterberg, Frits
2015-04-01
The local singularity model developed by Cheng is fast gaining popularity in characterizing mineralization and detecting anomalies of geochemical, geophysical and remote sensing data. However in one of the conventional algorithms involving the moving average values with different scales is time-consuming especially while analyzing a large dataset. Summed area table (SAT), also called as integral image, is a fast algorithm used within the Viola-Jones object detection framework in computer vision area. Historically, the principle of SAT is well-known in the study of multi-dimensional probability distribution functions, namely in computing 2D (or ND) probabilities (area under the probability distribution) from the respective cumulative distribution functions. We introduce SAT and it's variation Rotated Summed Area Table in the isotropic, anisotropic or directional local singularity mapping in this study. Once computed using SAT, any one of the rectangular sum can be computed at any scale or location in constant time. The area for any rectangular region in the image can be computed by using only 4 array accesses in constant time independently of the size of the region; effectively reducing the time complexity from O(n) to O(1). New programs using Python, Julia, matlab and C++ are implemented respectively to satisfy different applications, especially to the big data analysis. Several large geochemical and remote sensing datasets are tested. A wide variety of scale changes (linear spacing or log spacing) for non-iterative or iterative approach are adopted to calculate the singularity index values and compare the results. The results indicate that the local singularity analysis with SAT is more robust and superior to traditional approach in identifying anomalies.
Adaptive Control of the Chaotic System via Singular System Approach
Directory of Open Access Journals (Sweden)
Yudong Li
2014-01-01
Full Text Available This paper deals with the control problem of the chaotic system subject to disturbance. The sliding mode surface is designed by singular system approach, and sufficient condition for convergence is given. Then, the adaptive sliding mode controller is designed to make the state arrive at the sliding mode surface in finite time. Finally, Lorenz system is considered as an example to show the effectiveness of the proposed method.
Amplitude and rise time compensated timing optimized for large semiconductor detectors
International Nuclear Information System (INIS)
Kozyczkowski, J.J.; Bialkowski, J.
1976-01-01
The ARC timing described has excellent timing properties even when using a wide range e.g. from 10 keV to over 1 MeV. The detector signal from a preamplifier is accepted directly by the unit as a timing filter amplifier with a sensitivity of 1 mV is incorporated. The adjustable rise time rejection feature makes it possible to achieve a good prompt time spectrum with symmetrical exponential shape down to less than 1/100 of the peak value. A complete block diagram of the unit is given together with results of extensive tests of its performance. For example the time spectrum for (1330+-20) keV of 60 Co taken with a 43 cm 3 Ge(Li) detector has the following parameters: fwhm = 2.2ns, fwtm = 4.4 ns and fw (0.01) m = 7.6 ns and for (50 +- 10) keV of 22 Na the following was obtained: fwhm = 10.8 ns, fwtm = 21.6 ns and fw (0.01) m = 34.6 ns. In another experiment with two fast plastic scintillations (NE 102A) and using a 20% dynamic energy range the following was measured: fwhm = 280 ps, fwtm = 470 ps and fw (0.01) m = 70ps. (Auth.)
Optimization of Partitioned Architectures to Support Soft Real-Time Applications
DEFF Research Database (Denmark)
Tamas-Selicean, Domitian; Pop, Paul
2014-01-01
In this paper we propose a new Tabu Search-based design optimization strategy for mixed-criticality systems implementing hard and soft real-time applications on the same platform. Our proposed strategy determined an implementation such that all hard real-time applications are schedulable...... and the quality of service of the soft real-time tasks is maximized. We have evaluated our strategy using an aerospace case study....
Optimal adaptive control for quantum metrology with time-dependent Hamiltonians
Pang, Shengshi; Jordan, Andrew N.
2017-01-01
Quantum metrology has been studied for a wide range of systems with time-independent Hamiltonians. For systems with time-dependent Hamiltonians, however, due to the complexity of dynamics, little has been known about quantum metrology. Here we investigate quantum metrology with time-dependent Hamiltonians to bridge this gap. We obtain the optimal quantum Fisher information for parameters in time-dependent Hamiltonians, and show proper Hamiltonian control is generally necessary to optimize the Fisher information. We derive the optimal Hamiltonian control, which is generally adaptive, and the measurement scheme to attain the optimal Fisher information. In a minimal example of a qubit in a rotating magnetic field, we find a surprising result that the fundamental limit of T2 time scaling of quantum Fisher information can be broken with time-dependent Hamiltonians, which reaches T4 in estimating the rotation frequency of the field. We conclude by considering level crossings in the derivatives of the Hamiltonians, and point out additional control is necessary for that case. PMID:28276428
Karam, Ayman M.
2015-09-21
This paper presents a real time optimization scheme for a solar powered direct contact membrane distillation (DCMD) water desalination system. The sun and weather conditions vary and are inconsistent throughout the day. Therefore, the solar powered DCMD feed inlet temperature is never constant, which influences the distilled water flux. The problem of DCMD process optimization has not been studied enough. In this work, the response of the process under various feed inlet temperatures is investigated, which demonstrates the need for an optimal controller. To address this issue, we propose a multivariable Newton-based extremum seeking controller which optimizes the inlet feed and permeate mass flow rates as the feed inlet temperature varies. Results are presented and discussed for a realistic temperature profile.
Topological regularizations of the triple collision singularity in the 3-vortex problem
International Nuclear Information System (INIS)
Hiraoka, Yasuaki
2008-01-01
The triple collision singularity in the 3-vortex problem is studied in this paper. Under the necessary condition k 1 -1 +k 2 -1 +k 3 -1 =0 for vorticities to have the triple collision, the main results are summarized as follows: (i) For k 1 = k 2 , the triple collision singularity is topologically regularizable. (ii) For 0 1 − k 2 | < ε with a sufficiently small ε, the triple collision singularity is not topologically regularizable. First of all, in order to prove these statements, all singularities in the 3-vortex problem are classified. Then, we introduce a dynamical system by blowing up the triple collision singularity with an appropriate time scaling. Roughly speaking, it corresponds to pasting an invariant manifold at the triple collision singularity on the original phase space. This technique is well known as McGehee's collision manifold (1974 Inventions Math. 27 191–227) in the N-body problem of celestial mechanics. Finally, by adopting the viewpoint of Easton (1971 J. Diff. Eqns 10 92–9), topological regularizations of the triple collision singularity are studied in detail
Optimal Load Response to Time-of-Use Power Price for Demand Side Management in Denmark
DEFF Research Database (Denmark)
Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte
2010-01-01
-of-use power price for demand side management in order to save the energy costs as much as possible. 3 typical different kinds of loads (industrial load, residential load and commercial load) in Denmark are chosen as study cases. The energy costs decrease up to 9.6% with optimal load response to time......-of-use power price for different loads. Simulation results show that the optimal load response to time-of-use power price for demand side management generates different load profiles and reduces the load peaks. This kind of load patterns may also have significant effects on the power system normal operation....
Real-time terahertz material characterization by numerical three-dimensional optimization.
Scheller, Maik
2011-05-23
Terahertz time domain spectroscopy allows for characterization of dielectrics even in cases where the samples thickness is unknown. However, a parameter extraction over a broad frequency range with simultaneous thickness determination is time consuming using conventional algorithms due to the large number of optimization steps. In this paper we present a novel method to extract the data. By employing a three dimensional optimization algorithm the calculation effort is significantly reduced while preserving the same accuracy level as conventional approaches. The presented method is even fast enough to be used in imaging applications.
Design Optimization of Multi-Cluster Embedded Systems for Real-Time Applications
DEFF Research Database (Denmark)
Pop, Paul; Eles, Petru; Peng, Zebo
2004-01-01
We present an approach to design optimization of multi-cluster embedded systems consisting of time-triggered and event-triggered clusters, interconnected via gateways. In this paper, we address design problems which are characteristic to multi-clusters: partitioning of the system functionality...... into time-triggered and event-triggered domains, process mapping, and the optimization of parameters corresponding to the communication protocol. We present several heuristics for solving these problems. Our heuristics are able to find schedulable implementations under limited resources, achieving...
Reliable Rescue Routing Optimization for Urban Emergency Logistics under Travel Time Uncertainty
Directory of Open Access Journals (Sweden)
Qiuping Li
2018-02-01
Full Text Available The reliability of rescue routes is critical for urban emergency logistics during disasters. However, studies on reliable rescue routing under stochastic networks are still rare. This paper proposes a multiobjective rescue routing model for urban emergency logistics under travel time reliability. A hybrid metaheuristic integrating ant colony optimization (ACO and tabu search (TS was designed to solve the model. An experiment optimizing rescue routing plans under a real urban storm event, was carried out to validate the proposed model. The experimental results showed how our approach can improve rescue efficiency with high travel time reliability.
Tang, Zhongwen
2015-01-01
An analytical way to compute predictive probability of success (PPOS) together with credible interval at interim analysis (IA) is developed for big clinical trials with time-to-event endpoints. The method takes account of the fixed data up to IA, the amount of uncertainty in future data, and uncertainty about parameters. Predictive power is a special type of PPOS. The result is confirmed by simulation. An optimal design is proposed by finding optimal combination of analysis time and futility cutoff based on some PPOS criteria.
Singular formalism and admissible control of spacecraft with rotating flexible solar array
Directory of Open Access Journals (Sweden)
Lu Dongning
2014-02-01
Full Text Available This paper is concerned with the attitude control of a three-axis-stabilized spacecraft which consists of a central rigid body and a flexible sun-tracking solar array driven by a solar array drive assembly. Based on the linearization of the dynamics of the spacecraft and the modal identities about the flexible and rigid coupling matrices, the spacecraft attitude dynamics is reduced to a formally singular system with periodically varying parameters, which is quite different from a spacecraft with fixed appendages. In the framework of the singular control theory, the regularity and impulse-freeness of the singular system is analyzed and then admissible attitude controllers are designed by Lyapunov’s method. To improve the robustness against system uncertainties, an H∞ optimal control is designed by optimizing the H∞ norm of the system transfer function matrix. Comparative numerical experiments are performed to verify the theoretical results.
Optimal harvesting of fish stocks under a time-varying discount rate.
Duncan, Stephen; Hepburn, Cameron; Papachristodoulou, Antonis
2011-01-21
Optimal control theory has been extensively used to determine the optimal harvesting policy for renewable resources such as fish stocks. In such optimisations, it is common to maximise the discounted utility of harvesting over time, employing a constant time discount rate. However, evidence from human and animal behaviour suggests that we have evolved to employ discount rates which fall over time, often referred to as "hyperbolic discounting". This increases the weight on benefits in the distant future, which may appear to provide greater protection of resources for future generations, but also creates challenges of time-inconsistent plans. This paper examines harvesting plans when the discount rate declines over time. With a declining discount rate, the planner reduces stock levels in the early stages (when the discount rate is high) and intends to compensate by allowing the stock level to recover later (when the discount rate will be lower). Such a plan may be feasible and optimal, provided that the planner remains committed throughout. However, in practice there is a danger that such plans will be re-optimized and adjusted in the future. It is shown that repeatedly restarting the optimization can drive the stock level down to the point where the optimal policy is to harvest the stock to extinction. In short, a key contribution of this paper is to identify the surprising severity of the consequences flowing from incorporating a rather trivial, and widely prevalent, "non-rational" aspect of human behaviour into renewable resource management models. These ideas are related to the collapse of the Peruvian anchovy fishery in the 1970's. Copyright © 2010 Elsevier Ltd. All rights reserved.
Design Optimization of Cyber-Physical Distributed Systems using IEEE Time-sensitive Networks (TSN)
DEFF Research Database (Denmark)
Pop, Paul; Lander Raagaard, Michael; Craciunas, Silviu S.
2016-01-01
to the optimization of distributed cyber-physical systems using real-time Ethernet for communication. Then, we formulate two novel optimization problems related to the scheduling and routing of TT and AVB traffic in TSN. Thus, we consider that we know the topology of the network as well as the set of TT and AVB flows......In this paper we are interested in safety-critical real-time applications implemented on distributed architectures supporting the Time-SensitiveNetworking (TSN) standard. The ongoing standardization of TSN is an IEEE effort to bring deterministic real-time capabilities into the IEEE 802.1 Ethernet...... standard supporting safety-critical systems and guaranteed Quality-of-Service. TSN will support Time-Triggered (TT) communication based on schedule tables, Audio-Video-Bridging (AVB) flows with bounded end-to-end latency as well as Best-Effort messages. We first present a survey of research related...
Multiobjective Optimization for Electronic Circuit Design in Time and Frequency Domains
Directory of Open Access Journals (Sweden)
J. Dobes
2013-04-01
Full Text Available The multiobjective optimization provides an extraordinary opportunity for the finest design of electronic circuits because it allows to mathematically balance contradictory requirements together with possible constraints. In this paper, an original and substantial improvement of an existing method for the multiobjective optimization known as GAM (Goal Attainment Method is suggested. In our proposal, the GAM algorithm itself is combined with a procedure that automatically provides a set of parameters -- weights, coordinates of the reference point -- for which the method generates noninferior solutions uniformly spread over an appropriately selected part of the Pareto front. Moreover, the resulting set of obtained solutions is then presented in a suitable graphic form so that the solution representing the most satisfactory tradeoff can be easily chosen by the designer. Our system generates various types of plots that conveniently characterize results of up to four-dimensional problems. Technically, the procedures of the multiobjective optimization were created as a software add-on to the CIA (Circuit Interactive Analyzer program. This way enabled us to utilize many powerful features of this program, including the sensitivity analyses in time and frequency domains. As a result, the system is also able to perform the multiobjective optimization in the time domain and even highly nonlinear circuits can be significantly improved by our program. As a demonstration of this feature, a multiobjective optimization of a C-class power amplifier in the time domain is thoroughly described in the paper. Further, a four-dimensional optimization of a video amplifier is demonstrated with an original graphic representation of the Pareto front, and also some comparison with the weighting method is done. As an example of improving noise properties, a multiobjective optimization of a low-noise amplifier is performed, and the results in the frequency domain are shown
Rui, MA; Fan, XIA; Fei, LING; Jiaxian, LI
2018-02-01
Real-time equilibrium reconstruction is crucially important for plasma shape control in the process of tokamak plasma discharge. However, as the reconstruction algorithm is computationally intensive, it is very difficult to improve its accuracy and reduce the computation time, and some optimizations need to be done. This article describes the three most important aspects of this optimization: (1) compiler optimization; (2) some optimization for middle-scale matrix multiplication on the graphic processing unit and an algorithm which can solve the block tri-diagonal linear system efficiently in parallel; (3) a new algorithm to locate the X&O point on the central processing unit. A static test proves the correctness and a dynamic test proves the feasibility of using the new code for real-time reconstruction with 129 × 129 grids; it can complete one iteration around 575 μs for each equilibrium reconstruction. The plasma displacements from real-time equilibrium reconstruction are compared with the experimental measurements, and the calculated results are consistent with the measured ones, which can be used as a reference for the real-time control of HL-2A discharge.
Non-Gaussian ground-state deformations near a black-hole singularity
Hofmann, Stefan; Schneider, Marc
2017-03-01
The singularity theorem by Hawking and Penrose qualifies Schwarzschild black holes as geodesic incomplete space-times. Albeit this is a mathematically rigorous statement, it requires an operational framework that allows us to probe the spacelike singularity via a measurement process. Any such framework necessarily has to be based on quantum theory. As a consequence, the notion of classical completeness needs to be adapted to situations where the only adequate description is in terms of quantum fields in dynamical space-times. It is shown that Schwarzschild black holes turn out to be complete when probed by self-interacting quantum fields in the ground state and in excited states. The measure for populating quantum fields on hypersurfaces in the vicinity of the black-hole singularity goes to zero towards the singularity. This statement is robust under non-Gaussian deformations of and excitations relative to the ground state. The physical relevance of different completeness concepts for black holes is discussed.
Optimized Scheduling of Smart Meter Data Access for Real-time Voltage Quality Monitoring
DEFF Research Database (Denmark)
Kemal, Mohammed Seifu; Olsen, Rasmus Løvenstein; Schwefel, Hans-Peter
2018-01-01
Abstract—Active low-voltage distribution grids that support high integration of distributed generation such as photovoltaics and wind turbines require real-time voltage monitoring. At the same time, countries in Europe such as Denmark have close to 100% rollout of smart metering infrastructure....... The metering infrastructure has limitations to provide real-time measurements with small-time granularity. This paper presents an algorithm for optimized scheduling of smart meter data access to provide real-time voltage quality monitoring. The algorithm is analyzed using a real distribution grid in Denmark...
Directory of Open Access Journals (Sweden)
Francisco S. de Albuquerque Filho
2013-01-01
Full Text Available This study evaluates the application of an intelligent hybrid system for time-series forecasting of atmospheric pollutant concentration levels. The proposed method consists of an artificial neural network combined with a particle swarm optimization algorithm. The method not only searches relevant time lags for the correct characterization of the time series, but also determines the best neural network architecture. An experimental analysis is performed using four real time series and the results are shown in terms of six performance measures. The experimental results demonstrate that the proposed methodology achieves a fair prediction of the presented pollutant time series by using compact networks.
Hard and soft Sub-Time-Optimal Controllers for a Mechanical System with Uncertain Mass
DEFF Research Database (Denmark)
Kulczycki, P.; Wisniewski, Rafal; Kowalski, P.
2005-01-01
An essential limitation in using the classical optimal control has been its limited robustness to modeling inadequacies and perturbations. This paper presents conceptions of two practical control structures based on the time-optimal approach: hard and soft ones. The hard structure is defined...... by parameters selected in accordance with the rules of the statistical decision theory; however, the soft structure allows additionally to eliminate rapid changes in control values. The object is a basic mechanical system, with uncertain (also non-stationary) mass treated as a stochastic process....... The methodology proposed here is of a universal nature and may easily be applied with respect to other elements of uncertainty of time-optimal controlled mechanical systems....
Kim, Ju Seok; Kang, Sun Hyung; Moon, Hee Seok; Lee, Eaum Seok; Kim, Seok Hyun; Sung, Jae Kyu; Lee, Byung Seok; Jeong, Hyun Yong; Chung, Woo Suk
2015-10-01
All present guidelines regarding surveillance intervals after index colonoscopy are based on optimal bowel preparation. However, the appropriate timing of repeat colonoscopy after suboptimal bowel preparation is not clear. To determine the appropriate timing of repeat colonoscopy following index colonoscopy with suboptimal bowel preparation. The medical records of patients who underwent colonoscopy over 5 years were retrospectively analyzed. Index colonoscopy was defined as the first colonoscopy in patients who underwent the procedure at least twice during the study period. Bowel preparation quality was classified as optimal, fair, or poor. The overall adenoma detection rate was 39.1% (95% confidence interval [CI], 38.0-40.1%), but the detection rate depended significantly on bowel preparation quality (p preparation (p 2.19-6.16) preparation relative to optimal preparation; however, no difference was observed at surveillance intervals >2 years. Bowel preparation quality significantly affects AMR. Colonoscopy should be repeated within 2 years in patients with suboptimal bowel preparation at index colonoscopy.
Efficient generation of random multipartite entangled states using time-optimal unitary operations
Borras, A.; Majtey, A. P.; Casas, M.
2008-08-01
We review the generation of random pure states using a protocol of repeated two-qubit gates. We study the dependence of the convergence to states with Haar multipartite entanglement distribution. We investigate the optimal generation of such states in terms of the physical (real) time needed to apply the protocol, instead of the gate complexity point of view used in other works. This physical time can be obtained, for a given Hamiltonian, within the theoretical framework offered by the quantum brachistochrone formalism, the quantum analogue to the brachistochrone problem in classical mechanics [Carlini , Phys. Rev. Lett. 96, 060503 (2006)]. Using an anisotropic Heisenberg Hamiltonian as an example, we find that different optimal quantum gates arise according to the optimality point of view used in each case. We also study how the convergence to random entangled states depends on different entanglement measures.
The effect of real-time external resistance optimization on microbial fuel cell performance.
Pinto, R P; Srinivasan, B; Guiot, S R; Tartakovsky, B
2011-02-01
This work evaluates the impact of the external resistance (electrical load) on the long-term performance of a microbial fuel cell (MFC) and demonstrates the real-time optimization of the external resistance. For this purpose, acetate-fed MFCs were operated at external resistances, which were above, below, or equal to the internal resistance of a corresponding MFC. A perturbation/observation algorithm was used for the real-time optimal selection of the external resistance. MFC operation at the optimal external resistance resulted in increased power output, improved Coulombic efficiency, and low methane production. Furthermore, the efficiency of the perturbation/observation algorithm for maximizing long-term MFC performance was confirmed by operating an MFC fed with synthetic wastewater for over 40 days. In this test an average Coulombic efficiency of 29% was achieved. © 2010. Published by Elsevier Ltd. All rights reserved.
Hard and soft sub-time-optimal controllers for a mechanical system with uncertain mass
DEFF Research Database (Denmark)
Kulczycki, P.; Wisniewski, Rafal; Kowalski, P.
2004-01-01
An essential limitation in using the classical optimal control has been its limited robustness to modeling inadequacies and perturbations. This paper presents conceptions of two practical control structures based on the time-optimal approach: hard and soft ones. The hard structure is defined...... by parameters selected in accordance with the rules of the statistical decision theory; however, the soft structure allows additionally to eliminate rapid changes in control values. The object is a basic mechanical system, with uncertain (also non-stationary) mass treated as a stochastic process....... The methodology proposed here is of a universal nature and may easily be applied with respect to other elements of uncertainty of time-optimal controlled mechanical systems....
Spectrum optimization-based chaotification using time-delay feedback control
International Nuclear Information System (INIS)
Zhou Jiaxi; Xu Daolin; Zhang Jing; Liu Chunrong
2012-01-01
Highlights: ► A time-delay feedback controller is designed for chaotification. ► A spectrum optimization method is proposed to determine chaotification parameters. ► Numerical examples verify the spectrum optimization- based chaotification method. ► Engineering application in line spectrum reconfiguration is demonstrated. - Abstract: In this paper, a spectrum optimization method is developed for chaotification in conjunction with an application in line spectrum reconfiguration. A key performance index (the objective function) based on Fourier spectrum is specially devised with the idea of suppressing spectrum spikes and broadening frequency band. Minimization of the index empowered by a genetic algorithm enables to locate favorable parameters of the time-delay feedback controller, by which a line spectrum of harmonic vibration can be transformed into a broad-band continuous spectrum of chaotic motion. Numerical simulations are carried out to verify the feasibility of the method and to demonstrate its effectiveness of chaotifying a 2-DOFs linear mechanical system.
Space-time topology optimization for one-dimensional wave propagation
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard
2009-01-01
-dimensional transient wave propagation in an elastic rod with time dependent Young's modulus. By two simulation examples it is demonstrated how dynamic structures can display rich dynamic behavior such as wavenumber/frequency shifts and lack of energy conservation. The optimization method's potential for creating...... structures with novel dynamic behavior is illustrated by a simple example; it is shown that an elastic rod in which the optimized stiffness distribution is allowed to vary in time can be much more efficient in prohibiting wave propagation compared to a static bandgap structure. Optimized designs in form...... of spatio-temporal laminates and checkerboards are generated and discussed. The example lays the foundation for creating designs with more advanced functionalities in future work....
Bifurcations of a class of singular biological economic models
International Nuclear Information System (INIS)
Zhang Xue; Zhang Qingling; Zhang Yue
2009-01-01
This paper studies systematically a prey-predator singular biological economic model with time delay. It shows that this model exhibits two bifurcation phenomena when the economic profit is zero. One is transcritical bifurcation which changes the stability of the system, and the other is singular induced bifurcation which indicates that zero economic profit brings impulse, i.e., rapid expansion of the population in biological explanation. On the other hand, if the economic profit is positive, at a critical value of bifurcation parameter, the system undergoes a Hopf bifurcation, i.e., the increase of delay destabilizes the system and bifurcates into small amplitude periodic solution. Finally, by using Matlab software, numerical simulations illustrate the effectiveness of the results obtained here. In addition, we study numerically that the system undergoes a saddle-node bifurcation when the bifurcation parameter goes through critical value of positive economic profit.
Heterogeneous ice nucleation: bridging stochastic and singular freezing behavior
Niedermeier, D.; Shaw, R. A.; Hartmann, S.; Wex, H.; Clauss, T.; Voigtländer, J.; Stratmann, F.
2011-01-01
Heterogeneous ice nucleation, a primary pathway for ice formation in the atmosphere, has been described alternately as being stochastic, in direct analogy with homogeneous nucleation, or singular, with ice nuclei initiating freezing at deterministic temperatures. We present an idealized model that bridges these stochastic and singular descriptions of heterogeneous ice nucleation. This "soccer ball" model treats statistically similar particles as being covered with surface sites (patches of finite area) characterized by different nucleation barriers, but with each surface site following the stochastic nature of ice embryo formation. The model provides a phenomenological explanation for seemingly contradictory experimental results obtained in our research groups. We suggest that ice nucleation is fundamentally a stochastic process but that for realistic atmospheric particle populations this process can be masked by the heterogeneity of surface properties. Full evaluation of the model will require experiments with well characterized ice nucleating particles and the ability to vary both temperature and waiting time for freezing.
Energy Technology Data Exchange (ETDEWEB)
Redmond, J. [Sandia National Labs., Albuquerque, NM (United States); Parker, G. [State Univ. of New York, Buffalo, NY (United States)
1993-07-01
This paper examines the role of the control objective and the control time in determining fuel-optimal actuator placement for structural vibration suppression. A general theory is developed that can be easily extended to include alternative performance metrics such as energy and time-optimal control. The performance metric defines a convex admissible control set which leads to a max-min optimization problem expressing optimal location as a function of initial conditions and control time. A solution procedure based on a nested Genetic Algorithm is presented and applied to an example problem. Results indicate that the optimal locations vary widely as a function of control time and initial conditions.
Directory of Open Access Journals (Sweden)
Jie Gao
2016-05-01
Full Text Available Singular value decomposition (SVD is a widely used and powerful tool for signal extraction under noise. Noise attenuation relies on the selection of the effective singular value because these values are significant features of the useful signal. Traditional methods of selecting effective singular values (or selecting the useful components to rebuild the faulty signal consist of seeking the maximum peak of the differential spectrum of singular values. However, owing to the small number of selected effective singular values, these methods lead to excessive de-noised effects. In order to get a more appropriate number of effective singular values, which preserves the components of the original signal as much as possible, this paper used a difference curvature spectrum of incremental singular entropy to determine the number of effective singular values. Then the position was found where the difference of two peaks in the spectrum declines in an infinitely large degree for the first time, and this position was regarded as the boundary of singular values between noise and a useful signal. The experimental results showed that the modified methods could accurately extract the non-stationary bearing faulty signal under real background noise.
Directory of Open Access Journals (Sweden)
Kátia Maria Kasper
2009-02-01
Full Text Available This work presents some aspects of singular and singularized experiences of formation, lived and narrated told by an actor as clown, and establishes connections with other voices, marked by invention of ways of life (DELEUZE, 1965. In the trajectory of construction of the clown “Xuxu”, at the same time, the paper of invention in the construction of subjectivity and the paper of others as an opening to possible worlds are evidenced. (DELEUZE, 1974.
Optimal synchronization in small-world biological neural networks with time-varying weights
International Nuclear Information System (INIS)
Zheng Hongyu; Luo Xiaoshu
2009-01-01
In this paper, a new model of small-world biological neural networks based on biophysical Hodgkin-Huxley neurons with time-varying weights is proposed. Then the synchronization phenomenon of small-world biological neural networks evoked by the learning rate is studied. The study shows that there exists an optimal synchronization state by changing the learning rate.
Design Optimization of Time- and Cost-Constrained Fault-Tolerant Distributed Embedded Systems
DEFF Research Database (Denmark)
Izosimov, Viacheslav; Pop, Paul; Eles, Petru
2005-01-01
In this paper we present an approach to the design optimization of fault-tolerant embedded systems for safety-critical applications. Processes are statically scheduled and communications are performed using the time-triggered protocol. We use process re-execution and replication for tolerating...
Optimal One Bit Time Reversal For UWB Impulse Radio In Multi-User Wireless Communications
DEFF Research Database (Denmark)
Nguyen, Hung Tuan
2008-01-01
In this paper, with the purpose of further reducing the complexity of the system, while keeping its temporal and spatial focusing performance, we investigate the possibility of using optimal one bit time reversal (TR) system for impulse radio ultra wideband multi-user wireless communications...
DEFF Research Database (Denmark)
Karsten, Christian Vad; Røpke, Stefan; Pisinger, David
We introduce a decision support tool for liner shipping companies to optimally determine the sailing speed and needed fleet for a global network. As a novelty we incorporate cargo routing decisions with tight transit time restrictions on each container such that we get a realistic picture...
Eren, Altay
2012-01-01
This study aimed to examine the mediating role of prospective teachers' academic optimism in the relationship between their future time perspective and professional plans about teaching. A total of 396 prospective teachers voluntarily participated in the study. Correlation, regression, and structural equation modeling analyses were conducted in…
LMI optimization approach to stabilization of time-delay chaotic systems
International Nuclear Information System (INIS)
Park, Ju H.; Kwon, O.M.
2005-01-01
Based on the Lyapunov stability theory and linear matrix inequality (LMI) technique, this paper proposes a novel control method for stabilization of a class of time-delay chaotic systems. A stabilization criterion is derived in terms of LMIs which can be easily solved by efficient convex optimization algorithms. A numerical example is included to show the advantage of the result derived
Move-optimal schedules for parallel machines to minimize total weighted completion time
Brueggemann, T.; Hurink, Johann L.; Kern, Walter
2005-01-01
We study the minimum total weighted completion time problem on identical machines, which is known to be strongly $\\mathcal{NP}$-hard. We analyze a simple local search heuristic, moving jobs from one machine to another. The local optima can be shown to be approximately optimal with approximation
Directory of Open Access Journals (Sweden)
Chia-Chi Wang
2016-03-01
Full Text Available Creatine plays an important role in muscle energy metabolism. Postactivation potentiation (PAP is a phenomenon that can acutely increase muscle power, but it is an individualized process that is influenced by muscle fatigue. This study examined the effects of creatine supplementation on explosive performance and the optimal individual PAP time during a set of complex training bouts. Thirty explosive athletes performed tests of back squat for one repetition maximum (1RM strength and complex training bouts for determining the individual optimal timing of PAP, height and peak power of a counter movement jump before and after the supplementation. Subjects were assigned to a creatine or placebo group and then consumed 20 g of creatine or carboxymethyl cellulose per day for six days. After the supplementation, the 1RM strength in the creatine group significantly increased (p < 0.05. The optimal individual PAP time in the creatine group was also significant earlier than the pre-supplementation and post-supplementation of the placebo group (p < 0.05. There was no significant difference in jump performance between the groups. This study demonstrates that creatine supplementation improves maximal muscle strength and the optimal individual PAP time of complex training but has no effect on explosive performance.
How to study optimal timing of PET/CT for monitoring of cancer treatment
DEFF Research Database (Denmark)
Vach, Werner; Høilund-Carlsen, Poul Flemming; Fischer, Barbara Malene Bjerregaard
2011-01-01
Purpose: The use of PET/CT for monitoring treatment response in cancer patients after chemo- or radiotherapy is a very promising approach to optimize cancer treatment. However, the timing of the PET/CT-based evaluation of reduction in viable tumor tissue is a crucial question. We investigated how...
RTRO–Coal : Real-Time Resource-Reconciliation and Optimization for Exploitation of Coal Deposits
Benndorf, J.; Yueksel, C.; Soleymani, M.; Rosenberg, H.; Thielemann, T.; Mittmann, R.; Lohsträter, O.M.; Lindig, M.; Minnecker, C.; Donner, R.; Naworyta, W.
2015-01-01
This contribution presents an innovative and integrated framework for real-time-process reconciliation and optimization (RTRO) in large continuous open pit coal mines. RTRO-Coal is currently developed, validated, tested and implemented as part of a multi-national multi-partner European Union funded
Real-time sail and heading optimization for a surface sailing vessel by extremum seeking control
DEFF Research Database (Denmark)
Treichel, Kai; Jouffroy, Jerome
2010-01-01
In this paper we develop a simplified mathematical model representing the main elements of the behaviour of sailing vessels as a basis for simulation and controller design. For adaptive real-time optimization of the sail and heading angle we then apply extremum seeking control (which is a gradient...
Real-time Terrain Rendering using Smooth Hardware Optimized Level of Detail
DEFF Research Database (Denmark)
Larsen, Bent Dalgaard; Christensen, Niels Jørgen
2003-01-01
We present a method for real-time level of detail reduction that is able to display high-complexity polygonal surface data. A compact and efficient regular grid representation is used. The method is optimized for modern, low-end consumer 3D graphics cards. We avoid sudden changes of the geometry...
Building embedded quasi-time-optimal controller for two-wheeled self-balancing robot
Directory of Open Access Journals (Sweden)
Phan Hai N.
2017-01-01
Full Text Available In this paper, two-wheeled self-balancing robot problem is introduced, and a quasi-time-optimal approach is applied to synthesize the control law. The result is compared with that of other methods. The process for designing and building the testting model, implementing the synthesized control law is also described.
Optimal decision procedures for satisfiability in fragments of alternating-time temporal logics
DEFF Research Database (Denmark)
Goranko, Valentin; Vester, Steen
2014-01-01
We consider several natural fragments of the alternating-time temporal logics ATL*and ATL with restrictions on the nesting between temporal operators and strate-gicquantifiers. We develop optimal decision procedures for satisfiability in these fragments, showing that they have much lower...
Design Optimization of Multi-Cluster Embedded Systems for Real-Time Applications
DEFF Research Database (Denmark)
Pop, Paul; Eles, Petru; Peng, Zebo
2006-01-01
We present an approach to design optimization of multi-cluster embedded systems consisting of time-triggered and event-triggered clusters, interconnected via gateways. In this paper, we address design problems which are characteristic to multi-clusters: partitioning of the system functionality in...
Design Optimization of Multi-Cluster Embedded Systems for Real-Time Applications
DEFF Research Database (Denmark)
Pop, Paul; Eles, Petru; Peng, Zebo
2004-01-01
We present an approach to design optimization of multi-cluster embedded systems consisting of time-triggered and event-triggered clusters, interconnected via gateways. In this paper, we address design problems which are characteristic to multi-clusters: partitioning of the system functionality in...
Optimized routing on agricultural fields by minimizing maneuvering and servicing time
Spekken, M.; Bruin, de S.
2013-01-01
Agricultural machines spend a significant part of their time on non-productive operations such as maneuvering near the boundaries of the field and loading or offloading of inputs or outputs (here referred to as servicing). This paper integrates existing methods for route optimization so as to
DEFF Research Database (Denmark)
Rørbæk, Karen; Jensen, Benny
1997-01-01
Headspace-gas chromatography (HS-GC), based on adsorption to Tenax GR(R), thermal desorption and GC, has been used for analysis of volatiles in fish oil. To optimize sam sampling conditions, the effect of heating the fish oil at various temperatures and times was evaluated from anisidine values (AV...
International Nuclear Information System (INIS)
Dobrev, V. K.; Stoimenov, S.
2010-01-01
The singular vectors in Verma modules over the Schroedinger algebra s(n) in (n + 1)-dimensional space-time are found for the case of general representations. Using the singular vectors, hierarchies of equations invariant under Schroedinger algebras are constructed.
More on the initial singularity problem in gravity's rainbow cosmology
Khodadi, M.; Nozari, K.; Sepangi, H. R.
2016-12-01
Using a one-dimensional minisuperspace model with a dimensionless ratio E/E_{Pl}, we study the initial singularity problem at the quantum level for the closed rainbow cosmology with a homogeneous, isotropic classical space-time background. We derive the classical Hamiltonian within the framework of Schutz's formalism for an ideal fluid with a cosmological constant. We characterize the behavior of the system at the early stages of the universe evolution through analyzing the relevant shapes for the potential sector of the classical Hamiltonian for various matter sources, each separately modified by two rainbow functions. We show that for both rainbow universe models presented here, there is the possibility of eliminating the initial singularity by forming a potential barrier and static universe for a non-zero value of the scale factor. We investigate their quantum stability and show that for an energy-dependent space-time geometry with energies comparable with the Planck energy, the non-zero value of the scale factor may be stable. It is shown that under certain constraints the rainbow universe model filled with an exotic matter as a domain wall fluid plus a cosmological constant can result in a non-singular harmonic universe. In addition, we demonstrate that the harmonically oscillating universe with respect to the scale factor is sensitive to E/E_{Pl} and that at high energies it may become stable quantum mechanically. Through a Schrödinger-Wheeler-De Witt equation obtained from the quantization of the classical Hamiltonian, we also extract the wave packet of the universe with a focus on the early stages of the evolution. The resulting wave packet supports the existence of a bouncing non-singular universe within the context of gravity's rainbow proposal.
A common, non-optimal phenotypic endpoint in experimental adaptations of bacteriophage lysis time
Directory of Open Access Journals (Sweden)
Chantranupong Lynne
2012-03-01
Full Text Available Abstract Background Optimality models of evolution, which ignore genetic details and focus on natural selection, are widely used but sometimes criticized as oversimplifications. Their utility for quantitatively predicting phenotypic evolution can be tested experimentally. One such model predicts optimal bacteriophage lysis interval, how long a virus should produce progeny before lysing its host bacterium to release them. The genetic basis of this life history trait is well studied in many easily propagated phages, making it possible to test the model across a variety of environments and taxa. Results We adapted two related small single-stranded DNA phages, ΦX174 and ST-1, to various conditions. The model predicted the evolution of the lysis interval in response to host density and other environmental factors. In all cases the initial phages lysed later than predicted. The ΦX174 lysis interval did not evolve detectably when the phage was adapted to normal hosts, indicating complete failure of optimality predictions. ΦX174 grown on slyD-defective hosts which initially entirely prevented lysis readily recovered to a lysis interval similar to that attained on normal hosts. Finally, the lysis interval still evolved to the same endpoint when the environment was altered to delay optimal lysis interval. ST-1 lysis interval evolved to be ~2 min shorter, qualitatively in accord with predictions. However, there were no changes in the single known lysis gene. Part of ST-1's total lysis time evolution consisted of an earlier start to progeny production, an unpredicted phenotypic response outside the boundaries of the optimality model. Conclusions The consistent failure of the optimality model suggests that constraint and genetic details affect quantitative and even qualitative success of optimality predictions. Several features of ST-1 adaptation show that lysis time is best understood as an output of multiple traits, rather than in isolation.
Time-optimal spacecraft attitude maneuver path planning under boundary and pointing constraints
Wu, Changqing; Xu, Rui; Zhu, Shengying; Cui, Pingyuan
2017-08-01
The rapid large angle attitude maneuver capability of spacecraft is required during many space missions. This paper addresses the challenge of time-optimal spacecraft attitude maneuver under boundary and pointing constraints. From the perspective of the optimal time, the constrained attitude maneuver problem is summarized as an optimum path-planning problem. To address this problem, a metaheuristic maneuver path planning method is proposed, Angular velocity-Time Coding Differential Evolution (ATDE). In the ATDE method, the angular velocity and time are coded for attitude maneuver modeling, which increases the number of variables and results in a high-dimensional problem. In order to deal with this problem, differential evolution is employed to perform variation and evolution. The boundary and pointing constraints are constructed into the fitness function for path evaluation. Finally, numerical simulations for the different cases were performed to validate the feasibility and effectiveness of the proposed method.
Li, Xiaobo; Hu, Haofeng; Liu, Tiegen; Huang, Bingjing; Song, Zhanjie
2016-04-04
We consider the degree of linear polarization (DOLP) polarimetry system, which performs two intensity measurements at orthogonal polarization states to estimate DOLP. We show that if the total integration time of intensity measurements is fixed, the variance of the DOLP estimator depends on the distribution of integration time for two intensity measurements. Therefore, by optimizing the distribution of integration time, the variance of the DOLP estimator can be decreased. In this paper, we obtain the closed-form solution of the optimal distribution of integration time in an approximate way by employing Delta method and Lagrange multiplier method. According to the theoretical analyses and real-world experiments, it is shown that the variance of the DOLP estimator can be decreased for any value of DOLP. The method proposed in this paper can effectively decrease the measurement variance and thus statistically improve the measurement accuracy of the polarimetry system.
Optimal distribution of integration time for intensity measurements in Stokes polarimetry.
Li, Xiaobo; Liu, Tiegen; Huang, Bingjing; Song, Zhanjie; Hu, Haofeng
2015-10-19
We consider the typical Stokes polarimetry system, which performs four intensity measurements to estimate a Stokes vector. We show that if the total integration time of intensity measurements is fixed, the variance of the Stokes vector estimator depends on the distribution of the integration time at four intensity measurements. Therefore, by optimizing the distribution of integration time, the variance of the Stokes vector estimator can be decreased. In this paper, we obtain the closed-form solution of the optimal distribution of integration time by employing Lagrange multiplier method. According to the theoretical analysis and real-world experiment, it is shown that the total variance of the Stokes vector estimator can be significantly decreased about 40% in the case discussed in this paper. The method proposed in this paper can effectively decrease the measurement variance and thus statistically improves the measurement accuracy of the polarimetric system.
Communication: Time-dependent optimized coupled-cluster method for multielectron dynamics
Sato, Takeshi; Pathak, Himadri; Orimo, Yuki; Ishikawa, Kenichi L.
2018-02-01
Time-dependent coupled-cluster method with time-varying orbital functions, called time-dependent optimized coupled-cluster (TD-OCC) method, is formulated for multielectron dynamics in an intense laser field. We have successfully derived the equations of motion for CC amplitudes and orthonormal orbital functions based on the real action functional, and implemented the method including double excitations (TD-OCCD) and double and triple excitations (TD-OCCDT) within the optimized active orbitals. The present method is size extensive and gauge invariant, a polynomial cost-scaling alternative to the time-dependent multiconfiguration self-consistent-field method. The first application of the TD-OCC method of intense-laser driven correlated electron dynamics in Ar atom is reported.
Holistic Context-Sensitivity for Run-Time Optimization of Flexible Manufacturing Systems
Directory of Open Access Journals (Sweden)
Sebastian Scholze
2017-02-01
Full Text Available Highly flexible manufacturing systems require continuous run-time (self- optimization of processes with respect to diverse parameters, e.g., efficiency, availability, energy consumption etc. A promising approach for achieving (self- optimization in manufacturing systems is the usage of the context sensitivity approach based on data streaming from high amount of sensors and other data sources. Cyber-physical systems play an important role as sources of information to achieve context sensitivity. Cyber-physical systems can be seen as complex intelligent sensors providing data needed to identify the current context under which the manufacturing system is operating. In this paper, it is demonstrated how context sensitivity can be used to realize a holistic solution for (self- optimization of discrete flexible manufacturing systems, by making use of cyber-physical systems integrated in manufacturing systems/processes. A generic approach for context sensitivity, based on self-learning algorithms, is proposed aiming at a various manufacturing systems. The new solution encompasses run-time context extractor and optimizer. Based on the self-learning module both context extraction and optimizer are continuously learning and improving their performance. The solution is following Service Oriented Architecture principles. The generic solution is developed and then applied to two very different manufacturing processes.
Holistic Context-Sensitivity for Run-Time Optimization of Flexible Manufacturing Systems.
Scholze, Sebastian; Barata, Jose; Stokic, Dragan
2017-02-24
Highly flexible manufacturing systems require continuous run-time (self-) optimization of processes with respect to diverse parameters, e.g., efficiency, availability, energy consumption etc. A promising approach for achieving (self-) optimization in manufacturing systems is the usage of the context sensitivity approach based on data streaming from high amount of sensors and other data sources. Cyber-physical systems play an important role as sources of information to achieve context sensitivity. Cyber-physical systems can be seen as complex intelligent sensors providing data needed to identify the current context under which the manufacturing system is operating. In this paper, it is demonstrated how context sensitivity can be used to realize a holistic solution for (self-) optimization of discrete flexible manufacturing systems, by making use of cyber-physical systems integrated in manufacturing systems/processes. A generic approach for context sensitivity, based on self-learning algorithms, is proposed aiming at a various manufacturing systems. The new solution encompasses run-time context extractor and optimizer. Based on the self-learning module both context extraction and optimizer are continuously learning and improving their performance. The solution is following Service Oriented Architecture principles. The generic solution is developed and then applied to two very different manufacturing processes.
Optimal Compensation with Hidden Action and Lump-Sum Payment in a Continuous-Time Model
International Nuclear Information System (INIS)
Cvitanic, Jaksa; Wan, Xuhu; Zhang Jianfeng
2009-01-01
We consider a problem of finding optimal contracts in continuous time, when the agent's actions are unobservable by the principal, who pays the agent with a one-time payoff at the end of the contract. We fully solve the case of quadratic cost and separable utility, for general utility functions. The optimal contract is, in general, a nonlinear function of the final outcome only, while in the previously solved cases, for exponential and linear utility functions, the optimal contract is linear in the final output value. In a specific example we compute, the first-best principal's utility is infinite, while it becomes finite with hidden action, which is increasing in value of the output. In the second part of the paper we formulate a general mathematical theory for the problem. We apply the stochastic maximum principle to give necessary conditions for optimal contracts. Sufficient conditions are hard to establish, but we suggest a way to check sufficiency using non-convex optimization
Pearce, Charles
2009-01-01
Focuses on mathematical structure, and on real-world applications. This book includes developments in several optimization-related topics such as decision theory, linear programming, turnpike theory, duality theory, convex analysis, and queuing theory.
Lyapunov matrices approach to the parametric optimization of time-delay systems
Directory of Open Access Journals (Sweden)
Duda Józef
2015-09-01
Full Text Available In the paper a Lyapunov matrices approach to the parametric optimization problem of time-delay systems with a P-controller is presented. The value of integral quadratic performance index of quality is equal to the value of Lyapunov functional for the initial function of the time-delay system. The Lyapunov functional is determined by means of the Lyapunov matrix
Directory of Open Access Journals (Sweden)
Carlos López-Franco
2015-01-01
Full Text Available We present an inverse optimal neural controller for a nonholonomic mobile robot with parameter uncertainties and unknown external disturbances. The neural controller is based on a discrete-time recurrent high order neural network (RHONN trained with an extended Kalman filter. The reference velocities for the neural controller are obtained with a visual sensor. The effectiveness of the proposed approach is tested by simulations and real-time experiments.
Argos: An Optimized Time-Series Photometer Anjum S. Mukadam1 ...
Indian Academy of Sciences (India)
factor of 1.5 than data obtained for the same time span using an optimized time series photometer on the 2.1 m ... The data from the 9.2 m telescope exhibits uncertainties in period and phase larger by a factor of 1.5 .... encoded in packet form at the serial port of the PC at 9600 baud, where it can be read and unencoded by ...
The Optimal Timing of Strategic Action – A Real Options Approach
Directory of Open Access Journals (Sweden)
Gordon G. Sollars
2012-01-01
Full Text Available he possibility of a first-mover advantage arises in a variety of strategic choices, including product introductions, business start-ups, and mergers and acquisitions. The strategic management literature reflects ambiguity regarding the likelihood that a first mover can or will capture additional value. This paper uses a real options approach to address the optimal timing of strategic moves. Previous studies have modeled real options using either a perpetual or a European financial option. With these models, a strategic choice could only be made either without respect to a time frame (perpetual or at a fixed point in time (European option. Neither case is realistic. Companies typically have strategic options with only a limited time frame due to market factors, but companies may choose to act at any time within that constraint. To reflect this reality, we adapt a method for valuing an American financial option on a dividend paying stock to the real options context. The method presented in this paper proposes a solution for the optimum value for a project that should trigger a strategic choice, and highlights the value lost by not acting optimally. We use simulation results to show that the time frame available to make a strategic choice has an important effect on both the project value for when action should be taken, as well as on the value of waiting to invest at the optimal time. The results presented in this paper help to clarify the ambiguity that is found in the strategic management literature regarding the possibility of obtaining a first-mover advantage. Indeed, a first mover that acts sub-optimally could incur losses or at least not gain any advantage. A first mover that waits to invest at the right time based on the superior information supplied by models based on real options could be better positioned to obtain the benefits that might come from the first move.
Jia, Qing-Shan
2012-01-01
The dynamics of many systems nowadays follow not only physical laws but also man-made rules. These systems are known as discrete event dynamic systems and their performances can be accurately evaluated only through simulations. Existing studies on simulation-based optimization (SBO) usually assume deterministic simulation time for each replication. However, in many applications such as evacuation, smoke detection, and territory exploration, the simulation time is stochastic due to the randomn...
International Nuclear Information System (INIS)
Kim, D.S.; Seong, P.H.
1994-01-01
This paper describes the optimal testing input sets required for the fault diagnosis of the nuclear power plant digital electronic circuits. With the complicated systems such as very large scale integration (VLSI), nuclear power plant (NPP), and aircraft, testing is the major factor of the maintenance of the system. Particularly, diagnosis time grows quickly with the complexity of the component. In this research, for reduce diagnosis time the authors derived the optimal testing sets that are the minimal testing sets required for detecting the failure and for locating of the failed component. For reduced diagnosis time, the technique presented by Hayes fits best for the approach to testing sets generation among many conventional methods. However, this method has the following disadvantages: (a) it considers only the simple network (b) it concerns only whether the system is in failed state or not and does not provide the way to locate the failed component. Therefore the authors have derived the optimal testing input sets that resolve these problems by Hayes while preserving its advantages. When they applied the optimal testing sets to the automatic fault diagnosis system (AFDS) which incorporates the advanced fault diagnosis method of artificial intelligence technique, they found that the fault diagnosis using the optimal testing sets makes testing the digital electronic circuits much faster than that using exhaustive testing input sets; when they applied them to test the Universal (UV) Card which is a nuclear power plant digital input/output solid state protection system card, they reduced the testing time up to about 100 times
Optimization of time-of-flight reconstruction on Philips GEMINI TF
International Nuclear Information System (INIS)
Vandenberghe, Stefaan; Clementel, Enrico; Verhaeghe, Jeroen; Lemahieu, Ignace; Elmbt, Larry van; Bol, Anne; Lonneux, Max; Guerchaft, Michel
2009-01-01
The aim of this study is to optimize different parameters in the time-of-flight (TOF) reconstruction for the Philips GEMINI TF. The use of TOF in iterative reconstruction introduces additional variables to be optimized compared to conventional PET reconstruction. The different parameters studied are the TOF kernel width, the kernel truncation (used to reduce reconstruction time) and the scatter correction method. These parameters are optimized using measured phantom studies. All phantom studies were acquired with a very high number of counts to limit the effects of noise. A high number of iterations (33 subsets and 3 iterations) was used to reach convergence. The figures of merit are the uniformity in the background, the cold spot recovery and the hot spot contrast. As reference results we used the non-TOF reconstruction of the same data sets. It is shown that contrast recovery loss can only be avoided if the kernel is extended to more than 3 standard deviations. To obtain uniform reconstructions the recommended scatter correction is TOF single scatter simulation (SSS). This also leads to improved cold spot recovery and hot spot contrast. While the daily measurements of the system show a timing resolution in the range of 590-600 ps, the optimal reconstructions are obtained with a TOF kernel full-width at half-maximum (FWHM) of 650-700 ps. The optimal kernel width seems to be less critical for the recovered contrast but has an important effect on the background uniformity. Using smaller or wider kernels results in a less uniform background and reduced hot and cold contrast recovery. The different parameters studied have a large effect on the quantitative accuracy of the reconstructed images. The optimal settings from this study can be used as a guideline to make an objective comparison of the gains obtained with TOF PET versus PET reconstruction. (orig.)
The Optimization of Passengers’ Travel Time under Express-Slow Mode Based on Suburban Line
Directory of Open Access Journals (Sweden)
Xiaobing Ding
2016-01-01
Full Text Available The suburban line connects the suburbs and the city centre; it is of huge advantage to attempt the express-slow mode. The passengers’ average travel time is the key factor to reflect the level of rail transport services, especially under the express-slow mode. So it is important to study the passengers’ average travel time under express-slow, which can get benefit on the optimization of operation scheme. First analyze the main factor that affects passengers’ travel time and then mine the dynamic interactive relationship among the factors. Second, a new passengers’ travel time evolution algorithm is proposed after studying the stop schedule and the proportion of express/slow train, and then membrane computing theory algorithm is introduced to solve the model. Finally, Shanghai Metro Line 22 is set as an example to apply the optimization model to calculate the total passengers’ travel time; the result shows that the total average travel time under the express-slow mode can save 1 minute and 38 seconds; the social influence and value of it are very huge. The proposed calculation model is of great help for the decision of stop schedule and provides theoretical and methodological support to determine the proportion of express/slow trains, improves the service level, and enriches and complements the rail transit operation scheme optimization theory system.
Joint optimization of green vehicle scheduling and routing problem with time-varying speeds
Zhang, Dezhi; Wang, Xin; Ni, Nan; Zhang, Zhuo
2018-01-01
Based on an analysis of the congestion effect and changes in the speed of vehicle flow during morning and evening peaks in a large- or medium-sized city, the piecewise function is used to capture the rules of the time-varying speed of vehicles, which are very important in modelling their fuel consumption and CO2 emission. A joint optimization model of the green vehicle scheduling and routing problem with time-varying speeds is presented in this study. Extra wages during nonworking periods and soft time-window constraints are considered. A heuristic algorithm based on the adaptive large neighborhood search algorithm is also presented. Finally, a numerical simulation example is provided to illustrate the optimization model and its algorithm. Results show that, (1) the shortest route is not necessarily the route that consumes the least energy, (2) the departure time influences the vehicle fuel consumption and CO2 emissions and the optimal departure time saves on fuel consumption and reduces CO2 emissions by up to 5.4%, and (3) extra driver wages have significant effects on routing and departure time slot decisions. PMID:29466370
Directory of Open Access Journals (Sweden)
Mohammad-Reza Namazi-Rad
Full Text Available To achieve greater transit-time reduction and improvement in reliability of transport services, there is an increasing need to assist transport planners in understanding the value of punctuality; i.e. the potential improvements, not only to service quality and the consumer but also to the actual profitability of the service. In order for this to be achieved, it is important to understand the network-specific aspects that affect both the ability to decrease transit-time, and the associated cost-benefit of doing so. In this paper, we outline a framework for evaluating the effectiveness of proposed changes to average transit-time, so as to determine the optimal choice of average arrival time subject to desired punctuality levels whilst simultaneously minimizing operational costs. We model the service transit-time variability using a truncated probability density function, and simultaneously compare the trade-off between potential gains and increased service costs, for several commonly employed cost-benefit functions of general form. We formulate this problem as a constrained optimization problem to determine the optimal choice of average transit time, so as to increase the level of service punctuality, whilst simultaneously ensuring a minimum level of cost-benefit to the service operator.
Lower Bounds for Possible Singular Solutions for the Navier-Stokes and Euler Equations Revisited
Cortissoz, Jean C.; Montero, Julio A.
2018-03-01
In this paper we give optimal lower bounds for the blow-up rate of the \\dot{H}s( T^3) -norm, 1/2Navier-Stokes equations, and we also present an elementary proof for a lower bound on blow-up rate of the Sobolev norms of possible singular solutions to the Euler equations when s>5/2.
A Study on the Optimal Duration of Daylight Saving Time (DST in Korea
Directory of Open Access Journals (Sweden)
Byeong-Hee Mihn
2009-09-01
Full Text Available Daylight saving time aims at spending effective daylight in summer season. Korea had enforced daylight saving time twelve times from 1948 to 1988. Since 1988, it is not executed, but it is recently discussed the resumption of DST. In this paper, we investigate the trend of DST in other countries, review the history of DST in Korea, and suggest the optimal DST duration in terms of astronomical aspects (times of sunrise and sunset. We find that the starting day of DST in Korea is apt for the second Sunday in Mayor the second Sunday in April according to the time of sunrise or to the difference between Korean standard meridian and observer`s, respectively. We also discuss time friction that might be caused by time difference between DST and Korea Standard Time (KST.
Time-explicit methods for joint economical and geological risk mitigation in production optimization
DEFF Research Database (Denmark)
Christiansen, Lasse Hjuler; Capolei, Andrea; Jørgensen, John Bagterp
2016-01-01
optimization methods focus on mitigation of geological risks related to the long-term net present value (NPV). A major drawback of such methods is that the time-dependent and exceedingly growing uncertainty of oil prices implies that long-term predictions become highly unreliable. Conventional methods...... deviation and conditional value-at-risk compared to nominal, robust and mean-variance optimization. The gains in short-term objectives are obtained with none or only slight deterioration of long-term objectives....
Optimized Distributed Feedback Dye Laser Sensor for Real-Time Monitoring of Small Molecule Diffusion
DEFF Research Database (Denmark)
Vannahme, Christoph; Smith, Cameron; Dufva, Martin
2014-01-01
Nanoimprinted distributed feedback dye laser sensors featuring multilayer slab waveguides are presented. A simple yet precise analytical model is used to optimize the lasers in order to give highest sensitivity and it is found that the thickness of a high index TiO2 top layer is the most important...... parameter for optimization. Using such laser sensors in an imaging spectroscopy setup, real-time label-free monitoring of sugar molecule diffusion in water is demonstrated. This method could potentially pave the way towards the analysis of small molecule diffusion in various media, e.g. protein signaling...
International Nuclear Information System (INIS)
Avenhaus, R.
1992-01-01
In the beginning of nuclear material safeguards, emphasis was placed on safe detection of diversion of nuclear material. Later, the aspect of timely detection became equally important. Since there is a trade-off between these two objectives, the question of an appropriate compromise was raised. In this paper, a decision theoretical framework is presented in which the objectives of the two players, inspector and inspectee, are expressed in terms of general utility functions. Within this framework, optimal safeguards strategies are defined, and furthermore, conditions are formulated under which the optimization criteria corresponding to the objectives mentioned above can be justified
Input price risk and optimal timing of energy investment: choice between fossil- and biofuels
Energy Technology Data Exchange (ETDEWEB)
Murto, Pauli; Nese, Gjermund
2002-05-01
We consider energy investment, when a choice has to be made between fossil fuel and biomass fired production technologies. A dynamic model is presented to illustrate the effect of the different degrees of input price uncertainty on the choice of technology and the timing of the investment. It is shown that when the choice of technology is irreversible, it may be optimal to postpone the investment even if it would otherwise be optimal to invest in one or both of the plant types. We provide a numerical example based on cost, estimates of two different power plant types. (author)
Input price risk and optimal timing of energy investment: choice between fossil- and biofuels
International Nuclear Information System (INIS)
Murto, Pauli; Nese, Gjermund
2002-01-01
We consider energy investment, when a choice has to be made between fossil fuel and biomass fired production technologies. A dynamic model is presented to illustrate the effect of the different degrees of input price uncertainty on the choice of technology and the timing of the investment. It is shown that when the choice of technology is irreversible, it may be optimal to postpone the investment even if it would otherwise be optimal to invest in one or both of the plant types. We provide a numerical example based on cost, estimates of two different power plant types. (author)
Yang, Honggang; Lin, Huibin; Ding, Kang
2018-05-01
The performance of sparse features extraction by commonly used K-Singular Value Decomposition (K-SVD) method depends largely on the signal segment selected in rolling bearing diagnosis, furthermore, the calculating speed is relatively slow and the dictionary becomes so redundant when the fault signal is relatively long. A new sliding window denoising K-SVD (SWD-KSVD) method is proposed, which uses only one small segment of time domain signal containing impacts to perform sliding window dictionary learning and select an optimal pattern with oscillating information of the rolling bearing fault according to a maximum variance principle. An inner product operation between the optimal pattern and the whole fault signal is performed to enhance the characteristic of the impacts' occurrence moments. Lastly, the signal is reconstructed at peak points of the inner product to realize the extraction of the rolling bearing fault features. Both simulation and experiments verify that the method could extract the fault features effectively.
A Regional Time-of-Use Electricity Price Based Optimal Charging Strategy for Electrical Vehicles
Directory of Open Access Journals (Sweden)
Jun Yang
2016-08-01
Full Text Available With the popularization of electric vehicles (EVs, the out-of-order charging behaviors of large numbers of EVs will bring new challenges to the safe and economic operation of power systems. This paper studies an optimal charging strategy for EVs. For that a typical urban zone is divided into four regions, a regional time-of-use (RTOU electricity price model is proposed to guide EVs when and where to charge considering spatial and temporal characteristics. In light of the elastic coefficient, the user response to the RTOU electricity price is analyzed, and also a bilayer optimization charging strategy including regional-layer and node-layer models is suggested to schedule the EVs. On the one hand, the regional layer model is designed to coordinate the EVs located in different time and space. On the other hand, the node layer model is built to schedule the EVs to charge in certain nodes. According to the simulations of an IEEE 33-bus distribution network, the performance of the proposed optimal charging strategy is verified. The results demonstrate that the proposed bilayer optimization strategy can effectively decrease the charging cost of users, mitigate the peak-valley load difference and the network loss. Besides, the RTOU electricity price shows better performance than the time-of-use (TOU electricity price.
Time-optimal control of spatial xenon oscillations to a generalized target
International Nuclear Information System (INIS)
Schulz, E.J.; Lee, J.C.
1980-01-01
Time-optimal control of axial xenon oscillations in pressurized water reactors is investigated in the present study, properly accounting for operating constraints on the allowable axial offset (AO) band. The system equation describing the spatial xenon oscillations has been reformulated using a lambda mode expansion in a form that readily allows a physical interpretation of the state vector and the system equation. In particular, AO measurements can be used to define the entire system parameters completely. Previous optimal control studies have been limited to the case of controls to the origin in the xenon-iodine phase plane. Our present investigation indicates that time-optimal controls should, in general, involve bang-bang controls to a line segment in this phase plane, subject to a band constraint on allowable AO or available control strength. A suboptimal control strategy, which can be applied directly in actual operating conditions without the aid of on-line computers, is also proposed. Verification of the proposed time-optimal control strategies is performed through computer simulations of xenon-induced transients
Detecting changes in real-time data: a user's guide to optimal detection.
Johnson, P; Moriarty, J; Peskir, G
2017-08-13
The real-time detection of changes in a noisily observed signal is an important problem in applied science and engineering. The study of parametric optimal detection theory began in the 1930s, motivated by applications in production and defence. Today this theory, which aims to minimize a given measure of detection delay under accuracy constraints, finds applications in domains including radar, sonar, seismic activity, global positioning, psychological testing, quality control, communications and power systems engineering. This paper reviews developments in optimal detection theory and sequential analysis, including sequential hypothesis testing and change-point detection, in both Bayesian and classical (non-Bayesian) settings. For clarity of exposition, we work in discrete time and provide a brief discussion of the continuous time setting, including recent developments using stochastic calculus. Different measures of detection delay are presented, together with the corresponding optimal solutions. We emphasize the important role of the signal-to-noise ratio and discuss both the underlying assumptions and some typical applications for each formulation.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).
Dizon, José M; Quinn, T Alexander; Cabreriza, Santos E; Wang, Daniel; Spotnitz, Henry M; Hickey, Kathleen; Garan, Hasan
2010-09-01
We investigated the utility of real-time stroke volume (SV) monitoring via the arterial pulse power technique to optimize cardiac resynchronization therapy (CRT) parameters at implant and prospectively evaluated the clinical and echocardiographic results. Fifteen patients with ischaemic or non-ischaemic dilated cardiomyopathy, sinus rhythm, Class III congestive heart failure, and QRS >150 ms underwent baseline 2D echocardiogram (echo), 6 min walk distance, and quality of life (QOL) questionnaire within 1 week of implant. Following implant, 0.3 mmol lithium chloride was injected to calibrate SV via dilution curve. Atrioventricular (AV) delay (90, 120, 200 ms, baseline: atrial pacing only) and V-V delay (-80 to 80 ms in 20 ms increments) were varied every 60 s. The radial artery pulse power autocorrelation method (PulseCO algorithm, LiDCO, Ltd.) was used to monitor SV on a beat-to-beat basis (LiDCO, Ltd.). Optimal parameters were programmed and echo, 6 min walk, and QOL were repeated at 6-8 weeks post-implant. Nine patients had >5% increase in SV after optimization (Group A). Six patients had Real-time SV measurements can be used to optimize CRT at the time of implant. Improvement in SV correlates with improvement in LVEF, LVEDD, and 6 min walk, and improvement in echocardiographic dyssynchrony.
Real-time PCR probe optimization using design of experiments approach.
Wadle, S; Lehnert, M; Rubenwolf, S; Zengerle, R; von Stetten, F
2016-03-01
Primer and probe sequence designs are among the most critical input factors in real-time polymerase chain reaction (PCR) assay optimization. In this study, we present the use of statistical design of experiments (DOE) approach as a general guideline for probe optimization and more specifically focus on design optimization of label-free hydrolysis probes that are designated as mediator probes (MPs), which are used in reverse transcription MP PCR (RT-MP PCR). The effect of three input factors on assay performance was investigated: distance between primer and mediator probe cleavage site; dimer stability of MP and target sequence (influenza B virus); and dimer stability of the mediator and universal reporter (UR). The results indicated that the latter dimer stability had the greatest influence on assay performance, with RT-MP PCR efficiency increased by up to 10% with changes to this input factor. With an optimal design configuration, a detection limit of 3-14 target copies/10 μl reaction could be achieved. This improved detection limit was confirmed for another UR design and for a second target sequence, human metapneumovirus, with 7-11 copies/10 μl reaction detected in an optimum case. The DOE approach for improving oligonucleotide designs for real-time PCR not only produces excellent results but may also reduce the number of experiments that need to be performed, thus reducing costs and experimental times.
Quantum singular-value decomposition of nonsparse low-rank matrices
Rebentrost, Patrick; Steffens, Adrian; Marvian, Iman; Lloyd, Seth
2018-01-01
We present a method to exponentiate nonsparse indefinite low-rank matrices on a quantum computer. Given access to the elements of the matrix, our method allows one to determine the singular values and their associated singular vectors in time exponentially faster in the dimension of the matrix than known classical algorithms. The method extends to non-Hermitian and nonsquare matrices via matrix embedding. Moreover, our method preserves the phase relations between the singular spaces allowing for efficient algorithms that require operating on the entire singular-value decomposition of a matrix. As an example of such an algorithm, we discuss the Procrustes problem of finding a closest isometry to a given matrix.
Suramlishvili, Nugzar; Eggers, Jens; Fontelos, Marco
2014-11-01
We are concerned with singularities of the shock fronts of converging perturbed shock waves. Our considerations are based on Whitham's theory of geometrical shock dynamics. The recently developed method of local analysis is applied in order to determine generic singularities. In this case the solutions of partial differential equations describing the geometry of the shock fronts are presented as families of smooth maps with state variables and the set of control parameters dependent on Mach number, time and initial conditions. The space of control parameters of the singularities is analysed, the unfoldings describing the deformations of the canonical germs of shock front singularities are found and corresponding bifurcation diagrams are constructed. Research is supported by the Leverhulme Trust, Grant Number RPG-2012-568.
Classification of subsurface objects using singular values derived from signal frames
Chambers, David H; Paglieroni, David W
2014-05-06
The classification system represents a detected object with a feature vector derived from the return signals acquired by an array of N transceivers operating in multistatic mode. The classification system generates the feature vector by transforming the real-valued return signals into complex-valued spectra, using, for example, a Fast Fourier Transform. The classification system then generates a feature vector of singular values for each user-designated spectral sub-band by applying a singular value decomposition (SVD) to the N.times.N square complex-valued matrix formed from sub-band samples associated with all possible transmitter-receiver pairs. The resulting feature vector of singular values may be transformed into a feature vector of singular value likelihoods and then subjected to a multi-category linear or neural network classifier for object classification.
Optimization of neural networks for time-domain simulation of mooring lines
DEFF Research Database (Denmark)
Christiansen, Niels Hørbye; Voie, Per Erlend Torbergsen; Winther, Ole
2016-01-01
When using artificial neural networks in methods for dynamic analysis of slender structures, the computational effort associated with time-domain response simulation may be reduced drastically compared to classic solution strategies. This article demonstrates that the network structure...... of an artificial neural network, which has been trained to simulate forces in a mooring line of a floating offshore platform, can be optimized and reduced by different optimization procedures. The procedures both detect and prune the least salient network weights successively, and besides trimming the network......, they also can be used to rank the importance of the various network inputs. The dynamic response of slender marine structures often depends on several external load components, and by applying the optimization procedures to a trained artificial neural network, it is possible to classify the external force...
Optimization of transfection conditions and analysis of siRNA potency using real-time PCR.
Cheng, Angie; Magdaleno, Susan; Vlassov, Alexander V
2011-01-01
RNA interference (RNAi) is a mechanism by which the introduction of small interfering RNAs (siRNAs) into cultured cells causes degradation of the complementary mRNA. Applications of RNAi include gene function analysis, pathway analysis, and target validation. While RNAi experiments have become common practice in research labs, multiple factors can influence the extent of siRNA-induced knockdown (and thus biological outcome). A properly designed and selected siRNA sequence, siRNA modification format, choice of transfection reagent/technique, optimized protocols of siRNA in vitro delivery, and an appropriate and optimized readout are all critical for ensuring a successful experiment. In this chapter, we describe a typical in vitro siRNA experiment with optimization of transfection conditions and analysis of siRNA potency, i.e., mRNA knockdown with quantitative real-time PCR.
Zhong, Xiangnan; He, Haibo; Zhang, Huaguang; Wang, Zhanshan
2014-12-01
In this paper, we develop and analyze an optimal control method for a class of discrete-time nonlinear Markov jump systems (MJSs) with unknown system dynamics. Specifically, an identifier is established for the unknown systems to approximate system states, and an optimal control approach for nonlinear MJSs is developed to solve the Hamilton-Jacobi-Bellman equation based on the adaptive dynamic programming technique. We also develop detailed stability analysis of the control approach, including the convergence of the performance index function for nonlinear MJSs and the existence of the corresponding admissible control. Neural network techniques are used to approximate the proposed performance index function and the control law. To demonstrate the effectiveness of our approach, three simulation studies, one linear case, one nonlinear case, and one single link robot arm case, are used to validate the performance of the proposed optimal control method.
On the non-stationarity of financial time series: impact on optimal portfolio selection
International Nuclear Information System (INIS)
Livan, Giacomo; Inoue, Jun-ichi; Scalas, Enrico
2012-01-01
We investigate the possible drawbacks of employing the standard Pearson estimator to measure correlation coefficients between financial stocks in the presence of non-stationary behavior, and we provide empirical evidence against the well-established common knowledge that using longer price time series provides better, more accurate, correlation estimates. Then, we investigate the possible consequences of instabilities in empirical correlation coefficient measurements on optimal portfolio selection. We rely on previously published works which provide a framework allowing us to take into account possible risk underestimations due to the non-optimality of the portfolio weights being used in order to distinguish such non-optimality effects from risk underestimations genuinely due to non-stationarities. We interpret such results in terms of instabilities in some spectral properties of portfolio correlation matrices. (paper)