WorldWideScience

Sample records for singular soliton solutions

  1. Singular solitons and other solutions to a couple of nonlinear wave equations

    International Nuclear Information System (INIS)

    Inc Mustafa; Ulutaş Esma; Biswas Anjan

    2013-01-01

    This paper addresses the extended (G'/G)-expansion method and applies it to a couple of nonlinear wave equations. These equations are modified the Benjamin—Bona—Mahoney equation and the Boussinesq equation. This extended method reveals several solutions to these equations. Additionally, the singular soliton solutions are revealed, for these two equations, with the aid of the ansatz method

  2. On soliton solutions of the Wu-Zhang system

    Directory of Open Access Journals (Sweden)

    Inc Mustafa

    2016-01-01

    Full Text Available In this paper, the extended tanh and hirota methods are used to construct soliton solutions for the WuZhang (WZ system. Singular solitary wave, periodic and multi soliton solutions of the WZ system are obtained.

  3. Singular solitons of generalized Camassa-Holm models

    International Nuclear Information System (INIS)

    Tian Lixin; Sun Lu

    2007-01-01

    Two generalizations of the Camassa-Holm system associated with the singular analysis are proposed for Painleve integrability properties and the extensions of already known analytic solitons. A remarkable feature of the physical model is that it has peakon solution which has peak form. An alternative WTC test which allowed the identifying of such models directly if formulated in terms of inserting a formed ansatz into these models. For the two models have Painleve property, Painleve-Baecklund systems can be constructed through the expansion of solitons about the singularity manifold. By the implementations of Maple, plentiful new type solitonic structures and some kink waves, which are affected by the variation of energy, are explored. If the energy is infinite in finite time, there will be a collapse in soliton systems by direct numerical simulations. Particularly, there are two collapses coexisting in our regular solitons, which occurred around its central regions. Simulation shows that in the bottom of periodic waves arises the non-zero parts of compactons and anti-compactons. We also get floating solitary waves whose amplitude is infinite. In contrary to which a finite-amplitude blow-up soliton is obtained. Periodic blow-ups are found too. Special kinks which have periodic cuspons are derived

  4. Bright, dark and singular optical solitons in a cascaded system

    International Nuclear Information System (INIS)

    Zhou, Qin; Zhu, Qiuping; Yu, Hua; Liu, Yaxian; Wei, Chun; Yao, Ping; Bhrawy, Ali H; Biswas, Anjan

    2015-01-01

    This work studies nonlinear dynamics of optical solitons in a cascaded system with Kerr law nonlinearity and spatio-temporal dispersion. The mathematical model that describes the propagation of optical solitons through a cascaded system is given by the vector-coupled nonlinear Schrödinger equation. It is investigated analytically using three integration algorithms. The Jacobian elliptic equation expansion method, Bernoulli equation expansion approach and Riccati equation expansion scheme are the integration tools of this model that are recruited to extract singular, bright and dark solitons. The restrictions that need to hold for the existence of these solitons are derived. (paper)

  5. Soliton solutions for Q3

    International Nuclear Information System (INIS)

    Atkinson, James; Nijhoff, Frank; Hietarinta, Jarmo

    2008-01-01

    We construct N-soliton solutions to the equation called Q3 in the recent Adler-Bobenko-Suris classification. An essential ingredient in the construction is the relationship of (Q3) δ=0 to the equation proposed by Nijhoff, Quispel and Capel in 1983 (the NQC equation). This latter equation has two extra parameters, and depending on their sign choices we get a 4-to-1 relationship from NQC to (Q3) δ=0 . This leads to a four-term background solution, and then to a 1-soliton solution using a Baecklund transformation. Using the 1SS as a guide allows us to get the N-soliton solution in terms of the τ-function of the Hirota-Miwa equation. (fast track communication)

  6. Solitons

    International Nuclear Information System (INIS)

    Bullough, R.K.

    1978-01-01

    Two sorts of solitons are considered - the classical soliton, a solitary wave which shows great stability in collision with other solitary waves, and the quantal, that is quantised, soliton. Solitons as mathematical objects have excited theoreticians because of their wide ranging applications in physics. They appear as solutions of particular nonlinear wave equations which often have a certain universal significance. The importance of solitons in modern physics is discussed with especial reference to; nonlinearity and solitons, the nonlinear Schroedinger equation, the sine-Gordon equation, notional spins and particle physics. (U.K.)

  7. Fundamental solutions of singular SPDEs

    International Nuclear Information System (INIS)

    Selesi, Dora

    2011-01-01

    Highlights: → Fundamental solutions of linear SPDEs are constructed. → Wick-convolution product is introduced for the first time. → Fourier transformation maps Wick-convolution into Wick product. → Solutions of linear SPDEs are expressed via Wick-convolution with fundamental solutions. → Stochastic Helmholtz equation is solved. - Abstract: This paper deals with some models of mathematical physics, where random fluctuations are modeled by white noise or other singular Gaussian generalized processes. White noise, as the distributional derivative od Brownian motion, which is the most important case of a Levy process, is defined in the framework of Hida distribution spaces. The Fourier transformation in the framework of singular generalized stochastic processes is introduced and its applications to solving stochastic differential equations involving Wick products and singularities such as the Dirac delta distribution are presented. Explicit solutions are obtained in form of a chaos expansion in the Kondratiev white noise space, while the coefficients of the expansion are tempered distributions. Stochastic differential equations of the form P(ω, D) ◊ u(x, ω) = A(x, ω) are considered, where A is a singular generalized stochastic process and P(ω, D) is a partial differential operator with random coefficients. We introduce the Wick-convolution operator * which enables us to express the solution as u = s*A ◊ I ◊(-1) , where s denotes the fundamental solution and I is the unit random variable. In particular, the stochastic Helmholtz equation is solved, which in physical interpretation describes waves propagating with a random speed from randomly appearing point sources.

  8. New Soliton-like Solutions and Multi-soliton Structures for Broer-Kaup System with Variable Coefficients

    International Nuclear Information System (INIS)

    Ji Mingjun; Lue Zhuosheng

    2005-01-01

    By using the further extended tanh method [Phys. Lett. A 307 (2003) 269; Chaos, Solitons and Fractals 17 (2003) 669] to the Broer-Kaup system with variable coefficients, abundant new soliton-like solutions and multi-soliton-like solutions are derived. Based on the derived multi-soliton-like solutions which contain arbitrary functions, some interesting multi-soliton structures are revealed.

  9. Exact solutions and singularities in string theory

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Tseytlin, A.A.

    1994-01-01

    We construct two new classes of exact solutions to string theory which are not of the standard plane wave of gauged WZW type. Many of these solutions have curvature singularities. The first class includes the fundamental string solution, for which the string coupling vanishes near the singularity. This suggests that the singularity may not be removed by quantum corrections. The second class consists of hybrids of plane wave and gauged WZW solutions. We discuss a four-dimensional example in detail

  10. Quantum solitonic wave-packet of a meso-scopic system in singularity free gravity

    Science.gov (United States)

    Buoninfante, Luca; Lambiase, Gaetano; Mazumdar, Anupam

    2018-06-01

    In this paper we will discuss how to localise a quantum wave-packet due to self-gravitating meso-scopic object by taking into account gravitational self-interaction in the Schrödinger equation beyond General Relativity. In particular, we will study soliton-like solutions in infinite derivative ghost free theories of gravity, which resolves the gravitational 1 / r singularity in the potential. We will show a unique feature that the quantum spread of such a gravitational system is larger than that of the Newtonian gravity, therefore enabling us a window of opportunity to test classical and quantum properties of such theories of gravity in the near future at a table-top experiment.

  11. Soliton solutions in a diatomic lattice system

    International Nuclear Information System (INIS)

    Yajima, Nobuo; Satsuma, Junkichi.

    1979-04-01

    A continuum limit is considered for a diatomic lattice system with a cubic nonlinearity. A long wave equation describing the interaction of acoustic and optical modes is obtained. It reduces, in certain approximations, to equations having coupled wave solutions. The solutions exhibit trapping of an optical mode by an acoustic soliton. The form of the trapped optical wave depends on the mass ratio of adjacent particles in the diatomic lattice. (author)

  12. On the singularities of solutions to singular perturbation problems

    International Nuclear Information System (INIS)

    Fruchard, A; Schaefke, R

    2005-01-01

    We consider a singularly perturbed complex first order ODE εu ' Φ(x, u, a, ε), x, u element of C, ε > 0 is a small complex parameter and a element of C is a control parameter. It is proven that the singularities of some solutions are regularly spaced and that they move from one to the next as a runs about a loop of index one around a value of overstability. This gives a positive answer to a question of J. L. Callot

  13. On the singularities of solutions to singular perturbation problems

    Energy Technology Data Exchange (ETDEWEB)

    Fruchard, A [Laboratoire de Mathematiques, Informatique et Applications, Faculte des Sciences et Techniques, Universite de Haute Alsace, 4 rue des Freres Lumiere, 68093 Mulhouse cedex (France); Schaefke, R [Departement de Mathematiques, Universite Louis Pasteur, 7 rue Rene-Descartes, 67084 Strasbourg cedex (France)

    2005-01-01

    We consider a singularly perturbed complex first order ODE {epsilon}u ' {phi}(x, u, a, {epsilon}), x, u element of C, {epsilon} > 0 is a small complex parameter and a element of C is a control parameter. It is proven that the singularities of some solutions are regularly spaced and that they move from one to the next as a runs about a loop of index one around a value of overstability. This gives a positive answer to a question of J. L. Callot.

  14. Topological soliton solutions for some nonlinear evolution equations

    Directory of Open Access Journals (Sweden)

    Ahmet Bekir

    2014-03-01

    Full Text Available In this paper, the topological soliton solutions of nonlinear evolution equations are obtained by the solitary wave ansatz method. Under some parameter conditions, exact solitary wave solutions are obtained. Note that it is always useful and desirable to construct exact solutions especially soliton-type (dark, bright, kink, anti-kink, etc. envelope for the understanding of most nonlinear physical phenomena.

  15. Pure soliton solutions of some nonlinear partial differential equations

    International Nuclear Information System (INIS)

    Fuchssteiner, B.

    1977-01-01

    A general approach is given to obtain the system of ordinary differential equations which determines the pure soliton solutions for the class of generalized Korteweg-de Vries equations. This approach also leads to a system of ordinary differential equations for the pure soliton solutions of the sine-Gordon equation. (orig.) [de

  16. Exact soliton-like solutions of perturbed phi4-equation

    International Nuclear Information System (INIS)

    Gonzalez, J.A.

    1986-05-01

    Exact soliton-like solutions of damped, driven phi 4 -equation are found. The exact expressions for the velocities of solitons are given. It is non-perturbatively proved that the perturbed phi 4 -equation has stable kink-like solutions of a new type. (author)

  17. Exact, multiple soliton solutions of the double sine Gordon equation

    International Nuclear Information System (INIS)

    Burt, P.B.

    1978-01-01

    Exact, particular solutions of the double sine Gordon equation in n dimensional space are constructed. Under certain restrictions these solutions are N solitons, where N <= 2q - 1 and q is the dimensionality of space-time. The method of solution, known as the base equation technique, relates solutions of nonlinear partial differential equations to solutions of linear partial differential equations. This method is reviewed and its applicability to the double sine Gordon equation shown explicitly. The N soliton solutions have the remarkable property that they collapse to a single soliton when the wave vectors are parallel. (author)

  18. Soliton-type solutions for two models in mathematical physics

    Science.gov (United States)

    Al-Ghafri, K. S.

    2018-04-01

    In this paper, the generalised Klein-Gordon and Kadomtsov-Petviashvili Benjamin-Bona-Mahony equations with power law nonlinearity are investigated. Our study is based on reducing the form of both equations to a first-order ordinary differential equation having the travelling wave solutions. Subsequently, soliton-type solutions such as compacton and solitary pattern solutions are obtained analytically. Additionally, the peaked soliton has been derived where it exists under a specific restrictions. In addition to the soliton solutions, the mathematical method which is exploited in this work also creates a few amount of travelling wave solutions.

  19. A 1 + 5-dimensional gravitational-wave solution. Curvature singularity and spacetime singularity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Zhu [Tianjin University, Department of Physics, Tianjin (China); Li, Wen-Du [Tianjin University, Department of Physics, Tianjin (China); Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Dai, Wu-Sheng [Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Nankai University and Tianjin University, LiuHui Center for Applied Mathematics, Tianjin (China)

    2017-12-15

    We solve a 1 + 5-dimensional cylindrical gravitational-wave solution of the Einstein equation, in which there are two curvature singularities. Then we show that one of the curvature singularities can be removed by an extension of the spacetime. The result exemplifies that the curvature singularity is not always a spacetime singularity; in other words, the curvature singularity cannot serve as a criterion for spacetime singularities. (orig.)

  20. Classification of the line-soliton solutions of KPII

    International Nuclear Information System (INIS)

    Chakravarty, Sarbarish; Kodama, Yuji

    2008-01-01

    In the previous papers (notably, Kodama Y 2004 J. Phys. A: Math. Gen. 37 11169-90, Biondini G and Chakravarty S 2006 J. Math. Phys. 47 033514), a large variety of line-soliton solutions of the Kadomtsev-Petviashvili II (KPII) equation was found. The line-soliton solutions are solitary waves which decay exponentially in the (x, y)-plane except along certain rays. In this paper, it is shown that those solutions are classified by asymptotic information of the solution as |y| → ∞. The present work then unravels some interesting relations between the line-soliton classification scheme and classical results in the theory of permutations

  1. Classification of the line-soliton solutions of KPII

    Science.gov (United States)

    Chakravarty, Sarbarish; Kodama, Yuji

    2008-07-01

    In the previous papers (notably, Kodama Y 2004 J. Phys. A: Math. Gen. 37 11169-90, Biondini G and Chakravarty S 2006 J. Math. Phys. 47 033514), a large variety of line-soliton solutions of the Kadomtsev-Petviashvili II (KPII) equation was found. The line-soliton solutions are solitary waves which decay exponentially in the (x, y)-plane except along certain rays. In this paper, it is shown that those solutions are classified by asymptotic information of the solution as |y| → ∞. The present work then unravels some interesting relations between the line-soliton classification scheme and classical results in the theory of permutations.

  2. New types of exact solutions for a breaking soliton equation

    International Nuclear Information System (INIS)

    Mei Jianqin; Zhang Hongqing

    2004-01-01

    In this paper based on a system of Riccati equations, we present a newly generally projective Riccati equation expansion method and its algorithm, which can be used to construct more new exact solutions of nonlinear differential equations in mathematical physics. A typical breaking soliton equation is chosen to illustrate our algorithm such that more families of new exact solutions are obtained, which contain soliton-like solutions and periodic solutions. This algorithm can also be applied to other nonlinear differential equations

  3. Soliton solutions of the quantum Zakharov-Kuznetsov equation which arises in quantum magneto-plasmas

    Science.gov (United States)

    Sindi, Cevat Teymuri; Manafian, Jalil

    2017-02-01

    In this paper, we extended the improved tan(φ/2)-expansion method (ITEM) and the generalized G'/G-expansion method (GGEM) proposed by Manafian and Fazli (Opt. Quantum Electron. 48, 413 (2016)) to construct new types of soliton wave solutions of nonlinear partial differential equations (NPDEs). Moreover, we use of the improvement of the Exp-function method (IEFM) proposed by Jahani and Manafian (Eur. Phys. J. Plus 131, 54 (2016)) for obtaining solutions of NPDEs. The merit of the presented three methods is they can find further solutions to the considered problems, including soliton, periodic, kink, kink-singular wave solutions. This paper studies the quantum Zakharov-Kuznetsov (QZK) equation by the aid of the improved tan(φ/2)-expansion method, the generalized G'/G-expansion method and the improvement of the Exp-function method. Moreover, the 1-soliton solution of the modified QZK equation with power law nonlinearity is obtained by the aid of traveling wave hypothesis with the necessary constraints in place for the existence of the soliton. Comparing our new results with Ebadi et al. results (Astrophys. Space Sci. 341, 507 (2012)), namely, G'/G-expansion method, exp-function method, modified F-expansion method, shows that our results give further solutions. Finally, these solutions might play an important role in engineering, physics and applied mathematics fields.

  4. Minimal solution for inconsistent singular fuzzy matrix equations

    Directory of Open Access Journals (Sweden)

    M. Nikuie

    2013-10-01

    Full Text Available The fuzzy matrix equations $Ailde{X}=ilde{Y}$ is called a singular fuzzy matrix equations while the coefficients matrix of its equivalent crisp matrix equations be a singular matrix. The singular fuzzy matrix equations are divided into two parts: consistent singular matrix equations and inconsistent fuzzy matrix equations. In this paper, the inconsistent singular fuzzy matrix equations is studied and the effect of generalized inverses in finding minimal solution of an inconsistent singular fuzzy matrix equations are investigated.

  5. Brane Inflation, Solitons and Cosmological Solutions: I

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P.

    2005-01-25

    In this paper we study various cosmological solutions for a D3/D7 system directly from M-theory with fluxes and M2-branes. In M-theory, these solutions exist only if we incorporate higher derivative corrections from the curvatures as well as G-fluxes. We take these corrections into account and study a number of toy cosmologies, including one with a novel background for the D3/D7 system whose supergravity solution can be completely determined. Our new background preserves all the good properties of the original model and opens up avenues to investigate cosmological effects from wrapped branes and brane-antibrane annihilation, to name a few. We also discuss in some detail semilocal defects with higher global symmetries, for example exceptional ones, that occur in a slightly different regime of our D3/D7 model. We show that the D3/D7 system does have the required ingredients to realize these configurations as non-topological solitons of the theory. These constructions also allow us to give a physical meaning to the existence of certain underlying homogeneous quaternionic Kahler manifolds.

  6. Topological and non-topological soliton solutions to some time

    Indian Academy of Sciences (India)

    Topological and non-topological soliton solutions to some time-fractional differential equations ... These equations have been widely applied in many branches of nonlinear ... Department of Engineering Sciences, Faculty of Technology and ...

  7. Singularly perturbed Burger-Huxley equation: Analytical solution ...

    African Journals Online (AJOL)

    user

    solutions of singularly perturbed nonlinear differential equations. ... for solving generalized Burgers-Huxley equation but this equation is not singularly ...... Solitary waves solutions of the generalized Burger Huxley equations, Journal of.

  8. An Exact Solution of the Binary Singular Problem

    Directory of Open Access Journals (Sweden)

    Baiqing Sun

    2014-01-01

    Full Text Available Singularity problem exists in various branches of applied mathematics. Such ordinary differential equations accompany singular coefficients. In this paper, by using the properties of reproducing kernel, the exact solution expressions of dual singular problem are given in the reproducing kernel space and studied, also for a class of singular problem. For the binary equation of singular points, I put it into the singular problem first, and then reuse some excellent properties which are applied to solve the method of solving differential equations for its exact solution expression of binary singular integral equation in reproducing kernel space, and then obtain its approximate solution through the evaluation of exact solutions. Numerical examples will show the effectiveness of this method.

  9. Stability analysis solutions and optical solitons in extended nonlinear Schrödinger equation with higher-order odd and even terms

    Science.gov (United States)

    Peng, Wei-Qi; Tian, Shou-Fu; Zou, Li; Zhang, Tian-Tian

    2018-01-01

    In this paper, the extended nonlinear Schrödinger equation with higher-order odd (third order) and even (fourth order) terms is investigated, whose particular cases are the Hirota equation, the Sasa-Satsuma equation and Lakshmanan-Porsezian-Daniel equation by selecting some specific values on the parameters of higher-order terms. We first study the stability analysis of the equation. Then, using the ansatz method, we derive its bright, dark solitons and some constraint conditions which can guarantee the existence of solitons. Moreover, the Ricatti equation extension method is employed to derive some exact singular solutions. The outstanding characteristics of these solitons are analyzed via several diverting graphics.

  10. Exact multi-line soliton solutions of noncommutative KP equation

    International Nuclear Information System (INIS)

    Wang, Ning; Wadati, Miki

    2003-01-01

    A method of solving noncommutative linear algebraic equations plays a key role in the extension of the ∂-bar -dressing on the noncommutative space-time manifold. In this paper, a solution-generating method of noncommutative linear algebraic equations is proposed. By use of the proposed method, a class of multi-line soliton solutions of noncommutative KP (ncKP) equation is constructed explicitly. The method is expected to be of use for constructions of noncommutative soliton equations. The significance of the noncommutativity of coordinates is investigated. It is found that the noncommutativity of the space-time coordinate has a role to split the spatial waveform of the classical multi-line solitons and reform it to a new configuration. (author)

  11. Soliton solutions of some nonlinear evolution equations with time ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, we obtain exact soliton solutions of the modified KdV equation, inho- mogeneous nonlinear Schrödinger equation and G(m, n) equation with variable coefficients using solitary wave ansatz. The constraint conditions among the time-dependent coefficients turn out as necessary conditions for the ...

  12. Inverse scattering transform method and soliton solutions for Davey-Stewartson II equation

    International Nuclear Information System (INIS)

    Arkadiev, V.A.; Pogrebkov, A.K.; Polivanov, M.C.

    1989-01-01

    The inverse scattering method for Davey-Stewartson II (DS-II) equation including both soliton and continuous spectrum solutions is developed. The explicit formulae for N-soliton solutions are given. Note that our solitons decrease as |z| -2 with z tending to infinity. (author). 8 refs

  13. ANALYTICAL SOLUTIONS OF SINGULAR ISOTHERMAL QUADRUPOLE LENS

    International Nuclear Information System (INIS)

    Chu Zhe; Lin, W. P.; Yang Xiaofeng

    2013-01-01

    Using an analytical method, we study the singular isothermal quadrupole (SIQ) lens system, which is the simplest lens model that can produce four images. In this case, the radial mass distribution is in accord with the profile of the singular isothermal sphere lens, and the tangential distribution is given by adding a quadrupole on the monopole component. The basic properties of the SIQ lens have been studied in this Letter, including the deflection potential, deflection angle, magnification, critical curve, caustic, pseudo-caustic, and transition locus. Analytical solutions of the image positions and magnifications for the source on axes are derived. We find that naked cusps will appear when the relative intensity k of quadrupole to monopole is larger than 0.6. According to the magnification invariant theory of the SIQ lens, the sum of the signed magnifications of the four images should be equal to unity, as found by Dalal. However, if a source lies in the naked cusp, the summed magnification of the left three images is smaller than the invariant 1. With this simple lens system, we study the situations where a point source infinitely approaches a cusp or a fold. The sum of the magnifications of the cusp image triplet is usually not equal to 0, and it is usually positive for major cusps while negative for minor cusps. Similarly, the sum of magnifications of the fold image pair is usually not equal to 0 either. Nevertheless, the cusp and fold relations are still equal to 0 in that the sum values are divided by infinite absolute magnifications by definition.

  14. Solitary wave solution to a singularly perturbed generalized Gardner ...

    Indian Academy of Sciences (India)

    2017-03-24

    Mar 24, 2017 ... Abstract. This paper is concerned with the existence of travelling wave solutions to a singularly perturbed gen- eralized Gardner equation with nonlinear terms of any order. By using geometric singular perturbation theory and based on the relation between solitary wave solution and homoclinic orbits of the ...

  15. Solitons

    CERN Document Server

    Guo, Boling; Wang, Yu-Feng; Liu, Nan

    2018-01-01

    This book provides an up-to-date overview of mathematical theories and research results on solitons, presenting related mathematical methods and applications as well as numerical experiments. Different types of soliton equations are covered along with their dynamical behaviors and applications from physics, making the book an essential reference for researchers and graduate students in applied mathematics and physics.

  16. Seed and soliton solutions for Adler's lattice equation

    International Nuclear Information System (INIS)

    Atkinson, James; Hietarinta, Jarmo; Nijhoff, Frank

    2007-01-01

    Adler's lattice equation has acquired the status of a master equation among 2D discrete integrable systems. In this paper we derive what we believe are the first explicit solutions of this equation. In particular it turns out to be necessary to establish a non-trivial seed solution from which soliton solutions can subsequently be constructed using the Baecklund transformation. As a corollary we find the corresponding solutions of the Krichever-Novikov equation which is obtained from Adler's equation in a continuum limit. (fast track communication)

  17. Soliton solutions for ABS lattice equations: I. Cauchy matrix approach

    Science.gov (United States)

    Nijhoff, Frank; Atkinson, James; Hietarinta, Jarmo

    2009-10-01

    In recent years there have been new insights into the integrability of quadrilateral lattice equations, i.e. partial difference equations which are the natural discrete analogues of integrable partial differential equations in 1+1 dimensions. In the scalar (i.e. single-field) case, there now exist classification results by Adler, Bobenko and Suris (ABS) leading to some new examples in addition to the lattice equations 'of KdV type' that were known since the late 1970s and early 1980s. In this paper, we review the construction of soliton solutions for the KdV-type lattice equations and use those results to construct N-soliton solutions for all lattice equations in the ABS list except for the elliptic case of Q4, which is left to a separate treatment.

  18. Soliton solutions of coupled nonlinear Klein-Gordon equations

    International Nuclear Information System (INIS)

    Alagesan, T.; Chung, Y.; Nakkeeran, K.

    2004-01-01

    The coupled nonlinear Klein-Gordon equations are analyzed for their integrability properties in a systematic manner through Painleve test. From the Painleve test, by truncating the Laurent series at the constant level term, the Hirota bilinear form is identified, from which one-soliton solutions are derived. Then, the results are generalized to the two, three and N-coupled Klein-Gordon equations

  19. Baryons as solitonic solutions of the chiral sigma model

    International Nuclear Information System (INIS)

    Bentz, W.; Hartmann, J.; Beck, F.

    1996-01-01

    Self-consistent solitonic solutions with baryon number one are obtained in the chiral quark sigma model. The translational invariant vacuum is stabilized by a Landau ghost subtraction procedure based on the requirement of the Kaellacute en-Lehmann (KL) representation for the meson propagators. The connection of this ghost free model (KL model) to the more popular Nambu-Jona-Lasinio (NJL) model is discussed in detail. copyright 1996 The American Physical Society

  20. Periodic solutions to second-order indefinite singular equations

    Czech Academy of Sciences Publication Activity Database

    Hakl, Robert; Zamora, M.

    2017-01-01

    Roč. 263, č. 1 (2017), s. 451-469 ISSN 0022-0396 Institutional support: RVO:67985840 Keywords : degree theory * indefinite singularity * periodic solution * singular differential equation Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.988, year: 2016 http://www.sciencedirect.com/science/article/pii/S0022039617301134

  1. Solitons

    International Nuclear Information System (INIS)

    Ventura, J.

    1983-01-01

    An introductory and partial discussion on the conceptual news and the multiple consequences which originate from the existence of solitons is presented. Preliminary calculations related with the helium superfluid theory are discussed. (L.C.) [pt

  2. Soliton solutions of the (2 + 1)-dimensional Harry Dym equation via Darboux transformation

    International Nuclear Information System (INIS)

    Halim, A.A.

    2008-01-01

    This work introduces solitons solutions for the (2 + 1)-dimensional Harry Dym equation using Darboux transformation. The link between the (2 + 1)-dimensional Harry Dym equation and the linear system associated with the modified Kadomtzev-Patvishvili equation is used. Namely, soliton solutions for the linear system associated with the later equation are produced using Darboux transformation. These solutions are inserted in the mentioned link to produce soliton solutions for the (2 + 1)-dimensional Harry Dym equation

  3. A transformation with symbolic computation and abundant new soliton-like solutions for the (1+2)-dimensional generalized Burgers equation

    International Nuclear Information System (INIS)

    Yan Zhenya

    2002-01-01

    In this paper, an auto-Baecklund transformation is presented for the generalized Burgers equation: u t +u xy + αuu y +αu x ∂ -1 x u y =0 (α is constant) by using an ansatz and symbolic computation. Particularly, this equation is transformed into a (1+2)-dimensional generalized heat equation ω t + ω xy =0 by the Cole-Hopf transformation. This shows that this equation is C-integrable. Abundant types of new soliton-like solutions are obtained by virtue of the obtained transformation. These solutions contain n-soliton-like solutions, shock wave solutions and singular soliton-like solutions, which may be of important significance in explaining some physical phenomena. The approach can also be extended to other types of nonlinear partial differential equations in mathematical physics

  4. Singularly perturbed Burger-Huxley equation: Analytical solution ...

    African Journals Online (AJOL)

    user

    numbers, Navier-Stokes flows with large Reynolds numbers, chemical reactor ... It is to observe the layer behavior of the solution for smaller values of ε leading to singular ...... Burger equation, momentum gas equation and heat equation.

  5. Soliton-like solutions to the ordinary Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Zamboni-Rached, Michel [Universidade Estadual de Campinas (DMO/FEEC/UNICAMP), Campinas, SP (Brazil). Fac. de Engenharia Eletrica e de Computacao. Dept. de Microondas e Optica; Recami, Erasmo, E-mail: recami@mi.infn.i [Universita Statale di Bergamo, Bergamo (Italy). Facolta di Ingegneria

    2011-07-01

    In recent times it has been paid attention to the fact that (linear) wave equations admit of soliton-like solutions, known as Localized Waves or Non-diffracting Waves, which propagate without distortion in one direction. Such Localized Solutions (existing also for K-G or Dirac equations) are a priori suitable, more than Gaussian's, for describing elementary particle motion. In this paper we show that, mutatis mutandis, Localized Solutions exist even for the ordinary Schroedinger equation within standard Quantum Mechanics; and we obtain both approximate and exact solutions, also setting forth for them particular examples. In the ideal case such solutions bear infinite energy, as well as plane or spherical waves: we show therefore how to obtain nite-energy solutions. At last, we briefly consider solutions for a particle moving in the presence of a potential. (author)

  6. Soliton-like solutions to the ordinary Schroedinger equation

    International Nuclear Information System (INIS)

    Zamboni-Rached, Michel; Recami, Erasmo

    2011-01-01

    In recent times it has been paid attention to the fact that (linear) wave equations admit of soliton-like solutions, known as Localized Waves or Non-diffracting Waves, which propagate without distortion in one direction. Such Localized Solutions (existing also for K-G or Dirac equations) are a priori suitable, more than Gaussian's, for describing elementary particle motion. In this paper we show that, mutatis mutandis, Localized Solutions exist even for the ordinary Schroedinger equation within standard Quantum Mechanics; and we obtain both approximate and exact solutions, also setting forth for them particular examples. In the ideal case such solutions bear infinite energy, as well as plane or spherical waves: we show therefore how to obtain nite-energy solutions. At last, we briefly consider solutions for a particle moving in the presence of a potential. (author)

  7. Nonautonomous discrete bright soliton solutions and interaction management for the Ablowitz-Ladik equation.

    Science.gov (United States)

    Yu, Fajun

    2015-03-01

    We present the nonautonomous discrete bright soliton solutions and their interactions in the discrete Ablowitz-Ladik (DAL) equation with variable coefficients, which possesses complicated wave propagation in time and differs from the usual bright soliton waves. The differential-difference similarity transformation allows us to relate the discrete bright soliton solutions of the inhomogeneous DAL equation to the solutions of the homogeneous DAL equation. Propagation and interaction behaviors of the nonautonomous discrete solitons are analyzed through the one- and two-soliton solutions. We study the discrete snaking behaviors, parabolic behaviors, and interaction behaviors of the discrete solitons. In addition, the interaction management with free functions and dynamic behaviors of these solutions is investigated analytically, which have certain applications in electrical and optical systems.

  8. Multiple periodic-soliton solutions of the (3+1)-dimensional generalised shallow water equation

    Science.gov (United States)

    Li, Ye-Zhou; Liu, Jian-Guo

    2018-06-01

    Based on the extended variable-coefficient homogeneous balance method and two new ansätz functions, we construct auto-Bäcklund transformation and multiple periodic-soliton solutions of (3 {+} 1)-dimensional generalised shallow water equations. Completely new periodic-soliton solutions including periodic cross-kink wave, periodic two-solitary wave and breather type of two-solitary wave are obtained. In addition, cross-kink three-soliton and cross-kink four-soliton solutions are derived. Furthermore, propagation characteristics and interactions of the obtained solutions are discussed and illustrated in figures.

  9. Surface solitons in waveguide arrays: Analytical solutions.

    Science.gov (United States)

    Kominis, Yannis; Papadopoulos, Aristeidis; Hizanidis, Kyriakos

    2007-08-06

    A novel phase-space method is employed for the construction of analytical stationary solitary waves located at the interface between a periodic nonlinear lattice of the Kronig-Penney type and a linear or nonlinear homogeneous medium as well as at the interface between two dissimilar nonlinear lattices. The method provides physical insight and understanding of the shape of the solitary wave profile and results to generic classes of localized solutions having either zero or nonzero semi-infinite backgrounds. For all cases, the method provides conditions involving the values of the propagation constant of the stationary solutions, the linear refractive index and the dimensions of each part in order to assure existence of solutions with specific profile characteristics. The evolution of the analytical solutions under propagation is investigated for cases of realistic configurations and interesting features are presented such as their remarkable robustness which could facilitate their experimental observation.

  10. On the Painleve integrability, periodic wave solutions and soliton solutions of generalized coupled higher-order nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Xu Guiqiong; Li Zhibin

    2005-01-01

    It is proven that generalized coupled higher-order nonlinear Schroedinger equations possess the Painleve property for two particular choices of parameters, using the Weiss-Tabor-Carnevale method and Kruskal's simplification. Abundant families of periodic wave solutions are obtained by using the Jacobi elliptic function expansion method with the assistance of symbolic manipulation system, Maple. It is also shown that these solutions exactly degenerate to bright soliton, dark soliton and mixed dark and bright soliton solutions with physical interests

  11. Soliton solutions for a quasilinear Schrodinger equation

    Directory of Open Access Journals (Sweden)

    Duchao Liu

    2013-12-01

    Full Text Available In this article, critical point theory is used to show the existence of nontrivial weak solutions to the quasilinear Schrodinger equation $$ -\\Delta_p u-\\frac{p}{2^{p-1}}u\\Delta_p(u^2=f(x,u $$ in a bounded smooth domain $\\Omega\\subset\\mathbb{R}^{N}$ with Dirichlet boundary conditions.

  12. Solitons and separable elliptic solutions of the sine-Gordon equation

    International Nuclear Information System (INIS)

    Bryan, A.C.; Haines, C.R.; Stuart, A.E.G.

    1979-01-01

    It is pointed out that the two-soliton (antisoliton) solutions of the sine-Gordon equation may be obtained as limiting cases of a separable, two-parameter family of elliptic solutions. The solitons are found on the boundary of the parameter space for the elliptic solutions when the latter are considered over their usual complex domain. (Auth.)

  13. Einstein equation solutions with axial symmetry, conical and essential singularities

    International Nuclear Information System (INIS)

    Oliveira, S.R. de.

    1986-01-01

    New classes of exact solutions to the Einstein equations of a static axisymetric space-time associated with rings and disks are found. Also, the solutions associated to a axisymetric superposition of punctual bodies, bars, rings and disks are obtained. These solutions have a strut singularities to keep the bodies apart. When one of the bodies of the superposition is a ring, the ring interior is covered with a membrane that serve as a support for the strut that hold the other body. Furthermore, the curvature singularities for different solutions ae analised. (author) [pt

  14. New exact solutions of the (2 + 1)-dimensional breaking soliton system via an extended mapping method

    International Nuclear Information System (INIS)

    Ma Songhua; Fang Jianping; Zheng Chunlong

    2009-01-01

    By means of an extended mapping method and a variable separation method, a series of solitary wave solutions, periodic wave solutions and variable separation solutions to the (2 + 1)-dimensional breaking soliton system is derived.

  15. Solutions of dissimilar material singularity and contact problems

    International Nuclear Information System (INIS)

    Yang, Y.

    2003-09-01

    Due to the mismatch of the material properties of joined components, after a homogeneous temperature change or under a mechanical loading, very high stresses occur near the intersection of the interface and the outer surface, or near the intersection of two interfaces. For most material combinations and joint geometries, there exists even a stress singularity. These high stresses may cause fracture of the joint. The investigation of the stress situation near the singular point, therefore, is of great interest. Especially, the relationship between the singular stress exponent, the material data and joint geometry is important for choosing a suitable material combination and joint geometry. In this work, the singular stress field is described analytically in case of the joint having a real and a complex eigenvalue. Solutions of different singularity problems are given, which are two dissimilar materials joint with free edges; dissimilar materials joint with edge tractions; joint with interface corner; joint with a given displacement at one edge; cracks in dissimilar materials joint; contact problem in dissimilar materials and logarithmic stress singularity. For an arbitrary joint geometry and material combination, the stress singular exponent, the angular function and the regular stress term can be calculated analytically. The stress intensity factors for a finite joint can be determined applying numerical methods, e.g. the finite element method (FEM). The method to determine more than one stress intensity factor is presented. The characteristics of the eigenvalues and the stress intensity factors are shown for different joint conditions. (orig.)

  16. On the generation of magnetostatic solutions from gravitational two-soliton solutions of a stationary mass

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, A. [B.K.C. College, Department of Physics, Kolkata (India); Chaudhuri, S. [University of Burdwan, Department of Physics, Burdwan (India)

    2017-11-15

    In the paper, magnetostatic solutions of the Einstein-Maxwell field equations are generated from the gravitational two-soliton solutions of a stationary mass. Using the soliton technique of Belinskii and Zakharov (Sov Phys JETP 48:985, 1978, Sov Phys JETP 50:1, 1979), we construct diagonal two-soliton solutions of Einstein's gravitational field equations for an axially symmetric stationary space-time and investigate some properties of the generated stationary gravitational metric. Magnetostatic solutions corresponding to the generated stationary gravitational solutions are then constructed using the transformation technique of Das and Chaudhuri (Pramana J Phys 40:277, 1993). The mass and the dipole moment of the source are evaluated. In our analysis we make use of a second transformation (Chaudhuri in Pramana J Phys 58:449, 2002), probably for the first time in the literature, to generate magnetostatic solutions from the stationary gravitational two-soliton solutions which give us simple and straightforward expressions for the mass and the magnetic dipole moment. (orig.)

  17. On existence of soliton solutions of arbitrary-order system of nonlinear Schrodinger equations

    International Nuclear Information System (INIS)

    Zhestkov, S.V.

    2003-01-01

    The soliton solutions are constructed for the system of arbitrary-order coupled nonlinear Schrodinger equations . The necessary and sufficient conditions of existence of these solutions are obtained. It is shown that the maximum number of solitons in nondegenerate case is 4L, where L is order of the system. (author)

  18. Bilinear forms, N-soliton solutions and soliton interactions for a fourth-order dispersive nonlinear Schrödinger equation in condensed-matter physics and biophysics

    International Nuclear Information System (INIS)

    Liu, Rong-Xiang; Tian, Bo; Liu, Li-Cai; Qin, Bo; Lü, Xing

    2013-01-01

    In this paper we investigate a fourth-order dispersive nonlinear Schrödinger equation, which governs the dynamics of a one-dimensional anisotropic Heisenberg ferromagnetic spin chain with the octuple–dipole interaction in condensed-matter physics as well as the alpha helical proteins with higher-order excitations and interactions in biophysics. Beyond the existing constraint, upon the introduction of an auxiliary function, bilinear forms and N-soliton solutions are constructed with the Hirota method. Asymptotic analysis on the two-soliton solutions indicates that the soliton interactions are elastic. Soliton velocity varies linearly with the coefficient of discreteness and higher-order magnetic interactions. Bound-state solitons can also exist under certain conditions. Period of a bound-state soliton is inversely correlated to the coefficient of discreteness and higher-order magnetic interactions. Interactions among the three solitons are all pairwise elastic

  19. Remarks about singular solutions to the Dirac equation

    International Nuclear Information System (INIS)

    Uhlir, M.

    1975-01-01

    In the paper singular solutions of the Dirac equation are investigated. They are derived in the Lorentz-covariant way of functions proportional to static multipole fields of scalar and (or) electromagnetic fields and of regular solutions of the Dirac equations. The regularization procedure excluding divergences of total energy, momentum and angular momentum of the spinor field considered is proposed

  20. Legendre condition and the stabilization problem for classical soliton solutions in generalized Skyrme models

    International Nuclear Information System (INIS)

    Kiknadze, N.A.; Khelashvili, A.A.

    1990-01-01

    The problem on stability of classical soliton solutions is studied from the unique point of view: the Legendre condition - necessary condition of existence of weak local minimum for energy functional (term soliton is used here in the wide sense) is used. Limits to parameters of the model Lagrangians are obtained; it is shown that there is no soliton stabilization in some of them despite the phenomenological achievements. The Jacoby sufficient condition is discussed

  1. Solitons

    CERN Document Server

    Trullinger, SE; Pokrovsky, VL

    1986-01-01

    In the twenty years since Zabusky and Kruskal coined the term ``soliton'', this concept changed the outlook on certain types of nonlinear phenomena and found its way into all branches of physics. The present volume deals with a great variety of applications of the new concept in condensed-matter physics, which is particularly reached in experimentally observable occurrences. The presentation is not centred around the mathematical aspects; the emphasis is on the physical nature of the nonlinear phenomena occurring in particular situations.With its emphasis on concrete, mostly experime

  2. Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms.

    Science.gov (United States)

    Chowdury, A; Kedziora, D J; Ankiewicz, A; Akhmediev, N

    2014-09-01

    We present the fifth-order equation of the nonlinear Schrödinger hierarchy. This integrable partial differential equation contains fifth-order dispersion and nonlinear terms related to it. We present the Lax pair and use Darboux transformations to derive exact expressions for the most representative soliton solutions. This set includes two-soliton collisions and the degenerate case of the two-soliton solution, as well as beating structures composed of two or three solitons. Ultimately, the new quintic operator and the terms it adds to the standard nonlinear Schrödinger equation (NLSE) are found to primarily affect the velocity of solutions, with complicated flow-on effects. Furthermore, we present a new structure, composed of coincident equal-amplitude solitons, which cannot exist for the standard NLSE.

  3. An infinite number of stationary soliton solutions to the five-dimensional vacuum Einstein equation

    International Nuclear Information System (INIS)

    Azuma, Takahiro; Koikawa, Takao

    2006-01-01

    We obtain an infinite number of soliton solutions to the five-dimensional stationary Einstein equation with axial symmetry by using the inverse scattering method. We start with the five-dimensional Minkowski space as a seed metric to obtain these solutions. The solutions are characterized by two soliton numbers and a constant appearing in the normalization factor which is related to a coordinate condition. We show that the (2, 0)-soliton solution is identical to the Myers-Perry solution with one angular momentum variable by imposing a condition on the relation between parameters. We also show that the (2, 2)-soliton solution is different from the black ring solution discovered by Emparan and Reall, although one component of the two metrics can be identical. (author)

  4. Singularity free non-rotating cosmological solutions for perfect fluids ...

    Indian Academy of Sciences (India)

    Singularity free cosmological solutions of the type stated in the title known so far are of a very special class and have the following characteristics: (a) The space time is cylindrically symmetric. (b) In case the metric is diagonal, the μ's are of the form μ = a function of time multiplied by a function of the radial coordinate.

  5. A series of new soliton-like solutions and double-like periodic solutions of a (2 + 1)-dimensional dispersive long wave equation

    International Nuclear Information System (INIS)

    Yong Chen; Qi Wang

    2005-01-01

    In this paper, we extend the algebraic method proposed by Fan (Chaos, Solitons and Fractals 20 (2004) 609) and the improved extended tanh method by Yomba (Chaos, Solitons and Fractals 20 (2004) 1135) to uniformly construct a series of soliton-like solutions and double-like periodic solutions for nonlinear partial differential equations (NPDE). Some new soliton-like solutions and double-like periodic solutions of a (2 + 1)-dimensional dispersive long wave equation are obtained

  6. Multiloop soliton and multibreather solutions of the short pulse model equation

    International Nuclear Information System (INIS)

    Matsuno, Yoshimasa

    2007-01-01

    We develop a systematic procedure for constructing the multisoliton solutions of the short pulse (SP) model equation which describes the propagation of ultra-short pulses in nonlinear medica. We first introduce a novel hodograph transformation to convert the SP equation into the sine-Gordon (sG) equation. With the soliton solutions of the sG equation, the system of linear partial differential equations governing the inverse mapping can be integrated analytically to obtain the soliton solutions of the SP equation in the form of the parametric representation. By specifying the soliton parameters, we obtain the multiloop and multibreather solutions. We investigate the asymptotic behavior of both solutions and confirm their solitonic feature. The nonsingular breather solutions may play an important role in studying the propagation of ultra-short pulses in an optical fibre. (author)

  7. Holomorphic Vector Bundles Corresponding to some Soliton Solutions of the Ward Equation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiujuan, E-mail: yzzhuxiujuan@sina.com [Jiangsu Second Normal University, School of Mathematics and Information Technology (China)

    2015-12-15

    Holomorphic vector bundles corresponding to the static soliton solution of the Ward equation were explicitly presented by Ward in terms of a meromorphic framing. Bundles (for simplicity, “bundle” is to be taken throughout to mean “holomorphic vector bundle”) corresponding to all Ward k-soliton solutions whose extended solutions have only simple poles, and some Ward 2-soliton solutions whose extended solutions have only a second-order pole, were explicitly described by us in a previous paper. In this paper, we go on to present some bundles corresponding to soliton-antisoliton solutions of the Ward equation, and Ward 3-soliton solutions whose extended solutions have a simple pole and a double pole. To give some more interpretation of the bundles, we study the second Chern number of the corresponded bundles and find that it can be obtained directly from the patching matrices. We also point out some information about bundles corresponding to Ward soliton solutions whose extended solutions have general pole data at the end of the paper.

  8. General N-Dark Soliton Solutions of the Multi-Component Mel'nikov System

    Science.gov (United States)

    Han, Zhong; Chen, Yong; Chen, Junchao

    2017-07-01

    A general form of N-dark soliton solutions of the multi-component Mel'nikov system are presented. Taking the coupled Mel'nikov system comprised of two-component short waves and one-component long wave as an example, its general N-dark-dark soliton solutions in Gram determinant form are constructed through the KP hierarchy reduction method. The dynamics of single dark-dark soliton and two dark-dark solitons are discussed in detail. It can be shown that the collisions of dark-dark solitons are elastic and energies of the solitons in different components completely transmit through. In addition, the dark-dark soliton bound states including both stationary and moving cases are also investigated. An interesting feature for the coupled Mel'nikov system is that the stationary dark-dark soliton bound states can exist for all possible combinations of nonlinearity coefficients including positive, negative and mixed types, while the moving case are possible when nonlinearity coefficients take opposite signs or they are both negative.

  9. The soliton solution of the PHI24 field theory in the Hartree approximation

    International Nuclear Information System (INIS)

    Altenbokum, M.

    1984-01-01

    In this thesis in a simple model which possesses at the classical level a soliton solution a quantum-mechanical soliton sector shall be constructed in a Hartree-Fock approximation without application of semiclassical procedures. To this belongs beside the determination of the excitation spectrum of the applied Hamiltonian the knowledge of the corresponding infinitely-much eigenfunctions. The existing translational invariance of a classical soliton solution which implies the existence of a degenerated ground state by presence of a massless excitation is removed by quantum fluctuations. By removing of this degeneration conventional approximation procedures for this sector of the Hilbert space become for the first time immediately possible. (HSI) [de

  10. A perturbation method for dark solitons based on a complete set of the squared Jost solutions

    International Nuclear Information System (INIS)

    Ao Shengmei; Yan Jiaren

    2005-01-01

    A perturbation method for dark solitons is developed, which is based on the construction and the rigorous proof of the complete set of squared Jost solutions. The general procedure solving the adiabatic solution of perturbed nonlinear Schroedinger + equation, the time-evolution equation of dark soliton parameters and a formula for calculating the first-order correction are given. The method can also overcome the difficulties resulting from the non-vanishing boundary condition

  11. Relaxation periodic solutions of one singular perturbed system with delay

    Science.gov (United States)

    Kashchenko, A. A.

    2017-12-01

    In this paper, we consider a singularly perturbed system of two differential equations with delay, simulating two coupled oscillators with a nonlinear compactly supported feedback. We reduce studying nonlocal dynamics of initial system to studying dynamics of special finite-dimensional mappings: rough stable (unstable) cycles of these mappings correspond to exponentially orbitally stable (unstable) relaxation solutions of initial problem. We show that dynamics of initial model depends on coupling coefficient crucially. Multistability is proved.

  12. Integrability Aspects and Soliton Solutions for a System Describing Ultrashort Pulse Propagation in an Inhomogeneous Multi-Component Medium

    International Nuclear Information System (INIS)

    Guo Rui; Tian Bo; Lue Xing; Zhang Haiqiang; Xu Tao

    2010-01-01

    For the propagation of the ultrashort pulses in an inhomogeneous multi-component nonlinear medium, a system of coupled equations is analytically studied in this paper. Painleve analysis shows that this system admits the Painleve property under some constraints. By means of the Ablowitz-Kaup-Newell-Segur procedure, the Lax pair of this system is derived, and the Darboux transformation (DT) is constructed with the help of the obtained Lax pair. With symbolic computation, the soliton solutions are obtained by virtue of the DT algorithm. Figures are plotted to illustrate the dynamical features of the soliton solutions. Characteristics of the solitons propagating in an inhomogeneous multi-component nonlinear medium are discussed: (i) Propagation of one soliton and two-peak soliton; (ii) Elastic interactions of the parabolic two solitons; (iii) Overlap phenomenon between two solitons; (iv) Collision of two head-on solitons and two head-on two-peak solitons; (v) Two different types of interactions of the three solitons; (vi) Decomposition phenomenon of one soliton into two solitons. The results might be useful in the study on the ultrashort-pulse propagation in the inhomogeneous multi-component nonlinear media. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  13. Soliton-like solutions to the GKdV equation by extended mapping method

    International Nuclear Information System (INIS)

    Wu Ranchao; Sun Jianhua

    2007-01-01

    In this note, many new exact solutions of the generalized KdV equation, such as rational solutions, periodic solutions like Jacobian elliptic and triangular functions, soliton-like solutions, are constructed by symbolic computation and the extended mapping method, with the auxiliary ordinary equation replaced by a more general one

  14. Thermodynamical description of stationary, asymptotically flat solutions with conical singularities

    International Nuclear Information System (INIS)

    Herdeiro, Carlos; Rebelo, Carmen; Radu, Eugen

    2010-01-01

    We examine the thermodynamical properties of a number of asymptotically flat, stationary (but not static) solutions having conical singularities, with both connected and nonconnected event horizons, using the thermodynamical description recently proposed in [C. Herdeiro, B. Kleihaus, J. Kunz, and E. Radu, Phys. Rev. D 81, 064013 (2010).]. The examples considered are the double-Kerr solution, the black ring rotating in either S 2 or S 1 , and the black Saturn, where the balance condition is not imposed for the latter two solutions. We show that not only the Bekenstein-Hawking area law is recovered from the thermodynamical description, but also the thermodynamical angular momentum is the Arnowitt-Deser-Misner angular momentum. We also analyze the thermodynamical stability and show that, for all these solutions, either the isothermal moment of inertia or the specific heat at constant angular momentum is negative, at any point in parameter space. Therefore, all these solutions are thermodynamically unstable in the grand canonical ensemble.

  15. Optical soliton solutions for two coupled nonlinear Schroedinger systems via Darboux transformation

    International Nuclear Information System (INIS)

    Zhang Haiqiang; Li Juan; Xu Tao; Zhang Yaxing; Hu Wei; Tian Bo

    2007-01-01

    In nonlinear optical fibers, the vector solitons can be governed by the systems of coupled nonlinear Schroedinger from polarized optical waves in an isotropic medium. Based on the Ablowitz-Kaup-Newell-Segur technology, the Darboux transformation method is successfully applied to two coupled nonlinear Schroedinger systems. With the help of symbolic computation, the bright vector one- and two-soliton solutions including one-peak and two-peak solitons are further constructed via the iterative algorithm of Darboux transformation. Through the figures for several sample solutions, the stable propagation and elastic collisions for these kinds of bright vector solitons are discussed and the possible applications are pointed out in optical communications and relevant optical experiments.In addition, the conserved quantities of such two systems, i.e., the energy, momentum and Hamiltonian, are also presented

  16. Vertex dynamics in multi-soliton solutions of Kadomtsev–Petviashvili II equation

    International Nuclear Information System (INIS)

    Zarmi, Yair

    2014-01-01

    A functional of the solution of the Kadomtsev–Petviashvili II equation maps multi-soliton solutions onto systems of vertices—structures that are localized around soliton junctions. A solution with one junction is mapped onto a single vertex, which emulates a free, spatially extended, particle. In solutions with several junctions, each junction is mapped onto a vertex. Moving in the x–y plane, the vertices collide, coalesce upon collision and then split up. When well separated, they emulate free particles. Multi-soliton solutions, whose structure does not change under space–time inversion as |t| → ∞, are mapped onto vertex systems that undergo elastic collisions. Solutions, whose structure does change, are mapped onto systems that undergo inelastic collisions. The inelastic vertex collisions generated from the infinite family of (M,1) solutions (M external solitons, (M − 2) Y-shaped soliton junctions, M ⩾ 4) play a unique role: the only definition of vertex mass consistent with momentum conservation in these collisions is the spatial integral of the vertex profile. This definition ensures, in addition, that, in these collisions, the total mass and kinetic energy due to the motion in the y-direction are conserved. In general, the kinetic energy due to the motion in the x-direction is not conserved in these collisions. (paper)

  17. Singularly perturbed hyperbolic problems on metric graphs: asymptotics of solutions

    Directory of Open Access Journals (Sweden)

    Golovaty Yuriy

    2017-04-01

    Full Text Available We are interested in the evolution phenomena on star-like networks composed of several branches which vary considerably in physical properties. The initial boundary value problem for singularly perturbed hyperbolic differential equation on a metric graph is studied. The hyperbolic equation becomes degenerate on a part of the graph as a small parameter goes to zero. In addition, the rates of degeneration may differ in different edges of the graph. Using the boundary layer method the complete asymptotic expansions of solutions are constructed and justified.

  18. Dispersive optical soliton solutions for the hyperbolic and cubic-quintic nonlinear Schrödinger equations via the extended sinh-Gordon equation expansion method

    Science.gov (United States)

    Seadawy, Aly R.; Kumar, Dipankar; Chakrabarty, Anuz Kumar

    2018-05-01

    The (2+1)-dimensional hyperbolic and cubic-quintic nonlinear Schrödinger equations describe the propagation of ultra-short pulses in optical fibers of nonlinear media. By using an extended sinh-Gordon equation expansion method, some new complex hyperbolic and trigonometric functions prototype solutions for two nonlinear Schrödinger equations were derived. The acquired new complex hyperbolic and trigonometric solutions are expressed by dark, bright, combined dark-bright, singular and combined singular solitons. The obtained results are more compatible than those of other applied methods. The extended sinh-Gordon equation expansion method is a more powerful and robust mathematical tool for generating new optical solitary wave solutions for many other nonlinear evolution equations arising in the propagation of optical pulses.

  19. Multi-soliton solutions to the modified nonlinear Schrödinger equation with variable coefficients in inhomogeneous fibers

    International Nuclear Information System (INIS)

    Dai, Chao-Qing; Qin, Zhen-Yun; Zheng, Chun-Long

    2012-01-01

    Multi-soliton solutions to the modified nonlinear Schrödinger equation (MNLSE) with variable coefficients (VCs) in inhomogeneous fibers are obtained with the help of mapping transformation, which reduces the VC MNLSE into a constant-coefficient MNLSE. Based on the analytical solutions, one- and two-soliton transmissions in the proper dispersion management systems are discussed. The sustainment of solitons and the disappearance of breathers for the VC MNLSE are first reported here. (paper)

  20. Classical solutions in quantum field theory solitons and instantons in high energy physics

    CERN Document Server

    Weinberg, Erick J

    2012-01-01

    Classical solutions play an important role in quantum field theory, high energy physics and cosmology. Real-time soliton solutions give rise to particles, such as magnetic monopoles, and extended structures, such as domain walls and cosmic strings, that have implications for early universe cosmology. Imaginary-time Euclidean instantons are responsible for important nonperturbative effects, while Euclidean bounce solutions govern transitions between metastable states. Written for advanced graduate students and researchers in elementary particle physics, cosmology and related fields, this book brings the reader up to the level of current research in the field. The first half of the book discusses the most important classes of solitons: kinks, vortices and magnetic monopoles. The cosmological and observational constraints on these are covered, as are more formal aspects, including BPS solitons and their connection with supersymmetry. The second half is devoted to Euclidean solutions, with particular emphasis on ...

  1. Applications of the ETEM for obtaining optical soliton solutions for the Lakshmanan-Porsezian-Daniel model

    Science.gov (United States)

    Manafian, Jalil; Foroutan, Mohammadreza; Guzali, Aref

    2017-11-01

    This paper examines the effectiveness of an integration scheme which is called the extended trial equation method (ETEM) for solving a well-known nonlinear equation of partial differential equations (PDEs). In this respect, the Lakshmanan-Porsezian-Daniel (LPD) equation with Kerr and power laws of nonlinearity which describes higher-order dispersion, full nonlinearity and spatiotemporal dispersion is considered, and as an achievement, a series of exact travelling-wave solutions for the aforementioned equation is formally extracted. Explicit new exact solutions are derived in different form such as dark solitons, bright solitons, solitary wave, periodic solitary wave, rational function, and elliptic function solutions of LPD equation. The movement of obtained solutions is shown graphically, which helps to understand the physical phenomena of this optical soliton equation. Many other such types of nonlinear equations arising in basic fabric of communications network technology and nonlinear optics can also be solved by this method.

  2. Baicklund transformation and multiple soliton solutions for the (3+1)-dimensional Jimbo-Miwa equation

    Institute of Scientific and Technical Information of China (English)

    张解放; 吴锋民

    2002-01-01

    We study an approach to constructing multiple soliton solutions of the (3+1)-dimensional nonlinear evolution equation. We take the (3+1)-dimensional Jimbo-Miwa (JM) equation as an example. Using the extended homogeneous balance method, one can find a Backlund transformation to decompose the (3+1)-dimensional JM equation into a linear partial differential equation and two bilinear partial differential equations. Starting from these linear and bilinear partial differential equations, some multiple soliton solutions for the (3+1)-dimensional JM equation are obtained by introducing a class of formal solutions.

  3. Numerical soliton-like solutions of the potential Kadomtsev-Petviashvili equation by the decomposition method

    International Nuclear Information System (INIS)

    Kaya, Dogan; El-Sayed, Salah M.

    2003-01-01

    In this Letter we present an Adomian's decomposition method (shortly ADM) for obtaining the numerical soliton-like solutions of the potential Kadomtsev-Petviashvili (shortly PKP) equation. We will prove the convergence of the ADM. We obtain the exact and numerical solitary-wave solutions of the PKP equation for certain initial conditions. Then ADM yields the analytic approximate solution with fast convergence rate and high accuracy through previous works. The numerical solutions are compared with the known analytical solutions

  4. Soliton and periodic solutions for higher order wave equations of KdV type (I)

    International Nuclear Information System (INIS)

    Khuri, S.A.

    2005-01-01

    The aim of the paper is twofold. First, a new ansaetze is introduced for the construction of exact solutions for higher order wave equations of KdV type (I). We show the existence of a class of discontinuous soliton solutions with infinite spikes. Second, the projective Riccati technique is implemented as an alternate approach for obtaining new exact solutions, solitary solutions, and periodic wave solutions

  5. A Simple Approach to Derive a Novel N-Soliton Solution for a (3+1)-Dimensional Nonlinear Evolution Equation

    International Nuclear Information System (INIS)

    Wu Jianping

    2010-01-01

    Based on the Hirota bilinear form, a simple approach without employing the standard perturbation technique, is presented for constructing a novel N-soliton solution for a (3+1)-dimensional nonlinear evolution equation. Moreover, the novel N-soliton solution is shown to have resonant behavior with the aid of Mathematica. (general)

  6. Bright-Dark Mixed N-Soliton Solutions of the Multi-Component Mel'nikov System

    Science.gov (United States)

    Han, Zhong; Chen, Yong; Chen, Junchao

    2017-10-01

    By virtue of the Kadomtsev-Petviashvili (KP) hierarchy reduction technique, we construct the general bright-dark mixed N-soliton solution to the multi-component Mel'nikov system. This multi-component system comprised of multiple (say M) short-wave components and one long-wave component with all possible combinations of nonlinearities including all-positive, all-negative and mixed types. Firstly, the two-bright-one-dark (2-b-1-d) and one-bright-two-dark (1-b-2-d) mixed N-soliton solutions in short-wave components of the three-component Mel'nikov system are derived in detail. Then we extend our analysis to the M-component Mel'nikov system to obtain its general mixed N-soliton solution. The formula obtained unifies the all-bright, all-dark and bright-dark mixed N-soliton solutions. For the collision of two solitons, an asymptotic analysis shows that for an M-component Mel'nikov system with M ≥ 3, inelastic collision takes place, resulting in energy exchange among the short-wave components supporting bright solitons only if the bright solitons appear in at least two short-wave components. In contrast, the dark solitons in the short-wave components and the bright solitons in the long-wave component always undergo elastic collision which is only accompanied by a position shift.

  7. Soliton solutions of the two-dimensional KdV-Burgers equation by homotopy perturbation method

    International Nuclear Information System (INIS)

    Molabahrami, A.; Khani, F.; Hamedi-Nezhad, S.

    2007-01-01

    In this Letter, the He's homotopy perturbation method (HPM) to finding the soliton solutions of the two-dimensional Korteweg-de Vries Burgers' equation (tdKdVB) for the initial conditions was applied. Numerical solutions of the equation were obtained. The obtained solutions, in comparison with the exact solutions admit a remarkable accuracy. The results reveal that the HPM is very effective and simple

  8. A study on relativistic lagrangian field theories with non-topological soliton solutions

    International Nuclear Information System (INIS)

    Diaz-Alonso, J.; Rubiera-Garcia, D.

    2009-01-01

    We perform a general analysis of the dynamic structure of two classes of relativistic lagrangian field theories exhibiting static spherically symmetric non-topological soliton solutions. The analysis is concerned with (multi-) scalar fields and generalized gauge fields of compact semi-simple Lie groups. The lagrangian densities governing the dynamics of the (multi-) scalar fields are assumed to be general functions of the kinetic terms, whereas the gauge-invariant lagrangians are general functions of the field invariants. These functions are constrained by requirements of regularity, positivity of the energy and vanishing of the vacuum energy, defining what we call 'admissible' models. In the scalar case we establish the general conditions which determine exhaustively the families of admissible lagrangian models supporting this kind of finite-energy solutions. We analyze some explicit examples of these different families, which are defined by the asymptotic and central behaviour of the fields of the corresponding particle-like solutions. From the variational analysis of the energy functional, we show that the admissibility constraints and the finiteness of the energy of the scalar solitons are necessary and sufficient conditions for their linear static stability against small charge-preserving perturbations. Furthermore, we perform a general spectral analysis of the dynamic evolution of the small perturbations around the statically stable solitons, establishing their dynamic stability. Next, we consider the case of many-components scalar fields, showing that the resolution of the particle-like field problem in this case reduces to that of the one-component case. The study of these scalar models is a necessary step in the analysis of the gauge fields. In this latter case, we add the requirement of parity invariance to the admissibility constraints. We determine the general conditions defining the families of admissible gauge-invariant models exhibiting finite

  9. Exact soliton solutions of the generalized Gross-Pitaevskii equation based on expansion method

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2014-06-01

    Full Text Available We give a more generalized treatment of the 1D generalized Gross-Pitaevskii equation (GGPE with variable term coefficients. External harmonic trapping potential is fully considered and the nonlinear interaction term is of arbitrary polytropic index of superfluid wave function. We also eliminate the interdependence between variable coefficients of the equation terms avoiding the restrictions that occur in some other works. The exact soliton solutions of the GGPE are obtained through the delicate combined utilization of modified lens-type transformation and F-expansion method with dominant features like soliton type properties highlighted.

  10. Darboux transformation and soliton solutions for the Boiti-Pempinelli-Tu (BPT) hierarchy

    International Nuclear Information System (INIS)

    Wang Jiong

    2005-01-01

    Starting from a spectral problem, we derive the well-known Boiti-Pempinelli-Tu (BPT) hierarchy. An explicit and universal Darboux transformation for the whole hierarchy is constructed. The soliton solutions for the BPT hierarchy are obtained by applying the Darboux transformation

  11. New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod

    Directory of Open Access Journals (Sweden)

    Aly R. Seadawy

    2018-03-01

    Full Text Available This paper examines the effectiveness of an integration scheme which called the extended trial equation method (ETEM in exactly solving a well-known nonlinear equation of partial differential equations (PDEs. In this respect, the longitudinal wave equation (LWE that arises in mathematical physics with dispersion caused by the transverse Poisson’s effect in a magneto-electro-elastic (MEE circular rod, which a series of exact traveling wave solutions for the aforementioned equation is formally extracted. Explicit new exact solutions are derived in different form such as dark solitons, bright solitons, solitary wave, periodic solitary wave, rational function, and elliptic function solutions of the longitudinal wave equation. The movements of obtained solutions are shown graphically, which helps to understand the physical phenomena of this longitudinal wave equation. Many other such types of nonlinear equations arising in non-destructive evaluation of structures made of the advanced MEE material can also be solved by this method. Keywords: Extended trial equation method, Longitudinal wave equation in a MEE circular rod, Dark solitons, Bright solitons, Solitary wave, Periodic solitary wave

  12. Exact optical solitons in (n + 1)-dimensions with anti-cubic nonlinearity

    Science.gov (United States)

    Younis, Muhammad; Shahid, Iram; Anbreen, Sumaira; Rizvi, Syed Tahir Raza

    2018-02-01

    The paper studies the propagation of optical solitons in (n + 1)-dimensions under anti-cubic law of nonlinearity. The bright, dark and singular optical solitons are extracted using the extended trial equation method. The constraint conditions, for the existence of these solitons, are also listed. Additionally, a couple of other solutions known as singular periodic and Jacobi elliptic solutions, fall out as a by-product of this scheme. The obtained results are new and reported first time in (n + 1)-dimensions with anti-cubic law of nonlinearity.

  13. Infinite derivative gravity : non-singular cosmology & blackhole solutions

    NARCIS (Netherlands)

    Mazumdar, Anupam

    2017-01-01

    Both Einstein's theory of General Relativity and Newton's theory of gravity possess a short dis- tance and small time scale catastrophe. The blackhole singularity and cosmological Big Bang singularity problems highlight that current theories of gravity are incomplete description at early times and

  14. Exact Asymptotic Expansion of Singular Solutions for the (2+1-D Protter Problem

    Directory of Open Access Journals (Sweden)

    Lubomir Dechevski

    2012-01-01

    Full Text Available We study three-dimensional boundary value problems for the nonhomogeneous wave equation, which are analogues of the Darboux problems in ℝ2. In contrast to the planar Darboux problem the three-dimensional version is not well posed, since its homogeneous adjoint problem has an infinite number of classical solutions. On the other hand, it is known that for smooth right-hand side functions there is a uniquely determined generalized solution that may have a strong power-type singularity at one boundary point. This singularity is isolated at the vertex of the characteristic light cone and does not propagate along the cone. The present paper describes asymptotic expansion of the generalized solutions in negative powers of the distance to this singular point. We derive necessary and sufficient conditions for existence of solutions with a fixed order of singularity and give a priori estimates for the singular solutions.

  15. Exact solutions, finite time singularities and non-singular universe models from a variety of Λ(t) cosmologies

    Science.gov (United States)

    Pan, Supriya

    2018-01-01

    Cosmological models with time-dependent Λ (read as Λ(t)) have been investigated widely in the literature. Models that solve background dynamics analytically are of special interest. Additionally, the allowance of past or future singularities at finite cosmic time in a specific model signals for a generic test on its viabilities with the current observations. Following these, in this work we consider a variety of Λ(t) models focusing on their evolutions and singular behavior. We found that a series of models in this class can be exactly solved when the background universe is described by a spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) line element. The solutions in terms of the scale factor of the FLRW universe offer different universe models, such as power-law expansion, oscillating, and the singularity free universe. However, we also noticed that a large number of the models in this series permit past or future cosmological singularities at finite cosmic time. At last we close the work with a note that the avoidance of future singularities is possible for certain models under some specific restrictions.

  16. New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod

    Science.gov (United States)

    Seadawy, Aly R.; Manafian, Jalil

    2018-03-01

    This paper examines the effectiveness of an integration scheme which called the extended trial equation method (ETEM) in exactly solving a well-known nonlinear equation of partial differential equations (PDEs). In this respect, the longitudinal wave equation (LWE) that arises in mathematical physics with dispersion caused by the transverse Poisson's effect in a magneto-electro-elastic (MEE) circular rod, which a series of exact traveling wave solutions for the aforementioned equation is formally extracted. Explicit new exact solutions are derived in different form such as dark solitons, bright solitons, solitary wave, periodic solitary wave, rational function, and elliptic function solutions of the longitudinal wave equation. The movements of obtained solutions are shown graphically, which helps to understand the physical phenomena of this longitudinal wave equation. Many other such types of nonlinear equations arising in non-destructive evaluation of structures made of the advanced MEE material can also be solved by this method.

  17. Noncommutative solitons

    International Nuclear Information System (INIS)

    Gopakumar, R.

    2002-01-01

    Though noncommutative field theories have been explored for several years, a resurgence of interest in it was sparked off after it was realised that they arise very naturally as limits of string theory in certain background fields. It became more plausible (at least to string theorists) that these nonlocal deformations of usual quantum field theories are consistent theories in themselves. This led to a detailed exploration of many of their classical and quantum properties. I will elaborate further on the string theory context in the next section. One of the consequences of this exploration was the discovery of novel classical solutions in noncommutative field theories. Since then much work has been done in exploring many of their novel properties. My lectures focussed on some specific aspects of these noncommutative solitons. They primarily reflect the topics that I have worked on and are not intended to be a survey of the large amount of work on this topic. We have tried to give a flavour of the physics that can be captured by the relatively elementary classical solutions of noncommutative field theories. We have seen in different contexts how these solitons are really simple manifestations of D-branes, possessing many of their important features. Though they have been primarily studied in the context of tachyon condensation, we saw that they can also shed some light on the resolution of singularities in spacetime by D-brane probes. In addition to other applications in string theory it is important at this stage to explore their presence in other systems with a strong magnetic field like the quantum hall effect

  18. Noncommutative solitons

    Energy Technology Data Exchange (ETDEWEB)

    Gopakumar, R [Harish-Chandra Research Institute, Jhusi, Allahabad (India)

    2002-05-15

    Though noncommutative field theories have been explored for several years, a resurgence of interest in it was sparked off after it was realised that they arise very naturally as limits of string theory in certain background fields. It became more plausible (at least to string theorists) that these nonlocal deformations of usual quantum field theories are consistent theories in themselves. This led to a detailed exploration of many of their classical and quantum properties. I will elaborate further on the string theory context in the next section. One of the consequences of this exploration was the discovery of novel classical solutions in noncommutative field theories. Since then much work has been done in exploring many of their novel properties. My lectures focussed on some specific aspects of these noncommutative solitons. They primarily reflect the topics that I have worked on and are not intended to be a survey of the large amount of work on this topic. We have tried to give a flavour of the physics that can be captured by the relatively elementary classical solutions of noncommutative field theories. We have seen in different contexts how these solitons are really simple manifestations of D-branes, possessing many of their important features. Though they have been primarily studied in the context of tachyon condensation, we saw that they can also shed some light on the resolution of singularities in spacetime by D-brane probes. In addition to other applications in string theory it is important at this stage to explore their presence in other systems with a strong magnetic field like the quantum hall effect.

  19. The unified approach to integrable relativistic equations: Soliton solutions over non-vanishing backgrounds - 1

    International Nuclear Information System (INIS)

    Barashenkov, I.V.; Getmanov, B.S.; Kovtun, V.E.

    1992-01-01

    The scheme for unified description of integrable relativistic massive systems provides an inverse scattering formalism that covers universally all (1+1)- dimensional systems of this kind. In this work we construct the N-soliton solution (over an arbitrary background) for some generic system which is associated with the sl(2,C) case of the scheme and whose reductions include the complex sine-Gordon equation, the massive Thirring model and other equations, both in the Euclidean and Minkowski spaces. Thus the N-soliton solutions for all these systems emerge in a unified form differing only in the type of constraints imposed on their parameters. In an earlier paper the case of the zero background was considered while here we concentrate on the case of the non-vanishing constant background i.e., on the N-kink solutions. (author). 18 refs

  20. Bäcklund transformation and soliton solutions in terms of the Wronskian for the Kadomtsev-Petviashvili-based system in fluid dynamics

    Science.gov (United States)

    Du, Zhong; Tian, Bo; Xie, Xi-Yang; Chai, Jun; Wu, Xiao-Yu

    2018-04-01

    In this paper, investigation is made on a Kadomtsev-Petviashvili-based system, which can be seen in fluid dynamics, biology and plasma physics. Based on the Hirota method, bilinear form and Bäcklund transformation (BT) are derived. N-soliton solutions in terms of the Wronskian are constructed, and it can be verified that the N-soliton solutions in terms of the Wronskian satisfy the bilinear form and Bäcklund transformation. Through the N-soliton solutions in terms of the Wronskian, we graphically obtain the kink-dark-like solitons and parallel solitons, which keep their shapes and velocities unchanged during the propagation.

  1. Travelling wave solutions for a singularly perturbed Burgers–KdV ...

    Indian Academy of Sciences (India)

    This paper concerns with the existence problem of travelling wave solutions to a singularly perturbed Burgers–KdV equation. For this, we use the dynamical systems approach, specifically, the geometric singular perturbation theory and centre manifold theory. We also numerically show approximations, in particular, for ...

  2. Extended Soliton Solutions in an Effective Action for SU(2 Yang-Mills Theory

    Directory of Open Access Journals (Sweden)

    Nobuyuki Sawado

    2006-01-01

    Full Text Available The Skyrme-Faddeev-Niemi (SFN model which is an O(3 σ model in three dimensional space up to fourth-order in the first derivative is regarded as a low-energy effective theory of SU(2 Yang-Mills theory. One can show from the Wilsonian renormalization group argument that the effective action of Yang-Mills theory recovers the SFN in the infrared region. However, the theory contains an additional fourth-order term which destabilizes the soliton solution. We apply the perturbative treatment to the second derivative term in order to exclude (or reduce the ill behavior of the original action and show that the SFN model with the second derivative term possesses soliton solutions.

  3. Inverse Scattering Method and Soliton Solution Family for String Effective Action

    International Nuclear Information System (INIS)

    Ya-Jun, Gao

    2009-01-01

    A modified Hauser–Ernst-type linear system is established and used to develop an inverse scattering method for solving the motion equations of the string effective action describing the coupled gravity, dilaton and Kalb–Ramond fields. The reduction procedures in this inverse scattering method are found to be fairly simple, which makes the proposed inverse scattering method applied fine and effective. As an application, a concrete family of soliton solutions for the considered theory is obtained

  4. A set of exact two soliton wave solutions to Einstein field equations

    International Nuclear Information System (INIS)

    Wang Youtang; He Zhixian

    1991-09-01

    A set of exact solutions of Einstein equations in vacuum is obtained. Taking this set of solutions as seed solutions and making use of the Belinsky-Zakharov generation technique a set of generated solutions is constructed. Both set of exact solutions and a set of generated solutions describe two solition waves, which propagate in opposite directions and collide with each other, and then recover their original shapes. The singularities of the two set of solutions are analyzed. The relationship between our solutions and other solutions is also discussed. (author). 11 refs, 4 figs

  5. Exact soliton-like solutions of the radial Gross–Pitaevskii equation

    International Nuclear Information System (INIS)

    Toikka, L A; Hietarinta, J; Suominen, K-A

    2012-01-01

    We construct exact ring soliton-like solutions of the cylindrically symmetric (i.e. radial) Gross–Pitaevskii equation with a potential, using the similarity transformation method. Depending on the choice of the allowed free functions, the solutions can take the form of stationary dark or bright rings whose time dependence is in the phase dynamics only, or oscillating and bouncing solutions, related to the second Painlevé transcendent. In each case the potential can be chosen to be time independent. (paper)

  6. Singularly perturbed Burger-Huxley equation: Analytical solution ...

    African Journals Online (AJOL)

    The work presented considers the initial boundary value problem for nonlinear singularly perturbed time dependent Burger- Huxley equation. The equation contains two terms with nonlinearities, the cubic term and the advection term. Generally, the severe difficulties of two types encounter in solving this problem. The first ...

  7. Positive periodic solution for p-Laplacian neutral Rayleigh equation with singularity of attractive type.

    Science.gov (United States)

    Xin, Yun; Liu, Hongmin; Cheng, Zhibo

    2018-01-01

    In this paper, we consider a kind of p -Laplacian neutral Rayleigh equation with singularity of attractive type, [Formula: see text] By applications of an extension of Mawhin's continuation theorem, sufficient conditions for the existence of periodic solution are established.

  8. Homogeneous Solutions of Stationary Navier-Stokes Equations with Isolated Singularities on the Unit Sphere. I. One Singularity

    Science.gov (United States)

    Li, Li; Li, YanYan; Yan, Xukai

    2018-03-01

    We classify all (-1)-homogeneous axisymmetric no-swirl solutions of incompressible stationary Navier-Stokes equations in three dimension which are smooth on the unit sphere minus the south pole, parameterize them as a two dimensional surface with boundary, and analyze their pressure profiles near the north pole. Then we prove that there is a curve of (-1)-homogeneous axisymmetric solutions with nonzero swirl, having the same smoothness property, emanating from every point of the interior and one part of the boundary of the solution surface. Moreover we prove that there is no such curve of solutions for any point on the other part of the boundary. We also establish asymptotic expansions for every (-1)-homogeneous axisymmetric solutions in a neighborhood of the singular point on the unit sphere.

  9. A novel singular pattern in the sine-Gordon equation

    International Nuclear Information System (INIS)

    Huang, Debin

    2003-01-01

    By the scatter problem and the Backlund transformation of the sine-Gordon equation, we find a novel solution with the singularity of jumping phenomenon, which displays pattern structure similar respectively to soliton, kink, anti-kink and double pole solution with the different choice of the purely imaginary spectrum of the sine-Gordon equation

  10. Details of the general numerical solutions of the Friedberg-Lee soliton model for ground and exited states

    International Nuclear Information System (INIS)

    Koeppel, T.; Harvey, M.

    1984-06-01

    A new numerical method is applied to solving the equations of motion of the Friedberg-Lee Soliton model for both ground and spherically symmetric excited states. General results have been obtained over a wide range of parameters. Critical coupling constants and critical particle numbers have been determined below which soliton solutions cease to exist. The static properties of the proton are considered to show that as presently formulated the model fails to fit all experimental data for any set of parameters

  11. 1-Soliton solution of the generalized Zakharov-Kuznetsov equation with nonlinear dispersion and time-dependent coefficients

    International Nuclear Information System (INIS)

    Biswas, Anjan

    2009-01-01

    In this Letter, the 1-soliton solution of the Zakharov-Kuznetsov equation with power law nonlinearity and nonlinear dispersion along with time-dependent coefficients is obtained. There are two models for this kind of an equation that are studied. The constraint relation between these time-dependent coefficients is established for the solitons to exist. Subsequently, this equation is again analysed with generalized evolution. The solitary wave ansatz is used to carry out this investigation.

  12. Soliton solution for nonlinear partial differential equations by cosine-function method

    International Nuclear Information System (INIS)

    Ali, A.H.A.; Soliman, A.A.; Raslan, K.R.

    2007-01-01

    In this Letter, we established a traveling wave solution by using Cosine-function algorithm for nonlinear partial differential equations. The method is used to obtain the exact solutions for five different types of nonlinear partial differential equations such as, general equal width wave equation (GEWE), general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKdV), general improved Korteweg-de Vries equation (GIKdV), and Coupled equal width wave equations (CEWE), which are the important soliton equations

  13. Topological and non-topological soliton solutions to some time ...

    Indian Academy of Sciences (India)

    Department of Engineering Sciences, Faculty of Technology and Engineering, East of ... These equations have been widely applied in many branches ... solutions of nonlinear fractional partial differential equations is one of the most impor-.

  14. Soliton solutions and chaotic motions of the Zakharov equations for the Langmuir wave in the plasma

    Energy Technology Data Exchange (ETDEWEB)

    Zhen, Hui-Ling; Tian, Bo, E-mail: tian-bupt@163.com; Wang, Yu-Feng; Liu, De-Yin [State Key Laboratory of Information Photonics and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2015-03-15

    For the interaction between the high-frequency Langmuir waves and low-frequency ion-acoustic waves in the plasma, the Zakharov equations are studied in this paper. Via the Hirota method, we obtain the soliton solutions, based on which the soliton propagation is presented. It is found that with λ increasing, the amplitude of u decreases, whereas that of v remains unchanged, where λ is the ion-acoustic speed, u is the slowly-varying envelope of the Langmuir wave, and v is the fluctuation of the equilibrium ion density. Both the head-on and bound-state interactions between the two solitons are displayed. We observe that with λ decreasing, the interaction period of u decreases, while that of v keeps unchanged. It is found that the Zakharov equations cannot admit any chaotic motions. With the external perturbations taken into consideration, the perturbed Zakharov equations are studied for us to see the associated chaotic motions. Both the weak and developed chaotic motions are investigated, and the difference between them roots in the relative magnitude of the nonlinearities and perturbations. The chaotic motions are weakened with λ increasing, or else, strengthened. Periodic motion appears when the nonlinear terms and external perturbations are balanced. With such a balance kept, one period increases with λ increasing.

  15. New multiple soliton solutions to the general Burgers-Fisher equation and the Kuramoto-Sivashinsky equation

    International Nuclear Information System (INIS)

    Chen Huaitang; Zhang Hongqing

    2004-01-01

    A generalized tanh function method is used for constructing exact travelling wave solutions of nonlinear partial differential equations in a unified way. The main idea of this method is to take full advantage of the Riccati equation which has more new solutions. More new multiple soliton solutions are obtained for the general Burgers-Fisher equation and the Kuramoto-Sivashinsky equation

  16. Space-time slicing in Horndeski theories and its implications for non-singular bouncing solutions

    Science.gov (United States)

    Ijjas, Anna

    2018-02-01

    In this paper, we show how the proper choice of gauge is critical in analyzing the stability of non-singular cosmological bounce solutions based on Horndeski theories. We show that it is possible to construct non-singular cosmological bounce solutions with classically stable behavior for all modes with wavelengths above the Planck scale where: (a) the solution involves a stage of null-energy condition violation during which gravity is described by a modification of Einstein's general relativity; and (b) the solution reduces to Einstein gravity both before and after the null-energy condition violating stage. Similar considerations apply to galilean genesis scenarios.

  17. Dynamics and elastic interactions of the discrete multi-dark soliton solutions for the Kaup-Newell lattice equation

    Science.gov (United States)

    Liu, Nan; Wen, Xiao-Yong

    2018-03-01

    Under consideration in this paper is the Kaup-Newell (KN) lattice equation which is an integrable discretization of the KN equation. Infinitely, many conservation laws and discrete N-fold Darboux transformation (DT) for this system are constructed and established based on its Lax representation. Via the resulting N-fold DT, the discrete multi-dark soliton solutions in terms of determinants are derived from non-vanishing background. Propagation and elastic interaction structures of such solitons are shown graphically. Overtaking interaction phenomena between/among the two, three and four solitons are discussed. Numerical simulations are used to explore their dynamical behaviors of such multi-dark solitons. Numerical results show that their evolutions are stable against a small noise. Results in this paper might be helpful for understanding the propagation of nonlinear Alfvén waves in plasmas.

  18. Singular characteristic tracking algorithm for improved solution accuracy of the discrete ordinates method with isotropic scattering

    International Nuclear Information System (INIS)

    Duo, J. I.; Azmy, Y. Y.

    2007-01-01

    A new method, the Singular Characteristics Tracking algorithm, is developed to account for potential non-smoothness across the singular characteristics in the exact solution of the discrete ordinates approximation of the transport equation. Numerical results show improved rate of convergence of the solution to the discrete ordinates equations in two spatial dimensions with isotropic scattering using the proposed methodology. Unlike the standard Weighted Diamond Difference methods, the new algorithm achieves local convergence in the case of discontinuous angular flux along the singular characteristics. The method also significantly reduces the error for problems where the angular flux presents discontinuous spatial derivatives across these lines. For purposes of verifying the results, the Method of Manufactured Solutions is used to generate analytical reference solutions that permit estimating the local error in the numerical solution. (authors)

  19. Aitken extrapolation and epsilon algorithm for an accelerated solution of weakly singular nonlinear Volterra integral equations

    International Nuclear Information System (INIS)

    Mesgarani, H; Parmour, P; Aghazadeh, N

    2010-01-01

    In this paper, we apply Aitken extrapolation and epsilon algorithm as acceleration technique for the solution of a weakly singular nonlinear Volterra integral equation of the second kind. In this paper, based on Tao and Yong (2006 J. Math. Anal. Appl. 324 225-37.) the integral equation is solved by Navot's quadrature formula. Also, Tao and Yong (2006) for the first time applied Richardson extrapolation to accelerating convergence for the weakly singular nonlinear Volterra integral equations of the second kind. To our knowledge, this paper may be the first attempt to apply Aitken extrapolation and epsilon algorithm for the weakly singular nonlinear Volterra integral equations of the second kind.

  20. A singular one-parameter family of solutions in cubic superstring field theory

    Energy Technology Data Exchange (ETDEWEB)

    Arroyo, E. Aldo [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, 09210-170 São Paulo, SP (Brazil)

    2016-05-03

    Performing a gauge transformation of a simple identity-like solution of superstring field theory, we construct a one-parameter family of solutions, and by evaluating the energy associated to this family, we show that for most of the values of the parameter the solution represents the tachyon vacuum, except for two isolated singular points where the solution becomes the perturbative vacuum and the half brane solution.

  1. Cosmological solutions and finite time singularities in Finslerian geometry

    Science.gov (United States)

    Paul, Nupur; de, S. S.; Rahaman, Farook

    2018-03-01

    We consider a very general scenario of our universe where its geometry is characterized by the Finslerian structure on the underlying spacetime manifold, a generalization of the Riemannian geometry. Now considering a general energy-momentum tensor for matter sector, we derive the gravitational field equations in such spacetime. Further, to depict the cosmological dynamics in such spacetime proposing an interesting equation of state identified by a sole parameter γ which for isotropic limit is simply the barotropic equation of state p = (γ ‑ 1)ρ (γ ∈ ℝ being the barotropic index), we solve the background dynamics. The dynamics offers several possibilities depending on this sole parameter as follows: (i) only an exponential expansion, or (ii) a finite time past singularity (big bang) with late accelerating phase, or (iii) a nonsingular universe exhibiting an accelerating scenario at late time which finally predicts a big rip type singularity. We also discuss several energy conditions and the possibility of cosmic bounce. Finally, we establish the first law of thermodynamics in such spacetime.

  2. Constructing soliton solutions and super-bilinear form of lattice supersymmetric KdV equation

    International Nuclear Information System (INIS)

    Carstea, A S

    2015-01-01

    The Hirota bilinear form and multisoliton solution for semidiscrete and fully discrete (difference–difference) versions of the supersymmetric Korteweg–de Vries (KdV) equation found by Xue et al (2013 J. Phys. A: Math. Theor 46 502001) are presented. The solitonic interaction term displays a fermionic dressing factor as in the continuous supersymmetric case. Using bilinear equations it is also shown that a new integrable semidiscrete (and fully discrete) version of supersymmetric KdV can be constructed with a simpler bilinear form but a more complicated interaction dressing. Its continuum limit is also computed. (paper)

  3. Soliton solutions by Darboux transformation and some reductions for a new Hamiltonian lattice hierarchy

    International Nuclear Information System (INIS)

    Tian Shoufu; Zhang Hongqing

    2010-01-01

    In this paper, we start from the discrete spectral problem and construct a lattice hierarchy by properly choosing an auxiliary spectral problem V-tilde n (m) , which can reduce to the Volterra hierarchy, the Ablowitz-Ladik hierarchy, positive and negative lattice hierarchies and a new hierarchy. The new hierarchy is integrable in involutory Lax's sense and possesses multi-Hamiltonian structure. In addition, the Darboux transformation of the lattice hierarchy is obtained when the freely adjustable function εn (1) =0 and m=1. Then some soliton solutions are obtained by using Darboux transformation. This method is also suitable for other more general spectral problems in mathematics and physics.

  4. On the stability of soliton solution in NLS-type general field model

    International Nuclear Information System (INIS)

    Chakrabarti, S.; Nayyar, A.H.

    1982-08-01

    A model incorporating the nonlinear Schroedinger equation and its generalizations is considered and the stability of its periodic-in-time solutions under the restriction of a fixed charge Q is analysed. It is shown that the necessary condition for the stability is given by the inequality deltaQ/deltaν<0, where ν is the parameter of periodicity of the solution in time. In particular, one specific class of Lagrangians is considered and, in addition, the sufficient conditions for the stability of the soliton solutions are also determined. This study thus examines both the necessary and the sufficient conditions for the stability of the solutions of nonlinear Schroedinger equation and some of its generalizations. (author)

  5. Periodic solutions to singular second order differential equations: the repulsive case

    Czech Academy of Sciences Publication Activity Database

    Hakl, Robert; Torres, P.J.; Zamora, M.

    2012-01-01

    Roč. 39, č. 2 (2012), s. 199-220 ISSN 1230-3429 Institutional support: RVO:67985840 Keywords : singular nonlinear boundary value problem * positive solutions * periodic solutions Subject RIV: BA - General Mathematics Impact factor: 1.099, year: 2012

  6. Existence of Positive Solutions to a Singular Semipositone Boundary Value Problem of Nonlinear Fractional Differential Systems

    Directory of Open Access Journals (Sweden)

    Xiaofeng Zhang

    2017-12-01

    Full Text Available In this paper, we consider the existence of positive solutions to a singular semipositone boundary value problem of nonlinear fractional differential equations. By applying the fixed point index theorem, some new results for the existence of positive solutions are obtained. In addition, an example is presented to demonstrate the application of our main results.

  7. Three symmetric positive solutions of fourth-order singular nonlocal boundary value problems

    Directory of Open Access Journals (Sweden)

    Fuyi Xu

    2011-12-01

    Full Text Available In this paper, we study the existence of three positive solutions of fourth-order singular nonlocal boundary value problems. We show that there exist triple symmetric positive solutions by using Leggett-Williams fixed-point theorem. The conclusions in this paper essentially extend and improve some known results.

  8. On the multisummability of WKB solutions of certain singularly perturbed linear ordinary differential equations

    Directory of Open Access Journals (Sweden)

    Yoshitsugu Takei

    2015-01-01

    Full Text Available Using two concrete examples, we discuss the multisummability of WKB solutions of singularly perturbed linear ordinary differential equations. Integral representations of solutions and a criterion for the multisummability based on the Cauchy-Heine transform play an important role in the proof.

  9. Analytical Solutions for Systems of Singular Partial Differential-Algebraic Equations

    Directory of Open Access Journals (Sweden)

    U. Filobello-Nino

    2015-01-01

    Full Text Available This paper proposes power series method (PSM in order to find solutions for singular partial differential-algebraic equations (SPDAEs. We will solve three examples to show that PSM method can be used to search for analytical solutions of SPDAEs. What is more, we will see that, in some cases, Padé posttreatment, besides enlarging the domain of convergence, may be employed in order to get the exact solution from the truncated series solutions of PSM.

  10. Existence of weak solutions to a nonlinear reaction-diffusion system with singular sources

    Directory of Open Access Journals (Sweden)

    Ida de Bonis

    2017-09-01

    Full Text Available We discuss the existence of a class of weak solutions to a nonlinear parabolic system of reaction-diffusion type endowed with singular production terms by reaction. The singularity is due to a potential occurrence of quenching localized to the domain boundary. The kind of quenching we have in mind is due to a twofold contribution: (i the choice of boundary conditions, modeling in our case the contact with an infinite reservoir filled with ready-to-react chemicals and (ii the use of a particular nonlinear, non-Lipschitz structure of the reaction kinetics. Our working techniques use fine energy estimates for approximating non-singular problems and uniform control on the set where singularities are localizing.

  11. NUMERICAL SOLUTION OF SINGULAR INVERSE NODAL PROBLEM BY USING CHEBYSHEV POLYNOMIALS

    OpenAIRE

    NEAMATY, ABDOLALI; YILMAZ, EMRAH; AKBARPOOR, SHAHRBANOO; DABBAGHIAN, ABDOLHADI

    2017-01-01

    In this study, we consider Sturm-Liouville problem in two cases: the first case having no singularity and the second case having a singularity at zero. Then, we calculate the eigenvalues and the nodal points and present the uniqueness theorem for the solution of the inverse problem by using a dense subset of the nodal points in two given cases. Also, we use Chebyshev polynomials of the first kind for calculating the approximate solution of the inverse nodal problem in these cases. Finally, we...

  12. Non linear photons: a non singular cosmological solution

    International Nuclear Information System (INIS)

    Alves, G.A.

    1986-01-01

    The validity of equivalence principle as principle of minimum coupling between field interactions, is discussed. The non minimum coupling between vector field and gravitational field, and some consequences of this coupling are analysed. Starting from spherical symmetry metric, the coupled field equations, obtaining exact solutions and interpreting these solutions, are solved. (M.C.K.) [pt

  13. Orbits 2nd order singularity-free solutions

    CERN Document Server

    Xu, Guochang

    2014-01-01

    In its 2nd edition, this book covers the theory of satellite orbits, derives the complete solutions of orbital disturbances, describes the algorithms of orbits determination and the applications of the theory to the phenomenon of physical satellite formation.

  14. Constraints and Soliton Solutions for KdV Hierarchy and AKNS Hierarchy

    International Nuclear Information System (INIS)

    Li Nianhua; Li Yuqi

    2011-01-01

    It is well-known that the finite-gap solutions of the KdV equation can be generated by its recursion operator. We generalize the result to a special form of Lax pair, from which a method to constrain the integrable system to a lower-dimensional or fewer variable integrable system is proposed. A direct result is that the n-soliton solutions of the KdV hierarchy can be completely depicted by a series of ordinary differential equations (ODEs), which may be gotten by a simple but unfamiliar Lax pair. Furthermore the AKNS hierarchy is constrained to a series of univariate integrable hierarchies. The key is a special form of Lax pair for the AKNS hierarchy. It is proved that under the constraints all equations of the AKNS hierarchy are linearizable. (general)

  15. Bright and dark soliton solutions for some nonlinear fractional differential equations

    International Nuclear Information System (INIS)

    Guner, Ozkan; Bekir, Ahmet

    2016-01-01

    In this work, we propose a new approach, namely ansatz method, for solving fractional differential equations based on a fractional complex transform and apply it to the nonlinear partial space–time fractional modified Benjamin–Bona–Mahoney (mBBM) equation, the time fractional mKdV equation and the nonlinear fractional Zoomeron equation which gives rise to some new exact solutions. The physical parameters in the soliton solutions: amplitude, inverse width, free parameters and velocity are obtained as functions of the dependent model coefficients. This method is suitable and more powerful for solving other kinds of nonlinear fractional PDEs arising in mathematical physics. Since the fractional derivatives are described in the modified Riemann–Liouville sense. (paper)

  16. Multiple solutions to some singular nonlinear Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Monica Lazzo

    2001-01-01

    Full Text Available We consider the equation $$ - h^2 Delta u + V_varepsilon(x u = |u|^{p-2} u $$ which arises in the study of standing waves of a nonlinear Schrodinger equation. We allow the potential $V_varepsilon$ to be unbounded below and prove existence and multiplicity results for positive solutions.

  17. Lower Bounds for Possible Singular Solutions for the Navier-Stokes and Euler Equations Revisited

    Science.gov (United States)

    Cortissoz, Jean C.; Montero, Julio A.

    2018-03-01

    In this paper we give optimal lower bounds for the blow-up rate of the \\dot{H}s( T^3) -norm, 1/2Navier-Stokes equations, and we also present an elementary proof for a lower bound on blow-up rate of the Sobolev norms of possible singular solutions to the Euler equations when s>5/2.

  18. B-spline solution of a singularly perturbed boundary value problem arising in biology

    International Nuclear Information System (INIS)

    Lin Bin; Li Kaitai; Cheng Zhengxing

    2009-01-01

    We use B-spline functions to develop a numerical method for solving a singularly perturbed boundary value problem associated with biology science. We use B-spline collocation method, which leads to a tridiagonal linear system. The accuracy of the proposed method is demonstrated by test problems. The numerical result is found in good agreement with exact solution.

  19. Existence and uniqueness of a periodic solution to an indefinite attractive singular equation

    Czech Academy of Sciences Publication Activity Database

    Hakl, Robert; Zamora, M.

    2016-01-01

    Roč. 195, č. 3 (2016), s. 995-1009 ISSN 0373-3114 Institutional support: RVO:67985840 Keywords : singular differential equation * periodic solution * uniqueness Subject RIV: BA - General Mathematics Impact factor: 0.864, year: 2016 http://link.springer.com/article/10.1007%2Fs10231-015-0501-3

  20. On solutions of neutral stochastic delay Volterra equations with singular kernels

    Directory of Open Access Journals (Sweden)

    Xiaotai Wu

    2012-08-01

    Full Text Available In this paper, existence, uniqueness and continuity of the adapted solutions for neutral stochastic delay Volterra equations with singular kernels are discussed. In addition, continuous dependence on the initial date is also investigated. Finally, stochastic Volterra equation with the kernel of fractional Brownian motion is studied to illustrate the effectiveness of our results.

  1. Periodic solutions to the Liénard type equations with phase attractive singularities

    Czech Academy of Sciences Publication Activity Database

    Hakl, Robert; Zamora, M.

    -, 6 March (2013), s. 47 ISSN 1687-2770 Institutional support: RVO:67985840 Keywords : Rayleigh-Plesset equation * singular equation * periodic solution Subject RIV: BA - General Mathematics Impact factor: 0.836, year: 2013 http://www.boundaryvalueproblems.com/content/2013/1/47

  2. Existence and non-existence of solutions for a singular problem with variable potentials

    Directory of Open Access Journals (Sweden)

    Kamel Saoudi

    2017-11-01

    Full Text Available The purpose of this article is to prove some existence and nonexistence theorems for the inhomogeneous singular Dirichlet problem $$ - \\Delta_p u = \\frac{\\lambda k(x}{u^\\delta}\\pm h(x u^q. $$ For proving our results we use the sub and super solution method, and monotonicity arguments.

  3. Cancellation of the central singularity of the Schwarzschild solution with natural mass inversion process

    Science.gov (United States)

    Petit, Jean-Pierre; D'Agostini, G.

    2015-03-01

    We reconsider the classical Schwarzschild solution in the context of a Janus cosmological model. We show that the central singularity can be eliminated through a simple coordinate change and that the subsequent transit from one fold to the other is accompanied by mass inversion. In such scenario matter swallowed by black holes could be ejected as invisible negative mass and dispersed in space.

  4. Periodic solutions of an indefinite singular equation arising from the Kepler problem on the sphere

    Czech Academy of Sciences Publication Activity Database

    Hakl, Robert; Zamora, M.

    2018-01-01

    Roč. 70, č. 1 (2018), s. 173-190 ISSN 0008-414X Institutional support: RVO:67985840 Keywords : indefinite singularity * periodic solution * Kepler problem on S^1 Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.963, year: 2016 https://cms.math.ca/10.4153/CJM-2016-050-1

  5. Application of the canonical operator to the description of self-focusing soliton-like solutions of the Kadomtsev-Petviashvili equation

    Science.gov (United States)

    Maslov, V. P.; Shafarevich, A. I.

    2011-12-01

    A description for the asymptotic soliton-like solution of the Kadomtsev-Petviashvili I equation (KPI equation) in terms of the canonical operator is suggested. This solution can smoothly be continued to the vicinity of the focal point.

  6. The soliton solution of BBGKY quantum kinetic equations chain for different type particles system

    International Nuclear Information System (INIS)

    Rasulova, M.Yu.; Avazov, U.; Hassan, T.

    2006-12-01

    In the present paper on the basis of BBGKY chain of quantum kinetic equations the chain of equations for correlation matrices is derived, describing the evolution of a system of different types particles, which interact by pair potential. The series, which is the solution of this chain of equations for correlation matrices, is suggested. Using this series the solution of the last chain of equations is reduced to a solution of a set of homogeneous and nonhomogeneous von-Neumann's kinetic equations (analogue of Vlasov equations for quantum case). The first and second equations of this set of equations coincide with the first and second kinetic equations of the set, which is used in plasma physics. For an potential in the form of Dirac delta function, the solution of von-Neumann equation is defined through soliton solution of nonlinear Schrodinger equations. Based on von-Neumann equation one can define all terms of series, which is a solution of a chain of equations for correlation matrices. On the basis of these correlation matrices for a system of different types of particles we can define exact solution of BBGKY chain of quantum kinetic equations

  7. Bright, dark, and mixed vector soliton solutions of the general coupled nonlinear Schrödinger equations.

    Science.gov (United States)

    Agalarov, Agalar; Zhulego, Vladimir; Gadzhimuradov, Telman

    2015-04-01

    The reduction procedure for the general coupled nonlinear Schrödinger (GCNLS) equations with four-wave mixing terms is proposed. It is shown that the GCNLS system is equivalent to the well known integrable families of the Manakov and Makhankov U(n,m)-vector models. This equivalence allows us to construct bright-bright and dark-dark solitons and a quasibreather-dark solution with unconventional dynamics: the density of the first component oscillates in space and time, whereas the density of the second component does not. The collision properties of solitons are also studied.

  8. A numerical solution of a singular boundary value problem arising in boundary layer theory.

    Science.gov (United States)

    Hu, Jiancheng

    2016-01-01

    In this paper, a second-order nonlinear singular boundary value problem is presented, which is equivalent to the well-known Falkner-Skan equation. And the one-dimensional third-order boundary value problem on interval [Formula: see text] is equivalently transformed into a second-order boundary value problem on finite interval [Formula: see text]. The finite difference method is utilized to solve the singular boundary value problem, in which the amount of computational effort is significantly less than the other numerical methods. The numerical solutions obtained by the finite difference method are in agreement with those obtained by previous authors.

  9. Constructing and analysis of soliton-like solutions of (1 + 1), (2 + 1), (3 + 1)-dimensional Schrodinger equations with the third power nonlinearity law

    International Nuclear Information System (INIS)

    Zhestkov, S.V.; Romanenko, A.A.

    2009-01-01

    The problem of existence of soliton-like solutions of (1+1), (2+1), (3+1)-dimensional Schrodinger equations with the third power nonlinearity law is investigated. The numerical-analytical method of constructing solitons is developed. (authors)

  10. Quantum solitons

    Energy Technology Data Exchange (ETDEWEB)

    Abram, I [Centre National d' Etudes des Telecommunications (CNET), 196 Avenue Henri Ravera, F-92220 Bagneux (France)

    1999-02-01

    results in an improvement in the bit-error rate of the transmission. The fact that squeezing does not survive attenuation does not matter in this case, since it is alive during the nonlinear interaction when it is needed. Another possible application of squeezed solitons would be in switching devices and logic gates based on soliton interactions, such as the fibre-end devices for signal processing in telecommunications developed by Mohamed Islam at AT and T in the US in the early 1990s. The use of number-squeezing would allow collisions between solitons to be controlled to high precision, thus significantly reducing the error rate of these devices. Solitons and quantum information It might also be possible to use solitons in the processing of quantum information. Quantum information is an emerging field of physics that takes advantage of phenomena that are particular to quantum mechanics such as uncertainty, superposition and entanglement to code, transmit or process information (see Physics World March 1998). Recent highlights in this field include quantum cryptography (which can be used to achieve unconditionally secure key distribution) and quantum computing, which considerably speeds up the solution of problems that are exponentially difficult. These problems include the factorization of large numbers and searches of large databases. Although most proposals for processing quantum information to date concentrate on single-photon or single-spin implementations, optical solitons may offer an alternative that is easier to handle experimentally, yet still provides many of the basic quantum features that are displayed by single quanta. This could lead to new paradigms for computation and communications. In particular, the existence of quantum correlations in the fluctuations of the spectral and temporal sidebands of the solitons turns them into macroscopic quantum objects with internal entanglement. If these internal quantum correlations can be tailored into prescribed

  11. Singular solutions of renormalization group equations and the symmetry of the lagrangian

    International Nuclear Information System (INIS)

    Kazakov, D.I.; Shirokov, D.V.

    1975-01-01

    On the basis of solution of the differential renormalization group equations the method is proposed for finding out the Lagrangians possessing some king of internal symmetry. It is shown that in the phase space of the invariant charges the symmetry corresponds to the straight-line singular solution of these equations remaining straight-line when taking into account the higher order corrections. We have studied the model of scalar fields with quartic couplings, as well as the set of models containing scalar, pseudoscalar and spinor fields with Yukawa and quartic interactions. Straight-line singular solutions in the first case correspond to isotopic symmetry only. For the second case they correspond to supersymmetry. No other symmetries have been discovered. For the model containing the gauge fields the solution corresponding to supersymmetry is obtained and it is shown that this is also the only symmetry that can be realized in the given set of fields

  12. Creation and annihilation of solitons in the string nonlinear equation

    International Nuclear Information System (INIS)

    Aguero G, M.A.; Espinosa G, A.A.; Martinez O, J.

    1997-01-01

    Starting from the cubic-quintic Schroedinger equation it is obtained the nonlinear string equation. This system supports regular and singular solitons. It is shown that two singular solitons could be generated after the interaction of two regular solitons and viceversa. (Author)

  13. Existence of Positive Solutions to Singular -Laplacian General Dirichlet Boundary Value Problems with Sign Changing Nonlinearity

    Directory of Open Access Journals (Sweden)

    Qiying Wei

    2009-01-01

    Full Text Available By using the well-known Schauder fixed point theorem and upper and lower solution method, we present some existence criteria for positive solution of an -point singular -Laplacian dynamic equation on time scales with the sign changing nonlinearity. These results are new even for the corresponding differential (=ℝ and difference equations (=ℤ, as well as in general time scales setting. As an application, an example is given to illustrate the results.

  14. Singular Minkowski and Euclidean solutions for SU(2) Yang-Mills theory

    International Nuclear Information System (INIS)

    Singleton, D.

    1996-01-01

    In this paper it is examined a solution to the SU(2) Yang-Mills-Higgs system, which is a trivial mathematical extension of recently discovered Schwarzschild- like solutions (Singleton D., Phys. Rev. D, 51 (1955) 5911). Physically, however, this new solution has drastically different properties from the Schwarzschild-like solutions. It is also studied a new classical solution for Euclidean SU(2) Yang-Mills theory. Again this new solution is a mathematically trivial extension of the Belavin-Polyakov-Schwartz-Tyupkin (BPST) (Belavin A. A. et al., Phys. Lett. B, 59 (1975) 85) instanton, but is physically very different. Unlike the usual instanton solution, the present solution is singular on a sphere of arbitrary radius in Euclidean space. Both of these solutions are infinite-energy solutions, so their practical value is somewhat unclear. However, they may be useful in exploring some of the mathematical aspects of classical Yang-Mills theory

  15. Comment on "Defocusing complex short-pulse equation and its multi-dark-soliton solution"

    Science.gov (United States)

    Youssoufa, Saliou; Kuetche, Victor K.; Kofane, Timoleon C.

    2017-08-01

    In their recent paper, Feng et al. [Phys. Rev. E 93, 052227 (2016), 10.1103/PhysRevE.93.052227] proposed a complex short-pulse equation of both focusing and defocusing types. They studied in detail the defocusing case and derived its multi-dark-soliton solutions. Nonetheless, from a physical viewpoint in order to better and deeply understand their genuine implications, we find it useful to provide a real and proper background for the derivation of the previous evolution system while showing that the expression of the nonlinear electric polarization the above authors used in their scheme is not suitable for getting the defocusing complex short-pulse equation.

  16. New class of inhomogeneous cosmological perfect-fluid solutions without big-bang singularity

    Energy Technology Data Exchange (ETDEWEB)

    Senovilla, J.M.M. (Grupo de Fisica Teorica, Departamento de Fisica, Ingenieria y Radiologia Medica, Facultad de Ciencias, Universidad de Salamanca, 37008 Salmanaca (Spain))

    1990-05-07

    A new class of exact solutions to Einstein's field equations with a perfect-fluid source is presented. The solutions describe spatially inhomogeneous cosmological models and have a realistic equation of state {ital p}={rho}/3. The properties of the solutions are discussed. The most remarkable feature is the absence of an initial singularity, the curvature and matter invariants being regular and smooth everywhere. We also present an alternative interpretation of the solution as a globally regular cylindrically symmetric space-time.

  17. Analytic Approximations for Soliton Solutions of Short-Wave Models for Camassa-Holm and Degasperis-Procesi Equations

    International Nuclear Information System (INIS)

    Yang Pei; Li Zhibin; Chen Yong

    2010-01-01

    In this paper, the short-wave model equations are investigated, which are associated with the Camassa-Holm (CH) and Degasperis-Procesi (DP) shallow-water wave equations. Firstly, by means of the transformation of the independent variables and the travelling wave transformation, the partial differential equation is reduced to an ordinary differential equation. Secondly, the equation is solved by homotopy analysis method. Lastly, by the transformations back to the original independent variables, the solution of the original partial differential equation is obtained. The two types of solutions of the short-wave models are obtained in parametric form, one is one-cusp soliton for the CH equation while the other one is one-loop soliton for the DP equation. The approximate analytic solutions expressed by a series of exponential functions agree well with the exact solutions. It demonstrates the validity and great potential of homotopy analysis method for complicated nonlinear solitary wave problems. (general)

  18. Soliton Resolution for the Derivative Nonlinear Schrödinger Equation

    Science.gov (United States)

    Jenkins, Robert; Liu, Jiaqi; Perry, Peter; Sulem, Catherine

    2018-05-01

    We study the derivative nonlinear Schrödinger equation for generic initial data in a weighted Sobolev space that can support bright solitons (but exclude spectral singularities). Drawing on previous well-posedness results, we give a full description of the long-time behavior of the solutions in the form of a finite sum of localized solitons and a dispersive component. At leading order and in space-time cones, the solution has the form of a multi-soliton whose parameters are slightly modified from their initial values by soliton-soliton and soliton-radiation interactions. Our analysis provides an explicit expression for the correction dispersive term. We use the nonlinear steepest descent method of Deift and Zhou (Commun Pure Appl Math 56:1029-1077, 2003) revisited by the {\\overline{partial}} -analysis of McLaughlin and Miller (IMRP Int Math Res Pap 48673:1-77, 2006) and Dieng and McLaughlin (Long-time asymptotics for the NLS equation via dbar methods. Preprint, arXiv:0805.2807, 2008), and complemented by the recent work of Borghese et al. (Ann Inst Henri Poincaré Anal Non Linéaire, https://doi.org/10.1016/j.anihpc.2017.08.006, 2017) on soliton resolution for the focusing nonlinear Schrödinger equation. Our results imply that N-soliton solutions of the derivative nonlinear Schrödinger equation are asymptotically stable.

  19. Hydrodynamic optical soliton tunneling

    Science.gov (United States)

    Sprenger, P.; Hoefer, M. A.; El, G. A.

    2018-03-01

    A notion of hydrodynamic optical soliton tunneling is introduced in which a dark soliton is incident upon an evolving, broad potential barrier that arises from an appropriate variation of the input signal. The barriers considered include smooth rarefaction waves and highly oscillatory dispersive shock waves. Both the soliton and the barrier satisfy the same one-dimensional defocusing nonlinear Schrödinger (NLS) equation, which admits a convenient dispersive hydrodynamic interpretation. Under the scale separation assumption of nonlinear wave (Whitham) modulation theory, the highly nontrivial nonlinear interaction between the soliton and the evolving hydrodynamic barrier is described in terms of self-similar, simple wave solutions to an asymptotic reduction of the Whitham-NLS partial differential equations. One of the Riemann invariants of the reduced modulation system determines the characteristics of a soliton interacting with a mean flow that results in soliton tunneling or trapping. Another Riemann invariant yields the tunneled soliton's phase shift due to hydrodynamic interaction. Soliton interaction with hydrodynamic barriers gives rise to effects that include reversal of the soliton propagation direction and spontaneous soliton cavitation, which further suggest possible methods of dark soliton control in optical fibers.

  20. A uniformly valid approximation algorithm for nonlinear ordinary singular perturbation problems with boundary layer solutions.

    Science.gov (United States)

    Cengizci, Süleyman; Atay, Mehmet Tarık; Eryılmaz, Aytekin

    2016-01-01

    This paper is concerned with two-point boundary value problems for singularly perturbed nonlinear ordinary differential equations. The case when the solution only has one boundary layer is examined. An efficient method so called Successive Complementary Expansion Method (SCEM) is used to obtain uniformly valid approximations to this kind of solutions. Four test problems are considered to check the efficiency and accuracy of the proposed method. The numerical results are found in good agreement with exact and existing solutions in literature. The results confirm that SCEM has a superiority over other existing methods in terms of easy-applicability and effectiveness.

  1. The nonlinear Schrödinger equation singular solutions and optical collapse

    CERN Document Server

    Fibich, Gadi

    2015-01-01

    This book is an interdisciplinary introduction to optical collapse of laser beams, which is modelled by singular (blow-up) solutions of the nonlinear Schrödinger equation. With great care and detail, it develops the subject including the mathematical and physical background and the history of the subject. It combines rigorous analysis, asymptotic analysis, informal arguments, numerical simulations, physical modelling, and physical experiments. It repeatedly emphasizes the relations between these approaches, and the intuition behind the results. The Nonlinear Schrödinger Equation will be useful to graduate students and researchers in applied mathematics who are interested in singular solutions of partial differential equations, nonlinear optics and nonlinear waves, and to graduate students and researchers in physics and engineering who are interested in nonlinear optics and Bose-Einstein condensates. It can be used for courses on partial differential equations, nonlinear waves, and nonlinear optics. Gadi Fib...

  2. Self-consistent-field method and τ-functional method on group manifold in soliton theory. II. Laurent coefficients of soliton solutions for sln and for sun

    International Nuclear Information System (INIS)

    Nishiyama, Seiya; Providencia, Joao da; Komatsu, Takao

    2007-01-01

    To go beyond perturbative method in terms of variables of collective motion, using infinite-dimensional fermions, we have aimed to construct the self-consistent-field (SCF) theory, i.e., time dependent Hartree-Fock theory on associative affine Kac-Moody algebras along the soliton theory. In this paper, toward such an ultimate goal we will reconstruct a theoretical frame for a υ (external parameter)-dependent SCF method to describe more precisely the dynamics on the infinite-dimensional fermion Fock space. An infinite-dimensional fermion operator is introduced through Laurent expansion of finite-dimensional fermion operators with respect to degrees of freedom of the fermions related to a υ-dependent and a Υ-periodic potential. As an illustration, we derive explicit expressions for the Laurent coefficients of soliton solutions for sl n and for su n on infinite-dimensional Grassmannian. The associative affine Kac-Moody algebras play a crucial role to determine the dynamics on the infinite-dimensional fermion Fock space

  3. Existence and Estimates of Positive Solutions for Some Singular Fractional Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Habib Mâagli

    2014-01-01

    fractional boundary value problem:Dαu(x=−a(xuσ(x, x∈(0,1 with the conditions limx→0+⁡x2−αu(x=0, u(1=0, where 1<α≤2, σ∈(−1,1, and a is a nonnegative continuous function on (0,1 that may be singular at x=0 or x=1. We also give the global behavior of such a solution.

  4. Singular Solutions to a (3 + 1-D Protter-Morawetz Problem for Keldysh-Type Equations

    Directory of Open Access Journals (Sweden)

    Nedyu Popivanov

    2017-01-01

    Full Text Available We study a boundary value problem for (3 + 1-D weakly hyperbolic equations of Keldysh type (problem PK. The Keldysh-type equations are known in some specific applications in plasma physics, optics, and analysis on projective spaces. Problem PK is not well-posed since it has infinite-dimensional cokernel. Actually, this problem is analogous to a similar one proposed by M. Protter in 1952, but for Tricomi-type equations which, in part, are closely connected with transonic fluid dynamics. We consider a properly defined, in a special function space, generalized solution to problem PK for which existence and uniqueness theorems hold. It is known that it may have a strong power-type singularity at one boundary point even for very smooth right-hand sides of the equation. In the present paper we study the asymptotic behavior of the generalized solutions of problem PK at the singular point. There are given orthogonality conditions on the right-hand side of the equation, which are necessary and sufficient for the existence of a generalized solution with fixed order of singularity.

  5. A combined variational-topological approach for dispersion-managed solitons in optical fibers

    Czech Academy of Sciences Publication Activity Database

    Hakl, Robert; Torres, P.J.

    2011-01-01

    Roč. 62, č. 2 (2011), s. 245-266 ISSN 0044-2275 Institutional research plan: CEZ:AV0Z10190503 Keywords : optical soliton * Schrödinger equation * singular equation * periodic solution * upper and lower function Subject RIV: BA - General Mathematics Impact factor: 0.951, year: 2011 http://www.springerlink.com/content/y1534p553r530451/

  6. Two-Dimensional Spatial Solitons in Nematic Liquid Crystals

    International Nuclear Information System (INIS)

    Zhong Weiping; Xie Ruihua; Goong Chen; Belic, Milivoj; Yang Zhengping

    2009-01-01

    We study the propagation of spatial solitons in nematic liquid crystals, using the self-similar method. Analytical solutions in the form of self-similar solitons are obtained exactly. We confirm the stability of these solutions by direct numerical simulation, and find that the stable spatial solitons can exist in various forms, such as Gaussian solitons, radially symmetric solitons, multipole solitons, and soliton vortices.

  7. Symbolic computation on the multi-soliton-like solutions of the cylindrical Kadomtsev-Petviashvili equation from dusty plasmas

    International Nuclear Information System (INIS)

    Li Juan; Zhang Haiqiang; Xu Tao; Zhang Yaxing; Hu Wei; Tian Bo

    2007-01-01

    Considering the transverse perturbation and axially non-planar geometry, the cylindrical Kadomtsev-Petviashvili (KP) equation is investigated in this paper, which can describe the propagation of dust-acoustic waves in the dusty plasma with two-temperature ions. Through imposing the decomposition method, such a (2+1)-dimensional equation is decomposed into two variable-coefficient (1+1)-dimensional integrable equations of the same hierarchy. Furthermore, three kinds of Darboux transformations (DTs) for these two (1+1)-dimensional equations are constructed. Via the three DTs obtained, the multi-soliton-like solutions of the cylindrical KP equation are explicitly presented. Especially, the one- and two-parabola-soliton solutions are discussed by several figures and some effects resulting from the physical parameters in the dusty plasma and transverse perturbation are also shown

  8. Gevrey multiscale expansions of singular solutions of PDEs with cubic nonlinearity

    Directory of Open Access Journals (Sweden)

    Alberto Lastra

    2018-02-01

    Full Text Available We study a singularly perturbed PDE with cubic nonlinearity depending on a complex perturbation parameter $\\epsilon$. This is a continuation of the precedent work [22] by the first author. We construct two families of sectorial meromorphic solutions obtained as a small perturbation in $\\epsilon$ of two branches of an algebraic slow curve of the equation in time scale. We show that the nonsingular part of the solutions of each family shares a common formal power series in $\\epsilon$ as Gevrey asymptotic expansion which might be different one to each other, in general.

  9. Creation-field cosmology: A possible solution to singularity, horizon, and flatness problems

    International Nuclear Information System (INIS)

    Narlikar, J.V.; Padmanabhan, T.

    1985-01-01

    A solution of Einstein's equations which admits radiation and a negative-energy massless scalar creation field as a source is presented. It is shown that the cosmological model based on this solution satisfies all the observational tests and thus is a viable alternative to the standard big-bang model. The present model is free from singularity and particle horizon and provides a natural explanation for the flatness problem. We argue that these features make the creation-field cosmological model theoretically superior to the big-bang model

  10. Orbital classical solutions, non-perturbative phenomena and singularity at the zero coupling constant point

    International Nuclear Information System (INIS)

    Vourdas, A.

    1982-01-01

    We try to extend previous arguments on orbital classical solutions in non-relativistic quantum mechanics to the 1/4lambda vertical stroke phi vertical stroke 4 complex relativistic field theory. The single valuedness of the Green function in the semiclassical (Planksche Konstante → 0) limit leads to a Bohr-Sommerfeld quantization. A path integral formalism for the Green functions analogous to that in non-relativistic quantum mechanics is employed and a semiclassical approach which uses our classical solutions indicates non-perturbative effects. They reflect an esub(1/lambda) singularity at the zero coupling constant point. (orig.)

  11. Soliton solutions of the mixed discrete modified Korteweg-de Vries hierarchy via the inverse scattering transform

    International Nuclear Information System (INIS)

    Li Qi; Duan Qiuyuan; Zhang Jianbing

    2012-01-01

    The mixed discrete modified Korteweg-de Vries (mKdV) hierarchy and the Lax pair are derived. The hierarchy related to the Ablowitz-Ladik spectral problem is reduced to the isospectral discrete mKdV hierarchy and to the non-isospectral discrete mKdV hierarchy. N-soliton solutions of the hierarchies are obtained through inverse scattering transform.

  12. A New Auto-Baecklund Transformation and Two-Soliton Solution for (3+1)-Dimensional Jimbo-Miwa Equation

    International Nuclear Information System (INIS)

    Liu Chunping; Zhou Ling

    2011-01-01

    By improving the extended homogeneous balance method, a general method is suggested to derive a new auto-Baecklund transformation (BT) for (3+1)-Dimensional Jimbo-Miwa (JM) equation. The auto-BT obtained by using our method only involves one quadratic homogeneity equation written as a bilinear equation. Based on the auto-BT, two-soliton solution of the (3+1)-Dimensional JM equation is obtained. (general)

  13. Integrable Abelian vortex-like solitons

    Energy Technology Data Exchange (ETDEWEB)

    Contatto, Felipe, E-mail: felipe.contatto@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 70040-020 (Brazil)

    2017-05-10

    We propose a modified version of the Ginzburg–Landau energy functional admitting static solitons and determine all the Painlevé-integrable cases of its Bogomolny equations of a given class of models. Explicit solutions are determined in terms of the third Painlevé transcendents, allowing us to calculate physical quantities such as the vortex number and the vortex strength. These solutions can be interpreted as the usual Abelian-Higgs vortices on surfaces of non-constant curvature with conical singularity.

  14. Integrable Abelian vortex-like solitons

    Directory of Open Access Journals (Sweden)

    Felipe Contatto

    2017-05-01

    Full Text Available We propose a modified version of the Ginzburg–Landau energy functional admitting static solitons and determine all the Painlevé-integrable cases of its Bogomolny equations of a given class of models. Explicit solutions are determined in terms of the third Painlevé transcendents, allowing us to calculate physical quantities such as the vortex number and the vortex strength. These solutions can be interpreted as the usual Abelian-Higgs vortices on surfaces of non-constant curvature with conical singularity.

  15. Relationships between the group-theoretic and soliton-theoretic techniques for generating stationary axisymmetric gravitational solutions

    International Nuclear Information System (INIS)

    Cosgrove, C.M.

    1980-01-01

    We investigate the precise interrelationships between several recently developed solution-generating techniques capable of generating asymptotically flat gravitational solutions with arbitrary multipole parameters. The transformations we study in detail here are the Lie groups Q and Q of Cosgrove, the Hoenselaers--Kinnersley--Xanthopoulos (HKX) transformations and their SL(2) tensor generalizations, the Neugebauer--Kramer discrete mapping, the Neugebauer Baecklund transformations I 1 and I 2 , the Harrison Baecklund transformation, and the Belinsky--Zakharov (BZ) one- and two-soliton transformations. Two particular results, among many reported here, are that the BZ soliton transformations are essentially equivalent to Harrison transformations and that the generalized HKX transformation may be deduced as a confluent double soliton transformation. Explicit algebraic expressions are given for the transforms of the Kinnersley--Chitre generating functions under all of the above transformations. In less detail, we also study the Kinnersley--Chitre β transformations, the non-null HKX transformations, and the Hilbert problems proposed independently by Belinsky and Zakharov, and Hauser and Ernst. In conclusion, we describe the nature of the exact solutions constructible in a finite number of steps with the available methods

  16. Spectral boundary conditions and solitonic solutions in a classical Sellmeier dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Belgiorno, F. [Politecnico di Milano, Dipartimento di Matematica, Milan (Italy); INdAM-GNFM, Rome (Italy); INFN, Milan (Italy); Cacciatori, S.L. [Universita dell' Insubria, Department of Science and High Technology, Como (Italy); INFN, Milan (Italy); Vigano, A. [Universita degli Studi di Milano, Dipartimento di Fisica, Milan (Italy)

    2017-06-15

    Electromagnetic field interactions in a dielectric medium represent a longstanding field of investigation, both at the classical level and at the quantum one. We propose a 1+1 dimensional toy-model which consists of an half-line filling dielectric medium, with the aim to set up a simplified situation where technicalities related to gauge invariance and, as a consequence, physics of constrained systems are avoided, and still interesting features appear. In particular, we simulate the electromagnetic field and the polarization field by means of two coupled scalar fields φ, ψ, respectively, in a Hopfield-like model. We find that, in order to obtain a physically meaningful behavior for the model, one has to introduce spectral boundary conditions depending on the particle spectrum one is dealing with. This is the first interesting achievement of our analysis. The second relevant achievement is that, by introducing a nonlinear contribution in the polarization field ψ, with the aim of mimicking a third order nonlinearity in a nonlinear dielectric, we obtain solitonic solutions in the Hopfield model framework, whose classical behavior is analyzed too. (orig.)

  17. Soliton on thin vortex filament

    International Nuclear Information System (INIS)

    Konno, Kimiaki; Mituhashi, Masahiko; Ichikawa, Y.H.

    1990-12-01

    Showing that one of the equations found by Wadati, Konno and Ichikawa is equivalent to the equation of motion of a thin vortex filament, we investigate solitons on the vortex filament. N vortex soliton solution is given in terms of the inverse scattering method. We examine two soliton collision processes on the filament. Our analysis provides the theoretical foundation of two soliton collision processes observed numerically by Aref and Flinchem. (author)

  18. Solitons, gauge theories and the 'great Einstein theorem'

    International Nuclear Information System (INIS)

    Dresden, M.; Chen, S.F.

    1976-01-01

    A field theory is said to be of 'Einstein type' if it has the property that the field equations imply the equations of motion. It is known that general relativity is of Einstein type, it is demonstrated here that the Yang-Mills gauge theory is of Einstein type. The relationship between the singularities in the solutions of the field equations and soliton type is analyzed. (Auth.)

  19. Existence of localizing solutions in plasticity via the geometric singular perturbation theory

    KAUST Repository

    Lee, Min-Gi

    2017-01-31

    Shear bands are narrow zones of intense shear observed during plastic deformations of metals at high strain rates. Because they often precede rupture, their study attracted attention as a mechanism of material failure. Here, we aim to reveal the onset of localization into shear bands using a simple model from viscoplasticity. We exploit the properties of scale invariance of the model to construct a family of self-similar focusing solutions that capture the nonlinear mechanism of shear band formation. The key step is to desingularize a reduced system of singular ordinary differential equations and reduce the problem into the construction of a heteroclinic orbit for an autonomous system of three first-order equations. The associated dynamical system has fast and slow time scales, forming a singularly perturbed problem. Geometric singular perturbation theory is applied to this problem to achieve an invariant surface. The flow on the invariant surface is analyzed via the Poincaré--Bendixson theorem to construct a heteroclinic orbit.

  20. Solitons as Newtonian particles

    International Nuclear Information System (INIS)

    Eboli, O.J.P.; Marques, G.C.

    1982-07-01

    The effect of external electromagnetic fields on non relativistic solitons is studied. Although the solitons are distorted by external fields, they still exhibit a Newtonian behavior. Some explicit examples of such a phenomenon are given, presenting solutions which exhibit Newtonian behavior for simple external fields. Furthermore, general results like charge and flux quantization are shown. (Author) [pt

  1. New optical solitons of space-time conformable fractional perturbed Gerdjikov-Ivanov equation by sine-Gordon equation method

    Science.gov (United States)

    Yaşar, Elif; Yıldırım, Yakup; Yaşar, Emrullah

    2018-06-01

    This paper devotes to conformable fractional space-time perturbed Gerdjikov-Ivanov (GI) equation which appears in nonlinear fiber optics and photonic crystal fibers (PCF). We consider the model with full nonlinearity in order to give a generalized flavor. The sine-Gordon equation approach is carried out to model equation for retrieving the dark, bright, dark-bright, singular and combined singular optical solitons. The constraint conditions are also reported for guaranteeing the existence of these solitons. We also present some graphical simulations of the solutions for better understanding the physical phenomena of the behind the considered model.

  2. Integrability and soliton solutions for an inhomogeneous generalized fourth-order nonlinear Schrödinger equation describing the inhomogeneous alpha helical proteins and Heisenberg ferromagnetic spin chains

    International Nuclear Information System (INIS)

    Wang, Pan; Tian, Bo; Jiang, Yan; Wang, Yu-Feng

    2013-01-01

    For describing the dynamics of alpha helical proteins with internal molecular excitations, nonlinear couplings between lattice vibrations and molecular excitations, and spin excitations in one-dimensional isotropic biquadratic Heisenberg ferromagnetic spin with the octupole–dipole interactions, we consider an inhomogeneous generalized fourth-order nonlinear Schrödinger equation. Based on the Ablowitz–Kaup–Newell–Segur system, infinitely many conservation laws for the equation are derived. Through the auxiliary function, bilinear forms and N-soliton solutions for the equation are obtained. Interactions of solitons are discussed by means of the asymptotic analysis. Effects of linear inhomogeneity on the interactions of solitons are also investigated graphically and analytically. Since the inhomogeneous coefficient of the equation h=α x+β, the soliton takes on the parabolic profile during the evolution. Soliton velocity is related to the parameter α, distance scale coefficient and biquadratic exchange coefficient, but has no relation with the parameter β. Soliton amplitude and width are only related to α. Soliton position is related to β

  3. Collocation methods for the solution of eigenvalue problems for singular ordinary differential equations

    Directory of Open Access Journals (Sweden)

    Winfried Auzinger

    2006-01-01

    Full Text Available We demonstrate that eigenvalue problems for ordinary differential equations can be recast in a formulation suitable for the solution by polynomial collocation. It is shown that the well-posedness of the two formulations is equivalent in the regular as well as in the singular case. Thus, a collocation code equipped with asymptotically correct error estimation and adaptive mesh selection can be successfully applied to compute the eigenvalues and eigenfunctions efficiently and with reliable control of the accuracy. Numerical examples illustrate this claim.

  4. Ground state solutions for Choquard type equations with a singular potential

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2017-02-01

    Full Text Available This article concerns the Choquard type equation $$ -\\Delta u+V(xu=\\Big(\\int_{\\mathbb{R}^N}\\frac{|u(y|^p}{|x-y|^{N-\\alpha}}dy\\Big |u|^{p-2}u,\\quad x\\in \\mathbb{R}^N, $$ where $N\\geq3$, $\\alpha\\in ((N-4_+,N$, $2\\leq p <(N+\\alpha/(N-2$ and V(x is a possibly singular potential and may be unbounded below. Applying a variant of the Lions' concentration-compactness principle, we prove the existence of ground state solution of the above equations.

  5. Homoclinic Solutions for a Class of Second Order Nonautonomous Singular Hamiltonian Systems

    Directory of Open Access Journals (Sweden)

    Ziheng Zhang

    2014-01-01

    Full Text Available We are concerned with the existence of homoclinic solutions for the following second order nonautonomous singular Hamiltonian systems u¨+atWuu=0, (HS where -∞singularity at 0≠ξ∈ℝN, and Wuu is the gradient of W at u. The novelty of this paper is that, for the case that N≥3 and (HS is nonautonomous (neither periodic nor almost periodic, we show that (HS possesses at least one nontrivial homoclinic solution. Our main hypotheses are the strong force condition of Gordon and the uniqueness of a global maximum of W. Different from the cases that (HS is autonomous at≡1 or (HS is periodic or almost periodic, as far as we know, this is the first result concerning the case that (HS is nonautonomous and N≥3. Besides the usual conditions on W, we need the assumption that a′t<0 for all t∈ℝ to guarantee the existence of homoclinic solution. Recent results in the literature are generalized and significantly improved.

  6. Investigation of solutions of boundary-value singular perturbated problem for Schroedinger equation of 4th order

    International Nuclear Information System (INIS)

    Amirkhanov, I.V.; Zhidkov, E.P.; Konnova, S.V.

    2000-01-01

    For the case of spherical-symmetrical potential we have considered the convergence of the solution of singular-perturbated Schroedinger equation of the 4th order to the solution of the corresponding standard nonrelativistic Schroedinger equation by numerical and analytical methods. The questions of existence of the solutions are explored. Numerical results are given. (author)

  7. Generalized hyperbolic functions to find soliton-like solutions for a system of coupled nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Yomba, Emmanuel

    2008-01-01

    With the aid of symbolic computation, we demonstrate that the known method which is based on the new generalized hyperbolic functions and the new kinds of generalized hyperbolic function transformations, generates classes of exact solutions to a system of coupled nonlinear Schroedinger equations. This system includes the modified Hubbard model and the system of coupled nonlinear Schroedinger derived by Lazarides and Tsironis. Four types of solutions for this system are given explicitly, namely: new bright-bright, new dark-dark, new bright-dark and new dark-bright solitons

  8. Accessible solitons of fractional dimension

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Wei-Ping, E-mail: zhongwp6@126.com [Department of Electronic and Information Engineering, Shunde Polytechnic, Guangdong Province, Shunde 528300 (China); Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar); Belić, Milivoj [Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar); Zhang, Yiqi [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China)

    2016-05-15

    We demonstrate that accessible solitons described by an extended Schrödinger equation with the Laplacian of fractional dimension can exist in strongly nonlocal nonlinear media. The soliton solutions of the model are constructed by two special functions, the associated Legendre polynomials and the Laguerre polynomials in the fraction-dimensional space. Our results show that these fractional accessible solitons form a soliton family which includes crescent solitons, and asymmetric single-layer and multi-layer necklace solitons. -- Highlights: •Analytic solutions of a fractional Schrödinger equation are obtained. •The solutions are produced by means of self-similar method applied to the fractional Schrödinger equation with parabolic potential. •The fractional accessible solitons form crescent, asymmetric single-layer and multilayer necklace profiles. •The model applies to the propagation of optical pulses in strongly nonlocal nonlinear media.

  9. Nonlinear two-fluid hydromagnetic waves in the solar wind: Rotational discontinuity, soliton, and finite-extent Alfven wave train solutions

    International Nuclear Information System (INIS)

    Lyu, L.H.; Kan, J.R.

    1989-01-01

    Nonlinear one-dimensional constant-profile hydromagnetic wave solutions are obtained in finite-temperature two-fluid collisionless plasmas under adiabatic equation of state. The nonlinear wave solutions can be classified according to the wavelength. The long-wavelength solutions are circularly polarized incompressible oblique Alfven wave trains with wavelength greater than hudreds of ion inertial length. The oblique wave train solutions can explain the high degree of alignment between the local average magnetic field and the wave normal direction observed in the solar wind. The short-wavelength solutions include rarefaction fast solitons, compression slow solitons, Alfven solitons and rotational discontinuities, with wavelength of several tens of ion inertial length, provided that the upstream flow speed is less than the fast-mode speed

  10. Multi-soliton and rogue-wave solutions of the higher-order Hirota system for an erbium-doped nonlinear fiber

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Da-Wei [Beijing University of Aeronautics and Astronautics, Beijing (China). State Key Laboratory of Software Development Environment; Ministry of Education, Beijing (China). Key Laboratory of Fluid Mechanics; Shijiazhuang Tiedao University (China). Dept. of Mathematics and Physics; Gao, Yi-Tian; Sun, Yu-Hao; Feng, Yu-Jie; Xue, Long [Beijing University of Aeronautics and Astronautics, Beijing (China). State Key Laboratory of Software Development Environment; Ministry of Education, Beijing (China). Key Laboratory of Fluid Mechanics

    2014-10-15

    The nonlinear Schroedinger (NLS) equation appears in fluid mechanics, plasma physics, etc., while the Hirota equation, a higher-order NLS equation, has been introduced. In this paper, a higher-order Hirota system is investigated, which describes the wave propagation in an erbium-doped nonlinear fiber with higher-order dispersion. By virtue of the Darboux transformation and generalized Darboux transformation, multi-soliton solutions and higher-order rogue-wave solutions are derived, beyond the published first-order consideration. Wave propagation and interaction are analyzed: (i) Bell-shape solitons, bright- and dark-rogue waves are found; (ii) the two-soliton interaction is elastic, i.e., the amplitude and velocity of each soliton remain unchanged after the interaction; (iii) the coefficient in the system affects the direction of the soliton propagation, patterns of the soliton interaction, distance, and direction of the first-order rogue-wave propagation, as well as the range and direction of the second-order rogue-wave interaction.

  11. Certain bright soliton interactions of the Sasa-Satsuma equation in a monomode optical fiber

    Science.gov (United States)

    Liu, Lei; Tian, Bo; Chai, Han-Peng; Yuan, Yu-Qiang

    2017-03-01

    Under investigation in this paper is the Sasa-Satsuma equation, which describes the propagation of ultrashort pulses in a monomode fiber with the third-order dispersion, self-steepening, and stimulated Raman scattering effects. Based on the known bilinear forms, through the modified expanded formulas and symbolic computation, we construct the bright two-soliton solutions. Through classifying the interactions under different parameter conditions, we reveal six cases of interactions between the two solitons via an asymptotic analysis. With the help of the analytic and graphic analysis, we find that such interactions are different from those of the nonlinear Schrödinger equation and Hirota equation. When those solitons interact with each other, the singular-I soliton is shape-preserving, while the singular-II and nonsingular solitons may be shape preserving or shape changing. Such elastic and inelastic interaction phenomena in a scalar equation might enrich the knowledge of soliton behavior, which could be expected to be experimentally observed.

  12. Solution of Point Reactor Neutron Kinetics Equations with Temperature Feedback by Singularly Perturbed Method

    Directory of Open Access Journals (Sweden)

    Wenzhen Chen

    2013-01-01

    Full Text Available The singularly perturbed method (SPM is proposed to obtain the analytical solution for the delayed supercritical process of nuclear reactor with temperature feedback and small step reactivity inserted. The relation between the reactivity and time is derived. Also, the neutron density (or power and the average density of delayed neutron precursors as the function of reactivity are presented. The variations of neutron density (or power and temperature with time are calculated and plotted and compared with those by accurate solution and other analytical methods. It is shown that the results by the SPM are valid and accurate in the large range and the SPM is simpler than those in the previous literature.

  13. Singular solutions for the rigid plastic double slip and rotation model under plane strain

    Science.gov (United States)

    Alexandrov, S.; Lyamina, E.

    2018-02-01

    In the mechanics of granular and other materials the system of equations comprising the rigid plastic double slip and rotation model together with the stress equilibrium equations under plane strain conditions forms a hyperbolic system. Boundary value problems for this system of equations can involve a frictional interface. An envelope of characteristics may coincide with this interface. In this case, the solution is singular. In particular, some components of the strain rate tensor approach infinity in the vicinity of the frictional interface. Such behavior of solutions is in qualitative agreement with experimental data that show that a narrow layer of localized plastic deformation is often generated near frictional interfaces. The present paper deals with asymptotic analysis of the aforementioned system of equations in the vicinity of an envelope of characteristics. It is shown that the shear strain rate and the spin component in a local coordinate system connected to the envelope follow an inverse square root rule in its vicinity.

  14. Holder continuity of bounded weak solutions to generalized parabolic p-Laplacian equations II: singular case

    Directory of Open Access Journals (Sweden)

    Sukjung Hwang

    2015-11-01

    Full Text Available Here we generalize quasilinear parabolic p-Laplacian type equations to obtain the prototype equation $$ u_t - \\hbox{div} \\Big(\\frac{g(|Du|}{|Du|} Du\\Big = 0, $$ where g is a nonnegative, increasing, and continuous function trapped in between two power functions $|Du|^{g_0 -1}$ and $|Du|^{g_1 -1}$ with $1solution is locally Holder continuous with some degree of commonality between degenerate and singular types. By using geometric characters, our proof does not rely on any of alternatives which is based on the size of solutions.

  15. Modulation stability and optical soliton solutions of nonlinear Schrödinger equation with higher order dispersion and nonlinear terms and its applications

    Science.gov (United States)

    Arshad, Muhammad; Seadawy, Aly R.; Lu, Dianchen

    2017-12-01

    In optical fibers, the higher order non-linear Schrödinger equation (NLSE) with cubic quintic nonlinearity describes the propagation of extremely short pulses. We constructed bright and dark solitons, solitary wave and periodic solitary wave solutions of generalized higher order NLSE in cubic quintic non Kerr medium by applying proposed modified extended mapping method. These obtained solutions have key applications in physics and mathematics. Moreover, we have also presented the formation conditions on solitary wave parameters in which dark and bright solitons can exist for this media. We also gave graphically the movement of constructed solitary wave and soliton solutions, that helps to realize the physical phenomena's of this model. The stability of the model in normal dispersion and anomalous regime is discussed by using the modulation instability analysis, which confirms that all constructed solutions are exact and stable. Many other such types of models arising in applied sciences can also be solved by this reliable, powerful and effective method.

  16. Numerical solution of singularity-perturbed two-point boundary-value problems

    International Nuclear Information System (INIS)

    Masenge, R.W.P.

    1993-07-01

    Physical processes which involve transportation of slowly diffusing substances in a fast-flowing medium are mathematically modelled by so-called singularly-perturbed second order convection diffusion differential equations in which the convective first order terms dominate over the diffusive second order terms. In general, analytical solutions of such equations are characterized by having sharp solution fronts in some sections of the interior and/or the boundary of the domain of solution. The presence of these (usually very narrow) layer regions in the solution domain makes the task of globally approximating such solutions by standard numerical techniques very difficult. In this expository paper we use a simple one-dimensional prototype problem as a vehicle for analysing the nature of the numerical approximation difficulties involved. In the sequel we present, without detailed derivation, two practical numerical schemes which succeed in varying degrees in numerically resolving the layer of the solution to the prototype problem. (author). 3 refs, 1 fig., 1 tab

  17. On the Existence and Uniqueness of Rv-Generalized Solution for Dirichlet Problem with Singularity on All Boundary

    Directory of Open Access Journals (Sweden)

    V. Rukavishnikov

    2014-01-01

    Full Text Available The existence and uniqueness of the Rv-generalized solution for the first boundary value problem and a second order elliptic equation with coordinated and uncoordinated degeneracy of input data and with strong singularity solution on all boundary of a two-dimensional domain are established.

  18. Existence of localizing solutions in plasticity via the geometric singular perturbation theory

    KAUST Repository

    Lee, Min-Gi; Tzavaras, Athanasios

    2017-01-01

    system has fast and slow time scales, forming a singularly perturbed problem. Geometric singular perturbation theory is applied to this problem to achieve an invariant surface. The flow on the invariant surface is analyzed via the Poincaré

  19. Self-similar cosmological solutions with dark energy. II. Black holes, naked singularities, and wormholes

    International Nuclear Information System (INIS)

    Maeda, Hideki; Harada, Tomohiro; Carr, B. J.

    2008-01-01

    We use a combination of numerical and analytical methods, exploiting the equations derived in a preceding paper, to classify all spherically symmetric self-similar solutions which are asymptotically Friedmann at large distances and contain a perfect fluid with equation of state p=(γ-1)μ with 0<γ<2/3. The expansion of the Friedmann universe is accelerated in this case. We find a one-parameter family of self-similar solutions representing a black hole embedded in a Friedmann background. This suggests that, in contrast to the positive pressure case, black holes in a universe with dark energy can grow as fast as the Hubble horizon if they are not too large. There are also self-similar solutions which contain a central naked singularity with negative mass and solutions which represent a Friedmann universe connected to either another Friedmann universe or some other cosmological model. The latter are interpreted as self-similar cosmological white hole or wormhole solutions. The throats of these wormholes are defined as two-dimensional spheres with minimal area on a spacelike hypersurface and they are all nontraversable because of the absence of a past null infinity

  20. SOLUTION OF SINGULAR INTEGRAL EQUATION FOR ELASTICITY THEORY WITH THE HELP OF ASYMPTOTIC POLYNOMIAL FUNCTION

    Directory of Open Access Journals (Sweden)

    V. P. Gribkova

    2014-01-01

    Full Text Available The paper offers a new method for approximate solution of one type of singular integral equations for elasticity theory which have been studied by other authors. The approximate solution is found in the form of asymptotic polynomial function of a low degree (first approximation based on the Chebyshev second order polynomial. Other authors have obtained a solution (only in separate points using a method of mechanical quadrature  and though they used also the Chebyshev polynomial of the second order they applied another system of junctures which were used for the creation of the required formulas.The suggested method allows not only to find an approximate solution for the whole interval in the form of polynomial, but it also makes it possible to obtain a remainder term in the form of infinite expansion where coefficients are linear functional of the given integral equation and basis functions are the Chebyshev polynomial of the second order. Such presentation of the remainder term of the first approximation permits to find a summand of the infinite series, which will serve as a start for fulfilling the given solution accuracy. This number is a degree of the asymptotic polynomial (second approximation, which will give the approximation to the exact solution with the given accuracy. The examined polynomial functions tend asymptotically to the polynomial of the best uniform approximation in the space C, created for the given operator.The paper demonstrates a convergence of the approximate solution to the exact one and provides an error estimation. The proposed algorithm for obtaining of the approximate solution and error estimation is easily realized with the help of computing technique and does not require considerable preliminary preparation during programming.

  1. Augmentation of DAA Staggered – Solution Equations in Underwater Shock Problems for Singular Structural Mass Matrices

    Directory of Open Access Journals (Sweden)

    John A. DeRuntz Jr.

    2005-01-01

    Full Text Available The numerical solution of underwater shock fluid – structure interaction problems using boundary element/finite element techniques became tractable through the development of the family of Doubly Asymptotic Approximations (DAA. Practical implementation of the method has relied on the so-called augmentation of the DAA equations. The fluid and structural systems are respectively coupled by the structural acceleration vector in the surface normal direction on the right hand side of the DAA equations, and the total pressure applied to the structural equations on its right hand side. By formally solving for the acceleration vector from the structural system and substituting it into its place in the DAA equations, the augmentation introduces a term involving the inverse of the structural mass matrix. However there exist at least two important classes of problems in which the structural mass matrix is singular. This paper develops a method to carry out the augmentation for such problems using a generalized inverse technique.

  2. Eternal solutions to a singular diffusion equation with critical gradient absorption

    International Nuclear Information System (INIS)

    Iagar, Razvan Gabriel; Laurençot, Philippe

    2013-01-01

    The existence of non-negative radially symmetric eternal solutions of exponential self-similar type u(t, x) = e −pβt/(2−p) f β (|x|e −βt ; β) is investigated for the singular diffusion equation with critical gradient absorption ∂ t u−Δ p u+|∇u| p/2 =0  in (0,∞)×R N , where 2N/(N + 1) < p < 2. Such solutions are shown to exist only if the parameter β ranges in a bounded interval (0, β * ], which is in sharp contrast to well-known singular diffusion equations, such as ∂ t φ − Δ p φ = 0 when p = 2N/(N + 1), N ⩾ 1, or the porous medium equation ∂ t φ − Δφ m  = 0 when m = (N − 2)/N, N ⩾ 3. Moreover, the profile f(r; β) decays to zero as r → ∞ in a faster way for β = β * than for β ∈ (0, β * ) but the algebraic leading order is the same in both cases. In fact, for large r, f(r; β * ) decays as r −p/(2−p) while f(r; β) behaves as (log r) 2/(2−p) r −p/(2−p) when β ∈ (0, β * ). (paper)

  3. Real and virtual multidimensional solitons

    International Nuclear Information System (INIS)

    Boiti, M.; Martina, L.; Pashaev, O.K.; Pempinelli, F.

    1993-01-01

    Recently it has been shown that in two spatial and one temporal dimensions (2+1) there exist localized solitons. These coherent structures display a richer phenomenology than the one dimensional solitons. Different effects have been reported successively in a series of papers. Some of them are due to the fact that the soliton solution is structurally unstable with respect to special choices of the parameters. Also some quantum-like effects as the non conservation of the number of solitons have been discovered by using direct methods. This report is dedicated to the study of the origin and generality of these new effects in the context of the Spectral Transform (ST) theory. By choosing more general boundaries than those used in previous papers we derive an N 2 -soliton solution, which is parameterized by a point in a space of 4N(N+1) real parameters. Of these parameters 2N(N+2) are determined by the choice of the boundaries and fix the velocity and the possible location of the solitons in the plane at large times, while the remaining 2N govern the dynamics of the solitons during the interaction. The total mass of solitons is conserved but, in general, the mass of the single soliton is not preserved by the interaction. The extreme cases in which the masses of one or more solitons are zero at t = -∞ or/and t = +∞ are also allowed. We call these solitons with asymptotic zero masses and, consequently, with asymptotic zero amplitudes virtual solitons. The total momentum of solitons is not conserved because the boundaries act as external forces. Solitons can simulate inelastic scattering processes of quantum particles including creation and annihilation of particles

  4. On the Theory of Solitons of Fluid Pressure and Solute Density in Geologic Porous Media, with Applications to Shale, Clay and Sandstone

    Science.gov (United States)

    Caserta, A.; Kanivetsky, R.; Salusti, E.

    2017-11-01

    We here analyze a new model of transients of pore pressure p and solute density ρ in geologic porous media. This model is rooted in the nonlinear wave theory, its focus is on advection and effect of large pressure jumps on strain. It takes into account nonlinear and also time-dependent versions of the Hooke law about stress, rate and strain. The model solutions strictly relate p and ρ evolving under the effect of a strong external stress. As a result, the presence of quick and sharp transients in low permeability rocks is unveiled, i.e., the nonlinear "Burgers solitons". We, therefore, show that the actual transport process in porous rocks for large signals is not only the linear diffusion, but also a solitons presence could control the process. A test of a presence of solitons is applied to Pierre shale, Bearpaw shale, Boom clay and Oznam-Mugu silt and clay. An application about the presence of solitons for nuclear waste disposal and salt water intrusions is also discussed. Finally, in a kind of "theoretical experiment" we show that solitons could also be present in higher permeability rocks (Jordan and St. Peter sandstones), thus supporting the idea of a possible occurrence of osmosis also in sandstones.

  5. The q-deformed mKP hierarchy with self-consistent sources, Wronskian solutions and solitons

    International Nuclear Information System (INIS)

    Lin Runliang; Peng Hua; Manas, Manuel

    2010-01-01

    Based on the eigenfunction symmetry constraint of the q-deformed modified KP hierarchy, a q-deformed mKP hierarchy with self-consistent sources (q-mKPHSCSs) is constructed. The q-mKPHSCSs contain two types of q-deformed mKP equation with self-consistent sources. By the combination of the dressing method and the method of variation of constants, a generalized dressing approach is proposed to solve the q-deformed KP hierarchy with self-consistent sources (q-KPHSCSs). Using the gauge transformation between the q-KPHSCSs and the q-mKPHSCSs, the q-deformed Wronskian solutions for the q-KPHSCSs and the q-mKPHSCSs are obtained. The one-soliton solutions for the q-deformed KP (mKP) equation with a source are given explicitly.

  6. Relativistic solitons and pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Karpman, V I [Inst. of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation, Moscow; Norman, C A; ter Haar, D; Tsytovich, V N

    1975-05-01

    A production mechanism for stable electron bunches or sheets of localized electric fields is investigated which may account for pulsar radio emission. Possible soliton phenomena in a one-dimensional relativistic plasma are analyzed, and it is suggested that the motion of a relativistic soliton, or ''relaton'', along a curved magnetic-field line may produce radio emission with the correct polarization properties. A general MHD solution is obtained for relatons, the radiation produced by a relativistic particle colliding with a soliton is evaluated, and the emission by a soliton moving along a curved field line is estimated. It is noted that due to a number of severe physical restrictions, curvature radiation is not a very likely solution to the problem of pulsar radio emission. (IAA)

  7. Helmholtz bright and boundary solitons

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J M [Joule Physics Laboratory, School of Computing, Science and Engineering, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom); McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P [Departmento de TeorIa de la Senal y Comunicaciones e IngenierIa Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)

    2007-02-16

    We report, for the first time, exact analytical boundary solitons of a generalized cubic-quintic nonlinear Helmholtz (NLH) equation. These solutions have a linked-plateau topology that is distinct from conventional dark soliton solutions; their amplitude and intensity distributions are spatially delocalized and connect regions of finite and zero wave-field disturbances (suggesting also the classification as 'edge solitons'). Extensive numerical simulations compare the stability properties of recently derived Helmholtz bright solitons, for this type of polynomial nonlinearity, to those of the new boundary solitons. The latter are found to possess a remarkable stability characteristic, exhibiting robustness against perturbations that would otherwise lead to the destabilizing of their bright-soliton counterparts.

  8. Helmholtz bright and boundary solitons

    International Nuclear Information System (INIS)

    Christian, J M; McDonald, G S; Chamorro-Posada, P

    2007-01-01

    We report, for the first time, exact analytical boundary solitons of a generalized cubic-quintic nonlinear Helmholtz (NLH) equation. These solutions have a linked-plateau topology that is distinct from conventional dark soliton solutions; their amplitude and intensity distributions are spatially delocalized and connect regions of finite and zero wave-field disturbances (suggesting also the classification as 'edge solitons'). Extensive numerical simulations compare the stability properties of recently derived Helmholtz bright solitons, for this type of polynomial nonlinearity, to those of the new boundary solitons. The latter are found to possess a remarkable stability characteristic, exhibiting robustness against perturbations that would otherwise lead to the destabilizing of their bright-soliton counterparts

  9. Positive solutions of boundary value problem for singular positone and semi-positone third-order difference equations

    Directory of Open Access Journals (Sweden)

    Gai Gongqi

    2011-01-01

    Full Text Available Abstract This article studies the boundary value problems for the third-order nonlinear singular difference equations Δ 3 u ( i - 2 + λ a ( i f ( i , u ( i = 0 , i ∈ [ 2 , T + 2 ] , satisfying five kinds of different boundary value conditions. This article shows the existence of positive solutions for positone and semi-positone type. The nonlinear term may be singular. Two examples are also given to illustrate the main results. The arguments are based upon fixed point theorems in a cone. MSC [2008]: 34B15; 39A10.

  10. Soliton solutions and chaotic motion of the extended Zakharov-Kuznetsov equations in a magnetized two-ion-temperature dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Zhen, Hui-Ling; Tian, Bo, E-mail: tian-bupt@163.com; Wang, Yu-Feng; Sun, Wen-Rong; Liu, Li-Cai [State Key Laboratory of Information Photonics and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2014-07-15

    The extended Zakharov-Kuznetsov (eZK) equation for the magnetized two-ion-temperature dusty plasma is studied in this paper. With the help of Hirota method, bilinear forms and N-soliton solutions are given, and soliton propagation is graphically analyzed. We find that the soliton amplitude is positively related to the nonlinear coefficient A, while inversely related to the dispersion coefficients B and C. We obtain that the soliton amplitude will increase with the mass of the jth dust grain and the average charge number residing on the dust grain decreased, but the soliton amplitude will increase with the equilibrium number density of the jth dust grain increased. Upon the introduction of the periodic external forcing term, both the weak and developed chaotic motions can occur. Difference between the two chaotic motions roots in the inequality between the nonlinear coefficient l{sub 2} and perturbed term h{sub 1}. The developed chaos can be weakened with B or C decreased and A increased. Periodic motion of the perturbed eZK equation can be observed when there is a balance between l{sub 2} and h{sub 1}.

  11. Tunnelling effects of solitons in optical fibers with higher-order effects

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Chao-Qing [Zhejiang A and F Univ., Lin' an (China). School of Sciences; Suzhou Univ., Jiangsu (China). School of Physical Science and Technology; Zhu, Hai-Ping [Zhejiang Lishui Univ., Zhejiang (China). School of Science; Zheng, Chun-Long [Shaoguan Univ., Guangdong (China). College of Physics and Electromechanical Engineering

    2012-06-15

    We construct four types of analytical soliton solutions for the higher-order nonlinear Schroedinger equation with distributed coefficients. These solutions include bright solitons, dark solitons, combined solitons, and M-shaped solitons. Moreover, the explicit functions which describe the evolution of the width, peak, and phase are discussed exactly. We finally discuss the nonlinear soliton tunnelling effect for four types of femtosecond solitons. (orig.)

  12. Necessary and Sufficient Conditions for the Existence of Positive Solution for Singular Boundary Value Problems on Time Scales

    Directory of Open Access Journals (Sweden)

    Zhang Xuemei

    2009-01-01

    Full Text Available By constructing available upper and lower solutions and combining the Schauder's fixed point theorem with maximum principle, this paper establishes sufficient and necessary conditions to guarantee the existence of as well as positive solutions for a class of singular boundary value problems on time scales. The results significantly extend and improve many known results for both the continuous case and more general time scales. We illustrate our results by one example.

  13. Ring-shaped quasi-soliton solutions to the two-and three-dimensional Sine-Gordon equation

    International Nuclear Information System (INIS)

    Christiansen, P.L.; Olsen, O.H.

    1979-01-01

    Ring-shaped solitary wave solutions to the Sine-Gordon equation in two and three spatial dimensions are investigated by numerical computation. Each expanding wave exhibits a return effect. The reflection of the shrinking wave at the singularity at the center of the wave is investigated in a particular case. Collision experiments in numero for expanding and shrinking concentric ring waves show that the solutions possess quasisoliton properties. A Baecklund transformation for the non-symmetric three-dimensional case is given. (Auth.)

  14. Asymptotic behaviour and stability of solutions of a singularly perturbed elliptic problem with a triple root of the degenerate equation

    Science.gov (United States)

    Butuzov, V. F.

    2017-06-01

    We construct and justify asymptotic expansions of solutions of a singularly perturbed elliptic problem with Dirichlet boundary conditions in the case when the corresponding degenerate equation has a triple root. In contrast to the case of a simple root, the expansion is with respect to fractional (non-integral) powers of the small parameter, the boundary-layer variables have another scaling, and the boundary layer has three zones. This gives rise to essential modifications in the algorithm for constructing the boundary functions. Solutions of the elliptic problem are stationary solutions of the corresponding parabolic problem. We prove that such a stationary solution is asymptotically stable and find its global domain of attraction.

  15. Existence of infinitely many solutions for degenerate and singular elliptic systems with indefinite concave nonlinearities

    Directory of Open Access Journals (Sweden)

    Nguyen Thanh Chung

    2011-02-01

    Full Text Available In this article, we consider degenerate and singular elliptic systems of the form $$displaylines{ - hbox{div}(h_1(xabla u = b_1(x|u|^{r-2}u + F_u(x,u,v quad hbox{in } Omega,cr - hbox{div}(h_2(xabla v = b_2(x|v|^{r-2}v + F_v(x,u,v quad hbox{in } Omega, }$$ where $Omega$ is a bounded domain in $mathbb{R}^N$, $N geq 2$, with smooth boundary $partialOmega$; $h_i: Omega o [0, infty$, $h_i in L^1_{loc}(Omega$, and are allowed to have ``essential'' zeroes; $1 < r < 2$; the weight functions $b_i: Omega o mathbb{R}$, may be sign-changing; and $(F_u,F_v = abla F$. Using variational techniques, a variant of the Caffarelli - Kohn - Nirenberg inequality, and a variational principle by Clark [9], we prove the rxistence of infinitely many solutions in a weighted Sobolev space.

  16. Modulational instability: Conservation laws and bright soliton solution of ion-acoustic waves in electron-positron-ion-dust plasmas

    Science.gov (United States)

    EL-Kalaawy, O. H.

    2018-02-01

    We consider the nonlinear propagation of non-planar (cylindrical and spherical) ion-acoustic (IA) envelope solitary waves in an unmagnetized plasma consisting of electron-positron-ion-dust plasma with two-electron temperature distributions in the context of the non-extensive statistics. The basic set of fluid equations is reduced to the modified nonlinear Schrödinger (MNLS) equation in cylindrical and spherical geometry by using the reductive perturbation method (RPM). It is found that the nature of the modulational instabilities would be significantly modified due to the effects of the non-extensive and other plasma parameters as well as cylindrical and spherical geometry. Conservation laws of the MNLS equation are obtained by Lie symmetry and multiplier method. A new exact solution (envelope bright soliton) is obtained by the extended homogeneous balance method. Finally, we study the results of this article.

  17. What Is the Validity Domain of Einstein’s Equations? Distributional Solutions over Singularities and Topological Links in Geometrodynamics

    Directory of Open Access Journals (Sweden)

    Elias Zafiris

    2016-08-01

    Full Text Available The existence of singularities alerts that one of the highest priorities of a centennial perspective on general relativity should be a careful re-thinking of the validity domain of Einstein’s field equations. We address the problem of constructing distinguishable extensions of the smooth spacetime manifold model, which can incorporate singularities, while retaining the form of the field equations. The sheaf-theoretic formulation of this problem is tantamount to extending the algebra sheaf of smooth functions to a distribution-like algebra sheaf in which the former may be embedded, satisfying the pertinent cohomological conditions required for the coordinatization of all of the tensorial physical quantities, such that the form of the field equations is preserved. We present in detail the construction of these distribution-like algebra sheaves in terms of residue classes of sequences of smooth functions modulo the information of singular loci encoded in suitable ideals. Finally, we consider the application of these distribution-like solution sheaves in geometrodynamics by modeling topologically-circular boundaries of singular loci in three-dimensional space in terms of topological links. It turns out that the Borromean link represents higher order wormhole solutions.

  18. δ- and δ'-shock wave types of singular solutions of systems of conservation laws and transport and concentration processes

    International Nuclear Information System (INIS)

    Shelkovich, V M

    2008-01-01

    This is a survey of some results and problems connected with the theory of generalized solutions of quasi-linear conservation law systems which can admit delta-shaped singularities. They are the so-called δ-shock wave type solutions and the recently introduced δ (n) -shock wave type solutions, n=1,2,..., which cannot be included in the classical Lax-Glimm theory. The case of δ- and δ'-shock waves is analyzed in detail. A specific analytical technique is developed to deal with such solutions. In order to define them, some special integral identities are introduced which extend the concept of weak solution, and the Rankine-Hugoniot conditions are derived. Solutions of Cauchy problems are constructed for some typical systems of conservation laws. Also investigated are multidimensional systems of conservation laws (in particular, zero-pressure gas dynamics systems) which admit δ-shock wave type solutions. A geometric aspect of such solutions is considered: they are connected with transport and concentration processes, and the balance laws of transport of 'volume' and 'area' to δ- and δ'-shock fronts are derived for them. For a 'zero-pressure gas dynamics' system these laws are the mass and momentum transport laws. An algebraic aspect of these solutions is also considered: flux-functions are constructed for them which, being non-linear, are nevertheless uniquely defined Schwartz distributions. Thus, a singular solution of the Cauchy problem generates algebraic relations between its components (distributions).

  19. Geometric solitons of Hamiltonian flows on manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chong, E-mail: songchong@xmu.edu.cn [School of Mathematical Sciences, Xiamen University, Xiamen 361005 (China); Sun, Xiaowei, E-mail: sunxw@cufe.edu.cn [School of Applied Mathematics, Central University of Finance and Economics, Beijing 100081 (China); Wang, Youde, E-mail: wyd@math.ac.cn [Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-12-15

    It is well-known that the LIE (Locally Induction Equation) admit soliton-type solutions and same soliton solutions arise from different and apparently irrelevant physical models. By comparing the solitons of LIE and Killing magnetic geodesics, we observe that these solitons are essentially decided by two families of isometries of the domain and the target space, respectively. With this insight, we propose the new concept of geometric solitons of Hamiltonian flows on manifolds, such as geometric Schrödinger flows and KdV flows for maps. Moreover, we give several examples of geometric solitons of the Schrödinger flow and geometric KdV flow, including magnetic curves as geometric Schrödinger solitons and explicit geometric KdV solitons on surfaces of revolution.

  20. On exact solitary wave solutions of the nonlinear Schroedinger equation with a source

    International Nuclear Information System (INIS)

    Raju, T Solomon; Kumar, C Nagaraja; Panigrahi, Prasanta K

    2005-01-01

    We use a fractional transformation to connect the travelling wave solutions of the nonlinear Schroedinger equation (NLSE), phase locked with a source, to the elliptic equations satisfying, f-Prime ± af ± λf 3 = 0. The solutions are necessarily of rational form, containing both trigonometric and hyperbolic types as special cases. Bright and dark solitons, as well as singular solitons, are obtained in a suitable range of parameter values. (letter to the editor)

  1. Bäcklund transformation, analytic soliton solutions and numerical simulation for a (2+1)-dimensional complex Ginzburg-Landau equation in a nonlinear fiber

    Science.gov (United States)

    Yu, Ming-Xiao; Tian, Bo; Chai, Jun; Yin, Hui-Min; Du, Zhong

    2017-10-01

    In this paper, we investigate a nonlinear fiber described by a (2+1)-dimensional complex Ginzburg-Landau equation with the chromatic dispersion, optical filtering, nonlinear and linear gain. Bäcklund transformation in the bilinear form is constructed. With the modified bilinear method, analytic soliton solutions are obtained. For the soliton, the amplitude can decrease or increase when the absolute value of the nonlinear or linear gain is enlarged, and the width can be compressed or amplified when the absolute value of the chromatic dispersion or optical filtering is enhanced. We study the stability of the numerical solutions numerically by applying the increasing amplitude, embedding the white noise and adding the Gaussian pulse to the initial values based on the analytic solutions, which shows that the numerical solutions are stable, not influenced by the finite initial perturbations.

  2. Evolution of envelope solitons of ionization waves

    International Nuclear Information System (INIS)

    Ohe, K.; Hashimoto, M.

    1985-01-01

    The time evolution of a particle-like envelope soliton of ionization waves in plasma was investigated theoretically. The hydrodynamic equations of one spatial dimension were solved and the nonlinear dispersion relation was derived. For the amplitude of the wave the nonlinear Schroedinger equation was derived. Its soliton solution was interpreted as the envelope soliton which was experimentally found. The damping rate of the envelope soliton was estimated. (D.Gy.)

  3. Triple Positive Solutions of a Nonlocal Boundary Value Problem for Singular Differential Equations with p-Laplacian

    Directory of Open Access Journals (Sweden)

    Jufang Wang

    2013-01-01

    Full Text Available We establish the existence of triple positive solutions of an m-point boundary value problem for the nonlinear singular second-order differential equations of mixed type with a p-Laplacian operator by Leggett-William fixed point theorem. At last, we give an example to demonstrate the use of the main result of this paper. The conclusions in this paper essentially extend and improve the known results.

  4. Singular boundary value problem for the integrodifferential equation in an insurance model with stochastic premiums: Analysis and numerical solution

    Science.gov (United States)

    Belkina, T. A.; Konyukhova, N. B.; Kurochkin, S. V.

    2012-10-01

    A singular boundary value problem for a second-order linear integrodifferential equation with Volterra and non-Volterra integral operators is formulated and analyzed. The equation is defined on ℝ+, has a weak singularity at zero and a strong singularity at infinity, and depends on several positive parameters. Under natural constraints on the coefficients of the equation, existence and uniqueness theorems for this problem with given limit boundary conditions at singular points are proved, asymptotic representations of the solution are given, and an algorithm for its numerical determination is described. Numerical computations are performed and their interpretation is given. The problem arises in the study of the survival probability of an insurance company over infinite time (as a function of its initial surplus) in a dynamic insurance model that is a modification of the classical Cramer-Lundberg model with a stochastic process rate of premium under a certain investment strategy in the financial market. A comparative analysis of the results with those produced by the model with deterministic premiums is given.

  5. Modulation stability and dispersive optical soliton solutions of higher order nonlinear Schrödinger equation and its applications in mono-mode optical fibers

    Science.gov (United States)

    Arshad, Muhammad; Seadawy, Aly R.; Lu, Dianchen

    2018-01-01

    In mono-mode optical fibers, the higher order non-linear Schrödinger equation (NLSE) describes the propagation of enormously short light pulses. We constructed optical solitons and, solitary wave solutions of higher order NLSE mono-mode optical fibers via employing modified extended mapping method which has important applications in Mathematics and physics. Furthermore, the formation conditions are also given on parameters in which optical bright and dark solitons can exist for this media. The moment of the obtained solutions are also given graphically, that helps to realize the physical phenomena's of this model. The modulation instability analysis is utilized to discuss the model stability, which verifies that all obtained solutions are exact and stable. Many other such types of models arising in applied sciences can also be solved by this reliable, powerful and effective method. The method can also be functional to other sorts of higher order nonlinear problems in contemporary areas of research.

  6. Exact solutions of space-time fractional EW and modified EW equations

    International Nuclear Information System (INIS)

    Korkmaz, Alper

    2017-01-01

    The bright soliton solutions and singular solutions are constructed for the space-time fractional EW and the space-time fractional modified EW (MEW) equations. Both equations are reduced to ordinary differential equations by the use of fractional complex transform (FCT) and properties of modified Riemann–Liouville derivative. Then, various ansatz method are implemented to construct the solutions for both equations.

  7. Cosmic ray-modified stellar winds. I. Solution topologies and singularities

    International Nuclear Information System (INIS)

    Ko, C.M.; Webb, G.M.

    1987-01-01

    In the present two-fluid hydrodynamical model for stellar wind flow modification due to its interaction with Galactic cosmic rays, these rays are coupled to the stellar wind by either hydromagnetic wave scattering or background flow irregularity propagation. The background flow is modified by the cosmic rays via their pressure gradient. The system of equations used possesses a line of singularities in (r, u, P/sub c/)-space, or a two-dimensional hypersurface of singularities in (r, u, P/sub c/, dP/sub c/dr)-space, where r, u, and P/sub c/ are respectively the radial distance from the star, the radial wind flow speed, and the cosmic ray pressure. The singular points may be nodes, foci, or saddle points. 64 references

  8. Necessary and Sufficient Conditions for the Existence of Positive Solution for Singular Boundary Value Problems on Time Scales

    Directory of Open Access Journals (Sweden)

    Meiqiang Feng

    2009-01-01

    Full Text Available By constructing available upper and lower solutions and combining the Schauder's fixed point theorem with maximum principle, this paper establishes sufficient and necessary conditions to guarantee the existence of Cld[0,1]𝕋 as well as CldΔ[0,1]𝕋 positive solutions for a class of singular boundary value problems on time scales. The results significantly extend and improve many known results for both the continuous case and more general time scales. We illustrate our results by one example.

  9. One- and two-channel Kondo model with logarithmic Van Hove singularity: A numerical renormalization group solution

    Science.gov (United States)

    Zhuravlev, A. K.; Anokhin, A. O.; Irkhin, V. Yu.

    2018-02-01

    Simple scaling consideration and NRG solution of the one- and two-channel Kondo model in the presence of a logarithmic Van Hove singularity at the Fermi level is given. The temperature dependences of local and impurity magnetic susceptibility and impurity entropy are calculated. The low-temperature behavior of the impurity susceptibility and impurity entropy turns out to be non-universal in the Kondo sense and independent of the s-d coupling J. The resonant level model solution in the strong coupling regime confirms the NRG results. In the two-channel case the local susceptibility demonstrates a non-Fermi-liquid power-law behavior.

  10. Asymptotically AdS spacetimes with a timelike Kasner singularity

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jie [Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel)

    2016-07-21

    Exact solutions to Einstein’s equations for holographic models are presented and studied. The IR geometry has a timelike cousin of the Kasner singularity, which is the less generic case of the BKL (Belinski-Khalatnikov-Lifshitz) singularity, and the UV is asymptotically AdS. This solution describes a holographic RG flow between them. The solution’s appearance is an interpolation between the planar AdS black hole and the AdS soliton. The causality constraint is always satisfied. The entanglement entropy and Wilson loops are discussed. The boundary condition for the current-current correlation function and the Laplacian in the IR is examined. There is no infalling wave in the IR, but instead, there is a normalizable solution in the IR. In a special case, a hyperscaling-violating geometry is obtained after a dimensional reduction.

  11. Nature Inspired Computational Technique for the Numerical Solution of Nonlinear Singular Boundary Value Problems Arising in Physiology

    Directory of Open Access Journals (Sweden)

    Suheel Abdullah Malik

    2014-01-01

    Full Text Available We present a hybrid heuristic computing method for the numerical solution of nonlinear singular boundary value problems arising in physiology. The approximate solution is deduced as a linear combination of some log sigmoid basis functions. A fitness function representing the sum of the mean square error of the given nonlinear ordinary differential equation (ODE and its boundary conditions is formulated. The optimization of the unknown adjustable parameters contained in the fitness function is performed by the hybrid heuristic computation algorithm based on genetic algorithm (GA, interior point algorithm (IPA, and active set algorithm (ASA. The efficiency and the viability of the proposed method are confirmed by solving three examples from physiology. The obtained approximate solutions are found in excellent agreement with the exact solutions as well as some conventional numerical solutions.

  12. Implementation of the HNS Convention in the LNG Industry: Singularities, Stakes, Issues and GIIGNL Proposed Solutions

    International Nuclear Information System (INIS)

    2008-01-01

    The International Group of Liquefied Natural Gas Importers (GIIGNL) is a non-profit organization founded in December of 1971. It is composed of 56 member companies from 18 different countries across the world and involved in the importation of Liquefied Natural Gas. The main objective of the GIIGNL is to promote the development of activities related to LNG: purchasing, importing, processing, transportation, handling, re-gasification and various uses of LNG. For this purpose, the GIIGNL is particularly involved in promoting the state-of-the art technology in the LNG industry, in communicating about the economic fundamentals of the industry, in enhancing facility operations, in diversifying contractual techniques, and in developing industry positions to be taken in international agencies. As a member of the IOPC Fund since June 2007, the GIIGNL prepared this LNG overview in order to offer a better understanding to state delegations about this specific product and its market and to contribute to the debate on the implementation of the HNS Convention. the first chapter constitutes an introduction to the LNG Industry: presentation of an LNG Chain, overview of the global LNG trade and its growth rate, type of contracts, LNG tankers and technical transportation constraints, liquefaction and re-gasification plants around the world. The second chapter focuses on some singularities of the LNG industry that differentiate LNG from other Hazardous and Noxious Substances: LNG, a clean and unique product and activity, high standards and firm regulations concerning security and maritime safety, high level of investment required for an LNG chain, DES and FOB, the fundamental Incoterms of LNG sales and purchase. The third chapter presents the HNS Convention as potentially applicable to the LNG market: a two tier compensation regime - a new perspective for the LNG industry, a potential impact on LNG sales and purchase agreements, the importance of global HNS ratification within LNG

  13. Periodic solutions of singular second order differential equations : upper and lower functions

    Czech Academy of Sciences Publication Activity Database

    Hakl, Robert; Torres, P.J.; Zamora, M.

    2011-01-01

    Roč. 74, č. 18 (2011), s. 7078-7093 ISSN 0362-546X Institutional research plan: CEZ:AV0Z10190503 Keywords : second-order differential equation * singularity at the phase variable * Rayleigh-Plesset equation Subject RIV: BA - General Mathematics Impact factor: 1.536, year: 2011 http://www.sciencedirect.com/science/article/pii/S0362546X11005049

  14. Stability analysis of the Peregrine solution via squared eigenfunctions

    Science.gov (United States)

    Schober, C. M.; Strawn, M.

    2017-10-01

    A preliminary numerical investigation involving ensembles of perturbed initial data for the Peregrine soliton (the lowest order rational solution of the nonlinear Schrödinger equation) indicates that it is unstable [16]. In this paper we analytically investigate the linear stability of the Peregrine soliton, appealing to the fact that the Peregrine solution can be viewed as the singular limit of a single mode spatially periodic breathers (SPB). The "squared eigenfunction" connection between the Zakharov-Shabat (Z-S) system and the linearized NLS equation is employed in the stability analysis. Specifically, we determine the eigenfunctions of the Z-S system associated with the Peregrine soliton and construct a family of solutions of the associated linearized NLS (about the Peregrine) in terms of quadratic products of components of the eigenfunctions (i.e., the squared eigenfunction). We find there exist solutions of the linearization that grow exponentially in time, thus showing the Peregrine soliton is linearly unstable.

  15. Soliton solutions to the fifth-order Korteweg-de Vries equation and their applications to surface and internal water waves

    Science.gov (United States)

    Khusnutdinova, K. R.; Stepanyants, Y. A.; Tranter, M. R.

    2018-02-01

    We study solitary wave solutions of the fifth-order Korteweg-de Vries equation which contains, besides the traditional quadratic nonlinearity and third-order dispersion, additional terms including cubic nonlinearity and fifth order linear dispersion, as well as two nonlinear dispersive terms. An exact solitary wave solution to this equation is derived, and the dependence of its amplitude, width, and speed on the parameters of the governing equation is studied. It is shown that the derived solution can represent either an embedded or regular soliton depending on the equation parameters. The nonlinear dispersive terms can drastically influence the existence of solitary waves, their nature (regular or embedded), profile, polarity, and stability with respect to small perturbations. We show, in particular, that in some cases embedded solitons can be stable even with respect to interactions with regular solitons. The results obtained are applicable to surface and internal waves in fluids, as well as to waves in other media (plasma, solid waveguides, elastic media with microstructure, etc.).

  16. The Cucker-Smale Equation: Singular Communication Weight, Measure-Valued Solutions and Weak-Atomic Uniqueness

    Science.gov (United States)

    Mucha, Piotr B.; Peszek, Jan

    2018-01-01

    The Cucker-Smale flocking model belongs to a wide class of kinetic models that describe a collective motion of interacting particles that exhibit some specific tendency, e.g. to aggregate, flock or disperse. This paper examines the kinetic Cucker-Smale equation with a singular communication weight. Given a compactly supported measure as an initial datum we construct a global in time weak measure-valued solution in the space {C_{weak}(0,∞M)}. The solution is defined as a mean-field limit of the empirical distributions of particles, the dynamics of which is governed by the Cucker-Smale particle system. The studied communication weight is {ψ(s)=|s|^{-α}} with {α \\in (0,1/2)}. This range of singularity admits the sticking of characteristics/trajectories. The second result concerns the weak-atomic uniqueness property stating that a weak solution initiated by a finite sum of atoms, i.e. Dirac deltas in the form {m_i δ_{x_i} ⊗ δ_{v_i}}, preserves its atomic structure. Hence these coincide with unique solutions to the system of ODEs associated with the Cucker-Smale particle system.

  17. Supergravity solitons

    International Nuclear Information System (INIS)

    Aichelburg, P.C.; Embacher, F.

    1987-01-01

    In previous work solitons of N = 2 supergravity were described as test particles in an external supergravity field. In the present paper we derive the effective interaction of two solitons by inserting a classical soliton configuration for the background into the Lagrangian and apply a slow-motion and large-distance approximation. We obtain the interaction potential to lowest order that incorporates the effect of the supercharge. The resulting classical system is quantized and, as a final step, an effective quantum field theory is formulated. (Author)

  18. Numerical Solutions of Singularly Perturbed Reaction Diffusion Equation with Sobolev Gradients

    Directory of Open Access Journals (Sweden)

    Nauman Raza

    2013-01-01

    Full Text Available Critical points related to the singular perturbed reaction diffusion models are calculated using weighted Sobolev gradient method in finite element setting. Performance of different Sobolev gradients has been discussed for varying diffusion coefficient values. A comparison is shown between the weighted and unweighted Sobolev gradients in two and three dimensions. The superiority of the method is also demonstrated by showing comparison with Newton's method.

  19. Homotopy and solitons. 1

    International Nuclear Information System (INIS)

    Boya, L.J.; Carinena, J.F.; Mateos, J.

    1978-01-01

    Starting from classical field theory with a Lagrangian, solitons are identified with solutions of the field equations which satisfy peculiar boundary conditions. The symmetry group which causes the degenerate vacuum is taken generally internal, that is, not operating in space-time. Gauge symmetry plays a dominant role. A precise definition of solitons is given and it is shown how to study some continuous mappings of the ''distant'' parts of space on the set of degenerate vacua. A marvellous instrument, the exact homotopy sequence, is applied to calculate homotopy groups of some higher-dimensional manifolds

  20. Ring vortex solitons in nonlocal nonlinear media

    DEFF Research Database (Denmark)

    Briedis, D.; Petersen, D.E.; Edmundson, D.

    2005-01-01

    We study the formation and propagation of two-dimensional vortex solitons, i.e. solitons with a phase singularity, in optical materials with a nonlocal focusing nonlinearity. We show that nonlocality stabilizes the dynamics of an otherwise unstable vortex beam. This occurs for either single...... or higher charge fundamental vortices as well as higher order (multiple ring) vortex solitons. Our results pave the way for experimental observation of stable vortex rings in other nonlocal nonlinear systems including Bose-Einstein condensates with pronounced long-range interparticle interaction....

  1. Hairy AdS solitons

    International Nuclear Information System (INIS)

    Anabalón, Andrés; Astefanesei, Dumitru; Choque, David

    2016-01-01

    We construct exact hairy AdS soliton solutions in Einstein-dilaton gravity theory. We examine their thermodynamic properties and discuss the role of these solutions for the existence of first order phase transitions for hairy black holes. The negative energy density associated to hairy AdS solitons can be interpreted as the Casimir energy that is generated in the dual filed theory when the fermions are antiperiodic on the compact coordinate.

  2. Soliton structure in crystalline acetanilide

    International Nuclear Information System (INIS)

    Eilbeck, J.C.; Lomdahl, P.S.; Scott, A.C.

    1984-01-01

    The theory of self-trapping of amide I vibrational energy in crystalline acetanilide is studied in detail. A spectrum of stationary, self-trapped (soliton) solutions is determined and tested for dynamic stability. Only those solutions for which the amide I energy is concentrated near a single molecule were found to be stable. Exciton modes were found to be unstable to decay into solitons

  3. Hairy AdS solitons

    Energy Technology Data Exchange (ETDEWEB)

    Anabalón, Andrés, E-mail: andres.anabalon@uai.cl [Departamento de Ciencias, Facultad de Artes Liberales and Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar (Chile); Astefanesei, Dumitru, E-mail: dumitru.astefanesei@pucv.cl [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Choque, David, E-mail: brst1010123@gmail.com [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile)

    2016-11-10

    We construct exact hairy AdS soliton solutions in Einstein-dilaton gravity theory. We examine their thermodynamic properties and discuss the role of these solutions for the existence of first order phase transitions for hairy black holes. The negative energy density associated to hairy AdS solitons can be interpreted as the Casimir energy that is generated in the dual filed theory when the fermions are antiperiodic on the compact coordinate.

  4. Soliton-like solutions of a generalized variable-coefficient higher order nonlinear Schroedinger equation from inhomogeneous optical fibers with symbolic computation

    International Nuclear Information System (INIS)

    Li Juan; Zhang Haiqiang; Xu Tao; Zhang, Ya-Xing; Tian Bo

    2007-01-01

    For the long-distance communication and manufacturing problems in optical fibers, the propagation of subpicosecond or femtosecond optical pulses can be governed by the variable-coefficient nonlinear Schroedinger equation with higher order effects, such as the third-order dispersion, self-steepening and self-frequency shift. In this paper, we firstly determine the general conditions for this equation to be integrable by employing the Painleve analysis. Based on the obtained 3 x 3 Lax pair, we construct the Darboux transformation for such a model under the corresponding constraints, and then derive the nth-iterated potential transformation formula by the iterative process of Darboux transformation. Through the one- and two-soliton-like solutions, we graphically discuss the features of femtosecond solitons in inhomogeneous optical fibers

  5. Soliton-soliton effective interaction

    International Nuclear Information System (INIS)

    Maki, J.N.

    1986-01-01

    A scheme of semi-phenomenological quantization is proposed for the collision process of two equal size envelopes-solitons provided by nonlinear Schroedinger equation. The time advance due to two envelopes-solitons collision was determined. Considering the solitons as puntual particles and using the description of classical mechanics, the effective envelope soliton-envelope soliton attractive potential, denominated modified Poschl-Teller potential. The obtainment of this potential was possible using the information in from of system memory, done by an analytical expression of time delay. Such system was quantized using this effective potential in Schroeding equation. The S col matrix of two punctual bodies was determined, and it is shown that, in the limit of 1 2 2 /mN 4 it reproduces the exact S 2N matrix obtained from soliton packet wich incurs on another soliton packet. Every ones have the same mass, interacts by contact force between two bodies. These packets have only one bound state, i e, do not have excited states. It was verified that, using the S col matrix, the binding energy of ground state of the system can be obtained, which is coincident with 2N particles in the 1/N approximation. In this scheme infinite spurious bound states are found (M.C.K.) [pt

  6. Exact bright and dark spatial soliton solutions in saturable nonlinear media

    International Nuclear Information System (INIS)

    Calvo, Gabriel F.; Belmonte-Beitia, Juan; Perez-Garcia, Victor M.

    2009-01-01

    We present exact analytical bright and dark (black and grey) solitary wave solutions of a nonlinear Schroedinger-type equation describing the propagation of spatial beams in media exhibiting a saturable nonlinearity (such as centrosymmetric photorefractive materials). A qualitative study of the stationary equation is carried out together with a discussion of the stability of the solutions.

  7. Solutions of the lattice sine–Gordon equation and the solitons of its cellular automaton

    International Nuclear Information System (INIS)

    Willox, R; Ramani, A; Grammaticos, B

    2014-01-01

    We analyse the solutions of the cellular automaton sine–Gordon equation and link them to solutions of the discrete, lattice, sine–Gordon. We show that while the ultradiscretizable, positive definite, solutions of the latter behave dispersively, certain parts of these dispersive waves nonetheless survive in the ultradiscrete limit, giving rise to the solutions of the cellular automaton. We examine the ultradiscrete solutions in the case of a generalized cellular automaton in which the dependent variable can assume non-integer values and we show that the collision of two solitary waves is inelastic, leading to the creation of a ‘bridge’ of constant height that links two outgoing structures. Based on the ultradiscrete form of the sine–Gordon equation we explain the appearance of this bridging region and we describe its interaction with a solitary wave. (paper)

  8. Generalized sine-Gordon solitons

    International Nuclear Information System (INIS)

    Santos, C dos; Rubiera-Garcia, D

    2011-01-01

    In this paper, we construct analytical self-dual soliton solutions in (1+1) dimensions for two families of models which can be seen as generalizations of the sine-Gordon system but where the kinetic term is non-canonical. For that purpose we use a projection method applied to the sine-Gordon soliton. We focus our attention on the wall and lump-like soliton solutions of these k-field models. These solutions and their potentials reduce to those of the Klein-Gordon kink and the standard lump for the case of a canonical kinetic term. As we increase the nonlinearity on the kinetic term the corresponding potentials get modified and the nature of the soliton may change, in particular, undergoing a topology modification. The procedure constructed here is shown to be a sort of generalization of the deformation method for a specific class of k-field models. (paper)

  9. Supergravity solitons

    International Nuclear Information System (INIS)

    Aichelburg, P.C.; Embacher, F.

    1987-01-01

    The motion of a soliton in a supergravity background configuration is studied. The dynamics of the soliton is desribed by a trajectory in curved N = 2 superspace. For the proposed Langrangian the moments, the constraints and the generators of local supertranslations are displayed. An additional local gauge symmetry is exhibited. Special emphasis is laid on the classical equations of motion. These turn out to be a supersymmetric generalization of Papapetrou's equation of motion for a spinning particle in a gravitational field. (Author)

  10. Nontopological solitons

    International Nuclear Information System (INIS)

    Friedberg, R.

    1977-01-01

    It is pointed out that the study of solitons offers a new departure for the problem of handling bound states in relativistic quantum field theory which has hampered development of a simple conventional model of hadrons. The principle is illustrated by the case of a quantum mechanical particle moving in two dimensions under the centrally symmetric and quasi-harmonic potential. Restriction is made to nontopological solitons. These ideas are applied to a model of hadrons. 10 references

  11. Timelike and null focusing singularities in spherical symmetry: A solution to the cosmological horizon problem and a challenge to the cosmic censorship hypothesis

    International Nuclear Information System (INIS)

    Celerier, Marie-Noeelle; Szekeres, Peter

    2002-01-01

    Extending the study of spherically symmetric metrics satisfying the dominant energy condition and exhibiting singularities of power-law type initiated by Szekeres and Iyer, we identify two classes of peculiar interest: focusing timelike singularity solutions with the stress-energy tensor of a radiative perfect fluid (equation of state: p=(1/3)ρ) and a set of null singularity classes verifying identical properties. We consider two important applications of these results: to cosmology, as regards the possibility of solving the horizon problem with no need to resort to any inflationary scenario, and to the strong cosmic censorship hypothesis to which we propose a class of physically consistent counterexamples

  12. Analytic solution of the BCS gap equation with a logarithmic singularity in the density of states

    International Nuclear Information System (INIS)

    Bhardwaj, A.; Muthu, S.K.

    1999-01-01

    The Bardeen-Cooper-Schrieffer (BCS) gap equation is solved analytically for a density of states function with a logarithmic singularity. It is an extension of our earlier work where we had assumed a constant density of states. We continue to work in the weak-coupling limit and consider both phononic and non-phononic pairings. Expressions are obtained for T c , Δ 0 (the gap at T=0), and the jump in the electronic specific heat at T=T c . We also calculate the isotope exponent and show that it is possible to reproduce the broad features of the experimental results in this framework. (orig.)

  13. Positive solutions of three-point boundary-value problems for p-Laplacian singular differential equations

    Directory of Open Access Journals (Sweden)

    George N. Galanis

    2005-10-01

    Full Text Available In this paper we prove the existence of positive solutions for the three-point singular boundary-value problem$$ -[phi _{p}(u']'=q(tf(t,u(t,quad 0solutions of the above boundary-value problem remains away from the origin for the case where the nonlinearity is sublinear and so we avoid its singularity at $u=0$.

  14. Singular stochastic differential equations

    CERN Document Server

    Cherny, Alexander S

    2005-01-01

    The authors introduce, in this research monograph on stochastic differential equations, a class of points termed isolated singular points. Stochastic differential equations possessing such points (called singular stochastic differential equations here) arise often in theory and in applications. However, known conditions for the existence and uniqueness of a solution typically fail for such equations. The book concentrates on the study of the existence, the uniqueness, and, what is most important, on the qualitative behaviour of solutions of singular stochastic differential equations. This is done by providing a qualitative classification of isolated singular points, into 48 possible types.

  15. Soliton models in resonant and nonresonant optical fibers

    Indian Academy of Sciences (India)

    where Γ is the damping (> 0) and gain (< 0) parameter. Using the perturbation method and zeroth approximation, one-soliton solution is constructed and the amplification and damping of soliton is explained in figure 2. In addition, by introducing the initial phase. Figure 1. Two soliton solutions of the NLS equation. Figure 2.

  16. Phantom dark energy and cosmological solutions without the Big Bang singularity

    International Nuclear Information System (INIS)

    Baushev, A.N.

    2010-01-01

    The hypothesis is rapidly gaining popularity that the dark energy pervading our universe is extra-repulsive (-p>ρ). The density of such a substance (usually called phantom energy) grows with the cosmological expansion and may become infinite in a finite time producing a Big Rip. In this Letter we analyze the late stages of the universe evolution and demonstrate that the presence of the phantom energy in the universe is not enough in itself to produce the Big Rip. This singularity occurrence requires the fulfillment of some additional, rather strong conditions. A more probable outcome of the cosmological evolution is the decay of the phantom field into 'normal' matter. The second, more intriguing consequence of the presence of the phantom field is the possibility to introduce a cosmological scenario that does not contain a Big Bang. In the framework of this model the universe eternally expands, while its density and other physical parameters oscillate over a wide range, never reaching the Plank values. Thus, the universe evolution has no singularities at all.

  17. Approximate treatment of two soliton solutions of the sine-Gordon equation

    International Nuclear Information System (INIS)

    Mihaly, L.

    1979-05-01

    The so called breather solution of the sine-Gordon equation is phenomenologically described by an appropri.ately choosen potential acting between two particles. For some applications the method proves to be equivalent to other classical and quantum calculations. (author)

  18. Two-soliton interaction as an elementary act of soliton turbulence in integrable systems

    Energy Technology Data Exchange (ETDEWEB)

    Pelinovsky, E.N. [Department of Information Systems, National Research University – Higher School of Economics, Nizhny Novgorod (Russian Federation); Department of Nonlinear Geophysical Processes, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Shurgalina, E.G.; Sergeeva, A.V.; Talipova, T.G. [Department of Nonlinear Geophysical Processes, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Department of Applied Mathematics, Nizhny Novgorod State Technical University, Nizhny Novgorod (Russian Federation); El, G.A., E-mail: g.el@lboro.ac.uk [Department of Mathematical Sciences, Loughborough University (United Kingdom); Grimshaw, R.H.J. [Department of Mathematical Sciences, Loughborough University (United Kingdom)

    2013-01-03

    Two-soliton interactions play a definitive role in the formation of the structure of soliton turbulence in integrable systems. To quantify the contribution of these interactions to the dynamical and statistical characteristics of the nonlinear wave field of soliton turbulence we study properties of the spatial moments of the two-soliton solution of the Korteweg–de Vries (KdV) equation. While the first two moments are integrals of the KdV evolution, the 3rd and 4th moments undergo significant variations in the dominant interaction region, which could have strong effect on the values of the skewness and kurtosis in soliton turbulence.

  19. Gravitational generation of mass in soliton theory

    International Nuclear Information System (INIS)

    Kozhevnikov, I.R.; Rybakov, Yu.P.

    1985-01-01

    It is shown that in the framework of a simple scalar field model, that admits soliton solutions, with gravitational field interactions being specially included, one succeeds in ensuring for a scalar field a correct spacial asymptotics that depends on the system mass. Theory, the quantum relation of a corpuscular-wave dualism is fulfilled for soliton solutions in such a model

  20. The dark soliton on a cnoidal wave background

    International Nuclear Information System (INIS)

    Shin, H J

    2005-01-01

    We find a solution of the dark soliton lying on a cnoidal wave background in a defocusing medium. We use the method of Darboux transformation, which is applied to the cnoidal wave solution of the defocusing nonlinear Schroedinger equation. Interesting characteristics of the dark soliton, i.e., the velocity and greyness, are calculated and compared with those of the dark soliton lying on a continuous wave background. We also calculate the shift of the crest of the cnoidal wave along the soliton

  1. Stair and Step Soliton Solutions of the Integrable (2+1) and (3+1)-Dimensional Boiti—Leon—Manna—Pempinelli Equations

    International Nuclear Information System (INIS)

    Darvishi, M.T.; Najafi, M.; Kavitha, L.; Venkatesh, M.

    2012-01-01

    The multiple exp-function method is a new approach to obtain multiple wave solutions of nonlinear partial differential equations (NLPDEs). By this method one can obtain multi-soliton solutions of NLPDEs. In this paper, using computer algebra systems, we apply the multiple exp-function method to construct the exact multiple wave solutions of a (2+1)-dimensional Boiti—Leon—Manna—Pempinelli equation. Also, we extend the equation to a (3+1)-dimensional case and obtain some exact solutions for the new equation by applying the multiple exp-function method. By these applications, we obtain single-wave, double-wave and multi-wave solutions for these equations.

  2. Hopf solitons in the AFZ model

    International Nuclear Information System (INIS)

    Gillard, Mike

    2011-01-01

    The Aratyn–Ferreira–Zimerman (AFZ) model is a conformal field theory in three-dimensional space. It has solutions that are topological solitons classified by an integer-valued Hopf index. There exist infinitely many axial solutions which have been found analytically. Static axial, knot and linked solitons are found numerically using a modified volume preserving flow for Hopf index one to eight, allowing for comparison with other Hopf soliton models. Solutions include a static trefoil knot at Hopf index five. A one-parameter family of conformal Skyrme–Faddeev models, consisting of linear combinations of the Nicole and AFZ models, are also investigated numerically. The transition of solutions for Hopf index four is mapped across these models. A topological change between linked and axial solutions occurs, with fewer models (or a limited range of parameter values) permitting axial solitons than linked solitons at Hopf index four

  3. Enhancement accuracy of approximated solutions of the nonlinear singular integral equations of Chew-Low type

    International Nuclear Information System (INIS)

    Zhidkov, E.P.; Nguen Mong; Khoromskij, B.N.

    1979-01-01

    The ways of enhancement of the accuracy of approximate solutions of the Chew-Low type equation are considered. Difference schemes are proposed which allow one to obtain solution expansion in degrees of lattice step. On the basis of the expansion by the Richardson method the refinement of approximated solutions is made. Besides, the iteration process is constructed which reduces immediately to the solution of enhanced accuracy. The efficiency of the methods proposed is illustrated by numerical examples

  4. Averaging for solitons with nonlinearity management

    International Nuclear Information System (INIS)

    Pelinovsky, D.E.; Kevrekidis, P.G.; Frantzeskakis, D.J.

    2003-01-01

    We develop an averaging method for solitons of the nonlinear Schroedinger equation with a periodically varying nonlinearity coefficient, which is used to effectively describe solitons in Bose-Einstein condensates, in the context of the recently proposed technique of Feshbach resonance management. Using the derived local averaged equation, we study matter-wave bright and dark solitons and demonstrate a very good agreement between solutions of the averaged and full equations

  5. Investigation of Solitary wave solutions for Vakhnenko-Parkes equation via exp-function and Exp(-ϕ(ξ))-expansion method.

    Science.gov (United States)

    Roshid, Harun-Or; Kabir, Md Rashed; Bhowmik, Rajandra Chadra; Datta, Bimal Kumar

    2014-01-01

    In this paper, we have described two dreadfully important methods to solve nonlinear partial differential equations which are known as exp-function and the exp(-ϕ(ξ)) -expansion method. Recently, there are several methods to use for finding analytical solutions of the nonlinear partial differential equations. The methods are diverse and useful for solving the nonlinear evolution equations. With the help of these methods, we are investigated the exact travelling wave solutions of the Vakhnenko- Parkes equation. The obtaining soliton solutions of this equation are described many physical phenomena for weakly nonlinear surface and internal waves in a rotating ocean. Further, three-dimensional plots of the solutions such as solitons, singular solitons, bell type solitary wave i.e. non-topological solitons solutions and periodic solutions are also given to visualize the dynamics of the equation.

  6. Singular perturbation solutions of steady-state Poisson-Nernst-Planck systems.

    Science.gov (United States)

    Wang, Xiang-Sheng; He, Dongdong; Wylie, Jonathan J; Huang, Huaxiong

    2014-02-01

    We study the Poisson-Nernst-Planck (PNP) system with an arbitrary number of ion species with arbitrary valences in the absence of fixed charges. Assuming point charges and that the Debye length is small relative to the domain size, we derive an asymptotic formula for the steady-state solution by matching outer and boundary layer solutions. The case of two ionic species has been extensively studied, the uniqueness of the solution has been proved, and an explicit expression for the solution has been obtained. However, the case of three or more ions has received significantly less attention. Previous work has indicated that the solution may be nonunique and that even obtaining numerical solutions is a difficult task since one must solve complicated systems of nonlinear equations. By adopting a methodology that preserves the symmetries of the PNP system, we show that determining the outer solution effectively reduces to solving a single scalar transcendental equation. Due to the simple form of the transcendental equation, it can be solved numerically in a straightforward manner. Our methodology thus provides a standard procedure for solving the PNP system and we illustrate this by solving some practical examples. Despite the fact that for three ions, previous studies have indicated that multiple solutions may exist, we show that all except for one of these solutions are unphysical and thereby prove the existence and uniqueness for the three-ion case.

  7. Bright and dark solitons in the normal dispersion regime of inhomogeneous optical fibers: Soliton interaction and soliton control

    International Nuclear Information System (INIS)

    Liu Wenjun; Tian Bo; Xu Tao; Sun Kun; Jiang Yan

    2010-01-01

    Symbolically investigated in this paper is a nonlinear Schroedinger equation with the varying dispersion and nonlinearity for the propagation of optical pulses in the normal dispersion regime of inhomogeneous optical fibers. With the aid of the Hirota method, analytic one- and two-soliton solutions are obtained. Relevant properties of physical and optical interest are illustrated. Different from the previous results, both the bright and dark solitons are hereby derived in the normal dispersion regime of the inhomogeneous optical fibers. Moreover, different dispersion profiles of the dispersion-decreasing fibers can be used to realize the soliton control. Finally, soliton interaction is discussed with the soliton control confirmed to have no influence on the interaction. The results might be of certain value for the study of the signal generator and soliton control.

  8. A simple formula for the conserved charges of soliton theories

    International Nuclear Information System (INIS)

    Ferreira, Luiz Agostinho; Zakrzewski, Wojtek J.

    2007-01-01

    We present a simple formula for all the conserved charges of soliton theories, evaluated on the solutions belonging to the orbit of the vacuum under the group of dressing transformations. For pedagogical reasons we perform the explicit calculations for the case of the sine-Gordon model, taken as a prototype of soliton theories. We show that the energy and momentum are boundary terms for all the solutions on the orbit of the vacuum. That orbit includes practically all the solutions of physical interest, namely solitons, multi-solitons, breathers, and combinations of solitons and breathers. The example of the mKdV equation is also given explicitly

  9. An(1) Toda solitons and the dressing symmetry

    International Nuclear Information System (INIS)

    Belich, H.; Paunov, R.

    1996-12-01

    We present an elementary derivation of the soliton-like solutions in the A n (1) Toda models which is alternative to the previously used Hirota method. The solutions of the underlying linear problem corresponding to the N-solitons are calculated. This enables us to obtain explicit expression for the element which by dressing group action, produces a generic soliton solution. In the particular example of mono solitons we suggest a relation to vertex operator formalism, previously used by olive, Turok and Underwood. Our results can also be considered as generalization of the approach to the sine-Gordon solitons, proposed by Babelon and Bernard. (author)

  10. Supergravity solitons

    International Nuclear Information System (INIS)

    Aichelburg, P.C.; Embacher, F.

    1987-01-01

    The Langrangian for a single free soliton in N = 2 supergravity as proposed in an earlier paper, is studied. We analyze the algebra of constraints and discuss the local gauge symmetry due to the existence of first class constraints. The classical motion as well as a Gupta-Bleuler type quantization are given. (Author)

  11. Soliton turbulence

    Science.gov (United States)

    Tchen, C. M.

    1986-01-01

    Theoretical and numerical works in atmospheric turbulence have used the Navier-Stokes fluid equations exclusively for describing large-scale motions. Controversy over the existence of an average temperature gradient for the very large eddies in the atmosphere suggested that a new theoretical basis for describing large-scale turbulence was necessary. A new soliton formalism as a fluid analogue that generalizes the Schrodinger equation and the Zakharov equations has been developed. This formalism, processing all the nonlinearities including those from modulation provided by the density fluctuations and from convection due to the emission of finite sound waves by velocity fluctuations, treats large-scale turbulence as coalescing and colliding solitons. The new soliton system describes large-scale instabilities more explicitly than the Navier-Stokes system because it has a nonlinearity of the gradient type, while the Navier-Stokes has a nonlinearity of the non-gradient type. The forced Schrodinger equation for strong fluctuations describes the micro-hydrodynamical state of soliton turbulence and is valid for large-scale turbulence in fluids and plasmas where internal waves can interact with velocity fluctuations.

  12. FN approximation of the solution to a singular integral equation of classical reactor physics

    Energy Technology Data Exchange (ETDEWEB)

    Ganapol, B.D. [Department of Aerospace and Mechanical Engineering, University of Arizona, AME Building, Tucson, AZ 85721 (United States)]. E-mail: ganapol@ame.arizona.edu

    2004-11-01

    The iterated FN method is applied to a singular integral equation arising from a classical problem of reactor physics to determine the distribution of fissile material giving a spatially uniform flux. The FN iterations are accelerated toward convergence through the Wynn-algorithm - but first - Happy Birthday 'Fast Eddie' Larsen Why do I refer to the well known, most proper and exquisitely accomplished Edward W. Larsen as 'Fast Eddie'. Well our story begins in a small back bar room in the lobby of one of Los Alamos' finest and most luxurious hotels. Two young men were having a transport theoretic discussion while they were engaged in a serious game of pool with monetary benefits going to the winner. In addition, the two were sipping their most favorite lavation in rather large quantities - one, a short stocky man with thinning hair, was sipping to forget the cost of his recent divorce, and the other, a shorter stockier man also with thinning hair, was drinking, well because he liked to drink and it just made him silly. As they continued their transport discussion, one stocky man turned to the other and said, 'I wonder what 'Fast Eddie' Larsen would say to our transport question'. The other stocky man immediately thought the 'Fast Eddie' reference was to Paul Newman who played 'Fast Eddie', an expert at applied particle transport theory (a pool player) in the movie the Hustler and asked if indeed this was the case. The first stocky man said 'No. I call everyone with the name Ed 'Fast Eddie' ' - and that's the story of how 'Fast Eddie' Larsen got his name. Happy 60th Ed and thanks for all the great transport theory - from one of your biggest fans.

  13. FN approximation of the solution to a singular integral equation of classical reactor physics

    International Nuclear Information System (INIS)

    Ganapol, B.D.

    2004-01-01

    The iterated FN method is applied to a singular integral equation arising from a classical problem of reactor physics to determine the distribution of fissile material giving a spatially uniform flux. The FN iterations are accelerated toward convergence through the Wynn-algorithm - but first - Happy Birthday 'Fast Eddie' Larsen Why do I refer to the well known, most proper and exquisitely accomplished Edward W. Larsen as 'Fast Eddie'. Well our story begins in a small back bar room in the lobby of one of Los Alamos' finest and most luxurious hotels. Two young men were having a transport theoretic discussion while they were engaged in a serious game of pool with monetary benefits going to the winner. In addition, the two were sipping their most favorite lavation in rather large quantities - one, a short stocky man with thinning hair, was sipping to forget the cost of his recent divorce, and the other, a shorter stockier man also with thinning hair, was drinking, well because he liked to drink and it just made him silly. As they continued their transport discussion, one stocky man turned to the other and said, 'I wonder what 'Fast Eddie' Larsen would say to our transport question'. The other stocky man immediately thought the 'Fast Eddie' reference was to Paul Newman who played 'Fast Eddie', an expert at applied particle transport theory (a pool player) in the movie the Hustler and asked if indeed this was the case. The first stocky man said 'No. I call everyone with the name Ed 'Fast Eddie' ' - and that's the story of how 'Fast Eddie' Larsen got his name. Happy 60th Ed and thanks for all the great transport theory - from one of your biggest fans

  14. Travelling solitons in the parametrically driven nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Barashenkov, I.V.; Zemlyanaya, E.V.; Baer, M.

    2000-01-01

    We show that the parametrically driven nonlinear Schroedinger equation has wide classes of travelling soliton solutions, some of which are stable. For small driving strengths stable nonpropagating and moving solitons co-exist while strongly forced solitons can only be stable when moving sufficiently fast

  15. Singular solution of the Feller diffusion equation via a spectral decomposition

    Science.gov (United States)

    Gan, Xinjun; Waxman, David

    2015-01-01

    Feller studied a branching process and found that the distribution for this process approximately obeys a diffusion equation [W. Feller, in Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability (University of California Press, Berkeley and Los Angeles, 1951), pp. 227-246]. This diffusion equation and its generalizations play an important role in many scientific problems, including, physics, biology, finance, and probability theory. We work under the assumption that the fundamental solution represents a probability density and should account for all of the probability in the problem. Thus, under the circumstances where the random process can be irreversibly absorbed at the boundary, this should lead to the presence of a Dirac delta function in the fundamental solution at the boundary. However, such a feature is not present in the standard approach (Laplace transformation). Here we require that the total integrated probability is conserved. This yields a fundamental solution which, when appropriate, contains a term proportional to a Dirac delta function at the boundary. We determine the fundamental solution directly from the diffusion equation via spectral decomposition. We obtain exact expressions for the eigenfunctions, and when the fundamental solution contains a Dirac delta function at the boundary, every eigenfunction of the forward diffusion operator contains a delta function. We show how these combine to produce a weight of the delta function at the boundary which ensures the total integrated probability is conserved. The solution we present covers cases where parameters are time dependent, thereby greatly extending its applicability.

  16. A generalized Zakharov-Shabat equation with finite-band solutions and a soliton-equation hierarchy with an arbitrary parameter

    International Nuclear Information System (INIS)

    Zhang Yufeng; Tam, Honwah; Feng Binlu

    2011-01-01

    Highlights: → A generalized Zakharov-Shabat equation is obtained. → The generalized AKNS vector fields are established. → The finite-band solution of the g-ZS equation is obtained. → By using a Lie algebra presented in the paper, a new soliton hierarchy with an arbitrary parameter is worked out. - Abstract: In this paper, a generalized Zakharov-Shabat equation (g-ZS equation), which is an isospectral problem, is introduced by using a loop algebra G ∼ . From the stationary zero curvature equation we define the Lenard gradients {g j } and the corresponding generalized AKNS (g-AKNS) vector fields {X j } and X k flows. Employing the nonlinearization method, we obtain the generalized Zhakharov-Shabat Bargmann (g-ZS-B) system and prove that it is Liouville integrable by introducing elliptic coordinates and evolution equations. The explicit relations of the X k flows and the polynomial integrals {H k } are established. Finally, we obtain the finite-band solutions of the g-ZS equation via the Abel-Jacobian coordinates. In addition, a soliton hierarchy and its Hamiltonian structure with an arbitrary parameter k are derived.

  17. Hopf solitons in the Nicole model

    International Nuclear Information System (INIS)

    Gillard, Mike; Sutcliffe, Paul

    2010-01-01

    The Nicole model is a conformal field theory in a three-dimensional space. It has topological soliton solutions classified by the integer-valued Hopf charge, and all currently known solitons are axially symmetric. A volume-preserving flow is used to construct soliton solutions numerically for all Hopf charges from 1 to 8. It is found that the known axially symmetric solutions are unstable for Hopf charges greater than 2 and new lower energy solutions are obtained that include knots and links. A comparison with the Skyrme-Faddeev model suggests many universal features, though there are some differences in the link types obtained in the two theories.

  18. Solitons in relativistic cosmologies

    International Nuclear Information System (INIS)

    Pullin, J.

    1988-08-01

    The application to the construction of solitonic cosmologies in General Relativity of the Inverse Scattering Technique of Belinskii an Zakharov is analyzed. Three improvements to the mentioned technique are proposed: the inclusion of higher order poles in the scattering matrix, a new renormalization technique for diagonal metrics and the extension of the technique to include backgrounds with material content by means of a Kaluza-Klein formalism. As a consequence of these improvements, three new aspects can be analyzed: a) The construction of anisotropic and inhomogeneous cosmological models which can mimic the formation of halos and voids, due to the presence of a material content. The new renormalization technique allows to construct an exact perturbation theory. b) The analysis of the dynamics of models with cosmological constant (inflationary models) and their perturbations. c) The study of interaction of gravitational solitonic waves on material backgrounds. Moreover, some additional works, connected with the existance of 'Crack of doom' type singularities in Kaluza-Klein cosmologies, stochastic perturbations in inflationary universes and inflationary phase transitions in rotating universes are described. (Author) [es

  19. Quadratic solitons for negative effective second-harmonic diffraction as nonlocal solitons with periodic nonlocal response function

    DEFF Research Database (Denmark)

    Esbensen, B.K.; Bache, Morten; Krolikowski, W.

    2012-01-01

    We employ the formal analogy between quadratic and nonlocal solitons to investigate analytically the properties of solitons and soliton bound states in second-harmonic generation in the regime of negative diffraction or dispersion of the second harmonic. We show that in the nonlocal description...... this regime corresponds to a periodic nonlocal response function. We then use the strongly nonlocal approximation to find analytical solutions of the families of single bright solitons and their bound states in terms of Mathieu functions....

  20. Qualitative properties of solutions to semilinear heat equations with singular initial data

    Directory of Open Access Journals (Sweden)

    Junjie Li

    2004-04-01

    Full Text Available This article concerns the nonnegative solutions to the Cauchy problem $$displaylines{ u_t - Delta u + b(x,t|u|^{p-1}u = 0 quad hbox{in } mathbb{R}^N imes (0,{infty}, cr u(x,0 = u_0(x quad mbox{in } mathbb{R}^N ,. }$$ We investigate how the comparison principle, extinction in finite time, instantaneous shrinking of support, and existence of solutions depend on the behaviour of the coefficient $b(x,t$.

  1. Singularity-free static centrally symmetric solutions of some fourth order gravitational field equations

    International Nuclear Information System (INIS)

    Fiedler, B.; Schimming, R.

    1983-01-01

    The fourth order field equations proposed by TREDER with a linear combination of BACH's tensor and EINSTEIN's tensor on the left-hand side admit static centrally symmetric solutions which are analytical and non-flat in some neighborhood of the centre of symmetry. (author)

  2. Multiple Positive Solutions of a Nonlinear Four-Point Singular Boundary Value Problem with a p-Laplacian Operator on Time Scales

    Directory of Open Access Journals (Sweden)

    Shihuang Hong

    2009-01-01

    Full Text Available We present sufficient conditions for the existence of at least twin or triple positive solutions of a nonlinear four-point singular boundary value problem with a p-Laplacian dynamic equation on a time scale. Our results are obtained via some new multiple fixed point theorems.

  3. Dynamically Adapted Mesh Construction for the Efficient Numerical Solution of a Singular Perturbed Reaction-diffusion-advection Equation

    Directory of Open Access Journals (Sweden)

    Dmitry V. Lukyanenko

    2017-01-01

    Full Text Available This  work develops  a theory  of the  asymptotic-numerical investigation of the  moving fronts  in reaction-diffusion-advection models.  By considering  the  numerical  solution  of the  singularly perturbed Burgers’s  equation  we discuss a method  of dynamically  adapted mesh  construction that is able to significantly  improve  the  numerical  solution  of this  type of equations.  For  the  construction we use a priori information that is based  on the  asymptotic analysis  of the  problem.  In  particular, we take  into account the information about  the speed of the transition layer, its width  and structure. Our algorithms  are able to reduce significantly complexity and enhance stability of the numerical  calculations in comparison  with classical approaches for solving this class of problems.  The numerical  experiment is presented to demonstrate the effectiveness of the proposed  method.The article  is published  in the authors’  wording. 

  4. Augmentation of DAA Staggered – Solution Equations in Underwater Shock Problems for Singular Structural Mass Matrices

    OpenAIRE

    DeRuntz Jr., John A.

    2005-01-01

    The numerical solution of underwater shock fluid – structure interaction problems using boundary element/finite element techniques became tractable through the development of the family of Doubly Asymptotic Approximations (DAA). Practical implementation of the method has relied on the so-called augmentation of the DAA equations. The fluid and structural systems are respectively coupled by the structural acceleration vector in the surface normal direction on the right hand side of the DAA equa...

  5. Baryons as solitons

    International Nuclear Information System (INIS)

    Walliser, Hans

    2000-01-01

    Chiral Lagrangians as effective field theories of QCD are successfully applied to meson physics in the framework of chiral perturbation theory. Because of their nonlinear structure these Lagrangians allow for static soliton solutions interpreted as baryons. Their semiclassical quantization, which provides the leading order in an 1/N C expansion with N C the number of colors, turned out to be insufficient to obtain satisfactory agreement with empirical baryon observables. However with N C =3, large corrections are expected in the next-to-leading order carried by mesonic fluctuations around the soliton background, which require renormalization to 1-loop. In contrast to chiral perturbation theory, the low-energy Lagrangian proves inapt and terms with an arbitrary number of gradients may in principle contribute. Assumptions about the a priori unknown higher chiral orders are tested by the scale-dependence of the results. For example, in the simple Sine-Gordon model with 1 scalar field in 1+1 dimensions, knowledge of the low-energy behavior together with the mere existence of an underlying 1-loop renormalizable scale-independent solitonic theory is sufficient to regain the full solution. Baryonic observables calculated within that framework generally lead to better agreement with experiment except for the axial quantities. For these quantities the 1/N C expansion does not converge sufficiently fast because the current algebra mixes different N C orders

  6. Vector pulsing soliton of self-induced transparency in waveguide

    International Nuclear Information System (INIS)

    Adamashvili, G.T.

    2015-01-01

    A theory of an optical resonance vector pulsing soliton in waveguide is developed. A thin transition layer containing semiconductor quantum dots forms the boundary between the waveguide and one of the connected media. Analytical and numerical solutions for the optical vector pulsing soliton in waveguide are obtained. The vector pulsing soliton in the presence of excitonic and bi-excitonic excitations is compared with the soliton for waveguide TM-modes with parameters that can be used in modern optical experiments. It is shown that these nonlinear waves have significantly different parameters and shapes. - Highlights: • An optical vector pulsing soliton in a planar waveguide is presented. • Explicit form of the optical vector pulsing soliton are obtained. • The vector pulsing soliton and the soliton have different parameters and profiles

  7. Limit Properties of Solutions of Singular Second-Order Differential Equations

    Directory of Open Access Journals (Sweden)

    Weinmüller Ewa

    2009-01-01

    Full Text Available We discuss the properties of the differential equation , a.e. on , where , and satisfies the -Carathéodory conditions on for some . A full description of the asymptotic behavior for of functions satisfying the equation a.e. on is given. We also describe the structure of boundary conditions which are necessary and sufficient for to be at least in . As an application of the theory, new existence and/or uniqueness results for solutions of periodic boundary value problems are shown.

  8. Exact solution of a key equation in a finite stellar atmosphere by the method of Laplace transform and linear singular operators

    International Nuclear Information System (INIS)

    Das, R.N.

    1980-01-01

    The key equation which commonly appears for radiative transfer in a finite stellar atmosphere having ground reflection according to Lambert's law is considered in this paper. The exact solution of this equation is obtained for surface quantities in terms of the X-Y equations of Chandrasekhar by the method of Laplace transform and linear singular operators. This exact method is widely applicable for obtaining the solution for surface quantities in a finite atmosphere. (orig.)

  9. Bilinear forms and soliton solutions for a fourth-order variable-coefficient nonlinear Schrödinger equation in an inhomogeneous Heisenberg ferromagnetic spin chain or an alpha helical protein

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jin-Wei; Gao, Yi-Tian, E-mail: gaoyt163@163.com; Wang, Qi-Min; Su, Chuan-Qi; Feng, Yu-Jie; Yu, Xin

    2016-01-15

    In this paper, a fourth-order variable-coefficient nonlinear Schrödinger equation is studied, which might describe a one-dimensional continuum anisotropic Heisenberg ferromagnetic spin chain with the octuple–dipole interaction or an alpha helical protein with higher-order excitations and interactions under continuum approximation. With the aid of auxiliary function, we derive the bilinear forms and corresponding constraints on the variable coefficients. Via the symbolic computation, we obtain the Lax pair, infinitely many conservation laws, one-, two- and three-soliton solutions. We discuss the influence of the variable coefficients on the solitons. With different choices of the variable coefficients, we obtain the parabolic, cubic, and periodic solitons, respectively. We analyse the head-on and overtaking interactions between/among the two and three solitons. Interactions between a bound state and a single soliton are displayed with different choices of variable coefficients. We also derive the quasi-periodic formulae for the three cases of the bound states.

  10. The Kerr/fluid duality and the singularity of solutions to the fluid equation

    International Nuclear Information System (INIS)

    Fujisawa, Ippei; Nakayama, Ryuichi

    2016-01-01

    An equation for a viscous incompressible fluid on a spheroidal surface that is dual to the perturbation around the near-near-horizon extreme Kerr (near-NHEK) black hole is derived. It is also shown that an expansion scalar θ of a congruence of null geodesics on the perturbed horizon of the perturbed near-NHEK spacetime, which is dual to a viscous incompressible fluid, is not in general positive semidefinite, even if initial conditions on the velocity are smooth. Unless the initial conditions are appropriately adjusted, caustics of null congruence will occur on the perturbed horizon in the future. A similar result is obtained for a perturbed Schwarzschild black hole spacetime, which is dual to a viscous incompressible fluid on S 2 . An initial condition that θ be positive semidefinite at any point on S 2 is a necessary condition for the existence of smooth solutions to the incompressible Navier-Stokes equation on S 2

  11. Extension of noncommutative soliton hierarchies

    International Nuclear Information System (INIS)

    Dimakis, Aristophanes; Mueller-Hoissen, Folkert

    2004-01-01

    A linear system, which generates a Moyal-deformed two-dimensional soliton equation as an integrability condition, can be extended to a three-dimensional linear system, treating the deformation parameter as an additional coordinate. The supplementary integrability conditions result in a first-order differential equation with respect to the deformation parameter, the flow of which commutes with the flow of the deformed soliton equation. In this way, a deformed soliton hierarchy can be extended to a bigger hierarchy by including the corresponding deformation equations. We prove the extended hierarchy properties for the deformed AKNS hierarchy, and specialize to the cases of deformed NLS, KdV and mKdV hierarchies. Corresponding results are also obtained for the deformed KP hierarchy. A deformation equation determines a kind of Seiberg-Witten map from classical solutions to solutions of the respective 'noncommutative' deformed equation

  12. Solitons in four dimensional gravity

    International Nuclear Information System (INIS)

    Matos, T.

    1990-01-01

    An alternative method to solve the Chiral equations with SL (2,R) symmetry is developed. One gets the N-soliton solution using the Neugebauer Ansatz. For N = 1 one obtains the Backlund transformation of the Chiral equations. From the application of this transformation for the flat seed solution one finds the Kerr-NUT solution. This method can be applied to generate solutions of the n-dimensional Einstein equations (Author)

  13. Solitons in Newtonian gravity

    International Nuclear Information System (INIS)

    Goetz, G.

    1988-01-01

    It is shown that the plane-wave solutions for the equations governing the motion of a self-gravitating isothermal fluid in Newtonian hydrodynamics are generated by a sine-Gordon equation which is solvable by an 'inverse scattering' transformation. A transformation procedure is outlined by means of which one can construct solutions of the gravity system out of a pair of solutions of the sine-Gordon equation, which are interrelated via an auto-Baecklund transformation. In general the solutions to the gravity system are obtained in a parametric representation in terms of characteristic coordinates. All solutions of the gravity system generated by the one-and two-soliton solutions of the sine-Gordon equation can be constructed explicitly. These might provide models for the evolution of flat structures as they are predicted to arise in the process of galaxy formation. (author)

  14. The wrinkle-like N-solitons for the thermophoretic motion equation through graphene sheets

    Science.gov (United States)

    Ma, Yu-Lan; Li, Bang-Qing

    2018-03-01

    The main work is focused on the thermophoretic motion equation, which was derived from wrinkle wave motions in substrate-supported graphene sheets. Via the bilinear method, a class of wrinkle-like N-soliton solutions is constructed. The one-soliton, two-soliton and three-soliton are observed graphically. The shape, amplitude, open direction and width of the N-solitons are controllable through certain parameters.

  15. Optical spatial solitons: historical overview and recent advances.

    Science.gov (United States)

    Chen, Zhigang; Segev, Mordechai; Christodoulides, Demetrios N

    2012-08-01

    Solitons, nonlinear self-trapped wavepackets, have been extensively studied in many and diverse branches of physics such as optics, plasmas, condensed matter physics, fluid mechanics, particle physics and even astrophysics. Interestingly, over the past two decades, the field of solitons and related nonlinear phenomena has been substantially advanced and enriched by research and discoveries in nonlinear optics. While optical solitons have been vigorously investigated in both spatial and temporal domains, it is now fair to say that much soliton research has been mainly driven by the work on optical spatial solitons. This is partly due to the fact that although temporal solitons as realized in fiber optic systems are fundamentally one-dimensional entities, the high dimensionality associated with their spatial counterparts has opened up altogether new scientific possibilities in soliton research. Another reason is related to the response time of the nonlinearity. Unlike temporal optical solitons, spatial solitons have been realized by employing a variety of noninstantaneous nonlinearities, ranging from the nonlinearities in photorefractive materials and liquid crystals to the nonlinearities mediated by the thermal effect, thermophoresis and the gradient force in colloidal suspensions. Such a diversity of nonlinear effects has given rise to numerous soliton phenomena that could otherwise not be envisioned, because for decades scientists were of the mindset that solitons must strictly be the exact solutions of the cubic nonlinear Schrödinger equation as established for ideal Kerr nonlinear media. As such, the discoveries of optical spatial solitons in different systems and associated new phenomena have stimulated broad interest in soliton research. In particular, the study of incoherent solitons and discrete spatial solitons in optical periodic media not only led to advances in our understanding of fundamental processes in nonlinear optics and photonics, but also had a

  16. Negative mass solitons in gravity

    International Nuclear Information System (INIS)

    Cebeci, Hakan; Sarioglu, Oezguer; Tekin, Bayram

    2006-01-01

    We first reconstruct the conserved (Abbott-Deser) charges in the spin-connection formalism of gravity for asymptotically (Anti)-de Sitter spaces, and then compute the masses of the AdS soliton and the recently found Eguchi-Hanson solitons in generic odd dimensions, unlike the previous result obtained for only five dimensions. These solutions have negative masses compared to the global AdS or AdS/Z p spacetimes. As a separate note, we also compute the masses of the recent even dimensional Taub-NUT-Reissner-Nordstroem metrics

  17. Soliton concepts and protein structure

    Science.gov (United States)

    Krokhotin, Andrei; Niemi, Antti J.; Peng, Xubiao

    2012-03-01

    Structural classification shows that the number of different protein folds is surprisingly small. It also appears that proteins are built in a modular fashion from a relatively small number of components. Here we propose that the modular building blocks are made of the dark soliton solution of a generalized discrete nonlinear Schrödinger equation. We find that practically all protein loops can be obtained simply by scaling the size and by joining together a number of copies of the soliton, one after another. The soliton has only two loop-specific parameters, and we compute their statistical distribution in the Protein Data Bank (PDB). We explicitly construct a collection of 200 sets of parameters, each determining a soliton profile that describes a different short loop. The ensuing profiles cover practically all those proteins in PDB that have a resolution which is better than 2.0 Å, with a precision such that the average root-mean-square distance between the loop and its soliton is less than the experimental B-factor fluctuation distance. We also present two examples that describe how the loop library can be employed both to model and to analyze folded proteins.

  18. Quantum deflation of classical solitons

    International Nuclear Information System (INIS)

    Sveshnikov, K.; Silaev, P.

    1996-01-01

    It is shown, that due to nonperturbative effects, in the relativistic QFT the extended particle-like solutions should infinitely long collapse into some discontinuous configurations of the same topology, but vanishing mass. Analytical and numerical results for the dynamics of such a process are given for 1 + 1 dimensional soliton models

  19. Studies in soliton behavior

    International Nuclear Information System (INIS)

    Schuur, P.C.

    1985-01-01

    The author presents a rigorous demonstration of the emergence of solitons from the KdV initial value problem with arbitrary initial function. Studying multisoliton solutions of the KdV in the general case of a nonzero reflection coefficient, he derives a new phase shift formula. He derives an estimate which indicates how well a real potential in the Zakharov-Shabat system is approximated by its reflectionless part. Moreover, the associated inverse scattering formalism is simplified considerably. He presents an asymptotic analysis of the sine-Gordon equation on right half lines almost linearly moving leftward. (Auth.)

  20. Soliton bag models

    International Nuclear Information System (INIS)

    Wilets, L.

    1988-01-01

    Soliton models are well-suited for dynamical calculations, such as hadron-hadron interactions and collisions, since for each variable in the Lagrangian the time derivative of that variable also appears. For such models, constrained (deformed) mean field solutions provide a basis for generator coordinate dynamical calculations. This requires the solution of a large number of coupled, nonlinear, differential equations involving the quark and scalar fields. The Henyey-Wilets method reduces the problem to the solution of a set of coupled, linear, inhomogeneous, differential equations to be iterated. In the chromodielectric model, color confinement is effected by the self and mutual interactios of the quarks through the chromelectric field. This requires the self-consistent calculation of the gluon propagator in a spatially varying dielectric function. This now involves the solution of a set of coupled, nonlinear integro-differential equations, which can be linearized and solved by iterations. The problem is computation intensive. 20 refs

  1. Two-photon cavity solitons in a laser: radiative profiles, interaction and control

    Energy Technology Data Exchange (ETDEWEB)

    Serrat, C [Departament de FIsica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Colom 1, E-08222 Terrassa (Spain); Torrent, M C [Departament de FIsica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Colom 1, E-08222 Terrassa (Spain); Vilaseca, R [Departament de FIsica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Colom 1, E-08222 Terrassa (Spain); GarcIa-Ojalvo, J [Center for Applied Mathematics, Cornell University, Ithaca, NY 14853 (United States); Brambilla, M [Dipartimento di Fisica and INFM, Politecnico di Bari, Via E. Orabona 4, I-70126 Bari (Italy)

    2004-05-01

    We study the properties of two-photon cavity solitons that appear in a broad-area cascade laser. These vectorial solitons consist of islands of two-photon emission emerging over a background of single-photon emission. Analysis of their structural properties reveals singular features such as their short distance radiation of outgoing waves, which can be interpreted in terms of the soliton frequency profile. However, the phase of these solitons is not determined by any external factor, which influences the way in which the structures can be written and erased. We also examine ways of controlling the cavity-soliton position, and analyse the interaction between neighbouring cavity solitons. Finally, investigation of the parameter dependence of these structures shows a route from soliton-dominated to defect-mediated turbulence.

  2. Nonlinear tunneling of optical soliton in 3 coupled NLS equation with symbolic computation

    Energy Technology Data Exchange (ETDEWEB)

    Mani Rajan, M.S., E-mail: senthilmanirajanofc@gmail.com [Department of Physics, Anna University, Madurai Region, Ramanathapuram (India); Mahalingam, A. [Department of Physics, Anna University, Chennai - 600 025 (India); Uthayakumar, A. [Department of Physics, Presidency College, Chennai - 600 005 (India)

    2014-07-15

    We investigated the soliton solution for N coupled nonlinear Schrödinger (CNLS) equations. These equations are coupled due to the cross-phase-modulation (CPM). Lax pair of this system is obtained via the Ablowitz–Kaup–Newell–Segur (AKNS) scheme and the corresponding Darboux transformation is constructed to derive the soliton solution. One and two soliton solutions are generated. Using two soliton solutions of 3 CNLS equation, nonlinear tunneling of soliton for both with and without exponential background has been discussed. Finally cascade compression of optical soliton through multi-nonlinear barrier has been discussed. The obtained results may have promising applications in all-optical devices based on optical solitons, study of soliton propagation in birefringence fiber systems and optical soliton with distributed dispersion and nonlinearity management. -- Highlights: •We consider the nonlinear tunneling of soliton in birefringence fiber. •3-coupled NLS (CNLS) equation with variable coefficients is considered. •Two soliton solutions are obtained via Darboux transformation using constructed Lax pair. •Soliton tunneling through dispersion barrier and well are investigated. •Finally, cascade compression of soliton has been achieved.

  3. Lattice solitons in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Efremidis, Nikolaos K.; Christodoulides, Demetrios N.

    2003-01-01

    We systematically study the properties of lattice solitons in Bose-Einstein condensates with either attractive or repulsive atom interactions. This is done, by exactly solving the mean-field Gross-Pitaevskii equation in the presence of a periodic potential. We find new families of lattice soliton solutions that are characterized by the position of the energy eigenvalue within the associated band structure. These include lattice solitons in condensates with either attractive or repulsive atom interactions that exist in finite or semi-infinite gaps, as well as nonlinear modes that exhibit atomic population cutoffs

  4. A new class of nontopological solitons

    International Nuclear Information System (INIS)

    Li Xinzhou; Ni Zhixiang; Zhang Jianzu

    1992-09-01

    We construct a new class of nontopological solitons with scalar self-interaction term κφ 4 . Because of the scalar self-interaction, there is a maximum size for these objects. There exists a critical value κ crit for the coupling κ. For κ > κ crit there are no stable nontopological solitons. In thin-walled limit, we show the explicit solutions of NTS with scalar self-interaction and/or gauge interaction. In the case of gauged NTS, soliton becomes a superconductor. (author). 11 refs

  5. Solitons in Gross-Pitaevskii equation

    International Nuclear Information System (INIS)

    Lopes, E.

    1985-01-01

    It is observed that, when the potential is integrable and repulsive, the Gross-Pitaevskii Equation, with non-vanishing boundary conditions, describes a family of planar solitons. A method is presented which provides an exact soliton field to the Dirac Delta potential and an approximation solution to any other kind of potential. As an example the method is then applied to the case of a repulsive Yukawa potential. A brief discuss the relation between these solitons and Anderson's superfluidity mechanism, is also presented. (author) [pt

  6. Rational solitons in the parity-time-symmetric nonlocal nonlinear Schrödinger model

    International Nuclear Information System (INIS)

    Li Min; Xu Tao; Meng Dexin

    2016-01-01

    In this paper, via the generalized Darboux transformation, rational soliton solutions are derived for the parity-time-symmetric nonlocal nonlinear Schrödinger (NLS) model with the defocusing-type nonlinearity. We find that the first-order solution can exhibit the elastic interactions of rational antidark-antidark, dark-antidark, and antidark-dark soliton pairs on a continuous wave background, but there is no phase shift for the interacting solitons. Also, we discuss the degenerate case in which only one rational dark or antidark soliton survives. Moreover, we reveal that the second-order rational solution displays the interactions between two solitons with combined-peak-valley structures in the near-field regions, but each interacting soliton vanishes or evolves into a rational dark or antidark soliton as |z| → ∞. In addition, we numerically examine the stability of the first- and second-order rational soliton solutions. (author)

  7. Use Residual Correction Method and Monotone Iterative Technique to Calculate the Upper and Lower Approximate Solutions of Singularly Perturbed Non-linear Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Chi-Chang Wang

    2013-09-01

    Full Text Available This paper seeks to use the proposed residual correction method in coordination with the monotone iterative technique to obtain upper and lower approximate solutions of singularly perturbed non-linear boundary value problems. First, the monotonicity of a non-linear differential equation is reinforced using the monotone iterative technique, then the cubic-spline method is applied to discretize and convert the differential equation into the mathematical programming problems of an inequation, and finally based on the residual correction concept, complex constraint solution problems are transformed into simpler questions of equational iteration. As verified by the four examples given in this paper, the method proposed hereof can be utilized to fast obtain the upper and lower solutions of questions of this kind, and to easily identify the error range between mean approximate solutions and exact solutions.

  8. Inverse scattering transform and soliton solutions for square matrix nonlinear Schrödinger equations with non-zero boundary conditions

    Science.gov (United States)

    Prinari, Barbara; Demontis, Francesco; Li, Sitai; Horikis, Theodoros P.

    2018-04-01

    The inverse scattering transform (IST) with non-zero boundary conditions at infinity is developed for an m × m matrix nonlinear Schrödinger-type equation which, in the case m = 2, has been proposed as a model to describe hyperfine spin F = 1 spinor Bose-Einstein condensates with either repulsive interatomic interactions and anti-ferromagnetic spin-exchange interactions (self-defocusing case), or attractive interatomic interactions and ferromagnetic spin-exchange interactions (self-focusing case). The IST for this system was first presented by Ieda et al. (2007) , using a different approach. In our formulation, both the direct and the inverse problems are posed in terms of a suitable uniformization variable which allows to develop the IST on the standard complex plane, instead of a two-sheeted Riemann surface or the cut plane with discontinuities along the cuts. Analyticity of the scattering eigenfunctions and scattering data, symmetries, properties of the discrete spectrum, and asymptotics are derived. The inverse problem is posed as a Riemann-Hilbert problem for the eigenfunctions, and the reconstruction formula of the potential in terms of eigenfunctions and scattering data is provided. In addition, the general behavior of the soliton solutions is analyzed in detail in the 2 × 2 self-focusing case, including some special solutions not previously discussed in the literature.

  9. Noncommutative solitons: moduli spaces, quantization, finite θ effects and stability

    Science.gov (United States)

    Hadasz, Leszek; Rocek, Martin; Lindström, Ulf; von Unge, Rikard

    2001-06-01

    We find the N-soliton solution at infinite θ, as well as the metric on the moduli space corresponding to spatial displacements of the solitons. We use a perturbative expansion to incorporate the leading θ-1 corrections, and find an effective short range attraction between solitons. We study the stability of various solutions. We discuss the finite θ corrections to scattering, and find metastable orbits. Upon quantization of the two-soliton moduli space, for any finite θ, we find an s-wave bound state.

  10. Helmholtz solitons in power-law optical materials

    International Nuclear Information System (INIS)

    Christian, J. M.; McDonald, G. S.; Potton, R. J.; Chamorro-Posada, P.

    2007-01-01

    A nonlinear Helmholtz equation for optical materials with regimes of power-law type of nonlinearity is proposed. This model captures the evolution of broad beams at any angle with respect to the reference direction in a wide range of media, including some semiconductors, doped glasses, and liquid crystals. Exact analytical soliton solutions are presented for a generic nonlinearity, within which known Kerr solitons comprise a subset. Three general conservation laws are also reported. Analysis and numerical simulations examine the stability of the Helmholtz power-law solitons. A propagation feature, associated with spatial solitons in power-law media, constituting a class of oscillatory solution, is identified

  11. One-parameter family of solitons from minimal surfaces

    Indian Academy of Sciences (India)

    solitons arising from a one parameter family of minimal surfaces. The process enables us to generate a new solution of the B–I equation from a given complex solution of a special type (which are abundant). We illustrate this with many examples. We find that the action or the energy of this family of solitons remains invariant ...

  12. Electromagnetic solitons in degenerate relativistic electron–positron plasma

    International Nuclear Information System (INIS)

    Berezhiani, V I; Shatashvili, N L; Tsintsadze, N L

    2015-01-01

    The existence of soliton-like electromagnetic (EM) distributions in a fully degenerate electron–positron plasma is studied applying relativistic hydrodynamic and Maxwell equations. For a circularly polarized wave it is found that the soliton solutions exist both in relativistic as well as nonrelativistic degenerate plasmas. Plasma density in the region of soliton pulse localization is reduced considerably. The possibility of plasma cavitation is also shown. (invited comment)

  13. Three-Dimensional Hermite—Bessel—Gaussian Soliton Clusters in Strongly Nonlocal Media

    International Nuclear Information System (INIS)

    Jin Hai-Qin; Yi Lin; Liang Jian-Chu; Cai Ze-Bin; Liu Fei

    2012-01-01

    We analytically and numerically demonstrate the existence of Hermite—Bessel—Gaussian spatial soliton clusters in three-dimensional strongly nonlocal media. It is found that the soliton clusters display the vortex, dipole azimuthon and quadrupole azimuthon in geometry, and the total number of solitons in the necklaces depends on the quantum number n and m of the Hermite functions and generalized Bessel polynomials. The numerical simulation is basically identical to the analytical solution, and white noise does not lead to collapse of the soliton, which confirms the stability of the soliton waves. The theoretical predictions may give new insights into low-energetic spatial soliton transmission with high fidelity

  14. Dark and bright solitons in a quasi-one-dimensional Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Wang, Shun-Jin; Jia, Cheng-Long; An, Jun-Hong; Zhao, Dun; Luo, Hong-Gang

    2003-01-01

    The analytical dark and bright soliton solutions of the one-dimensional Gross-Pitaevskii equation with a confining potential are obtained. For the bright soliton, the recent experimental finding is studied, and the particle number of the soliton and the window of the particle numbers for the bright soliton to occur are estimated analytically and in good agreement with the experimental data. The existence of dark soliton for the attractive interaction and bright soliton for the repulsive interaction is predicted under proper conditions

  15. Stability analysis of the soliton solutions for the generalized quintic derivative nonlinear Schrödinger equation

    Directory of Open Access Journals (Sweden)

    Chen Yue

    Full Text Available The propagation of hydrodynamic wave packets and media with negative refractive index is studied in a quintic derivative nonlinear Schrödinger (DNLS equation. The quintic DNLS equation describe the wave propagation on a discrete electrical transmission line. We obtain a Lagrangian and the invariant variational principle for quintic DNLS equation. By using a class of ordinary differential equation, we found four types of exact solutions of the quintic DNLS equation, which are kink-type solitary wave solution, antikink-type solitary wave solution, sinusoidal solitary wave solution, bell-type solitary wave solution. By applying the modulation instability to discuss stability analysis of the obtained solutions. Modulation instabilities of continuous waves and localized solutions on a zero background have been investigated. Keywords: Quintic derivative NLS equation, Solitary wave solutions, Mathematical physics methods, 2000 MR Subject Classification: 35G20, 35Q53, 37K10, 49S05, 76A60

  16. Plane waves with weak singularities

    International Nuclear Information System (INIS)

    David, Justin R.

    2003-03-01

    We study a class of time dependent solutions of the vacuum Einstein equations which are plane waves with weak null singularities. This singularity is weak in the sense that though the tidal forces diverge at the singularity, the rate of divergence is such that the distortion suffered by a freely falling observer remains finite. Among such weak singular plane waves there is a sub-class which does not exhibit large back reaction in the presence of test scalar probes. String propagation in these backgrounds is smooth and there is a natural way to continue the metric beyond the singularity. This continued metric admits string propagation without the string becoming infinitely excited. We construct a one parameter family of smooth metrics which are at a finite distance in the space of metrics from the extended metric and a well defined operator in the string sigma model which resolves the singularity. (author)

  17. Charged singularities: repulsive effects

    Energy Technology Data Exchange (ETDEWEB)

    De Felice, F; Nobili, L [Padua Univ. (Italy). Ist. di Fisica; Calvani, M [Padua Univ. (Italy). Ist. di Astronomia

    1980-07-01

    The repulsive phenomena which a particle experiences in the vicinity of a naked singularity are investigated in the Kerr-Newman space-time. The aim is to extend the knowledge of this fact to charged solutions and to have a direct indication of how, in these situations, the gravitational and electrostatic interactions are competing.

  18. Collisions of Two Spatial Solitons in Inhomogeneous Nonlinear Media

    International Nuclear Information System (INIS)

    Zhong Weiping; Yi Lin; Yang Zhengping; Xie Ruihua; Milivoj, Belic; Chen Goong

    2008-01-01

    Collisions of spatial solitons occurring in the nonlinear Schroeinger equation with harmonic potential are studied, using conservation laws and the split-step Fourier method. We find an analytical solution for the separation distance between the spatial solitons in an inhomogeneous nonlinear medium when the light beam is self-trapped in the transverse dimension. In the self-focusing nonlinear media the spatial solitons can be transmitted stably, and the interaction between spatial solitons is enhanced due to the linear focusing effect (and also diminished for the linear defocusing effect). In the self-defocusing nonlinear media, in the absence of self-trapping or in the presence of linear self-defocusing, no transmission of stable spatial solitons is possible. However, in such media the linear focusing effect can be exactly compensated, and the spatial solitons can propagate through

  19. New periodic and soliton wave solutions for the generalized Zakharov system and (2 + 1)-dimensional Nizhnik-Novikov-Veselov system

    International Nuclear Information System (INIS)

    Borhanifar, A.; Kabir, M.M.; Maryam Vahdat, L.

    2009-01-01

    In this paper, the Exp-function method is used to obtain generalized solitonary solutions and periodic solutions of the Generalized Zakharov system and (2 + 1)-dimensional Nizhnik-Novikov-Veselov system. It is shown that the Exp-function method, with the help of symbolic computation, provides a powerful mathematical tool for solving nonlinear evolution equations in mathematical physics.

  20. Coexistence of collapse and stable spatiotemporal solitons in multimode fibers

    Science.gov (United States)

    Shtyrina, Olga V.; Fedoruk, Mikhail P.; Kivshar, Yuri S.; Turitsyn, Sergei K.

    2018-01-01

    We analyze spatiotemporal solitons in multimode optical fibers and demonstrate the existence of stable solitons, in a sharp contrast to earlier predictions of collapse of multidimensional solitons in three-dimensional media. We discuss the coexistence of blow-up solutions and collapse stabilization by a low-dimensional external potential in graded-index media, and also predict the existence of stable higher-order nonlinear waves such as dipole-mode spatiotemporal solitons. To support the main conclusions of our numerical studies we employ a variational approach and derive analytically the stability criterion for input powers for the collapse stabilization.

  1. Singularity confinement for maps with the Laurent property

    International Nuclear Information System (INIS)

    Hone, A.N.W.

    2007-01-01

    The singularity confinement test is very useful for isolating integrable cases of discrete-time dynamical systems, but it does not provide a sufficient criterion for integrability. Quite recently a new property of the bilinear equations appearing in discrete soliton theory has been noticed: The iterates of such equations are Laurent polynomials in the initial data. A large class of non-integrable mappings of the plane are presented which both possess this Laurent property and have confined singularities

  2. Quadratic spatial soliton interactions

    Science.gov (United States)

    Jankovic, Ladislav

    Quadratic spatial soliton interactions were investigated in this Dissertation. The first part deals with characterizing the principal features of multi-soliton generation and soliton self-reflection. The second deals with two beam processes leading to soliton interactions and collisions. These subjects were investigated both theoretically and experimentally. The experiments were performed by using potassium niobate (KNBO 3) and periodically poled potassium titanyl phosphate (KTP) crystals. These particular crystals were desirable for these experiments because of their large nonlinear coefficients and, more importantly, because the experiments could be performed under non-critical-phase-matching (NCPM) conditions. The single soliton generation measurements, performed on KNBO3 by launching the fundamental component only, showed a broad angular acceptance bandwidth which was important for the soliton collisions performed later. Furthermore, at high input intensities multi-soliton generation was observed for the first time. The influence on the multi-soliton patterns generated of the input intensity and beam symmetry was investigated. The combined experimental and theoretical efforts indicated that spatial and temporal noise on the input laser beam induced multi-soliton patterns. Another research direction pursued was intensity dependent soliton routing by using of a specially engineered quadratically nonlinear interface within a periodically poled KTP sample. This was the first time demonstration of the self-reflection phenomenon in a system with a quadratic nonlinearity. The feature investigated is believed to have a great potential for soliton routing and manipulation by engineered structures. A detailed investigation was conducted on two soliton interaction and collision processes. Birth of an additional soliton resulting from a two soliton collision was observed and characterized for the special case of a non-planar geometry. A small amount of spiraling, up to 30

  3. Optical analogue of relativistic Dirac solitons in binary waveguide arrays

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Truong X., E-mail: truong.tran@mpl.mpg.de [Department of Physics, Le Quy Don University, 236 Hoang Quoc Viet str., 10000 Hanoi (Viet Nam); Max Planck Institute for the Science of Light, Günther-Scharowsky str. 1, 91058 Erlangen (Germany); Longhi, Stefano [Department of Physics, Politecnico di Milano and Istituto di Fotonica e Nanotecnologie del Consiglio Nazionale delle Ricerche, Piazza L. da Vinci 32, I-20133 Milano (Italy); Biancalana, Fabio [Max Planck Institute for the Science of Light, Günther-Scharowsky str. 1, 91058 Erlangen (Germany); School of Engineering and Physical Sciences, Heriot-Watt University, EH14 4AS Edinburgh (United Kingdom)

    2014-01-15

    We study analytically and numerically an optical analogue of Dirac solitons in binary waveguide arrays in the presence of Kerr nonlinearity. Pseudo-relativistic soliton solutions of the coupled-mode equations describing dynamics in the array are analytically derived. We demonstrate that with the found soliton solutions, the coupled mode equations can be converted into the nonlinear relativistic 1D Dirac equation. This paves the way for using binary waveguide arrays as a classical simulator of quantum nonlinear effects arising from the Dirac equation, something that is thought to be impossible to achieve in conventional (i.e. linear) quantum field theory. -- Highlights: •An optical analogue of Dirac solitons in nonlinear binary waveguide arrays is suggested. •Analytical solutions to pseudo-relativistic solitons are presented. •A correspondence of optical coupled-mode equations with the nonlinear relativistic Dirac equation is established.

  4. Potential motion for Thomas-Fermi non-topological solitons

    International Nuclear Information System (INIS)

    Bahcall, S.

    1992-04-01

    In the Thomas-Fermi approximation to theories of coupled fermions and scalars, the equations for spherically-symmetric non-topological solitons have the form of potential motion. This gives a straightforward method for proving the existence of non-topological solitons in a given theory and for finding the constant-density, saturating solutions

  5. Soliton excitation in superlattice

    International Nuclear Information System (INIS)

    Mensah, S.Y.; Allotey, F.K.A.; Mensah, N.G.; Twum, A.K.

    1995-10-01

    Excitation of soliton in superlattice has been investigated theoretically. It is noted that the soliton velocity u and the length L depend on the amplitude E 0 and that an increase in the amplitude causes soliton width L to approach zero and the velocity u to that of light V in homogeneous medium. The characteristic parameters of soliton u, L and E 0 are related by expression u/L E 0 = ed/2(h/2π) which is constant depending only on the SL period d. It is observed also that the soliton has both energy E = 8V 2 (1 - u 2 /V 2 ) -1/2 and momentum P = u/V 2 E which makes it behave as relativistic free particle with rest energy 8V 2 . Its interaction with electrons can cause the soliton electric effect in SL. (author). 27 refs

  6. Optical solitons and quasisolitons

    International Nuclear Information System (INIS)

    Zakharov, V.E.; Kuznetsov, E.A.

    1998-01-01

    Optical solitons and quasisolitons are investigated in reference to Cherenkov radiation. It is shown that both solitons and quasisolitons can exist, if the linear operator specifying their asymptotic behavior at infinity is sign-definite. In particular, the application of this criterion to stationary optical solitons shifts the soliton carrier frequency at which the first derivative of the dielectric constant with respect to the frequency vanishes. At that point the phase and group velocities coincide. Solitons and quasisolitons are absent, if the third-order dispersion is taken into account. The stability of a soliton is proved for fourth order dispersion using the sign-definiteness of the operator and integral estimates of the Sobolev type. This proof is based on the boundedness of the Hamiltonian for a fixed value of the pulse energy

  7. Quark solitons as constituents of hadrons

    International Nuclear Information System (INIS)

    Ellis, J.; Frishman, Y.; Hanany, A.; Karlinev, M.

    1992-01-01

    We exhibit static solutions of multi-flavour QCD in two dimensions that have the quantum numbers of baryons and mesons, constructed out of quark and anti-quark solitons. In isolation the latter solitons have infinite energy, corresponding to the presence of a string carrying the non-singlet colour flux off to spatial infinity. When N c solitons of this type are combined, a static, finite-energy, colour singlet solution is formed, corresponding to a baryon. Similarly, static meson solutions are formed out of a soliton and an anti-soliton of different flavours. The stability of the mesons against annihilation is ensured by flavour conservation. The static solutions exist only when the fundamental fields of the bosonized lagrangian belong to U(N c xN f ) rather than to SU(N c )xU(N f ). Discussion of flavour-symmetry breaking requires a careful treatment of the normal-ordering ambiguity. Our results can be viewed as a derivation of the constituent quark model in QCD 2 , allowing a detailed study of constituent mass generation and of the heavy-quark symmetry. (orig.)

  8. The theory of singular perturbations

    CERN Document Server

    De Jager, E M

    1996-01-01

    The subject of this textbook is the mathematical theory of singular perturbations, which despite its respectable history is still in a state of vigorous development. Singular perturbations of cumulative and of boundary layer type are presented. Attention has been given to composite expansions of solutions of initial and boundary value problems for ordinary and partial differential equations, linear as well as quasilinear; also turning points are discussed. The main emphasis lies on several methods of approximation for solutions of singularly perturbed differential equations and on the mathemat

  9. Solitons in Granular Chains

    International Nuclear Information System (INIS)

    Manciu, M.; Sen, S.; Hurd, A.J.

    1999-01-01

    The authors consider a chain of elastic (Hertzian) grains that repel upon contact according to the potential V = adelta u , u > 2, where delta is the overlap between the grains. They present numerical and analytical results to show that an impulse initiated at an end of a chain of Hertzian grains in contact eventually propagates as a soliton for all n > 2 and that no solitons are possible for n le 2. Unlike continuous, they find that colliding solitons in discrete media initiative multiple weak solitons at the point of crossing

  10. Solitons, monopoles and bags

    International Nuclear Information System (INIS)

    Rajasekaran, G.

    1978-01-01

    Recent developments in the theory of solitons and related objects in the fields of high energy physics and nuclear physics are reviewed. The aim is to concentrate on the physical aspects and explain why these objects have awakened the interest of physicists. The physics of solitons is discussed with the help of a simple one-dimensional soliton. Then the physically more interesting monopole-soliton is considered and its connection with the original Dirac monopole is pointed out. The ''revolutionary'' possibility of making fermions as composites of bosons is indicated. Both the one-dimensional solitons and the monopole-soliton are examples of ''topological solitons'' and the role of topology in the physics of solitons is explained. The possible importance of topological quantum numbers in providing a fundamental understanding of the basic conservation laws of physics is pointed out. Two examples of non-topological solitons namely, the nucleon as a bag of almost-massless quarks and the abnormal nucleons as a bag of almost massless nucleons is discussed. (auth.)

  11. Polarization-dependent solitons in the strong coupling regime of semiconductor microcavities

    International Nuclear Information System (INIS)

    Fu, Y.; Zhang, W.L.; Wu, X.M.

    2015-01-01

    This paper studies the influence of polarization on formation of vectorial polariton soliton in semiconductor microcavities through numerical simulations. It is found that the polariton solution greatly depends on the polarization of both the pump and exciting fields. By properly choosing the pump and exciting field polarization, bright–bright or bright–dark vectorial polariton solitons can be formed. Especially, when the input conditions of pump or exciting field of the two opposite polarizations are slightly asymmetric, an interesting phenomenon that the dark solitons transform into bright solitons occurs in the branch of soliton solutions.

  12. Series solutions to partial differential equations. A study of the singularities, expansions, and solutions of Schroedinger's equation for the helium atom

    International Nuclear Information System (INIS)

    Mahlab, M.S.

    1975-01-01

    All the presently available techniques for solving Schroedinger's differential equation for helium-like atoms display poor convergence of the wave function in the neighborhood of the singularities of the Hamiltonian operator. In general most of the methods of solving this equation will converge in the appropriate limit to the exact wave function; however, convergence is slow, especially near the singularities of this differential equation. These difficulties become readily apparent from local energy studies. A technique is presented that avoids these difficulties. The wave function it produces is specifically most accurate at the singularities of the Hamiltonian. The novel aspect of this treatment is the subdivision of the space spanned by the wave function. Different expansions are picked such that they converge rapidly in each of the different subdivisions. These expansions may be constructed in such a way that they obey the boundary conditions in their respective subdivision. Most importantly, all the information available from the recursion relations associated with the differential equation may be incorporated into these expansions. A systematic procedure is presented such that these expansions may be brought together to form a wave function that satisfies all the continuity requirements. An S-state helium wave function was constructed to demonstrate that this method of treatment is feasible, and capable of indefinite systematic improvement. A discussion of several new asymptotic expansions that were constructed for the helium wave function, as well as an improved functional form for the small electron-nucleus wave function, is included in this presentation

  13. Dynamical creation of complex vector solitons in spinor Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Xiong Bo; Gong Jiangbin

    2010-01-01

    By numerical simulations of the Gross-Pitaevskii mean-field equations, we show that the dynamical creation of stable complex vector solitons in a homogeneous spin-1 Bose-Einstein condensate can be achieved by applying a localized magnetic field for a certain duration, with the initial uniform density prepared differently for the formation of different vector solitons. In particular, it is shown that stable dark-bright-dark vector solitons, dark-bright-bright vector solitons, and other analogous solutions can be dynamically created. It is also found that the peak intensity and the group velocity of the vector solitons thus generated can be tuned by adjusting the applied magnetic field. Extensions of our approach also allow for the creation of vector-soliton chains or the pumping of many vector solitons. The results can be useful for possible vector-soliton-based applications of dilute Bose-Einstein condensates.

  14. Symbolic computation and solitons of the nonlinear Schroedinger equation in inhomogeneous optical fiber media

    International Nuclear Information System (INIS)

    Li Biao; Chen Yong

    2007-01-01

    In this paper, the inhomogeneous nonlinear Schroedinger equation with the loss/gain and the frequency chirping is investigated. With the help of symbolic computation, three families of exact analytical solutions are presented by employing the extended projective Riccati equation method. From our results, many previous known results of nonlinear Schroedinger equation obtained by some authors can be recovered by means of some suitable selections of the arbitrary functions and arbitrary constants. Of optical and physical interests, soliton propagation and soliton interaction are discussed and simulated by computer, which include snake-soliton propagation and snake-solitons interaction, boomerang-like soliton propagation and boomerang-like solitons interaction, dispersion managed (DM) bright (dark) soliton propagation and DM solitons interaction

  15. Coupling effects of grey-grey separate spatial screening soliton pairs

    International Nuclear Information System (INIS)

    Jiang Qichang; Su Yanli; Ji Xuanmang

    2012-01-01

    The existence and coupling effects of grey-grey separate spatial soliton pairs in a biased series non-photovoltaic photorefractive crystal circuit are investigated in this paper. The numerical solution of grey-grey soliton pairs is derived. The coupling effects between two grey solitons resulting from the input optical intensity and crystal temperature are analyzed numerically. The results show that when the input optical intensity of one crystal changes, two grey solitons in a soliton pair will all change; that is, two grey solitons can affect each other by the light-induced current that flows from one crystal to another. When the temperature of one crystal increases, the intensity width of the grey soliton in this crystal first decreases and then increases. Simultaneously, the intensity width of another grey soliton increases monotonically.

  16. Soliton on a cnoidal wave background in the coupled nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Shin, H J

    2004-01-01

    An application of the Darboux transformation on a cnoidal wave background in the coupled nonlinear Schroedinger equation gives a new solution which describes a soliton moving on a cnoidal wave. This is a generalized version of the previously known soliton solutions of dark-bright pair. Here a dark soliton resides on a cnoidal wave instead of on a constant background. It also exhibits a new type of soliton solution in a self-focusing medium, which describes a breakup of a generalized dark-bright pair into another generalized dark-bright pair and an 'oscillating' soliton. We calculate the shift of the crest of the cnoidal wave along a soliton and the moving direction of the soliton on a cnoidal wave

  17. Phononless soliton waves as early forerunners of crystalline material fracture

    International Nuclear Information System (INIS)

    Dubovskij, O.A.; Orlov, A.V.

    2007-01-01

    Phononless soliton waves of compression are shown to generate at a critical tension of crystals featuring real Lennard-Jones potential of interatomic interaction just before their fracture. A new method of nonlinear micro dynamics was applied to define the initial atomic displacements at high excitation energies. A solution is found that corresponds to a soliton wave running before the front of fracture. In a bounded crystal, the soliton being reflected from the crystal boundary passes the front of fracture and deforms while moving in the opposite direction. The amplitude and spectral characteristics of that type of soliton waves in crystals with a modified Lennard-Jones potential have been investigated. An approximate analytical solution was found for the soliton waves [ru

  18. The analytical evolution of NLS solitons due to the numerical discretization error

    Science.gov (United States)

    Hoseini, S. M.; Marchant, T. R.

    2011-12-01

    Soliton perturbation theory is used to obtain analytical solutions describing solitary wave tails or shelves, due to numerical discretization error, for soliton solutions of the nonlinear Schrödinger equation. Two important implicit numerical schemes for the nonlinear Schrödinger equation, with second-order temporal and spatial discretization errors, are considered. These are the Crank-Nicolson scheme and a scheme, due to Taha [1], based on the inverse scattering transform. The first-order correction for the solitary wave tail, or shelf, is in integral form and an explicit expression is found for large time. The shelf decays slowly, at a rate of t^{-{1\\over 2}}, which is characteristic of the nonlinear Schrödinger equation. Singularity theory, usually used for combustion problems, is applied to the explicit large-time expression for the solitary wave tail. Analytical results are then obtained, such as the parameter regions in which qualitatively different types of solitary wave tails occur, the location of zeros and the location and amplitude of peaks. It is found that three different types of tail occur for the Crank-Nicolson and Taha schemes and that the Taha scheme exhibits some unusual symmetry properties, as the tails for left and right moving solitary waves are different. Optimal choices of the discretization parameters for the numerical schemes are also found, which minimize the amplitude of the solitary wave tail. The analytical solutions are compared with numerical simulations, and an excellent comparison is found.

  19. The analytical evolution of NLS solitons due to the numerical discretization error

    International Nuclear Information System (INIS)

    Hoseini, S M; Marchant, T R

    2011-01-01

    Soliton perturbation theory is used to obtain analytical solutions describing solitary wave tails or shelves, due to numerical discretization error, for soliton solutions of the nonlinear Schrödinger equation. Two important implicit numerical schemes for the nonlinear Schrödinger equation, with second-order temporal and spatial discretization errors, are considered. These are the Crank–Nicolson scheme and a scheme, due to Taha, based on the inverse scattering transform. The first-order correction for the solitary wave tail, or shelf, is in integral form and an explicit expression is found for large time. The shelf decays slowly, at a rate of t -1/2 , which is characteristic of the nonlinear Schrödinger equation. Singularity theory, usually used for combustion problems, is applied to the explicit large-time expression for the solitary wave tail. Analytical results are then obtained, such as the parameter regions in which qualitatively different types of solitary wave tails occur, the location of zeros and the location and amplitude of peaks. It is found that three different types of tail occur for the Crank–Nicolson and Taha schemes and that the Taha scheme exhibits some unusual symmetry properties, as the tails for left and right moving solitary waves are different. Optimal choices of the discretization parameters for the numerical schemes are also found, which minimize the amplitude of the solitary wave tail. The analytical solutions are compared with numerical simulations, and an excellent comparison is found. (paper)

  20. Novel loop-like solitons for the generalized Vakhnenko equation

    International Nuclear Information System (INIS)

    Zhang Min; Ma Yu-Lan; Li Bang-Qing

    2013-01-01

    A non-traveling wave solution of a generalized Vakhnenko equation arising from the high-frequent wave motion in a relaxing medium is derived via the extended Riccati mapping method. The solution includes an arbitrary function of an independent variable. Based on the solution, two hyperbolic functions are chosen to construct new solitons. Novel single-loop-like and double-loop-like solitons are found for the equation

  1. Introduction to solitons

    Indian Academy of Sciences (India)

    The history leading to the discovery of soliton is interesting and impressive. The first documented observation of the solitary wave was made in 1834 by the .... Through the inverse scattering method, we are in a position to define the soliton in a rigorous manner. A transformation from the field variables to the scattering data is ...

  2. Wakeless triple soliton accelerator

    International Nuclear Information System (INIS)

    Mima, K.; Ohsuga, T.; Takabe, H.; Nishihara, K.; Tajima, T.; Zaidman, E.; Horton, W.

    1986-09-01

    We introduce and analyze the concept of a wakeless triple soliton accelerator in a plasma fiber. Under appropriate conditions the triple soliton with two electromagnetic and one electrostatic waves in the beat-wave resonance propagates with velocity c leaving no plasma wake behind, while the phase velocity of the electrostatic wave is made also c in the fiber

  3. Gravitational solitons and the squashed 7-sphere

    International Nuclear Information System (INIS)

    Bizon, P; Chmaj, T; Gibbons, G W; Pope, C N

    2007-01-01

    We discuss some aspects of higher-dimensional gravitational solitons and kinks, including in particular their stability. We illustrate our discussion with the examples of (non-BPS) higher-dimensional Taub-NUT solutions as the spatial metrics in (6 + 1) and (8 + 1) dimensions. We find them to be stable against small but non-infinitesimal disturbances, but unstable against large ones, which can lead to black-hole formation. In (8 + 1) dimensions we find a continuous non-BPS family of asymptotically-conical solitons connecting a previously-known kink metric with the supersymmetric A 8 solution which has Spin(7) holonomy. All the solitonic spacetimes we consider are topologically, but not geometrically, trivial. In an appendix we use the techniques developed in the paper to establish the linear stability of five-dimensional Myers-Perry black holes with equal angular momenta against cohomogeneity-2 perturbations

  4. Multiple positive solutions of nonlinear singular m-point boundary value problem for second-order dynamic equations with sign changing coefficients on time scales

    Directory of Open Access Journals (Sweden)

    Fuyi Xu

    2010-04-01

    \\end{array}\\right.$$ where $1\\leq k\\leq s\\leq m-2, a_i, b_i\\in(0,+\\infty$ with $0<\\sum_{i=1}^{k}b_{i}-\\sum_{i=k+1}^{s}b_{i}<1, 0<\\sum_{i=1}^{m-2}a_{i}<1, 0<\\xi_1<\\xi_2<\\cdots<\\xi_{m-2}<\\rho(T$, $f\\in C( [0,+\\infty,[0,+\\infty$, $a(t$ may be singular at $t=0$. We show that there exist two positive solutions by using two different fixed point theorems respectively. As an application, some examples are included to illustrate the main results. In particular, our criteria extend and improve some known results.

  5. Multi-hump bright solitons in a Schrödinger-mKdV system

    Science.gov (United States)

    Cisneros-Ake, Luis A.; Parra Prado, Hugo; López Villatoro, Diego Joselito; Carretero-González, R.

    2018-03-01

    We consider the problem of energy transport in a Davydov model along an anharmonic crystal medium obeying quartic longitudinal interactions corresponding to rigid interacting particles. The Zabusky and Kruskal unidirectional continuum limit of the original discrete equations reduces, in the long wave approximation, to a coupled system between the linear Schrödinger (LS) equation and the modified Korteweg-de Vries (mKdV) equation. Single- and two-hump bright soliton solutions for this LS-mKdV system are predicted to exist by variational means and numerically confirmed. The one-hump bright solitons are found to be the anharmonic supersonic analogue of the Davydov's solitons while the two-hump (in both components) bright solitons are found to be a novel type of soliton consisting of a two-soliton solution of mKdV trapped by the wave function associated to the LS equation. This two-hump soliton solution, as a two component solution, represents a new class of polaron solution to be contrasted with the two-soliton interaction phenomena from soliton theory, as revealed by a variational approach and direct numerical results for the two-soliton solution.

  6. Topological solitons of the Nambu-Jona-Lasinio model

    International Nuclear Information System (INIS)

    Reinhardt, H.; Wuensch, R.

    1989-06-01

    The baryon number one soliton solution of the Nambu-Jona-Lasinio model are found numerically in the mean-field approximation with full inclusion of the Dirac sea using the proper-time regularization for the underlying fermion determinant (quark loop). Explicit breaking of chiral symmetry is included by bare (current) quark masses. The obtained lowest-energy chiral soliton solutions with baryon number one carry winding number one. Fitting the parameters of the model from low-energy pion data the classical energies of these solitons are of the order of the nucleon mass. (orig.)

  7. Bistable Helmholtz solitons in cubic-quintic materials

    International Nuclear Information System (INIS)

    Christian, J. M.; McDonald, G. S.; Chamorro-Posada, P.

    2007-01-01

    We propose a nonlinear Helmholtz equation for modeling the evolution of broad optical beams in media with a cubic-quintic intensity-dependent refractive index. This type of nonlinearity is appropriate for some semiconductor materials, glasses, and polymers. Exact analytical soliton solutions are presented that describe self-trapped nonparaxial beams propagating at any angle with respect to the reference direction. These spatially symmetric solutions are, to the best of our knowledge, the first bistable Helmholtz solitons to be derived. Accompanying conservation laws (both integral and particular forms) are also reported. Numerical simulations investigate the stability of the solitons, which appear to be remarkably robust against perturbations

  8. Soliton interaction in the coupled mixed derivative nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Zhang Haiqiang; Tian Bo; Lue Xing; Li He; Meng Xianghua

    2009-01-01

    The bright one- and two-soliton solutions of the coupled mixed derivative nonlinear Schroedinger equations in birefringent optical fibers are obtained by using the Hirota's bilinear method. The investigation on the collision dynamics of the bright vector solitons shows that there exists complete or partial energy switching in this coupled model. Such parametric energy exchanges can be effectively controlled and quantificationally measured by analyzing the collision dynamics of the bright vector solitons. The influence of two types of nonlinear coefficient parameters on the energy of each vector soliton, is also discussed. Based on the significant energy transfer between the two components of each vector soliton, it is feasible to exploit the future applications in the design of logical gates, fiber directional couplers and quantum information processors.

  9. Helmholtz algebraic solitons

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J M; McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Materials and Physics Research Centre, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P, E-mail: j.christian@salford.ac.u [Departamento de Teoria de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)

    2010-02-26

    We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.

  10. Helmholtz algebraic solitons

    International Nuclear Information System (INIS)

    Christian, J M; McDonald, G S; Chamorro-Posada, P

    2010-01-01

    We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.

  11. Pulsed atomic soliton laser

    International Nuclear Information System (INIS)

    Carr, L.D.; Brand, J.

    2004-01-01

    It is shown that simultaneously changing the scattering length of an elongated, harmonically trapped Bose-Einstein condensate from positive to negative and inverting the axial portion of the trap, so that it becomes expulsive, results in a train of self-coherent solitonic pulses. Each pulse is itself a nondispersive attractive Bose-Einstein condensate that rapidly self-cools. The axial trap functions as a waveguide. The solitons can be made robustly stable with the right choice of trap geometry, number of atoms, and interaction strength. Theoretical and numerical evidence suggests that such a pulsed atomic soliton laser can be made in present experiments

  12. Large amplitude ion-acoustic solitons in dusty plasmas

    International Nuclear Information System (INIS)

    Tiwari, R. S.; Jain, S. L.; Mishra, M. K.

    2011-01-01

    Characteristics of ion-acoustic soliton in dusty plasma, including the dynamics of heavily charged massive dust grains, are investigated following the Sagdeev Potential formalism. Retaining fourth order nonlinearities of electric potential in the expansion of the Sagdeev Potential in the energy equation for a pseudo particle and integrating the resulting energy equation, large amplitude soliton solution is determined. Variation of amplitude (A), half width (W) at half maxima and the product P = AW 2 of the Korteweg-deVries (KdV), dressed and large amplitude soliton as a function of wide range of dust concentration are numerically studied for recently observed parameters of dusty plasmas. We have also presented the region of existence of large amplitude ion-acoustic soliton in the dusty plasma by analyzing the structure of the pseudo potential. It is found that in the presence of positively charged dust grains, system supports only compressive solitons, on the other hand, in the presence of negatively charged dust grains, the system supports compressive solitons up to certain critical concentration of dust grains and above this critical concentration, the system can support rarefactive solitons also. The effects of dust concentration, charge, and mass of the dust grains, on the characteristics of KdV, dressed and large amplitude the soliton, i.e., amplitude (A), half width at half maxima (W), and product of amplitude (A) and half width at half maxima (P = AW 2 ), are discussed in detail

  13. The cosmological singularity

    CERN Document Server

    Belinski, Vladimir

    2018-01-01

    Written for researchers focusing on general relativity, supergravity, and cosmology, this is a self-contained exposition of the structure of the cosmological singularity in generic solutions of the Einstein equations, and an up-to-date mathematical derivation of the theory underlying the Belinski–Khalatnikov–Lifshitz (BKL) conjecture on this field. Part I provides a comprehensive review of the theory underlying the BKL conjecture. The generic asymptotic behavior near the cosmological singularity of the gravitational field, and fields describing other kinds of matter, is explained in detail. Part II focuses on the billiard reformulation of the BKL behavior. Taking a general approach, this section does not assume any simplifying symmetry conditions and applies to theories involving a range of matter fields and space-time dimensions, including supergravities. Overall, this book will equip theoretical and mathematical physicists with the theoretical fundamentals of the Big Bang, Big Crunch, Black Hole singula...

  14. Quantization of bag-like solitons

    International Nuclear Information System (INIS)

    Breit, J.D.

    1982-01-01

    The method of collective coordinates is used to quantize bag-like solitons formed by scalar and spinor fields. This method leads to approximate wave functions for quarks in the bag that are orthogonal to the translational modes. Solutions are given for the MIT bag limit of the fields. (orig.)

  15. Soliton excitations in a class of nonlinear field theory models

    International Nuclear Information System (INIS)

    Makhan'kov, V.G.; Fedyanin, V.K.

    1985-01-01

    Investigation results of nonlinear models of the field theory with a lagrangian are described. The theory includes models both with zero stable vacuum epsilon=1 and with condensate epsilon=-1 (of disturbed symmetry). Conditions of existence of particle-like solutions (PLS), stability of these solutions are investigated. Soliton dynamics is studied. PLS formfactors are calculated. Statistical mechanics of solitons is built and their dynamic structure factors are calculated

  16. The laboratory investigation of surface envelope solitons: reflection from a vertical wall and collisions of solitons

    Science.gov (United States)

    Slunyaev, Alexey; Klein, Marco; Clauss, Günther F.

    2016-04-01

    Envelope soliton solutions are key elements governing the nonlinear wave dynamics within a simplified theory for unidirectional weakly modulated weakly nonlinear wave groups on the water surface. Within integrable models the solitons preserve their structure in collisions with other waves; they do not disperse and can carry energy infinitively long. Steep and short soliton-like wave groups have been shown to exist in laboratory tests [1] and, even earlier, in numerical simulations [2, 3]. Thus, long-living wave groups may play important role in the dynamics of intense sea waves and wave-structure interactions. The solitary wave groups may change the wave statistics and can be taken into account when developing approaches for the deterministic forecasting of dangerous waves, including so-called rogue waves. An experimental campaign has been conducted in the wave basin of the Technical University of Berlin on simulations of intense solitary wave groups. The first successful experimental observation of intense envelope solitons took place in this facility [1]. The new experiments aimed at following main goals: 1) to reproduce intense envelope solitons with different carrier wave lengths; 2) to estimate the rate of envelope soliton dissipation; 3) to consider the reflection of envelope solitons on a vertical wall; 4) to consider head-on collisions of envelope solitons, and 5) to consider overtaking interactions of envelope solitons. Up to 9 wave gauges were used in each experimental run, which enabled registration of the surface movement at different distances from the wavemaker, at different locations across the wave flume and near the wall. Besides surface displacements, the group envelope shapes were directly recorded, with use of phase shifts applied to the modulated waves generated by the wavemaker. [1] A. Slunyaev, G.F. Clauss, M. Klein, M. Onorato, Simulations and experiments of short intense envelope solitons of surface water waves. Phys. Fluids 25, 067105

  17. Domain wall networks on solitons

    International Nuclear Information System (INIS)

    Sutcliffe, Paul

    2003-01-01

    Domain wall networks on the surface of a soliton are studied in a simple theory. It consists of two complex scalar fields, in 3+1 dimensions, with a global U(1)xZ n symmetry, where n>2. Solutions are computed numerically in which one of the fields forms a Q ball and the other field forms a network of domain walls localized on the surface of the Q ball. Examples are presented in which the domain walls lie along the edges of a spherical polyhedron, forming junctions at its vertices. It is explained why only a small restricted class of polyhedra can arise as domain wall networks

  18. Multicomponent long-wave-short-wave resonance interaction system: Bright solitons, energy-sharing collisions, and resonant solitons.

    Science.gov (United States)

    Sakkaravarthi, K; Kanna, T; Vijayajayanthi, M; Lakshmanan, M

    2014-11-01

    We consider a general multicomponent (2+1)-dimensional long-wave-short-wave resonance interaction (LSRI) system with arbitrary nonlinearity coefficients, which describes the nonlinear resonance interaction of multiple short waves with a long wave in two spatial dimensions. The general multicomponent LSRI system is shown to be integrable by performing the Painlevé analysis. Then we construct the exact bright multisoliton solutions by applying the Hirota's bilinearization method and study the propagation and collision dynamics of bright solitons in detail. Particularly, we investigate the head-on and overtaking collisions of bright solitons and explore two types of energy-sharing collisions as well as standard elastic collision. We have also corroborated the obtained analytical one-soliton solution by direct numerical simulation. Also, we discuss the formation and dynamics of resonant solitons. Interestingly, we demonstrate the formation of resonant solitons admitting breather-like (localized periodic pulse train) structure and also large amplitude localized structures akin to rogue waves coexisting with solitons. For completeness, we have also obtained dark one- and two-soliton solutions and studied their dynamics briefly.

  19. Solitons and confinement

    International Nuclear Information System (INIS)

    Swieca, J.A.

    1976-01-01

    Some aspects of two recent developments in quantum field theory are discussed. First, related with 'extended particles' such as soliton, kink and the 't Hooft monopole. Second, with confinement of particles which are realized in the Schwinger model [pt

  20. Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. II. Classification of axisymmetric no-swirl solutions

    Science.gov (United States)

    Li, Li; Li, YanYan; Yan, Xukai

    2018-05-01

    We classify all (- 1)-homogeneous axisymmetric no-swirl solutions of incompressible stationary Navier-Stokes equations in three dimension which are smooth on the unit sphere minus the south and north poles, parameterizing them as a four dimensional surface with boundary in appropriate function spaces. Then we establish smoothness properties of the solution surface in the four parameters. The smoothness properties will be used in a subsequent paper where we study the existence of (- 1)-homogeneous axisymmetric solutions with non-zero swirl on S2 ∖ { S , N }, emanating from the four dimensional solution surface.

  1. Analytical solutions for the motion of a charged particle in electric and magnetic fields via non-singular fractional derivatives

    Science.gov (United States)

    Morales-Delgado, V. F.; Gómez-Aguilar, J. F.; Taneco-Hernandez, M. A.

    2017-12-01

    In this work we propose fractional differential equations for the motion of a charged particle in electric, magnetic and electromagnetic fields. Exact solutions are obtained for the fractional differential equations by employing the Laplace transform method. The temporal fractional differential equations are considered in the Caputo-Fabrizio-Caputo and Atangana-Baleanu-Caputo sense. Application examples consider constant, ramp and harmonic fields. In addition, we present numerical results for different values of the fractional order. In all cases, when α = 1, we recover the standard electrodynamics.

  2. Antigravitating black hole solitons with scalar hair in N=4 supergravity

    International Nuclear Information System (INIS)

    Gibbons, G.W.

    1982-01-01

    We present some new solutions of the equations of the N = 4 supergravity theory which represent black holes with scalar, electric and magnetic charges. The solutions are parameterized by the mass and 6 electric and 6 magnetic charges which can be assembled into a complex 6-vector, Zsup(N). One can act on the solutions with SO(6) x U(1) to obtain new solutions with the same mass M but charges Zsup(N) related by SO(6) x U(1) transformations, the U(1) factor corresponding to the duality subgroup of the hidden SU(1, 1) symmetry of the N = 4 model. In a certain limiting case the black holes have zero temperature and behave like solitons. In this case multisoliton solutions are exhibited which antigravitate, i.e. are in static equilibrium. We also present some solutions of the Kaluza-Klein theory which were anticipated by Scherk which also antigravitate. However, these latter solutions contain naked singularities. A discussion is also given of the relation of these solutions to dimensional reduction which has relevance for the black holes in the N = 8 supergravity theory. (orig.)

  3. Exact PsTd invariant and PsTd symmetric breaking solutions, symmetry reductions and Bäcklund transformations for an AB-KdV system

    Science.gov (United States)

    Jia, Man; Lou, Sen Yue

    2018-05-01

    In natural and social science, many events happened at different space-times may be closely correlated. Two events, A (Alice) and B (Bob) are defined as correlated if one event is determined by another, say, B = f ˆ A for suitable f ˆ operators. A nonlocal AB-KdV system with shifted-parity (Ps, parity with a shift), delayed time reversal (Td, time reversal with a delay) symmetry where B =Ps ˆ Td ˆ A is constructed directly from the normal KdV equation to describe two-area physical event. The exact solutions of the AB-KdV system, including PsTd invariant and PsTd symmetric breaking solutions are shown by different methods. The PsTd invariant solution show that the event happened at A will happen also at B. These solutions, such as single soliton solutions, infinitely many singular soliton solutions, soliton-cnoidal wave interaction solutions, and symmetry reduction solutions etc., show the AB-KdV system possesses rich structures. Also, a special Bäcklund transformation related to residual symmetry is presented via the localization of the residual symmetry to find interaction solutions between the solitons and other types of the AB-KdV system.

  4. The Baryon Number Two System in the Chiral Soliton Model

    International Nuclear Information System (INIS)

    Mantovani-Sarti, V.; Drago, A.; Vento, V.; Park, B.-Y.

    2013-01-01

    We study the interaction between two B = 1 states in a chiral soliton model where baryons are described as non-topological solitons. By using the hedgehog solution for the B = 1 states we construct three possible B = 2 configurations to analyze the role of the relative orientation of the hedgehog quills in the dynamics. The strong dependence of the inter soliton interaction on these relative orientations reveals that studies of dense hadronic matter using this model should take into account their implications. (author)

  5. Nonexistence of global solutions to the system of semilinear parabolic equations with biharmonic operator and singular potential

    Directory of Open Access Journals (Sweden)

    Shirmayil Bagirov

    2018-01-01

    Full Text Available In the domain $Q_{R}'= \\{ x:| x| >R\\}\\times( 0,+\\infty$ we consider the problem $$\\displaylines{ \\frac{\\partial u_1}{\\partial t}+\\Delta^2 u_1-\\frac{C_1}{|x| ^4}u_1 =| x| ^{\\sigma _1}| u_2| ^{q_1}, \\quad u_1| _{t=0}=u_{10}( x\\geq0, \\cr \\frac{\\partial u_2}{\\partial t}+\\Delta^2 u_2-\\frac{C_2}{| x| ^4}u_2=| x| ^{\\sigma _2}| u_1| ^{q_2},\\quad u_2| _{t=0}=u_{20}( x\\geq0, \\cr \\int_0^\\infty \\int_{\\partial B_{R}} u_i\\,ds\\,dt\\geq 0, \\quad \\int_0^\\infty \\int_{\\partial B_{R}}\\Delta u_i\\,ds\\,dt\\leq 0, }$$ where $\\sigma_i\\in \\mathbb{R} $, $ q_i>1 $, $ 0\\leq C_i<( \\frac{n( n-4 }{4} ^2$, $ i=1,2 $. Sufficient condition for the nonexistence of global solutions is obtained.The proof is based on the method of test functions.

  6. Bifurcations and chaos of DNA solitonic dynamics

    International Nuclear Information System (INIS)

    Gonzalez, J.A.; Martin-Landrove, M.; Carbo, J.R.; Chacon, M.

    1994-09-01

    We investigated the nonlinear DNA torsional equations proposed by Yakushevich in the presence of damping and external torques. Analytical expressions for some solutions are obtained in the case of the isolated chain. Special attention is paid to the stability of the solutions and the range of soliton interaction in the general case. The bifurcation analysis is performed and prediction of chaos is obtained for some set of parameters. Some biological implications are suggested. (author). 11 refs, 13 figs

  7. Bistable dark solitons of a cubic-quintic Helmholtz equation

    International Nuclear Information System (INIS)

    Christian, J. M.; McDonald, G. S.; Chamorro-Posada, P.

    2010-01-01

    We provide a report on exact analytical bistable dark spatial solitons of a nonlinear Helmholtz equation with a cubic-quintic refractive-index model. Our analysis begins with an investigation of the modulational instability characteristics of Helmholtz plane waves. We then derive a dark soliton by mapping the desired asymptotic form onto a uniform background field and obtain a more general solution by deploying rotational invariance laws in the laboratory frame. The geometry of the new soliton is explored in detail, and a range of new physical predictions is uncovered. Particular attention is paid to the unified phenomena of arbitrary-angle off-axis propagation and nondegenerate bistability. Crucially, the corresponding solution of paraxial theory emerges in a simultaneous multiple limit. We conclude with a set of computer simulations that examine the role of Helmholtz dark solitons as robust attractors.

  8. The volume of a soliton

    International Nuclear Information System (INIS)

    Adam, C.; Haberichter, M.; Wereszczynski, A.

    2016-01-01

    There exists, in general, no unique definition of the size (volume, area, etc., depending on dimension) of a soliton. Here we demonstrate that the geometric volume (area etc.) of a soliton is singled out in the sense that it exactly coincides with the thermodynamical or continuum-mechanical volume. In addition, this volume may be defined uniquely for rather arbitrary solitons in arbitrary dimensions.

  9. The volume of a soliton

    Energy Technology Data Exchange (ETDEWEB)

    Adam, C., E-mail: adam@fpaxp1.usc.es [Departamento de Física de Partículas, Universidad de Santiago de Compostela and Instituto Galego de Física de Altas Enerxias (IGFAE), E-15782 Santiago de Compostela (Spain); Haberichter, M. [School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, CT2 7NF (United Kingdom); Wereszczynski, A. [Institute of Physics, Jagiellonian University, Lojasiewicza 11, Kraków (Poland)

    2016-03-10

    There exists, in general, no unique definition of the size (volume, area, etc., depending on dimension) of a soliton. Here we demonstrate that the geometric volume (area etc.) of a soliton is singled out in the sense that it exactly coincides with the thermodynamical or continuum-mechanical volume. In addition, this volume may be defined uniquely for rather arbitrary solitons in arbitrary dimensions.

  10. Transverse stability of Kawahara solitons

    DEFF Research Database (Denmark)

    Karpman, V.I.

    1993-01-01

    The transverse stability of the planar solitons described by the fifth-order Korteweg-de Vries equation (Kawahara solitons) is studied. It is shown that the planar solitons are unstable with respect to bending if the coefficient at the fifth-derivative term is positive and stable if it is negative...

  11. Temporally and spatially pulsating solitons in a nonlinear stage of the long-wave Buneman instability

    International Nuclear Information System (INIS)

    Kono, M.; Kawakita, M.

    1990-01-01

    A nonlinear equation describing the development of the Buneman instability has been derived and solved with the aid of Hirota's bilinear transform [J. Math. Phys. 14, 810 (1973)] to give a variety of stationary solutions, such as pulsating solitons, temporally localized and spatially periodic solutions, as well as ordinary solitons

  12. Stabilization of matter wave solitons in weakly coupled atomic condensates

    International Nuclear Information System (INIS)

    Radha, R.; Vinayagam, P.S.

    2012-01-01

    We investigate the dynamics of a weakly coupled two component Bose–Einstein condensate and generate bright soliton solutions. We observe that when the bright solitons evolve in time, the density of the condensates shoots up suddenly by virtue of weak coupling indicating the onset of instability in the dynamical system. However, this instability can be overcome either through Feshbach resonance by tuning the temporal scattering length or by suitably changing the time dependent coupling coefficient, thereby extending the lifetime of the condensates.

  13. Multiple soliton production and the Korteweg-de Vries equation.

    Science.gov (United States)

    Hershkowitz, N.; Romesser, T.; Montgomery, D.

    1972-01-01

    Compressive square-wave pulses are launched in a double-plasma device. Their evolution is interpreted according to the Korteweg-de Vries description of Washimi and Taniuti. Square-wave pulses are an excitation for which an explicit solution of the Schrodinger equation permits an analytical prediction of the number and amplitude of emergent solitons. Bursts of energetic particles (pseudowaves) appear above excitation voltages greater than an electron thermal energy, and may be mistaken for solitons.

  14. Intensity limits for stationary and interacting multi-soliton complexes

    International Nuclear Information System (INIS)

    Sukhorukov, Andrey A.; Akhmediev, Nail N.

    2002-01-01

    We obtain an accurate estimate for the peak intensities of multi-soliton complexes for a Kerr-type nonlinearity in the (1+1) dimension problem. Using exact analytical solutions of the integrable set of nonlinear Schroedinger equations, we establish a rigorous relationship between the eigenvalues of incoherently-coupled fundamental solitons and the range of admissible intensities. A clear geometrical interpretation of this effect is given

  15. Singularities in the nonisotropic Boltzmann equation

    International Nuclear Information System (INIS)

    Garibotti, C.R.; Martiarena, M.L.; Zanette, D.

    1987-09-01

    We consider solutions of the nonlinear Boltzmann equation (NLBE) with anisotropic singular initial conditions, which give a simplified model for the penetration of a monochromatic beam on a rarified target. The NLBE is transformed into an integral equation which is solved iteratively and the evolution of the initial singularities is discussed. (author). 5 refs

  16. Bright Solitons in a PT-Symmetric Chain of Dimers

    Directory of Open Access Journals (Sweden)

    Omar B. Kirikchi

    2016-01-01

    Full Text Available We study the existence and stability of fundamental bright discrete solitons in a parity-time- (PT- symmetric coupler composed by a chain of dimers that is modelled by linearly coupled discrete nonlinear Schrödinger equations with gain and loss terms. We use a perturbation theory for small coupling between the lattices to perform the analysis, which is then confirmed by numerical calculations. Such analysis is based on the concept of the so-called anticontinuum limit approach. We consider the fundamental onsite and intersite bright solitons. Each solution has symmetric and antisymmetric configurations between the arms. The stability of the solutions is then determined by solving the corresponding eigenvalue problem. We obtain that both symmetric and antisymmetric onsite mode can be stable for small coupling, in contrast to the reported continuum limit where the antisymmetric solutions are always unstable. The instability is either due to the internal modes crossing the origin or the appearance of a quartet of complex eigenvalues. In general, the gain-loss term can be considered parasitic as it reduces the stability region of the onsite solitons. Additionally, we analyse the dynamic behaviour of the onsite and intersite solitons when unstable, where typically it is either in the form of travelling solitons or soliton blow-ups.

  17. The propagation property of ion-acoustic soliton in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Zhu Jiazhen; Wang Gengguo.

    1990-01-01

    The propagation property of ion-acoustic soliton in a weakly inhomogeneous plamsa caused by ionization is studied. Finite ion temperature and ion-neutral collisions are considered the self consistent stationary distribution N(x), v(x) and the corresponding soliton solution are obtained, numerical results of soliton amplitude, speed and width dependent on position are given, which are reasonable and consistent with experiments

  18. On the reflection of solitons of the cubic nonlinear Schrödinger equation

    KAUST Repository

    Katsaounis, Theodoros

    2016-07-05

    In this paper, we perform a numerical study on the interesting phenomenon of soliton reflection of solid walls. We consider the 2D cubic nonlinear Schrödinger equation as the underlying mathematical model, and we use an implicit-explicit type Crank-Nicolson finite element scheme for its numerical solution. After verifying the perfect reflection of the solitons on a vertical wall, we present the imperfect reflection of a dark soliton on a diagonal wall.

  19. Direct method for the periodic amplification of a soliton in an optical fibre link with loss

    International Nuclear Information System (INIS)

    Li Lu; Xue Wenrui; Xu Zhiyong; Li Zhonghao; Zhou Guosheng

    2003-01-01

    A direct approach is applied to the periodic amplification of a soliton in an optical fibre link with loss. In a single soliton case, the adiabatic solution and first-order correction are given for the system. The apparent advantage of this direct approach is that it not only presents the slow evolution of soliton parameters, but also the perturbation-induced radiation, and can be easily used to investigate the system of dispersion management with periodically varying dispersion and other fields

  20. Bose gas with two- and three-particle interaction: evolution of soliton-like bubbles

    International Nuclear Information System (INIS)

    Barashenkov, I.V.; Kholmurodov, Kh.T.

    1988-01-01

    Solutions of the non-linear Schroedinger equation (NSE) for the Bose gas with two- and three-particle interaction are considered. Problems of soliton-like bubble existence, stability and evolution of the moving soliton are studied. It is shown that at D=2.3 for low-amplitude waves propagating at the transonic velocity the NSE is reduced to a two- and three-dimensional Kadomtsev-Petviashvili (KP) equation and the NSE bubble soliton transfers to the KP one

  1. Singularities of Type-Q ABS Equations

    Directory of Open Access Journals (Sweden)

    James Atkinson

    2011-07-01

    Full Text Available The type-Q equations lie on the top level of the hierarchy introduced by Adler, Bobenko and Suris (ABS in their classification of discrete counterparts of KdV-type integrable partial differential equations. We ask what singularities are possible in the solutions of these equations, and examine the relationship between the singularities and the principal integrability feature of multidimensional consistency. These questions are considered in the global setting and therefore extend previous considerations of singularities which have been local. What emerges are some simple geometric criteria that determine the allowed singularities, and the interesting discovery that generically the presence of singularities leads to a breakdown in the global consistency of such systems despite their local consistency property. This failure to be globally consistent is quantified by introducing a natural notion of monodromy for isolated singularities.

  2. The geometry of warped product singularities

    Science.gov (United States)

    Stoica, Ovidiu Cristinel

    In this article, the degenerate warped products of singular semi-Riemannian manifolds are studied. They were used recently by the author to handle singularities occurring in General Relativity, in black holes and at the big-bang. One main result presented here is that a degenerate warped product of semi-regular semi-Riemannian manifolds with the warping function satisfying a certain condition is a semi-regular semi-Riemannian manifold. The connection and the Riemann curvature of the warped product are expressed in terms of those of the factor manifolds. Examples of singular semi-Riemannian manifolds which are semi-regular are constructed as warped products. Applications include cosmological models and black holes solutions with semi-regular singularities. Such singularities are compatible with a certain reformulation of the Einstein equation, which in addition holds at semi-regular singularities too.

  3. Naked singularity, firewall, and Hawking radiation.

    Science.gov (United States)

    Zhang, Hongsheng

    2017-06-21

    Spacetime singularity has always been of interest since the proof of the Penrose-Hawking singularity theorem. Naked singularity naturally emerges from reasonable initial conditions in the collapsing process. A recent interesting approach in black hole information problem implies that we need a firewall to break the surplus entanglements among the Hawking photons. Classically, the firewall becomes a naked singularity. We find some vacuum analytical solutions in R n -gravity of the firewall-type and use these solutions as concrete models to study the naked singularities. By using standard quantum theory, we investigate the Hawking radiation emitted from the black holes with naked singularities. Here we show that the singularity itself does not destroy information. A unitary quantum theory works well around a firewall-type singularity. We discuss the validity of our result in general relativity. Further our result demonstrates that the temperature of the Hawking radiation still can be expressed in the form of the surface gravity divided by 2π. This indicates that a naked singularity may not compromise the Hakwing evaporation process.

  4. Solitons and nonlinear waves in space plasmas

    International Nuclear Information System (INIS)

    Stasiewicz, K.

    2005-01-01

    Recent measurements made on the ESA/NASA Cluster mission to the Earth's magnetosphere have provided first detailed measurements of magnetosonic solitons in space. The solitons represent localized enhancements of the magnetic field by a factor of 2-10, or depressions down to 10% of the ambient field. The magnetic field signatures are associated with density depressions/enhancements A two-fluid model of nonlinear electron and ion inertial waves in anisotropic plasmas explains the main properties of these structures. It is shown that warm plasmas support four types of nonlinear waves, which correspond to four linear modes: Alfvenic, magnetosonic, sound, and electron inertial waves. Each of these nonlinear modes has slow and fast versions. It is shown by direct integration that the exponential growth rate of nonlinear modes is balanced by the ion and electron dispersion leading to solutions in the form of trains of solitons or cnoidal waves. By using a novel technique of phase portraits it is shown how the dispersive properties of electron and ion inertial waves change at the transition between warm and hot plasmas, and how trains of solitons ('' mirror modes '') are produced in a hot, anisotropic plasma. The applicability of the model is illustrated with data from Cluster spacecraft. (author)

  5. Decay of solitons in an isotropic collisionless quasineutral plasma with isothermal pressure

    International Nuclear Information System (INIS)

    Bakholdin, I.B.; Zharkov, A.A.; Il'ichev, A.T.

    2000-01-01

    Soliton-type solutions of the complete unreduced system of transport equations describing the plane-parallel motions of an isotropic collisionless quasineutral plasma in a magnetic field with constant ion and electron temperatures are studied. The regions of the physical parameters for fast and slow magnetosonic branches, where solitons and generalized solitary waves - nonlocal soliton structures in the form of a soliton 'core' with asymptotic behavior at infinity in the form of a periodic low-amplitude wave - exist, are determined. In the range of parameters where solitons are replaced by generalized solitary waves, soliton-like disturbances are subjected to decay whose mechanisms are qualitatively different for slow and fast magnetosonic waves. A specific feature of the decay of such disturbances for fast magnetosonic waves is that the energy of the disturbance decreases primarily as a result of the quasistationary emission of a resonant periodic wave of the same nature. Similar disturbances in the form of a soliton core of a slow magnetosonic generalized solitary wave essentially do not emit resonant modes on the Alfven branch but they lose energy quite rapidly because of continuous emission of a slow magnetosonic wave. Possible types of shocks which are formed by two types of existing soliton solutions (solitons and generalized solitary waves) are examined in the context of such solutions

  6. Singular perturbation of simple eigenvalues

    International Nuclear Information System (INIS)

    Greenlee, W.M.

    1976-01-01

    Two operator theoretic theorems which generalize those of asymptotic regular perturbation theory and which apply to singular perturbation problems are proved. Application of these theorems to concrete problems is involved, but the perturbation expansions for eigenvalues and eigenvectors are developed in terms of solutions of linear operator equations. The method of correctors, as well as traditional boundary layer techniques, can be used to apply these theorems. The current formulation should be applicable to highly singular ''hard core'' potential perturbations of the radial equation of quantum mechanics. The theorems are applied to a comparatively simple model problem whose analysis is basic to that of the quantum mechanical problem

  7. Bright solitons for a generalized nonautonomous nonlinear equation in a nonlinear inhomogeneous fiber

    Science.gov (United States)

    Xie, Xi-Yang; Tian, Bo; Liu, Lei; Guan, Yue-Yang; Jiang, Yan

    2017-06-01

    In this paper, we investigate a generalized nonautonomous nonlinear equation, which describes the ultrashort optical pulse propagating in a nonlinear inhomogeneous fiber. Under certain integrable constraints, bilinear forms, bright one- and two-soliton solutions are obtained. Via certain transformation, we investigate the properties of the solitons with the first-order dispersion parameter σ1(x, t), second-order dispersion parameter σ2(x, t), third-order dispersion parameter σ3(x, t), phase modulation and gain (loss) v(x, t). Soliton propagation and collision are graphically presented and analyzed: One soliton is shown to maintain its amplitude and width during the propagation. When we choose σ1(x, t), σ2(x, t) and σ3(x, t) differently, travelling direction of the soliton is found to alter. v(x, t) is observed to affect the amplitude of the soliton. Head-on collision between the two solitons is presented with σ1(x, t), σ2(x, t), σ3(x, t) and v(x, t) as the constants, and solitons' amplitudes are the same before and after the collision. When σ1(x, t), σ2(x, t) and σ3(x, t) are chosen as certain functions, the solitons' traveling directions change during the collision. v(x, t) can influence the amplitudes of the two solitons.

  8. The nontopological soliton model

    International Nuclear Information System (INIS)

    Wilets, L.

    1988-01-01

    The nontopological soliton model introduced by Friedberg and Lee, and variations of it, provide a method for modeling QCD which can effectively include the dynamics of hadronic collisions as well as spectra. Absolute color confinement is effected by the assumed dielectric properties of the medium. A recently proposed version of the model is chirally invariant. 32 refs., 5 figs., 1 tab

  9. Soliton Bag Model

    International Nuclear Information System (INIS)

    Wilets, L.; Bickeboeller, M.; Birse, M.C.

    1985-01-01

    A summary of recent and current research on the Soliton Bag Model is presented. The unique feature of the model, namely dynamics, is emphasized, since this permits calculation of reactions within the framework of a covariant effective Lagrangian. One gluon exchange effects are included. 17 refs., 3 figs

  10. Spatiotemporal optical solitons

    International Nuclear Information System (INIS)

    Malomed, Boris A; Mihalache, Dumitru; Wise, Frank; Torner, Lluis

    2005-01-01

    In the course of the past several years, a new level of understanding has been achieved about conditions for the existence, stability, and generation of spatiotemporal optical solitons, which are nondiffracting and nondispersing wavepackets propagating in nonlinear optical media. Experimentally, effectively two-dimensional (2D) spatiotemporal solitons that overcome diffraction in one transverse spatial dimension have been created in quadratic nonlinear media. With regard to the theory, fundamentally new features of light pulses that self-trap in one or two transverse spatial dimensions and do not spread out in time, when propagating in various optical media, were thoroughly investigated in models with various nonlinearities. Stable vorticity-carrying spatiotemporal solitons have been predicted too, in media with competing nonlinearities (quadratic-cubic or cubic-quintic). This article offers an up-to-date survey of experimental and theoretical results in this field. Both achievements and outstanding difficulties are reviewed, and open problems are highlighted. Also briefly described are recent predictions for stable 2D and 3D solitons in Bose-Einstein condensates supported by full or low-dimensional optical lattices. (review article)

  11. Statistical mechanics of solitons

    International Nuclear Information System (INIS)

    Bishop, A.

    1980-01-01

    The status of statistical mechanics theory (classical and quantum, statics and dynamics) is reviewed for 1-D soliton or solitary-wave-bearing systems. Primary attention is given to (i) perspective for existing results with evaluation and representative literature guide; (ii) motivation and status report for remaining problems; (iii) discussion of connections with other 1-D topics

  12. Solitons as candidates for energy carriers in Fermi-Pasta-Ulam lattices

    Science.gov (United States)

    Ming, Yi; Ye, Liu; Chen, Han-Shuang; Mao, Shi-Feng; Li, Hui-Min; Ding, Ze-Jun

    2018-01-01

    Currently, effective phonons (renormalized or interacting phonons) rather than solitary waves (for short, solitons) are regarded as the energy carriers in nonlinear lattices. In this work, by using the approximate soliton solutions of the corresponding equations of motion and adopting the Boltzmann distribution for these solitons, the average velocities of solitons are obtained and are compared with the sound velocities of energy transfer. Excellent agreements with the numerical results and the predictions of other existing theories are shown in both the symmetric Fermi-Pasta-Ulam-β lattices and the asymmetric Fermi-Pasta-Ulam-α β lattices. These clearly indicate that solitons are suitable candidates for energy carriers in Fermi-Pasta-Ulam lattices. In addition, the root-mean-square velocity of solitons can be obtained from the effective phonons theory.

  13. Soliton wave-speed management: Slowing, stopping, or reversing a solitary wave

    Science.gov (United States)

    Baines, Luke W. S.; Van Gorder, Robert A.

    2018-06-01

    While dispersion management is a well-known tool to control soliton properties such as shape or amplitude, far less effort has been directed toward the theoretical control of the soliton wave speed. However, recent experiments concerning the stopping or slowing of light demonstrate that the control of the soliton wave speed is of experimental interest. Motivated by these and other studies, we propose a management approach for modifying the wave speed of a soliton (or of other nonlinear wave solutions, such as periodic cnoidal waves) under the nonlinear Schrödinger equation. Making use of this approach, we are able to slow, stop, or even reverse a solitary wave, and we give several examples to bright solitons, dark solitons, and periodic wave trains, to demonstrate the method. An extension of the approach to spatially heterogeneous media, for which the wave may propagate differently at different spatial locations, is also discussed.

  14. Interactions of Soliton Waves for a Generalized Discrete KdV Equation

    International Nuclear Information System (INIS)

    Zhou Tong; Zhu Zuo-Nong

    2017-01-01

    It is well known that soliton interactions in discrete integrable systems often possess new properties which are different from the continuous integrable systems, e.g., we found that there are such discrete solitons in a semidiscrete integrable system (the time variable is continuous and the space one is discrete) that the shorter solitary waves travel faster than the taller ones. Very recently, this kind of soliton was also observed in a full discrete generalized KdV system (the both of time and space variables are discrete) introduced by Kanki et al. In this paper, for the generalized discrete KdV (gdKdV) equation, we describe its richer structures of one-soliton solutions. The interactions of two-soliton waves to the gdKdV equation are studied. Some new features of the soliton interactions are proposed by rigorous theoretical analysis. (paper)

  15. Stability of line solitons for the KP-II equation in R2

    CERN Document Server

    Mizumachi, Tetsu

    2015-01-01

    The author proves nonlinear stability of line soliton solutions of the KP-II equation with respect to transverse perturbations that are exponentially localized as x\\to\\infty. He finds that the amplitude of the line soliton converges to that of the line soliton at initial time whereas jumps of the local phase shift of the crest propagate in a finite speed toward y=\\pm\\infty. The local amplitude and the phase shift of the crest of the line solitons are described by a system of 1D wave equations with diffraction terms.

  16. Waves and solitons in the continuum limit of the Calogero-Sutherland model

    CERN Document Server

    Polychronakos, A P

    1995-01-01

    We examine a collection of classical particles interacting with inverse-square two-body potentials in the thermodynamic limit of finite particle density. We find explicit large-amplitude density waves and soliton solutions for the motion of the system. Waves can be constructed as coherent states of either solitons or phonons (small-amplitude waves). Therefore, either solitons or phonons can be considered as the fundamental excitations. The generic wave is shown to correspond to a two-band state in the quantum description of the system, while the limiting cases of solitons and phonons correspond to particle and hole excitations.

  17. Vortex solitons at the interface separating square and hexagonal lattices

    Energy Technology Data Exchange (ETDEWEB)

    Jović Savić, Dragana, E-mail: jovic@ipb.ac.rs; Piper, Aleksandra; Žikić, Radomir; Timotijević, Dejan

    2015-06-19

    Vortex solitons at the interface separating two different photonic lattices – square and hexagonal – are demonstrated numerically. We consider the conditions for the existence of discrete vortex states at such interfaces and develop a concise picture of different scenarios of the vortex solutions behavior. Various vortices with different size and topological charges are considered, as well as various lattice interfaces. A novel type of discrete vortex surface solitons in a form of five-lobe solution is observed. Besides stable three-lobe and six-lobe discrete surface modes propagating for long distances, we observe various oscillatory vortex surface solitons, as well as dynamical instabilities of different kinds of solutions and study their angular momentum. Dynamical instabilities occur for higher values of the propagation constant, or at higher beam powers. - Highlights: • We demonstrate vortex solitons at the square–hexagonal photonic lattice interface. • A novel type of five-lobe surface vortex solitons is observed. • Different phase structures of surface solutions are studied. • Orbital angular momentum transfer of such solutions is investigated.

  18. On Weakly Singular Versions of Discrete Nonlinear Inequalities and Applications

    Directory of Open Access Journals (Sweden)

    Kelong Cheng

    2014-01-01

    Full Text Available Some new weakly singular versions of discrete nonlinear inequalities are established, which generalize some existing weakly singular inequalities and can be used in the analysis of nonlinear Volterra type difference equations with weakly singular kernels. A few applications to the upper bound and the uniqueness of solutions of nonlinear difference equations are also involved.

  19. Singularities in cosmologies with interacting fluids

    International Nuclear Information System (INIS)

    Cotsakis, Spiros; Kittou, Georgia

    2012-01-01

    We study the dynamics near finite-time singularities of flat isotropic universes filled with two interacting but otherwise arbitrary perfect fluids. The overall dynamical picture reveals a variety of asymptotic solutions valid locally around the spacetime singularity. We find the attractor of all solutions with standard decay, and for ‘phantom’ matter asymptotically at early times. We give a number of special asymptotic solutions describing universes collapsing to zero size and others ending at a big rip singularity. We also find a very complicated singularity corresponding to a logarithmic branch point that resembles a cyclic universe, and give an asymptotic local series representation of the general solution in the neighborhood of infinity.

  20. Nonlinear de Broglie waves and the relation between relativistic and nonrelativistic solitons

    International Nuclear Information System (INIS)

    Barut, A.O.; Baby, B.V.

    1988-07-01

    It is shown that the well-known envelope soliton and kink solutions of the nonlinear Schroedinger equation are the nonrelativistic limit of the corresponding solutions of the nonlinear Klein-Gordon equation. 34 refs

  1. Stability of the static solitons in a pure spinor theory with fractional power nonlinearities

    International Nuclear Information System (INIS)

    Akdeniz, K.G.; Tezgor, G.; Barut, A.O.; Kalayci, J.; Okan, S.E.

    1988-08-01

    Soliton solutions are obtained in a pure fermionic model with fractional power nonlinear self-interactions. The stability properties of the minimum solutions have also been investigated within the framework of the Shatah-Strauss formalism. (author). 10 refs

  2. Pfaffian Solutions and Resonant Interaction Properties of a Coupled BKP Lattice

    International Nuclear Information System (INIS)

    Zhao Hai-Qiong; Yu Guo-Fu

    2014-01-01

    In this paper, we give a coupled lattice equation with the help of Hirota operators, which comes from a special BKP lattice. Two-soliton and three-soliton solutions to the coupled system are constructed. Furthermore, resonant interaction of the two-soliton solution is analyzed in detail. Under some special resonant condition, it is shown that low soliton can propagate faster than high one. Finally, the N-soliton solution is presented in the Pfaffian form. (general)

  3. Bifurcations of traveling wave solutions for an integrable equation

    International Nuclear Information System (INIS)

    Li Jibin; Qiao Zhijun

    2010-01-01

    This paper deals with the following equation m t =(1/2)(1/m k ) xxx -(1/2)(1/m k ) x , which is proposed by Z. J. Qiao [J. Math. Phys. 48, 082701 (2007)] and Qiao and Liu [Chaos, Solitons Fractals 41, 587 (2009)]. By adopting the phase analysis method of planar dynamical systems and the theory of the singular traveling wave systems to the traveling wave solutions of the equation, it is shown that for different k, the equation may have infinitely many solitary wave solutions, periodic wave solutions, kink/antikink wave solutions, cusped solitary wave solutions, and breaking loop solutions. We discuss in a detail the cases of k=-2,-(1/2),(1/2),2, and parametric representations of all possible bounded traveling wave solutions are given in the different (c,g)-parameter regions.

  4. Solitons and cnoidal waves of the Klein–Gordon–Zakharov equation ...

    Indian Academy of Sciences (India)

    In (3), κ represents the wave number of the soliton while ω represents ... integration constant to be zero, since the search is for soliton solutions only, gives ..... and also using relations (3)–(5) gives the following rational travelling wave ... In future, the plan is to study the numerical simulations for this equation along with.

  5. Properties of bright solitons in averaged and unaveraged models for SDG fibres

    Science.gov (United States)

    Kumar, Ajit; Kumar, Atul

    1996-04-01

    Using the slowly varying envelope approximation and averaging over the fibre cross-section the evolution equation for optical pulses in semiconductor-doped glass (SDG) fibres is derived from the nonlinear wave equation. Bright soliton solutions of this equation are obtained numerically and their properties are studied and compared with those of the bright solitons in the unaveraged model.

  6. Static solitons in more than one dimension

    International Nuclear Information System (INIS)

    O'Raifeartaigh, L.

    1978-01-01

    The most important development of the last decade in particle physics and field theory has undoubtedly been the advent of hidden-symmetric gauge theories. One of the more interesting by-products of this development has been the discovery that hidden-symmetric gauge theories admit static solutions to the field equations which are regular everywhere and for which the energy is finite. Such solutions will be called solitons. The hidden-symmetric gauge solutions exist for n space dimensions, where 1 [de

  7. Connection conditions and the spectral family under singular potentials 03.65.Ge Solutions of wave equations: bound states; 03.65.-w Quantum mechanics;

    CERN Document Server

    Tsutsui, I; Cheon, T

    2003-01-01

    To describe a quantum system whose potential is divergent at one point, one must provide proper connection conditions for the wavefunctions at the singularity. Generalizing the scheme used for point interactions in one dimension, we present a set of connection conditions which are well defined even if the wavefunctions and/or their derivatives are divergent at the singularity. Our generalized scheme covers the entire U(2) family of quantizations (self-adjoint Hamiltonians) admitted for the singular system. We use this scheme to examine the spectra of the Coulomb potential V(x)=-e sup 2 vertical bar x vertical bar and the harmonic oscillator with square inverse potential V(x)=(m omega sup 2 /2)x sup 2 +g/x sup 2 , and thereby provide a general perspective for these models which have previously been treated with restrictive connection conditions resulting in conflicting spectra. We further show that, for any parity invariant singular potential V(-x)=V(x), the spectrum is determined solely by the eigenvalues of ...

  8. Ion-acoustic dressed solitons in a dusty plasma

    International Nuclear Information System (INIS)

    Tiwari, R.S.; Mishra, M.K.

    2006-01-01

    Using the reductive perturbation method, equations for ion-acoustic waves governing the evolution of first- and second-order potentials in a dusty plasma including the dynamics of charged dust grains have been derived. The renormalization procedure of Kodama and Taniuti is used to obtain a steady state nonsecular solution of these equations. The variation of velocity and width of the Korteweg-de Vries (KdV) as well as dressed solitons with amplitude have been studied for different concentrations and charge multiplicity of dust grains. The higher-order perturbation corrections to the KdV soliton description significantly affect the characteristics of the solitons in dusty plasma. It is found that in the presence of positively charged dust grains the system supports only compressive solitons. However, the plasma with negatively charged dust grains can support compressive solitons only up to a certain concentration of dust. Above this critical concentration of negative charge, the dusty plasma can support rarefactive solitons. An expression for the critical concentration of negatively charged dust in terms of charge and mass ratio of dust grains with plasma ions is also derived

  9. Stability of matter-wave solitons in optical lattices

    Science.gov (United States)

    Ali, Sk. Golam; Roy, S. K.; Talukdar, B.

    2010-08-01

    We consider localized states of both single- and two-component Bose-Einstein condensates (BECs) confined in a potential resulting from the superposition of linear and nonlinear optical lattices and make use of Vakhitov-Kolokolov criterion to investigate the effect of nonlinear lattice on the stability of the soliton solutions in the linear optical lattice (LOL). For the single-component case we show that a weak nonlinear lattice has very little effect on the stability of such solitons while sufficiently strong nonlinear optical lattice (NOL) squeezes them to produce narrow bound states. For two-component condensates we find that when the strength of the NOL (γ1) is less than that of the LOL (V0) a relatively weak intra-atomic interaction (IAI) has little effect on the stability of the component solitons. This is true for both attractive and repulsive IAI. A strong attractive IAI, however, squeezes the BEC solitons while a similar repulsive IAI makes the component solitons wider. For γ1 > V0, only a strong attractive IAI squeezes the BEC solitons but the squeezing effect is less prominent than that found for γ1 < V0. We make useful checks on the results of our semianalytical stability analysis by solving the appropriate Gross-Pitaevskii equations numerically.

  10. Traveling solitons in Lorentz and CPT breaking systems

    International Nuclear Information System (INIS)

    Souza Dutra, A. de; Correa, R. A. C.

    2011-01-01

    In this work we present a class of traveling solitons in Lorentz and CPT breaking systems. In the case of Lorentz violating scenarios, as far as we know, only static solitonic configurations were analyzed up to now in the literature. Here it is shown that it is possible to construct some traveling solitons which cannot be mapped into static configurations by means of Lorentz boosts due to explicit breaking. In fact, the traveling solutions cannot be reached from the static ones by using something similar to a Lorentz boost in those cases. Furthermore, in the model studied, a complete set of exact solutions is obtained. The solutions present a critical behavior controlled by the choice of an arbitrary integration constant.

  11. Ultrashort dark solitons interactions and nonlinear tunneling in the modified nonlinear Schrödinger equation with variable coefficient

    Science.gov (United States)

    Musammil, N. M.; Porsezian, K.; Nithyanandan, K.; Subha, P. A.; Tchofo Dinda, P.

    2017-09-01

    We present the study of the dark soliton dynamics in an inhomogeneous fiber by means of a variable coefficient modified nonlinear Schrödinger equation (Vc-MNLSE) with distributed dispersion, self-phase modulation, self-steepening and linear gain/loss. The ultrashort dark soliton pulse evolution and interaction is studied by using the Hirota bilinear (HB) method. In particular, we give much insight into the effect of self-steepening (SS) on the dark soliton dynamics. The study reveals a shock wave formation, as a major effect of SS. Numerically, we study the dark soliton propagation in the continuous wave background, and the stability of the soliton solution is tested in the presence of photon noise. The elastic collision behaviors of the dark solitons are discussed by the asymptotic analysis. On the other hand, considering the nonlinear tunneling of dark soliton through barrier/well, we find that the tunneling of the dark soliton depends on the height of the barrier and the amplitude of the soliton. The intensity of the tunneling soliton either forms a peak or valley and retains its shape after the tunneling. For the case of exponential background, the soliton tends to compress after tunneling through the barrier/well.

  12. Noncrossing timelike singularities of irrotational dust collapse

    International Nuclear Information System (INIS)

    Liang, E.P.T.

    1979-01-01

    Known naked singularities in spherical dust collapse are either due to shell-crossing or localized to the central world line. They will probably be destroyed by pressure gradients or blue-shift instabilities. To violate the cosmic censorship hypothesis in a more convincing and general context, collapse solutions with naked singularities that are at least nonshell-crossing and nonlocalized need to be constructed. Some results concerning the probable structure of a class of nonshellcrossing and nonlocalized timelike singularities are reviewed. The cylindrical dust model is considered but this model is not asymptotically flat. To make these noncrossing singularities viable counter examples to the cosmic censorship hypothesis, the occurrence of such singularities in asymptotically flat collapse needs to be demonstrated. (UK)

  13. Soliton microcomb range measurement

    Science.gov (United States)

    Suh, Myoung-Gyun; Vahala, Kerry J.

    2018-02-01

    Laser-based range measurement systems are important in many application areas, including autonomous vehicles, robotics, manufacturing, formation flying of satellites, and basic science. Coherent laser ranging systems using dual-frequency combs provide an unprecedented combination of long range, high precision, and fast update rate. We report dual-comb distance measurement using chip-based soliton microcombs. A single pump laser was used to generate dual-frequency combs within a single microresonator as counterpropagating solitons. We demonstrated time-of-flight measurement with 200-nanometer precision at an averaging time of 500 milliseconds within a range ambiguity of 16 millimeters. Measurements at distances up to 25 meters with much lower precision were also performed. Our chip-based source is an important step toward miniature dual-comb laser ranging systems that are suitable for photonic integration.

  14. Non-topological soliton bag model

    International Nuclear Information System (INIS)

    Wilets, L.

    1986-01-01

    The Friedberg-Lee soliton model, which effects confinement by a quantal scalar field, is discussed. The Lagrangian for the non-topological soliton model is the usual QCD Lagrangian supplemented by a non-linear scalar sigma field term. Static solutions to the field equations are considered in the mean field approximation. Small amplitude oscillations are discussed. Quantum alternatives to the mean field approximation are also considered. Methods of momentum projection and Lorentz boost are described, and the generator coordinate method is discussed. Calculations of the N-N interaction are reviewed briefly. Also discussed is one-gluon exchange, as well as the pion and dressing of the baryons. The hadron states are summarized. One loop quantum corrections are discussed briefly. Work in progress is mentioned in the areas of N-anti N annihilation, the many bag problem, and a Pauli equation for the nucleon. 31 refs

  15. Chiral solitons in spinor polariton rings

    Science.gov (United States)

    Zezyulin, D. A.; Gulevich, D. R.; Skryabin, D. V.; Shelykh, I. A.

    2018-04-01

    We consider theoretically one-dimensional polariton ring accounting for both longitudinal-transverse (TE-TM) and Zeeman splittings of spinor polariton states and spin-dependent polariton-polariton interactions. We present a class of solutions in the form of the localized defects rotating with constant angular velocity and analyze their properties for realistic values of the parameters of the system. We show that the effects of the geometric phase arising from the interplay between the external magnetic field and the TE-TM splitting introduce chirality in the system and make solitons propagating in clockwise and anticlockwise directions nonequivalent. This can be interpreted as a solitonic analog of the Aharonov-Bohm effect.

  16. Singularity Structure Analysis of the Higher-Dimensional Time-Gated Manakov System: Periodic Excitations and Elastic Scattering

    International Nuclear Information System (INIS)

    Kuetche, Victor Kamgang; Bouetou, Thomas Bouetou; Kofane, Timoleon Crepin

    2010-12-01

    We investigate the singularity structure analysis of the higher-dimensional time-gated Manakov system referring to the (2+1)-dimensional coupled nonlinear Schroedinger (CNLS) equations, and we show that these equations are Painleve-integrable. By means of the Weiss et al.'s methodology, we show the arbitrariness of the expansion coefficients and the consistency of the truncation corresponding to a special Baecklund transformation (BT) of these CNLS equations. In the wake of such transformation, following the Hirota's formalism, we derive a one-soliton solution. Besides, by using the Zakharov-Shabat (ZS) scheme which provides a general Lax-representation of an evolution system, we show that the (2+1)-dimensional CNLS system under interests is completely integrable. Furthermore, using the arbitrariness of the above coefficients, we unearth and investigate a typical spectrum of periodic coherent structures while depicting elastic interactions amongst such patterns. (author)

  17. Dynamics of lumps and dark-dark solitons in the multi-component long-wave-short-wave resonance interaction system

    Science.gov (United States)

    Rao, Jiguang; Porsezian, Kuppuswamy; He, Jingsong; Kanna, Thambithurai

    2018-01-01

    General semi-rational solutions of an integrable multi-component (2+1)-dimensional long-wave-short-wave resonance interaction system comprising multiple short waves and a single long wave are obtained by employing the bilinear method. These solutions describe the interactions between various types of solutions, including line rogue waves, lumps, breathers and dark solitons. We only focus on the dynamical behaviours of the interactions between lumps and dark solitons in this paper. Our detailed study reveals two different types of excitation phenomena: fusion and fission. It is shown that the fundamental (simplest) semi-rational solutions can exhibit fission of a dark soliton into a lump and a dark soliton or fusion of one lump and one dark soliton into a dark soliton. The non-fundamental semi-rational solutions are further classified into three subclasses: higher-order, multi- and mixed-type semi-rational solutions. The higher-order semi-rational solutions show the process of annihilation (production) of two or more lumps into (from) one dark soliton. The multi-semi-rational solutions describe N(N≥2) lumps annihilating into or producing from N-dark solitons. The mixed-type semi-rational solutions are a hybrid of higher-order semi-rational solutions and multi-semi-rational solutions. For the mixed-type semi-rational solutions, we demonstrate an interesting dynamical behaviour that is characterized by partial suppression or creation of lumps from the dark solitons.

  18. Dynamics of lumps and dark-dark solitons in the multi-component long-wave-short-wave resonance interaction system.

    Science.gov (United States)

    Rao, Jiguang; Porsezian, Kuppuswamy; He, Jingsong; Kanna, Thambithurai

    2018-01-01

    General semi-rational solutions of an integrable multi-component (2+1)-dimensional long-wave-short-wave resonance interaction system comprising multiple short waves and a single long wave are obtained by employing the bilinear method. These solutions describe the interactions between various types of solutions, including line rogue waves, lumps, breathers and dark solitons. We only focus on the dynamical behaviours of the interactions between lumps and dark solitons in this paper. Our detailed study reveals two different types of excitation phenomena: fusion and fission. It is shown that the fundamental (simplest) semi-rational solutions can exhibit fission of a dark soliton into a lump and a dark soliton or fusion of one lump and one dark soliton into a dark soliton. The non-fundamental semi-rational solutions are further classified into three subclasses: higher-order, multi- and mixed-type semi-rational solutions. The higher-order semi-rational solutions show the process of annihilation (production) of two or more lumps into (from) one dark soliton. The multi-semi-rational solutions describe N ( N ≥2) lumps annihilating into or producing from N -dark solitons. The mixed-type semi-rational solutions are a hybrid of higher-order semi-rational solutions and multi-semi-rational solutions. For the mixed-type semi-rational solutions, we demonstrate an interesting dynamical behaviour that is characterized by partial suppression or creation of lumps from the dark solitons.

  19. The Geometry of Black Hole Singularities

    Directory of Open Access Journals (Sweden)

    Ovidiu Cristinel Stoica

    2014-01-01

    Full Text Available Recent results show that important singularities in General Relativity can be naturally described in terms of finite and invariant canonical geometric objects. Consequently, one can write field equations which are equivalent to Einstein's at nonsingular points but, in addition remain well-defined and smooth at singularities. The black hole singularities appear to be less undesirable than it was thought, especially after we remove the part of the singularity due to the coordinate system. Black hole singularities are then compatible with global hyperbolicity and do not make the evolution equations break down, when these are expressed in terms of the appropriate variables. The charged black holes turn out to have smooth potential and electromagnetic fields in the new atlas. Classical charged particles can be modeled, in General Relativity, as charged black hole solutions. Since black hole singularities are accompanied by dimensional reduction, this should affect Feynman's path integrals. Therefore, it is expected that singularities induce dimensional reduction effects in Quantum Gravity. These dimensional reduction effects are very similar to those postulated in some approaches to make Quantum Gravity perturbatively renormalizable. This may provide a way to test indirectly the effects of singularities, otherwise inaccessible.

  20. Existence of a solution to the Dirichlet problem associated to a second-order differential equation with singularities: the method of lower and upper functions

    Czech Academy of Sciences Publication Activity Database

    Hakl, Robert; Zamora, M.

    2013-01-01

    Roč. 20, č. 3 (2013), s. 469-491 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : second-order singular equation * Dirichlet problem * solvability Subject RIV: BA - General Mathematics Impact factor: 0.340, year: 2013 http://www.degruyter.com/view/j/gmj.2013.20.issue-3/gmj-2013-0030/gmj-2013-0030. xml ?format=INT

  1. Effect of scalar field mass on gravitating charged scalar solitons and black holes in a cavity

    Energy Technology Data Exchange (ETDEWEB)

    Ponglertsakul, Supakchai, E-mail: supakchai.p@gmail.com; Winstanley, Elizabeth, E-mail: E.Winstanley@sheffield.ac.uk

    2017-01-10

    We study soliton and black hole solutions of Einstein charged scalar field theory in cavity. We examine the effect of introducing a scalar field mass on static, spherically symmetric solutions of the field equations. We focus particularly on the spaces of soliton and black hole solutions, as well as studying their stability under linear, spherically symmetric perturbations of the metric, electromagnetic field, and scalar field.

  2. Solitons and chaos in plasma

    International Nuclear Information System (INIS)

    Ichikawa, Y.H.

    1990-09-01

    Plasma exhibits a full of variety of nonlinear phenomena. Active research in nonlinear plasma physics contributed to explore the concepts of soliton and chaos. Structure of soliton equations and dynamics of low dimensional Hamiltonian systems are discussed to emphasize the universality of these novel concepts in the wide branch of science and engineering. (author) 52 refs

  3. Impurity solitons with quadratic nonlinearities

    DEFF Research Database (Denmark)

    Clausen, Carl A. Balslev; Torres, Juan P-; Torner, Lluis

    1998-01-01

    We fmd families of solitary waves mediated by parametric mixing in quadratic nonlinear media that are localized at point-defect impurities. Solitons localized at attractive impurities are found to be dynamically stable. It is shown that localization at the impurity modifies strongly the soliton...

  4. Oscillating solitons in nonlinear optics

    Indian Academy of Sciences (India)

    ... are derived, and the relevant properties and features of oscillating solitons are illustrated. Oscillating solitons are controlled by the reciprocal of the group velocity and Kerr nonlinearity. Results of this paper will be valuable to the study of dispersion-managed optical communication system and mode-locked fibre lasers.

  5. Initial singularity and pure geometric field theories

    Science.gov (United States)

    Wanas, M. I.; Kamal, Mona M.; Dabash, Tahia F.

    2018-01-01

    In the present article we use a modified version of the geodesic equation, together with a modified version of the Raychaudhuri equation, to study initial singularities. These modified equations are used to account for the effect of the spin-torsion interaction on the existence of initial singularities in cosmological models. Such models are the results of solutions of the field equations of a class of field theories termed pure geometric. The geometric structure used in this study is an absolute parallelism structure satisfying the cosmological principle. It is shown that the existence of initial singularities is subject to some mathematical (geometric) conditions. The scheme suggested for this study can be easily generalized.

  6. Solitons in PT-symmetric potential with competing nonlinearity

    International Nuclear Information System (INIS)

    Khare, Avinash; Al-Marzoug, S.M.; Bahlouli, Hocine

    2012-01-01

    We investigate the effect of competing nonlinearities on beam dynamics in PT-symmetric potentials. In particular, we consider the stationary nonlinear Schrödinger equation (NLSE) in one dimension with competing cubic and generalized nonlinearity in the presence of a PT-symmetric potential. Closed form solutions for localized states are obtained. These solitons are shown to be stable over a wide range of potential parameters. The transverse power flow associated with these complex solitons is also examined. -- Highlights: ► Effect of competing nonlinearities on beam dynamics in PT-symmetric potentials. ► Closed form solutions for localized states are. ► The transverse power flow associated with these complex solitons is also examined.

  7. Two-component vector solitons in defocusing Kerr-type media with spatially modulated nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Wei-Ping, E-mail: zhongwp6@126.com [Department of Electronic and Information Engineering, Shunde Polytechnic, Guangdong Province, Shunde 528300 (China); Texas A and M University at Qatar, P.O. Box 23874 Doha (Qatar); Belić, Milivoj [Texas A and M University at Qatar, P.O. Box 23874 Doha (Qatar); Institute of Physics, University of Belgrade, P.O. Box 57, 11001 Belgrade (Serbia)

    2014-12-15

    We present a class of exact solutions to the coupled (2+1)-dimensional nonlinear Schrödinger equation with spatially modulated nonlinearity and a special external potential, which describe the evolution of two-component vector solitons in defocusing Kerr-type media. We find a robust soliton solution, constructed with the help of Whittaker functions. For specific choices of the topological charge, the radial mode number and the modulation depth, the solitons may exist in various forms, such as the half-moon, necklace-ring, and sawtooth vortex-ring patterns. Our results show that the profile of such solitons can be effectively controlled by the topological charge, the radial mode number, and the modulation depth. - Highlights: • Two-component vector soliton clusters in defocusing Kerr-type media are reported. • These soliton clusters are constructed with the help of Whittaker functions. • The half-moon, necklace-ring and vortex-ring patterns are found. • The profile of these solitons can be effectively controlled by three soliton parameters.

  8. Naked singularities in self-similar spherical gravitational collapse

    International Nuclear Information System (INIS)

    Ori, A.; Piran, T.

    1987-01-01

    We present general-relativistic solutions of self-similar spherical collapse of an adiabatic perfect fluid. We show that if the equation of state is soft enough (Γ-1<<1), a naked singularity forms. The singularity resembles the shell-focusing naked singularities that arise in dust collapse. This solution increases significantly the range of matter fields that should be ruled out in order that the cosmic-censorship hypothesis will hold

  9. On combined optical solitons of the one-dimensional Schrödinger’s equation with time dependent coefficients

    Directory of Open Access Journals (Sweden)

    Kilic Bulent

    2016-01-01

    Full Text Available This paper integrates dispersive optical solitons in special optical metamaterials with a time dependent coefficient. We obtained some optical solitons of the aforementioned equation. It is shown that the examined dependent coefficients are affected by the velocity of the wave. The first integral method (FIM and ansatz method are applied to reach the optical soliton solutions of the one-dimensional nonlinear Schrödinger’s equation (NLSE with time dependent coefficients.

  10. Bistability and instability of dark-antidark solitons in the cubic-quintic nonlinear Schrödinger equation

    KAUST Repository

    Crosta, M.

    2011-12-05

    We characterize the full family of soliton solutions sitting over a background plane wave and ruled by the cubic-quintic nonlinear Schrödinger equation in the regime where a quintic focusing term represents a saturation of the cubic defocusing nonlinearity. We discuss the existence and properties of solitons in terms of catastrophe theory and fully characterize bistability and instabilities of the dark-antidark pairs, revealing mechanisms of decay of antidark solitons into dispersive shock waves.

  11. Bistability and instability of dark-antidark solitons in the cubic-quintic nonlinear Schrödinger equation

    KAUST Repository

    Crosta, M.; Fratalocchi, Andrea; Trillo, S.

    2011-01-01

    We characterize the full family of soliton solutions sitting over a background plane wave and ruled by the cubic-quintic nonlinear Schrödinger equation in the regime where a quintic focusing term represents a saturation of the cubic defocusing nonlinearity. We discuss the existence and properties of solitons in terms of catastrophe theory and fully characterize bistability and instabilities of the dark-antidark pairs, revealing mechanisms of decay of antidark solitons into dispersive shock waves.

  12. Solitons in quadratic nonlinear photonic crystals

    DEFF Research Database (Denmark)

    Corney, Joel Frederick; Bang, Ole

    2001-01-01

    We study solitons in one-dimensional quadratic nonlinear photonic crystals with modulation of both the linear and nonlinear susceptibilities. We derive averaged equations that include induced cubic nonlinearities, which can be defocusing, and we numerically find previously unknown soliton families....... Because of these induced cubic terms, solitons still exist even when the effective quadratic nonlinearity vanishes and conventional theory predicts that there can be no soliton. We demonstrate that both bright and dark forms of these solitons can propagate stably....

  13. Dynamics of bound vector solitons induced by stochastic perturbations: Soliton breakup and soliton switching

    International Nuclear Information System (INIS)

    Sun, Zhi-Yuan; Gao, Yi-Tian; Yu, Xin; Liu, Ying

    2013-01-01

    We respectively investigate breakup and switching of the Manakov-typed bound vector solitons (BVSs) induced by two types of stochastic perturbations: the homogenous and nonhomogenous. Symmetry-recovering is discovered for the asymmetrical homogenous case, while soliton switching is found to relate with the perturbation amplitude and soliton coherence. Simulations show that soliton switching in the circularly-polarized light system is much weaker than that in the Manakov and linearly-polarized systems. In addition, the homogenous perturbations can enhance the soliton switching in both of the Manakov and non-integrable (linearly- and circularly-polarized) systems. Our results might be helpful in interpreting dynamics of the BVSs with stochastic noises in nonlinear optics or with stochastic quantum fluctuations in Bose–Einstein condensates.

  14. Periodic modulations controlling Kuznetsov–Ma soliton formation in nonlinear Schrödinger equations

    Energy Technology Data Exchange (ETDEWEB)

    Tiofack, C.G.L., E-mail: glatchio@yahoo.fr [Univ. Lille, CNRS, UMR 8523 – PhLAM – Physique des Lasers Atomes et Molécules, F-59000 Lille (France); Coulibaly, S.; Taki, M. [Univ. Lille, CNRS, UMR 8523 – PhLAM – Physique des Lasers Atomes et Molécules, F-59000 Lille (France); De Bièvre, S.; Dujardin, G. [Univ. Lille, CNRS, UMR 8524 – Laboratoire Paul Painlevé, F-59000 Lille (France); Équipe-Projet Mephysto, INRIA Lille-Nord Europe (France)

    2017-06-28

    We analyze the exact Kuznetsov–Ma soliton solution of the one-dimensional nonlinear Schrödinger equation in the presence of periodic modulations satisfying an integrability condition. We show that, in contrast to the case without modulation, the Kuznetsov–Ma soliton develops multiple compression points whose number, shape and position are controlled both by the intensity of the modulation and by its frequency. In addition, when this modulation frequency is a rational multiple of the natural frequency of the Kuznetsov–Ma soliton, a scenario similar to a nonlinear resonance is obtained: in this case the spatial oscillations of the Kuznetsov–Ma soliton's intensity are periodic. When the ratio of the two frequencies is irrational, the soliton's intensity is a quasiperiodic function. A striking and important result of our analysis is the possibility to suppress any component of the output spectrum of the Kuznetsov–Ma soliton by a judicious choice of the amplitude and frequency of the modulation. - Highlights: • Exact Kuznetsov–Ma soliton solution in presence of periodic coefficients is obtained. • The multiple compression points of the solution are studied. • The quasi-periodicity of the solution is discussed. • The possibility to suppress any component of the spectrum is analyzed.

  15. Quantum propagation across cosmological singularities

    Science.gov (United States)

    Gielen, Steffen; Turok, Neil

    2017-05-01

    The initial singularity is the most troubling feature of the standard cosmology, which quantum effects are hoped to resolve. In this paper, we study quantum cosmology with conformal (Weyl) invariant matter. We show that it is natural to extend the scale factor to negative values, allowing a large, collapsing universe to evolve across a quantum "bounce" into an expanding universe like ours. We compute the Feynman propagator for Friedmann-Robertson-Walker backgrounds exactly, identifying curious pathologies in the case of curved (open or closed) universes. We then include anisotropies, fixing the operator ordering of the quantum Hamiltonian by imposing covariance under field redefinitions and again finding exact solutions. We show how complex classical solutions allow one to circumvent the singularity while maintaining the validity of the semiclassical approximation. The simplest isotropic universes sit on a critical boundary, beyond which there is qualitatively different behavior, with potential for instability. Additional scalars improve the theory's stability. Finally, we study the semiclassical propagation of inhomogeneous perturbations about the flat, isotropic case, at linear and nonlinear order, showing that, at least at this level, there is no particle production across the bounce. These results form the basis for a promising new approach to quantum cosmology and the resolution of the big bang singularity.

  16. Time dependent solitons of noncommutative Chern-Simons theory coupled to scalar fields

    Science.gov (United States)

    Hadasz, Leszek; Lindström, Ulf; Roček, Martin; von Unge, Rikard

    2004-05-01

    We study one- and two-soliton solutions of noncommutative Chern-Simons theory coupled to a nonrelativistic or a relativistic scalar field. In the nonrelativistic case, we find a tower of new stationary time-dependent solutions, all with the same charge density, but with increasing energies. The dynamics of these solitons cannot be studied using traditional moduli space techniques, but we do find a nontrivial symplectic form on the phase space indicating that the moduli space is not flat. In the relativistic case we find the metric on the two soliton moduli space.

  17. Time dependent solitons of noncommutative Chern-Simons theory coupled to scalar fields

    International Nuclear Information System (INIS)

    Hadasz, Leszek; Lindstroem, Ulf; Rocek, Martin; Unge, Rikard von

    2004-01-01

    We study one- and two-soliton solutions of noncommutative Chern-Simons theory coupled to a nonrelativistic or a relativistic scalar field. In the nonrelativistic case, we find a tower of new stationary time-dependent solutions, all with the same charge density, but with increasing energies. The dynamics of these solitons cannot be studied using traditional moduli space techniques, but we do find a nontrivial symplectic form on the phase space indicating that the moduli space is not flat. In the relativistic case we find the metric on the two soliton moduli space

  18. Quantum evolution across singularities

    International Nuclear Information System (INIS)

    Craps, Ben; Evnin, Oleg

    2008-01-01

    Attempts to consider evolution across space-time singularities often lead to quantum systems with time-dependent Hamiltonians developing an isolated singularity as a function of time. Examples include matrix theory in certain singular time-dependent backgounds and free quantum fields on the two-dimensional compactified Milne universe. Due to the presence of the singularities in the time dependence, the conventional quantum-mechanical evolution is not well-defined for such systems. We propose a natural way, mathematically analogous to renormalization in conventional quantum field theory, to construct unitary quantum evolution across the singularity. We carry out this procedure explicitly for free fields on the compactified Milne universe and compare our results with the matching conditions considered in earlier work (which were based on the covering Minkowski space)

  19. Introduction to singularities

    CERN Document Server

    Ishii, Shihoko

    2014-01-01

    This book is an introduction to singularities for graduate students and researchers. It is said that algebraic geometry originated in the seventeenth century with the famous work Discours de la méthode pour bien conduire sa raison, et chercher la vérité dans les sciences by Descartes. In that book he introduced coordinates to the study of geometry. After its publication, research on algebraic varieties developed steadily. Many beautiful results emerged in mathematicians’ works. Most of them were about non-singular varieties. Singularities were considered “bad” objects that interfered with knowledge of the structure of an algebraic variety. In the past three decades, however, it has become clear that singularities are necessary for us to have a good description of the framework of varieties. For example, it is impossible to formulate minimal model theory for higher-dimensional cases without singularities. Another example is that the moduli spaces of varieties have natural compactification, the boundar...

  20. Generalized teleparallel cosmology and initial singularity crossing

    Energy Technology Data Exchange (ETDEWEB)

    Awad, Adel; Nashed, Gamal, E-mail: Adel.Awad@bue.edu.eg, E-mail: gglnashed@sci.asu.edu.eg [Center for Theoretical Physics, the British University in Egypt, Suez Desert Road, Sherouk City 11837 (Egypt)

    2017-02-01

    We present a class of cosmological solutions for a generalized teleparallel gravity with f ( T )= T +α̃ (− T ) {sup n} , where α̃ is some parameter and n is an integer or half-integer. Choosing α̃ ∼ G {sup n} {sup −1}, where G is the gravitational constant, and working with an equation of state p = w ρ, one obtains a cosmological solution with multiple branches. The dynamics of the solution describes standard cosmology at late times, but the higher-torsion correction changes the nature of the initial singularity from big bang to a sudden singularity. The milder behavior of the sudden singularity enables us to extend timelike or lightlike curves, through joining two disconnected branches of solution at the singularity, leaving the singularity traversable. We show that this extension is consistent with the field equations through checking the known junction conditions for generalized teleparallel gravity. This suggests that these solutions describe a contracting phase a prior to the expanding phase of the universe.

  1. Branes at Singularities in Type 0 String Theory

    OpenAIRE

    Alishahiha, M; Brandhuber, A; Oz, Y

    1999-01-01

    We consider Type 0B D3-branes placed at conical singularities and analyze in detail the conifold singularity. We study the non supersymmetric gauge theories on their worldvolume and their conjectured dual gravity descriptions. In the ultraviolet the solutions exhibit a logarithmic running of the gauge coupling. In the infrared we find confining solutions and IR fixed points.

  2. Soliton dynamical properties of Bose—Einstein condensates trapped in a double square well potential

    International Nuclear Information System (INIS)

    Li Jin-Hui; Li Zhi-Jian

    2011-01-01

    We first present an analytical solution of the single and double solitions of Bose—Einstein condensates trapped in a double square well potential using the multiple-scale method. Then, we show by numerical calculation that a dark soliton can be transmitted through the square well potential. With increasing depth of the square well potential, the amplitude of the dark soliton becomes larger, and the soliton propagates faster. In particular, we treat the collision behaviour of the condensates trapped in either equal or different depths of the double square well potential. If we regard the double square well potential as the output source of the solitons, the collision locations (position and time) between two dark solitons can be controlled by its depth. (general)

  3. The nonlinear Fourier analysis of internal solitons in the Andaman sea

    International Nuclear Information System (INIS)

    Osborne, A.R.; Provenzale, A.; Bergamasco, L.

    1983-01-01

    A preliminary spectral analysis of large-amplitude internal solitons in the Andaman Sea was conducted, employing method based upon the spectral (or scattering) transform solution of the Korteweg-de Vries equation

  4. A soliton perturbation scheme for 3x3 inverse scattering transform

    International Nuclear Information System (INIS)

    Roy Chowdhury, A.; Banerjee, R.S.; Roy, T.

    1979-01-01

    A perturbation method for the soliton solutions of nonlinear equations tractable using 3x3 matrix IST formalism is discussed in detait. The corresponding changes in conservation laws are also considered. (author)

  5. 'Footballs', conical singularities, and the Liouville equation

    International Nuclear Information System (INIS)

    Redi, Michele

    2005-01-01

    We generalize the football shaped extra dimensions scenario to an arbitrary number of branes. The problem is related to the solution of the Liouville equation with singularities, and explicit solutions are presented for the case of three branes. The tensions of the branes do not need to be tuned with each other but only satisfy mild global constraints

  6. Basic methods of soliton theory

    CERN Document Server

    Cherednik, I

    1996-01-01

    In the 25 years of its existence Soliton Theory has drastically expanded our understanding of "integrability" and contributed a lot to the reunification of Mathematics and Physics in the range from deep algebraic geometry and modern representation theory to quantum field theory and optical transmission lines.The book is a systematic introduction to the Soliton Theory with an emphasis on its background and algebraic aspects. It is the first one devoted to the general matrix soliton equations, which are of great importance for the foundations and the applications.Differential algebra (local cons

  7. Ion- and electron-acoustic solitons in two-electron temperature space plasmas

    International Nuclear Information System (INIS)

    Lakhina, G. S.; Kakad, A. P.; Singh, S. V.; Verheest, F.

    2008-01-01

    Properties of ion- and electron-acoustic solitons are investigated in an unmagnetized multicomponent plasma system consisting of cold and hot electrons and hot ions using the Sagdeev pseudopotential technique. The analysis is based on fluid equations and the Poisson equation. Solitary wave solutions are found when the Mach numbers exceed some critical values. The critical Mach numbers for the ion-acoustic solitons are found to be smaller than those for electron-acoustic solitons for a given set of plasma parameters. The critical Mach numbers of ion-acoustic solitons increase with the increase of hot electron temperature and the decrease of cold electron density. On the other hand, the critical Mach numbers of electron-acoustic solitons increase with the increase of the cold electron density as well as the hot electron temperature. The ion-acoustic solitons have positive potentials for the parameters considered. However, the electron-acoustic solitons have positive or negative potentials depending whether the fractional cold electron density with respect to the ion density is greater or less than a certain critical value. Further, the amplitudes of both the ion- and electron-acoustic solitons increase with the increase of the hot electron temperature. Possible application of this model to electrostatic solitary waves observed on the auroral field lines by the Viking spacecraft is discussed

  8. Solitons in a relativistic plasma with negative ions--

    International Nuclear Information System (INIS)

    Das, G.C.; Karmakar, B.; Ibohanbi Singh, KH.

    1990-01-01

    The interaction of the nonlinearity and the dispersiveness causing the solitary waves are studied in a relativistic plasma with negative ions through the derivation of a nonlinear partial differential equation known as the Korteweg-Devries (K-DV) equation. The negative ions play a salient feature on the existence and behavior of the solitons and could be of interest in laboratory plasmas. First, the observations are made in a nonisothermal plasma, and later the reduction to the nonisothermality of the plasma shows entirely different characteristics as compared to the solitons in the isothermal plasmas. A comparison with the various solutions has been emphasized

  9. Solitons, Bose-Einstein condensation and superfluidity in He II

    International Nuclear Information System (INIS)

    Chela-Flores, J.; Ghassib, H.B.

    1985-09-01

    The analytic form of a wave propagating with a constant velocity and a permanent profile is inferred for a weakly interacting Bose gas, using an exact (rather than asymptotic) solution of the field equation of the self-consistent Hartree model. The significance of this approach is indicated, especially when realistic interatomic potentials are used. In addition, the general relation between solitons and Bose-Einstein condensation is underlined by invoking the profound insight recently acquired in studies of the quantum liquids involved in the living state. It is concluded that solitons may occur in He II, and may play a significant role in the phenomena of superfluidity. (author)

  10. Interaction of solitons with a string of coupled quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vijendra, E-mail: vsmedphysics@gmail.com; Swami, O. P., E-mail: omg1789@gmail.com; Nagar, A. K., E-mail: ajaya.nagar@gmail.com [Department of Physics, Govt. Dungar College, Bikaner, Rajasthan 334001 (India); Taneja, S., E-mail: sachintaneja9@gmail.com [Department of Radiotherapy, CHAF Bangalore, Karnataka 560007 (India)

    2016-05-06

    In this paper, we develop a theory for discrete solitons interaction with a string of coupled quantum dots in view of the local field effects. Discrete nonlinear Schrodinger (DNLS) equations are used to describe the dynamics of the string. Numerical calculations are carried out and results are analyzed with the help of matlab software. With the help of numerical solutions we demonstrate that in the quantum dots string, Rabi oscillations (RO) are self trapped into stable bright Rabi solitons. The Rabi oscillations in different types of nanostructures have potential applications to the elements of quantum logic and quantum memory.

  11. Soliton formation at critical density in laser-irradiated plasmas

    International Nuclear Information System (INIS)

    Anderson, D.; Bondeson, A.; Lisak, M.

    1979-01-01

    The generation of Langmuir solitons at the resonance layer in a plasma irradiated by a strong high-frequency pump is investigated. The process is modelled by the nonlinear Schrodinger equation including an external pump, a density gradient and linear damping. The evolution equation is reformulated as an exact variational principle and the one-soliton generation process is studied by substituting various trial solutions. The applicability conditions for the nonlinear Schrodinger equation are re-examined and found to be more restrictive than previously stated. (author)

  12. A fluid dynamic approach to the dust-acoustic soliton

    International Nuclear Information System (INIS)

    McKenzie, J.F.; Doyle, T.B.

    2002-01-01

    The properties of dust-acoustic solitons are derived from a fluid dynamic viewpoint in which conservation of total momentum, combined with the Bernoulli-like energy equations for each species, yields the structure equation for the heavy (or dust) speed in the stationary wave. This fully nonlinear approach reveals the crucial role played by the heavy sonic point in limiting the collective dust-acoustic Mach number, above which solitons cannot exist. An exact solution illustrates that the cold heavy species is compressed and this implies concomitant contraints on the potential and on the flow speed of the electrons and protons in the wave

  13. A Fluid Dynamic Approach to the Dust-Acoustic Soliton

    Science.gov (United States)

    McKenzie, J. F.; Doyle, T. B.

    2002-12-01

    The properties of dust-acoustic solitons are derived from a fluid dynamic viewpoint in which conservation of total momentum, combined with the Bernoulli-like energy equations for each species, yields the structure equation for the heavy (or dust) speed in the stationary wave. This fully nonlinear approach reveals the crucial role played by the heavy sonic point in limiting the collective dust-acoustic Mach number, above which solitons cannot exist. An exact solution illustrates that the cold heavy species is compressed and this implies concomitant contraints on the potential and on the flow speed of the electrons and protons in the wave.

  14. Spectrum Evolution of Accelerating or Slowing down Soliton at its Propagation in a Medium with Gold Nanorods

    Science.gov (United States)

    Trofimov, Vyacheslav A.; Lysak, Tatiana M.

    2018-04-01

    We investigate both numerically and analytically the spectrum evolution of a novel type soliton - nonlinear chirped accelerating or decelerating soliton - at a femtosecond pulse propagation in a medium containing noble nanoparticles. In our consideration, we take into account one- or two-photon absorption of laser radiation by nanorods, and time-dependent nanorod aspect ratio changing due to their melting or reshaping because of laser energy absorption. The chirped solitons are formed due to the trapping of laser radiation by the nanorods reshaping fronts, if a positive or negative phase-amplitude grating is induced by laser radiation. Accelerating or slowing down chirped soliton formation is accompanied by the soliton spectrum blue or red shift. To prove our numerical results, we derived the approximate analytical law for the spectrum maximum intensity evolution along the propagation coordinate, based on earlier developed approximate analytical solutions for accelerating and decelerating solitons.

  15. Protocol of networks using energy sharing collisions of bright solitons

    Indian Academy of Sciences (India)

    Equations (13a) and (13b) can be satisfied by choosing αk as .... (right) configurations of the two-soliton solution in the Manakov-type system on PSG. .... receivers of messages, the present phase change can be used as protocols of network.

  16. Quadratic soliton self-reflection at a quadratically nonlinear interface

    Science.gov (United States)

    Jankovic, Ladislav; Kim, Hongki; Stegeman, George; Carrasco, Silvia; Torner, Lluis; Katz, Mordechai

    2003-11-01

    The reflection of bulk quadratic solutions incident onto a quadratically nonlinear interface in periodically poled potassium titanyl phosphate was observed. The interface consisted of the boundary between two quasi-phase-matched regions displaced from each other by a half-period. At high intensities and small angles of incidence the soliton is reflected.

  17. Gap solitons in periodic Schrodinger lattice system with nonlinear hopping

    Directory of Open Access Journals (Sweden)

    Ming Cheng

    2016-10-01

    Full Text Available This article concerns the periodic discrete Schrodinger equation with nonlinear hopping on the infinite integer lattice. We obtain the existence of gap solitons by the linking theorem and concentration compactness method together with a periodic approximation technique. In addition, the behavior of such solutions is studied as $\\alpha\\to 0$. Notice that the nonlinear hopping can be sign changing.

  18. Dynamics of solitons and quasisolitons of the cubic third-order nonlinear Schrödinger equation

    DEFF Research Database (Denmark)

    Karpman, V.I.; Juul Rasmussen, J.; Shagalov, A.G.

    2001-01-01

    The dynamics of soliton and quasisoliton solutions of the cubic third-order nonlinear Schrodinger equation is studied. Regular solitons exist due to a balance between the nonlinear terms and (linear) third-order dispersion; they are not important at small alpha (3) (alpha (3) is the coefficient...... in the third derivative term) and vanish at alpha3 -->0. The most essential, at small alpha (3), is a quasisoliton emitting resonant radiation (resonantly radiating soliton). Its relationship with the other (steady) quasisoliton, called embedded soliton, is studied analytically and also in numerical...

  19. Modulational instability, solitons and periodic waves in a model of quantum degenerate boson-fermion mixtures

    International Nuclear Information System (INIS)

    Belmonte-Beitia, Juan; Perez-Garcia, Victor M.; Vekslerchik, Vadym

    2007-01-01

    In this paper, we study a system of coupled nonlinear Schroedinger equations modelling a quantum degenerate mixture of bosons and fermions. We analyze the stability of plane waves, give precise conditions for the existence of solitons and write explicit solutions in the form of periodic waves. We also check that the solitons observed previously in numerical simulations of the model correspond exactly to our explicit solutions and see how plane waves destabilize to form periodic waves

  20. Soliton scatterings by impurities in a short-length sine-Gordon chain

    International Nuclear Information System (INIS)

    Dikande, A.M.; Kofane, T.C.

    1995-07-01

    The scattering of soliton by impurities at the frontiers of a finite-length region of an infinite sine-Gordon chain is analyzed. The impurities consist of two isotopic inhomogeneities installed at the boundaries of the finite-length region. The soliton solution in the region is found in term of snoidal sine-Gordon soliton which properly takes into account the effects of the boundaries. By contrast, the soliton solutions in the neighboring sides of the region are obtained in terms of the so-called large-amplitude, localized kinks with limiting spatial extensions at x → ± ∞, which is equal ±π. Using the continuity of these soliton solutions at the frontiers as well as appropriate boundary conditions, it is shown that the soliton may be either i) reflected by the incident impurity; ii) trapped (with oscillating motions) between the two impurities (i.e. inside the infinite region); or iii) transmitted by the second impurity into the third, infinitely extended region. The threshold velocities for the reflection and transmission into different regions are found and shown to vary exponentially as a function of the length of the bounded region. The frequency of soliton oscillations between the impurities has also been calculated in some acceptable limit. (author). 28 refs, 1 fig

  1. Collective states of externally driven, damped nonlinear Schroedinger solitons

    International Nuclear Information System (INIS)

    Barashenkov, I.V.; Smirnov, Yu.S.

    1997-01-01

    We study bifurcations of localized stationary solitons of the externally driven, damped nonlinear Schroedinger equation iΨ t + Ψ xx + 2|Ψ| 2 Ψ=-iγΨ-h e iΩt , in the region of large γ (γ>1/2). For each pair of h and γ, there are two coexisting solitons, Ψ + and Ψ - . As the driver's strength h increases for the fixed γ, the Ψ + soliton merges with the flat background while the Ψ - forms a stationary collective state with two 'psi-pluses': Ψ - → Ψ (+ - +) . We obtain other stationary solutions and identify them as multisoliton complexes Ψ (++) , Ψ (--) , Ψ (-+) , Ψ (---) , Ψ (-+- ) etc. The corresponding intersoliton separations are compared to predictions of a variational approximation

  2. Solitonic Integrable Perturbations of Parafermionic Theories

    CERN Document Server

    Fernández-Pousa, C R; Hollowood, Timothy J; Miramontes, J L

    1997-01-01

    The quantum integrability of a class of massive perturbations of the parafermionic conformal field theories associated to compact Lie groups is established by showing that they have quantum conserved densities of scale dimension 2 and 3. These theories are integrable for any value of a continuous vector coupling constant, and they generalize the perturbation of the minimal parafermionic models by their first thermal operator. The classical equations-of-motion of these perturbed theories are the non-abelian affine Toda equations which admit (charged) soliton solutions whose semi-classical quantization is expected to permit the identification of the exact S-matrix of the theory.

  3. Enveloping branes and brane-world singularities

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, Ignatios; Cotsakis, Spiros [CERN-Theory Division, Department of Physics, Geneva 23 (Switzerland); Klaoudatou, Ifigeneia [University of the Aegean, Research Group of Geometry, Dynamical Systems and Cosmology, Department of Information and Communication Systems Engineering, Samos (Greece)

    2014-12-01

    The existence of envelopes is studied for systems of differential equations in connection with the method of asymptotic splittings which allows one to determine the singularity structure of the solutions. The result is applied to brane-worlds consisting of a 3-brane in a five-dimensional bulk, in the presence of an analog of a bulk perfect fluid parameterizing a generic class of bulk matter. We find that all flat brane solutions suffer from a finite-distance singularity contrary to previous claims. We then study the possibility of avoiding finite-distance singularities by cutting the bulk and gluing regular solutions at the position of the brane. Further imposing physical conditions such as finite Planck mass on the brane and positive energy conditions on the bulk fluid, excludes, however, this possibility as well. (orig.)

  4. Properties of kinematic singularities

    Energy Technology Data Exchange (ETDEWEB)

    Coley, A A [Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada); Hervik, S [Department of Mathematics and Natural Sciences, University of Stavanger, N-4036 Stavanger (Norway); Lim, W C [Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Potsdam (Germany); MacCallum, M A H, E-mail: aac@mathstat.dal.c, E-mail: sigbjorn.hervik@uis.n, E-mail: wclim@aei.mpg.d, E-mail: m.a.h.maccallum@qmul.ac.u [School of Mathematical Sciences, Queen Mary University of London, E1 4NS (United Kingdom)

    2009-11-07

    The locally rotationally symmetric tilted perfect fluid Bianchi type V cosmological model provides examples of future geodesically complete spacetimes that admit a 'kinematic singularity' at which the fluid congruence is inextendible but all frame components of the Weyl and Ricci tensors remain bounded. We show that for any positive integer n there are examples of Bianchi type V spacetimes admitting a kinematic singularity such that the covariant derivatives of the Weyl and Ricci tensors up to the nth order also stay bounded. We briefly discuss singularities in classical spacetimes.

  5. Detection of Moving Targets Using Soliton Resonance Effect

    Science.gov (United States)

    Kulikov, Igor K.; Zak, Michail

    2013-01-01

    The objective of this research was to develop a fundamentally new method for detecting hidden moving targets within noisy and cluttered data-streams using a novel "soliton resonance" effect in nonlinear dynamical systems. The technique uses an inhomogeneous Korteweg de Vries (KdV) equation containing moving-target information. Solution of the KdV equation will describe a soliton propagating with the same kinematic characteristics as the target. The approach uses the time-dependent data stream obtained with a sensor in form of the "forcing function," which is incorporated in an inhomogeneous KdV equation. When a hidden moving target (which in many ways resembles a soliton) encounters the natural "probe" soliton solution of the KdV equation, a strong resonance phenomenon results that makes the location and motion of the target apparent. Soliton resonance method will amplify the moving target signal, suppressing the noise. The method will be a very effective tool for locating and identifying diverse, highly dynamic targets with ill-defined characteristics in a noisy environment. The soliton resonance method for the detection of moving targets was developed in one and two dimensions. Computer simulations proved that the method could be used for detection of singe point-like targets moving with constant velocities and accelerations in 1D and along straight lines or curved trajectories in 2D. The method also allows estimation of the kinematic characteristics of moving targets, and reconstruction of target trajectories in 2D. The method could be very effective for target detection in the presence of clutter and for the case of target obscurations.

  6. Mechanical quadrature method as applied to singular integral equations with logarithmic singularity on the right-hand side

    Science.gov (United States)

    Amirjanyan, A. A.; Sahakyan, A. V.

    2017-08-01

    A singular integral equation with a Cauchy kernel and a logarithmic singularity on its righthand side is considered on a finite interval. An algorithm is proposed for the numerical solution of this equation. The contact elasticity problem of a П-shaped rigid punch indented into a half-plane is solved in the case of a uniform hydrostatic pressure occurring under the punch, which leads to a logarithmic singularity at an endpoint of the integration interval. The numerical solution of this problem shows the efficiency of the proposed approach and suggests that the singularity has to be taken into account in solving the equation.

  7. Statistics of 2D solitons

    International Nuclear Information System (INIS)

    Brekke, L.; Imbo, T.D.

    1992-01-01

    The authors study the inequivalent quantizations of (1 + 1)-dimensional nonlinear sigma models with space manifold S 1 and target manifold X. If x is multiply connected, these models possess topological solitons. After providing a definition of spin and statistics for these solitons and demonstrating a spin-statistics correlation, we give various examples where the solitons can have exotic statistics. In some of these models, the solitons may obey a generalized version of fractional statistics called ambistatistics. In this paper the relevance of these 2d models to the statistics of vortices in (2 + 1)-dimensional spontaneously broken gauge theories is discussed. The authors close with a discussion concerning the extension of our results to higher dimensions

  8. Matter-wave solitons and finite-amplitude Bloch waves in optical lattices with spatially modulated nonlinearity

    Science.gov (United States)

    Zhang, Jie-Fang; Li, Yi-Shen; Meng, Jianping; Wu, Lei; Malomed, Boris A.

    2010-09-01

    We investigate solitons and nonlinear Bloch waves in Bose-Einstein condensates trapped in optical lattices (OLs). By introducing specially designed localized profiles of the spatial modulation of the attractive nonlinearity, we construct an infinite set of exact soliton solutions in terms of Mathieu and elliptic functions, with the chemical potential belonging to the semi-infinite gap of the OL-induced spectrum. Starting from the particular exact solutions, we employ the relaxation method to construct generic families of soliton solutions in a numerical form. The stability of the solitons is investigated through the computation of the eigenvalues for small perturbations, and also by direct simulations. Finally, we demonstrate a virtually exact (in the numerical sense) composition relation between nonlinear Bloch waves and solitons.

  9. Matter-wave solitons and finite-amplitude Bloch waves in optical lattices with spatially modulated nonlinearity

    International Nuclear Information System (INIS)

    Zhang Jiefang; Meng Jianping; Wu Lei; Li Yishen; Malomed, Boris A.

    2010-01-01

    We investigate solitons and nonlinear Bloch waves in Bose-Einstein condensates trapped in optical lattices (OLs). By introducing specially designed localized profiles of the spatial modulation of the attractive nonlinearity, we construct an infinite set of exact soliton solutions in terms of Mathieu and elliptic functions, with the chemical potential belonging to the semi-infinite gap of the OL-induced spectrum. Starting from the particular exact solutions, we employ the relaxation method to construct generic families of soliton solutions in a numerical form. The stability of the solitons is investigated through the computation of the eigenvalues for small perturbations, and also by direct simulations. Finally, we demonstrate a virtually exact (in the numerical sense) composition relation between nonlinear Bloch waves and solitons.

  10. Asymmetric rogue waves, breather-to-soliton conversion, and nonlinear wave interactions in the Hirota–Maxwell–Bloch system

    International Nuclear Information System (INIS)

    Wang Lei; Zhu Yujie; Wang Ziqi; Xu Tao; Qi Fenghua; Xue Yushan

    2016-01-01

    We study the nonlinear localized waves on constant backgrounds of the Hirota–Maxwell–Bloch (HMB) system arising from the erbium doped fibers. We derive the asymmetric breather, rogue wave (RW) and semirational solutions of the HMB system. We show that the breather and RW solutions can be converted into various soliton solutions. Under different conditions of parameters, we calculate the locus of the eigenvalues on the complex plane which converts the breathers or RWs into solitons. Based on the second-order solutions, we investigate the interactions among different types of nonlinear waves including the breathers, RWs and solitons. (author)

  11. Asymmetric Rogue Waves, Breather-to-Soliton Conversion, and Nonlinear Wave Interactions in the Hirota-Maxwell-Bloch System

    Science.gov (United States)

    Wang, Lei; Zhu, Yu-Jie; Wang, Zi-Qi; Xu, Tao; Qi, Feng-Hua; Xue, Yu-Shan

    2016-02-01

    We study the nonlinear localized waves on constant backgrounds of the Hirota-Maxwell-Bloch (HMB) system arising from the erbium doped fibers. We derive the asymmetric breather, rogue wave (RW) and semirational solutions of the HMB system. We show that the breather and RW solutions can be converted into various soliton solutions. Under different conditions of parameters, we calculate the locus of the eigenvalues on the complex plane which converts the breathers or RWs into solitons. Based on the second-order solutions, we investigate the interactions among different types of nonlinear waves including the breathers, RWs and solitons.

  12. Soliton models for thick branes

    International Nuclear Information System (INIS)

    Peyravi, Marzieh; Riazi, Nematollah; Lobo, Francisco S.N.

    2016-01-01

    In this work, we present new soliton solutions for thick branes in 4+1 dimensions. In particular, we consider brane models based on the sine-Gordon (SG), φ 4 and φ 6 scalar fields, which have broken Z 2 symmetry in some cases and are responsible for supporting and stabilizing the thick branes. The origin of the symmetry breaking in these models resides in the fact that the modified scalar field potential may have non-degenerate vacua. These vacua determine the cosmological constant on both sides of the brane. We also study the geodesic equations along the fifth dimension, in order to explore the particle motion in the neighborhood of the brane. Furthermore, we examine the stability of the thick branes, by determining the sign of the w 2 term in the expansion of the potential for the resulting Schroedinger-like equation, where w is the five-dimensional coordinate. It turns out that the φ 4 brane is stable, while there are unstable modes for certain ranges of the model parameters in the SG and φ 6 branes. (orig.)

  13. Soliton models for thick branes

    Energy Technology Data Exchange (ETDEWEB)

    Peyravi, Marzieh [Ferdowsi University of Mashhad, Department of Physics, School of Sciences, Mashhad (Iran, Islamic Republic of); Riazi, Nematollah [Shahid Beheshti University, Physics Department, Tehran (Iran, Islamic Republic of); Lobo, Francisco S.N. [Faculdade de Ciencias da Universidade de Lisboa, Instituto de Astrofisica e Ciencias do Espaco, Lisbon (Portugal)

    2016-05-15

    In this work, we present new soliton solutions for thick branes in 4+1 dimensions. In particular, we consider brane models based on the sine-Gordon (SG), φ{sup 4} and φ{sup 6} scalar fields, which have broken Z{sub 2} symmetry in some cases and are responsible for supporting and stabilizing the thick branes. The origin of the symmetry breaking in these models resides in the fact that the modified scalar field potential may have non-degenerate vacua. These vacua determine the cosmological constant on both sides of the brane. We also study the geodesic equations along the fifth dimension, in order to explore the particle motion in the neighborhood of the brane. Furthermore, we examine the stability of the thick branes, by determining the sign of the w{sup 2} term in the expansion of the potential for the resulting Schroedinger-like equation, where w is the five-dimensional coordinate. It turns out that the φ{sup 4} brane is stable, while there are unstable modes for certain ranges of the model parameters in the SG and φ{sup 6} branes. (orig.)

  14. Nonlinear singular elliptic equations

    International Nuclear Information System (INIS)

    Dong Minh Duc.

    1988-09-01

    We improve the Poincare inequality, the Sobolev imbedding theorem and the Trudinger imbedding theorem and prove a Mountain pass theorem. Applying these results we study a nonlinear singular mixed boundary problem. (author). 22 refs

  15. Coloured phase singularities

    International Nuclear Information System (INIS)

    Berry, M.V.

    2002-01-01

    For illumination with white light, the spectra near a typical isolated phase singularity (nodal point of the component wavelengths) can be described by a universal function of position, up to linear distortion and a weak dependence on the spectrum of the source. The appearance of the singularity when viewed by a human observer is predicted by transforming the spectrum to trichromatic variables and chromaticity coordinates, and then rendering the colours, scaled to constant luminosity, on a computer monitor. The pattern far from the singularity is a white that depends on the source temperature, and the centre of the pattern is flanked by intensely coloured 'eyes', one orange and one blue, separated by red, and one of the eyes is surrounded by a bright white circle. Only a small range of possible colours appears near the singularity; in particular, there is no green. (author)

  16. The Big Bang Singularity

    Science.gov (United States)

    Ling, Eric

    The big bang theory is a model of the universe which makes the striking prediction that the universe began a finite amount of time in the past at the so called "Big Bang singularity." We explore the physical and mathematical justification of this surprising result. After laying down the framework of the universe as a spacetime manifold, we combine physical observations with global symmetrical assumptions to deduce the FRW cosmological models which predict a big bang singularity. Next we prove a couple theorems due to Stephen Hawking which show that the big bang singularity exists even if one removes the global symmetrical assumptions. Lastly, we investigate the conditions one needs to impose on a spacetime if one wishes to avoid a singularity. The ideas and concepts used here to study spacetimes are similar to those used to study Riemannian manifolds, therefore we compare and contrast the two geometries throughout.

  17. Surface Plasmon Singularities

    Directory of Open Access Journals (Sweden)

    Gabriel Martínez-Niconoff

    2012-01-01

    Full Text Available With the purpose to compare the physical features of the electromagnetic field, we describe the synthesis of optical singularities propagating in the free space and on a metal surface. In both cases the electromagnetic field has a slit-shaped curve as a boundary condition, and the singularities correspond to a shock wave that is a consequence of the curvature of the slit curve. As prototypes, we generate singularities that correspond to fold and cusped regions. We show that singularities in free space may generate bifurcation effects while plasmon fields do not generate these kinds of effects. Experimental results for free-space propagation are presented and for surface plasmon fields, computer simulations are shown.

  18. Timelike naked singularity

    International Nuclear Information System (INIS)

    Goswami, Rituparno; Joshi, Pankaj S.; Vaz, Cenalo; Witten, Louis

    2004-01-01

    We construct a class of spherically symmetric collapse models in which a naked singularity may develop as the end state of collapse. The matter distribution considered has negative radial and tangential pressures, but the weak energy condition is obeyed throughout. The singularity forms at the center of the collapsing cloud and continues to be visible for a finite time. The duration of visibility depends on the nature of energy distribution. Hence the causal structure of the resulting singularity depends on the nature of the mass function chosen for the cloud. We present a general model in which the naked singularity formed is timelike, neither pointlike nor null. Our work represents a step toward clarifying the necessary conditions for the validity of the Cosmic Censorship Conjecture

  19. Solitonic natural orbitals

    Science.gov (United States)

    Cioslowski, Jerzy

    2018-04-01

    The dependence of the natural amplitudes of the harmonium atom in its ground state on the confinement strength ω is thoroughly investigated. A combination of rigorous analysis and extensive, highly accurate numerical calculations reveals the presence of only one positive-valued natural amplitude ("the normal sign pattern") for all ω ≥1/2 . More importantly, it is shown that unusual, weakly occupied natural orbitals (NOs) corresponding to additional positive-valued natural amplitudes emerge upon sufficient weakening of the confinement. These solitonic NOs, whose shapes remain almost invariant as their radial positions drift toward infinity upon the critical values of ω being approached from below, exhibit strong radial localization. Their asymptotic properties are extracted from the numerical data and their relevance to calculations on fully Coulombic systems is discussed.

  20. Algorithms in Singular

    Directory of Open Access Journals (Sweden)

    Hans Schonemann

    1996-12-01

    Full Text Available Some algorithms for singularity theory and algebraic geometry The use of Grobner basis computations for treating systems of polynomial equations has become an important tool in many areas. This paper introduces of the concept of standard bases (a generalization of Grobner bases and the application to some problems from algebraic geometry. The examples are presented as SINGULAR commands. A general introduction to Grobner bases can be found in the textbook [CLO], an introduction to syzygies in [E] and [St1]. SINGULAR is a computer algebra system for computing information about singularities, for use in algebraic geometry. The basic algorithms in SINGULAR are several variants of a general standard basis algorithm for general monomial orderings (see [GG]. This includes wellorderings (Buchberger algorithm ([B1], [B2] and tangent cone orderings (Mora algorithm ([M1], [MPT] as special cases: It is able to work with non-homogeneous and homogeneous input and also to compute in the localization of the polynomial ring in 0. Recent versions include algorithms to factorize polynomials and a factorizing Grobner basis algorithm. For a complete description of SINGULAR see [Si].

  1. Compactons versus solitons

    Indian Academy of Sciences (India)

    2.1 Leading order singularities. The Painlevé test stays and falls with the possibility that the initial condition λ0 can be determined, which is essential to commence the iterative procedure to solve the recurrence relation. We compute λ0 by substituting the first term in the expansion (4), i.e. u(x, t) → λ0(x, t)φ(x, t)α, into (3) and ...

  2. Numerical method of singular problems on singular integrals

    International Nuclear Information System (INIS)

    Zhao Huaiguo; Mou Zongze

    1992-02-01

    As first part on the numerical research of singular problems, a numerical method is proposed for singular integrals. It is shown that the procedure is quite powerful for solving physics calculation with singularity such as the plasma dispersion function. Useful quadrature formulas for some class of the singular integrals are derived. In general, integrals with more complex singularities can be dealt by this method easily

  3. Stable optical soliton in the ring-cavity fiber system with carbon nanotube as saturable absorber

    Science.gov (United States)

    Li, Bang-Qing; Ma, Yu-Lan; Yang, Tie-Mei

    2018-01-01

    Main attention focuses on the theoretical study of the ring-cavity fiber laser system with carbon nanotubes (CNT) as saturable absorber (SA). The system is modelled as a non-standard Schrödinger equation with the coefficients blended real and imaginary numbers. New stable exact soliton solution is constructed by the bilinear transformation method for the system. The influences of the key parameters related to CNTs and SA on the optical pulse soliton are discussed in simulation. The soliton amplitude and phase can be tuned by choosing suitable parameters.

  4. Propagation of dispersion-nonlinearity-managed solitons in an inhomogeneous erbium-doped fiber system

    International Nuclear Information System (INIS)

    Mahalingam, A; Porsezian, K; Mani Rajan, M S; Uthayakumar, A

    2009-01-01

    In this paper, a generalized nonlinear Schroedinger-Maxwell-Bloch model with variable dispersion and nonlinearity management functions, which describes the propagation of optical pulses in an inhomogeneous erbium-doped fiber system under certain restrictive conditions, is under investigation. We derive the Lax pair with a variable spectral parameter and the exact soliton solution is generated from the Baecklund transformation. It is observed that stable solitons are possible only under a very restrictive condition for the spectral parameter and other inhomogeneous functions. For various forms of the inhomogeneous dispersion, nonlinearity and gain/loss functions, construction of different types of solitary waves like classical solitons, breathers, etc is discussed

  5. Quantization in presence of external soliton fields

    International Nuclear Information System (INIS)

    Grosse, H.; Karner, G.

    1986-01-01

    Quantization of a fermi field interacting with an external soliton protential is considered. Classes of interactions leading to unitarily equivalent representations of the canonical anticommutation relations are determined. Soliton-like potentials compared to trivial ones yield inequivalent representations. (Author)

  6. Noise-induced perturbations of dispersion-managed solitons

    International Nuclear Information System (INIS)

    Li, Jinglai; Spiller, Elaine; Biondini, Gino

    2007-01-01

    We study noise-induced perturbations of dispersion-managed solitons. We do so by first developing soliton perturbation theory for the dispersion-managed nonlinear Schroedinger (DMNLS) equation, which governs the long-term behavior of optical fiber transmission systems and certain kinds of femtosecond lasers. We show that the eigenmodes and generalized eigenmodes of the linearized DMNLS equation around traveling-wave solutions can be generated from the invariances of the DMNLS equations, we quantify the perturbation-induced parameter changes of the solution in terms of the eigenmodes and the adjoint eigenmodes, and we obtain evolution equations for the solution parameters. We then apply these results to guide importance-sampled Monte Carlo (MC) simulations and reconstruct the probability density functions of the solution parameters under the effect of noise, and we compare with standard MC simulations of the unaveraged system. The comparison further validates the use of the DMNLS equation as a model for dispersion-managed systems

  7. Experiment on dust acoustic solitons in strongly coupled dusty plasma

    International Nuclear Information System (INIS)

    Boruah, Abhijit; Sharma, Sumita Kumari; Bailung, Heremba

    2015-01-01

    Dusty plasma, which contains nanometer to micrometer sized dust particles along with electrons and ions, supports a low frequency wave called Dust Acoustic wave, analogous to ion acoustic wave in normal plasma. Due to high charge and low temperature of the dust particles, dusty plasma can easily transform into a strongly coupled state when the Coulomb interaction potential energy exceeds the dust kinetic energy. Dust acoustic perturbations are excited in such strongly coupled dusty plasma by applying a short negative pulse (100 ms) of amplitude 5 - 20 V to an exciter. The perturbation steepens due to nonlinear effect and forms a solitary structure by balancing dispersion present in the medium. For specific discharge conditions, excitation amplitude above a critical value, the perturbation is found to evolve into a number of solitons. The experimental results on the excitation of multiple dust acoustic solitons in the strongly coupled regime are presented in this work. The experiment is carried out in radio frequency discharged plasma produced in a glass chamber at a pressure 0.01 - 0.1 mbar. Few layers of dust particles (∼ 5 μm in diameter) are levitated above a grounded electrode inside the chamber. Wave evolution is observed with the help of green laser sheet and recorded in a high resolution camera at high frame rate. The high amplitude soliton propagates ahead followed by smaller amplitude solitons with lower velocity. The separation between the solitons increases as time passes by. The characteristics of the observed dust acoustic solitons such as amplitude-velocity and amplitude- Mach number relationship are compared with the solutions of Korteweg-de Vries (KdV) equation. (author)

  8. Energy-exchange collisions of dark-bright-bright vector solitons.

    Science.gov (United States)

    Radhakrishnan, R; Manikandan, N; Aravinthan, K

    2015-12-01

    We find a dark component guiding the practically interesting bright-bright vector one-soliton to two different parametric domains giving rise to different physical situations by constructing a more general form of three-component dark-bright-bright mixed vector one-soliton solution of the generalized Manakov model with nine free real parameters. Moreover our main investigation of the collision dynamics of such mixed vector solitons by constructing the multisoliton solution of the generalized Manakov model with the help of Hirota technique reveals that the dark-bright-bright vector two-soliton supports energy-exchange collision dynamics. In particular the dark component preserves its initial form and the energy-exchange collision property of the bright-bright vector two-soliton solution of the Manakov model during collision. In addition the interactions between bound state dark-bright-bright vector solitons reveal oscillations in their amplitudes. A similar kind of breathing effect was also experimentally observed in the Bose-Einstein condensates. Some possible ways are theoretically suggested not only to control this breathing effect but also to manage the beating, bouncing, jumping, and attraction effects in the collision dynamics of dark-bright-bright vector solitons. The role of multiple free parameters in our solution is examined to define polarization vector, envelope speed, envelope width, envelope amplitude, grayness, and complex modulation of our solution. It is interesting to note that the polarization vector of our mixed vector one-soliton evolves in sphere or hyperboloid depending upon the initial parametric choices.

  9. Spatial solitons in nonlinear photonic crystals

    DEFF Research Database (Denmark)

    Corney, Joel Frederick; Bang, Ole

    2000-01-01

    We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero.......We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero....

  10. Solitons of an envelope in an inhomogeneous medium

    International Nuclear Information System (INIS)

    Churilov, S.M.

    1982-01-01

    Solutions of the Schroedinger nonlinear equation (SNE) used for the description of evolution of a wave packet envelope has been investigated in inhomogeneous and nonstationary media. It is shown that the SNE solution possessing two important properties exists. Firstly, the wave packet remains localized when propagating in an inhomogeneous medium. Secondly, the soliton width and amplitude are determined only with local characteristics of medium and don't depend on the prehistory. Problem of limits of obtained result applicability has been considered

  11. Solitons and the energy-momentum tensor for affine Toda theory

    Science.gov (United States)

    Olive, D. I.; Turok, N.; Underwood, J. W. R.

    1993-07-01

    Following Leznov and Saveliev, we present the general solution to Toda field theories of conformal, affine or conformal affine type, associated with a simple Lie algebra g. These depend on a free massless field and on a group element. By putting the former to zero, soliton solutions to the affine Toda theories with imaginary coupling constant result with the soliton data encoded in the group element. As this requires a reformulation of the affine Kac-Moody algebra closely related to that already used to formulate the physical properties of the particle excitations, including their scattering matrices, a unified treatment of particles and solitons emerges. The physical energy—momentum tensor for a general solution is broken into a total derivative plus a part dependent only on the derivatives of the free field. Despite the non-linearity of the field equations and their complex nature the energy and momentum of the N-soliton solution is shown to be real, equalling the sum of contributions from the individual solitons. There are rank-g species of soliton, with masses given by a generalisation of a formula due to Hollowood, being proportional to the components of the left Perron-Frobenius eigenvector of the Cartan matrix of g.

  12. Solitons and the energy-momentum tensor for affine Toda theory

    International Nuclear Information System (INIS)

    Olive, D.I.; Turok, N.; Underwood, J.W.R.

    1993-01-01

    Following Leznov and Saveliev, we present the general solution to Toda field theories of conformal, affine or conformal affine type, associated with a simple Lie algebra g. These depend on a free massless field and on a group element. By putting the former to zero, soliton solutions to the affine Toda theories with imaginary coupling constant result with the soliton data encoded in the group element. As this requires a reformulation of the affine Kac-Moodyy algebra closely related to that already used to formulate the physical properties of the particle excitations, including their scattering matrices, a unified treatment of particles and solitons emerges. The physical energy-momentum tensor for a general solution is broken into a total derivative plus a part dependent only on the derivatives of the free field. Despite the non-linearity of the field equations and their complex nature the energy and momentum of the N-soliton solution is shown to be real, equalling the sum of contributions from the individual solitons. There are rank-g species of soliton, with masses given by a generalisation of a formula due to Hollowood, being proportional to the components of the left Perron-Frobenius eigenvector of the Cartan matrix of g. (orig.)

  13. Glimpses of soliton theory the algebra and geometry of nonlinear PDEs

    CERN Document Server

    Kasman, Alex

    2010-01-01

    Solitons are explicit solutions to nonlinear partial differential equations exhibiting particle-like behavior. This is quite surprising, both mathematically and physically. Waves with these properties were once believed to be impossible by leading mathematical physicists, yet they are now not only accepted as a theoretical possibility but are regularly observed in nature and form the basis of modern fiber-optic communication networks. Glimpses of Soliton Theory addresses some of the hidden mathematical connections in soliton theory which have been revealed over the last half-century. It aims to convince the reader that, like the mirrors and hidden pockets used by magicians, the underlying algebro-geometric structure of soliton equations provides an elegant and surprisingly simple explanation of something seemingly miraculous. Assuming only multivariable calculus and linear algebra as prerequisites, this book introduces the reader to the KdV Equation and its multisoliton solutions, elliptic curves and Weierstr...

  14. On the supersymmetric solitons and monopoles

    International Nuclear Information System (INIS)

    Hruby, J.

    1978-01-01

    The basic results in a new trend in supersymmetry and soliton theory are presented. It is shown that the soliton expectation value of the energy operator is mass of the soliton without the quantum corrections. A new supersymmetric monopole model in three dimensions is constructed by generalization of the supersymmetric sine-Gordon model in one space dimension

  15. Soliton resonance in bose-einstein condensate

    Science.gov (United States)

    Zak, Michail; Kulikov, I.

    2002-01-01

    A new phenomenon in nonlinear dispersive systems, including a Bose-Einstein Condensate (BEC), has been described. It is based upon a resonance between an externally induced soliton and 'eigen-solitons' of the homogeneous cubic Schrodinger equation. There have been shown that a moving source of positive /negative potential induces bright /dark solitons in an attractive / repulsive Bose condensate.

  16. Solitons, Bäcklund transformation and Lax pair for a (2+1)-dimensional Davey-Stewartson system on surface waves of finite depth

    Science.gov (United States)

    Zhao, Xue-Hui; Tian, Bo; Xie, Xi-Yang; Wu, Xiao-Yu; Sun, Yan; Guo, Yong-Jiang

    2018-04-01

    Under investigation in this paper is a (2+1)-dimensional Davey-Stewartson system, which describes the transformation of a wave-packet on water of finite depth. By virtue of the bell polynomials, bilinear form, Bäcklund transformation and Lax pair are got. One- and two-soliton solutions are obtained via the symbolic computation and Hirota method. Velocity and amplitude of the one-soliton solutions are relevant with the wave number. Graphical analysis indicates that soliton shapes keep unchanged and maintain their original directions and amplitudes during the propagation. Elastic overtaking and head-on interactions between the two solitons are described.

  17. Singularly perturbed volterra integro-differential equations | Bijura ...

    African Journals Online (AJOL)

    Several investigations have been made on singularly perturbed integral equations. This paper aims at presenting an algorithm for the construction of asymptotic solutions and then provide a proof asymptotic correctness to singularly perturbed systems of Volterra integro-differential equations. Mathematics Subject

  18. Non-uniqueness of the source for singular gauge fields

    International Nuclear Information System (INIS)

    Lanyi, G.; Pappas, R.

    1977-01-01

    It is shown that the singular Wu-Yang solution for SU(2) gauge fields may be interpreted as due to a point source at the origin. However, the electric or magnetic nature of the source depends on whether one approaches the singularity by means of a 'smeared' potential or a 'smeared' field strength. (Auth.)

  19. Dark solitons for a variable-coefficient higher-order nonlinear Schrödinger equation in the inhomogeneous optical fiber

    Science.gov (United States)

    Sun, Yan; Tian, Bo; Wu, Xiao-Yu; Liu, Lei; Yuan, Yu-Qiang

    2017-04-01

    Under investigation in this paper is a variable-coefficient higher-order nonlinear Schrödinger equation, which has certain applications in the inhomogeneous optical fiber communication. Through the Hirota method, bilinear forms, dark one- and two-soliton solutions for such an equation are obtained. We graphically study the solitons with d1(z), d2(z) and d3(z), which represent the variable coefficients of the group-velocity dispersion, third-order dispersion and fourth-order dispersion, respectively. With the different choices of the variable coefficients, we obtain the parabolic, periodic and V-shaped dark solitons. Head-on and overtaking collisions are depicted via the dark two soliton solutions. Velocities of the dark solitons are linearly related to d1(z), d2(z) and d3(z), respectively, while the amplitudes of the dark solitons are not related to such variable coefficients.

  20. KP solitons and the Grassmannians combinatorics and geometry of two-dimensional wave patterns

    CERN Document Server

    Kodama, Yuji

    2017-01-01

    This is the first book to treat combinatorial and geometric aspects of two-dimensional solitons. Based on recent research by the author and his collaborators, the book presents new developments focused on an interplay between the theory of solitons and the combinatorics of finite-dimensional Grassmannians, in particular, the totally nonnegative (TNN) parts of the Grassmannians. The book begins with a brief introduction to the theory of the Kadomtsev–Petviashvili (KP) equation and its soliton solutions, called the KP solitons. Owing to the nonlinearity in the KP equation, the KP solitons form very complex but interesting web-like patterns in two dimensions. These patterns are referred to as soliton graphs. The main aim of the book is to investigate the detailed structure of the soliton graphs and to classify these graphs. It turns out that the problem has an intimate connection with the study of the TNN part of the Grassmannians. The book also provides an elementary introduction to the recent development of ...