Singular reduction of Nambu-Poisson manifolds
Das, Apurba
The version of Marsden-Ratiu Poisson reduction theorem for Nambu-Poisson manifolds by a regular foliation have been studied by Ibáñez et al. In this paper, we show that this reduction procedure can be extended to the singular case. Under a suitable notion of Hamiltonian flow on the reduced space, we show that a set of Hamiltonians on a Nambu-Poisson manifold can also be reduced.
Multiscale singular value manifold for rotating machinery fault diagnosis
Energy Technology Data Exchange (ETDEWEB)
Feng, Yi; Lu, BaoChun; Zhang, Deng Feng [School of Mechanical Engineering, Nanjing University of Science and Technology,Nanjing (United States)
2017-01-15
Time-frequency distribution of vibration signal can be considered as an image that contains more information than signal in time domain. Manifold learning is a novel theory for image recognition that can be also applied to rotating machinery fault pattern recognition based on time-frequency distributions. However, the vibration signal of rotating machinery in fault condition contains cyclical transient impulses with different phrases which are detrimental to image recognition for time-frequency distribution. To eliminate the effects of phase differences and extract the inherent features of time-frequency distributions, a multiscale singular value manifold method is proposed. The obtained low-dimensional multiscale singular value manifold features can reveal the differences of different fault patterns and they are applicable to classification and diagnosis. Experimental verification proves that the performance of the proposed method is superior in rotating machinery fault diagnosis.
Space-time singularities in Weyl manifolds
Energy Technology Data Exchange (ETDEWEB)
Lobo, I.P. [CAPES Foundation, Ministry of Education of Brazil, Brasilia (Brazil); Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); Barreto, A.B.; Romero, C. [Universidade Federal da Paraiba, Departamento de Fisica, C. Postal 5008, Joao Pessoa, PB (Brazil)
2015-09-15
We extend one of the Hawking-Penrose singularity theorems in general relativity to the case of some scalar-tensor gravity theories in which the scalar field has a geometrical character and space-time has the mathematical structure of a Weyl integrable space-time. We adopt an invariant formalism, so that the extended version of the theorem does not depend on a particular frame. (orig.)
Examples of integrable and non-integrable systems on singular symplectic manifolds
Delshams, Amadeu; Kiesenhofer, Anna; Miranda, Eva
2017-05-01
We present a collection of examples borrowed from celestial mechanics and projective dynamics. In these examples symplectic structures with singularities arise naturally from regularization transformations, Appell's transformation or classical changes like McGehee coordinates, which end up blowing up the symplectic structure or lowering its rank at certain points. The resulting geometrical structures that model these examples are no longer symplectic but symplectic with singularities which are mainly of two types: bm-symplectic and m-folded symplectic structures. These examples comprise the three body problem as non-integrable exponent and some integrable reincarnations such as the two fixed-center problem. Given that the geometrical and dynamical properties of bm-symplectic manifolds and folded symplectic manifolds are well-understood [10-12,9,15,13,14,24,20,22,25,28], we envisage that this new point of view in this collection of examples can shed some light on classical long-standing problems concerning the study of dynamical properties of these systems seen from the Poisson viewpoint.
The Hodge theory of projective manifolds
de Cataldo, Mark Andrea
2007-01-01
This book is a written-up and expanded version of eight lectures on the Hodge theory of projective manifolds. It assumes very little background and aims at describing how the theory becomes progressively richer and more beautiful as one specializes from Riemannian, to Kähler, to complex projective manifolds. Though the proof of the Hodge Theorem is omitted, its consequences - topological, geometrical and algebraic - are discussed at some length. The special properties of complex projective manifolds constitute an important body of knowledge and readers are guided through it with the help of selected exercises. Despite starting with very few prerequisites, the concluding chapter works out, in the meaningful special case of surfaces, the proof of a special property of maps between complex projective manifolds, which was discovered only quite recently.
Projections and residues on manifolds with boundary
DEFF Research Database (Denmark)
Gaarde, Anders Borg
2008-01-01
It is a well-known result that the noncommutative residue of a pseudodifferential projection is zero on a compact manifold without boundary. Equivalently, the value of the zeta-function of P at zero, ¿¿(P, 0), is independent of ¿ for any elliptic operator P. Here ¿ denotes the angle of a ray where...... the resolvent of P has minimal growth. In this thesis, we consider the analogous questions on a compact manifold with boundary. We show that the noncommutative residue is zero for any projection in Boutet de Monvel’s calculus of pseudodifferential boundary problems. For an elliptic boundary problem {P+ + G, T...... }, with the corresponding realization B = (P + G)T, we de¿ne the sectorial projection ¿¿,¿(B) and the residue of this projection. We discuss whether this residue is always zero, through various analyses of the structure of the pro jection. The question is interesting since ¿¿(B, 0) is independent of ¿ exactly when...
Zhang, Zhao; Zhao, Mingbo; Chow, Tommy W S
2012-12-01
In this work, sub-manifold projections based semi-supervised dimensionality reduction (DR) problem learning from partial constrained data is discussed. Two semi-supervised DR algorithms termed Marginal Semi-Supervised Sub-Manifold Projections (MS³MP) and orthogonal MS³MP (OMS³MP) are proposed. MS³MP in the singular case is also discussed. We also present the weighted least squares view of MS³MP. Based on specifying the types of neighborhoods with pairwise constraints (PC) and the defined manifold scatters, our methods can preserve the local properties of all points and discriminant structures embedded in the localized PC. The sub-manifolds of different classes can also be separated. In PC guided methods, exploring and selecting the informative constraints is challenging and random constraint subsets significantly affect the performance of algorithms. This paper also introduces an effective technique to select the informative constraints for DR with consistent constraints. The analytic form of the projection axes can be obtained by eigen-decomposition. The connections between this work and other related work are also elaborated. The validity of the proposed constraint selection approach and DR algorithms are evaluated by benchmark problems. Extensive simulations show that our algorithms can deliver promising results over some widely used state-of-the-art semi-supervised DR techniques. Copyright © 2012 Elsevier Ltd. All rights reserved.
Quantization of a symplectic manifold associated to a manifold with projective structure
International Nuclear Information System (INIS)
Biswas, Indranil
2009-01-01
Let X be a complex manifold equipped with a projective structure P. There is a holomorphic principal C*-bundle L P ' over X associated with P. We show that the holomorphic cotangent bundle of the total space of L P ' equipped with the Liouville symplectic form has a canonical deformation quantization. This generalizes the construction in the work of and Ben-Zvi and Biswas [''A quantization on Riemann surfaces with projective structure,'' Lett. Math. Phys. 54, 73 (2000)] done under the assumption that dim C X=1.
Projective Connections, AGD Manifold and Integrable Systems
Guha, Partha
If uis are periodic function on the line, the operator (dn)/(dx^n) + un-1(dn-1)/(dxn-1) + un-2(dn-2)/(dxn-2) +ṡs + u1(d)/(dx) + u0, acting on periodic functions, is called a Adler-Gelfand-Dikii (or AGD) operator. In this paper we consider a projective connection as defined by this nth order operator on the circle. In particular, projective connection as defined by a second order operator can be identified with the dual of Virasoro algebra, and it is well known that the KdV equation as a Euler-Arnold equation in the coadjoint orbit of the Bott-Virasoro group. In this paper we study (formally) the evolution equation of the Adler-Gelfand-Dikii operator, Δ(n), (at least for n<=4), under the action of Vect(S1). This yields a single generating equation for periodic function u. We also establish a connection between the projective vector field, a vector field leaves fixed a given (extended) projective connection, and the C. Neumann system using the idea of Knörrer and Moser. We show that certain quadratic function of a projective field satisfies C. Neumann system.
Sparse discriminant manifold projections for bearing fault diagnosis
Chen, Gang; Liu, Fenglin; Huang, Wei
2017-07-01
The monitored vibration signal of bearing is usually nonlinear and nonstationary, and may be corrupted by background noise. Thus, it is very difficult to accurately extract sensitive and reliable characteristics information from the vibration signal to diagnose bearing health conditions. This paper proposes a novel bearing fault diagnosis method based on sparse discriminant manifold projections (SDMP). The SDMP was developed based on sparsity preserving projections, and sparse manifold clustering and embedding. The SDMP can effectively extract the meaningful low-dimensional intrinsic features that hidden in a high-dimensional feature dataset. After dimensionality reduction with the SDMP, the least squares support vector machine (LS-SVM) is utilized to classify the different low-dimensional feature data for fault recognition. The effectiveness and superiorities of the proposed method are demonstrated through several comparative experiments with other three manifold learning methods. The experimental results validate that the SDMP is more effective than the other three manifold learning methods for implementation bearing fault diagnosis, and it is more robust when deal with noise interference signal.
Singular p-harmonic functions and related quasilinear equations on manifolds
Directory of Open Access Journals (Sweden)
Laurent Veron
2002-10-01
Full Text Available We give here an overview of some recent developments in the study of the description of singular solutions of $$ -abla.(|abla u|^{p-2}abla u +varepsilon |u|^{q-1}u=0 %label{NLE} $$ in $mathbb{R}^Nsetminus {0}$, where $p>1$, $varepsilon in {0,1,-1}$ and $qgeq p-1$.
The web of D-branes at singularities in compact Calabi-Yau manifolds
Cicoli, Michele; Krippendorf, Sven; Mayrhofer, Christoph; Quevedo, Fernando; Valandro, Roberto
2013-05-01
We present novel continuous supersymmetric transitions which take place among different chiral configurations of D3/D7 branes at singularities in the context of type IIB Calabi-Yau compactifications. We find that distinct local models which admit a consistent global embedding can actually be connected to each other along flat directions by means of transitions of bulk-to-flavour branes. This has interesting interpretations in terms of brane recombination/splitting and brane/anti-brane creation/annihilation. These transitions give rise to a large web of quiver gauge theories parametrised by splitting/recombination modes of bulk branes which are not present in the non-compact case. We illustrate our results in concrete global embeddings of chiral models at a dP0 singularity.
A critical view on singular therapeutic projects
Directory of Open Access Journals (Sweden)
Fernando Sfair Kinker
2016-04-01
Full Text Available This article discusses the issue of unique therapeutic projects within the mental health services built in the Brazilian psychiatric reform process. Starting from the concepts that have gained strength in both the psychiatric reform as in the collective health, this study proposes that current notions of the therapeutic project still are influenced by biological, psychological or social paradigms that simplify the complexity of the experience suffered by the subjects. Despite therapeutic projects are an essential achievement for the qualification of mental health care, it is still necessary to produce an epistemological rupture in the relationship with mental suffering so that they can achieve the greatest potential for transformation. Therefore, the article suggests that the practice of therapeutic projects should hold discussions with the reality of users life of and their relationships in the territories of existence, to transform the relations of power and knowledge that reproduce the subjects annulment. Thus, it is possible to dialogue with the complexity of the mental suffering experience, producing changes in the scenes that produce it.
Fundamental groups of singular quasi-projective varieties
International Nuclear Information System (INIS)
Eyral, Christophe
2002-09-01
We express, under appropriate conditions, the fundamental group of a singular complex quasi-projective variety as a quotient of the fundamental group of a general hyperplane section, using a generic pencil. The subgroup by which the quotient is taken is described with the help of the monodromies around the exceptional hyperplanes of the pencil. This is a new generalization of the classical Zariski-van Kampen theorem on curves. (author)
International Nuclear Information System (INIS)
Corbera, Montserrat; Llibre, Jaume; Perez-Chavela, Ernesto
2006-01-01
In this paper we consider vector fields in R 3 that are invariant under a suitable symmetry and that possess a 'generalized heteroclinic loop' L formed by two singular points (e + and e - ) and their invariant manifolds: one of dimension 2 (a sphere minus the points e + and e - ) and one of dimension 1 (the open diameter of the sphere having endpoints e + and e - ). In particular, we analyse the dynamics of the vector field near the heteroclinic loop L by means of a convenient Poincar? map, and we prove the existence of infinitely many symmetric periodic orbits near L. We also study two families of vector fields satisfying this dynamics. The first one is a class of quadratic polynomial vector fields in R 3 , and the second one is the charged rhomboidal four-body problem
Directory of Open Access Journals (Sweden)
Xin Xu
2009-03-01
Full Text Available The significant economic contributions of the tourism industry in recent years impose an unprecedented force for data mining and machine learning methods to analyze tourism data. The intrinsic problems of raw data in tourism are largely related to the complexity, noise and nonlinearity in the data that may introduce many challenges for the existing data mining techniques such as rough sets and neural networks. In this paper, a novel method using SVM- based classification with two nonlinear feature projection techniques is proposed for tourism data analysis. The first feature projection method is based on ISOMAP (Isometric Feature Mapping, which is a class of manifold learning approaches for dimension reduction. By making use of ISOMAP, part of the noisy data can be identified and the classification accuracy of SVMs can be improved by appropriately discarding the noisy training data. The second feature projection method is a probabilistic space mapping technique for scale transformation. Experimental results on expenditure data of business travelers show that the proposed method can improve prediction performance both in terms of testing accuracy and statistical coincidence. In addition, both of the feature projection methods are helpful to reduce the training time of SVMs.
Energy Technology Data Exchange (ETDEWEB)
Heras Celemin, M. R.
2008-07-01
The R and D activities for the scientific-technological singular strategic Project on Bio climatic Architecture and Solar Cooling PSE-ARFRISOL are being carried out from November 2005 to December 2010. This project aims to demonstrate that bio climatic architecture and low-temperature solar energy are the appropriate basic elements for climatization of future buildings. (Author) 12 refs.
Borok, S.; Goldfarb, I.; Gol'dshtein, V.
2009-05-01
;71:359-82; Flockerzi D. Tutorial: intrinsic low-dimensional manifolds and slow attractors. Magdeburg: Max-Planck-Institut; 2001-2005. ; Flockerzi D, Heineken W. Comment on "Identification of low order manifolds: validating the algorithm of Maas and Pope". Chaos 1999;9:108-23; Flockerzi D, Heineken W. Comment on "Identification of low order manifolds: validating the algorithm of Maas and Pope". Chaos 2006;16:048101]. The present work studies the causes for the "ghost" manifolds appearance for the case of a two-dimensional singularly perturbed system.
The geometry of warped product singularities
Stoica, Ovidiu Cristinel
In this article, the degenerate warped products of singular semi-Riemannian manifolds are studied. They were used recently by the author to handle singularities occurring in General Relativity, in black holes and at the big-bang. One main result presented here is that a degenerate warped product of semi-regular semi-Riemannian manifolds with the warping function satisfying a certain condition is a semi-regular semi-Riemannian manifold. The connection and the Riemann curvature of the warped product are expressed in terms of those of the factor manifolds. Examples of singular semi-Riemannian manifolds which are semi-regular are constructed as warped products. Applications include cosmological models and black holes solutions with semi-regular singularities. Such singularities are compatible with a certain reformulation of the Einstein equation, which in addition holds at semi-regular singularities too.
Ling, Eric
The big bang theory is a model of the universe which makes the striking prediction that the universe began a finite amount of time in the past at the so called "Big Bang singularity." We explore the physical and mathematical justification of this surprising result. After laying down the framework of the universe as a spacetime manifold, we combine physical observations with global symmetrical assumptions to deduce the FRW cosmological models which predict a big bang singularity. Next we prove a couple theorems due to Stephen Hawking which show that the big bang singularity exists even if one removes the global symmetrical assumptions. Lastly, we investigate the conditions one needs to impose on a spacetime if one wishes to avoid a singularity. The ideas and concepts used here to study spacetimes are similar to those used to study Riemannian manifolds, therefore we compare and contrast the two geometries throughout.
Analysis of the accuracy and convergence of equation-free projection to a slow manifold
Zagaris, Antonios; Gear, C.W.; Kaper, T.J.; Kevrekidis, I.G.
In [C.W. Gear, T.J. Kaper, I.G. Kevrekidis and A. Zagaris, SIAM J. Appl. Dyn. Syst. 4 (2005) 711–732], we developed a class of iterative algorithms within the context of equation-free methods to approximate low-dimensional, attracting, slow manifolds in systems of differential equations with
International Nuclear Information System (INIS)
Finkelstein, D.; Finkelstein, S.R.; Holm, C.
1986-01-01
Riemannian manifolds are but one of three ways to extrapolate from fourdimensional Minkowskian manifolds to spaces of higher dimension, and not the most plausible. If we take seriously a certain construction of time space from spinors, and replace the underlying binary spinors by N-ary hyperspinors with new ''internal'' components besides the usual two ''external'' ones, this leads to a second line, the hyperspin manifolds /sub n/ and their tangent spaces d/sub n/, different in structure and symmetry group from the Riemannian line, except that the binary spaces d 2 (Minkowski time space) and 2 (Minkowskian manifold) lie on both. d/sub n/ and /sub n/ have dimension n = N 2 . In hyperspin manifolds the energies of modes of motion multiply instead of adding their squares, and the N-ary chronometric form is not quadratic, but N-ic, with determinantal normal form. For the nine-dimensional ternary hyperspin manifold, we construct the trino, trine-Gordon, and trirac equations and their mass spectra in flat time space. It is possible that our four-dimensional time space sits in a hyperspin manifold rather than in a Kaluza-Klein Riemannian manifold. If so, then gauge quanta with spin-3 exist
The dynamics of slow manifolds
Verhulst, F.; Bakri, T.
2006-01-01
Invited lecture at Konferensi Nasional Matematika XIII, Semarang, 24-27 juli, 2006; to be publ. in J. Indones. Math. Soc. (2007) After reviewing a number of results from geometric singular perturbation theory, we discuss several approaches to obtain periodic solutions in a slow manifold.
Hempel, John
2004-01-01
A careful and systematic development of the theory of the topology of 3-manifolds, focusing on the critical role of the fundamental group in determining the topological structure of a 3-manifold … self-contained … one can learn the subject from it … would be very appropriate as a text for an advanced graduate course or as a basis for a working seminar. -Mathematical Reviews For many years, John Hempel's book has been a standard text on the topology of 3-manifolds. Even though the field has grown tremendously, the book remains one of the best and most popular introductions to the subject. The t
Kosinski, Antoni A
2007-01-01
The concepts of differential topology form the center of many mathematical disciplines such as differential geometry and Lie group theory. Differential Manifolds presents to advanced undergraduates and graduate students the systematic study of the topological structure of smooth manifolds. Author Antoni A. Kosinski, Professor Emeritus of Mathematics at Rutgers University, offers an accessible approach to both the h-cobordism theorem and the classification of differential structures on spheres.""How useful it is,"" noted the Bulletin of the American Mathematical Society, ""to have a single, sho
Influence of the choice of projection manifolds in the CASPT2 implementation
Czech Academy of Sciences Publication Activity Database
Yanai, T.; Kurashige, Y.; Saitow, M.; Chalupský, Jakub; Lindh, R.; Malmqvist, P. A.
2017-01-01
Roč. 115, 17/18 (2017), s. 2077-2085 ISSN 0026-8976 R&D Projects: GA ČR GA15-19143S Institutional support: RVO:61388963 Keywords : multireference theory * CASPT2 * MOLCAS * computer-aided programming Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 1.870, year: 2016
Dobrokhotov, S. Yu.; Nazaikinskii, V. E.
2017-01-01
The following results are obtained for the Cauchy problem with localized initial data for the crystal lattice vibration equations with continuous and discrete time: (i) the asymptotics of the solution is determined by Lagrangian manifolds with singularities ("punctured" Lagrangian manifolds); (ii) Maslov's canonical operator is defined on such manifolds as a modification of a new representation recently obtained for the canonical operator by the present authors together with A. I. Shafarevich (Dokl. Ross. Akad. Nauk 46 (6), 641-644 (2016)); (iii) the projection of the Lagrangian manifold onto the configuration plane specifies a bounded oscillation region, whose boundary (which is naturally referred to as the leading edge front) is determined by the Hamiltonians corresponding to the limit wave equations; (iv) the leading edge front is a special caustic, which possibly contains stronger focal points. These observations, together with earlier results, lead to efficient formulas for the wave field in a neighborhood of the leading edge front.
Morrow, James
2006-01-01
This book, a revision and organization of lectures given by Kodaira at Stanford University in 1965-66, is an excellent, well-written introduction to the study of abstract complex (analytic) manifolds-a subject that began in the late 1940's and early 1950's. It is largely self-contained, except for some standard results about elliptic partial differential equations, for which complete references are given. -D. C. Spencer, MathSciNet The book under review is the faithful reprint of the original edition of one of the most influential textbooks in modern complex analysis and geometry. The classic
Poincar\\'e series for plane curve singularities and their behaviour under projections
Moyano-Fernández, Julio José
2011-01-01
Our purpose is to investigate all defined Poincar\\'e series associated with multi-index filtrations and value semigroups of curve singularities---not necessarily complex---with regard to the property of forgetting variables, i.e., by making variables of the series to be 1. Generalised Poincar\\'e series of motivic nature will be also considered.
The structure of some classes of K-contact manifolds
Indian Academy of Sciences (India)
Abstract. We study projective curvature tensor in K-contact and Sasakian manifolds. We prove that (1) if a K-contact manifold is quasi projectively flat then it is Einstein and (2) a K-contact manifold is ξ-projectively flat if and only if it is Einstein Sasakian. Necessary and sufficient conditions for a K-contact manifold to be quasi ...
Pilca, Mihaela
2016-09-01
Vaisman manifolds are strongly related to Kähler and Sasaki geometry. In this paper we introduce toric Vaisman structures and show that this relationship still holds in the toric context. It is known that the so-called minimal covering of a Vaisman manifold is the Riemannian cone over a Sasaki manifold. We show that if a complete Vaisman manifold is toric, then the associated Sasaki manifold is also toric. Conversely, a toric complete Sasaki manifold, whose Kähler cone is equipped with an appropriate compatible action, gives rise to a toric Vaisman manifold. In the special case of a strongly regular compact Vaisman manifold, we show that it is toric if and only if the corresponding Kähler quotient is toric.
Obstruction theory on 8-manifolds
Czech Academy of Sciences Publication Activity Database
Čadek, M.; Crabb, M.; Vanžura, Jiří
2008-01-01
Roč. 127, č. 2 (2008), s. 167-186 ISSN 0025-2611 R&D Projects: GA ČR GA201/05/2117 Institutional research plan: CEZ:AV0Z10190503 Keywords : 8-manifolds * obstruction theory Subject RIV: BA - General Mathematics Impact factor: 0.509, year: 2008
Renteln, Paul
2013-11-01
Preface; 1. Linear algebra; 2. Multilinear algebra; 3. Differentiation on manifolds; 4. Homotopy and de Rham cohomology; 5. Elementary homology theory; 6. Integration on manifolds; 7. Vector bundles; 8. Geometric manifolds; 9. The degree of a smooth map; Appendixes; References; Index.
One Critical Case in Singularly Perturbed Control Problems
Sobolev, Vladimir
2017-02-01
The aim of the paper is to describe the special critical case in the theory of singularly perturbed optimal control problems. We reduce the original singularly perturbed problem to a regularized one such that the existence of slow integral manifolds can be established by means of the standard theory. We illustrate our approach by an example of control problem.
Topology of singular fibers of differentiable maps
Saeki, Osamu
2004-01-01
The volume develops a thorough theory of singular fibers of generic differentiable maps. This is the first work that establishes the foundational framework of the global study of singular differentiable maps of negative codimension from the viewpoint of differential topology. The book contains not only a general theory, but also some explicit examples together with a number of very concrete applications. This is a very interesting subject in differential topology, since it shows a beautiful interplay between the usual theory of singularities of differentiable maps and the geometric topology of manifolds.
Directory of Open Access Journals (Sweden)
María Gabriela Garro-González
2015-01-01
Full Text Available This article systematizes a series of moments built while in the company of a fourth grader from the public school where I worked as a special education teacher in 2013. In the article, I described what I learned from the shared experiences generated from the naturalistic paradigm, the qualitative approach and the action research model, using pedagogical situations planned with the objective of understanding the reality of the student and the educational process for this particular case allowing or limiting success at school. My purpose is to reflect on issues related to the educational practice, from an individual standpoint and from the perspective of the teacher who observes and listens to his/herself in his/her daily actions and who looks for new ways to help students to find the true meaning of learning. From this perspective, the methodological design for this research project is based on the natural observation of the interaction between the teacher and the student. Using this technique allowed identifying one of the participating subjects and choosing research activities (individual or group work sessions and strategies for data collection (photos, videos, stories and conversation recordings. After this, experiences are systematized in written and illustrated form (conversations and photographs of the participant’s drawings. The article is based on a case study that includes my individual interventions with the student, as well as planned learning moments with his class. To conclude, I interpret and analyze each of the moments meeting with the student, in the light of the scientific and theoretical findings accompanying the research project. In addition, I reflect that my priority as a teacher in action is creating spaces that would allow students to experience sensitivity, empathy, and appreciation for people and their talents.
Introduction to differentiable manifolds
Auslander, Louis
2009-01-01
The first book to treat manifold theory at an introductory level, this text surveys basic concepts in the modern approach to differential geometry. The first six chapters define and illustrate differentiable manifolds, and the final four chapters investigate the roles of differential structures in a variety of situations.Starting with an introduction to differentiable manifolds and their tangent spaces, the text examines Euclidean spaces, their submanifolds, and abstract manifolds. Succeeding chapters explore the tangent bundle and vector fields and discuss their association with ordinary diff
On local invariants of singular symplectic forms
Domitrz, Wojciech
2017-04-01
We find a complete set of local invariants of singular symplectic forms with the structurally stable Martinet hypersurface on a 2 n-dimensional manifold. In the C-analytic category this set consists of the Martinet hypersurface Σ2, the restriction of the singular symplectic form ω to TΣ2 and the kernel of ω n - 1 at the point p ∈Σ2. In the R-analytic and smooth categories this set contains one more invariant: the canonical orientation of Σ2. We find the conditions to determine the kernel of ω n - 1 at p by the other invariants. In dimension 4 we find sufficient conditions to determine the equivalence class of a singular symplectic form-germ with the structurally smooth Martinet hypersurface by the Martinet hypersurface and the restriction of the singular symplectic form to it. We also study the singular symplectic forms with singular Martinet hypersurfaces. We prove that the equivalence class of such singular symplectic form-germ is determined by the Martinet hypersurface, the canonical orientation of its regular part and the restriction of the singular symplectic form to its regular part if the Martinet hypersurface is a quasi-homogeneous hypersurface with an isolated singularity.
International Nuclear Information System (INIS)
HAMMERS, J.S.
1999-01-01
The purpose of the test was to verify that the AN Tank Farm Manifold Valves can be manually manipulated to the required operating position and that the electrical and visual indications accurately reflect that position. Physical locking devices were also verified to function. The Acceptance Test Procedure HNF-4642, 241-AN-A Valve Pit Manifold Valves and Position Indication was conducted between 23 June and 10 August 1999 at the 200E AN Tank Farm. The test has no open test exceptions. The test was conducted prior to final engineering ''as built'' activities being completed, this had an impact on the procedure and test results, ECN 653752 was written to correct the mismatch between the procedure and actual field conditions. P and ID H-14-100941 was changed via ECN-W-314-4C-120. All components, identified in the procedure, were not found to be labeled and identified as written in the procedure, temporary tags were used for operational identification. A retest of valve ANA-WT-V 318 was required because it was removed from its installed position and modified after testing was completed
Vector fields on singular varieties
Brasselet, Jean-Paul; Suwa, Tatsuo
2009-01-01
Vector fields on manifolds play a major role in mathematics and other sciences. In particular, the Poincaré-Hopf index theorem gives rise to the theory of Chern classes, key manifold-invariants in geometry and topology. It is natural to ask what is the ‘good’ notion of the index of a vector field, and of Chern classes, if the underlying space becomes singular. The question has been explored by several authors resulting in various answers, starting with the pioneering work of M.-H. Schwartz and R. MacPherson. We present these notions in the framework of the obstruction theory and the Chern-Weil theory. The interplay between these two methods is one of the main features of the monograph.
Yoshidome, Takashi; Oroguchi, Tomotaka; Nakasako, Masayoshi; Ikeguchi, Mitsunori
2015-09-01
Coherent x-ray diffraction imaging (CXDI) enables us to visualize noncrystalline sample particles with micrometer to submicrometer dimensions. Using x-ray free-electron laser (XFEL) sources, two-dimensional diffraction patterns are collected from fresh samples supplied to the irradiation area in the "diffraction-before-destruction" scheme. A recent significant increase in the intensity of the XFEL pulse is promising and will allow us to visualize the three-dimensional structures of proteins using XFEL-CXDI in the future. For the protocol proposed for molecular structure determination using future XFEL-CXDI [T. Oroguchi and M. Nakasako, Phys. Rev. E 87, 022712 (2013), 10.1103/PhysRevE.87.022712], we require an algorithm that can classify the data in accordance with the structural polymorphism of proteins arising from their conformational dynamics. However, most of the algorithms proposed primarily require the numbers of conformational classes, and then the results are biased by the numbers. To improve this point, here we examine whether a method based on the manifold concept can classify simulated XFEL-CXDI data with respect to the structural polymorphism of a protein that predominantly adopts two states. After random sampling of the conformations of the two states and in-between states from the trajectories of molecular dynamics simulations, a diffraction pattern is calculated from each conformation. Classification was performed by using our custom-made program suite named enma, in which the diffusion map (DM) method developed based on the manifold concept was implemented. We successfully classify most of the projection electron density maps phase retrieved from diffraction patterns into each of the two states and in-between conformations without the knowledge of the number of conformational classes. We also examined the classification of the projection electron density maps of each of the three states with respect to the Euler angle. The present results suggest
Maps between Grassmann manifolds
Indian Academy of Sciences (India)
Parameswaran Sankaran Institute of Mathematical Sciences Chennai, India sankaran@imsc.res.in Indian Academy of Sciences Platinum Jubilee Meeting Hyderabad
2009-07-02
Jul 2, 2009 ... Regarding self-maps of (complex) Grassmann manifolds the following results are well-known: Parameswaran Sankaran Institute of Mathematical Sciences Chennai, India sankaran@imsc.res.in. Indian Academy of Sciences Platinum Jubilee Meeting Hyderabad. Maps between Grassmann manifolds ...
Manifold Partition Discriminant Analysis.
Yang Zhou; Shiliang Sun
2017-04-01
We propose a novel algorithm for supervised dimensionality reduction named manifold partition discriminant analysis (MPDA). It aims to find a linear embedding space where the within-class similarity is achieved along the direction that is consistent with the local variation of the data manifold, while nearby data belonging to different classes are well separated. By partitioning the data manifold into a number of linear subspaces and utilizing the first-order Taylor expansion, MPDA explicitly parameterizes the connections of tangent spaces and represents the data manifold in a piecewise manner. While graph Laplacian methods capture only the pairwise interaction between data points, our method captures both pairwise and higher order interactions (using regional consistency) between data points. This manifold representation can help to improve the measure of within-class similarity, which further leads to improved performance of dimensionality reduction. Experimental results on multiple real-world data sets demonstrate the effectiveness of the proposed method.
The Geometry of Slow Manifolds near a Folded Node
Desroches, M.; Krauskopf, B.; Osinga, H.M.
2008-01-01
This paper is concerned with the geometry of slow manifolds of a dynamical system with one fast and two slow variables. Specifically, we study the dynamics near a folded-node singularity, which is known to give rise to so-called canard solutions. Geometrically, canards are intersection curves of
Energy conditions and spacetime singularities
International Nuclear Information System (INIS)
Tipler, F.J.
1978-01-01
In this paper, a number of theorems are proven which collectively show that singularities will occur in spacetime under weaker energy conditions than the strong energy condition. In particular, the Penrose theorem, which uses only the weak energy condition but which applies only to open universes, is extended to all closed universes which have a Cauchy surface whose universal covering manifold is not a three-sphere. Furthermore, it is shown that the strong energy condition in the Hawking-Penrose theorem can be replaced by the weak energy condition and the assumption that the strong energy condition holds only on the average. In addition, it is demonstrated that if the Universe is closed, then the existence of singularities follows from the averaged strong energy condition alone. It is argued that any globally hyperbolic spacetime which satisfies the weak energy condition and which contains a black hole must be null geodesically incomplete
Ensemble manifold regularization.
Geng, Bo; Tao, Dacheng; Xu, Chao; Yang, Linjun; Hua, Xian-Sheng
2012-06-01
We propose an automatic approximation of the intrinsic manifold for general semi-supervised learning (SSL) problems. Unfortunately, it is not trivial to define an optimization function to obtain optimal hyperparameters. Usually, cross validation is applied, but it does not necessarily scale up. Other problems derive from the suboptimality incurred by discrete grid search and the overfitting. Therefore, we develop an ensemble manifold regularization (EMR) framework to approximate the intrinsic manifold by combining several initial guesses. Algorithmically, we designed EMR carefully so it 1) learns both the composite manifold and the semi-supervised learner jointly, 2) is fully automatic for learning the intrinsic manifold hyperparameters implicitly, 3) is conditionally optimal for intrinsic manifold approximation under a mild and reasonable assumption, and 4) is scalable for a large number of candidate manifold hyperparameters, from both time and space perspectives. Furthermore, we prove the convergence property of EMR to the deterministic matrix at rate root-n. Extensive experiments over both synthetic and real data sets demonstrate the effectiveness of the proposed framework.
Nonlinear analysis on manifolds
Hebey, Emmanuel
2000-01-01
This volume offers an expanded version of lectures given at the Courant Institute on the theory of Sobolev spaces on Riemannian manifolds. "Several surprising phenomena appear when studying Sobolev spaces on manifolds," according to the author. "Questions that are elementary for Euclidean space become challenging and give rise to sophisticated mathematics, where the geometry of the manifold plays a central role." The volume is organized into nine chapters. Chapter 1 offers a brief introduction to differential and Riemannian geometry. Chapter 2 deals with the general theory of Sobolev spaces fo
International Nuclear Information System (INIS)
Aspinwall, P.S.; Luetken, C.A.
1991-01-01
We analyze the mirror manifold hypothesis in one and three dimensions using the simplest available representations of the N = 2 superconformal algebra. The symmetries of these tensor models can be divided out to give an explicit representation of the mirror, and we give a simple group theoretical algorithm for determining which symmetries should be used. We show that the mirror of a superconformal field theory does not always have a geometrical interpretation, but when it does, deformations of complex structure of one manifold are reflected in deformations of the Kaehler form of the mirror manifold, and we show how the large radius limit of a manifold corresponds to a large complex structure limit in the mirror manifold. The mirror of the Tian-Yau three generation model is constructed both as a conformal field theory and as an algebraic variety with Euler number six. The Hodge numbers of this manifolds are fixed, but the intersection numbes are highly ambiguous, presumably reflected a rich structure of multicritical points in the moduli space of the field theory. (orig.)
Geometric singular perturbation analysis of systems with friction
DEFF Research Database (Denmark)
Bossolini, Elena
This thesis is concerned with the application of geometric singular perturbation theory to mechanical systems with friction. The mathematical background on geometric singular perturbation theory, on the blow-up method, on non-smooth dynamical systems and on regularization is presented. Thereafter...... use a Poincaré compactiﬁcation to study the system near inﬁnity. At inﬁnity, the critical manifold loses hyperbolicity with an exponential rate. We use an adaptation of the blow-up method to recover the hyperbolicity. This enables the identiﬁcation of a new attracting manifold, that organises...... singular, in contrast to the regular stiction solutions that are forward unique. In order to further the understanding of the non-unique dynamics, we introduce a regularization of the model. This gives a singularly perturbed problem that captures the main features of the original discontinuous problem. We...
Singular perturbation in the physical sciences
Neu, John C
2015-01-01
This book is the testimony of a physical scientist whose language is singular perturbation analysis. Classical mathematical notions, such as matched asymptotic expansions, projections of large dynamical systems onto small center manifolds, and modulation theory of oscillations based either on multiple scales or on averaging/transformation theory, are included. The narratives of these topics are carried by physical examples: Let's say that the moment when we "see" how a mathematical pattern fits a physical problem is like "hitting the ball." Yes, we want to hit the ball. But a powerful stroke includes the follow-through. One intention of this book is to discern in the structure and/or solutions of the equations their geometric and physical content. Through analysis, we come to sense directly the shape and feel of phenomena. The book is structured into a main text of fundamental ideas and a subtext of problems with detailed solutions. Roughly speaking, the former is the initial contact between mathematics and p...
Building Reproducible Science with Singularity Containers
CERN. Geneva
2018-01-01
Michael Bauer first began working with containers at GSI national lab in Darmstadt, Germany, in 2017 while taking a semester off of school at the University of Michigan. Michael met Greg Kurtzer, project lead of Singularity, during his time at GSI and he began contributing heavily to the Singularity project. At the start of summer 2017, Greg hired Michael to work at the ...
Djordjevic, A.
1982-07-08
A tool guide that makes possible the insertion of cleaning and/or inspection tools into a manifold pipe that will dislocate and extract the accumulated sediment in such manifold pipes. The tool guide basically comprises a right angled tube (or other angled tube as required) which can be inserted in a large tube and locked into a radially extending cross pipe by adjustable spacer rods and a spring-loaded cone, whereby appropriate cleaning tools can be inserted into to cross pipe for cleaning, inspection, etc.
Manifold Regularized Reinforcement Learning.
Li, Hongliang; Liu, Derong; Wang, Ding
2018-04-01
This paper introduces a novel manifold regularized reinforcement learning scheme for continuous Markov decision processes. Smooth feature representations for value function approximation can be automatically learned using the unsupervised manifold regularization method. The learned features are data-driven, and can be adapted to the geometry of the state space. Furthermore, the scheme provides a direct basis representation extension for novel samples during policy learning and control. The performance of the proposed scheme is evaluated on two benchmark control tasks, i.e., the inverted pendulum and the energy storage problem. Simulation results illustrate the concepts of the proposed scheme and show that it can obtain excellent performance.
Erratum to the paper: Compact hyperkaehler manifolds: basic results
Huybrechts, Daniel
2001-01-01
This is an Erratum to the paper: Compact hyperkaehler manifolds: basic results. (alg-geom/9705025, Inv. math. 135). We give a correct proof of the projectivity criterion for hyperkaehler manifolds. We use a recent result of Demailly and Paun math.AG/0105176.
International Nuclear Information System (INIS)
Lisboa, P.; Michael, C.
1982-01-01
We address the question of designing optimum discrete sets of points to represent numerically a continuous group manifold. We consider subsets which are extensions of the regular discrete subgroups. Applications to Monte Carlo simulation of SU(2) and SU(3) gauge theory are discussed. (orig.)
Analytic manifolds in uniform algebras
International Nuclear Information System (INIS)
Tonev, T.V.
1988-12-01
Here we extend Bear-Hile's result concerning the version of famous Bishop's theorem for one-dimensional analytic structures in two directions: for n-dimensional complex analytic manifolds, n>1, and for generalized analytic manifolds. 14 refs
Eigenvalue pinching on spinc manifolds
Roos, Saskia
2017-02-01
We derive various pinching results for small Dirac eigenvalues using the classification of spinc and spin manifolds admitting nontrivial Killing spinors. For this, we introduce a notion of convergence for spinc manifolds which involves a general study on convergence of Riemannian manifolds with a principal S1-bundle. We also analyze the relation between the regularity of the Riemannian metric and the regularity of the curvature of the associated principal S1-bundle on spinc manifolds with Killing spinors.
A generalized construction of mirror manifolds
International Nuclear Information System (INIS)
Berglund, P.; Huebsch, T.
1993-01-01
We generalize the known method for explicit construction of mirror pairs of (2,2)-superconformal field theories, using the formalism of Landau-Ginzburg orbifolds. Geometrically, these theories are realized as Calabi-Yau hypersurfaces in weighted projective spaces. This generalization makes it possible to construct the mirror partners of many manifolds for which the mirror was not previously known. (orig.)
Travelling wave solutions for a singularly perturbed Burgers–KdV ...
Indian Academy of Sciences (India)
Abstract. This paper concerns with the existence problem of travelling wave solutions to a singularly perturbed Burgers–KdV equation. For this, we use the dynamical systems approach, specifically, the geometric singular perturbation theory and centre manifold theory. We also numerically show approximations, in particular, ...
Travelling wave solutions for a singularly perturbed Burgers–KdV ...
Indian Academy of Sciences (India)
This paper concerns with the existence problem of travelling wave solutions to a singularly perturbed Burgers–KdV equation. For this, we use the dynamical systems approach, specifically, the geometric singular perturbation theory and centre manifold theory. We also numerically show approximations, in particular, for ...
Unimodularity criteria for Poisson structures on foliated manifolds
Pedroza, Andrés; Velasco-Barreras, Eduardo; Vorobiev, Yury
2018-03-01
We study the behavior of the modular class of an orientable Poisson manifold and formulate some unimodularity criteria in the semilocal context, around a (singular) symplectic leaf. Our results generalize some known unimodularity criteria for regular Poisson manifolds related to the notion of the Reeb class. In particular, we show that the unimodularity of the transverse Poisson structure of the leaf is a necessary condition for the semilocal unimodular property. Our main tool is an explicit formula for a bigraded decomposition of modular vector fields of a coupling Poisson structure on a foliated manifold. Moreover, we also exploit the notion of the modular class of a Poisson foliation and its relationship with the Reeb class.
Bragman, Felix J S; McClelland, Jamie R; Jacob, Joseph; Hurst, John R; Hawkes, David J
2017-09-01
Analysis of CT scans for studying Chronic Obstructive Pulmonary Disease (COPD) is generally limited to mean scores of disease extent. However, the evolution of local pulmonary damage may vary between patients with discordant effects on lung physiology. This limits the explanatory power of mean values in clinical studies. We present local disease and deformation distributions to address this limitation. The disease distribution aims to quantify two aspects of parenchymal damage: locally diffuse/dense disease and global homogeneity/heterogeneity. The deformation distribution links parenchymal damage to local volume change. These distributions are exploited to quantify inter-patient differences. We used manifold learning to model variations of these distributions in 743 patients from the COPDGene study. We applied manifold fusion to combine distinct aspects of COPD into a single model. We demonstrated the utility of the distributions by comparing associations between learned embeddings and measures of severity. We also illustrated the potential to identify trajectories of disease progression in a manifold space of COPD.
Yuan, Rui; Lv, Yong; Song, Gangbing
2018-04-16
Rolling bearings are important components in rotary machinery systems. In the field of multi-fault diagnosis of rolling bearings, the vibration signal collected from single channels tends to miss some fault characteristic information. Using multiple sensors to collect signals at different locations on the machine to obtain multivariate signal can remedy this problem. The adverse effect of a power imbalance between the various channels is inevitable, and unfavorable for multivariate signal processing. As a useful, multivariate signal processing method, Adaptive-projection has intrinsically transformed multivariate empirical mode decomposition (APIT-MEMD), and exhibits better performance than MEMD by adopting adaptive projection strategy in order to alleviate power imbalances. The filter bank properties of APIT-MEMD are also adopted to enable more accurate and stable intrinsic mode functions (IMFs), and to ease mode mixing problems in multi-fault frequency extractions. By aligning IMF sets into a third order tensor, high order singular value decomposition (HOSVD) can be employed to estimate the fault number. The fault correlation factor (FCF) analysis is used to conduct correlation analysis, in order to determine effective IMFs; the characteristic frequencies of multi-faults can then be extracted. Numerical simulations and the application of multi-fault situation can demonstrate that the proposed method is promising in multi-fault diagnoses of multivariate rolling bearing signal.
Daverman, Robert J
2007-01-01
Decomposition theory studies decompositions, or partitions, of manifolds into simple pieces, usually cell-like sets. Since its inception in 1929, the subject has become an important tool in geometric topology. The main goal of the book is to help students interested in geometric topology to bridge the gap between entry-level graduate courses and research at the frontier as well as to demonstrate interrelations of decomposition theory with other parts of geometric topology. With numerous exercises and problems, many of them quite challenging, the book continues to be strongly recommended to eve
Analysis, manifolds and physics
Choquet-Bruhat, Y
2000-01-01
Twelve problems have been added to the first edition; four of them are supplements to problems in the first edition. The others deal with issues that have become important, since the first edition of Volume II, in recent developments of various areas of physics. All the problems have their foundations in volume 1 of the 2-Volume set Analysis, Manifolds and Physics. It would have been prohibitively expensive to insert the new problems at their respective places. They are grouped together at the end of this volume, their logical place is indicated by a number of parenthesis following the title.
Manifold Regularized Correlation Object Tracking
Hu, Hongwei; Ma, Bo; Shen, Jianbing; Shao, Ling
2017-01-01
In this paper, we propose a manifold regularized correlation tracking method with augmented samples. To make better use of the unlabeled data and the manifold structure of the sample space, a manifold regularization-based correlation filter is introduced, which aims to assign similar labels to neighbor samples. Meanwhile, the regression model is learned by exploiting the block-circulant structure of matrices resulting from the augmented translated samples over multiple base samples cropped fr...
Morse theory on banach manifolds
International Nuclear Information System (INIS)
Wang, T.
1986-01-01
The Morse Theory of critical points was extended by Palais and Smale to a certain class of functions on Hilbert manifolds. However, there are many variational problems in a nonlinear setting which for technical reasons are posed not on Hilbert but on Banach manifolds of mappings. This paper introduces a concept of a multivalued gradient vector field for a function defined on a Banach manifold. Using this concept, the Morse theory is generalized to some kind of Banach manifolds. The first chapter gives a definition of nondegeneracy of critical points for a real valued function defined on a reflexive Banach manifold, and then a handle-body decomposition theorem and Morse inequalities for this manifold are obtained. The second chapter proves the existence of solutions for a differential inclusion for a so-called accretive multi-valued mapping on a Finsler manifold. The third chapter introduces a definition of nondegeneracy of critical points for a real valued function defined on a general Banach manifold and, furthermore, generalizes the Morse handle-body decomposition theorem and the Morse inequalities to the Banach manifold
Energy Technology Data Exchange (ETDEWEB)
Manzano, E.; Maleta, E. J.; Carrasco, J. E.
2008-07-01
The Singular Strategic Project (PSE) On Cultivos, Development, demonstration and evaluation of the viability of energy crop biomass-based energy production in Spain, has been under way since 2005. This article describes the project objectives and general data indicating the current project status and the most relevant preliminary results obtained since it began. The On Cultivos PSE is proving to be an effective tool to channel the R and D efforts required to achieve the integral commercial implementation of energy crops in Spain. (Author) 4 refs.
Singular points in moduli spaces of Yang-Mills fields
International Nuclear Information System (INIS)
Ticciati, R.
1984-01-01
This thesis investigates the metric dependence of the moduli spaces of Yang-Mills fields of an SU(2) principal bundle P with chern number -1 over a four-dimensional, simply-connected, oriented, compact smooth manifold M with positive definite intersection form. The purpose of this investigation is to suggest that the surgery class of the moduli space of irreducible connections is, for a generic metric, a Z 2 topological invariant of the smooth structure on M. There are three main parts. The first two parts are local analysis of singular points in the moduli spaces. The last part is global. The first part shows that the set of metrics for which the moduli space of irreducible connections has only non-degenerate singularities has codimension at least one in the space of all metrics. The second part shows that, for a one-parameter family of moduli spaces in a direction transverse to the set of metrics for which the moduli spaces have singularities, passing through a non-degenerate singularity of the simplest type changes the moduli space by a cobordism. The third part shows that generic one-parameter families of metrics give rise to six-dimensional manifolds, the corresponding family of moduli spaces of irreducible connections. It is shown that when M is homeomorphic to S 4 the six-dimensional manifold is a proper cobordism, thus establishing the independence of the surgery class of the moduli space on the metric on M
Cobordism independence of Grassmann manifolds
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
Introduction. This paper is a continuation of the ongoing study of cobordism of Grassmann manifolds. Let. F denote one of the division rings R of reals, C of complex numbers, or H of quaternions. Let t = dimRF. Then the Grassmannian manifold Gk(Fn+k) is defined to be the set of all k-dimensional (left) subspaces of Fn+k.
Diffeomorphisms of elliptic 3-manifolds
Hong, Sungbok; McCullough, Darryl; Rubinstein, J Hyam
2012-01-01
This work concerns the diffeomorphism groups of 3-manifolds, in particular of elliptic 3-manifolds. These are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, now known to be exactly the closed 3-manifolds that have a finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to its diffeomorphism group is a homotopy equivalence. The original Smale Conjecture, for the 3-sphere, was proven by J. Cerf and A. Hatcher, and N. Ivanov proved the generalized conjecture for many of the elliptic 3-manifolds that contain a geometrically incompressible Klein bottle. The main results establish the Smale Conjecture for all elliptic 3-manifolds containing geometrically incompressible Klein bottles, and for all lens spaces L(m,q) with m at least 3. Additional results imply that for a Haken Seifert-fibered 3 manifold V, the space of Seifert fiberings has contractible components, and apart from a small...
Geodesic fields with singularities
International Nuclear Information System (INIS)
Kafker, A.H.
1979-01-01
The question considered is whether or not a Riemannian metric can be found to make a given curve field on a closed surface into geodesics. Allowing singularities removes the restriction to Euler characteristic zero. The main results are the following: only two types of isolated singularities can occur in a geodesic field on a surface. No geodsic fields exist on a surface with Euler characteristic less than zero. If the Euler characteristic is zero, such a geodesic field can have only removable singularities. Only a limited number of geodesic fields exist on S 2 and RP 2 . A closed geodesic (perhaps made from several curves and singularities) always appears in such a field
Echocardiogram enhancement using supervised manifold denoising.
Wu, Hui; Huynh, Toan T; Souvenir, Richard
2015-08-01
This paper presents data-driven methods for echocardiogram enhancement. Existing denoising algorithms typically rely on a single noise model, and do not generalize to the composite noise sources typically found in real-world echocardiograms. Our methods leverage the low-dimensional intrinsic structure of echocardiogram videos. We assume that echocardiogram images are noisy samples from an underlying manifold parametrized by cardiac motion and denoise images via back-projection onto a learned (non-linear) manifold. Our methods incorporate synchronized side information (e.g., electrocardiography), which is often collected alongside the visual data. We evaluate the proposed methods on a synthetic data set and real-world echocardiograms. Quantitative results show improved performance of our methods over recent image despeckling methods and video denoising methods, and a visual analysis of real-world data shows noticeable image enhancement, even in the challenging case of noise due to dropout artifacts. Copyright © 2015 Elsevier B.V. All rights reserved.
Smooth maps of a foliated manifold in a symplectic manifold
Indian Academy of Sciences (India)
Abstract. Let M be a smooth manifold with a regular foliation F and a 2-form ω which induces closed forms on the leaves of F in the leaf topology. A smooth map f : (M, F) −→ (N,σ) in a symplectic manifold (N,σ) is called a foliated symplectic immersion if f restricts to an immersion on each leaf of the foliation and further, the.
Isotopy of Morin singularities
Saji, Kentaro
2015-01-01
We define an equivalence relation called A-isotopy between finitely determined map-germs, which is a strengthened version of A-equivalence. We consider the number of A-isotopy classes of equidimensional Morin singularities, and some other well-known low-dimensional singularities. We also give an application to stable perturbations of simple equi-dimensional map-germs.
Canard solutions of two-dimensional singularly perturbed systems
Energy Technology Data Exchange (ETDEWEB)
Chen Xianfeng [Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240 (China)]. E-mail: chenxf@sjtu.edu.cn; Yu Pei [Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Applied Mathematics, University of Western Ontario London, Ont., N6A 5B7 (Canada); Han Maoan [Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang Weijiang [Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240 (China)
2005-02-01
In this paper, some new lemmas on asymptotic analysis are established. We apply an asymptotic method to study generalized two-dimensional singularly perturbed systems with one parameter, whose critical manifold has an m-22 th-order degenerate extreme point. Certain sufficient conditions are obtained for the existence of canard solutions, which are the extension and correction of some existing results. Finally, one numerical example is given.
Manifold Regularized Correlation Object Tracking.
Hu, Hongwei; Ma, Bo; Shen, Jianbing; Shao, Ling
2018-05-01
In this paper, we propose a manifold regularized correlation tracking method with augmented samples. To make better use of the unlabeled data and the manifold structure of the sample space, a manifold regularization-based correlation filter is introduced, which aims to assign similar labels to neighbor samples. Meanwhile, the regression model is learned by exploiting the block-circulant structure of matrices resulting from the augmented translated samples over multiple base samples cropped from both target and nontarget regions. Thus, the final classifier in our method is trained with positive, negative, and unlabeled base samples, which is a semisupervised learning framework. A block optimization strategy is further introduced to learn a manifold regularization-based correlation filter for efficient online tracking. Experiments on two public tracking data sets demonstrate the superior performance of our tracker compared with the state-of-the-art tracking approaches.
An introduction to differential manifolds
Lafontaine, Jacques
2015-01-01
This book is an introduction to differential manifolds. It gives solid preliminaries for more advanced topics: Riemannian manifolds, differential topology, Lie theory. It presupposes little background: the reader is only expected to master basic differential calculus, and a little point-set topology. The book covers the main topics of differential geometry: manifolds, tangent space, vector fields, differential forms, Lie groups, and a few more sophisticated topics such as de Rham cohomology, degree theory and the Gauss-Bonnet theorem for surfaces. Its ambition is to give solid foundations. In particular, the introduction of “abstract” notions such as manifolds or differential forms is motivated via questions and examples from mathematics or theoretical physics. More than 150 exercises, some of them easy and classical, some others more sophisticated, will help the beginner as well as the more expert reader. Solutions are provided for most of them. The book should be of interest to various readers: undergra...
Ishii, Shihoko
2014-01-01
This book is an introduction to singularities for graduate students and researchers. It is said that algebraic geometry originated in the seventeenth century with the famous work Discours de la méthode pour bien conduire sa raison, et chercher la vérité dans les sciences by Descartes. In that book he introduced coordinates to the study of geometry. After its publication, research on algebraic varieties developed steadily. Many beautiful results emerged in mathematicians’ works. Most of them were about non-singular varieties. Singularities were considered “bad” objects that interfered with knowledge of the structure of an algebraic variety. In the past three decades, however, it has become clear that singularities are necessary for us to have a good description of the framework of varieties. For example, it is impossible to formulate minimal model theory for higher-dimensional cases without singularities. Another example is that the moduli spaces of varieties have natural compactification, the boundar...
Parallel Transport Along Seifert Manifolds and Fractional Monodromy
Martynchuk, N.; Efstathiou, K.
2017-12-01
The notion of fractional monodromy was introduced by Nekhoroshev, Sadovskií and Zhilinskií as a generalization of standard (`integer') monodromy in the sense of Duistermaat from torus bundles to singular torus fibrations. In the present paper we prove a general result that allows one to compute fractional monodromy in various integrable Hamiltonian systems. In particular, we show that the non-triviality of fractional monodromy in 2 degrees of freedom systems with a Hamiltonian circle action is related only to the fixed points of the circle action. Our approach is based on the study of a specific notion of parallel transport along Seifert manifolds.
Moduli space of torsional manifolds
International Nuclear Information System (INIS)
Becker, Melanie; Tseng, L.-S.; Yau, S.-T.
2007-01-01
We characterize the geometric moduli of non-Kaehler manifolds with torsion. Heterotic supersymmetric flux compactifications require that the six-dimensional internal manifold be balanced, the gauge bundle be Hermitian Yang-Mills, and also the anomaly cancellation be satisfied. We perform the linearized variation of these constraints to derive the defining equations for the local moduli. We explicitly determine the metric deformations of the smooth flux solution corresponding to a torus bundle over K3
Indian Academy of Sciences (India)
manifolds. Some properties of Riemannian curvature tensors and curvature scalars of. Kähler–Norden manifolds using the theory of Tachibana operators is presented. Keywords. Kähler–Norden manifold; Norden metric; twin metric; pure tensor; holo- morphic tensor. 1. Introduction. Let M2n be a Riemannian manifold with a ...
String theory and cosmological singularities
Indian Academy of Sciences (India)
time' can have a beginning or end. Well-known examples are singularities inside black holes and initial or final singularities in expanding or contracting universes. In recent times, string theory is providing new perspectives of such singularities ...
Singularities and the geometry of spacetime
Hawking, Stephen
2014-11-01
The aim of this essay is to investigate certain aspects of the geometry of the spacetime manifold in the General Theory of Relativity with particular reference to the occurrence of singularities in cosmological solutions and their relation with other global properties. Section 2 gives a brief outline of Riemannian geometry. In Section 3, the General Theory of Relativity is presented in the form of two postulates and two requirements which are common to it and to the Special Theory of Relativity, and a third requirement, the Einstein field equations, which distinguish it from the Special Theory. There does not seem to be any alternative set of field equations which would not have some undeseriable features. Some exact solutions are described. In Section 4, the physical significance of curvature is investigated using the deviation equation for timelike and null curves. The Riemann tensor is decomposed into the Ricci tensor which represents the gravitational effect at a point of matter at that point and the Welyl tensor which represents the effect at a point of gravitational radiation and matter at other points. The two tensors are related by the Bianchi identities which are presented in a form analogous to the Maxwell equations. Some lemmas are given for the occurrence of conjugate points on timelike and null geodesics and their relation with the variation of timelike and null curves is established. Section 5 is concerned with properties of causal relations between points of spacetime. It is shown that these could be used to determine physically the manifold structure of spacetime if the strong causality assumption held. The concepts of a null horizon and a partial Cauchy surface are introduced and are used to prove a number of lemmas relating to the existence of a timelike curve of maximum length between two sets. In Section 6, the definition of a singularity of spacetime is given in terms of geodesic incompleteness. The various energy assumptions needed to prove
Initially Approximated Quasi Equilibrium Manifold
International Nuclear Information System (INIS)
Shahzad, M.; Arif, H.; Gulistan, M.; Sajid, M.
2015-01-01
Most commonly, kinetics model reduction techniques are based on exploiting time scale separation into fast and slow reaction processes. Then, a researcher approximates the system dynamically with dimension reduction for slow ones eliminating the fast modes. The main idea behind the construction of the lower dimension manifold is based on finding its initial approximation using Quasi Equilibrium Manifold (QEM). Here, we provide an efficient numerical method, which allow us to calculate low dimensional manifolds of chemical reaction systems. This computation technique is not restricted to our specific complex problem, but it can also be applied to other reacting flows or dynamic systems provided with the condition that a large number of extra (decaying) components can be eliminated from the system. Through computational approach, we approximate low dimensional manifold for a mechanism of six chemical species to simplify complex chemical kinetics. A reduced descriptive form of slow invariant manifold is obtained from dissipative system. This method is applicable for higher dimensions and is applied over an oxidation of CO/Pt. (author)
Slow manifolds in chemical kinetics
International Nuclear Information System (INIS)
Shahzad, M.; Haq, I. U.; Sultan, F.; Wahab, A.; Faizullah, F.; Rahman, G. U.
2016-01-01
Modelling the chemical system, especially for complex and higher dimensional problems, gives an easy way to handle the ongoing reaction process with respect to time. Here, we will consider some of the newly developed computational methods commonly used for model reductions in a chemical reaction. An effective (simple) method is planned to measure the low dimensional manifold, which reduces the higher dimensional system in such a way that it may not affect the precision of the whole mechanism. The phase flow of the solution trajectories near the equilibrium point is observed while the initial approximation is measured with the spectral quasi equilibrium manifold, which starts from the equilibrium point. To make it an invariant curve, the approximated curve is first refined a certain number of times using the method of invariant grids. The other way of getting the reduced data in the low dimensional manifold is possible through the intrinsic low dimensional manifold. Then, we compare these two invariant curves given by both the methods. Finally, the idea is extended to the higher dimensional manifold, where more number of progress variables will be added. (author)
Directory of Open Access Journals (Sweden)
Gabriel Martínez-Niconoff
2012-01-01
Full Text Available With the purpose to compare the physical features of the electromagnetic field, we describe the synthesis of optical singularities propagating in the free space and on a metal surface. In both cases the electromagnetic field has a slit-shaped curve as a boundary condition, and the singularities correspond to a shock wave that is a consequence of the curvature of the slit curve. As prototypes, we generate singularities that correspond to fold and cusped regions. We show that singularities in free space may generate bifurcation effects while plasmon fields do not generate these kinds of effects. Experimental results for free-space propagation are presented and for surface plasmon fields, computer simulations are shown.
International Nuclear Information System (INIS)
Sitaramayya, M.
1993-11-01
After a brief review of the geometry of Moishezon spaces, their relation with l-convex spaces and a reasonable and up to date understanding of the obstructions for projectivity of Moishezon objects both in singular and non-singular case is given. The geometry of l-convex manifolds and with l-dimensional exceptional set is studied and some problems and conjectures are stated. The tools of cohomology vanishing theorems important for the subject are briefly sketched. Compactifications of C 3 and Stein spaces are finally outlined. given. 111 refs, 2 figs
Directory of Open Access Journals (Sweden)
Hans Schonemann
1996-12-01
Full Text Available Some algorithms for singularity theory and algebraic geometry The use of Grobner basis computations for treating systems of polynomial equations has become an important tool in many areas. This paper introduces of the concept of standard bases (a generalization of Grobner bases and the application to some problems from algebraic geometry. The examples are presented as SINGULAR commands. A general introduction to Grobner bases can be found in the textbook [CLO], an introduction to syzygies in [E] and [St1]. SINGULAR is a computer algebra system for computing information about singularities, for use in algebraic geometry. The basic algorithms in SINGULAR are several variants of a general standard basis algorithm for general monomial orderings (see [GG]. This includes wellorderings (Buchberger algorithm ([B1], [B2] and tangent cone orderings (Mora algorithm ([M1], [MPT] as special cases: It is able to work with non-homogeneous and homogeneous input and also to compute in the localization of the polynomial ring in 0. Recent versions include algorithms to factorize polynomials and a factorizing Grobner basis algorithm. For a complete description of SINGULAR see [Si].
Explicit Gromov-Hausdorff compactifications of moduli spaces of Kähler-Einstein Fano manifolds
DEFF Research Database (Denmark)
Spotti, Cristiano; Sun, Song
We exhibit the first non-trivial concrete examples of Gromov-Hausdorff compactifications of moduli spaces of Kähler-Einstein Fano manifolds in all complex dimensions bigger than two (Fano K-moduli spaces). We also discuss potential applications to explicit study of moduli spaces of K-stable Fano ...... manifolds with large anti-canonical volume. Our arguments are based on recent progress about the geometry of metric tangent cones and on related ideas about the algebro-geometric study of singularities of K-stable Fano varieties....
Fivebranes and 3-manifold homology
Gukov, Sergei; Putrov, Pavel; Vafa, Cumrun
2017-07-01
Motivated by physical constructions of homological knot invariants, we study their analogs for closed 3-manifolds. We show that fivebrane compactifications provide a universal description of various old and new homological invariants of 3-manifolds. In terms of 3d/3d correspondence, such invariants are given by the Q-cohomology of the Hilbert space of partially topologically twisted 3d N=2 theory T[ M 3] on a Riemann surface with defects. We demonstrate this by concrete and explicit calculations in the case of monopole/Heegaard Floer homology and a 3-manifold analog of Khovanov-Rozansky link homology. The latter gives a categorification of Chern-Simons partition function. Some of the new key elements include the explicit form of the S-transform and a novel connection between categorification and a previously mysterious role of Eichler integrals in Chern-Simons theory.
Numerical Approaches to Spacetime Singularities
Directory of Open Access Journals (Sweden)
Beverly K. Berger
1998-05-01
Full Text Available This review updates a previous review article. Numerical explorationof the properties of singularities could, in principle, yield detailed understanding of their nature in physically realistic cases. Examples of numerical investigations into the formation of naked singularities, critical behavior in collapse, passage through the Cauchy horizon, chaos of the Mixmaster singularity, and singularities in spatially inhomogeneous cosmologies are discussed.
Generalized graph manifolds and their effective recognition
International Nuclear Information System (INIS)
Matveev, S V
1998-01-01
A generalized graph manifold is a three-dimensional manifold obtained by gluing together elementary blocks, each of which is either a Seifert manifold or contains no essential tori or annuli. By a well-known result on torus decomposition each compact three-dimensional manifold with boundary that is either empty or consists of tori has a canonical representation as a generalized graph manifold. A short simple proof of the existence of a canonical representation is presented and a (partial) algorithm for its construction is described. A simple hyperbolicity test for blocks that are not Seifert manifolds is also presented
Principal Curves on Riemannian Manifolds
DEFF Research Database (Denmark)
Hauberg, Søren
2015-01-01
Euclidean statistics are often generalized to Riemannian manifolds by replacing straight-line interpolations with geodesic ones. While these Riemannian models are familiar-looking, they are restricted by the inflexibility of geodesics, and they rely on constructions which are optimal only...... in Euclidean domains. We consider extensions of Principal Component Analysis (PCA) to Riemannian manifolds. Classic Riemannian approaches seek a geodesic curve passing through the mean that optimize a criteria of interest. The requirements that the solution both is geodesic and must pass through the mean tend...
Blowup for flat slow manifolds
DEFF Research Database (Denmark)
Kristiansen, Kristian Uldall
2017-01-01
In this paper, we present a way of extending the blowup method, in the formulation of Krupa and Szmolyan, to flat slow manifolds that lose hyperbolicity beyond any algebraic order. Although these manifolds have infinite co-dimensions, they do appear naturally in certain settings; for example, in (a......) the regularization of piecewise smooth systems by tanh, (b) a particular aircraft landing dynamics model, and finally (c) in a model of earthquake faulting. We demonstrate the approach using a simple model system and the examples (a) and (b)....
Blowup for flat slow manifolds
Kristiansen, K. U.
2017-05-01
In this paper, we present a way of extending the blowup method, in the formulation of Krupa and Szmolyan, to flat slow manifolds that lose hyperbolicity beyond any algebraic order. Although these manifolds have infinite co-dimensions, they do appear naturally in certain settings; for example, in (a) the regularization of piecewise smooth systems by \\tanh , (b) a particular aircraft landing dynamics model, and finally (c) in a model of earthquake faulting. We demonstrate the approach using a simple model system and the examples (a) and (b).
Matrix regularization of 4-manifolds
Trzetrzelewski, M.
2012-01-01
We consider products of two 2-manifolds such as S^2 x S^2, embedded in Euclidean space and show that the corresponding 4-volume preserving diffeomorphism algebra can be approximated by a tensor product SU(N)xSU(N) i.e. functions on a manifold are approximated by the Kronecker product of two SU(N) matrices. A regularization of the 4-sphere is also performed by constructing N^2 x N^2 matrix representations of the 4-algebra (and as a byproduct of the 3-algebra which makes the regularization of S...
Stein Manifolds and Holomorphic Mappings
Forstneric, Franc
2011-01-01
The main theme of this book is the homotopy principle for holomorphic mappings from Stein manifolds to the newly introduced class of Oka manifolds. This book contains the first complete account of Oka-Grauert theory and its modern extensions, initiated by Mikhail Gromov and developed in the last decade by the author and his collaborators. Included is the first systematic presentation of the theory of holomorphic automorphisms of complex Euclidean spaces, a survey on Stein neighborhoods, connections between the geometry of Stein surfaces and Seiberg-Witten theory, and a wide variety of applicat
Manifolds admitting stable forms
Czech Academy of Sciences Publication Activity Database
Le, Hong-Van; Panák, Martin; Vanžura, Jiří
2008-01-01
Roč. 49, č. 1 (2008), s. 101-11 ISSN 0010-2628 R&D Projects: GA ČR(CZ) GP201/05/P088 Institutional research plan: CEZ:AV0Z10190503 Keywords : stable forms * automorphism groups Subject RIV: BA - General Mathematics
Collective coordinates on symplectic manifolds
International Nuclear Information System (INIS)
Razumov, A.V.; Taranov, A.Yu.
1981-01-01
For an arbitrary Lie group of canonical transformations on a symplectic manifold collective coordinates are introduced. They describe a motion of the dynamical system as a whole under the group transformations. Some properties of Lie group of canonical transformations are considered [ru
Minimal Webs in Riemannian Manifolds
DEFF Research Database (Denmark)
Markvorsen, Steen
2008-01-01
For a given combinatorial graph $G$ a {\\it geometrization} $(G, g)$ of the graph is obtained by considering each edge of the graph as a $1-$dimensional manifold with an associated metric $g$. In this paper we are concerned with {\\it minimal isometric immersions} of geometrized graphs $(G, g)$ int...
Cayley transform on Stiefel manifolds
Macías-Virgós, Enrique; Pereira-Sáez, María José; Tanré, Daniel
2018-01-01
The Cayley transform for orthogonal groups is a well known construction with applications in real and complex analysis, linear algebra and computer science. In this work, we construct Cayley transforms on Stiefel manifolds. Applications to the Lusternik-Schnirelmann category and optimization problems are presented.
An imbedding of Lorentzian manifolds
International Nuclear Information System (INIS)
Kim, Do-Hyung
2009-01-01
A new method for imbedding a Lorentzian manifold with a non-compact Cauchy surface is presented. As an application, it is shown that any two-dimensional globally hyperbolic spacetime with a non-compact Cauchy surface can be causally isomorphically imbedded into two-dimensional Minkowski spacetime.
Minimal surfaces in Riemannian manifolds
International Nuclear Information System (INIS)
Ji Min; Wang Guangyin
1990-10-01
A multiple solution to the Plateau problem in a Riemannian manifold is established. In S n , the existence of two solutions to this problem is obtained. The Morse-Tompkins-Shiffman theorem is extended to the case when the ambient space admits no minimal sphere. (author). 20 refs
Topological regularizations of the triple collision singularity in the 3-vortex problem
International Nuclear Information System (INIS)
Hiraoka, Yasuaki
2008-01-01
The triple collision singularity in the 3-vortex problem is studied in this paper. Under the necessary condition k 1 -1 +k 2 -1 +k 3 -1 =0 for vorticities to have the triple collision, the main results are summarized as follows: (i) For k 1 = k 2 , the triple collision singularity is topologically regularizable. (ii) For 0 1 − k 2 | < ε with a sufficiently small ε, the triple collision singularity is not topologically regularizable. First of all, in order to prove these statements, all singularities in the 3-vortex problem are classified. Then, we introduce a dynamical system by blowing up the triple collision singularity with an appropriate time scaling. Roughly speaking, it corresponds to pasting an invariant manifold at the triple collision singularity on the original phase space. This technique is well known as McGehee's collision manifold (1974 Inventions Math. 27 191–227) in the N-body problem of celestial mechanics. Finally, by adopting the viewpoint of Easton (1971 J. Diff. Eqns 10 92–9), topological regularizations of the triple collision singularity are studied in detail
Indian Academy of Sciences (India)
Abstract. This paper is concerned with the problem of the geometry of Norden manifolds. Some properties of Riemannian curvature tensors and curvature scalars of Kähler–Norden manifolds using the theory of Tachibana operators is presented.
Quotient of manifolds by discrete groups
International Nuclear Information System (INIS)
Ardalan, F.; Arfaei, H.
1985-09-01
Quotient of manifolds by discrete subgroups of their isometry group are considered. In particular, symmetry breaking due to the quotient structure, topological properties and harmonic analysis of the resultant manifolds are discussed and illustrated by two dimensional examples. (author)
Singularities in FLRW spacetimes
het Lam, Huibert; Prokopec, Tomislav
2017-12-01
We point out that past-incompleteness of geodesics in FLRW spacetimes does not necessarily imply that these spacetimes start from a singularity. Namely, if a test particle that follows such a trajectory has a non-vanishing velocity, its energy was super-Planckian at some time in the past if it kept following that geodesic. That indicates a breakdown of the particle's description, which is why we should not consider those trajectories for the definition of an initial singularity. When one only considers test particles that do not have this breakdown of their trajectory, it turns out that the only singular FLRW spacetimes are the ones that have a scale parameter that vanishes at some initial time.
A viewpoint on nearly conformally symmetric manifold
International Nuclear Information System (INIS)
Rahman, M.S.
1990-06-01
Some observations, with definition, on Nearly Conformally Symmetric (NCS) manifold are made. A number of theorems concerning conformal change of metric and parallel tensors on NCS manifolds are presented. It is illustrated that a manifold M = R n-1 x R + 1 , endowed with a special metric, is NCS but not of harmonic curvature. (author). 8 refs
An integrality theorem for spinc manifolds
International Nuclear Information System (INIS)
Seade, J.A.
1990-04-01
A spin c manifold M n is an oriented, Riemannian manifold with an associated hermitian live bundle det(M), together with a lifting to B(spin n c ) of the classifying map of the bundle TMxU(1). We prove here an integrality theorem for spin c manifolds. 11 refs
Natural Connections on Riemannian Product Manifolds
Gribacheva, Dobrinka
2011-01-01
A Riemannian almost product manifold with integrable almost product structure is called a Riemannian product manifold. In the present paper the natural connections on such manifolds are studied, i.e. the linear connections preserving the almost product structure and the Riemannian metric.
Numerical investigation of stress singularities in cracked bimaterial body
Czech Academy of Sciences Publication Activity Database
Náhlík, Luboš; Šestáková, Lucie; Hutař, Pavel
2008-01-01
Roč. 385-387, - (2008), s. 125-128 ISSN 1013-9826. [International Conference on Fracture and Damage Mechanics /7./. Seoul, 09.09.2008-11.09.2008] R&D Projects: GA AV ČR(CZ) KJB200410803; GA ČR GP106/06/P239; GA ČR GA106/08/1409 Institutional research plan: CEZ:AV0Z20410507 Keywords : bimaterial interface * stress singularity exponent * corner singularity * vertex singularity * general singular stress concentrator Subject RIV: JL - Materials Fatigue, Friction Mechanics
Laplacian embedded regression for scalable manifold regularization.
Chen, Lin; Tsang, Ivor W; Xu, Dong
2012-06-01
Semi-supervised learning (SSL), as a powerful tool to learn from a limited number of labeled data and a large number of unlabeled data, has been attracting increasing attention in the machine learning community. In particular, the manifold regularization framework has laid solid theoretical foundations for a large family of SSL algorithms, such as Laplacian support vector machine (LapSVM) and Laplacian regularized least squares (LapRLS). However, most of these algorithms are limited to small scale problems due to the high computational cost of the matrix inversion operation involved in the optimization problem. In this paper, we propose a novel framework called Laplacian embedded regression by introducing an intermediate decision variable into the manifold regularization framework. By using ∈-insensitive loss, we obtain the Laplacian embedded support vector regression (LapESVR) algorithm, which inherits the sparse solution from SVR. Also, we derive Laplacian embedded RLS (LapERLS) corresponding to RLS under the proposed framework. Both LapESVR and LapERLS possess a simpler form of a transformed kernel, which is the summation of the original kernel and a graph kernel that captures the manifold structure. The benefits of the transformed kernel are two-fold: (1) we can deal with the original kernel matrix and the graph Laplacian matrix in the graph kernel separately and (2) if the graph Laplacian matrix is sparse, we only need to perform the inverse operation for a sparse matrix, which is much more efficient when compared with that for a dense one. Inspired by kernel principal component analysis, we further propose to project the introduced decision variable into a subspace spanned by a few eigenvectors of the graph Laplacian matrix in order to better reflect the data manifold, as well as accelerate the calculation of the graph kernel, allowing our methods to efficiently and effectively cope with large scale SSL problems. Extensive experiments on both toy and real
Slices to sums of adjoint orbits, the Atiyah-Hitchin manifold, and Hilbert schemes of points
Directory of Open Access Journals (Sweden)
Bielawski Roger
2017-02-01
Full Text Available We show that the regular Slodowy slice to the sum of two semisimple adjoint orbits of GL(n, ℂ is isomorphic to the deformation of the D2-singularity if n = 2, the Dancer deformation of the double cover of the Atiyah-Hitchin manifold if n = 3, and to the Atiyah-Hitchin manifold itself if n = 4. For higher n, such slices to the sum of two orbits, each having only two distinct eigenvalues, are either empty or biholomorphic to open subsets of the Hilbert scheme of points on one of the above surfaces. In particular, these open subsets of Hilbert schemes of points carry complete hyperkähler metrics. In the case of the double cover of the Atiyah-Hitchin manifold this metric turns out to be the natural L2-metric on a hyperkähler submanifold of the monopole moduli space.
Ray tracing in anisotropic media with singularities
Czech Academy of Sciences Publication Activity Database
Vavryčuk, Václav
2001-01-01
Roč. 145, č. 1 (2001), s. 265-276 ISSN 0956-540X R&D Projects: GA ČR GA205/00/1350 Institutional research plan: CEZ:AV0Z3012916 Keywords : anisotropic media * ray tracing * singularities Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.366, year: 2001
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 9. Singularities in a Teacup: Good Mathematics from Bad Lenses. Rajaram Nityananda. General Article Volume 19 Issue 9 September 2014 pp 787-796. Fulltext. Click here to view fulltext PDF. Permanent link:
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 9. Singularities in a Teacup: Good ... Author Affiliations. Rajaram Nityananda1. Azim Premji University, PES Institute of Technology Campus, Pixel Park, B Block, Electronics City, Hosur Road (Beside NICE Road) Bangalore – 560100 ...
Indian Academy of Sciences (India)
IAS Admin
Standard presentations of optics concentrate on ideal systems made for imaging which bring all rays from a point ... One of the standard topics we study in school is the action of a spherical mirror. Figure 1 shows a set of ..... singularities of smooth maps, and the beauty of the mathematics needed to understand them, Arnold ...
CSIR Research Space (South Africa)
Roux, FS
2013-09-01
Full Text Available Roux Presented at the International Conference on Correlation Optics 2013 Chernivtsi, Ukraine 18-20 September 2013 CSIR National Laser Centre, Pretoria, South Africa – p. 1/24 Contents ⊲ Defining Stochastic Singular Optics (SSO) ⊲ Tools of Stochastic...
Pseudospherical surfaces with singularities
DEFF Research Database (Denmark)
Brander, David
2017-01-01
We study a generalization of constant Gauss curvature −1 surfaces in Euclidean 3-space, based on Lorentzian harmonic maps, that we call pseudospherical frontals. We analyse the singularities of these surfaces, dividing them into those of characteristic and non-characteristic type. We give methods...
Singularities in FLRW Spacetimes
Lam, Huibert het; Prokopec, Tom
2017-01-01
We point out that past-incompleteness of geodesics in FLRW spacetimes does not necessarily imply that these spacetimes start from a singularity. Namely, if a test particle that follows such a trajectory has a non-vanishing velocity, its energy was super-Planckian at some time in the past if it kept
Singularity Preserving Numerical Methods for Boundary Integral Equations
Kaneko, Hideaki (Principal Investigator)
1996-01-01
In the past twelve months (May 8, 1995 - May 8, 1996), under the cooperative agreement with Division of Multidisciplinary Optimization at NASA Langley, we have accomplished the following five projects: a note on the finite element method with singular basis functions; numerical quadrature for weakly singular integrals; superconvergence of degenerate kernel method; superconvergence of the iterated collocation method for Hammersteion equations; and singularity preserving Galerkin method for Hammerstein equations with logarithmic kernel. This final report consists of five papers describing these projects. Each project is preceeded by a brief abstract.
Non-singular string-cosmologies from exact conformal field theories
International Nuclear Information System (INIS)
Vega, H.J. de; Larsen, A.L.; Sanchez, N.
2001-01-01
Non-singular two and three dimensional string cosmologies are constructed using the exact conformal field theories corresponding to SO(2,1)/SO(1,1) and SO(2,2)/SO(2,1). All semi-classical curvature singularities are canceled in the exact theories for both of these cosets, but some new quantum curvature singularities emerge. However, considering different patches of the global manifolds, allows the construction of non-singular space-times with cosmological interpretation. In both two and three dimensions, we construct non-singular oscillating cosmologies, non-singular expanding and inflationary cosmologies including a de Sitter (exponential) stage with positive scalar curvature as well as non-singular contracting and deflationary cosmologies. Similarities between the two and three dimensional cases suggest a general picture for higher dimensional coset cosmologies: Anisotropy seems to be a generic unavoidable feature, cosmological singularities are generically avoided and it is possible to construct non-singular cosmologies where some spatial dimensions are experiencing inflation while the others experience deflation
Higgs bundles and four manifolds
International Nuclear Information System (INIS)
Park, Jae-Suk.
2002-01-01
It is known that the Seiberg-Witten invariants, derived from supersymmetric Yang-Mill theories in four dimensions, do not distinguish smooth structure of certain non-simply-connected four manifolds. We propose generalizations of Donaldson-Witten and Vafa-Witten theories on a Kaehler manifold based on Higgs bundles. We showed, in particular, that the partition function of our generalized Vafa-Witten theory can be written as the sum of contributions our generalized Donaldson-Witten invariants and generalized Seiberg-Witten invariants. The resulting generalized Seiberg-Witten invariants might have, conjecturally, information on smooth structure beyond the original Seiberg-Witten invariants for non-simply-connected case
Invariance for Single Curved Manifold
Castro, Pedro Machado Manhaes de
2012-08-01
Recently, it has been shown that, for Lambert illumination model, solely scenes composed by developable objects with a very particular albedo distribution produce an (2D) image with isolines that are (almost) invariant to light direction change. In this work, we provide and investigate a more general framework, and we show that, in general, the requirement for such in variances is quite strong, and is related to the differential geometry of the objects. More precisely, it is proved that single curved manifolds, i.e., manifolds such that at each point there is at most one principal curvature direction, produce invariant is surfaces for a certain relevant family of energy functions. In the three-dimensional case, the associated energy function corresponds to the classical Lambert illumination model with albedo. This result is also extended for finite-dimensional scenes composed by single curved objects. © 2012 IEEE.
Manifold seal structure for fuel cell stack
Collins, William P.
1988-01-01
The seal between the sides of a fuel cell stack and the gas manifolds is improved by adding a mechanical interlock between the adhesive sealing strip and the abutting surface of the manifolds. The adhesive is a material which can flow to some extent when under compression, and the mechanical interlock is formed providing small openings in the portion of the manifold which abuts the adhesive strip. When the manifolds are pressed against the adhesive strips, the latter will flow into and through the manifold openings to form buttons or ribs which mechanically interlock with the manifolds. These buttons or ribs increase the bond between the manifolds and adhesive, which previously relied solely on the adhesive nature of the adhesive.
Singular potentials in quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Aguilera-Navarro, V.C. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Koo, E. Ley [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico). Inst. de Fisica
1995-10-01
This paper is a review of some mathematical methods as recently developed and applied to deal with singular potentials in Quantum Mechanics. Regular and singular perturbative methods as well as variational treatments are considered. (author). 25 refs.
Torsions of 3-dimensional manifolds
Wurzbacher, T
2002-01-01
From the reviews: "This is an excellent exposition about abelian Reidemeister torsions for three-manifolds." ―Zentralblatt Math "This monograph contains a wealth of information many topologists will find very handy. …Many of the new points of view pioneered by Turaev are gradually becoming mainstream and are spreading beyond the pure topology world. This monograph is a timely and very useful addition to the scientific literature." ―Mathematical Reviews
Hierarchy of graph matchbox manifolds
Lukina, Olga
2011-01-01
We study a class of graph foliated spaces, or graph matchbox manifolds, initially constructed by Kenyon and Ghys. For graph foliated spaces we introduce a quantifier of dynamical complexity which we call its level. We develop the fusion construction, which allows us to associate to every two graph foliated spaces a third one which contains the former two in its closure. Although the underlying idea of the fusion is simple, it gives us a powerful tool to study graph foliated spaces. Using fusi...
Invariant Bayesian estimation on manifolds
Jermyn, Ian H.
2005-01-01
A frequent and well-founded criticism of the maximum a posteriori (MAP) and minimum mean squared error (MMSE) estimates of a continuous parameter \\gamma taking values in a differentiable manifold \\Gamma is that they are not invariant to arbitrary ``reparameterizations'' of \\Gamma. This paper clarifies the issues surrounding this problem, by pointing out the difference between coordinate invariance, which is a sine qua non for a mathematically well-defined problem, and diffeomorphism invarianc...
Effective forcing with Cantor manifolds
Kihara, Takayuki
2017-01-01
A set $A$ of integers is called total if there is an algorithm which, given an enumeration of $A$, enumerates the complement of $A$, and called cototal if there is an algorithm which, given an enumeration of the complement of $A$, enumerates $A$. Many variants of totality and cototality have been studied in computability theory. In this note, by an effective forcing construction with strongly infinite dimensional Cantor manifolds, which can be viewed as an effectivization of Zapletal's "half-...
Singularities: the Brieskorn anniversary volume
National Research Council Canada - National Science Library
Brieskorn, Egbert; Arnolʹd, V. I; Greuel, G.-M; Steenbrink, J. H. M
1998-01-01
...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Main theorem ... 3 Ideals of ideal-unimodal plane curve singularities. . . . . . . . . . . . . . . . References ... Gert-Martin Greuel and Gerhard Pfister...
String theory and cosmological singularities
Indian Academy of Sciences (India)
Well-known examples are singularities inside black holes and initial or final singularities in expanding or contracting universes. In recent times, string theory is providing new perspectives of such singularities which may lead to an understanding of these in the standard framework of time evolution in quantum mechanics.
Holographic complexity and spacetime singularities
International Nuclear Information System (INIS)
Barbón, José L.F.; Rabinovici, Eliezer
2016-01-01
We study the evolution of holographic complexity in various AdS/CFT models containing cosmological crunch singularities. We find that a notion of complexity measured by extremal bulk volumes tends to decrease as the singularity is approached in CFT time, suggesting that the corresponding quantum states have simpler entanglement structure at the singularity.
Infinitesimal Structure of Singularities
Directory of Open Access Journals (Sweden)
Michael Heller
2017-02-01
Full Text Available Some important problems of general relativity, such as the quantisation of gravity or classical singularity problems, crucially depend on geometry on very small scales. The so-called synthetic differential geometry—a categorical counterpart of the standard differential geometry—provides a tool to penetrate infinitesimally small portions of space-time. We use this tool to show that on any “infinitesimal neighbourhood” the components of the curvature tensor are themselves infinitesimal, and construct a simplified model in which the curvature singularity disappears, owing to this effect. However, one pays a price for this result. Using topoi as a generalisation of spaces requires a weakening of arithmetic (the existence of infinitesimals and of logic (to the intuitionistic logic. Is this too high a price to pay for acquiring a new method of solving unsolved problems in physics? Without trying, we shall never know the answer.
Deformations of surface singularities
Szilárd, ágnes
2013-01-01
The present publication contains a special collection of research and review articles on deformations of surface singularities, that put together serve as an introductory survey of results and methods of the theory, as well as open problems, important examples and connections to other areas of mathematics. The aim is to collect material that will help mathematicians already working or wishing to work in this area to deepen their insight and eliminate the technical barriers in this learning process. This also is supported by review articles providing some global picture and an abundance of examples. Additionally, we introduce some material which emphasizes the newly found relationship with the theory of Stein fillings and symplectic geometry. This links two main theories of mathematics: low dimensional topology and algebraic geometry. The theory of normal surface singularities is a distinguished part of analytic or algebraic geometry with several important results, its own technical machinery, and several op...
Belinski, Vladimir
2018-01-01
Written for researchers focusing on general relativity, supergravity, and cosmology, this is a self-contained exposition of the structure of the cosmological singularity in generic solutions of the Einstein equations, and an up-to-date mathematical derivation of the theory underlying the Belinski–Khalatnikov–Lifshitz (BKL) conjecture on this field. Part I provides a comprehensive review of the theory underlying the BKL conjecture. The generic asymptotic behavior near the cosmological singularity of the gravitational field, and fields describing other kinds of matter, is explained in detail. Part II focuses on the billiard reformulation of the BKL behavior. Taking a general approach, this section does not assume any simplifying symmetry conditions and applies to theories involving a range of matter fields and space-time dimensions, including supergravities. Overall, this book will equip theoretical and mathematical physicists with the theoretical fundamentals of the Big Bang, Big Crunch, Black Hole singula...
DEFF Research Database (Denmark)
Somchaipeng, Kerawit; Sporring, Jon; Johansen, Peter
2007-01-01
We propose MultiScale Singularity Trees (MSSTs) as a structure to represent images, and we propose an algorithm for image comparison based on comparing MSSTs. The algorithm is tested on 3 public image databases and compared to 2 state-of-theart methods. We conclude that the computational complexity...... of our algorithm only allows for the comparison of small trees, and that the results of our method are comparable with state-of-the-art using much fewer parameters for image representation....
RELATIVE CAMERA POSE ESTIMATION METHOD USING OPTIMIZATION ON THE MANIFOLD
Directory of Open Access Journals (Sweden)
C. Cheng
2017-05-01
Full Text Available To solve the problem of relative camera pose estimation, a method using optimization with respect to the manifold is proposed. Firstly from maximum-a-posteriori (MAP model to nonlinear least squares (NLS model, the general state estimation model using optimization is derived. Then the camera pose estimation model is applied to the general state estimation model, while the parameterization of rigid body transformation is represented by Lie group/algebra. The jacobian of point-pose model with respect to Lie group/algebra is derived in detail and thus the optimization model of rigid body transformation is established. Experimental results show that compared with the original algorithms, the approaches with optimization can obtain higher accuracy both in rotation and translation, while avoiding the singularity of Euler angle parameterization of rotation. Thus the proposed method can estimate relative camera pose with high accuracy and robustness.
Differential geometry curves, surfaces, manifolds
Kühnel, Wolfgang
2015-01-01
This carefully written book is an introduction to the beautiful ideas and results of differential geometry. The first half covers the geometry of curves and surfaces, which provide much of the motivation and intuition for the general theory. The second part studies the geometry of general manifolds, with particular emphasis on connections and curvature. The text is illustrated with many figures and examples. The prerequisites are undergraduate analysis and linear algebra. This new edition provides many advancements, including more figures and exercises, and-as a new feature-a good number of so
Similarity Learning of Manifold Data.
Chen, Si-Bao; Ding, Chris H Q; Luo, Bin
2015-09-01
Without constructing adjacency graph for neighborhood, we propose a method to learn similarity among sample points of manifold in Laplacian embedding (LE) based on adding constraints of linear reconstruction and least absolute shrinkage and selection operator type minimization. Two algorithms and corresponding analyses are presented to learn similarity for mix-signed and nonnegative data respectively. The similarity learning method is further extended to kernel spaces. The experiments on both synthetic and real world benchmark data sets demonstrate that the proposed LE with new similarity has better visualization and achieves higher accuracy in classification.
Cobordism independence of Grassmann manifolds
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
ν(m) divides m. Given a positive integer d, let G(d) denote the set of bordism classes of all non-bounding. Grassmannian manifolds Gk(Fn+k) having real dimension d such that k < n. The restric- tion k
Boukraa, S.; Hassani, S.; Maillard, J.-M.
2012-12-01
Focusing on examples associated with holonomic functions, we try to bring new ideas on how to look at phase transitions, for which the critical manifolds are not points but curves depending on a spectral variable, or even fill higher dimensional submanifolds. Lattice statistical mechanics often provides a natural (holonomic) framework to perform singularity analysis with several complex variables that would, in the most general mathematical framework, be too complex, or simply could not be defined. In a learn-by-example approach, considering several Picard-Fuchs systems of two-variables ‘above’ Calabi-Yau ODEs, associated with double hypergeometric series, we show that D-finite (holonomic) functions are actually a good framework for finding properly the singular manifolds. The singular manifolds are found to be genus-zero curves. We then analyze the singular algebraic varieties of quite important holonomic functions of lattice statistical mechanics, the n-fold integrals χ(n), corresponding to the n-particle decomposition of the magnetic susceptibility of the anisotropic square Ising model. In this anisotropic case, we revisit a set of so-called Nickelian singularities that turns out to be a two-parameter family of elliptic curves. We then find the first set of non-Nickelian singularities for χ(3) and χ(4), that also turns out to be rational or elliptic curves. We underline the fact that these singular curves depend on the anisotropy of the Ising model, or, equivalently, that they depend on the spectral parameter of the model. This has important consequences on the physical nature of the anisotropic χ(n)s which appear to be highly composite objects. We address, from a birational viewpoint, the emergence of families of elliptic curves, and that of Calabi-Yau manifolds on such problems. We also address the question of singularities of non-holonomic functions with a discussion on the accumulation of these singular curves for the non-holonomic anisotropic full
International Nuclear Information System (INIS)
Boukraa, S; Hassani, S; Maillard, J-M
2012-01-01
Focusing on examples associated with holonomic functions, we try to bring new ideas on how to look at phase transitions, for which the critical manifolds are not points but curves depending on a spectral variable, or even fill higher dimensional submanifolds. Lattice statistical mechanics often provides a natural (holonomic) framework to perform singularity analysis with several complex variables that would, in the most general mathematical framework, be too complex, or simply could not be defined. In a learn-by-example approach, considering several Picard–Fuchs systems of two-variables ‘above’ Calabi–Yau ODEs, associated with double hypergeometric series, we show that D-finite (holonomic) functions are actually a good framework for finding properly the singular manifolds. The singular manifolds are found to be genus-zero curves. We then analyze the singular algebraic varieties of quite important holonomic functions of lattice statistical mechanics, the n-fold integrals χ (n) , corresponding to the n-particle decomposition of the magnetic susceptibility of the anisotropic square Ising model. In this anisotropic case, we revisit a set of so-called Nickelian singularities that turns out to be a two-parameter family of elliptic curves. We then find the first set of non-Nickelian singularities for χ (3) and χ (4) , that also turns out to be rational or elliptic curves. We underline the fact that these singular curves depend on the anisotropy of the Ising model, or, equivalently, that they depend on the spectral parameter of the model. This has important consequences on the physical nature of the anisotropic χ (n) s which appear to be highly composite objects. We address, from a birational viewpoint, the emergence of families of elliptic curves, and that of Calabi–Yau manifolds on such problems. We also address the question of singularities of non-holonomic functions with a discussion on the accumulation of these singular curves for the non
Minimal genera of open 4-manifolds
Gompf, Robert E.
2013-01-01
We study exotic smoothings of open 4-manifolds using the minimal genus function and its analog for end homology. While traditional techniques in open 4-manifold smoothing theory give no control of minimal genera, we make progress by using the adjunction inequality for Stein surfaces. Smoothings can be constructed with much more control of these genus functions than the compact setting seems to allow. As an application, we expand the range of 4-manifolds known to have exotic smoothings (up to ...
Holomorphic bundles over elliptic manifolds
International Nuclear Information System (INIS)
Morgan, J.W.
2000-01-01
In this lecture we shall examine holomorphic bundles over compact elliptically fibered manifolds. We shall examine constructions of such bundles as well as (duality) relations between such bundles and other geometric objects, namely K3-surfaces and del Pezzo surfaces. We shall be dealing throughout with holomorphic principal bundles with structure group GC where G is a compact, simple (usually simply connected) Lie group and GC is the associated complex simple algebraic group. Of course, in the special case G = SU(n) and hence GC = SLn(C), we are considering holomorphic vector bundles with trivial determinant. In the other cases of classical groups, G SO(n) or G = Sympl(2n) we are considering holomorphic vector bundles with trivial determinant equipped with a non-degenerate symmetric, or skew symmetric pairing. In addition to these classical cases there are the finite number of exceptional groups. Amazingly enough, motivated by questions in physics, much interest centres around the group E8 and its subgroups. For these applications it does not suffice to consider only the classical groups. Thus, while often first doing the case of SU(n) or more generally of the classical groups, we shall extend our discussions to the general semi-simple group. Also, we shall spend a good deal of time considering elliptically fibered manifolds of the simplest type, namely, elliptic curves
Cosmological models without singularities
International Nuclear Information System (INIS)
Petry, W.
1981-01-01
A previously studied theory of gravitation in flat space-time is applied to homogeneous and isotropic cosmological models. There exist two different classes of models without singularities: (i) ever-expanding models, (ii) oscillating models. The first class contains models with hot big bang. For these models there exist at the beginning of the universe-in contrast to Einstein's theory-very high but finite densities of matter and radiation with a big bang of very short duration. After short time these models pass into the homogeneous and isotropic models of Einstein's theory with spatial curvature equal to zero and cosmological constant ALPHA >= O. (author)
Convergence of spectra of graph-like thin manifolds
Czech Academy of Sciences Publication Activity Database
Exner, Pavel; Post, O.
2005-01-01
Roč. 54, č. 1 (2005), s. 77-115 ISSN 0393-0440 R&D Projects: GA AV ČR IAA1048101 Institutional research plan: CEZ:AV0Z1048901 Keywords : branched quantum wave guides * convergence of eigenvalues * singular limit * Laplace-Beltrami operator Subject RIV: BE - Theoretical Physics Impact factor: 0.607, year: 2005
Plane waves with weak singularities
International Nuclear Information System (INIS)
David, Justin R.
2003-03-01
We study a class of time dependent solutions of the vacuum Einstein equations which are plane waves with weak null singularities. This singularity is weak in the sense that though the tidal forces diverge at the singularity, the rate of divergence is such that the distortion suffered by a freely falling observer remains finite. Among such weak singular plane waves there is a sub-class which does not exhibit large back reaction in the presence of test scalar probes. String propagation in these backgrounds is smooth and there is a natural way to continue the metric beyond the singularity. This continued metric admits string propagation without the string becoming infinitely excited. We construct a one parameter family of smooth metrics which are at a finite distance in the space of metrics from the extended metric and a well defined operator in the string sigma model which resolves the singularity. (author)
Covariant Schrödinger semigroups on Riemannian manifolds
Güneysu, Batu
2017-01-01
This monograph discusses covariant Schrödinger operators and their heat semigroups on noncompact Riemannian manifolds and aims to fill a gap in the literature, given the fact that the existing literature on Schrödinger operators has mainly focused on scalar Schrödinger operators on Euclidean spaces so far. In particular, the book studies operators that act on sections of vector bundles. In addition, these operators are allowed to have unbounded potential terms, possibly with strong local singularities. The results presented here provide the first systematic study of such operators that is sufficiently general to simultaneously treat the natural operators from quantum mechanics, such as magnetic Schrödinger operators with singular electric potentials, and those from geometry, such as squares of Dirac operators that have smooth but endomorphism-valued and possibly unbounded potentials. The book is largely self-contained, making it accessible for graduate and postgraduate students alike. Since it also inc...
Target manifold formation using a quadratic SDF
Hester, Charles F.; Risko, Kelly K. D.
2013-05-01
Synthetic Discriminant Function (SDF) formulation of correlation filters provides constraints for forming target subspaces for a target set. In this paper we extend the SDF formulation to include quadratic constraints and use this solution to form nonlinear manifolds in the target space. The theory for forming these manifolds will be developed and demonstrated with data.
Numerical continuation of normally hyperbolic invariant manifolds
Broer, H. W.; Hagen, A.; Vegter, G.
2007-06-01
This paper deals with the numerical continuation of invariant manifolds regardless of the restricted dynamics. Common examples of such manifolds include limit sets, codimension 1 manifolds separating basins of attraction (separatrices), stable/unstable/centre manifolds, nested hierarchies of attracting manifolds in dissipative systems and manifolds appearing in bifurcations. The approach is based on the general principle of normal hyperbolicity, where the graph transform leads to the numerical algorithms. This gives a highly multiple purpose method. The graph transform and linear graph transform compute the perturbed manifold with its hyperbolic splitting. To globally discretize manifolds, a discrete tubular neighbourhood is used, induced by a transverse bundle composed of discrete stable and unstable bundles. This approach allows the development of the discrete graph transform/linear graph transform analogous to the usual smooth case. Convergence results are given. The discrete vector bundle construction and associated local k-plane interpolation may be of independent interest. A practical numerical implementation for solving the global equations underlying the graph transform is proposed. Relevant numerical techniques are discussed and computational tests included. An additional application is the computation of the 'slow-transient' surface of an enzyme reaction.
Strictly convex functions on complete Finsler manifolds
Indian Academy of Sciences (India)
minimum set of a super Busemann function contains a soul of M. Clearly, a complete simply connected Riemannian manifold H of non-positive sec- tional curvature, called Hadamard manifold, has the property that the distance function to an arbitrary fixed point is strongly convex exhaustion. Also, the exponential map expp :.
Strictly convex functions on complete Finsler manifolds
Indian Academy of Sciences (India)
convex functions on the metric structures of complete Finsler manifolds. More precisely we discuss ... map expp at some point p ∈ M (and hence at every point on M) is defined on the whole tangent space Mp to M at ... The influence of the existence of convex functions on the metric and topology of under- lying manifolds has ...
Integrability conditions on Engel-type manifolds
Calin, Ovidiu; Chang, Der-Chen; Hu, Jishan
2015-09-01
We introduce the concept of Engel manifold, as a manifold that resembles locally the Engel group, and find the integrability conditions of the associated sub-elliptic system , . These are given by , . Then an explicit construction of the solution involving an integral representation is provided, which corresponds to a Poincaré-type lemma for the Engel's distribution.
Holomorphic curves in exploded manifolds: Kuranishi structure
Parker, Brett
2013-01-01
This paper constructs a Kuranishi structure for the moduli stack of holomorphic curves in exploded manifolds. To avoid some technicalities of abstract Kuranishi structures, we embed our Kuranishi structure inside a moduli stack of curves. The construction also works for the moduli stack of holomorphic curves in any compact symplectic manifold.
Harmonic manifolds with minimal horospheres are flat
Indian Academy of Sciences (India)
Abstract. In this note we reprove the known theorem: Harmonic manifolds with minimal horospheres are flat. It turns out that our proof is simpler and more direct than the original one. We also reprove the theorem: Ricci flat harmonic manifolds are flat, which is generally affirmed by appealing to Cheeger–Gromov splitting ...
Harmonic Manifolds with Minimal Horospheres are Flat
Indian Academy of Sciences (India)
In this note we reprove the known theorem: Harmonic manifolds with minimal horospheres are flat. It turns out that our proof is simpler and more direct than the original one. We also reprove the theorem: Ricci flat harmonic manifolds are flat, which is generally affirmed by appealing to Cheeger–Gromov splitting theorem.
Some comparison theorems for Kahler manifolds
Tam, Luen-Fai; Yu, Chengjie
2010-01-01
In this work, we will verify some comparison results on Kahler manifolds. They are complex Hessian comparison for the distance function from a closed complex submanifold of a Kahler manifold with holomorphic bisectional curvature bounded below by a constant, eigenvalue comparison and volume comparison in terms of scalar curvature. This work is motivated by comparison results of Li and Wang .
On the manifold-mapping optimization technique
D. Echeverria (David); P.W. Hemker (Piet)
2006-01-01
textabstractIn this paper, we study in some detail the manifold-mapping optimization technique introduced in an earlier paper. Manifold mapping aims at accelerating optimal design procedures that otherwise require many evaluations of time-expensive cost functions. We give a proof of convergence for
Harmonic manifolds with minimal horospheres are flat
Indian Academy of Sciences (India)
spaces and locally rank one symmetric spaces. ... any simply connected harmonic manifold is either flat or a rank one symmetric space. .... constant functions on manifolds. The derivatives ∇. (k) σp···σp ωp can be expressed in terms of the curvature tensor and its covariant derivatives. For example, we have for v ∈ SpM,.
Classical BV theories on manifolds with boundary
Cattaneo, A.S.; Mnev, P.; Reshetikhin, N.
2014-01-01
In this paper we extend the classical BV framework to gauge theories on spacetime manifolds with boundary. In particular, we connect the BV construction in the bulk with the BFV construction on the boundary and we develop its extension to strata of higher codimension in the case of manifolds with
Method of rotations for bilinear singular integrals
Czech Academy of Sciences Publication Activity Database
Diestel, G.; Grafakos, L.; Honzík, Petr; Zengyan, S.; Terwilleger, E.
2011-01-01
Roč. 3, - (2011), s. 99-107 ISSN 1938-9787. [Analysis, Mathematical Physics and Applications. Ixtapa, 01.03.2010-05.03.2010] R&D Projects: GA AV ČR KJB100190901 Institutional research plan: CEZ:AV0Z10190503 Keywords : bilinear singular integrals * bilinear Hilbert transform * Fourier multipliers Subject RIV: BA - General Mathematics http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.cma/1298670006&page=record
Differential geometry of quasi-Sasakian manifolds
International Nuclear Information System (INIS)
Kirichenko, V F; Rustanov, A R
2002-01-01
The full system of structure equations of a quasi-Sasakian structure is obtained. The structure of the main tensors on a quasi-Sasakian manifold (the Riemann-Christoffel tensor, the Ricci tensor, and other tensors) is studied on this basis. Interesting characterizations of quasi-Sasakian Einstein manifolds are obtained. Additional symmetry properties of the Riemann-Christoffel tensor are discovered and used for distinguishing a new class of CR 1 quasi-Sasakian manifolds. An exhaustive description of the local structure of manifolds in this class is given. A complete classification (up to the B-transformation of the metric) is obtained for manifolds in this class having additional properties of the isotropy kind
Static traversable wormholes in Lyra manifold
Jahromi, A. Sayahian; Moradpour, H.
At first, considering the Einstein framework, we introduce some new static traversable wormholes and study the effects of a dark energy-like source on them. Thereinafter, a brief review on Einstein field equations in Lyra manifold is presented, and we address some static traversable wormholes in the Lyra manifold which satisfy the energy conditions. It is also shown that solutions introduced in the Einstein framework may also meet the energy conditions in the Lyra manifold. Finally, we focus on vacuum Lyra manifold and find some traversable asymptotically flat wormholes. In summary, our study shows that it is theoretically possible to find a Lyra displacement vector field in a manner in which traversable wormholes satisfy the energy conditions in a Lyra manifold.
Harmonic space and quaternionic manifolds
International Nuclear Information System (INIS)
Galperin, A.; Ogievetsky, O.; Ivanov, E.
1992-10-01
A principle of harmonic analyticity underlying the quaternionic (quaternion-Kaehler) geometry is found, and the differential constraints which define this geometry are solved. To this end the original 4n-dimensional quaternionic manifold is extended to a biharmonic space. The latter includes additional harmonic coordinates associated with both the tangent local Sp(1) group and an extra rigid SU(2) group rotating the complex structures. An one-to-one correspondence is established between the quaternionic spaces and off-shell N=2 supersymmetric sigma-models coupled to N=2 supergravity. Coordinates of the analytic subspace are identified with superfields describing N=2 matter hypermultiplets and a compensating hypermultiplet of N=2 supergravity. As an illustration the potentials for the symmetric quaternionic spaces are presented. (K.A.) 22 refs
Moving Manifolds in Electromagnetic Fields
Directory of Open Access Journals (Sweden)
David V. Svintradze
2017-08-01
Full Text Available We propose dynamic non-linear equations for moving surfaces in an electromagnetic field. The field is induced by a material body with a boundary of the surface. Correspondingly the potential energy, set by the field at the boundary can be written as an addition of four-potential times four-current to a contraction of the electromagnetic tensor. Proper application of the minimal action principle to the system Lagrangian yields dynamic non-linear equations for moving three dimensional manifolds in electromagnetic fields. The equations in different conditions simplify to Maxwell equations for massless three surfaces, to Euler equations for a dynamic fluid, to magneto-hydrodynamic equations and to the Poisson-Boltzmann equation.
Function theory on symplectic manifolds
Polterovich, Leonid
2014-01-01
This is a book on symplectic topology, a rapidly developing field of mathematics which originated as a geometric tool for problems of classical mechanics. Since the 1980s, powerful methods such as Gromov's pseudo-holomorphic curves and Morse-Floer theory on loop spaces gave rise to the discovery of unexpected symplectic phenomena. The present book focuses on function spaces associated with a symplectic manifold. A number of recent advances show that these spaces exhibit intriguing properties and structures, giving rise to an alternative intuition and new tools in symplectic topology. The book provides an essentially self-contained introduction into these developments along with applications to symplectic topology, algebra and geometry of symplectomorphism groups, Hamiltonian dynamics and quantum mechanics. It will appeal to researchers and students from the graduate level onwards. I like the spirit of this book. It formulates concepts clearly and explains the relationship between them. The subject matter is i...
Residues and duality for singularity categories of isolated Gorenstein singularities
Murfet, Daniel
2009-01-01
We study Serre duality in the singularity category of an isolated Gorenstein singularity and find an explicit formula for the duality pairing in terms of generalised fractions and residues. For hypersurfaces we recover the residue formula of the string theorists Kapustin and Li. These results are obtained from an explicit construction of complete injective resolutions of maximal Cohen-Macaulay modules.
King, Nathan D.; Ruuth, Steven J.
2017-05-01
Maps from a source manifold M to a target manifold N appear in liquid crystals, color image enhancement, texture mapping, brain mapping, and many other areas. A numerical framework to solve variational problems and partial differential equations (PDEs) that map between manifolds is introduced within this paper. Our approach, the closest point method for manifold mapping, reduces the problem of solving a constrained PDE between manifolds M and N to the simpler problems of solving a PDE on M and projecting to the closest points on N. In our approach, an embedding PDE is formulated in the embedding space using closest point representations of M and N. This enables the use of standard Cartesian numerics for general manifolds that are open or closed, with or without orientation, and of any codimension. An algorithm is presented for the important example of harmonic maps and generalized to a broader class of PDEs, which includes p-harmonic maps. Improved efficiency and robustness are observed in convergence studies relative to the level set embedding methods. Harmonic and p-harmonic maps are computed for a variety of numerical examples. In these examples, we denoise texture maps, diffuse random maps between general manifolds, and enhance color images.
Gravitational collapse and naked singularities
Indian Academy of Sciences (India)
Recent developments have revealed that there are examples of naked singularity formation in the collapse of physically reasonable matter fields, although the stability of these examples is still uncertain. We propose the concept of `effective naked singularities', which will be quite helpful because general relativity has ...
String theory and cosmological singularities
Indian Academy of Sciences (India)
recent times, string theory is providing new perspectives of such singularities which may lead to an understanding of these in the standard framework of time evolution in quantum mechanics. In this article, we describe some of these approaches. Keywords. String theory; cosmological singularities. PACS Nos 11.25.
Heterotic instanton superpotentials from complete intersection Calabi-Yau manifolds
Buchbinder, Evgeny; Lukas, Andre; Ovrut, Burt; Ruehle, Fabian
2017-10-01
We study Pfaffians that appear in non-perturbative superpotential terms arising from worldsheet instantons in heterotic theories. A result by Beasley and Witten shows that these instanton contributions cancel among curves within a given homology class for Calabi-Yau manifolds that can be described as hypersurfaces or complete intersections in projective or toric ambient spaces. We provide a prescription that identifies all ℙ1 curves in certain homology classes of complete intersection Calabi-Yau manifolds in products of projective spaces (CICYs) and cross-check our results by a comparison with the genus zero Gromov-Witten invariants. We then use this construction to study instanton superpotentials on those manifolds and their quotients. We identify a non-toric quotient of a non-favorable CICY with a single genus zero curve in a certain homology class, so that a cancellation à la Beasley-Witten is not possible. In another example, we study a non-toric quotient of a favorable CICY and check that the superpotential still vanishes. From this and related examples, we conjecture that the Beasley-Witten cancellation result can be extended to toric and non-toric quotients of CICYs, but can be avoided if the CICY is non-favorable.
Discriminative sparse coding on multi-manifolds
Wang, J.J.-Y.
2013-09-26
Sparse coding has been popularly used as an effective data representation method in various applications, such as computer vision, medical imaging and bioinformatics. However, the conventional sparse coding algorithms and their manifold-regularized variants (graph sparse coding and Laplacian sparse coding), learn codebooks and codes in an unsupervised manner and neglect class information that is available in the training set. To address this problem, we propose a novel discriminative sparse coding method based on multi-manifolds, that learns discriminative class-conditioned codebooks and sparse codes from both data feature spaces and class labels. First, the entire training set is partitioned into multiple manifolds according to the class labels. Then, we formulate the sparse coding as a manifold-manifold matching problem and learn class-conditioned codebooks and codes to maximize the manifold margins of different classes. Lastly, we present a data sample-manifold matching-based strategy to classify the unlabeled data samples. Experimental results on somatic mutations identification and breast tumor classification based on ultrasonic images demonstrate the efficacy of the proposed data representation and classification approach. 2013 The Authors. All rights reserved.
Manifold: a Custom Analytics Platform to Visualize Research Impact
Directory of Open Access Journals (Sweden)
Steven Braun
2015-10-01
Full Text Available The use of research impact metrics and analytics has become an integral component to many aspects of institutional assessment. Many platforms currently exist to provide such analytics, both proprietary and open source; however, the functionality of these systems may not always overlap to serve uniquely specific needs. In this paper, I describe a novel web-based platform, named Manifold, that I built to serve custom research impact assessment needs in the University of Minnesota Medical School. Built on a standard LAMP architecture, Manifold automatically pulls publication data for faculty from Scopus through APIs, calculates impact metrics through automated analytics, and dynamically generates report-like profiles that visualize those metrics. Work on this project has resulted in many lessons learned about challenges to sustainability and scalability in developing a system of such magnitude.
Holomorphic Yukawa couplings for complete intersection Calabi-Yau manifolds
Energy Technology Data Exchange (ETDEWEB)
Blesneag, Stefan [Rudolf Peierls Centre for Theoretical Physics, Oxford University,1 Keble Road, Oxford, OX1 3NP (United Kingdom); Buchbinder, Evgeny I. [The University of Western Australia,35 Stirling Highway, Crawley WA 6009 (Australia); Lukas, Andre [Rudolf Peierls Centre for Theoretical Physics, Oxford University,1 Keble Road, Oxford, OX1 3NP (United Kingdom)
2017-01-27
We develop methods to compute holomorphic Yukawa couplings for heterotic compactifications on complete intersection Calabi-Yau manifolds, generalising results of an earlier paper for Calabi-Yau hypersurfaces. Our methods are based on constructing the required bundle-valued forms explicitly and evaluating the relevant integrals over the projective ambient space. We also show how our approach relates to an earlier, algebraic one to calculate the holomorphic Yukawa couplings. A vanishing theorem, which we prove, implies that certain Yukawa couplings allowed by low-energy symmetries are zero due to topological reasons. To illustrate our methods, we calculate Yukawa couplings for SU(5)-based standard models on a co-dimension two complete intersection manifold.
Lattice Dirac fermions on a simplicial Riemannian manifold
Brower, Richard C.; Weinberg, Evan S.; Fleming, George T.; Gasbarro, Andrew D.; Raben, Timothy G.; Tan, Chung-I.
2017-06-01
The lattice Dirac equation is formulated on a simplicial complex which approximates a smooth Riemann manifold by introducing a lattice vierbein on each site and a lattice spin connection on each link. Care is taken so the construction applies to any smooth D-dimensional Riemannian manifold that permits a spin connection. It is tested numerically in 2D for the projective sphere S2 in the limit of an increasingly refined sequence of triangles. The eigenspectrum and eigenvectors are shown to converge rapidly to the exact result in the continuum limit. In addition comparison is made with the continuum Ising conformal field theory on S2. Convergence is tested for the two point, ⟨ɛ (x1)ɛ (x2)⟩, and the four point, ⟨σ (x1)ɛ (x2)ɛ (x3)σ (x4)⟩, correlators for the energy, ɛ (x )=i ψ ¯(x )ψ (x ), and twist operators, σ (x ), respectively.
Laplacian manifold regularization method for fluorescence molecular tomography
He, Xuelei; Wang, Xiaodong; Yi, Huangjian; Chen, Yanrong; Zhang, Xu; Yu, Jingjing; He, Xiaowei
2017-04-01
Sparse regularization methods have been widely used in fluorescence molecular tomography (FMT) for stable three-dimensional reconstruction. Generally, ℓ1-regularization-based methods allow for utilizing the sparsity nature of the target distribution. However, in addition to sparsity, the spatial structure information should be exploited as well. A joint ℓ1 and Laplacian manifold regularization model is proposed to improve the reconstruction performance, and two algorithms (with and without Barzilai-Borwein strategy) are presented to solve the regularization model. Numerical studies and in vivo experiment demonstrate that the proposed Gradient projection-resolved Laplacian manifold regularization method for the joint model performed better than the comparative algorithm for ℓ1 minimization method in both spatial aggregation and location accuracy.
International Nuclear Information System (INIS)
Chiang, Yuan-Jen.
1989-01-01
Harmonic maps between manifolds are described as the critical maps of their associated energy functionals. By using Sampson's method [Sam1], the author constructs a Sobolev's chain on a compact V-manifold and obtain Rellich's Theorem (Theorem 3.1), Sobolev's Theorem (Theorem 3.2), the regularity theorem (Theorem 3.3), the property of the eigenspaces for the Laplacian (Theorem 3.5) and the solvability of Laplacian (Theorem 3.6). Then, with these results, he constructs the Green's functions for the Laplacian on a compact V-manifold M in Proposition 4.1; and obtain an orthonormal basis for L 2 (M) formed by the eigenfunctions of the Laplacian corresponding to the eigenvalues in Proposition 4.2. He also estimates the eigenvalues and eigenfunctions of the Laplacian in Theorem 4.3, which is used to construct the heat kernel on a compact V-manifold in Proposition 5.1. Afterwards, he compares the G-invariant heat kernel functions with the G-invariant fundamental solutions of heat equations in the finite V-charts of a compact V-manifold in Theorem 6.1, and then study two integral operators associated to the heat kernel on a compact V-manifold in section 7. With all the preceding results established, in Theorem 8.3 he uses successive approximations to prove the existence of the solutions of parabolic equations on V-manifolds. Finally, he uses Theorem 8.3 to show the existence of harmonic maps from compact V-manifolds into compact Riemannian manifolds in Theorem 9.1 which extends Eells-Sampson's results [E-S
Critical manifold of the Potts model: Exact results and homogeneity approximation
Wu, F. Y.; Guo, Wenan
2012-08-01
The q-state Potts model has stood at the frontier of research in statistical mechanics for many years. In the absence of a closed-form solution, much of the past effort has focused on locating its critical manifold, trajectory in the parameter {q,eJ} space where J is the reduced interaction, along which the free energy is singular. However, except in isolated cases, antiferromagnetic (AF) models with J0. We also locate its critical frontier for JLondon Ser. A 388, 43 (1982)]. For the honeycomb lattice we show that the known critical frontier holds for all J, and determine its critical qc=(1)/(2)(3+5)=2.61803 beyond which there is no transition. For the triangular lattice we confirm the known critical frontier to hold only for J>0. More generally we consider the centered-triangle (CT) and Union-Jack (UJ) lattices consisting of mixed J and K interactions, and deduce critical manifolds under homogeneity hypotheses. For K=0 the CT lattice is the diced lattice, and we determine its critical manifold for all J and find qc=3.32472. For K=0 the UJ lattice is the square lattice and from this we deduce both the J>0 and J<0 critical manifolds and qc=3. Our theoretical predictions are compared with recent numerical results.
Space time manifolds and contact structures
Directory of Open Access Journals (Sweden)
K. L. Duggal
1990-01-01
Full Text Available A new class of contact manifolds (carring a global non-vanishing timelike vector field is introduced to establish a relation between spacetime manifolds and contact structures. We show that odd dimensional strongly causal (in particular, globally hyperbolic spacetimes can carry a regular contact structure. As examples, we present a causal spacetime with a non regular contact structure and a physical model [Gödel Universe] of Homogeneous contact manifold. Finally, we construct a model of 4-dimensional spacetime of general relativity as a contact CR-submanifold.
Loop quantum cosmology and singularities.
Struyve, Ward
2017-08-15
Loop quantum gravity is believed to eliminate singularities such as the big bang and big crunch singularity. This belief is based on studies of so-called loop quantum cosmology which concerns symmetry-reduced models of quantum gravity. In this paper, the problem of singularities is analysed in the context of the Bohmian formulation of loop quantum cosmology. In this formulation there is an actual metric in addition to the wave function, which evolves stochastically (rather than deterministically as the case of the particle evolution in non-relativistic Bohmian mechanics). Thus a singularity occurs whenever this actual metric is singular. It is shown that in the loop quantum cosmology for a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker space-time with arbitrary constant spatial curvature and cosmological constant, coupled to a massless homogeneous scalar field, a big bang or big crunch singularity is never obtained. This should be contrasted with the fact that in the Bohmian formulation of the Wheeler-DeWitt theory singularities may exist.
Reduction of locally conformal symplectic manifolds with examples of non-Kähler manifolds
Noda, Tomonori
2004-01-01
Let $(M, \\Omega)$ be a locally conformal symplectic manifold. $\\Omega$ is a non-degenerate 2-form on $M$ such that there is a closed 1-form $\\omega$, called the Lee form, satisfing $ d\\Omega=\\omega\\wedge\\Omega$. In this paper we consider Marsden-Weinstein reduction theorem which induces Jacobi-Liouville theorem as a special case. For locally conformal Kähler manifolds, this reduction theorem gives a construction of non-Kähler manifolds in general dimension.
Final design of ITER thermal shield manifold
Energy Technology Data Exchange (ETDEWEB)
Kim, Kyung-Kyu [Mecha T& S, Jinju-si 52811 (Korea, Republic of); Noh, Chang Hyun, E-mail: chnoh@nfri.re.kr [National Fusion Research Institute, Daejeon 34133 (Korea, Republic of); Kim, Yun-Kyu; Park, Sungwoo [Mecha T& S, Jinju-si 52811 (Korea, Republic of); Nam, Kwanwoo [National Fusion Research Institute, Daejeon 34133 (Korea, Republic of); Chung, Wooho [Mecha T& S, Jinju-si 52811 (Korea, Republic of); Kang, Dongkwon; Kang, Kyung-O. [National Fusion Research Institute, Daejeon 34133 (Korea, Republic of); Park, Sungmun [SFA Engineering Corporation, Hwaseong-si 10060 (Korea, Republic of); Bae, Jing Do [Korea Marine Equipment Research Institute, Busan 49111 (Korea, Republic of)
2016-11-01
Highlights: • Engineering design of thermal shield manifold is finalized. • Pipe routing, support design and flow balance are verified by analysis. • Mock-ups are fabricated to verify the design. - Abstract: The ITER thermal shield is actively cooled by 80 K pressurized helium gas. The helium coolant flows from the cold valve box to the cooling tubes on the TS panels via manifold piping. This paper describes the final design of thermal shield manifold. Pipe design to accommodate the thermal contraction considering interface with adjacent components and detailed design of support structure are presented. R&D for the pipe branch connection is carried out to find a feasible manufacturing method. Global structural behavior and structural integrity of the manifold including pipe supports are investigated by a finite element analysis based on ASME B31.3 code. Flow analyses are performed to check the flow distribution.
Branched standard spines of 3-manifolds
Benedetti, Riccardo
1997-01-01
This book provides a unified combinatorial realization of the categroies of (closed, oriented) 3-manifolds, combed 3-manifolds, framed 3-manifolds and spin 3-manifolds. In all four cases the objects of the realization are finite enhanced graphs, and only finitely many local moves have to be taken into account. These realizations are based on the notion of branched standard spine, introduced in the book as a combination of the notion of branched surface with that of standard spine. The book is intended for readers interested in low-dimensional topology, and some familiarity with the basics is assumed. A list of questions, some of which concerning relations with the theory of quantum invariants, is enclosed.
Stable harmonic maps from complete manifolds
International Nuclear Information System (INIS)
Xin, Y.L.
1986-01-01
By choosing distinguished cross-sections in the second variational formula for harmonic maps from manifolds with not too fast volume growth into certain submanifolds in the Euclidean space some Liouville type theorems have been proved in this article. (author)
Polynomial chaos representation of databases on manifolds
Energy Technology Data Exchange (ETDEWEB)
Soize, C., E-mail: christian.soize@univ-paris-est.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi-Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-La-Vallée, Cedex 2 (France); Ghanem, R., E-mail: ghanem@usc.edu [University of Southern California, 210 KAP Hall, Los Angeles, CA 90089 (United States)
2017-04-15
Characterizing the polynomial chaos expansion (PCE) of a vector-valued random variable with probability distribution concentrated on a manifold is a relevant problem in data-driven settings. The probability distribution of such random vectors is multimodal in general, leading to potentially very slow convergence of the PCE. In this paper, we build on a recent development for estimating and sampling from probabilities concentrated on a diffusion manifold. The proposed methodology constructs a PCE of the random vector together with an associated generator that samples from the target probability distribution which is estimated from data concentrated in the neighborhood of the manifold. The method is robust and remains efficient for high dimension and large datasets. The resulting polynomial chaos construction on manifolds permits the adaptation of many uncertainty quantification and statistical tools to emerging questions motivated by data-driven queries.
The theory of singular perturbations
De Jager, E M
1996-01-01
The subject of this textbook is the mathematical theory of singular perturbations, which despite its respectable history is still in a state of vigorous development. Singular perturbations of cumulative and of boundary layer type are presented. Attention has been given to composite expansions of solutions of initial and boundary value problems for ordinary and partial differential equations, linear as well as quasilinear; also turning points are discussed. The main emphasis lies on several methods of approximation for solutions of singularly perturbed differential equations and on the mathemat
The "Parity" Anomaly On An Unorientable Manifold
Witten, Edward
2016-01-01
The "parity" anomaly -- more accurately described as an anomaly in time-reversal or reflection symmetry -- arises in certain theories of fermions coupled to gauge fields and/or gravity in a spacetime of odd dimension. This anomaly has traditionally been studied on orientable manifolds only, but recent developments involving topological superconductors have made it clear that one can get more information by asking what happens on an unorientable manifold. In this paper, we give a full descript...
megaman: Manifold Learning for Millions of Points
McQueen, James; Meila, Marina; VanderPlas, Jacob; Zhang, Zhongyue
2017-11-01
megaman is a scalable manifold learning package implemented in python. It has a front-end API designed to be familiar to scikit-learn but harnesses the C++ Fast Library for Approximate Nearest Neighbors (FLANN) and the Sparse Symmetric Positive Definite (SSPD) solver Locally Optimal Block Precodition Gradient (LOBPCG) method to scale manifold learning algorithms to large data sets. It is designed for researchers and as such caches intermediary steps and indices to allow for fast re-computation with new parameters.
Minimal contact triangulations of 3-manifolds
Datta, Basudeb; Kulkarni, Dheeraj
2016-01-01
In this paper, we explore minimal contact triangulations on contact 3-manifolds. We give many explicit examples of contact triangulations that are close to minimal ones. The main results of this article say that on any closed oriented 3-manifold the number of vertices for minimal contact triangulations for overtwisted contact structures grows at most linearly with respect to the relative $d^3$ invariant. We conjecture that this bound is optimal. We also discuss, in great details, contact tria...
Layered-triangulations of 3-manifolds
Jaco, William; Rubinstein, J. Hyam
2006-01-01
A family of one-vertex triangulations of 3-manifolds, layered-triangulations, is defined. Layered-triangulations are first described for handlebodies and then extended to all 3-manifolds via Heegaard splittings. A complete and detailed analysis of layered-triangulations is given in the cases of the solid torus and lens spaces, including the classification of all normal and almost normal surfaces in these triangulations. Minimal layered-triangulations of lens spaces provide a common setting fo...
Computer calculation of Witten's 3-manifold invariant
International Nuclear Information System (INIS)
Freed, D.S.; Gompf, R.E.
1991-01-01
Witten's 2+1 dimensional Chern-Simons theory is exactly solvable. We compute the partition function, a topological invariant of 3-manifolds, on generalized Seifert spaces. Thus we test the path integral using the theory of 3-manifolds. In particular, we compare the exact solution with the asymptotic formula predicted by perturbation theory. We conclude that this path integral works as advertised and gives an effective topological invariant. (orig.)
Online Manifold Regularization by Dual Ascending Procedure
Sun, Boliang; Li, Guohui; Jia, Li; Zhang, Hui
2013-01-01
We propose a novel online manifold regularization framework based on the notion of duality in constrained optimization. The Fenchel conjugate of hinge functions is a key to transfer manifold regularization from offline to online in this paper. Our algorithms are derived by gradient ascent in the dual function. For practical purpose, we propose two buffering strategies and two sparse approximations to reduce the computational complexity. Detailed experiments verify the utility of our approache...
The manifold model for space-time
International Nuclear Information System (INIS)
Heller, M.
1981-01-01
Physical processes happen on a space-time arena. It turns out that all contemporary macroscopic physical theories presuppose a common mathematical model for this arena, the so-called manifold model of space-time. The first part of study is an heuristic introduction to the concept of a smooth manifold, starting with the intuitively more clear concepts of a curve and a surface in the Euclidean space. In the second part the definitions of the Csub(infinity) manifold and of certain structures, which arise in a natural way from the manifold concept, are given. The role of the enveloping Euclidean space (i.e. of the Euclidean space appearing in the manifold definition) in these definitions is stressed. The Euclidean character of the enveloping space induces to the manifold local Euclidean (topological and differential) properties. A suggestion is made that replacing the enveloping Euclidean space by a discrete non-Euclidean space would be a correct way towards the quantization of space-time. (author)
Ultrasonic defect characterization using parametric-manifold mapping
Velichko, A.; Bai, L.; Drinkwater, B. W.
2017-06-01
The aim of ultrasonic non-destructive evaluation includes the detection and characterization of defects, and an understanding of the nature of defects is essential for the assessment of structural integrity in safety critical systems. In general, the defect characterization challenge involves an estimation of defect parameters from measured data. In this paper, we explore the extent to which defects can be characterized by their ultrasonic scattering behaviour. Given a number of ultrasonic measurements, we show that characterization information can be extracted by projecting the measurement onto a parametric manifold in principal component space. We show that this manifold represents the entirety of the characterization information available from far-field harmonic ultrasound. We seek to understand the nature of this information and hence provide definitive statements on the defect characterization performance that is, in principle, extractable from typical measurement scenarios. In experiments, the characterization problem of surface-breaking cracks and the more general problem of elliptical voids are studied, and a good agreement is achieved between the actual parameter values and the characterization results. The nature of the parametric manifold enables us to explain and quantify why some defects are relatively easy to characterize, whereas others are inherently challenging.
Robust head pose estimation via supervised manifold learning.
Wang, Chao; Song, Xubo
2014-05-01
Head poses can be automatically estimated using manifold learning algorithms, with the assumption that with the pose being the only variable, the face images should lie in a smooth and low-dimensional manifold. However, this estimation approach is challenging due to other appearance variations related to identity, head location in image, background clutter, facial expression, and illumination. To address the problem, we propose to incorporate supervised information (pose angles of training samples) into the process of manifold learning. The process has three stages: neighborhood construction, graph weight computation and projection learning. For the first two stages, we redefine inter-point distance for neighborhood construction as well as graph weight by constraining them with the pose angle information. For Stage 3, we present a supervised neighborhood-based linear feature transformation algorithm to keep the data points with similar pose angles close together but the data points with dissimilar pose angles far apart. The experimental results show that our method has higher estimation accuracy than the other state-of-art algorithms and is robust to identity and illumination variations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Right-angled polyhedra and hyperbolic 3-manifolds
Vesnin, A. Yu.
2017-04-01
Hyperbolic 3-manifolds whose fundamental groups are subgroups of finite index in right-angled Coxeter groups are under consideration. The construction of such manifolds is associated with regular colourings of the faces of polyhedra and, in particular, with 4-colourings. The following questions are discussed: the structure of the set of right-angled polytopes in Lobachevskii space; examples of orientable and non-orientable manifolds, including the classical Löbell manifold constructed in 1931; connections between the Hamiltonian property of a polyhedron and the existence of hyperelliptic involutions of manifolds; the volumes and complexity of manifolds; isometry between hyperbolic manifolds constructed from 4-colourings. Bibliography: 89 titles.
Singular traces theory and applications
Sukochev, Fedor; Zanin, Dmitriy
2012-01-01
This text is the first complete study and monograph dedicated to singular traces. For mathematical readers the text offers, due to Nigel Kalton's contribution, a complete theory of traces on symmetrically normed ideals of compact operators. For mathematical physicists and other users of Connes' noncommutative geometry the text offers a complete reference to Dixmier traces and the deeper mathematical features of singular traces. An application section explores the consequences of these features, which previously were not discussed in general texts on noncommutative geometry.
On Riemannian manifolds (Mn, g) of quasi-constant curvature
International Nuclear Information System (INIS)
Rahman, M.S.
1995-07-01
A Riemannian manifold (M n , g) of quasi-constant curvature is defined. It is shown that an (M n , g) in association with other class of manifolds gives rise, under certain conditions, to a manifold of quasi-constant curvature. Some observations on how a manifold of quasi-constant curvature accounts for a pseudo Ricci-symmetric manifold and quasi-umbilical hypersurface are made. (author). 10 refs
Dynkin graphs and quadrilateral singularities
Urabe, Tohsuke
1993-01-01
The study of hypersurface quadrilateral singularities can be reduced to the study of elliptic K3 surfaces with a singular fiber of type I * 0 (superscript *, subscript 0), and therefore these notes consider, besides the topics of the title, such K3 surfaces too. The combinations of rational double points that can occur on fibers in the semi-universal deformations of quadrilateral singularities are examined, to show that the possible combinations can be described by a certain law from the viewpoint of Dynkin graphs. This is equivalent to saying that the possible combinations of singular fibers in elliptic K3 surfaces with a singular fiber of type I * 0 (superscript *, subscript 0) can be described by a certain law using classical Dynkin graphs appearing in the theory of semi-simple Lie groups. Further, a similar description for thecombination of singularities on plane sextic curves is given. Standard knowledge of algebraic geometry at the level of graduate students is expected. A new method based on graphs wil...
Local and nonlocal space-time singularities
International Nuclear Information System (INIS)
Konstantinov, M.Yu.
1985-01-01
The necessity to subdivide the singularities into two classes: local and nonlocal, each of them to be defined independently, is proved. Both classes of the singularities are defined, and the relation between the definitions introduced and the standard definition of singularities, based on space-time, incompleteness, is established. The relation between definitions introduced and theorems on the singularity existence is also established
New complete noncompact Spin(7) manifolds
International Nuclear Information System (INIS)
Cvetic, M.; Gibbons, G.W.; Lue, H.; Pope, C.N.
2002-01-01
We construct new explicit metrics on complete noncompact Riemannian 8-manifolds with holonomy Spin(7). One manifold, which we denote by (A 8 , is topologically R 8 and another, which we denote by B 8 , is the bundle of chiral spinors over S 4 . Unlike the previously-known complete noncompact metric of Spin(7) holonomy, which was also defined on the bundle of chiral spinors over S 4 , our new metrics are asymptotically locally conical (ALC): near infinity they approach a circle bundle with fibres of constant length over a cone whose base is the squashed Einstein metric on CP 3 . We construct the covariantly-constant spinor and calibrating 4-form. We also obtain an L 2 -normalisable harmonic 4-form for the (A)) 8 manifold, and two such 4-forms (of opposite dualities) for the B 8 manifold. We use the metrics to construct new supersymmetric brane solutions in M-theory and string theory. In particular, we construct resolved fractional M2-branes involving the use of the L 2 harmonic 4-forms, and show that for each manifold there is a supersymmetric example. An intriguing feature of the new A 8 and B 8 Spin(7) metrics is that they are actually the same local solution, with the two different complete manifolds corresponding to taking the radial coordinate to be either positive or negative. We make a comparison with the Taub-NUT and Taub-BOLT metrics, which by contrast do not have special holonomy. In we construct the general solution of our first-order equations for Spin(7) holonomy, and obtain further regular metrics that are complete on manifolds B 8 + and B 8 - similar to B 8
Lie group structures on automorphism groups of real-analytic CR manifolds
ZAITSEV, DMITRI
2008-01-01
PUBLISHED Given any real-analytic CR manifold M, we provide general conditions on M guar- anteeing that the group of all its global real-analytic CR automorphisms AutCR(M) is a Lie group (in an appropriate topology). In particular, we obtain a Lie group structure for AutCR(M) when M is an arbitrary compact real-analytic hypersurface embedded in some Stein manifold. The first author was supported by the Austrian Science Fund FWF, Project P17111 and Project P19667. The second ...
Synchronization and Control of Linearly Coupled Singular Systems
Directory of Open Access Journals (Sweden)
Fang Qingxiang
2013-01-01
Full Text Available The synchronization and control problem of linearly coupled singular systems is investigated. The uncoupled dynamical behavior at each node is general and can be chaotic or, otherwise the coupling matrix is not assumed to be symmetrical. Some sufficient conditions for globally exponential synchronization are derived based on Lyapunov stability theory. These criteria, which are in terms of linear matrix inequality (LMI, indicate that the left and right eigenvectors corresponding to eigenvalue zero of the coupling matrix play key roles in the stability analysis of the synchronization manifold. The controllers are designed for state feedback control and pinning control, respectively. Finally, a numerical example is provided to illustrate the effectiveness of the proposed conditions.
Brane singularities and their avoidance
International Nuclear Information System (INIS)
Antoniadis, Ignatios; Cotsakis, Spiros; Klaoudatou, Ifigeneia
2010-01-01
The singularity structure and the corresponding asymptotic behavior of a 3-brane coupled to a scalar field or to a perfect fluid in a five-dimensional bulk is analyzed in full generality using the method of asymptotic splittings. In the case of the scalar field, it is shown that the collapse singularity at a finite distance from the brane can be avoided only at the expense of making the brane world-volume positively or negatively curved. In the case where the bulk field content is parametrized by an analog of perfect fluid with an arbitrary equation of state P = γρ between the 'pressure' P and the 'density' ρ, our results depend crucially on the constant fluid parameter γ. (i) For γ > -1/2, the flat brane solution suffers from a collapse singularity at a finite distance that disappears in the curved case. (ii) For γ < -1, the singularity cannot be avoided and it becomes of the big rip type for a flat brane. (iii) For -1 < γ ≤ -1/2, the surprising result is found that while the curved brane solution is singular, the flat brane is not, opening the possibility for a revival of the self-tuning proposal.
Hidden singularities in non-abelian gauge fields
International Nuclear Information System (INIS)
Bollini, C.G.; Giambiagi, J.J.; Tiomno, J.
1978-01-01
It is shown that the potential (and field) of a non-abelian gauge theory is not well determined when it has a singular point. When this is the cause, it is important to specify the regularization procedure used to give a precise definition of physical quantities at the singularity at any stage of the computation. The fact that a certain A sub(μ) (associated with the given regularization) represents the vacuum when F sub(μν) is a zero distribution not only on the global space but also in all its projections to arbitrary subspaces is discussed. The example used as a base for the discussion is A vetor = i (sigma vetor Λ r vetor / r 2 ). For this example it is shown that different regularizations give the same field in the global space but they give different distributions when projected to subspaces containing the singular point [pt
Online Manifold Regularization by Dual Ascending Procedure
Directory of Open Access Journals (Sweden)
Boliang Sun
2013-01-01
Full Text Available We propose a novel online manifold regularization framework based on the notion of duality in constrained optimization. The Fenchel conjugate of hinge functions is a key to transfer manifold regularization from offline to online in this paper. Our algorithms are derived by gradient ascent in the dual function. For practical purpose, we propose two buffering strategies and two sparse approximations to reduce the computational complexity. Detailed experiments verify the utility of our approaches. An important conclusion is that our online MR algorithms can handle the settings where the target hypothesis is not fixed but drifts with the sequence of examples. We also recap and draw connections to earlier works. This paper paves a way to the design and analysis of online manifold regularization algorithms.
Harmonic maps of finite energy for Finsler manifolds
Li, Jintang; Wang, Yiling
2018-03-01
In this paper, we study some properties of harmonic maps for Finsler manifolds. Some Liouville theorems on harmonic maps for Finsler manifolds are given. Let M be a complete simply connected Riemannian manifold with non-negative Ricci curvature and M bar be a complete Berwald manifold with non-positive flag curvature. The main purpose of this paper is to prove that there exists no non-degenerate harmonic map ϕ from M to M bar with ∫SM e(ϕ) dVSM < ∞, which generalizes the result of Schoen and Yau (1976) from Riemannian manifolds to Berwald manifolds.
7D supersymmetric Yang-Mills on curved manifolds
Polydorou, Konstantina; Rocén, Andreas; Zabzine, Maxim
2017-12-01
We study 7D maximally supersymmetric Yang-Mills theory on curved manifolds that admit Killing spinors. If the manifold admits at least two Killing spinors (Sasaki-Einstein manifolds) we are able to rewrite the supersymmetric theory in terms of a cohomological complex. In principle this cohomological complex makes sense for any K-contact manifold. For the case of toric Sasaki-Einstein manifolds we derive explicitly the perturbative part of the partition function and speculate about the non-perturbative part. We also briefly discuss the case of 3-Sasaki manifolds and suggest a plausible form for the full non-perturbative answer.
Dimensionality Reduction on SPD Manifolds: The Emergence of Geometry-Aware Methods.
Harandi, Mehrtash; Salzmann, Mathieu; Hartley, Richard
2018-01-01
Representing images and videos with Symmetric Positive Definite (SPD) matrices, and considering the Riemannian geometry of the resulting space, has been shown to yield high discriminative power in many visual recognition tasks. Unfortunately, computation on the Riemannian manifold of SPD matrices -especially of high-dimensional ones- comes at a high cost that limits the applicability of existing techniques. In this paper, we introduce algorithms able to handle high-dimensional SPD matrices by constructing a lower-dimensional SPD manifold. To this end, we propose to model the mapping from the high-dimensional SPD manifold to the low-dimensional one with an orthonormal projection. This lets us formulate dimensionality reduction as the problem of finding a projection that yields a low-dimensional manifold either with maximum discriminative power in the supervised scenario, or with maximum variance of the data in the unsupervised one. We show that learning can be expressed as an optimization problem on a Grassmann manifold and discuss fast solutions for special cases. Our evaluation on several classification tasks evidences that our approach leads to a significant accuracy gain over state-of-the-art methods.
Approaching Moons from Resonance via Invariant Manifolds
Anderson, Rodney L.
2012-01-01
In this work, the approach phase from the final resonance of the endgame scenario in a tour design is examined within the context of invariant manifolds. Previous analyses have typically solved this problem either by using numerical techniques or by computing a catalog of suitable trajectories. The invariant manifolds of a selected set of libration orbits and unstable resonant orbits are computed here to serve as guides for desirable approach trajectories. The analysis focuses on designing an approach phase that may be tied into the final resonance in the endgame sequence while also targeting desired conditions at the moon.
Unraveling flow patterns through nonlinear manifold learning.
Tauro, Flavia; Grimaldi, Salvatore; Porfiri, Maurizio
2014-01-01
From climatology to biofluidics, the characterization of complex flows relies on computationally expensive kinematic and kinetic measurements. In addition, such big data are difficult to handle in real time, thereby hampering advancements in the area of flow control and distributed sensing. Here, we propose a novel framework for unsupervised characterization of flow patterns through nonlinear manifold learning. Specifically, we apply the isometric feature mapping (Isomap) to experimental video data of the wake past a circular cylinder from steady to turbulent flows. Without direct velocity measurements, we show that manifold topology is intrinsically related to flow regime and that Isomap global coordinates can unravel salient flow features.
Effective Field Theory on Manifolds with Boundary
Albert, Benjamin I.
In the monograph Renormalization and Effective Field Theory, Costello made two major advances in rigorous quantum field theory. Firstly, he gave an inductive position space renormalization procedure for constructing an effective field theory that is based on heat kernel regularization of the propagator. Secondly, he gave a rigorous formulation of quantum gauge theory within effective field theory that makes use of the BV formalism. In this work, we extend Costello's renormalization procedure to a class of manifolds with boundary and make preliminary steps towards extending his formulation of gauge theory to manifolds with boundary. In addition, we reorganize the presentation of the preexisting material, filling in details and strengthening the results.
Matrix regularization of embedded 4-manifolds
International Nuclear Information System (INIS)
Trzetrzelewski, Maciej
2012-01-01
We consider products of two 2-manifolds such as S 2 ×S 2 , embedded in Euclidean space and show that the corresponding 4-volume preserving diffeomorphism algebra can be approximated by a tensor product SU(N)⊗SU(N) i.e. functions on a manifold are approximated by the Kronecker product of two SU(N) matrices. A regularization of the 4-sphere is also performed by constructing N 2 ×N 2 matrix representations of the 4-algebra (and as a byproduct of the 3-algebra which makes the regularization of S 3 also possible).
A 1 + 5-dimensional gravitational-wave solution. Curvature singularity and spacetime singularity
International Nuclear Information System (INIS)
Chen, Yu-Zhu; Li, Wen-Du; Dai, Wu-Sheng
2017-01-01
We solve a 1 + 5-dimensional cylindrical gravitational-wave solution of the Einstein equation, in which there are two curvature singularities. Then we show that one of the curvature singularities can be removed by an extension of the spacetime. The result exemplifies that the curvature singularity is not always a spacetime singularity; in other words, the curvature singularity cannot serve as a criterion for spacetime singularities. (orig.)
A 1 + 5-dimensional gravitational-wave solution. Curvature singularity and spacetime singularity
Energy Technology Data Exchange (ETDEWEB)
Chen, Yu-Zhu [Tianjin University, Department of Physics, Tianjin (China); Li, Wen-Du [Tianjin University, Department of Physics, Tianjin (China); Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Dai, Wu-Sheng [Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Nankai University and Tianjin University, LiuHui Center for Applied Mathematics, Tianjin (China)
2017-12-15
We solve a 1 + 5-dimensional cylindrical gravitational-wave solution of the Einstein equation, in which there are two curvature singularities. Then we show that one of the curvature singularities can be removed by an extension of the spacetime. The result exemplifies that the curvature singularity is not always a spacetime singularity; in other words, the curvature singularity cannot serve as a criterion for spacetime singularities. (orig.)
Ambient cosmology and spacetime singularities
Antoniadis, Ignatios
2015-01-01
We present a new approach to the issues of spacetime singularities and cosmic censorship in general relativity. This is based on the idea that standard 4-dimensional spacetime is the conformal infinity of an ambient metric for the 5-dimensional Einstein equations with fluid sources. We then find that the existence of spacetime singularities in four dimensions is constrained by asymptotic properties of the ambient 5-metric, while the non-degeneracy of the latter crucially depends on cosmic censorship holding on the boundary.
Singularity Theory and its Applications
Stewart, Ian; Mond, David; Montaldi, James
1991-01-01
A workshop on Singularities, Bifuraction and Dynamics was held at Warwick in July 1989, as part of a year-long symposium on Singularity Theory and its applications. The proceedings fall into two halves: Volume I mainly on connections with algebraic geometry and volume II on connections with dynamical systems theory, bifurcation theory and applications in the sciences. The papers are original research, stimulated by the symposium and workshop: All have been refereed and none will appear elsewhere. The main topic of volume II is new methods for the study of bifurcations in nonlinear dynamical systems, and applications of these.
Ambient cosmology and spacetime singularities
Energy Technology Data Exchange (ETDEWEB)
Antoniadis, Ignatios [Bern University, Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern (Switzerland); Ecole Polytechnique, Palaiseau (France); Cotsakis, Spiros [CERN, Theory Division, Department of Physics, Geneva 23 (Switzerland); National Technical University, School of Applied Mathematics and Physical Sciences, Athens (Greece)
2015-01-01
We present a new approach to the issues of spacetime singularities and cosmic censorship in general relativity. This is based on the idea that standard 4-dimensional spacetime is the conformal infinity of an ambient metric for the 5-dimensional Einstein equations with fluid sources. We then find that the existence of spacetime singularities in four dimensions is constrained by asymptotic properties of the ambient 5-metric, while the non-degeneracy of the latter crucially depends on cosmic censorship holding on the boundary. (orig.)
The Brownian traveller on manifolds
Czech Academy of Sciences Publication Activity Database
Kolb, M.; Krejčiřík, David
2014-01-01
Roč. 4, č. 2 (2014), s. 235-281 ISSN 1664-039X R&D Projects: GA MŠk LC06002; GA ČR GAP203/11/0701 Institutional support: RVO:61389005 Keywords : heat equation and curvature * hardy inequality Subject RIV: BE - Theoretical Physics Impact factor: 1.231, year: 2014
Conamhna, Oisín A. P. Mac
2008-12-01
The supergravity description of various configurations of supersymmetric M-fivebranes wrapped on calibrated cycles of special holonomy manifolds is studied. The description is provided by solutions of eleven-dimensional supergravity which interpolate smoothly between a special holonomy manifold and an event horizon with Anti-de Sitter geometry. For known examples of Anti-de Sitter solutions, the associated special holonomy metric is derived. One explicit Anti-de Sitter solution of M-theory is so treated for fivebranes wrapping each of the following cycles: Kähler cycles in Calabi-Yau two, three- and four-folds; special lagrangian cycles in three- and four-folds; associative three- and co-associative four-cycles in G 2 manifolds; complex lagrangian four-cycles in Sp(2) manifolds; and Cayley four-cycles in Spin(7) manifolds. In each case, the associated special holonomy metric is singular, and is a hyperbolic analogue of a known metric. The analogous known metrics are respectively: Eguchi-Hanson, the resolved conifold and the four-fold resolved conifold; the deformed conifold, and the Stenzel four-fold metric; the Bryant-Salamon-Gibbons-Page-Pope G 2 metrics on an {mathbb{R}^4} bundle over S 3, and an {mathbb{R}^3} bundle over S 4 or {mathbb{CP}^2} ; the Calabi hyper-Kähler metric on {T^*mathbb{CP}^2} ; and the Bryant-Salamon-Gibbons-Page-Pope Spin(7) metric on an {mathbb{R}^4} bundle over S 4. By the AdS/CFT correspondence, a conformal field theory is associated to each of the new singular special holonomy metrics, and defines the quantum gravitational physics of the resolution of their singularities.
Boundary triples for Schrodinger operators with singular interactions on hypersurfaces
Czech Academy of Sciences Publication Activity Database
Behrndt, J.; Langer, M.; Lotoreichik, Vladimir
2016-01-01
Roč. 7, č. 2 (2016), s. 290-302 ISSN 2220-8054 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : boundary triple * Weyl function * Schrodinger operator * singular potential * delta-interaction * hypersurface Subject RIV: BE - Theoretical Physics
Toric geometry of G2-manifolds
DEFF Research Database (Denmark)
Madsen, Thomas Bruun; Swann, Andrew Francis
We consider G2-manifolds with an effective torus action that is multi-Hamiltonian for one or more of the defining forms. The case of T3-actions is found to be distinguished. For such actions multi-Hamiltonian with respect to both the three- and four-form, we derive a Gibbons-Hawking type ansatz...
Foliations and the geometry of 3-manifolds
Calegari, Danny
2014-01-01
This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions.
Strictly convex functions on complete Finsler manifolds
Indian Academy of Sciences (India)
... Refresher Courses · Symposia · Live Streaming. Home; Journals; Proceedings – Mathematical Sciences; Volume 126; Issue 4. Strictly convex functions on complete Finsler manifolds. YOE ITOKAWA KATSUHIRO SHIOHAMA BANKTESHWAR TIWARI. Research Article Volume 126 Issue 4 October 2016 pp 623-627 ...
Cohomology theories on locally conformal symplectic manifolds
Czech Academy of Sciences Publication Activity Database
Le, Hong-Van; Vanžura, Jiří
2015-01-01
Roč. 19, č. 1 (2015), s. 45-82 ISSN 1093-6106 Institutional support: RVO:67985840 Keywords : locally conformal symplectic manifold * Lichnerowicz-Novikov cohomology * primitive cohomology Subject RIV: BA - General Mathematics Impact factor: 0.722, year: 2015 http://www.intlpress.com/site/pub/pages/journals/items/ajm/content/vols/0019/0001/a003/
Four-manifolds, geometries and knots
Hillman, Jonathan A
2007-01-01
The goal of this book is to characterize algebraically the closed 4-manifolds that fibre nontrivially or admit geometries in the sense of Thurston, or which are obtained by surgery on 2-knots, and to provide a reference for the topology of such manifolds and knots. The first chapter is purely algebraic. The rest of the book may be divided into three parts: general results on homotopy and surgery (Chapters 2-6), geometries and geometric decompositions (Chapters 7-13), and 2-knots (Chapters 14-18). In many cases the Euler characteristic, fundamental group and Stiefel-Whitney classes together form a complete system of invariants for the homotopy type of such manifolds, and the possible values of the invariants can be described explicitly. The strongest results are characterizations of manifolds which fibre homotopically over S^1 or an aspherical surface (up to homotopy equivalence) and infrasolvmanifolds (up to homeomorphism). As a consequence 2-knots whose groups are poly-Z are determined up to Gluck reconstruc...
The Koch curve as a smooth manifold
International Nuclear Information System (INIS)
Epstein, Marcelo; Sniatycki, Jedrzej
2008-01-01
We show that there exists a homeomorphism between the closed interval [0,1] is contained in R and the Koch curve endowed with the subset topology of R 2 . We use this homeomorphism to endow the Koch curve with the structure of a smooth manifold with boundary
Indian Academy of Sciences (India)
M ISCAN and A A SALIMOV. Faculty of Arts and Science, Department of Mathematics, Ataturk University, ... This paper is concerned with the problem of the geometry of Norden manifolds. Some properties of ..... function f , then we shall call f a holomorphic (analytic) function and g its associated function [17]. If such a function ...
Classification of framed links in 3-manifolds
Indian Academy of Sciences (India)
Classification of framed links in 3-manifolds. MATIJA CENCELJ, DUŠAN REPOVŠ and. MIKHAIL B SKOPENKOV. ∗. Institute for Mathematics, Physics and Mechanics and Faculty of Education, University of Ljubljana, P.O. Box 2964, 1001 Ljubljana, Slovenia. ∗Department of Differential Geometry, Faculty of Mechanics and ...
International Nuclear Information System (INIS)
Becker, Katrin; Becker, Melanie; Robbins, Daniel
2015-01-01
In this talk we report on recent progress in describing compactifications of string theory and M-theory on G 2 and Spin(7) manifolds. We include the infinite set of α’-corrections and describe the entire tower of massless and massive Kaluza–Klein modes resulting from such compactifications. (invited comment)
Nonsmoothable involutions on spin 4-manifolds
Indian Academy of Sciences (India)
(Math. Sci.) Vol. 121, No. 1, February 2011, pp. 37–44. c Indian Academy of Sciences. Nonsmoothable involutions on spin 4-manifolds. CHANGTAO XUE and ... A group action is said to be pseudofree if each nontrivial group element has a discrete ... For our application, we also need their equivariant handle construction.
Higher order Hessian structures on manifolds
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
the bundle of bases for the tangent spaces. When we take a connection ∇XY to be given by Koszul's definition, we see that Hessian structures and symmetric connections can be directly related to each other. Before proceeding further, we state certain results relating to higher order derivatives on manifolds. For m ∈ M, let F.
Conservative systems with ports on contact manifolds
Eberard, D.; Maschke, B.M.; van der Schaft, Arjan; Piztek, P.
In this paper we propose an extension of port Hamiltonian systems, called conservative systems with ports, which encompass systems arising from the Irreversible Thermodynamics. Firstly we lift a port Hamiltonian system from its state space manifold to the thermodynamic phase space to a contact
Some functional inequalities on non-reversible Finsler manifolds
Indian Academy of Sciences (India)
SHIN-ICHI OHTA
2017-11-13
0043, Japan ... The aim of this article is to put forward geometric analysis on possibly non-reversible. Finsler manifolds (in the sense of F(−v) ..... weighted Riemannian manifolds and has many geometric and analytic applications.
Gravitational collapse and naked singularities
Indian Academy of Sciences (India)
We propose the concept of 'effective naked singularities', which will be quite helpful ... If a pressure gradient force is not sufficiently strong, a body can continue collapsing due to its self-gravity. This phenomenon is called gravitational collapse. .... approaches a self-similar solution, which is called a critical solution, and then it.
Interval matrices: Regularity generates singularity
Czech Academy of Sciences Publication Activity Database
Rohn, Jiří; Shary, S.P.
2018-01-01
Roč. 540, 1 March (2018), s. 149-159 ISSN 0024-3795 Institutional support: RVO:67985807 Keywords : interval matrix * regularity * singularity * P-matrix * absolute value equation * diagonally singilarizable matrix Subject RIV: BA - General Mathematics Impact factor: 0.973, year: 2016
Gravitational collapse and naked singularities
Indian Academy of Sciences (India)
Abstract. Gravitational collapse is one of the most striking phenomena in gravitational physics. The cosmic censorship conjecture has provided strong motivation for research in this field. In the absence of a general proof for censorship, many examples have been proposed, in which naked singularity is the outcome of ...
Singularity: Raychaudhuri equation once again
Indian Academy of Sciences (India)
birth of the Universe in a Big Bang. Nothing could be happier and more persuasive than the observation verifying the prediction of theory. This gave rise to a general belief that singularities were inevitable in general relativity (GR) so long as the dynamics were governed by Einstein's equations and more over positive energy ...
String theory and cosmological singularities
Indian Academy of Sciences (India)
of space and time needs revision near these singularities where quantum effects of gravity become important, it is still not clear what structure could replace space ..... The dimensionful parameter μ is a Lagrange multiplier which ensures that the total number of eigenvalues is fixed. 98. Pramana – J. Phys., Vol. 69, No. 1, July ...
Cosmological solutions and finite time singularities in Finslerian geometry
Paul, Nupur; de, S. S.; Rahaman, Farook
2018-03-01
We consider a very general scenario of our universe where its geometry is characterized by the Finslerian structure on the underlying spacetime manifold, a generalization of the Riemannian geometry. Now considering a general energy-momentum tensor for matter sector, we derive the gravitational field equations in such spacetime. Further, to depict the cosmological dynamics in such spacetime proposing an interesting equation of state identified by a sole parameter γ which for isotropic limit is simply the barotropic equation of state p = (γ ‑ 1)ρ (γ ∈ ℝ being the barotropic index), we solve the background dynamics. The dynamics offers several possibilities depending on this sole parameter as follows: (i) only an exponential expansion, or (ii) a finite time past singularity (big bang) with late accelerating phase, or (iii) a nonsingular universe exhibiting an accelerating scenario at late time which finally predicts a big rip type singularity. We also discuss several energy conditions and the possibility of cosmic bounce. Finally, we establish the first law of thermodynamics in such spacetime.
Singular solitons of generalized Camassa-Holm models
International Nuclear Information System (INIS)
Tian Lixin; Sun Lu
2007-01-01
Two generalizations of the Camassa-Holm system associated with the singular analysis are proposed for Painleve integrability properties and the extensions of already known analytic solitons. A remarkable feature of the physical model is that it has peakon solution which has peak form. An alternative WTC test which allowed the identifying of such models directly if formulated in terms of inserting a formed ansatz into these models. For the two models have Painleve property, Painleve-Baecklund systems can be constructed through the expansion of solitons about the singularity manifold. By the implementations of Maple, plentiful new type solitonic structures and some kink waves, which are affected by the variation of energy, are explored. If the energy is infinite in finite time, there will be a collapse in soliton systems by direct numerical simulations. Particularly, there are two collapses coexisting in our regular solitons, which occurred around its central regions. Simulation shows that in the bottom of periodic waves arises the non-zero parts of compactons and anti-compactons. We also get floating solitary waves whose amplitude is infinite. In contrary to which a finite-amplitude blow-up soliton is obtained. Periodic blow-ups are found too. Special kinks which have periodic cuspons are derived
Some theorems on a class of harmonic manifolds
International Nuclear Information System (INIS)
Rahman, M.S.; Chen Weihuan.
1993-08-01
A class of harmonic n-manifold, denoted by HM n , is, in fact, focussed on a Riemannian manifold with harmonic curvature. A variety of results, with properties, on HM n is presented in a fair order. Harmonic manifolds are then touched upon manifolds with recurrent Ricci curvature, biRicci-recurrent curvature and recurrent conformal curvature, and, in consequence, a sequence of theorems are deduced. (author). 21 refs
Fluid manifold design for a solar energy storage tank
Humphries, W. R.; Hewitt, H. C.; Griggs, E. I.
1975-01-01
A design technique for a fluid manifold for use in a solar energy storage tank is given. This analytical treatment generalizes the fluid equations pertinent to manifold design, giving manifold pressures, velocities, and orifice pressure differentials in terms of appropriate fluid and manifold geometry parameters. Experimental results used to corroborate analytical predictions are presented. These data indicate that variations in discharge coefficients due to variations in orifices can cause deviations between analytical predictions and actual performance values.
Zeroth Poisson Homology, Foliated Cohomology and Perfect Poisson Manifolds
Martínez-Torres, David; Miranda, Eva
2018-01-01
We prove that, for compact regular Poisson manifolds, the zeroth homology group is isomorphic to the top foliated cohomology group, and we give some applications. In particular, we show that, for regular unimodular Poisson manifolds, top Poisson and foliated cohomology groups are isomorphic. Inspired by the symplectic setting, we define what a perfect Poisson manifold is. We use these Poisson homology computations to provide families of perfect Poisson manifolds.
Hyperbolic manifolds as vacuum solutions in Kaluza-Klein theories
International Nuclear Information System (INIS)
Aref'eva, I.Ya.; Volovich, I.V.
1985-08-01
The relevance of compact hyperbolic manifolds in the context of Kaluza-Klein theories is discussed. Examples of spontaneous compactification on hyperbolic manifolds including d dimensional (d>=8) Einstein-Yang-Mills gravity and 11-dimensional supergravity are considered. Some mathematical facts about hyperbolic manifolds essential for the physical content of the theory are briefly summarized. Non-linear σ-models based on hyperbolic manifolds are discussed. (author)
Trajectory and Invariant Manifold Computation for Flows in the Chesapeake Bay
National Research Council Canada - National Science Library
Brasher, Nathan F
2005-01-01
...) and their invariant manifolds. In this project, algorithms in MATLAB have been successfully implemented and applied to a number of test problems, as well as to the Chesapeake Bay flow data generated by the QUODDY shallow-water finite-element model...
Yang-Mills bar connections over compact Kähler manifolds
Czech Academy of Sciences Publication Activity Database
Le, Hong-Van
2010-01-01
Roč. 46, č. 1 (2010), s. 47-69 ISSN 0044-8753 R&D Projects: GA AV ČR IAA100190701 Institutional research plan: CEZ:AV0Z10190503 Keywords : Kähler manifold * complex vector bundle * holomorphic connection * Yang - Mills bar gradient flow Subject RIV: BA - General Mathematics http://www.dml.cz/handle/10338.dmlcz/139995
Fatigue crack shape prediction based on the stress singularity exponent
Czech Academy of Sciences Publication Activity Database
Hutař, Pavel; Ševčík, Martin; Náhlík, Luboš; Knésl, Zdeněk
488-489, č. 1 (2012), s. 178-181 ISSN 1013-9826. [International Conference on Fracture and Damage Mechanics - FDM 2011 /10./. Dubrovník, 19.09.2011-21.09.2011] R&D Projects: GA ČR GA101/09/0867 Grant - others:GA AV ČR(CZ) M100420901 Institutional research plan: CEZ:AV0Z2041904 Keywords : stress singularity exponent * crack front curvature * vertex singularity * free surface effect Subject RIV: JL - Materials Fatigue, Friction Mechanics
Flockerzi, Dietrich; Heineken, Wolfram
2006-12-01
It is claimed by Rhodes, Morari, and Wiggins [Chaos 9, 108-123 (1999)] that the projection algorithm of Maas and Pope [Combust. Flame 88, 239-264 (1992)] identifies the slow invariant manifold of a system of ordinary differential equations with time-scale separation. A transformation to Fenichel normal form serves as a tool to prove this statement. Furthermore, Rhodes, Morari, and Wiggins [Chaos 9, 108-123 (1999)] conjectured that away from a slow manifold, the criterion of Maas and Pope will never be fulfilled. We present two examples that refute the assertions of Rhodes, Morari, and Wiggins. In the first example, the algorithm of Maas and Pope leads to a manifold that is not invariant but close to a slow invariant manifold. The claim of Rhodes, Morari, and Wiggins that the Maas and Pope projection algorithm is invariant under a coordinate transformation to Fenichel normal form is shown to be not correct in this case. In the second example, the projection algorithm of Maas and Pope leads to a manifold that lies in a region where no slow manifold exists at all. This rejects the conjecture of Rhodes, Morari, and Wiggins mentioned above.
Remarks on gauge variables and singular Lagrangians
International Nuclear Information System (INIS)
Chela-Flores, J.; Janica-de-la-Torre, R.; Kalnay, A.J.; Rodriguez-Gomez, J.; Rodriguez-Nunez, J.; Tascon, R.
1977-01-01
The relevance is discussed of gauge theory, based on a singular Lagrangian density, to the foundations of field theory. The idea that gauge transformations could change the physics of systems where the Lagrangian is singular is examined. (author)
Examples and counter-examples of log-symplectic manifolds
Cavalcanti, Gil R.
We study topological properties of log-symplectic structures and produce examples of compact manifolds with such structures. Notably, we show that several symplectic manifolds do not admit bona fide log-symplectic structures and several bona fide log-symplectic manifolds do not admit symplectic
Wave equations on anti self dual (ASD) manifolds
Bashingwa, Jean-Juste; Kara, A. H.
2017-11-01
In this paper, we study and perform analyses of the wave equation on some manifolds with non diagonal metric g_{ij} which are of neutral signatures. These include the invariance properties, variational symmetries and conservation laws. In the recent past, wave equations on the standard (space time) Lorentzian manifolds have been performed but not on the manifolds from metrics of neutral signatures.
Three-dimensional group manifold reductions of gravity
Linares, Román
2005-04-01
We review the three-dimensional group manifold reductions of pure Einstein gravity and we exhibit a new consistent group manifold reduction of gravity when the compactification group manifold is S3. The new reduction leads to a lower dimensional theory whose gauge group is SU(2).
Harmonic Riemannian Maps on Locally Conformal Kaehler Manifolds
Indian Academy of Sciences (India)
We study harmonic Riemannian maps on locally conformal Kaehler manifolds ( l c K manifolds). We show that if a Riemannian holomorphic map between l c K manifolds is harmonic, then the Lee vector field of the domain belongs to the kernel of the Riemannian map under a condition. When the domain is Kaehler, we ...
Classification of third-order symmetric Lorentzian manifolds
Galaev, Anton S.
2014-01-01
Third-order symmetric Lorentzian manifolds, i.e. Lorentzian manifold with zero third derivative of the curvature tensor, are classified. These manifolds are exhausted by a special type of pp-waves, they generalize Cahen-Wallach spaces and second-order symmetric Lorentzian spaces.
Dimensionality reduction of hyperspectral images based on sparse discriminant manifold embedding
Huang, Hong; Luo, Fulin; Liu, Jiamin; Yang, Yaqiong
2015-08-01
Sparse manifold clustering and embedding (SMCE) adaptively selects neighbor points from the same manifold and approximately spans a low-dimensional affine subspace, but it does not explicitly give a projection matrix and encounters the out-of-sample problem. To overcome this drawback, we propose a new dimensionality reduction method, called sparse manifold embedding (SME), based on graph embedding and sparse representation for hyperspectral image (HSI). It utilizes the sparse coefficients of affine subspace to construct a similarity graph and preserves this sparse similarity in embedding space. Furthermore, we try to make full use of the prior label information to design a novel supervised learning method termed sparse discriminant manifold embedding (SDME). SDME not only inherits the merits of the sparsity property of affine subspace but also boosts the compactness of intra-manifold, which achieves discriminating features and further improves the classification performance of HSI. Experiments on two real hyperspectral data sets (Indian Pines and PaviaU) show the benefits of the proposed SME and SDME methods.
Symposium on Singularities, Representation of Algebras, and Vector Bundles
Trautmann, Günther
1987-01-01
It is well known that there are close relations between classes of singularities and representation theory via the McKay correspondence and between representation theory and vector bundles on projective spaces via the Bernstein-Gelfand-Gelfand construction. These relations however cannot be considered to be either completely understood or fully exploited. These proceedings document recent developments in the area. The questions and methods of representation theory have applications to singularities and to vector bundles. Representation theory itself, which had primarily developed its methods for Artinian algebras, starts to investigate algebras of higher dimension partly because of these applications. Future research in representation theory may be spurred by the classification of singularities and the highly developed theory of moduli for vector bundles. The volume contains 3 survey articles on the 3 main topics mentioned, stressing their interrelationships, as well as original research papers.
Singularities and Conjugate Points in FLRW Spacetimes
Lam, Huibert het; Prokopec, Tom
2017-01-01
Conjugate points play an important role in the proofs of the singularity theorems of Hawking and Penrose. We examine the relation between singularities and conjugate points in FLRW spacetimes with a singularity. In particular we prove a theorem that when a non-comoving, non-spacelike geodesic in a
Analysis of singularity in redundant manipulators
International Nuclear Information System (INIS)
Watanabe, Koichi
2000-03-01
In the analysis of arm positions and configurations of redundant manipulators, the singularity avoidance problems are important themes. This report presents singularity avoidance computations of a 7 DOF manipulator by using a computer code based on human-arm models. The behavior of the arm escaping from the singular point can be identified satisfactorily through the use of 3-D plotting tools. (author)
Singularities formation, structure, and propagation
Eggers, J
2015-01-01
Many key phenomena in physics and engineering are described as singularities in the solutions to the differential equations describing them. Examples covered thoroughly in this book include the formation of drops and bubbles, the propagation of a crack and the formation of a shock in a gas. Aimed at a broad audience, this book provides the mathematical tools for understanding singularities and explains the many common features in their mathematical structure. Part I introduces the main concepts and techniques, using the most elementary mathematics possible so that it can be followed by readers with only a general background in differential equations. Parts II and III require more specialised methods of partial differential equations, complex analysis and asymptotic techniques. The book may be used for advanced fluid mechanics courses and as a complement to a general course on applied partial differential equations.
Historical developments in singular perturbations
O'Malley, Robert E
2014-01-01
This engaging text describes the development of singular perturbations, including its history, accumulating literature, and its current status. While the approach of the text is sophisticated, the literature is accessible to a broad audience. A particularly valuable bonus are the historical remarks. These remarks are found throughout the manuscript. They demonstrate the growth of mathematical thinking on this topic by engineers and mathematicians. The book focuses on detailing how the various methods are to be applied. These are illustrated by a number and variety of examples. Readers are expected to have a working knowledge of elementary ordinary differential equations, including some familiarity with power series techniques, and of some advanced calculus. Dr. O'Malley has written a number of books on singular perturbations. This book has developed from many of his works in the field of perturbation theory.
Numerical Quadrature of Periodic Singular Integral Equations
DEFF Research Database (Denmark)
Krenk, Steen
1978-01-01
This paper presents quadrature formulae for the numerical integration of a singular integral equation with Hilbert kernel. The formulae are based on trigonometric interpolation. By integration a quadrature formula for an integral with a logarithmic singularity is obtained. Finally it is demonstra......This paper presents quadrature formulae for the numerical integration of a singular integral equation with Hilbert kernel. The formulae are based on trigonometric interpolation. By integration a quadrature formula for an integral with a logarithmic singularity is obtained. Finally...... it is demonstrated how a singular integral equation with infinite support can be solved by use of the preceding formulae....
Fundamental solutions of singular SPDEs
Energy Technology Data Exchange (ETDEWEB)
Selesi, Dora, E-mail: dora@dmi.uns.ac.rs [Department of Mathematics and Informatics, University of Novi Sad (Serbia)
2011-07-15
Highlights: > Fundamental solutions of linear SPDEs are constructed. > Wick-convolution product is introduced for the first time. > Fourier transformation maps Wick-convolution into Wick product. > Solutions of linear SPDEs are expressed via Wick-convolution with fundamental solutions. > Stochastic Helmholtz equation is solved. - Abstract: This paper deals with some models of mathematical physics, where random fluctuations are modeled by white noise or other singular Gaussian generalized processes. White noise, as the distributional derivative od Brownian motion, which is the most important case of a Levy process, is defined in the framework of Hida distribution spaces. The Fourier transformation in the framework of singular generalized stochastic processes is introduced and its applications to solving stochastic differential equations involving Wick products and singularities such as the Dirac delta distribution are presented. Explicit solutions are obtained in form of a chaos expansion in the Kondratiev white noise space, while the coefficients of the expansion are tempered distributions. Stochastic differential equations of the form P({omega}, D) Lozenge u(x, {omega}) = A(x, {omega}) are considered, where A is a singular generalized stochastic process and P({omega}, D) is a partial differential operator with random coefficients. We introduce the Wick-convolution operator * which enables us to express the solution as u = s*A Lozenge I{sup Lozenge (-1)}, where s denotes the fundamental solution and I is the unit random variable. In particular, the stochastic Helmholtz equation is solved, which in physical interpretation describes waves propagating with a random speed from randomly appearing point sources.
Why the Singularity Cannot Happen
Modis, Theodore
2012-01-01
The concept of a Singularity as described in Ray Kurzweil's book cannot happen for a number of reasons. One reason is that all natural growth processes that follow exponential patterns eventually reveal themselves to be following S-curves thus excluding runaway situations. The remaining growth potential from Kurzweil's ''knee'', which could be approximated as the moment when an S-curve pattern begins deviating from the corresponding exponential, is a factor of only one order of magnitude grea...
Fundamental solutions of singular SPDEs
International Nuclear Information System (INIS)
Selesi, Dora
2011-01-01
Highlights: → Fundamental solutions of linear SPDEs are constructed. → Wick-convolution product is introduced for the first time. → Fourier transformation maps Wick-convolution into Wick product. → Solutions of linear SPDEs are expressed via Wick-convolution with fundamental solutions. → Stochastic Helmholtz equation is solved. - Abstract: This paper deals with some models of mathematical physics, where random fluctuations are modeled by white noise or other singular Gaussian generalized processes. White noise, as the distributional derivative od Brownian motion, which is the most important case of a Levy process, is defined in the framework of Hida distribution spaces. The Fourier transformation in the framework of singular generalized stochastic processes is introduced and its applications to solving stochastic differential equations involving Wick products and singularities such as the Dirac delta distribution are presented. Explicit solutions are obtained in form of a chaos expansion in the Kondratiev white noise space, while the coefficients of the expansion are tempered distributions. Stochastic differential equations of the form P(ω, D) ◊ u(x, ω) = A(x, ω) are considered, where A is a singular generalized stochastic process and P(ω, D) is a partial differential operator with random coefficients. We introduce the Wick-convolution operator * which enables us to express the solution as u = s*A ◊ I ◊(-1) , where s denotes the fundamental solution and I is the unit random variable. In particular, the stochastic Helmholtz equation is solved, which in physical interpretation describes waves propagating with a random speed from randomly appearing point sources.
On singularities of lattice varieties
Mukherjee, Himadri
2013-01-01
Toric varieties associated with distributive lattices arise as a fibre of a flat degeneration of a Schubert variety in a minuscule. The singular locus of these varieties has been studied by various authors. In this article we prove that the number of diamonds incident on a lattice point $\\a$ in a product of chain lattices is more than or equal to the codimension of the lattice. Using this we also show that the lattice varieties associated with product of chain lattices is smooth.
Lattes-type mappings on compact manifolds
Astola, Laura; Kangaslampi, Riikka; Peltonen, Kirsi
A uniformly quasiregular mapping acting on a compact Riemannian manifold distorts the metric by a bounded amount, independently of the number of iterates. Such maps are rational with respect to some measurable conformal structure and there is a Fatou-Julia type theory associated with the dynamical system obtained by iterating these mappings. We study a rich subclass of uniformly quasiregular mappings that can be produced using an analogy of classical Lattes' construction of chaotic rational functions acting on the extended plane bar{C} . We show that there is a plenitude of compact manifolds that support these mappings. Moreover, we find that in some cases there are alternative ways to construct this type of mapping with different Julia sets.
Topological quantum field theory and four manifolds
Marino, Marcos
2005-01-01
The present book is the first of its kind in dealing with topological quantum field theories and their applications to topological aspects of four manifolds. It is not only unique for this reason but also because it contains sufficient introductory material that it can be read by mathematicians and theoretical physicists. On the one hand, it contains a chapter dealing with topological aspects of four manifolds, on the other hand it provides a full introduction to supersymmetry. The book constitutes an essential tool for researchers interested in the basics of topological quantum field theory, since these theories are introduced in detail from a general point of view. In addition, the book describes Donaldson theory and Seiberg-Witten theory, and provides all the details that have led to the connection between these theories using topological quantum field theory. It provides a full account of Witten’s magic formula relating Donaldson and Seiberg-Witten invariants. Furthermore, the book presents some of the ...
Heterogeneous massive feature fusion on grassmannian manifold
Huang, Haichao; Liu, Hongning; Kong, Xiaoyun; Lou, Xingdan; Wang, Zepeng
2017-08-01
Two issues remain unsolved on utilizing multimodal features for pattern recognition: the missing features and the curse of dimensionality. In this paper, we address the two issues by fusing the multimodal features on the Grassmann manifold. By defining grouping constrains on multimodal features, each multimodal feature vector is grouped into a set of subspaces, and is further represented as a point on the Grassmann manifold. To deal with missing features, L2-Hausdorff distance, a metric to compare multimodal feature vectors with different number of subspaces, is computed, and a kernel matrix can be obtained accordingly. Based on the kernel matrix, two feature selection criterions, one supervised and one unsupervised, are proposed to obtain a few representative features in the kernel space. Thus, the curse of dimensionality is alleviated. Experimental results on three multimodal dataset show the proposed feature fusion can outperforms the state-of -the-art by higher accuracy.
Incremental nonlinear dimensionality reduction by manifold learning.
Law, Martin H C; Jain, Anil K
2006-03-01
Understanding the structure of multidimensional patterns, especially in unsupervised cases, is of fundamental importance in data mining, pattern recognition, and machine learning. Several algorithms have been proposed to analyze the structure of high-dimensional data based on the notion of manifold learning. These algorithms have been used to extract the intrinsic characteristics of different types of high-dimensional data by performing nonlinear dimensionality reduction. Most of these algorithms operate in a "batch" mode and cannot be efficiently applied when data are collected sequentially. In this paper, we describe an incremental version of ISOMAP, one of the key manifold learning algorithms. Our experiments on synthetic data as well as real world images demonstrate that our modified algorithm can maintain an accurate low-dimensional representation of the data in an efficient manner.
Dynamical systems on 2- and 3-manifolds
Grines, Viacheslav Z; Pochinka, Olga V
2016-01-01
This book provides an introduction to the topological classification of smooth structurally stable diffeomorphisms on closed orientable 2- and 3-manifolds.The topological classification is one of the main problems of the theory of dynamical systems and the results presented in this book are mostly for dynamical systems satisfying Smale's Axiom A. The main results on the topological classification of discrete dynamical systems are widely scattered among many papers and surveys. This book presents these results fluidly, systematically, and for the first time in one publication. Additionally, this book discusses the recent results on the topological classification of Axiom A diffeomorphisms focusing on the nontrivial effects of the dynamical systems on 2- and 3-manifolds. The classical methods and approaches which are considered to be promising for the further research are also discussed. < The reader needs to be familiar with the basic concepts of the qualitative theory of dynamical systems which are present...
Convex nonnegative matrix factorization with manifold regularization.
Hu, Wenjun; Choi, Kup-Sze; Wang, Peiliang; Jiang, Yunliang; Wang, Shitong
2015-03-01
Nonnegative Matrix Factorization (NMF) has been extensively applied in many areas, including computer vision, pattern recognition, text mining, and signal processing. However, nonnegative entries are usually required for the data matrix in NMF, which limits its application. Besides, while the basis and encoding vectors obtained by NMF can represent the original data in low dimension, the representations do not always reflect the intrinsic geometric structure embedded in the data. Motivated by manifold learning and Convex NMF (CNMF), we propose a novel matrix factorization method called Graph Regularized and Convex Nonnegative Matrix Factorization (GCNMF) by introducing a graph regularized term into CNMF. The proposed matrix factorization technique not only inherits the intrinsic low-dimensional manifold structure, but also allows the processing of mixed-sign data matrix. Clustering experiments on nonnegative and mixed-sign real-world data sets are conducted to demonstrate the effectiveness of the proposed method. Copyright © 2014 Elsevier Ltd. All rights reserved.
New spinor fields on Lorentzian 7-manifolds
Energy Technology Data Exchange (ETDEWEB)
Bonora, L. [International School for Advanced Studies (SISSA),Via Bonomea 265, 34136 Trieste (Italy); Rocha, Roldão da [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC,Avenida dos Estados, 5001, Santo André (Brazil)
2016-01-21
This paper deals with the classification of spinor fields according to the bilinear covariants in 7 dimensions. The previously investigated Riemannian case is characterized by either one spinor field class, in the real case of Majorana spinors, or three non-trivial classes in the most general complex case. In this paper we show that by imposing appropriate conditions on spinor fields in 7d manifolds with Lorentzian metric, the formerly obtained obstructions for new classes of spinor fields can be circumvented. New spinor fields classes are then explicitly constructed. In particular, on 7-manifolds with asymptotically flat black hole background, these spinors can define a generalized current density which further defines a time Killing vector at the spatial infinity.
On complete manifolds supporting a weighted Sobolev type inequality
International Nuclear Information System (INIS)
Adriano, Levi; Xia Changyu
2011-01-01
Highlights: → We study manifolds supporting a weighted Sobolev or log-Sobolev inequality. → We investigate manifolds of asymptotically non-negative Ricci curvature. → The constant in the weighted Sobolev inequality on complete manifolds is studied. - Abstract: This paper studies the geometric and topological properties of complete open Riemannian manifolds which support a weighted Sobolev or log-Sobolev inequality. We show that the constant in the weighted Sobolev inequality on a complete open Riemannian manifold should be bigger than or equal to the optimal one on the Euclidean space of the same dimension and that a complete open manifold of asymptotically non-negative Ricci curvature supporting a weighted Sobolev inequality must have large volume growth. We also show that a complete manifold of non-negative Ricci curvature on which the log-Sobolev inequality holds is not very far from the Euclidean space.
On complete manifolds supporting a weighted Sobolev type inequality
Energy Technology Data Exchange (ETDEWEB)
Adriano, Levi, E-mail: levi@mat.ufg.br [Instituto de Matematica e Estatistica, Universidade Federal de Goias, 74001-900 Goiania, GO (Brazil); Xia Changyu, E-mail: xia@mat.unb.br [Departamento de Matematica, Universidade de Brasilia, 70910-900 Brasilia, DF (Brazil)
2011-11-15
Highlights: > We study manifolds supporting a weighted Sobolev or log-Sobolev inequality. > We investigate manifolds of asymptotically non-negative Ricci curvature. > The constant in the weighted Sobolev inequality on complete manifolds is studied. - Abstract: This paper studies the geometric and topological properties of complete open Riemannian manifolds which support a weighted Sobolev or log-Sobolev inequality. We show that the constant in the weighted Sobolev inequality on a complete open Riemannian manifold should be bigger than or equal to the optimal one on the Euclidean space of the same dimension and that a complete open manifold of asymptotically non-negative Ricci curvature supporting a weighted Sobolev inequality must have large volume growth. We also show that a complete manifold of non-negative Ricci curvature on which the log-Sobolev inequality holds is not very far from the Euclidean space.
Nonplanar on-shell diagrams and leading singularities of scattering amplitudes
Energy Technology Data Exchange (ETDEWEB)
Chen, Baoyi; Cheung, Yeuk-Kwan E.; Li, Yunxuan; Xie, Ruofei; Xin, Yuan [Nanjing University, Department of Physics, Nanjing (China); Chen, Gang [Zhejiang Normal University, Department of Physics, Jinhua, Zhejiang (China); Nanjing University, Department of Physics, Nanjing (China)
2017-02-15
Bipartite on-shell diagrams are the latest tool in constructing scattering amplitudes. In this paper we prove that a Britto-Cachazo-Feng-Witten (BCFW) decomposable on-shell diagram process a rational top form if and only if the algebraic ideal comprised the geometrical constraints are shifted linearly during successive BCFW integrations. With a proper geometric interpretation of the constraints in the Grassmannian manifold, the rational top form integration contours can thus be obtained, and understood, in a straightforward way. All rational top form integrands of arbitrary higher loops leading singularities can therefore be derived recursively, as long as the corresponding on-shell diagram is BCFW decomposable. (orig.)
Quantum propagation across cosmological singularities
Gielen, Steffen; Turok, Neil
2017-05-01
The initial singularity is the most troubling feature of the standard cosmology, which quantum effects are hoped to resolve. In this paper, we study quantum cosmology with conformal (Weyl) invariant matter. We show that it is natural to extend the scale factor to negative values, allowing a large, collapsing universe to evolve across a quantum "bounce" into an expanding universe like ours. We compute the Feynman propagator for Friedmann-Robertson-Walker backgrounds exactly, identifying curious pathologies in the case of curved (open or closed) universes. We then include anisotropies, fixing the operator ordering of the quantum Hamiltonian by imposing covariance under field redefinitions and again finding exact solutions. We show how complex classical solutions allow one to circumvent the singularity while maintaining the validity of the semiclassical approximation. The simplest isotropic universes sit on a critical boundary, beyond which there is qualitatively different behavior, with potential for instability. Additional scalars improve the theory's stability. Finally, we study the semiclassical propagation of inhomogeneous perturbations about the flat, isotropic case, at linear and nonlinear order, showing that, at least at this level, there is no particle production across the bounce. These results form the basis for a promising new approach to quantum cosmology and the resolution of the big bang singularity.
Flavour from partially resolved singularities
Energy Technology Data Exchange (ETDEWEB)
Bonelli, G. [International School of Advanced Studies (SISSA) and INFN, Sezione di Trieste, via Beirut 2-4, 34014 Trieste (Italy)]. E-mail: bonelli@sissa.it; Bonora, L. [International School of Advanced Studies (SISSA) and INFN, Sezione di Trieste, via Beirut 2-4, 34014 Trieste (Italy); Ricco, A. [International School of Advanced Studies (SISSA) and INFN, Sezione di Trieste, via Beirut 2-4, 34014 Trieste (Italy)
2006-06-15
In this Letter we study topological open string field theory on D-branes in a IIB background given by non-compact CY geometries O(n)-bar O(-2-n) on P{sup 1} with a singular point at which an extra fiber sits. We wrap N D5-branes on P{sup 1} and M effective D3-branes at singular points, which are actually D5-branes wrapped on a shrinking cycle. We calculate the holomorphic Chern-Simons partition function for the above models in a deformed complex structure and find that it reduces to multi-matrix models with flavour. These are the matrix models whose resolvents have been shown to satisfy the generalized Konishi anomaly equations with flavour. In the n=0 case, corresponding to a partial resolution of the A{sub 2} singularity, the quantum superpotential in the N=1 unitary SYM with one adjoint and M fundamentals is obtained. The n=1 case is also studied and shown to give rise to two-matrix models which for a particular set of couplings can be exactly solved. We explicitly show how to solve such a class of models by a quantum equation of motion technique.
Nonsmoothable involutions on spin 4-manifolds
Indian Academy of Sciences (India)
[2] Bryan J, Seiberg-Witten theory and Z/2p actions on spin 4-manifolds, Math. Res. Lett. 5. (1998) 165–183. [3] Chen W and Kwasik S, Symmetries and exotic smooth structures on a K3 surface,. J. Topology 1(4) (2008) 923–962. [4] Edmonds A L and Ewing J H, Realizing forms and fixed point data in dimension four,.
Sasakian manifolds with purely transversal Bach tensor
Ghosh, Amalendu; Sharma, Ramesh
2017-10-01
We show that a (2n + 1)-dimensional Sasakian manifold (M, g) with a purely transversal Bach tensor has constant scalar curvature ≥2 n (2 n +1 ) , equality holding if and only if (M, g) is Einstein. For dimension 3, M is locally isometric to the unit sphere S3. For dimension 5, if in addition (M, g) is complete, then it has positive Ricci curvature and is compact with finite fundamental group π1(M).
Sasaki-Einstein Manifolds and Volume Minimisation
Martelli, D; Yau, S T; Martelli, Dario; Sparks, James; Yau, Shing-Tung
2006-01-01
We study a variational problem whose critical point determines the Reeb vector field for a Sasaki-Einstein manifold. This extends our previous work on Sasakian geometry by lifting the condition that the manifolds are toric. We show that the Einstein-Hilbert action, restricted to a space of Sasakian metrics on a link L in a Calabi-Yau cone M, is the volume functional, which in fact is a function on the space of Reeb vector fields. We relate this function both to the Duistermaat-Heckman formula and also to a limit of a certain equivariant index on M that counts holomorphic functions. Both formulae may be evaluated by localisation. This leads to a general formula for the volume function in terms of topological fixed point data. As a result we prove that the volume of any Sasaki-Einstein manifold, relative to that of the round sphere, is always an algebraic number. In complex dimension n=3 these results provide, via AdS/CFT, the geometric counterpart of a-maximisation in four dimensional superconformal field theo...
Manifold learning in machine vision and robotics
Bernstein, Alexander
2017-02-01
Smart algorithms are used in Machine vision and Robotics to organize or extract high-level information from the available data. Nowadays, Machine learning is an essential and ubiquitous tool to automate extraction patterns or regularities from data (images in Machine vision; camera, laser, and sonar sensors data in Robotics) in order to solve various subject-oriented tasks such as understanding and classification of images content, navigation of mobile autonomous robot in uncertain environments, robot manipulation in medical robotics and computer-assisted surgery, and other. Usually such data have high dimensionality, however, due to various dependencies between their components and constraints caused by physical reasons, all "feasible and usable data" occupy only a very small part in high dimensional "observation space" with smaller intrinsic dimensionality. Generally accepted model of such data is manifold model in accordance with which the data lie on or near an unknown manifold (surface) of lower dimensionality embedded in an ambient high dimensional observation space; real-world high-dimensional data obtained from "natural" sources meet, as a rule, this model. The use of Manifold learning technique in Machine vision and Robotics, which discovers a low-dimensional structure of high dimensional data and results in effective algorithms for solving of a large number of various subject-oriented tasks, is the content of the conference plenary speech some topics of which are in the paper.
Faria, T.; Magalhaes, L. T.
The paper addresses, for retarded functional differential equations (FDEs), the computation of normal forms associated with the flow on a finite-dimensional invariant manifold tangent to invariant spaces for the infinitesimal generator of the linearized equation at a singularity. A phase space appropriate to the computation of these normal forms is introduced, and adequate nonresonance conditions for the computation of the normal forms are derived. As an application, the general situation of Bogdanov-Takens singularity and its versal unfolding for scalar retarded FDEs with nondegeneracy at second order is considered, both in the general case and in the case of differential-delay equations of the form ẋ( t) = ƒ( x( t), x( t-1)).
Singularities in Free Surface Flows
Thete, Sumeet Suresh
Free surface flows where the shape of the interface separating two or more phases or liquids are unknown apriori, are commonplace in industrial applications and nature. Distribution of drop sizes, coalescence rate of drops, and the behavior of thin liquid films are crucial to understanding and enhancing industrial practices such as ink-jet printing, spraying, separations of chemicals, and coating flows. When a contiguous mass of liquid such as a drop, filament or a film undergoes breakup to give rise to multiple masses, the topological transition is accompanied with a finite-time singularity . Such singularity also arises when two or more masses of liquid merge into each other or coalesce. Thus the dynamics close to singularity determines the fate of about-to-form drops or films and applications they are involved in, and therefore needs to be analyzed precisely. The primary goal of this thesis is to resolve and analyze the dynamics close to singularity when free surface flows experience a topological transition, using a combination of theory, experiments, and numerical simulations. The first problem under consideration focuses on the dynamics following flow shut-off in bottle filling applications that are relevant to pharmaceutical and consumer products industry, using numerical techniques based on Galerkin Finite Element Methods (GFEM). The second problem addresses the dual flow behavior of aqueous foams that are observed in oil and gas fields and estimates the relevant parameters that describe such flows through a series of experiments. The third problem aims at understanding the drop formation of Newtonian and Carreau fluids, computationally using GFEM. The drops are formed as a result of imposed flow rates or expanding bubbles similar to those of piezo actuated and thermal ink-jet nozzles. The focus of fourth problem is on the evolution of thinning threads of Newtonian fluids and suspensions towards singularity, using computations based on GFEM and experimental
Critical manifold of the kagome-lattice Potts model
Lykke Jacobsen, Jesper; Scullard, Christian R.
2012-12-01
Any two-dimensional infinite regular lattice G can be produced by tiling the plane with a finite subgraph B⊆G we call B a basis of G. We introduce a two-parameter graph polynomial PB(q, v) that depends on B and its embedding in G. The algebraic curve PB(q, v) = 0 is shown to provide an approximation to the critical manifold of the q-state Potts model, with coupling v = eK - 1, defined on G. This curve predicts the phase diagram not only in the physical ferromagnetic regime (v > 0), but also in the antiferromagnetic (v computation of PB(q, v) can be used to detect exact solvability of the Potts model on G. We illustrate the method for two choices of G: the square lattice, where the Potts model has been exactly solved, and the kagome lattice, where it has not. For the square lattice we correctly reproduce the known phase diagram, including the antiferromagnetic transition and the singularities in the Berker-Kadanoff phase at certain Beraha numbers. For the kagome lattice, taking the smallest basis with six edges we recover a well-known (but now refuted) conjecture of F Y Wu. Larger bases provide successive improvements on this formula, giving a natural extension of Wu’s approach. We perform large-scale numerical computations for comparison and find excellent agreement with the polynomial predictions. For v > 0 the accuracy of the predicted critical coupling vc is of the order 10-4 or 10-5 for the six-edge basis, and improves to 10-6 or 10-7 for the largest basis studied (with 36 edges). This article is part of ‘Lattice models and integrability’, a special issue of Journal of Physics A: Mathematical and Theoretical in honour of F Y Wu's 80th birthday.
Mathematical models with singularities a zoo of singular creatures
Torres, Pedro J
2015-01-01
The book aims to provide an unifying view of a variety (a 'zoo') of mathematical models with some kind of singular nonlinearity, in the sense that it becomes infinite when the state variable approaches a certain point. Up to 11 different concrete models are analyzed in separate chapters. Each chapter starts with a discussion of the basic model and its physical significance. Then the main results and typical proofs are outlined, followed by open problems. Each chapter is closed by a suitable list of references. The book may serve as a guide for researchers interested in the modelling of real world processes.
On important precursor of singular optics (tutorial)
Polyanskii, Peter V.; Felde, Christina V.; Bogatyryova, Halina V.; Konovchuk, Alexey V.
2018-01-01
The rise of singular optics is usually associated with the seminal paper by J. F. Nye and M. V. Berry [Proc. R. Soc. Lond. A, 336, 165-189 (1974)]. Intense development of this area of modern photonics has started since the early eighties of the XX century due to invention of the interfrence technique for detection and diagnostics of phase singularities, such as optical vortices in complex speckle-structured light fields. The next powerful incentive for formation of singular optics into separate area of the science on light was connectected with discovering of very practical technique for creation of singular optical beams of various kinds on the base of computer-generated holograms. In the eghties and ninetieth of the XX century, singular optics evolved, almost entirely, under the approximation of complete coherency of light field. Only at the threshold of the XXI century, it has been comprehended that the singular-optics approaches can be fruitfully expanded onto partially spatially coherent, partially polarized and polychromatic light fields supporting singularities of new kinds, that has been resulted in establishing of correlation singular optics. Here we show that correlation singular optics has much deeper roots, ascending to "pre-singular" and even pre-laser epoch and associated with the concept of partial coherence and polarization. It is remarcable that correlation singular optics in its present interpretation has forestalled the standard coherent singular optics. This paper is timed to the sixtieth anniversary of the most profound precursor of modern correlation singular optics [J. Opt. Soc. Am., 47, 895-902 (1957)].
Czech Academy of Sciences Publication Activity Database
Krepl, Ondřej; Klusák, Jan
2017-01-01
Roč. 90, AUG (2017), s. 85-99 ISSN 0167-8442 R&D Projects: GA MŠk(CZ) LQ1601; GA ČR(CZ) GA16-18702S Institutional support: RVO:68081723 Keywords : General singular stress concentrator * Generalized fracture mechanics * Muskhelishvili plane elasticity * Sharp material inclusion * Singular and non-singular stress terms Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 2.659, year: 2016
Kim, Hyunwoo J; Adluru, Nagesh; Collins, Maxwell D; Chung, Moo K; Bendlin, Barbara B; Johnson, Sterling C; Davidson, Richard J; Singh, Vikas
2014-06-23
Linear regression is a parametric model which is ubiquitous in scientific analysis. The classical setup where the observations and responses, i.e., ( x i , y i ) pairs, are Euclidean is well studied. The setting where y i is manifold valued is a topic of much interest, motivated by applications in shape analysis, topic modeling, and medical imaging. Recent work gives strategies for max-margin classifiers, principal components analysis, and dictionary learning on certain types of manifolds. For parametric regression specifically, results within the last year provide mechanisms to regress one real-valued parameter, x i ∈ R , against a manifold-valued variable, y i ∈ . We seek to substantially extend the operating range of such methods by deriving schemes for multivariate multiple linear regression -a manifold-valued dependent variable against multiple independent variables, i.e., f : R n → . Our variational algorithm efficiently solves for multiple geodesic bases on the manifold concurrently via gradient updates. This allows us to answer questions such as: what is the relationship of the measurement at voxel y to disease when conditioned on age and gender. We show applications to statistical analysis of diffusion weighted images, which give rise to regression tasks on the manifold GL ( n )/ O ( n ) for diffusion tensor images (DTI) and the Hilbert unit sphere for orientation distribution functions (ODF) from high angular resolution acquisition. The companion open-source code is available on nitrc.org/projects/riem_mglm.
Symmetry generators in singular theories
International Nuclear Information System (INIS)
Lavrov, P.M.; Tyutin, I.V.
1989-01-01
It is proved that in the singular nondegenerate theories any symmetry of the lagrangian under non-point transformations of lagrangian variables with the open (in the general case) algebra in the hamiltonian approach generates corresponding transformations of canonical variables the generator of which is the Noether charge with respect to the Dirac brackets. On the surface of all constraints these transformations leave the hamiltonian invariant and the algebra of the Noether charges is closed. As a consequence it is shown that the nilpotent BRST charge operator always exists in gauge theories of the general form (if possible anomalies are not taken into account)
Topological resolution of gauge theory singularities
Energy Technology Data Exchange (ETDEWEB)
Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo
2013-08-21
Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric S U ( 2 ) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.
Topological resolution of gauge theory singularities
Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo
2013-08-01
Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric SU(2) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.
Exact solutions and singularities in string theory
International Nuclear Information System (INIS)
Horowitz, G.T.; Tseytlin, A.A.
1994-01-01
We construct two new classes of exact solutions to string theory which are not of the standard plane wave of gauged WZW type. Many of these solutions have curvature singularities. The first class includes the fundamental string solution, for which the string coupling vanishes near the singularity. This suggests that the singularity may not be removed by quantum corrections. The second class consists of hybrids of plane wave and gauged WZW solutions. We discuss a four-dimensional example in detail
DEKOMPOSISI NILAI SINGULAR PADA SISTEM PENGENALAN WAJAH
Beni Utomo
2012-01-01
Dekomposisi Nilai Singular atau Singular Value Decomposition (SVD)merupakan salah satu cara untuk menyatakan Principal Component Analysis (PCA).PCA sendiri merupakan suatu proses untuk menemukan kontributor-kontributorpenting dari suatu data berdasarkan besaran statistika deviasi standart dan variansi.SVD merupakan proses untuk mendapatkan matriks diagonal yang elementak nolnya merupakan nilai singular yang akarnya merupakan eigenvalue.SVD atas matriks kovarian C berbentuk C = U?V T dengan ma...
Exact Polynomial Eigenmodes for Homogeneous Spherical 3-Manifolds
Weeks, Jeffrey R.
2005-01-01
Observational data hints at a finite universe, with spherical manifolds such as the Poincare dodecahedral space tentatively providing the best fit. Simulating the physics of a model universe requires knowing the eigenmodes of the Laplace operator on the space. The present article provides explicit polynomial eigenmodes for all globally homogeneous 3-manifolds: the Poincare dodecahedral space S3/I*, the binary octahedral space S3/O*, the binary tetrahedral space S3/T*, the prism manifolds S3/D...
Homotopy classification of contact foliations on open contact manifolds
Indian Academy of Sciences (India)
64
structures on a closed manifold M, then there exists an isotopy ψt, t ∈ I, of M such that ψt : (M,ξ0) → (M,ξt) is isocontact for all t ∈ I. Remark 2.6. Gray's stability theorem is not valid on non-closed manifolds. We shall see an extension of Theorem 2.5 for such manifolds in Theorem 1.1 which is one of the main results.
Some problems of dynamical systems on three dimensional manifolds
International Nuclear Information System (INIS)
Dong Zhenxie.
1985-08-01
It is important to study the dynamical systems on 3-dimensional manifolds, its importance is showing up in its close relation with our life. Because of the complication of topological structure of Dynamical systems on 3-dimensional manifolds, generally speaking, the search for 3-dynamical systems is not easier than 2-dynamical systems. This paper is a summary of the partial result of dynamical systems on 3-dimensional manifolds. (author)
Total Generalized Variation for Manifold-valued Data
Bredies, K.; Holler, M.; Storath, M.; Weinmann, A.
2017-01-01
In this paper we introduce the notion of second-order total generalized variation (TGV) regularization for manifold-valued data. We provide an axiomatic approach to formalize reasonable generalizations of TGV to the manifold setting and present two possible concrete instances that fulfill the proposed axioms. We provide well-posedness results and present algorithms for a numerical realization of these generalizations to the manifold setup. Further, we provide experimental results for syntheti...
CT Image Reconstruction in a Low Dimensional Manifold
Cong, Wenxiang; Wang, Ge; Yang, Qingsong; Hsieh, Jiang; Li, Jia; Lai, Rongjie
2017-01-01
Regularization methods are commonly used in X-ray CT image reconstruction. Different regularization methods reflect the characterization of different prior knowledge of images. In a recent work, a new regularization method called a low-dimensional manifold model (LDMM) is investigated to characterize the low-dimensional patch manifold structure of natural images, where the manifold dimensionality characterizes structural information of an image. In this paper, we propose a CT image reconstruc...
Box graphs and singular fibers
International Nuclear Information System (INIS)
Hayashi, Hirotaka; Lawrie, Craig; Morrison, David R.; Schäfer-Nameki, Sakura
2014-01-01
We determine the higher codimension fibers of elliptically fibered Calabi-Yau fourfolds with section by studying the three-dimensional N=2 supersymmetric gauge theory with matter which describes the low energy effective theory of M-theory compactified on the associated Weierstrass model, a singular model of the fourfold. Each phase of the Coulomb branch of this theory corresponds to a particular resolution of the Weierstrass model, and we show that these have a concise description in terms of decorated box graphs based on the representation graph of the matter multiplets, or alternatively by a class of convex paths on said graph. Transitions between phases have a simple interpretation as “flopping' of the path, and in the geometry correspond to actual flop transitions. This description of the phases enables us to enumerate and determine the entire network between them, with various matter representations for all reductive Lie groups. Furthermore, we observe that each network of phases carries the structure of a (quasi-)minuscule representation of a specific Lie algebra. Interpreted from a geometric point of view, this analysis determines the generators of the cone of effective curves as well as the network of flop transitions between crepant resolutions of singular elliptic Calabi-Yau fourfolds. From the box graphs we determine all fiber types in codimensions two and three, and we find new, non-Kodaira, fiber types for E 6 , E 7 and E 8
Naked singularity, firewall, and Hawking radiation.
Zhang, Hongsheng
2017-06-21
Spacetime singularity has always been of interest since the proof of the Penrose-Hawking singularity theorem. Naked singularity naturally emerges from reasonable initial conditions in the collapsing process. A recent interesting approach in black hole information problem implies that we need a firewall to break the surplus entanglements among the Hawking photons. Classically, the firewall becomes a naked singularity. We find some vacuum analytical solutions in R n -gravity of the firewall-type and use these solutions as concrete models to study the naked singularities. By using standard quantum theory, we investigate the Hawking radiation emitted from the black holes with naked singularities. Here we show that the singularity itself does not destroy information. A unitary quantum theory works well around a firewall-type singularity. We discuss the validity of our result in general relativity. Further our result demonstrates that the temperature of the Hawking radiation still can be expressed in the form of the surface gravity divided by 2π. This indicates that a naked singularity may not compromise the Hakwing evaporation process.
Spacetime averaging of exotic singularity universes
International Nuclear Information System (INIS)
Dabrowski, Mariusz P.
2011-01-01
Taking a spacetime average as a measure of the strength of singularities we show that big-rips (type I) are stronger than big-bangs. The former have infinite spacetime averages while the latter have them equal to zero. The sudden future singularities (type II) and w-singularities (type V) have finite spacetime averages. The finite scale factor (type III) singularities for some values of the parameters may have an infinite average and in that sense they may be considered stronger than big-bangs.
Dissipative control for singular impulsive dynamical systems
Directory of Open Access Journals (Sweden)
Li Yang
2012-04-01
Full Text Available The aim of this work is to study the dissipative control problem for singular impulsive dynamical systems. We start by introducing the impulse to the singular systems, and give the definition of the dissipation for singular impulsive dynamical systems. Then we discuss the dissipation of singular impulsive dynamical systems, we obtain some sufficient and necessary conditions for dissipation of these systems by solving some linear matrix inequalities (LMIs. By using this method, we design a state feedback controller to make the closed-loop system dissipative. At last, we testify the feasibility of the method by a numerical example.
Directory of Open Access Journals (Sweden)
Zena M Hira
Full Text Available Microarray databases are a large source of genetic data, which, upon proper analysis, could enhance our understanding of biology and medicine. Many microarray experiments have been designed to investigate the genetic mechanisms of cancer, and analytical approaches have been applied in order to classify different types of cancer or distinguish between cancerous and non-cancerous tissue. However, microarrays are high-dimensional datasets with high levels of noise and this causes problems when using machine learning methods. A popular approach to this problem is to search for a set of features that will simplify the structure and to some degree remove the noise from the data. The most widely used approach to feature extraction is principal component analysis (PCA which assumes a multivariate Gaussian model of the data. More recently, non-linear methods have been investigated. Among these, manifold learning algorithms, for example Isomap, aim to project the data from a higher dimensional space onto a lower dimension one. We have proposed a priori manifold learning for finding a manifold in which a representative set of microarray data is fused with relevant data taken from the KEGG pathway database. Once the manifold has been constructed the raw microarray data is projected onto it and clustering and classification can take place. In contrast to earlier fusion based methods, the prior knowledge from the KEGG databases is not used in, and does not bias the classification process--it merely acts as an aid to find the best space in which to search the data. In our experiments we have found that using our new manifold method gives better classification results than using either PCA or conventional Isomap.
LCD OF AIR INTAKE MANIFOLDS PHASE 2: FORD F250 AIR INTAKE MANIFOLD
The life cycle design methodology was applied to the design analysis of three alternatives for the lower plehum of the air intake manifold for us with a 5.4L F-250 truck engine: a sand cast aluminum, a lost core molded nylon composite, and a vibration welded nylon composite. The ...
Geometry of manifolds with non-negative sectional curvature
Dearricott, Owen; Kennard, Lee; Searle, Catherine; Weingart, Gregor; Ziller, Wolfgang
2014-01-01
Providing an up-to-date overview of the geometry of manifolds with non-negative sectional curvature, this volume gives a detailed account of the most recent research in the area. The lectures cover a wide range of topics such as general isometric group actions, circle actions on positively curved four manifolds, cohomogeneity one actions on Alexandrov spaces, isometric torus actions on Riemannian manifolds of maximal symmetry rank, n-Sasakian manifolds, isoparametric hypersurfaces in spheres, contact CR and CR submanifolds, Riemannian submersions and the Hopf conjecture with symmetry. Also included is an introduction to the theory of exterior differential systems.
Variable area manifolds for ring mirror heat exchangers
Eng, Albert; Senterfitt, Donald R.
1988-05-01
A laser ring mirror assembly is disclosed which supports and cools an annular ring mirror of a high powered laser with a cooling manifold which has a coolant flow design which is intended to reduce thermal distortions of the ring mirror by minimizing azimuthal variations in temperature around its circumference. The cooling manifold has complementary pairs of cooling passages each of which conduct coolant in opposite flow directions. The manifold also houses adjusters which vary the depth between the annular ring mirror and each cooling, and which vary the flow area of the cooling passage to produce a control over the cooling characteristics of the cooling manifold.
Totally Contact Umbilical Lightlike Hypersurfaces of Indefinite -Manifolds
Directory of Open Access Journals (Sweden)
Rachna Rani
2013-01-01
Full Text Available We study totally contact umbilical lightlike hypersurfaces of indefinite -manifolds and prove the nonexistence of totally contact umbilical lightlike hypersurface in indefinite -space form.
Geomechanical time series and its singularity spectrum analysis
Czech Academy of Sciences Publication Activity Database
Lyubushin, Alexei A.; Kaláb, Zdeněk; Lednická, Markéta
2012-01-01
Roč. 47, č. 1 (2012), s. 69-77 ISSN 1217-8977 R&D Projects: GA ČR GA105/09/0089 Institutional research plan: CEZ:AV0Z30860518 Keywords : geomechanical time series * singularity spectrum * time series segmentation * laser distance meter Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.347, year: 2012 http://www.akademiai.com/content/88v4027758382225/fulltext.pdf
Singular value decomposition methods for wave propagation analysis
Czech Academy of Sciences Publication Activity Database
Santolík, Ondřej; Parrot, M.; Lefeuvre, F.
2003-01-01
Roč. 38, č. 1 (2003), s. 10-1-10-13 ISSN 0048-6604 R&D Projects: GA ČR GA205/01/1064 Grant - others:Barrande(CZ) 98039/98055 Institutional research plan: CEZ:AV0Z3042911; CEZ:MSM 113200004 Keywords : wave propagation * singular value decomposition Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.832, year: 2003
Fatigue crack shape prediction based on vertex singularity
Czech Academy of Sciences Publication Activity Database
Hutař, Pavel; Náhlík, Luboš
2008-01-01
Roč. 2, č. 1 (2008), s. 45-52 ISSN 1802-680X R&D Projects: GA ČR GA101/08/1623; GA ČR GP106/06/P239 Institutional research plan: CEZ:AV0Z20410507 Keywords : 3D vertex singularity * crack shape * fatigue crack propagation Subject RIV: JL - Materials Fatigue, Friction Mechanics
Solving singular convolution equations using the inverse fast Fourier transform
Czech Academy of Sciences Publication Activity Database
Krajník, E.; Montesinos, V.; Zizler, P.; Zizler, Václav
2012-01-01
Roč. 57, č. 5 (2012), s. 543-550 ISSN 0862-7940 R&D Projects: GA AV ČR IAA100190901 Institutional research plan: CEZ:AV0Z10190503 Keywords : singular convolution equations * fast Fourier transform * tempered distribution Subject RIV: BA - General Mathematics Impact factor: 0.222, year: 2012 http://www.springerlink.com/content/m8437t3563214048/
Space-by-time manifold representation of dynamic facial expressions for emotion categorization
Delis, Ioannis; Chen, Chaona; Jack, Rachael E.; Garrod, Oliver G. B.; Panzeri, Stefano; Schyns, Philippe G.
2016-01-01
Visual categorization is the brain computation that reduces high-dimensional information in the visual environment into a smaller set of meaningful categories. An important problem in visual neuroscience is to identify the visual information that the brain must represent and then use to categorize visual inputs. Here we introduce a new mathematical formalism—termed space-by-time manifold decomposition—that describes this information as a low-dimensional manifold separable in space and time. We use this decomposition to characterize the representations used by observers to categorize the six classic facial expressions of emotion (happy, surprise, fear, disgust, anger, and sad). By means of a Generative Face Grammar, we presented random dynamic facial movements on each experimental trial and used subjective human perception to identify the facial movements that correlate with each emotion category. When the random movements projected onto the categorization manifold region corresponding to one of the emotion categories, observers categorized the stimulus accordingly; otherwise they selected “other.” Using this information, we determined both the Action Unit and temporal components whose linear combinations lead to reliable categorization of each emotion. In a validation experiment, we confirmed the psychological validity of the resulting space-by-time manifold representation. Finally, we demonstrated the importance of temporal sequencing for accurate emotion categorization and identified the temporal dynamics of Action Unit components that cause typical confusions between specific emotions (e.g., fear and surprise) as well as those resolving these confusions. PMID:27305521
Integral manifolding structure for fuel cell core having parallel gas flow
Herceg, Joseph E.
1984-01-01
Disclosed herein are manifolding means for directing the fuel and oxidant gases to parallel flow passageways in a fuel cell core. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte and interconnect wall consists respectively of anode and cathode materials layered on the opposite sides of electrolyte material, or on the opposite sides of interconnect material. A core wall projects beyond the open ends of the defined core passageways and is disposed approximately midway between and parallel to the adjacent overlaying and underlying interconnect walls to define manifold chambers therebetween on opposite sides of the wall. Each electrolyte wall defining the flow passageways is shaped to blend into and be connected to this wall in order to redirect the corresponding fuel and oxidant passageways to the respective manifold chambers either above or below this intermediate wall. Inlet and outlet connections are made to these separate manifold chambers respectively, for carrying the fuel and oxidant gases to the core, and for carrying their reaction products away from the core.
Patterns and singular features of extreme fluctuational paths of a periodically driven system
Energy Technology Data Exchange (ETDEWEB)
Chen, Zhen, E-mail: czkillua@icloud.com; Liu, Xianbin, E-mail: xbliu@nuaa.edu.cn
2016-05-20
Large fluctuations of an overdamped periodically driven oscillating system are investigated theoretically and numerically in the limit of weak noise. Optimal paths fluctuating to certain point are given by statistical analysis using the concept of prehistory probability distribution. The validity of statistical results is verified by solutions of boundary value problem. Optimal paths are found to change topologically when terminating points lie at opposite side of a switching line. Patterns of extreme paths are plotted through a proper parameterization of Lagrangian manifold having complicated structures. Several extreme paths to the same point are obtained by multiple solutions of boundary value solutions. Actions along various extreme paths are calculated and associated analysis is performed in relation to the singular features of the patterns. - Highlights: • Both extreme and optimal paths are obtained by various methods. • Boundary value problems are solved to ensure the validity of statistical results. • Topological structure of Lagrangian manifold is considered. • Singularities of the pattern of extreme paths are studied.
The "parity" anomaly on an unorientable manifold
Witten, Edward
2016-11-01
The "parity" anomaly—more accurately described as an anomaly in time-reversal or reflection symmetry—arises in certain theories of fermions coupled to gauge fields and/or gravity in a spacetime of odd dimension. This anomaly has traditionally been studied on orientable manifolds only, but recent developments involving topological superconductors have made it clear that one can get more information by asking what happens on an unorientable manifold. In this paper, we give a full description of the "parity" anomaly for fermions coupled to gauge fields and gravity in 2 +1 dimensions on a possibly unorientable spacetime. We consider an application to topological superconductors and another application to M theory. The application to topological superconductors involves using knowledge of the "parity" anomaly as an ingredient in constructing gapped boundary states of these systems and in particular in gapping the boundary of a ν =16 system in a topologically trivial fashion. The application to M theory involves showing the consistency of the path integral of an M theory membrane on a possibly unorientable worldvolume. In the past, this has been done only in the orientable case.
Fuel rod assembly to manifold attachment
Donck, Harry A.; Veca, Anthony R.; Snyder, Jr., Harold J.
1980-01-01
A fuel element is formed with a plurality of fuel rod assemblies detachably connected to an overhead support with each of the fuel rod assemblies having a gas tight seal with the support to allow internal fission gaseous products to flow without leakage from the fuel rod assemblies into a vent manifold passageway system on the support. The upper ends of the fuel rod assemblies are located at vertically extending openings in the support and upper threaded members are threaded to the fuel rod assemblies to connect the latter to the support. The preferred threaded members are cap nuts having a dome wall encircling an upper threaded end on the fuel rod assembly and having an upper sealing surface for sealing contact with the support. Another and lower seal is achieved by abutting a sealing surface on each fuel rod assembly with the support. A deformable portion on the cap nut locks the latter against inadvertent turning off the fuel rod assembly. Orienting means on the fuel rod and support primarily locates the fuel rods azimuthally for reception of a deforming tool for the cap nut. A cross port in the fuel rod end plug discharges into a sealed annulus within the support, which serves as a circumferential chamber, connecting the manifold gas passageways in the support.
Smooth manifold structure for extreme channels
Iten, Raban; Colbeck, Roger
2018-01-01
A quantum channel from a system A of dimension dA to a system B of dimension dB is a completely positive trace-preserving map from complex dA × dA to dB × dB matrices, and the set of all such maps with Kraus rank r has the structure of a smooth manifold. We describe this set in two ways. First, as a quotient space of (a subset of) the rdB × dA dimensional Stiefel manifold. Second, as the set of all Choi-states of a fixed rank r. These two descriptions are topologically equivalent. This allows us to show that the set of all Choi-states corresponding to extreme channels from system A to system B of a fixed Kraus rank r is a smooth submanifold of dimension 2 r dAdB-dA2-r2 of the set of all Choi-states of rank r. As an application, we derive a lower bound on the number of parameters required for a quantum circuit topology to be able to approximate all extreme channels from A to B arbitrarily well.
Lagrangian descriptors of driven chemical reaction manifolds.
Craven, Galen T; Junginger, Andrej; Hernandez, Rigoberto
2017-08-01
The persistence of a transition state structure in systems driven by time-dependent environments allows the application of modern reaction rate theories to solution-phase and nonequilibrium chemical reactions. However, identifying this structure is problematic in driven systems and has been limited by theories built on series expansion about a saddle point. Recently, it has been shown that to obtain formally exact rates for reactions in thermal environments, a transition state trajectory must be constructed. Here, using optimized Lagrangian descriptors [G. T. Craven and R. Hernandez, Phys. Rev. Lett. 115, 148301 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.148301], we obtain this so-called distinguished trajectory and the associated moving reaction manifolds on model energy surfaces subject to various driving and dissipative conditions. In particular, we demonstrate that this is exact for harmonic barriers in one dimension and this verification gives impetus to the application of Lagrangian descriptor-based methods in diverse classes of chemical reactions. The development of these objects is paramount in the theory of reaction dynamics as the transition state structure and its underlying network of manifolds directly dictate reactivity and selectivity.
Efficient orbit integration by manifold correction methods.
Fukushima, Toshio
2005-12-01
Triggered by a desire to investigate, numerically, the planetary precession through a long-term numerical integration of the solar system, we developed a new formulation of numerical integration of orbital motion named manifold correct on methods. The main trick is to rigorously retain the consistency of physical relations, such as the orbital energy, the orbital angular momentum, or the Laplace integral, of a binary subsystem. This maintenance is done by applying a correction to the integrated variables at each integration step. Typical methods of correction are certain geometric transformations, such as spatial scaling and spatial rotation, which are commonly used in the comparison of reference frames, or mathematically reasonable operations, such as modularization of angle variables into the standard domain [-pi, pi). The form of the manifold correction methods finally evolved are the orbital longitude methods, which enable us to conduct an extremely precise integration of orbital motions. In unperturbed orbits, the integration errors are suppressed at the machine epsilon level for an indefinitely long period. In perturbed cases, on the other hand, the errors initially grow in proportion to the square root of time and then increase more rapidly, the onset of which depends on the type and magnitude of the perturbations. This feature is also realized for highly eccentric orbits by applying the same idea as used in KS-regularization. In particular, the introduction of time elements greatly enhances the performance of numerical integration of KS-regularized orbits, whether the scaling is applied or not.
Manifold-Based Visual Object Counting.
Wang, Yi; Zou, Yuexian; Wang, Wenwu
2018-07-01
Visual object counting (VOC) is an emerging area in computer vision which aims to estimate the number of objects of interest in a given image or video. Recently, object density based estimation method is shown to be promising for object counting as well as rough instance localization. However, the performance of this method tends to degrade when dealing with new objects and scenes. To address this limitation, we propose a manifold-based method for visual object counting (M-VOC), based on the manifold assumption that similar image patches share similar object densities. Firstly, the local geometry of a given image patch is represented linearly by its neighbors using a predefined patch training set, and the object density of this given image patch is reconstructed by preserving the local geometry using locally linear embedding. To improve the characterization of local geometry, additional constraints such as sparsity and non-negativity are also considered via regularization, nonlinear mapping, and kernel trick. Compared with the state-of-the-art VOC methods, our proposed M-VOC methods achieve competitive performance on seven benchmark datasets. Experiments verify that the proposed M-VOC methods have several favorable properties, such as robustness to the variation in the size of training dataset and image resolution, as often encountered in real-world VOC applications.
Quantum transitions through cosmological singularities
Energy Technology Data Exchange (ETDEWEB)
Bramberger, Sebastian F.; Lehners, Jean-Luc [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), 14476 Potsdam-Golm (Germany); Hertog, Thomas; Vreys, Yannick, E-mail: sebastian.bramberger@aei.mpg.de, E-mail: thomas.hertog@kuleuven.be, E-mail: jlehners@aei.mpg.de, E-mail: yannick.vreys@kuleuven.be [Institute for Theoretical Physics, KU Leuven, 3001 Leuven (Belgium)
2017-07-01
In a quantum theory of cosmology spacetime behaves classically only in limited patches of the configuration space on which the wave function of the universe is defined. Quantum transitions can connect classical evolution in different patches. Working in the saddle point approximation and in minisuperspace we compute quantum transitions connecting inflationary histories across a de Sitter like throat or a singularity. This supplies probabilities for how an inflating universe, when evolved backwards, transitions and branches into an ensemble of histories on the opposite side of a quantum bounce. Generalising our analysis to scalar potentials with negative regions we identify saddle points describing a quantum transition between a classically contracting, crunching ekpyrotic phase and an inflationary universe.
Directory of Open Access Journals (Sweden)
Elvio Alccinelli
2001-07-01
Full Text Available En este artículo pretendemos mostrar que le conjunto de las economías singulares, si bien pequeño desde el punto de vista de la topología y/o desde el punto de vista de la teoría de la medida, tiene importantes efectos en el desarrollo de los regímenes económicos. Es el responsable de los cambios abruptos en los estados de equilibrio y de la multiplicidad de tales estados. Permite además establecer a partir de los tipos de singularidades posibles, una partición del conjunto de economías según tenga lugar uno u otro tipo de singularidad cuya presencia o no, caracteriza el comportamiento posible de la economía en cuestión.
Cold atoms in singular potentials
International Nuclear Information System (INIS)
Denschlag, J. P.
1998-09-01
We studied both theoretically and experimentally the interaction between cold Li atoms from a magnetic-optical trap (MOT) and a charged or current-carrying wire. With this system, we were able to realize 1/r 2 and 1/r potentials in two dimensions and to observe the motion of cold atoms in both potentials. For an atom in an attractive 1/r 2 potential, there exist no stable trajectories, instead there is a characteristic class of trajectories for which atoms fall into the singularity. We were able to observe this falling of atoms into the center of the potential. Moreover, by probing the singular 1/r 2 potential with atomic clouds of varying size and temperature we extracted scaling properties of the atom-wire interaction. For very cold atoms, and very thin wires the motion of the atoms must be treated quantum mechanically. Here we predict that the absorption cross section for the 1/r 2 potential should exhibit quantum steps. These quantum steps are a manifestation of the quantum mechanical decomposition of plane waves into partial waves. For the second part of this work, we realized a two dimensional 1/r potential for cold atoms. If the potential is attractive, the atoms can be bound and follow Kepler-like orbits around the wire. The motion in the third dimension along the wire is free. We were able to exploit this property and constructed a novel cold atom guide, the 'Kepler guide'. We also demonstrated another type of atom guide (the 'side guide'), by combining the magnetic field of the wire with a homogeneous offset magnetic field. In this case, the atoms are held in a potential 'tube' on the side of the wire. The versatility, simplicity, and scaling properties of this guide make it an interesting technique. (author)
Singular multiparameter dynamic equations with distributional ...
African Journals Online (AJOL)
In this paper, we consider both singular single and several multiparameter second order dynamic equations with distributional potentials on semi-innite time scales. At rst we construct Weyl's theory for the single singular multiparameter dynamic equation with distributional potentials and we prove that the forward jump of at ...
Spectral analysis for differential operators with singularities
Directory of Open Access Journals (Sweden)
Vjacheslav Anatoljevich Yurko
2004-01-01
Full Text Available Nonselfadjoint boundary value problems for second-order differential equations on a finite interval with nonintegrable singularities inside the interval are considered under additional sewing conditions for solutions at the singular point. We study properties of the spectrum, prove the completeness of eigen- and associated functions, and investigate the inverse problem of recovering the boundary value problem from its spectral characteristics.
Singularities in the nonisotropic Boltzmann equation
International Nuclear Information System (INIS)
Garibotti, C.R.; Martiarena, M.L.; Zanette, D.
1987-09-01
We consider solutions of the nonlinear Boltzmann equation (NLBE) with anisotropic singular initial conditions, which give a simplified model for the penetration of a monochromatic beam on a rarified target. The NLBE is transformed into an integral equation which is solved iteratively and the evolution of the initial singularities is discussed. (author). 5 refs
Timelike Constant Mean Curvature Surfaces with Singularities
DEFF Research Database (Denmark)
Brander, David; Svensson, Martin
2014-01-01
We use integrable systems techniques to study the singularities of timelike non-minimal constant mean curvature (CMC) surfaces in the Lorentz–Minkowski 3-space. The singularities arise at the boundary of the Birkhoff big cell of the loop group involved. We examine the behavior of the surfaces...
Reasons for singularity in robot teleoperation
DEFF Research Database (Denmark)
Marhenke, Ilka; Fischer, Kerstin; Savarimuthu, Thiusius Rajeeth
2014-01-01
In this paper, the causes for singularity of a robot arm in teleoperation for robot learning from demonstration are analyzed. Singularity is the alignment of robot joints, which prevents the configuration of the inverse kinematics. Inspired by users' own hypotheses, we investigated speed and delay...
On the genericity of spacetime singularities
Indian Academy of Sciences (India)
in terms of the incompleteness of non-space-like geodesics in spacetime. It is possible that such ... outside. The above discussion does not imply the absence of singularity-free solutions to Einstein's equations. ..... spherical collapse also turns out to be a stable feature as implied by the singularity theorems discussed above.
The Geometry of Black Hole Singularities
Directory of Open Access Journals (Sweden)
Ovidiu Cristinel Stoica
2014-01-01
Full Text Available Recent results show that important singularities in General Relativity can be naturally described in terms of finite and invariant canonical geometric objects. Consequently, one can write field equations which are equivalent to Einstein's at nonsingular points but, in addition remain well-defined and smooth at singularities. The black hole singularities appear to be less undesirable than it was thought, especially after we remove the part of the singularity due to the coordinate system. Black hole singularities are then compatible with global hyperbolicity and do not make the evolution equations break down, when these are expressed in terms of the appropriate variables. The charged black holes turn out to have smooth potential and electromagnetic fields in the new atlas. Classical charged particles can be modeled, in General Relativity, as charged black hole solutions. Since black hole singularities are accompanied by dimensional reduction, this should affect Feynman's path integrals. Therefore, it is expected that singularities induce dimensional reduction effects in Quantum Gravity. These dimensional reduction effects are very similar to those postulated in some approaches to make Quantum Gravity perturbatively renormalizable. This may provide a way to test indirectly the effects of singularities, otherwise inaccessible.
Nietzsche, immortality, singularity and eternal recurrence | Olivier ...
African Journals Online (AJOL)
Moreover, once anything has existed, it is in a certain sense, for Nietzsche, necessary despite its temporal singularity. Therefore, to be able to rise to the task of affirming certain actions or experiences in one's own life, bestows on it not merely this kind of necessary singularity, but what he thought of as 'eternal recurrence' –
Discrete variable representation for singular Hamiltonians
DEFF Research Database (Denmark)
Schneider, B. I.; Nygaard, Nicolai
2004-01-01
We discuss the application of the discrete variable representation (DVR) to Schrodinger problems which involve singular Hamiltonians. Unlike recent authors who invoke transformations to rid the eigenvalue equation of singularities at the cost of added complexity, we show that an approach based...
Singularity is the Future of ICT Research
African Journals Online (AJOL)
PROF. OLIVER OSUAGWA
2014-06-01
Jun 1, 2014 ... tech systems, and how in the near future. Artificial Intelligence may impact our lives, AI, Robotics, nanotechnology, mechatronics are collaborative agents of technological singularity. The singularity is already here! Think of modern houses now remotely controlled from far distances, think of e-commerce and.
Topology of quasi-projective varieties and Lefschetz theory
International Nuclear Information System (INIS)
Eyral, Christophe
2001-11-01
This paper surveys Lefschetz's theory on the topology of non-singular complex projective varieties. It also includes the more recent generalizations to (singular) quasi-projective varieties, and a discussion on some related questions which are still open. (author)
Czech Academy of Sciences Publication Activity Database
Krisztin, T.; Rezunenko, Oleksandr
2016-01-01
Roč. 260, č. 5 (2016), s. 4454-4472 ISSN 0022-0396 R&D Projects: GA ČR GAP103/12/2431 Institutional support: RVO:67985556 Keywords : Parabolic partial differential equations * State dependent delay * Solution manifold Subject RIV: BC - Control Systems Theory Impact factor: 1.988, year: 2016 http://library.utia.cas.cz/separaty/2016/AS/rezunenko-0457879.pdf
Upper bound theorem for odd-dimensional flag triangulations of manifolds
Czech Academy of Sciences Publication Activity Database
Adamaszek, M.; Hladký, Jan
2016-01-01
Roč. 62, č. 3 (2016), s. 909-928 ISSN 0025-5793 EU Projects: European Commission(XE) 628974 - PAECIDM Institutional support: RVO:67985840 Keywords : f-vector * manifold * extremal graph theory Subject RIV: BA - General Mathematics Impact factor: 0.667, year: 2016 http:// journals .cambridge.org/action/displayAbstract?fromPage=online&aid=10346369&fulltextType=RA&fileId=S0025579316000115
DEFF Research Database (Denmark)
Cappellin, Cecilia; Breinbjerg, Olav; Frandsen, Aksel
2008-01-01
An effective technique for extracting the singularity of plane wave spectra in the computation of antenna aperture fields is proposed. The singular spectrum is first factorized into a product of a finite function and a singular function. The finite function is inverse Fourier transformed...... numerically using the Inverse Fast Fourier Transform, while the singular function is inverse Fourier transformed analytically, using the Weyl-identity, and the two resulting spatial functions are then convolved to produce the antenna aperture field. This article formulates the theory of the singularity...
Singularity: Scientific containers for mobility of compute.
Directory of Open Access Journals (Sweden)
Gregory M Kurtzer
Full Text Available Here we present Singularity, software developed to bring containers and reproducibility to scientific computing. Using Singularity containers, developers can work in reproducible environments of their choosing and design, and these complete environments can easily be copied and executed on other platforms. Singularity is an open source initiative that harnesses the expertise of system and software engineers and researchers alike, and integrates seamlessly into common workflows for both of these groups. As its primary use case, Singularity brings mobility of computing to both users and HPC centers, providing a secure means to capture and distribute software and compute environments. This ability to create and deploy reproducible environments across these centers, a previously unmet need, makes Singularity a game changing development for computational science.
Biclustering via Sparse Singular Value Decomposition
Lee, Mihee
2010-02-16
Sparse singular value decomposition (SSVD) is proposed as a new exploratory analysis tool for biclustering or identifying interpretable row-column associations within high-dimensional data matrices. SSVD seeks a low-rank, checkerboard structured matrix approximation to data matrices. The desired checkerboard structure is achieved by forcing both the left- and right-singular vectors to be sparse, that is, having many zero entries. By interpreting singular vectors as regression coefficient vectors for certain linear regressions, sparsity-inducing regularization penalties are imposed to the least squares regression to produce sparse singular vectors. An efficient iterative algorithm is proposed for computing the sparse singular vectors, along with some discussion of penalty parameter selection. A lung cancer microarray dataset and a food nutrition dataset are used to illustrate SSVD as a biclustering method. SSVD is also compared with some existing biclustering methods using simulated datasets. © 2010, The International Biometric Society.
Manifold corrections on spinning compact binaries
International Nuclear Information System (INIS)
Zhong Shuangying; Wu Xin
2010-01-01
This paper deals mainly with a discussion of three new manifold correction methods and three existing ones, which can numerically preserve or correct all integrals in the conservative post-Newtonian Hamiltonian formulation of spinning compact binaries. Two of them are listed here. One is a new momentum-position scaling scheme for complete consistency of both the total energy and the magnitude of the total angular momentum, and the other is the Nacozy's approach with least-squares correction of the four integrals including the total energy and the total angular momentum vector. The post-Newtonian contributions, the spin effects, and the classification of orbits play an important role in the effectiveness of these six manifold corrections. They are all nearly equivalent to correct the integrals at the level of the machine epsilon for the pure Kepler problem. Once the third-order post-Newtonian contributions are added to the pure orbital part, three of these corrections have only minor effects on controlling the errors of these integrals. When the spin effects are also included, the effectiveness of the Nacozy's approach becomes further weakened, and even gets useless for the chaotic case. In all cases tested, the new momentum-position scaling scheme always shows the optimal performance. It requires a little but not much expensive additional computational cost when the spin effects exist and several time-saving techniques are used. As an interesting case, the efficiency of the correction to chaotic eccentric orbits is generally better than one to quasicircular regular orbits. Besides this, the corrected fast Lyapunov indicators and Lyapunov exponents of chaotic eccentric orbits are large as compared with the uncorrected counterparts. The amplification is a true expression of the original dynamical behavior. With the aid of both the manifold correction added to a certain low-order integration algorithm as a fast and high-precision device and the fast Lyapunov
Stochastic development regression on non-linear manifolds
DEFF Research Database (Denmark)
Kühnel, Line; Sommer, Stefan Horst
2017-01-01
We introduce a regression model for data on non-linear manifolds. The model describes the relation between a set of manifold valued observations, such as shapes of anatomical objects, and Euclidean explanatory variables. The approach is based on stochastic development of Euclidean diffusion proce...
Conformal Vector Fields on Doubly Warped Product Manifolds and Applications
Directory of Open Access Journals (Sweden)
H. K. El-Sayied
2016-01-01
Full Text Available This article aimed to study and explore conformal vector fields on doubly warped product manifolds as well as on doubly warped spacetime. Then we derive sufficient conditions for matter and Ricci collineations on doubly warped product manifolds. A special attention is paid to concurrent vector fields. Finally, Ricci solitons on doubly warped product spacetime admitting conformal vector fields are considered.
The quantum equivariant cohomology of toric manifolds through mirror symmetry
Baptista, J. M.
2008-01-01
Using mirror symmetry as described by Hori and Vafa, we compute the quantum equivariant cohomology ring of toric manifolds. This ring arises naturally in topological gauged sigma-models and is related to the Hamiltonian Gromov-Witten invariants of the target manifold.
Flow and Pressure Distribution in Fuel Cell Manifolds
DEFF Research Database (Denmark)
Lebæk, Jesper; Bang, Mads; Kær, Søren Knudsen
2010-01-01
The manifold is an essential part of the fuel cell stack. Evidently, evenly distributed reactants are a prerequisite for an efficient fuel cell stack. In this study, the cathode manifold ability to distribute air to the cells of a 70 cell stack is investigated experimentally. By means of 20...
Slant Riemannian maps from almost hermitian manifolds | Sahin ...
African Journals Online (AJOL)
As a generalization of holomorphic submersions, anti-invariant submersions and slant submersions, we introduce slant Riemannian maps from almost Hermitian manifolds to Riemannian manifolds. We give examples, obtain the existence conditions of slant Riemannian maps and investigate harmonicity of such maps.
Variable volume combustor with nested fuel manifold system
McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward; Ostebee, Heath Michael
2016-09-13
The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles, a fuel manifold system in communication with the micro-mixer fuel nozzles to deliver a flow of fuel thereto, and a linear actuator to maneuver the micro-mixer fuel nozzles and the fuel manifold system.
Submanifolds in manifolds with metric mixed 3-structures
Ianus, Stere; Ornea, Liviu; Vilcu, Gabriel Eduard
2010-01-01
Mixed 3-structures are odd-dimensional analogues of paraquaternionic structures. They appear naturally on lightlike hypersurfaces of almost paraquaternionic hermitian manifolds. We study invariant and anti-invariant submanifolds in a manifold endowed with a mixed 3-structure and a compatible (semi-Riemannian) metric. Particular attention is given to two cases of ambient space: mixed 3-Sasakian and mixed 3-cosymplectic.
Harmonic Riemannian maps on locally conformal Kaehler manifolds
Indian Academy of Sciences (India)
Abstract. We study harmonic Riemannian maps on locally conformal Kaehler mani- folds (lcK manifolds). We show that if a Riemannian holomorphic map between lcK manifolds is harmonic, then the Lee vector field of the domain belongs to the kernel of the Riemannian map under a condition. When the domain is Kaehler, ...
A new proof of the theorem: Harmonic manifolds with minimal ...
Indian Academy of Sciences (India)
In this note we reprove the known theorem: Harmonic manifolds with minimal horospheres are flat. It turns out that our proof is simpler and more direct than the original one. We also reprove the theorem: Ricci flat harmonic manifolds are flat, which is generally affirmed by appealing to Cheeger–Gromov splitting theorem.
Manifold mapping: a two-level optimization technique
Echeverría, D.; Hemker, P.W.
2008-01-01
In this paper, we analyze in some detail the manifold-mapping optimization technique introduced recently [Echeverría and Hemker in space mapping and defect correction. Comput Methods Appl Math 5(2): 107--136, 2005]. Manifold mapping aims at accelerating optimal design procedures that otherwise
Manifold mapping: a two-level optimization technique
D. Echeverria (David); P.W. Hemker (Piet)
2008-01-01
textabstractIn this paper, we analyze in some detail the manifold-mapping optimization technique introduced recently [Echeverría and Hemker in space mapping and defect correction. Comput Methods Appl Math 5(2): 107-–136, 2005]. Manifold mapping aims at accelerating optimal design procedures
The structure of some classes of K-contact manifolds
Indian Academy of Sciences (India)
metric manifold satisfying the case (1), (2) and (3) is said to be conformally symmetric. [8], ξ-conformally flat [9] and ϕ-conformally flat [3] respectively. In [8], it is proved that a conformally symmetric K-contact manifold is locally isometric to the unit sphere. In ... derivative of ϕ in the characteristic direction ξ vanishes.
Convex functions and optimization methods on Riemannian manifolds
Udrişte, Constantin
1994-01-01
This unique monograph discusses the interaction between Riemannian geometry, convex programming, numerical analysis, dynamical systems and mathematical modelling. The book is the first account of the development of this subject as it emerged at the beginning of the 'seventies. A unified theory of convexity of functions, dynamical systems and optimization methods on Riemannian manifolds is also presented. Topics covered include geodesics and completeness of Riemannian manifolds, variations of the p-energy of a curve and Jacobi fields, convex programs on Riemannian manifolds, geometrical constructions of convex functions, flows and energies, applications of convexity, descent algorithms on Riemannian manifolds, TC and TP programs for calculations and plots, all allowing the user to explore and experiment interactively with real life problems in the language of Riemannian geometry. An appendix is devoted to convexity and completeness in Finsler manifolds. For students and researchers in such diverse fields as pu...
Instantons on sine-cones over Sasakian manifolds
Bunk, Severin; Ivanova, Tatiana A.; Lechtenfeld, Olaf; Popov, Alexander D.; Sperling, Marcus
2014-09-01
We investigate instantons on sine-cones over Sasaki-Einstein and 3-Sasakian manifolds. It is shown that these conical Einstein manifolds are Kähler with torsion (KT) manifolds admitting Hermitian connections with totally antisymmetric torsion. Furthermore, a deformation of the metric on the sine-cone over 3-Sasakian manifolds allows one to introduce a hyper-Kähler with torsion (HKT) structure. In the large-volume limit these KT and HKT spaces become Calabi-Yau and hyper-Kähler conifolds, respectively. We construct gauge connections on complex vector bundles over conical KT and HKT manifolds which solve the instanton equations for Yang-Mills fields in higher dimensions.
Model Transport: Towards Scalable Transfer Learning on Manifolds
DEFF Research Database (Denmark)
Freifeld, Oren; Hauberg, Søren; Black, Michael J.
2014-01-01
We consider the intersection of two research fields: transfer learning and statistics on manifolds. In particular, we consider, for manifold-valued data, transfer learning of tangent-space models such as Gaussians distributions, PCA, regression, or classifiers. Though one would hope to simply use...... ordinary Rn-transfer learning ideas, the manifold structure prevents it. We overcome this by basing our method on inner-product-preserving parallel transport, a well-known tool widely used in other problems of statistics on manifolds in computer vision. At first, this straightforward idea seems to suffer...... “commutes” with learning. Consequently, our compact framework, applicable to a large class of manifolds, is not restricted by the size of either the training or test sets. We demonstrate the approach by transferring PCA and logistic-regression models of real-world data involving 3D shapes and image...
32 CFR 1602.22 - Singular and plural.
2010-07-01
....22 Singular and plural. Words importing the singular number shall include the plural number, and words importing the plural number shall include the singular, except where the context clearly indicates...
Contact manifolds, Lagrangian Grassmannians and PDEs
Directory of Open Access Journals (Sweden)
Eshkobilov Olimjon
2018-02-01
Full Text Available In this paper we review a geometric approach to PDEs. We mainly focus on scalar PDEs in n independent variables and one dependent variable of order one and two, by insisting on the underlying (2n + 1-dimensional contact manifold and the so-called Lagrangian Grassmannian bundle over the latter. This work is based on a Ph.D course given by two of the authors (G. M. and G. M.. As such, it was mainly designed as a quick introduction to the subject for graduate students. But also the more demanding reader will be gratified, thanks to the frequent references to current research topics and glimpses of higher-level mathematics, found mostly in the last sections.
Geometric solitons of Hamiltonian flows on manifolds
Energy Technology Data Exchange (ETDEWEB)
Song, Chong, E-mail: songchong@xmu.edu.cn [School of Mathematical Sciences, Xiamen University, Xiamen 361005 (China); Sun, Xiaowei, E-mail: sunxw@cufe.edu.cn [School of Applied Mathematics, Central University of Finance and Economics, Beijing 100081 (China); Wang, Youde, E-mail: wyd@math.ac.cn [Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China)
2013-12-15
It is well-known that the LIE (Locally Induction Equation) admit soliton-type solutions and same soliton solutions arise from different and apparently irrelevant physical models. By comparing the solitons of LIE and Killing magnetic geodesics, we observe that these solitons are essentially decided by two families of isometries of the domain and the target space, respectively. With this insight, we propose the new concept of geometric solitons of Hamiltonian flows on manifolds, such as geometric Schrödinger flows and KdV flows for maps. Moreover, we give several examples of geometric solitons of the Schrödinger flow and geometric KdV flow, including magnetic curves as geometric Schrödinger solitons and explicit geometric KdV solitons on surfaces of revolution.
Evolutionary global optimization, manifolds and applications
Aguiar e Oliveira Junior, Hime
2016-01-01
This book presents powerful techniques for solving global optimization problems on manifolds by means of evolutionary algorithms, and shows in practice how these techniques can be applied to solve real-world problems. It describes recent findings and well-known key facts in general and differential topology, revisiting them all in the context of application to current optimization problems. Special emphasis is put on game theory problems. Here, these problems are reformulated as constrained global optimization tasks and solved with the help of Fuzzy ASA. In addition, more abstract examples, including minimizations of well-known functions, are also included. Although the Fuzzy ASA approach has been chosen as the main optimizing paradigm, the book suggests that other metaheuristic methods could be used as well. Some of them are introduced, together with their advantages and disadvantages. Readers should possess some knowledge of linear algebra, and of basic concepts of numerical analysis and probability theory....
Manifold Adaptive Label Propagation for Face Clustering.
Pei, Xiaobing; Lyu, Zehua; Chen, Changqing; Chen, Chuanbo
2015-08-01
In this paper, a novel label propagation (LP) method is presented, called the manifold adaptive label propagation (MALP) method, which is to extend original LP by integrating sparse representation constraint into regularization framework of LP method. Similar to most LP, first of all, MALP also finds graph edges from given data and gives weights to the graph edges. Our goal is to find graph weights matrix adaptively. The key advantage of our approach is that MALP simultaneously finds graph weights matrix and predicts the label of unlabeled data. This paper also derives efficient algorithm to solve the proposed problem. Extensions of our MALP in kernel space and robust version are presented. The proposed method has been applied to the problem of semi-supervised face clustering using the well-known ORL, Yale, extended YaleB, and PIE datasets. Our experimental evaluations show the effectiveness of our method.
Consistent Pauli reduction on group manifolds
Baguet, A.; Pope, C. N.; Samtleben, H.
2016-01-01
We prove an old conjecture by Duff, Nilsson, Pope and Warner asserting that the NSsbnd NS sector of supergravity (and more general the bosonic string) allows for a consistent Pauli reduction on any d-dimensional group manifold G, keeping the full set of gauge bosons of the G × G isometry group of the bi-invariant metric on G. The main tool of the construction is a particular generalised Scherk-Schwarz reduction ansatz in double field theory which we explicitly construct in terms of the group's Killing vectors. Examples include the consistent reduction from ten dimensions on S3 ×S3 and on similar product spaces. The construction is another example of globally geometric non-toroidal compactifications inducing non-geometric fluxes.
Minimal solution for inconsistent singular fuzzy matrix equations
Directory of Open Access Journals (Sweden)
M. Nikuie
2013-10-01
Full Text Available The fuzzy matrix equations $Ailde{X}=ilde{Y}$ is called a singular fuzzy matrix equations while the coefficients matrix of its equivalent crisp matrix equations be a singular matrix. The singular fuzzy matrix equations are divided into two parts: consistent singular matrix equations and inconsistent fuzzy matrix equations. In this paper, the inconsistent singular fuzzy matrix equations is studied and the effect of generalized inverses in finding minimal solution of an inconsistent singular fuzzy matrix equations are investigated.
Directory of Open Access Journals (Sweden)
Borbon Martin de
2017-02-01
Full Text Available The goal of this article is to provide a construction and classification, in the case of two complex dimensions, of the possible tangent cones at points of limit spaces of non-collapsed sequences of Kähler-Einstein metrics with cone singularities. The proofs and constructions are completely elementary, nevertheless they have an intrinsic beauty. In a few words; tangent cones correspond to spherical metrics with cone singularities in the projective line by means of the Kähler quotient construction with respect to the S1-action generated by the Reeb vector field, except in the irregular case ℂβ₁×ℂβ₂ with β₂/ β₁ ∉ Q.
Singularity fitting in hydrodynamical calculations II
International Nuclear Information System (INIS)
Richtmyer, R.D.; Lazarus, R.B.
1975-09-01
This is the second report in a series on the development of techniques for the proper handling of singularities in fluid-dynamical calculations; the first was called Progress Report on the Shock-Fitting Project. This report contains six main results: derivation of a free-surface condition, which relates the acceleration of the surface with the gradient of the square of the sound speed just behind it; an accurate method for the early and middle stages of the development of a rarefaction wave, two orders of magnitude more accurate than a simple direct method used for comparison; the similarity theory of the collapsing free surface, where it is shown that there is a two-parameter family of self-similar solutions for γ = 3.9; the similarity theory for the outgoing shock, which takes into account the entropy increase; a ''zooming'' method for the study of the asymptotic behavior of solutions of the full initial boundary-value problem; comparison of two methods for determining the similarity parameter delta by zooming, which shows that the second method is preferred. Future reports in the series will contain discussions of the self-similar solutions for this problem, and for that of the collapsing shock, in more detail and for the full range (1, infinity) of γ; the values of certain integrals related to neutronic and thermonuclear rates near collapse; and methods for fitting shocks, contact discontinuities, interfaces, and free surfaces in two-dimensional flows
Quantization function for attractive, singular potential tails
International Nuclear Information System (INIS)
Raab, Patrick N.
2010-01-01
The interaction between atoms and molecules with each other are deep potential wells with attractive, singular tails. Bound state energies are determined by a quantization function according to a simple quantization rule. This function is dominantly determined by the singular potential tail for near-threshold states. General expressions for the low- and high-energy contributions of the singular potential tail to the quantization function, as well as the connection to the scattering length are presented in two and three dimensions. Precise analytical expressions for the quantization function are determined for the case of potential tails proportional to -1/r 4 and -1/r 6 for three dimensions. (orig.)
DEKOMPOSISI NILAI SINGULAR PADA SISTEM PENGENALAN WAJAH
Directory of Open Access Journals (Sweden)
Beni Utomo
2012-11-01
Full Text Available Dekomposisi Nilai Singular atau Singular Value Decomposition (SVDmerupakan salah satu cara untuk menyatakan Principal Component Analysis (PCA.PCA sendiri merupakan suatu proses untuk menemukan kontributor-kontributorpenting dari suatu data berdasarkan besaran statistika deviasi standart dan variansi.SVD merupakan proses untuk mendapatkan matriks diagonal yang elementak nolnya merupakan nilai singular yang akarnya merupakan eigenvalue.SVD atas matriks kovarian C berbentuk C = U?V T dengan matriks U dan Vmemuat eigenvektor yang sudah terurut dari nilai variansi terbesar ke nilai variansiterkecilnya. Variansi terbesar memiliki arti eigenvektor menangkap ciri-ciri yangpaling banyak berubah. Sifat inilah yang dipakai untuk membentuk eigenface.
Cirant, Marco
2016-11-22
Here, we prove the existence of smooth solutions for mean-field games with a singular mean-field coupling; that is, a coupling in the Hamilton-Jacobi equation of the form $g(m)=-m^{-\\\\alpha}$. We consider stationary and time-dependent settings. The function $g$ is monotone, but it is not bounded from below. With the exception of the logarithmic coupling, this is the first time that MFGs whose coupling is not bounded from below is examined in the literature. This coupling arises in models where agents have a strong preference for low-density regions. Paradoxically, this causes the agents to spread and prevents the creation of solutions with a very-low density. To prove the existence of solutions, we consider an approximate problem for which the existence of smooth solutions is known. Then, we prove new a priori bounds for the solutions that show that $\\\\frac 1 m$ is bounded. Finally, using a limiting argument, we obtain the existence of solutions. The proof in the stationary case relies on a blow-up argument and in the time-dependent case on new bounds for $m^{-1}$.
Hybrid direct and iterative solvers for h refined grids with singularities
Paszyński, Maciej R.
2015-04-27
This paper describes a hybrid direct and iterative solver for two and three dimensional h adaptive grids with point singularities. The point singularities are eliminated by using a sequential linear computational cost solver O(N) on CPU [1]. The remaining Schur complements are submitted to incomplete LU preconditioned conjugated gradient (ILUPCG) iterative solver. The approach is compared to the standard algorithm performing static condensation over the entire mesh and executing the ILUPCG algorithm on top of it. The hybrid solver is applied for two or three dimensional grids automatically h refined towards point or edge singularities. The automatic refinement is based on the relative error estimations between the coarse and fine mesh solutions [2], and the optimal refinements are selected using the projection based interpolation. The computational mesh is partitioned into sub-meshes with local point and edge singularities separated. This is done by using the following greedy algorithm.
Grassmann manifolds and the Grassmann image of submanifolds
Borisenko, A. A.; Nikolaevskii, Yu A.
1991-04-01
CONTENTS I. Introduction II. Topology of Grassmann manifolds 1. Local coordinates 2. The cell decomposition and basic topological characteristics 3. Plücker coordinates III. Riemannian geometry of Grassmann manifolds: geometric approach 1. The metric and angles between planes 2. Curvature tensor, sectional curvature, closed geodesics, the limit set 3. More about Plücker embeddings 4. G+(2,n) as a Kähler manifold IV. Grassmann manifolds as symmetric spaces 1. The structure of a symmetric space 2. Totally geodesic and totally umbilical submanifolds 3. Standard embeddings of Grassmann manifolds in Euclidean space 4. Generalization of Grassmann manifolds V. Grassmann image. Intrinsic geometry 1. Induced metric. Homothety 2. Volume of the Grassmann image 3. Grassmann image of minimal surfaces 4. Harmonicity of the Grassmann map VI. Extrinsic geometry of the Grassmann image 1. Curvature of a Grassmann manifold along the Grassmann image of a surface 2. Reconstruction of a surface from the Grassmann image 3. Second fundamental form of the Grassmann image. Surfaces with totally geodesic and totally umbilical Grassmann image VII. Notes References
Introduction to global analysis minimal surfaces in riemannian manifolds
Moore, John Douglas
2017-01-01
During the last century, global analysis was one of the main sources of interaction between geometry and topology. One might argue that the core of this subject is Morse theory, according to which the critical points of a generic smooth proper function on a manifold M determine the homology of the manifold. Morse envisioned applying this idea to the calculus of variations, including the theory of periodic motion in classical mechanics, by approximating the space of loops on M by a finite-dimensional manifold of high dimension. Palais and Smale reformulated Morse's calculus of variations in terms of infinite-dimensional manifolds, and these infinite-dimensional manifolds were found useful for studying a wide variety of nonlinear PDEs. This book applies infinite-dimensional manifold theory to the Morse theory of closed geodesics in a Riemannian manifold. It then describes the problems encountered when extending this theory to maps from surfaces instead of curves. It treats critical point theory for closed param...
Introduction to global analysis minimal surfaces in Riemannian manifolds
Moore, John Douglas
2017-01-01
During the last century, global analysis was one of the main sources of interaction between geometry and topology. One might argue that the core of this subject is Morse theory, according to which the critical points of a generic smooth proper function on a manifold M determine the homology of the manifold. Morse envisioned applying this idea to the calculus of variations, including the theory of periodic motion in classical mechanics, by approximating the space of loops on M by a finite-dimensional manifold of high dimension. Palais and Smale reformulated Morse's calculus of variations in terms of infinite-dimensional manifolds, and these infinite-dimensional manifolds were found useful for studying a wide variety of nonlinear PDEs. This book applies infinite-dimensional manifold theory to the Morse theory of closed geodesics in a Riemannian manifold. It then describes the problems encountered when extending this theory to maps from surfaces instead of curves. It treats critical point theory for closed param...
Stochastic development regression on non-linear manifolds
DEFF Research Database (Denmark)
Kühnel, Line; Sommer, Stefan Horst
2017-01-01
We introduce a regression model for data on non-linear manifolds. The model describes the relation between a set of manifold valued observations, such as shapes of anatomical objects, and Euclidean explanatory variables. The approach is based on stochastic development of Euclidean diffusion...... processes to the manifold. Defining the data distribution as the transition distribution of the mapped stochastic process, parameters of the model, the non-linear analogue of design matrix and intercept, are found via maximum likelihood. The model is intrinsically related to the geometry encoded...
Geometric transitions, flops and non-Kahler manifolds: I
International Nuclear Information System (INIS)
Becker, Melanie; Dasgupta, Keshav; Knauf, Anke; Tatar, Radu
2004-01-01
We construct a duality cycle which provides a complete supergravity description of geometric transitions in type II theories via a flop in M-theory. This cycle connects the different supergravity descriptions before and after the geometric transitions. Our construction reproduces many of the known phenomena studied earlier in the literature and allows us to describe some new and interesting aspects in a simple and elegant fashion. A precise supergravity description of new torsional manifolds that appear on the type IIA side with branes and fluxes and the corresponding geometric transition are obtained. A local description of new G2 manifolds that are circle fibrations over non-Kahler manifolds is presented
Scientific data interpolation with low dimensional manifold model
International Nuclear Information System (INIS)
Zhu, Wei; Wang, Bao; Barnard, Richard C.; Hauck, Cory D.
2017-01-01
Here, we propose to apply a low dimensional manifold model to scientific data interpolation from regular and irregular samplings with a significant amount of missing information. The low dimensionality of the patch manifold for general scientific data sets has been used as a regularizer in a variational formulation. The problem is solved via alternating minimization with respect to the manifold and the data set, and the Laplace–Beltrami operator in the Euler–Lagrange equation is discretized using the weighted graph Laplacian. Various scientific data sets from different fields of study are used to illustrate the performance of the proposed algorithm on data compression and interpolation from both regular and irregular samplings.
Scientific data interpolation with low dimensional manifold model
Zhu, Wei; Wang, Bao; Barnard, Richard; Hauck, Cory D.; Jenko, Frank; Osher, Stanley
2018-01-01
We propose to apply a low dimensional manifold model to scientific data interpolation from regular and irregular samplings with a significant amount of missing information. The low dimensionality of the patch manifold for general scientific data sets has been used as a regularizer in a variational formulation. The problem is solved via alternating minimization with respect to the manifold and the data set, and the Laplace-Beltrami operator in the Euler-Lagrange equation is discretized using the weighted graph Laplacian. Various scientific data sets from different fields of study are used to illustrate the performance of the proposed algorithm on data compression and interpolation from both regular and irregular samplings.
Algunas aclaraciones acerca del conocimiento del singular.
Directory of Open Access Journals (Sweden)
Carlos Llano Cifuentes
2013-11-01
Full Text Available Llano tries to explain the main purpose of El Conocimiento del Singular, showing how the individuals about which the book is concerned are basically human individuals: people as decision makers.
Technological Singularity: What Do We Really Know?
Directory of Open Access Journals (Sweden)
Alexey Potapov
2018-04-01
Full Text Available The concept of the technological singularity is frequently reified. Futurist forecasts inferred from this imprecise reification are then criticized, and the reified ideas are incorporated in the core concept. In this paper, I try to disentangle the facts related to the technological singularity from more speculative beliefs about the possibility of creating artificial general intelligence. I use the theory of metasystem transitions and the concept of universal evolution to analyze some misconceptions about the technological singularity. While it may be neither purely technological, nor truly singular, we can predict that the next transition will take place, and that the emerged metasystem will demonstrate exponential growth in complexity with a doubling time of less than half a year, exceeding the complexity of the existing cybernetic systems in few decades.
Topological Signals of Singularities in Ricci Flow
Directory of Open Access Journals (Sweden)
Paul M. Alsing
2017-08-01
Full Text Available We implement methods from computational homology to obtain a topological signal of singularity formation in a selection of geometries evolved numerically by Ricci flow. Our approach, based on persistent homology, produces precise, quantitative measures describing the behavior of an entire collection of data across a discrete sample of times. We analyze the topological signals of geometric criticality obtained numerically from the application of persistent homology to models manifesting singularities under Ricci flow. The results we obtain for these numerical models suggest that the topological signals distinguish global singularity formation (collapse to a round point from local singularity formation (neckpinch. Finally, we discuss the interpretation and implication of these results and future applications.
Approximate Uniqueness Estimates for Singular Correlation Matrices.
Finkbeiner, C. T.; Tucker, L. R.
1982-01-01
The residual variance is often used as an approximation to the uniqueness in factor analysis. An upper bound approximation to the residual variance is presented for the case when the correlation matrix is singular. (Author/JKS)
Stable computation of generalized singular values
Energy Technology Data Exchange (ETDEWEB)
Drmac, Z.; Jessup, E.R. [Univ. of Colorado, Boulder, CO (United States)
1996-12-31
We study floating-point computation of the generalized singular value decomposition (GSVD) of a general matrix pair (A, B), where A and B are real matrices with the same numbers of columns. The GSVD is a powerful analytical and computational tool. For instance, the GSVD is an implicit way to solve the generalized symmetric eigenvalue problem Kx = {lambda}Mx, where K = A{sup {tau}}A and M = B{sup {tau}}B. Our goal is to develop stable numerical algorithms for the GSVD that are capable of computing the singular value approximations with the high relative accuracy that the perturbation theory says is possible. We assume that the singular values are well-determined by the data, i.e., that small relative perturbations {delta}A and {delta}B (pointwise rounding errors, for example) cause in each singular value {sigma} of (A, B) only a small relative perturbation {vert_bar}{delta}{sigma}{vert_bar}/{sigma}.
Finite conformal quantum gravity and spacetime singularities
Modesto, Leonardo; Rachwał, Lesław
2017-12-01
We show that a class of finite quantum non-local gravitational theories is conformally invariant at classical as well as at quantum level. This is actually a range of conformal anomaly-free theories in the spontaneously broken phase of the Weyl symmetry. At classical level we show how the Weyl conformal invariance is able to tame all the spacetime singularities that plague not only Einstein gravity, but also local and weakly non-local higher derivative theories. The latter statement is proved by a singularity theorem that applies to a large class of weakly non-local theories. Therefore, we are entitled to look for a solution of the spacetime singularity puzzle in a missed symmetry of nature, namely the Weyl conformal symmetry. Following the seminal paper by Narlikar and Kembhavi, we provide an explicit construction of singularity-free black hole exact solutions in a class of conformally invariant theories.
Cosmological applications of singular hypersurfaces in general relativity
Laguna-Castillo, Pablo
Three applications to cosmology of surface layers, based on Israel's formalism of singular hypersurfaces and thin shells in general relativity, are presented. Einstein's field equations are analyzed in the presence of a bubble nucleated in vacuum phase transitions within the context of the old inflationary universe scenario. The evolution of a bubble with vanishing surface energy density is studied. It is found that such bubbles lead to a worm-hole matching. Next, the observable four-dimensional universe is considered as a singular hypersurface of discontinuity embedded in a five-dimensional Kaluza-Klein cosmology. It is possible to rewrite the projected five-dimensional Einstein equations on the surface layer in a similar way to the four-dimensional Robertson-Walker cosmology equations. Next, a model is described for an infinite-length, straight U(1) cosmic string as a cylindrical, singular shell enclosing a region of false vacuum. A set of equations is introduced which are required to develop a three-dimensional computer code whose purpose is to study the process of intercommuting cosmic strings with the inclusion of gravitational effects. The outcome is evolution and constraint equations for the gravitational, scalar and gauge field of two initially separated, perpendicular, cosmic strings.
Geometric Singularities of the Stokes Problem
Directory of Open Access Journals (Sweden)
Nejmeddine Chorfi
2014-01-01
Full Text Available When the domain is a polygon of ℝ2, the solution of a partial differential equation is written as a sum of a regular part and a linear combination of singular functions. The purpose of this paper is to present explicitly the singular functions of Stokes problem. We prove the Kondratiev method in the case of the crack. We finish by giving some regularity results.
Singularity analysis, Hadamard products, and tree recurrences
Fill, James Allen; Flajolet, Philippe; Kapur, Nevin
2005-02-01
We present a toolbox for extracting asymptotic information on the coefficients of combinatorial generating functions. This toolbox notably includes a treatment of the effect of Hadamard products on singularities in the context of the complex Tauberian technique known as singularity analysis. As a consequence, it becomes possible to unify the analysis of a number of divide-and-conquer algorithms, or equivalently random tree models, including several classical methods for sorting, searching, and dynamically managing equivalence relations.
Observational constraints on cosmological future singularities
Energy Technology Data Exchange (ETDEWEB)
Beltran Jimenez, Jose [Aix Marseille Univ, Universite de Toulon CNRS, CPT, Marseille (France); Lazkoz, Ruth [Euskal Herriko Unibertsitatea, Fisika Teorikoaren eta Zientziaren Historia Saila, Zientzia eta Teknologia Fakultatea, Bilbao (Spain); Saez-Gomez, Diego [Faculdade de Ciencias da Universidade de Lisboa, Departamento de Fisica, Instituto de Astrofisica e Ciencias do Espaco, Lisbon (Portugal); Salzano, Vincenzo [University of Szczecin, Institute of Physics, Szczecin (Poland)
2016-11-15
In this work we consider a family of cosmological models featuring future singularities. This type of cosmological evolution is typical of dark energy models with an equation of state violating some of the standard energy conditions (e.g. the null energy condition). Such a kind of behavior, widely studied in the literature, may arise in cosmologies with phantom fields, theories of modified gravity or models with interacting dark matter/dark energy. We briefly review the physical consequences of these cosmological evolution regarding geodesic completeness and the divergence of tidal forces in order to emphasize under which circumstances the singularities in some cosmological quantities correspond to actual singular spacetimes. We then introduce several phenomenological parameterizations of the Hubble expansion rate to model different singularities existing in the literature and use SN Ia, BAO and H(z) data to constrain how far in the future the singularity needs to be (under some reasonable assumptions on the behavior of the Hubble factor). We show that, for our family of parameterizations, the lower bound for the singularity time cannot be smaller than about 1.2 times the age of the universe, what roughly speaking means ∝2.8 Gyrs from the present time. (orig.)
Solution path for manifold regularized semisupervised classification.
Wang, Gang; Wang, Fei; Chen, Tao; Yeung, Dit-Yan; Lochovsky, Frederick H
2012-04-01
Traditional learning algorithms use only labeled data for training. However, labeled examples are often difficult or time consuming to obtain since they require substantial human labeling efforts. On the other hand, unlabeled data are often relatively easy to collect. Semisupervised learning addresses this problem by using large quantities of unlabeled data with labeled data to build better learning algorithms. In this paper, we use the manifold regularization approach to formulate the semisupervised learning problem where a regularization framework which balances a tradeoff between loss and penalty is established. We investigate different implementations of the loss function and identify the methods which have the least computational expense. The regularization hyperparameter, which determines the balance between loss and penalty, is crucial to model selection. Accordingly, we derive an algorithm that can fit the entire path of solutions for every value of the hyperparameter. Its computational complexity after preprocessing is quadratic only in the number of labeled examples rather than the total number of labeled and unlabeled examples.
Noise reduction in intracranial pressure signal using causal shape manifolds.
Rajagopal, Abhejit; Hamilton, Robert B; Scalzo, Fabien
2016-07-01
We present the Iterative/Causal Subspace Tracking framework (I/CST) for reducing noise in continuously monitored quasi-periodic biosignals. Signal reconstruction of the basic segments of the noisy signal (e.g. beats) is achieved by projection to a reduced space on which probabilistic tracking is performed. The attractiveness of the presented method lies in the fact that the subspace, or manifold, is learned by incorporating temporal, morphological, and signal elevation constraints, so that segment samples with similar shapes, and that are close in time and elevation, are also close in the subspace representation. Evaluation of the algorithm's effectiveness on the intracranial pressure (ICP) signal serves as a practical illustration of how it can operate in clinical conditions on routinely acquired biosignals. The reconstruction accuracy of the system is evaluated on an idealized 20-min ICP recording established from the average ICP of patients monitored for various ICP related conditions. The reconstruction accuracy of the ground truth signal is tested in presence of varying levels of additive white Gaussian noise (AWGN) and Poisson noise processes, and measures significant increases of 758% and 396% in the average signal-to-noise ratio (SNR).
Spatial context driven manifold learning for hyperspectral image classification
CSIR Research Space (South Africa)
Zhang, Y
2014-06-01
Full Text Available Department of Electrical and Computer Engineering, University of Houston. 2 Meraka Institute, Council for Scientific and Industrial Research, South Africa. 3 School of Civil Engineering, Purdue University, US. Abstract Manifold learning techniques have...
Manifold learning based feature extraction for classification of hyperspectral data
CSIR Research Space (South Africa)
Lunga, D
2014-01-01
Full Text Available of Electrical and Computer Engineering, University of Houston. 3. Schools of Civil Engineering and Electrical and Computer Engineering, Purdue University. Interest in manifold learning for representing the topology of large, high dimensional nonlinear data sets...
46 CFR 153.285 - Valving for cargo pump manifolds.
2010-10-01
... SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Piping Systems and Cargo Handling Equipment § 153.285 Valving for cargo pump manifolds. (a) When cargo...
Supervised learning for neural manifold using spatiotemporal brain activity.
Kuo, Po-Chih; Chen, Yong-Sheng; Chen, Li-Fen
2015-12-01
Determining the means by which perceived stimuli are compactly represented in the human brain is a difficult task. This study aimed to develop techniques for the construction of the neural manifold as a representation of visual stimuli. We propose a supervised locally linear embedding method to construct the embedded manifold from brain activity, taking into account similarities between corresponding stimuli. In our experiments, photographic portraits were used as visual stimuli and brain activity was calculated from magnetoencephalographic data using a source localization method. The results of 10 × 10-fold cross-validation revealed a strong correlation between manifolds of brain activity and the orientation of faces in the presented images, suggesting that high-level information related to image content can be revealed in the brain responses represented in the manifold. Our experiments demonstrate that the proposed method is applicable to investigation into the inherent patterns of brain activity.
Some functional inequalities on non-reversible Finsler manifolds
Indian Academy of Sciences (India)
SHIN-ICHI OHTA
2017-11-13
). Finsler manifolds, based on the Bochner inequality established by Ohta and Sturm. Following the approach of the -calculus of Bakry et al (2014), we show the dimensional versions of the Poincaré–Lichnerowicz inequality, ...
Example-driven manifold priors for image deconvolution.
Ni, Jie; Turaga, Pavan; Patel, Vishal M; Chellappa, Rama
2011-11-01
Image restoration methods that exploit prior information about images to be estimated have been extensively studied, typically using the Bayesian framework. In this paper, we consider the role of prior knowledge of the object class in the form of a patch manifold to address the deconvolution problem. Specifically, we incorporate unlabeled image data of the object class, say natural images, in the form of a patch-manifold prior for the object class. The manifold prior is implicitly estimated from the given unlabeled data. We show how the patch-manifold prior effectively exploits the available sample class data for regularizing the deblurring problem. Furthermore, we derive a generalized cross-validation (GCV) function to automatically determine the regularization parameter at each iteration without explicitly knowing the noise variance. Extensive experiments show that this method performs better than many competitive image deconvolution methods.
Manopt, a Matlab toolbox for optimization on manifolds
Boumal, Nicolas; Mishra, Bamdev; Absil, P. -A.; Sepulchre, Rodolphe
2013-01-01
Optimization on manifolds is a rapidly developing branch of nonlinear optimization. Its focus is on problems where the smooth geometry of the search space can be leveraged to design effcient numerical algorithms. In particular, optimization on manifolds is well-suited to deal with rank and orthogonality constraints. Such structured constraints appear pervasively in machine learning applications, including low-rank matrix completion, sensor network localization, camera network registration, in...
Ideal triangulations of 3-manifolds II: taut and angle structures
Kang, Ensil; Rubinstein, J. Hyam
2005-01-01
This is the second in a series of papers in which we investigate ideal triangulations of the interiors of compact 3-manifolds with tori or Klein bottle boundaries. Such triangulations have been used with great effect, following the pioneering work of Thurston. Ideal triangulations are the basis of the computer program SNAPPEA of Weeks and the program SNAP of Coulson, Goodman, Hodgson and Neumann. Casson has also written a program to find hyperbolic structures on such 3-manifolds, by solving T...
Reduction of Nambu-Poisson Manifolds by Regular Distributions
Das, Apurba
2018-03-01
The version of Marsden-Ratiu reduction theorem for Nambu-Poisson manifolds by a regular distribution has been studied by Ibáñez et al. In this paper we show that the reduction is always ensured unless the distribution is zero. Next we extend the more general Falceto-Zambon Poisson reduction theorem for Nambu-Poisson manifolds. Finally, we define gauge transformations of Nambu-Poisson structures and show that these transformations commute with the reduction procedure.
Directory of Open Access Journals (Sweden)
Elias Zafiris
2016-08-01
Full Text Available The existence of singularities alerts that one of the highest priorities of a centennial perspective on general relativity should be a careful re-thinking of the validity domain of Einstein’s field equations. We address the problem of constructing distinguishable extensions of the smooth spacetime manifold model, which can incorporate singularities, while retaining the form of the field equations. The sheaf-theoretic formulation of this problem is tantamount to extending the algebra sheaf of smooth functions to a distribution-like algebra sheaf in which the former may be embedded, satisfying the pertinent cohomological conditions required for the coordinatization of all of the tensorial physical quantities, such that the form of the field equations is preserved. We present in detail the construction of these distribution-like algebra sheaves in terms of residue classes of sequences of smooth functions modulo the information of singular loci encoded in suitable ideals. Finally, we consider the application of these distribution-like solution sheaves in geometrodynamics by modeling topologically-circular boundaries of singular loci in three-dimensional space in terms of topological links. It turns out that the Borromean link represents higher order wormhole solutions.
One-dimensional super Calabi-Yau manifolds and their mirrors
Energy Technology Data Exchange (ETDEWEB)
Noja, S. [Dipartimento di Matematica, Università degli Studi di Milano,Via Saldini 50, I-20133 Milano (Italy); Cacciatori, S.L. [Dipartimento di Scienza e Alta Tecnologia, Università dell’Insubria, Via Valleggio 11, I-22100 Como (Italy); INFN, Sezione di Milano,Via Celoria 16, I-20133 Milano (Italy); Piazza, F. Dalla [Dipartimento di Scienza e Alta Tecnologia, Università dell’Insubria, Via Valleggio 11, I-22100 Como (Italy); Marrani, A. [Centro Studi e Ricerche ‘Enrico Fermi’,Via Panisperna 89A, I-00184 Roma (Italy); Dipartimento di Fisica e Astronomia ‘Galileo Galilei’, Università di Padova,and INFN, Sezione di Padova,Via Marzolo 8, I-35131 Padova (Italy); Re, R. [Dipartimento di Matematica e Informatica, Università degli Studi di Catania,Viale Andrea Doria 6, 95125 Catania (Italy)
2017-04-18
We apply a definition of generalised super Calabi-Yau variety (SCY) to supermanifolds of complex dimension one. One of our results is that there are two SCY’s having reduced manifold equal to ℙ{sup 1}, namely the projective super space ℙ{sup 1|2} and the weighted projective super space Wℙ{sub (2)}{sup 1|1}. Then we compute the corresponding sheaf cohomology of superforms, showing that the cohomology with picture number one is infinite dimensional, while the de Rham cohomology, which is what matters from a physical point of view, remains finite dimensional. Moreover, we provide the complete real and holomorphic de Rham cohomology for generic projective super spaces ℙ{sup n|m}. We also determine the automorphism groups: these always match the dimension of the projective super group with the only exception of ℙ{sup 1|2}, whose automorphism group turns out to be larger than the projective super group. By considering the cohomology of the super tangent sheaf, we compute the deformations of ℙ{sup 1|m}, discovering that the presence of a fermionic structure allows for deformations even if the reduced manifold is rigid. Finally, we show that ℙ{sup 1|2} is self-mirror, whereas Wℙ{sub (2)}{sup 1|1} has a zero dimensional mirror. Also, the mirror map for ℙ{sup 1|2} naturally endows it with a structure of N=2 super Riemann surface.
Integrated high pressure manifold for thermoplastic microfluidic devices
Aghvami, S. Ali; Fraden, Seth
2017-11-01
We introduce an integrated tubing manifold for thermoplastic microfluidic chips that tolerates high pressure. In contrast to easy tubing in PDMS microfluidic devices, tube connection has been challenging for plastic microfluidics. Our integrated manifold connection tolerates 360 psi while conventional PDMS connections fail at 50 psi. Important design considerations are incorporation of a quick-connect, leak-free and high-pressure manifold for the inlets and outlets on the lid and registration marks that allow the precise alignment of the inlets and outlets. In our method, devices are comprised of two molded pieces joined together to create a sealed device. The first piece contains the microfluidic features and the second contains the inlet and outlet manifold, a frame for rigidity and a viewing window. The mold for the lid with integrated manifold is CNC milled from aluminium. A cone shape PDMS component which acts as an O-ring, seals the connection between molded manifold and tubing. The lid piece with integrated inlet and outlets will be a standard piece and can be used for different chips and designs. Sealing the thermoplastic device is accomplished by timed immersion of the lid in a mixture of volatile and non-volatile solvents followed by application of heat and pressure.
Dimensionality reduction of collective motion by principal manifolds
Gajamannage, Kelum; Butail, Sachit; Porfiri, Maurizio; Bollt, Erik M.
2015-01-01
While the existence of low-dimensional embedding manifolds has been shown in patterns of collective motion, the current battery of nonlinear dimensionality reduction methods is not amenable to the analysis of such manifolds. This is mainly due to the necessary spectral decomposition step, which limits control over the mapping from the original high-dimensional space to the embedding space. Here, we propose an alternative approach that demands a two-dimensional embedding which topologically summarizes the high-dimensional data. In this sense, our approach is closely related to the construction of one-dimensional principal curves that minimize orthogonal error to data points subject to smoothness constraints. Specifically, we construct a two-dimensional principal manifold directly in the high-dimensional space using cubic smoothing splines, and define the embedding coordinates in terms of geodesic distances. Thus, the mapping from the high-dimensional data to the manifold is defined in terms of local coordinates. Through representative examples, we show that compared to existing nonlinear dimensionality reduction methods, the principal manifold retains the original structure even in noisy and sparse datasets. The principal manifold finding algorithm is applied to configurations obtained from a dynamical system of multiple agents simulating a complex maneuver called predator mobbing, and the resulting two-dimensional embedding is compared with that of a well-established nonlinear dimensionality reduction method.
Semisupervised Support Vector Machines With Tangent Space Intrinsic Manifold Regularization.
Sun, Shiliang; Xie, Xijiong
2016-09-01
Semisupervised learning has been an active research topic in machine learning and data mining. One main reason is that labeling examples is expensive and time-consuming, while there are large numbers of unlabeled examples available in many practical problems. So far, Laplacian regularization has been widely used in semisupervised learning. In this paper, we propose a new regularization method called tangent space intrinsic manifold regularization. It is intrinsic to data manifold and favors linear functions on the manifold. Fundamental elements involved in the formulation of the regularization are local tangent space representations, which are estimated by local principal component analysis, and the connections that relate adjacent tangent spaces. Simultaneously, we explore its application to semisupervised classification and propose two new learning algorithms called tangent space intrinsic manifold regularized support vector machines (TiSVMs) and tangent space intrinsic manifold regularized twin SVMs (TiTSVMs). They effectively integrate the tangent space intrinsic manifold regularization consideration. The optimization of TiSVMs can be solved by a standard quadratic programming, while the optimization of TiTSVMs can be solved by a pair of standard quadratic programmings. The experimental results of semisupervised classification problems show the effectiveness of the proposed semisupervised learning algorithms.
STAR CLUSTERS, GALAXIES, AND THE FUNDAMENTAL MANIFOLD
International Nuclear Information System (INIS)
Zaritsky, Dennis; Zabludoff, Ann I.; Gonzalez, Anthony H.
2011-01-01
We explore whether global observed properties, specifically half-light radii, mean surface brightness, and integrated stellar kinematics, suffice to unambiguously differentiate galaxies from star clusters, which presumably formed differently and lack dark matter halos. We find that star clusters lie on the galaxy scaling relationship referred to as the fundamental manifold (FM), on the extension of a sequence of compact galaxies, and so conclude that there is no simple way to differentiate star clusters from ultracompact galaxies. By extending the validity of the FM over a larger range of parameter space and a wider set of objects, we demonstrate that the physics that constrains the resulting baryon and dark matter distributions in stellar systems is more general than previously appreciated. The generality of the FM implies (1) that the stellar spatial distribution and kinematics of one type of stellar system do not arise solely from a process particular to that set of systems, such as violent relaxation for elliptical galaxies, but are instead the result of an interplay of all processes responsible for the generic settling of baryons in gravitational potential wells, (2) that the physics of how baryons settle is independent of whether the system is embedded within a dark matter halo, and (3) that peculiar initial conditions at formation or stochastic events during evolution do not ultimately disturb the overall regularity of baryonic settling. We also utilize the relatively simple nature of star clusters to relate deviations from the FM to the age of the stellar population and find that stellar population models systematically and significantly overpredict the mass-to-light ratios of old, metal-rich clusters. We present an empirical calibration of stellar population mass-to-light ratios with age and color. Finally, we use the FM to estimate velocity dispersions for the low surface brightness, outer halo clusters that lack such measurements.
Quantized Abelian principle connections on Lorentzian manifolds
Energy Technology Data Exchange (ETDEWEB)
Benini, Marco [Pavia Univ. (Italy); Istituto Nazionale di Fisica Nucleare, Pavia (Italy); Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Dappiaggi, Claudio [Pavia Univ. (Italy); Istituto Nazionale di Fisica Nucleare, Pavia (Italy); Schenkel, Alexander [Bergische Univ., Wuppertal (Germany). Fachgruppe Mathematik
2013-03-15
We construct a covariant functor from a category of Abelian principal bundles over globally hyperbolic spacetimes to a category of *-algebras that describes quantized principal connections. We work within an appropriate differential geometric setting by using the bundle of connections and we study the full gauge group, namely the group of vertical principal bundle automorphisms. Properties of our functor are investigated in detail and, similar to earlier works, it is found that due to topological obstructions the locality property of locally covariant quantum field theory is violated. Furthermore, we prove that, for Abelian structure groups containing a nontrivial compact factor, the gauge invariant Borchers- Uhlmann algebra of the vector dual of the bundle of connections is not separating on gauge equivalence classes of principal connections. We introduce a topological generalization of the concept of locally covariant quantum fields. As examples, we construct for the full subcategory of principal U(1)-bundles two natural transformations from singular homology functors to the quantum field theory functor that can be interpreted as the Euler class and the electric charge. In this case we also prove that the electric charges can be consistently set to zero, which yields another quantum field theory functor that satisfies all axioms of locally covariant quantum field theory.
The world problem: on the computability of the topology of 4-manifolds
vanMeter, J. R.
2005-01-01
Topological classification of the 4-manifolds bridges computation theory and physics. A proof of the undecidability of the homeomorphy problem for 4-manifolds is outlined here in a clarifying way. It is shown that an arbitrary Turing machine with an arbitrary input can be encoded into the topology of a 4-manifold, such that the 4-manifold is homeomorphic to a certain other 4-manifold if and only if the corresponding Turing machine halts on the associated input. Physical implications are briefly discussed.
Energy Technology Data Exchange (ETDEWEB)
Gary D. Bourn; Ford A. Phillips; Ralph E. Harris
2005-12-01
This document provides results and conclusions for Task 15.0--Detailed Analysis of Air Balance & Conceptual Design of Improved Air Manifolds in the ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure'' project. SwRI{reg_sign} is conducting this project for DOE in conjunction with Pipeline Research Council International, Gas Machinery Research Council, El Paso Pipeline, Cooper Compression, and Southern Star, under DOE contract number DE-FC26-02NT41646. The objective of Task 15.0 was to investigate the perceived imbalance in airflow between power cylinders in two-stroke integral compressor engines and develop solutions via manifold redesign. The overall project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity.
Singularity hypotheses a scientific and philosophical assessment
Moor, James; Søraker, Johnny; Steinhart, Eric
2012-01-01
Singularity Hypotheses: A Scientific and Philosophical Assessment offers authoritative, jargon-free essays and critical commentaries on accelerating technological progress and the notion of technological singularity. It focuses on conjectures about the intelligence explosion, transhumanism, and whole brain emulation. Recent years have seen a plethora of forecasts about the profound, disruptive impact that is likely to result from further progress in these areas. Many commentators however doubt the scientific rigor of these forecasts, rejecting them as speculative and unfounded. We therefore invited prominent computer scientists, physicists, philosophers, biologists, economists and other thinkers to assess the singularity hypotheses. Their contributions go beyond speculation, providing deep insights into the main issues and a balanced picture of the debate.
Phantom cosmology without Big Rip singularity
Energy Technology Data Exchange (ETDEWEB)
Astashenok, Artyom V. [Baltic Federal University of I. Kant, Department of Theoretical Physics, 236041, 14, Nevsky st., Kaliningrad (Russian Federation); Nojiri, Shin' ichi, E-mail: nojiri@phys.nagoya-u.ac.jp [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Odintsov, Sergei D. [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Institucio Catalana de Recerca i Estudis Avancats - ICREA and Institut de Ciencies de l' Espai (IEEC-CSIC), Campus UAB, Facultat de Ciencies, Torre C5-Par-2a pl, E-08193 Bellaterra (Barcelona) (Spain); Tomsk State Pedagogical University, Tomsk (Russian Federation); Yurov, Artyom V. [Baltic Federal University of I. Kant, Department of Theoretical Physics, 236041, 14, Nevsky st., Kaliningrad (Russian Federation)
2012-03-23
We construct phantom energy models with the equation of state parameter w which is less than -1, w<-1, but finite-time future singularity does not occur. Such models can be divided into two classes: (i) energy density increases with time ('phantom energy' without 'Big Rip' singularity) and (ii) energy density tends to constant value with time ('cosmological constant' with asymptotically de Sitter evolution). The disintegration of bound structure is confirmed in Little Rip cosmology. Surprisingly, we find that such disintegration (on example of Sun-Earth system) may occur even in asymptotically de Sitter phantom universe consistent with observational data. We also demonstrate that non-singular phantom models admit wormhole solutions as well as possibility of Big Trip via wormholes.
Holographic subregion complexity for singular surfaces
Energy Technology Data Exchange (ETDEWEB)
Bakhshaei, Elaheh [Isfahan University of Technology, Department of Physics, Isfahan (Iran, Islamic Republic of); Mollabashi, Ali [Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of); Shirzad, Ahmad [Isfahan University of Technology, Department of Physics, Isfahan (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of)
2017-10-15
Recently holographic prescriptions were proposed to compute the quantum complexity of a given state in the boundary theory. A specific proposal known as 'holographic subregion complexity' is supposed to calculate the complexity of a reduced density matrix corresponding to a static subregion. We study different families of singular subregions in the dual field theory and find the divergence structure and universal terms of holographic subregion complexity for these singular surfaces. We find that there are new universal terms, logarithmic in the UV cut-off, due to the singularities of a family of surfaces including a kink in (2 + 1) dimensions and cones in even dimensional field theories. We also find examples of new divergent terms such as squared logarithm and negative powers times the logarithm of the UV cut-off parameter. (orig.)
Singular vectors for the WN algebras
Ridout, David; Siu, Steve; Wood, Simon
2018-03-01
In this paper, we use free field realisations of the A-type principal, or Casimir, WN algebras to derive explicit formulae for singular vectors in Fock modules. These singular vectors are constructed by applying screening operators to Fock module highest weight vectors. The action of the screening operators is then explicitly evaluated in terms of Jack symmetric functions and their skew analogues. The resulting formulae depend on sequences of pairs of integers that completely determine the Fock module as well as the Jack symmetric functions.
On the geometry of some special projective varieties
Russo, Francesco
2016-01-01
Providing an introduction to both classical and modern techniques in projective algebraic geometry, this monograph treats the geometrical properties of varieties embedded in projective spaces, their secant and tangent lines, the behavior of tangent linear spaces, the algebro-geometric and topological obstructions to their embedding into smaller projective spaces, and the classification of extremal cases. It also provides a solution of Hartshorne’s Conjecture on Complete Intersections for the class of quadratic manifolds and new short proofs of previously known results, using the modern tools of Mori Theory and of rationally connected manifolds. The new approach to some of the problems considered can be resumed in the principle that, instead of studying a special embedded manifold uniruled by lines, one passes to analyze the original geometrical property on the manifold of lines passing through a general point and contained in the manifold. Once this embedded manifold, usually of lower codimension, is classi...
Algebras and manifolds: Differential, difference, simplicial and quantum
International Nuclear Information System (INIS)
Finkelstein, D.; Rodriguez, E.
1986-01-01
Generalized manifolds and Clifford algebras depict the world at levels of resolution ranging from the classical macroscopic to the quantum microscopic. The coarsest picture is a differential manifold and algebra (dm), direct integral of familiar local Clifford algebras of spin operators in curved time-space. Next is a finite difference manifold (Δm) of Regge calculus. This is a subalgebra of the third, a Minkowskian simplicial manifold (Σm). The most detailed description is the quantum manifold (Qm), whose algebra is the free Clifford algebra S of quantum set theory. We surmise that each Σm is a classical 'condensation' of a Qm. Quantum simplices have both integer and half-integer spins in their spectrum. A quantum set theory of nature requires a series of reductions leading from the Qm and a world descriptor W up through the intermediate Σm and Δm to a dm and an action principle. What may be a new algebraic language for topology, classical or quantum, is a by-product of the work. (orig.)
Hierarchical discriminant manifold learning for dimensionality reduction and image classification
Chen, Weihai; Zhao, Changchen; Ding, Kai; Wu, Xingming; Chen, Peter C. Y.
2015-09-01
In the field of image classification, it has been a trend that in order to deliver a reliable classification performance, the feature extraction model becomes increasingly more complicated, leading to a high dimensionality of image representations. This, in turn, demands greater computation resources for image classification. Thus, it is desirable to apply dimensionality reduction (DR) methods for image classification. It is necessary to apply DR methods to relieve the computational burden as well as to improve the classification accuracy. However, traditional DR methods are not compatible with modern feature extraction methods. A framework that combines manifold learning based DR and feature extraction in a deeper way for image classification is proposed. A multiscale cell representation is extracted from the spatial pyramid to satisfy the locality constraints for a manifold learning method. A spectral weighted mean filtering is proposed to eliminate noise in the feature space. A hierarchical discriminant manifold learning is proposed which incorporates both category label and image scale information to guide the DR process. Finally, the image representation is generated by concatenating dimensionality reduced cell representations from the same image. Extensive experiments are conducted to test the proposed algorithm on both scene and object recognition datasets in comparison with several well-established and state-of-the-art methods with respect to classification precision and computational time. The results verify the effectiveness of incorporating manifold learning in the feature extraction procedure and imply that the multiscale cell representations may be distributed on a manifold.
Quasi-Newton Exploration of Implicitly Constrained Manifolds
Tang, Chengcheng
2011-08-01
A family of methods for the efficient update of second order approximations of a constraint manifold is proposed in this thesis. The concept of such a constraint manifold corresponds to an abstract space prescribed by implicit nonlinear constraints, which can be a set of objects satisfying certain desired properties. This concept has a variety of applications, and it has been successfully introduced to fabrication-aware architectural design as a shape space consisting of all the implementable designs. The local approximation of such a manifold can be first order, in the tangent space, or second order, in the osculating surface, with higher precision. For a nonlinearly constrained manifold with rather high dimension and codimension, the computation of second order approximants (osculants) is time consuming. In this thesis, a type of so-called quasi-Newton manifold exploration methods which approximate the new osculants by updating the ones of a neighbor point by 1st-order information is introduced. The procedures are discussed in detail and the examples implemented to visually verify the methods are illustrated.
Enhanced manifold regularization for semi-supervised classification.
Gan, Haitao; Luo, Zhizeng; Fan, Yingle; Sang, Nong
2016-06-01
Manifold regularization (MR) has become one of the most widely used approaches in the semi-supervised learning field. It has shown superiority by exploiting the local manifold structure of both labeled and unlabeled data. The manifold structure is modeled by constructing a Laplacian graph and then incorporated in learning through a smoothness regularization term. Hence the labels of labeled and unlabeled data vary smoothly along the geodesics on the manifold. However, MR has ignored the discriminative ability of the labeled and unlabeled data. To address the problem, we propose an enhanced MR framework for semi-supervised classification in which the local discriminative information of the labeled and unlabeled data is explicitly exploited. To make full use of labeled data, we firstly employ a semi-supervised clustering method to discover the underlying data space structure of the whole dataset. Then we construct a local discrimination graph to model the discriminative information of labeled and unlabeled data according to the discovered intrinsic structure. Therefore, the data points that may be from different clusters, though similar on the manifold, are enforced far away from each other. Finally, the discrimination graph is incorporated into the MR framework. In particular, we utilize semi-supervised fuzzy c-means and Laplacian regularized Kernel minimum squared error for semi-supervised clustering and classification, respectively. Experimental results on several benchmark datasets and face recognition demonstrate the effectiveness of our proposed method.
Trajectory design using periapse maps and invariant manifolds
Haapala, Amanda F.
The invariant manifolds associated with periodic orbits in the vicinity of the collinear libration points in the planar CR3BP have been previously demonstrated as mechanisms for transport. Trajectories that pass between adjoining regions within the zero-velocity curves pass through the invariant manifold tubes. In particular, the invariant manifolds associated with the unstable L1 and L2 periodic libration point orbits may be exploited to construct transit orbits between the interior and exterior regions associated with the zero-velocity curves. In this investigation, periapse Poincare maps are used to display the manifolds and to distinguish regions of escape and, conversely, regions of long-term capture. Manifold periapse structures are employed as a design tool to construct planar trajectories with predetermined characteristics. The strategies that are developed are demonstrated by producing planar trajectories with predetermined behaviors, namely, long-term capture orbits and transit trajectories, as well as heteroclinic and homoclinic connections. Additionally, path approximations are generated for four Jupiter family comets that experience temporary satellite capture. Periapse Poincare maps are also employed to design three-dimensional transit trajectories in the spatial circular restricted three-body problem.
Interaction of two singular Lissajous lines in free space.
Chen, Haitao; Gao, Zenghui; Wang, Wanqing
2017-05-20
The interaction of two singular Lissajous lines emergent from a polychromatic vector beam is studied. It is shown that singular Lissajous lines disappear with propagation; meanwhile Lissajous singularities take place. The handedness reversal, the changes in the shape of Lissajous figures, and the degree of polarization of Lissajous singularities, as well as the creation and annihilation of a single singularity, may appear by varying the control parameters. In addition, the transformation of the shape of line h=0, the creation and annihilation of pairs of Lissajous singularities not only with opposite topological charge and same handedness, but also with same degree of polarization, take place with propagation.
Spectral Analysis of a Quantum System with a Double Line Singular Interaction
Czech Academy of Sciences Publication Activity Database
Kondej, S.; Krejčiřík, David
2013-01-01
Roč. 49, č. 4 (2013), s. 831-859 ISSN 0034-5318 R&D Projects: GA ČR GAP203/11/0701 Institutional support: RVO:61389005 Keywords : Schrödinger operator * singular perturbation * spectral analysis * Hardy inequality * resonance Subject RIV: BE - Theoretical Physics Impact factor: 0.614, year: 2013
Czech Academy of Sciences Publication Activity Database
Exner, Pavel; Pankrashkin, K.
2014-01-01
Roč. 39, č. 2 (2014), s. 193-212 ISSN 0360-5302 R&D Projects: GA ČR GAP203/11/0701 Institutional support: RVO:61389005 Keywords : Eigenvalue * Schrödinger operator * singular interaction * strong coupling * 35Q40 * 35P15 * 35J10 Subject RIV: BE - Theoretical Physics Impact factor: 1.013, year: 2014
Gene selection for microarray data classification via subspace learning and manifold regularization.
Tang, Chang; Cao, Lijuan; Zheng, Xiao; Wang, Minhui
2017-12-19
With the rapid development of DNA microarray technology, large amount of genomic data has been generated. Classification of these microarray data is a challenge task since gene expression data are often with thousands of genes but a small number of samples. In this paper, an effective gene selection method is proposed to select the best subset of genes for microarray data with the irrelevant and redundant genes removed. Compared with original data, the selected gene subset can benefit the classification task. We formulate the gene selection task as a manifold regularized subspace learning problem. In detail, a projection matrix is used to project the original high dimensional microarray data into a lower dimensional subspace, with the constraint that the original genes can be well represented by the selected genes. Meanwhile, the local manifold structure of original data is preserved by a Laplacian graph regularization term on the low-dimensional data space. The projection matrix can serve as an importance indicator of different genes. An iterative update algorithm is developed for solving the problem. Experimental results on six publicly available microarray datasets and one clinical dataset demonstrate that the proposed method performs better when compared with other state-of-the-art methods in terms of microarray data classification. Graphical Abstract The graphical abstract of this work.
Light transport on path-space manifolds
Jakob, Wenzel Alban
-stepping limitations of the theory, they often suffer from unusably slow convergence; improvements to this situation have been hampered by the lack of a thorough theoretical understanding. We address these problems by developing a new theory of path-space light transport which, for the first time, cleanly incorporates specular scattering into the standard framework. Most of the results obtained in the analysis of the ideally smooth case can also be generalized to rendering of glossy materials and volumetric scattering so that this dissertation also provides a powerful new set of tools for dealing with them. The basis of our approach is that each specular material interaction locally collapses the dimension of the space of light paths so that all relevant paths lie on a submanifold of path space. We analyze the high-dimensional differential geometry of this submanifold and use the resulting information to construct an algorithm that is able to "walk" around on it using a simple and efficient equation-solving iteration. This manifold walking algorithm then constitutes the key operation of a new type of Markov Chain Monte Carlo (MCMC) rendering method that computes lighting through very general families of paths that can involve arbitrary combinations of specular, near-specular, glossy, and diffuse surface interactions as well as isotropic or highly anisotropic volume scattering. We demonstrate our implementation on a range of challenging scenes and evaluate it against previous methods.
Rigid Body Attitude Control Based on a Manifold Representation of Direction Cosine Matrices
International Nuclear Information System (INIS)
Nakath, David; Clemens, Joachim; Rachuy, Carsten
2017-01-01
Autonomous systems typically actively observe certain aspects of their surroundings, which makes them dependent on a suitable controller. However, building an attitude controller for three degrees of freedom is a challenging task, mainly due to singularities in the different parametrizations of the three dimensional rotation group SO (3). Thus, we propose an attitude controller based on a manifold representation of direction cosine matrices: In state space, the attitude is globally and uniquely represented as a direction cosine matrix R ∈ SO (3). However, differences in the state space, i.e., the attitude errors, are exposed to the controller in the vector space ℝ 3 . This is achieved by an operator, which integrates the matrix logarithm mapping from SO (3) to so(3) and the map from so(3) to ℝ 3 . Based on this representation, we derive a proportional and derivative feedback controller, whose output has an upper bound to prevent actuator saturation. Additionally, the feedback is preprocessed by a particle filter to account for measurement and state transition noise. We evaluate our approach in a simulator in three different spacecraft maneuver scenarios: (i) stabilizing, (ii) rest-to-rest, and (iii) nadir-pointing. The controller exhibits stable behavior from initial attitudes near and far from the setpoint. Furthermore, it is able to stabilize a spacecraft and can be used for nadir-pointing maneuvers. (paper)
Rigid Body Attitude Control Based on a Manifold Representation of Direction Cosine Matrices
Nakath, David; Clemens, Joachim; Rachuy, Carsten
2017-01-01
Autonomous systems typically actively observe certain aspects of their surroundings, which makes them dependent on a suitable controller. However, building an attitude controller for three degrees of freedom is a challenging task, mainly due to singularities in the different parametrizations of the three dimensional rotation group SO(3). Thus, we propose an attitude controller based on a manifold representation of direction cosine matrices: In state space, the attitude is globally and uniquely represented as a direction cosine matrix R ∈ SO(3). However, differences in the state space, i.e., the attitude errors, are exposed to the controller in the vector space ℝ3. This is achieved by an operator, which integrates the matrix logarithm mapping from SO(3) to so(3) and the map from so(3) to ℝ3. Based on this representation, we derive a proportional and derivative feedback controller, whose output has an upper bound to prevent actuator saturation. Additionally, the feedback is preprocessed by a particle filter to account for measurement and state transition noise. We evaluate our approach in a simulator in three different spacecraft maneuver scenarios: (i) stabilizing, (ii) rest-to-rest, and (iii) nadir-pointing. The controller exhibits stable behavior from initial attitudes near and far from the setpoint. Furthermore, it is able to stabilize a spacecraft and can be used for nadir-pointing maneuvers.
Differential forms and the Wodzicki residue for manifolds with boundary
Wang, Yong
2006-05-01
In [A. Connes, Quantized calculus and applications, XIth International Congress of Mathematical Physics (Paris,1994), 15-36, Internat Press, Cambridge, MA, 1995], Connes found a conformal invariant using Wodzicki's 1-density and computed it in the case of 4-dimensional manifold without boundary. In [W. J. Ugalde, Differential forms and the Wodzicki residue, arXiv: Math, DG/0211361], Ugalde generalized the Connes' result to n-dimensional manifold without boundary. In this paper, we generalize the results of [A. Connes, Quantized calculus and applications, XIth International Congress of Mathematical Physics (Paris,1994), 15-36, Internat Press, Cambridge, MA, 1995] and [W. J. Ugalde, Differential forms and the Wodzicki residue, arXiv: Math, DG/0211361] to the case of manifolds with boundary.
Rigidity of complete noncompact bach-flat n-manifolds
Chu, Yawei; Feng, Pinghua
2012-11-01
Let (Mn,g) be a complete noncompact Bach-flat n-manifold with the positive Yamabe constant and constant scalar curvature. Assume that the L2-norm of the trace-free Riemannian curvature tensor R∘m is finite. In this paper, we prove that (Mn,g) is a constant curvature space if the L-norm of R∘m is sufficiently small. Moreover, we get a gap theorem for (Mn,g) with positive scalar curvature. This can be viewed as a generalization of our earlier results of 4-dimensional Bach-flat manifolds with constant scalar curvature R≥0 [Y.W. Chu, A rigidity theorem for complete noncompact Bach-flat manifolds, J. Geom. Phys. 61 (2011) 516-521]. Furthermore, when n>9, we derive a rigidity result for R<0.
Schoen manifold with line bundles as resolved magnetized orbifolds
Energy Technology Data Exchange (ETDEWEB)
Groot Nibbelink, Stefan [Muenchen Univ. (Germany). Arnold Sommerfeld Center for Theoretical Physics; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-12-15
We give an alternative description of the Schoen manifold as the blow-up of a Z{sub 2} x Z{sub 2} orbifold in which one Z{sub 2} factor acts as a roto-translation. Since for this orbifold the fixed tori are only identified in pairs but not orbifolded, four-dimensional chirality can never be obtained using standard techniques alone. However, chirality is recovered when its tori become magnetized. To exemplify this, we construct an SU(5) GUT on the Schoen manifold with Abelian gauge fluxes, which becomes an MSSM with three generations after an appropriate Wilson line is associated to its freely acting involution. We reproduce this model as a standard orbifold CFT of the (partially) blown down Schoen manifold with a magnetic flux. Finally, in analogy to a proposal for non-perturbative heterotic models by Aldazabal et al. we suggest modifications to the heterotic orbifold spectrum formulae in the presence of magnetized tori.
Total Variation Regularization for Functions with Values in a Manifold
Lellmann, Jan
2013-12-01
While total variation is among the most popular regularizers for variational problems, its extension to functions with values in a manifold is an open problem. In this paper, we propose the first algorithm to solve such problems which applies to arbitrary Riemannian manifolds. The key idea is to reformulate the variational problem as a multilabel optimization problem with an infinite number of labels. This leads to a hard optimization problem which can be approximately solved using convex relaxation techniques. The framework can be easily adapted to different manifolds including spheres and three-dimensional rotations, and allows to obtain accurate solutions even with a relatively coarse discretization. With numerous examples we demonstrate that the proposed framework can be applied to variational models that incorporate chromaticity values, normal fields, or camera trajectories. © 2013 IEEE.
Spherical formulation for diagrammatic evaluations on a manifold with boundary
Tsoupros, G
2002-01-01
The mathematical formalism necessary for the diagrammatic evaluation of quantum corrections to a conformally invariant field theory for a self-interacting scalar field on a curved manifold with boundary is considered. The evaluation of quantum corrections to the effective action past one-loop necessitates diagrammatic techniques. Diagrammatic evaluations and higher loop-order renormalization can be best accomplished on a Riemannian manifold of constant curvature accommodating a boundary of constant extrinsic curvature. In such a context, the stated evaluations can be accomplished through a consistent interpretation of the Feynman rules within the spherical formulation of the theory which the method of images allows. To this effect, the mathematical consequences of such an interpretation are analysed and the spherical formulation of the Feynman rules on the bounded manifold is, as a result, developed.
Weyl-Euler-Lagrange Equations of Motion on Flat Manifold
Directory of Open Access Journals (Sweden)
Zeki Kasap
2015-01-01
Full Text Available This paper deals with Weyl-Euler-Lagrange equations of motion on flat manifold. It is well known that a Riemannian manifold is said to be flat if its curvature is everywhere zero. Furthermore, a flat manifold is one Euclidean space in terms of distances. Weyl introduced a metric with a conformal transformation for unified theory in 1918. Classical mechanics is one of the major subfields of mechanics. Also, one way of solving problems in classical mechanics occurs with the help of the Euler-Lagrange equations. In this study, partial differential equations have been obtained for movement of objects in space and solutions of these equations have been generated by using the symbolic Algebra software. Additionally, the improvements, obtained in this study, will be presented.
Adaptive Sampling for Nonlinear Dimensionality Reduction Based on Manifold Learning
DEFF Research Database (Denmark)
Franz, Thomas; Zimmermann, Ralf; Goertz, Stefan
2017-01-01
We make use of the non-intrusive dimensionality reduction method Isomap in order to emulate nonlinear parametric flow problems that are governed by the Reynolds-averaged Navier-Stokes equations. Isomap is a manifold learning approach that provides a low-dimensional embedding space that is approxi......We make use of the non-intrusive dimensionality reduction method Isomap in order to emulate nonlinear parametric flow problems that are governed by the Reynolds-averaged Navier-Stokes equations. Isomap is a manifold learning approach that provides a low-dimensional embedding space...... that is approximately isometric to the manifold that is assumed to be formed by the high-fidelity Navier-Stokes flow solutions under smooth variations of the inflow conditions. The focus of the work at hand is the adaptive construction and refinement of the Isomap emulator: We exploit the non-Euclidean Isomap metric...
Integrable G2 Structures on 7-dimensional 3-Sasakian Manifolds
Directory of Open Access Journals (Sweden)
Nülifer ÖZDEMİR
2017-02-01
Full Text Available It is known that there exist canonical and nearly parallel $G_2$ structures on 7-dimensional 3-Sasakian manifolds. In this paper, we investigate the existence of $G_2$ structures which are neither canonical nor nearly parallel. We obtain eight new $G_2$ structures on 7-dimensional 3-Sasakian manifolds which are of general type according to the classification of $G_2$ structures by Fernandez and Gray. Then by deforming the metric determined by the $G_2$ structure, we give integrable $G_2$ structures. On a manifold with integrable $G_2$ structure, there exists a uniquely determined metric covariant derivative with anti-symetric torsion. We write torsion tensors corresponding to metric covariant derivatives with skew-symmetric torsion. In addition, we investigate some properties of torsion tensors.
Singular Linear Differential Equations in Two Variables
Braaksma, B.L.J.; Put, M. van der
2008-01-01
The formal and analytic classification of integrable singular linear differential equations has been studied among others by R. Gerard and Y. Sibuya. We provide a simple proof of their main result, namely: For certain irregular systems in two variables there is no Stokes phenomenon, i.e. there is no
A singularity theorem based on spatial averages
Indian Academy of Sciences (India)
Inspired by Raychaudhuri's work, and using the equation named after him as a basic ingredient, a new singularity theorem is proved. Open non-rotating Universes, expanding everywhere with a non-vanishing spatial average of the matter variables, show severe geodesic incompletness in the past. Another way of stating ...
Supersymmetric quantum mechanics under point singularities
International Nuclear Information System (INIS)
Uchino, Takashi; Tsutsui, Izumi
2003-01-01
We provide a systematic study on the possibility of supersymmetry (SUSY) for one-dimensional quantum mechanical systems consisting of a pair of lines R or intervals [-l, l] each having a point singularity. We consider the most general singularities and walls (boundaries) at x = ±l admitted quantum mechanically, using a U(2) family of parameters to specify one singularity and similarly a U(1) family of parameters to specify one wall. With these parameter freedoms, we find that for a certain subfamily the line systems acquire an N = 1 SUSY which can be enhanced to N = 4 if the parameters are further tuned, and that these SUSY are generically broken except for a special case. The interval systems, on the other hand, can accommodate N = 2 or N = 4 SUSY, broken or unbroken, and exhibit a rich variety of (degenerate) spectra. Our SUSY systems include the familiar SUSY systems with the Dirac δ(x)-potential, and hence are extensions of the known SUSY quantum mechanics to those with general point singularities and walls. The self-adjointness of the supercharge in relation to the self-adjointness of the Hamiltonian is also discussed
Resolving curvature singularities in holomorphic gravity
Mantz, C.L.M.; Prokopec, T.
2011-01-01
We formulate a holomorphic theory of gravity and study how the holomorphy symmetry alters the two most important singular solutions of general relativity: black holes and cosmology. We show that typical observers (freely) falling into a holomorphic black hole do not encounter a curvature
Classical resolution of singularities in dilaton cosmologies
Bergshoeff, EA; Collinucci, A; Roest, D; Russo, JG; Townsend, PK
2005-01-01
For models of dilaton gravity with a possible exponential potential, such as the tensor-scalar sector of ITA supergravity, we show how cosmological solutions correspond to trajectories in a 2D Milne space (parametrized by the dilaton and the scale factor). Cosmological singularities correspond to
Mobile communications technology: The singular factor responsible ...
African Journals Online (AJOL)
This paper investigated the factors responsible for the growth of Internet usage on the African continent. The principal finding was that increasing growth of Internet usage is also down to one singular factor: mobile communications technology. The proliferation of mobile phone usage in Africa has resulted in the sustained ...
Polynomial computation of Hankel singular values
Kwakernaak, H.
1992-01-01
A revised and improved version of a polynomial algorithm is presented. It was published by N.J. Young (1990) for the computation of the singular values and vectors of the Hankel operator defined by a linear time-invariant system with a rotational transfer matrix. Tentative numerical experiments
Singular Nonlinear H∞ Optimal Control Problem
Schaft, A.J. van der
1996-01-01
The theory of nonlinear H∞ optimal control for affine nonlinear systems is extended to the more general context of singular H∞ optimal control of nonlinear systems using ideas from the linear H∞ theory. Our approach yields under certain assumptions a necessary and sufficient condition for
Inverting dedevelopment: geometric singularity theory in embryology
Bookstein, Fred L.; Smith, Bradley R.
2000-10-01
The diffeomorphism model so useful in the biomathematics of normal morphological variability and disease is inappropriate for applications in embryogenesis, where whole coordinate patches are created out of single points. For this application we need a suitable algebra for the creation of something from nothing in a carefully organized geometry: a formalism for parameterizing discrete nondifferentiabilities of invertible functions on Rk, k $GTR 1. One easy way to begin is via the inverse of the development map - call it the dedevelopment map, the deformation backwards in time. Extrapolated, this map will inevitably have singularities at which its derivative is zero. When the dedevelopment map is inverted to face forward in time, the singularities become appropriately isolated infinities of derivative. We have recently introduced growth visualizations via extrapolations to the isolated singularities at which only one directional derivative is zero. Maps inverse to these create new coordinate patches directionally rather than radically. The most generic singularity that suits this purpose is the crease f(x,y) equals (x,x2y+y3), which has already been applied in morphometrics for the description of focal morphogenetic phenomena. We apply it to embryogenesis in the form of its analytic inverse, and demonstrate its power using a priceless new data set of mouse embryos imaged in 3D by micro-MR with voxels smaller than 100micrometers 3.
On the genericity of spacetime singularities
Indian Academy of Sciences (India)
the framework of a general spacetime without any symmetry conditions, in terms of the overall behaviour of .... We now outline the basic idea and the chain of logic behind the proof of a typical singularity theorem ..... a detailed investigation of the dynamics of gravitational collapse within the frame- work of Einstein's theory.
'Footballs', conical singularities, and the Liouville equation
International Nuclear Information System (INIS)
Redi, Michele
2005-01-01
We generalize the football shaped extra dimensions scenario to an arbitrary number of branes. The problem is related to the solution of the Liouville equation with singularities, and explicit solutions are presented for the case of three branes. The tensions of the branes do not need to be tuned with each other but only satisfy mild global constraints
Cosmological singularity theorems and splitting theorems for N-Bakry-Émery spacetimes
Energy Technology Data Exchange (ETDEWEB)
Woolgar, Eric, E-mail: ewoolgar@ualberta.ca [Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1 (Canada); Wylie, William, E-mail: wwylie@syr.edu [215 Carnegie Building, Department of Mathematics, Syracuse University, Syracuse, New York 13244 (United States)
2016-02-15
We study Lorentzian manifolds with a weight function such that the N-Bakry-Émery tensor is bounded below. Such spacetimes arise in the physics of scalar-tensor gravitation theories, including Brans-Dicke theory, theories with Kaluza-Klein dimensional reduction, and low-energy approximations to string theory. In the “pure Bakry-Émery” N = ∞ case with f uniformly bounded above and initial data suitably bounded, cosmological-type singularity theorems are known, as are splitting theorems which determine the geometry of timelike geodesically complete spacetimes for which the bound on the initial data is borderline violated. We extend these results in a number of ways. We are able to extend the singularity theorems to finite N-values N ∈ (n, ∞) and N ∈ (−∞, 1]. In the N ∈ (n, ∞) case, no bound on f is required, while for N ∈ (−∞, 1] and N = ∞, we are able to replace the boundedness of f by a weaker condition on the integral of f along future-inextendible timelike geodesics. The splitting theorems extend similarly, but when N = 1, the splitting is only that of a warped product for all cases considered. A similar limited loss of rigidity has been observed in a prior work on the N-Bakry-Émery curvature in Riemannian signature when N = 1 and appears to be a general feature.
Fractional charge and inter-Landau-level states at points of singular curvature.
Biswas, Rudro R; Son, Dam Thanh
2016-08-02
The quest for universal properties of topological phases is fundamentally important because these signatures are robust to variations in system-specific details. Aspects of the response of quantum Hall states to smooth spatial curvature are well-studied, but challenging to observe experimentally. Here we go beyond this prevailing paradigm and obtain general results for the response of quantum Hall states to points of singular curvature in real space; such points may be readily experimentally actualized. We find, using continuum analytical methods, that the point of curvature binds an excess fractional charge and sequences of quantum states split away, energetically, from the degenerate bulk Landau levels. Importantly, these inter-Landau-level states are bound to the topological singularity and have energies that are universal functions of bulk parameters and the curvature. Our exact diagonalization of lattice tight-binding models on closed manifolds demonstrates that these results continue to hold even when lattice effects are significant. An important technological implication of these results is that these inter-Landau-level states, being both energetically and spatially isolated quantum states, are promising candidates for constructing qubits for quantum computation.
Postoperative 3D spine reconstruction by navigating partitioning manifolds
Energy Technology Data Exchange (ETDEWEB)
Kadoury, Samuel, E-mail: samuel.kadoury@polymtl.ca [Department of Computer and Software Engineering, Ecole Polytechnique Montreal, Montréal, Québec H3C 3A7 (Canada); Labelle, Hubert, E-mail: hubert.labelle@recherche-ste-justine.qc.ca; Parent, Stefan, E-mail: stefan.parent@umontreal.ca [CHU Sainte-Justine Hospital Research Center, Montréal, Québec H3T 1C5 (Canada)
2016-03-15
Purpose: The postoperative evaluation of scoliosis patients undergoing corrective treatment is an important task to assess the strategy of the spinal surgery. Using accurate 3D geometric models of the patient’s spine is essential to measure longitudinal changes in the patient’s anatomy. On the other hand, reconstructing the spine in 3D from postoperative radiographs is a challenging problem due to the presence of instrumentation (metallic rods and screws) occluding vertebrae on the spine. Methods: This paper describes the reconstruction problem by searching for the optimal model within a manifold space of articulated spines learned from a training dataset of pathological cases who underwent surgery. The manifold structure is implemented based on a multilevel manifold ensemble to structure the data, incorporating connections between nodes within a single manifold, in addition to connections between different multilevel manifolds, representing subregions with similar characteristics. Results: The reconstruction pipeline was evaluated on x-ray datasets from both preoperative patients and patients with spinal surgery. By comparing the method to ground-truth models, a 3D reconstruction accuracy of 2.24 ± 0.90 mm was obtained from 30 postoperative scoliotic patients, while handling patients with highly deformed spines. Conclusions: This paper illustrates how this manifold model can accurately identify similar spine models by navigating in the low-dimensional space, as well as computing nonlinear charts within local neighborhoods of the embedded space during the testing phase. This technique allows postoperative follow-ups of spinal surgery using personalized 3D spine models and assess surgical strategies for spinal deformities.
Postoperative 3D spine reconstruction by navigating partitioning manifolds
International Nuclear Information System (INIS)
Kadoury, Samuel; Labelle, Hubert; Parent, Stefan
2016-01-01
Purpose: The postoperative evaluation of scoliosis patients undergoing corrective treatment is an important task to assess the strategy of the spinal surgery. Using accurate 3D geometric models of the patient’s spine is essential to measure longitudinal changes in the patient’s anatomy. On the other hand, reconstructing the spine in 3D from postoperative radiographs is a challenging problem due to the presence of instrumentation (metallic rods and screws) occluding vertebrae on the spine. Methods: This paper describes the reconstruction problem by searching for the optimal model within a manifold space of articulated spines learned from a training dataset of pathological cases who underwent surgery. The manifold structure is implemented based on a multilevel manifold ensemble to structure the data, incorporating connections between nodes within a single manifold, in addition to connections between different multilevel manifolds, representing subregions with similar characteristics. Results: The reconstruction pipeline was evaluated on x-ray datasets from both preoperative patients and patients with spinal surgery. By comparing the method to ground-truth models, a 3D reconstruction accuracy of 2.24 ± 0.90 mm was obtained from 30 postoperative scoliotic patients, while handling patients with highly deformed spines. Conclusions: This paper illustrates how this manifold model can accurately identify similar spine models by navigating in the low-dimensional space, as well as computing nonlinear charts within local neighborhoods of the embedded space during the testing phase. This technique allows postoperative follow-ups of spinal surgery using personalized 3D spine models and assess surgical strategies for spinal deformities
Generalized Parton Distributions and their Singularities
Energy Technology Data Exchange (ETDEWEB)
Anatoly Radyushkin
2011-04-01
A new approach to building models of generalized parton distributions (GPDs) is discussed that is based on the factorized DD (double distribution) Ansatz within the single-DD formalism. The latter was not used before, because reconstructing GPDs from the forward limit one should start in this case with a very singular function $f(\\beta)/\\beta$ rather than with the usual parton density $f(\\beta)$. This results in a non-integrable singularity at $\\beta=0$ exaggerated by the fact that $f(\\beta)$'s, on their own, have a singular $\\beta^{-a}$ Regge behavior for small $\\beta$. It is shown that the singularity is regulated within the GPD model of Szczepaniak et al., in which the Regge behavior is implanted through a subtracted dispersion relation for the hadron-parton scattering amplitude. It is demonstrated that using proper softening of the quark-hadron vertices in the regions of large parton virtualities results in model GPDs $H(x,\\xi)$ that are finite and continuous at the "border point'' $x=\\xi$. Using a simple input forward distribution, we illustrate the implementation of the new approach for explicit construction of model GPDs. As a further development, a more general method of regulating the $\\beta=0$ singularities is proposed that is based on the separation of the initial single DD $f(\\beta, \\alpha)$ into the "plus'' part $[f(\\beta,\\alpha)]_{+}$ and the $D$-term. It is demonstrated that the "DD+D'' separation method allows to (re)derive GPD sum rules that relate the difference between the forward distribution $f(x)=H(x,0)$ and the border function $H(x,x)$ with the $D$-term function $D(\\alpha)$.
Spectral invariants of operators of Dirac type on partitioned manifolds
DEFF Research Database (Denmark)
Booss-Bavnbek, Bernhelm; Bleecker, D.
2004-01-01
We review the concepts of the index of a Fredholm operator, the spectral flow of a curve of self-adjoint Fredholm operators, the Maslov index of a curve of Lagrangian subspaces in symplectic Hilbert space, and the eta invariant of operators of Dirac type on closed manifolds and manifolds...... with boundary. We emphasize various (occasionally overlooked) aspects of rigorous definitions and explain the quite different stability properties. Moreover, we utilize the heat equation approach in various settings and show how these topological and spectral invariants are mutually related in the study...
Gauge groups and topological invariants of vacuum manifolds
International Nuclear Information System (INIS)
Golo, V.L.; Monastyrsky, M.I.
1978-01-01
The paper is concerned with topological properties of the vacuum manifolds in the theories with the broken gauge symmetry for the groups of the type SO(k) x U(n), SO(k) x SO(p) x U(r). For the Ginsburg-Landau theory of the superfluid 3 He the gauge transformations are discussed. They provide the means to indicate all possible types of the vacuum manifolds, which are likely to correspond to distinct phases of the superfluid 3 He. Conditions on the existence of the minimums of the Ginsburg-Landau functional are discussed
The Persistence of a Slow Manifold with Bifurcation
DEFF Research Database (Denmark)
Kristiansen, Kristian Uldall; Palmer, P.; Robert, M.
2012-01-01
his paper considers the persistence of a slow manifold with bifurcation in a slow-fast two degree of freedom Hamiltonian system. In particular, we consider a system with a supercritical pitchfork bifurcation in the fast space which is unfolded by the slow coordinate. The model system is motivated...... by tethered satellites. It is shown that an almost full measure subset of a neighborhood of the slow manifold's normally elliptic branches persists in an adiabatic sense. We prove this using averaging and a blow-up near the bifurcation....
Distributed mean curvature on a discrete manifold for Regge calculus
International Nuclear Information System (INIS)
Conboye, Rory; Miller, Warner A; Ray, Shannon
2015-01-01
The integrated mean curvature of a simplicial manifold is well understood in both Regge Calculus and Discrete Differential Geometry. However, a well motivated pointwise definition of curvature requires a careful choice of the volume over which to uniformly distribute the local integrated curvature. We show that hybrid cells formed using both the simplicial lattice and its circumcentric dual emerge as a remarkably natural structure for the distribution of this local integrated curvature. These hybrid cells form a complete tessellation of the simplicial manifold, contain a geometric orthonormal basis, and are also shown to give a pointwise mean curvature with a natural interpretation as the fractional rate of change of the normal vector. (paper)
Spontaneous compactification and Ricci-flat manifolds with torsion
International Nuclear Information System (INIS)
McInnes, B.
1985-06-01
The Freund-Rubin mechanism is based on the equation Rsub(ik)=lambdagsub(ik) (where lambda>0), which, via Myers' Theorem, implies ''spontaneous'' compactification. The difficulties connected with the cosmological constant in this approach can be resolved if torsion is introduced and lambda set equal to zero, but then compactification ''by hand'' is necessary, since the equation Rsub(ik)=0 can be satisfied both on compact and on non-compact manifolds. In this paper we discuss the global geometry of Ricci-flat manifolds with torsion, and suggest ways of restoring the ''spontaneity'' of the compactification. (author)
Rotation vectors for homeomorphisms of non-positively curved manifolds
International Nuclear Information System (INIS)
Lessa, Pablo
2011-01-01
Rotation vectors, as defined for homeomorphisms of the torus that are isotopic to the identity, are generalized to such homeomorphisms of any complete Riemannian manifold with non-positive sectional curvature. These generalized rotation vectors are shown to exist for almost every orbit of such a dynamical system with respect to any invariant measure with compact support. The concept is then extended to flows and, as an application, it is shown how non-null rotation vectors can be used to construct a measurable semi-conjugacy between a given flow and the geodesic flow of a manifold
São Carlos Workshop on Real and Complex Singularities
Ruas, Maria
2007-01-01
The São Carlos Workshop on Real and Complex Singularities is the longest running workshop in singularities. It is held every two years and is a key international event for people working in the field. This volume contains papers presented at the eighth workshop, held at the IML, Marseille, July 19–23, 2004. The workshop offers the opportunity to establish the state of the art and to present new trends, new ideas and new results in all of the branches of singularities. This is reflected by the contributions in this book. The main topics discussed are equisingularity of sets and mappings, geometry of singular complex analytic sets, singularities of mappings, characteristic classes, classification of singularities, interaction of singularity theory with some of the new ideas in algebraic geometry imported from theoretical physics, and applications of singularity theory to geometry of surfaces in low dimensional euclidean spaces, to differential equations and to bifurcation theory.
A Note on Inclusion Intervals of Matrix Singular Values
Cui, Shu-Yu; Tian, Gui-Xian
2012-01-01
We establish an inclusion relation between two known inclusion intervals of matrix singular values in some special case. In addition, based on the use of positive scale vectors, a known inclusion interval of matrix singular values is also improved.
Feature extraction for SAR target recognition based on supervised manifold learning
International Nuclear Information System (INIS)
Du, C; Zhou, S; Sun, J; Zhao, J
2014-01-01
On the basis of manifold learning theory, a new feature extraction method for Synthetic aperture radar (SAR) target recognition is proposed. First, the proposed algorithm estimates the within-class and between-class local neighbourhood surrounding each SAR sample. After computing the local tangent space for each neighbourhood, the proposed algorithm seeks for the optimal projecting matrix by preserving the local within-class property and simultaneously maximizing the local between-class separability. The use of uncorrelated constraint can also enhance the discriminating power of the optimal projecting matrix. Finally, the nearest neighbour classifier is applied to recognize SAR targets in the projected feature subspace. Experimental results on MSTAR datasets demonstrate that the proposed method can provide a higher recognition rate than traditional feature extraction algorithms in SAR target recognition
Flexible Manifold Learning With Optimal Graph for Image and Video Representation.
Wang, Wei; Yan, Yan; Nie, Feiping; Yan, Shuicheng; Sebe, Nicu
2018-06-01
Graph-based dimensionality reduction techniques have been widely and successfully applied to clustering and classification tasks. The basis of these algorithms is the constructed graph which dictates their performance. In general, the graph is defined by the input affinity matrix. However, the affinity matrix derived from the data is sometimes suboptimal for dimension reduction as the data used are very noisy. To address this issue, we propose the projective unsupervised flexible embedding models with optimal graph (PUFE-OG). We build an optimal graph by adjusting the affinity matrix. To tackle the out-of-sample problem, we employ a linear regression term to learn a projection matrix. The optimal graph and the projection matrix are jointly learned by integrating the manifold regularizer and regression residual into a unified model. The experimental results on the public benchmark datasets demonstrate that the proposed PUFE-OG outperforms state-of-the-art methods.
PT-symmetric models in curved manifolds
Czech Academy of Sciences Publication Activity Database
Krejčiřík, David; Siegl, Petr
2010-01-01
Roč. 43, č. 48 (2010), 485204/1-485204/30 ISSN 1751-8113 R&D Projects: GA MŠk LC06002 Institutional research plan: CEZ:AV0Z10480505 Keywords : NON-HERMITIAN HAMILTONIANS * SCHRODINGER -TYPE OPERATORS * PSEUDO-HERMITICITY Subject RIV: BA - General Mathematics Impact factor: 1.641, year: 2010
Stability of naked singularity arising in gravitational collapse of Type ...
Indian Academy of Sciences (India)
... )) leads the collapse to the formation of naked singularity. We further prove that the occurrence of such a naked singularity is stable with respect to small changes in the initial data. We remark that though the initial data leading to both black hole (BH) and naked singularity (NS) form a `big' subset of the true initial data set ...
THE EXT RACORPOREAL FERTILIZATION TECHNOLOGIES AND THE SINGULARITY PROBLEMS
Directory of Open Access Journals (Sweden)
S. V. Denysenko
2013-05-01
Full Text Available The peculiarities of modern medicine development connected with the technological and informative singularity are analyzed. The risks of realization of extracorporeal fertilization are examined from positions of development of informative singularity. The warning problems of origin of singularity are discussed on t h e base of t h e newest technologies development.
Positive solutions for higher order singular p-Laplacian boundary ...
Indian Academy of Sciences (India)
of positive solutions for sublinear 2m-th order singular p-Laplacian BVPs on closed interval. Keywords. Positive solution; singular BVPs; sufficient and necessary conditions; p-Laplacian equations. 1. Introduction. In this paper, we are concerned with higher order singular p-Laplacian boundary value problems. ⎧. ⎨. ⎩.
Kalmar, Boldizsar
2006-01-01
We give a Pontryagin-Thom-Szucs type construction for non-positive codimensional singular maps, and obtain results about cobordism and bordism groups of -1 codimensional stable maps with prescribed singular fibers.
Li, Xutao; Ng, Michael K; Cong, Gao; Ye, Yunming; Wu, Qingyao
2017-08-01
With the advancement of data acquisition techniques, tensor (multidimensional data) objects are increasingly accumulated and generated, for example, multichannel electroencephalographies, multiview images, and videos. In these applications, the tensor objects are usually nonnegative, since the physical signals are recorded. As the dimensionality of tensor objects is often very high, a dimension reduction technique becomes an important research topic of tensor data. From the perspective of geometry, high-dimensional objects often reside in a low-dimensional submanifold of the ambient space. In this paper, we propose a new approach to perform the dimension reduction for nonnegative tensor objects. Our idea is to use nonnegative Tucker decomposition (NTD) to obtain a set of core tensors of smaller sizes by finding a common set of projection matrices for tensor objects. To preserve geometric information in tensor data, we employ a manifold regularization term for the core tensors constructed in the Tucker decomposition. An algorithm called manifold regularization NTD (MR-NTD) is developed to solve the common projection matrices and core tensors in an alternating least squares manner. The convergence of the proposed algorithm is shown, and the computational complexity of the proposed method scales linearly with respect to the number of tensor objects and the size of the tensor objects, respectively. These theoretical results show that the proposed algorithm can be efficient. Extensive experimental results have been provided to further demonstrate the effectiveness and efficiency of the proposed MR-NTD algorithm.
Orientifolds of type IIA strings on Calabi-Yau manifolds
Indian Academy of Sciences (India)
The advent of D-branes has led to a better understanding of dualities involving strong coupling limits. In particular, Ж = 1 compactifications of the heterotic string (on Calabi-Yau manifolds) are no longer the only string theories of phe- nomenological interest. One such class is furnished by M-theory compactifications.
Nonparametric Bayes Classification and Hypothesis Testing on Manifolds
Bhattacharya, Abhishek; Dunson, David
2012-01-01
Our first focus is prediction of a categorical response variable using features that lie on a general manifold. For example, the manifold may correspond to the surface of a hypersphere. We propose a general kernel mixture model for the joint distribution of the response and predictors, with the kernel expressed in product form and dependence induced through the unknown mixing measure. We provide simple sufficient conditions for large support and weak and strong posterior consistency in estimating both the joint distribution of the response and predictors and the conditional distribution of the response. Focusing on a Dirichlet process prior for the mixing measure, these conditions hold using von Mises-Fisher kernels when the manifold is the unit hypersphere. In this case, Bayesian methods are developed for efficient posterior computation using slice sampling. Next we develop Bayesian nonparametric methods for testing whether there is a difference in distributions between groups of observations on the manifold having unknown densities. We prove consistency of the Bayes factor and develop efficient computational methods for its calculation. The proposed classification and testing methods are evaluated using simulation examples and applied to spherical data applications. PMID:22754028
Riemannian multi-manifold modeling and clustering in brain networks
Slavakis, Konstantinos; Salsabilian, Shiva; Wack, David S.; Muldoon, Sarah F.; Baidoo-Williams, Henry E.; Vettel, Jean M.; Cieslak, Matthew; Grafton, Scott T.
2017-08-01
This paper introduces Riemannian multi-manifold modeling in the context of brain-network analytics: Brainnetwork time-series yield features which are modeled as points lying in or close to a union of a finite number of submanifolds within a known Riemannian manifold. Distinguishing disparate time series amounts thus to clustering multiple Riemannian submanifolds. To this end, two feature-generation schemes for brain-network time series are put forth. The first one is motivated by Granger-causality arguments and uses an auto-regressive moving average model to map low-rank linear vector subspaces, spanned by column vectors of appropriately defined observability matrices, to points into the Grassmann manifold. The second one utilizes (non-linear) dependencies among network nodes by introducing kernel-based partial correlations to generate points in the manifold of positivedefinite matrices. Based on recently developed research on clustering Riemannian submanifolds, an algorithm is provided for distinguishing time series based on their Riemannian-geometry properties. Numerical tests on time series, synthetically generated from real brain-network structural connectivity matrices, reveal that the proposed scheme outperforms classical and state-of-the-art techniques in clustering brain-network states/structures.
Sampling from Determinantal Point Processes for Scalable Manifold Learning.
Wachinger, Christian; Golland, Polina
2015-01-01
High computational costs of manifold learning prohibit its application for large datasets. A common strategy to overcome this problem is to perform dimensionality reduction on selected landmarks and to successively embed the entire dataset with the Nyström method. The two main challenges that arise are: (i) the landmarks selected in non-Euclidean geometries must result in a low reconstruction error, (ii) the graph constructed from sparsely sampled landmarks must approximate the manifold well. We propose to sample the landmarks from determinantal distributions on non-Euclidean spaces. Since current determinantal sampling algorithms have the same complexity as those for manifold learning, we present an efficient approximation with linear complexity. Further, we recover the local geometry after the sparsification by assigning each landmark a local covariance matrix, estimated from the original point set. The resulting neighborhood selection .based on the Bhattacharyya distance improves the embedding of sparsely sampled manifolds. Our experiments show a significant performance improvement compared to state-of-the-art landmark selection techniques on synthetic and medical data.
Holomorphic two-spheres in complex Grassmann manifold
Indian Academy of Sciences (India)
Home; Journals; Proceedings – Mathematical Sciences; Volume 118; Issue 3. Holomorphic Two-Spheres in Complex Grassmann Manifold (2, 4). Xiaowei Xu ... Author Affiliations. Xiaowei Xu1 Xiaoxiang Jiao1. School of Mathematical Sciences, Graduate University of Chinese Academy of Sciences, Beijing 100049, China ...
Valve and Manifold considerations for Efficient Digital Hydraulic Machines
DEFF Research Database (Denmark)
Roemer, Daniel Beck; Nørgård, Christian; Bech, Michael Møller
2016-01-01
This paper seeks to shed light on the topic of design and sizing of switching valves and connecting manifolds found in large digital hydraulic motors, also known commercially as Digital Displacement Motors. These motors promise very high operation efficiencies with broad operation ranges, which s...
The topology of certain 3-Sasakian 7-manifolds
DEFF Research Database (Denmark)
A. Hepworth, Richard
2007-01-01
We calculate the integer cohomology ring and stable tangent bundle of a family of compact, 3-Sasakian 7-manifolds constructed by Boyer, Galicki, Mann, and Rees. Previously only the rational cohomology ring was known. The most important part of the cohomology ring is a torsion group that we descri...
Growth of fundamental group for Finsler manifolds with integral Ricci ...
Indian Academy of Sciences (India)
tant to reveal the relationship between the topology and geometry invariants for Finsler manifolds. As for the ... Ricci curvature bound was established and the integral Ricci curvature and topology was studied [13]. .... star-shaped at x ∈ T if for all y ∈ T there exists a minimal geodesic from x to y contained in T . For r > 0, let T ...
Rigid Body Energy Minimization on Manifolds for Molecular Docking.
Mirzaei, Hanieh; Beglov, Dmitri; Paschalidis, Ioannis Ch; Vajda, Sandor; Vakili, Pirooz; Kozakov, Dima
2012-11-13
Virtually all docking methods include some local continuous minimization of an energy/scoring function in order to remove steric clashes and obtain more reliable energy values. In this paper, we describe an efficient rigid-body optimization algorithm that, compared to the most widely used algorithms, converges approximately an order of magnitude faster to conformations with equal or slightly lower energy. The space of rigid body transformations is a nonlinear manifold, namely, a space which locally resembles a Euclidean space. We use a canonical parametrization of the manifold, called the exponential parametrization, to map the Euclidean tangent space of the manifold onto the manifold itself. Thus, we locally transform the rigid body optimization to an optimization over a Euclidean space where basic optimization algorithms are applicable. Compared to commonly used methods, this formulation substantially reduces the dimension of the search space. As a result, it requires far fewer costly function and gradient evaluations and leads to a more efficient algorithm. We have selected the LBFGS quasi-Newton method for local optimization since it uses only gradient information to obtain second order information about the energy function and avoids the far more costly direct Hessian evaluations. Two applications, one in protein-protein docking, and the other in protein-small molecular interactions, as part of macromolecular docking protocols are presented. The code is available to the community under open source license, and with minimal effort can be incorporated into any molecular modeling package.
Analytical and numerical manifolds in a symplectic 4-D map
Delis, N.; Contopoulos, G.
2016-05-01
We study analytically the orbits along the asymptotic manifolds from a complex unstable periodic orbit in a symplectic 4-D Froeschlé map. The orbits are given as convergent series. We compare the analytic results by truncating the series at various orders with the corresponding numerical results and we find agreement along a more extended length, as the order of truncation increases. The agreement is improved when the parameters approach those of the stability domain. Along the manifolds no terms with small divisors appear in the series. The same result is found if we use a parametrization method along the asymptotic curves. In the case of orbits starting close to the manifolds small divisors appear, but the orbits remain close to the manifolds for an extended period of time. If the parameters of the map are close to the stable domain the orbits recede and approach the origin several times and remain confined in a certain volume around the origin for a long time before escaping to large distances. For special sets of parameters we see resonance phenomena and the orbits take particular forms near every resonance.
An algorithmic approach to construct crystallizations of 3-manifolds ...
Indian Academy of Sciences (India)
dimensional hyperbolic space by a subgroup of hyperbolic isometries acting freely ..... from the construction of ˜r as in eq. (2.3) and Definition 2.2. D. DEFINITION 2.8. A crystallization ( , γ ) of a 3-manifold is called minimal with respect to the pair (〈S | R〉 ...
Geometry and physics of pseudodifferential operators on manifolds
DEFF Research Database (Denmark)
Esposito, Giampiero; Napolitano, George M.
2015-01-01
A review is made of the basic tools used in mathematics to define a calculus for pseudodifferential operators on Riemannian manifolds endowed with a connection: existence theorem for the function that generalizes the phase; analogue of Taylor's theorem; torsion and curvature terms in the symbolic...
Gauge theory and the topology of four-manifolds
Friedman, Robert Marc
1998-01-01
The lectures in this volume provide a perspective on how 4-manifold theory was studied before the discovery of modern-day Seiberg-Witten theory. One reason the progress using the Seiberg-Witten invariants was so spectacular was that those studying SU(2)-gauge theory had more than ten years' experience with the subject. The tools had been honed, the correct questions formulated, and the basic strategies well understood. The knowledge immediately bore fruit in the technically simpler environment of the Seiberg-Witten theory. Gauge theory long predates Donaldson's applications of the subject to 4-manifold topology, where the central concern was the geometry of the moduli space. One reason for the interest in this study is the connection between the gauge theory moduli spaces of a Kähler manifold and the algebro-geometric moduli space of stable holomorphic bundles over the manifold. The extra geometric richness of the SU(2)-moduli spaces may one day be important for purposes beyond the algebraic invariants that ...
Curvature Properties of Lorentzian Manifolds with Large Isometry Groups
Energy Technology Data Exchange (ETDEWEB)
Batat, Wafaa [Ecole Normale Superieure de L' Enseignement Technique d' Oran, Departement de Mathematiques et Informatique (Algeria)], E-mail: wafa.batat@enset-oran.dz; Calvaruso, Giovanni, E-mail: giovanni.calvaruso@unile.it; Leo, Barbara De [University of Salento, Dipartimento di Matematica ' E. De Giorgi' (Italy)], E-mail: barbara.deleo@unile.it
2009-08-15
The curvature of Lorentzian manifolds (M{sup n},g), admitting a group of isometries of dimension at least 1/2n(n - 1) + 1, is completely described. Interesting behaviours are found, in particular as concerns local symmetry, local homogeneity and conformal flatness.
Convexity of spheres in a manifold without conjugate points
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
Abstract. For a non-compact, complete and simply connected manifold M without conjugate points, we prove that if the determinant of the second fundamental form of the geodesic spheres in M is a radial function, then the geodesic spheres are convex. We also show that if M is two or three dimensional and without ...
Deformations of coisotropic submanifolds in locally conformal symplectic manifolds
Czech Academy of Sciences Publication Activity Database
Le, Hong-Van; Oh, Y.-G.
2016-01-01
Roč. 20, č. 3 (2016), s. 553-596 ISSN 1093-6106 Institutional support: RVO:67985840 Keywords : locally conformal symplectic manifold * coisotropic submanifold * b-twisted differential * bulk deformation Subject RIV: BA - General Mathematics Impact factor: 0.895, year: 2016 http://intlpress.com/site/pub/pages/journals/items/ajm/content/vols/0020/0003/a007/index.html
Stable Yang-Mills connections on special holonomy manifolds
Huang, Teng
2017-06-01
We prove that energy minimizing Yang-Mills connections on a compact G2-manifold has holonomy equal to G2 are G2-instantons, subject to an extra condition on the curvature. Furthermore, we show that energy minimizing connections on a compact Calabi-Yau 3-fold that has holonomy equal to SU(3) subject to a similar condition are holomorphic.
Two new variants of the manifold-mapping technique
D. Echeverria (David)
2006-01-01
htmlabstractManifold-mapping is an efficient surrogate-based optimization technique aimed at the acceleration of very time-consuming design problems. In this paper we present two new variants of the original algorithm that make it applicable to a broader range of optimization scenarios. The first
Quantum cohomology of flag manifolds and Toda lattices
International Nuclear Information System (INIS)
Givental, A.; Kim, B.
1995-01-01
We discuss relations of Vafa's quantum cohomology with Floer's homology theory, introduce equivariant quantum cohomology, formulate some conjectures about its general properties and, on the basis of these conjectures, compute quantum cohomology algebras of the flag manifolds. The answer turns out to coincide with the algebra of regular functions on an invariant lagrangian variety of a Toda lattice. (orig.)
Enhancing Low-Rank Subspace Clustering by Manifold Regularization.
Liu, Junmin; Chen, Yijun; Zhang, JiangShe; Xu, Zongben
2014-07-25
Recently, low-rank representation (LRR) method has achieved great success in subspace clustering (SC), which aims to cluster the data points that lie in a union of low-dimensional subspace. Given a set of data points, LRR seeks the lowest rank representation among the many possible linear combinations of the bases in a given dictionary or in terms of the data itself. However, LRR only considers the global Euclidean structure, while the local manifold structure, which is often important for many real applications, is ignored. In this paper, to exploit the local manifold structure of the data, a manifold regularization characterized by a Laplacian graph has been incorporated into LRR, leading to our proposed Laplacian regularized LRR (LapLRR). An efficient optimization procedure, which is based on alternating direction method of multipliers (ADMM), is developed for LapLRR. Experimental results on synthetic and real data sets are presented to demonstrate that the performance of LRR has been enhanced by using the manifold regularization.
Robust Semi-Supervised Manifold Learning Algorithm for Classification
Directory of Open Access Journals (Sweden)
Mingxia Chen
2018-01-01
Full Text Available In the recent years, manifold learning methods have been widely used in data classification to tackle the curse of dimensionality problem, since they can discover the potential intrinsic low-dimensional structures of the high-dimensional data. Given partially labeled data, the semi-supervised manifold learning algorithms are proposed to predict the labels of the unlabeled points, taking into account label information. However, these semi-supervised manifold learning algorithms are not robust against noisy points, especially when the labeled data contain noise. In this paper, we propose a framework for robust semi-supervised manifold learning (RSSML to address this problem. The noisy levels of the labeled points are firstly predicted, and then a regularization term is constructed to reduce the impact of labeled points containing noise. A new robust semi-supervised optimization model is proposed by adding the regularization term to the traditional semi-supervised optimization model. Numerical experiments are given to show the improvement and efficiency of RSSML on noisy data sets.
Manifold regularization for sparse unmixing of hyperspectral images.
Liu, Junmin; Zhang, Chunxia; Zhang, Jiangshe; Li, Huirong; Gao, Yuelin
2016-01-01
Recently, sparse unmixing has been successfully applied to spectral mixture analysis of remotely sensed hyperspectral images. Based on the assumption that the observed image signatures can be expressed in the form of linear combinations of a number of pure spectral signatures known in advance, unmixing of each mixed pixel in the scene is to find an optimal subset of signatures in a very large spectral library, which is cast into the framework of sparse regression. However, traditional sparse regression models, such as collaborative sparse regression , ignore the intrinsic geometric structure in the hyperspectral data. In this paper, we propose a novel model, called manifold regularized collaborative sparse regression , by introducing a manifold regularization to the collaborative sparse regression model. The manifold regularization utilizes a graph Laplacian to incorporate the locally geometrical structure of the hyperspectral data. An algorithm based on alternating direction method of multipliers has been developed for the manifold regularized collaborative sparse regression model. Experimental results on both the simulated and real hyperspectral data sets have demonstrated the effectiveness of our proposed model.
Morphological appearance manifolds for group-wise morphometric analysis.
Lian, Nai-Xiang; Davatzikos, Christos
2011-12-01
Computational anatomy quantifies anatomical shape based on diffeomorphic transformations of a template. However, different templates warping algorithms, regularization parameters, or templates, lead to different representations of the same exact anatomy, raising a uniqueness issue: variations of these parameters are confounding factors as they give rise to non-unique representations. Recently, it has been shown that learning the equivalence class derived from the multitude of representations of a given anatomy can lead to improved and more stable morphological descriptors. Herein, we follow that approach, by approximating this equivalence class of morphological descriptors by a (nonlinear) morphological appearance manifold fitting to the data via a locally linear model. Our approach parallels work in the computer vision field, in which variations lighting, pose and other parameters lead to image appearance manifolds representing the exact same figure in different ways. The proposed framework is then used for group-wise registration and statistical analysis of biomedical images, by employing a minimum variance criterion to perform manifold-constrained optimization, i.e. to traverse each individual's morphological appearance manifold until group variance is minimal. The hypothesis is that this process is likely to reduce aforementioned confounding effects and potentially lead to morphological representations reflecting purely biological variations, instead of variations introduced by modeling assumptions and parameter settings. Copyright © 2011 Elsevier B.V. All rights reserved.
On equations of motion on complex grassman manifold
International Nuclear Information System (INIS)
Berceanu, S.; Gheorghe, A.
1989-02-01
We investigate the equations of motion on the 'classical' phase space which corresponds to quantum state space in the case of the complex Grassmann manifold appearing in the Hartree-Fock problem. First and second degree polynomial Hamiltonians in bifermion operators are considered. The 'classical' motion corresponding to linear Hamiltonians is described by a Matrix Riccati equation.(authors)
Invariant Distributionally Scrambled Manifolds for an Annihilation Operator
Directory of Open Access Journals (Sweden)
Xinxing Wu
2014-01-01
Full Text Available This note proves that the annihilation operator of a quantum harmonic oscillator admits an invariant distributionally ε-scrambled linear manifold for any 0<ε<2. This is a positive answer to Question 1 by Wu and Chen (2013.
Balanced metrics for vector bundles and polarised manifolds
DEFF Research Database (Denmark)
Garcia Fernandez, Mario; Ross, Julius
2012-01-01
We consider a notion of balanced metrics for triples (X, L, E) which depend on a parameter α, where X is smooth complex manifold with an ample line bundle L and E is a holomorphic vector bundle over X. For generic choice of α, we prove that the limit of a convergent sequence of balanced metrics...
On some properties of the superposition operator on topological manifolds
Directory of Open Access Journals (Sweden)
Janusz Dronka
2010-01-01
Full Text Available In this paper the superposition operator in the space of vector-valued, bounded and continuous functions on a topological manifold is considered. The acting conditions and criteria of continuity and compactness are established. As an application, an existence result for the nonlinear Hammerstein integral equation is obtained.
Formation of a Chern-Simons cylindrical wormhole during evolution of manifolds
Sepehri, Alireza; Ghaffary, Tooraj; Naimi, Yaghoob; Ghaforyan, Hossein; Ebrahimzadeh, Majid
In this paper, the formation of cylindrical wormhole during evolution of manifolds is studied. It is shown that this type of wormholes may be produced at two stages and then disappeared very fast at the third stage. First, one N-dimensional is formed by joining point-like manifolds. Then, this manifold is torn and two child manifolds plus one Chern-Simons manifold appeared. Our universe is born on one of the child manifolds and connected to the other one by Chern-Simons manifold. At the third stage, this Chern-Simons manifold-which plays the role of cylindrical wormhole, dissolves into universes and gives its energy to them and causes inflation. Thus, the Chern-Simons cylindrical wormhole is unstable and dissolves in our four-dimensional universes and another universe very fast.
Singular electrostatic energy of nanoparticle clusters
Qin, Jian; Krapf, Nathan W.; Witten, Thomas A.
2016-02-01
The binding of clusters of metal nanoparticles is partly electrostatic. We address difficulties in calculating the electrostatic energy when high charging energies limit the total charge to a single quantum, entailing unequal potentials on the particles. We show that the energy at small separation h has a singular logarithmic dependence on h . We derive a general form for this energy in terms of the singular capacitance of two spheres in near contact c (h ) , together with nonsingular geometric features of the cluster. Using this form, we determine the energies of various clusters, finding that more compact clusters are more stable. These energies are proposed to be significant for metal-semiconductor binary nanoparticle lattices found experimentally. We sketch how these effects should dictate the relative abundances of metal nanoparticle clusters in nonpolar solvents.
Spectral asymptotics for nonsmooth singular Green operators
DEFF Research Database (Denmark)
Grubb, Gerd
2014-01-01
Singular Green operators G appear typically as boundary correction terms in resolvents for elliptic boundary value problems on a domain Ω ⊂ ℝ n , and more generally they appear in the calculus of pseudodifferential boundary problems. In particular, the boundary term in a Krein resolvent formula...... is a singular Green operator. It is well-known in smooth cases that when G is of negative order −t on a bounded domain, its eigenvalues ors-numbers have the behavior (*)s j (G) ∼ cj −t/(n−1) for j → ∞, governed by the boundary dimension n − 1. In some nonsmooth cases, upper estimates (**)s j (G) ≤ Cj −t/(n−1...
Further holographic investigations of big bang singularities
Energy Technology Data Exchange (ETDEWEB)
Engelhardt, Netta [Department of Physics, UCSB,Santa Barbara, CA 93106 (United States); Hertog, Thomas [Institute for Theoretical Physics, KU Leuven,3001 Leuven (Belgium); Horowitz, Gary T. [Department of Physics, UCSB,Santa Barbara, CA 93106 (United States)
2015-07-09
We further explore the quantum dynamics near past cosmological singularities in anisotropic Kasner-AdS solutions using gauge/gravity duality. The dual description of the bulk evolution involves N=4 super Yang-Mills on the contracting branch of an anisotropic de Sitter space and is well defined. We compute two-point correlators of Yang-Mills operators of large dimensions using spacelike geodesics anchored on the boundary. The correlator between two points separated in a direction with negative Kasner exponent p always exhibits a pole at horizon scales, in any dimension, which we interpret as a dual signature of the classical bulk singularity. This indicates that the geodesic approximation selects a non-normalizable Yang-Mills state.
Further holographic investigations of big bang singularities
Engelhardt, Netta; Hertog, Thomas; Horowitz, Gary T.
2015-07-01
We further explore the quantum dynamics near past cosmological singularities in anisotropic Kasner-AdS solutions using gauge/gravity duality. The dual description of the bulk evolution involves super Yang-Mills on the contracting branch of an anisotropic de Sitter space and is well defined. We compute two-point correlators of Yang-Mills operators of large dimensions using spacelike geodesics anchored on the boundary. The correlator between two points separated in a direction with negative Kasner exponent p always exhibits a pole at horizon scales, in any dimension, which we interpret as a dual signature of the classical bulk singularity. This indicates that the geodesic approximation selects a non-normalizable Yang-Mills state.
Singular tachyon kinks from regular profiles
International Nuclear Information System (INIS)
Copeland, E.J.; Saffin, P.M.; Steer, D.A.
2003-01-01
We demonstrate how Sen's singular kink solution of the Born-Infeld tachyon action can be constructed by taking the appropriate limit of initially regular profiles. It is shown that the order in which different limits are taken plays an important role in determining whether or not such a solution is obtained for a wide class of potentials. Indeed, by introducing a small parameter into the action, we are able circumvent the results of a recent paper which derived two conditions on the asymptotic tachyon potential such that the singular kink could be recovered in the large amplitude limit of periodic solutions. We show that this is explained by the non-commuting nature of two limits, and that Sen's solution is recovered if the order of the limits is chosen appropriately
Person-Independent Head Pose Estimation Using Biased Manifold Embedding
Directory of Open Access Journals (Sweden)
Sethuraman Panchanathan
2008-02-01
Full Text Available Head pose estimation has been an integral problem in the study of face recognition systems and human-computer interfaces, as part of biometric applications. A fine estimate of the head pose angle is necessary and useful for several face analysis applications. To determine the head pose, face images with varying pose angles can be considered to be lying on a smooth low-dimensional manifold in high-dimensional image feature space. However, when there are face images of multiple individuals with varying pose angles, manifold learning techniques often do not give accurate results. In this work, we propose a framework for a supervised form of manifold learning called Biased Manifold Embedding to obtain improved performance in head pose angle estimation. This framework goes beyond pose estimation, and can be applied to all regression applications. This framework, although formulated for a regression scenario, unifies other supervised approaches to manifold learning that have been proposed so far. Detailed studies of the proposed method are carried out on the FacePix database, which contains 181 face images each of 30 individuals with pose angle variations at a granularity of 1Ã¢ÂˆÂ˜. Since biometric applications in the real world may not contain this level of granularity in training data, an analysis of the methodology is performed on sparsely sampled data to validate its effectiveness. We obtained up to 2Ã¢ÂˆÂ˜ average pose angle estimation error in the results from our experiments, which matched the best results obtained for head pose estimation using related approaches.
Quantum invariants of knots and 3-manifolds. 2. rev. ed.
International Nuclear Information System (INIS)
Turaev, Vladimir G.
2010-01-01
Due to the strong appeal and wide use of this monograph, it is now available in its second revised edition. The monograph gives a systematic treatment of 3-dimensional topological quantum field theories (TQFTs) based on the work of the author with N. Reshetikhin and O. Viro. This subject was inspired by the discovery of the Jones polynomial of knots and the Witten-Chern-Simons field theory. On the algebraic side, the study of 3-dimensional TQFTs has been influenced by the theory of braided categories and the theory of quantum groups. The book is divided into three parts. Part I presents a construction of 3-dimensional TQFTs and 2-dimensional modular functors from so-called modular categories. This gives a vast class of knot invariants and 3-manifold invariants as well as a class of linear representations of the mapping class groups of surfaces. In Part II the technique of 6j-symbols is used to define state sum invariants of 3-manifolds. Their relation to the TQFTs constructed in Part I is established via the theory of shadows. Part III provides constructions of modular categories, based on quantum groups and skein modules of tangles in the 3-space. This fundamental contribution to topological quantum field theory is accessible to graduate students in mathematics and physics with knowledge of basic algebra and topology. It is an indispensable source for everyone who wishes to enter the forefront of this fascinating area at the borderline of mathematics and physics. From the contents: - Invariants of graphs in Euclidean 3-space and of closed 3-manifolds - Foundations of topological quantum field theory - Three-dimensional topological quantum field theory - Two-dimensional modular functors - 6j-symbols - Simplicial state sums on 3-manifolds - Shadows of manifolds and state sums on shadows - Constructions of modular categories. (orig.)