WorldWideScience

Sample records for singular perturbation theory

  1. The theory of singular perturbations

    CERN Document Server

    De Jager, E M

    1996-01-01

    The subject of this textbook is the mathematical theory of singular perturbations, which despite its respectable history is still in a state of vigorous development. Singular perturbations of cumulative and of boundary layer type are presented. Attention has been given to composite expansions of solutions of initial and boundary value problems for ordinary and partial differential equations, linear as well as quasilinear; also turning points are discussed. The main emphasis lies on several methods of approximation for solutions of singularly perturbed differential equations and on the mathemat

  2. Existence of localizing solutions in plasticity via the geometric singular perturbation theory

    KAUST Repository

    Lee, Min-Gi; Tzavaras, Athanasios

    2017-01-01

    system has fast and slow time scales, forming a singularly perturbed problem. Geometric singular perturbation theory is applied to this problem to achieve an invariant surface. The flow on the invariant surface is analyzed via the Poincaré

  3. Singular perturbation theory for interacting fermions in two dimensions

    International Nuclear Information System (INIS)

    Chubukov, A.V.; Maslov, D.L.; Gangadharaiah, S.; Glazman, L.I.

    2004-11-01

    We consider a system of interacting fermions in two dimensions beyond the second-order perturbation theory in the interaction. It is shown that the mass-shell singularities in the self-energy, arising already at the second order of the perturbation theory, manifest a nonperturbative effect: an interaction with the zero-sound mode. Resuming the perturbation theory for a weak, short-range interaction and accounting for a finite curvature of the fermion spectrum, we eliminate the singularities and obtain the results for the quasi-particle self-energy and the spectral function to all orders in the interaction with the zero-sound mode. A threshold for emission of zero-sound waves leads a non-monotonic variation of the self-energy with energy (or momentum) near the mass shell. Consequently, the spectral function has a kink-like feature. We also study in detail a non-analytic temperature dependence of the specific heat, C(T) ∝T 2 . It turns out that although the interaction with the collective mode results in an enhancement of the fermion self-energy, this interaction does not affect the non-analytic term in C(T) due to a subtle cancellation between the contributions from the real and imaginary parts of the self-energy. For a short-range and weak interaction, this implies that the second-order perturbation theory suffices to determine the non-analytic part of C(T). We also obtain a general form of the non-analytic term in C(T), valid for the case of a generic Fermi liquid, i.e., beyond the perturbation theory. (author)

  4. Nonlinear PI control of chaotic systems using singular perturbation theory

    International Nuclear Information System (INIS)

    Wang Jiang; Wang Jing; Li Huiyan

    2005-01-01

    In this paper, we develop the nonlinear PI controllers for a class of chaotic systems based on singular perturbation theory. The original system is decomposed into two reduced order systems, to which the nonlinear uncertain terms belongs. In order to alleviate the deterioration of these nonlinear uncertainties, the nonlinear PI controllers are applied to each subsystem and combined to construct the composite controller for the full order system. The effectiveness and feasibility of the proposed control scheme is demonstrated through numerical simulations on the chaotic Chua's circuit

  5. The method of rigged spaces in singular perturbation theory of self-adjoint operators

    CERN Document Server

    Koshmanenko, Volodymyr; Koshmanenko, Nataliia

    2016-01-01

    This monograph presents the newly developed method of rigged Hilbert spaces as a modern approach in singular perturbation theory. A key notion of this approach is the Lax-Berezansky triple of Hilbert spaces embedded one into another, which specifies the well-known Gelfand topological triple. All kinds of singular interactions described by potentials supported on small sets (like the Dirac δ-potentials, fractals, singular measures, high degree super-singular expressions) admit a rigorous treatment only in terms of the equipped spaces and their scales. The main idea of the method is to use singular perturbations to change inner products in the starting rigged space, and the construction of the perturbed operator by the Berezansky canonical isomorphism (which connects the positive and negative spaces from a new rigged triplet). The approach combines three powerful tools of functional analysis based on the Birman-Krein-Vishik theory of self-adjoint extensions of symmetric operators, the theory of singular quadra...

  6. Non-perturbative string theories and singular surfaces

    International Nuclear Information System (INIS)

    Bochicchio, M.

    1990-01-01

    Singular surfaces are shown to be dense in the Teichmueller space of all Riemann surfaces and in the grasmannian. This happens because a regular surface of genus h, obtained identifying 2h disks in pairs, can be approximated by a very large genus singular surface with punctures dense in the 2h disks. A scale ε is introduced and the approximate genus is defined as half the number of connected regions covered by punctures of radius ε. The non-perturbative partition function is proposed to be a scaling limit of the partition function on such infinite genus singular surfaces with a weight which is the coupling constant g raised to the approximate genus. For a gaussian model in any space-time dimension the regularized partition function on singular surfaces of infinite genus is the partition function of a two-dimensional lattice gas of charges and monopoles. It is shown that modular invariance of the partition function implies a version of the Dirac quantization condition for the values of the e/m charges. Before the scaling limit the phases of the lattice gas may be classified according to the 't Hooft criteria for the condensation of e/m operators. (orig.)

  7. Singular perturbation theory mathematical and analytical techniques with applications to engineering

    CERN Document Server

    Johnson, RS

    2005-01-01

    Written in a form that should enable the relatively inexperienced (or new) worker in the field of singular perturbation theory to learn and apply all the essential ideasDesigned as a learning tool. The numerous examples and set exercises are intended to aid this process.

  8. Singular perturbation of simple eigenvalues

    International Nuclear Information System (INIS)

    Greenlee, W.M.

    1976-01-01

    Two operator theoretic theorems which generalize those of asymptotic regular perturbation theory and which apply to singular perturbation problems are proved. Application of these theorems to concrete problems is involved, but the perturbation expansions for eigenvalues and eigenvectors are developed in terms of solutions of linear operator equations. The method of correctors, as well as traditional boundary layer techniques, can be used to apply these theorems. The current formulation should be applicable to highly singular ''hard core'' potential perturbations of the radial equation of quantum mechanics. The theorems are applied to a comparatively simple model problem whose analysis is basic to that of the quantum mechanical problem

  9. Existence of localizing solutions in plasticity via the geometric singular perturbation theory

    KAUST Repository

    Lee, Min-Gi

    2017-01-31

    Shear bands are narrow zones of intense shear observed during plastic deformations of metals at high strain rates. Because they often precede rupture, their study attracted attention as a mechanism of material failure. Here, we aim to reveal the onset of localization into shear bands using a simple model from viscoplasticity. We exploit the properties of scale invariance of the model to construct a family of self-similar focusing solutions that capture the nonlinear mechanism of shear band formation. The key step is to desingularize a reduced system of singular ordinary differential equations and reduce the problem into the construction of a heteroclinic orbit for an autonomous system of three first-order equations. The associated dynamical system has fast and slow time scales, forming a singularly perturbed problem. Geometric singular perturbation theory is applied to this problem to achieve an invariant surface. The flow on the invariant surface is analyzed via the Poincaré--Bendixson theorem to construct a heteroclinic orbit.

  10. Singular-perturbation--strong-coupling field theory and the moments problem

    International Nuclear Information System (INIS)

    Handy, C.R.

    1981-01-01

    Motivated by recent work of Bender, Cooper, Guralnik, Mjolsness, Rose, and Sharp, a new technique is presented for solving field equations in terms of singular-perturbation--strong-coupling expansions. Two traditional mathematical tools are combined into one effective procedure. Firstly, high-temperature lattice expansions are obtained for the corresponding power moments of the field solution. The approximate continuum-limit power moments are subsequently obtained through the application of Pade techniques. Secondly, in order to reconstruct the corresponding approximate global field solution, one must use function-moments reconstruction techniques. The latter involves reconsidering the traditional ''moments problem'' of interest to pure and applied mathematicians. The above marriage between lattice methods and moments reconstruction procedures for functions yields good results for the phi 4 field-theory kink, and the sine-Gordon kink solutions. It is argued that the power moments are the most efficient dynamical variables for the generation of strong-coupling expansions. Indeed, a momentum-space formulation is being advocated in which the long-range behavior of the space-dependent fields are determined by the small-momentum, infrared, domain

  11. Developments in perturbation theory

    International Nuclear Information System (INIS)

    Greenspan, E.

    1976-01-01

    Included are sections dealing with perturbation expressions for reactivity, methods for the calculation of perturbed fluxes, integral transport theory formulations for reactivity, generalized perturbation theory, sensitivity and optimization studies, multigroup calculations of bilinear functionals, and solution of inhomogeneous Boltzmann equations with singular operators

  12. A study of the application of singular perturbation theory. [development of a real time algorithm for optimal three dimensional aircraft maneuvers

    Science.gov (United States)

    Mehra, R. K.; Washburn, R. B.; Sajan, S.; Carroll, J. V.

    1979-01-01

    A hierarchical real time algorithm for optimal three dimensional control of aircraft is described. Systematic methods are developed for real time computation of nonlinear feedback controls by means of singular perturbation theory. The results are applied to a six state, three control variable, point mass model of an F-4 aircraft. Nonlinear feedback laws are presented for computing the optimal control of throttle, bank angle, and angle of attack. Real Time capability is assessed on a TI 9900 microcomputer. The breakdown of the singular perturbation approximation near the terminal point is examined Continuation methods are examined to obtain exact optimal trajectories starting from the singular perturbation solutions.

  13. One Critical Case in Singularly Perturbed Control Problems

    Science.gov (United States)

    Sobolev, Vladimir

    2017-02-01

    The aim of the paper is to describe the special critical case in the theory of singularly perturbed optimal control problems. We reduce the original singularly perturbed problem to a regularized one such that the existence of slow integral manifolds can be established by means of the standard theory. We illustrate our approach by an example of control problem.

  14. Solitary wave solution to a singularly perturbed generalized Gardner ...

    Indian Academy of Sciences (India)

    2017-03-24

    Mar 24, 2017 ... Abstract. This paper is concerned with the existence of travelling wave solutions to a singularly perturbed gen- eralized Gardner equation with nonlinear terms of any order. By using geometric singular perturbation theory and based on the relation between solitary wave solution and homoclinic orbits of the ...

  15. Reduced-order model based active disturbance rejection control of hydraulic servo system with singular value perturbation theory.

    Science.gov (United States)

    Wang, Chengwen; Quan, Long; Zhang, Shijie; Meng, Hongjun; Lan, Yuan

    2017-03-01

    Hydraulic servomechanism is the typical mechanical/hydraulic double-dynamics coupling system with the high stiffness control and mismatched uncertainties input problems, which hinder direct applications of many advanced control approaches in the hydraulic servo fields. In this paper, by introducing the singular value perturbation theory, the original double-dynamics coupling model of the hydraulic servomechanism was reduced to a integral chain system. So that, the popular ADRC (active disturbance rejection control) technology could be directly applied to the reduced system. In addition, the high stiffness control and mismatched uncertainties input problems are avoided. The validity of the simplified model is analyzed and proven theoretically. The standard linear ADRC algorithm is then developed based on the obtained reduced-order model. Extensive comparative co-simulations and experiments are carried out to illustrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Perturbation theory

    International Nuclear Information System (INIS)

    Bartlett, R.; Kirtman, B.; Davidson, E.R.

    1978-01-01

    After noting some advantages of using perturbation theory some of the various types are related on a chart and described, including many-body nonlinear summations, quartic force-field fit for geometry, fourth-order correlation approximations, and a survey of some recent work. Alternative initial approximations in perturbation theory are also discussed. 25 references

  17. One dimensional systems with singular perturbations

    International Nuclear Information System (INIS)

    Alvarez, J J; Gadella, M; Nieto, L M; Glasser, L M; Lara, L P

    2011-01-01

    This paper discusses some one dimensional quantum models with singular perturbations. Eventually, a mass discontinuity is added at the points that support the singular perturbations. The simplest model includes an attractive singular potential with a mass jump both located at the origin. We study the form of the only bound state. Another model exhibits a hard core at the origin plus one or more repulsive deltas with mass jumps at the points supporting these deltas. We study the location and the multiplicity of these resonances for the case of one or two deltas and settle the basis for a generalization. Finally, we consider the harmonic oscillator and the infinite square well plus a singular potential at the origin. We see how the energy of bound states is affected by the singular perturbation.

  18. Topological resolution of gauge theory singularities

    Science.gov (United States)

    Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo

    2013-08-01

    Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric SU(2) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.

  19. Topological resolution of gauge theory singularities

    Energy Technology Data Exchange (ETDEWEB)

    Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo

    2013-08-21

    Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric S U ( 2 ) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.

  20. Geometric Hamiltonian structures and perturbation theory

    International Nuclear Information System (INIS)

    Omohundro, S.

    1984-08-01

    We have been engaged in a program of investigating the Hamiltonian structure of the various perturbation theories used in practice. We describe the geometry of a Hamiltonian structure for non-singular perturbation theory applied to Hamiltonian systems on symplectic manifolds and the connection with singular perturbation techniques based on the method of averaging

  1. Geometric singular perturbation analysis of systems with friction

    DEFF Research Database (Denmark)

    Bossolini, Elena

    This thesis is concerned with the application of geometric singular perturbation theory to mechanical systems with friction. The mathematical background on geometric singular perturbation theory, on the blow-up method, on non-smooth dynamical systems and on regularization is presented. Thereafter......, two mechanical problems with two different formulations of the friction force are introduced and analysed. The first mechanical problem is a one-dimensional spring-block model describing earthquake faulting. The dynamics of earthquakes is naturally a multiple timescale problem: the timescale...... scales. The action of friction is generally explained as the loss and restoration of linkages between the surface asperities at the molecular scale. However, the consequences of friction are noticeable at much larger scales, like hundreds of kilometers. By using geometric singular perturbation theory...

  2. On the singularities of solutions to singular perturbation problems

    International Nuclear Information System (INIS)

    Fruchard, A; Schaefke, R

    2005-01-01

    We consider a singularly perturbed complex first order ODE εu ' Φ(x, u, a, ε), x, u element of C, ε > 0 is a small complex parameter and a element of C is a control parameter. It is proven that the singularities of some solutions are regularly spaced and that they move from one to the next as a runs about a loop of index one around a value of overstability. This gives a positive answer to a question of J. L. Callot

  3. On the singularities of solutions to singular perturbation problems

    Energy Technology Data Exchange (ETDEWEB)

    Fruchard, A [Laboratoire de Mathematiques, Informatique et Applications, Faculte des Sciences et Techniques, Universite de Haute Alsace, 4 rue des Freres Lumiere, 68093 Mulhouse cedex (France); Schaefke, R [Departement de Mathematiques, Universite Louis Pasteur, 7 rue Rene-Descartes, 67084 Strasbourg cedex (France)

    2005-01-01

    We consider a singularly perturbed complex first order ODE {epsilon}u ' {phi}(x, u, a, {epsilon}), x, u element of C, {epsilon} > 0 is a small complex parameter and a element of C is a control parameter. It is proven that the singularities of some solutions are regularly spaced and that they move from one to the next as a runs about a loop of index one around a value of overstability. This gives a positive answer to a question of J. L. Callot.

  4. Two-scale approach to oscillatory singularly perturbed transport equations

    CERN Document Server

    Frénod, Emmanuel

    2017-01-01

    This book presents the classical results of the two-scale convergence theory and explains – using several figures – why it works. It then shows how to use this theory to homogenize ordinary differential equations with oscillating coefficients as well as oscillatory singularly perturbed ordinary differential equations. In addition, it explores the homogenization of hyperbolic partial differential equations with oscillating coefficients and linear oscillatory singularly perturbed hyperbolic partial differential equations. Further, it introduces readers to the two-scale numerical methods that can be built from the previous approaches to solve oscillatory singularly perturbed transport equations (ODE and hyperbolic PDE) and demonstrates how they can be used efficiently. This book appeals to master’s and PhD students interested in homogenization and numerics, as well as to the Iter community.

  5. Singular perturbation in the physical sciences

    CERN Document Server

    Neu, John C

    2015-01-01

    This book is the testimony of a physical scientist whose language is singular perturbation analysis. Classical mathematical notions, such as matched asymptotic expansions, projections of large dynamical systems onto small center manifolds, and modulation theory of oscillations based either on multiple scales or on averaging/transformation theory, are included. The narratives of these topics are carried by physical examples: Let's say that the moment when we "see" how a mathematical pattern fits a physical problem is like "hitting the ball." Yes, we want to hit the ball. But a powerful stroke includes the follow-through. One intention of this book is to discern in the structure and/or solutions of the equations their geometric and physical content. Through analysis, we come to sense directly the shape and feel of phenomena. The book is structured into a main text of fundamental ideas and a subtext of problems with detailed solutions. Roughly speaking, the former is the initial contact between mathematics and p...

  6. Travelling wave solutions for a singularly perturbed Burgers–KdV ...

    Indian Academy of Sciences (India)

    This paper concerns with the existence problem of travelling wave solutions to a singularly perturbed Burgers–KdV equation. For this, we use the dynamical systems approach, specifically, the geometric singular perturbation theory and centre manifold theory. We also numerically show approximations, in particular, for ...

  7. On Borel singularities in quantum field theory

    International Nuclear Information System (INIS)

    Chadha, S.; Olesen, P.

    1977-10-01

    The authors consider the effective one-loop Lagrangian in a constant electric field. It is shown that perturbation theory behaves as n factorial giving rise to singularities in the Borel plane. Comparing with the known exact result it is shown how to integrate these singularities. It is suggested that renormalons in QED and QCD should be integrated in a similar way. A speculation is made on a possible interpretation of this integration. (Auth.)

  8. String theory and cosmological singularities

    Indian Academy of Sciences (India)

    Well-known examples are singularities inside black holes and initial or final singularities in expanding or contracting universes. In recent times, string theory is providing new perspectives of such singularities which may lead to an understanding of these in the standard framework of time evolution in quantum mechanics.

  9. Singular perturbations of empty Robertson-Walker cosmologies

    International Nuclear Information System (INIS)

    Newman, R.P.A.C.

    1979-02-01

    An investigation is presented which concerns a class of cosmological models defined by McVittie (1931): the universe is envisaged as a set of galaxies, idealised as point particles, which provide singular perturbations of Robertson-Walker cosmologies. The perturbations are considered only to first order in the gravitational coupling constant (8πG)/c 2 . Attention will only be given to such perturbations of empty Robertson-Walker cosmologies. Chapter 1 summarises the observational support for the type of model employed and for the smallness of the quantities to be used as perturbation coefficients. Chapter 2 provides the prerequisite analysis of Robertson-Walker cosmologies. Perturbations of empty Robertson-Walker cosmologies of non-vanishing cosmical constant are considered in general in Chapter 3. The structure of McVittie's singularly perturbed Robertson-Walker cosmologies are considered in detail in Chapter 4. The remaining chapters seek to investigate them further by way of their optical properties. Chapter 5 provides the necessary theory of geometric optics with particular regard to the intensity and distortion of a beam of light, and Chapter 6 applies this theory to the McVittie cosmologies. Chapter 7 sees the definition of an averaging procedure which leads to expressions for the intensity and distortion of a typical beam of light from a point source. (author)

  10. Nonlinear singular perturbation problems of arbitrary real orders

    International Nuclear Information System (INIS)

    Bijura, Angelina M.

    2003-10-01

    Higher order asymptotic solutions of singularly perturbed nonlinear fractional integral and derivatives of order 1/2 are investigated. It is particularly shown that whilst certain asymptotic expansions are applied successfully to linear equations and particular nonlinear problems, the standard formal asymptotic expansion is appropriate for the general class of nonlinear equations. This theory is then generalised to the general equation (of order β, 0 < β < 1). (author)

  11. Singularly perturbed Burger-Huxley equation: Analytical solution ...

    African Journals Online (AJOL)

    user

    solutions of singularly perturbed nonlinear differential equations. ... for solving generalized Burgers-Huxley equation but this equation is not singularly ...... Solitary waves solutions of the generalized Burger Huxley equations, Journal of.

  12. Systems of evolution equations and the singular perturbation method

    International Nuclear Information System (INIS)

    Mika, J.

    Several fundamental theorems are presented important for the solution of linear evolution equations in the Banach space. The algorithm is deduced extending the solution of the system of singularly perturbed evolution equations into an asymptotic series with respect to a small positive parameter. The asymptotic convergence is shown of an approximate solution to the accurate solution. Singularly perturbed evolution equations of the resonance type were analysed. The special role is considered of the asymptotic equivalence of P1 equations obtained as the first order approximation if the spherical harmonics method is applied to the linear Boltzmann equation, and the diffusion equations of the linear transport theory where the small parameter approaches zero. (J.B.)

  13. Singularly perturbed volterra integro-differential equations | Bijura ...

    African Journals Online (AJOL)

    Several investigations have been made on singularly perturbed integral equations. This paper aims at presenting an algorithm for the construction of asymptotic solutions and then provide a proof asymptotic correctness to singularly perturbed systems of Volterra integro-differential equations. Mathematics Subject

  14. On the singular perturbations for fractional differential equation.

    Science.gov (United States)

    Atangana, Abdon

    2014-01-01

    The goal of this paper is to examine the possible extension of the singular perturbation differential equation to the concept of fractional order derivative. To achieve this, we presented a review of the concept of fractional calculus. We make use of the Laplace transform operator to derive exact solution of singular perturbation fractional linear differential equations. We make use of the methodology of three analytical methods to present exact and approximate solution of the singular perturbation fractional, nonlinear, nonhomogeneous differential equation. These methods are including the regular perturbation method, the new development of the variational iteration method, and the homotopy decomposition method.

  15. On the Singular Perturbations for Fractional Differential Equation

    Directory of Open Access Journals (Sweden)

    Abdon Atangana

    2014-01-01

    Full Text Available The goal of this paper is to examine the possible extension of the singular perturbation differential equation to the concept of fractional order derivative. To achieve this, we presented a review of the concept of fractional calculus. We make use of the Laplace transform operator to derive exact solution of singular perturbation fractional linear differential equations. We make use of the methodology of three analytical methods to present exact and approximate solution of the singular perturbation fractional, nonlinear, nonhomogeneous differential equation. These methods are including the regular perturbation method, the new development of the variational iteration method, and the homotopy decomposition method.

  16. Schroedinger operators with singular perturbation potentials

    International Nuclear Information System (INIS)

    Harrell, E.M. II.

    1976-01-01

    This is a perturbative analysis of the eigenvalues and eigenfunctions of Schroedinger operators of the form -Δ + A + lambda V, defined on the Hilbert space L 2 (R/sup n/). A is a potential function (a smooth, real multiplication operator), and V is a ''spikelike'' perturbation, i.e., a perturbative potential function which diverges at some finite point. Lambda is a small real or complex parameter. The emphasis is on one-dimensional problems, and in particular the typical example is the ''spiked harmonic oscillator'' Hamiltonian, -d 2 /dx 2 + x 2 + lambda x/sup -α/, where α is a positive constant. An earlier study by L. Detwiler and J. R. Klauder [Phys. Rev. D 11 (1975) 1436] indicated that the lowest-order corrections to the ground-state eigenvalue of the spiked harmonic oscillator with lambda greater than 0 were proportional to lambda ln lambda when α = 3, and to lambda/sup 1/(α-2) when α is greater than 3. These and analogous results for a large class of operators and arbitrary eigenvalues are proved. Explicit constants in a modified perturbation series with a complicated dependence on lambda are determined and exhibited. Higher-order corrections for real lambda and lowest-order corrections for complex lambda are also discussed. While the substance of the dissertation is mathematical, its main applications are to quantum physics. The immediate cause of interest in such problems was the use of their peculiar convergence properties by J. R. Klauder as models for the behavior of nonrenormalizable quantum field theories. However, the results of this study are likely to be of greater importance in chemical or nuclear physics, as positive spikelike perturbations represent repulsive core interactions for quantum mechanical particles. The modified perturbation series are a new calculation technique for this situation

  17. Singularity Theory and its Applications

    CERN Document Server

    Stewart, Ian; Mond, David; Montaldi, James

    1991-01-01

    A workshop on Singularities, Bifuraction and Dynamics was held at Warwick in July 1989, as part of a year-long symposium on Singularity Theory and its applications. The proceedings fall into two halves: Volume I mainly on connections with algebraic geometry and volume II on connections with dynamical systems theory, bifurcation theory and applications in the sciences. The papers are original research, stimulated by the symposium and workshop: All have been refereed and none will appear elsewhere. The main topic of volume II is new methods for the study of bifurcations in nonlinear dynamical systems, and applications of these.

  18. String theory and cosmological singularities

    Indian Academy of Sciences (India)

    recent times, string theory is providing new perspectives of such singularities which .... holes appear as stacks of a large number of D-branes wrapped in internal .... results into a well-known measure factor which makes the wave function into a.

  19. Eigenstructure of of singular systems. Perturbation analysis of simple eigenvalues

    OpenAIRE

    García Planas, María Isabel; Tarragona Romero, Sonia

    2014-01-01

    The problem to study small perturbations of simple eigenvalues with a change of parameters is of general interest in applied mathematics. After to introduce a systematic way to know if an eigenvalue of a singular system is simple or not, the aim of this work is to study the behavior of a simple eigenvalue of singular linear system family

  20. Singular perturbation techniques in the gravitational self-force problem

    International Nuclear Information System (INIS)

    Pound, Adam

    2010-01-01

    Much of the progress in the gravitational self-force problem has involved the use of singular perturbation techniques. Yet the formalism underlying these techniques is not widely known. I remedy this situation by explicating the foundations and geometrical structure of singular perturbation theory in general relativity. Within that context, I sketch precise formulations of the methods used in the self-force problem: dual expansions (including matched asymptotic expansions), for which I identify precise matching conditions, one of which is a weak condition arising only when multiple coordinate systems are used; multiscale expansions, for which I provide a covariant formulation; and a self-consistent expansion with a fixed worldline, for which I provide a precise statement of the exact problem and its approximation. I then present a detailed analysis of matched asymptotic expansions as they have been utilized in calculating the self-force. Typically, the method has relied on a weak matching condition, which I show cannot determine a unique equation of motion. I formulate a refined condition that is sufficient to determine such an equation. However, I conclude that the method yields significantly weaker results than do alternative methods.

  1. Dark energy and dark matter perturbations in singular universes

    International Nuclear Information System (INIS)

    Denkiewicz, Tomasz

    2015-01-01

    We discuss the evolution of density perturbations of dark matter and dark energy in cosmological models which admit future singularities in a finite time. Up to now geometrical tests of the evolution of the universe do not differentiate between singular universes and ΛCDM scenario. We solve perturbation equations using the gauge invariant formalism. The analysis shows that the detailed reconstruction of the evolution of perturbations within singular cosmologies, in the dark sector, can exhibit important differences between the singular universes models and the ΛCDM cosmology. This is encouraging for further examination and gives hope for discriminating between those models with future galaxy weak lensing experiments like the Dark Energy Survey (DES) and Euclid or CMB observations like PRISM and CoRE

  2. Perturbative spacetimes from Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Luna, Andrés [School of Physics and Astronomy, University of Glasgow,Glasgow G12 8QQ, Scotland (United Kingdom); Monteiro, Ricardo [Theoretical Physics Department, CERN,Geneva (Switzerland); Nicholson, Isobel; Ochirov, Alexander; O’Connell, Donal [Higgs Centre for Theoretical Physics,School of Physics and Astronomy, The University of Edinburgh,Edinburgh EH9 3JZ, Scotland (United Kingdom); Westerberg, Niclas [Institute of Photonics and Quantum Sciences,School of Engineering and Physical Sciences, Heriot-Watt University,Edinburgh (United Kingdom); Higgs Centre for Theoretical Physics,School of Physics and Astronomy, The University of Edinburgh,Edinburgh EH9 3JZ, Scotland (United Kingdom); White, Chris D. [Centre for Research in String Theory,School of Physics and Astronomy, Queen Mary University of London,327 Mile End Road, London E1 4NS (United Kingdom)

    2017-04-12

    The double copy relates scattering amplitudes in gauge and gravity theories. In this paper, we expand the scope of the double copy to construct spacetime metrics through a systematic perturbative expansion. The perturbative procedure is based on direct calculation in Yang-Mills theory, followed by squaring the numerator of certain perturbative diagrams as specified by the double-copy algorithm. The simplest spherically symmetric, stationary spacetime from the point of view of this procedure is a particular member of the Janis-Newman-Winicour family of naked singularities. Our work paves the way for applications of the double copy to physically interesting problems such as perturbative black-hole scattering.

  3. Embarked electrical network robust control based on singular perturbation model.

    Science.gov (United States)

    Abdeljalil Belhaj, Lamya; Ait-Ahmed, Mourad; Benkhoris, Mohamed Fouad

    2014-07-01

    This paper deals with an approach of modelling in view of control for embarked networks which can be described as strongly coupled multi-sources, multi-loads systems with nonlinear and badly known characteristics. This model has to be representative of the system behaviour and easy to handle for easy regulators synthesis. As a first step, each alternator is modelled and linearized around an operating point and then it is subdivided into two lower order systems according to the singular perturbation theory. RST regulators are designed for each subsystem and tested by means of a software test-bench which allows predicting network behaviour in both steady and transient states. Finally, the designed controllers are implanted on an experimental benchmark constituted by two alternators supplying loads in order to test the dynamic performances in realistic conditions. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Infrared singularities of scattering amplitudes in perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Becher, Thomas [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Neubert, Matthias [Johannes Gutenberg-Universitaet Mainz, Mainz (Germany)

    2013-11-01

    An exact formula is derived for the infrared singularities of dimensionally regularized scattering amplitudes in massless QCD with an arbitrary number of legs, valid at any number of loops. It is based on the conjecture that the anomalous-dimension matrix of n-jet operators in soft-collinear effective theory contains only a single non-trivial color structure, whose coefficient is the cusp anomalous dimension of Wilson loops with light-like segments. Its color-diagonal part is characterized by two anomalous dimensions, which are extracted to three-loop order from known perturbative results for the quark and gluon form factors. This allows us to predict the three-loop coefficients of all 1/epsilon^k poles for an arbitrary n-parton scattering amplitudes, generalizing existing two-loop results.

  5. Symmetry generators in singular theories

    International Nuclear Information System (INIS)

    Lavrov, P.M.; Tyutin, I.V.

    1989-01-01

    It is proved that in the singular nondegenerate theories any symmetry of the lagrangian under non-point transformations of lagrangian variables with the open (in the general case) algebra in the hamiltonian approach generates corresponding transformations of canonical variables the generator of which is the Noether charge with respect to the Dirac brackets. On the surface of all constraints these transformations leave the hamiltonian invariant and the algebra of the Noether charges is closed. As a consequence it is shown that the nilpotent BRST charge operator always exists in gauge theories of the general form (if possible anomalies are not taken into account)

  6. Generalized chiral perturbation theory

    International Nuclear Information System (INIS)

    Knecht, M.; Stern, J.

    1994-01-01

    The Generalized Chiral Perturbation Theory enlarges the framework of the standard χPT (Chiral Perturbation Theory), relaxing certain assumptions which do not necessarily follow from QCD or from experiment, and which are crucial for the usual formulation of the low energy expansion. In this way, experimental tests of the foundations of the standard χPT become possible. Emphasis is put on physical aspects rather than on formal developments of GχPT. (author). 31 refs

  7. Selberg zeta functions and transfer operators an experimental approach to singular perturbations

    CERN Document Server

    Fraczek, Markus Szymon

    2017-01-01

    This book presents a method for evaluating Selberg zeta functions via transfer operators for the full modular group and its congruence subgroups with characters. Studying zeros of Selberg zeta functions for character deformations allows us to access the discrete spectra and resonances of hyperbolic Laplacians under both singular and non-singular perturbations. Areas in which the theory has not yet been sufficiently developed, such as the spectral theory of transfer operators or the singular perturbation theory of hyperbolic Laplacians, will profit from the numerical experiments discussed in this book. Detailed descriptions of numerical approaches to the spectra and eigenfunctions of transfer operators and to computations of Selberg zeta functions will be of value to researchers active in analysis, while those researchers focusing more on numerical aspects will benefit from discussions of the analytic theory, in particular those concerning the transfer operator method and the spectral theory of hyperbolic spac...

  8. Singular perturbations introduction to system order reduction methods with applications

    CERN Document Server

    Shchepakina, Elena; Mortell, Michael P

    2014-01-01

    These lecture notes provide a fresh approach to investigating singularly perturbed systems using asymptotic and geometrical techniques. It gives many examples and step-by-step techniques, which will help beginners move to a more advanced level. Singularly perturbed systems appear naturally in the modelling of many processes that are characterized by slow and fast motions simultaneously, for example, in fluid dynamics and nonlinear mechanics. This book’s approach consists in separating out the slow motions of the system under investigation. The result is a reduced differential system of lesser order. However, it inherits the essential elements of the qualitative behaviour of the original system. Singular Perturbations differs from other literature on the subject due to its methods and wide range of applications. It is a valuable reference for specialists in the areas of applied mathematics, engineering, physics, biology, as well as advanced undergraduates for the earlier parts of the book, and graduate stude...

  9. Chiral perturbation theory

    International Nuclear Information System (INIS)

    Ecker, G.

    1996-06-01

    After a general introduction to the structure of effective field theories, the main ingredients of chiral perturbation theory are reviewed. Applications include the light quark mass ratios and pion-pion scattering to two-loop accuracy. In the pion-nucleon system, the linear σ model is contrasted with chiral perturbation theory. The heavy-nucleon expansion is used to construct the effective pion-nucleon Lagrangian to third order in the low-energy expansion, with applications to nucleon Compton scattering. (author)

  10. String perturbation theory diverges

    International Nuclear Information System (INIS)

    Gross, D.J.; Periwal, V.

    1988-01-01

    We prove that perturbation theory for the bosonic string diverges for arbitrary values of the coupling constant and is not Borel summable. This divergence is independent of the existence of the infinities that occur in the theory due to the presence of tachyons and dilaton tadpoles. We discuss the physical implications of such a divergence

  11. Instantaneous stochastic perturbation theory

    International Nuclear Information System (INIS)

    Lüscher, Martin

    2015-01-01

    A form of stochastic perturbation theory is described, where the representative stochastic fields are generated instantaneously rather than through a Markov process. The correctness of the procedure is established to all orders of the expansion and for a wide class of field theories that includes all common formulations of lattice QCD.

  12. M theory and singularities of exceptional holonomy manifolds

    International Nuclear Information System (INIS)

    Acharya, Bobby S.; Gukov, Sergei

    2004-12-01

    M theory compactifications on G 2 holonomy manifolds, whilst supersymmetric, require singularities in order to obtain non-Abelian gauge groups, chiral fermions and other properties necessary for a realistic model of particle physics. We review recent progress in understanding the physics of such singularities. Our main aim is to describe the techniques which have been used to develop our understanding of M theory physics near these singularities. In parallel, we also describe similar sorts of singularities in Spin(7) holonomy manifolds which correspond to the properties of three dimensional field theories. As an application, we review how various aspects of strongly coupled gauge theories, such as confinement, mass gap and non-perturbative phase transitions may be given a simple explanation in M theory. (author)

  13. Stable singularities in string theory

    International Nuclear Information System (INIS)

    Aspinwall, P.S.; Morrison, D.R.; Gross, M.

    1996-01-01

    We study a topological obstruction of a very stringy nature concerned with deforming the target space of an N=2 non-linear σ-model. This target space has a singularity which may be smoothed away according to the conventional rules of geometry, but when one studies the associated conformal field theory one sees that such a deformation is not possible without a discontinuous change in some of the correlation functions. This obstruction appears to come from torsion in the homology of the target space (which is seen by deforming the theory by an irrelevant operator). We discuss the link between this phenomenon and orbifolds with discrete torsion as studied by Vafa and Witten. (orig.). With 3 figs

  14. A Parameter Robust Method for Singularly Perturbed Delay Differential Equations

    Directory of Open Access Journals (Sweden)

    Erdogan Fevzi

    2010-01-01

    Full Text Available Uniform finite difference methods are constructed via nonstandard finite difference methods for the numerical solution of singularly perturbed quasilinear initial value problem for delay differential equations. A numerical method is constructed for this problem which involves the appropriate Bakhvalov meshes on each time subinterval. The method is shown to be uniformly convergent with respect to the perturbation parameter. A numerical example is solved using the presented method, and the computed result is compared with exact solution of the problem.

  15. Perturbation theory for Alfven wave

    International Nuclear Information System (INIS)

    Yoshida, Z.; Mahajan, S.M.

    1995-01-01

    The Alfven wave is the dominant low frequency transverse mode of a magnetized plasma. The Alfven wave propagation along the magnetic field, and displays a continuous spectrum even in a bounded plasma. This is essentially due to the degeneracy of the wave characteristics, i.e. the frequency (ω) is primarily determined by the wave number in the direction parallel to the ambient magnetic field (k parallel ) and is independent of the perpendicular wavenumbers. The characteristics, that are the direction along which the wave energy propagates, are identical to the ambient magnetic field lines. Therefore, the spectral structure of the Alfven wave has a close relationship with the geometric structure of the magnetic field lines. In an inhomogeneous plasma, the Alfven resonance constitutes a singularity for the defining wave equation; this results in a singular eigenfunction corresponding to the continuous spectrum. The aim of this review is to present an overview of the perturbation theory for the Alfven wave. Emphasis is placed on those perturbations of the continuous spectrum which lead to the creation of point spectra. Such qualitative changes in the spectrum are relevant to many plasma phenomena

  16. Singularly perturbed Burger-Huxley equation: Analytical solution ...

    African Journals Online (AJOL)

    The work presented considers the initial boundary value problem for nonlinear singularly perturbed time dependent Burger- Huxley equation. The equation contains two terms with nonlinearities, the cubic term and the advection term. Generally, the severe difficulties of two types encounter in solving this problem. The first ...

  17. A parabolic singular perturbation problem with an internal layer

    NARCIS (Netherlands)

    Grasman, J.; Shih, S.D.

    2004-01-01

    A method is presented to approximate with singular perturbation methods a parabolic differential equation for the quarter plane with a discontinuity at the corner. This discontinuity gives rise to an internal layer. It is necessary to match the local solution in this layer with the one in a corner

  18. Transcendental smallness in singularly perturbed equations of volterra type

    International Nuclear Information System (INIS)

    Bijura, Angelina M.

    2003-11-01

    The application of different limit processes to a physical problem is an important tool in layer type techniques. Hence the study of initial layer correction functions is of central importance for understanding layer-type problems. It is shown that for singularly perturbed problems of Volterra type, the concept of transcendental smallness is an asymptotic one. Transcendentally small terms may be numerically important. (author)

  19. Nonperturbative perturbation theory

    International Nuclear Information System (INIS)

    Bender, C.M.

    1989-01-01

    In this talk we describe a recently proposed graphical perturbative calculational scheme for quantum field theory. The basic idea is to expand in the power of the interaction term. For example, to solve a λφ 4 theory in d-dimensional space-time, we introduce a small parameter δ and consider a λ(φ 2 ) 1+δ field theory. We show how to expand such a theory as a series in powers of δ. The resulting perturbation series appears to have a finite radius of convergence and numerical results for low-dimensional models are good. We have computed the two-point and four-point Green's functions to second order in powers of δ and the 2n-point Green's functions (n>2) to order δ. We explain how to renormalize the theory and show that, to first order in powers of δ, when δ>0 and d≥4 the theory is free. This conclusion remains valid to second order in powers of δ, and we believe that it remains valid to all orders in powers of δ. The new perturbative scheme is consistent with global supersymmetry invariance. We examine a two-dimensional supersymmetric quantum field theory in which we do not know of any other means for doing analytical calculations. We illustrate the power of this new technique by computing the ground-state energy density E to second order in this new perturbation theory. We show that there is a beautiful and delicate cancellation between infinite classes of graphs which leads to the result that E=0. (orig.)

  20. Computational singular perturbation analysis of stochastic chemical systems with stiffness

    Science.gov (United States)

    Wang, Lijin; Han, Xiaoying; Cao, Yanzhao; Najm, Habib N.

    2017-04-01

    Computational singular perturbation (CSP) is a useful method for analysis, reduction, and time integration of stiff ordinary differential equation systems. It has found dominant utility, in particular, in chemical reaction systems with a large range of time scales at continuum and deterministic level. On the other hand, CSP is not directly applicable to chemical reaction systems at micro or meso-scale, where stochasticity plays an non-negligible role and thus has to be taken into account. In this work we develop a novel stochastic computational singular perturbation (SCSP) analysis and time integration framework, and associated algorithm, that can be used to not only construct accurately and efficiently the numerical solutions to stiff stochastic chemical reaction systems, but also analyze the dynamics of the reduced stochastic reaction systems. The algorithm is illustrated by an application to a benchmark stochastic differential equation model, and numerical experiments are carried out to demonstrate the effectiveness of the construction.

  1. A Schwarz alternating procedure for singular perturbation problems

    Energy Technology Data Exchange (ETDEWEB)

    Garbey, M. [Universit Claude Bernard Lyon, Villeurbanne (France); Kaper, H.G. [Argonne National Lab., IL (United States)

    1994-12-31

    The authors show that the Schwarz alternating procedure offers a good algorithm for the numerical solution of singular perturbation problems, provided the domain decomposition is properly designed to resolve the boundary and transition layers. They give sharp estimates for the optimal position of the domain boundaries and present convergence rates of the algorithm for various second-order singular perturbation problems. The splitting of the operator is domain-dependent, and the iterative solution of each subproblem is based on a modified asymptotic expansion of the operator. They show that this asymptotic-induced method leads to a family of efficient massively parallel algorithms and report on implementation results for a turning-point problem and a combustion problem.

  2. Exact solutions and singularities in string theory

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Tseytlin, A.A.

    1994-01-01

    We construct two new classes of exact solutions to string theory which are not of the standard plane wave of gauged WZW type. Many of these solutions have curvature singularities. The first class includes the fundamental string solution, for which the string coupling vanishes near the singularity. This suggests that the singularity may not be removed by quantum corrections. The second class consists of hybrids of plane wave and gauged WZW solutions. We discuss a four-dimensional example in detail

  3. Relaxation periodic solutions of one singular perturbed system with delay

    Science.gov (United States)

    Kashchenko, A. A.

    2017-12-01

    In this paper, we consider a singularly perturbed system of two differential equations with delay, simulating two coupled oscillators with a nonlinear compactly supported feedback. We reduce studying nonlocal dynamics of initial system to studying dynamics of special finite-dimensional mappings: rough stable (unstable) cycles of these mappings correspond to exponentially orbitally stable (unstable) relaxation solutions of initial problem. We show that dynamics of initial model depends on coupling coefficient crucially. Multistability is proved.

  4. Chiral perturbation theory

    International Nuclear Information System (INIS)

    Harada, Masayasu

    2009-01-01

    Chiral perturbation theory has been used for great number of phenomenological analyses in low energy QCD as well as the lattice QCD analyses since the creation of the theory by Weinberg in 1979 followed by its consolidation by Gasser and Leutwyler in 1984 and 85. The theory is now the highly established one as the approach based on the effective field theory to search for Green function including quantum correlations in the frame of the systematic expansion technique using Lagrangian which includes all of the terms allowed by the symmetry. This review has been intended to describe how systematically physical quantities are calculated in the framework of the chiral symmetry. Consequently many of the various phenomenological analyses are not taken up here for which other reports are to be referred. Further views are foreseen to be developed based on the theory in addition to numbers of results reported up to the present. Finally π-π scattering is taken up to discuss to what energy scale the theory is available. (S. Funahashi)

  5. Singular perturbations of manifolds, with applications to the problem of motion in general relativity

    International Nuclear Information System (INIS)

    Kates, R.E.

    1979-01-01

    This thesis shows that a small body with possibly strong internal gravity moves through an empty region of a curved, and not necessarily asymptotically flat, external spacetime on an approximate geodesic. By approximate geodesic, the following is meant: Suppose the ratio epsilon = m/L 1 - where m is the body's mass and L is a curvature reference length of the external field - is a small parameter. Then the body's worldline deviates from a geodesic only by distances of at most THETA(epsilon) L over times of order L. The worldline is calculated directly from the Einstein field equation using a singular perturbation technique that has been generalized from the method of matched asymptotic expansions. The need for singular perturbation techniques has long been appreciated in fluid mechanics, where they are now standard procedure in problems in which the straightforward expansion in powers of a small parameter fails to give a correct qualitative picture. In part I of this thesis, singular perturbations on manifolds are formulated in a coordinate-free way suitable for treating problems in general relativity and other field theories. Most importantly for this thesis, the coordinate-free formulation of singular perturbations given in part I is essential for treatment of the problem of motion in part II

  6. Singular perturbation analysis of relaxation oscillations in reactor systems

    International Nuclear Information System (INIS)

    Ward, M.E.; Lee, J.C.

    1987-01-01

    A singular perturbation method for the analysis of large power oscillations in nuclear reactors is applied to obtain phase-plane solutions of the Ergen-Weinberg model. The system equations, recast in an appropriate form, directly give a first approximation to the closed trajectory in which the system behaviour is idealized as relaxation oscillations. Further approximations in the phase plane are determined using separate perturbation series on individual parts of the oscillation, with variations in the assignment of dependent and independent variables to consistently obtain convergent series. The accuracy of each order of the phase-plane solution increases with the magnitude of the power pulse in the actual physical situation. For realistic reactor conditions, both the trajectory and period of oscillation are well predicted using the first two terms of each perturbation series

  7. Perturbation theory with instantons

    International Nuclear Information System (INIS)

    Carruthers, P.; Pinsky, S.S.; Zachariasen, F.

    1977-05-01

    ''Perturbation theory'' rules are developed for calculating the effect of instantons in a pure Yang-Mills theory with no fermions, in the ''dilute gas'' approximation in which the N-instanton solution is assumed to be the sum of N widely separated one-instanton solutions. These rules are then used to compute the gluon propagator and proper vertex function including all orders of the instanton interaction but only to lowest order in the gluon coupling. It is to be expected that such an approximation is valid only for momenta q larger than the physical mass μ. The result is that in this regime instantons cause variations in the propagator and vertex of the form (μ 2 /q 2 )/sup -8π 2 b/ where b is the coefficient in the expansion of the β function: β = bg 3 +...

  8. On Absence of Pure Singular Spectrum of Random Perturbations and in Anderson Model at Low Disorde

    CERN Document Server

    Grinshpun, V

    2006-01-01

    Absence of singular component, with probability one, in the conductivity spectra of bounded random perturbations of multidimensional finite-difference Hamiltonians, is for the first time rigorously established under certain conditions ensuring either absence of pure point, or absence of pure absolutely continuous component in the corresponding regions of spectra. The main technical tool applied is the theory of rank-one perturbations of singular spectra. The respective new result (the non-mixing property) is applied to establish existence and bounds of the (non-empty) pure absolutely continuous component in the spectrum of the Anderson model with bounded random potential in dimension 2 at low disorder. The new (1999) result implies, via the trace-class perturbation analysis, the Anderson model with the unbounded potential to have only pure point spectrum (complete system of localized wave-functions) with probability one in arbitrary dimension. The new technics, based on the resolvent reduction formula, and ex...

  9. Lecture notes on mean curvature flow, barriers and singular perturbations

    CERN Document Server

    Bellettini, Giovanni

    2013-01-01

    The aim of the book is to study some aspects of geometric evolutions, such as mean curvature flow and anisotropic mean curvature flow of hypersurfaces. We analyze the origin of such flows and their geometric and variational nature. Some of the most important aspects of mean curvature flow are described, such as the comparison principle and its use in the definition of suitable weak solutions. The anisotropic evolutions, which can be considered as a generalization of mean curvature flow, are studied from the view point of Finsler geometry. Concerning singular perturbations, we discuss the convergence of the Allen–Cahn (or Ginsburg–Landau) type equations to (possibly anisotropic) mean curvature flow before the onset of singularities in the limit problem. We study such kinds of asymptotic problems also in the static case, showing convergence to prescribed curvature-type problems.

  10. Singular perturbation methods for nonlinear dynamic systems with time delays

    International Nuclear Information System (INIS)

    Hu, H.Y.; Wang, Z.H.

    2009-01-01

    This review article surveys the recent advances in the dynamics and control of time-delay systems, with emphasis on the singular perturbation methods, such as the method of multiple scales, the method of averaging, and two newly developed methods, the energy analysis and the pseudo-oscillator analysis. Some examples are given to demonstrate the advantages of the methods. The comparisons with other methods show that these methods lead to easier computations and higher accurate prediction on the local dynamics of time-delay systems near a Hopf bifurcation.

  11. Singularly perturbed hyperbolic problems on metric graphs: asymptotics of solutions

    Directory of Open Access Journals (Sweden)

    Golovaty Yuriy

    2017-04-01

    Full Text Available We are interested in the evolution phenomena on star-like networks composed of several branches which vary considerably in physical properties. The initial boundary value problem for singularly perturbed hyperbolic differential equation on a metric graph is studied. The hyperbolic equation becomes degenerate on a part of the graph as a small parameter goes to zero. In addition, the rates of degeneration may differ in different edges of the graph. Using the boundary layer method the complete asymptotic expansions of solutions are constructed and justified.

  12. Difference scheme for a singularly perturbed parabolic convection-diffusion equation in the presence of perturbations

    Science.gov (United States)

    Shishkin, G. I.

    2015-11-01

    An initial-boundary value problem is considered for a singularly perturbed parabolic convection-diffusion equation with a perturbation parameter ɛ (ɛ ∈ (0, 1]) multiplying the highest order derivative. The stability of a standard difference scheme based on monotone approximations of the problem on a uniform mesh is analyzed, and the behavior of discrete solutions in the presence of perturbations is examined. The scheme does not converge ɛ-uniformly in the maximum norm as the number of its grid nodes is increased. When the solution of the difference scheme converges, which occurs if N -1 ≪ ɛ and N -1 0 ≪ 1, where N and N 0 are the numbers of grid intervals in x and t, respectively, the scheme is not ɛ-uniformly well conditioned or stable to data perturbations in the grid problem and to computer perturbations. For the standard difference scheme in the presence of data perturbations in the grid problem and/or computer perturbations, conditions on the "parameters" of the difference scheme and of the computer (namely, on ɛ, N, N 0, admissible data perturbations in the grid problem, and admissible computer perturbations) are obtained that ensure the convergence of the perturbed solutions. Additionally, the conditions are obtained under which the perturbed numerical solution has the same order of convergence as the solution of the unperturbed standard difference scheme.

  13. Regularization of the big bang singularity with random perturbations

    Science.gov (United States)

    Belbruno, Edward; Xue, BingKan

    2018-03-01

    We show how to regularize the big bang singularity in the presence of random perturbations modeled by Brownian motion using stochastic methods. We prove that the physical variables in a contracting universe dominated by a scalar field can be continuously and uniquely extended through the big bang as a function of time to an expanding universe only for a discrete set of values of the equation of state satisfying special co-prime number conditions. This result significantly generalizes a previous result (Xue and Belbruno 2014 Class. Quantum Grav. 31 165002) that did not model random perturbations. This result implies that the extension from a contracting to an expanding universe for the discrete set of co-prime equation of state is robust, which is a surprising result. Implications for a purely expanding universe are discussed, such as a non-smooth, randomly varying scale factor near the big bang.

  14. Initial singularity and pure geometric field theories

    Science.gov (United States)

    Wanas, M. I.; Kamal, Mona M.; Dabash, Tahia F.

    2018-01-01

    In the present article we use a modified version of the geodesic equation, together with a modified version of the Raychaudhuri equation, to study initial singularities. These modified equations are used to account for the effect of the spin-torsion interaction on the existence of initial singularities in cosmological models. Such models are the results of solutions of the field equations of a class of field theories termed pure geometric. The geometric structure used in this study is an absolute parallelism structure satisfying the cosmological principle. It is shown that the existence of initial singularities is subject to some mathematical (geometric) conditions. The scheme suggested for this study can be easily generalized.

  15. Geometric perturbation theory and plasma physics

    International Nuclear Information System (INIS)

    Omohundro, S.M.

    1985-01-01

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory, and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure in five different ways. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle-group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a long-standing question posed by Kruskal about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no adhoc elements, which is then applied to gyromotion. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A theory motivated by free electron lasers gives new restrictions on the change of area of projected parallelepipeds under canonical transformations

  16. Lattice regularized chiral perturbation theory

    International Nuclear Information System (INIS)

    Borasoy, Bugra; Lewis, Randy; Ouimet, Pierre-Philippe A.

    2004-01-01

    Chiral perturbation theory can be defined and regularized on a spacetime lattice. A few motivations are discussed here, and an explicit lattice Lagrangian is reviewed. A particular aspect of the connection between lattice chiral perturbation theory and lattice QCD is explored through a study of the Wess-Zumino-Witten term

  17. Continual integral in perturbation theory

    International Nuclear Information System (INIS)

    Slavnov, A.A.

    1975-01-01

    It is shown that all results obtained by means of continual integration within the framework of perturbation theory are completely equivalent to those obtained by the usual diagram technique and are therfore just as rigorous. A rigorous justification is given for the rules for operating with continual integrals in perturbation theory. (author)

  18. Constraint theory, singular lagrangians and multitemporal dynamics

    International Nuclear Information System (INIS)

    Lusanna, L.

    1988-01-01

    Singular Lagrangians and constraint theory permeate theoretical physics, as shown by the relevance of gauge theories, string models and general relativity. Their study used finite---dimensional models as a guide to develop the theory, but their main use was in classical field theory, due to the necessity of understanding their quantization. The covariant quantization of singular Lagrangians led to the BRST approach and to the theory of the effective action. On the other hand their phase---space formulation, culminated with the BFV approach for first class, second class and reducible constraints. It, in turn, gave new insights in the theory of singular Lagrangians and constraints and in their cohomological aspects. However the Hamiltonian approach to field theory is highly nontrivial, is open to criticism due to its problems with locality, geometry and manifest covariance and its canonical quantization has still to be developed, because there is no proof of the renormalizability of the Schroedinger representation of field theory. This paper discusses how, notwithstanding these developments, there is still a big amount of ambiguity at every level of the theory

  19. Perturbation Theory of Embedded Eigenvalues

    DEFF Research Database (Denmark)

    Engelmann, Matthias

    project gives a general and systematic approach to analytic perturbation theory of embedded eigenvalues. The spectral deformation technique originally developed in the theory of dilation analytic potentials in the context of Schrödinger operators is systematized by the use of Mourre theory. The group...... of dilations is thereby replaced by the unitary group generated y the conjugate operator. This then allows to treat the perturbation problem with the usual Kato theory.......We study problems connected to perturbation theory of embedded eigenvalues in two different setups. The first part deals with second order perturbation theory of mass shells in massive translation invariant Nelson type models. To this end an expansion of the eigenvalues w.r.t. fiber parameter up...

  20. Singular perturbations with boundary conditions and the Casimir effect in the half space

    Science.gov (United States)

    Albeverio, S.; Cognola, G.; Spreafico, M.; Zerbini, S.

    2010-06-01

    We study the self-adjoint extensions of a class of nonmaximal multiplication operators with boundary conditions. We show that these extensions correspond to singular rank 1 perturbations (in the sense of Albeverio and Kurasov [Singular Perturbations of Differential Operaters (Cambridge University Press, Cambridge, 2000)]) of the Laplace operator, namely, the formal Laplacian with a singular delta potential, on the half space. This construction is the appropriate setting to describe the Casimir effect related to a massless scalar field in the flat space-time with an infinite conducting plate and in the presence of a pointlike "impurity." We use the relative zeta determinant (as defined in the works of Müller ["Relative zeta functions, relative determinants and scattering theory," Commun. Math. Phys. 192, 309 (1998)] and Spreafico and Zerbini ["Finite temperature quantum field theory on noncompact domains and application to delta interactions," Rep. Math. Phys. 63, 163 (2009)]) in order to regularize the partition function of this model. We study the analytic extension of the associated relative zeta function, and we present explicit results for the partition function and for the Casimir force.

  1. On the C(R) stability of uncertain singularly perturbed systems

    International Nuclear Information System (INIS)

    Sun, Y.-J.

    2009-01-01

    In this paper, a simple criterion for the C(R) stability of uncertain singularly perturbed systems is proposed. Such a criterion can be easily checked by some algebraic inequality. The upper bound of the singular perturbation parameter ε is also given by estimating the unique positive zero of specific function. Finally, a numerical example is provided to illustrate the main result

  2. Superfield perturbation theory and renormalization

    International Nuclear Information System (INIS)

    Delbourgo, R.

    1975-01-01

    The perturbation theory graphs and divergences in super-symmetric Lagrangian models are studied by using superfield techniques. In super PHI 3 -theory very little effort is needed to arrive at the single infinite (wave function) renormalization counterterm, while in PHI 4 -theory the method indicates the counter-Lagrangians needed at the one-loop level and possibly beyond

  3. Large-order perturbation theory

    International Nuclear Information System (INIS)

    Wu, T.T.

    1982-01-01

    The original motivation for studying the asymptotic behavior of the coefficients of perturbation series came from quantum field theory. An overview is given of some of the attempts to understand quantum field theory beyond finite-order perturbation series. At least is the case of the Thirring model and probably in general, the full content of a relativistic quantum field theory cannot be recovered from its perturbation series. This difficulty, however, does not occur in quantum mechanics, and the anharmonic oscillator is used to illustrate the methods used in large-order perturbation theory. Two completely different methods are discussed, the first one using the WKB approximation, and a second one involving the statistical analysis of Feynman diagrams. The first one is well developed and gives detailed information about the desired asymptotic behavior, while the second one is still in its infancy and gives instead information about the distribution of vertices of the Feynman diagrams

  4. Review of chiral perturbation theory

    Indian Academy of Sciences (India)

    Abstract. A review of chiral perturbation theory and recent developments on the comparison of its predictions with experiment is presented. Some interesting topics with scope for further elaboration are touched upon.

  5. Renormalized Lie perturbation theory

    International Nuclear Information System (INIS)

    Rosengaus, E.; Dewar, R.L.

    1981-07-01

    A Lie operator method for constructing action-angle transformations continuously connected to the identity is developed for area preserving mappings. By a simple change of variable from action to angular frequency a perturbation expansion is obtained in which the small denominators have been renormalized. The method is shown to lead to the same series as the Lagrangian perturbation method of Greene and Percival, which converges on KAM surfaces. The method is not superconvergent, but yields simple recursion relations which allow automatic algebraic manipulation techniques to be used to develop the series to high order. It is argued that the operator method can be justified by analytically continuing from the complex angular frequency plane onto the real line. The resulting picture is one where preserved primary KAM surfaces are continuously connected to one another

  6. Perturbation theory of effective Hamiltonians

    International Nuclear Information System (INIS)

    Brandow, B.H.

    1975-01-01

    This paper constitutes a review of the many papers which have used perturbation theory to derive ''effective'' or ''model'' Hamiltonians. It begins with a brief review of nondegenerate and non-many-body perturbation theory, and then considers the degenerate but non-many-body problem in some detail. It turns out that the degenerate perturbation problem is not uniquely defined, but there are some practical criteria for choosing among the various possibilities. Finally, the literature dealing with the linked-cluster aspects of open-shell many-body systems is reviewed. (U.S.)

  7. The Schroedinger equation as a singular perturbation problem

    International Nuclear Information System (INIS)

    Jager, E.M. de; Kuepper, T.

    1978-01-01

    Comparisons are made of the eigenvalues and the corresponding eigenfunctions of the eigenvalue problem connected with the one dimensional Schroedinger equation in Hilbert space. The difference of the eigenvalues is estimated by applying Weyl's monotonicity principle and the minimum maximum principle. The difference of the eigenfunctions is estimated in L 2 norm and in maximum norm obtained by using simple tools from operator theory in Hilbert spaces. An application concerning perturbations of the Planck ideal linear oscillator is given. (author)

  8. Orbital classical solutions, non-perturbative phenomena and singularity at the zero coupling constant point

    International Nuclear Information System (INIS)

    Vourdas, A.

    1982-01-01

    We try to extend previous arguments on orbital classical solutions in non-relativistic quantum mechanics to the 1/4lambda vertical stroke phi vertical stroke 4 complex relativistic field theory. The single valuedness of the Green function in the semiclassical (Planksche Konstante → 0) limit leads to a Bohr-Sommerfeld quantization. A path integral formalism for the Green functions analogous to that in non-relativistic quantum mechanics is employed and a semiclassical approach which uses our classical solutions indicates non-perturbative effects. They reflect an esub(1/lambda) singularity at the zero coupling constant point. (orig.)

  9. Geometric perturbation theory and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Omohundro, S.M.

    1985-04-04

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism.

  10. Geometric perturbation theory and plasma physics

    International Nuclear Information System (INIS)

    Omohundro, S.M.

    1985-01-01

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism

  11. Methods and applications of analytical perturbation theory

    International Nuclear Information System (INIS)

    Kirchgraber, U.; Stiefel, E.

    1978-01-01

    This monograph on perturbation theory is based on various courses and lectures held by the authors at the ETH, Zurich and at the University of Texas, Austin. Its principal intention is to inform application-minded mathematicians, physicists and engineers about recent developments in this field. The reader is not assumed to have mathematical knowledge beyond what is presented in standard courses on analysis and linear algebra. Chapter I treats the transformations of systems of differential equations and the integration of perturbed systems in a formal way. These tools are applied in Chapter II to celestial mechanics and to the theory of tops and gyroscopic motion. Chapter III is devoted to the discussion of Hamiltonian systems of differential equations and exposes the algebraic aspects of perturbation theory showing also the necessary modifications of the theory in case of singularities. The last chapter gives the mathematical justification for the methods developed in the previous chapters and investigates important questions such as error estimations for the solutions and asymptotic stability. Each chapter ends with useful comments and an extensive reference to the original literature. (HJ) [de

  12. Singularity theory and equivariant symplectic maps

    CERN Document Server

    Bridges, Thomas J

    1993-01-01

    The monograph is a study of the local bifurcations of multiparameter symplectic maps of arbitrary dimension in the neighborhood of a fixed point.The problem is reduced to a study of critical points of an equivariant gradient bifurcation problem, using the correspondence between orbits ofa symplectic map and critical points of an action functional. New results onsingularity theory for equivariant gradient bifurcation problems are obtained and then used to classify singularities of bifurcating period-q points. Of particular interest is that a general framework for analyzing group-theoretic aspects and singularities of symplectic maps (particularly period-q points) is presented. Topics include: bifurcations when the symplectic map has spatial symmetry and a theory for the collision of multipliers near rational points with and without spatial symmetry. The monograph also includes 11 self-contained appendices each with a basic result on symplectic maps. The monograph will appeal to researchers and graduate student...

  13. Singular Perturbation Analysis and Gene Regulatory Networks with Delay

    Science.gov (United States)

    Shlykova, Irina; Ponosov, Arcady

    2009-09-01

    There are different ways of how to model gene regulatory networks. Differential equations allow for a detailed description of the network's dynamics and provide an explicit model of the gene concentration changes over time. Production and relative degradation rate functions used in such models depend on the vector of steeply sloped threshold functions which characterize the activity of genes. The most popular example of the threshold functions comes from the Boolean network approach, where the threshold functions are given by step functions. The system of differential equations becomes then piecewise linear. The dynamics of this system can be described very easily between the thresholds, but not in the switching domains. For instance this approach fails to analyze stationary points of the system and to define continuous solutions in the switching domains. These problems were studied in [2], [3], but the proposed model did not take into account a time delay in cellular systems. However, analysis of real gene expression data shows a considerable number of time-delayed interactions suggesting that time delay is essential in gene regulation. Therefore, delays may have a great effect on the dynamics of the system presenting one of the critical factors that should be considered in reconstruction of gene regulatory networks. The goal of this work is to apply the singular perturbation analysis to certain systems with delay and to obtain an analog of Tikhonov's theorem, which provides sufficient conditions for constracting the limit system in the delay case.

  14. Basics of QCD perturbation theory

    International Nuclear Information System (INIS)

    Soper, D.E.

    1997-01-01

    This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs

  15. Perturbation theory from stochastic quantization

    International Nuclear Information System (INIS)

    Hueffel, H.

    1984-01-01

    By using a diagrammatical method it is shown that in scalar theories the stochastic quantization method of Parisi and Wu gives the usual perturbation series in Feynman diagrams. It is further explained how to apply the diagrammatical method to gauge theories, discussing the origin of ghost effects. (Author)

  16. Basics of QCD perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Soper, D.E. [Univ. of Oregon, Eugene, OR (United States). Inst. of Theoretical Science

    1997-06-01

    This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs.

  17. Modelling, singular perturbation and bifurcation analyses of bitrophic food chains.

    Science.gov (United States)

    Kooi, B W; Poggiale, J C

    2018-04-20

    Two predator-prey model formulations are studied: for the classical Rosenzweig-MacArthur (RM) model and the Mass Balance (MB) chemostat model. When the growth and loss rate of the predator is much smaller than that of the prey these models are slow-fast systems leading mathematically to singular perturbation problem. In contradiction to the RM-model, the resource for the prey are modelled explicitly in the MB-model but this comes with additional parameters. These parameter values are chosen such that the two models become easy to compare. In both models a transcritical bifurcation, a threshold above which invasion of predator into prey-only system occurs, and the Hopf bifurcation where the interior equilibrium becomes unstable leading to a stable limit cycle. The fast-slow limit cycles are called relaxation oscillations which for increasing differences in time scales leads to the well known degenerated trajectories being concatenations of slow parts of the trajectory and fast parts of the trajectory. In the fast-slow version of the RM-model a canard explosion of the stable limit cycles occurs in the oscillatory region of the parameter space. To our knowledge this type of dynamics has not been observed for the RM-model and not even for more complex ecosystem models. When a bifurcation parameter crosses the Hopf bifurcation point the amplitude of the emerging stable limit cycles increases. However, depending of the perturbation parameter the shape of this limit cycle changes abruptly from one consisting of two concatenated slow and fast episodes with small amplitude of the limit cycle, to a shape with large amplitude of which the shape is similar to the relaxation oscillation, the well known degenerated phase trajectories consisting of four episodes (concatenation of two slow and two fast). The canard explosion point is accurately predicted by using an extended asymptotic expansion technique in the perturbation and bifurcation parameter simultaneously where the small

  18. Perturbation theory in large order

    International Nuclear Information System (INIS)

    Bender, C.M.

    1978-01-01

    For many quantum mechanical models, the behavior of perturbation theory in large order is strikingly simple. For example, in the quantum anharmonic oscillator, which is defined by -y'' + (x 2 /4 + ex 4 /4 - E) y = 0, y ( +- infinity) = 0, the perturbation coefficients, A/sub n/, in the expansion for the ground-state energy, E(ground state) approx. EPSILON/sub n = 0//sup infinity/ A/sub n/epsilon/sup n/, simplify dramatically as n → infinity: A/sub n/ approx. (6/π 3 )/sup 1/2/(-3)/sup n/GAMMA(n + 1/2). Methods of applied mathematics are used to investigate the nature of perturbation theory in quantum mechanics and show that its large-order behavior is determined by the semiclassical content of the theory. In quantum field theory the perturbation coefficients are computed by summing Feynman graphs. A statistical procedure in a simple lambda phi 4 model for summing the set of all graphs as the number of vertices → infinity is presented. Finally, the connection between the large-order behavior of perturbation theory in quantum electrodynamics and the value of α, the charge on the electron, is discussed. 7 figures

  19. The power of perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Serone, Marco [SISSA International School for Advanced Studies and INFN Trieste, Via Bonomea 265, 34136, Trieste (Italy); Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste (Italy); Spada, Gabriele [SISSA International School for Advanced Studies and INFN Trieste, Via Bonomea 265, 34136, Trieste (Italy); Villadoro, Giovanni [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste (Italy)

    2017-05-10

    We study quantum mechanical systems with a discrete spectrum. We show that the asymptotic series associated to certain paths of steepest-descent (Lefschetz thimbles) are Borel resummable to the full result. Using a geometrical approach based on the Picard-Lefschetz theory we characterize the conditions under which perturbative expansions lead to exact results. Even when such conditions are not met, we explain how to define a different perturbative expansion that reproduces the full answer without the need of transseries, i.e. non-perturbative effects, such as real (or complex) instantons. Applications to several quantum mechanical systems are presented.

  20. Mars Tumbleweed Simulation Using Singular Perturbation Theory

    Science.gov (United States)

    Raiszadeh, Behzad; Calhoun, Phillip

    2005-01-01

    The Mars Tumbleweed is a new surface rover concept that utilizes Martian winds as the primary source of mobility. Several designs have been proposed for the Mars Tumbleweed, all using aerodynamic drag to generate force for traveling about the surface. The Mars Tumbleweed, in its deployed configuration, must be large and lightweight to provide the ratio of drag force to rolling resistance necessary to initiate motion from the Martian surface. This paper discusses the dynamic simulation details of a candidate Tumbleweed design. The dynamic simulation model must properly evaluate and characterize the motion of the tumbleweed rover to support proper selection of system design parameters. Several factors, such as model flexibility, simulation run times, and model accuracy needed to be considered in modeling assumptions. The simulation was required to address the flexibility of the rover and its interaction with the ground, and properly evaluate its mobility. Proper assumptions needed to be made such that the simulated dynamic motion is accurate and realistic while not overly burdened by long simulation run times. This paper also shows results that provided reasonable correlation between the simulation and a drop/roll test of a tumbleweed prototype.

  1. Perturbation theory in light-cone gauge

    International Nuclear Information System (INIS)

    Vianello, Eliana

    2000-01-01

    Perturbation calculations are presented for the light-cone gauge Schwinger model. Eigenstates can be calculated perturbatively but the perturbation theory is nonstandard. We hope to extend the work to QCD 2 to resolve some outstanding issues in those theories

  2. Alien calculus and non perturbative effects in Quantum Field Theory

    Science.gov (United States)

    Bellon, Marc P.

    2016-12-01

    In many domains of physics, methods for dealing with non-perturbative aspects are required. Here, I want to argue that a good approach for this is to work on the Borel transforms of the quantities of interest, the singularities of which give non-perturbative contributions. These singularities in many cases can be largely determined by using the alien calculus developed by Jean Écalle. My main example will be the two point function of a massless theory given as a solution of a renormalization group equation.

  3. Perturbative coherence in field theory

    International Nuclear Information System (INIS)

    Aldrovandi, R.; Kraenkel, R.A.

    1987-01-01

    A general condition for coherent quantization by perturbative methods is given, because the basic field equations of a fild theory are not always derivable from a Lagrangian. It's seen that non-lagrangian models way have well defined vertices, provided they satisfy what they call the 'coherence condition', which is less stringent than the condition for the existence of a Lagrangian. They note that Lagrangian theories are perturbatively coherent, in the sense that they have well defined vertices, and that they satisfy automatically that condition. (G.D.F.) [pt

  4. Singularity theory and N = 2 superconformal field theories

    International Nuclear Information System (INIS)

    Warner, N.P.

    1989-01-01

    The N = 2 superconformal field theories that appear at the fixed points of the renormalization group flows of Landau-Ginsburg models are discussed. Some of the techniques of singularity theory are employed to deduce properties of these superconformal theories. These ideas are then used to deduce the relationship between Calabi-Yau compactifications and tensored discrete series models. The chiral rings of general N = 2 superconformal theories are also described. 14 refs

  5. Wilson loops in very high order lattice perturbation theory

    International Nuclear Information System (INIS)

    Ilgenfritz, E.M.; Nakamura, Y.; Perlt, H.; Schiller, A.; Rakow, P.E.L.; Schierholz, G.; Regensburg Univ.

    2009-10-01

    We calculate Wilson loops of various sizes up to loop order n=20 for lattice sizes of L 4 (L=4,6,8,12) using the technique of Numerical Stochastic Perturbation Theory in quenched QCD. This allows to investigate the behaviour of the perturbative series at high orders. We discuss three models to estimate the perturbative series: a renormalon inspired fit, a heuristic fit based on an assumed power-law singularity and boosted perturbation theory. We have found differences in the behavior of the perturbative series for smaller and larger Wilson loops at moderate n. A factorial growth of the coefficients could not be confirmed up to n=20. From Monte Carlo measured plaquette data and our perturbative result we estimate a value of the gluon condensate left angle (α)/(π)GG right angle. (orig.)

  6. Status of chiral perturbation theory

    International Nuclear Information System (INIS)

    Ecker, G.

    1996-10-01

    A survey is made of semileptonic and nonleptonic kaon decays in the framework of chiral perturbation theory. The emphasis is on what has been done rather than how it was done. The theoretical predictions are compared with available experimental results. (author)

  7. Principles of chiral perturbation theory

    International Nuclear Information System (INIS)

    Leutwyler, H.

    1995-01-01

    An elementary discussion of the main concepts used in chiral perturbation theory is given in textbooks and a more detailed picture of the applications may be obtained from the reviews. Concerning the foundations of the method, the literature is comparatively scarce. So, I will concentrate on the basic concepts and explain why the method works. (author)

  8. Analysis of Hydrogen/Air Turbulent Premixed Flames at Different Karlovitz Numbers Using Computational Singular Perturbation

    KAUST Repository

    Manias, Dimitrios; Tingas, Alexandros-Efstathios; Hernandez Perez, Francisco E.; Im, Hong G.; Galassi, Riccardo Malpica; Ciottoli, Pietro Paolo; Valorani, Mauro

    2018-01-01

    The dynamics and structure of two turbulent H2/air premixed flames, representative of the corrugated flamelet (Case 1) and thin reaction zone (Case 2) regimes, are analyzed and compared, using the computational singular perturbation (CSP) tools

  9. Cosmological perturbation theory and quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, Romeo [Dipartimento di Matematica, Università di Trento,Via Sommarive 14, 38123 Povo TN (Italy); Fredenhagen, Klaus [II Institute für Theoretische Physik, Universität Hamburg,Luruper Chaussee 149, 22761 Hamburg (Germany); Hack, Thomas-Paul [Institute für Theoretische Physik, Universität Leipzig,Brüderstr. 16, 04103 Leipzig (Germany); Pinamonti, Nicola [Dipartimento di Matematica, Università di Genova,Via Dodecaneso 35, 16146 Genova (Italy); INFN, Sezione di Genova,Via Dodecaneso 33, 16146 Genova (Italy); Rejzner, Katarzyna [Department of Mathematics, University of York,Heslington, York YO10 5DD (United Kingdom)

    2016-08-04

    It is shown how cosmological perturbation theory arises from a fully quantized perturbative theory of quantum gravity. Central for the derivation is a non-perturbative concept of gauge-invariant local observables by means of which perturbative invariant expressions of arbitrary order are generated. In particular, in the linearised theory, first order gauge-invariant observables familiar from cosmological perturbation theory are recovered. Explicit expressions of second order quantities are presented as well.

  10. Singularly perturbed Burger-Huxley equation: Analytical solution ...

    African Journals Online (AJOL)

    user

    numbers, Navier-Stokes flows with large Reynolds numbers, chemical reactor ... It is to observe the layer behavior of the solution for smaller values of ε leading to singular ...... Burger equation, momentum gas equation and heat equation.

  11. Factorization theorems in perturbative quantum field theory

    International Nuclear Information System (INIS)

    Date, G.D.

    1982-01-01

    This dissertation deals with factorization properties of Green functions and cross-sections in perturbation theory. It consists of two parts. Part I deals with the factorization theorem for the Drell-Yan cross-section. The new approach developed for this purpose is based upon a renormalization group equation with a generalized anomalous dimension. Using an alternate form of factorization for the Drell-Yan cross-section, derived in perturbation theory, a corresponding generalized anomalous dimension is defined, and explicit Feynman rules for its calculation are given. The resultant renormalization group equation is solved by a formal solution which is exhibited explicitly. Simple, explicit calculations are performed which verify Mueller's conjecture for the recovery of the usual parton model results for the Drell-Yan cross-section. The approach developed in this work offers a general framework to analyze the role played by the group factors in the cancellation of the soft divergences, and study their influence on the asymptotic behavior. Part II deals with factorization properties of the Green functions in position space. In this part, a Landau equation analysis is carried out for the singularities of the position space Green fucntions, in perturbation theory with the theta 4 interaction Lagrangian. A physical picture interpretation is given for the corresponding Landau equations. It is used to suggest a light-cone expansion. Using a power counting method, a formal derivation of the light-cone expansion for the two point function, the three point function and a product of two currents, is given without assuming a short distance expansion. Possible extensions to other theories is also considered

  12. Numerical Integration of a Class of Singularly Perturbed Delay Differential Equations with Small Shift

    Directory of Open Access Journals (Sweden)

    Gemechis File

    2012-01-01

    Full Text Available We have presented a numerical integration method to solve a class of singularly perturbed delay differential equations with small shift. First, we have replaced the second-order singularly perturbed delay differential equation by an asymptotically equivalent first-order delay differential equation. Then, Simpson’s rule and linear interpolation are employed to get the three-term recurrence relation which is solved easily by discrete invariant imbedding algorithm. The method is demonstrated by implementing it on several linear and nonlinear model examples by taking various values for the delay parameter and the perturbation parameter .

  13. On the Pomeranchuk singularity in massless vector theories

    International Nuclear Information System (INIS)

    Bartels, J.; Hamburg Univ.

    1980-06-01

    It is shown that the Pomeron in massless (abelian of nonabelian) vector theories, as derived from a perturbative high energy description which satisfies unitarity, comes as a diffusion problem in the logarithmic scale of transverse momentum. For a realistic theory there are reasons to expect that this diffusion should come to a stop: (a) the long range forces of the massless gluons should be screened, (b) the Pomeranchuk singularity in the j-plane should be t-dependant, and (c) there should not be a discontinuity in the zero mass limit at t = 0 or in the t 0 limit of the massless case. In the third part we outline a scheme for summing all diagrams which are required by unitarity. It uses reggeon field theory in zero transverse dimensions and leads to: (i) the diffusion comes to a stop (zero drift and zero diffusion constant); (ii) the total cross section is constant (up to powers of lns); (iii) in order to give a meaning to the divergent perturbation expansion, one has to add a nonperturbative term of the order exp(-const/g 2 ). (orig.)

  14. Dimensional perturbation theory for the two-electron atom

    International Nuclear Information System (INIS)

    Goodson, D.Z.

    1987-01-01

    Perturbation theory in δ = 1/D, where D is the dimensionality of space, is applied to the two-electron atom. In Chapter 1 an efficient procedure for calculating the coefficients of the perturbation series for the ground-state energy is developed using recursion relations between the moments of the coordinate operators. Results through tenth order are presented. The series is divergent, but Pade summation gives results comparable in accuracy to the best configuration-interaction calculations. The singularity structure of the Pade approximants confirms the hypothesis that the energy as a function of δ has an infinite sequence of poles on the negative real axis that approaches an essential singularity at δ = O. The essential singularity causes the divergence of the perturbation series. There are also two poles at δ = 1 that slow the asymptotic convergence of the low-order terms. In Chapter 2, various techniques are demonstrated for removing the effect of these poles, and accurate results are thereby obtained, even at very low order. In Chapter 3, the large D limit of the correlation energy (CE) is investigated. In the limit D → infinity it is only 35% smaller than at D = 3. It can be made to vanish in the limit by modifying the Hartree-Fock (HF) wavefunction. In Chapter 4, perturbation theory is applied to the Hooke's-law model of the atom. Prospects for treating more-complicated systems are briefly discussed

  15. Consideration on Singularities in Learning Theory and the Learning Coefficient

    Directory of Open Access Journals (Sweden)

    Miki Aoyagi

    2013-09-01

    Full Text Available We consider the learning coefficients in learning theory and give two new methods for obtaining these coefficients in a homogeneous case: a method for finding a deepest singular point and a method to add variables. In application to Vandermonde matrix-type singularities, we show that these methods are effective. The learning coefficient of the generalization error in Bayesian estimation serves to measure the learning efficiency in singular learning models. Mathematically, the learning coefficient corresponds to a real log canonical threshold of singularities for the Kullback functions (relative entropy in learning theory.

  16. Singular vectors of Malikov-Fagin-Fux in topological theories

    International Nuclear Information System (INIS)

    Semikhatov, A.M.

    1993-01-01

    Coincidence of singular vectors in relation to the sl(2) Katza-Mudi algebra and the algebra of the N=2 (twisted) supersymmetry is established. On the base of the Kazama-Suzuki simplest model is obtained a representation for the sl(2) currents in terms of an interacting with mater gravitation. From the Malikov-Fagin-Fux formulae for the sl(2) singular currents is obtained the general expression for singular vectors in topological theories

  17. "Phonon" scattering beyond perturbation theory

    Science.gov (United States)

    Qiu, WuJie; Ke, XueZhi; Xi, LiLi; Wu, LiHua; Yang, Jiong; Zhang, WenQing

    2016-02-01

    Searching and designing materials with intrinsically low lattice thermal conductivity (LTC) have attracted extensive consideration in thermoelectrics and thermal management community. The concept of part-crystalline part-liquid state, or even part-crystalline part-amorphous state, has recently been proposed to describe the exotic structure of materials with chemical- bond hierarchy, in which a set of atoms is weakly bonded to the rest species while the other sublattices retain relatively strong rigidity. The whole system inherently manifests the coexistence of rigid crystalline sublattices and fluctuating noncrystalline substructures. Representative materials in the unusual state can be classified into two categories, i.e., caged and non-caged ones. LTCs in both systems deviate from the traditional T -1 relationship ( T, the absolute temperature), which can hardly be described by small-parameter-based perturbation approaches. Beyond the classical perturbation theory, an extra rattling-like scattering should be considered to interpret the liquid-like and sublattice-amorphization-induced heat transport. Such a kind of compounds could be promising high-performance thermoelectric materials, due to the extremely low LTCs. Other physical properties for these part-crystalline substances should also exhibit certain novelty and deserve further exploration.

  18. Branes at Singularities in Type 0 String Theory

    OpenAIRE

    Alishahiha, M; Brandhuber, A; Oz, Y

    1999-01-01

    We consider Type 0B D3-branes placed at conical singularities and analyze in detail the conifold singularity. We study the non supersymmetric gauge theories on their worldvolume and their conjectured dual gravity descriptions. In the ultraviolet the solutions exhibit a logarithmic running of the gauge coupling. In the infrared we find confining solutions and IR fixed points.

  19. Non-singular cosmologies in the conformally invariant gravitation theory

    International Nuclear Information System (INIS)

    Kembhavi, A.K.

    1976-01-01

    It is shown that in the framework of a conformally invariant gravitation theory, the singularity which is present in some anisotropic universes in general relativity is due to a wrong choice of conformal frame. Frames exist in which these models can be made singularity free. (author)

  20. B-spline solution of a singularly perturbed boundary value problem arising in biology

    International Nuclear Information System (INIS)

    Lin Bin; Li Kaitai; Cheng Zhengxing

    2009-01-01

    We use B-spline functions to develop a numerical method for solving a singularly perturbed boundary value problem associated with biology science. We use B-spline collocation method, which leads to a tridiagonal linear system. The accuracy of the proposed method is demonstrated by test problems. The numerical result is found in good agreement with exact solution.

  1. On the multisummability of WKB solutions of certain singularly perturbed linear ordinary differential equations

    Directory of Open Access Journals (Sweden)

    Yoshitsugu Takei

    2015-01-01

    Full Text Available Using two concrete examples, we discuss the multisummability of WKB solutions of singularly perturbed linear ordinary differential equations. Integral representations of solutions and a criterion for the multisummability based on the Cauchy-Heine transform play an important role in the proof.

  2. Singular Perturbations and Time Scales in Modeling and Control of Dynamic Systems,

    Science.gov (United States)

    1980-11-01

    rTrp) (43) results in the initial value singularly perturbed matrix differential equations * providing there exist fta ’) and rT(p) uniquely...ReA(Af)ɘ then A1 is D-stable. Let us conditions may be more difficult. Our problem is assume that the network has n, inductors and nc to fmd

  3. Chiral perturbation theory with nucleons

    International Nuclear Information System (INIS)

    Meissner, U.G.

    1991-09-01

    I review the constraints posed on the interactions of pions, nucleons and photons by the spontaneously broken chiral symmetry of QCD. The framework to perform these calculations, chiral perturbation theory, is briefly discussed in the meson sector. The method is a simultaneous expansion of the Greens functions in powers of external moments and quark masses around the massless case, the chiral limit. To perform this expansion, use is made of a phenomenological Lagrangian which encodes the Ward-identities and pertinent symmetries of QCD. The concept of chiral power counting is introduced. The main part of the lectures of consists in describing how to include baryons (nucleons) and how the chiral structure is modified by the fact that the nucleon mass in the chiral limit does not vanish. Particular emphasis is put on working out applications to show the strengths and limitations of the methods. Some processes which are discussed are threshold photopion production, low-energy compton scattering off nucleons, πN scattering and the σ-term. The implications of the broken chiral symmetry on the nuclear forces are briefly described. An alternative approach, in which the baryons are treated as very heavy fields, is touched upon

  4. Solitonic Integrable Perturbations of Parafermionic Theories

    CERN Document Server

    Fernández-Pousa, C R; Hollowood, Timothy J; Miramontes, J L

    1997-01-01

    The quantum integrability of a class of massive perturbations of the parafermionic conformal field theories associated to compact Lie groups is established by showing that they have quantum conserved densities of scale dimension 2 and 3. These theories are integrable for any value of a continuous vector coupling constant, and they generalize the perturbation of the minimal parafermionic models by their first thermal operator. The classical equations-of-motion of these perturbed theories are the non-abelian affine Toda equations which admit (charged) soliton solutions whose semi-classical quantization is expected to permit the identification of the exact S-matrix of the theory.

  5. Singularities in the general theory of relativity

    International Nuclear Information System (INIS)

    Treder, H.J.

    1980-01-01

    'Regular solutions of Einstein's equations' mean very different things. In the case of the empty-space equations, Rsub(ik) = o, such solutions must be metrics gsub(ik)(xsup(l)) without additionaly singular 'field sources' (Einstein's 'Particle problem'). However the 'phenomenological matter' is defined by the Einstein equations Rsub(ik) - 1/2gsub(ik)R = -kappaTsub(ik) itselves. Therefore if 10 regular functions gsub(ik)(xsup(l)) are given (which the inequalities of Lorentz-signature fulfil) then these gsub(ik) define 10 functions Tsub(ik)(xsup(l)) without singularities. But, the matter-tensor Tsub(ik) must fulfil the two inequalities T >= o, T 0 0 >= 1/2 T only and therefore the Einstein-equations with 'phenomenological matter' mean the two inequalities R >= o, R 0 0 <= o which are incompatible with a permanently regular metric with Lorentz-signature, generally. (author)

  6. Tunnelling instability via perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Graffi, S. (Bologna Univ. (Italy). Dip. di Matematica); Grecchi, V. (Moderna Univ. (Italy). Dip. di Matematica); Jona-Lasinio, G. (Paris-11 Univ., 91 - Orsay (France). Lab. de Physique Theorique et Hautes Energies)

    1984-10-21

    The semiclassical limit of low lying states in a multiwell potential is studied by rigorous perturbative techniques. In particular tunnelling instability and localisation of wave functions is obtained in a simple way under small deformations of symmetric potentials.

  7. Perturbation theory of quantum resonances

    Czech Academy of Sciences Publication Activity Database

    Durand, P.; Paidarová, Ivana

    2016-01-01

    Roč. 135, č. 7 (2016), s. 159 ISSN 1432-2234 Institutional support: RVO:61388955 Keywords : Partitioning technique * Analytic continuation * Perturbative expansion Subject RIV: CF - Physical ; Theoretical Chemistry

  8. A singular one-parameter family of solutions in cubic superstring field theory

    Energy Technology Data Exchange (ETDEWEB)

    Arroyo, E. Aldo [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, 09210-170 São Paulo, SP (Brazil)

    2016-05-03

    Performing a gauge transformation of a simple identity-like solution of superstring field theory, we construct a one-parameter family of solutions, and by evaluating the energy associated to this family, we show that for most of the values of the parameter the solution represents the tachyon vacuum, except for two isolated singular points where the solution becomes the perturbative vacuum and the half brane solution.

  9. Discrete state perturbation theory via Green's functions

    International Nuclear Information System (INIS)

    Rubinson, W.

    1975-01-01

    The exposition of stationary-state perturbation theory via the Green's function method in Goldberger and Watson's Collision Theory is reworked in a way that makes explicit its mathematical basis. It is stressed that the theory consists of the construction of, and manipulations on, a mathematical identity. The perturbation series fall out of the identity almost immediately. The logical status of the method is commented on

  10. Singularities and n-dimensional black holes in torsion theories

    Energy Technology Data Exchange (ETDEWEB)

    Cembranos, J.A.R.; Valcarcel, J. Gigante; Torralba, F.J. Maldonado, E-mail: cembra@fis.ucm.es, E-mail: jorgegigante@ucm.es, E-mail: fmaldo01@ucm.es [Departamento de Física Teórica I, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2017-04-01

    In this work we have studied the singular behaviour of gravitational theories with non symmetric connections. For this purpose we introduce a new criteria for the appearance of singularities based on the existence of black/white hole regions of arbitrary codimension defined inside a spacetime of arbitrary dimension. We discuss this prescription by increasing the complexity of the particular torsion theory under study. In this sense, we start with Teleparallel Gravity, then we analyse Einstein-Cartan theory, and finally dynamical torsion models.

  11. Numerical Solutions of Singularly Perturbed Reaction Diffusion Equation with Sobolev Gradients

    Directory of Open Access Journals (Sweden)

    Nauman Raza

    2013-01-01

    Full Text Available Critical points related to the singular perturbed reaction diffusion models are calculated using weighted Sobolev gradient method in finite element setting. Performance of different Sobolev gradients has been discussed for varying diffusion coefficient values. A comparison is shown between the weighted and unweighted Sobolev gradients in two and three dimensions. The superiority of the method is also demonstrated by showing comparison with Newton's method.

  12. Quasi-Compact Perturbations of the Weyl Essential Spectrum and Application to Singular Transport Operators

    Directory of Open Access Journals (Sweden)

    Leila Mebarki

    2015-11-01

    Full Text Available This paper is devoted to the investigation of the stability of the Weyl essential spectrum of closed densely dened linear operator A subjected to additive perturbation K such that (lambda-A-K^{-1}K or K(lambda-A-K^{-1} is a quasi-compact operator. The obtained results are used to describe the Weyl essential spectrum of singular neutron transport operator.

  13. Mono-implicit Runge Kutta schemes for singularly perturbed delay differential equations

    Science.gov (United States)

    Rihan, Fathalla A.; Al-Salti, Nasser S.

    2017-09-01

    In this paper, we adapt Mono-Implicit Runge-Kutta schemes for numerical approximations of singularly perturbed delay differential equations. The schemes are developed to reduce the computational cost of the fully implicit method which combine the accuracy of implicit method and efficient implementation. Numerical stability properties of the schemes are investigated. Numerical simulations are provided to show the effectiveness of the method for both stiff and non-stiff initial value problems.

  14. A robust computational technique for a system of singularly perturbed reaction–diffusion equations

    Directory of Open Access Journals (Sweden)

    Kumar Vinod

    2014-06-01

    Full Text Available In this paper, a singularly perturbed system of reaction–diffusion Boundary Value Problems (BVPs is examined. To solve such a type of problems, a Modified Initial Value Technique (MIVT is proposed on an appropriate piecewise uniform Shishkin mesh. The MIVT is shown to be of second order convergent (up to a logarithmic factor. Numerical results are presented which are in agreement with the theoretical results.

  15. Relative Error Model Reduction via Time-Weighted Balanced Stochastic Singular Perturbation

    DEFF Research Database (Denmark)

    Tahavori, Maryamsadat; Shaker, Hamid Reza

    2012-01-01

    A new mixed method for relative error model reduction of linear time invariant (LTI) systems is proposed in this paper. This order reduction technique is mainly based upon time-weighted balanced stochastic model reduction method and singular perturbation model reduction technique. Compared...... by using the concept and properties of the reciprocal systems. The results are further illustrated by two practical numerical examples: a model of CD player and a model of the atmospheric storm track....

  16. On perturbation theory for distance dependent statistics.

    Energy Technology Data Exchange (ETDEWEB)

    Mashkevich, S V

    1994-12-31

    It is known that perturbation theory for anyons has to be modified near Bose statistics in order to get correct finite results. For ``distance dependent statistics`` or anyons with smeared flux tubes, perturbation theory is in principle applicable directly but gives results which hold for too small values of the statistical parameter and, in particular, are not valid as the flux tube radius tends to zero. In this paper we discuss the way to modify perturbation theory for this situation, which allows to obtain the appropriate results. (author). 6 refs.

  17. Closed form bound-state perturbation theory

    Directory of Open Access Journals (Sweden)

    Ollie J. Rose

    1980-01-01

    Full Text Available The perturbed Schrödinger eigenvalue problem for bound states is cast into integral form using Green's Functions. A systematic algorithm is developed and applied to the resulting equation giving rise to approximate solutions expressed as functions of the given perturbation parameter. As a by-product, convergence radii for the traditional Rayleigh-Schrödinger and Brillouin-Wigner perturbation theories emerge in a natural way.

  18. Adler function for light quarks in analytic perturbation theory

    International Nuclear Information System (INIS)

    Milton, K. A.; Solovtsov, I. L.; Solovtsova, O. P.

    2001-01-01

    The method of analytic perturbation theory, which avoids the problem of ghost-pole-type singularities and gives a self-consistent description of both spacelike and timelike regions, is applied to describe the 'light' Adler function corresponding to the nonstrange vector channel of the inclusive decay of the τ lepton. The role of threshold effects is investigated. The behavior of the quark-antiquark system near threshold is described by using a new relativistic resummation factor. It is shown that the method proposed leads to good agreement with the 'experimental' Adler function down to the lowest energy scale

  19. Massive states in chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, S [Saha Inst. of Nuclear Physics, Calcutta (India)

    1995-08-01

    It is shown that the chiral nonanalytic terms generated by {Delta}{sub 33} resonance in the nucleon self-energy is reproduced in chiral perturbation theory by perturbing appropriate local operators contained in the pion-nucleon effective Lagrangian itself. (orig.)

  20. Scalar Quantum Electrodynamics: Perturbation Theory and Beyond

    International Nuclear Information System (INIS)

    Bashir, A.; Gutierrez-Guerrero, L. X.; Concha-Sanchez, Y.

    2006-01-01

    In this article, we calculate scalar propagator in arbitrary dimensions and gauge and the three-point scalar-photon vertex in arbitrary dimensions and Feynman gauge, both at the one loop level. We also discuss constraints on their non perturbative structure imposed by requirements of gauge invariance and perturbation theory

  1. Nonperturbative Quantum Physics from Low-Order Perturbation Theory.

    Science.gov (United States)

    Mera, Héctor; Pedersen, Thomas G; Nikolić, Branislav K

    2015-10-02

    The Stark effect in hydrogen and the cubic anharmonic oscillator furnish examples of quantum systems where the perturbation results in a certain ionization probability by tunneling processes. Accordingly, the perturbed ground-state energy is shifted and broadened, thus acquiring an imaginary part which is considered to be a paradigm of nonperturbative behavior. Here we demonstrate how the low order coefficients of a divergent perturbation series can be used to obtain excellent approximations to both real and imaginary parts of the perturbed ground state eigenenergy. The key is to use analytic continuation functions with a built-in singularity structure within the complex plane of the coupling constant, which is tailored by means of Bender-Wu dispersion relations. In the examples discussed the analytic continuation functions are Gauss hypergeometric functions, which take as input fourth order perturbation theory and return excellent approximations to the complex perturbed eigenvalue. These functions are Borel consistent and dramatically outperform widely used Padé and Borel-Padé approaches, even for rather large values of the coupling constant.

  2. Transport perturbation theory in nuclear reactor analysis

    International Nuclear Information System (INIS)

    Nishigori, Takeo; Takeda, Toshikazu; Selvi, S.

    1985-01-01

    Perturbation theory is formulated on the basis of transport theory to obtain a formula for the reactivity changes due to possible variations of cross sections. Useful applications to cell homogenization are presented for the whole core calculation in transport and in diffusion theories. (author)

  3. Inflation and the theory of cosmological perturbations

    International Nuclear Information System (INIS)

    Riotto, A.

    2003-01-01

    These lectures provide a pedagogical introduction to inflation and the theory of cosmological perturbations generated during inflation which are thought to be the origin of structure in the universe. (author)

  4. Towards a resolution of the cosmological singularity in non-local higher derivative theories of gravity

    International Nuclear Information System (INIS)

    Biswas, Tirthabir; Koivisto, Tomi; Mazumdar, Anupam

    2010-01-01

    One of the greatest problems of standard cosmology is the Big Bang singularity. Previously it has been shown that non-local ghostfree higher-derivative modifications of Einstein gravity in the ultra-violet regime can admit non-singular bouncing solutions. In this paper we study in more details the dynamical properties of the equations of motion for these theories of gravity in presence of positive and negative cosmological constants and radiation. We find stable inflationary attractor solutions in the presence of a positive cosmological constant which renders inflation geodesically complete, while in the presence of a negative cosmological constant a cyclic universe emerges. We also provide an algorithm for tracking the super-Hubble perturbations during the bounce and show that the bouncing solutions are free from any perturbative instability

  5. 't Hooft loops and perturbation theory

    CERN Document Server

    De Forcrand, Philippe; Noth, D; Forcrand, Philippe de; Lucini, Biagio; Noth, David

    2005-01-01

    We show that high-temperature perturbation theory describes extremely well the area law of SU(N) spatial 't Hooft loops, or equivalently the tension of the interface between different Z_N vacua in the deconfined phase. For SU(2), the disagreement between Monte Carlo data and lattice perturbation theory for sigma(T)/T^2 is less than 2%, down to temperatures O(10) T_c. For SU(N), N>3, the ratios of interface tensions, (sigma_k/sigma_1)(T), agree with perturbation theory, which predicts tiny deviations from the ratio of Casimirs, down to nearly T_c. In contrast, individual tensions differ markedly from the perturbative expression. In all cases, the required precision Monte Carlo measurements are made possible by a simple but powerful modification of the 'snake' algorithm.

  6. Supersymmetry restoration in superstring perturbation theory

    International Nuclear Information System (INIS)

    Sen, Ashoke

    2015-01-01

    Superstring perturbation theory based on the 1PI effective theory approach has been useful for addressing the problem of mass renormalization and vacuum shift. We derive Ward identities associated with space-time supersymmetry transformation in this approach. This leads to a proof of the equality of renormalized masses of bosons and fermions and identities relating fermionic amplitudes to bosonic amplitudes after taking into account the effect of mass renormalization. This also relates unbroken supersymmetry to a given order in perturbation theory to absence of tadpoles of massless scalars to higher order. The results are valid at the perturbative vacuum as well as in the shifted vacuum when the latter describes the correct ground state of the theory. We apply this to SO(32) heterotic string theory on Calabi-Yau 3-folds where a one loop Fayet-Iliopoulos term apparently breaks supersymmetry at one loop, but analysis of the low energy effective field theory indicates that there is a nearby vacuum where supersymmetry is restored. We explicitly prove that the perturbative amplitudes of this theory around the shifted vacuum indeed satisfy the Ward identities associated with unbroken supersymmetry. We also test the general arguments by explicitly verifying the equality of bosonic and fermionic masses at one loop order in the shifted vacuum, and the appearance of two loop dilaton tadpole in the perturbative vacuum where supersymmetry is expected to be broken.

  7. Supersymmetry restoration in superstring perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ashoke [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India)

    2015-12-14

    Superstring perturbation theory based on the 1PI effective theory approach has been useful for addressing the problem of mass renormalization and vacuum shift. We derive Ward identities associated with space-time supersymmetry transformation in this approach. This leads to a proof of the equality of renormalized masses of bosons and fermions and identities relating fermionic amplitudes to bosonic amplitudes after taking into account the effect of mass renormalization. This also relates unbroken supersymmetry to a given order in perturbation theory to absence of tadpoles of massless scalars to higher order. The results are valid at the perturbative vacuum as well as in the shifted vacuum when the latter describes the correct ground state of the theory. We apply this to SO(32) heterotic string theory on Calabi-Yau 3-folds where a one loop Fayet-Iliopoulos term apparently breaks supersymmetry at one loop, but analysis of the low energy effective field theory indicates that there is a nearby vacuum where supersymmetry is restored. We explicitly prove that the perturbative amplitudes of this theory around the shifted vacuum indeed satisfy the Ward identities associated with unbroken supersymmetry. We also test the general arguments by explicitly verifying the equality of bosonic and fermionic masses at one loop order in the shifted vacuum, and the appearance of two loop dilaton tadpole in the perturbative vacuum where supersymmetry is expected to be broken.

  8. From Singularity Theory to Finiteness of Walrasian Equilibria

    DEFF Research Database (Denmark)

    Castro, Sofia B.S.D.; Dakhlia, Sami F.; Gothen, Peter

    The paper establishes that for an open and dense subset of smooth exchange economies, the number of Walrasian equilibria is finite. In particular, our results extend to non-regular economies; it even holds when restricted to the subset of critical ones. The proof rests on concepts from singularity...... theory....

  9. The method of normal forms for singularly perturbed systems of Fredholm integro-differential equations with rapidly varying kernels

    Energy Technology Data Exchange (ETDEWEB)

    Bobodzhanov, A A; Safonov, V F [National Research University " Moscow Power Engineering Institute" , Moscow (Russian Federation)

    2013-07-31

    The paper deals with extending the Lomov regularization method to classes of singularly perturbed Fredholm-type integro-differential systems, which have not so far been studied. In these the limiting operator is discretely noninvertible. Such systems are commonly known as problems with unstable spectrum. Separating out the essential singularities in the solutions to these problems presents great difficulties. The principal one is to give an adequate description of the singularities induced by 'instability points' of the spectrum. A methodology for separating singularities by using normal forms is developed. It is applied to the above type of systems and is substantiated in these systems. Bibliography: 10 titles.

  10. The initial value problem for linearized gravitational perturbations of the Schwarzschild naked singularity

    Energy Technology Data Exchange (ETDEWEB)

    Dotti, Gustavo; Gleiser, Reinaldo J [Facultad de Matematica, AstronomIa y Fisica (FaMAF), Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2009-11-07

    The coupled equations for the scalar modes of the linearized Einstein equations around Schwarzschild's spacetime were reduced by Zerilli to a (1+1) wave equation partial deriv{sup 2}PSI{sub z} /partial derivt{sup 2} +HPSI{sub z} =0, where H= -partial deriv{sup 2} /partial derivx{sup 2} + V(x) is the Zerilli 'Hamiltonian' and x is the tortoise radial coordinate. From its definition, for smooth metric perturbations the field PSI{sub z} is singular at r{sub s} = -6M/(l - 1)(l +2), with l being the mode harmonic number. The equation PSI{sub z} obeys is also singular, since V has a second-order pole at r{sub s}. This is irrelevant to the black hole exterior stability problem, where r > 2M > 0, and r{sub s} < 0, but it introduces a non-trivial problem in the naked singular case where M < 0, then r{sub s} > 0, and the singularity appears in the relevant range of r (0 < r < infinity). We solve this problem by developing a new approach to the evolution of the even mode, based on a new gauge invariant function, PSI-circumflex, that is a regular function of the metric perturbation for any value of M. The relation of PSI-circumflex to PSI{sub z} is provided by an intertwiner operator. The spatial pieces of the (1 + 1) wave equations that PSI-circumflex and PSI{sub z} obey are related as a supersymmetric pair of quantum Hamiltonians H and H-circumflex. For M < 0,H-circumflex has a regular potential and a unique self-adjoint extension in a domain D defined by a physically motivated boundary condition at r = 0. This allows us to address the issue of evolution of gravitational perturbations in this non-globally hyperbolic background. This formulation is used to complete the proof of the linear instability of the Schwarzschild naked singularity, by showing that a previously found unstable mode belongs to a complete basis of H-circumflex in D, and thus is excitable by generic initial data. This is further illustrated by numerically solving the linearized equations for

  11. The use of perturbation theory in density-functional theory

    International Nuclear Information System (INIS)

    Goerling, A.

    1996-01-01

    Perturbation theory with respect to the electron-electron interaction leads to expressions for the exchange and correlation energies and potentials in terms of Kohn-Sham orbitals and Kohn-Sham eigenvalues. An exact open-quote exchange-only close-quote procedure for solids is introduced. Results for several semiconductors are presented. Perturbation theory expansions for the hardness of molecules and the bad gap of solids are given. Density-functional exchange and correlation energies for excited states are defined and a perturbation theory based Kohn-Sham formalism to treat excited states within density-functional theory is introduced

  12. A uniformly valid approximation algorithm for nonlinear ordinary singular perturbation problems with boundary layer solutions.

    Science.gov (United States)

    Cengizci, Süleyman; Atay, Mehmet Tarık; Eryılmaz, Aytekin

    2016-01-01

    This paper is concerned with two-point boundary value problems for singularly perturbed nonlinear ordinary differential equations. The case when the solution only has one boundary layer is examined. An efficient method so called Successive Complementary Expansion Method (SCEM) is used to obtain uniformly valid approximations to this kind of solutions. Four test problems are considered to check the efficiency and accuracy of the proposed method. The numerical results are found in good agreement with exact and existing solutions in literature. The results confirm that SCEM has a superiority over other existing methods in terms of easy-applicability and effectiveness.

  13. Operator Decomposition Framework for Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Khalik, Hany S.; Wang, Congjian; Bang, Young Suk [North Carolina State University, Raleigh (United States)

    2012-05-15

    This summary describes a new framework for perturbation theory intended to improve its performance, in terms of the associated computational cost and the complexity of implementation, for routine reactor calculations in support of design, analysis, and regulation. Since its first introduction in reactor analysis by Winger, perturbation theory has assumed an aura of sophistication with regard to its implementation and its capabilities. Only few reactor physicists, typically mathematically proficient, have contributed to its development, with the general body of the nuclear engineering community remaining unaware of its current status, capabilities, and challenges. Given its perceived sophistication and the small body of community users, the application of perturbation theory has been limited to investigatory analyses only. It is safe to say that the nuclear community is split into two groups, a small one which understands the theory and, and a much bigger group with the perceived notion that perturbation theory is nothing but a fancy mathematical approach that has very little use in practice. Over the past three years, research has demonstrated two goals. First, reduce the computational cost of perturbation theory in order to enable its use for routine reactor calculations. Second, expose some of the myth about perturbation theory and present it in a form that is simple and relatable in order to stimulate the interest of nuclear practitioners, especially those who are currently working on the development of next generation reactor design and analysis tools. The operator decomposition approach has its roots in linear algebra and can be easily understood by code developers, especially those involved in the design of iterative numerical solution strategies

  14. Perturbative and global anomalies in supergravity theories

    International Nuclear Information System (INIS)

    Sezgin, E.

    1986-09-01

    Perturbative and global anomalies in supergravity theories are reviewed. The existence of a matter and gauge coupled supergravity theory in six dimensions with E 6 xE 7 xU(1) symmetry and highly nontrivial anomaly cancellations is emphasised. The possible string origin of this theory is posed as an open problem, study of which may lead to discovery of new ways to construct/compactify heterotic superstrings. (author)

  15. Perturbation theory for continuous stochastic equations

    International Nuclear Information System (INIS)

    Chechetkin, V.R.; Lutovinov, V.S.

    1987-01-01

    The various general perturbational schemes for continuous stochastic equations are considered. These schemes have many analogous features with the iterational solution of Schwinger equation for S-matrix. The following problems are discussed: continuous stochastic evolution equations for probability distribution functionals, evolution equations for equal time correlators, perturbation theory for Gaussian and Poissonian additive noise, perturbation theory for birth and death processes, stochastic properties of systems with multiplicative noise. The general results are illustrated by diffusion-controlled reactions, fluctuations in closed systems with chemical processes, propagation of waves in random media in parabolic equation approximation, and non-equilibrium phase transitions in systems with Poissonian breeding centers. The rate of irreversible reaction X + X → A (Smoluchowski process) is calculated with the use of general theory based on continuous stochastic equations for birth and death processes. The threshold criterion and range of fluctuational region for synergetic phase transition in system with Poissonian breeding centers are also considered. (author)

  16. Infrared problems in field perturbation theory

    International Nuclear Information System (INIS)

    David, Francois.

    1982-12-01

    The work presented mainly covers questions related to the presence of ''infrared'' divergences in perturbation expansions of the Green functions of certain massless field theories. It is important to determine the mathematical status of perturbation expansions in field theory in order to define the region in which they are valid. Renormalization and the symmetry of a theory are important factors in infrared problems. The main object of this thesis resides in the mathematical techniques employed: integral representations of the Feynman amplitudes; methods for desingularization, regularization and dimensional renormalization. Nonlinear two dimensional space-time sigma models describing Goldstone's low energy boson dynamics associated with a breaking of continuous symmetry are studied. Random surface models are then investigated followed by infrared divergences in super-renormalizable theories. Finally, nonperturbation effects in massless theories are studied by expanding the two-dimensional nonlinear sigma model in 1/N [fr

  17. High orders of perturbation theory. Are renormalons significant?

    International Nuclear Information System (INIS)

    Suslov, I.M.

    1999-01-01

    According to Lipatov [Sov. Phys. JETP 45, 216 (1977)], the high orders of perturbation theory are determined by saddle-point configurations, i.e., instantons, which correspond to functional integrals. According to another opinion, the contributions of individual large diagrams, i.e., renormalons, which, according to t'Hooft [The Whys of Subnuclear Physics: Proceedings of the 1977 International School of Subnuclear Physics (Erice, Trapani, Sicily, 1977), A. Zichichi (Ed.), Plenum Press, New York (1979)], are not contained in the Lipatov contribution, are also significant. The history of the conception of renormalons is presented, and the arguments in favor of and against their existence are discussed. The analytic properties of the Borel transforms of functional integrals, Green's functions, vertex parts, and scaling functions are investigated in the case of φ 4 theory. Their analyticity in a complex plane with a cut from the first instanton singularity to infinity (the Le Guillou-Zinn-Justin hypothesis [Phys. Rev. Lett. 39, 95 (1977); Phys. Rev. B 21, 3976 (1980)] is proved. It rules out the existence of the renormalon singularities pointed out by t'Hooft and demonstrates the nonconstructiveness of the conception of renormalons as a whole. The results can be interpreted as an indication of the internal consistency of φ 4 theory

  18. On the domain of string perturbation theory

    International Nuclear Information System (INIS)

    Davis, S.

    1989-06-01

    For a large class of effectively closed surfaces, it is shown that the only divergences in string scattering amplitudes at each order in perturbation theory are those associated with the coincidence of vertex operators and the boundary of moduli space. This class includes all closed surfaces of finite genus, and infinite-genus surfaces which can be uniformized by a group of Schottky type. While the computation is done explicitly for bosonic strings in their ground states, it can also be extended to excited states and to superstrings. The properties of these amplitudes lead to a definition of the domain of perturbation theory as the set of effectively closed surfaces. The implications of the restriction to effectively closed surfaces on the behavior of the perturbation series are discussed. (author). 20 refs, 6 figs

  19. Quenched Chiral Perturbation Theory to one loop

    NARCIS (Netherlands)

    Colangelo, G.; Pallante, E.

    The divergences of the generating functional of quenched Chiral Perturbation theory (qCHPT) to one loop are computed in closed form. We show how the quenched chiral logarithms can be reabsorbed in the renormalization of the B0 parameter of the leading order Lagrangian. Finally, we do the chiral

  20. Acoustic anisotropic wavefields through perturbation theory

    KAUST Repository

    Alkhalifah, Tariq Ali

    2013-01-01

    these restrictions are the inability to handle media with η<0 and the presence of shear-wave artifacts in the solution. Both limitations do not exist in the solution of the elliptical anisotropic acoustic wave equation. Using perturbation theory in developing

  1. Physics of singularities in pressure-impulse theory

    Science.gov (United States)

    Krechetnikov, R.

    2018-05-01

    The classical solution in the pressure-impulse theory for the inviscid, incompressible, and zero-surface-tension water impact of a flat plate at zero dead-rise angle exhibits both singular-in-time initial fluid acceleration, ∂v /∂ t |t =0˜δ (t ) , and a near-plate-edge spatial singularity in the velocity distribution, v ˜r-1 /2 , where r is the distance from the plate edge. The latter velocity divergence also leads to the interface being stretched infinitely right after the impact, which is another nonphysical artifact. From the point of view of matched asymptotic analysis, this classical solution is a singular limit when three physical quantities achieve limiting values: sound speed c0→∞ , fluid kinematic viscosity ν →0 , and surface tension σ →0 . This leaves open a question on how to resolve these singularities mathematically by including the neglected physical effects—compressibility, viscosity, and surface tension—first one by one and then culminating in the local compressible viscous solution valid for t →0 and r →0 , demonstrating a nontrivial flow structure that changes with the degree of the bulk compressibility. In the course of this study, by starting with the general physically relevant formulation of compressible viscous flow, we clarify the parameter range(s) of validity of the key analytical solutions including classical ones (inviscid incompressible and compressible, etc.) and understand the solution structure, its intermediate asymptotics nature, characteristics influencing physical processes, and the role of potential and rotational flow components. In particular, it is pointed out that sufficiently close to the plate edge surface tension must be taken into account. Overall, the idea is to highlight the interesting physics behind the singularities in the pressure-impulse theory.

  2. Singular Perturbation for the Discounted Continuous Control of Piecewise Deterministic Markov Processes

    International Nuclear Information System (INIS)

    Costa, O. L. V.; Dufour, F.

    2011-01-01

    This paper deals with the expected discounted continuous control of piecewise deterministic Markov processes (PDMP’s) using a singular perturbation approach for dealing with rapidly oscillating parameters. The state space of the PDMP is written as the product of a finite set and a subset of the Euclidean space ℝ n . The discrete part of the state, called the regime, characterizes the mode of operation of the physical system under consideration, and is supposed to have a fast (associated to a small parameter ε>0) and a slow behavior. By using a similar approach as developed in Yin and Zhang (Continuous-Time Markov Chains and Applications: A Singular Perturbation Approach, Applications of Mathematics, vol. 37, Springer, New York, 1998, Chaps. 1 and 3) the idea in this paper is to reduce the number of regimes by considering an averaged model in which the regimes within the same class are aggregated through the quasi-stationary distribution so that the different states in this class are replaced by a single one. The main goal is to show that the value function of the control problem for the system driven by the perturbed Markov chain converges to the value function of this limit control problem as ε goes to zero. This convergence is obtained by, roughly speaking, showing that the infimum and supremum limits of the value functions satisfy two optimality inequalities as ε goes to zero. This enables us to show the result by invoking a uniqueness argument, without needing any kind of Lipschitz continuity condition.

  3. Analytic perturbation theory in analyzing some QCD observables

    International Nuclear Information System (INIS)

    Shirkov, D.V.

    2001-01-01

    The paper is devoted to application of recently devised ghost-free Analytic Perturbation Theory (APT) for analysis of some QCD observables. We start with the discussion of the main problem of the perturbative QCD - ghost singularities and with the resume of this trouble solution within the APT. By a few examples in the various energy and momentum transfer regions (with the flavor number f = 3, 4 and 5) we demonstrate the effect of improved convergence of the APT modified perturbative QCD expansion. Our first observation is that in the APT analysis the three-loop contribution (of an order of α s 3 ) is as a rule numerically inessential. This raises hope for practical solving the well-known problem of asymptotic nature of common QFT perturbation series. The second conclusion is that a common perturbative analysis of time-like events with the big π 2 term in the π 2 coefficient is not adequate at s ≤ 2 GeV 2 . In particular, this relates to τ decay. Then, for the 'high' (f = 5) region it is shown that the common two-loop (NLO, NLLA) perturbation approximation widely used there (at 10 GeV ≤ √s ≤ 170 GeV) for analysis of shape/events data contains a systematic negative error of a 1 - 2 per cent level for the extracted α bar s (2) values. Our physical conclusion is that the α bar s (M Z 2 ) value averaged over the f = 5 data s (M Z 2 )> APT; f= 5 ≅ 0.124 appreciably differs from the currently accepted 'world average' (= 0.118)

  4. Singular problems in shell theory. Computing and asymptotics

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Palencia, Evariste [Institut Jean Le Rond d' Alembert, Paris (France); Millet, Olivier [La Rochelle Univ. (France). LEPTIAB; Bechet, Fabien [Metz Univ. (France). LPMM

    2010-07-01

    It is known that deformations of thin shells exhibit peculiarities such as propagation of singularities, edge and internal layers, piecewise quasi inextensional deformations, sensitive problems and others, leading in most cases to numerical locking phenomena under several forms, and very poor quality of computations for small relative thickness. Most of these phenomena have a local and often anisotropic character (elongated in some directions), so that efficient numerical schemes should take them in consideration. This book deals with various topics in this context: general geometric formalism, analysis of singularities, numerical computing of thin shell problems, estimates for finite element approximation (including non-uniform and anisotropic meshes), mathematical considerations on boundary value problems in connection with sensitive problems encountered for very thin shells; and others. Most of numerical computations presented here use an adaptive anisotropic mesh procedure which allows a good computation of the physical peculiarities on one hand, and the possibility to perform automatic computations (without a previous mathematical description of the singularities) on the other. The book is recommended for PhD students, postgraduates and researchers who want to improve their knowledge in shell theory and in particular in the areas addressed (analysis of singularities, numerical computing of thin and very thin shell problems, sensitive problems). The lecture of the book may not be continuous and the reader may refer directly to the chapters concerned. (orig.)

  5. 3rd Singularity Theory Meeting of Northeast region & the Brazil-Mexico 2nd Meeting on Singularities

    CERN Document Server

    Neto, Aurélio; Mond, David; Saia, Marcelo; Snoussi, Jawad; BMMS 2/NBMS 3; ENSINO; Singularities and foliations geometry, topology and applications

    2018-01-01

    This proceedings book brings selected works from two conferences, the 2nd Brazil-Mexico Meeting on Singularity and the 3rd Northeastern Brazilian Meeting on Singularities, that were hold in Salvador, in July 2015. All contributions were carefully peer-reviewed and revised, and cover topics like Equisingularity, Topology and Geometry of Singularities, Topological Classification of Singularities of Mappings, and more. They were written by mathematicians from several countries, including Brazil, Spain, Mexico, Japan and the USA, on relevant topics on Theory of Singularity, such as studies on deformations, Milnor fibration, foliations, Catastrophe theory, and myriad applications. Open problems are also introduced, making this volume a must-read both for graduate students and active researchers in this field.

  6. Effective field theory of cosmological perturbations

    International Nuclear Information System (INIS)

    Piazza, Federico; Vernizzi, Filippo

    2013-01-01

    The effective field theory of cosmological perturbations stems from considering a cosmological background solution as a state displaying spontaneous breaking of time translations and (adiabatic) perturbations as the related Nambu–Goldstone modes. With this insight, one can systematically develop a theory for the cosmological perturbations during inflation and, with minor modifications, also describe in full generality the gravitational interactions of dark energy, which are relevant for late-time cosmology. The formalism displays a unique set of Lagrangian operators containing an increasing number of cosmological perturbations and derivatives. We give an introductory description of the unitary gauge formalism for theories with broken gauge symmetry—that allows us to write down the most general Lagrangian—and of the Stückelberg ‘trick’—that allows to recover gauge invariance and to make the scalar field explicit. We show how to apply this formalism to gravity and cosmology and we reproduce the detailed analysis of the action in the ADM variables. We also review some basic applications to inflation and dark energy. (paper)

  7. Where does cosmological perturbation theory break down?

    International Nuclear Information System (INIS)

    Armendariz-Picon, Cristian; Fontanini, Michele; Penco, Riccardo; Trodden, Mark

    2009-01-01

    It is often assumed that initial conditions for the evolution of a cosmological mode should be set at the time its physical wavelength reaches a cut-off of the order of the Planck length. Beyond that scale, trans-Planckian corrections to the dispersion relation are supposed to become dominant, leading to the breakdown of cosmological perturbation theory. In this paper, we apply the effective field theory approach to the coupled metric-inflaton system in order to calculate the corrections to the power spectrum of scalar and tensor perturbations induced by higher-dimension operators at short wavelengths. These corrections can be interpreted as modifications of the dispersion relation, and thus open a window to probe the validity of cosmological perturbation theory. Both for scalars and tensors, the modifications become important when the Hubble parameter is of the order of the Planck mass, or when the physical wave number of a cosmological perturbation mode approaches the square of the Planck mass divided by the Hubble constant. Thus, the cut-off length at which such a breakdown occurs is finite, but much smaller than the Planck length.

  8. Effective field theory of cosmological perturbations

    Science.gov (United States)

    Piazza, Federico; Vernizzi, Filippo

    2013-11-01

    The effective field theory of cosmological perturbations stems from considering a cosmological background solution as a state displaying spontaneous breaking of time translations and (adiabatic) perturbations as the related Nambu-Goldstone modes. With this insight, one can systematically develop a theory for the cosmological perturbations during inflation and, with minor modifications, also describe in full generality the gravitational interactions of dark energy, which are relevant for late-time cosmology. The formalism displays a unique set of Lagrangian operators containing an increasing number of cosmological perturbations and derivatives. We give an introductory description of the unitary gauge formalism for theories with broken gauge symmetry—that allows us to write down the most general Lagrangian—and of the Stückelberg ‘trick’—that allows to recover gauge invariance and to make the scalar field explicit. We show how to apply this formalism to gravity and cosmology and we reproduce the detailed analysis of the action in the ADM variables. We also review some basic applications to inflation and dark energy.

  9. A primer for Chiral Perturbative Theory

    International Nuclear Information System (INIS)

    Scherer, Stefan; Schindler, Matthias R.; George Washington Univ., Washington, DC

    2012-01-01

    Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques. (orig.)

  10. A primer for chiral perturbation theory

    CERN Document Server

    Scherer, Stefan

    2012-01-01

    Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques.

  11. New perturbative approach to renormalizable field theories

    International Nuclear Information System (INIS)

    Dhar, A.; Gupta, V.

    1984-01-01

    A new method for obtaining perturbative predictions in quantum field theory is developed. Our method gives finite predictions, which are free from scheme ambiguities, for any quantity of interest (like a cross section or a Green's function) starting directly from the bare regularized Lagrangian. The central idea in our approach is to incorporate directly the consequences of dimensional transmutation for the predictions of the theory. We thus completely bypass the conventional renormalization procedure and the ambiguities associated with it. The case of massless theories with a single dimensionless coupling constant is treated in detail to illustrate our approach

  12. Gravitational perturbation theory and synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, R A [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (F.R. Germany). Inst. fuer Astrophysik

    1975-01-01

    This article presents methods and results for a gravitational perturbation theory which treats massless fields as linearized perturbations of an arbitrary gravitational vacuum background spacetime. The formalism is outlined for perturbations of type (22) spacetimes. As an application, high-frequency radiation emitted by particles moving approximately on relativistic circular geodesic orbits is computed. More precisely, the test particle assumption is made; throughout it is therefore assumed that the reaction of the radiation on the particle motion is negligible. In particular, these orbits are studied in the gravitational field of a spherically symmetric (Schwarzschild-) black hole as well as of a rotating (Kerr-) black hole. In this model, the outgoing radiation is highly focussed and of much higher fequency than the orbital frequency, i.e. one is dealing with 'gravitational synchrotron radiation'.

  13. Gribov ambiguity, perturbation theory, and confinement

    International Nuclear Information System (INIS)

    Greensite, J.P.

    1978-01-01

    The generating functional proposed for gauge theories by Bender, Eguchi, and Pagels (BEP) is shown to be equivalent to a truncated form of the functional integral, in which only one field configuration from each gauge-equivalent Gribov set contributes to the functional integration. The standard perturbation technique provides a method of realizing this truncation condition. It is shown that any gauge-covariant quantity (such as the quark N-point functions), evaluated by perturbating around a field configuration gauge-equivalent to A = 0, is related by a gauge transformation to the same quantity evaluated perturbatively around the trivial vacuum. It follows that, contrary to the conclusion of BEP, the existence of degeneracies in the Coulomb gauge-fixing condition (the Gribov ambiguity) is not directly related to the physics of confinement

  14. Irregular singularities in Liouville theory and Argyres-Douglas type gauge theories, I

    Energy Technology Data Exchange (ETDEWEB)

    Gaiotto, D. [Institute for Advanced Study (IAS), Princeton, NJ (United States); Teschner, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-03-15

    Motivated by problems arising in the study of N=2 supersymmetric gauge theories we introduce and study irregular singularities in two-dimensional conformal field theory, here Liouville theory. Irregular singularities are associated to representations of the Virasoro algebra in which a subset of the annihilation part of the algebra act diagonally. In this paper we define natural bases for the space of conformal blocks in the presence of irregular singularities, describe how to calculate their series expansions, and how such conformal blocks can be constructed by some delicate limiting procedure from ordinary conformal blocks. This leads us to a proposal for the structure functions appearing in the decomposition of physical correlation functions with irregular singularities into conformal blocks. Taken together, we get a precise prediction for the partition functions of some Argyres-Douglas type theories on S{sup 4}. (orig.)

  15. Irregular singularities in Liouville theory and Argyres-Douglas type gauge theories, I

    International Nuclear Information System (INIS)

    Gaiotto, D.; Teschner, J.

    2012-03-01

    Motivated by problems arising in the study of N=2 supersymmetric gauge theories we introduce and study irregular singularities in two-dimensional conformal field theory, here Liouville theory. Irregular singularities are associated to representations of the Virasoro algebra in which a subset of the annihilation part of the algebra act diagonally. In this paper we define natural bases for the space of conformal blocks in the presence of irregular singularities, describe how to calculate their series expansions, and how such conformal blocks can be constructed by some delicate limiting procedure from ordinary conformal blocks. This leads us to a proposal for the structure functions appearing in the decomposition of physical correlation functions with irregular singularities into conformal blocks. Taken together, we get a precise prediction for the partition functions of some Argyres-Douglas type theories on S 4 . (orig.)

  16. Perturbative quantum field theory via vertex algebras

    International Nuclear Information System (INIS)

    Hollands, Stefan; Olbermann, Heiner

    2009-01-01

    In this paper, we explain how perturbative quantum field theory can be formulated in terms of (a version of) vertex algebras. Our starting point is the Wilson-Zimmermann operator product expansion (OPE). Following ideas of a previous paper (S. Hollands, e-print arXiv:0802.2198), we consider a consistency (essentially associativity) condition satisfied by the coefficients in this expansion. We observe that the information in the OPE coefficients can be repackaged straightforwardly into 'vertex operators' and that the consistency condition then has essentially the same form as the key condition in the theory of vertex algebras. We develop a general theory of perturbations of the algebras that we encounter, similar in nature to the Hochschild cohomology describing the deformation theory of ordinary algebras. The main part of the paper is devoted to the question how one can calculate the perturbations corresponding to a given interaction Lagrangian (such as λφ 4 ) in practice, using the consistency condition and the corresponding nonlinear field equation. We derive graphical rules, which display the vertex operators (i.e., OPE coefficients) in terms of certain multiple series of hypergeometric type.

  17. Acoustic anisotropic wavefields through perturbation theory

    KAUST Repository

    Alkhalifah, Tariq Ali

    2013-09-01

    Solving the anisotropic acoustic wave equation numerically using finite-difference methods introduces many problems and media restriction requirements, and it rarely contributes to the ability to resolve the anisotropy parameters. Among these restrictions are the inability to handle media with η<0 and the presence of shear-wave artifacts in the solution. Both limitations do not exist in the solution of the elliptical anisotropic acoustic wave equation. Using perturbation theory in developing the solution of the anisotropic acoustic wave equation allows direct access to the desired limitation-free solutions, that is, solutions perturbed from the elliptical anisotropic background medium. It also provides a platform for parameter estimation because of the ability to isolate the wavefield dependency on the perturbed anisotropy parameters. As a result, I derive partial differential equations that relate changes in the wavefield to perturbations in the anisotropy parameters. The solutions of the perturbation equations represented the coefficients of a Taylor-series-type expansion of the wavefield as a function of the perturbed parameter, which is in this case η or the tilt of the symmetry axis. The expansion with respect to the symmetry axis allows use of an acoustic transversely isotropic media with a vertical symmetry axis (VTI) kernel to estimate the background wavefield and the corresponding perturbation coefficients. The VTI extrapolation kernel is about one-fourth the cost of the transversely isotropic model with a tilt in the symmetry axis kernel. Thus, for a small symmetry axis tilt, the cost of migration using a first-order expansion can be reduced. The effectiveness of the approach was demonstrated on the Marmousi model.

  18. Non-hard sphere thermodynamic perturbation theory.

    Science.gov (United States)

    Zhou, Shiqi

    2011-08-21

    A non-hard sphere (HS) perturbation scheme, recently advanced by the present author, is elaborated for several technical matters, which are key mathematical details for implementation of the non-HS perturbation scheme in a coupling parameter expansion (CPE) thermodynamic perturbation framework. NVT-Monte Carlo simulation is carried out for a generalized Lennard-Jones (LJ) 2n-n potential to obtain routine thermodynamic quantities such as excess internal energy, pressure, excess chemical potential, excess Helmholtz free energy, and excess constant volume heat capacity. Then, these new simulation data, and available simulation data in literatures about a hard core attractive Yukawa fluid and a Sutherland fluid, are used to test the non-HS CPE 3rd-order thermodynamic perturbation theory (TPT) and give a comparison between the non-HS CPE 3rd-order TPT and other theoretical approaches. It is indicated that the non-HS CPE 3rd-order TPT is superior to other traditional TPT such as van der Waals/HS (vdW/HS), perturbation theory 2 (PT2)/HS, and vdW/Yukawa (vdW/Y) theory or analytical equation of state such as mean spherical approximation (MSA)-equation of state and is at least comparable to several currently the most accurate Ornstein-Zernike integral equation theories. It is discovered that three technical issues, i.e., opening up new bridge function approximation for the reference potential, choosing proper reference potential, and/or using proper thermodynamic route for calculation of f(ex-ref), chiefly decide the quality of the non-HS CPE TPT. Considering that the non-HS perturbation scheme applies for a wide variety of model fluids, and its implementation in the CPE thermodynamic perturbation framework is amenable to high-order truncation, the non-HS CPE 3rd-order or higher order TPT will be more promising once the above-mentioned three technological advances are established. © 2011 American Institute of Physics

  19. Solution of Point Reactor Neutron Kinetics Equations with Temperature Feedback by Singularly Perturbed Method

    Directory of Open Access Journals (Sweden)

    Wenzhen Chen

    2013-01-01

    Full Text Available The singularly perturbed method (SPM is proposed to obtain the analytical solution for the delayed supercritical process of nuclear reactor with temperature feedback and small step reactivity inserted. The relation between the reactivity and time is derived. Also, the neutron density (or power and the average density of delayed neutron precursors as the function of reactivity are presented. The variations of neutron density (or power and temperature with time are calculated and plotted and compared with those by accurate solution and other analytical methods. It is shown that the results by the SPM are valid and accurate in the large range and the SPM is simpler than those in the previous literature.

  20. A singular perturbation approach to non-Markovian escape rate problems

    International Nuclear Information System (INIS)

    Dygas, M.M.; Matkowsky, B.J.; Schuss, Z.

    1986-01-01

    The authors employ singular perturbation methods to examine the generalized Langevin equation which describes the dynamics of a Brownian particle in an arbitrary potential force field, acted on by a fluctuating force describing collisions between the Brownian particle and lighter particles comprising a thermal bath. In contrast to models in which the collisions occur instantaneously, and the dynamics are modeled by a Langevin stochastic equation, they consider the situation in which the collisions do not occur instantaneously, so that the process is no longer a Markov process and the generalized Langevin equation must be employed. They compute expressions for the mean exit time of the Brownian particle from the potential well in which it is confined

  1. Analysis of Hydrogen/Air Turbulent Premixed Flames at Different Karlovitz Numbers Using Computational Singular Perturbation

    KAUST Repository

    Manias, Dimitrios

    2018-01-08

    The dynamics and structure of two turbulent H2/air premixed flames, representative of the corrugated flamelet (Case 1) and thin reaction zone (Case 2) regimes, are analyzed and compared, using the computational singular perturbation (CSP) tools, by incorporating the tangential stretch rate (TSR) approach. First, the analysis is applied to a laminar premixed H2/air flame for reference. Then, a two-dimensional (2D) slice of Case 1 is studied at three time steps, followed by the comparison between two representative 2D slices of Case 1 and Case 2, respectively. Last, statistical analysis is performed on the full three-dimensional domain for the two cases. The dominant reaction and transport processes are identified for each case and the overall role of kinetics/transport is determined.

  2. On the conditions of exponential stability in active disturbance rejection control based on singular perturbation analysis

    Science.gov (United States)

    Shao, S.; Gao, Z.

    2017-10-01

    Stability of active disturbance rejection control (ADRC) is analysed in the presence of unknown, nonlinear, and time-varying dynamics. In the framework of singular perturbations, the closed-loop error dynamics are semi-decoupled into a relatively slow subsystem (the feedback loop) and a relatively fast subsystem (the extended state observer), respectively. It is shown, analytically and geometrically, that there exists a unique exponential stable solution if the size of the initial observer error is sufficiently small, i.e. in the same order of the inverse of the observer bandwidth. The process of developing the uniformly asymptotic solution of the system reveals the condition on the stability of the ADRC and the relationship between the rate of change in the total disturbance and the size of the estimation error. The differentiability of the total disturbance is the only assumption made.

  3. Asymptotic behavior of monodromy singularly perturbed differential equations on a Riemann surface

    CERN Document Server

    Simpson, Carlos

    1991-01-01

    This book concerns the question of how the solution of a system of ODE's varies when the differential equation varies. The goal is to give nonzero asymptotic expansions for the solution in terms of a parameter expressing how some coefficients go to infinity. A particular classof families of equations is considered, where the answer exhibits a new kind of behavior not seen in most work known until now. The techniques include Laplace transform and the method of stationary phase, and a combinatorial technique for estimating the contributions of terms in an infinite series expansion for the solution. Addressed primarily to researchers inalgebraic geometry, ordinary differential equations and complex analysis, the book will also be of interest to applied mathematicians working on asymptotics of singular perturbations and numerical solution of ODE's.

  4. An evaluation of parallel multigrid as a solver and a preconditioner for singular perturbed problems

    Energy Technology Data Exchange (ETDEWEB)

    Oosterlee, C.W. [Inst. for Algorithms and Scientific Computing, Sankt Augustin (Germany); Washio, T. [C& C Research Lab., Sankt Augustin (Germany)

    1996-12-31

    In this paper we try to achieve h-independent convergence with preconditioned GMRES and BiCGSTAB for 2D singular perturbed equations. Three recently developed multigrid methods are adopted as a preconditioner. They are also used as solution methods in order to compare the performance of the methods as solvers and as preconditioners. Two of the multigrid methods differ only in the transfer operators. One uses standard matrix- dependent prolongation operators from. The second uses {open_quotes}upwind{close_quotes} prolongation operators, developed. Both employ the Galerkin coarse grid approximation and an alternating zebra line Gauss-Seidel smoother. The third method is based on the block LU decomposition of a matrix and on an approximate Schur complement. This multigrid variant is presented in. All three multigrid algorithms are algebraic methods.

  5. Efficient algorithms for analyzing the singularly perturbed boundary value problems of fractional order

    Science.gov (United States)

    Sayevand, K.; Pichaghchi, K.

    2018-04-01

    In this paper, we were concerned with the description of the singularly perturbed boundary value problems in the scope of fractional calculus. We should mention that, one of the main methods used to solve these problems in classical calculus is the so-called matched asymptotic expansion method. However we shall note that, this was not achievable via the existing classical definitions of fractional derivative, because they do not obey the chain rule which one of the key elements of the matched asymptotic expansion method. In order to accommodate this method to fractional derivative, we employ a relatively new derivative so-called the local fractional derivative. Using the properties of local fractional derivative, we extend the matched asymptotic expansion method to the scope of fractional calculus and introduce a reliable new algorithm to develop approximate solutions of the singularly perturbed boundary value problems of fractional order. In the new method, the original problem is partitioned into inner and outer solution equations. The reduced equation is solved with suitable boundary conditions which provide the terminal boundary conditions for the boundary layer correction. The inner solution problem is next solved as a solvable boundary value problem. The width of the boundary layer is approximated using appropriate resemblance function. Some theoretical results are established and proved. Some illustrating examples are solved and the results are compared with those of matched asymptotic expansion method and homotopy analysis method to demonstrate the accuracy and efficiency of the method. It can be observed that, the proposed method approximates the exact solution very well not only in the boundary layer, but also away from the layer.

  6. Baryon form factors in chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, B.; Meissner, U.G. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik

    2001-01-01

    We analyze the electromagnetic form factors of the ground state baryon octet to fourth order in relativistic baryon chiral perturbation theory. Predictions for the {sigma}{sup -} charge radius and the {lambda}-{sigma}{sup 0} transition moment are found to be in excellent agreement with the available experimental information. Furthermore, the convergence behavior of the hyperon charge radii is shown to be more than satisfactory. (orig.)

  7. Perturbation theory for arbitrary coupling strength?

    Science.gov (United States)

    Mahapatra, Bimal P.; Pradhan, Noubihary

    2018-03-01

    We present a new formulation of perturbation theory for quantum systems, designated here as: “mean field perturbation theory” (MFPT), which is free from power-series-expansion in any physical parameter, including the coupling strength. Its application is thereby extended to deal with interactions of arbitrary strength and to compute system-properties having non-analytic dependence on the coupling, thus overcoming the primary limitations of the “standard formulation of perturbation theory” (SFPT). MFPT is defined by developing perturbation about a chosen input Hamiltonian, which is exactly solvable but which acquires the nonlinearity and the analytic structure (in the coupling strength) of the original interaction through a self-consistent, feedback mechanism. We demonstrate Borel-summability of MFPT for the case of the quartic- and sextic-anharmonic oscillators and the quartic double-well oscillator (QDWO) by obtaining uniformly accurate results for the ground state of the above systems for arbitrary physical values of the coupling strength. The results obtained for the QDWO may be of particular significance since “renormalon”-free, unambiguous results are achieved for its spectrum in contrast to the well-known failure of SFPT in this case.

  8. Investigation of solutions of boundary-value singular perturbated problem for Schroedinger equation of 4th order

    International Nuclear Information System (INIS)

    Amirkhanov, I.V.; Zhidkov, E.P.; Konnova, S.V.

    2000-01-01

    For the case of spherical-symmetrical potential we have considered the convergence of the solution of singular-perturbated Schroedinger equation of the 4th order to the solution of the corresponding standard nonrelativistic Schroedinger equation by numerical and analytical methods. The questions of existence of the solutions are explored. Numerical results are given. (author)

  9. Application of linear and higher perturbation theory in reactor physics

    International Nuclear Information System (INIS)

    Woerner, D.

    1978-01-01

    For small perturbations in the material composition of a reactor according to the first approximation of perturbation theory the eigenvalue perturbation is proportional to the perturbation of the system. This assumption is true for the neutron flux not influenced by the perturbance. The two-dimensional code LINESTO developed for such problems in this paper on the basis of diffusion theory determines the relative change of the multiplication constant. For perturbations varying the neutron flux in the space of energy and position the eigenvalue perturbation is also influenced by this changed neutron flux. In such cases linear perturbation theory yields larger errors. Starting from the methods of calculus of variations there is additionally developed in this paper a perturbation method of calculation permitting in a quick and simple manner to assess the influence of flux perturbation on the eigenvalue perturbation. While the source of perturbations is evaluated in isotropic approximation of diffusion theory the associated inhomogeneous equation may be used to determine the flux perturbation by means of diffusion or transport theory. Possibilities of application and limitations of this method are studied in further systematic investigations on local perturbations. It is shown that with the integrated code system developed in this paper a number of local perturbations may be checked requiring little computing time. With it flux perturbations in first approximation and perturbations of the multiplication constant in second approximation can be evaluated. (orig./RW) [de

  10. Perturbation theories for the dipolar fluids

    International Nuclear Information System (INIS)

    Lee, L.L.; Chung, T.H.

    1983-01-01

    We derive here four different perturbation equations for the calculation of the angular pair correlation functions of dipolar fluids; namely, the first order y-expansion, the modified Percus--Yevik (MPY) expansion, the modified hypernetted chain (MHNC) expansion, and the modified linearized hypernetted chain (MLHNC) equation. Both the method of the functional expansion and the method of the cluster integrals are utilized. Comparison with other perturbation theories (e.g., the Melnyk--Smith equation) is made. While none of the theories is exact, as shown by the cluster diagrams, the MLHNC and the MHNC contain more diagrams than, say, the MPY and y-expansion. The y-expansion equation can be improved by including the correction terms to the Kirkwood superposition approximation for the triplet correlation function. For example, the inclusion of the correction term rho∫d4h(14)h(24)h(34) in a formula given by Henderson, is shown to improve substantially the y-expansion equation. We examine the performance of two of the theories: the y-expansion and the MLHNC equation for a Stockmayer (dipolar) fluid with a reduced dipole moment μ/sup asterisk2/ [ = μ 2 /(epsilonsigma 3 )] = 1.0. Comparison with Monte Carlo simulation results of Adams et al. and with other theories (e.g., the QHNC equation) shows that our results are reasonable. Further improvements of the equations are also pointed out

  11. Thermal gluons beyond pure perturbation theory

    International Nuclear Information System (INIS)

    Reinbach, J.

    2000-01-01

    The perturbative treatment of non-abelian gauge theory at high temperature leads to a threshold in calculation because of chromomagnetic effects. Infinitely many terms of the same order of magnitude arise. The numerical series to be summed is contained in the part of the theory reduced on 3D, which was recently treated non-perturbative as 2+1D Yang-Mills theory at T=0 by Karabali, Kim and Nair. In the thesis in question the exact 3D results are combined with the thermal 4D diagrammatic. In particular the splitting of the space-part of the transverse self-energy in the static limit is treated. As expected, the 3D subsystem can separate as regularized 3D Yang-Mills theory from the 4D structure. In 1-loop order the regulators are received explicit. For 2-loop order it can be shown amongst other things, that the generic contribution with hard inner momenta vanishes. It is examined, how the magnetic mass could follow. Under pressure it is possible to separate the 3D part in 1- and 2-loop order and to receive regulators [de

  12. Perturbation Theory for Open Two-Level Nonlinear Quantum Systems

    International Nuclear Information System (INIS)

    Zhang Zhijie; Jiang Dongguang; Wang Wei

    2011-01-01

    Perturbation theory is an important tool in quantum mechanics. In this paper, we extend the traditional perturbation theory to open nonlinear two-level systems, treating decoherence parameter γ as a perturbation. By this virtue, we give a perturbative solution to the master equation, which describes a nonlinear open quantum system. The results show that for small decoherence rate γ, the ratio of the nonlinear rate C to the tunneling coefficient V (i.e., r = C/V) determines the validity of the perturbation theory. For small ratio r, the perturbation theory is valid, otherwise it yields wrong results. (general)

  13. Chiral perturbation theory for lattice QCD

    International Nuclear Information System (INIS)

    Baer, Oliver

    2010-01-01

    The formulation of chiral perturbation theory (ChPT) for lattice Quantum Chromodynamics (QCD) is reviewed. We start with brief summaries of ChPT for continuum QCD as well as the Symanzik effective theory for lattice QCD. We then review the formulation of ChPT for lattice QCD. After an additional chapter on partial quenching and mixed action theories various concrete applications are discussed: Wilson ChPT, staggered ChPT and Wilson ChPT with a twisted mass term. The remaining chapters deal with the epsilon regime with Wilson fermions and selected results in mixed action ChPT. Finally, the formulation of heavy vector meson ChPT with Wilson fermions is discussed. (orig.)

  14. Perturbation theory for plasmonic modulation and sensing

    KAUST Repository

    Raman, Aaswath

    2011-05-25

    We develop a general perturbation theory to treat small parameter changes in dispersive plasmonic nanostructures and metamaterials. We specifically apply it to dielectric refractive index and metallic plasma frequency modulation in metal-dielectric nanostructures. As a numerical demonstration, we verify the theory\\'s accuracy against direct calculations for a system of plasmonic rods in air where the metal is defined by a three-pole fit of silver\\'s dielectric function. We also discuss new optical behavior related to plasma frequency modulation in such systems. Our approach provides new physical insight for the design of plasmonic devices for biochemical sensing and optical modulation and future active metamaterial applications. © 2011 American Physical Society.

  15. Chiral perturbation theory for lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Oliver

    2010-07-21

    The formulation of chiral perturbation theory (ChPT) for lattice Quantum Chromodynamics (QCD) is reviewed. We start with brief summaries of ChPT for continuum QCD as well as the Symanzik effective theory for lattice QCD. We then review the formulation of ChPT for lattice QCD. After an additional chapter on partial quenching and mixed action theories various concrete applications are discussed: Wilson ChPT, staggered ChPT and Wilson ChPT with a twisted mass term. The remaining chapters deal with the epsilon regime with Wilson fermions and selected results in mixed action ChPT. Finally, the formulation of heavy vector meson ChPT with Wilson fermions is discussed. (orig.)

  16. Light-like big bang singularities in string and matrix theories

    International Nuclear Information System (INIS)

    Craps, Ben; Evnin, Oleg

    2011-01-01

    Important open questions in cosmology require a better understanding of the big bang singularity. In string and matrix theories, light-like analogues of cosmological singularities (singular plane wave backgrounds) turn out to be particularly tractable. We give a status report on the current understanding of such light-like big bang models, presenting both solved and open problems.

  17. Homological Perturbation Theory for Nonperturbative Integrals

    Science.gov (United States)

    Johnson-Freyd, Theo

    2015-11-01

    We use the homological perturbation lemma to produce explicit formulas computing the class in the twisted de Rham complex represented by an arbitrary polynomial. This is a non-asymptotic version of the method of Feynman diagrams. In particular, we explain that phenomena usually thought of as particular to asymptotic integrals in fact also occur exactly: integrals of the type appearing in quantum field theory can be reduced in a totally algebraic fashion to integrals over an Euler-Lagrange locus, provided this locus is understood in the scheme-theoretic sense, so that imaginary critical points and multiplicities of degenerate critical points contribute.

  18. Inflationary perturbations in no-scale theories

    Energy Technology Data Exchange (ETDEWEB)

    Salvio, Alberto [CERN, Theoretical Physics Department, Geneva (Switzerland)

    2017-04-15

    We study the inflationary perturbations in general (classically) scale-invariant theories. Such scenario is motivated by the hierarchy problem and provides natural inflationary potentials and dark matter candidates. We analyse in detail all sectors (the scalar, vector and tensor perturbations) giving general formulae for the potentially observable power spectra, as well as for the curvature spectral index n{sub s} and the tensor-to-scalar ratio r. We show that the conserved Hamiltonian for all perturbations does not feature negative energies even in the presence of the Weyl-squared term if the appropriate quantisation is performed and argue that this term does not lead to phenomenological problems at least in some relevant setups. The general formulae are then applied to a concrete no-scale model, which includes the Higgs and a scalar, ''the planckion'', whose vacuum expectation value generates the Planck mass. Inflation can be triggered by a combination of the planckion and the Starobinsky scalar and we show that no tension with observations is present even in the case of pure planckion inflation, if the coefficient of the Weyl-squared term is large enough. In general, even quadratic inflation is allowed in this case. Moreover, the Weyl-squared term leads to an isocurvature mode, which currently satisfies the observational bounds, but it may be detectable with future experiments. (orig.)

  19. Canonical perturbation theory in linearized general relativity theory

    International Nuclear Information System (INIS)

    Gonzales, R.; Pavlenko, Yu.G.

    1986-01-01

    Canonical perturbation theory in linearized general relativity theory is developed. It is shown that the evolution of arbitrary dynamic value, conditioned by the interaction of particles, gravitation and electromagnetic fields, can be presented in the form of a series, each member of it corresponding to the contribution of certain spontaneous or induced process. The main concepts of the approach are presented in the approximation of a weak gravitational field

  20. Perturbation theory in nuclear fuel management optimization

    International Nuclear Information System (INIS)

    Ho, L.W.; Rohach, A.F.

    1982-01-01

    Perturbation theory along with a binary fuel shuffling technique is applied to predict the effects of various core configurations and, hence, the optimization of in-core fuel management. The computer code FULMNT has been developed to shuffle the fuel assemblies in search of the lowest possible power peaking factor. An iteration approach is used in the search routine. A two-group diffusion theory method is used to obtain the power distribution for the iterations. A comparison of the results of this method with other methods shows that this approach can save computer time and obtain better power peaking factors. The code also has a burnup capability that can be used to check power peaking throughout the core life

  1. SMD-based numerical stochastic perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Brida, Mattia [Universita di Milano-Bicocca, Dipartimento di Fisica, Milan (Italy); INFN, Sezione di Milano-Bicocca (Italy); Luescher, Martin [CERN, Theoretical Physics Department, Geneva (Switzerland); AEC, Institute for Theoretical Physics, University of Bern (Switzerland)

    2017-05-15

    The viability of a variant of numerical stochastic perturbation theory, where the Langevin equation is replaced by the SMD algorithm, is examined. In particular, the convergence of the process to a unique stationary state is rigorously established and the use of higher-order symplectic integration schemes is shown to be highly profitable in this context. For illustration, the gradient-flow coupling in finite volume with Schroedinger functional boundary conditions is computed to two-loop (i.e. NNL) order in the SU(3) gauge theory. The scaling behaviour of the algorithm turns out to be rather favourable in this case, which allows the computations to be driven close to the continuum limit. (orig.)

  2. SMD-based numerical stochastic perturbation theory

    International Nuclear Information System (INIS)

    Dalla Brida, Mattia; Luescher, Martin

    2017-01-01

    The viability of a variant of numerical stochastic perturbation theory, where the Langevin equation is replaced by the SMD algorithm, is examined. In particular, the convergence of the process to a unique stationary state is rigorously established and the use of higher-order symplectic integration schemes is shown to be highly profitable in this context. For illustration, the gradient-flow coupling in finite volume with Schroedinger functional boundary conditions is computed to two-loop (i.e. NNL) order in the SU(3) gauge theory. The scaling behaviour of the algorithm turns out to be rather favourable in this case, which allows the computations to be driven close to the continuum limit. (orig.)

  3. SMD-based numerical stochastic perturbation theory

    Science.gov (United States)

    Dalla Brida, Mattia; Lüscher, Martin

    2017-05-01

    The viability of a variant of numerical stochastic perturbation theory, where the Langevin equation is replaced by the SMD algorithm, is examined. In particular, the convergence of the process to a unique stationary state is rigorously established and the use of higher-order symplectic integration schemes is shown to be highly profitable in this context. For illustration, the gradient-flow coupling in finite volume with Schrödinger functional boundary conditions is computed to two-loop (i.e. NNL) order in the SU(3) gauge theory. The scaling behaviour of the algorithm turns out to be rather favourable in this case, which allows the computations to be driven close to the continuum limit.

  4. Adiabatic perturbation theory in quantum dynamics

    CERN Document Server

    Teufel, Stefan

    2003-01-01

    Separation of scales plays a fundamental role in the understanding of the dynamical behaviour of complex systems in physics and other natural sciences. A prominent example is the Born-Oppenheimer approximation in molecular dynamics. This book focuses on a recent approach to adiabatic perturbation theory, which emphasizes the role of effective equations of motion and the separation of the adiabatic limit from the semiclassical limit. A detailed introduction gives an overview of the subject and makes the later chapters accessible also to readers less familiar with the material. Although the general mathematical theory based on pseudodifferential calculus is presented in detail, there is an emphasis on concrete and relevant examples from physics. Applications range from molecular dynamics to the dynamics of electrons in a crystal and from the quantum mechanics of partially confined systems to Dirac particles and nonrelativistic QED.

  5. Advances in heuristically based generalized perturbation theory

    International Nuclear Information System (INIS)

    Gandini, A.

    1994-01-01

    A distinctive feature of heuristically based generalized perturbation theory methodology consists in the systematic use of importance conservation concepts. As well known, this use leads to fundamental reciprocity relationship. Instead, the alternative variational and differential one approaches make a consistent use of the properties and adjoint functions. The equivalence between the importance and the adjoint functions have been demonstrated in important cases. There are some instances, however, in which the commonly known operator governing the adjoint function are not adequate. In this paper ways proposed to generalize this rules, as adopted with the heuristic generalized perturbation theory methodology, are illustrated. When applied to the neutron/nuclide field characterizing the core evolution in a power reactor system, in which also an intensive control variable (ρ) is defined, these rules leas to an orthogonality relationship connected to this same control variable. A set of ρ-mode eigenfunctions may be correspondingly defined and an extended concept of reactivity (generalizing that commonly associated with the multiplication factor) proposed as more directly indicative of the controllability of a critical reactor system. (author). 25 refs

  6. Dissipative motion perturbation theory and exact solutions

    International Nuclear Information System (INIS)

    Lodder, J.J.

    1976-06-01

    Dissipative motion of classical and quantum systems is described. In particular, attention is paid to systems coupled to the radiation field. A dissipative equation of motion for a particle in an arbitrary potential coupled to the radiation field is derived by means of perturbation theory. The usual divrgencies associated with the radiation field are eliminated by the application of a theory of generalized functions. This theory is developed as a subject in its own right and is presented independently. The introduction of classical zero-point energy makes the classical equa tion of motion for the phase density formally the same as its quantum counterpart. In particular, it is shown that the classical zero-point energy prevents the collapse of a classical H-atom and gives rise to a classical ground state. For systems with a quadratic Hamiltoian, the equation of motion can be solved exactly, even in the continuum limit for the radiation field, by means of the new generalized functions. Classically, the Fokker-Planck equation is found without any approximations, and quantum mechanically, the only approximation is the neglect of the change in the ground state caused by the interaction. The derivation is valid even for strong damping and arbitrarily short times. There is no transient time. For harmonic oscillators complete equivalence is shown to exist between quantum mechanics and classical mechanics with zero-point energy. A discussion of the derivation of the Pauli equation is given and perturbation theory is compared with the exact derivation. The exactly solvable models are used to calculate the Langevin force of the radiation field. The result is that the classical Langevin force is exactly delta-correlated, while the quantum Langevin force is not delta-correlated at all. The fluctuation-dissipation theorem is shown to be an exact consequence of the solution to the equations of motion

  7. A Singular Perturbation Problem for Steady State Conversion of Methane Oxidation in Reverse Flow Reactor

    Directory of Open Access Journals (Sweden)

    Aang Nuryaman

    2012-11-01

    Full Text Available The governing equations describing the methane oxidation process in reverse flow reactor are given by a set of convective-diffusion equations with a nonlinear reaction term, where temperature and methane conversion are dependent variables. In this study, the process is assumed to be one-dimensional pseudo homogeneous model and takes place with a certain reaction rate in which the whole process of reactor is still workable. Thus, the reaction rate can proceed at a fixed temperature. Under this condition, we restrict ourselves to solve the equations for the conversion only. From the available data, it turns out that the ratio of the diffusion term to the reaction term is small. Hence, this ratio is considered as small parameter in our model and this leads to a singular perturbation problem. In the vicinity of small parameter in front of higher order term, the numerical difficulties will be found. Here, we present an analytical solution by means of matched asymptotic expansions. Result shows that, up to and including the first order of approximation, the solution is in agreement with the exact and numerical solutions of the boundary value problem.

  8. Averaging and Linear Programming in Some Singularly Perturbed Problems of Optimal Control

    Energy Technology Data Exchange (ETDEWEB)

    Gaitsgory, Vladimir, E-mail: vladimir.gaitsgory@mq.edu.au [Macquarie University, Department of Mathematics (Australia); Rossomakhine, Sergey, E-mail: serguei.rossomakhine@flinders.edu.au [Flinders University, Flinders Mathematical Sciences Laboratory, School of Computer Science, Engineering and Mathematics (Australia)

    2015-04-15

    The paper aims at the development of an apparatus for analysis and construction of near optimal solutions of singularly perturbed (SP) optimal controls problems (that is, problems of optimal control of SP systems) considered on the infinite time horizon. We mostly focus on problems with time discounting criteria but a possibility of the extension of results to periodic optimization problems is discussed as well. Our consideration is based on earlier results on averaging of SP control systems and on linear programming formulations of optimal control problems. The idea that we exploit is to first asymptotically approximate a given problem of optimal control of the SP system by a certain averaged optimal control problem, then reformulate this averaged problem as an infinite-dimensional linear programming (LP) problem, and then approximate the latter by semi-infinite LP problems. We show that the optimal solution of these semi-infinite LP problems and their duals (that can be found with the help of a modification of an available LP software) allow one to construct near optimal controls of the SP system. We demonstrate the construction with two numerical examples.

  9. Computational singular perturbation analysis of super-knock in SI engines

    KAUST Repository

    Jaasim, Mohammed

    2018-04-02

    Pre-ignition engine cycles leading to super-knock were simulated with a 48 species skeletal iso-octane mechanism to identify the dominant reaction pathways that are present in super-knock. To mimic pre-ignition, a deflagration front was generated via a hot spot that is placed over the piston at close proximity to the end-wall. Computational singular perturbation (CSP) was used to analyze the chemical dynamics at various in-cylinder locations: a point at the center of the cylinder where the deflagration front consumes the air/fuel mixture and two points located at 3 mm from the end-wall where super-knock and mild knock occur. The CSP analysis of the point at the center of the cylinder reveals weak two-stage ignition-like dynamics with a short second stage. At the other points, a pronounced two-stage ignition is displayed with a long second stage. A distinct contribution of formaldehyde (CHO) at the second stage of ignition that adds to fast explosive modes in the super-knock points is not observed in the point at the center. A comparison between knock and super-knock analysis indicates that a similar set of reactions is responsible for the abnormal behavior but the fast explosive time scales are comparatively slower for knock, indicating lower reactivity, which results in the reduced intensity of knock. The analyzed results decoded important reactions responsible for the occurrence of super-knock.

  10. Investigation of Turbulent Hydrogen Premixed Flame Topologies at Different Combustion Regimes Using Computational Singular Perturbation

    Science.gov (United States)

    Tingas, Efstathios-Alexandros; Hernandez Perez, Francisco; Im, Hong

    2017-11-01

    The investigation of turbulent flames at higher Reynolds and Karlovitz numbers has been gaining research interest, due to the advances in the computational power that has facilitated the use of direct numerical simulations (DNS). One of the additional challenges associated with highly turbulent premixed flames is the difficulties in identifying the turbulent flame topologies as the flame structures become severely corrugated or even disrupted by the small scale turbulent eddies. In these conditions, the conventional methods using a scalar iso-surface may lead to uncertainties in describing the flame front dynamics. In this study, the computational singular perturbation (CSP) is utilized as an automated tool to identify the flame front topologies based on the dynamical time scales and eigenvalues. In particular, the tangential stretch rate (TSR) approach, an extended generalized method to depict the dynamics of chemical and transport processes, is used for the flame front identification. The CSP/TSR approach and tools are used to compare the flame fronts of two turbulent H2/air premixed flames and to identify their similarities/differences, from a dynamical point of view. The results for two different combustion regimes are analyzed and compared.

  11. New Designs of Reduced-Order Observer-Based Controllers for Singularly Perturbed Linear Systems

    Directory of Open Access Journals (Sweden)

    Heonjong Yoo

    2017-01-01

    Full Text Available The slow and fast reduced-order observers and reduced-order observer-based controllers are designed by using the two-stage feedback design technique for slow and fast subsystems. The new designs produce an arbitrary order of accuracy, while the previously known designs produce the accuracy of O(ϵ only where ϵ is a small singular perturbation parameter. Several cases of reduced-order observer designs are considered depending on the measured state space variables: only all slow variables are measured, only all fast variables are measured, and some combinations of the slow and fast variables are measured. Since the two-stage methods have been used to overcome the numerical ill-conditioning problem for Cases (III–(V, they have similar procedures. The numerical ill-conditioning problem is avoided so that independent feedback controllers can be applied to each subsystem. The design allows complete time-scale separation for both the reduced-order observer and controller through the complete and exact decomposition into slow and fast time scales. This method reduces both offline and online computations.

  12. Numerical solution of singularity-perturbed two-point boundary-value problems

    International Nuclear Information System (INIS)

    Masenge, R.W.P.

    1993-07-01

    Physical processes which involve transportation of slowly diffusing substances in a fast-flowing medium are mathematically modelled by so-called singularly-perturbed second order convection diffusion differential equations in which the convective first order terms dominate over the diffusive second order terms. In general, analytical solutions of such equations are characterized by having sharp solution fronts in some sections of the interior and/or the boundary of the domain of solution. The presence of these (usually very narrow) layer regions in the solution domain makes the task of globally approximating such solutions by standard numerical techniques very difficult. In this expository paper we use a simple one-dimensional prototype problem as a vehicle for analysing the nature of the numerical approximation difficulties involved. In the sequel we present, without detailed derivation, two practical numerical schemes which succeed in varying degrees in numerically resolving the layer of the solution to the prototype problem. (author). 3 refs, 1 fig., 1 tab

  13. Cosmological singularity theorems for f ( R ) gravity theories

    Energy Technology Data Exchange (ETDEWEB)

    Alani, Ivo [Departamento de Física and IFIBA, Facultad de Ciencias Exactas y Naturales UBA Pabellón 1, Ciudad Universitaria (1428) C.A.B.A, Buenos Aires (Argentina); Santillán, Osvaldo P., E-mail: firenzecita@hotmail.com, E-mail: osantil@dm.uba.ar [Instituto de Matemáticas Luis Santaló (IMAS), Facultad de Ciencias Exactas y Naturales UBA Pabellón 1, Ciudad Universitaria (1428) C.A.B.A, Buenos Aires (Argentina)

    2016-05-01

    In the present work some generalizations of the Hawking singularity theorems in the context of f ( R ) theories are presented. The main assumptions are: the matter fields stress energy tensor satisfies the condition ( T {sub ij} −( g {sub ij} /2) T ) k {sup i} k {sup j} ≥ 0 for any generic unit time like field k {sup i} ; the scalaron takes bounded positive values during its evolution and the resulting space time is globally hyperbolic. Then, if there exist a Cauchy hyper-surface Σ for which the expansion parameter θ of the geodesic congruence emanating orthogonally from Σ satisfies some specific bounds, then the resulting space time is geodesically incomplete. Some mathematical results of reference [92] are very important for proving this. The generalized theorems presented here apply directly for some specific models such as the Hu-Sawicki or Starobinsky ones [27,38]. For other scenarios, some extra assumptions should be implemented in order to have a geodesically incomplete space time. The hypothesis considered in this text are sufficient, but not necessary. In other words, their negation does not imply that a singularity is absent.

  14. Cosmological singularity theorems for f ( R ) gravity theories

    International Nuclear Information System (INIS)

    Alani, Ivo; Santillán, Osvaldo P.

    2016-01-01

    In the present work some generalizations of the Hawking singularity theorems in the context of f ( R ) theories are presented. The main assumptions are: the matter fields stress energy tensor satisfies the condition ( T ij −( g ij /2) T ) k i k j ≥ 0 for any generic unit time like field k i ; the scalaron takes bounded positive values during its evolution and the resulting space time is globally hyperbolic. Then, if there exist a Cauchy hyper-surface Σ for which the expansion parameter θ of the geodesic congruence emanating orthogonally from Σ satisfies some specific bounds, then the resulting space time is geodesically incomplete. Some mathematical results of reference [92] are very important for proving this. The generalized theorems presented here apply directly for some specific models such as the Hu-Sawicki or Starobinsky ones [27,38]. For other scenarios, some extra assumptions should be implemented in order to have a geodesically incomplete space time. The hypothesis considered in this text are sufficient, but not necessary. In other words, their negation does not imply that a singularity is absent.

  15. New Approaches and Applications for Monte Carlo Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Aufiero, Manuele; Bidaud, Adrien; Kotlyar, Dan; Leppänen, Jaakko; Palmiotti, Giuseppe; Salvatores, Massimo; Sen, Sonat; Shwageraus, Eugene; Fratoni, Massimiliano

    2017-02-01

    This paper presents some of the recent and new advancements in the extension of Monte Carlo Perturbation Theory methodologies and application. In particular, the discussed problems involve Brunup calculation, perturbation calculation based on continuous energy functions, and Monte Carlo Perturbation Theory in loosely coupled systems.

  16. Perturbation Theory of the Cosmological Log-Density Field

    DEFF Research Database (Denmark)

    Wang, Xin; Neyrinck, Mark; Szapudi, István

    2011-01-01

    , motivating an analytic study of it. In this paper, we develop cosmological perturbation theory for the power spectrum of this field. Our formalism is developed in the context of renormalized perturbation theory, which helps to regulate the convergence behavior of the perturbation series, and of the Taylor...

  17. Quantum dynamical effects as a singular perturbation for observables in open quasi-classical nonlinear mesoscopic systems

    International Nuclear Information System (INIS)

    Berman, G.P.; Borgonovi, F.; Dalvit, D.A.R.

    2009-01-01

    We review our results on a mathematical dynamical theory for observables for open many-body quantum nonlinear bosonic systems for a very general class of Hamiltonians. We show that non-quadratic (nonlinear) terms in a Hamiltonian provide a singular 'quantum' perturbation for observables in some 'mesoscopic' region of parameters. In particular, quantum effects result in secular terms in the dynamical evolution, that grow in time. We argue that even for open quantum nonlinear systems in the deep quasi-classical region, these quantum effects can survive after decoherence and relaxation processes take place. We demonstrate that these quantum effects in open quantum systems can be observed, for example, in the frequency Fourier spectrum of the dynamical observables, or in the corresponding spectral density of noise. Estimates are presented for Bose-Einstein condensates, low temperature mechanical resonators, and nonlinear optical systems prepared in large amplitude coherent states. In particular, we show that for Bose-Einstein condensate systems the characteristic time of deviation of quantum dynamics for observables from the corresponding classical dynamics coincides with the characteristic time-scale of the well-known quantum nonlinear effect of phase diffusion.

  18. Dynamically Adapted Mesh Construction for the Efficient Numerical Solution of a Singular Perturbed Reaction-diffusion-advection Equation

    Directory of Open Access Journals (Sweden)

    Dmitry V. Lukyanenko

    2017-01-01

    Full Text Available This  work develops  a theory  of the  asymptotic-numerical investigation of the  moving fronts  in reaction-diffusion-advection models.  By considering  the  numerical  solution  of the  singularly perturbed Burgers’s  equation  we discuss a method  of dynamically  adapted mesh  construction that is able to significantly  improve  the  numerical  solution  of this  type of equations.  For  the  construction we use a priori information that is based  on the  asymptotic analysis  of the  problem.  In  particular, we take  into account the information about  the speed of the transition layer, its width  and structure. Our algorithms  are able to reduce significantly complexity and enhance stability of the numerical  calculations in comparison  with classical approaches for solving this class of problems.  The numerical  experiment is presented to demonstrate the effectiveness of the proposed  method.The article  is published  in the authors’  wording. 

  19. Algebraic quantum field theory, perturbation theory, and the loop expansion

    International Nuclear Information System (INIS)

    Duetsch, M.; Fredenhagen, K.

    2001-01-01

    The perturbative treatment of quantum field theory is formulated within the framework of algebraic quantum field theory. We show that the algebra of interacting fields is additive, i.e. fully determined by its subalgebras associated to arbitrary small subregions of Minkowski space. We also give an algebraic formulation of the loop expansion by introducing a projective system A (n) of observables ''up to n loops'', where A (0) is the Poisson algebra of the classical field theory. Finally we give a local algebraic formulation for two cases of the quantum action principle and compare it with the usual formulation in terms of Green's functions. (orig.)

  20. A numerical scheme for singularly perturbed reaction-diffusion problems with a negative shift via numerov method

    Science.gov (United States)

    Dinesh Kumar, S.; Nageshwar Rao, R.; Pramod Chakravarthy, P.

    2017-11-01

    In this paper, we consider a boundary value problem for a singularly perturbed delay differential equation of reaction-diffusion type. We construct an exponentially fitted numerical method using Numerov finite difference scheme, which resolves not only the boundary layers but also the interior layers arising from the delay term. An extensive amount of computational work has been carried out to demonstrate the applicability of the proposed method.

  1. Nucleon parton distributions in chiral perturbation theory

    International Nuclear Information System (INIS)

    Moiseeva, Alena

    2013-01-01

    Properties of the chiral expansion of nucleon light-cone operators have been studied. In the framework of the chiral perturbation theory we have demonstrated that convergency of the chiral expansion of nucleon parton distributions strongly depends on the value of the variable x. Three regions in x with essentially different analytical properties of the resulting chiral expansion for parton distributions were found. For each of the regions we have elaborated special power counting rules corresponding to the partial resummation of the chiral series. The nonlocal effective operators for the vector and the axial nucleon parton distributions have been constructed at the zeroth and the first chiral order. Using the derived nonlocal operators and the derived power counting rules we have obtained the second order expressions for the nucleon GPDs H(x,ξ,Δ 2 ), H(x,ξ,Δ 2 ),E(x,ξ,Δ 2 ) valid in the region x>or similar a 2 χ .

  2. Perturbative analysis in higher-spin theories

    Energy Technology Data Exchange (ETDEWEB)

    Didenko, V.E. [I.E. Tamm Department of Theoretical Physics, Lebedev Physical Institute,Leninsky prospect 53, 119991, Moscow (Russian Federation); Misuna, N.G. [Moscow Institute of Physics and Technology,Institutsky lane 9, 141700, Dolgoprudny, Moscow region (Russian Federation); Vasiliev, M.A. [I.E. Tamm Department of Theoretical Physics, Lebedev Physical Institute,Leninsky prospect 53, 119991, Moscow (Russian Federation)

    2016-07-28

    A new scheme of the perturbative analysis of the nonlinear HS equations is developed giving directly the final result for the successive application of the homotopy integrations which appear in the standard approach. It drastically simplifies the analysis and results from the application of the standard spectral sequence approach to the higher-spin covariant derivatives, allowing us in particular to reduce multiple homotopy integrals resulting from the successive application of the homotopy trick to a single integral. Efficiency of the proposed method is illustrated by various examples. In particular, it is shown how the Central on-shell theorem of the free theory immediately results from the nonlinear HS field equations with no intermediate computations.

  3. Baryon mass splittings in chiral perturbation theory

    International Nuclear Information System (INIS)

    Banerjee, M.K.; Milana, J.

    1995-01-01

    Baryon masses are calculated in chiral perturbation theory at the one-loop O(p 3 ) level in chiral expansion and to leading order in the heavy baryon expansion. Ultraviolet divergences occur requiring the introduction of counterterms. Despite this necessity, no knowledge of the counterterms is required to determine the violations of the Gell-Mann--Okubo mass relation for the baryon octet or of the decuplet equal-mass-spacing rule, as all divergences cancel exactly at this order. For the same reason all references to an arbitrary scale μ are absent. Neither of these features continue to higher powers in the chiral expansion. We also discuss critically the absolute necessity of simultaneously going beyond the leading-order heavy baryon expansion, if one goes beyond the one-loop O(p 3 ) level. We point out that these corrections in 1/M B generate new divergences ∝m 4 /M 10 . These divergences together with the divergences occurring in one-loop O(p 4 ) graphs of chiral perturbation theory are taken care of by the same set of counterterms. Because of these unknown counterterms one cannot predict the baryon mass splittings at the one-loop O(p 4 ) level even if the parameters of all scrL 1 πN terms are known. We point out another serious problem of going to the one-loop O(p 4 ) level. When the decuplet is off its mass shell there are additional πNΔ and πΔΔ interaction terms. These interactions contribute to the divergent terms ∝(m 4 /M 10 ), and also to nonanalytic terms such as ∝(m 4 /M 10 )ln(m/M 10 ). Without knowledge of the coupling constants appearing in these interactions, one cannot carry out a consistent one-loop O(p 4 ) level calculation

  4. Exact perturbation theory of multiphoton processes at high intensities. [Schroedinger equation, perturbation theory, matrix

    Energy Technology Data Exchange (ETDEWEB)

    Faisal, F H.M. [Bielefeld Univ. (Germany, F.R.). Fakultaet fuer Physik

    1976-06-11

    In this work the perturbation theory for multiphoton processes at high intensities is investigated and it is described an analytical method of summing the perturbation series to extract the contribution from all terms that give rise to the absorption of N photons by an atomic system. The method is first applied to the solution of a simple model problem and the result is confirmed by direct integration of the model Schroedinger equation. The usual lowest (nonvanishing)-order perturbation-theoretical calculation is also carried out for this model to demonstrate explicitly that the full result correctly reproduces that of the lowest-order theory in the limit of low intensity. The method is then extended to the case of an atomic system with well-developed spectrum (e.g. H atom) and the N-photon T-matrix is derived in terms of a ''photon matrix'' asub(N), for which a three-term recurrence relation is established. Next, from the vantage point of the general result obtained here, A probe is made into the nature of several approximate nonperturbative solutions that have appeared in the literature in the past. It is shown here that their applicability is severely restricted by the requirement of the essential spectral degeneracy of the atomic system. Finally, appendix A outlines a prescription of computing the photon matrix asub(N), which (as in the usual lowest-order perturbation-theoretical calculation)requires a knowledge of the eigenfunctions and eigenvalues of the atomic Hamiltonian only.

  5. On infrared and mass singularities of perturbative QCD in a quark-gluon plasma

    International Nuclear Information System (INIS)

    Altherr, T.; Aurenche, P.; Becherrawy, T.

    1988-07-01

    We discuss the radiative corrections to the production of lepton pairs in a quark-gluon plasma at finite temperature. The real-time formalism is used throughout the calculations. We show that both infrared and mass singularities cancel in the final result. In contrast to the zero-temperature case, no factorization theorem is required to deal with mass singularities

  6. Fedosov quantization and perturbative quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Collini, Giovanni

    2016-12-12

    Fedosov has described a geometro-algebraic method to construct in a canonical way a deformation of the Poisson algebra associated with a finite-dimensional symplectic manifold (''phase space''). His algorithm gives a non-commutative, but associative, product (a so-called ''star-product'') between smooth phase space functions parameterized by Planck's constant ℎ, which is treated as a deformation parameter. In the limit as ℎ goes to zero, the star product commutator goes to ℎ times the Poisson bracket, so in this sense his method provides a quantization of the algebra of classical observables. In this work, a generalization of Fedosov's method is developed which applies to the infinite-dimensional symplectic ''manifolds'' that occur in Lagrangian field theories. We show that the procedure remains mathematically well-defined, and we explain the relationship of the method to more standard perturbative quantization schemes in quantum field theory.

  7. Perturbation theory in nuclear fuel management optimization

    International Nuclear Information System (INIS)

    Ho, L.W.

    1981-01-01

    Nuclear in-core fuel management involves all the physical aspects which allow optimal operation of the nuclear fuel within the reactor core. In most nuclear power reactors, fuel loading patterns which have a minimum power peak are economically desirable to allow the reactors to operate at the highest power density and to minimize the possibility of fuel failure. In this study, perturbation theory along with a binary fuel shuffling technique is applied to predict the effects of various core configurations, and hence, the optimization of in-core fuel management. The computer code FULMNT has been developed to shuffle the fuel assemblies in search of the lowest possible power peaking factor. An iteration approach is used in the search routine. A two-group diffusion theory method is used to obtain the power distribution for the iterations. A comparison of the results of this method with other methods shows that this approach can save computer time. The code also has a burnup capability which can be used to check power peaking throughout the core life

  8. de Sitter limit of inflation and nonlinear perturbation theory

    DEFF Research Database (Denmark)

    R. Jarnhus, Philip; Sloth, Martin Snoager

    2007-01-01

    We study the fourth order action of the comoving curvature perturbation in an inflationary universe in order to understand more systematically the de Sitter limit in nonlinear cosmological perturbation theory. We derive the action of the curvature perturbation to fourth order in the comoving gaug...

  9. Very high order lattice perturbation theory for Wilson loops

    International Nuclear Information System (INIS)

    Horsley, R.

    2010-10-01

    We calculate perturbativeWilson loops of various sizes up to loop order n=20 at different lattice sizes for pure plaquette and tree-level improved Symanzik gauge theories using the technique of Numerical Stochastic Perturbation Theory. This allows us to investigate the behavior of the perturbative series at high orders. We observe differences in the behavior of perturbative coefficients as a function of the loop order. Up to n=20 we do not see evidence for the often assumed factorial growth of the coefficients. Based on the observed behavior we sum this series in a model with hypergeometric functions. Alternatively we estimate the series in boosted perturbation theory. Subtracting the estimated perturbative series for the average plaquette from the non-perturbative Monte Carlo result we estimate the gluon condensate. (orig.)

  10. The Schroedinger equation and canonical perturbation theory

    International Nuclear Information System (INIS)

    Graffi, S.; Paul, T.

    1987-01-01

    Let T 0 (ℎ,ω)+εV be the Schroedinger operator corresponding to the classical Hamiltonian H 0 (ω)+εV, where H 0 (ω) is the d-dimensional harmonic oscillator with non-resonant frequencies ω=(ω 1 ..., ω d ) and the potential V(q 1 , ..., q d ) is an entire function of order (d+l) -1 . We prove that the algorithm of classical, canonical perturbation theory can be applied to the Schroedinger equation in the Bargmann representation. As a consequence, each term of the Rayleigh-Schroedinger series near any eigenvalue of T 0 (ℎ,ω) admits a convergent expansion in powers of ℎ of initial point the corresponding term of the classical Birkhoff expansion. Moreover if V is an even polynomial, the above result and the KAM theorem show that all eigenvalues λ n (ℎ,ε) of T 0 +εV such that nℎ coincides with a KAM torus are given, up to order ε ∞ , by a quantization formula which reduces to the Bohr-Sommerfeld one up to first order terms in ℎ. (orig.)

  11. The classification of diagrams in perturbation theory

    International Nuclear Information System (INIS)

    Phillips, D.R.; Afnan, I.R.

    1995-01-01

    The derivation of scattering equations connecting the amplitudes obtained from diagrammatic expansions is of interest in many branches of physics. One method for deriving such equations is the classification-of-diagrams technique of Taylor. However, as we shall explain in this paper, there are certain points of Taylor's method which require clarification. First, it is not clear whether Taylor's original method is equivlant to the simpler classification-of-diagrams scheme used by Thomas, Rinat, Afnan, and Blankleider (TRAB). Second, when the Taylor method is applied to certain problems in a time-dependent perturbation theory it leads to the over-counting of some diagrams. This paper first restates Taylor's method, in the process uncovering reasons why certain diagrams might be double-counted in the Taylor method. In then explores how far Taylor's method is equivalent to the simpler TRAB method. Finally, it examines precisely why the double-counting occurs in Taylor's method and derives corrections which compensate for this double-counting. copyright 1995 Academic Press, Inc

  12. Kato expansion in quantum canonical perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaev, Andrey, E-mail: Andrey.Nikolaev@rdtex.ru [Institute of Computing for Physics and Technology, Protvino, Moscow Region, Russia and RDTeX LTD, Moscow (Russian Federation)

    2016-06-15

    This work establishes a connection between canonical perturbation series in quantum mechanics and a Kato expansion for the resolvent of the Liouville superoperator. Our approach leads to an explicit expression for a generator of a block-diagonalizing Dyson’s ordered exponential in arbitrary perturbation order. Unitary intertwining of perturbed and unperturbed averaging superprojectors allows for a description of ambiguities in the generator and block-diagonalized Hamiltonian. We compare the efficiency of the corresponding computational algorithm with the efficiencies of the Van Vleck and Magnus methods for high perturbative orders.

  13. Kato expansion in quantum canonical perturbation theory

    International Nuclear Information System (INIS)

    Nikolaev, Andrey

    2016-01-01

    This work establishes a connection between canonical perturbation series in quantum mechanics and a Kato expansion for the resolvent of the Liouville superoperator. Our approach leads to an explicit expression for a generator of a block-diagonalizing Dyson’s ordered exponential in arbitrary perturbation order. Unitary intertwining of perturbed and unperturbed averaging superprojectors allows for a description of ambiguities in the generator and block-diagonalized Hamiltonian. We compare the efficiency of the corresponding computational algorithm with the efficiencies of the Van Vleck and Magnus methods for high perturbative orders.

  14. The tension as perturbative parameter in string theory

    International Nuclear Information System (INIS)

    Gamboa, J.

    1990-01-01

    We propose an approach to string theory where the zero theory is the null string. We find an explicit form of the propagator for the null string in the momentum space. We show that considering the tension as perturbative parameter, the perturbative series is completely summable and we find the propagator of the bosonic open string with tension T. (author) [pt

  15. Singularity in the Laboratory Frame Angular Distribution Derived in Two-Body Scattering Theory

    Science.gov (United States)

    Dick, Frank; Norbury, John W.

    2009-01-01

    The laboratory (lab) frame angular distribution derived in two-body scattering theory exhibits a singularity at the maximum lab scattering angle. The singularity appears in the kinematic factor that transforms the centre of momentum (cm) angular distribution to the lab angular distribution. We show that it is caused in the transformation by the…

  16. Singularities of n-fold integrals of the Ising class and the theory of elliptic curves

    International Nuclear Information System (INIS)

    Boukraa, S; Hassani, S; Maillard, J-M; Zenine, N

    2007-01-01

    We introduce some multiple integrals that are expected to have the same singularities as the singularities of the n-particle contributions χ (n) to the susceptibility of the square lattice Ising model. We find the Fuchsian linear differential equation satisfied by these multiple integrals for n = 1, 2, 3, 4 and only modulo some primes for n = 5 and 6, thus providing a large set of (possible) new singularities of χ (n) . We discuss the singularity structure for these multiple integrals by solving the Landau conditions. We find that the singularities of the associated ODEs identify (up to n = 6) with the leading pinch Landau singularities. The second remarkable obtained feature is that the singularities of the ODEs associated with the multiple integrals reduce to the singularities of the ODEs associated with a finite number of one-dimensional integrals. Among the singularities found, we underline the fact that the quadratic polynomial condition 1 + 3w + 4w 2 = 0, that occurs in the linear differential equation of χ (3) , actually corresponds to a remarkable property of selected elliptic curves, namely the occurrence of complex multiplication. The interpretation of complex multiplication for elliptic curves as complex fixed points of the selected generators of the renormalization group, namely isogenies of elliptic curves, is sketched. Most of the other singularities occurring in our multiple integrals are not related to complex multiplication situations, suggesting an interpretation in terms of (motivic) mathematical structures beyond the theory of elliptic curves

  17. Divergence of perturbation theory in large scale structures

    Science.gov (United States)

    Pajer, Enrico; van der Woude, Drian

    2018-05-01

    We make progress towards an analytical understanding of the regime of validity of perturbation theory for large scale structures and the nature of some non-perturbative corrections. We restrict ourselves to 1D gravitational collapse, for which exact solutions before shell crossing are known. We review the convergence of perturbation theory for the power spectrum, recently proven by McQuinn and White [1], and extend it to non-Gaussian initial conditions and the bispectrum. In contrast, we prove that perturbation theory diverges for the real space two-point correlation function and for the probability density function (PDF) of the density averaged in cells and all the cumulants derived from it. We attribute these divergences to the statistical averaging intrinsic to cosmological observables, which, even on very large and "perturbative" scales, gives non-vanishing weight to all extreme fluctuations. Finally, we discuss some general properties of non-perturbative effects in real space and Fourier space.

  18. Non-singular string-cosmologies from exact conformal field theories

    International Nuclear Information System (INIS)

    Vega, H.J. de; Larsen, A.L.; Sanchez, N.

    2001-01-01

    Non-singular two and three dimensional string cosmologies are constructed using the exact conformal field theories corresponding to SO(2,1)/SO(1,1) and SO(2,2)/SO(2,1). All semi-classical curvature singularities are canceled in the exact theories for both of these cosets, but some new quantum curvature singularities emerge. However, considering different patches of the global manifolds, allows the construction of non-singular space-times with cosmological interpretation. In both two and three dimensions, we construct non-singular oscillating cosmologies, non-singular expanding and inflationary cosmologies including a de Sitter (exponential) stage with positive scalar curvature as well as non-singular contracting and deflationary cosmologies. Similarities between the two and three dimensional cases suggest a general picture for higher dimensional coset cosmologies: Anisotropy seems to be a generic unavoidable feature, cosmological singularities are generically avoided and it is possible to construct non-singular cosmologies where some spatial dimensions are experiencing inflation while the others experience deflation

  19. Cumulants in perturbation expansions for non-equilibrium field theory

    International Nuclear Information System (INIS)

    Fauser, R.

    1995-11-01

    The formulation of perturbation expansions for a quantum field theory of strongly interacting systems in a general non-equilibrium state is discussed. Non-vanishing initial correlations are included in the formulation of the perturbation expansion in terms of cumulants. The cumulants are shown to be the suitable candidate for summing up the perturbation expansion. Also a linked-cluster theorem for the perturbation series with cumulants is presented. Finally a generating functional of the perturbation series with initial correlations is studied. We apply the methods to a simple model of a fermion-boson system. (orig.)

  20. Constrained Perturbation Regularization Approach for Signal Estimation Using Random Matrix Theory

    KAUST Repository

    Suliman, Mohamed Abdalla Elhag

    2016-10-06

    In this work, we propose a new regularization approach for linear least-squares problems with random matrices. In the proposed constrained perturbation regularization approach, an artificial perturbation matrix with a bounded norm is forced into the system model matrix. This perturbation is introduced to improve the singular-value structure of the model matrix and, hence, the solution of the estimation problem. Relying on the randomness of the model matrix, a number of deterministic equivalents from random matrix theory are applied to derive the near-optimum regularizer that minimizes the mean-squared error of the estimator. Simulation results demonstrate that the proposed approach outperforms a set of benchmark regularization methods for various estimated signal characteristics. In addition, simulations show that our approach is robust in the presence of model uncertainty.

  1. On the acceleration of convergence of many-body perturbation theory. Pt. 2

    International Nuclear Information System (INIS)

    Dietz, K.; Schmidt, C.; Warken, M.; Hess, B.A.

    1992-07-01

    We employ the method developed in a previous paper to small systems-Be, LiH, H 2 -where full CI-calculations are available for monitoring convergence of many-body perturbation theory. It is shown that divergent series, in particular for excited states, can be transformed into fast converging ones. In essence our method consists in performing infinite subsummations of perturbation series in order to improve convergence: coupling constants are redefined such that singularities are incorporated in a non-perturbative manner and remaining correlations can be expanded in a larger domain of the complex coupling constant plane. It is in this way that the notion of 'improved convergence' has a well defined meaning. (orig.)

  2. Asymptotic behaviour and stability of solutions of a singularly perturbed elliptic problem with a triple root of the degenerate equation

    Science.gov (United States)

    Butuzov, V. F.

    2017-06-01

    We construct and justify asymptotic expansions of solutions of a singularly perturbed elliptic problem with Dirichlet boundary conditions in the case when the corresponding degenerate equation has a triple root. In contrast to the case of a simple root, the expansion is with respect to fractional (non-integral) powers of the small parameter, the boundary-layer variables have another scaling, and the boundary layer has three zones. This gives rise to essential modifications in the algorithm for constructing the boundary functions. Solutions of the elliptic problem are stationary solutions of the corresponding parabolic problem. We prove that such a stationary solution is asymptotically stable and find its global domain of attraction.

  3. Perturbative Gravity and Gauge Theory Relations: A Review

    Directory of Open Access Journals (Sweden)

    Thomas Søndergaard

    2012-01-01

    Full Text Available This paper is dedicated to the amazing Kawai-Lewellen-Tye relations, connecting perturbative gravity and gauge theories at tree level. The main focus is on n-point derivations and general properties both from a string theory and pure field theory point of view. In particular, the field theory part is based on some very recent developments.

  4. Renormalization scheme-invariant perturbation theory

    International Nuclear Information System (INIS)

    Dhar, A.

    1983-01-01

    A complete solution to the problem of the renormalization scheme dependence of perturbative approximants to physical quantities is presented. An equation is derived which determines any physical quantity implicitly as a function of only scheme independent variables. (orig.)

  5. Cosmological singularities and bounce in Cartan-Einstein theory

    Science.gov (United States)

    Lucat, Stefano; Prokopec, Tomislav

    2017-10-01

    We consider a generalized Einstein-Cartan theory, in which we add the unique covariant dimension four operators to general relativity that couples fermionic spin current to the torsion tensor (with an arbitrary strength). Since torsion is local and non-dynamical, when integrated out it yields an effective four-fermion interaction of the gravitational strength. We show how to renormalize the theory, in the one-loop perturbative expansion in generally curved space-times, obtaining the first order correction to the 2PI effective action in Schwinger-Keldysh (in-in) formalism. We then apply the renormalized theory to study the dynamics of a collapsing universe that begins in a thermal state and find that—instead of a big crunch singularity—the Universe with torsion undergoes a bounce. We solve the dynamical equations (a) classically (without particle production); (b) including the production of fermions in a fixed background in the Hartree-Fock approximation and (c) including the quantum backreaction of fermions onto the background space-time. In the first and last cases the Universe undergoes a bounce. The production of fermions due to the coupling to a contracting homogeneous background speeds up the bounce, implying that the quantum contributions from fermions is negative, presumably because fermion production contributes negatively to the energy-momentum tensor. When compared with former works on the subject, our treatment is fully microscopic (namely, we treat fermions by solving the corresponding Dirac equations) and quantum (in the sense that we include fermionic loop contributions).

  6. Cosmological singularities and bounce in Cartan-Einstein theory

    Energy Technology Data Exchange (ETDEWEB)

    Lucat, Stefano; Prokopec, Tomislav, E-mail: s.lucat@students.uu.nl, E-mail: t.prokopec@uu.nl [Institute for Theoretical Physics, Spinoza Institute and EMME$\\Phi$, Utrecht University, Postbus 80.195, 3508 TD Utrecht (Netherlands)

    2017-10-01

    We consider a generalized Einstein-Cartan theory, in which we add the unique covariant dimension four operators to general relativity that couples fermionic spin current to the torsion tensor (with an arbitrary strength). Since torsion is local and non-dynamical, when integrated out it yields an effective four-fermion interaction of the gravitational strength. We show how to renormalize the theory, in the one-loop perturbative expansion in generally curved space-times, obtaining the first order correction to the 2PI effective action in Schwinger-Keldysh ( in-in ) formalism. We then apply the renormalized theory to study the dynamics of a collapsing universe that begins in a thermal state and find that—instead of a big crunch singularity—the Universe with torsion undergoes a bounce . We solve the dynamical equations (a) classically (without particle production); (b) including the production of fermions in a fixed background in the Hartree-Fock approximation and (c) including the quantum backreaction of fermions onto the background space-time. In the first and last cases the Universe undergoes a bounce. The production of fermions due to the coupling to a contracting homogeneous background speeds up the bounce, implying that the quantum contributions from fermions is negative, presumably because fermion production contributes negatively to the energy-momentum tensor. When compared with former works on the subject, our treatment is fully microscopic (namely, we treat fermions by solving the corresponding Dirac equations) and quantum (in the sense that we include fermionic loop contributions).

  7. Analysis of jacobian and singularity of planar parallel robots using screw theory

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung Hyun; Lee, Jeh Won; Lee, Hyuk Jin [Yeungnam Univ., Gyeongsan (Korea, Republic of)

    2012-11-15

    The Jacobian and singularity analysis of parallel robots is necessary to analyze robot motion. The derivations of the Jacobian matrix and singularity configuration are complicated and have no geometrical earning in the velocity form of the Jacobian matrix. In this study, the screw theory is used to derive the Jacobian of parallel robots. The statics form of the Jacobian has a geometrical meaning. In addition, singularity analysis can be performed by using the geometrical values. Furthermore, this study shows that the screw theory is applicable to redundantly actuated robots as well as non redundant robots.

  8. Higher order perturbation theory - An example for discussion

    International Nuclear Information System (INIS)

    Lewins, J.D.; Parks, G.; Babb, A.L.

    1986-01-01

    Higher order perturbation theory is developed in the form of a Taylor series expansion to third order to calculate the thermal utilization of a nonuniform cell. The development takes advantage of the self-adjoint property of the diffusion operator to provide a simple development of this illustration of generalized perturbation theory employing scalar perturbation parameters. The results show how a designer might employ a second-order theory to quantify proposed design improvements, together with the limitations of second- and third-order theory. The chosen example has an exact optimization solution and thus provides a clear understanding of the role of perturbation theory at its various orders. Convergence and the computational advantages and disadvantages of the method are discussed

  9. Coupling-parameter expansion in thermodynamic perturbation theory.

    Science.gov (United States)

    Ramana, A Sai Venkata; Menon, S V G

    2013-02-01

    An approach to the coupling-parameter expansion in the liquid state theory of simple fluids is presented by combining the ideas of thermodynamic perturbation theory and integral equation theories. This hybrid scheme avoids the problems of the latter in the two phase region. A method to compute the perturbation series to any arbitrary order is developed and applied to square well fluids. Apart from the Helmholtz free energy, the method also gives the radial distribution function and the direct correlation function of the perturbed system. The theory is applied for square well fluids of variable ranges and compared with simulation data. While the convergence of perturbation series and the overall performance of the theory is good, improvements are needed for potentials with shorter ranges. Possible directions for further developments in the coupling-parameter expansion are indicated.

  10. On SYM theory and all order bulk singularity structures of BPS strings in type II theory

    Science.gov (United States)

    Hatefi, Ehsan

    2018-06-01

    The complete forms of the S-matrix elements of a transverse scalar field, two world volume gauge fields, and a Potential Cn-1 Ramond-Ramond (RR) form field are investigated. In order to find an infinite number of t , s , (t + s + u)-channel bulk singularity structures of this particular mixed open-closed amplitude, we employ all the conformal field theory techniques to , exploring all the entire correlation functions and all order α‧ contact interactions to these supersymmetric Yang-Mills (SYM) couplings. Singularity and contact term comparisons with the other symmetric analysis, and are also carried out in detail. Various couplings from pull-Back of branes, Myers terms and several generalized Bianchi identities should be taken into account to be able to reconstruct all order α‧ bulk singularities of type IIB (IIA) superstring theory. Finally, we make a comment on how to derive without any ambiguity all order α‧ contact terms of this S-matrix which carry momentum of RR in transverse directions.

  11. Numerical stochastic perturbation theory in the Schroedinger functional

    International Nuclear Information System (INIS)

    Brambilla, Michele; Di Renzo, Francesco; Hesse, Dirk; Dalla Brida, Mattia; Sint, Stefan; Deutsches Elektronen-Synchrotron

    2013-11-01

    The Schroedinger functional (SF) is a powerful and widely used tool for the treatment of a variety of problems in renormalization and related areas. Albeit offering many conceptual advantages, one major downside of the SF scheme is the fact that perturbative calculations quickly become cumbersome with the inclusion of higher orders in the gauge coupling and hence the use of an automated perturbation theory framework is desirable. We present the implementation of the SF in numerical stochastic perturbation theory (NSPT) and compare first results for the running coupling at two loops in pure SU(3) Yang-Mills theory with the literature.

  12. Numerical stochastic perturbation theory in the Schroedinger functional

    Energy Technology Data Exchange (ETDEWEB)

    Brambilla, Michele; Di Renzo, Francesco; Hesse, Dirk [Parma Univ. (Italy); INFN, Parma (Italy); Dalla Brida, Mattia [Trinity College Dublin (Ireland). School of Mathematics; Sint, Stefan [Trinity College Dublin (Ireland). School of Mathematics; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2013-11-15

    The Schroedinger functional (SF) is a powerful and widely used tool for the treatment of a variety of problems in renormalization and related areas. Albeit offering many conceptual advantages, one major downside of the SF scheme is the fact that perturbative calculations quickly become cumbersome with the inclusion of higher orders in the gauge coupling and hence the use of an automated perturbation theory framework is desirable. We present the implementation of the SF in numerical stochastic perturbation theory (NSPT) and compare first results for the running coupling at two loops in pure SU(3) Yang-Mills theory with the literature.

  13. Application of depletion perturbation theory to fuel cycle burnup analysis

    International Nuclear Information System (INIS)

    White, J.R.

    1979-01-01

    Over the past several years static perturbation theory methods have been increasingly used for reactor analysis in lieu of more detailed and costly direct computations. Recently, perturbation methods incorporating time dependence have also received attention, and several authors have demonstrated their applicability to fuel burnup analysis. The objective of the work described here is to demonstrate that a time-dependent perturbation method can be easily and accurately applied to realistic depletion problems

  14. Cosmological Perturbation Theory Using the Schrödinger Equation

    Science.gov (United States)

    Szapudi, István; Kaiser, Nick

    2003-01-01

    We introduce the theory of nonlinear cosmological perturbations using the correspondence limit of the Schrödinger equation. The resulting formalism is equivalent to using the collisionless Boltzmann (or Vlasov) equations, which remain valid during the whole evolution, even after shell crossing. Other formulations of perturbation theory explicitly break down at shell crossing, e.g., Eulerean perturbation theory, which describes gravitational collapse in the fluid limit. This Letter lays the groundwork by introducing the new formalism, calculating the perturbation theory kernels that form the basis of all subsequent calculations. We also establish the connection with conventional perturbation theories, by showing that third-order tree-level results, such as bispectrum, skewness, cumulant correlators, and three-point function, are exactly reproduced in the appropriate expansion of our results. We explicitly show that cumulants up to N=5 predicted by Eulerian perturbation theory for the dark matter field δ are exactly recovered in the corresponding limit. A logarithmic mapping of the field naturally arises in the Schrödinger context, which means that tree-level perturbation theory translates into (possibly incomplete) loop corrections for the conventional perturbation theory. We show that the first loop correction for the variance is σ2=σ2L+(-1.14- n)σ4L for a field with spectral index n. This yields 1.86 and 0.86 for n=-3 and -2, respectively, to be compared with the exact loop order corrections 1.82 and 0.88. Thus, our tree-level theory recovers the dominant part of first-order loop corrections of the conventional theory, while including (partial) loop corrections to infinite order in terms of δ.

  15. Differential forms on singular varieties De Rham and Hodge theory simplified

    CERN Document Server

    Ancona, Vincenzo

    2005-01-01

    Differential Forms on Singular Varieties: De Rham and Hodge Theory Simplified uses complexes of differential forms to give a complete treatment of the Deligne theory of mixed Hodge structures on the cohomology of singular spaces. This book features an approach that employs recursive arguments on dimension and does not introduce spaces of higher dimension than the initial space. It simplifies the theory through easily identifiable and well-defined weight filtrations. It also avoids discussion of cohomological descent theory to maintain accessibility. Topics include classical Hodge theory, differential forms on complex spaces, and mixed Hodge structures on noncompact spaces.

  16. Singular integral equations boundary problems of function theory and their application to mathematical physics

    CERN Document Server

    Muskhelishvili, N I

    2011-01-01

    Singular integral equations play important roles in physics and theoretical mechanics, particularly in the areas of elasticity, aerodynamics, and unsteady aerofoil theory. They are highly effective in solving boundary problems occurring in the theory of functions of a complex variable, potential theory, the theory of elasticity, and the theory of fluid mechanics.This high-level treatment by a noted mathematician considers one-dimensional singular integral equations involving Cauchy principal values. Its coverage includes such topics as the Hölder condition, Hilbert and Riemann-Hilbert problem

  17. Perturbation theory and coupling constant analyticity in two-dimensional field theories

    International Nuclear Information System (INIS)

    Simon, B.

    1973-01-01

    Conjectural material and results over a year old are presented in the discussion of perturbation theory and coupling constant analyticity in two-dimensional field theories. General properties of perturbation series are discussed rather than questions of field theory. The question is interesting for two reasons: First, one would like to understand why perturbation theory is such a good guide (to show that perturbation theory determines the theory in some way). Secondly, one hopes to prove that some or all of the theories are nontrivial. (U.S.)

  18. Application of generalized perturbation theory to flux disadvantage factor calculations

    International Nuclear Information System (INIS)

    Sallam, O.H.; Akimov, I.S.; Naguib, K.; Hamouda, I.

    1979-01-01

    The possibility of using the generalized perturbation theory to calculate the perturbation of the flux disadvantage factors of reactor cell, resulting from the variation of the cell parameters, is studied. For simplicity the one-group diffusion approximation is considered. All necessary equations are derived for variations both of the cell dimensions. Numerical results are presented in the paper

  19. Non-perturbative Heavy Quark Effective Theory

    DEFF Research Database (Denmark)

    Della Morte, Michele; Heitger, Jochen; Simma, Hubert

    2015-01-01

    We review a lattice strategy how to non-perturbatively determine the coefficients in the HQET expansion of all components of the heavy-light axial and vector currents, including 1/m_h-corrections. We also discuss recent preliminary results on the form factors parameterizing semi-leptonic B...

  20. Energy momentum tensor in local causal perturbation theory

    International Nuclear Information System (INIS)

    Prange, D.

    2001-01-01

    We study the energy momentum tensor in the Bogolyubov-Epstein-Glaser approach to perturbation theory. It is found to be locally conserved for a class of theories containing to derivated fields in the interaction. For the massless φ 4 -theory we derive the trace anomaly of the improved tensor. (orig.)

  1. Quasipotential in the fourth order of perturbation theory

    International Nuclear Information System (INIS)

    Bojkova, N.A.; Dvoeglazov, V.V.; Tyukhtyaev, Yu.N.; Faustov, R.N.

    1992-01-01

    The quasipotential in the fourth order of perturbation theory is calculated in the Coulomb gauge for the unequal mass particles. It could be used for the future calculations of energy spectra in two-body systems. 15 refs.; 1 fig

  2. Perturbation theory instead of large scale shell model calculations

    International Nuclear Information System (INIS)

    Feldmeier, H.; Mankos, P.

    1977-01-01

    Results of large scale shell model calculations for (sd)-shell nuclei are compared with a perturbation theory provides an excellent approximation when the SU(3)-basis is used as a starting point. The results indicate that perturbation theory treatment in an SU(3)-basis including 2hω excitations should be preferable to a full diagonalization within the (sd)-shell. (orig.) [de

  3. Perturbation theory and collision probability formalism. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Nasr, M [National Center for Nuclear Safety and Radiation Control, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    Perturbation theory is commonly used in evaluating the activity effects, particularly those resulting from small and localized perturbation in multiplying media., e.g. in small sample reactivity measurements. The Boltzmann integral transport equation is generally used for evaluating the direct and adjoint fluxes in the heterogenous lattice cells to be used in the perturbation equations. When applying perturbation theory in this formalism, a term involving the perturbation effects on the special transfer kernel arises. This term is difficult to evaluate correctly, since it involves an integration all over the entire system. The main advantage of the perturbation theory which is the limitation of the integration procedure on the perturbation region is found to be of no practical use in such cases. In the present work, the perturbation equation in the collision probability formalism is analyzed. A mathematical treatment of the term in question is performed. A new mathematical expression for this term is derived. The new expression which can be estimated easily is derived.

  4. On the meaning of perturbation expansions in quantum field theory

    International Nuclear Information System (INIS)

    Burdik, C.; Chyla, J.

    1987-01-01

    We reformulate perturbation expansions in renormalized quantum field theories in a way that allows straightforward handling of situations when in the conventional approach (i.e. in fixed renormalization scheme) these expansions are divergent. In our approach the results of perturbation calculations of physical quantities appear in the form of (under certain circumstances) convergent expansions in powers of a free parameter χ, characterising the procedure involved. This inherent ambiguity of perturbative calculations is conjectures to be an expression of the underlaying ambiguity in the separation of the full theory into its perturbative and nonperturbative parts. The close connection of our results with the Borel summation technique is demonstrated and their relation to conventional perturbation expansions in fixed renormalization scheme is clarified

  5. Theory of cosmological perturbations with cuscuton

    Energy Technology Data Exchange (ETDEWEB)

    Boruah, Supranta S.; Kim, Hyung J.; Geshnizjani, Ghazal, E-mail: ssarmabo@uwaterloo.ca, E-mail: h268kim@uwaterloo.ca, E-mail: ggeshniz@uwaterloo.ca [Department of Applied Mathematics, University of Waterloo, 200 University Ave W., Waterloo, ON N2L 3G1 (Canada)

    2017-07-01

    This paper presents the first derivation of the quadratic action for curvature perturbations, ζ, within the framework of cuscuton gravity. We study the scalar cosmological perturbations sourced by a canonical single scalar field in the presence of cuscuton field. We identify ζ as comoving curvature with respect to the source field and we show that it retains its conservation characteristic on super horizon scales. The result provides an explicit proof that cuscuton modification of gravity around Friedmann-Lemaitre-Robertson-Walker (FLRW) metric is ghost free. We also investigate the potential development of other instabilities in cuscuton models. We find that in a large class of these models, there is no generic instability problem. However, depending on the details of slow-roll parameters, specific models may display gradient instabilities.

  6. Perturbing the ground ring of 2D string theory

    CERN Document Server

    Barbón, José L F

    1992-01-01

    We use free field techniques in D=2 string theory to calculate the perturbation of the special state algebras when the cosmologi- cal constant is turned on. In particular, we find that the "ground cone" preserved by the ring structure is promoted to a three dimen- sional hyperboloid as conjectured by Witten. On the other hand, the perturbed (1,1) a three dimensional hyperboloid as conjectured by Witten. On the other hand, the perturbed (1,1) current algebra of moduli deformations is computed completely, and no simple geometrical inter- pretation is found. We also quote some facts concerning the Liouville/matrix model dictio- nary in this class of theories.

  7. Growth rate, population entropy, and perturbation theory.

    OpenAIRE

    Demetrius, L.

    1989-01-01

    This paper is concerned with the connection between two classes of population variables: measures of population growth rate—the Malthusian parameter, the net reproduction rate, the gross reproduction rate, and the mean life expectancy; and measures of demographic heterogeneity—population entropy. It is shown that the entropy functions predict the response of the growth rate parameters to perturbations in the age-specific fecundity and mortality schedule. These results are invoked to introduce...

  8. Convergent perturbation expansions for Euclidean quantum field theory

    International Nuclear Information System (INIS)

    Mack, G.; Pordt, A.

    1984-09-01

    Mayer perturbation theory is designed to provide computable convergent expansions which permit calculation of Greens functions in Euclidean Quantum Field Theory to arbitrary accuracy, including 'nonperturbative' contributions from large field fluctuations. Here we describe the expansions at the example of 3-dimensional lambdaphi 4 -theory (in continuous space). They are not essentially more complicated than standard perturbation theory. The n-th order term is expressed in terms of 0(n)-dimensional integrals, and is of order lambda 4 if 4k-3<=n<=4k. (orig.)

  9. Kleinian singularities and the ground ring of c=1 string theory

    International Nuclear Information System (INIS)

    Ghoshal, D.; Jatkar, D.P.; Mukhi, S.

    1993-01-01

    We investigate the nature of the ground ring of c=1 string theory at the special ADE points in the c=1 moduli space associated to discrete subgroups of SU(2). The chiral ground rings at these points are shown to define the ADE series of singular varieties introduced by Klein. The non-chiral ground rings relevant to closed-string theory are 3 real dimensional singular varieties obtained as U(1) quotients of the kleinian varieties. The unbroken symmetries of the theory at these points are the volume-preserving diffeomorphisms of these varieties. The theory of kleinian singularities has a close relation to that of complex hyperKaehler surfaces, or gravitational instantons. We speculate on the relevance of these instantons and of self-dual gravity in c=1 string theory. (orig.)

  10. Naked singularity formation in Brans-Dicke theory

    Energy Technology Data Exchange (ETDEWEB)

    Ziaie, Amir Hadi; Atazadeh, Khedmat [Department of Physics, Shahid Beheshti University, Evin, Tehran 19839 (Iran, Islamic Republic of); Tavakoli, Yaser, E-mail: am.ziaie@mail.sbu.ac.i, E-mail: k-atazadeh@sbu.ac.i, E-mail: tavakoli@ubi.p [Departamento de Fisica, Universidade da Beira Interior, Rua Marques d' Avila e Bolama, 6200 Covilha (Portugal)

    2010-04-07

    Gravitational collapse of the Brans-Dicke scalar field with non-zero potential in the presence of matter fluid obeying the barotropic equation of state, p = wrho, is studied. Utilizing the concept of the expansion parameter, it is seen that the cosmic censorship conjecture may be violated for w=-1/3 and w=-2/3 which correspond to the cosmic string and domain wall, respectively. We have shown that physically, it is the rate of collapse that governs the formation of a black hole or a naked singularity as the final fate of dynamical evolution and only for these two cases can the singularity be naked as the collapse end state. Also the weak energy condition is satisfied by the collapsing configuration.

  11. Wilson loops to 20th order numerical stochastic perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics; Hotzel, G.; Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Ilgenfritz, E.M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Joint Institute for Nuclear Research, VBLHEP, Dubna (Russian Federation); Millo, R.; Rakow, P.E.L. [Liverpool Univ. (Germany). Theoretical Physics Div.; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo (Japan); Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-05-15

    We calculate Wilson loops of various sizes up to 20 loops in SU(3) pure lattice gauge theory at different lattice sizes for Wilson gauge action using the technique of numerical stochastic perturbation theory. This allows us to investigate the perturbative series for various Wilson loops at high loop orders. We observe differences in the behavior of those series as function of the loop order. Up to n=20 we do not find evidence for the factorial growth of the expansion coefficients often assumed to characterize an asymptotic series. Based on the actually observed behavior we sum the series in a model parametrized by hypergeometric functions. Alternatively we estimate the total series in boosted perturbation theory using information from the first 14 loops. We introduce generalized ratios of Wilson loops of different sizes. Together with the corresponding Wilson loops from standard Monte Carlo measurements they enable us to assess their non-perturbative parts.

  12. Perturbation theory for water with an associating reference fluid

    Science.gov (United States)

    Marshall, Bennett D.

    2017-11-01

    The theoretical description of the thermodynamics of water is challenged by the structural transition towards tetrahedral symmetry at ambient conditions. As perturbation theories typically assume a spherically symmetric reference fluid, they are incapable of accurately describing the liquid properties of water at ambient conditions. In this paper we address this problem by introducing the concept of an associated reference perturbation theory (APT). In APT we treat the reference fluid as an associating hard sphere fluid which transitions to tetrahedral symmetry in the fully hydrogen bonded limit. We calculate this transition in a theoretically self-consistent manner without appealing to molecular simulations. This associated reference provides the reference fluid for a second order Barker-Henderson perturbative treatment of the long-range attractions. We demonstrate that this approach gives a significantly improved description of water as compared to standard perturbation theories.

  13. Evolution of curvature perturbation in generalized gravity theories

    International Nuclear Information System (INIS)

    Matsuda, Tomohiro

    2009-01-01

    Using the cosmological perturbation theory in terms of the δN formalism, we find the simple formulation of the evolution of the curvature perturbation in generalized gravity theories. Compared with the standard gravity theory, a crucial difference appears in the end-boundary of the inflationary stage, which is due to the non-ideal form of the energy-momentum tensor that depends explicitly on the curvature scalar. Recent study shows that ultraviolet-complete quantum theory of gravity (Horava-Lifshitz gravity) can be approximated by using a generalized gravity action. Our paper may give an important step in understanding the evolution of the curvature perturbation during inflation, where the energy-momentum tensor may not be given by the ideal form due to the corrections from the fundamental theory.

  14. Perturbation theory and importance functions in integral transport formulations

    International Nuclear Information System (INIS)

    Greenspan, E.

    1976-01-01

    Perturbation theory expressions for the static reactivity derived from the flux, collision density, birth-rate density, and fission-neutron density formulations of integral transport theory, and from the integro-differential formulation, are intercompared. The physical meaning and relation of the adjoint functions corresponding to each of the five formulations are established. It is found that the first-order approximation of the perturbation expressions depends on the transport theory formulation and on the adjoint function used. The approximations of the integro-differential formulation corresponding to different first-order approximations of the integral transport theory formulations are identified. It is found that the accuracy of all first-order approximations of the integral transport formulations examined is superior to the accuracy of first-order integro-differential perturbation theory

  15. Landau singularities and symbology: one- and two-loop MHV amplitudes in SYM theory

    Energy Technology Data Exchange (ETDEWEB)

    Dennen, Tristan; Spradlin, Marcus; Volovich, Anastasia [Department of Physics, Brown University,Providence RI 02912 (United States)

    2016-03-14

    We apply the Landau equations, whose solutions parameterize the locus of possible branch points, to the one- and two-loop Feynman integrals relevant to MHV amplitudes in planar N=4 super-Yang-Mills theory. We then identify which of the Landau singularities appear in the symbols of the amplitudes, and which do not. We observe that all of the symbol entries in the two-loop MHV amplitudes are already present as Landau singularities of one-loop pentagon integrals.

  16. Landau singularities and symbology: one- and two-loop MHV amplitudes in SYM theory

    International Nuclear Information System (INIS)

    Dennen, Tristan; Spradlin, Marcus; Volovich, Anastasia

    2016-01-01

    We apply the Landau equations, whose solutions parameterize the locus of possible branch points, to the one- and two-loop Feynman integrals relevant to MHV amplitudes in planar N=4 super-Yang-Mills theory. We then identify which of the Landau singularities appear in the symbols of the amplitudes, and which do not. We observe that all of the symbol entries in the two-loop MHV amplitudes are already present as Landau singularities of one-loop pentagon integrals.

  17. Two-body perturbation theory versus first order perturbation theory: A comparison based on the square-well fluid.

    Science.gov (United States)

    Mercier Franco, Luís Fernando; Castier, Marcelo; Economou, Ioannis G

    2017-12-07

    We show that the Zwanzig first-order perturbation theory can be obtained directly from a truncated Taylor series expansion of a two-body perturbation theory and that such truncation provides a more accurate prediction of thermodynamic properties than the full two-body perturbation theory. This unexpected result is explained by the quality of the resulting approximation for the fluid radial distribution function. We prove that the first-order and the two-body perturbation theories are based on different approximations for the fluid radial distribution function. To illustrate the calculations, the square-well fluid is adopted. We develop an analytical expression for the two-body perturbed Helmholtz free energy for the square-well fluid. The equation of state obtained using such an expression is compared to the equation of state obtained from the first-order approximation. The vapor-liquid coexistence curve and the supercritical compressibility factor of a square-well fluid are calculated using both equations of state and compared to Monte Carlo simulation data. Finally, we show that the approximation for the fluid radial distribution function given by the first-order perturbation theory provides closer values to the ones calculated via Monte Carlo simulations. This explains why such theory gives a better description of the fluid thermodynamic behavior.

  18. Calculations in perturbative string field theory

    International Nuclear Information System (INIS)

    Thorn, C.B.

    1987-01-01

    The author discusses methods for evaluating the Feynman diagrams of string field theory, with particular emphasis on Witten's version of open string field theory. It is explained in some detail how the rules states by Giddings and Martinec for relating a given diagram to a Polyakov path integral emerge from the Feynman rules

  19. Analytic-Numerical Approach to Solving Singularly Perturbed Parabolic Equations with the Use of Dynamic Adapted Meshes

    Directory of Open Access Journals (Sweden)

    D. V. Lukyanenko

    2016-01-01

    Full Text Available The main objective of the paper is to present a new analytic-numerical approach to singularly perturbed reaction-diffusion-advection models with solutions containing moving interior layers (fronts. We describe some methods to generate the dynamic adapted meshes for an efficient numerical solution of such problems. It is based on a priori information about the moving front properties provided by the asymptotic analysis. In particular, for the mesh construction we take into account a priori asymptotic evaluation of the location and speed of the moving front, its width and structure. Our algorithms significantly reduce the CPU time and enhance the stability of the numerical process compared with classical approaches.The article is published in the authors’ wording.

  20. Quark disconnected diagrams in chiral perturbation theory

    CERN Document Server

    Della Morte, Michele

    2010-01-01

    We show how quark-disconnected and quark-connected contributions to hadronic n-point functions can be written as independent correlators for which one can derive expressions in partially quenched chiral effective theory. As an example we apply the idea to the case of the hadronic vacuum polarisation. In particular, we consider the cases of the Nf = 2 theory without and with a partially quenched strange quark and also the Nf = 2 + 1 theory. In the latter two cases a parameter-free prediction for the disconnected contribution at NLO in the effective theory is given. Finally we show how twisted boundary conditions can then be used in lattice QCD to improve the q^2 resolution in the connected contributions even when flavour singlet operators are considered.

  1. A new perturbative approximation applied to supersymmetric quantum field theory

    International Nuclear Information System (INIS)

    Bender, C.M.; Milton, K.A.; Pinsky, S.S.; Simmons, L.M. Jr.; Los Alamos National Lab.

    1988-01-01

    We show that a recently proposed graphical perturbative calculational scheme in quantum field theory is consistent with global supersymmetry invariance. We examine a two-dimensional supersymmetric quantum field theory in which we do not known of any other means for doing analytical calculations. We illustrate the power of this new technique by computing the ground-state energy density E to second order in this new perturbation theory. We show that there is a beautiful and delicate cancellation between infinite classes of graphs which leads to the result that E=0. (orig.)

  2. Analysis of observables in Chern-Simons perturbation theory

    International Nuclear Information System (INIS)

    Alvarez, M.; Labastida, J.M.F.

    1993-01-01

    Chern-Simons theory with gauge group SU(N) is analyzed from a perturbation theory point of view. Computations up to order g 6 of the vacuum expectation value of the unknot are carried out and it is shown that agreement with the exact result by Witten implies no quantum correction at two loops for the two-point function. In addition, it is shown from a perturbation theory point of view that the framing dependence of the vacuum expectation value of an arbitrary knot factorizes in the form predicted by Witten. (orig.)

  3. Implementation of static generalized perturbation theory for LWR design applications

    International Nuclear Information System (INIS)

    Byron, R.F.; White, J.R.

    1987-01-01

    A generalized perturbation theory (GPT) formulation is developed for application to light water reactor (LWR) design. The extensions made to standard generalized perturbation theory are the treatment of thermal-hydraulic and fission product poisoning feedbacks, and criticality reset. This formulation has been implemented into a standard LWR design code. The method is verified by comparing direct calculations with GPT calculations. Data are presented showing that feedback effects need to be considered when using GPT for LWR problems. Some specific potential applications of this theory to the field of LWR design are discussed

  4. Scheme (in?) dependence in perturbative Lagrangian quantum field theory

    International Nuclear Information System (INIS)

    Slavnov, D.A.

    1995-01-01

    A problem of renormalization - scheme ambiguity in perturbation quantum field theory is investigated. A procedure is described that makes it possible to express uniquely all observable quantities in terms of a set base observables. Renormalization group equations for the base observable are constructed. The case of mass theory is treated. 9 refs

  5. Perturbation Theory of Massive Yang-Mills Fields

    Science.gov (United States)

    Veltman, M.

    1968-08-01

    Perturbation theory of massive Yang-Mills fields is investigated with the help of the Bell-Treiman transformation. Diagrams containing one closed loop are shown to be convergent if there are more than four external vector boson lines. The investigation presented does not exclude the possibility that the theory is renormalizable.

  6. Perturbation theory via Feynman diagrams in classical mechanics

    OpenAIRE

    Penco, R.; Mauro, D.

    2006-01-01

    In this paper we show how Feynman diagrams, which are used as a tool to implement perturbation theory in quantum field theory, can be very useful also in classical mechanics, provided we introduce also at the classical level concepts like path integrals and generating functionals.

  7. The SU(3) beta function from numerical stochastic perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Perlt, H. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Bonn Univ. (Germany). Helmholtz Inst. fuer Strahlen- und Kernphysik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G.; Schiller, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-09-15

    The SU(3) beta function is derived from Wilson loops computed to 20th order in numerical stochastic perturbation theory. An attempt is made to include massless fermions, whose contribution is known analytically to 4th order. The question whether the theory admits an infrared stable fixed point is addressed.

  8. Perturbative algebraic quantum field theory at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, Falk

    2013-08-15

    We present the algebraic approach to perturbative quantum field theory for the real scalar field in Minkowski spacetime. In this work we put a special emphasis on the inherent state-independence of the framework and provide a detailed analysis of the state space. The dynamics of the interacting system is constructed in a novel way by virtue of the time-slice axiom in causal perturbation theory. This method sheds new light in the connection between quantum statistical dynamics and perturbative quantum field theory. In particular it allows the explicit construction of the KMS and vacuum state for the interacting, massive Klein-Gordon field which implies the absence of infrared divergences of the interacting theory at finite temperature, in particular for the interacting Wightman and time-ordered functions.

  9. Perturbative algebraic quantum field theory at finite temperature

    International Nuclear Information System (INIS)

    Lindner, Falk

    2013-08-01

    We present the algebraic approach to perturbative quantum field theory for the real scalar field in Minkowski spacetime. In this work we put a special emphasis on the inherent state-independence of the framework and provide a detailed analysis of the state space. The dynamics of the interacting system is constructed in a novel way by virtue of the time-slice axiom in causal perturbation theory. This method sheds new light in the connection between quantum statistical dynamics and perturbative quantum field theory. In particular it allows the explicit construction of the KMS and vacuum state for the interacting, massive Klein-Gordon field which implies the absence of infrared divergences of the interacting theory at finite temperature, in particular for the interacting Wightman and time-ordered functions.

  10. Second Person Singular Address Forms in Caleno Spanish: Applying a Theory of Language Regard

    Science.gov (United States)

    Newall, Gregory M.

    2012-01-01

    Language regard is defined as the opinions and norms that speakers have about language. In this dissertation, a theory of language regard is applied to variation in second-person singular address forms in Cali Colombian Spanish (["tuteo," "voseo", and "ustedeo" ]). This theory claims that language production and…

  11. Degenerate R-S perturbation theory

    Science.gov (United States)

    Hirschfelder, J. O.; Certain, P. R.

    1973-01-01

    A concise, systematic procedure is given for determining the Rayleigh-Schrodinger energies and wave functions of degenerate states to arbitrarily high orders even when the degeneracies of the various states are resolved in arbitrary orders. The procedure is expressed in terms of an iterative cycle in which the energy through the (2n+1)st order is expressed in terms of the partially determined wave function through the n-th order. Both a direct and an operator derivation are given. The two approaches are equivalent and can be transcribed into each other. The direct approach deals with the wave functions (without the use of formal operators) and has the advantage that it resembles the usual treatment of nondegenerate perturbations and maintains close contact with the basic physics. In the operator approach, the wave functions are expressed in terms of infinite order operators which are determined by the successive resolution of the space of the zeroth order functions.

  12. Obstruction of black hole singularity by quantum field theory effects

    Energy Technology Data Exchange (ETDEWEB)

    Abedi, Jahed; Arfaei, Hessamaddin [Department of Physics, Sharif University of Technology,P.O. Box 11155-9161, Tehran, Irany (Iran, Islamic Republic of); School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2016-03-21

    We consider the back reaction of the energy due to quantum fluctuation of the background fields considering the trace anomaly for Schwarzschild black hole. It is shown that it will result in modification of the horizon and also formation of an inner horizon. We show that the process of collapse of a thin shell stops before formation of the singularity at a radius slightly smaller than the inner horizon at the order of (c{sub A}(M/(M{sub p}))){sup 1/3}l{sub p}. After the collapse stops the reverse process takes place. Thus we demonstrate that without turning on quantum gravity and just through the effects the coupling of field to gravity as trace anomaly of quantum fluctuations the formation of the singularity through collapse is obstructed. An important consequence of our work is existence of an extremal solution with zero temperature and a mass which is lower bound for the Schwazschild solution. This solution is also the asymptotic final stable state after Hawking radiation.

  13. Perturbative Quantum Gravity from Gauge Theory

    Science.gov (United States)

    Carrasco, John Joseph

    In this dissertation we present the graphical techniques recently developed in the construction of multi-loop scattering amplitudes using the method of generalized unitarity. We construct the three-loop and four-loop four-point amplitudes of N = 8 supergravity using these methods and the Kawaii, Lewellen and Tye tree-level relations which map tree-level gauge theory amplitudes to tree-level gravity theory amplitudes. We conclude by extending a tree-level duality between color and kinematics, generic to gauge theories, to a loop level conjecture, allowing the easy relation between loop-level gauge and gravity kinematics. We provide non-trivial evidence for this conjecture at three-loops in the particular case of maximal supersymmetry.

  14. Non-perturbative heavy quark effective theory. Introduction and status

    International Nuclear Information System (INIS)

    Sommer, Rainer; Humboldt-Universitaet, Berlin

    2015-01-01

    We give an introduction to Heavy Quark Effective Theory (HQET). Our emphasis is on its formulation non-perturbative in the strong coupling, including the non-perturbative determination of the parameters in the HQET Lagrangian. In a second part we review the present status of HQET on the lattice, largely based on work of the ALPHA collaboration in the last few years. We finally discuss opportunities and challenges.

  15. Perturbation theory around the Wess-Zumino-Witten model

    International Nuclear Information System (INIS)

    Hasseln, H. v.

    1991-05-01

    We consider a perturbation of the Wess-Zumino-Witten model in 2D by a current-current interaction. The β-function is computed to third order in the coupling constant and a nontrivial fixedpoint is found. By non-abelian bosonization, this perturbed WZW-model is shown to have the same β-function (at least to order g 2 ) as the fermionic theory with a four-fermion interaction. (orig.) [de

  16. Generalized perturbation theory (GPT) methods. A heuristic approach

    International Nuclear Information System (INIS)

    Gandini, A.

    1987-01-01

    Wigner first proposed a perturbation theory as early as 1945 to study fundamental quantities such as the reactivity worths of different materials. The first formulation, CPT, for conventional perturbation theory is based on universal quantum mechanics concepts. Since that early conception, significant contributions have been made to CPT, in particular, Soodak, who rendered a heuristic interpretation of the adjoint function, (referred to as the GPT method for generalized perturbation theory). The author illustrates the GPT methodology in a variety of linear and nonlinear domains encountered in nuclear reactor analysis. The author begins with the familiar linear neutron field and then generalizes the methodology to other linear and nonlinear fields, using heuristic arguments. The author believes that the inherent simplicity and elegance of the heuristic derivation, although intended here for reactor physics problems might be usefully adopted in collateral fields and includes such examples

  17. String perturbation theory and effective Lagrangians

    International Nuclear Information System (INIS)

    Klebanov, I.

    1987-09-01

    We isolate logarithmic divergences from bosonic string amplitudes on a disc. These divergences are compared with 'tadpole' divergences in the effective field theory with a cosmological term, which also contains an effective potential for the dilation. Also, corrections to β-functions are compared with variations of the effective action. In both cases we find an inconsistency between the two. This is a serious problem which could undermine our ability to remove divergences from the bosonic string

  18. Perturbed period-doubling bifurcation. I. Theory

    DEFF Research Database (Denmark)

    Svensmark, Henrik; Samuelsen, Mogens Rugholm

    1990-01-01

    -defined way that is a function of the amplitude and the frequency of the signal. New scaling laws between the amplitude of the signal and the detuning δ are found; these scaling laws apply to a variety of quantities, e.g., to the shift of the bifurcation point. It is also found that the stability...... of a microwave-driven Josephson junction confirm the theory. Results should be of interest in parametric-amplification studies....

  19. The accuracy of QCD perturbation theory at high energies

    CERN Document Server

    Dalla Brida, Mattia; Korzec, Tomasz; Ramos, Alberto; Sint, Stefan; Sommer, Rainer

    2016-01-01

    We discuss the determination of the strong coupling $\\alpha_\\mathrm{\\overline{MS}}^{}(m_\\mathrm{Z})$ or equivalently the QCD $\\Lambda$-parameter. Its determination requires the use of perturbation theory in $\\alpha_s(\\mu)$ in some scheme, $s$, and at some energy scale $\\mu$. The higher the scale $\\mu$ the more accurate perturbation theory becomes, owing to asymptotic freedom. As one step in our computation of the $\\Lambda$-parameter in three-flavor QCD, we perform lattice computations in a scheme which allows us to non-perturbatively reach very high energies, corresponding to $\\alpha_s = 0.1$ and below. We find that perturbation theory is very accurate there, yielding a three percent error in the $\\Lambda$-parameter, while data around $\\alpha_s \\approx 0.2$ is clearly insufficient to quote such a precision. It is important to realize that these findings are expected to be generic, as our scheme has advantageous properties regarding the applicability of perturbation theory.

  20. Quasi-degenerate perturbation theory using matrix product states

    International Nuclear Information System (INIS)

    Sharma, Sandeep; Jeanmairet, Guillaume; Alavi, Ali

    2016-01-01

    In this work, we generalize the recently proposed matrix product state perturbation theory (MPSPT) for calculating energies of excited states using quasi-degenerate (QD) perturbation theory. Our formulation uses the Kirtman-Certain-Hirschfelder canonical Van Vleck perturbation theory, which gives Hermitian effective Hamiltonians at each order, and also allows one to make use of Wigner’s 2n + 1 rule. Further, our formulation satisfies Granovsky’s requirement of model space invariance which is important for obtaining smooth potential energy curves. Thus, when we use MPSPT with the Dyall Hamiltonian, we obtain a model space invariant version of quasi-degenerate n-electron valence state perturbation theory (NEVPT), a property that the usual formulation of QD-NEVPT2 based on a multipartitioning technique lacked. We use our method on the benchmark problems of bond breaking of LiF which shows ionic to covalent curve crossing and the twist around the double bond of ethylene where significant valence-Rydberg mixing occurs in the excited states. In accordance with our previous work, we find that multi-reference linearized coupled cluster theory is more accurate than other multi-reference theories of similar cost

  1. Quasi-degenerate perturbation theory using matrix product states

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Sandeep, E-mail: sanshar@gmail.com; Jeanmairet, Guillaume [Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart (Germany); Alavi, Ali, E-mail: a.alavi@fkf.mpg.de [Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart (Germany); Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

    2016-01-21

    In this work, we generalize the recently proposed matrix product state perturbation theory (MPSPT) for calculating energies of excited states using quasi-degenerate (QD) perturbation theory. Our formulation uses the Kirtman-Certain-Hirschfelder canonical Van Vleck perturbation theory, which gives Hermitian effective Hamiltonians at each order, and also allows one to make use of Wigner’s 2n + 1 rule. Further, our formulation satisfies Granovsky’s requirement of model space invariance which is important for obtaining smooth potential energy curves. Thus, when we use MPSPT with the Dyall Hamiltonian, we obtain a model space invariant version of quasi-degenerate n-electron valence state perturbation theory (NEVPT), a property that the usual formulation of QD-NEVPT2 based on a multipartitioning technique lacked. We use our method on the benchmark problems of bond breaking of LiF which shows ionic to covalent curve crossing and the twist around the double bond of ethylene where significant valence-Rydberg mixing occurs in the excited states. In accordance with our previous work, we find that multi-reference linearized coupled cluster theory is more accurate than other multi-reference theories of similar cost.

  2. Quasi-degenerate perturbation theory using matrix product states

    Science.gov (United States)

    Sharma, Sandeep; Jeanmairet, Guillaume; Alavi, Ali

    2016-01-01

    In this work, we generalize the recently proposed matrix product state perturbation theory (MPSPT) for calculating energies of excited states using quasi-degenerate (QD) perturbation theory. Our formulation uses the Kirtman-Certain-Hirschfelder canonical Van Vleck perturbation theory, which gives Hermitian effective Hamiltonians at each order, and also allows one to make use of Wigner's 2n + 1 rule. Further, our formulation satisfies Granovsky's requirement of model space invariance which is important for obtaining smooth potential energy curves. Thus, when we use MPSPT with the Dyall Hamiltonian, we obtain a model space invariant version of quasi-degenerate n-electron valence state perturbation theory (NEVPT), a property that the usual formulation of QD-NEVPT2 based on a multipartitioning technique lacked. We use our method on the benchmark problems of bond breaking of LiF which shows ionic to covalent curve crossing and the twist around the double bond of ethylene where significant valence-Rydberg mixing occurs in the excited states. In accordance with our previous work, we find that multi-reference linearized coupled cluster theory is more accurate than other multi-reference theories of similar cost.

  3. Perturbing the ground ring of 2D string theory

    International Nuclear Information System (INIS)

    Barbon, J.L.F.

    1992-01-01

    In this paper, the authors use free field techniques in D = 2 string theory t calculate the perturbation of the special state algebras when the cosmological constant is turned on. In particular, the authors find that the 'ground cone' preserved by the ring structure is promoted to a three-dimensional hyperboloid as conjectured by Witten. On the other hand, the perturbed (1,1) current algebra of moduli deformations is computed completely, and no simple geometrical interpretation is found. The authors also quote some facts concerning the Liouville matrix a model dictionary in this class of theories

  4. Lie transforms and their use in Hamiltonian perturbation theory

    International Nuclear Information System (INIS)

    Cary, J.R.

    1978-06-01

    A review is presented of the theory of Lie transforms as applied to Hamiltonian systems. We begin by presenting some general background on the Hamiltonian formalism and by introducing the operator notation for canonical transformations. We then derive the general theory of Lie transforms. We derive the formula for the new Hamiltonian when one uses a Lie transform to effect a canonical transformation, and we use Lie transforms to prove a very general version of Noether's theorem, or the symmetry-equals-invariant theorem. Next we use the general Lie transform theory to derive Deprit's perturbation theory. We illustrate this perturbation theory by application to two well-known problems in classical mechanics. Finally we present a chapter on conventions. There are many ways to develop Lie transforms. The last chapter explains the reasons for the choices made here

  5. Perturbative string theory in BRST invariant formalism

    International Nuclear Information System (INIS)

    Di Vecchia, P.; Hornfeck, K.; Frau, M.; Lerda, A.

    1988-01-01

    In this talk we present a constructive and very explicit way of calculating multiloop amplitudes in string theories. The main ingredients are the BRST invariant N String Vertex and the BRST invariant twisted propagator. This approach naturally leads to the Schottky parametrization of moduli space in terms of multipliers and fixed points of the g projective transformations which characterize a Riemann surface of genus g. The complete expression (including measure) of the multiloop corrections to the N String Vertex for the bosonic string is exhibited. (orig.)

  6. An ambiguity in fermionic string perturbation theory

    International Nuclear Information System (INIS)

    Atick, J.J.; Rabin, J.M.

    1988-01-01

    Recent investigation by Verlinde and Verlinde has shown that the fermionic string loop amplitudes change by a total derivative term in the moduli space under a change of basis of the supermoduli. This ambiguity is addressed in the context of the heterotic string theory, and shown to be a consequence of an inherent ambiguity in defining integration over the variables of a Grassmann algebra - in this case the Grassmann-valued coordinates of the supermoduli space. A resolution of this ambiguity in genus-two within this formalism is also presented. (orig.)

  7. Perturbation theory for quantized string fields

    International Nuclear Information System (INIS)

    Thorn, C.B.; Florida Univ., Gainesville

    1987-01-01

    We discuss the problem of gauge fixing in string field theory. We show that BRST invariance requires the gauge-fixed action to contain terms cubic in the ghost... of ghost of ghost fields. The final BRST invariant gauge-fixed action for the gauge b 0 A=0 is extremely simple: with the proper interpretation (as given in this article), it is essentially the one anticipated earlier in the work of Giddings, Martinec, and Witten in their analysis of the BRST invariant world-sheet approach to string theory. We derive the Feynman rules from this action and explain in detail how the sum over sufaces of the BRST first-quantized string is reproduced. This result depends crucially on the correct assignment for the Grassmann character of the string field and its ghost... of ghost of ghost string fields. If all these fields are unified in a single string field Φ containing all ghost numbers, the requirements is that Φ be uniformly Grassmann odd. Finally, we do some sample calculations which provide some simple checks on our general results. (orig.)

  8. Screw Theory Based Singularity Analysis of Lower-Mobility Parallel Robots considering the Motion/Force Transmissibility and Constrainability

    Directory of Open Access Journals (Sweden)

    Xiang Chen

    2015-01-01

    Full Text Available Singularity is an inherent characteristic of parallel robots and is also a typical mathematical problem in engineering application. In general, to identify singularity configuration, the singular solution in mathematics should be derived. This work introduces an alternative approach to the singularity identification of lower-mobility parallel robots considering the motion/force transmissibility and constrainability. The theory of screws is used as the mathematic tool to define the transmission and constraint indices of parallel robots. The singularity is hereby classified into four types concerning both input and output members of a parallel robot, that is, input transmission singularity, output transmission singularity, input constraint singularity, and output constraint singularity. Furthermore, we take several typical parallel robots as examples to illustrate the process of singularity analysis. Particularly, the input and output constraint singularities which are firstly proposed in this work are depicted in detail. The results demonstrate that the method can not only identify all possible singular configurations, but also explain their physical meanings. Therefore, the proposed approach is proved to be comprehensible and effective in solving singularity problems in parallel mechanisms.

  9. Some global issues in string perturbation theory

    International Nuclear Information System (INIS)

    Atick, J.J.; Moore, G.; Sen, Ashoke

    1988-01-01

    Calculations of type II string vacuum amplitude using the picture changing prescription have been shown to lead, in general, to a positive cosmological constant. We show that there is a global obstruction to the choices of gauge slice for super-Teichmueller space that lead to such measures. We discuss the general restrictions on gauge slices appropriate for use in explicit fermionic string calculations. We also discuss the relation of the functional determinant and conformal field theory versions of the path integral measure, and show that, at arbitrary genus and in arbitrary backgrounds preserving tree level N=1 supersymmetry, the measure is an exact differential. We evaluate the boundary integrals of this total derivative at genus two in two ways for target space R 10 to show that the integrals are zero. Finally, we use the factorization hypothesis to show that in appropriate compactified spacetimes the boundary integrals continue to vanish. (orig.)

  10. Some Comments on the String Singularity of the Yang-Mills-Higgs Theory

    International Nuclear Information System (INIS)

    Lim, Kok-Geng; Teh, Rosy

    2010-01-01

    We are going to make use of the regulated polar angle which had been introduced by Boulware et al.. to show that in the SU(2) Yang-Mills-Higgs theory when the magnetic monopole is carried by the gauge field, the Higgs field does not carry the monopole and vice versa. In the Yang-Mills-Higgs theory, our solution shows that when the parameter ε ≠ 0, the monopole is carried by the gauge field and there is a string singularity in the gauge field. When the parameter ε → 0, the monopole is transferred from the gauge field to the Higgs field and the string singularity disappeared. The solution is only singular at the origin, that is at r = 0 as it becomes the Wu-Yang monopole.

  11. Non-perturbative aspects of string theory from elliptic curves

    International Nuclear Information System (INIS)

    Reuter, Jonas

    2015-08-01

    We consider two examples for non-perturbative aspects of string theory involving elliptic curves. First, we discuss F-theory on genus-one fibered Calabi-Yau manifolds with the fiber being a hypersurface in a toric fano variety. We discuss in detail the fiber geometry in order to find the gauge groups, matter content and Yukawa couplings of the corresponding supergravity theories for the four examples leading to gauge groups SU(3) x SU(2) x U(1), SU(4) x SU(2) x SU(2)/Z 2 , U(1) and Z 3 . The theories are connected by Higgsings on the field theory side and conifold transitions on the geometry side. We extend the discussion to the network of Higgsings relating all theories stemming from the 16 hypersurface fibrations. For the models leading to gauge groups SU(3) x SU(2) x U(1), SU(4) x SU(2) x SU(2)/Z 2 and U(1) we discuss the construction of vertical G 4 fluxes. Via the D3-brane tadpole cancelation condition we can restrict the minimal number of families in the first two of these models to be at least three. As a second example for non-perturbative aspects of string theory we discuss a proposal for a non-perturbative completion of topological string theory on local B-model geometries. We discuss in detail the computation of quantum periods for the examples of local F 1 , local F 2 and the resolution of C 3 /Z 5 . The quantum corrections are calculated order by order using second order differential operators acting on the classical periods. Using quantum geometry we calculate the refined free energies in the Nekrasov-Shatashvili limit. Finally we check the non-perturbative completion of topological string theory for the geometry of local F 2 against numerical calculations.

  12. Perturbative Quantum Gravity and its Relation to Gauge Theory

    Directory of Open Access Journals (Sweden)

    Bern Zvi

    2002-01-01

    Full Text Available In this review we describe a non-trivial relationship between perturbative gauge theory and gravity scattering amplitudes. At the semi-classical or tree-level, the scattering amplitudes of gravity theories in flat space can be expressed as a sum of products of well defined pieces of gauge theory amplitudes. These relationships were first discovered by Kawai, Lewellen, and Tye in the context of string theory, but hold more generally. In particular, they hold for standard Einstein gravity. A method based on $D$-dimensional unitarity can then be used to systematically construct all quantum loop corrections order-by-order in perturbation theory using as input thegravity tree amplitudes expressed in terms of gauge theory ones. More generally, the unitarity method provides a means for perturbatively quantizing massless gravity theories without the usual formal apparatus associated with the quantization of constrained systems. As one application, this method was used to demonstrate that maximally supersymmetric gravity is less divergent in the ultraviolet than previously thought.

  13. Cosmological singularities in string and M-theory cosmology

    NARCIS (Netherlands)

    Vazquez-Mozo, M.A.; Ibanez, J.

    2000-01-01

    I discuss the point of view that non-renormalizability in General Relativity is a consequence of dealing with a low-energy effective field theory of the gravitational field, and how Einstein-Brans-Dicke gravity is retrieved from string/M-theory at low energies. After examining the role of stringy

  14. An improved thermodynamic perturbation theory for Mercedes-Benz water.

    Science.gov (United States)

    Urbic, T; Vlachy, V; Kalyuzhnyi, Yu V; Dill, K A

    2007-11-07

    We previously applied Wertheim's thermodynamic perturbation theory for associative fluids to the simple Mercedes-Benz model of water. We found that the theory reproduced well the physical properties of hot water, but was less successful in capturing the more structured hydrogen bonding that occurs in cold water. Here, we propose an improved version of the thermodynamic perturbation theory in which the effective density of the reference system is calculated self-consistently. The new theory is a significant improvement, giving good agreement with Monte Carlo simulations of the model, and predicting key anomalies of cold water, such as minima in the molar volume and large heat capacity, in addition to giving good agreement with the isothermal compressibility and thermal expansion coefficient.

  15. Dynamical affine symmetry and covariant perturbation theory for gravity

    International Nuclear Information System (INIS)

    Pervushin, V.N.

    1975-01-01

    The covariant perturbation theory for gravity with the simplest reduction properties is formulated. The main points are as follows: fundamental fields are the normal coordinates of ten-dimensional space of the gravitational field, and the fields are separated into the classical (background) and quantum ones in the generating functional along geodesics of this space

  16. The precession of mercury's perihelion via perturbation theory

    International Nuclear Information System (INIS)

    Rosales, M.H.; Castro-Quilantan, J.L.

    1984-01-01

    Perturbation theory is used to solve the problem of the precession of Mercury's perihelion, this phenomenon being a relativistic effect. The expansion parameter appears naturally when the orbit equation is written in an appropriate form and it completely justifies the use of the first order approximation. (author)

  17. Renormalization and scaling behaviour of eikonal perturbation theories. [Eikonal approximation

    Energy Technology Data Exchange (ETDEWEB)

    Din, A M [Chalmers Tekniska Hoegskola, Goeteborg (Sweden). Institutionen foer Teoretisk Fysik; Nielsen, N K [Aarhus Univ. (Denmark)

    1975-01-04

    Some observations on the renormalization and scaling behaviour of the charged-particle propagator in scalar quantum electrodynamics, in the ordinary eikonal approximation as well as in the eikonal perturbation theory, are reported. The conclusions indicate that scaling behaviour is not realized in the simple sense.

  18. Improved Fluid Perturbation Theory: Equation of state for Fluid Xenon

    OpenAIRE

    Li, Qiong; Liu, Hai-Feng; Zhang, Gong-Mu; Zhao, Yan-Hong; Tian, Ming-Feng; Song, Hai-Feng

    2016-01-01

    The traditional fluid perturbation theory is improved by taking electronic excitations and ionizations into account, in the framework of average ion spheres. It is applied to calculate the equation of state for fluid Xenon, which turns out in good agreement with the available shock data.

  19. Perturbation theory for Markov chains via Wasserstein distance

    NARCIS (Netherlands)

    Rudolf, Daniel; Schweizer, Nikolaus

    2017-01-01

    Perturbation theory for Markov chains addresses the question of how small differences in the transition probabilities of Markov chains are reflected in differences between their distributions. We prove powerful and flexible bounds on the distance of the nth step distributions of two Markov chains

  20. Finite volume at two-loops in chiral perturbation theory

    International Nuclear Information System (INIS)

    Bijnens, Johan; Rössler, Thomas

    2015-01-01

    We calculate the finite volume corrections to meson masses and decay constants in two and three flavour Chiral Perturbation Theory to two-loop order. The analytical results are compared with the existing result for the pion mass in two-flavour ChPT and the partial results for the other quantities. We present numerical results for all quantities.

  1. Chiral perturbation theory for nucleon generalized parton distributions

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Manashov, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik]|[Sankt-Petersburg State Univ. (Russian Federation). Dept. of Theoretical Physics; Schaefer, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik

    2006-08-15

    We analyze the moments of the isosinglet generalized parton distributions H, E, H, E of the nucleon in one-loop order of heavy-baryon chiral perturbation theory. We discuss in detail the construction of the operators in the effective theory that are required to obtain all corrections to a given order in the chiral power counting. The results will serve to improve the extrapolation of lattice results to the chiral limit. (orig.)

  2. BPS open strings and A-D-E-singularities in F-theory on K3

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Hartong, Jelle

    We improve on a recently constructed graphical representation of the supergravity 7-brane solution and apply this refined representation to re-study the open string description of the A-D-E-singularities in F-theory on K3. A noteworthy feature of the graphical representation is that it provides the

  3. On a canonical formulation of field theories with singular Lagrangians

    International Nuclear Information System (INIS)

    Mal'tsev, V.K.

    1978-01-01

    An attempt is made to introduce the Routh function formalism into the field theory: only ''nondegenerated'' field components are considered as canonical variables. Electrodynamics and general relativity are considered. The formalism appears to be quite simple and gauge-independent

  4. Non-Perturbative Asymptotic Improvement of Perturbation Theory and Mellin-Barnes Representation

    Directory of Open Access Journals (Sweden)

    Samuel Friot

    2010-10-01

    Full Text Available Using a method mixing Mellin-Barnes representation and Borel resummation we show how to obtain hyperasymptotic expansions from the (divergent formal power series which follow from the perturbative evaluation of arbitrary ''N-point'' functions for the simple case of zero-dimensional φ4 field theory. This hyperasymptotic improvement appears from an iterative procedure, based on inverse factorial expansions, and gives birth to interwoven non-perturbative partial sums whose coefficients are related to the perturbative ones by an interesting resurgence phenomenon. It is a non-perturbative improvement in the sense that, for some optimal truncations of the partial sums, the remainder at a given hyperasymptotic level is exponentially suppressed compared to the remainder at the preceding hyperasymptotic level. The Mellin-Barnes representation allows our results to be automatically valid for a wide range of the phase of the complex coupling constant, including Stokes lines. A numerical analysis is performed to emphasize the improved accuracy that this method allows to reach compared to the usual perturbative approach, and the importance of hyperasymptotic optimal truncation schemes.

  5. Space-time slicing in Horndeski theories and its implications for non-singular bouncing solutions

    Science.gov (United States)

    Ijjas, Anna

    2018-02-01

    In this paper, we show how the proper choice of gauge is critical in analyzing the stability of non-singular cosmological bounce solutions based on Horndeski theories. We show that it is possible to construct non-singular cosmological bounce solutions with classically stable behavior for all modes with wavelengths above the Planck scale where: (a) the solution involves a stage of null-energy condition violation during which gravity is described by a modification of Einstein's general relativity; and (b) the solution reduces to Einstein gravity both before and after the null-energy condition violating stage. Similar considerations apply to galilean genesis scenarios.

  6. Invariant exchange perturbation theory for multicenter systems: Time-dependent perturbations

    International Nuclear Information System (INIS)

    Orlenko, E. V.; Evstafev, A. V.; Orlenko, F. E.

    2015-01-01

    A formalism of exchange perturbation theory (EPT) is developed for the case of interactions that explicitly depend on time. Corrections to the wave function obtained in any order of perturbation theory and represented in an invariant form include exchange contributions due to intercenter electron permutations in complex multicenter systems. For collisions of atomic systems with an arbitrary type of interaction, general expressions are obtained for the transfer (T) and scattering (S) matrices in which intercenter electron permutations between overlapping nonorthogonal states belonging to different centers (atoms) are consistently taken into account. The problem of collision of alpha particles with lithium atoms accompanied by the redistribution of electrons between centers is considered. The differential and total charge-exchange cross sections of lithium are calculated

  7. Cosmological perturbation theory at three-loop order

    Energy Technology Data Exchange (ETDEWEB)

    Blas, Diego [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Garny, Mathias; Konstandin, Thomas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-09-15

    We analyze the dark matter power spectrum at three-loop order in standard perturbation theory of large scale structure. We observe that at late times the loop expansion does not converge even for large scales (small momenta) well within the linear regime, but exhibits properties compatible with an asymptotic series. We propose a technique to restore the convergence in the limit of small momentum, and use it to obtain a perturbative expansion with improved convergence for momenta in the range where baryonic acoustic oscillations are present. Our results are compared with data from N-body simulations at different redshifts, and we find good agreement within this range.

  8. Cosmological perturbation theory at three-loop order

    International Nuclear Information System (INIS)

    Blas, Diego; Garny, Mathias; Konstandin, Thomas

    2013-09-01

    We analyze the dark matter power spectrum at three-loop order in standard perturbation theory of large scale structure. We observe that at late times the loop expansion does not converge even for large scales (small momenta) well within the linear regime, but exhibits properties compatible with an asymptotic series. We propose a technique to restore the convergence in the limit of small momentum, and use it to obtain a perturbative expansion with improved convergence for momenta in the range where baryonic acoustic oscillations are present. Our results are compared with data from N-body simulations at different redshifts, and we find good agreement within this range.

  9. A general-model-space diagrammatic perturbation theory

    International Nuclear Information System (INIS)

    Hose, G.; Kaldor, U.

    1980-01-01

    A diagrammatic many-body perturbation theory applicable to arbitrary model spaces is presented. The necessity of having a complete model space (all possible occupancies of the partially-filled shells) is avoided. This requirement may be troublesome for systems with several well-spaced open shells, such as most atomic and molecular excited states, as a complete model space spans a very broad energy range and leaves out states within that range, leading to poor or no convergence of the perturbation series. The method presented here would be particularly useful for such states. The solution of a model problem (He 2 excited Σ + sub(g) states) is demonstrated. (Auth.)

  10. Convergence and analytic properties of manifestly finite perturbation theory

    International Nuclear Information System (INIS)

    Mtingwa, S.K.

    1979-01-01

    The author discusses more carefully the ultraviolet convergence properties of Feynman diagrams in recently proposed manifestly finite perturbation expansions. Speccifically, he refines one of the constraints on the γ's-the noncanonical dimensions-such that, when satisfied, any general product-type interaction of massive scalar, fermion and vector fields yields finite perturbation expansions requiring no conventional renormalization procedure. Moreover, the analytic properties of the Feynman integrals in the theory are discussed and concluded with remarks on the necessity of a modified Kaellen-Lehmann representation

  11. Variational configuration interaction methods and comparison with perturbation theory

    International Nuclear Information System (INIS)

    Pople, J.A.; Seeger, R.; Krishnan, R.

    1977-01-01

    A configuration interaction (CI) procedure which includes all single and double substitutions from an unrestricted Hartree-Fock single determinant is described. This has the feature that Moller-Plesset perturbation results to second and third order are obtained in the first CI iterative cycle. The procedure also avoids the necessity of a full two-electron integral transformation. A simple expression for correcting the final CI energy for lack of size consistency is proposed. Finally, calculations on a series of small molecules are presented to compare these CI methods with perturbation theory

  12. S-matrices for perturbations of certain conformal field theories

    International Nuclear Information System (INIS)

    Freund, P.G.O.; Klassen, T.R.; Melzer, E.; Chicago Univ., IL

    1989-01-01

    We present a family of factorizable S-matrix theories in 1+1 dimensions with an arbitrary number N of particles of distinct masses, and find the conservation laws of these theories. An analysis of the conservation laws of the family of nonunitary CFTs with central charge c=c 2,2N+3 =-2N(6N+5)/(2N+3) perturbed by the φ (1,3) operator, leads us to conjecture the identification of these perturbed CFTs with the S-matrix theories we found. The case N=1 was treated by Cardy and Mussardo. We also present the S-matrix of an E 7 -related unitary model. (orig.)

  13. Nucleon and delta masses in twisted mass chiral perturbation theory

    International Nuclear Information System (INIS)

    Walker-Loud, Andre; Wu, Jackson M.S.

    2005-01-01

    We calculate the masses of the nucleons and deltas in twisted mass heavy baryon chiral perturbation theory. We work to quadratic order in a power counting scheme in which we treat the lattice spacing, a, and the quark masses, m q , to be of the same order. We give expressions for the mass and the mass splitting of the nucleons and deltas both in and away from the isospin limit. We give an argument using the chiral Lagrangian treatment that, in the strong isospin limit, the nucleons remain degenerate and the delta multiplet breaks into two degenerate pairs to all orders in chiral perturbation theory. We show that the mass splitting between the degenerate pairs of the deltas first appears at quadratic order in the lattice spacing. We discuss the subtleties in the effective chiral theory that arise from the inclusion of isospin breaking

  14. Black hole and cosmos with multiple horizons and multiple singularities in vector-tensor theories

    Science.gov (United States)

    Gao, Changjun; Lu, Youjun; Yu, Shuang; Shen, You-Gen

    2018-05-01

    A stationary and spherically symmetric black hole (e.g., Reissner-Nordström black hole or Kerr-Newman black hole) has, at most, one singularity and two horizons. One horizon is the outer event horizon and the other is the inner Cauchy horizon. Can we construct static and spherically symmetric black hole solutions with N horizons and M singularities? The de Sitter cosmos has only one apparent horizon. Can we construct cosmos solutions with N horizons? In this article, we present the static and spherically symmetric black hole and cosmos solutions with N horizons and M singularities in the vector-tensor theories. Following these motivations, we also construct the black hole solutions with a firewall. The deviation of these black hole solutions from the usual ones can be potentially tested by future measurements of gravitational waves or the black hole continuum spectrum.

  15. A finite element formulation for perturbation theory calculations

    International Nuclear Information System (INIS)

    Ozgener, B.; Kaluc, S.

    2004-01-01

    Full text: When the introduced change in the configuration of a nuclear system is neutronically not too significant, the use of the perturbation theory approximation ('the perturbation theory method' or PTM) is usually considered as an alternative to the recalculation of the effective multiplication factor (K eff ) of the modified system ('the diffusion theory method' or DTM) for the determination of the ensuing change in reactivity. In the DTM, the change in reactivity due to the introduced change can be calculated by the multigroup diffusion theory by performing two K eff determinations, one for the original and one for the modified system. The accuracy of this method is only limited by the approximations inherent in the multigroup diffusion theory and the numerical method employed for its solution. The error stemming from the numerical approximation can be nearly eliminated by utilizing a fine enough spatial mesh ad an 'exact' solution is nearly possible. Its basic disadvantage relative to the PTM is the necessity of a new K eff calculation for every change in the configuration no matter how small. On the other hand, if we use PTM, with an only one-time calculation of the flux and the adjoint flux of the original system, the change in reactivity due to any kind of perturbation can be approximately calculated using the changes in the cross section data in the perturbation theory reactivity formula. The accuracy of the PTM is restricted by the size and location of the induced change. In this work, our aim is to assess the accuracy of PTM relative to the DTM and determine criteria for the justification of its use. For all required solutions of the normal and adjoint multigroup diffusion equations, we choose the finite element method (FEM) as our numerical method and a 1-D cylindrical geometry model. The underlying theory is implemented in our FORTRAN program PERTURB. The validation of PERTURB is carried out via comparisons with analytical solutions for bare and

  16. Introduction to non-perturbative heavy quark effective theory

    International Nuclear Information System (INIS)

    Sommer, R.

    2010-08-01

    My lectures on the effective field theory for heavy quarks, an expansion around the static limit, concentrate on the motivation and formulation of HQET, its renormalization and discretization. This provides the basis for understanding that and how this effective theory can be formulated fully non-perturbatively in the QCD coupling, while by the very nature of an effective field theory, it is perturbative in the expansion parameter 1/m. After the couplings in the effective theory have been determined, the result at a certain order in 1/m is unique up to higher order terms in 1/m. In particular the continuum limit of the lattice regularized theory exists and leaves no trace of how it was regularized. In other words, the theory yields an asymptotic expansion of the QCD observables in 1/m - as usual in a quantum field theory modified by powers of logarithms. None of these properties has been shown rigorously (e.g. to all orders in perturbation theory) but perturbative computations and recently also non-perturbative lattice results give strong support to this ''standard wisdom''. A subtle issue is that a theoretically consistent formulation of the theory is only possible through a non-perturbative matching of its parameters with QCD at finite values of 1/m. As a consequence one finds immediately that the splitting of a result for a certain observable into, for example, lowest order and first order is ambiguous. Depending on how the matching between effective theory and QCD is done, a first order contribution may vanish and appear instead in the lowest order. For example, the often cited phenomenological HQET parameters anti Λ and λ 1 lack a unique non-perturbative definition. But this does not affect the precision of the asymptotic expansion in 1/m. The final result for an observable is correct up to order (1/m) n+1 if the theory was treated including (1/m) n terms. Clearly, the weakest point of HQET is that it intrinsically is an expansion. In practise, carrying it

  17. Introduction to non-perturbative heavy quark effective theory

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, R. [DESY, Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2010-08-15

    My lectures on the effective field theory for heavy quarks, an expansion around the static limit, concentrate on the motivation and formulation of HQET, its renormalization and discretization. This provides the basis for understanding that and how this effective theory can be formulated fully non-perturbatively in the QCD coupling, while by the very nature of an effective field theory, it is perturbative in the expansion parameter 1/m. After the couplings in the effective theory have been determined, the result at a certain order in 1/m is unique up to higher order terms in 1/m. In particular the continuum limit of the lattice regularized theory exists and leaves no trace of how it was regularized. In other words, the theory yields an asymptotic expansion of the QCD observables in 1/m - as usual in a quantum field theory modified by powers of logarithms. None of these properties has been shown rigorously (e.g. to all orders in perturbation theory) but perturbative computations and recently also non-perturbative lattice results give strong support to this ''standard wisdom''. A subtle issue is that a theoretically consistent formulation of the theory is only possible through a non-perturbative matching of its parameters with QCD at finite values of 1/m. As a consequence one finds immediately that the splitting of a result for a certain observable into, for example, lowest order and first order is ambiguous. Depending on how the matching between effective theory and QCD is done, a first order contribution may vanish and appear instead in the lowest order. For example, the often cited phenomenological HQET parameters anti {lambda} and {lambda}{sub 1} lack a unique non-perturbative definition. But this does not affect the precision of the asymptotic expansion in 1/m. The final result for an observable is correct up to order (1/m){sup n+1} if the theory was treated including (1/m){sup n} terms. Clearly, the weakest point of HQET is that it

  18. Probing non-perturbative effects in M-theory

    International Nuclear Information System (INIS)

    Hatsuda, Yasuyuki; Okuyama, Kazumi

    2014-07-01

    The AdS/CFT correspondence enables us to probe M-theory on various backgrounds from the corresponding dual gauge theories. Here we investigate in detail a three-dimensional U(N) N=4 super Yang-Mills theory coupled to one adjoint hypermultiplet and N f fundamental hypermultiplets, which is large N dual to M-theory on AdS 4 x S 7 /Z N f . Using the localization and the Fermi-gas formulation, we explore non-perturbative corrections to the partition function. As in the ABJM theory, we find that there exists a non-trivial pole cancellation mechanism, which guarantees the theory to be well-defined, between worldsheet instantons and membrane instantons for all rational (in particular, physical or integral) values of N f .

  19. Modified potentials in many-body perturbation theory

    International Nuclear Information System (INIS)

    Silver, D.M.; Bartlett, R.J.

    1976-01-01

    Many-body perturbation-theory calculations of the pair-correlation energy within the regime of various finite expansions in two-center Slater-type basis sets are performed using a wide variety of modified potentials for the determination of unoccupied orbitals. To achieve meaningful convergence, it appears that the perturbation series must be carried through third order, using shifted denominators to include contributions from various higher-order diagrams. Moreover, certain denominator shifts are found necessary to ensure that a negative-definite resolvent accompanies the perturbation scheme when an arbitrary modified potential is employed. Through third order with denominator shifts, well-behaved modified potentials are found to give results that are equivalent, within 1 kcal/mole, to those obtained for pair-correlation energies with the standard self-consistent-field-V/sup N/ potential

  20. A Theory of the Perturbed Consumer with General Budgets

    DEFF Research Database (Denmark)

    McFadden, Daniel L; Fosgerau, Mogens

    We consider demand systems for utility-maximizing consumers facing general budget constraints whose utilities are perturbed by additive linear shifts in marginal utilities. Budgets are required to be compact but are not required to be convex. We define demand generating functions (DGF) whose...... subgradients with respect to these perturbations are convex hulls of the utility-maximizing demands. We give necessary as well as sufficient conditions for DGF to be consistent with utility maximization, and establish under quite general conditions that utility-maximizing demands are almost everywhere single......-valued and smooth in their arguments. We also give sufficient conditions for integrability of perturbed demand. Our analysis provides a foundation for applications of consumer theory to problems with nonlinear budget constraints....

  1. Driven similarity renormalization group: Third-order multireference perturbation theory.

    Science.gov (United States)

    Li, Chenyang; Evangelista, Francesco A

    2017-03-28

    A third-order multireference perturbation theory based on the driven similarity renormalization group (DSRG-MRPT3) approach is presented. The DSRG-MRPT3 method has several appealing features: (a) it is intruder free, (b) it is size consistent, (c) it leads to a non-iterative algorithm with O(N 6 ) scaling, and (d) it includes reference relaxation effects. The DSRG-MRPT3 scheme is benchmarked on the potential energy curves of F 2 , H 2 O 2 , C 2 H 6 , and N 2 along the F-F, O-O, C-C, and N-N bond dissociation coordinates, respectively. The nonparallelism errors of DSRG-MRPT3 are consistent with those of complete active space third-order perturbation theory and multireference configuration interaction with singles and doubles and show significant improvements over those obtained from DSRG second-order multireference perturbation theory. Our efficient implementation of the DSRG-MRPT3 based on factorized electron repulsion integrals enables studies of medium-sized open-shell organic compounds. This point is demonstrated with computations of the singlet-triplet splitting (Δ ST =E T -E S ) of 9,10-anthracyne. At the DSRG-MRPT3 level of theory, our best estimate of the adiabatic Δ ST is 3.9 kcal mol -1 , a value that is within 0.1 kcal mol -1 from multireference coupled cluster results.

  2. Generalized perturbation theory using two-dimensional, discrete ordinates transport theory

    International Nuclear Information System (INIS)

    Childs, R.L.

    1979-01-01

    Perturbation theory for changes in linear and bilinear functionals of the forward and adjoint fluxes in a critical reactor has been implemented using two-dimensional discrete ordinates transport theory. The computer program DOT IV was modified to calculate the generalized functions Λ and Λ*. Demonstration calculations were performed for changes in a reaction-rate ratio and a reactivity worth caused by system perturbations. The perturbation theory predictions agreed with direct calculations to within about 2%. A method has been developed for calculating higher lambda eigenvalues and eigenfunctions using techniques similar to those developed for generalized functions. Demonstration calculations have been performed to obtain these eigenfunctions

  3. Generalized perturbation theory in DRAGON: application to CANDU cell calculations

    International Nuclear Information System (INIS)

    Courau, T.; Marleau, G.

    2001-01-01

    Generalized perturbation theory (GPT) in neutron transport is a means to evaluate eigenvalue and reaction rate variations due to small changes in the reactor properties (macroscopic cross sections). These variations can be decomposed in two terms: a direct term corresponding to the changes in the cross section themselves and an indirect term that takes into account the perturbations in the neutron flux. As we will show, taking into account the indirect term using a GPT method is generally straight forward since this term is the scalar product of the unperturbed generalized adjoint with the product of the variation of the transport operator and the unperturbed flux. In the case where the collision probability (CP) method is used to solve the transport equation, evaluating the perturbed transport operator involves calculating the variations in the CP matrix for each change in the reactor properties. Because most of the computational effort is dedicated to the CP matrix calculation the gains expected form the GPT method would therefore be annihilated. Here we will present a technique to approximate the variations in the CP matrices thereby replacing the variations in the transport operator with source term variations. We will show that this approximation yields errors fully compatible with the standard generalized perturbation theory errors. Results for 2D CANDU cell calculations will be presented. (author)

  4. Analysis of a renormalization group method and normal form theory for perturbed ordinary differential equations

    Science.gov (United States)

    DeVille, R. E. Lee; Harkin, Anthony; Holzer, Matt; Josić, Krešimir; Kaper, Tasso J.

    2008-06-01

    For singular perturbation problems, the renormalization group (RG) method of Chen, Goldenfeld, and Oono [Phys. Rev. E. 49 (1994) 4502-4511] has been shown to be an effective general approach for deriving reduced or amplitude equations that govern the long time dynamics of the system. It has been applied to a variety of problems traditionally analyzed using disparate methods, including the method of multiple scales, boundary layer theory, the WKBJ method, the Poincaré-Lindstedt method, the method of averaging, and others. In this article, we show how the RG method may be used to generate normal forms for large classes of ordinary differential equations. First, we apply the RG method to systems with autonomous perturbations, and we show that the reduced or amplitude equations generated by the RG method are equivalent to the classical Poincaré-Birkhoff normal forms for these systems up to and including terms of O(ɛ2), where ɛ is the perturbation parameter. This analysis establishes our approach and generalizes to higher order. Second, we apply the RG method to systems with nonautonomous perturbations, and we show that the reduced or amplitude equations so generated constitute time-asymptotic normal forms, which are based on KBM averages. Moreover, for both classes of problems, we show that the main coordinate changes are equivalent, up to translations between the spaces in which they are defined. In this manner, our results show that the RG method offers a new approach for deriving normal forms for nonautonomous systems, and it offers advantages since one can typically more readily identify resonant terms from naive perturbation expansions than from the nonautonomous vector fields themselves. Finally, we establish how well the solution to the RG equations approximates the solution of the original equations on time scales of O(1/ɛ).

  5. Perturbative algebraic quantum field theory an introduction for mathematicians

    CERN Document Server

    Rejzner, Kasia

    2016-01-01

    Perturbative Algebraic Quantum Field Theory (pAQFT), the subject of this book, is a complete and mathematically rigorous treatment of perturbative quantum field theory (pQFT) that doesn’t require the use of divergent quantities. We discuss in detail the examples of scalar fields and gauge theories and generalize them to QFT on curved spacetimes. pQFT models describe a wide range of physical phenomena and have remarkable agreement with experimental results. Despite this success, the theory suffers from many conceptual problems. pAQFT is a good candidate to solve many, if not all of these conceptual problems. Chapters 1-3 provide some background in mathematics and physics. Chapter 4 concerns classical theory of the scalar field, which is subsequently quantized in chapters 5 and 6. Chapter 7 covers gauge theory and chapter 8 discusses QFT on curved spacetimes and effective quantum gravity. The book aims to be accessible researchers and graduate students interested in the mathematical foundations of pQFT are th...

  6. Regular perturbation theory for two-electron atoms

    International Nuclear Information System (INIS)

    Feranchuk, I.D.; Triguk, V.V.

    2011-01-01

    Regular perturbation theory (RPT) for the ground and excited states of two-electron atoms or ions is developed. It is shown for the first time that summation of the matrix elements from the electron-electron interaction operator over all intermediate states can be calculated in a closed form by means of the two-particle Coulomb Green's function constructed in the Letter. It is shown that the second order approximation of RPT includes the main part of the correlation energy both for the ground and excited states. This approach can be also useful for description of two-electron atoms in external fields. -- Highlights: → We develop regular perturbation theory for the two-electron atoms or ions. → We calculate the sum of the matrix elements over all intermediate states. → We construct the two-particle Coulomb Green's function.

  7. Algebraic perturbation theory for dense liquids with discrete potentials

    Science.gov (United States)

    Adib, Artur B.

    2007-06-01

    A simple theory for the leading-order correction g1(r) to the structure of a hard-sphere liquid with discrete (e.g., square-well) potential perturbations is proposed. The theory makes use of a general approximation that effectively eliminates four-particle correlations from g1(r) with good accuracy at high densities. For the particular case of discrete perturbations, the remaining three-particle correlations can be modeled with a simple volume-exclusion argument, resulting in an algebraic and surprisingly accurate expression for g1(r) . The structure of a discrete “core-softened” model for liquids with anomalous thermodynamic properties is reproduced as an application.

  8. Perturbation theory and nonperturbative effects: a happy marriage?

    International Nuclear Information System (INIS)

    Chyla, J.

    1992-01-01

    Perturbation expansions in renormalized quantum theories are reformulated in a way that permits a straightforward handling of situations when in the conventional approach, i.e. in fixed renormalization scheme, these expansions are factorially divergent and even of asymptotically constant sign. The result takes the form of convergent (under certain circumstances) expansions in a set of functions Z k (a,χ) of the couplant and the free parameter χ specifies the procedure involved. The value of χ is shown to be correlated to the basic properties of nonperturbative effects as embodied in power corrections. A close connection of this procedure to the Borel summation technique is demonstrated and its relation to conventional perturbation theory in fixed renormalization schemes elucidated. (author) 3 figs., 17 refs

  9. Non-perturbative Green functions in quantum gauge theories

    International Nuclear Information System (INIS)

    Shabanov, S.V.

    1991-01-01

    Non-perturbative Green functions for gauge invariant variables are considered. The Green functions are found to be modified as compared with the usual ones in a definite gauge because of a physical configuration space (PCS) reduction. In the Yang-Mills theory with fermions this phenomenon follows from the Singer theorem about the absence of a global gauge condition for the fields tensing to zero at spatial infinity. 20 refs

  10. Hyperon decay form factors in chiral perturbation theory

    International Nuclear Information System (INIS)

    Lacour, Andre; Kubis, Bastian; Meissner, Ulf-G.

    2007-01-01

    We present a complete calculation of the SU(3)-breaking corrections to the hyperon vector form factors up to O(p 4 ) in covariant baryon chiral perturbation theory. Partial higher-order contributions are obtained, and we discuss chiral extrapolations of the vector form factor at zero momentum transfer. In addition we derive low-energy theorems for the subleading moments in hyperon decays, the weak Dirac radii and the weak anomalous magnetic moments, up to O(p 4 )

  11. Calibrated geometries and non perturbative superpotentials in M-theory

    International Nuclear Information System (INIS)

    Hernandez, R.

    1999-12-01

    We consider non perturbative effects in M-theory compactifications on a seven-manifold of G 2 holonomy arising from membranes wrapped on supersymmetric three-cycles. When membranes are wrapped on associative submanifolds they induce a superpotential that can be calculated using calibrated geometry. This superpotential is also derived from compactification on a seven-manifold, to four dimensional Anti-de Sitter spacetime, of eleven dimensional supergravity with non vanishing expectation value of the four-form field strength. (author)

  12. Modified perturbation theory for strongly correlated electron systems

    International Nuclear Information System (INIS)

    Takagi, Osamu; Saso, Tetsuro

    1999-01-01

    We propose a modified scheme for calculating the single-particle excitation spectrum of the impurity Anderson model. It is based on the second order perturbation theory, but modifies the self-energy so as to reproduce the correct atomic limit and to fulfill the Friedel sum rule. Therefore, it offers a simple scheme valid over wide range of excitation energy and parameters, and would be useful also for potential application to the lattice problems. (author)

  13. Convergence of perturbation theory expansion for the Yukawa interaction

    International Nuclear Information System (INIS)

    Basuev, A.G.

    1975-01-01

    It is shown that the perturbation theory series in the translational-invariant case and upon removal of the boson propagator cut-off for euclidian Green's functions converges when gsup(2)/2 2 is the mass of the boson and Δ(o) is the fermion propagator in the zero of kappa-space. This problem was previously considered by other methods in respect of pseudo-euclidian functions (for the S-matrix) and of euclidian Green's functions. (author)

  14. Electromagnetic couplings of the chiral perturbation theory Lagrangian from the perturbative chiral quark model

    International Nuclear Information System (INIS)

    Lyubovitskij, V.E.; Gutsche, Th.; Faessler, Amand; Mau, R. Vinh

    2002-01-01

    We apply the perturbative chiral quark model to the study of the low-energy πN interaction. Using an effective chiral Lagrangian we reproduce the Weinberg-Tomozawa result for the S-wave πN scattering lengths. After inclusion of the photon field we give predictions for the electromagnetic O(p 2 ) low-energy couplings of the chiral perturbation theory effective Lagrangian that define the electromagnetic mass shifts of nucleons and first-order (e 2 ) radiative corrections to the πN scattering amplitude. Finally, we estimate the leading isospin-breaking correction to the strong energy shift of the π - p atom in the 1s state, which is relevant for the experiment 'pionic hydrogen' at PSI

  15. Three-nucleon scattering by using chiral perturbation theory potential

    International Nuclear Information System (INIS)

    Kamata, Hiroyuki

    2003-01-01

    Three-nucleon scattering problems are studied by using two-nucleon and three-nucleon potentials derived from chiral perturbation theory. The three-nucleon term is shown to appear in the effective potential of the rank of next-to-next-to-leading order (NNLO). New three-nucleon forces are taken into consideration in addition to the conventional Fujita-Miyazawa (FM) type three-nucleon potential. Two-nucleon potential of the chiral perturbation theory is as precise as the conventional ones in low energy region. The FM type three-nucleon force which explains Sagara discrepancy in high energy region is introduced automatically. Concerning the Ay puzzle, the results seems to behave as if the puzzle has been solved at the level of NLO, but at the NNLO (without three-nucleon force) level the result is similar to the cases of conventional potential indicating the need of three-nucleon force. In contrast to the FM type three-nucleon force, five free parameters exist in the new D and E type three-nucleon forces introduced by the NNLO, but they are reduced to two independent parameters by antisymmetrization, which are found to be sensitive to the coupling energy of tritons and to the nd scattering length (spin doublet state). Parameters determined from them cannot give satisfactory answer to the A y puzzle. It seems, however, too hasty to conclude that A y puzzle cannot be solved by the chiral perturbation theory. (S. Funahashi)

  16. Statistics of Smoothed Cosmic Fields in Perturbation Theory. I. Formulation and Useful Formulae in Second-Order Perturbation Theory

    Science.gov (United States)

    Matsubara, Takahiko

    2003-02-01

    We formulate a general method for perturbative evaluations of statistics of smoothed cosmic fields and provide useful formulae for application of the perturbation theory to various statistics. This formalism is an extensive generalization of the method used by Matsubara, who derived a weakly nonlinear formula of the genus statistic in a three-dimensional density field. After describing the general method, we apply the formalism to a series of statistics, including genus statistics, level-crossing statistics, Minkowski functionals, and a density extrema statistic, regardless of the dimensions in which each statistic is defined. The relation between the Minkowski functionals and other geometrical statistics is clarified. These statistics can be applied to several cosmic fields, including three-dimensional density field, three-dimensional velocity field, two-dimensional projected density field, and so forth. The results are detailed for second-order theory of the formalism. The effect of the bias is discussed. The statistics of smoothed cosmic fields as functions of rescaled threshold by volume fraction are discussed in the framework of second-order perturbation theory. In CDM-like models, their functional deviations from linear predictions plotted against the rescaled threshold are generally much smaller than that plotted against the direct threshold. There is still a slight meatball shift against rescaled threshold, which is characterized by asymmetry in depths of troughs in the genus curve. A theory-motivated asymmetry factor in the genus curve is proposed.

  17. Foundations of quantum chromodynamics: Perturbative methods in gauge theories

    International Nuclear Information System (INIS)

    Muta, T.

    1986-01-01

    This volume develops the techniques of perturbative QCD in great detail starting with field theory. Aside from extensive treatments of the renormalization group technique, the operator product expansion formalism and their applications to short-distance reactions, this book provides a comprehensive introduction to gauge field theories. Examples and exercises are provided to amplify the discussions on important topics. Contents: Introduction; Elements of Quantum Chromodynamics; The Renormalization Group Method; Asymptotic Freedom; Operator Product Expansion Formalism; Applications; Renormalization Scheme Dependence; Factorization Theorem; Further Applications; Power Corrections; Infrared Problem. Power Correlations; Infrared Problem

  18. An Introduction to Perturbative Methods in Gauge Theories

    International Nuclear Information System (INIS)

    T Muta

    1998-01-01

    This volume develops the techniques of perturbative QCD in great pedagogical detail starting with field theory. Aside from extensive treatments of the renormalization group technique, the operator product expansion formalism and their applications to short-distance reactions, this book provides a comprehensive introduction to gauge theories. Examples and exercises are provided to amplify the discussions on important topics. This is an ideal textbook on the subject of quantum chromodynamics and is essential for researchers and graduate students in high energy physics, nuclear physics and mathematical physics

  19. Including the Δ(1232) resonance in baryon chiral perturbation theory

    International Nuclear Information System (INIS)

    Hacker, C.; Wies, N.; Scherer, S.; Gegelia, J.

    2005-01-01

    Baryon chiral perturbation theory with explicit Δ(1232) degrees of freedom is considered. The most general interactions of pions, nucleons, and Δ consistent with all underlying symmetries as well as with the constraint structure of higher-spin fields are constructed. By use of the extended on-mass-shell renormalization scheme, a manifestly Lorentz-invariant effective-field theory with a systematic power counting is obtained. As applications, we discuss the mass of the nucleon, the pion-nucleon σ term, and the pole of the Δ propagator

  20. Efficient perturbation theory to improve the density matrix renormalization group

    Science.gov (United States)

    Tirrito, Emanuele; Ran, Shi-Ju; Ferris, Andrew J.; McCulloch, Ian P.; Lewenstein, Maciej

    2017-02-01

    The density matrix renormalization group (DMRG) is one of the most powerful numerical methods available for many-body systems. It has been applied to solve many physical problems, including the calculation of ground states and dynamical properties. In this work, we develop a perturbation theory of the DMRG (PT-DMRG) to greatly increase its accuracy in an extremely simple and efficient way. Using the canonical matrix product state (MPS) representation for the ground state of the considered system, a set of orthogonal basis functions {| ψi> } is introduced to describe the perturbations to the ground state obtained by the conventional DMRG. The Schmidt numbers of the MPS that are beyond the bond dimension cutoff are used to define these perturbation terms. The perturbed Hamiltonian is then defined as H˜i j= ; its ground state permits us to calculate physical observables with a considerably improved accuracy compared to the original DMRG results. We benchmark the second-order perturbation theory with the help of a one-dimensional Ising chain in a transverse field and the Heisenberg chain, where the precision of the DMRG is shown to be improved O (10 ) times. Furthermore, for moderate L the errors of the DMRG and PT-DMRG both scale linearly with L-1 (with L being the length of the chain). The linear relation between the dimension cutoff of the DMRG and that of the PT-DMRG at the same precision shows a considerable improvement in efficiency, especially for large dimension cutoffs. In the thermodynamic limit we show that the errors of the PT-DMRG scale with √{L-1}. Our work suggests an effective way to define the tangent space of the ground-state MPS, which may shed light on the properties beyond the ground state. This second-order PT-DMRG can be readily generalized to higher orders, as well as applied to models in higher dimensions.

  1. Superconvergent perturbation theory for euclidean scalar field theories

    International Nuclear Information System (INIS)

    Ushveridze, A.G.

    1984-01-01

    It is shown that the bare (unrenormalized) correlation functions in the euclidean scalar field theories can be expanded in a series whose terms, being computable in a relatively simple way, are free from ultraviolet and infrared divergencies. This series is convergent (divergent) for finite (infinite) values of the correlation functions. (orig.)

  2. Sensitivity calculations of integral parameters by a generalyzed perturbation theory

    International Nuclear Information System (INIS)

    Santo, A.C.F. de.

    1981-12-01

    In this work, we first revise some concepts, concerning the neutron transport in nuclear systems. We derive the balance and importance equation. Then we discuss the neutron importance in subcritical, critical and supercritical systems. The adjoint flux is estabilished as the neutron importance for the fission process. The conventional perturbation theory is later presented. We developed a sistematic perturbative formulation in the first order variation in the distribution functions calculate the reactivity due to a system perturbation. We present in detail the flux difference and generalized functions methos. The above formulation is then extended for altered systems. We consider integral parameters of the type ratio of bilinear functionals (for which the reactivity is a particular case). We define sensitivity coeficients, for any integral parameter, corresponding to a especific system alterations. Possible aplication of the method are also discussed. In the last part of this work, we apply the perturbative formulation to the doppler reacitivity sensibility calculation, utilizing the generalized functions method. We describe in detail the compiler program written for this and some other possible aplications. (Author) [pt

  3. Stable computation of generalized singular values

    Energy Technology Data Exchange (ETDEWEB)

    Drmac, Z.; Jessup, E.R. [Univ. of Colorado, Boulder, CO (United States)

    1996-12-31

    We study floating-point computation of the generalized singular value decomposition (GSVD) of a general matrix pair (A, B), where A and B are real matrices with the same numbers of columns. The GSVD is a powerful analytical and computational tool. For instance, the GSVD is an implicit way to solve the generalized symmetric eigenvalue problem Kx = {lambda}Mx, where K = A{sup {tau}}A and M = B{sup {tau}}B. Our goal is to develop stable numerical algorithms for the GSVD that are capable of computing the singular value approximations with the high relative accuracy that the perturbation theory says is possible. We assume that the singular values are well-determined by the data, i.e., that small relative perturbations {delta}A and {delta}B (pointwise rounding errors, for example) cause in each singular value {sigma} of (A, B) only a small relative perturbation {vert_bar}{delta}{sigma}{vert_bar}/{sigma}.

  4. A simple extrapolation of thermodynamic perturbation theory to infinite order

    International Nuclear Information System (INIS)

    Ghobadi, Ahmadreza F.; Elliott, J. Richard

    2015-01-01

    Recent analyses of the third and fourth order perturbation contributions to the equations of state for square well spheres and Lennard-Jones chains show trends that persist across orders and molecular models. In particular, the ratio between orders (e.g., A 3 /A 2 , where A i is the ith order perturbation contribution) exhibits a peak when plotted with respect to density. The trend resembles a Gaussian curve with the peak near the critical density. This observation can form the basis for a simple recursion and extrapolation from the highest available order to infinite order. The resulting extrapolation is analytic and therefore cannot fully characterize the critical region, but it remarkably improves accuracy, especially for the binodal curve. Whereas a second order theory is typically accurate for the binodal at temperatures within 90% of the critical temperature, the extrapolated result is accurate to within 99% of the critical temperature. In addition to square well spheres and Lennard-Jones chains, we demonstrate how the method can be applied semi-empirically to the Perturbed Chain - Statistical Associating Fluid Theory (PC-SAFT)

  5. Communication: Random phase approximation renormalized many-body perturbation theory

    International Nuclear Information System (INIS)

    Bates, Jefferson E.; Furche, Filipp

    2013-01-01

    We derive a renormalized many-body perturbation theory (MBPT) starting from the random phase approximation (RPA). This RPA-renormalized perturbation theory extends the scope of single-reference MBPT methods to small-gap systems without significantly increasing the computational cost. The leading correction to RPA, termed the approximate exchange kernel (AXK), substantially improves upon RPA atomization energies and ionization potentials without affecting other properties such as barrier heights where RPA is already accurate. Thus, AXK is more balanced than second-order screened exchange [A. Grüneis et al., J. Chem. Phys. 131, 154115 (2009)], which tends to overcorrect RPA for systems with stronger static correlation. Similarly, AXK avoids the divergence of second-order Møller-Plesset (MP2) theory for small gap systems and delivers a much more consistent performance than MP2 across the periodic table at comparable cost. RPA+AXK thus is an accurate, non-empirical, and robust tool to assess and improve semi-local density functional theory for a wide range of systems previously inaccessible to first-principles electronic structure calculations

  6. Fermi interaction. Conservation of vector current and modified perturbation theory

    International Nuclear Information System (INIS)

    Rochev, V.E.

    1983-01-01

    The Fermi interaction (anti psi ysub(n) psi)sup(2) is investigated with the method of auxilary field. The analogues of the Ward-Takahashi electrodynamical identities and the gauge transformations of Green functions, that are the consequence of the conservation of vector current, have been obtained. The gauge function for the spinor propagator is the exponential superpropagator. The arguments are given in favour of the existence of a modified perturbation theory, which is finite in every order and non-analytical over its coupling constant, for the four-fermion interaction. The non-analytical part is defined unambiguously, and the analytical part contains a set of finite dimensionless constants to define which non-perturbative information is needed. The simplest model (the chain approximation) for the non-stable vector bound state is considered

  7. A non-perturbative analysis in finite volume gauge theory

    International Nuclear Information System (INIS)

    Koller, J.; State Univ. of New York, Stony Brook; Van Baal, P.; State Univ. of New York, Stony Brook

    1988-01-01

    We discuss SU(2) gauge theory on a three-torus using a finite volume expansion. Our discovery of natural coordinates allows us to obtain continuum results in a region where Monte Carlo data are also available. The obtained results agree well with the perturbative and semiclassical analysis for small volumes, and there is fair agreement with the Monte Carlo results in intermediate volumes. The simple picture which emerges for the approximate low energy dynamics is that of three interacting particles enclosed in a sphere, with zero total 'angular momentum'. The validity of an adiabatic approximation is investigated. The fundamentally new understanding gained, is that non-perturbative dynamics can be incorporated by imposing boundary conditions which arise through the nontrivial topology of configuration space. (orig.)

  8. Interacting fermions in two dimensions: Beyond the perturbation theory

    International Nuclear Information System (INIS)

    Gangadharaiah, S.; Maslov, D.L.; Chubukov, A.V.; Glazman, L.I.

    2005-05-01

    We consider a system of 2D fermions with short-range interaction. A straightforward perturbation theory is shown to be ill-defined even for an infinitesimally weak interaction, as the perturbative series for the self-energy diverges near the mass shell. We show that the divergences result from the interaction of fermions with the zero-sound collective mode. By re-summing the most divergent diagrams, we obtain a closed form of the self-energy near the mass shell. The spectral function exhibits a threshold feature at the onset of the emission of the zero-sound waves. We also show that the interaction with the zero sound does not affect a non- analytic, T 2 -part of the specific heat. (author)

  9. Renewal theory for perturbed random walks and similar processes

    CERN Document Server

    Iksanov, Alexander

    2016-01-01

    This book offers a detailed review of perturbed random walks, perpetuities, and random processes with immigration. Being of major importance in modern probability theory, both theoretical and applied, these objects have been used to model various phenomena in the natural sciences as well as in insurance and finance. The book also presents the many significant results and efficient techniques and methods that have been worked out in the last decade. The first chapter is devoted to perturbed random walks and discusses their asymptotic behavior and various functionals pertaining to them, including supremum and first-passage time. The second chapter examines perpetuities, presenting results on continuity of their distributions and the existence of moments, as well as weak convergence of divergent perpetuities. Focusing on random processes with immigration, the third chapter investigates the existence of moments, describes long-time behavior and discusses limit theorems, both with and without scaling. Chapters fou...

  10. Adiabaticity and gravity theory independent conservation laws for cosmological perturbations

    Science.gov (United States)

    Romano, Antonio Enea; Mooij, Sander; Sasaki, Misao

    2016-04-01

    We carefully study the implications of adiabaticity for the behavior of cosmological perturbations. There are essentially three similar but different definitions of non-adiabaticity: one is appropriate for a thermodynamic fluid δPnad, another is for a general matter field δPc,nad, and the last one is valid only on superhorizon scales. The first two definitions coincide if cs2 = cw2 where cs is the propagation speed of the perturbation, while cw2 = P ˙ / ρ ˙ . Assuming the adiabaticity in the general sense, δPc,nad = 0, we derive a relation between the lapse function in the comoving slicing Ac and δPnad valid for arbitrary matter field in any theory of gravity, by using only momentum conservation. The relation implies that as long as cs ≠cw, the uniform density, comoving and the proper-time slicings coincide approximately for any gravity theory and for any matter field if δPnad = 0 approximately. In the case of general relativity this gives the equivalence between the comoving curvature perturbation Rc and the uniform density curvature perturbation ζ on superhorizon scales, and their conservation. This is realized on superhorizon scales in standard slow-roll inflation. We then consider an example in which cw =cs, where δPnad = δPc,nad = 0 exactly, but the equivalence between Rc and ζ no longer holds. Namely we consider the so-called ultra slow-roll inflation. In this case both Rc and ζ are not conserved. In particular, as for ζ, we find that it is crucial to take into account the next-to-leading order term in ζ's spatial gradient expansion to show its non-conservation, even on superhorizon scales. This is an example of the fact that adiabaticity (in the thermodynamic sense) is not always enough to ensure the conservation of Rc or ζ.

  11. Solving the open bosonic string in perturbation theory

    International Nuclear Information System (INIS)

    Samuel, S.

    1990-01-01

    The integrand and integration region for the N-point amplitude in the open oriented bosonic string are obtained to all orders in perturbation theory. The result is derived from the Witten covariant string field theory by using on-shell and off-shell conformal methods and Riemann surface mathematics. Although only the off-shell g-loop tachyon amplitudes are computed explicitly, the methods generalize to other external states. We derive the g-loop ghost-Jacobi identity in which the ghost correlation function cancels the jacobian factor in changing from second-quantized to first-quantized variables. Moduli space is discussed from several viewpoints and it is shown that string field theory provides an algorithm for its determination. (orig.)

  12. A non-perturbative study of massive gauge theories

    DEFF Research Database (Denmark)

    Della Morte, Michele; Hernandez, Pilar

    2013-01-01

    and the lightest degrees of freedom are spin one vector particles with the same quantum numbers as the conserved current, we argue that the most general effective theory describing their low-energy dynamics must be a massive gauge theory. We present results of a exploratory numerical simulation of the model......We consider a non-perturbative formulation of an SU(2) massive gauge theory on a space-time lattice, which is also a discretised gauged non-linear chiral model. The lattice model is shown to have an exactly conserved global SU(2) symmetry. If a scaling region for the lattice model exists...... and find indications for the presence of a scaling region where both a triplet vector and a scalar remain light....

  13. S-duality invariant perturbation theory improved by holography

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Abhishek [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India); Honda, Masazumi [Department of Particle Physics and Astrophysics,Weizmann Institute of Science, Rehovot 7610001 (Israel); Thakur, Somyadip [Tata Institute of Fundamental Research,Mumbai 400005 (India)

    2017-04-26

    We study anomalous dimensions of unprotected low twist operators in the four-dimensional SU (N)N=4 supersymmetric Yang-Mills theory. We construct a class of interpolating functions to approximate the dimensions of the leading twist operators for arbitrary gauge coupling τ. The interpolating functions are consistent with previous results on the perturbation theory, holographic computation and full S-duality. We use our interpolating functions to test a recent conjecture by the N=4 superconformal bootstrap that upper bounds on the dimensions are saturated at one of the duality-invariant points τ=i and τ=e{sup iπ/3}. It turns out that our interpolating functions have maximum at τ=e{sup iπ/3}, which are close to the conjectural values by the conformal bootstrap. In terms of the interpolating functions, we draw the image of conformal manifold in the space of the dimensions. We find that the image is almost a line despite the conformal manifold is two-dimensional. We also construct interpolating functions for the subleading twist operator and study level crossing phenomenon between the leading and subleading twist operators. Finally we study the dimension of the Konishi operator in the planar limit. We find that our interpolating functions match with numerical result obtained by Thermodynamic Bethe Ansatz very well. It turns out that analytic properties of the interpolating functions reflect an expectation on a radius of convergence of the perturbation theory.

  14. Semiclassical perturbation theory for diffraction in heavy atom surface scattering.

    Science.gov (United States)

    Miret-Artés, Salvador; Daon, Shauli; Pollak, Eli

    2012-05-28

    The semiclassical perturbation theory formalism of Hubbard and Miller [J. Chem. Phys. 78, 1801 (1983)] for atom surface scattering is used to explore the possibility of observation of heavy atom diffractive scattering. In the limit of vanishing ℏ the semiclassical theory is shown to reduce to the classical perturbation theory. The quantum diffraction pattern is sensitive to the characteristics of the beam of incoming particles. Necessary conditions for observation of quantum diffraction are derived for the angular width of the incoming beam. An analytic expression for the angular distribution as a function of the angular and momentum variance of the incoming beam is obtained. We show both analytically and through some numerical results that increasing the angular width of the incident beam leads to decoherence of the quantum diffraction peaks and one approaches the classical limit. However, the incoherence of the beam in the parallel direction does not destroy the diffraction pattern. We consider the specific example of Ar atoms scattered from a rigid LiF(100) surface.

  15. Exact string theory model of closed timelike curves and cosmological singularities

    International Nuclear Information System (INIS)

    Johnson, Clifford V.; Svendsen, Harald G.

    2004-01-01

    We study an exact model of string theory propagating in a space-time containing regions with closed timelike curves (CTCs) separated from a finite cosmological region bounded by a big bang and a big crunch. The model is an nontrivial embedding of the Taub-NUT geometry into heterotic string theory with a full conformal field theory (CFT) definition, discovered over a decade ago as a heterotic coset model. Having a CFT definition makes this an excellent laboratory for the study of the stringy fate of CTCs, the Taub cosmology, and the Milne/Misner-type chronology horizon which separates them. In an effort to uncover the role of stringy corrections to such geometries, we calculate the complete set of α ' corrections to the geometry. We observe that the key features of Taub-NUT persist in the exact theory, together with the emergence of a region of space with Euclidean signature bounded by timelike curvature singularities. Although such remarks are premature, their persistence in the exact geometry is suggestive that string theory is able to make physical sense of the Milne/Misner singularities and the CTCs, despite their pathological character in general relativity. This may also support the possibility that CTCs may be viable in some physical situations, and may be a natural ingredient in pre-big bang cosmological scenarios

  16. In-core fuel management via perturbation theory

    International Nuclear Information System (INIS)

    Mingle, J.O.

    1975-01-01

    A two-step procedure is developed for the optimization of in-core nuclear fuel management using perturbation theory to predict the effects of various core configurations. The first procedure is a cycle cost minimization using linear programming with a zoned core and discrete burnup groups. The second program utilizes an individual fuel assembly shuffling sequence to minimize the maldistribution of power generation. This latter quantity is represented by a figure of merit or by an assembly power peaking factor. A pressurized water reactor example calculation is utilized. 24 references

  17. Applications of perturbation theory to the study of CANDU reactors

    International Nuclear Information System (INIS)

    Rozon, D.; Beaudet, M.

    1990-01-01

    The use of Generalized Perturbation Theory (GPT) in the computer code OPTEX-4 is described. This code can be used to simultaneously optimize the fuel management and the control absorber distribution in a CANDU reactor at equilibrium refueling. The gradient of the characteristic functionals are obtained using two independent approaches, requiring the solution of a fixed source eigenvalue problem (direct for the explicit approach. adjoint for the implicit approach). These solutions, as well as the solution of the diffusion problem is obtained in 3D by calling the diffusion module TRIVAC-2. The equivalence of the two approaches is demonstrated [fr

  18. Is there a signal of quark confinement from perturbation theory

    International Nuclear Information System (INIS)

    Poggio, E.C.

    1977-01-01

    The question of whether the presence of the large infrared logarithms affects in any sense the determination of physical amplitudes involving quarks and gluons is considered in a report of results from previous investigations. Global impressions of their nature and of what they mean as far as the confinement issue is concerned. A comparison is made with analogous quantum electrodynamic processes, where the corresponding infrared aspects are completely understood. Quark form factor behavior, quark-antiquark scattering, the weak and the strong KLN theorems, and perturbation theory and confinement are treated. 26 references

  19. Ferromagnetism in the Hubbard model: a modified perturbation theory

    International Nuclear Information System (INIS)

    Gangadhar Reddy, G.; Ramakanth, A.; Nolting, W.

    2005-01-01

    We study the possibility of ferromagnetism in the Hubbard model using the modified perturbation theory. In this approach an Ansatz is made for the self-energy of the electron which contains the second order contribution developed around the Hartree-Fock solution and two parameters. The parameters are fixed by using a moment method. This self energy satisfies several known exact limiting cases. Using this self energy, the Curie temperature T c as a function of band filling n is investigated. It is found that T c falls off abruptly as n approaches half filling. The results are in qualitative agreement with earlier calculations using other approximation schemes. (author)

  20. Wavefunction of the Universe and Chern-Simons perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Soo Chopin [Department of Physics, National Cheng Kung University Tainan 70101, Taiwan (China)

    2002-03-21

    The Chern-Simons exact solution of four-dimensional quantum gravity with nonvanishing cosmological constant is presented in metric variables as the partition function of Chern-Simons theory with nontrivial source. The perturbative expansion is given, and the wavefunction is computed to the lowest order of approximation for the Cauchy surface which is topologically a 3-sphere. The state is well-defined even at degenerate and vanishing values of the dreibein. Reality conditions for the Ashtekar variables are also taken into account, and remarkable features of the Chern-Simons state and their relevance to cosmology are pointed out.

  1. Fuel management optimization based on generalized perturbation theory

    International Nuclear Information System (INIS)

    White, J.R.; Chapman, D.M.; Biswas, D.

    1986-01-01

    A general methodology for optimization of assembly shuffling and burnable poison (BP) loadings for LWR reload design has been developed. The uniqueness of this approach lies in the coupling of Generalized Perturbation Theory (GPT) methods and standard Integer Programming (IP) techniques. An IP algorithm can simulate the discrete nature of the fuel shuffling and BP loading problems, and the use of GPT sensitivity data provides an efficient means for modeling the behavior of the important core performance parameters. The method is extremely flexible since the choice of objective function and the number and mix of constraints depend only on the ability of GPT to determine the appropriate sensitivity functions

  2. Zeeman effect: new outlook on old perturbation theory

    International Nuclear Information System (INIS)

    Turbiner, A.V.

    1980-01-01

    The problem of hydrogen atom placed in constant external magnetic field is studied. The properties of ordinary perturbation theory (in powers of the field) in the framework of a new approach proposed earlier are investigated. The ground state are considered in detailed while the excited states are discussed only in brief. It is shown that the ''wave function corrections'' with in this approach are simpler than within ordinary one and contain a finite number of harmonics with polynomial coefficients. Some coefficients of these polynomials are found explicitly

  3. An integral for second-order multiple scattering perturbation theory

    International Nuclear Information System (INIS)

    Hoffman, G.G.

    1997-01-01

    This paper presents the closed form evaluation of a six-dimensional integral. The integral arises in the application to many-electron systems of a multiple scattering perturbation expansion at second order when formulated in fourier space. The resulting function can be used for the calculation of both the electron density and the effective one-electron potential in an SCF calculations. The closed form expression derived here greatly facilitates these calculations. In addition, the evaluated integral can be used for the computation of second-order corrections to the open-quotes optimized Thomas-Fermi theory.close quotes 10 refs., 2 figs

  4. Bound-state perturbation theory and annihilation effects in positronium

    International Nuclear Information System (INIS)

    Abbasabadi, A.; Repko, W.W.

    1987-01-01

    Working in Coulomb gauge and using the lowest-order equation proposed by Barbieri and Remiddi it is calculated, in the one-loop order of perturbation theory, the decay rate and the energy shift of the ground states of parapositronium and orthopositronium, respectively. Our result for the decay rate agrees with that of Harris and Brown. For contribution of one-photon-annihilation channel to the energy shift, it is confirmed the result of Karplus and Klein. These results are derived completely within the bound-state formalism and avoid the necessity of performing on-mass-shell wave function and vertex renormalization subtractions

  5. Nf=2 Lattice QCD and Chiral Perturbation Theory

    International Nuclear Information System (INIS)

    Scorzato, L.; Farchioni, F.; Hofmann, P.; Jansen, K.; Montvay, I.; Muenster, G.; Papinutto, M.; Scholz, E.E.; Shindler, A.; Ukita, N.; Urbach, C.; Wenger, U.; Wetzorke, I.

    2006-01-01

    By employing a twisted mass term, we compare recent results from lattice calculations of N f =2 dynamical Wilson fermions with Wilson Chiral Perturbation Theory (WChPT). The final goal is to determine some com- binations of Gasser-Leutwyler Low Energy Constants (LECs). A wide set of data with different lattice spacings (a ∼ 0.2 - 0.12 fm), different gauge actions (Wilson plaquette, DBW2) and different quark masses (down to the lowest pion mass allowed by lattice artifacts and including negative quark masses) provide a strong check of the applicability of WChPT in this regime and the scaling behaviours in the continuum limit

  6. Gluon cascades and amplitudes in light-front perturbation theory

    International Nuclear Information System (INIS)

    Cruz-Santiago, C.A.; Staśto, A.M.

    2013-01-01

    We construct the gluon wave functions, fragmentation functions and scattering amplitudes within the light-front perturbation theory. Recursion relations on the light-front are constructed for the wave functions and fragmentation functions, which in the latter case are the light-front analogs of the Berends–Giele recursion relations. Using general relations between wave functions and scattering amplitudes it is demonstrated how to obtain the maximally-helicity violating amplitudes, and explicit verification of the results is based on simple examples.

  7. Green's functions for theories with massless particles (in perturbation theory). [Growth properties, momentum space, mass renormalization

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, P [European Organization for Nuclear Research, Geneva (Switzerland); Seneor, R [European Organization for Nuclear Research, Geneva (Switzerland); Ecole Polytechnique, 75 - Paris (France). Centre de Physique Theorique)

    1975-01-01

    With the method of perturbative renormalization developed by Epstein and Glaser it is shown that Green's functions exist for theories with massless particles such as Q.E.D. and lambda:PHI/sup 2n/ theories. Growth properties are given in momentum space. In the case of Q.E.D., it is also shown that one can perform the physical mass renormalization.

  8. Exponential time-dependent perturbation theory in rotationally inelastic scattering

    International Nuclear Information System (INIS)

    Cross, R.J.

    1983-01-01

    An exponential form of time-dependent perturbation theory (the Magnus approximation) is developed for rotationally inelastic scattering. A phase-shift matrix is calculated as an integral in time over the anisotropic part of the potential. The trajectory used for this integral is specified by the diagonal part of the potential matrix and the arithmetic average of the initial and final velocities and the average orbital angular momentum. The exponential of the phase-shift matrix gives the scattering matrix and the various cross sections. A special representation is used where the orbital angular momentum is either treated classically or may be frozen out to yield the orbital sudden approximation. Calculations on Ar+N 2 and Ar+TIF show that the theory generally gives very good agreement with accurate calculations, even where the orbital sudden approximation (coupled-states) results are seriously in error

  9. Basics of thermal field theory a tutorial on perturbative computations

    CERN Document Server

    Laine, Mikko

    2016-01-01

    This book presents thermal field theory techniques, which can be applied in both cosmology and the theoretical description of the QCD plasma generated in heavy-ion collision experiments. It focuses on gauge interactions (whether weak or strong), which are essential in both contexts. As well as the many differences in the physics questions posed and in the microscopic forces playing a central role, the authors also explain the similarities and the techniques, such as the resummations, that are needed for developing a formally consistent perturbative expansion. The formalism is developed step by step, starting from quantum mechanics; introducing scalar, fermionic and gauge fields; describing the issues of infrared divergences; resummations and effective field theories; and incorporating systems with finite chemical potentials. With this machinery in place, the important class of real-time (dynamic) observables is treated in some detail. This is followed by an overview of a number of applications, ranging from t...

  10. Stringy horizons and generalized FZZ duality in perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Giribet, Gaston [Martin Fisher School of Physics, Brandeis University,Waltham, Massachusetts 02453 (United States); Departamento de Física, Universidad de Buenos Aires FCEN-UBA and IFIBA-CONICET,Ciudad Universitaria, Pabellón I, 1428, Buenos Aires (Argentina)

    2017-02-14

    We study scattering amplitudes in two-dimensional string theory on a black hole bakground. We start with a simple derivation of the Fateev-Zamolodchikov-Zamolodchikov (FZZ) duality, which associates correlation functions of the sine-Liouville integrable model on the Riemann sphere to tree-level string amplitudes on the Euclidean two-dimensional black hole. This derivation of FZZ duality is based on perturbation theory, and it relies on a trick originally due to Fateev, which involves duality relations between different Selberg type integrals. This enables us to rewrite the correlation functions of sine-Liouville theory in terms of a special set of correlators in the gauged Wess-Zumino-Witten (WZW) theory, and use this to perform further consistency checks of the recently conjectured Generalized FZZ (GFZZ) duality. In particular, we prove that n-point correlation functions in sine-Liouville theory involving n−2 winding modes actually coincide with the correlation functions in the SL(2,ℝ)/U(1) gauged WZW model that include n−2 oscillator operators of the type described by Giveon, Itzhaki and Kutasov in reference https://www.doi.org/10.1007/JHEP10(2016)157. This proves the GFZZ duality for the case of tree level maximally winding violating n-point amplitudes with arbitrary n. We also comment on the connection between GFZZ and other marginal deformations previously considered in the literature.

  11. Technical fine-tuning problem in renormalized perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.E.

    1983-01-01

    The technical - as opposed to physical - fine tuning problem, i.e. the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a number of different models is studied. These include softly-broken supersymmetric models, and non-supersymmetric ones with a hierarchy of spontaneously-broken gauge symmetries. The models are renormalized using the BPHZ prescription, with momentum subtractions. Explicit calculations indicate that the tree-level hierarchy is not upset by the radiative corrections, and consequently no further fine-tuning is required to maintain it. Furthermore, this result is shown to run counter to that obtained via Dimensional Renormalization, (the only scheme used in previous literature on the subject). The discrepancy originates in the inherent local ambiguity in the finite parts of subtracted Feynman integrals. Within fully-renormalized perturbation theory the answer to the technical fine-tuning question (in the sense of whether the radiative corrections will ''readily'' respect the tree level gauge hierarchy or not) is contingent on the renormalization scheme used to define the model at the quantum level, rather than on the model itself. In other words, the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes.

  12. Enforcing conservation laws in nonequilibrium cluster perturbation theory

    Science.gov (United States)

    Gramsch, Christian; Potthoff, Michael

    2017-05-01

    Using the recently introduced time-local formulation of the nonequilibrium cluster perturbation theory (CPT), we construct a generalization of the approach such that macroscopic conservation laws are respected. This is achieved by exploiting the freedom for the choice of the starting point of the all-order perturbation theory in the intercluster hopping. The proposed conserving CPT is a self-consistent propagation scheme which respects the conservation of energy, particle number, and spin, which treats short-range correlations exactly up to the linear scale of the cluster, and which represents a mean-field-like approach on length scales beyond the cluster size. Using Green's functions, conservation laws are formulated as local constraints on the local spin-dependent particle and the doublon density. We consider them as conditional equations to self-consistently fix the time-dependent intracluster one-particle parameters. Thanks to the intrinsic causality of the CPT, this can be set up as a step-by-step time propagation scheme with a computational effort scaling linearly with the maximum propagation time and exponentially in the cluster size. As a proof of concept, we consider the dynamics of the two-dimensional, particle-hole-symmetric Hubbard model following a weak interaction quench by simply employing two-site clusters only. Conservation laws are satisfied by construction. We demonstrate that enforcing them has strong impact on the dynamics. While the doublon density is strongly oscillating within plain CPT, a monotonic relaxation is observed within the conserving CPT.

  13. Technical fine-tuning problem in renormalized perturbation theory

    International Nuclear Information System (INIS)

    Foda, O.E.

    1983-01-01

    The technical - as opposed to physical - fine tuning problem, i.e. the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a number of different models is studied. These include softly-broken supersymmetric models, and non-supersymmetric ones with a hierarchy of spontaneously-broken gauge symmetries. The models are renormalized using the BPHZ prescription, with momentum subtractions. Explicit calculations indicate that the tree-level hierarchy is not upset by the radiative corrections, and consequently no further fine-tuning is required to maintain it. Furthermore, this result is shown to run counter to that obtained via Dimensional Renormalization, (the only scheme used in previous literature on the subject). The discrepancy originates in the inherent local ambiguity in the finite parts of subtracted Feynman integrals. Within fully-renormalized perturbation theory the answer to the technical fine-tuning question (in the sense of whether the radiative corrections will ''readily'' respect the tree level gauge hierarchy or not) is contingent on the renormalization scheme used to define the model at the quantum level, rather than on the model itself. In other words, the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes

  14. Heavy-light semileptonic decays in staggered chiral perturbation theory

    Science.gov (United States)

    Aubin, C.; Bernard, C.

    2007-07-01

    We calculate the form factors for the semileptonic decays of heavy-light pseudoscalar mesons in partially quenched staggered chiral perturbation theory (SχPT), working to leading order in 1/mQ, where mQ is the heavy-quark mass. We take the light meson in the final state to be a pseudoscalar corresponding to the exact chiral symmetry of staggered quarks. The treatment assumes the validity of the standard prescription for representing the staggered “fourth-root trick” within SχPT by insertions of factors of 1/4 for each sea-quark loop. Our calculation is based on an existing partially quenched continuum chiral perturbation theory calculation with degenerate sea quarks by Bećirević, Prelovsek, and Zupan, which we generalize to the staggered (and nondegenerate) case. As a byproduct, we obtain the continuum partially quenched results with nondegenerate sea quarks. We analyze the effects of nonleading chiral terms, and find a relation among the coefficients governing the analytic valence mass dependence at this order. Our results are useful in analyzing lattice computations of form factors B→π and D→K, when the light quarks are simulated with the staggered action.

  15. Relation of extended Van Hove singularities to high-temperature superconductivity within strong-coupling theory

    International Nuclear Information System (INIS)

    Radtke, R.J.; Norman, M.R.

    1994-01-01

    Recent angle-resolved photoemission (ARPES) experiments have indicated that the electronic dispersion in some of the cuprates possesses an extended saddle point near the Fermi level which gives rise to a density of states that diverges like a power law instead of the weaker logarithmic divergence usually considered. We investigate whether this strong singularity can give rise to high transition temperatures by computing the critical temperature T c and isotope effect coefficient α within a strong-coupling Eliashberg theory which accounts for the full energy variation of the density of states. Using band structures extracted from ARPES measurements, we demonstrate that, while the weak-coupling solutions suggest a strong influence of the strength of the Van Hove singularity on T c and α, strong-coupling solutions show less sensitivity to the singularity strength and do not support the hypothesis that band-structure effects alone can account for either the large T c 's or the different T c 's within the copper oxide family. This conclusion is supported when our results are plotted as a function of the physically relevant self-consistent coupling constant, which shows universal behavior at very strong coupling

  16. Psyche=singularity: A comparison of Carl Jung's transpersonal psychology and Leonard Susskind's holographic string theory

    Science.gov (United States)

    Desmond, Timothy

    In this dissertation I discern what Carl Jung calls the mandala image of the ultimate archetype of unity underlying and structuring cosmos and psyche by pointing out parallels between his transpersonal psychology and Stanford physicist Leonard Susskind's string theory. Despite his atheistic, materialistically reductionist interpretation of it, I demonstrate how Susskind's string theory of holographic information conservation at the event horizons of black holes, and the cosmic horizon of the universe, corroborates the following four topics about which Jung wrote: (1) his near-death experience of the cosmic horizon after a heart attack in 1944; ( 2) his equation relating psychic energy to mass, "Psyche=highest intensity in the smallest space" (1997, 162), which I translate into the equation, Psyche=Singularity; (3) his theory that the mandala, a circle or sphere with a central point, is the symbolic image of the ultimate archetype of unity through the union of opposites, which structures both cosmos and psyche, and which rises spontaneously from the collective unconscious to compensate a conscious mind torn by irreconcilable demands (1989, 334-335, 396-397); and (4) his theory of synchronicity. I argue that Susskind's inside-out black hole model of our Big Bang universe forms a geometrically perfect mandala: a central Singularity encompassed by a two-dimensional sphere which serves as a universal memory bank. Moreover, in precise fulfillment of Jung's theory, Susskind used that mandala to reconcile the notoriously incommensurable paradigms of general relativity and quantum mechanics, providing in the process a mathematically plausible explanation for Jung's near-death experience of his past, present, and future life simultaneously at the cosmic horizon. Finally, Susskind's theory also provides a plausible cosmological model to explain Jung's theory of synchronicity--meaningful coincidences may be tied together by strings at the cosmic horizon, from which they

  17. Many-body perturbation theory for ab initio nuclear structure

    International Nuclear Information System (INIS)

    Tichai, Alexander

    2017-01-01

    The solution of the quantum many-body problem for medium-mass nuclei using realistic nuclear interactions poses a superbe challenge for nuclear structure research. Because an exact solution can only be provided for the lightest nuclei, one has to rely on approximate solutions when proceeding to heavier systems. Over the past years, tremendous progress has been made in the development and application of systematically improvable expansion methods and an accurate description of nuclear observables has become viable up to mass number A ∼ 100. While closed-shell systems are consistently described via a plethora of different many-body methods, the extension to genuine open-shell systems still remains a major challenge and up to now there is no ab initio many-body method which applies equally well to systems with even and odd mass numbers. The goal of this thesis is the development and implementation of innovative perturbative approaches with genuine open-shell capabilities. This requires the extension of well-known single-reference approaches to more general vacua. In this work we choose two complementary routes for the usage of generalized reference states. First, we derive a new ab initio approach based on multi-configurational reference states that are conveniently derived from a prior no-core shell model calculation. Perturbative corrections are derived via second-order many-body perturbation theory, thus, merging configuration interaction and many-body perturbation theory. The generality of this ansatz enables for a treatment of medium-mass systems with arbitrary mass number, as well as the extension to low-lying excited states such that ground and excited states are treated on an equal footing. In a complementary approach, we use reference states that break a symmetry of the underlying Hamiltonian. In the simplest case this corresponds to the expansion around a particle-number-broken Hartree-Fock-Bogolyubov vacuum which is obtained from a mean-field calculation

  18. Topological string theory, modularity and non-perturbative physics

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Marco

    2011-09-15

    In this thesis the holomorphic anomaly of correlators in topological string theory, matrix models and supersymmetric gauge theories is investigated. In the first part it is shown how the techniques of direct integration known from topological string theory can be used to solve the closed amplitudes of Hermitian multi-cut matrix models with polynomial potentials. In the case of the cubic matrix model, explicit expressions for the ring of non-holomorphic modular forms that are needed to express all closed matrix model amplitudes are given. This allows to integrate the holomorphic anomaly equation up to holomorphic modular terms that are fixed by the gap condition up to genus four. There is an one-dimensional submanifold of the moduli space in which the spectral curve becomes the Seiberg-Witten curve and the ring reduces to the non-holomorphic modular ring of the group {gamma}(2). On that submanifold, the gap conditions completely fix the holomorphic ambiguity and the model can be solved explicitly to very high genus. Using these results it is possible to make precision tests of the connection between the large order behavior of the 1/N expansion and non-perturbative effects due to instantons. Finally, it is argued that a full understanding of the large genus asymptotics in the multi-cut case requires a new class of non-perturbative sectors in the matrix model. In the second part a holomorphic anomaly equation for the modified elliptic genus of two M5-branes wrapping a rigid divisor inside a Calabi-Yau manifold is derived using wall-crossing formulae and the theory of mock modular forms. The anomaly originates from restoring modularity of an indefinite theta-function capturing the wall-crossing of BPS invariants associated to D4- D2-D0 brane systems. The compatibility of this equation with anomaly equations previously observed in the context of N=4 topological Yang-Mills theory on P{sup 2} and E-strings obtained from wrapping M5-branes on a del Pezzo surface which in

  19. Topological string theory, modularity and non-perturbative physics

    International Nuclear Information System (INIS)

    Rauch, Marco

    2011-09-01

    In this thesis the holomorphic anomaly of correlators in topological string theory, matrix models and supersymmetric gauge theories is investigated. In the first part it is shown how the techniques of direct integration known from topological string theory can be used to solve the closed amplitudes of Hermitian multi-cut matrix models with polynomial potentials. In the case of the cubic matrix model, explicit expressions for the ring of non-holomorphic modular forms that are needed to express all closed matrix model amplitudes are given. This allows to integrate the holomorphic anomaly equation up to holomorphic modular terms that are fixed by the gap condition up to genus four. There is an one-dimensional submanifold of the moduli space in which the spectral curve becomes the Seiberg-Witten curve and the ring reduces to the non-holomorphic modular ring of the group Γ(2). On that submanifold, the gap conditions completely fix the holomorphic ambiguity and the model can be solved explicitly to very high genus. Using these results it is possible to make precision tests of the connection between the large order behavior of the 1/N expansion and non-perturbative effects due to instantons. Finally, it is argued that a full understanding of the large genus asymptotics in the multi-cut case requires a new class of non-perturbative sectors in the matrix model. In the second part a holomorphic anomaly equation for the modified elliptic genus of two M5-branes wrapping a rigid divisor inside a Calabi-Yau manifold is derived using wall-crossing formulae and the theory of mock modular forms. The anomaly originates from restoring modularity of an indefinite theta-function capturing the wall-crossing of BPS invariants associated to D4- D2-D0 brane systems. The compatibility of this equation with anomaly equations previously observed in the context of N=4 topological Yang-Mills theory on P 2 and E-strings obtained from wrapping M5-branes on a del Pezzo surface which in turn is

  20. One-Group Perturbation Theory Applied to Measurements with Void

    International Nuclear Information System (INIS)

    Persson, Rolf

    1966-09-01

    Formulas suitable for evaluating progressive as well as single rod substitution measurements are derived by means of one-group perturbation theory. The diffusion coefficient may depend on direction and position. By using the buckling concept one can derive expressions which are quite simple and the perturbed flux can be taken into account in a comparatively simple way. By using an unconventional definition of cells a transition region is introduced quite logically. Experiments with voids around metal rods, diam. 3.05 cm, have been analysed. The agreement between extrapolated and directly measured buckling values is excellent, the buckling difference between lattices with water-filled and voided shrouds being 0. 263 ± 0.015/m 2 and 0.267 ± 0.005/m 2 resp. From single-rod experiments differences between diffusion coefficients are determined to δD r /D = 0.083 ± 0.004 and δD z /D = 0.120 ± 0.018. With air-filled shrouds there is consequently anisotropy in the neutron diffusion and we have (D z /D r ) air = 1.034 ± 0.020

  1. One-Group Perturbation Theory Applied to Measurements with Void

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Rolf

    1966-09-15

    Formulas suitable for evaluating progressive as well as single rod substitution measurements are derived by means of one-group perturbation theory. The diffusion coefficient may depend on direction and position. By using the buckling concept one can derive expressions which are quite simple and the perturbed flux can be taken into account in a comparatively simple way. By using an unconventional definition of cells a transition region is introduced quite logically. Experiments with voids around metal rods, diam. 3.05 cm, have been analysed. The agreement between extrapolated and directly measured buckling values is excellent, the buckling difference between lattices with water-filled and voided shrouds being 0. 263 {+-} 0.015/m{sup 2} and 0.267 {+-} 0.005/m{sup 2} resp. From single-rod experiments differences between diffusion coefficients are determined to {delta}D{sub r}/D = 0.083 {+-} 0.004 and {delta}D{sub z}/D = 0.120 {+-} 0.018. With air-filled shrouds there is consequently anisotropy in the neutron diffusion and we have (D{sub z}/D{sub r}){sub air} = 1.034 {+-} 0.020.

  2. SIMP model at NNLO in chiral perturbation theory

    Science.gov (United States)

    Hansen, Martin; Langæble, Kasper; Sannino, Francesco

    2015-10-01

    We investigate the phenomenological viability of a recently proposed class of composite dark matter models where the relic density is determined by 3 →2 number-changing processes in the dark sector. Here the pions of the strongly interacting field theory constitute the dark matter particles. By performing a consistent next-to-leading- and next-to-next-to-leading-order chiral perturbative investigation we demonstrate that the leading-order analysis cannot be used to draw conclusions about the viability of the model. We further show that higher-order corrections substantially increase the tension with phenomenological constraints challenging the viability of the simplest realization of the strongly interacting massive particle paradigm.

  3. The role of resonances in chiral perturbation theory

    International Nuclear Information System (INIS)

    Ecker, G.; Rafael, E. de

    1988-09-01

    The strong interactions of low-lying meson resonances (spin ≤ 1) with the octet of pseudoscalar mesons (π,Κ,η) are considered to lowest order in the derivative expansion of chiral SU(3). The resonance contributions to the coupling constants of the O(p 4 ) effective chiral lagrangian involving pseudoscalar fields only are determined. These low-energy coupling constants are found to be dominated by the resonance contributions. Although we do not treat the vector and axial-vector mesons as gauge bosons of local chiral symmetry, vector meson dominance emerges as a prominent result of our analysis. As a further application of chiral resonance couplings, we calculate the electromagnetic pion mass difference to lowest order in chiral perturbation theory with explicit resonance fields. 29 refs., 2 figs., 5 tabs. (Author)

  4. Universality of fast quenches from the conformal perturbation theory

    Science.gov (United States)

    Dymarsky, Anatoly; Smolkin, Michael

    2018-01-01

    We consider global quantum quenches, a protocol when a continuous field theoretic system in the ground state is driven by a homogeneous time-dependent external interaction. When the typical inverse time scale of the interaction is much larger than all relevant scales except for the UV-cutoff the system's response exhibits universal scaling behavior. We provide both qualitative and quantitative explanations of this universality and argue that physics of the response during and shortly after the quench is governed by the conformal perturbation theory around the UV fixed point. We proceed to calculate the response of one and two-point correlation functions confirming and generalizing universal scalings found previously. Finally, we discuss late time behavior after the quench and argue that all local quantities will equilibrate to their thermal values specified by an excess energy acquired by the system during the quench.

  5. On the non-linear scale of cosmological perturbation theory

    CERN Document Server

    Blas, Diego; Konstandin, Thomas

    2013-01-01

    We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.

  6. Variational cluster perturbation theory for Bose-Hubbard models

    International Nuclear Information System (INIS)

    Koller, W; Dupuis, N

    2006-01-01

    We discuss the application of the variational cluster perturbation theory (VCPT) to the Mott-insulator-to-superfluid transition in the Bose-Hubbard model. We show how the VCPT can be formulated in such a way that it gives a translation invariant excitation spectrum-free of spurious gaps-despite the fact that it formally breaks translation invariance. The phase diagram and the single-particle Green function in the insulating phase are obtained for one-dimensional systems. When the chemical potential of the cluster is taken as a variational parameter, the VCPT reproduces the dimensional dependence of the phase diagram even for one-site clusters. We find a good quantitative agreement with the results of the density-matrix renormalization group when the number of sites in the cluster becomes of order 10. The extension of the method to the superfluid phase is discussed

  7. Monte Carlo perturbation theory in neutron transport calculations

    International Nuclear Information System (INIS)

    Hall, M.C.G.

    1980-01-01

    The need to obtain sensitivities in complicated geometrical configurations has resulted in the development of Monte Carlo sensitivity estimation. A new method has been developed to calculate energy-dependent sensitivities of any number of responses in a single Monte Carlo calculation with a very small time penalty. This estimation typically increases the tracking time per source particle by about 30%. The method of estimation is explained. Sensitivities obtained are compared with those calculated by discrete ordinates methods. Further theoretical developments, such as second-order perturbation theory and application to k/sub eff/ calculations, are discussed. The application of the method to uncertainty analysis and to the analysis of benchmark experiments is illustrated. 5 figures

  8. The Operator Product Expansion Beyond Perturbation Theory in QCD

    International Nuclear Information System (INIS)

    Dominguez, C. A.

    2011-01-01

    The Operator Product Expansion (OPE) of current correlators at short distances beyond perturbation theory in QCD, together with Cauchy's theorem in the complex energy plane, are the pillars of the method of QCD sum rules. This technique provides an analytic tool to relate QCD with hadronic physics at low and intermediate energies. It has been in use for over thirty years to determine hadronic parameters, form factors, and QCD parameters such as the quark masses, and the running strong coupling at the scale of the τ-lepton. QCD sum rules provide a powerful complement to numerical simulations of QCD on the lattice. In this talk a short review of the method is presented for non experts, followed by three examples of recent applications.

  9. On the non-linear scale of cosmological perturbation theory

    International Nuclear Information System (INIS)

    Blas, Diego; Garny, Mathias; Konstandin, Thomas

    2013-04-01

    We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.

  10. Recent advances in multireference-based perturbation theory

    International Nuclear Information System (INIS)

    Nakano, Haruyuki; Hirao, Kimihiko

    2003-01-01

    Accurate ab initio computational chemistry has evolved dramatically. In particular, the development of multireference-based approaches has opened up a completely new area, and has had a profound impact on the potential of theoretical chemistry. Multireference-based perturbation theory (MRPT) is an extension of the closed-shell single reference Moeller-Plesset method, and has been successfully applied to many chemical and spectroscopic problems. MRPT has established itself as an efficient technique for treating nondynamical and dynamical correlations. Usually, a complete active space self-consistent field (CASSCF) wave function is chosen as a reference function of MRPT. However, CASSCF often generates too many configurations, and the size of the active space can outgrow the capacity of the present technology. Many attempts have been proposed to reduce the dimension of CASSCF and to widen the range of applications of MRPT. This review focuses on our recent development in MRPT

  11. On the non-linear scale of cosmological perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Blas, Diego [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Garny, Mathias; Konstandin, Thomas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-04-15

    We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.

  12. Exploring perturbative conformal field theory in Mellin space

    Energy Technology Data Exchange (ETDEWEB)

    Nizami, Amin A. [International Centre for Theoretical Sciences, TIFR,Hesaraghatta, Hubli, Bengaluru-560089 (India); Rudra, Arnab [Center for Quantum Mathematics and Physics (QMAP), Department of Physics,University of California, Davis, 1 Shields Ave, Davis, CA 95616 (United States); Sarkar, Sourav [Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin, IRIS-Adlershof,Zum Großen Windkanal 6, 12489 Berlin (Germany); Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,Am Mühlenberg 1, 14476 Potsdam (Germany); Verma, Mritunjay [International Centre for Theoretical Sciences, TIFR,Hesaraghatta, Hubli, Bengaluru-560089 (India); Harish-Chandra Research Institute,Chhatnag Road, Jhunsi, Allahabad-211019 (India)

    2017-01-24

    We explore the Mellin representation of correlation functions in conformal field theories in the weak coupling regime. We provide a complete proof for a set of Feynman rules to write the Mellin amplitude for a general tree level Feynman diagram involving only scalar operators. We find a factorised form involving beta functions associated to the propagators, similar to tree level Feynman rules in momentum space for ordinary QFTs. We also briefly consider the case where a generic scalar perturbation of the free CFT breaks conformal invariance. Mellin space still has some utility and one can consider non-conformal Mellin representations. In this context, we find that the beta function corresponding to conformal propagator uplifts to a hypergeometric function.

  13. Time-dependent perturbation theory for nonequilibrium lattice models

    International Nuclear Information System (INIS)

    Jensen, I.; Dickman, R.

    1993-01-01

    The authors develop a time-dependent perturbation theory for nonequilibrium interacting particle systems. They focus on models such as the contact process which evolve via destruction and autocatalytic creation of particles. At a critical value of the destruction rate there is a continuous phase transition between an active steady state and the vacuum state, which is absorbing. They present several methods for deriving series for the evolution starting from a single seed particle, including expansions for the ultimate survival probability in the super- and subcritical regions, expansions for the average number of particles in the subcritical region, and short-time expansions. Algorithms for computer generation of the various expansions are presented. Rather long series (24 terms or more) and precise estimates of critical parameters are presented. 45 refs., 4 figs., 9 tabs

  14. Meson-baryon interactions in unitarized chiral perturbation theory

    International Nuclear Information System (INIS)

    Garcia Recio, G.; Nieves, J.; Ruiz Arriola, E.; Vicente Vacas, M.

    2003-01-01

    Meson-Baryon Interactions can be successfully described using both Chiral Symmetry and Unitarity. The s-wave meson-baryon scattering amplitude is analyzed in a Bethe-Salpeter coupled channel formalism incorporating Chiral Symmetry in the potential. Two body coupled channel unitarity is exactly preserved. The needed two particle irreducible matrix amplitude is taken from lowest order Chiral Perturbation Theory in a relativistic formalism. Off-shell behavior is parameterized in terms of low energy constants. The relation to the heavy baryon limit is discussed. The position of the complex poles in the second Riemann sheet of the scattering amplitude determine masses and widths baryonic resonances of the N(1535), N(1670), Λ(1405) and Λ(1670) resonances which compare well with accepted numbers

  15. Developing feasible loading patterns using perturbation theory methods

    International Nuclear Information System (INIS)

    White, J.R.; Avila, K.M.

    1990-01-01

    This work illustrates an approach to core reload design that combines the power of integer programming with the efficiency of generalized perturbation theory. The main use of the method is as a tool to help the design engineer identify feasible loading patterns with minimum time and effort. The technique is highly successful for the burnable poison (BP) loading problem, but the unpredictable behavior of the branch-and-bound algorithm degrades overall performance for large problems. Unfortunately, the combined fuel shuffling plus BP optimization problem falls into this latter classification. Overall, however, the method shows great promise for significantly reducing the manpower time required for the reload design process. And it may even give the further benefit of better designs and improved performance

  16. Stochastic many-body perturbation theory for anharmonic molecular vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, Matthew R. [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); Hirata, So, E-mail: sohirata@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)

    2014-08-28

    A new quantum Monte Carlo (QMC) method for anharmonic vibrational zero-point energies and transition frequencies is developed, which combines the diagrammatic vibrational many-body perturbation theory based on the Dyson equation with Monte Carlo integration. The infinite sums of the diagrammatic and thus size-consistent first- and second-order anharmonic corrections to the energy and self-energy are expressed as sums of a few m- or 2m-dimensional integrals of wave functions and a potential energy surface (PES) (m is the vibrational degrees of freedom). Each of these integrals is computed as the integrand (including the value of the PES) divided by the value of a judiciously chosen weight function evaluated on demand at geometries distributed randomly but according to the weight function via the Metropolis algorithm. In this way, the method completely avoids cumbersome evaluation and storage of high-order force constants necessary in the original formulation of the vibrational perturbation theory; it furthermore allows even higher-order force constants essentially up to an infinite order to be taken into account in a scalable, memory-efficient algorithm. The diagrammatic contributions to the frequency-dependent self-energies that are stochastically evaluated at discrete frequencies can be reliably interpolated, allowing the self-consistent solutions to the Dyson equation to be obtained. This method, therefore, can compute directly and stochastically the transition frequencies of fundamentals and overtones as well as their relative intensities as pole strengths, without fixed-node errors that plague some QMC. It is shown that, for an identical PES, the new method reproduces the correct deterministic values of the energies and frequencies within a few cm{sup −1} and pole strengths within a few thousandths. With the values of a PES evaluated on the fly at random geometries, the new method captures a noticeably greater proportion of anharmonic effects.

  17. Theory of deep inelastic neutron scattering: Hard-core perturbation theory

    International Nuclear Information System (INIS)

    Silver, R.N.

    1988-01-01

    Details are presented of a new many-body theory for deep inelastic neutron scattering (DINS) experiments to measure momentum distributions in quantum fluids and solids. The high-momentum and energy-transfer scattering law in helium is shown to be a convolution of the impulse approximation with a final-state broadening function which depends on the scattering phase shifts and the radial distribution function. The predicted broadening satisfies approximate Y scaling, is neither Lorentzian nor Gaussian, and obeys the f, ω 2 , and ω 3 sum rules. The derivation uses a combination of Liouville perturbation theory, projection superoperators, and semiclassical methods which I term ''hard-core perturbation theory.'' A review is presented of the predictions of prior theories for DINS experiments in relation to the present work. A subsequent paper will present massive numerical predictions and a discussion of DINS experiments on superfluid 4 He

  18. Singular Minkowski and Euclidean solutions for SU(2) Yang-Mills theory

    International Nuclear Information System (INIS)

    Singleton, D.

    1996-01-01

    In this paper it is examined a solution to the SU(2) Yang-Mills-Higgs system, which is a trivial mathematical extension of recently discovered Schwarzschild- like solutions (Singleton D., Phys. Rev. D, 51 (1955) 5911). Physically, however, this new solution has drastically different properties from the Schwarzschild-like solutions. It is also studied a new classical solution for Euclidean SU(2) Yang-Mills theory. Again this new solution is a mathematically trivial extension of the Belavin-Polyakov-Schwartz-Tyupkin (BPST) (Belavin A. A. et al., Phys. Lett. B, 59 (1975) 85) instanton, but is physically very different. Unlike the usual instanton solution, the present solution is singular on a sphere of arbitrary radius in Euclidean space. Both of these solutions are infinite-energy solutions, so their practical value is somewhat unclear. However, they may be useful in exploring some of the mathematical aspects of classical Yang-Mills theory

  19. Robust stability analysis of large power systems using the structured singular value theory

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos, R.; Sarmiento, H. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Messina, A.R. [Cinvestav, Graduate Program in Electrical Engineering, Guadalajara, Jalisco (Mexico)

    2005-07-01

    This paper examines the application of structured singular value (SSV) theory to analyse robust stability of complex power systems with respect to a set of structured uncertainties. Based on SSV theory and the frequency sweep method, techniques for robust analysis of large-scale power systems are developed. The main interest is focused on determining robust stability for varying operating conditions and uncertainties in the structure of the power system. The applicability of the proposed techniques is verified through simulation studies on a large-scale power system. In particular, results for the system are considered for a wide range of uncertainties of operating conditions. Specifically, the developed technique is used to estimate the effect of variations in the parameters of a major system inter-tie on the nominal stability of a critical inter-area mode. (Author)

  20. Photoionization cross sections and Auger rates calculated by many-body perturbation theory

    International Nuclear Information System (INIS)

    Kelly, H.P.

    1976-01-01

    Methods for applying the many body perturbation theory to atomic calculations are discussed with particular emphasis on calculation of photoionization cross sections and Auger rates. Topics covered include: Rayleigh--Schroedinger theory; many body perturbation theory; calculations of photoionization cross sections; and Auger rates

  1. Determination of partial molar volumes from free energy perturbation theory.

    Science.gov (United States)

    Vilseck, Jonah Z; Tirado-Rives, Julian; Jorgensen, William L

    2015-04-07

    Partial molar volume is an important thermodynamic property that gives insights into molecular size and intermolecular interactions in solution. Theoretical frameworks for determining the partial molar volume (V°) of a solvated molecule generally apply Scaled Particle Theory or Kirkwood-Buff theory. With the current abilities to perform long molecular dynamics and Monte Carlo simulations, more direct methods are gaining popularity, such as computing V° directly as the difference in computed volume from two simulations, one with a solute present and another without. Thermodynamically, V° can also be determined as the pressure derivative of the free energy of solvation in the limit of infinite dilution. Both approaches are considered herein with the use of free energy perturbation (FEP) calculations to compute the necessary free energies of solvation at elevated pressures. Absolute and relative partial molar volumes are computed for benzene and benzene derivatives using the OPLS-AA force field. The mean unsigned error for all molecules is 2.8 cm(3) mol(-1). The present methodology should find use in many contexts such as the development and testing of force fields for use in computer simulations of organic and biomolecular systems, as a complement to related experimental studies, and to develop a deeper understanding of solute-solvent interactions.

  2. Finite density two color chiral perturbation theory revisited

    Science.gov (United States)

    Adhikari, Prabal; Beleznay, Soma B.; Mannarelli, Massimo

    2018-06-01

    We revisit two-color, two-flavor chiral perturbation theory at finite isospin and baryon density. We investigate the phase diagram obtained varying the isospin and the baryon chemical potentials, focusing on the phase transition occurring when the two chemical potentials are equal and exceed the pion mass (which is degenerate with the diquark mass). In this case, there is a change in the order parameter of the theory that does not lend itself to the standard picture of first order transitions. We explore this phase transition both within a Ginzburg-Landau framework valid in a limited parameter space and then by inspecting the full chiral Lagrangian in all the accessible parameter space. Across the phase transition between the two broken phases the order parameter becomes an SU(2) doublet, with the ground state fixing the expectation value of the sum of the magnitude squared of the pion and the diquark fields. Furthermore, we find that the Lagrangian at equal chemical potentials is invariant under global SU(2) transformations and construct the effective Lagrangian of the three Goldstone degrees of freedom by integrating out the radial fluctuations.

  3. Supplementary Appendix for: Constrained Perturbation Regularization Approach for Signal Estimation Using Random Matrix Theory

    KAUST Repository

    Suliman, Mohamed Abdalla Elhag; Ballal, Tarig; Kammoun, Abla; Alnaffouri, Tareq Y.

    2016-01-01

    In this supplementary appendix we provide proofs and additional simulation results that complement the paper (constrained perturbation regularization approach for signal estimation using random matrix theory).

  4. A stochastic perturbation theory for non-autonomous systems

    Energy Technology Data Exchange (ETDEWEB)

    Moon, W., E-mail: wm275@damtp.cam.ac.uk [Yale University, New Haven, Connecticut 06520-8109 (United States); Wettlaufer, J. S., E-mail: wettlaufer@maths.ox.ac.uk [Yale University, New Haven, Connecticut 06520-8109 (United States); Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom)

    2013-12-15

    We develop a perturbation theory for a class of first order nonlinear non-autonomous stochastic ordinary differential equations that arise in climate physics. The perturbative procedure produces moments in terms of integral delay equations, whose order by order decay is characterized in a Floquet-like sense. Both additive and multiplicative sources of noise are discussed and the question of how the nature of the noise influences the results is addressed theoretically and numerically. By invoking the Martingale property, we rationalize the transformation of the underlying Stratonovich form of the model to an Ito form, independent of whether the noise is additive or multiplicative. The generality of the analysis is demonstrated by developing it both for a Brownian particle moving in a periodically forced quartic potential, which acts as a simple model of stochastic resonance, as well as for our more complex climate physics model. The validity of the approach is shown by comparison with numerical solutions. The particular climate dynamics problem upon which we focus involves a low-order model for the evolution of Arctic sea ice under the influence of increasing greenhouse gas forcing ΔF{sub 0}. The deterministic model, developed by Eisenman and Wettlaufer [“Nonlinear threshold behavior during the loss of Arctic sea ice,” Proc. Natl. Acad. Sci. U.S.A. 106(1), 28–32 (2009)] exhibits several transitions as ΔF{sub 0} increases and the stochastic analysis is used to understand the manner in which noise influences these transitions and the stability of the system.

  5. Excitation energies from Görling-Levy perturbation theory along the range-separated adiabatic connection

    Science.gov (United States)

    Rebolini, Elisa; Teale, Andrew M.; Helgaker, Trygve; Savin, Andreas; Toulouse, Julien

    2018-06-01

    A Görling-Levy (GL)-based perturbation theory along the range-separated adiabatic connection is assessed for the calculation of electronic excitation energies. In comparison with the Rayleigh-Schrödinger (RS)-based perturbation theory this GL-based perturbation theory keeps the ground-state density constant at each order and thus gives the correct ionisation energy at each order. Excitation energies up to first order in the perturbation have been calculated numerically for the helium and beryllium atoms and the hydrogen molecule without introducing any density-functional approximations. In comparison with the RS-based perturbation theory, the present GL-based perturbation theory gives much more accurate excitation energies for Rydberg states but similar excitation energies for valence states.

  6. Actuator disc edge singularity. The key to a revised actuator disc concept and momentum theory

    Energy Technology Data Exchange (ETDEWEB)

    Kuik, G.A.M. van (The Wind Energy Group of the Technical University Eindhoven (NL))

    1989-01-01

    Since the beginning of rotor aerodynamics the actuator disc momentum theory occupies a prominant place in almost any textbook on this subject. Specially in axial flow the theory provides an easy and rather accurate performance prediction. The results first obtained by Lanchester for the induced power of a hovering rotor and the maximum power of a wind turbine are still used as guidelines for complicated calculations. On the other hand, experimental results for propellers are known to deviate systematically (some 10%) from the momentum theory results. This is commonly attributed to the differences between a real rotor and an actuator disc. However, some actuator disc- and actuator strip (the 2-dimensional version) experiments are described in literature, showing the same deviations from momentum theory results. Therefore, apart from the question how representative an actuator disc is for a real rotor, the actuator disc concept itself may be inadequate. This problem is the subject of the work describe here. It will be shown that the classical actuator disc concept ignores discrete forces resulting from a flow singularity at the edge of the disc. The (extended) momentum theory, applied to this actuator strip model, shows a shift of the results towards the experimental data, and for the static case (hover) even a quantitative agreement is obtained. (author) 12 refs.

  7. The cosmological perturbation theory in loop cosmology with holonomy corrections

    International Nuclear Information System (INIS)

    Wu, Jian-Pin; Ling, Yi

    2010-01-01

    In this paper we investigate the scalar mode of first-order metric perturbations over spatially flat FRW spacetime when the holonomy correction is taken into account in the semi-classical framework of loop quantum cosmology. By means of the Hamiltonian derivation, the cosmological perturbation equations is obtained in longitudinal gauge. It turns out that in the presence of metric perturbation the holonomy effects influence both background and perturbations, and contribute the non-trivial terms S h1 and S h2 in the cosmological perturbation equations

  8. Extended multi-configuration quasi-degenerate perturbation theory: the new approach to multi-state multi-reference perturbation theory.

    Science.gov (United States)

    Granovsky, Alexander A

    2011-06-07

    The distinctive desirable features, both mathematically and physically meaningful, for all partially contracted multi-state multi-reference perturbation theories (MS-MR-PT) are explicitly formulated. The original approach to MS-MR-PT theory, called extended multi-configuration quasi-degenerate perturbation theory (XMCQDPT), having most, if not all, of the desirable properties is introduced. The new method is applied at the second order of perturbation theory (XMCQDPT2) to the 1(1)A(')-2(1)A(') conical intersection in allene molecule, the avoided crossing in LiF molecule, and the 1(1)A(1) to 2(1)A(1) electronic transition in cis-1,3-butadiene. The new theory has several advantages compared to those of well-established approaches, such as second order multi-configuration quasi-degenerate perturbation theory and multi-state-second order complete active space perturbation theory. The analysis of the prevalent approaches to the MS-MR-PT theory performed within the framework of the XMCQDPT theory unveils the origin of their common inherent problems. We describe the efficient implementation strategy that makes XMCQDPT2 an especially useful general-purpose tool in the high-level modeling of small to large molecular systems. © 2011 American Institute of Physics

  9. Singular potentials in quantum mechanics

    International Nuclear Information System (INIS)

    Aguilera-Navarro, V.C.; Koo, E. Ley

    1995-10-01

    This paper is a review of some mathematical methods as recently developed and applied to deal with singular potentials in Quantum Mechanics. Regular and singular perturbative methods as well as variational treatments are considered. (author). 25 refs

  10. Asymptotic safety, singularities, and gravitational collapse

    International Nuclear Information System (INIS)

    Casadio, Roberto; Hsu, Stephen D.H.; Mirza, Behrouz

    2011-01-01

    Asymptotic safety (an ultraviolet fixed point with finite-dimensional critical surface) offers the possibility that a predictive theory of quantum gravity can be obtained from the quantization of classical general relativity. However, it is unclear what becomes of the singularities of classical general relativity, which, it is hoped, might be resolved by quantum effects. We study dust collapse with a running gravitational coupling and find that a future singularity can be avoided if the coupling becomes exactly zero at some finite energy scale. The singularity can also be avoided (pushed off to infinite proper time) if the coupling approaches zero sufficiently rapidly at high energies. However, the evolution deduced from perturbation theory still implies a singularity at finite proper time.

  11. Numerical perturbative methods in the quantum theory of physical systems

    International Nuclear Information System (INIS)

    Adam, G.

    1980-01-01

    During the last two decades, development of digital electronic computers has led to the deployment of new, distinct methods in theoretical physics. These methods, based on the advances of modern numerical analysis as well as on specific equations describing physical processes, enabled to perform precise calculations of high complexity which have completed and sometimes changed our image of many physical phenomena. Our efforts have concentrated on the development of numerical methods with such intrinsic performances as to allow a successful approach of some Key issues in present theoretical physics on smaller computation systems. The basic principle of such methods is to translate, in numerical analysis language, the theory of perturbations which is suited to numerical rather than to analytical computation. This idea has been illustrated by working out two problems which arise from the time independent Schroedinger equation in the non-relativistic approximation, within both quantum systems with a small number of particles and systems with a large number of particles, respectively. In the first case, we are led to the numerical solution of some quadratic ordinary differential equations (first section of the thesis) and in the second case, to the solution of some secular equations in the Brillouin area (second section). (author)

  12. Neutral pion electroproduction off light nuclei in chiral perturbation theory

    International Nuclear Information System (INIS)

    Lenkewitz, Mark

    2013-01-01

    Threshold pion electroproduction on tri-nucleon systems is investigated in the framework of baryon Chiral Perturbation Theory (ChPT) at next-to-leading one-loop order O(q 4 ) in the chiral expansion. To this order in small momenta, the production operator is a sum of one- and two-nucleon terms. While the one-nucleon terms resemble the impulse approximation, the two-nucleon contributions represent corrections due to the relevant nuclear interactions, e.g. pion-exchange interactions, which prove to be dominant, and due to recoil effects of the participating nucleons, which appear to be negligible. We calculate the expectation value of the production operator using chiral wave functions in a three-dimensional approach without partial wave expansion. The resulting integrals are evaluated using adaptive Monte Carlo integration, the VEGAS algorithm of Lepage. We obtain results for the threshold production multipoles E 0+ and L 0+ on 3 He and 3 H and comment on the sensitivity to the fundamental neutron amplitude E 0+ π 0 n . 3 He appears to be a particularly promising target to extract information about the neutron amplitude. This idea is usually invoked for spin-dependent quantities since the 3 He wave function is strongly dominated by the principal S-state component which suggests that its spin is largely driven by the one of the neutron.

  13. Generalized polarizabilities of the nucleon in baryon chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Lensky, Vadim [Johannes Gutenberg Universitaet Mainz, Institut fuer Kernphysik, Cluster of Excellence PRISMA, Mainz (Germany); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Pascalutsa, Vladimir; Vanderhaeghen, Marc [Johannes Gutenberg Universitaet Mainz, Institut fuer Kernphysik, Cluster of Excellence PRISMA, Mainz (Germany)

    2017-02-15

    The nucleon generalized polarizabilities (GPs), probed in virtual Compton scattering (VCS), describe the spatial distribution of the polarization density in a nucleon. They are accessed experimentally via the process of electron-proton bremsstrahlung (ep → epγ) at electron-beam facilities, such as MIT-Bates, CEBAF (Jefferson Lab), and MAMI (Mainz). We present the calculation of the nucleon GPs and VCS observables at next-to-leading order in baryon chiral perturbation theory (BχPT), and confront the results with the empirical information. At this order our results are predictions, in the sense that all the parameters are well known from elsewhere. Within the relatively large uncertainties of our calculation we find good agreement with the experimental observations of VCS and the empirical extractions of the GPs. We find large discrepancies with previous chiral calculations - all done in heavy-baryon χPT (HBχPT) - and discuss the differences between BχPT and HBχPT responsible for these discrepancies. (orig.)

  14. Generalised perturbation theory and source of information through chemical measurements

    International Nuclear Information System (INIS)

    Lelek, V.; Marek, T.

    2001-01-01

    It is important to make all analyses and collect all information from the work of the new facility (which the transmutation demonstration unit will surely be) to be sure that the operation corresponds to the forecast or to correct the equations of the facility. The behaviour of the molten salt reactor and in particular the system of measurement are very different from that of the solid fuel reactor. Key information from the long time kinetics could be the nearly on line knowledge of the fuel composition. In this work it is shown how to include it into the control and use such data for the correction of neutron cross-sections for the high actinides or other characteristics. Also the problem of safety - change of the boundary problem to the initial problem - is mentioned. The problem is transformed into the generalised perturbation theory in which the adjoint function is obtained through the solution of the equations with right hand side having the form of source. Such an approach should be a theoretical base for the calculation of the sensitivity coefficients. (authors)

  15. Gauge invariance properties and singularity cancellations in a modified PQCD

    CERN Document Server

    Cabo-Montes de Oca, Alejandro; Cabo, Alejandro; Rigol, Marcos

    2006-01-01

    The gauge-invariance properties and singularity elimination of the modified perturbation theory for QCD introduced in previous works, are investigated. The construction of the modified free propagators is generalized to include the dependence on the gauge parameter $\\alpha $. Further, a functional proof of the independence of the theory under the changes of the quantum and classical gauges is given. The singularities appearing in the perturbative expansion are eliminated by properly combining dimensional regularization with the Nakanishi infrared regularization for the invariant functions in the operator quantization of the $\\alpha$-dependent gauge theory. First-order evaluations of various quantities are presented, illustrating the gauge invariance-properties.

  16. Screening of Coulomb interaction and many-body perturbation theory in atoms

    International Nuclear Information System (INIS)

    Dzyuba, V.A.; Flambaum, V.V.; Sil'vestrov, P.G.; Sushkov, O.P.

    1988-01-01

    Taking into account the electron Coulomb interaction screening considerably improves the convergence of perturbation theory in residual interaction. The developed technique allows to take into account screening diagrams in all orders of perturbation theory. Calculation of the correlation corrections to the thallium energy levels is carried out as an example

  17. Theory of Perturbed Equilibria for Solving the Grad-Shafranov Equation

    International Nuclear Information System (INIS)

    Pletzer, A.; Zakharov, L.E.

    1999-01-01

    The theory of perturbed magnetohydrodynamic equilibria is presented for different formulations of the tokamak equilibrium problem. For numerical codes, it gives an explicit Newton scheme for solving the Grad-Shafranov equation subject to different constraints. The problem of stability of axisymmetric modes is shown to be a particular case of the equilibrium perturbation theory

  18. Perturbation Expansion in Dynamical Nuclear Field Theory and Its Relation with Boson Expansion Theory : Nuclear Physics

    OpenAIRE

    Teruo, KISHIMOTO; Tetsuo, KAMMURI; Institute of Physics, University of Tsukuba; Department of Physics, Osaka University

    1990-01-01

    With the Dynamical Nuclear Field Theory (DNFT) in the Tamm-Dancoff representation we examine higher order corrections in the vibrational mode of a spherical nuclear system. Due to the effects of bubble diagrams, the perturbation expansion in terms of the unrenormalized coupling strength and boson energy fails at full self-consistency. On the other hand, it becomes applicable in the form of linked-cluster expansion when we use thses constants renormalized by the effect of bubble diagrams, in t...

  19. All-order results for infrared and collinear singularities in massless gauge theories

    CERN Document Server

    Dixon, Lance J; Magnea, Lorenzo

    2010-01-01

    We review recent results concerning the all-order structure of infrared and collinear divergences in massless gauge theory amplitudes. While the exponentiation of these divergences for nonabelian gauge theories has been understood for a long time, in the past couple of years we have begun to unravel the all-order structure of the anomalous dimensions that build up the perturbative exponent. In the large-Nc limit, all infrared and collinear divergences are determined by just three functions; one of them, the cusp anomalous dimension, plays a key role also for non-planar contributions. Indeed, all infrared and collinear divergences of massless gauge theory amplitudes with any number of hard partons may be captured by a surprisingly simple expression constructed as a sum over color dipoles. Potential corrections to this expression, correlating four or more hard partons at three loops or beyond, are tightly constrained and are currently under study.

  20. Use Residual Correction Method and Monotone Iterative Technique to Calculate the Upper and Lower Approximate Solutions of Singularly Perturbed Non-linear Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Chi-Chang Wang

    2013-09-01

    Full Text Available This paper seeks to use the proposed residual correction method in coordination with the monotone iterative technique to obtain upper and lower approximate solutions of singularly perturbed non-linear boundary value problems. First, the monotonicity of a non-linear differential equation is reinforced using the monotone iterative technique, then the cubic-spline method is applied to discretize and convert the differential equation into the mathematical programming problems of an inequation, and finally based on the residual correction concept, complex constraint solution problems are transformed into simpler questions of equational iteration. As verified by the four examples given in this paper, the method proposed hereof can be utilized to fast obtain the upper and lower solutions of questions of this kind, and to easily identify the error range between mean approximate solutions and exact solutions.

  1. Quantum field theory with a momentum space of constant curvature (perturbation theory)

    International Nuclear Information System (INIS)

    Mir-Kasimov, R.M.

    1978-01-01

    In the framework of the field-theoretical approach in which the off-the-mass shell extension proceeds in the p-space of constant curvature, the perburbation theory is developed. The configurational representation of the de Sitter space is introduced with the help of the Fourier transformation of the group of motions. On the basis of a natural generalization of the Bogolyubov causality condition to the case of the new configurational representation a perturbation theory is constructed with the local in xi space Lagrangian density fucntion. The obtained S matrix obeys the reguirement of translation invariance. The S matrix elements are given by convergent expressions

  2. Non-perturbative field theory/field theory on a lattice

    International Nuclear Information System (INIS)

    Ambjorn, J.

    1988-01-01

    The connection between the theory of critical phenomena in statistical mechanics and the renormalization of field theory is briefly outlined. The way of using this connection is described to get information about non-perturbative quantities in QCD and about more intelligent ways of doing the Monte Carlo (MC) simulations. The (MC) method is shown to be a viable one in high energy physics, but it is not a good substitute for an analytic understanding. MC-methods will be very valuable both for getting out hard numbers and for testing the correctness of new ideas

  3. Perturbative study in quantum field theory at finite temperature, application to lepton pair production from a quark-gluon plasma

    International Nuclear Information System (INIS)

    Altherr, T.

    1989-12-01

    The main topic of this thesis is a perturbative study of Quantum Field Theory at Finite Temperature. The real-time formalism is used throughout this work. We show the cancellation of infrared and mass singularities in the case of the first order QCD corrections to lepton pair production from a quark-gluon plasma. Two methods of calculation are presented and give the same finite result in the limit of vanishing quark mass. These finite terms are analysed and give small corrections in the region of interest for ultra-relativistic heavy ions collisions, except for a threshold factor. Specific techniques for finite temperature calculations are explicited in the case of the fermionic self-energy in QED [fr

  4. Application of functional analysis to perturbation theory of differential equations. [nonlinear perturbation of the harmonic oscillator

    Science.gov (United States)

    Bogdan, V. M.; Bond, V. B.

    1980-01-01

    The deviation of the solution of the differential equation y' = f(t, y), y(O) = y sub O from the solution of the perturbed system z' = f(t, z) + g(t, z), z(O) = z sub O was investigated for the case where f and g are continuous functions on I x R sup n into R sup n, where I = (o, a) or I = (o, infinity). These functions are assumed to satisfy the Lipschitz condition in the variable z. The space Lip(I) of all such functions with suitable norms forms a Banach space. By introducing a suitable norm in the space of continuous functions C(I), introducing the problem can be reduced to an equivalent problem in terminology of operators in such spaces. A theorem on existence and uniqueness of the solution is presented by means of Banach space technique. Norm estimates on the rate of growth of such solutions are found. As a consequence, estimates of deviation of a solution due to perturbation are obtained. Continuity of the solution on the initial data and on the perturbation is established. A nonlinear perturbation of the harmonic oscillator is considered a perturbation of equations of the restricted three body problem linearized at libration point.

  5. Comparing energy loss and pperpendicular -broadening in perturbative QCD with strong coupling N=4 SYM theory

    International Nuclear Information System (INIS)

    Dominguez, Fabio; Marquet, C.; Mueller, A.H.; Wu Bin; Xiao, Bo-Wen

    2008-01-01

    We compare medium induced energy loss and p perpendicular -broadening in perturbative QCD with that of the trailing string picture of SYM theory. We consider finite and infinite extent matter as well as relativistic heavy quarks which correspond to those being produced in the medium or external to it. When expressed in terms of the appropriate saturation momentum, we find identical parametric forms for energy loss in perturbative QCD and SYM theory. We find simple correspondences between p perpendicular -broadening in QCD and in SYM theory although p perpendicular -broadening is radiation dominated in SYM theory and multiple scattering dominated in perturbative QCD

  6. A non-perturbative study of 4d U(1) non-commutative gauge theory - the fate of one-loop instability

    International Nuclear Information System (INIS)

    Bietenholz, Wolfgang; Nishimura, Jun; Susaki, Yoshiaki; Volkholz, Jan

    2006-01-01

    Recent perturbative studies show that in 4d non-commutative spaces, the trivial (classically stable) vacuum of gauge theories becomes unstable at the quantum level, unless one introduces sufficiently many fermionic degrees of freedom. This is due to a negative IR-singular term in the one-loop effective potential, which appears as a result of the UV/IR mixing. We study such a system non-perturbatively in the case of pure U(1) gauge theory in four dimensions, where two directions are non-commutative. Monte Carlo simulations are performed after mapping the regularized theory onto a U(N) lattice gauge theory in d = 2. At intermediate coupling strength, we find a phase in which open Wilson lines acquire non-zero vacuum expectation values, which implies the spontaneous breakdown of translational invariance. In this phase, various physical quantities obey clear scaling behaviors in the continuum limit with a fixed non-commutativity parameter θ, which provides evidence for a possible continuum theory. The extent of the dynamically generated space in the non-commutative directions becomes finite in the above limit, and its dependence on θ is evaluated explicitly. We also study the dispersion relation. In the weak coupling symmetric phase, it involves a negative IR-singular term, which is responsible for the observed phase transition. In the broken phase, it reveals the existence of the Nambu-Goldstone mode associated with the spontaneous symmetry breaking

  7. A non-perturbative study of 4d U(1) non-commutative gauge theory — the fate of one-loop instability

    Science.gov (United States)

    Bietenholz, Wolfgang; Nishimura, Jun; Susaki, Yoshiaki; Volkholz, Jan

    2006-10-01

    Recent perturbative studies show that in 4d non-commutative spaces, the trivial (classically stable) vacuum of gauge theories becomes unstable at the quantum level, unless one introduces sufficiently many fermionic degrees of freedom. This is due to a negative IR-singular term in the one-loop effective potential, which appears as a result of the UV/IR mixing. We study such a system non-perturbatively in the case of pure U(1) gauge theory in four dimensions, where two directions are non-commutative. Monte Carlo simulations are performed after mapping the regularized theory onto a U(N) lattice gauge theory in d = 2. At intermediate coupling strength, we find a phase in which open Wilson lines acquire non-zero vacuum expectation values, which implies the spontaneous breakdown of translational invariance. In this phase, various physical quantities obey clear scaling behaviors in the continuum limit with a fixed non-commutativity parameter θ, which provides evidence for a possible continuum theory. The extent of the dynamically generated space in the non-commutative directions becomes finite in the above limit, and its dependence on θ is evaluated explicitly. We also study the dispersion relation. In the weak coupling symmetric phase, it involves a negative IR-singular term, which is responsible for the observed phase transition. In the broken phase, it reveals the existence of the Nambu-Goldstone mode associated with the spontaneous symmetry breaking.

  8. Equation-of-motion coupled cluster perturbation theory revisited

    DEFF Research Database (Denmark)

    Eriksen, Janus Juul; Jørgensen, Poul; Olsen, Jeppe

    2014-01-01

    The equation-of-motion coupled cluster (EOM-CC) framework has been used for deriving a novel series of perturbative corrections to the coupled cluster singles and doubles energy that formally con- verges towards the full configuration interaction energy limit. The series is based on a Møller-Ples......-Plesset partitioning of the Hamiltonian and thus size extensive at any order in the perturbation, thereby rem- edying the major deficiency inherent to previous perturbation series based on the EOM-CC ansatz. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4873138]...

  9. Optimized Perturbation Theory for Wave Functions of Quantum Systems

    International Nuclear Information System (INIS)

    Hatsuda, T.; Tanaka, T.; Kunihiro, T.

    1997-01-01

    The notion of the optimized perturbation, which has been successfully applied to energy eigenvalues, is generalized to treat wave functions of quantum systems. The key ingredient is to construct an envelope of a set of perturbative wave functions. This leads to a condition similar to that obtained from the principle of minimal sensitivity. Applications of the method to the quantum anharmonic oscillator and the double well potential show that uniformly valid wave functions with correct asymptotic behavior are obtained in the first-order optimized perturbation even for strong couplings. copyright 1997 The American Physical Society

  10. Domain walls and perturbation theory in high-temperature gauge theory: SU(2) in 2+1 dimensions

    International Nuclear Information System (INIS)

    Korthals Altes, C.; Michels, A.; Teper, M.; Stephanov, M.

    1997-01-01

    We study the detailed properties of Z 2 domain walls in the deconfined high-temperature phase of the d=2+1 SU(2) gauge theory. These walls are studied both by computer simulations of the lattice theory and by one-loop perturbative calculations. The latter are carried out both in the continuum and on the lattice. We find that leading order perturbation theory reproduces the detailed properties of these domain walls remarkably accurately even at temperatures where the effective dimensionless expansion parameter g 2 /T is close to unity. The quantities studied include the surface tension, the action density profiles, roughening, and the electric screening mass. It is only for the last quantity that we find an exception to the precocious success of perturbation theory. All this shows that, despite the presence of infrared divergences at higher orders, high-T perturbation theory can be an accurate calculational tool. copyright 1997 The American Physical Society

  11. In what sense the canonical perturbation theory is gauge-invariant

    International Nuclear Information System (INIS)

    Chen, C.Y.

    1992-07-01

    It is shown that the time-dependent canonical perturbation theory in classical mechanics has unsatisfactory features when dealing with electromagnetic perturbed fields (the perturbed vector potential A-tilde ≠ 0). As a numerical apparatus, the theory relates to gauge-dependent vectors larger than expected. As an analytic apparatus, the theory is involved in unphysical concepts and yields inherently non-gauge-invariant formalisms. By defining the root cause of the problem, an alternative approach is accordingly introduced. (author). 8 refs, 2 figs

  12. Contribution of higher order terms in the reductive perturbation theory, 2

    International Nuclear Information System (INIS)

    Ichikawa, Y.H.; Mitsuhashi, Teruo; Konno, Kimiaki.

    1977-01-01

    Contribution of higher order terms in the reductive perturbation theory has been investigated for nonlinear propagation of strongly dispersive ion plasma wave. The basic set of fluid equation is reduced to a coupled set of the nonlinear Schroedinger equation for the first order perturbed potential and a linear inhomogeneous equation for the second order perturbed potential. A steady state solution of the coupled set of equations has been solved analytically in the asymptotic limit of small wave number. (auth.)

  13. Anomalous singularities in the complex Kohn variational principle of quantum scattering theory

    International Nuclear Information System (INIS)

    Lucchese, R.R.

    1989-01-01

    Variational principles for symmetric complex scattering matrices (e.g., the S matrix or the T matrix) based on the Kohn variational principle have been thought to be free from anomalous singularities. We demonstrate that singularities do exist for these variational principles by considering single and multichannel model problems based on exponential interaction potentials. The singularities are found by considering simultaneous variations in two nonlinear parameters in the variational calculation (e.g., the energy and the cutoff function for the irregular continuum functions). The singularities are found when the cutoff function for the irregular continuum functions extends over a range of the radial coordinate where the square-integrable basis set does not have sufficient flexibility. Effects of these singularities generally should not appear in applications of the complex Kohn method where a fixed variational basis set is considered and only the energy is varied

  14. An analytic approach to sunset diagrams in chiral perturbation theory: Theory and practice

    Energy Technology Data Exchange (ETDEWEB)

    Ananthanarayan, B.; Ghosh, Shayan [Indian Institute of Science, Centre for High Energy Physics, Karnataka (India); Bijnens, Johan [Lund University, Department of Astronomy and Theoretical Physics, Lund (Sweden); Hebbar, Aditya [Indian Institute of Science, Centre for High Energy Physics, Karnataka (India); University of Delaware, Department of Physics and Astronomy, Newark, DE (United States)

    2016-12-15

    We demonstrate the use of several code implementations of the Mellin-Barnes method available in the public domain to derive analytic expressions for the sunset diagrams that arise in the two-loop contribution to the pion mass and decay constant in three-flavoured chiral perturbation theory. We also provide results for all possible two mass configurations of the sunset integral, and derive a new one-dimensional integral representation for the one mass sunset integral with arbitrary external momentum. Thoroughly annotated Mathematica notebooks are provided as ancillary files in the Electronic Supplementary Material to this paper, which may serve as pedagogical supplements to the methods described in this paper. (orig.)

  15. An analytic approach to sunset diagrams in chiral perturbation theory: Theory and practice

    International Nuclear Information System (INIS)

    Ananthanarayan, B.; Ghosh, Shayan; Bijnens, Johan; Hebbar, Aditya

    2016-01-01

    We demonstrate the use of several code implementations of the Mellin-Barnes method available in the public domain to derive analytic expressions for the sunset diagrams that arise in the two-loop contribution to the pion mass and decay constant in three-flavoured chiral perturbation theory. We also provide results for all possible two mass configurations of the sunset integral, and derive a new one-dimensional integral representation for the one mass sunset integral with arbitrary external momentum. Thoroughly annotated Mathematica notebooks are provided as ancillary files in the Electronic Supplementary Material to this paper, which may serve as pedagogical supplements to the methods described in this paper. (orig.)

  16. The 1/ N Expansion of Tensor Models Beyond Perturbation Theory

    Science.gov (United States)

    Gurau, Razvan

    2014-09-01

    We analyze in full mathematical rigor the most general quartically perturbed invariant probability measure for a random tensor. Using a version of the Loop Vertex Expansion (which we call the mixed expansion) we show that the cumulants write as explicit series in 1/ N plus bounded rest terms. The mixed expansion recasts the problem of determining the subleading corrections in 1/ N into a simple combinatorial problem of counting trees decorated by a finite number of loop edges. As an aside, we use the mixed expansion to show that the (divergent) perturbative expansion of the tensor models is Borel summable and to prove that the cumulants respect an uniform scaling bound. In particular the quartically perturbed measures fall, in the N→ ∞ limit, in the universality class of Gaussian tensor models.

  17. Cosmological perturbation theory for baryons and dark matter: One-loop corrections in the renormalized perturbation theory framework

    International Nuclear Information System (INIS)

    Somogyi, Gabor; Smith, Robert E.

    2010-01-01

    We generalize the renormalized perturbation theory (RPT) formalism of Crocce and Scoccimarro [M. Crocce and R. Scoccimarro, Phys. Rev. D 73, 063519 (2006)] to deal with multiple fluids in the Universe and here we present the complete calculations up to the one-loop level in the RPT. We apply this approach to the problem of following the nonlinear evolution of baryon and cold dark matter (CDM) perturbations, evolving from the distinct sets of initial conditions, from the high redshift post-recombination Universe right through to the present day. In current theoretical and numerical models of structure formation, it is standard practice to treat baryons and CDM as an effective single matter fluid--the so-called dark matter only modeling. In this approximation, one uses a weighed sum of late-time baryon and CDM transfer functions to set initial mass fluctuations. In this paper we explore whether this approach can be employed for high precision modeling of structure formation. We show that, even if we only follow the linear evolution, there is a large-scale scale-dependent bias between baryons and CDM for the currently favored WMAP5 ΛCDM model. This time evolving bias is significant (>1%) until the present day, when it is driven towards unity through gravitational relaxation processes. Using the RPT formalism we test this approximation in the nonlinear regime. We show that the nonlinear CDM power spectrum in the two-component fluid differs from that obtained from an effective mean-mass one-component fluid by ∼3% on scales of order k∼0.05h Mpc -1 at z=10, and by ∼0.5% at z=0. However, for the case of the nonlinear evolution of the baryons the situation is worse and we find that the power spectrum is suppressed, relative to the total matter, by ∼15% on scales k∼0.05h Mpc -1 at z=10, and by ∼3%-5% at z=0. Importantly, besides the suppression of the spectrum, the baryonic acoustic oscillation (BAO) features are amplified for baryon and slightly damped for CDM

  18. Cosmological perturbation theory for baryons and dark matter: One-loop corrections in the renormalized perturbation theory framework

    Science.gov (United States)

    Somogyi, Gábor; Smith, Robert E.

    2010-01-01

    We generalize the renormalized perturbation theory (RPT) formalism of Crocce and Scoccimarro [M. Crocce and R. Scoccimarro, Phys. Rev. DPRVDAQ1550-7998 73, 063519 (2006)10.1103/PhysRevD.73.063519] to deal with multiple fluids in the Universe and here we present the complete calculations up to the one-loop level in the RPT. We apply this approach to the problem of following the nonlinear evolution of baryon and cold dark matter (CDM) perturbations, evolving from the distinct sets of initial conditions, from the high redshift post-recombination Universe right through to the present day. In current theoretical and numerical models of structure formation, it is standard practice to treat baryons and CDM as an effective single matter fluid—the so-called dark matter only modeling. In this approximation, one uses a weighed sum of late-time baryon and CDM transfer functions to set initial mass fluctuations. In this paper we explore whether this approach can be employed for high precision modeling of structure formation. We show that, even if we only follow the linear evolution, there is a large-scale scale-dependent bias between baryons and CDM for the currently favored WMAP5 ΛCDM model. This time evolving bias is significant (>1%) until the present day, when it is driven towards unity through gravitational relaxation processes. Using the RPT formalism we test this approximation in the nonlinear regime. We show that the nonlinear CDM power spectrum in the two-component fluid differs from that obtained from an effective mean-mass one-component fluid by ˜3% on scales of order k˜0.05hMpc-1 at z=10, and by ˜0.5% at z=0. However, for the case of the nonlinear evolution of the baryons the situation is worse and we find that the power spectrum is suppressed, relative to the total matter, by ˜15% on scales k˜0.05hMpc-1 at z=10, and by ˜3%-5% at z=0. Importantly, besides the suppression of the spectrum, the baryonic acoustic oscillation (BAO) features are amplified for

  19. The Hill-determinant perturbation theory with triangular propagators

    International Nuclear Information System (INIS)

    Znojil, M.

    1996-01-01

    A new version of the Rayleigh-Schroedinger perturbation prescription is proposed. Its main formal feature lies in an unusual choice of the model space and unperturbed H 0 and in a resulting lower-triangular matrix structure of its propagators. Within the framework of the so-called Hill-determinant method, an admissibility of any incompletely solvable zero-order Hamiltonian is achieved in this way. As a consequence, the range of practical applicability of our new perturbative formalism may be expected to incorporate many new phenomenological interactions with a strongly anharmonic character. 18 refs

  20. An intermolecular perturbation theory for the region of moderate overlap

    International Nuclear Information System (INIS)

    Hayes, I.C.; Stone, A.J.

    1984-01-01

    A perturbational method is described for calculating the interaction energy of two molecules in the region where the overlap between their wave-functions is significant. By working directly with a basis of determinants constructed from the SCF orbitals of the separated molecules, without orthogonalization, it is possible to avoid many of the disadvantages of other methods. (author)

  1. Perturbative quantum field theory in the framework of the fermionic projector

    International Nuclear Information System (INIS)

    Finster, Felix

    2014-01-01

    We give a microscopic derivation of perturbative quantum field theory, taking causal fermion systems and the framework of the fermionic projector as the starting point. The resulting quantum field theory agrees with standard quantum field theory on the tree level and reproduces all bosonic loop diagrams. The fermion loops are described in a different formalism in which no ultraviolet divergences occur

  2. Perturbative Quantum Field Theory in the Framework of the Fermionic Projector

    OpenAIRE

    Finster, Felix

    2013-01-01

    We give a microscopic derivation of perturbative quantum field theory, taking causal fermion systems and the framework of the fermionic projector as the starting point. The resulting quantum field theory agrees with standard quantum field theory on the tree level and reproduces all bosonic loop diagrams. The fermion loops are described in a different formalism in which no ultraviolet divergences occur.

  3. Perturbative quantum field theory in the framework of the fermionic projector

    Energy Technology Data Exchange (ETDEWEB)

    Finster, Felix, E-mail: finster@ur.de [Fakultät für Mathematik, Universität Regensburg, D-93040 Regensburg (Germany)

    2014-04-15

    We give a microscopic derivation of perturbative quantum field theory, taking causal fermion systems and the framework of the fermionic projector as the starting point. The resulting quantum field theory agrees with standard quantum field theory on the tree level and reproduces all bosonic loop diagrams. The fermion loops are described in a different formalism in which no ultraviolet divergences occur.

  4. Perturbative quantum field theory in the framework of the fermionic projector

    Science.gov (United States)

    Finster, Felix

    2014-04-01

    We give a microscopic derivation of perturbative quantum field theory, taking causal fermion systems and the framework of the fermionic projector as the starting point. The resulting quantum field theory agrees with standard quantum field theory on the tree level and reproduces all bosonic loop diagrams. The fermion loops are described in a different formalism in which no ultraviolet divergences occur.

  5. Effective Lagrangians for SUSY QCD with properties seen in perturbation theory

    International Nuclear Information System (INIS)

    Sharatchandra, H.S.

    1984-06-01

    We construct effective Lagrangians for supersymmetric QCD which properly incorporate the relevant Ward identities and possess features encountered in perturbation theory. This shows that the unusual scenarios, proposed for SUSY QCD, are not necessary. (author)

  6. On estimating perturbative coefficients in quantum field theory and statistical physics

    International Nuclear Information System (INIS)

    Samuel, M.A.; Stanford Univ., CA

    1994-05-01

    The authors present a method for estimating perturbative coefficients in quantum field theory and Statistical Physics. They are able to obtain reliable error-bars for each estimate. The results, in all cases, are excellent

  7. Some applications of perturbation theory to numerical integration methods for the Schroedinger equation

    International Nuclear Information System (INIS)

    Killingbeck, J.

    1979-01-01

    By using the methods of perturbation theory it is possible to construct simple formulae for the numerical integration of the Schroedinger equation, and also to calculate expectation values solely by means of simple eigenvalue calculations. (Auth.)

  8. Renormalized perturbation theory: Vlasov-Poisson System, weak turbulence limit and gyrokinetics

    International Nuclear Information System (INIS)

    Zhang, Y.Z.; Mahajan, S.M.

    1987-10-01

    The Self-consistency of the renormalized perturbation theory is demonstrated by applying it to the Vlasov-Poisson System and showing that the theory has the correct weak turbulence limit. Energy conservation is proved to arbitrary high order for the electrostatic drift waves. The theory is applied to derive renormalized equations for a low-β gyrokinetic system. Comparison of our theory with other current theories is presented. 22 refs

  9. Singularity Crossing, Transformation of Matter Properties and the Problem of Parametrization in Field Theories

    Science.gov (United States)

    Kamenshchik, A. Yu.

    2018-03-01

    We investigate particular cosmological models, based either on tachyon fields or on perfect fluids, for which soft future singularities arise in a natural way. Our main result is the description of a smooth crossing of the soft singularity in models with an anti-Chaplygin gas or with a particular tachyon field in the presence of dust. Such a crossing is made possible by certain transformations of matter properties. We discuss and compare also different approaches to the problem of crossing of the Big Bang-Big Crunch singularities.

  10. Renormalization of quantum electrodynamics in an arbitrarily strong time independent external field. [Perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Dosch, H G [Heidelberg Univ. (F.R. Germany). Inst. fuer Theoretische Physik; Mueller, V F [Trier-Kaiserslautern Univ., Kaiserslautern (F.R. Germany). Fachbereich Physik

    1975-01-01

    Extending the inductive renormalization procedure of Epstein and Glaser which is essentially based on locality, we show that quantum electrodynamics in an external time independent electromagnetic field has a renormalizable formal perturbation expansion. The interaction involving the quantized radiation field but not the action of the external field is treated by perturbation theory. It turns out that vacuum polarization is undetermined in the framework of such a theory.

  11. Study on Scattering Theory and Perturbative Quantum Chromodynamics: case of quark-antiquark Top pair production

    International Nuclear Information System (INIS)

    Randriamisy, H.D.E.

    2014-01-01

    Nowadays, the study of scattering and production of particles occupies an important place in subatomic physics research. The main ongoing experiments concern high-energy scattering in the colliders, the scattering theory based on quantum field theory is used for the theoretical study. The work presented in this thesis is located in this framework, in fact it concerns a study on the scattering theory and Perturbative Quantum Chromodynamics. We used the path integral formalism of quantum field theory and perturbation theory. As we considered the higher order corrections in perturbative developments, the renormalization theory with the method of dimensional regularization was also used. As an application, the case of the Top quark production was considered. As main results, we can quote the obtention of the cross section of quark-antiquark top pair production up to second order. [fr

  12. On the logarithmic-singularity correction in the kernel function method of subsonic lifting-surface theory

    Science.gov (United States)

    Lan, C. E.; Lamar, J. E.

    1977-01-01

    A logarithmic-singularity correction factor is derived for use in kernel function methods associated with Multhopp's subsonic lifting-surface theory. Because of the form of the factor, a relation was formulated between the numbers of chordwise and spanwise control points needed for good accuracy. This formulation is developed and discussed. Numerical results are given to show the improvement of the computation with the new correction factor.

  13. A global numerical solution of the radial Schroedinger equation by second-order perturbation theory

    International Nuclear Information System (INIS)

    Adam, G.

    1979-01-01

    A global numerical method, which uses second-order perturbation theory, is described for the solution of the radial Schroedinger equation. The perturbative numerical (PN) solution is derived in two stages: first, the original potential is approximated by a piecewise continuous parabolic function, and second, the resulting Schroedinger equation is solved on each integration step by second-order perturbation theory, starting with a step function reference approximation for the parabolic potential. We get a manageable PN algorithm, which shows an order of accuracy equal to six in the solution of the original Schroedinger equation, and is very stable against round off errors. (author)

  14. Lattice field theories: non-perturbative methods of analysis

    International Nuclear Information System (INIS)

    Weinstein, M.

    1978-01-01

    A lecture is given on the possible extraction of interesting physical information from quantum field theories by studying their semiclassical versions. From the beginning the problem of solving for the spectrum states of any given continuum quantum field theory is considered as a giant Schroedinger problem, and then some nonperturbative methods for diagonalizing the Hamiltonian of the theory are explained without recourse to semiclassical approximations. The notion of a lattice appears as an artifice to handle the problems associated with the familiar infrared and ultraviolet divergences of continuum quantum field theory and in fact for all but gauge theories. 18 references

  15. Calculations of the hurricane eye motion based on singularity propagation theory

    Directory of Open Access Journals (Sweden)

    Vladimir Danilov

    2002-02-01

    Full Text Available We discuss the possibility of using calculating singularities to forecast the dynamics of hurricanes. Our basic model is the shallow-water system. By treating the hurricane eye as a vortex type singularity and truncating the corresponding sequence of Hugoniot type conditions, we carry out many numerical experiments. The comparison of our results with the tracks of three actual hurricanes shows that our approach is rather fruitful.

  16. A criterion based on computational singular perturbation for the identification of quasi steady state species: A reduced mechanism for methane oxidation with NO chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Tianfeng; Law, Chung K. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2008-09-15

    A criterion based on computational singular perturbation (CSP) is proposed to effectively distinguish the quasi steady state (QSS) species from the fast species induced by reactions in partial equilibrium. Together with the method of directed relation graph (DRG), it was applied to the reduction of GRI-Mech 3.0 for methane oxidation, leading to the development of a 19-species reduced mechanism with 15 lumped steps, with the concentrations of the QSS species solved analytically for maximum computational efficiency. Compared to the 12-step and 16-species augmented reduced mechanism (ARM) previously developed by Sung, Law and Chen, three species, namely O, CH{sub 3}OH, and CH{sub 2}CO, are now excluded from the QSS species list. The reduced mechanism was validated with a variety of phenomena including perfectly stirred reactors, auto-ignition, and premixed and non-premixed flames, with the worst-case error being less than 10% over a wide range of parameters. This mechanism was then supplemented with the reactions involving NO formation, followed by validations in both homogeneous and diffusive systems. (author)

  17. Second-order generalized perturbation theory for source-driven systems

    International Nuclear Information System (INIS)

    Greenspan, E.; Gilai, D.; Oblow, E.M.

    1978-01-01

    A second-order generalized perturbation theory (GPT) for the effect of multiple system variations on a general flux functional in source-driven systems is derived. The derivation is based on a functional Taylor series in which second-order derivatives are retained. The resulting formulation accounts for the nonlinear effect of a given variation accurate to third order in the flux and adjoint perturbations. It also accounts for the effect of interaction between any number of variations. The new formulation is compared with exact perturbation theory as well as with perturbation theory for altered systems. The usefulnes of the second-order GPT formulation is illustrated by applying it to optimization problems. Its applicability to areas of cross-section sensitivity analysis and system design and evaluation is also discussed

  18. SOLUTION OF SINGULAR INTEGRAL EQUATION FOR ELASTICITY THEORY WITH THE HELP OF ASYMPTOTIC POLYNOMIAL FUNCTION

    Directory of Open Access Journals (Sweden)

    V. P. Gribkova

    2014-01-01

    Full Text Available The paper offers a new method for approximate solution of one type of singular integral equations for elasticity theory which have been studied by other authors. The approximate solution is found in the form of asymptotic polynomial function of a low degree (first approximation based on the Chebyshev second order polynomial. Other authors have obtained a solution (only in separate points using a method of mechanical quadrature  and though they used also the Chebyshev polynomial of the second order they applied another system of junctures which were used for the creation of the required formulas.The suggested method allows not only to find an approximate solution for the whole interval in the form of polynomial, but it also makes it possible to obtain a remainder term in the form of infinite expansion where coefficients are linear functional of the given integral equation and basis functions are the Chebyshev polynomial of the second order. Such presentation of the remainder term of the first approximation permits to find a summand of the infinite series, which will serve as a start for fulfilling the given solution accuracy. This number is a degree of the asymptotic polynomial (second approximation, which will give the approximation to the exact solution with the given accuracy. The examined polynomial functions tend asymptotically to the polynomial of the best uniform approximation in the space C, created for the given operator.The paper demonstrates a convergence of the approximate solution to the exact one and provides an error estimation. The proposed algorithm for obtaining of the approximate solution and error estimation is easily realized with the help of computing technique and does not require considerable preliminary preparation during programming.

  19. Perturbation theory of the periodic Anderson lattice and superconductivity

    International Nuclear Information System (INIS)

    Geertsuma, W.

    1988-01-01

    In this paper the author develops a perturbation calculation of the second and fourth order interparticle interaction in band states, based on the Periodic Anderson Lattice. The author shows that 4th order interparticle interactions giving rise to the well known Kondo effect vanish in the superconducting ground state. This term survives in the presence of a magnetic field. Pair excitations can only give rise to an appreciable attractive contribution when the d states are less than half filled and the pair energy is near the Fermi level. The only important attractive interaction comes from the normal fourth order terms

  20. Nonrelativistic hyperfine splitting in muonic helium by adiabatic perturbation theory

    International Nuclear Information System (INIS)

    Drachman, R.J.

    1980-01-01

    Huang and Hughes have recently discussed the hyperfine splitting Δν of muonic helium (α ++ μ - e - ) using a variational approach. In this paper, the Born-Oppenheimer approximation is used to simplify the evaluation of Δν in the nonrelativistic limit. The first-order perturbed wave function of the electron is obtained in closed form by slightly modifying the method used by Dalgarno and Lynn. The result Δν=4450 MHz, is quite close to the published result of Huang and Hughes 4455.2 +- 1 MHz, which required a very large Hylleraas expansion as well as considerable extrapolation

  1. An algebraic description of perturbation theory in quantum electrodynamics

    International Nuclear Information System (INIS)

    Wright, J.D.

    1982-01-01

    An algebraic formulation of the electromagnetic field, in which various quantization procedures can be described, is used to discuss perturbation calculations. The Feynman rules and the second order calculation of the self-energy of the electron can be developed on the basis of the Fermi method of quantization. The algebraic approach clarifies the problems in defining the vacuum and other states, which are associated with calculations in terms of field algebra operators. The vacuum state defined on the field algebra by Schwinger leads to incorrect results in the self-energy calculation

  2. Short-time perturbation theory and nonrelativistic duality

    International Nuclear Information System (INIS)

    Whitenton, J.B.; Durand, B.; Durand, L.

    1983-01-01

    We give a simple proof of the nonrelativistic duality relation 2 sigma/sub bound/>roughly-equal 2 sigma/sub free/> for appropriate energy averages of the cross sections for e + e - →(qq-bar bound states) and e + e - →(free qq-bar pair), and calculate the corrections to the relation by relating W 2 sigma to the Fourier transform of the Feynman propagation function and developing a short-time perturbation series for that function. We illustrate our results in detail for simple power-law potentials and potentials which involve combinations of powers

  3. Perturbative quantum gravity as a double copy of gauge theory.

    Science.gov (United States)

    Bern, Zvi; Carrasco, John Joseph M; Johansson, Henrik

    2010-08-06

    In a previous paper we observed that (classical) tree-level gauge-theory amplitudes can be rearranged to display a duality between color and kinematics. Once this is imposed, gravity amplitudes are obtained using two copies of gauge-theory diagram numerators. Here we conjecture that this duality persists to all quantum loop orders and can thus be used to obtain multiloop gravity amplitudes easily from gauge-theory ones. As a nontrivial test, we show that the three-loop four-point amplitude of N=4 super-Yang-Mills theory can be arranged into a form satisfying the duality, and by taking double copies of the diagram numerators we obtain the corresponding amplitude of N=8 supergravity. We also remark on a nonsupersymmetric two-loop test based on pure Yang-Mills theory resulting in gravity coupled to an antisymmetric tensor and dilaton.

  4. Short-distance perturbation theory for the leading logarithm models

    International Nuclear Information System (INIS)

    Adler, S.L.

    1983-01-01

    I derive a short-distance perturbation expansion for the static potential of quasi-abelian quark and antiquark source charges, in the models in which renormalization group radiative corrections are retained in the gauge gluon effective dielectric functional. A natural running coupling parameter zeta for the models is identified, and the scale mass #betta#sub(p) appearing in zeta is computed by requiring the vanishing of the O(zeta 2 ) term in the perturbation expansions. The models are shown to give unsatisfactory results beyond one-loop order in the short-distance expansion, as a result of the breakdown in the ultraviolet of the assumption that the effective action is a local functional of the field strength. The same argument indicates that the assumption of a local effective action becomes self-consistent in the large-distance limit. The coupling parameter zeta is identified as a running coupling which evolves in field strength, rather than momentum, and which becomes infinite in the large-distance limit. (orig.)

  5. Sensitivity theory for reactor burnup analysis based on depletion perturbation theory

    International Nuclear Information System (INIS)

    Yang, Wonsik.

    1989-01-01

    The large computational effort involved in the design and analysis of advanced reactor configurations motivated the development of Depletion Perturbation Theory (DPT) for general fuel cycle analysis. The work here focused on two important advances in the current methods. First, the adjoint equations were developed for using the efficient linear flux approximation to decouple the neutron/nuclide field equations. And second, DPT was extended to the constrained equilibrium cycle which is important for the consistent comparison and evaluation of alternative reactor designs. Practical strategies were formulated for solving the resulting adjoint equations and a computer code was developed for practical applications. In all cases analyzed, the sensitivity coefficients generated by DPT were in excellent agreement with the results of exact calculations. The work here indicates that for a given core response, the sensitivity coefficients to all input parameters can be computed by DPT with a computational effort similar to a single forward depletion calculation

  6. M-momentum transfer between gravitons, membranes, and fivebranes as perturbative gauge theory processes

    International Nuclear Information System (INIS)

    Keski-Vakkuri, E.; Kraus, P.

    1998-01-01

    Polchinski and Pouliot have shown that M-momentum transfer between membranes in supergravity can be understood as a non-perturbative instanton effect in gauge theory. Here we consider a dual process: electric flux transmission between D-branes. We show that this process can be described in perturbation theory as virtual string pair creation, and is closely related to Schwinger's treatment of the pair creation of charged particles in a uniform electric field. Through the application of dualities, our perturbative calculation gives results for various non-perturbative amplitudes, including M-momentum transfer between gravitons, membranes and longitudinal fivebranes. Thus perturbation theory plus dualities are sufficient to demonstrate agreement between supergravity and gauge theory for a number of M-momentum transferring processes. A variety of other processes where branes are transmitted between branes, e.g. (p,q)-string transmission in IIB theory, can also be studied. We discuss the implications of our results for proving the eleven-dimensional Lorentz invariance of matrix theory. (orig.)

  7. Theoretical investigation of cyromazine tautomerism using density functional theory and Møller–Plesset perturbation theory methods

    Science.gov (United States)

    A computational chemistry analysis of six unique tautomers of cyromazine, a pesticide used for fly control, was performed with density functional theory (DFT) and canonical second order Møller–Plesset perturbation theory (MP2) methods to gain insight into the contributions of molecular structure to ...

  8. Skeleton inequalities and the asymptotic nature of perturbation theory for PHI4-theories in two and three dimensions

    International Nuclear Information System (INIS)

    Bovier, A.; Felder, G.

    1984-01-01

    We use the polymer representation of PHI 4 -quantum field theories to prove an infinite family of correlation inequalities, called ''skeleton inequalities'', for the 2n-point Green's functions. As an application, we show that they imply that Feynman perturbation theory is asymptotic in less than four dimensions. (orig.)

  9. On the all-order perturbative finiteness of the deformed N=4 SYM theory

    International Nuclear Information System (INIS)

    Rossi, G.C.; Sokatchev, E.; Stanev, Ya.S.

    2006-01-01

    We prove that the chiral propagator of the deformed N=4 SYM theory can be made finite to all orders in perturbation theory for any complex value of the deformation parameter. For any such value the set of finite deformed theories can be parametrized by a whole complex function of the coupling constant g. We reveal a new protection mechanism for chiral operators of dimension three. These are obtained by differentiating the Lagrangian with respect to the independent coupling constants. A particular combination of them is a CPO involving only chiral matter. Its all-order form is derived directly from the finiteness condition. The procedure is confirmed perturbatively through order g 6

  10. Radiation perturbation theory in gravity and quantum universe as a hydrogen atom

    International Nuclear Information System (INIS)

    Pervushin, V.N.

    1992-01-01

    In quantum theory of gravity of the (n+1)-dimensional space-time the Faddeev-Popov functional integral is constructed for radiation perturbation theory. In this version the Universe expansion looks as the collective superfluid motion of quantum space, and the vacuum energy density plays the role of the hidden mass. 6 refs

  11. A direct derivation of polynomial invariants from perturbative Chern-Simons gauge theory

    International Nuclear Information System (INIS)

    Ochiai, Tomoshiro

    2003-01-01

    There have been several methods to show that the expectation values of Wilson loop operators in the SU(N) Chern-Simons gauge theory satisfy the HOMFLY skein relation. We shall give another method from the perturbative method of the SU(N) Chern-Simons gauge theory in the light-cone gauge, which is more direct than already known methods

  12. Does one see gluon condensation after subtraction of mean field perturbation theory from Monte Carlo data

    International Nuclear Information System (INIS)

    Schlichting, H.

    1985-01-01

    We do a linearised mean field calculation in axial gauge for the four dimensional mixed fundamental adjoint SU(2) lattice gauge theory and extract the gluon condensate parameter from the expectation values of the plaquette and the action by subtracting mean field perturbation theory from Monte Carlo data. (orig.)

  13. Investigating the little rip and other future singularities of the universe, and validity of the second law of thermodynamics in F(R theory

    Directory of Open Access Journals (Sweden)

    M Aghaei Abchouyeh

    2015-01-01

    Full Text Available The future singularities are possible in a universe that is described by F(R theory. In previous studies the occurrence of the singularities in F(R theory have been considered by using a special function for the Hubble parameter and calculating the F(R function for each of the singularities. Using the specified Hubble parameter causes some difficulties in the study of the second law of thermodynamics. In this paper by using the scale factor, the behavior of F(R function near each type of the singularities is considered. We can check the validity of the second law of thermodynamics near the singularities. At first we study the Little Rip and then the other types of singularities are considered. The results show that the second law of thermodynamics is satisfied near the singularity type (I with some special conditions and is violated with some other conditions. it is satisfied near the Little Rip, type (II, (III and (IV singularities

  14. Generalized perturbation theory based on the method of cyclic characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Assawaroongruengchot, M.; Marleau, G. [Institut de Genie Nucleaire, Departement de Genie Physique, Ecole Polytechnique de Montreal, 2900 Boul. Edouard-Montpetit, Montreal, Que. H3T 1J4 (Canada)

    2006-07-01

    A GPT algorithm for estimation of eigenvalues and reaction-rate ratios is developed for the neutron transport problems in 2D fuel assemblies with isotropic scattering. In our study the GPT formulation is based on the integral transport equations. The mathematical relationship between the generalized flux importance and generalized source importance functions is applied to transform the generalized flux importance transport equations into the integro-differential forms. The resulting adjoint and generalized adjoint transport equations are then solved using the method of cyclic characteristics (MOCC). Because of the presence of negative adjoint sources, a biasing/decontamination scheme is applied to make the generalized adjoint functions positive in such a way that it can be used for the multigroup re-balance technique. To demonstrate the efficiency of the algorithms, perturbative calculations are performed on a 17 x 17 PWR lattice. (authors)

  15. Generalized perturbation theory based on the method of cyclic characteristics

    International Nuclear Information System (INIS)

    Assawaroongruengchot, M.; Marleau, G.

    2006-01-01

    A GPT algorithm for estimation of eigenvalues and reaction-rate ratios is developed for the neutron transport problems in 2D fuel assemblies with isotropic scattering. In our study the GPT formulation is based on the integral transport equations. The mathematical relationship between the generalized flux importance and generalized source importance functions is applied to transform the generalized flux importance transport equations into the integro-differential forms. The resulting adjoint and generalized adjoint transport equations are then solved using the method of cyclic characteristics (MOCC). Because of the presence of negative adjoint sources, a biasing/decontamination scheme is applied to make the generalized adjoint functions positive in such a way that it can be used for the multigroup re-balance technique. To demonstrate the efficiency of the algorithms, perturbative calculations are performed on a 17 x 17 PWR lattice. (authors)

  16. A numerical solution of a singular boundary value problem arising in boundary layer theory.

    Science.gov (United States)

    Hu, Jiancheng

    2016-01-01

    In this paper, a second-order nonlinear singular boundary value problem is presented, which is equivalent to the well-known Falkner-Skan equation. And the one-dimensional third-order boundary value problem on interval [Formula: see text] is equivalently transformed into a second-order boundary value problem on finite interval [Formula: see text]. The finite difference method is utilized to solve the singular boundary value problem, in which the amount of computational effort is significantly less than the other numerical methods. The numerical solutions obtained by the finite difference method are in agreement with those obtained by previous authors.

  17. Singular limit analysis of a model for earthquake faulting

    DEFF Research Database (Denmark)

    Bossolini, Elena; Brøns, Morten; Kristiansen, Kristian Uldall

    2017-01-01

    In this paper we consider the one dimensional spring-block model describing earthquake faulting. By using geometric singular perturbation theory and the blow-up method we provide a detailed description of the periodicity of the earthquake episodes. In particular, the limit cycles arise from...

  18. New singularities in nonrelativistic coupled channel scattering. II. Fourth order

    International Nuclear Information System (INIS)

    Khuri, N.N.; Tsun Wu, T.

    1997-01-01

    We consider a two-channel nonrelativistic potential scattering problem, and study perturbation theory in fourth order for the forward amplitude. The main result is that the new singularity demonstrated in second order in the preceding paper I also occurs at the same point in fourth order. Its strength is again that of a pole. copyright 1997 The American Physical Society

  19. Perturbation theory of intermolecular interactions: What is the problem, are there solutions?

    International Nuclear Information System (INIS)

    Adams, W.H.

    1990-01-01

    We review the nature of the problem in the framework of Rayleigh-Schroedinger perturbation theory (the polarization approximation) considering explicitly two examples: the interaction of two hydrogen atoms and the interaction of Li with H. We show, in agreement with the work of Claverie and of Morgan and Simon, that the LiH problem is dramatically different from the H 2 problem. In particular, the physical states of LiH are higher in energy than an infinite number of discrete, unphysical states and they are buried in a continuum of unbound, unphysical states, which starts well below the lowest physical state. Clavrie has shown that the perturbation expansion, under these circumstances, is likely to converge to an unphysical state of lower energy than the physical ground state, if it converges at all. We review, also, the application of two classes of exchange perturbation theory to LiH and larger systems. We show that the spectra of three Eisenschitz-London (EL) class, exchange perturbation theories have no continuum of unphysical states overlaying the physical states and no discrete, unphysical states below the lowest physical state. In contrast, the spectra of two Hirschfelder-Silbey class theories differ hardly at all from that found with the polarization approximation. Not one of the EL class of perturbation theories, however, eliminates all of the discrete unphysical states

  20. Use of the Halbach perturbation theory for the multipole design of the ALS storage ring sextupole

    Energy Technology Data Exchange (ETDEWEB)

    Marks, S. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    The Advanced Light Source (ALS) storage ring sextupole is a unique multi-purpose magnet. It is designed to operate in the primary or sextupole mode and in three auxiliary trim modes: horizontal steering, vertical steering, and skew quadrupole. Klaus Halbach developed a perturbation theory for iron-dominated magnets which provides the basis for this design. Many magnet designers, certainly those who have been exposed to Klaus, are familiar with this theory and have used it for such things as evaluating the effect of assembly alignment errors. The ALS sextupole design process was somewhat novel in its use of the perturbation theory to design essential features of the magnet. In particular, the steering and skew quadrupole functions are produced by violating sextupole symmetry and are thus perturbations of the normal sextupole excitation. The magnet was designed such that all four modes are decoupled and can be excited independently. This paper discusses the use of Halbach`s perturbation theory to design the trim functions and to evaluate the primary asymmetry in the sextupole mode, namely, a gap in the return yoke to accommodate the vacuum chamber. Prototype testing verified all operating modes of the magnet and confirmed the expected performance from calculations based upon the Halbach perturbation theory. A total of 48 sextupole magnets of this design are now installed and operating successfully in the ALS storage ring.