WorldWideScience

Sample records for singular address forms

  1. On local invariants of singular symplectic forms

    Science.gov (United States)

    Domitrz, Wojciech

    2017-04-01

    We find a complete set of local invariants of singular symplectic forms with the structurally stable Martinet hypersurface on a 2 n-dimensional manifold. In the C-analytic category this set consists of the Martinet hypersurface Σ2, the restriction of the singular symplectic form ω to TΣ2 and the kernel of ω n - 1 at the point p ∈Σ2. In the R-analytic and smooth categories this set contains one more invariant: the canonical orientation of Σ2. We find the conditions to determine the kernel of ω n - 1 at p by the other invariants. In dimension 4 we find sufficient conditions to determine the equivalence class of a singular symplectic form-germ with the structurally smooth Martinet hypersurface by the Martinet hypersurface and the restriction of the singular symplectic form to it. We also study the singular symplectic forms with singular Martinet hypersurfaces. We prove that the equivalence class of such singular symplectic form-germ is determined by the Martinet hypersurface, the canonical orientation of its regular part and the restriction of the singular symplectic form to its regular part if the Martinet hypersurface is a quasi-homogeneous hypersurface with an isolated singularity.

  2. Sesotho Address Forms

    Directory of Open Access Journals (Sweden)

    Akindele, Dele Femi

    2008-01-01

    Full Text Available Address forms constitute an integral part of Basotho sociolinguistic etiquette. They are regarded as a kind of emotional capital that may be invested in putting others at ease. They are indicators of deference, politeness and markers of social distance. (Fasold 1990, Akindele 1990, 1991, 1993 This paper examines the address forms used by the Basotho people. It analyzes and discusses the various types and the factors determining their use. The discussion of address forms in Sesotho focuses on First Name, Title plus First Name, Title plus Last Name, Nickname, Multiple Names, and Teknonym. Drawing data from semi-literate and literate urban and rural population of Maseru district of Lesotho, it was found that the commonest form of address used by the Basotho people is title plus first name. e.g. ntate Thabo (father Thabo, 'm'e Puleng (mother Puleng, ausi Maneo (sister Maneo, abuti Mahao (brother Mahao. It is used by close relations, associates, and familiar people in both formal and informal situations.

  3. Maslov indices, Poisson brackets, and singular differential forms

    Science.gov (United States)

    Esterlis, I.; Haggard, H. M.; Hedeman, A.; Littlejohn, R. G.

    2014-06-01

    Maslov indices are integers that appear in semiclassical wave functions and quantization conditions. They are often notoriously difficult to compute. We present methods of computing the Maslov index that rely only on typically elementary Poisson brackets and simple linear algebra. We also present a singular differential form, whose integral along a curve gives the Maslov index of that curve. The form is closed but not exact, and transforms by an exact differential under canonical transformations. We illustrate the method with the 6j-symbol, which is important in angular-momentum theory and in quantum gravity.

  4. Normal Forms for Retarded Functional Differential Equations and Applications to Bogdanov-Takens Singularity

    Science.gov (United States)

    Faria, T.; Magalhaes, L. T.

    The paper addresses, for retarded functional differential equations (FDEs), the computation of normal forms associated with the flow on a finite-dimensional invariant manifold tangent to invariant spaces for the infinitesimal generator of the linearized equation at a singularity. A phase space appropriate to the computation of these normal forms is introduced, and adequate nonresonance conditions for the computation of the normal forms are derived. As an application, the general situation of Bogdanov-Takens singularity and its versal unfolding for scalar retarded FDEs with nondegeneracy at second order is considered, both in the general case and in the case of differential-delay equations of the form ẋ( t) = ƒ( x( t), x( t-1)).

  5. Differential forms on singular varieties De Rham and Hodge theory simplified

    CERN Document Server

    Ancona, Vincenzo

    2005-01-01

    Differential Forms on Singular Varieties: De Rham and Hodge Theory Simplified uses complexes of differential forms to give a complete treatment of the Deligne theory of mixed Hodge structures on the cohomology of singular spaces. This book features an approach that employs recursive arguments on dimension and does not introduce spaces of higher dimension than the initial space. It simplifies the theory through easily identifiable and well-defined weight filtrations. It also avoids discussion of cohomological descent theory to maintain accessibility. Topics include classical Hodge theory, differential forms on complex spaces, and mixed Hodge structures on noncompact spaces.

  6. Closed-Form Exact Inverses of the Weakly Singular and Hypersingular Operators On Disks

    OpenAIRE

    Hiptmair, Ralf; Jerez-Hanckes, Carlos; Urzua-Torres, Carolina

    2017-01-01

    We introduce new boundary integral operators which are the exact inverses of the weakly singular and hypersingular operators for the Laplacian on flat disks. Moreover, we provide explicit closed forms for them and prove the continuity and ellipticity of their corresponding bilinear forms in the natural Sobolev trace spaces. This permit us to derive new Calder\\'on-type identities that can provide the foundation for optimal operator preconditioning in Galerkin boundary element methods.

  7. Closed Form Integration of Singular and Hypersingular Integrals in 3D BEM Formulations for Heat Conduction

    Directory of Open Access Journals (Sweden)

    A. Tadeu

    2012-01-01

    Full Text Available The evaluation of the singular and hypersingular integrals that appear in three-dimensional boundary element formulations for heat diffusion, in the frequency domain, is presented in analytical form. This improves computational efficiency and accuracy. Numerical integrations using existing techniques based on standard Gaussian integration schemes that incorporate an enormous amount of sampling points are used to verify the solutions of singular integrals. For the hypersingular integrals the comparison is evaluated by making use of an analytical solution that is valid for circular domains, combined with a standard Gaussian integration scheme for the remaining boundary element domain. Closed form solutions for cylindrical inclusions (with null temperatures and null heat fluxes prescribed on the boundary are then derived and used to validate the three-dimensional boundary element formulations.

  8. Prompt form of relativistic equations of motion in a model of singular lagrangian formalism

    International Nuclear Information System (INIS)

    Gajda, R.P.; Duviryak, A.A.; Klyuchkovskij, Yu.B.

    1983-01-01

    The purpose of the paper is to develope the way of transition from equations of motion in singular lagrangian formalism to three-dimensional equations of Newton type in the prompt form of dynamics in the framework of c -2 parameter expansion (s. c. quasireltativistic approaches), as well as to find corresponding integrals of motion. The first quasirelativistifc approach for Dominici, Gomis, Longhi model was obtained and investigated

  9. The integral form of D = 3 Chern-Simons theories probing Cn/Γ singularities

    International Nuclear Information System (INIS)

    Fre, P.; Grassi, P.A.

    2017-01-01

    We consider D=3 supersymmetric Chern Simons gauge theories both from the point of view of their formal structure and of their applications to the AdS 4 /CFT 3 correspondence. From the structural view-point, we use the new formalism of integral forms in superspace that utilizes the rheonomic Lagrangians and the Picture Changing Operators, as an algorithmic tool providing the connection between different approaches to supersymmetric theories. We provide here the generalization to an arbitrary Kaehler manifold with arbitrary gauge group and arbitrary superpotential of the rheonomic lagrangian of D=3 matter coupled gauge theories constructed years ago. From the point of view of the AdS 4 /CFT 3 correspondence and more generally of M2-branes we emphasize the role of the Kaehler quotient data in determining the field content and the interactions of the Cherns Simons gauge theory when the transverse space to the brane is a non-compact Kaehler quotient K 4 of some flat variety with respect to a suitable group. The crepant resolutions of C n /Γ singularities fall in this category. In the present paper we anticipate the general scheme how the geometrical data are to be utilized in the construction of the D=3 Chern-Simons Theory supposedly dual to the corresponding M2-brane solution. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Addressing anticipated countermoves as a persuasive form of strategic manoeuvring

    NARCIS (Netherlands)

    Amjarso, B.; van Eemeren, F.H.; Williams, D.C.; Zagar, I.Z.

    2008-01-01

    Addressing anticipated countermoves is a commonplace practice in argumentative discourse. A speaker in a discussion may anticipate the objections of an opponent and deal with them in advance. Likewise, a writer can make it clear to his readers that he does not expect them to take his views

  11. The Address Forms of Jambinese Community in Seberang Kotajambi

    OpenAIRE

    ismiyati, yanti

    2017-01-01

    The purpose of this research to find out liguistics phenomena and the reasons for the linguistic phenomena that happen in Jambinese forms in Jambinese community in Seberang Kota .The qualitative design is used in this research. The interview is used as the instrument to get the data concerning to the linguistics phenomena.There are four linguistics phenomena that happen to Jambinese forms in Seberang Kota classified as language maintance, language loss, language shift, and language change.bas...

  12. Forms of Address as Cross-Cultural Code-Switching

    DEFF Research Database (Denmark)

    Ørsnes, Bjarne

    2016-01-01

    Dissonance for (young) Danes since V isinterpreted as an overt manifestation of power distance in a society which considers itself asegalitarian. Ways to cope with such cognitive dissonance in foreign language teaching arediscussed. Furthermore, the article addresses the broader question of when cultural......, in Denmark they use T. Based on the observation that Danish studentsare very reluctant (and sometimes even opposed) to use V in the classroom in Denmark, thisarticle proposes to consider the use of V and T as a case of Cross-Cultural Code-Switching. Itis hypothesized that V causes Cultural Cognitive...

  13. An Explicit Formulation of Singularity-Free Dynamic Equations of Mechanical Systems in Lagrangian Form---Part Two: Multibody Systems

    Directory of Open Access Journals (Sweden)

    Pål Johan From

    2012-04-01

    Full Text Available This paper presents the explicit dynamic equations of multibody mechanical systems. This is the second paper on this topic. In the first paper the dynamics of a single rigid body from the Boltzmann--Hamel equations were derived. In this paper these results are extended to also include multibody systems. We show that when quasi-velocities are used, the part of the dynamic equations that appear from the partial derivatives of the system kinematics are identical to the single rigid body case, but in addition we get terms that come from the partial derivatives of the inertia matrix, which are not present in the single rigid body case. We present for the first time the complete and correct derivation of multibody systems based on the Boltzmann--Hamel formulation of the dynamics in Lagrangian form where local position and velocity variables are used in the derivation to obtain the singularity-free dynamic equations. The final equations are written in global variables for both position and velocity. The main motivation of these papers is to allow practitioners not familiar with differential geometry to implement the dynamic equations of rigid bodies without the presence of singularities. Presenting the explicit dynamic equations also allows for more insight into the dynamic structure of the system. Another motivation is to correct some errors commonly found in the literature. Unfortunately, the formulation of the Boltzmann-Hamel equations used here are presented incorrectly. This has been corrected by the authors, but we present here, for the first time, the detailed mathematical details on how to arrive at the correct equations. We also show through examples that using the equations presented here, the dynamics of a single rigid body is reduced to the standard equations on a Lagrangian form, for example Euler's equations for rotational motion and Euler--Lagrange equations for free motion.

  14. On certain degenerate and singular elliptic PDEs I: Nondivergence form operators with unbounded drifts and applications to subelliptic equations

    Science.gov (United States)

    Maldonado, Diego

    2018-01-01

    We prove a Harnack inequality for nonnegative strong solutions to degenerate and singular elliptic PDEs modeled after certain convex functions and in the presence of unbounded drifts. Our main theorem extends the Harnack inequality for the linearized Monge-Ampère equation due to Caffarelli and Gutiérrez and it is related, although under different hypotheses, to a recent work by N.Q. Le. Since our results are shown to apply to the convex functions | x|p with p ≥ 2 and their tensor sums, the degenerate elliptic operators that we can consider include subelliptic Grushin and Grushin-like operators as well as a recent example by A. Montanari of a nondivergence-form subelliptic operator arising from the geometric theory of several complex variables. In the light of these applications, it follows that the Monge-Ampère quasi-metric structure can be regarded as an alternative to the usual Carnot-Carathéodory metric in the study of certain subelliptic PDEs.

  15. The integral form of D = 3 Chern-Simons theories probing C{sup n}/Γ singularities

    Energy Technology Data Exchange (ETDEWEB)

    Fre, P. [Dipartimento di Fisica, Universita di Torino (Italy); INFN - Sezione di Torino (Italy); Arnold-Regge Center, Torino (Italy); National Research Nuclear University MEPhI, (Moscow Engineering Physics Institute), Moscow (Russian Federation); Grassi, P.A. [INFN - Sezione di Torino (Italy); Arnold-Regge Center, Torino (Italy); DISIT, Universita del Piemonte Orientale, Alessandria (Italy); Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University (Japan)

    2017-10-15

    We consider D=3 supersymmetric Chern Simons gauge theories both from the point of view of their formal structure and of their applications to the AdS{sub 4}/CFT{sub 3} correspondence. From the structural view-point, we use the new formalism of integral forms in superspace that utilizes the rheonomic Lagrangians and the Picture Changing Operators, as an algorithmic tool providing the connection between different approaches to supersymmetric theories. We provide here the generalization to an arbitrary Kaehler manifold with arbitrary gauge group and arbitrary superpotential of the rheonomic lagrangian of D=3 matter coupled gauge theories constructed years ago. From the point of view of the AdS{sub 4}/CFT{sub 3} correspondence and more generally of M2-branes we emphasize the role of the Kaehler quotient data in determining the field content and the interactions of the Cherns Simons gauge theory when the transverse space to the brane is a non-compact Kaehler quotient K{sub 4} of some flat variety with respect to a suitable group. The crepant resolutions of C{sup n}/Γ singularities fall in this category. In the present paper we anticipate the general scheme how the geometrical data are to be utilized in the construction of the D=3 Chern-Simons Theory supposedly dual to the corresponding M2-brane solution. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Addresses

    Data.gov (United States)

    Town of Chapel Hill, North Carolina — Point features representing locations of all street addresses in Orange County, NC including Chapel Hill, NC. Data maintained by Orange County, the Town of Chapel...

  17. Forms of Address in Post-Revolutionary Iranian Persian: A Sociolinguistic Analysis.

    Science.gov (United States)

    Keshavarz, Mohammad Hossein

    1988-01-01

    Provides a sociolinguistic account of the forms of address used in present-day Iranian Persian. The shift from power to solidarity as a result of the Islamic Revolution has resulted in a sociolinguistic simplification of address forms. (Author/CB)

  18. The Role of Age and Gender in the Choice of Address Forms: A Sociolinguistic Study

    Directory of Open Access Journals (Sweden)

    Mahzad Mardiha

    2012-09-01

    Full Text Available The main objective of the present study is to investigate the impact of gender as well as age on the choice of forms of address in Persian. The hypothesis is that variation in the forms of address is related not only to gender of the interlocutors but also to the age of them. For this study, 30 university students- 15 males and 15 females- participated in this process that all of them were asked to fill out a questionnaire presented in the appendix. The results of the data analysis indicate that both men and women use address forms of formality (Šoma more frequently in addressing the older people from both genders that shows age is more significant than gender in determining the pronouns in address system of Persian.

  19. Forms of Address and their Meaning in Contrast in Polish and Russian Languages

    Directory of Open Access Journals (Sweden)

    Wojciech Sosnowski

    2015-06-01

    Full Text Available Forms of Address and their Meaning in Contrast in Polish and Russian Languages Many studies in contemporary linguistics focus on investigating politeness and rudeness in language. This paper, however, has not been intended as a contrastive study of the phenomena in question. Language politeness and rudeness are conveyed by means of expressions of politeness and rudeness which are perceived as entrenched and recurring in specific situations. These expressions convey the expected meaning of politeness and rudeness accepted in the model of social behaviour. If one uses the explicative method such expressions could be reduced to the following formula ‘I inform you that I follow a verbal conduct defined as polite’. Owing to the emergence of parallel corpora of particular languages, it is nowadays easier to collect data for research on forms of address as well as on expressions of politeness in the first half of the 21st century. Investigating the meaning of forms of address, which are part of linguistic repertoire used to express politeness and rudeness should be regarded as an interesting area of research. It is the consequence of the increasing importance of intercultural communication, expansion of international cooperation, and formation of new standards of interpersonal communication aimed at achieving mutual understanding without resorting to violence. It is worth mentioning that currently there are no bilingual dictionaries which would include practical rules for using forms of address. Moreover, dictionaries (especially bilingual ones also do not list classifiers of politeness, which becomes a shortcoming as regards the purposes of translation and teaching foreign languages. The aforementioned problems apply to print as well as computer dictionaries. A reliable list of forms of address and their meaning may become helpful in intercultural communication. It would be also important to create a Contemporary Dictionary of Expressions of

  20. Singularities in Free Surface Flows

    Science.gov (United States)

    Thete, Sumeet Suresh

    Free surface flows where the shape of the interface separating two or more phases or liquids are unknown apriori, are commonplace in industrial applications and nature. Distribution of drop sizes, coalescence rate of drops, and the behavior of thin liquid films are crucial to understanding and enhancing industrial practices such as ink-jet printing, spraying, separations of chemicals, and coating flows. When a contiguous mass of liquid such as a drop, filament or a film undergoes breakup to give rise to multiple masses, the topological transition is accompanied with a finite-time singularity . Such singularity also arises when two or more masses of liquid merge into each other or coalesce. Thus the dynamics close to singularity determines the fate of about-to-form drops or films and applications they are involved in, and therefore needs to be analyzed precisely. The primary goal of this thesis is to resolve and analyze the dynamics close to singularity when free surface flows experience a topological transition, using a combination of theory, experiments, and numerical simulations. The first problem under consideration focuses on the dynamics following flow shut-off in bottle filling applications that are relevant to pharmaceutical and consumer products industry, using numerical techniques based on Galerkin Finite Element Methods (GFEM). The second problem addresses the dual flow behavior of aqueous foams that are observed in oil and gas fields and estimates the relevant parameters that describe such flows through a series of experiments. The third problem aims at understanding the drop formation of Newtonian and Carreau fluids, computationally using GFEM. The drops are formed as a result of imposed flow rates or expanding bubbles similar to those of piezo actuated and thermal ink-jet nozzles. The focus of fourth problem is on the evolution of thinning threads of Newtonian fluids and suspensions towards singularity, using computations based on GFEM and experimental

  1. Forms of Address and their Meaning in Contrast in Polish and Russian Languages

    OpenAIRE

    Wojciech Sosnowski

    2015-01-01

    Forms of Address and their Meaning in Contrast in Polish and Russian Languages Many studies in contemporary linguistics focus on investigating politeness and rudeness in language. This paper, however, has not been intended as a contrastive study of the phenomena in question. Language politeness and rudeness are conveyed by means of expressions of politeness and rudeness which are perceived as entrenched and recurring in specific situations. These expressions convey the expected meaning of...

  2. Singular electrostatic energy of nanoparticle clusters

    Science.gov (United States)

    Qin, Jian; Krapf, Nathan W.; Witten, Thomas A.

    2016-02-01

    The binding of clusters of metal nanoparticles is partly electrostatic. We address difficulties in calculating the electrostatic energy when high charging energies limit the total charge to a single quantum, entailing unequal potentials on the particles. We show that the energy at small separation h has a singular logarithmic dependence on h . We derive a general form for this energy in terms of the singular capacitance of two spheres in near contact c (h ) , together with nonsingular geometric features of the cluster. Using this form, we determine the energies of various clusters, finding that more compact clusters are more stable. These energies are proposed to be significant for metal-semiconductor binary nanoparticle lattices found experimentally. We sketch how these effects should dictate the relative abundances of metal nanoparticle clusters in nonpolar solvents.

  3. Symmetric periodic orbits near a heteroclinic loop formed by two singular points and their invariant manifolds of dimension 1 and 2

    International Nuclear Information System (INIS)

    Corbera, Montserrat; Llibre, Jaume; Perez-Chavela, Ernesto

    2006-01-01

    In this paper we consider vector fields in R 3 that are invariant under a suitable symmetry and that possess a 'generalized heteroclinic loop' L formed by two singular points (e + and e - ) and their invariant manifolds: one of dimension 2 (a sphere minus the points e + and e - ) and one of dimension 1 (the open diameter of the sphere having endpoints e + and e - ). In particular, we analyse the dynamics of the vector field near the heteroclinic loop L by means of a convenient Poincar? map, and we prove the existence of infinitely many symmetric periodic orbits near L. We also study two families of vector fields satisfying this dynamics. The first one is a class of quadratic polynomial vector fields in R 3 , and the second one is the charged rhomboidal four-body problem

  4. Effects of Corrective Feedback on EFL Learners' Acquisition of Third-Person Singular Form and the Mediating Role of Cognitive Style.

    Science.gov (United States)

    Guo, Xinyue; Yang, Yingli

    2018-01-30

    The present study investigated the effectiveness of recasts and prompts on the acquisition of the English third-person singular form and the mediating role of cognitive style on the effects of feedback. One hundred and seventy-five college students from four intact classes were assigned to four groups: form-focused instruction with recast (FFI-recast), FFI with prompt (FFI-prompt), FFI, and control. The group embedded figures test (Witkin et al. in Rev Educ Res 47:1-64, 1977) was adopted to test learners' cognitive style (field dependence/independence). The results show that the FFI-prompt group outperformed the FFI-recast group and the control group on the immediate post-test; the FFI-prompt group also achieved significantly higher scores than the other groups on the delayed post-test in the written test. However, no significant difference was found among groups in the text-completion test. Regression analyses reveal that in the text-completion test, field dependence/independence mediates the effect of recasts on the immediate post-test.

  5. Translation of pronominal forms of address in for whom the bell tolls

    Directory of Open Access Journals (Sweden)

    María José Luzón Marcos

    2011-04-01

    Full Text Available Normal 0 21 false false false ES X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} The English system of personal pronouns lacks the distinction between polite and familiar second person forms, which is represented in Spanish by the opposition between "tú" and "usted". In For whom (he Bell Tolls Hemingway resorts to the Middle English distinction between "thou" and "you" in order to reflect the social and personal relationships of the characters. However, in this work "thou" and "you" are not used as exact equivalents of "tú" and "usted". Forms of address are basic elements in the communicative, pragmatic and semiotic dimensions of discourse; therefore the translator must analyst their functions in these dimensions in order 10 produce an adequate translation. In this paper we examine some examples of translation of "thou" and "you" to find out whether the linguistic item used in the target text has the same function!,\\ and brings about the same effects in the translation as those of the personal pronoun in the source text.

  6. Towards a Sociolinguistically Responsive Pedagogy: Teaching Second-Person Address Forms in French

    Science.gov (United States)

    van Compernolle, Remi A.

    2010-01-01

    This article presents a sociolinguistically responsive model of pedagogy situated within existing sociocultural and communicative approaches to language learning and teaching. The specific focus of the discussion is on the French pronouns of address, "tu" and "vous". The article reviews previous research on second-person address in educational and…

  7. Ciao, Professoressa! A Study of Forms of Address in Italian and Its Implications for the Language Classroom.

    Science.gov (United States)

    Musumeci, Diane

    1991-01-01

    An investigation of the sociolinguistic features that govern contemporary use of the Italian formal ("Lei") and informal ("tu") forms of address suggests that teachers of Italian must help students become aware of the complex factors underlying the choice of form, rather than just drill them in usage. (12 references) (CB)

  8. An Explicit Formulation of Singularity-Free Dynamic Equations of Mechanical Systems in Lagrangian Form---Part one: Single Rigid Bodies

    Directory of Open Access Journals (Sweden)

    Pål Johan From

    2012-04-01

    differential geometry to implement the dynamic equations of rigid bodies without the presence of singularities. Presenting the explicit dynamic equations also allows for more insight into the dynamic structure of the system. Another motivation is to correct some errors commonly found in the literature. Unfortunately, the formulation of the Boltzmann-Hamel equations used here are presented incorrectly. This has been corrected by the authors, but we present here, for the first time, the detailed mathematical details on how to arrive at the correct equations. We also show through examples that using the equations presented here, the dynamics of a single rigid body is reduced to the standard equations on a Lagrangian form, for example Euler's equations for rotational motion and Euler--Lagrange equations for free motion.

  9. Naked singularity, firewall, and Hawking radiation.

    Science.gov (United States)

    Zhang, Hongsheng

    2017-06-21

    Spacetime singularity has always been of interest since the proof of the Penrose-Hawking singularity theorem. Naked singularity naturally emerges from reasonable initial conditions in the collapsing process. A recent interesting approach in black hole information problem implies that we need a firewall to break the surplus entanglements among the Hawking photons. Classically, the firewall becomes a naked singularity. We find some vacuum analytical solutions in R n -gravity of the firewall-type and use these solutions as concrete models to study the naked singularities. By using standard quantum theory, we investigate the Hawking radiation emitted from the black holes with naked singularities. Here we show that the singularity itself does not destroy information. A unitary quantum theory works well around a firewall-type singularity. We discuss the validity of our result in general relativity. Further our result demonstrates that the temperature of the Hawking radiation still can be expressed in the form of the surface gravity divided by 2π. This indicates that a naked singularity may not compromise the Hakwing evaporation process.

  10. Stability of naked singularity arising in gravitational collapse of Type ...

    Indian Academy of Sciences (India)

    ... )) leads the collapse to the formation of naked singularity. We further prove that the occurrence of such a naked singularity is stable with respect to small changes in the initial data. We remark that though the initial data leading to both black hole (BH) and naked singularity (NS) form a `big' subset of the true initial data set ...

  11. Geodesic fields with singularities

    International Nuclear Information System (INIS)

    Kafker, A.H.

    1979-01-01

    The question considered is whether or not a Riemannian metric can be found to make a given curve field on a closed surface into geodesics. Allowing singularities removes the restriction to Euler characteristic zero. The main results are the following: only two types of isolated singularities can occur in a geodesic field on a surface. No geodsic fields exist on a surface with Euler characteristic less than zero. If the Euler characteristic is zero, such a geodesic field can have only removable singularities. Only a limited number of geodesic fields exist on S 2 and RP 2 . A closed geodesic (perhaps made from several curves and singularities) always appears in such a field

  12. Connecting the Dots: State Health Department Approaches to Addressing Shared Risk and Protective Factors Across Multiple Forms of Violence

    Science.gov (United States)

    Wilkins, Natalie; Myers, Lindsey; Kuehl, Tomei; Bauman, Alice; Hertz, Marci

    2018-01-01

    Violence takes many forms, including intimate partner violence, sexual violence, child abuse and neglect, bullying, suicidal behavior, and elder abuse and neglect. These forms of violence are interconnected and often share the same root causes. They can also co-occur together in families and communities and can happen at the same time or at different stages of life. Often, due to a variety of factors, separate, “siloed” approaches are used to address each form of violence. However, understanding and implementing approaches that prevent and address the overlapping root causes of violence (risk factors) and promote factors that increase the resilience of people and communities (protective factors) can help practitioners more effectively and efficiently use limited resources to prevent multiple forms of violence and save lives. This article presents approaches used by 2 state health departments, the Maryland Department of Health and Mental Hygiene and the Colorado Department of Public Health and Environment, to integrate a shared risk and protective factor approach into their violence prevention work and identifies key lessons learned that may serve to inform crosscutting violence prevention efforts in other states. PMID:29189502

  13. Isotopy of Morin singularities

    OpenAIRE

    Saji, Kentaro

    2015-01-01

    We define an equivalence relation called A-isotopy between finitely determined map-germs, which is a strengthened version of A-equivalence. We consider the number of A-isotopy classes of equidimensional Morin singularities, and some other well-known low-dimensional singularities. We also give an application to stable perturbations of simple equi-dimensional map-germs.

  14. Introduction to singularities

    CERN Document Server

    Ishii, Shihoko

    2014-01-01

    This book is an introduction to singularities for graduate students and researchers. It is said that algebraic geometry originated in the seventeenth century with the famous work Discours de la méthode pour bien conduire sa raison, et chercher la vérité dans les sciences by Descartes. In that book he introduced coordinates to the study of geometry. After its publication, research on algebraic varieties developed steadily. Many beautiful results emerged in mathematicians’ works. Most of them were about non-singular varieties. Singularities were considered “bad” objects that interfered with knowledge of the structure of an algebraic variety. In the past three decades, however, it has become clear that singularities are necessary for us to have a good description of the framework of varieties. For example, it is impossible to formulate minimal model theory for higher-dimensional cases without singularities. Another example is that the moduli spaces of varieties have natural compactification, the boundar...

  15. String theory and cosmological singularities

    Indian Academy of Sciences (India)

    time' can have a beginning or end. Well-known examples are singularities inside black holes and initial or final singularities in expanding or contracting universes. In recent times, string theory is providing new perspectives of such singularities ...

  16. The form factors of the process γ*γ*→π0 for small virtuality of one of the photons and QCD sum rules (1): the structure of the infrared singularities

    International Nuclear Information System (INIS)

    Radyushkin, A.V.; Ruskov, R.

    1992-01-01

    We extend the QCD sum rule analysis of the form factor F γ* γ *→π 0 (q 1 2 ,q 2 2 ) into the region of small virtuality of one of the photons, where one should perform more precisely an OPE to factorize large and small distance contributions. As a first step the form factor is investigated in the region of moderate virtualities and the full corrections in the sum rule are obtained. It is shown that the infrared mass singularities are subtracted in the corresponding OPE for essentially nonsymmetric kinematics due to the operators of lowest two twists. On a simple scalar example the most important steps of the further calculations are demonstrated. 26 refs.; 8 figs

  17. Fundamental solutions of singular SPDEs

    Energy Technology Data Exchange (ETDEWEB)

    Selesi, Dora, E-mail: dora@dmi.uns.ac.rs [Department of Mathematics and Informatics, University of Novi Sad (Serbia)

    2011-07-15

    Highlights: > Fundamental solutions of linear SPDEs are constructed. > Wick-convolution product is introduced for the first time. > Fourier transformation maps Wick-convolution into Wick product. > Solutions of linear SPDEs are expressed via Wick-convolution with fundamental solutions. > Stochastic Helmholtz equation is solved. - Abstract: This paper deals with some models of mathematical physics, where random fluctuations are modeled by white noise or other singular Gaussian generalized processes. White noise, as the distributional derivative od Brownian motion, which is the most important case of a Levy process, is defined in the framework of Hida distribution spaces. The Fourier transformation in the framework of singular generalized stochastic processes is introduced and its applications to solving stochastic differential equations involving Wick products and singularities such as the Dirac delta distribution are presented. Explicit solutions are obtained in form of a chaos expansion in the Kondratiev white noise space, while the coefficients of the expansion are tempered distributions. Stochastic differential equations of the form P({omega}, D) Lozenge u(x, {omega}) = A(x, {omega}) are considered, where A is a singular generalized stochastic process and P({omega}, D) is a partial differential operator with random coefficients. We introduce the Wick-convolution operator * which enables us to express the solution as u = s*A Lozenge I{sup Lozenge (-1)}, where s denotes the fundamental solution and I is the unit random variable. In particular, the stochastic Helmholtz equation is solved, which in physical interpretation describes waves propagating with a random speed from randomly appearing point sources.

  18. Fundamental solutions of singular SPDEs

    International Nuclear Information System (INIS)

    Selesi, Dora

    2011-01-01

    Highlights: → Fundamental solutions of linear SPDEs are constructed. → Wick-convolution product is introduced for the first time. → Fourier transformation maps Wick-convolution into Wick product. → Solutions of linear SPDEs are expressed via Wick-convolution with fundamental solutions. → Stochastic Helmholtz equation is solved. - Abstract: This paper deals with some models of mathematical physics, where random fluctuations are modeled by white noise or other singular Gaussian generalized processes. White noise, as the distributional derivative od Brownian motion, which is the most important case of a Levy process, is defined in the framework of Hida distribution spaces. The Fourier transformation in the framework of singular generalized stochastic processes is introduced and its applications to solving stochastic differential equations involving Wick products and singularities such as the Dirac delta distribution are presented. Explicit solutions are obtained in form of a chaos expansion in the Kondratiev white noise space, while the coefficients of the expansion are tempered distributions. Stochastic differential equations of the form P(ω, D) ◊ u(x, ω) = A(x, ω) are considered, where A is a singular generalized stochastic process and P(ω, D) is a partial differential operator with random coefficients. We introduce the Wick-convolution operator * which enables us to express the solution as u = s*A ◊ I ◊(-1) , where s denotes the fundamental solution and I is the unit random variable. In particular, the stochastic Helmholtz equation is solved, which in physical interpretation describes waves propagating with a random speed from randomly appearing point sources.

  19. The Big Bang Singularity

    Science.gov (United States)

    Ling, Eric

    The big bang theory is a model of the universe which makes the striking prediction that the universe began a finite amount of time in the past at the so called "Big Bang singularity." We explore the physical and mathematical justification of this surprising result. After laying down the framework of the universe as a spacetime manifold, we combine physical observations with global symmetrical assumptions to deduce the FRW cosmological models which predict a big bang singularity. Next we prove a couple theorems due to Stephen Hawking which show that the big bang singularity exists even if one removes the global symmetrical assumptions. Lastly, we investigate the conditions one needs to impose on a spacetime if one wishes to avoid a singularity. The ideas and concepts used here to study spacetimes are similar to those used to study Riemannian manifolds, therefore we compare and contrast the two geometries throughout.

  20. Surface Plasmon Singularities

    Directory of Open Access Journals (Sweden)

    Gabriel Martínez-Niconoff

    2012-01-01

    Full Text Available With the purpose to compare the physical features of the electromagnetic field, we describe the synthesis of optical singularities propagating in the free space and on a metal surface. In both cases the electromagnetic field has a slit-shaped curve as a boundary condition, and the singularities correspond to a shock wave that is a consequence of the curvature of the slit curve. As prototypes, we generate singularities that correspond to fold and cusped regions. We show that singularities in free space may generate bifurcation effects while plasmon fields do not generate these kinds of effects. Experimental results for free-space propagation are presented and for surface plasmon fields, computer simulations are shown.

  1. Singular inflation from generalized equation of state fluids

    Energy Technology Data Exchange (ETDEWEB)

    Nojiri, S., E-mail: nojiri@gravity.phys.nagoya-u.ac.jp [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Odintsov, S.D., E-mail: odintsov@ieec.uab.es [Institut de Ciencies de lEspai (IEEC-CSIC), Campus UAB, Carrer de Can Magrans, s/n, 08193 Cerdanyola del Valles, Barcelona (Spain); ICREA, Passeig Lluîs Companys, 23, 08010 Barcelona (Spain); National Research Tomsk State University, 634050 Tomsk (Russian Federation); Tomsk State Pedagogical University, 634061 Tomsk (Russian Federation); Oikonomou, V.K., E-mail: v.k.oikonomou1979@gmail.com [Department of Theoretical Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); National Research Tomsk State University, 634050 Tomsk (Russian Federation); Tomsk State Pedagogical University, 634061 Tomsk (Russian Federation)

    2015-07-30

    We study models with a generalized inhomogeneous equation of state fluids, in the context of singular inflation, focusing to so-called Type IV singular evolution. In the simplest case, this cosmological fluid is described by an equation of state with constant w, and therefore a direct modification of this constant w fluid is achieved by using a generalized form of an equation of state. We investigate from which models with generalized phenomenological equation of state, a Type IV singular inflation can be generated and what the phenomenological implications of this singularity would be. We support our results with illustrative examples and we also study the impact of the Type IV singularities on the slow-roll parameters and on the observational inflationary indices, showing the consistency with Planck mission results. The unification of singular inflation with singular dark energy era for specific generalized fluids is also proposed.

  2. Algorithms in Singular

    Directory of Open Access Journals (Sweden)

    Hans Schonemann

    1996-12-01

    Full Text Available Some algorithms for singularity theory and algebraic geometry The use of Grobner basis computations for treating systems of polynomial equations has become an important tool in many areas. This paper introduces of the concept of standard bases (a generalization of Grobner bases and the application to some problems from algebraic geometry. The examples are presented as SINGULAR commands. A general introduction to Grobner bases can be found in the textbook [CLO], an introduction to syzygies in [E] and [St1]. SINGULAR is a computer algebra system for computing information about singularities, for use in algebraic geometry. The basic algorithms in SINGULAR are several variants of a general standard basis algorithm for general monomial orderings (see [GG]. This includes wellorderings (Buchberger algorithm ([B1], [B2] and tangent cone orderings (Mora algorithm ([M1], [MPT] as special cases: It is able to work with non-homogeneous and homogeneous input and also to compute in the localization of the polynomial ring in 0. Recent versions include algorithms to factorize polynomials and a factorizing Grobner basis algorithm. For a complete description of SINGULAR see [Si].

  3. Numerical Approaches to Spacetime Singularities

    Directory of Open Access Journals (Sweden)

    Beverly K. Berger

    1998-05-01

    Full Text Available This review updates a previous review article. Numerical explorationof the properties of singularities could, in principle, yield detailed understanding of their nature in physically realistic cases. Examples of numerical investigations into the formation of naked singularities, critical behavior in collapse, passage through the Cauchy horizon, chaos of the Mixmaster singularity, and singularities in spatially inhomogeneous cosmologies are discussed.

  4. Quantum propagation across cosmological singularities

    Science.gov (United States)

    Gielen, Steffen; Turok, Neil

    2017-05-01

    The initial singularity is the most troubling feature of the standard cosmology, which quantum effects are hoped to resolve. In this paper, we study quantum cosmology with conformal (Weyl) invariant matter. We show that it is natural to extend the scale factor to negative values, allowing a large, collapsing universe to evolve across a quantum "bounce" into an expanding universe like ours. We compute the Feynman propagator for Friedmann-Robertson-Walker backgrounds exactly, identifying curious pathologies in the case of curved (open or closed) universes. We then include anisotropies, fixing the operator ordering of the quantum Hamiltonian by imposing covariance under field redefinitions and again finding exact solutions. We show how complex classical solutions allow one to circumvent the singularity while maintaining the validity of the semiclassical approximation. The simplest isotropic universes sit on a critical boundary, beyond which there is qualitatively different behavior, with potential for instability. Additional scalars improve the theory's stability. Finally, we study the semiclassical propagation of inhomogeneous perturbations about the flat, isotropic case, at linear and nonlinear order, showing that, at least at this level, there is no particle production across the bounce. These results form the basis for a promising new approach to quantum cosmology and the resolution of the big bang singularity.

  5. The Notion of 'Singularity' in the Work of Gilles Deleuze

    DEFF Research Database (Denmark)

    Borum, Peter

    2017-01-01

    In Deleuze, singularity replaces generality in the economy of thought. A Deleuzian singularity is an event, but the notion comprises the effectuation of the event into form. The triptych émission–distribution–répartition itself distributes the dimensions of the passage from form-giving event...

  6. Singularities in FLRW spacetimes

    Science.gov (United States)

    het Lam, Huibert; Prokopec, Tomislav

    2017-12-01

    We point out that past-incompleteness of geodesics in FLRW spacetimes does not necessarily imply that these spacetimes start from a singularity. Namely, if a test particle that follows such a trajectory has a non-vanishing velocity, its energy was super-Planckian at some time in the past if it kept following that geodesic. That indicates a breakdown of the particle's description, which is why we should not consider those trajectories for the definition of an initial singularity. When one only considers test particles that do not have this breakdown of their trajectory, it turns out that the only singular FLRW spacetimes are the ones that have a scale parameter that vanishes at some initial time.

  7. Symmetry generators in singular theories

    International Nuclear Information System (INIS)

    Lavrov, P.M.; Tyutin, I.V.

    1989-01-01

    It is proved that in the singular nondegenerate theories any symmetry of the lagrangian under non-point transformations of lagrangian variables with the open (in the general case) algebra in the hamiltonian approach generates corresponding transformations of canonical variables the generator of which is the Noether charge with respect to the Dirac brackets. On the surface of all constraints these transformations leave the hamiltonian invariant and the algebra of the Noether charges is closed. As a consequence it is shown that the nilpotent BRST charge operator always exists in gauge theories of the general form (if possible anomalies are not taken into account)

  8. Singularities in a Teacup

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 9. Singularities in a Teacup: Good Mathematics from Bad Lenses. Rajaram Nityananda. General Article Volume 19 Issue 9 September 2014 pp 787-796. Fulltext. Click here to view fulltext PDF. Permanent link:

  9. Singularities in a Teacup

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 9. Singularities in a Teacup: Good ... Author Affiliations. Rajaram Nityananda1. Azim Premji University, PES Institute of Technology Campus, Pixel Park, B Block, Electronics City, Hosur Road (Beside NICE Road) Bangalore – 560100 ...

  10. Singularities in a Teacup

    Indian Academy of Sciences (India)

    IAS Admin

    Standard presentations of optics concentrate on ideal systems made for imaging which bring all rays from a point ... One of the standard topics we study in school is the action of a spherical mirror. Figure 1 shows a set of ..... singularities of smooth maps, and the beauty of the mathematics needed to understand them, Arnold ...

  11. Stochastic singular optics

    CSIR Research Space (South Africa)

    Roux, FS

    2013-09-01

    Full Text Available Roux Presented at the International Conference on Correlation Optics 2013 Chernivtsi, Ukraine 18-20 September 2013 CSIR National Laser Centre, Pretoria, South Africa – p. 1/24 Contents ⊲ Defining Stochastic Singular Optics (SSO) ⊲ Tools of Stochastic...

  12. Pseudospherical surfaces with singularities

    DEFF Research Database (Denmark)

    Brander, David

    2017-01-01

    We study a generalization of constant Gauss curvature −1 surfaces in Euclidean 3-space, based on Lorentzian harmonic maps, that we call pseudospherical frontals. We analyse the singularities of these surfaces, dividing them into those of characteristic and non-characteristic type. We give methods...

  13. Singularities in FLRW Spacetimes

    NARCIS (Netherlands)

    Lam, Huibert het; Prokopec, Tom

    2017-01-01

    We point out that past-incompleteness of geodesics in FLRW spacetimes does not necessarily imply that these spacetimes start from a singularity. Namely, if a test particle that follows such a trajectory has a non-vanishing velocity, its energy was super-Planckian at some time in the past if it kept

  14. Singular potentials in quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera-Navarro, V.C. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Koo, E. Ley [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico). Inst. de Fisica

    1995-10-01

    This paper is a review of some mathematical methods as recently developed and applied to deal with singular potentials in Quantum Mechanics. Regular and singular perturbative methods as well as variational treatments are considered. (author). 25 refs.

  15. Singularities: the Brieskorn anniversary volume

    National Research Council Canada - National Science Library

    Brieskorn, Egbert; Arnolʹd, V. I; Greuel, G.-M; Steenbrink, J. H. M

    1998-01-01

    ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Main theorem ... 3 Ideals of ideal-unimodal plane curve singularities. . . . . . . . . . . . . . . . References ... Gert-Martin Greuel and Gerhard Pfister...

  16. String theory and cosmological singularities

    Indian Academy of Sciences (India)

    Well-known examples are singularities inside black holes and initial or final singularities in expanding or contracting universes. In recent times, string theory is providing new perspectives of such singularities which may lead to an understanding of these in the standard framework of time evolution in quantum mechanics.

  17. Holographic complexity and spacetime singularities

    International Nuclear Information System (INIS)

    Barbón, José L.F.; Rabinovici, Eliezer

    2016-01-01

    We study the evolution of holographic complexity in various AdS/CFT models containing cosmological crunch singularities. We find that a notion of complexity measured by extremal bulk volumes tends to decrease as the singularity is approached in CFT time, suggesting that the corresponding quantum states have simpler entanglement structure at the singularity.

  18. Infinitesimal Structure of Singularities

    Directory of Open Access Journals (Sweden)

    Michael Heller

    2017-02-01

    Full Text Available Some important problems of general relativity, such as the quantisation of gravity or classical singularity problems, crucially depend on geometry on very small scales. The so-called synthetic differential geometry—a categorical counterpart of the standard differential geometry—provides a tool to penetrate infinitesimally small portions of space-time. We use this tool to show that on any “infinitesimal neighbourhood” the components of the curvature tensor are themselves infinitesimal, and construct a simplified model in which the curvature singularity disappears, owing to this effect. However, one pays a price for this result. Using topoi as a generalisation of spaces requires a weakening of arithmetic (the existence of infinitesimals and of logic (to the intuitionistic logic. Is this too high a price to pay for acquiring a new method of solving unsolved problems in physics? Without trying, we shall never know the answer.

  19. Deformations of surface singularities

    CERN Document Server

    Szilárd, ágnes

    2013-01-01

    The present publication contains a special collection of research and review articles on deformations of surface singularities, that put together serve as an introductory survey of results and methods of the theory, as well as open problems, important examples and connections to other areas of mathematics. The aim is to collect material that will help mathematicians already working or wishing to work in this area to deepen their insight and eliminate the technical barriers in this learning process. This also is supported by review articles providing some global picture and an abundance of examples. Additionally, we introduce some material which emphasizes the newly found relationship with the theory of Stein fillings and symplectic geometry.  This links two main theories of mathematics: low dimensional topology and algebraic geometry. The theory of normal surface singularities is a distinguished part of analytic or algebraic geometry with several important results, its own technical machinery, and several op...

  20. The cosmological singularity

    CERN Document Server

    Belinski, Vladimir

    2018-01-01

    Written for researchers focusing on general relativity, supergravity, and cosmology, this is a self-contained exposition of the structure of the cosmological singularity in generic solutions of the Einstein equations, and an up-to-date mathematical derivation of the theory underlying the Belinski–Khalatnikov–Lifshitz (BKL) conjecture on this field. Part I provides a comprehensive review of the theory underlying the BKL conjecture. The generic asymptotic behavior near the cosmological singularity of the gravitational field, and fields describing other kinds of matter, is explained in detail. Part II focuses on the billiard reformulation of the BKL behavior. Taking a general approach, this section does not assume any simplifying symmetry conditions and applies to theories involving a range of matter fields and space-time dimensions, including supergravities. Overall, this book will equip theoretical and mathematical physicists with the theoretical fundamentals of the Big Bang, Big Crunch, Black Hole singula...

  1. Multiscale singularity trees

    DEFF Research Database (Denmark)

    Somchaipeng, Kerawit; Sporring, Jon; Johansen, Peter

    2007-01-01

    We propose MultiScale Singularity Trees (MSSTs) as a structure to represent images, and we propose an algorithm for image comparison based on comparing MSSTs. The algorithm is tested on 3 public image databases and compared to 2 state-of-theart methods. We conclude that the computational complexity...... of our algorithm only allows for the comparison of small trees, and that the results of our method are comparable with state-of-the-art using much fewer parameters for image representation....

  2. Cosmological models without singularities

    International Nuclear Information System (INIS)

    Petry, W.

    1981-01-01

    A previously studied theory of gravitation in flat space-time is applied to homogeneous and isotropic cosmological models. There exist two different classes of models without singularities: (i) ever-expanding models, (ii) oscillating models. The first class contains models with hot big bang. For these models there exist at the beginning of the universe-in contrast to Einstein's theory-very high but finite densities of matter and radiation with a big bang of very short duration. After short time these models pass into the homogeneous and isotropic models of Einstein's theory with spatial curvature equal to zero and cosmological constant ALPHA >= O. (author)

  3. Plane waves with weak singularities

    International Nuclear Information System (INIS)

    David, Justin R.

    2003-03-01

    We study a class of time dependent solutions of the vacuum Einstein equations which are plane waves with weak null singularities. This singularity is weak in the sense that though the tidal forces diverge at the singularity, the rate of divergence is such that the distortion suffered by a freely falling observer remains finite. Among such weak singular plane waves there is a sub-class which does not exhibit large back reaction in the presence of test scalar probes. String propagation in these backgrounds is smooth and there is a natural way to continue the metric beyond the singularity. This continued metric admits string propagation without the string becoming infinitely excited. We construct a one parameter family of smooth metrics which are at a finite distance in the space of metrics from the extended metric and a well defined operator in the string sigma model which resolves the singularity. (author)

  4. The structure of singularities in nonlocal transport equations

    Energy Technology Data Exchange (ETDEWEB)

    Hoz, F de la [Departamento de Matematica Aplicada, Universidad del PaIs Vasco-Euskal Herriko Unibertsitatea, Escuela Universitaria de IngenierIa Tecnica Industrial, Plaza de la Casilla 3, 48012 Bilbao (Spain); Fontelos, M A [Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, C/Serrano 123, 28006 Madrid (Spain)

    2008-05-09

    We describe the structure of solutions developing singularities in the form of cusps in finite time in nonlocal transport equations of the family: {theta}{sub t}-{delta}({theta}H({theta})){sub x}-(1-{delta})H({theta}){theta}{sub x}=0, 0<={delta}<=1, where H represents the Hilbert transform. Equations of this type appear in various contexts: evolution of vortex sheets, models for quasi-geostrophic equation and evolution equations for order parameters. Equation (1) was studied, and the existence of singularities developing in finite time was proved. The structure of such singularities was, nevertheless, not described. In this paper, we will describe the geometry of the solution in the neighborhood of the singularity once it develops and the (self-similar) way in which it is approached as t {yields} t{sub 0}, where t{sub 0} is the singular time.

  5. Complexity, Analysis and Control of Singular Biological Systems

    CERN Document Server

    Zhang, Qingling; Zhang, Xue

    2012-01-01

    Complexity, Analysis and Control of Singular Biological Systems follows the control of real-world biological systems at both ecological and phyisological levels concentrating on the application of now-extensively-investigated singular system theory. Much effort has recently been dedicated to the modelling and analysis of developing bioeconomic systems and the text establishes singular examples of these, showing how proper control can help to maintain sustainable economic development of biological resources. The book begins from the essentials of singular systems theory and bifurcations before tackling  the use of various forms of control in singular biological systems using examples including predator-prey relationships and viral vaccination and quarantine control. Researchers and graduate students studying the control of complex biological systems are shown how a variety of methods can be brought to bear and practitioners working with the economics of biological systems and their control will also find the ...

  6. Dynamics of Learning in MLP: Natural Gradient and Singularity Revisited.

    Science.gov (United States)

    Amari, Shun-Ichi; Ozeki, Tomoko; Karakida, Ryo; Yoshida, Yuki; Okada, Masato

    2018-01-01

    The dynamics of supervised learning play a main role in deep learning, which takes place in the parameter space of a multilayer perceptron (MLP). We review the history of supervised stochastic gradient learning, focusing on its singular structure and natural gradient. The parameter space includes singular regions in which parameters are not identifiable. One of our results is a full exploration of the dynamical behaviors of stochastic gradient learning in an elementary singular network. The bad news is its pathological nature, in which part of the singular region becomes an attractor and another part a repulser at the same time, forming a Milnor attractor. A learning trajectory is attracted by the attractor region, staying in it for a long time, before it escapes the singular region through the repulser region. This is typical of plateau phenomena in learning. We demonstrate the strange topology of a singular region by introducing blow-down coordinates, which are useful for analyzing the natural gradient dynamics. We confirm that the natural gradient dynamics are free of critical slowdown. The second main result is the good news: the interactions of elementary singular networks eliminate the attractor part and the Milnor-type attractors disappear. This explains why large-scale networks do not suffer from serious critical slowdowns due to singularities. We finally show that the unit-wise natural gradient is effective for learning in spite of its low computational cost.

  7. Residues and duality for singularity categories of isolated Gorenstein singularities

    OpenAIRE

    Murfet, Daniel

    2009-01-01

    We study Serre duality in the singularity category of an isolated Gorenstein singularity and find an explicit formula for the duality pairing in terms of generalised fractions and residues. For hypersurfaces we recover the residue formula of the string theorists Kapustin and Li. These results are obtained from an explicit construction of complete injective resolutions of maximal Cohen-Macaulay modules.

  8. SENR /NRPy + : Numerical relativity in singular curvilinear coordinate systems

    Science.gov (United States)

    Ruchlin, Ian; Etienne, Zachariah B.; Baumgarte, Thomas W.

    2018-03-01

    We report on a new open-source, user-friendly numerical relativity code package called SENR /NRPy + . Our code extends previous implementations of the BSSN reference-metric formulation to a much broader class of curvilinear coordinate systems, making it ideally suited to modeling physical configurations with approximate or exact symmetries. In the context of modeling black hole dynamics, it is orders of magnitude more efficient than other widely used open-source numerical relativity codes. NRPy + provides a Python-based interface in which equations are written in natural tensorial form and output at arbitrary finite difference order as highly efficient C code, putting complex tensorial equations at the scientist's fingertips without the need for an expensive software license. SENR provides the algorithmic framework that combines the C codes generated by NRPy + into a functioning numerical relativity code. We validate against two other established, state-of-the-art codes, and achieve excellent agreement. For the first time—in the context of moving puncture black hole evolutions—we demonstrate nearly exponential convergence of constraint violation and gravitational waveform errors to zero as the order of spatial finite difference derivatives is increased, while fixing the numerical grids at moderate resolution in a singular coordinate system. Such behavior outside the horizons is remarkable, as numerical errors do not converge to zero near punctures, and all points along the polar axis are coordinate singularities. The formulation addresses such coordinate singularities via cell-centered grids and a simple change of basis that analytically regularizes tensor components with respect to the coordinates. Future plans include extending this formulation to allow dynamical coordinate grids and bispherical-like distribution of points to efficiently capture orbiting compact binary dynamics.

  9. Inverting dedevelopment: geometric singularity theory in embryology

    Science.gov (United States)

    Bookstein, Fred L.; Smith, Bradley R.

    2000-10-01

    The diffeomorphism model so useful in the biomathematics of normal morphological variability and disease is inappropriate for applications in embryogenesis, where whole coordinate patches are created out of single points. For this application we need a suitable algebra for the creation of something from nothing in a carefully organized geometry: a formalism for parameterizing discrete nondifferentiabilities of invertible functions on Rk, k $GTR 1. One easy way to begin is via the inverse of the development map - call it the dedevelopment map, the deformation backwards in time. Extrapolated, this map will inevitably have singularities at which its derivative is zero. When the dedevelopment map is inverted to face forward in time, the singularities become appropriately isolated infinities of derivative. We have recently introduced growth visualizations via extrapolations to the isolated singularities at which only one directional derivative is zero. Maps inverse to these create new coordinate patches directionally rather than radically. The most generic singularity that suits this purpose is the crease f(x,y) equals (x,x2y+y3), which has already been applied in morphometrics for the description of focal morphogenetic phenomena. We apply it to embryogenesis in the form of its analytic inverse, and demonstrate its power using a priceless new data set of mouse embryos imaged in 3D by micro-MR with voxels smaller than 100micrometers 3.

  10. Singularity kinematics principle and position-singularity analyses of the 6-3 Stewart-Gough parallel manipulators

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yi; Zhou, Hui; Li, Baokun [Jiangnan University, Province (China); Shen, Long [Shanghai University, Shanghai (China)

    2011-02-15

    This paper presents a new principle and method of kinematics to analyze the singularity of Stewart-Gough parallel manipulators and addresses the property identification of the position-singularity loci of the 6-3 Stewart-Gough manipulators for special orientations. Based on the kinematic relationship of a rigid body, a necessary and sufficient condition that three velocities of three non-collinear points in a moving rigid body can determine a screw motion is addressed and some typical singular configurations of the 6-3 Stewart-Gough parallel manipulators are also addressed in detail. With the above-mentioned condition, a symbolic analytical polynomial expression of degree three in the moving platform position parameters, representing the position-singularity locus of the 6-3 Stewart-Gough manipulators for special orientations, is derived: and the property identification of the position-singularity loci of the 6-3 Stewart-Gough manipulator for these special orientations is investigated at length. It is shown that position-singularity loci of the 6-3 Stewart-Gough parallel manipulator for these special orientations will be a plane and a hyperbolic paraboloid, even three intersecting planes.

  11. Gravitational collapse and naked singularities

    Indian Academy of Sciences (India)

    Recent developments have revealed that there are examples of naked singularity formation in the collapse of physically reasonable matter fields, although the stability of these examples is still uncertain. We propose the concept of `effective naked singularities', which will be quite helpful because general relativity has ...

  12. String theory and cosmological singularities

    Indian Academy of Sciences (India)

    recent times, string theory is providing new perspectives of such singularities which may lead to an understanding of these in the standard framework of time evolution in quantum mechanics. In this article, we describe some of these approaches. Keywords. String theory; cosmological singularities. PACS Nos 11.25.

  13. Boundary singularities produced by the motion of soap films.

    Science.gov (United States)

    Goldstein, Raymond E; McTavish, James; Moffatt, H Keith; Pesci, Adriana I

    2014-06-10

    Recent work has shown that a Möbius strip soap film rendered unstable by deforming its frame changes topology to that of a disk through a "neck-pinching" boundary singularity. This behavior is unlike that of the catenoid, which transitions to two disks through a bulk singularity. It is not yet understood whether the type of singularity is generally a consequence of the surface topology, nor how this dependence could arise from an equation of motion for the surface. To address these questions we investigate experimentally, computationally, and theoretically the route to singularities of soap films with different topologies, including a family of punctured Klein bottles. We show that the location of singularities (bulk or boundary) may depend on the path of the boundary deformation. In the unstable regime the driving force for soap-film motion is the mean curvature. Thus, the narrowest part of the neck, associated with the shortest nontrivial closed geodesic of the surface, has the highest curvature and is the fastest moving. Just before onset of the instability there exists on the stable surface the shortest closed geodesic, which is the initial condition for evolution of the neck's geodesics, all of which have the same topological relationship to the frame. We make the plausible conjectures that if the initial geodesic is linked to the boundary, then the singularity will occur at the boundary, whereas if the two are unlinked initially, then the singularity will occur in the bulk. Numerical study of mean curvature flows and experiments support these conjectures.

  14. Nonlinear singularly perturbed optimal control problems with singular arcs. [flight mechanics application

    Science.gov (United States)

    Ardema, M. D.

    1979-01-01

    Singular perturbation techniques are studied for dealing with singular arc problems by analyzing a relatively low-order but otherwise general system. This system encompasses many flight mechanic problems including Goddard's problem and a version of the minimum time-to-climb problem. Boundary layer solutions are constructed which are stable and reach the outer solution in a finite time. A uniformly valid composite solution is then formed from the reduced and boundary layer solutions. The value of the approximate solution is that it is relatively easy to obtain and does not involve singular arcs. To illustrate the utility of the results, the technique is used to obtain an approximate solution of a simplified version of the aircraft minimum time-to-climb problem.

  15. Topological Field Theory of the Initial Singularity of Space-Time

    CERN Document Server

    Bogdanoff, I

    2000-01-01

    Here we suggest a possible resolution of the initial space-time singularity. In this novel approach, the initial singularity of space-time corresponds to a 0 size singular gravitational instanton, characterised by a Riemannian metric configuration (++++) in dimension D = 4. Associated with the 0 scale of space-time, the initial singularity is thus not considered in terms of divergences of physical fields but can be resolved in terms of topological field symmetries and associated invariants (in particular the first Donaldson invariant ). In this perspective, we here introduce a new topological invariant, associated with 0 scale, of the form Z = Tr (-1)s which we call "singularity invariant".

  16. Loop quantum cosmology and singularities.

    Science.gov (United States)

    Struyve, Ward

    2017-08-15

    Loop quantum gravity is believed to eliminate singularities such as the big bang and big crunch singularity. This belief is based on studies of so-called loop quantum cosmology which concerns symmetry-reduced models of quantum gravity. In this paper, the problem of singularities is analysed in the context of the Bohmian formulation of loop quantum cosmology. In this formulation there is an actual metric in addition to the wave function, which evolves stochastically (rather than deterministically as the case of the particle evolution in non-relativistic Bohmian mechanics). Thus a singularity occurs whenever this actual metric is singular. It is shown that in the loop quantum cosmology for a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker space-time with arbitrary constant spatial curvature and cosmological constant, coupled to a massless homogeneous scalar field, a big bang or big crunch singularity is never obtained. This should be contrasted with the fact that in the Bohmian formulation of the Wheeler-DeWitt theory singularities may exist.

  17. The theory of singular perturbations

    CERN Document Server

    De Jager, E M

    1996-01-01

    The subject of this textbook is the mathematical theory of singular perturbations, which despite its respectable history is still in a state of vigorous development. Singular perturbations of cumulative and of boundary layer type are presented. Attention has been given to composite expansions of solutions of initial and boundary value problems for ordinary and partial differential equations, linear as well as quasilinear; also turning points are discussed. The main emphasis lies on several methods of approximation for solutions of singularly perturbed differential equations and on the mathemat

  18. Singularities and the geometry of spacetime

    Science.gov (United States)

    Hawking, Stephen

    2014-11-01

    The aim of this essay is to investigate certain aspects of the geometry of the spacetime manifold in the General Theory of Relativity with particular reference to the occurrence of singularities in cosmological solutions and their relation with other global properties. Section 2 gives a brief outline of Riemannian geometry. In Section 3, the General Theory of Relativity is presented in the form of two postulates and two requirements which are common to it and to the Special Theory of Relativity, and a third requirement, the Einstein field equations, which distinguish it from the Special Theory. There does not seem to be any alternative set of field equations which would not have some undeseriable features. Some exact solutions are described. In Section 4, the physical significance of curvature is investigated using the deviation equation for timelike and null curves. The Riemann tensor is decomposed into the Ricci tensor which represents the gravitational effect at a point of matter at that point and the Welyl tensor which represents the effect at a point of gravitational radiation and matter at other points. The two tensors are related by the Bianchi identities which are presented in a form analogous to the Maxwell equations. Some lemmas are given for the occurrence of conjugate points on timelike and null geodesics and their relation with the variation of timelike and null curves is established. Section 5 is concerned with properties of causal relations between points of spacetime. It is shown that these could be used to determine physically the manifold structure of spacetime if the strong causality assumption held. The concepts of a null horizon and a partial Cauchy surface are introduced and are used to prove a number of lemmas relating to the existence of a timelike curve of maximum length between two sets. In Section 6, the definition of a singularity of spacetime is given in terms of geodesic incompleteness. The various energy assumptions needed to prove

  19. What Is the Validity Domain of Einstein’s Equations? Distributional Solutions over Singularities and Topological Links in Geometrodynamics

    Directory of Open Access Journals (Sweden)

    Elias Zafiris

    2016-08-01

    Full Text Available The existence of singularities alerts that one of the highest priorities of a centennial perspective on general relativity should be a careful re-thinking of the validity domain of Einstein’s field equations. We address the problem of constructing distinguishable extensions of the smooth spacetime manifold model, which can incorporate singularities, while retaining the form of the field equations. The sheaf-theoretic formulation of this problem is tantamount to extending the algebra sheaf of smooth functions to a distribution-like algebra sheaf in which the former may be embedded, satisfying the pertinent cohomological conditions required for the coordinatization of all of the tensorial physical quantities, such that the form of the field equations is preserved. We present in detail the construction of these distribution-like algebra sheaves in terms of residue classes of sequences of smooth functions modulo the information of singular loci encoded in suitable ideals. Finally, we consider the application of these distribution-like solution sheaves in geometrodynamics by modeling topologically-circular boundaries of singular loci in three-dimensional space in terms of topological links. It turns out that the Borromean link represents higher order wormhole solutions.

  20. The exotic heat-trace asymptotics of a regular-singular operator revisited

    OpenAIRE

    Vertman, Boris

    2013-01-01

    We discuss the exotic properties of the heat-trace asymptotics for a regular-singular operator with general boundary conditions at the singular end, as observed by Falomir, Muschietti, Pisani and Seeley as well as by Kirsten, Loya and Park. We explain how their results alternatively follow from the general heat kernel construction by Mooers, a natural question that has not been addressed yet, as the latter work did not elaborate explicitly on the singular structure of the heat trace expansion...

  1. Singular mean-filed games

    KAUST Repository

    Cirant, Marco

    2016-11-22

    Here, we prove the existence of smooth solutions for mean-field games with a singular mean-field coupling; that is, a coupling in the Hamilton-Jacobi equation of the form $g(m)=-m^{-\\\\alpha}$. We consider stationary and time-dependent settings. The function $g$ is monotone, but it is not bounded from below. With the exception of the logarithmic coupling, this is the first time that MFGs whose coupling is not bounded from below is examined in the literature. This coupling arises in models where agents have a strong preference for low-density regions. Paradoxically, this causes the agents to spread and prevents the creation of solutions with a very-low density. To prove the existence of solutions, we consider an approximate problem for which the existence of smooth solutions is known. Then, we prove new a priori bounds for the solutions that show that $\\\\frac 1 m$ is bounded. Finally, using a limiting argument, we obtain the existence of solutions. The proof in the stationary case relies on a blow-up argument and in the time-dependent case on new bounds for $m^{-1}$.

  2. Singular traces theory and applications

    CERN Document Server

    Sukochev, Fedor; Zanin, Dmitriy

    2012-01-01

    This text is the first complete study and monograph dedicated to singular traces. For mathematical readers the text offers, due to Nigel Kalton's contribution, a complete theory of traces on symmetrically normed ideals of compact operators. For mathematical physicists and other users of Connes' noncommutative geometry the text offers a complete reference to Dixmier traces and the deeper mathematical features of singular traces. An application section explores the consequences of these features, which previously were not discussed in general texts on noncommutative geometry.

  3. Dynkin graphs and quadrilateral singularities

    CERN Document Server

    Urabe, Tohsuke

    1993-01-01

    The study of hypersurface quadrilateral singularities can be reduced to the study of elliptic K3 surfaces with a singular fiber of type I * 0 (superscript *, subscript 0), and therefore these notes consider, besides the topics of the title, such K3 surfaces too. The combinations of rational double points that can occur on fibers in the semi-universal deformations of quadrilateral singularities are examined, to show that the possible combinations can be described by a certain law from the viewpoint of Dynkin graphs. This is equivalent to saying that the possible combinations of singular fibers in elliptic K3 surfaces with a singular fiber of type I * 0 (superscript *, subscript 0) can be described by a certain law using classical Dynkin graphs appearing in the theory of semi-simple Lie groups. Further, a similar description for thecombination of singularities on plane sextic curves is given. Standard knowledge of algebraic geometry at the level of graduate students is expected. A new method based on graphs wil...

  4. Local and nonlocal space-time singularities

    International Nuclear Information System (INIS)

    Konstantinov, M.Yu.

    1985-01-01

    The necessity to subdivide the singularities into two classes: local and nonlocal, each of them to be defined independently, is proved. Both classes of the singularities are defined, and the relation between the definitions introduced and the standard definition of singularities, based on space-time, incompleteness, is established. The relation between definitions introduced and theorems on the singularity existence is also established

  5. Identify Foot of Continental Slope by singular spectrum and fractal singularity analysis

    Science.gov (United States)

    Li, Q.; Dehler, S.

    2012-04-01

    Identifying the Foot of Continental Slope (FOCS) plays a critical role in the determination of exclusive economic zone (EEZ) for coastal nations. The FOCS is defined by the Law of the Sea as the point of maximum change of the slope and it is mathematically equivalent to the point which has the maximum curvature value in its vicinity. However, curvature is the second derivative and the calculation of second derivative is a high pass and noise-prone filtering procedure. Therefore, identification of FOCS with curvature analysis methods is often uncertain and erroneous because observed bathymetry profiles or interpolated raster maps commonly include high frequency noises and artifacts, observation errors, and local sharp changes. Effective low-pass filtering methods and robust FOCS indicator algorithms are highly desirable. In this approach, nonlinear singular spectral filtering and singularity FOCS-indicator methods and software tools are developed to address this requirement. The normally used Fourier domain filtering methods decompose signals into Fourier space, composed of a fixed base that depends only on the acquisition interval of the signal; the signal is required to be stationary or at least weak stationary. In contrast to that requirement, the developed singular spectral filtering method constructs orthogonal basis functions dynamically according to different signals, and it does not require the signal to be stationary or weak stationary. Furthermore, singular spectrum analysis (SSA) can assist in designing suitable filters to carefully remove high-frequency local or noise components while reserving useful global and local components according to energy distribution. Geoscientific signals, including morphological ocean bathymetry data, often demonstrate fractal or multifractal properties. With proper definition of scales in the vicinity of a certain point and related measures, it is found that 1-dimensional bathymetry profiles and 2-dimensional raster maps

  6. Brane singularities and their avoidance

    International Nuclear Information System (INIS)

    Antoniadis, Ignatios; Cotsakis, Spiros; Klaoudatou, Ifigeneia

    2010-01-01

    The singularity structure and the corresponding asymptotic behavior of a 3-brane coupled to a scalar field or to a perfect fluid in a five-dimensional bulk is analyzed in full generality using the method of asymptotic splittings. In the case of the scalar field, it is shown that the collapse singularity at a finite distance from the brane can be avoided only at the expense of making the brane world-volume positively or negatively curved. In the case where the bulk field content is parametrized by an analog of perfect fluid with an arbitrary equation of state P = γρ between the 'pressure' P and the 'density' ρ, our results depend crucially on the constant fluid parameter γ. (i) For γ > -1/2, the flat brane solution suffers from a collapse singularity at a finite distance that disappears in the curved case. (ii) For γ < -1, the singularity cannot be avoided and it becomes of the big rip type for a flat brane. (iii) For -1 < γ ≤ -1/2, the surprising result is found that while the curved brane solution is singular, the flat brane is not, opening the possibility for a revival of the self-tuning proposal.

  7. Symmetry breaking and singularity structure in Bose-Einstein condensates

    Science.gov (United States)

    Commeford, K. A.; Garcia-March, M. A.; Ferrando, A.; Carr, Lincoln D.

    2012-08-01

    We determine the trajectories of vortex singularities that arise after a single vortex is broken by a discretely symmetric impulse in the context of Bose-Einstein condensates in a harmonic trap. The dynamics of these singularities are analyzed to determine the form of the imprinted motion. We find that the symmetry-breaking process introduces two effective forces: a repulsive harmonic force that causes the daughter trajectories to be ejected from the parent singularity and a Magnus force that introduces a torque about the axis of symmetry. For the analytical noninteracting case we find that the parent singularity is reconstructed from the daughter singularities after one period of the trapping frequency. The interactions between singularities in the weakly interacting system do not allow the parent vortex to be reconstructed. Analytic trajectories were compared to the actual minima of the wave function, showing less than 0.5% error for an impulse strength of v=0.00005. We show that these solutions are valid within the impulse regime for various impulse strengths using numerical integration of the Gross-Pitaevskii equation. We also show that the actual duration of the symmetry-breaking potential does not significantly change the dynamics of the system as long as the strength is below v=0.0005.

  8. A 1 + 5-dimensional gravitational-wave solution. Curvature singularity and spacetime singularity

    International Nuclear Information System (INIS)

    Chen, Yu-Zhu; Li, Wen-Du; Dai, Wu-Sheng

    2017-01-01

    We solve a 1 + 5-dimensional cylindrical gravitational-wave solution of the Einstein equation, in which there are two curvature singularities. Then we show that one of the curvature singularities can be removed by an extension of the spacetime. The result exemplifies that the curvature singularity is not always a spacetime singularity; in other words, the curvature singularity cannot serve as a criterion for spacetime singularities. (orig.)

  9. A 1 + 5-dimensional gravitational-wave solution. Curvature singularity and spacetime singularity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Zhu [Tianjin University, Department of Physics, Tianjin (China); Li, Wen-Du [Tianjin University, Department of Physics, Tianjin (China); Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Dai, Wu-Sheng [Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Nankai University and Tianjin University, LiuHui Center for Applied Mathematics, Tianjin (China)

    2017-12-15

    We solve a 1 + 5-dimensional cylindrical gravitational-wave solution of the Einstein equation, in which there are two curvature singularities. Then we show that one of the curvature singularities can be removed by an extension of the spacetime. The result exemplifies that the curvature singularity is not always a spacetime singularity; in other words, the curvature singularity cannot serve as a criterion for spacetime singularities. (orig.)

  10. Ambient cosmology and spacetime singularities

    CERN Document Server

    Antoniadis, Ignatios

    2015-01-01

    We present a new approach to the issues of spacetime singularities and cosmic censorship in general relativity. This is based on the idea that standard 4-dimensional spacetime is the conformal infinity of an ambient metric for the 5-dimensional Einstein equations with fluid sources. We then find that the existence of spacetime singularities in four dimensions is constrained by asymptotic properties of the ambient 5-metric, while the non-degeneracy of the latter crucially depends on cosmic censorship holding on the boundary.

  11. Singularity Theory and its Applications

    CERN Document Server

    Stewart, Ian; Mond, David; Montaldi, James

    1991-01-01

    A workshop on Singularities, Bifuraction and Dynamics was held at Warwick in July 1989, as part of a year-long symposium on Singularity Theory and its applications. The proceedings fall into two halves: Volume I mainly on connections with algebraic geometry and volume II on connections with dynamical systems theory, bifurcation theory and applications in the sciences. The papers are original research, stimulated by the symposium and workshop: All have been refereed and none will appear elsewhere. The main topic of volume II is new methods for the study of bifurcations in nonlinear dynamical systems, and applications of these.

  12. Ambient cosmology and spacetime singularities

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, Ignatios [Bern University, Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern (Switzerland); Ecole Polytechnique, Palaiseau (France); Cotsakis, Spiros [CERN, Theory Division, Department of Physics, Geneva 23 (Switzerland); National Technical University, School of Applied Mathematics and Physical Sciences, Athens (Greece)

    2015-01-01

    We present a new approach to the issues of spacetime singularities and cosmic censorship in general relativity. This is based on the idea that standard 4-dimensional spacetime is the conformal infinity of an ambient metric for the 5-dimensional Einstein equations with fluid sources. We then find that the existence of spacetime singularities in four dimensions is constrained by asymptotic properties of the ambient 5-metric, while the non-degeneracy of the latter crucially depends on cosmic censorship holding on the boundary. (orig.)

  13. Shocks, singularities and oscillations in nonlinear optics and fluid mechanics

    CERN Document Server

    Santo, Daniele; Lannes, David

    2017-01-01

    The book collects the most relevant results from the INdAM Workshop "Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics" held in Rome, September 14-18, 2015. The contributions discuss recent major advances in the study of nonlinear hyperbolic systems, addressing general theoretical issues such as symmetrizability, singularities, low regularity or dispersive perturbations. It also investigates several physical phenomena where such systems are relevant, such as nonlinear optics, shock theory (stability, relaxation) and fluid mechanics (boundary layers, water waves, Euler equations, geophysical flows, etc.). It is a valuable resource for researchers in these fields. .

  14. Identity and singularity: Metastability and morphogenesis in light of Deleuze

    Directory of Open Access Journals (Sweden)

    Barison Marcello

    2015-01-01

    Full Text Available The question of life is inextricably connected with the problem of identification and with the fact that each identification process includes the acquisition of a form. Nevertheless, it appears that at the biological level, that is, for what concerns a morphogenetic description of the status of the living being, the term singularity comes into play right there where you would expect to get into the notion of identity. According to Christian De Duve, the organic form has no identity, but it expresses - and is an expression of - a singularity. Given these observations, this is the object of the paper: to explain in a clear and consistent way how these terms - namely identity and singularity - differ and whether it is possible to ground their distinction in a coherent theoretical manner.

  15. Gravitational collapse and naked singularities

    Indian Academy of Sciences (India)

    We propose the concept of 'effective naked singularities', which will be quite helpful ... If a pressure gradient force is not sufficiently strong, a body can continue collapsing due to its self-gravity. This phenomenon is called gravitational collapse. .... approaches a self-similar solution, which is called a critical solution, and then it.

  16. Interval matrices: Regularity generates singularity

    Czech Academy of Sciences Publication Activity Database

    Rohn, Jiří; Shary, S.P.

    2018-01-01

    Roč. 540, 1 March (2018), s. 149-159 ISSN 0024-3795 Institutional support: RVO:67985807 Keywords : interval matrix * regularity * singularity * P-matrix * absolute value equation * diagonally singilarizable matrix Subject RIV: BA - General Mathematics Impact factor: 0.973, year: 2016

  17. Gravitational collapse and naked singularities

    Indian Academy of Sciences (India)

    Abstract. Gravitational collapse is one of the most striking phenomena in gravitational physics. The cosmic censorship conjecture has provided strong motivation for research in this field. In the absence of a general proof for censorship, many examples have been proposed, in which naked singularity is the outcome of ...

  18. Singularity: Raychaudhuri equation once again

    Indian Academy of Sciences (India)

    birth of the Universe in a Big Bang. Nothing could be happier and more persuasive than the observation verifying the prediction of theory. This gave rise to a general belief that singularities were inevitable in general relativity (GR) so long as the dynamics were governed by Einstein's equations and more over positive energy ...

  19. String theory and cosmological singularities

    Indian Academy of Sciences (India)

    of space and time needs revision near these singularities where quantum effects of gravity become important, it is still not clear what structure could replace space ..... The dimensionful parameter μ is a Lagrange multiplier which ensures that the total number of eigenvalues is fixed. 98. Pramana – J. Phys., Vol. 69, No. 1, July ...

  20. On the initial singularity problem in rainbow cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Grasiele [Dipartimento di Fisica, Università ' ' La Sapienza' ' , P.le A. Moro 2, Roma, 00185 (Italy); Gubitosi, Giulia [Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ United Kingdom (United Kingdom); Amelino-Camelia, Giovanni, E-mail: grasiele.dossantos@icranet.org, E-mail: g.gubitosi@imperial.ac.uk, E-mail: giovanni.amelino-camelia@roma1.infn.it [Dipartimento di Fisica, Università ' ' La Sapienza' ' and Sez. Roma1 INFN, P.le A. Moro 2, Roma, 00185 (Italy)

    2015-08-01

    It has been recently claimed that the initial singularity might be avoided in the context of rainbow cosmology, where one attempts to account for quantum-gravitational corrections through an effective-theory description based on an energy-dependent ('rainbow') spacetime metric. We here scrutinize this exciting hypothesis much more in depth than previous analyses. In particular, we take into account all requirements for singularity avoidance, while previously only a subset of these requirements had been considered. Moreover, we show that the implications of a rainbow metric for thermodynamics are more significant than previously appreciated. Through the analysis of two particularly meaningful examples of rainbow metrics we find that our concerns are not merely important conceptually, but actually change in quantitatively significant manner the outcome of the analysis. Notably we only find examples where the singularity is not avoided, though one can have that in the regime where our semi-classical picture is still reliable the approach to the singularity is slowed down when compared to the standard classical scenario. We conclude that the study of rainbow metrics provides tantalizing hints of singularity avoidance but is inconclusive, since some key questions remain to be addressed just when the scale factor is very small, a regime which, as here argued, cannot be reliably described by an effective rainbow-metric picture.

  1. Remarks on gauge variables and singular Lagrangians

    International Nuclear Information System (INIS)

    Chela-Flores, J.; Janica-de-la-Torre, R.; Kalnay, A.J.; Rodriguez-Gomez, J.; Rodriguez-Nunez, J.; Tascon, R.

    1977-01-01

    The relevance is discussed of gauge theory, based on a singular Lagrangian density, to the foundations of field theory. The idea that gauge transformations could change the physics of systems where the Lagrangian is singular is examined. (author)

  2. Singularities and computer algebra festschrift for Gert-Martin Greuel on the occasion of his 70th birthday

    CERN Document Server

    Pfister, Gerhard; Schulze, Mathias

    2017-01-01

    This book arose from a conference on “Singularities and Computer Algebra” which was held at the Pfalz-Akademie Lambrecht in June 2015 in honor of Gert-Martin Greuel’s 70th birthday. This unique volume presents a collection of recent original research by some of the leading figures in singularity theory on a broad range of topics including topological and algebraic aspects, classification problems, deformation theory and resolution of singularities. At the same time, the articles highlight a variety of techniques, ranging from theoretical methods to practical tools from computer algebra. Greuel himself made major contributions to the development of both singularity theory and computer algebra. With Gerhard Pfister and Hans Schönemann, he developed the computer algebra system SINGULAR, which has since become the computational tool of choice for many singularity theorists. The book addresses researchers whose work involves singularity theory and computer algebra from the PhD to expert level.

  3. Singularities and Conjugate Points in FLRW Spacetimes

    NARCIS (Netherlands)

    Lam, Huibert het; Prokopec, Tom

    2017-01-01

    Conjugate points play an important role in the proofs of the singularity theorems of Hawking and Penrose. We examine the relation between singularities and conjugate points in FLRW spacetimes with a singularity. In particular we prove a theorem that when a non-comoving, non-spacelike geodesic in a

  4. Analysis of singularity in redundant manipulators

    International Nuclear Information System (INIS)

    Watanabe, Koichi

    2000-03-01

    In the analysis of arm positions and configurations of redundant manipulators, the singularity avoidance problems are important themes. This report presents singularity avoidance computations of a 7 DOF manipulator by using a computer code based on human-arm models. The behavior of the arm escaping from the singular point can be identified satisfactorily through the use of 3-D plotting tools. (author)

  5. Singularity free non-rotating cosmological solutions for perfect fluids ...

    Indian Academy of Sciences (India)

    Singularity free cosmological solutions of the type stated in the title known so far are of a very special class and have the following characteristics: (a) The space time is cylindrically symmetric. (b) In case the metric is diagonal, the μ's are of the form μ = a function of time multiplied by a function of the radial coordinate.

  6. Dimorphism by Singularity Theory in a Model for River Ecology.

    Science.gov (United States)

    Golubitsky, Martin; Hao, Wenrui; Lam, King-Yeung; Lou, Yuan

    2017-05-01

    Geritz, Gyllenberg, Jacobs, and Parvinen show that two similar species can coexist only if their strategies are in a sector of parameter space near a nondegenerate evolutionarily singular strategy. We show that the dimorphism region can be more general by using the unfolding theory of Wang and Golubitsky near a degenerate evolutionarily singular strategy. Specifically, we use a PDE model of river species as an example of this approach. Our finding shows that the dimorphism region can exhibit various different forms that are strikingly different from previously known results in adaptive dynamics.

  7. Singularities formation, structure, and propagation

    CERN Document Server

    Eggers, J

    2015-01-01

    Many key phenomena in physics and engineering are described as singularities in the solutions to the differential equations describing them. Examples covered thoroughly in this book include the formation of drops and bubbles, the propagation of a crack and the formation of a shock in a gas. Aimed at a broad audience, this book provides the mathematical tools for understanding singularities and explains the many common features in their mathematical structure. Part I introduces the main concepts and techniques, using the most elementary mathematics possible so that it can be followed by readers with only a general background in differential equations. Parts II and III require more specialised methods of partial differential equations, complex analysis and asymptotic techniques. The book may be used for advanced fluid mechanics courses and as a complement to a general course on applied partial differential equations.

  8. Historical developments in singular perturbations

    CERN Document Server

    O'Malley, Robert E

    2014-01-01

    This engaging text describes the development of singular perturbations, including its history, accumulating literature, and its current status. While the approach of the text is sophisticated, the literature is accessible to a broad audience. A particularly valuable bonus are the historical remarks. These remarks are found throughout the manuscript. They demonstrate the growth of mathematical thinking on this topic by engineers and mathematicians. The book focuses on detailing how the various methods are to be applied. These are illustrated by a  number and variety of examples. Readers are expected to have a working knowledge of elementary ordinary differential equations, including some familiarity with power series techniques, and of some advanced calculus. Dr. O'Malley  has written a number of books on singular perturbations.  This book has developed from many of his works in the field of perturbation theory.

  9. Energy conditions and spacetime singularities

    International Nuclear Information System (INIS)

    Tipler, F.J.

    1978-01-01

    In this paper, a number of theorems are proven which collectively show that singularities will occur in spacetime under weaker energy conditions than the strong energy condition. In particular, the Penrose theorem, which uses only the weak energy condition but which applies only to open universes, is extended to all closed universes which have a Cauchy surface whose universal covering manifold is not a three-sphere. Furthermore, it is shown that the strong energy condition in the Hawking-Penrose theorem can be replaced by the weak energy condition and the assumption that the strong energy condition holds only on the average. In addition, it is demonstrated that if the Universe is closed, then the existence of singularities follows from the averaged strong energy condition alone. It is argued that any globally hyperbolic spacetime which satisfies the weak energy condition and which contains a black hole must be null geodesically incomplete

  10. Numerical Quadrature of Periodic Singular Integral Equations

    DEFF Research Database (Denmark)

    Krenk, Steen

    1978-01-01

    This paper presents quadrature formulae for the numerical integration of a singular integral equation with Hilbert kernel. The formulae are based on trigonometric interpolation. By integration a quadrature formula for an integral with a logarithmic singularity is obtained. Finally it is demonstra......This paper presents quadrature formulae for the numerical integration of a singular integral equation with Hilbert kernel. The formulae are based on trigonometric interpolation. By integration a quadrature formula for an integral with a logarithmic singularity is obtained. Finally...... it is demonstrated how a singular integral equation with infinite support can be solved by use of the preceding formulae....

  11. Why the Singularity Cannot Happen

    OpenAIRE

    Modis, Theodore

    2012-01-01

    The concept of a Singularity as described in Ray Kurzweil's book cannot happen for a number of reasons. One reason is that all natural growth processes that follow exponential patterns eventually reveal themselves to be following S-curves thus excluding runaway situations. The remaining growth potential from Kurzweil's ''knee'', which could be approximated as the moment when an S-curve pattern begins deviating from the corresponding exponential, is a factor of only one order of magnitude grea...

  12. On singularities of lattice varieties

    OpenAIRE

    Mukherjee, Himadri

    2013-01-01

    Toric varieties associated with distributive lattices arise as a fibre of a flat degeneration of a Schubert variety in a minuscule. The singular locus of these varieties has been studied by various authors. In this article we prove that the number of diamonds incident on a lattice point $\\a$ in a product of chain lattices is more than or equal to the codimension of the lattice. Using this we also show that the lattice varieties associated with product of chain lattices is smooth.

  13. Flavour from partially resolved singularities

    Energy Technology Data Exchange (ETDEWEB)

    Bonelli, G. [International School of Advanced Studies (SISSA) and INFN, Sezione di Trieste, via Beirut 2-4, 34014 Trieste (Italy)]. E-mail: bonelli@sissa.it; Bonora, L. [International School of Advanced Studies (SISSA) and INFN, Sezione di Trieste, via Beirut 2-4, 34014 Trieste (Italy); Ricco, A. [International School of Advanced Studies (SISSA) and INFN, Sezione di Trieste, via Beirut 2-4, 34014 Trieste (Italy)

    2006-06-15

    In this Letter we study topological open string field theory on D-branes in a IIB background given by non-compact CY geometries O(n)-bar O(-2-n) on P{sup 1} with a singular point at which an extra fiber sits. We wrap N D5-branes on P{sup 1} and M effective D3-branes at singular points, which are actually D5-branes wrapped on a shrinking cycle. We calculate the holomorphic Chern-Simons partition function for the above models in a deformed complex structure and find that it reduces to multi-matrix models with flavour. These are the matrix models whose resolvents have been shown to satisfy the generalized Konishi anomaly equations with flavour. In the n=0 case, corresponding to a partial resolution of the A{sub 2} singularity, the quantum superpotential in the N=1 unitary SYM with one adjoint and M fundamentals is obtained. The n=1 case is also studied and shown to give rise to two-matrix models which for a particular set of couplings can be exactly solved. We explicitly show how to solve such a class of models by a quantum equation of motion technique.

  14. Mathematical models with singularities a zoo of singular creatures

    CERN Document Server

    Torres, Pedro J

    2015-01-01

    The book aims to provide an unifying view of a variety (a 'zoo') of mathematical models with some kind of singular nonlinearity, in the sense that it becomes infinite when the state variable approaches a certain point. Up to 11 different concrete models are analyzed in separate chapters. Each chapter starts with a discussion of the basic model and its physical significance. Then the main results and typical proofs are outlined, followed by open problems. Each chapter is closed by a suitable list of references. The book may serve as a guide for researchers interested in the modelling of real world processes.

  15. On important precursor of singular optics (tutorial)

    Science.gov (United States)

    Polyanskii, Peter V.; Felde, Christina V.; Bogatyryova, Halina V.; Konovchuk, Alexey V.

    2018-01-01

    The rise of singular optics is usually associated with the seminal paper by J. F. Nye and M. V. Berry [Proc. R. Soc. Lond. A, 336, 165-189 (1974)]. Intense development of this area of modern photonics has started since the early eighties of the XX century due to invention of the interfrence technique for detection and diagnostics of phase singularities, such as optical vortices in complex speckle-structured light fields. The next powerful incentive for formation of singular optics into separate area of the science on light was connectected with discovering of very practical technique for creation of singular optical beams of various kinds on the base of computer-generated holograms. In the eghties and ninetieth of the XX century, singular optics evolved, almost entirely, under the approximation of complete coherency of light field. Only at the threshold of the XXI century, it has been comprehended that the singular-optics approaches can be fruitfully expanded onto partially spatially coherent, partially polarized and polychromatic light fields supporting singularities of new kinds, that has been resulted in establishing of correlation singular optics. Here we show that correlation singular optics has much deeper roots, ascending to "pre-singular" and even pre-laser epoch and associated with the concept of partial coherence and polarization. It is remarcable that correlation singular optics in its present interpretation has forestalled the standard coherent singular optics. This paper is timed to the sixtieth anniversary of the most profound precursor of modern correlation singular optics [J. Opt. Soc. Am., 47, 895-902 (1957)].

  16. Inverse Kinematics and Singularity Analysis for a 3-DOF Hybrid-Driven Cable-Suspended Parallel Robot

    Directory of Open Access Journals (Sweden)

    Bin Zi

    2012-10-01

    Full Text Available This paper addresses the kinematics and graphical representation of the singularity configuration of a hybrid-driven cable-suspended parallel robot (HDCPR with three translational degrees of freedom (DOFs. Applying the closed-loop vector method and geometric methodology, inverse kinematics of the HDCPR needed for singularity analysis is performed. For the sake of singularity condition calculation within the reachable workspace, the procedure utilizing analytical methodology and gradual search algorithm is presented. Simulation results demonstrate the validity of the kinematics and singularity analysis developed.

  17. Topological resolution of gauge theory singularities

    Energy Technology Data Exchange (ETDEWEB)

    Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo

    2013-08-21

    Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric S U ( 2 ) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.

  18. Topological resolution of gauge theory singularities

    Science.gov (United States)

    Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo

    2013-08-01

    Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric SU(2) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.

  19. The geometry of warped product singularities

    Science.gov (United States)

    Stoica, Ovidiu Cristinel

    In this article, the degenerate warped products of singular semi-Riemannian manifolds are studied. They were used recently by the author to handle singularities occurring in General Relativity, in black holes and at the big-bang. One main result presented here is that a degenerate warped product of semi-regular semi-Riemannian manifolds with the warping function satisfying a certain condition is a semi-regular semi-Riemannian manifold. The connection and the Riemann curvature of the warped product are expressed in terms of those of the factor manifolds. Examples of singular semi-Riemannian manifolds which are semi-regular are constructed as warped products. Applications include cosmological models and black holes solutions with semi-regular singularities. Such singularities are compatible with a certain reformulation of the Einstein equation, which in addition holds at semi-regular singularities too.

  20. Evaluating the change of directional patterns for fingerprints with missing singular points under rotation

    CSIR Research Space (South Africa)

    Dorasamy, Kribashnee

    2016-12-01

    Full Text Available Overcoming small inter-class variation when fingerprints have missing singular points (SPs) is one of the current challenges faced in fingerprint classification, since class information is scarce. Grouping the orientation fields to form Directional...

  1. On the Optimal Singularity-Free Trajectory Planning of Parallel Robot Manipulators

    OpenAIRE

    Chen, Chun-Ta; Liao, Te-Tan

    2010-01-01

    In this chapter, a numerical technique is presented to determine the singularity-free trajectories of a parallel robot manipulator. The required closed-form dynamic equations for the parallel manipulator with a completely general architecture and inertia distribution are

  2. Exact solutions and singularities in string theory

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Tseytlin, A.A.

    1994-01-01

    We construct two new classes of exact solutions to string theory which are not of the standard plane wave of gauged WZW type. Many of these solutions have curvature singularities. The first class includes the fundamental string solution, for which the string coupling vanishes near the singularity. This suggests that the singularity may not be removed by quantum corrections. The second class consists of hybrids of plane wave and gauged WZW solutions. We discuss a four-dimensional example in detail

  3. DEKOMPOSISI NILAI SINGULAR PADA SISTEM PENGENALAN WAJAH

    OpenAIRE

    Beni Utomo

    2012-01-01

    Dekomposisi Nilai Singular atau Singular Value Decomposition (SVD)merupakan salah satu cara untuk menyatakan Principal Component Analysis (PCA).PCA sendiri merupakan suatu proses untuk menemukan kontributor-kontributorpenting dari suatu data berdasarkan besaran statistika deviasi standart dan variansi.SVD merupakan proses untuk mendapatkan matriks diagonal yang elementak nolnya merupakan nilai singular yang akarnya merupakan eigenvalue.SVD atas matriks kovarian C berbentuk C = U?V T dengan ma...

  4. Interior design of a two-dimensional semiclassical black hole: Quantum transition across the singularity

    International Nuclear Information System (INIS)

    Levanony, Dana; Ori, Amos

    2010-01-01

    We study the internal structure of a two-dimensional dilatonic evaporating black hole based on the Callan, Giddings, Harvey, and Strominger model. At the semiclassical level, a (weak) spacelike singularity was previously found to develop inside the black hole. We employ here a simplified quantum formulation of spacetime dynamics in the neighborhood of this singularity, using a minisuperspace-like approach. Quantum evolution is found to be regular and well defined at the semiclassical singularity. A well-localized initial wave packet propagating towards the singularity bounces off the latter and retains its well-localized form. Our simplified quantum treatment thus suggests that spacetime may extend semiclassically beyond the singularity, and also signifies the specific extension.

  5. Interior design of a two-dimensional semiclassical black hole: Quantum transition across the singularity

    Science.gov (United States)

    Levanony, Dana; Ori, Amos

    2010-05-01

    We study the internal structure of a two-dimensional dilatonic evaporating black hole based on the Callan, Giddings, Harvey, and Strominger model. At the semiclassical level, a (weak) spacelike singularity was previously found to develop inside the black hole. We employ here a simplified quantum formulation of spacetime dynamics in the neighborhood of this singularity, using a minisuperspace-like approach. Quantum evolution is found to be regular and well defined at the semiclassical singularity. A well-localized initial wave packet propagating towards the singularity bounces off the latter and retains its well-localized form. Our simplified quantum treatment thus suggests that spacetime may extend semiclassically beyond the singularity, and also signifies the specific extension.

  6. Box graphs and singular fibers

    International Nuclear Information System (INIS)

    Hayashi, Hirotaka; Lawrie, Craig; Morrison, David R.; Schäfer-Nameki, Sakura

    2014-01-01

    We determine the higher codimension fibers of elliptically fibered Calabi-Yau fourfolds with section by studying the three-dimensional N=2 supersymmetric gauge theory with matter which describes the low energy effective theory of M-theory compactified on the associated Weierstrass model, a singular model of the fourfold. Each phase of the Coulomb branch of this theory corresponds to a particular resolution of the Weierstrass model, and we show that these have a concise description in terms of decorated box graphs based on the representation graph of the matter multiplets, or alternatively by a class of convex paths on said graph. Transitions between phases have a simple interpretation as “flopping' of the path, and in the geometry correspond to actual flop transitions. This description of the phases enables us to enumerate and determine the entire network between them, with various matter representations for all reductive Lie groups. Furthermore, we observe that each network of phases carries the structure of a (quasi-)minuscule representation of a specific Lie algebra. Interpreted from a geometric point of view, this analysis determines the generators of the cone of effective curves as well as the network of flop transitions between crepant resolutions of singular elliptic Calabi-Yau fourfolds. From the box graphs we determine all fiber types in codimensions two and three, and we find new, non-Kodaira, fiber types for E 6 , E 7 and E 8

  7. Inaugural address

    Science.gov (United States)

    Joshi, P. S.

    2014-03-01

    From jets to cosmos to cosmic censorship P S Joshi Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India E-mail: psj@tifr.res.in 1. Introduction At the outset, I should like to acknowledge that part of the title above, which tries to capture the main flavour of this meeting, and has been borrowed from one of the plenary talks at the conference. When we set out to make the programme for the conference, we thought of beginning with observations on the Universe, but then we certainly wanted to go further and address deeper questions, which were at the very foundations of our inquiry, and understanding on the nature and structure of the Universe. I believe, we succeeded to a good extent, and it is all here for you in the form of these Conference Proceedings, which have been aptly titled as 'Vishwa Mimansa', which could be possibly translated as 'Analysis of the Universe'! It is my great pleasure and privilege to welcome you all to the ICGC-2011 meeting at Goa. The International Conference on Gravitation and Cosmology (ICGC) series of meetings are being organized by the Indian Association for General Relativity and Gravitation (IAGRG), and the first such meeting was planned and conducted in Goa in 1987, with subsequent meetings taking place at a duration of about four years at various locations in India. So, it was thought appropriate to return to Goa to celebrate the 25 years of the ICGC meetings. The recollections from that first meeting have been recorded elsewhere here in these Proceedings. The research and teaching on gravitation and cosmology was initiated quite early in India, by V V Narlikar at the Banares Hindu University, and by N R Sen in Kolkata in the 1930s. In course of time, this activity grew and gained momentum, and in early 1969, at the felicitation held for the 60 years of V V Narlikar at a conference in Ahmedabad, P C Vaidya proposed the formation of the IAGRG society, with V V Narlikar being the first President. This

  8. Spacetime averaging of exotic singularity universes

    International Nuclear Information System (INIS)

    Dabrowski, Mariusz P.

    2011-01-01

    Taking a spacetime average as a measure of the strength of singularities we show that big-rips (type I) are stronger than big-bangs. The former have infinite spacetime averages while the latter have them equal to zero. The sudden future singularities (type II) and w-singularities (type V) have finite spacetime averages. The finite scale factor (type III) singularities for some values of the parameters may have an infinite average and in that sense they may be considered stronger than big-bangs.

  9. Dissipative control for singular impulsive dynamical systems

    Directory of Open Access Journals (Sweden)

    Li Yang

    2012-04-01

    Full Text Available The aim of this work is to study the dissipative control problem for singular impulsive dynamical systems. We start by introducing the impulse to the singular systems, and give the definition of the dissipation for singular impulsive dynamical systems. Then we discuss the dissipation of singular impulsive dynamical systems, we obtain some sufficient and necessary conditions for dissipation of these systems by solving some linear matrix inequalities (LMIs. By using this method, we design a state feedback controller to make the closed-loop system dissipative. At last, we testify the feasibility of the method by a numerical example.

  10. Sudden future singularities in quintessence and scalar-tensor quintessence models

    Science.gov (United States)

    Lymperis, A.; Perivolaropoulos, L.; Lola, S.

    2017-10-01

    We demonstrate analytically and numerically the existence of geodesically complete singularities in quintessence and scalar-tensor quintessence models with scalar field potential of the form V (ϕ )˜|ϕ |n with 0 equations and ts is the time of the singularity. In the case of quintessence we find q =n +2 (i.e. 2 equation of state w =p/ρ , is present. We find that the strength of the singularity (value of q ) remains unaffected by the presence of a perfect fluid. The linear and quadratic terms in (ts-t ) that appear in the expansion of the scale factor around ts are subdominant for the diverging derivatives close to the singularity, but can play an important role in the estimation of the Hubble parameter. Using the analytically derived relations between these terms, we derive relations involving the Hubble parameter close to the singularity, which may be used as observational signatures of such singularities in this class of models. For quintessence with matter fluid, we find that close to the singularity H ˙=3/2 Ω0 m(1 +zs)3-3 H2. These terms should be taken into account when searching for future or past time such singularities, in cosmological data.

  11. Singular points in moduli spaces of Yang-Mills fields

    International Nuclear Information System (INIS)

    Ticciati, R.

    1984-01-01

    This thesis investigates the metric dependence of the moduli spaces of Yang-Mills fields of an SU(2) principal bundle P with chern number -1 over a four-dimensional, simply-connected, oriented, compact smooth manifold M with positive definite intersection form. The purpose of this investigation is to suggest that the surgery class of the moduli space of irreducible connections is, for a generic metric, a Z 2 topological invariant of the smooth structure on M. There are three main parts. The first two parts are local analysis of singular points in the moduli spaces. The last part is global. The first part shows that the set of metrics for which the moduli space of irreducible connections has only non-degenerate singularities has codimension at least one in the space of all metrics. The second part shows that, for a one-parameter family of moduli spaces in a direction transverse to the set of metrics for which the moduli spaces have singularities, passing through a non-degenerate singularity of the simplest type changes the moduli space by a cobordism. The third part shows that generic one-parameter families of metrics give rise to six-dimensional manifolds, the corresponding family of moduli spaces of irreducible connections. It is shown that when M is homeomorphic to S 4 the six-dimensional manifold is a proper cobordism, thus establishing the independence of the surgery class of the moduli space on the metric on M

  12. Quantum transitions through cosmological singularities

    Energy Technology Data Exchange (ETDEWEB)

    Bramberger, Sebastian F.; Lehners, Jean-Luc [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), 14476 Potsdam-Golm (Germany); Hertog, Thomas; Vreys, Yannick, E-mail: sebastian.bramberger@aei.mpg.de, E-mail: thomas.hertog@kuleuven.be, E-mail: jlehners@aei.mpg.de, E-mail: yannick.vreys@kuleuven.be [Institute for Theoretical Physics, KU Leuven, 3001 Leuven (Belgium)

    2017-07-01

    In a quantum theory of cosmology spacetime behaves classically only in limited patches of the configuration space on which the wave function of the universe is defined. Quantum transitions can connect classical evolution in different patches. Working in the saddle point approximation and in minisuperspace we compute quantum transitions connecting inflationary histories across a de Sitter like throat or a singularity. This supplies probabilities for how an inflating universe, when evolved backwards, transitions and branches into an ensemble of histories on the opposite side of a quantum bounce. Generalising our analysis to scalar potentials with negative regions we identify saddle points describing a quantum transition between a classically contracting, crunching ekpyrotic phase and an inflationary universe.

  13. Economías singulares

    Directory of Open Access Journals (Sweden)

    Elvio Alccinelli

    2001-07-01

    Full Text Available En este artículo pretendemos mostrar que le conjunto de las economías singulares, si bien pequeño desde el punto de vista de la topología y/o desde el punto de vista de la teoría de la medida, tiene importantes efectos en el desarrollo de los regímenes económicos. Es el responsable de los cambios abruptos en los estados de equilibrio y de la multiplicidad de tales estados. Permite además establecer a partir de los tipos de singularidades posibles, una partición del conjunto de economías según tenga lugar uno u otro tipo de singularidad cuya presencia o no, caracteriza el comportamiento posible de la economía en cuestión.

  14. Vector fields on singular varieties

    CERN Document Server

    Brasselet, Jean-Paul; Suwa, Tatsuo

    2009-01-01

    Vector fields on manifolds play a major role in mathematics and other sciences. In particular, the Poincaré-Hopf index theorem gives rise to the theory of Chern classes, key manifold-invariants in geometry and topology. It is natural to ask what is the ‘good’ notion of the index of a vector field, and of Chern classes, if the underlying space becomes singular. The question has been explored by several authors resulting in various answers, starting with the pioneering work of M.-H. Schwartz and R. MacPherson. We present these notions in the framework of the obstruction theory and the Chern-Weil theory. The interplay between these two methods is one of the main features of the monograph.

  15. Cold atoms in singular potentials

    International Nuclear Information System (INIS)

    Denschlag, J. P.

    1998-09-01

    We studied both theoretically and experimentally the interaction between cold Li atoms from a magnetic-optical trap (MOT) and a charged or current-carrying wire. With this system, we were able to realize 1/r 2 and 1/r potentials in two dimensions and to observe the motion of cold atoms in both potentials. For an atom in an attractive 1/r 2 potential, there exist no stable trajectories, instead there is a characteristic class of trajectories for which atoms fall into the singularity. We were able to observe this falling of atoms into the center of the potential. Moreover, by probing the singular 1/r 2 potential with atomic clouds of varying size and temperature we extracted scaling properties of the atom-wire interaction. For very cold atoms, and very thin wires the motion of the atoms must be treated quantum mechanically. Here we predict that the absorption cross section for the 1/r 2 potential should exhibit quantum steps. These quantum steps are a manifestation of the quantum mechanical decomposition of plane waves into partial waves. For the second part of this work, we realized a two dimensional 1/r potential for cold atoms. If the potential is attractive, the atoms can be bound and follow Kepler-like orbits around the wire. The motion in the third dimension along the wire is free. We were able to exploit this property and constructed a novel cold atom guide, the 'Kepler guide'. We also demonstrated another type of atom guide (the 'side guide'), by combining the magnetic field of the wire with a homogeneous offset magnetic field. In this case, the atoms are held in a potential 'tube' on the side of the wire. The versatility, simplicity, and scaling properties of this guide make it an interesting technique. (author)

  16. Singular multiparameter dynamic equations with distributional ...

    African Journals Online (AJOL)

    In this paper, we consider both singular single and several multiparameter second order dynamic equations with distributional potentials on semi-innite time scales. At rst we construct Weyl's theory for the single singular multiparameter dynamic equation with distributional potentials and we prove that the forward jump of at ...

  17. Building Reproducible Science with Singularity Containers

    CERN Document Server

    CERN. Geneva

    2018-01-01

    Michael Bauer first began working with containers at GSI national lab in Darmstadt, Germany, in 2017 while taking a semester off of school at the University of Michigan. Michael met Greg Kurtzer, project lead of Singularity, during his time at GSI and he began contributing heavily to the Singularity project. At the start of summer 2017, Greg hired Michael to work at the ...

  18. Spectral analysis for differential operators with singularities

    Directory of Open Access Journals (Sweden)

    Vjacheslav Anatoljevich Yurko

    2004-01-01

    Full Text Available Nonselfadjoint boundary value problems for second-order differential equations on a finite interval with nonintegrable singularities inside the interval are considered under additional sewing conditions for solutions at the singular point. We study properties of the spectrum, prove the completeness of eigen- and associated functions, and investigate the inverse problem of recovering the boundary value problem from its spectral characteristics.

  19. Singularities in the nonisotropic Boltzmann equation

    International Nuclear Information System (INIS)

    Garibotti, C.R.; Martiarena, M.L.; Zanette, D.

    1987-09-01

    We consider solutions of the nonlinear Boltzmann equation (NLBE) with anisotropic singular initial conditions, which give a simplified model for the penetration of a monochromatic beam on a rarified target. The NLBE is transformed into an integral equation which is solved iteratively and the evolution of the initial singularities is discussed. (author). 5 refs

  20. Timelike Constant Mean Curvature Surfaces with Singularities

    DEFF Research Database (Denmark)

    Brander, David; Svensson, Martin

    2014-01-01

    We use integrable systems techniques to study the singularities of timelike non-minimal constant mean curvature (CMC) surfaces in the Lorentz–Minkowski 3-space. The singularities arise at the boundary of the Birkhoff big cell of the loop group involved. We examine the behavior of the surfaces...

  1. Reasons for singularity in robot teleoperation

    DEFF Research Database (Denmark)

    Marhenke, Ilka; Fischer, Kerstin; Savarimuthu, Thiusius Rajeeth

    2014-01-01

    In this paper, the causes for singularity of a robot arm in teleoperation for robot learning from demonstration are analyzed. Singularity is the alignment of robot joints, which prevents the configuration of the inverse kinematics. Inspired by users' own hypotheses, we investigated speed and delay...

  2. On the genericity of spacetime singularities

    Indian Academy of Sciences (India)

    in terms of the incompleteness of non-space-like geodesics in spacetime. It is possible that such ... outside. The above discussion does not imply the absence of singularity-free solutions to Einstein's equations. ..... spherical collapse also turns out to be a stable feature as implied by the singularity theorems discussed above.

  3. The Geometry of Black Hole Singularities

    Directory of Open Access Journals (Sweden)

    Ovidiu Cristinel Stoica

    2014-01-01

    Full Text Available Recent results show that important singularities in General Relativity can be naturally described in terms of finite and invariant canonical geometric objects. Consequently, one can write field equations which are equivalent to Einstein's at nonsingular points but, in addition remain well-defined and smooth at singularities. The black hole singularities appear to be less undesirable than it was thought, especially after we remove the part of the singularity due to the coordinate system. Black hole singularities are then compatible with global hyperbolicity and do not make the evolution equations break down, when these are expressed in terms of the appropriate variables. The charged black holes turn out to have smooth potential and electromagnetic fields in the new atlas. Classical charged particles can be modeled, in General Relativity, as charged black hole solutions. Since black hole singularities are accompanied by dimensional reduction, this should affect Feynman's path integrals. Therefore, it is expected that singularities induce dimensional reduction effects in Quantum Gravity. These dimensional reduction effects are very similar to those postulated in some approaches to make Quantum Gravity perturbatively renormalizable. This may provide a way to test indirectly the effects of singularities, otherwise inaccessible.

  4. Nietzsche, immortality, singularity and eternal recurrence | Olivier ...

    African Journals Online (AJOL)

    Moreover, once anything has existed, it is in a certain sense, for Nietzsche, necessary despite its temporal singularity. Therefore, to be able to rise to the task of affirming certain actions or experiences in one's own life, bestows on it not merely this kind of necessary singularity, but what he thought of as 'eternal recurrence' –

  5. Discrete variable representation for singular Hamiltonians

    DEFF Research Database (Denmark)

    Schneider, B. I.; Nygaard, Nicolai

    2004-01-01

    We discuss the application of the discrete variable representation (DVR) to Schrodinger problems which involve singular Hamiltonians. Unlike recent authors who invoke transformations to rid the eigenvalue equation of singularities at the cost of added complexity, we show that an approach based...

  6. Singularity is the Future of ICT Research

    African Journals Online (AJOL)

    PROF. OLIVER OSUAGWA

    2014-06-01

    Jun 1, 2014 ... tech systems, and how in the near future. Artificial Intelligence may impact our lives, AI, Robotics, nanotechnology, mechatronics are collaborative agents of technological singularity. The singularity is already here! Think of modern houses now remotely controlled from far distances, think of e-commerce and.

  7. A singularity extraction technique for computation of antenna aperture fields from singular plane wave spectra

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Breinbjerg, Olav; Frandsen, Aksel

    2008-01-01

    An effective technique for extracting the singularity of plane wave spectra in the computation of antenna aperture fields is proposed. The singular spectrum is first factorized into a product of a finite function and a singular function. The finite function is inverse Fourier transformed...... numerically using the Inverse Fast Fourier Transform, while the singular function is inverse Fourier transformed analytically, using the Weyl-identity, and the two resulting spatial functions are then convolved to produce the antenna aperture field. This article formulates the theory of the singularity...

  8. Singularity: Scientific containers for mobility of compute.

    Directory of Open Access Journals (Sweden)

    Gregory M Kurtzer

    Full Text Available Here we present Singularity, software developed to bring containers and reproducibility to scientific computing. Using Singularity containers, developers can work in reproducible environments of their choosing and design, and these complete environments can easily be copied and executed on other platforms. Singularity is an open source initiative that harnesses the expertise of system and software engineers and researchers alike, and integrates seamlessly into common workflows for both of these groups. As its primary use case, Singularity brings mobility of computing to both users and HPC centers, providing a secure means to capture and distribute software and compute environments. This ability to create and deploy reproducible environments across these centers, a previously unmet need, makes Singularity a game changing development for computational science.

  9. Biclustering via Sparse Singular Value Decomposition

    KAUST Repository

    Lee, Mihee

    2010-02-16

    Sparse singular value decomposition (SSVD) is proposed as a new exploratory analysis tool for biclustering or identifying interpretable row-column associations within high-dimensional data matrices. SSVD seeks a low-rank, checkerboard structured matrix approximation to data matrices. The desired checkerboard structure is achieved by forcing both the left- and right-singular vectors to be sparse, that is, having many zero entries. By interpreting singular vectors as regression coefficient vectors for certain linear regressions, sparsity-inducing regularization penalties are imposed to the least squares regression to produce sparse singular vectors. An efficient iterative algorithm is proposed for computing the sparse singular vectors, along with some discussion of penalty parameter selection. A lung cancer microarray dataset and a food nutrition dataset are used to illustrate SSVD as a biclustering method. SSVD is also compared with some existing biclustering methods using simulated datasets. © 2010, The International Biometric Society.

  10. Biplot and Singular Value Decomposition Macros for Excel©

    OpenAIRE

    Lipkovich, Ilya A.; Smith, Eric P.

    2002-01-01

    The biplot display is a graph of row and column markers obtained from data that forms a two-way table. The markers are calculated from the singular value decomposition of the data matrix. The biplot display may be used with many multivariate methods to display relationships between variables and objects. It is commonly used in ecological applications to plot relationships between species and sites. This paper describes a set of Excel macros that may be used to draw a biplot display based ...

  11. 32 CFR 1602.22 - Singular and plural.

    Science.gov (United States)

    2010-07-01

    ....22 Singular and plural. Words importing the singular number shall include the plural number, and words importing the plural number shall include the singular, except where the context clearly indicates...

  12. Singular Null Hypersurfaces in General Relativity

    International Nuclear Information System (INIS)

    Dray, T

    2006-01-01

    Null hypersurfaces are a mathematical consequence of the Lorentzian signature of general relativity; singularities in mathematical models usually indicate where the interesting physics takes place. This book discusses what happens when you combine these ideas. Right from the preface, this is a no-nonsense book. There are two principal approaches to singular shells, one distributional and the other 'cut and paste'; both are treated in detail. A working knowledge of GR is assumed, including familiarity with null tetrads, differential forms, and 3 + 1 decompositions. Despite my own reasonably extensive, closely related knowledge, there was material unfamiliar to me already in chapter 3, although I was reunited with some old friends in later chapters. The exposition is crisp, with a minimum of transition from chapter to chapter. In fact, my main criticism is that there is no clear statement of the organization of the book, nor is there an index. Everything is here, and the story is compelling if you know what to look for, although it is less easy to follow the story if you are not already familiar with it. But this is really a book for experts, and the authors certainly qualify, having played a significant role in developing and extending the results they describe. It is also entirely appropriate that the book is dedicated to Werner Israel, who pioneered the thin-shell approach to (non-null) singular surfaces and later championed the use of similar methods for analysing null shells. After an introductory chapter on impulsive signals, the authors show how the Bianchi identities can be used to classify spacetimes with singular null hypersurfaces. This approach, due to the authors, generalizes the framework originally proposed by Penrose. While astrophysical applications are discussed only briefly, the authors point out that detailed physical characteristics of signals from isolated sources can be determined in this manner. In particular, they describe the behaviour of

  13. Minimal solution for inconsistent singular fuzzy matrix equations

    Directory of Open Access Journals (Sweden)

    M. Nikuie

    2013-10-01

    Full Text Available The fuzzy matrix equations $Ailde{X}=ilde{Y}$ is called a singular fuzzy matrix equations while the coefficients matrix of its equivalent crisp matrix equations be a singular matrix. The singular fuzzy matrix equations are divided into two parts: consistent singular matrix equations and inconsistent fuzzy matrix equations. In this paper, the inconsistent singular fuzzy matrix equations is studied and the effect of generalized inverses in finding minimal solution of an inconsistent singular fuzzy matrix equations are investigated.

  14. Topology of singular fibers of differentiable maps

    CERN Document Server

    Saeki, Osamu

    2004-01-01

    The volume develops a thorough theory of singular fibers of generic differentiable maps. This is the first work that establishes the foundational framework of the global study of singular differentiable maps of negative codimension from the viewpoint of differential topology. The book contains not only a general theory, but also some explicit examples together with a number of very concrete applications. This is a very interesting subject in differential topology, since it shows a beautiful interplay between the usual theory of singularities of differentiable maps and the geometric topology of manifolds.

  15. Quantization function for attractive, singular potential tails

    International Nuclear Information System (INIS)

    Raab, Patrick N.

    2010-01-01

    The interaction between atoms and molecules with each other are deep potential wells with attractive, singular tails. Bound state energies are determined by a quantization function according to a simple quantization rule. This function is dominantly determined by the singular potential tail for near-threshold states. General expressions for the low- and high-energy contributions of the singular potential tail to the quantization function, as well as the connection to the scattering length are presented in two and three dimensions. Precise analytical expressions for the quantization function are determined for the case of potential tails proportional to -1/r 4 and -1/r 6 for three dimensions. (orig.)

  16. DEKOMPOSISI NILAI SINGULAR PADA SISTEM PENGENALAN WAJAH

    Directory of Open Access Journals (Sweden)

    Beni Utomo

    2012-11-01

    Full Text Available Dekomposisi Nilai Singular atau Singular Value Decomposition (SVDmerupakan salah satu cara untuk menyatakan Principal Component Analysis (PCA.PCA sendiri merupakan suatu proses untuk menemukan kontributor-kontributorpenting dari suatu data berdasarkan besaran statistika deviasi standart dan variansi.SVD merupakan proses untuk mendapatkan matriks diagonal yang elementak nolnya merupakan nilai singular yang akarnya merupakan eigenvalue.SVD atas matriks kovarian C berbentuk C = U?V T dengan matriks U dan Vmemuat eigenvektor yang sudah terurut dari nilai variansi terbesar ke nilai variansiterkecilnya. Variansi terbesar memiliki arti eigenvektor menangkap ciri-ciri yangpaling banyak berubah. Sifat inilah yang dipakai untuk membentuk eigenface.

  17. Opening Address

    Science.gov (United States)

    Garbers, C. F.

    1987-09-01

    Ladies and gentlemen, it is indeed a great privilege and pleasure for me to present the opening address at this, the 17th International Congress on High Speed Photograpy and Photonics. Before turning to the business of the Congress, I would like to briefly introduce you to South Africa: its scientific past and its research challenges for the future.

  18. PRESIDENTIAL ADDRESS

    African Journals Online (AJOL)

    Your Excellency. Honoured Guests. Members of the Association. It is my duty and pleasure to thank H.E. Lij. Endalkatchew Makonnen for the fine address with which he has opened this First National Conference of the EAEA. He has pointedly reminded us that though. Engineers and Architects play a key role, develop-.

  19. ``All that Matter ... in One Big Bang ...'', &Other Cosmological Singularities

    Science.gov (United States)

    Elizalde, Emilio

    2018-02-01

    The first part of this paper contains a brief description of the beginnings of modern cosmology, which, the author will argue, was most likely born in the Year 1912. Some of the pieces of evidence presented here have emerged from recent research in the history of science, and are not usually shared with the general audiences in popular science books. In special, the issue of the correct formulation of the original Big Bang concept, according to the precise words of Fred Hoyle, is discussed. Too often, this point is very deficiently explained (when not just misleadingly) in most of the available generalist literature. Other frequent uses of the same words, Big Bang, as to name the initial singularity of the cosmos, and also whole cosmological models, are then addressed, as evolutions of its original meaning. Quantum and inflationary additions to the celebrated singularity theorems by Penrose, Geroch, Hawking and others led to subsequent results by Borde, Guth and Vilenkin. And corresponding corrections to the Einstein field equations have originated, in particular, $R^2$, $f(R)$, and scalar-tensor gravities, giving rise to a plethora of new singularities. For completeness, an updated table with a classification of the same is given.

  20. Machine vision for timber grading singularities detection and applications

    Science.gov (United States)

    Hittawe, Mohamad Mazen; Sidibé, Désiré; Beya, Ouadi; Mériaudeau, Fabrice

    2017-11-01

    This article deals with machine vision techniques applied to timber grading singularities. Timber used for architectural purposes must satisfy certain mechanical requirements, and, therefore, must be mechanically graded to ensure the manufacturer that the product complies with the requirements. However, the timber material has many singularities, such as knots, cracks, and presence of juvenile wood, which influence its mechanical behavior. Thus, identifying those singularities is of great importance. We address the problem of timber defects segmentation and classification and propose a method to detect timber defects such as cracks and knots using a bag-of-words approach. Extensive experimental results show that the proposed methods are efficient and can improve grading machines performances. We also propose an automated method for the detection of transverse knots, which allows the computation of knot depth ratio (KDR) images. Finally, we propose a method for the detection of juvenile wood regions based on tree rings detection and the estimation of the tree's pith. The experimental results show that the proposed methods achieve excellent results for knots detection, with a recall of 0.94 and 0.95 on two datasets, as well as for KDR image computation and juvenile timber detection.

  1. S-matrix singularities and CFT correlation functions

    Science.gov (United States)

    Cardona, Carlos; Huang, Yu-tin

    2017-08-01

    In this note, we explore the correspondence between four-dimensional flat space S-matrix and two-dimensional CFT proposed by Pasterski et al. We demonstrate that the factorisation singularities of an n-point cubic diagram reproduces the AdS Witten diagrams if mass conservation is imposed at each vertex. Such configuration arises naturally if we consider the 4-dimensional S-matrix as a compactified massless 5-dimensional theory. This identification allows us to rewrite the massless S-matrix in the CHY formulation, where the factorisation singularities are re-interpreted as factorisation limits of a Riemann sphere. In this light, the map is recast into a form of 2 d/2 d correspondence.

  2. Biplot and Singular Value Decomposition Macros for Excel©

    Directory of Open Access Journals (Sweden)

    Ilya A. Lipkovich

    2002-06-01

    Full Text Available The biplot display is a graph of row and column markers obtained from data that forms a two-way table. The markers are calculated from the singular value decomposition of the data matrix. The biplot display may be used with many multivariate methods to display relationships between variables and objects. It is commonly used in ecological applications to plot relationships between species and sites. This paper describes a set of Excel macros that may be used to draw a biplot display based on results from principal components analysis, correspondence analysis, canonical discriminant analysis, metric multidimensional scaling, redundancy analysis, canonical correlation analysis or canonical correspondence analysis. The macros allow for a variety of transformations of the data prior to the singular value decomposition and scaling of the markers following the decomposition.

  3. Opening address

    International Nuclear Information System (INIS)

    Ianko, L.

    1993-01-01

    This short talk was the opening remarks to the attendees at this conference, presented by the Scientific Secretary, IWG-LMNPP, of the IAEA. This meeting is an effort to aid research on problems related to the general area of nuclear plant aging and life management. In particular it addresses fracture properties of reactor materials and components, both as installed, and at end of service condition. A major concern is relating measurements made on laboratory samples to properties displayed by actual reactor components

  4. Algunas aclaraciones acerca del conocimiento del singular.

    Directory of Open Access Journals (Sweden)

    Carlos Llano Cifuentes

    2013-11-01

    Full Text Available Llano tries to explain the main purpose of El Conocimiento del Singular, showing how the individuals about which the book is concerned are basically human individuals: people as decision makers.

  5. Technological Singularity: What Do We Really Know?

    Directory of Open Access Journals (Sweden)

    Alexey Potapov

    2018-04-01

    Full Text Available The concept of the technological singularity is frequently reified. Futurist forecasts inferred from this imprecise reification are then criticized, and the reified ideas are incorporated in the core concept. In this paper, I try to disentangle the facts related to the technological singularity from more speculative beliefs about the possibility of creating artificial general intelligence. I use the theory of metasystem transitions and the concept of universal evolution to analyze some misconceptions about the technological singularity. While it may be neither purely technological, nor truly singular, we can predict that the next transition will take place, and that the emerged metasystem will demonstrate exponential growth in complexity with a doubling time of less than half a year, exceeding the complexity of the existing cybernetic systems in few decades.

  6. Topological Signals of Singularities in Ricci Flow

    Directory of Open Access Journals (Sweden)

    Paul M. Alsing

    2017-08-01

    Full Text Available We implement methods from computational homology to obtain a topological signal of singularity formation in a selection of geometries evolved numerically by Ricci flow. Our approach, based on persistent homology, produces precise, quantitative measures describing the behavior of an entire collection of data across a discrete sample of times. We analyze the topological signals of geometric criticality obtained numerically from the application of persistent homology to models manifesting singularities under Ricci flow. The results we obtain for these numerical models suggest that the topological signals distinguish global singularity formation (collapse to a round point from local singularity formation (neckpinch. Finally, we discuss the interpretation and implication of these results and future applications.

  7. Approximate Uniqueness Estimates for Singular Correlation Matrices.

    Science.gov (United States)

    Finkbeiner, C. T.; Tucker, L. R.

    1982-01-01

    The residual variance is often used as an approximation to the uniqueness in factor analysis. An upper bound approximation to the residual variance is presented for the case when the correlation matrix is singular. (Author/JKS)

  8. Stable computation of generalized singular values

    Energy Technology Data Exchange (ETDEWEB)

    Drmac, Z.; Jessup, E.R. [Univ. of Colorado, Boulder, CO (United States)

    1996-12-31

    We study floating-point computation of the generalized singular value decomposition (GSVD) of a general matrix pair (A, B), where A and B are real matrices with the same numbers of columns. The GSVD is a powerful analytical and computational tool. For instance, the GSVD is an implicit way to solve the generalized symmetric eigenvalue problem Kx = {lambda}Mx, where K = A{sup {tau}}A and M = B{sup {tau}}B. Our goal is to develop stable numerical algorithms for the GSVD that are capable of computing the singular value approximations with the high relative accuracy that the perturbation theory says is possible. We assume that the singular values are well-determined by the data, i.e., that small relative perturbations {delta}A and {delta}B (pointwise rounding errors, for example) cause in each singular value {sigma} of (A, B) only a small relative perturbation {vert_bar}{delta}{sigma}{vert_bar}/{sigma}.

  9. Finite conformal quantum gravity and spacetime singularities

    Science.gov (United States)

    Modesto, Leonardo; Rachwał, Lesław

    2017-12-01

    We show that a class of finite quantum non-local gravitational theories is conformally invariant at classical as well as at quantum level. This is actually a range of conformal anomaly-free theories in the spontaneously broken phase of the Weyl symmetry. At classical level we show how the Weyl conformal invariance is able to tame all the spacetime singularities that plague not only Einstein gravity, but also local and weakly non-local higher derivative theories. The latter statement is proved by a singularity theorem that applies to a large class of weakly non-local theories. Therefore, we are entitled to look for a solution of the spacetime singularity puzzle in a missed symmetry of nature, namely the Weyl conformal symmetry. Following the seminal paper by Narlikar and Kembhavi, we provide an explicit construction of singularity-free black hole exact solutions in a class of conformally invariant theories.

  10. Convocation address.

    Science.gov (United States)

    Zakaria, R

    1996-07-01

    By means of this graduation address at the International Institute for Population Sciences (IIPS) in Bombay, the Chancellor of Urdu University voiced his concerns about overpopulation in India. During the speaker's tenure as Health Minister of Maharashtra, he implemented a sterilization incentive program that resulted in the state's having the best family planning (FP) statistics in India for almost 10 years. The incentive program, however, was misused by overenthusiastic officials in other states, with the result that the FP program was renamed the Family Welfare Programme. Population is growing in India because of improvements in health care, but the population education necessary to change fertility will require more time than the seriousness of the population problem allows. In the longterm, poverty and illiteracy must be addressed to control population. In the meanwhile, the graduate program at the IIPS should be expanded to include an undergraduate program, marriage age laws should be enforced, and misconceptions about religious objections to FP must be addressed. India can not afford to use the measures forwarded by developed countries to control population growth. India must integrate population control efforts with the provision of health care because if population continues to grow in the face of reduced infant mortality and longer life expectancy, future generations will be forced to live in a state of poverty and economic degradation.

  11. Geometric Singularities of the Stokes Problem

    Directory of Open Access Journals (Sweden)

    Nejmeddine Chorfi

    2014-01-01

    Full Text Available When the domain is a polygon of ℝ2, the solution of a partial differential equation is written as a sum of a regular part and a linear combination of singular functions. The purpose of this paper is to present explicitly the singular functions of Stokes problem. We prove the Kondratiev method in the case of the crack. We finish by giving some regularity results.

  12. Singularity analysis, Hadamard products, and tree recurrences

    Science.gov (United States)

    Fill, James Allen; Flajolet, Philippe; Kapur, Nevin

    2005-02-01

    We present a toolbox for extracting asymptotic information on the coefficients of combinatorial generating functions. This toolbox notably includes a treatment of the effect of Hadamard products on singularities in the context of the complex Tauberian technique known as singularity analysis. As a consequence, it becomes possible to unify the analysis of a number of divide-and-conquer algorithms, or equivalently random tree models, including several classical methods for sorting, searching, and dynamically managing equivalence relations.

  13. Analysis and design of singular Markovian jump systems

    CERN Document Server

    Wang, Guoliang; Yan, Xinggang

    2014-01-01

    This monograph is an up-to-date presentation of the analysis and design of singular Markovian jump systems (SMJSs) in which the transition rate matrix of the underlying systems is generally uncertain, partially unknown and designed. The problems addressed include stability, stabilization, H∞ control and filtering, observer design, and adaptive control. applications of Markov process are investigated by using Lyapunov theory, linear matrix inequalities (LMIs), S-procedure and the stochastic Barbalat's Lemma, among other techniques.Features of the book include:·???????? study of the stability pr

  14. Observational constraints on cosmological future singularities

    Energy Technology Data Exchange (ETDEWEB)

    Beltran Jimenez, Jose [Aix Marseille Univ, Universite de Toulon CNRS, CPT, Marseille (France); Lazkoz, Ruth [Euskal Herriko Unibertsitatea, Fisika Teorikoaren eta Zientziaren Historia Saila, Zientzia eta Teknologia Fakultatea, Bilbao (Spain); Saez-Gomez, Diego [Faculdade de Ciencias da Universidade de Lisboa, Departamento de Fisica, Instituto de Astrofisica e Ciencias do Espaco, Lisbon (Portugal); Salzano, Vincenzo [University of Szczecin, Institute of Physics, Szczecin (Poland)

    2016-11-15

    In this work we consider a family of cosmological models featuring future singularities. This type of cosmological evolution is typical of dark energy models with an equation of state violating some of the standard energy conditions (e.g. the null energy condition). Such a kind of behavior, widely studied in the literature, may arise in cosmologies with phantom fields, theories of modified gravity or models with interacting dark matter/dark energy. We briefly review the physical consequences of these cosmological evolution regarding geodesic completeness and the divergence of tidal forces in order to emphasize under which circumstances the singularities in some cosmological quantities correspond to actual singular spacetimes. We then introduce several phenomenological parameterizations of the Hubble expansion rate to model different singularities existing in the literature and use SN Ia, BAO and H(z) data to constrain how far in the future the singularity needs to be (under some reasonable assumptions on the behavior of the Hubble factor). We show that, for our family of parameterizations, the lower bound for the singularity time cannot be smaller than about 1.2 times the age of the universe, what roughly speaking means ∝2.8 Gyrs from the present time. (orig.)

  15. Quadcopter Aggressive Maneuvers along Singular Configurations: An Energy-Quaternion Based Approach

    Directory of Open Access Journals (Sweden)

    Ayman A. El-Badawy

    2016-01-01

    Full Text Available Automatic aggressive maneuvers with quadcopters are regarded as a highly challenging control problem. The aim is to tackle the singularities that exist in a vertical looping maneuver. Modeling singularities are resolved by writing the equations-of-motion of the quadcopter in quaternion form. Physical singularities due to underactuation are resolved by using an energy-based control. Energy-based control is utilized to overcome the uncontrollability of the quadcopter at physical singular configurations, for instance, when commanding the quadcopter to gain altitude while pitched at 90∘. Three looping strategies (circular, clothoidal, and newly developed constant thrust are implemented on a nonlinear model of the quadcopter. The three looping strategies are discussed along with their advantages and limitations.

  16. Classification of subsurface objects using singular values derived from signal frames

    Science.gov (United States)

    Chambers, David H; Paglieroni, David W

    2014-05-06

    The classification system represents a detected object with a feature vector derived from the return signals acquired by an array of N transceivers operating in multistatic mode. The classification system generates the feature vector by transforming the real-valued return signals into complex-valued spectra, using, for example, a Fast Fourier Transform. The classification system then generates a feature vector of singular values for each user-designated spectral sub-band by applying a singular value decomposition (SVD) to the N.times.N square complex-valued matrix formed from sub-band samples associated with all possible transmitter-receiver pairs. The resulting feature vector of singular values may be transformed into a feature vector of singular value likelihoods and then subjected to a multi-category linear or neural network classifier for object classification.

  17. Maximal Cohen-Macaulay modules over non-isolated surface singularities and matrix problems

    CERN Document Server

    Burban, Igor

    2017-01-01

    In this article the authors develop a new method to deal with maximal Cohen-Macaulay modules over non-isolated surface singularities. In particular, they give a negative answer on an old question of Schreyer about surface singularities with only countably many indecomposable maximal Cohen-Macaulay modules. Next, the authors prove that the degenerate cusp singularities have tame Cohen-Macaulay representation type. The authors' approach is illustrated on the case of \\mathbb{k} x,y,z/(xyz) as well as several other rings. This study of maximal Cohen-Macaulay modules over non-isolated singularities leads to a new class of problems of linear algebra, which the authors call representations of decorated bunches of chains. They prove that these matrix problems have tame representation type and describe the underlying canonical forms.

  18. More on the initial singularity problem in gravity's rainbow cosmology

    Science.gov (United States)

    Khodadi, M.; Nozari, K.; Sepangi, H. R.

    2016-12-01

    Using a one-dimensional minisuperspace model with a dimensionless ratio E/E_{Pl}, we study the initial singularity problem at the quantum level for the closed rainbow cosmology with a homogeneous, isotropic classical space-time background. We derive the classical Hamiltonian within the framework of Schutz's formalism for an ideal fluid with a cosmological constant. We characterize the behavior of the system at the early stages of the universe evolution through analyzing the relevant shapes for the potential sector of the classical Hamiltonian for various matter sources, each separately modified by two rainbow functions. We show that for both rainbow universe models presented here, there is the possibility of eliminating the initial singularity by forming a potential barrier and static universe for a non-zero value of the scale factor. We investigate their quantum stability and show that for an energy-dependent space-time geometry with energies comparable with the Planck energy, the non-zero value of the scale factor may be stable. It is shown that under certain constraints the rainbow universe model filled with an exotic matter as a domain wall fluid plus a cosmological constant can result in a non-singular harmonic universe. In addition, we demonstrate that the harmonically oscillating universe with respect to the scale factor is sensitive to E/E_{Pl} and that at high energies it may become stable quantum mechanically. Through a Schrödinger-Wheeler-De Witt equation obtained from the quantization of the classical Hamiltonian, we also extract the wave packet of the universe with a focus on the early stages of the evolution. The resulting wave packet supports the existence of a bouncing non-singular universe within the context of gravity's rainbow proposal.

  19. Presidential address.

    Science.gov (United States)

    Rao, L

    1984-01-01

    Stressed in this address is the crucial stage of the population boom, peeculiar to developing countries. The phenomenal rise in India's population, over the last 10 years, is particularly emphasized as it may thwart attempts for socioeconnomic development. Population and development are congruent concerns which need to be pursued simultaneously, and family planning must be accorded the highest priority in national efforts. In its attempts to curb its population explosion, India has witnessed significant progress in health and family welfare work in its march towards the goal of health for all. Recently, the focus has been on primary health care with its emphasis on prevention against risk of disease. The key element of the goal of health for all is the provision of primary health care to all, especially those who are poor. The new 20-Point Programme of India pinpoints areas of special thrust which show immediate tangible results in health and family welfare and the increase of primary health care facilities. Family planning is discussed as a people's movement in which the government's role is that of educator in contraceptive methodds so the people can be motivated to choose, on their own, anyone of them. Trained government personnel, service facilities and contraceptive supplies are being promoted for that goal. The energies of all social, political, religious and cultural organizations have to be channelled and utilized in the process of educating the people and making them adopt the small family norm. Graduates are urged to utilize their knowledge in the service of their country.

  20. Convocation address.

    Science.gov (United States)

    Ghatowar, P S

    1993-07-01

    The Union Deputy Minister of Health and Family Welfare in India addressed the 35th convocation of the International Institute for Population Sciences in Bombay in 1993. Officials in developing countries have been concerned about population growth for more than 30 years and have instituted policies to reduce population growth. In the 1960s, population growth in developing countries was around 2.5%, but today it is about 2%. Despite this decline, the world will have 1 billion more individuals by the year 2001. 95% of these new people will be born in developing countries. India's population size is so great that India does not have the time to wait for development to reduce population growth. Population needs to be viewed as an integrated part of overall development, since it is linked to poverty, illiteracy, environmental damage, gender issues, and reproductive health. Despite a large population size, India has made some important advancements in health and family planning. For example, India has reduced population growth (to 2.14% annually between 1981-1991), infant mortality, and its birth rate. It has increased the contraceptive use rate and life expectancy. Its southern states have been more successful at achieving demographic goals than have the northern states. India needs to implement efforts to improve living conditions, to change attitudes and perceptions about small families and contraception, and to promote family planning acceptance earlier among young couples. Improvement of living conditions is especially important in India, since almost 33% of the people live in poverty. India needs to invest in nutrition, health, and education. The mass media and nongovernmental organizations need to create population awareness and demand for family planning services. Improvement in women's status accelerates fertility decline, as has happened in Kerala State. The government needs to facilitate generation of jobs. Community participation is needed for India to achieve

  1. Keynote address

    International Nuclear Information System (INIS)

    Davis, J.M.

    1991-01-01

    DOE biomass R ampersand D programs have the potential to provide America with both plentiful, clean-burning domestic transportation fuels and cost-competitive industrial and utility fuels, benefiting energy security in the United States. Biofuels developed under our programs will also help improve air quality, reduce greenhouse gases, reduce the large daily quantities of waste we produce, and revitalize rural America. These research motivations have been documented in the National Energy Strategy. DOE looks forward to expanding its biofuels research program and to forging a partnership with private sector for cost-shared commercialization of new fuels and vehicle technologies. Many alternative fuels (e.g., ethanol, methanol, compressed natural gas, propane, or electricity) are candidates for gaining market share. Indeed, there may be significant regional variation in the future fuel mix. Alcohol fuels from biomass, particularly ethanol, have the potential to make a major contribution. Currently, ethanol in the United States is almost entirely made from corn; and the limitations of that process are well known (e.g., costly feedstock, end product requiring subsidy to be competitive, use of fossil fuels in renewable feedstock production and processing, and potential adverse impact of corn ethanol production on the price of food). To address these concerns, the DOE biofuels program is pursuing an ambitious research program to develop the technologies needed to convert these crops into alternative transportation fuels, primarily cellulose-based ethanol and methanol. Program R ampersand D has reduced the estimated cost per gallon of cellulose-based ethanol from $3.60 in 1980 to the current $1.35, with a program goal of $0.60 by the year 2000. DOE is also investigating the thermochemical conversion of biomass to methanol. The program goal is to achieve commercial production of methanol (like ethanol) at the gasoline equivalent of $0.90 per gallon by the year 2000. 4 figs

  2. Singularity hypotheses a scientific and philosophical assessment

    CERN Document Server

    Moor, James; Søraker, Johnny; Steinhart, Eric

    2012-01-01

    Singularity Hypotheses: A Scientific and Philosophical Assessment offers authoritative, jargon-free essays and critical commentaries on accelerating technological progress and the notion of technological singularity. It focuses on conjectures about the intelligence explosion, transhumanism, and whole brain emulation. Recent years have seen a plethora of forecasts about the profound, disruptive impact that is likely to result from further progress in these areas. Many commentators however doubt the scientific rigor of these forecasts, rejecting them as speculative and unfounded. We therefore invited prominent computer scientists, physicists, philosophers, biologists, economists and other thinkers to assess the singularity hypotheses. Their contributions go beyond speculation, providing deep insights into the main issues and a balanced picture of the debate.

  3. Phantom cosmology without Big Rip singularity

    Energy Technology Data Exchange (ETDEWEB)

    Astashenok, Artyom V. [Baltic Federal University of I. Kant, Department of Theoretical Physics, 236041, 14, Nevsky st., Kaliningrad (Russian Federation); Nojiri, Shin' ichi, E-mail: nojiri@phys.nagoya-u.ac.jp [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Odintsov, Sergei D. [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Institucio Catalana de Recerca i Estudis Avancats - ICREA and Institut de Ciencies de l' Espai (IEEC-CSIC), Campus UAB, Facultat de Ciencies, Torre C5-Par-2a pl, E-08193 Bellaterra (Barcelona) (Spain); Tomsk State Pedagogical University, Tomsk (Russian Federation); Yurov, Artyom V. [Baltic Federal University of I. Kant, Department of Theoretical Physics, 236041, 14, Nevsky st., Kaliningrad (Russian Federation)

    2012-03-23

    We construct phantom energy models with the equation of state parameter w which is less than -1, w<-1, but finite-time future singularity does not occur. Such models can be divided into two classes: (i) energy density increases with time ('phantom energy' without 'Big Rip' singularity) and (ii) energy density tends to constant value with time ('cosmological constant' with asymptotically de Sitter evolution). The disintegration of bound structure is confirmed in Little Rip cosmology. Surprisingly, we find that such disintegration (on example of Sun-Earth system) may occur even in asymptotically de Sitter phantom universe consistent with observational data. We also demonstrate that non-singular phantom models admit wormhole solutions as well as possibility of Big Trip via wormholes.

  4. Holographic subregion complexity for singular surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bakhshaei, Elaheh [Isfahan University of Technology, Department of Physics, Isfahan (Iran, Islamic Republic of); Mollabashi, Ali [Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of); Shirzad, Ahmad [Isfahan University of Technology, Department of Physics, Isfahan (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of)

    2017-10-15

    Recently holographic prescriptions were proposed to compute the quantum complexity of a given state in the boundary theory. A specific proposal known as 'holographic subregion complexity' is supposed to calculate the complexity of a reduced density matrix corresponding to a static subregion. We study different families of singular subregions in the dual field theory and find the divergence structure and universal terms of holographic subregion complexity for these singular surfaces. We find that there are new universal terms, logarithmic in the UV cut-off, due to the singularities of a family of surfaces including a kink in (2 + 1) dimensions and cones in even dimensional field theories. We also find examples of new divergent terms such as squared logarithm and negative powers times the logarithm of the UV cut-off parameter. (orig.)

  5. Welcome Address

    Science.gov (United States)

    Kiku, H.

    2014-12-01

    Ladies and Gentlemen, It is an honor for me to present my welcome address in the 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3), as the president of Kanto Gakuin University. Particularly to those from abroad more than 17 countries, I am very grateful for your participation after long long trips from your home to Yokohama. On the behalf of the Kanto Gakuin University, we certainly welcome your visit to our university and stay in Yokohama. First I would like to introduce Kanto Gakuin University briefly. Kanto Gakuin University, which is called KGU, traces its roots back to the Yokohama Baptist Seminary founded in 1884 in Yamate, Yokohama. The seminary's founder was Albert Arnold Bennett, alumnus of Brown University, who came to Japan from the United States to establish a theological seminary for cultivating and training Japanese missionaries. Now KGU is a major member of the Kanto Gakuin School Corporation, which is composed of two kindergartens, two primary schools, two junior high schools, two senior high schools as well as KGU. In this university, we have eight faculties with graduate school including Humanities, Economics, Law, Sciences and Engineering, Architecture and Environmental Design, Human and Environmental Studies, Nursing, and Law School. Over eleven thousands students are currently learning in our university. By the way, my major is the geotechnical engineering, and I belong to the faculty of Sciences and Engineering in my university. Prof. T. Yamada, here, is my colleague in the same faculty. I know that the nuclear physics is one of the most active academic fields in the world. In fact, about half of the participants, namely, more than 50 scientists, come from abroad in this conference. Moreover, I know that the nuclear physics is related to not only the other fundamental physics such as the elementary particle physics and astrophysics but also chemistry, medical sciences, medical cares, and radiation metrology

  6. Motion Control of a Quadrotor Aircraft via Singular Perturbations

    Directory of Open Access Journals (Sweden)

    Salvador González-Vázquez

    2013-10-01

    Full Text Available In this paper, a new motion controller for a quadrotor aircraft is introduced. A reformulation of the control inputs of the dynamic model is discussed and then the control algorithm is given in a constructive form. The stability proof of the state space origin of the overall closed-loop system relies on the theory of singularly perturbed systems. Numerical simulations corroborate the viability of the proposed control scheme and the conclusions concerning stability. A set of simulations under practical conditions is also presented, where the system is affected by different types of disturbances and nonlinearities such as noise and actuator saturation.

  7. Singular vectors for the WN algebras

    Science.gov (United States)

    Ridout, David; Siu, Steve; Wood, Simon

    2018-03-01

    In this paper, we use free field realisations of the A-type principal, or Casimir, WN algebras to derive explicit formulae for singular vectors in Fock modules. These singular vectors are constructed by applying screening operators to Fock module highest weight vectors. The action of the screening operators is then explicitly evaluated in terms of Jack symmetric functions and their skew analogues. The resulting formulae depend on sequences of pairs of integers that completely determine the Fock module as well as the Jack symmetric functions.

  8. Opening address

    International Nuclear Information System (INIS)

    Henrich, E.W.

    2005-01-01

    Full text: It is an honour for me to make this opening address on behalf of the European Commission which has cooperated with the International Atomic Energy Agency in organizing this Conference, and in particular on behalf of Hans Forsstroem from the Directorate-General, Research, who will arrive only later this week. Protection of the environment is, and will continue to be, an important consideration in the development and application of soundly based radiation protection standards. Current standards rest largely on the premise that, in protecting man, the environment is afforded an adequate level of protection. While this premise is broadly accepted by the radiation protection profession, it has come under increasing challenge in recent years. This challenge has not arisen because of any observable damage to the environment while operating within current standards. Rather, it has different origins including: - The robustness of the premise that protection of man affords protection of the environment, in particular the extent to which it is based on value judgements as opposed to rigorous scientific argument; - The more explicit inclusion of protection of the environment into national legislation on radiation protection and the need to demonstrate compliance; - A desire to achieve greater comparability between radiation and other pollutants. These trends were recognized by the Commission in the late 1990s and, as a result, the topic of protection of the environment was included as an important element of the European Union's 5th Research Framework Programme. Community support has been given to the FASSET project about which we will hear much during this Conference. This multinational project is providing much of the scientific basis underpinning and informing ongoing discussions on the development of a system of protection for the environment. Much, however, remains to be done to establish a well conceived and practicable system for protection of the environment

  9. FURTHER GENERALISATIONS OF THE KUMMER-SCHWARZ EQUATION: ALGEBRAIC AND SINGULARITY PROPERTIES

    Directory of Open Access Journals (Sweden)

    R Sinuvasan

    2017-12-01

    Full Text Available The Kummer–Schwarz Equation, 2y'y'''− 3(y''2 = 0, has a generalisation, (n − 1y(n−2y(n − ny(n−12 = 0, which shares many properties with the parent form in terms of symmetry and singularity. All equations of the class are integrable in closed form. Here we introduce a new class, (n+q−2y(n−2y(n −(n+q−1y(n−12 = 0, which has different integrability and singularity properties.

  10. Singularity structure of the two-point function in quantum field theory in curved spacetime, II

    International Nuclear Information System (INIS)

    Fulling, S.A.; Narcowich, F.J.; Wald, R.M.

    1981-01-01

    We prove that, for a massive, scalar, quantum field in a wide class of static spacetimes, the two-point function has singularity structure of the Hadamard form. In particular, this implies that the point-splitting renormalization prescription is well defined in these spacetimes. As a corollary of this result and a previous result of Fulling, Sweeny, and Wald, we show that in an arbitrary globally hyperbolic spacetime there always exists a large class of states for which the singular part of the two-point function has the Hadamard form. In addition, we prove that, for a closed universe which is both initially and finally static, the S-matrix exists

  11. Interaction of two singular Lissajous lines in free space.

    Science.gov (United States)

    Chen, Haitao; Gao, Zenghui; Wang, Wanqing

    2017-05-20

    The interaction of two singular Lissajous lines emergent from a polychromatic vector beam is studied. It is shown that singular Lissajous lines disappear with propagation; meanwhile Lissajous singularities take place. The handedness reversal, the changes in the shape of Lissajous figures, and the degree of polarization of Lissajous singularities, as well as the creation and annihilation of a single singularity, may appear by varying the control parameters. In addition, the transformation of the shape of line h=0, the creation and annihilation of pairs of Lissajous singularities not only with opposite topological charge and same handedness, but also with same degree of polarization, take place with propagation.

  12. Holonomic functions of several complex variables and singularities of anisotropic Ising n-fold integrals

    Science.gov (United States)

    Boukraa, S.; Hassani, S.; Maillard, J.-M.

    2012-12-01

    Focusing on examples associated with holonomic functions, we try to bring new ideas on how to look at phase transitions, for which the critical manifolds are not points but curves depending on a spectral variable, or even fill higher dimensional submanifolds. Lattice statistical mechanics often provides a natural (holonomic) framework to perform singularity analysis with several complex variables that would, in the most general mathematical framework, be too complex, or simply could not be defined. In a learn-by-example approach, considering several Picard-Fuchs systems of two-variables ‘above’ Calabi-Yau ODEs, associated with double hypergeometric series, we show that D-finite (holonomic) functions are actually a good framework for finding properly the singular manifolds. The singular manifolds are found to be genus-zero curves. We then analyze the singular algebraic varieties of quite important holonomic functions of lattice statistical mechanics, the n-fold integrals χ(n), corresponding to the n-particle decomposition of the magnetic susceptibility of the anisotropic square Ising model. In this anisotropic case, we revisit a set of so-called Nickelian singularities that turns out to be a two-parameter family of elliptic curves. We then find the first set of non-Nickelian singularities for χ(3) and χ(4), that also turns out to be rational or elliptic curves. We underline the fact that these singular curves depend on the anisotropy of the Ising model, or, equivalently, that they depend on the spectral parameter of the model. This has important consequences on the physical nature of the anisotropic χ(n)s which appear to be highly composite objects. We address, from a birational viewpoint, the emergence of families of elliptic curves, and that of Calabi-Yau manifolds on such problems. We also address the question of singularities of non-holonomic functions with a discussion on the accumulation of these singular curves for the non-holonomic anisotropic full

  13. Holonomic functions of several complex variables and singularities of anisotropic Ising n-fold integrals

    International Nuclear Information System (INIS)

    Boukraa, S; Hassani, S; Maillard, J-M

    2012-01-01

    Focusing on examples associated with holonomic functions, we try to bring new ideas on how to look at phase transitions, for which the critical manifolds are not points but curves depending on a spectral variable, or even fill higher dimensional submanifolds. Lattice statistical mechanics often provides a natural (holonomic) framework to perform singularity analysis with several complex variables that would, in the most general mathematical framework, be too complex, or simply could not be defined. In a learn-by-example approach, considering several Picard–Fuchs systems of two-variables ‘above’ Calabi–Yau ODEs, associated with double hypergeometric series, we show that D-finite (holonomic) functions are actually a good framework for finding properly the singular manifolds. The singular manifolds are found to be genus-zero curves. We then analyze the singular algebraic varieties of quite important holonomic functions of lattice statistical mechanics, the n-fold integrals χ (n) , corresponding to the n-particle decomposition of the magnetic susceptibility of the anisotropic square Ising model. In this anisotropic case, we revisit a set of so-called Nickelian singularities that turns out to be a two-parameter family of elliptic curves. We then find the first set of non-Nickelian singularities for χ (3) and χ (4) , that also turns out to be rational or elliptic curves. We underline the fact that these singular curves depend on the anisotropy of the Ising model, or, equivalently, that they depend on the spectral parameter of the model. This has important consequences on the physical nature of the anisotropic χ (n) s which appear to be highly composite objects. We address, from a birational viewpoint, the emergence of families of elliptic curves, and that of Calabi–Yau manifolds on such problems. We also address the question of singularities of non-holonomic functions with a discussion on the accumulation of these singular curves for the non

  14. Singular Linear Differential Equations in Two Variables

    NARCIS (Netherlands)

    Braaksma, B.L.J.; Put, M. van der

    2008-01-01

    The formal and analytic classification of integrable singular linear differential equations has been studied among others by R. Gerard and Y. Sibuya. We provide a simple proof of their main result, namely: For certain irregular systems in two variables there is no Stokes phenomenon, i.e. there is no

  15. A singularity theorem based on spatial averages

    Indian Academy of Sciences (India)

    Inspired by Raychaudhuri's work, and using the equation named after him as a basic ingredient, a new singularity theorem is proved. Open non-rotating Universes, expanding everywhere with a non-vanishing spatial average of the matter variables, show severe geodesic incompletness in the past. Another way of stating ...

  16. Supersymmetric quantum mechanics under point singularities

    International Nuclear Information System (INIS)

    Uchino, Takashi; Tsutsui, Izumi

    2003-01-01

    We provide a systematic study on the possibility of supersymmetry (SUSY) for one-dimensional quantum mechanical systems consisting of a pair of lines R or intervals [-l, l] each having a point singularity. We consider the most general singularities and walls (boundaries) at x = ±l admitted quantum mechanically, using a U(2) family of parameters to specify one singularity and similarly a U(1) family of parameters to specify one wall. With these parameter freedoms, we find that for a certain subfamily the line systems acquire an N = 1 SUSY which can be enhanced to N = 4 if the parameters are further tuned, and that these SUSY are generically broken except for a special case. The interval systems, on the other hand, can accommodate N = 2 or N = 4 SUSY, broken or unbroken, and exhibit a rich variety of (degenerate) spectra. Our SUSY systems include the familiar SUSY systems with the Dirac δ(x)-potential, and hence are extensions of the known SUSY quantum mechanics to those with general point singularities and walls. The self-adjointness of the supercharge in relation to the self-adjointness of the Hamiltonian is also discussed

  17. Resolving curvature singularities in holomorphic gravity

    NARCIS (Netherlands)

    Mantz, C.L.M.; Prokopec, T.

    2011-01-01

    We formulate a holomorphic theory of gravity and study how the holomorphy symmetry alters the two most important singular solutions of general relativity: black holes and cosmology. We show that typical observers (freely) falling into a holomorphic black hole do not encounter a curvature

  18. Classical resolution of singularities in dilaton cosmologies

    NARCIS (Netherlands)

    Bergshoeff, EA; Collinucci, A; Roest, D; Russo, JG; Townsend, PK

    2005-01-01

    For models of dilaton gravity with a possible exponential potential, such as the tensor-scalar sector of ITA supergravity, we show how cosmological solutions correspond to trajectories in a 2D Milne space (parametrized by the dilaton and the scale factor). Cosmological singularities correspond to

  19. Mobile communications technology: The singular factor responsible ...

    African Journals Online (AJOL)

    This paper investigated the factors responsible for the growth of Internet usage on the African continent. The principal finding was that increasing growth of Internet usage is also down to one singular factor: mobile communications technology. The proliferation of mobile phone usage in Africa has resulted in the sustained ...

  20. Polynomial computation of Hankel singular values

    NARCIS (Netherlands)

    Kwakernaak, H.

    1992-01-01

    A revised and improved version of a polynomial algorithm is presented. It was published by N.J. Young (1990) for the computation of the singular values and vectors of the Hankel operator defined by a linear time-invariant system with a rotational transfer matrix. Tentative numerical experiments

  1. Singular Nonlinear H∞ Optimal Control Problem

    NARCIS (Netherlands)

    Schaft, A.J. van der

    1996-01-01

    The theory of nonlinear H∞ optimal control for affine nonlinear systems is extended to the more general context of singular H∞ optimal control of nonlinear systems using ideas from the linear H∞ theory. Our approach yields under certain assumptions a necessary and sufficient condition for

  2. Ray tracing in anisotropic media with singularities

    Czech Academy of Sciences Publication Activity Database

    Vavryčuk, Václav

    2001-01-01

    Roč. 145, č. 1 (2001), s. 265-276 ISSN 0956-540X R&D Projects: GA ČR GA205/00/1350 Institutional research plan: CEZ:AV0Z3012916 Keywords : anisotropic media * ray tracing * singularities Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.366, year: 2001

  3. On the genericity of spacetime singularities

    Indian Academy of Sciences (India)

    the framework of a general spacetime without any symmetry conditions, in terms of the overall behaviour of .... We now outline the basic idea and the chain of logic behind the proof of a typical singularity theorem ..... a detailed investigation of the dynamics of gravitational collapse within the frame- work of Einstein's theory.

  4. 'Footballs', conical singularities, and the Liouville equation

    International Nuclear Information System (INIS)

    Redi, Michele

    2005-01-01

    We generalize the football shaped extra dimensions scenario to an arbitrary number of branes. The problem is related to the solution of the Liouville equation with singularities, and explicit solutions are presented for the case of three branes. The tensions of the branes do not need to be tuned with each other but only satisfy mild global constraints

  5. Addressivity in Cogenerative Dialogues

    Science.gov (United States)

    Hsu, Pei-Ling

    2014-01-01

    Ashraf Shady's paper provides a first-hand reflection on how a foreign teacher used cogens as culturally adaptive pedagogy to address cultural misalignments with students. In this paper, Shady drew on several cogen sessions to showcase his journey of using different forms of cogens with his students. To improve the quality of cogens, one…

  6. Treating singularities present in the Sutcliffe-Tennyson vibrational Hamiltonian in orthogonal internal coordinates

    Science.gov (United States)

    Czakó, Gábor; Szalay, Viktor; Császár, Attila G.; Furtenbacher, Tibor

    2005-01-01

    Two methods are developed, when solving the related time-independent Schrödinger equation (TISE), to cope with the singular terms of the vibrational kinetic energy operator of a triatomic molecule given in orthogonal internal coordinates. The first method provides a mathematically correct treatment of all singular terms. The vibrational eigenfunctions are approximated by linear combinations of functions of a three-dimensional nondirect-product basis, where basis functions are formed by coupling Bessel-DVR functions, where DVR stands for discrete variable representation, depending on distance-type coordinates and Legendre polynomials depending on angle bending. In the second method one of the singular terms related to a distance-type coordinate, deemed to be unimportant for spectroscopic applications, is given no special treatment. Here the basis set is obtained by taking the direct product of a one-dimensional DVR basis with a two-dimensional nondirect-product basis, the latter formed by coupling Bessel-DVR functions and Legendre polynomials. With the basis functions defined, matrix representations of the TISE are set up and solved numerically to obtain the vibrational energy levels of H3+. The numerical calculations show that the first method treating all singularities is computationally inefficient, while the second method treating properly only the singularities having physical importance is quite efficient.

  7. Application of Cubic Box Spline Wavelets in the Analysis of Signal Singularities

    Directory of Open Access Journals (Sweden)

    Rakowski Waldemar

    2015-12-01

    Full Text Available In the subject literature, wavelets such as the Mexican hat (the second derivative of a Gaussian or the quadratic box spline are commonly used for the task of singularity detection. The disadvantage of the Mexican hat, however, is its unlimited support; the disadvantage of the quadratic box spline is a phase shift introduced by the wavelet, making it difficult to locate singular points. The paper deals with the construction and properties of wavelets in the form of cubic box splines which have compact and short support and which do not introduce a phase shift. The digital filters associated with cubic box wavelets that are applied in implementing the discrete dyadic wavelet transform are defined. The filters and the algorithme à trous of the discrete dyadic wavelet transform are used in detecting signal singularities and in calculating the measures of signal singularities in the form of a Lipschitz exponent. The article presents examples illustrating the use of cubic box spline wavelets in the analysis of signal singularities.

  8. Generalized Parton Distributions and their Singularities

    Energy Technology Data Exchange (ETDEWEB)

    Anatoly Radyushkin

    2011-04-01

    A new approach to building models of generalized parton distributions (GPDs) is discussed that is based on the factorized DD (double distribution) Ansatz within the single-DD formalism. The latter was not used before, because reconstructing GPDs from the forward limit one should start in this case with a very singular function $f(\\beta)/\\beta$ rather than with the usual parton density $f(\\beta)$. This results in a non-integrable singularity at $\\beta=0$ exaggerated by the fact that $f(\\beta)$'s, on their own, have a singular $\\beta^{-a}$ Regge behavior for small $\\beta$. It is shown that the singularity is regulated within the GPD model of Szczepaniak et al., in which the Regge behavior is implanted through a subtracted dispersion relation for the hadron-parton scattering amplitude. It is demonstrated that using proper softening of the quark-hadron vertices in the regions of large parton virtualities results in model GPDs $H(x,\\xi)$ that are finite and continuous at the "border point'' $x=\\xi$. Using a simple input forward distribution, we illustrate the implementation of the new approach for explicit construction of model GPDs. As a further development, a more general method of regulating the $\\beta=0$ singularities is proposed that is based on the separation of the initial single DD $f(\\beta, \\alpha)$ into the "plus'' part $[f(\\beta,\\alpha)]_{+}$ and the $D$-term. It is demonstrated that the "DD+D'' separation method allows to (re)derive GPD sum rules that relate the difference between the forward distribution $f(x)=H(x,0)$ and the border function $H(x,x)$ with the $D$-term function $D(\\alpha)$.

  9. São Carlos Workshop on Real and Complex Singularities

    CERN Document Server

    Ruas, Maria

    2007-01-01

    The São Carlos Workshop on Real and Complex Singularities is the longest running workshop in singularities. It is held every two years and is a key international event for people working in the field. This volume contains papers presented at the eighth workshop, held at the IML, Marseille, July 19–23, 2004. The workshop offers the opportunity to establish the state of the art and to present new trends, new ideas and new results in all of the branches of singularities. This is reflected by the contributions in this book. The main topics discussed are equisingularity of sets and mappings, geometry of singular complex analytic sets, singularities of mappings, characteristic classes, classification of singularities, interaction of singularity theory with some of the new ideas in algebraic geometry imported from theoretical physics, and applications of singularity theory to geometry of surfaces in low dimensional euclidean spaces, to differential equations and to bifurcation theory.

  10. A Note on Inclusion Intervals of Matrix Singular Values

    OpenAIRE

    Cui, Shu-Yu; Tian, Gui-Xian

    2012-01-01

    We establish an inclusion relation between two known inclusion intervals of matrix singular values in some special case. In addition, based on the use of positive scale vectors, a known inclusion interval of matrix singular values is also improved.

  11. Singular solitons of generalized Camassa-Holm models

    International Nuclear Information System (INIS)

    Tian Lixin; Sun Lu

    2007-01-01

    Two generalizations of the Camassa-Holm system associated with the singular analysis are proposed for Painleve integrability properties and the extensions of already known analytic solitons. A remarkable feature of the physical model is that it has peakon solution which has peak form. An alternative WTC test which allowed the identifying of such models directly if formulated in terms of inserting a formed ansatz into these models. For the two models have Painleve property, Painleve-Baecklund systems can be constructed through the expansion of solitons about the singularity manifold. By the implementations of Maple, plentiful new type solitonic structures and some kink waves, which are affected by the variation of energy, are explored. If the energy is infinite in finite time, there will be a collapse in soliton systems by direct numerical simulations. Particularly, there are two collapses coexisting in our regular solitons, which occurred around its central regions. Simulation shows that in the bottom of periodic waves arises the non-zero parts of compactons and anti-compactons. We also get floating solitary waves whose amplitude is infinite. In contrary to which a finite-amplitude blow-up soliton is obtained. Periodic blow-ups are found too. Special kinks which have periodic cuspons are derived

  12. Finite-Time Robust H∞ Control for Uncertain Linear Continuous-Time Singular Systems with Exogenous Disturbances

    Directory of Open Access Journals (Sweden)

    Songlin Wo

    2018-01-01

    Full Text Available Singular systems arise in a great deal of domains of engineering and can be used to solve problems which are more difficult and more extensive than regular systems to solve. Therefore, in this paper, the definition of finite-time robust H∞ control for uncertain linear continuous-time singular systems is presented. The problem we address is to design a robust state feedback controller which can deal with the singular system with time-varying norm-bounded exogenous disturbance, such that the singular system is finite-time robust bounded (FTRB with disturbance attenuation γ. Sufficient conditions for the existence of solutions to this problem are obtained in terms of linear matrix equalities (LMIs. When these LMIs are feasible, the desired robust controller is given. A detailed solving method is proposed for the restricted linear matrix inequalities. Finally, examples are given to show the validity of the methodology.

  13. THE EXT RACORPOREAL FERTILIZATION TECHNOLOGIES AND THE SINGULARITY PROBLEMS

    Directory of Open Access Journals (Sweden)

    S. V. Denysenko

    2013-05-01

    Full Text Available The peculiarities of modern medicine development connected with the technological and informative singularity are analyzed. The risks of realization of extracorporeal fertilization are examined from positions of development of informative singularity. The warning problems of origin of singularity are discussed on t h e base of t h e newest technologies development.

  14. Positive solutions for higher order singular p-Laplacian boundary ...

    Indian Academy of Sciences (India)

    of positive solutions for sublinear 2m-th order singular p-Laplacian BVPs on closed interval. Keywords. Positive solution; singular BVPs; sufficient and necessary conditions; p-Laplacian equations. 1. Introduction. In this paper, we are concerned with higher order singular p-Laplacian boundary value problems. ⎧. ⎨. ⎩.

  15. Pontryagin-Thom-Szucs type construction for non-positive codimensional singular maps with prescribed singular fibers

    OpenAIRE

    Kalmar, Boldizsar

    2006-01-01

    We give a Pontryagin-Thom-Szucs type construction for non-positive codimensional singular maps, and obtain results about cobordism and bordism groups of -1 codimensional stable maps with prescribed singular fibers.

  16. Addressivity in cogenerative dialogues

    Science.gov (United States)

    Hsu, Pei-Ling

    2014-03-01

    Ashraf Shady's paper provides a first-hand reflection on how a foreign teacher used cogens as culturally adaptive pedagogy to address cultural misalignments with students. In this paper, Shady drew on several cogen sessions to showcase his journey of using different forms of cogens with his students. To improve the quality of cogens, one strategy he used was to adjust the number of participants in cogens. As a result, some cogens worked and others did not. During the course of reading his paper, I was impressed by his creative and flexible use of cogens and at the same time was intrigued by the question of why some cogens work and not others. In searching for an answer, I found that Mikhail Bakhtin's dialogism, especially the concept of addressivity, provides a comprehensive framework to address this question. In this commentary, I reanalyze the cogen episodes described in Shady's paper in the light of dialogism. My analysis suggests that addressivity plays an important role in mediating the success of cogens. Cogens with high addressivity function as internally persuasive discourse that allows diverse consciousnesses to coexist and so likely affords productive dialogues. The implications of addressivity in teaching and learning are further discussed.

  17. Singular perturbation theory mathematical and analytical techniques with applications to engineering

    CERN Document Server

    Johnson, RS

    2005-01-01

    Written in a form that should enable the relatively inexperienced (or new) worker in the field of singular perturbation theory to learn and apply all the essential ideasDesigned as a learning tool. The numerous examples and set exercises are intended to aid this process.

  18. Yang-Lee edge singularity on a class of tree-like lattices

    Energy Technology Data Exchange (ETDEWEB)

    Knezevic, Milan; Elezovic-Hadzic, Suncica [Faculty of Physics, University of Belgrade, Belgrade (Yugoslavia)

    1997-03-21

    The density of zeros of the partition function of the Ising model on a class of tree-like lattices is studied. An exact closed-form expression for the pertinent critical exponents is derived by using a couple of recursion relations which have a singular behaviour near the Yang-Lee edge. (author)

  19. Root System of Singular Perturbations of the Harmonic Oscillator Type Operators

    Czech Academy of Sciences Publication Activity Database

    Mityagin, B.; Siegl, Petr

    2016-01-01

    Roč. 106, č. 2 (2016), s. 147-167 ISSN 0377-9017 Institutional support: RVO:61389005 Keywords : non-self-adjoint operators * harmonic oscillator * Riesz basis * quadratic forms * singular petentials Subject RIV: BE - Theoretical Physics Impact factor: 1.671, year: 2016

  20. Complete fluid equations for low-n singular modes in axisymmetric toroidal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Glasser, A.H.

    1990-01-01

    The goal of this work is to develop a complete linear theory of the singular region, including all important dynamical effects. The present phase of the work treats the more collision fluid regime. A later phase will treat the less collisional gyrokinetic regime. This paper concerns the derivation and form of the fluid equations for the singular region of low-n modes. Later work will treat high-n ballooning modes. In addition, the ordering in the present work must be amended before it is applicable to the neighborhood of the field reversal surface of the RFP.

  1. Beyond the Friedmann—Lemaître—Robertson—Walker Big Bang Singularity

    International Nuclear Information System (INIS)

    Stoica, Cristi

    2012-01-01

    Einstein's equation, in its standard form, breaks down at the Big Bang singularity. A new version, equivalent to Einstein's whenever the latter is defined, but applicable in wider situations, is proposed. The new equation remains smooth at the Big Bang singularity of the Friedmann—Lemaître—Robertson—Walker model. It is a tensor equation defined in terms of the Ricci part of the Riemann curvature. It is obtained by taking the Kulkarni—Nomizu product between Einstein's equation and the metric tensor.

  2. Algorithms for singularities and real structures of weak Del Pezzo surfaces

    KAUST Repository

    Lubbes, Niels

    2014-08-01

    In this paper, we consider the classification of singularities [P. Du Val, On isolated singularities of surfaces which do not affect the conditions of adjunction. I, II, III, Proc. Camb. Philos. Soc. 30 (1934) 453-491] and real structures [C. T. C. Wall, Real forms of smooth del Pezzo surfaces, J. Reine Angew. Math. 1987(375/376) (1987) 47-66, ISSN 0075-4102] of weak Del Pezzo surfaces from an algorithmic point of view. It is well-known that the singularities of weak Del Pezzo surfaces correspond to root subsystems. We present an algorithm which computes the classification of these root subsystems. We represent equivalence classes of root subsystems by unique labels. These labels allow us to construct examples of weak Del Pezzo surfaces with the corresponding singularity configuration. Equivalence classes of real structures of weak Del Pezzo surfaces are also represented by root subsystems. We present an algorithm which computes the classification of real structures. This leads to an alternative proof of the known classification for Del Pezzo surfaces and extends this classification to singular weak Del Pezzo surfaces. As an application we classify families of real conics on cyclides. © World Scientific Publishing Company.

  3. Evaluation of debonding strength of single lap joint by the intensity of singular stress field

    Science.gov (United States)

    Miyazaki, Tatsujiro; Noda, Nao-Aki

    2017-05-01

    In this paper, the similarity of the singular stress field of the single lap joint (SLJ) is discussed to evaluate the debonding fracture by the intensity of the singular stress field (ISSF). The practical method is proposed for analyzing the ISSF for the SLJ. The analysis method focuses on the FEM stress at the interface end by applying the same mesh pattern to the unknown and reference models. It is found that the independent technique useful for the bonded plate and butt joint cannot be applied to the SLJ because the singular stress field of the SLJ consists of two singular stress terms. The FEM stress is divided to two FEM stresses by applying the unknown and reference models to different minimum element sizes. Then, the practicality of the present method is examined by applying to the previous tensile test results of the SLJ composed of the aluminum alloy and the epoxy resin. The ISSFs for the SLJ were calculated by changing the adhesive thickness t 2 and the overlap length l 2. In the case of the SLJ with 225 mm in total length and 7 mm in adherend thickness, it was found that the similar singular stress fields are formed in the range of 0.15 mm ≤ t 2 ≤ 0.9mm and 15 mm ≤ l 2 ≤ 50 mm. It is shown that the critical ISSFs at the fracture are constant in the range.

  4. Spectral asymptotics for nonsmooth singular Green operators

    DEFF Research Database (Denmark)

    Grubb, Gerd

    2014-01-01

    Singular Green operators G appear typically as boundary correction terms in resolvents for elliptic boundary value problems on a domain Ω ⊂ ℝ n , and more generally they appear in the calculus of pseudodifferential boundary problems. In particular, the boundary term in a Krein resolvent formula...... is a singular Green operator. It is well-known in smooth cases that when G is of negative order −t on a bounded domain, its eigenvalues ors-numbers have the behavior (*)s j (G) ∼ cj −t/(n−1) for j → ∞, governed by the boundary dimension n − 1. In some nonsmooth cases, upper estimates (**)s j (G) ≤ Cj −t/(n−1...

  5. Further holographic investigations of big bang singularities

    Energy Technology Data Exchange (ETDEWEB)

    Engelhardt, Netta [Department of Physics, UCSB,Santa Barbara, CA 93106 (United States); Hertog, Thomas [Institute for Theoretical Physics, KU Leuven,3001 Leuven (Belgium); Horowitz, Gary T. [Department of Physics, UCSB,Santa Barbara, CA 93106 (United States)

    2015-07-09

    We further explore the quantum dynamics near past cosmological singularities in anisotropic Kasner-AdS solutions using gauge/gravity duality. The dual description of the bulk evolution involves N=4 super Yang-Mills on the contracting branch of an anisotropic de Sitter space and is well defined. We compute two-point correlators of Yang-Mills operators of large dimensions using spacelike geodesics anchored on the boundary. The correlator between two points separated in a direction with negative Kasner exponent p always exhibits a pole at horizon scales, in any dimension, which we interpret as a dual signature of the classical bulk singularity. This indicates that the geodesic approximation selects a non-normalizable Yang-Mills state.

  6. Further holographic investigations of big bang singularities

    Science.gov (United States)

    Engelhardt, Netta; Hertog, Thomas; Horowitz, Gary T.

    2015-07-01

    We further explore the quantum dynamics near past cosmological singularities in anisotropic Kasner-AdS solutions using gauge/gravity duality. The dual description of the bulk evolution involves super Yang-Mills on the contracting branch of an anisotropic de Sitter space and is well defined. We compute two-point correlators of Yang-Mills operators of large dimensions using spacelike geodesics anchored on the boundary. The correlator between two points separated in a direction with negative Kasner exponent p always exhibits a pole at horizon scales, in any dimension, which we interpret as a dual signature of the classical bulk singularity. This indicates that the geodesic approximation selects a non-normalizable Yang-Mills state.

  7. Singular tachyon kinks from regular profiles

    International Nuclear Information System (INIS)

    Copeland, E.J.; Saffin, P.M.; Steer, D.A.

    2003-01-01

    We demonstrate how Sen's singular kink solution of the Born-Infeld tachyon action can be constructed by taking the appropriate limit of initially regular profiles. It is shown that the order in which different limits are taken plays an important role in determining whether or not such a solution is obtained for a wide class of potentials. Indeed, by introducing a small parameter into the action, we are able circumvent the results of a recent paper which derived two conditions on the asymptotic tachyon potential such that the singular kink could be recovered in the large amplitude limit of periodic solutions. We show that this is explained by the non-commuting nature of two limits, and that Sen's solution is recovered if the order of the limits is chosen appropriately

  8. Singularity now: using the ventricular assist device as a model for future human-robotic physiology.

    Science.gov (United States)

    Martin, Archer K

    2016-04-01

    In our 21 st century world, human-robotic interactions are far more complicated than Asimov predicted in 1942. The future of human-robotic interactions includes human-robotic machine hybrids with an integrated physiology, working together to achieve an enhanced level of baseline human physiological performance. This achievement can be described as a biological Singularity. I argue that this time of Singularity cannot be met by current biological technologies, and that human-robotic physiology must be integrated for the Singularity to occur. In order to conquer the challenges we face regarding human-robotic physiology, we first need to identify a working model in today's world. Once identified, this model can form the basis for the study, creation, expansion, and optimization of human-robotic hybrid physiology. In this paper, I present and defend the line of argument that currently this kind of model (proposed to be named "IshBot") can best be studied in ventricular assist devices - VAD.

  9. Method of rotations for bilinear singular integrals

    Czech Academy of Sciences Publication Activity Database

    Diestel, G.; Grafakos, L.; Honzík, Petr; Zengyan, S.; Terwilleger, E.

    2011-01-01

    Roč. 3, - (2011), s. 99-107 ISSN 1938-9787. [Analysis, Mathematical Physics and Applications. Ixtapa, 01.03.2010-05.03.2010] R&D Projects: GA AV ČR KJB100190901 Institutional research plan: CEZ:AV0Z10190503 Keywords : bilinear singular integrals * bilinear Hilbert transform * Fourier multipliers Subject RIV: BA - General Mathematics http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.cma/1298670006&page=record

  10. Non-singular spiked harmonic oscillator

    International Nuclear Information System (INIS)

    Aguilera-Navarro, V.C.; Guardiola, R.

    1990-01-01

    A perturbative study of a class of non-singular spiked harmonic oscillators defined by the hamiltonian H = d sup(2)/dr sup(2) + r sup(2) + λ/r sup(α) in the domain [0,∞] is carried out, in the two extremes of a weak coupling and a strong coupling regimes. A path has been found to connect both expansions for α near 2. (author)

  11. Space-time singularities in Weyl manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, I.P. [CAPES Foundation, Ministry of Education of Brazil, Brasilia (Brazil); Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); Barreto, A.B.; Romero, C. [Universidade Federal da Paraiba, Departamento de Fisica, C. Postal 5008, Joao Pessoa, PB (Brazil)

    2015-09-15

    We extend one of the Hawking-Penrose singularity theorems in general relativity to the case of some scalar-tensor gravity theories in which the scalar field has a geometrical character and space-time has the mathematical structure of a Weyl integrable space-time. We adopt an invariant formalism, so that the extended version of the theorem does not depend on a particular frame. (orig.)

  12. The technological singularity and exponential medicine

    OpenAIRE

    Iraj Nabipour; Majid Assadi

    2016-01-01

    The "technological singularity" is forecasted to occur in 2045. It is a point when non-biological intelligence becomes more intelligent than humans and each generation of intelligent machines re-designs itself smarter. Beyond this point, there is a symbiosis between machines and humans. This co-existence will produce incredible impacts on medicine that its sparkles could be seen in healthcare industry and the future medicine since 2025. Ray Kurzweil, the great futurist, suggested th...

  13. Singular reduction of Nambu-Poisson manifolds

    Science.gov (United States)

    Das, Apurba

    The version of Marsden-Ratiu Poisson reduction theorem for Nambu-Poisson manifolds by a regular foliation have been studied by Ibáñez et al. In this paper, we show that this reduction procedure can be extended to the singular case. Under a suitable notion of Hamiltonian flow on the reduced space, we show that a set of Hamiltonians on a Nambu-Poisson manifold can also be reduced.

  14. Strongly oscillating singularities for the interior transmission eigenvalue problem

    Science.gov (United States)

    Bonnet-Ben Dhia, Anne-Sophie; Chesnel, Lucas

    2013-10-01

    In this paper, we investigate a two-dimensional interior transmission eigenvalue problem for an inclusion made of a composite material. We consider configurations where the difference between the parameters of the composite material and those of the background changes sign on the boundary of the inclusion. In a first step, under some assumptions on the parameters, we extend the variational approach of the T-coercivity to prove that the transmission eigenvalues form at most a discrete set. In the process, we also provide localization results. Then, we study what happens when these assumptions are not satisfied. The main idea is that, due to very strong singularities that can occur at the boundary, the problem may lose Fredholmness in the natural H1 framework. Using Kondratiev theory, we propose a new functional framework where the Fredholm property is restored.

  15. Infrared singularities of scattering amplitudes in perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Becher, Thomas [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Neubert, Matthias [Johannes Gutenberg-Universitaet Mainz, Mainz (Germany)

    2013-11-01

    An exact formula is derived for the infrared singularities of dimensionally regularized scattering amplitudes in massless QCD with an arbitrary number of legs, valid at any number of loops. It is based on the conjecture that the anomalous-dimension matrix of n-jet operators in soft-collinear effective theory contains only a single non-trivial color structure, whose coefficient is the cusp anomalous dimension of Wilson loops with light-like segments. Its color-diagonal part is characterized by two anomalous dimensions, which are extracted to three-loop order from known perturbative results for the quark and gluon form factors. This allows us to predict the three-loop coefficients of all 1/epsilon^k poles for an arbitrary n-parton scattering amplitudes, generalizing existing two-loop results.

  16. The Singularity May Never Be Near

    OpenAIRE

    Walsh, Toby

    2017-01-01

    There is both much optimisim and pessimism around artificial intelligence (AI) today. The optimists are investing millions of dollars, and even in some cases billions of dollars into AI. The pessimists, on the other hand, predict that AI will end many things: jobs, warfare, and even the human race. Both the optimists and the pessimists often appeal to the idea of a technological singularity, a point in time where machine intelligence starts to run away, and a new, more in- telligent “species”...

  17. Singularity Structure of Maximally Supersymmetric Scattering Amplitudes

    DEFF Research Database (Denmark)

    Arkani-Hamed, Nima; Bourjaily, Jacob L.; Cachazo, Freddy

    2014-01-01

    We present evidence that loop amplitudes in maximally supersymmetric (N=4) Yang-Mills theory (SYM) beyond the planar limit share some of the remarkable structures of the planar theory. In particular, we show that through two loops, the four-particle amplitude in full N=4 SYM has only logarithmic ...... singularities and is free of any poles at infinity—properties closely related to uniform transcendentality and the UV finiteness of the theory. We also briefly comment on implications for maximal (N=8) supergravity theory (SUGRA)....

  18. Clifford wavelets, singular integrals, and Hardy spaces

    CERN Document Server

    Mitrea, Marius

    1994-01-01

    The book discusses the extensions of basic Fourier Analysis techniques to the Clifford algebra framework. Topics covered: construction of Clifford-valued wavelets, Calderon-Zygmund theory for Clifford valued singular integral operators on Lipschitz hyper-surfaces, Hardy spaces of Clifford monogenic functions on Lipschitz domains. Results are applied to potential theory and elliptic boundary value problems on non-smooth domains. The book is self-contained to a large extent and well-suited for graduate students and researchers in the areas of wavelet theory, Harmonic and Clifford Analysis. It will also interest the specialists concerned with the applications of the Clifford algebra machinery to Mathematical Physics.

  19. Beyond the singularity of the 2-D charged black hole

    International Nuclear Information System (INIS)

    Giveon, Amit; Rabinovici, Eliezer; Sever, Amit

    2003-01-01

    Two dimensional charged black holes in string theory can be obtained as exact SL(2,R) x U(1)/U(1) quotient CFTs. The geometry of the quotient is induced from that of the group, and in particular includes regions beyond the black hole singularities. Moreover, wavefunctions in such black holes are obtained from gauge invariant vertex operators in the SL(2,R) CFT, hence their behavior beyond the singularity is determined. When the black hole is charged we find that the wavefunctions are smooth at the singularities. Unlike the uncharged case, scattering waves prepared beyond the singularity are not fully reflected; part of the wave is transmitted through the singularity. Hence, the physics outside the horizon of a charged black hole is sensitive to conditions set behind the past singularity. (author)

  20. Pursell-Shanks type theorems for fewnomial singularities

    International Nuclear Information System (INIS)

    Khimshiashvili, G.

    2006-04-01

    We discuss certain situations in which the analytic isomorphism class of an isolated hypersurface singularity is determined by the Lie algebra of derivations of its moduli algebra. Our main attention is given to singularities defined by polynomials with the number of monomials equal to the number of variables. In this context, we indicate several classes of singularities which are classified by the associated Lie algebras. In particular, it is shown that this takes place for isolated singularities defined by binomials in two variables with the Milnor number not less than 7, which implies that simple singularities with Milnor number not less than 7 can be classified by the associated Lie algebras. Similar results are obtained for several other classes of isolated hypersurfaces singularities. A number of related results and open problems are also presented. (author)

  1. Quantum singularities in the FRW universe revisited

    International Nuclear Information System (INIS)

    Letelier, Patricio S.; Pitelli, Joao Paulo M.

    2010-01-01

    The components of the Riemann tensor in the tetrad basis are quantized and, through the Einstein equation, we find the local expectation value in the ontological interpretation of quantum mechanics of the energy density and pressure of a perfect fluid with equation of state p=(1/3)ρ in the flat Friedmann-Robertson-Walker quantum cosmological model. The quantum behavior of the equation of state and energy conditions are then studied, and it is shown that the energy conditions are violated since the singularity is removed with the introduction of quantum cosmology, but in the classical limit both the equation of state and the energy conditions behave as in the classical model. We also calculate the expectation value of the scale factor for several wave packets in the many-worlds interpretation in order to show the independence of the nonsingular character of the quantum cosmological model with respect to the wave packet representing the wave function of the Universe. It is also shown that, with the introduction of nonnormalizable wave packets, solutions of the Wheeler-DeWitt equation, the singular character of the scale factor, can be recovered in the ontological interpretation.

  2. Electricity consumption forecasting using singular spectrum analysis

    Directory of Open Access Journals (Sweden)

    Moisés Lima de Menezes

    2015-01-01

    Full Text Available El Análisis Espectral Singular (AES es una técnica no paramétrica que permite la descomposición de una serie de tiempo en una componente de señal y otra de ruido. De este modo, AES es una técnica útil para la extracción de la tendencia, la suavización y el filtro una serie de tiempo. En este artículo se investiga el efecto sobre el desempeño los modelos de Holt-Winters y de Box & Jenkins al ser aplicados a una serie de tiempo filtrada por AES. Tres diferentes metodologías son evaluadas con el enfoque de AES: Análisis de Componentes Principales (ACP, análisis de conglomerados y análisis gráfico de vectores singulares. Con el fin de ilustrar y comparar dichas metodologías, en este trabajo también se presentaron los principales resultados de un experimento computacional para el consumo residencial mensual de electricidad en Brasil.

  3. Identification of discrete chaotic maps with singular points

    Directory of Open Access Journals (Sweden)

    P. G. Akishin

    2001-01-01

    Full Text Available We investigate the ability of artificial neural networks to reconstruct discrete chaotic maps with singular points. We use as a simple test model the Cusp map. We compare the traditional Multilayer Perceptron, the Chebyshev Neural Network and the Wavelet Neural Network. The numerical scheme for the accurate determination of a singular point is also developed. We show that combining a neural network with the numerical algorithm for the determination of the singular point we are able to accurately approximate discrete chaotic maps with singularities.

  4. Metric dimensional reduction at singularities with implications to Quantum Gravity

    Science.gov (United States)

    Stoica, Ovidiu Cristinel

    2014-08-01

    A series of old and recent theoretical observations suggests that the quantization of gravity would be feasible, and some problems of Quantum Field Theory would go away if, somehow, the spacetime would undergo a dimensional reduction at high energy scales. But an identification of the deep mechanism causing this dimensional reduction would still be desirable. The main contribution of this article is to show that dimensional reduction effects are due to General Relativity at singularities, and do not need to be postulated ad-hoc. Recent advances in understanding the geometry of singularities do not require modification of General Relativity, being just non-singular extensions of its mathematics to the limit cases. They turn out to work fine for some known types of cosmological singularities (black holes and FLRW Big-Bang), allowing a choice of the fundamental geometric invariants and physical quantities which remain regular. The resulting equations are equivalent to the standard ones outside the singularities. One consequence of this mathematical approach to the singularities in General Relativity is a special, (geo)metric type of dimensional reduction: at singularities, the metric tensor becomes degenerate in certain spacetime directions, and some properties of the fields become independent of those directions. Effectively, it is like one or more dimensions of spacetime just vanish at singularities. This suggests that it is worth exploring the possibility that the geometry of singularities leads naturally to the spontaneous dimensional reduction needed by Quantum Gravity.

  5. Numerical investigation of stress singularities in cracked bimaterial body

    Czech Academy of Sciences Publication Activity Database

    Náhlík, Luboš; Šestáková, Lucie; Hutař, Pavel

    2008-01-01

    Roč. 385-387, - (2008), s. 125-128 ISSN 1013-9826. [International Conference on Fracture and Damage Mechanics /7./. Seoul, 09.09.2008-11.09.2008] R&D Projects: GA AV ČR(CZ) KJB200410803; GA ČR GP106/06/P239; GA ČR GA106/08/1409 Institutional research plan: CEZ:AV0Z20410507 Keywords : bimaterial interface * stress singularity exponent * corner singularity * vertex singularity * general singular stress concentrator Subject RIV: JL - Materials Fatigue, Friction Mechanics

  6. Can non-commutativity resolve the big-bang singularity?

    Energy Technology Data Exchange (ETDEWEB)

    Maceda, M.; Madore, J. [Laboratoire de Physique Theorique, Universite de Paris-Sud, Batiment 211, 91405, Orsay (France); Manousselis, P. [Department of Engineering Sciences, University of Patras, 26110, Patras (Greece); Physics Department, National Technical University, Zografou Campus, 157 80, Zografou, Athens (Greece); Zoupanos, G. [Physics Department, National Technical University, Zografou Campus, 157 80, Zografou, Athens (Greece); Theory Division, CERN, 1211, Geneva 23 (Switzerland)

    2004-08-01

    A possible way to resolve the singularities of general relativity is proposed based on the assumption that the description of space-time using commuting coordinates is not valid above a certain fundamental scale. Beyond that scale it is assumed that the space-time has non-commutative structure leading in turn to a resolution of the singularity. As a first attempt towards realizing the above programme a modification of the Kasner metric is constructed which is commutative only at large time scales. At small time scales, near the singularity, the commutation relations among the space coordinates diverge. We interpret this result as meaning that the singularity has been completely delocalized. (orig.)

  7. Address Points - Allegheny County Address Points 201601

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This dataset contains Address Points in Allegheny County. The Address Points were created by GDR for the Allegheny County CAD project, October 2008. Data is updated...

  8. Empirical singular vectors of baroclinic flows deduced from experimental data of a differentially heated rotating annulus

    Directory of Open Access Journals (Sweden)

    Michael Hoff

    2015-01-01

    Full Text Available Instability is related to exponentially growing eigenmodes. Interestingly, when finite time intervals are considered, growth rates of certain initial perturbations can exceed the growth rates of the most unstable modes. Moreover, even when all modes are damped, such particular initial perturbations can still grow during finite time intervals. The perturbations with the largest growth rates are called singular vectors (SVs or optimal perturbations. They not only play an important role in atmospheric ensemble predictions, but also for the theory of instability and turbulence. Starting point for a classical SV-analysis is a linear dynamical system with a known system matrix. In contrast to this traditional approach, measured data are used here to estimate the linear propagator. For this estimation, a method is applied that uses the covariances of the measured time series to find the principal oscillation patterns (POPs that are the empirically estimated linear eigenmodes of the system. By using the singular value decomposition (SVD, we can estimate the modes of maximal growth of the propagator which are thus the empirically estimated SVs. These modes can be understood as a superposition of POPs that form a complete but in general non-orthogonal basis. The data used, originate from a differentially heated rotating annulus laboratory experiment. This experiment is an analogue of the earth's atmosphere and is used to study the development of baroclinic waves in a well controlled and reproducible way without the need of numerical approximations. Baroclinic waves form the background for many studies on SV growth and it is thus straight forward to apply the technique of empirical SV estimation to these laboratory data. To test the method of SV estimation, we use a quasi-geostrophic barotropic model and compare the known SVs from that model with SVs estimated from a surrogate data set that was generated with the help of the exact model propagator and some

  9. von-Neumann stability and singularity resolution in loop quantized Schwarzschild black hole

    Science.gov (United States)

    Yonika, Alec; Khanna, Gaurav; Singh, Parampreet

    2018-02-01

    Though loop quantization of several spacetimes has exhibited existence of a bounce via an explicit evolution of states using numerical simulations, the question about the way central singularity is resolved in the black hole interior has remained open. The quantum Hamiltonian constraint in loop quantization turns out to be a finite difference equation whose stability is important to understand to gain insights on the viability of the underlying quantization and resulting physical implications. We take first steps towards addressing these issues for a loop quantization of the Schwarzschild interior recently given by Corichi and Singh. Von-Neumann stability analysis is performed using separability of solutions as well as a full two dimensional quantum difference equation. This results in a stability condition for black holes which have a very large mass compared to the Planck mass. For black holes of smaller masses evidence of numerical instability is found. In addition, stability analysis for macroscopic black holes leads to a constraint on the choice of the allowed states in numerical evolution. States which are not sharply peaked in accordance with this constraint result in instabilities. With the caveat of using kinematical norm, sharply peaked Gaussian states are evolved using the quantum difference equation and singularity resolution is obtained. A bounce is found for one of the triad variables, but for the other triad variable singularity resolution amounts to a non-singular passage through the zero volume. States are found to be peaked at the classical trajectory for a long time before and after the singularity resolution, and retain their semi-classical character across the zero volume. Our main result is that quantum bounce occurs in loop quantized Schwarzschild interior at least for macroscopic black holes. Instability of small black holes which can be a result of using kinematical norm nevertheless signifies the need of further understanding of the

  10. Mechanical quadrature method as applied to singular integral equations with logarithmic singularity on the right-hand side

    Science.gov (United States)

    Amirjanyan, A. A.; Sahakyan, A. V.

    2017-08-01

    A singular integral equation with a Cauchy kernel and a logarithmic singularity on its righthand side is considered on a finite interval. An algorithm is proposed for the numerical solution of this equation. The contact elasticity problem of a П-shaped rigid punch indented into a half-plane is solved in the case of a uniform hydrostatic pressure occurring under the punch, which leads to a logarithmic singularity at an endpoint of the integration interval. The numerical solution of this problem shows the efficiency of the proposed approach and suggests that the singularity has to be taken into account in solving the equation.

  11. Singularities and Entropy in Bulk Viscosity Dark Energy Model

    International Nuclear Information System (INIS)

    Meng Xinhe; Dou Xu

    2011-01-01

    In this paper bulk viscosity is introduced to describe the effects of cosmic non-perfect fluid on the cosmos evolution and to build the unified dark energy (DE) with (dark) matter models. Also we derive a general relation between the bulk viscosity form and Hubble parameter that can provide a procedure for the viscosity DE model building. Especially, a redshift dependent viscosity parameter ζ ∝ λ 0 + λ 1 (1 + z) n proposed in the previous work [X.H. Meng and X. Dou, Commun. Theor. Phys. 52 (2009) 377] is investigated extensively in this present work. Further more we use the recently released supernova dataset (the Constitution dataset) to constrain the model parameters. In order to differentiate the proposed concrete dark energy models from the well known ΛCDM model, statefinder diagnostic method is applied to this bulk viscosity model, as a complementary to the Om parameter diagnostic and the deceleration parameter analysis performed by us before. The DE model evolution behavior and tendency are shown in the plane of the statefinder diagnostic parameter pair {r, s} as axes where the fixed point represents the ΛCDM model. The possible singularity property in this bulk viscosity cosmology is also discussed to which we can conclude that in the different parameter regions chosen properly, this concrete viscosity DE model can have various late evolution behaviors and the late time singularity could be avoided. We also calculate the cosmic entropy in the bulk viscosity dark energy frame, and find that the total entropy in the viscosity DE model increases monotonously with respect to the scale factor evolution, thus this monotonous increasing property can indicate an arrow of time in the universe evolution, though the quantum version of the arrow of time is still very puzzling. (geophysics, astronomy, and astrophysics)

  12. Singular value decomposition metrics show limitations of detector design in diffuse fluorescence tomography.

    Science.gov (United States)

    Leblond, Frederic; Tichauer, Kenneth M; Pogue, Brian W

    2010-11-29

    The spatial resolution and recovered contrast of images reconstructed from diffuse fluorescence tomography data are limited by the high scattering properties of light propagation in biological tissue. As a result, the image reconstruction process can be exceedingly vulnerable to inaccurate prior knowledge of tissue optical properties and stochastic noise. In light of these limitations, the optimal source-detector geometry for a fluorescence tomography system is non-trivial, requiring analytical methods to guide design. Analysis of the singular value decomposition of the matrix to be inverted for image reconstruction is one potential approach, providing key quantitative metrics, such as singular image mode spatial resolution and singular data mode frequency as a function of singular mode. In the present study, these metrics are used to analyze the effects of different sources of noise and model errors as related to image quality in the form of spatial resolution and contrast recovery. The image quality is demonstrated to be inherently noise-limited even when detection geometries were increased in complexity to allow maximal tissue sampling, suggesting that detection noise characteristics outweigh detection geometry for achieving optimal reconstructions.

  13. A vida singular de um jovem militante

    Directory of Open Access Journals (Sweden)

    Áurea Maria Guimarães

    2012-01-01

    Full Text Available Esse artigo é fruto de uma pesquisa realizada no período de 2007 a 2010, junto a jovens militantes da cidade de Campinas, com o objetivo de compreender as diferentes maneiras que conduziam esses jovens tanto a reproduzir um modelo de vida quanto a criar outras possibilidades de militância na relação com esse modelo. Entre as histórias orais de vida narradas por jovens que militavam em diferentes grupos ou instituições, escolhi a vida de Biula, representante do movimento estudantil secundarista, procurando evidenciar que a singularidade desta vida, como também e a de outros jovens, estava conectada à problematização que faziam no interior de certas práticas, histórica e culturalmente constituídas, possibilitando a criação de novas formas de subjetivação nas quais se modificava a experiência que tinham deles mesmos na relação com os seus heróis ou modelos de referência. Palavras-chave: história oral – transcriação – heróis – resistência - processos de singularização.   THE SINGULAR LIFE OF A YOUNG MILITANT ABSTRACT   This article is the result of a research carried out from 2007 to 2010 with   young militants in the city of Campinas, aiming to understand the different ways which conducted these youngsters to both reproduce a life model and create other possibilities of militancy in the relationship with this model. Among oral stories narrated by young militants from different groups or institutions, I have chosen the life of Biula, a representative of the secondary students’ movement, trying to show that the singularity of this life and other youngsters’ lives was connected to the problematization they promoted within certain practices, historically and culturally built, thus enabling the creation of new subjectification modes in which the experience they had of themselves in the relationship with their heroes or reference models has changed. Key words: oral history -  transcreation – heroes

  14. Singular Instantons and Painlevé VI

    Science.gov (United States)

    Muñiz Manasliski, Richard

    2016-06-01

    We consider a two parameter family of instantons, which is studied in [Sadun L., Comm. Math. Phys. 163 (1994), 257-291], invariant under the irreducible action of SU_2 on S^4, but which are not globally defined. We will see that these instantons produce solutions to a one parameter family of Painlevé VI equations (P_VI}) and we will give an explicit expression of the map between instantons and solutions to P_{VI}. The solutions are algebraic only for that values of the parameters which correspond to the instantons that can be extended to all of S^4. This work is a generalization of [Muñiz Manasliski R., Contemp. Math., Vol. 434, Amer. Math. Soc., Providence, RI, 2007, 215-222] and [Muñiz Manasliski R., J. Geom. Phys. 59 (2009), 1036-1047, arXiv:1602.07221], where instantons without singularities are studied.

  15. Generalized decomposition methods for singular oscillators

    International Nuclear Information System (INIS)

    Ramos, J.I.

    2009-01-01

    Generalized decomposition methods based on a Volterra integral equation, the introduction of an ordering parameter and a power series expansion of the solution in terms of the ordering parameter are developed and used to determine the solution and the frequency of oscillation of a singular, nonlinear oscillator with an odd nonlinearity. It is shown that these techniques provide solutions which are free from secularities if the unknown frequency of oscillation is also expanded in power series of the ordering parameter, require that the nonlinearities be analytic functions of their arguments, and, at leading-order, provide the same frequency of oscillation as two-level iterative techniques, the homotopy perturbation method if the constants that appear in the governing equation are expanded in power series of the ordering parameter, and modified artificial parameter - Linstedt-Poincare procedures.

  16. The technological singularity and exponential medicine

    Directory of Open Access Journals (Sweden)

    Iraj Nabipour

    2016-01-01

    Full Text Available The "technological singularity" is forecasted to occur in 2045. It is a point when non-biological intelligence becomes more intelligent than humans and each generation of intelligent machines re-designs itself smarter. Beyond this point, there is a symbiosis between machines and humans. This co-existence will produce incredible impacts on medicine that its sparkles could be seen in healthcare industry and the future medicine since 2025. Ray Kurzweil, the great futurist, suggested that three revolutions in science and technology consisting genetic and molecular science, nanotechnology, and robotic (artificial intelligence provided an exponential growth rate for medicine. The "exponential medicine" is going to create more disruptive technologies in healthcare industry. The exponential medicine shifts the paradigm of medical philosophy and produces significant impacts on the healthcare system and patient-physician relationship.   

  17. Spectral singularities and zero energy bound states

    Energy Technology Data Exchange (ETDEWEB)

    Heiss, W.D. [National Institute for Theoretical Physics, Stellenbosch Institute for Advanced Study, and Institute of Theoretical Physics, University of Stellenbosch, 7602 Matieland (South Africa); Nazmitdinov, R.G. [Department de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)

    2011-08-15

    Single particle scattering around zero energy is re-analysed in view of recent experiments with ultra-cold atoms, nano-structures and nuclei far from the stability valley. For non-zero orbital angular momentum the low energy scattering cross section exhibits dramatic changes depending on the occurrence of either a near resonance or a bound state or the situation in between, that is a bound state at zero energy. Such state is singular in that it has an infinite scattering length, behaves for the eigenvalues but not for the eigenfunctions as an exceptional point and has no pole in the scattering function. These results should be observable whenever the interaction or scattering length can be controlled. (authors)

  18. On reliability of singular-value decomposition in attractor reconstruction

    International Nuclear Information System (INIS)

    Palus, M.; Dvorak, I.

    1990-12-01

    Applicability of singular-value decomposition for reconstructing the strange attractor from one-dimensional chaotic time series, proposed by Broomhead and King, is extensively tested and discussed. Previously published doubts about its reliability are confirmed: singular-value decomposition, by nature a linear method, is only of a limited power when nonlinear structures are studied. (author). 29 refs, 9 figs

  19. K3-fibered Calabi-Yau threefolds II, singular fibers

    OpenAIRE

    Hunt, Bruce

    1999-01-01

    In part I of this paper we constructed certain fibered Calabi-Yaus by a quotient construction in the context of weighted hypersurfaces. In this paper look at the case of K3 fibrations more closely and study the singular fibers which occur. This differs from previous work since the fibrations we discuss have constant modulus, and the singular fibers have torsion monodromy.

  20. Stability of naked singularity arising in gravitational collapse of Type ...

    Indian Academy of Sciences (India)

    to choose the velocity function and rest of the initial data so that the end state of collapse is either a black hole (BH) or a naked singularity (NS). This result is significant for two reasons: (1) It produces a substantially 'big' initial data set which under gravitational collapse results into a naked singularity. (2) Type I matter fields.

  1. A numerical method for solving singular De`s

    Energy Technology Data Exchange (ETDEWEB)

    Mahaver, W.T.

    1996-12-31

    A numerical method is developed for solving singular differential equations using steepest descent based on weighted Sobolev gradients. The method is demonstrated on a variety of first and second order problems, including linear constrained, unconstrained, and partially constrained first order problems, a nonlinear first order problem with irregular singularity, and two second order variational problems.

  2. Reliable finite element methods for self-adjoint singular perturbation ...

    African Journals Online (AJOL)

    It is well known that the standard finite element method based on the space Vh of continuous piecewise linear functions is not reliable in solving singular perturbation problems. It is also known that the solution of a two-point boundaryvalue singular perturbation problem admits a decomposition into a regular part and a finite ...

  3. Singular Differential Equations and g-Drazin Invertible Operators

    Directory of Open Access Journals (Sweden)

    Alrazi Abdeljabbar

    2016-01-01

    Full Text Available We extend results of Favini, Nashed, and Zhao on singular differential equations using the g-Drazin inverse and the order of a quasinilpotent operator in the sense of Miekka and Nevanlinna. Two classes of singularly perturbed differential equations are studied using the continuity properties of the g-Drazin inverse obtained by Koliha and Rakočević.

  4. Singular Differential Equations and g-Drazin Invertible Operators

    OpenAIRE

    Abdeljabbar, Alrazi; Tran, Trung Dinh

    2016-01-01

    We extend results of Favini, Nashed, and Zhao on singular differential equations using the g-Drazin inverse and the order of a quasinilpotent operator in the sense of Miekka and Nevanlinna. Two classes of singularly perturbed differential equations are studied using the continuity properties of the g-Drazin inverse obtained by Koliha and Rakočević.

  5. Periodic solutions to second-order indefinite singular equations

    Czech Academy of Sciences Publication Activity Database

    Hakl, Robert; Zamora, M.

    2017-01-01

    Roč. 263, č. 1 (2017), s. 451-469 ISSN 0022-0396 Institutional support: RVO:67985840 Keywords : degree theory * indefinite singularity * periodic solution * singular differential equation Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.988, year: 2016 http://www.sciencedirect.com/science/article/pii/S0022039617301134

  6. Some BMO estimates for vector-valued multilinear singular integral ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    the multilinear operator related to some singular integral operators is obtained. The main purpose of this paper is to establish the BMO end-point estimates for some vector-valued multilinear operators related to certain singular integral operators. First, let us introduce some notations [10,16]. Throughout this paper, Q = Q(x,r).

  7. Infinite derivative gravity : non-singular cosmology & blackhole solutions

    NARCIS (Netherlands)

    Mazumdar, Anupam

    2017-01-01

    Both Einstein's theory of General Relativity and Newton's theory of gravity possess a short dis- tance and small time scale catastrophe. The blackhole singularity and cosmological Big Bang singularity problems highlight that current theories of gravity are incomplete description at early times and

  8. A Note on Inclusion Intervals of Matrix Singular Values

    Directory of Open Access Journals (Sweden)

    Shu-Yu Cui

    2012-01-01

    Full Text Available We establish an inclusion relation between two known inclusion intervals of matrix singular values in some special case. In addition, based on the use of positive scale vectors, a known inclusion interval of matrix singular values is also improved.

  9. The Metaphysics and Epistemology of Singular Terms | Borg ...

    African Journals Online (AJOL)

    Can we draw apart questions of what it is to be a singular term (a metaphysical issue) from questions about how we tell when some expression is a singular term (an epistemological matter)? Prima facie, it might seem we can't: language, as a man-made edifice, might seem to prohibit such a distinction, and, indeed, some ...

  10. One Critical Case in Singularly Perturbed Control Problems

    Science.gov (United States)

    Sobolev, Vladimir

    2017-02-01

    The aim of the paper is to describe the special critical case in the theory of singularly perturbed optimal control problems. We reduce the original singularly perturbed problem to a regularized one such that the existence of slow integral manifolds can be established by means of the standard theory. We illustrate our approach by an example of control problem.

  11. Singularity is the future of ICT research | Osuagwu | West African ...

    African Journals Online (AJOL)

    Proponents of the singularity call the event an "intelligence explosion" which is a key factor of the Singularity where super-intelligence design successive generations of increasingly powerful minds. The originator of the term – Vernor Vinge - and popularized by Ray Kurzwei has proposed that Artificial Intelligence, human ...

  12. Workshop on Singularities in Geometry, Topology, Foliations and Dynamics

    CERN Document Server

    Lê, Dung; Oka, Mutsuo; Snoussi, Jawad

    2017-01-01

    This book features state-of-the-art research on singularities in geometry, topology, foliations and dynamics and provides an overview of the current state of singularity theory in these settings. Singularity theory is at the crossroad of various branches of mathematics and science in general. In recent years there have been remarkable developments, both in the theory itself and in its relations with other areas. The contributions in this volume originate from the “Workshop on Singularities in Geometry, Topology, Foliations and Dynamics”, held in Merida, Mexico, in December 2014, in celebration of José Seade’s 60th Birthday. It is intended for researchers and graduate students interested in singularity theory and its impact on other fields.

  13. Detection of Singularities in Fingerprint Images Using Linear Phase Portraits

    Science.gov (United States)

    Ram, Surinder; Bischof, Horst; Birchbauer, Josef

    abstract The performance of fingerprint recognition depends heavily on the reliable extraction of singularities. Common algorithms are based on a Poinc’are Index estimation. These algorithms are only robust when certain heuristics and rules are applied. In this chapter we present a model-based approach for the detection of singular points. The presented method exploits the geometric nature of linear differential equation systems. Our method is robust against noise in the input image and is able to detect singularities even if they are partly occluded. The algorithm proceeds by fitting linear phase portraits at each location of a sliding window and then analyses its parameters. Using a well-established mathematical background, our algorithm is able to decide if a singular point is existent. Furthermore, the parameters can be used to classify the type of the singular point into whorls, deltas and loops.

  14. 3rd Singularity Theory Meeting of Northeast region & the Brazil-Mexico 2nd Meeting on Singularities

    CERN Document Server

    Neto, Aurélio; Mond, David; Saia, Marcelo; Snoussi, Jawad; BMMS 2/NBMS 3; ENSINO; Singularities and foliations geometry, topology and applications

    2018-01-01

    This proceedings book brings selected works from two conferences, the 2nd Brazil-Mexico Meeting on Singularity and the 3rd Northeastern Brazilian Meeting on Singularities, that were hold in Salvador, in July 2015. All contributions were carefully peer-reviewed and revised, and cover topics like Equisingularity, Topology and Geometry of Singularities, Topological Classification of Singularities of Mappings, and more. They were written by mathematicians from several countries, including Brazil, Spain, Mexico, Japan and the USA, on relevant topics on Theory of Singularity, such as studies on deformations, Milnor fibration, foliations, Catastrophe theory, and myriad applications. Open problems are also introduced, making this volume a must-read both for graduate students and active researchers in this field.

  15. Allegheny County Addressing Landmarks

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains address points which represent physical address locations assigned by the Allegheny County addressing authority. Data is updated by County...

  16. Allegheny County Address Points

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains address points which represent physical address locations assigned by the Allegheny County addressing authority. Data is updated by County...

  17. Application of generalized singular value decomposition to ionospheric tomography

    Directory of Open Access Journals (Sweden)

    K. Bhuyan

    2004-11-01

    Full Text Available The electron density distribution of the low- and mid-latitude ionosphere has been investigated by the computerized tomography technique using a Generalized Singular Value Decomposition (GSVD based algorithm. Model ionospheric total electron content (TEC data obtained from the International Reference Ionosphere 2001 and slant relative TEC data measured at a chain of three stations receiving transit satellite transmissions in Alaska, USA are used in this analysis. The issue of optimum efficiency of the GSVD algorithm in the reconstruction of ionospheric structures is being addressed through simulation of the equatorial ionization anomaly (EIA, in addition to its application to investigate complicated ionospheric density irregularities. Results show that the Generalized Cross Validation approach to find the regularization parameter and the corresponding solution gives a very good reconstructed image of the low-latitude ionosphere and the EIA within it. Provided that some minimum norm is fulfilled, the GSVD solution is found to be least affected by considerations, such as pixel size and number of ray paths. The method has also been used to investigate the behaviour of the mid-latitude ionosphere under magnetically quiet and disturbed conditions.

  18. Nonplanar on-shell diagrams and leading singularities of scattering amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baoyi; Cheung, Yeuk-Kwan E.; Li, Yunxuan; Xie, Ruofei; Xin, Yuan [Nanjing University, Department of Physics, Nanjing (China); Chen, Gang [Zhejiang Normal University, Department of Physics, Jinhua, Zhejiang (China); Nanjing University, Department of Physics, Nanjing (China)

    2017-02-15

    Bipartite on-shell diagrams are the latest tool in constructing scattering amplitudes. In this paper we prove that a Britto-Cachazo-Feng-Witten (BCFW) decomposable on-shell diagram process a rational top form if and only if the algebraic ideal comprised the geometrical constraints are shifted linearly during successive BCFW integrations. With a proper geometric interpretation of the constraints in the Grassmannian manifold, the rational top form integration contours can thus be obtained, and understood, in a straightforward way. All rational top form integrands of arbitrary higher loops leading singularities can therefore be derived recursively, as long as the corresponding on-shell diagram is BCFW decomposable. (orig.)

  19. Propagation property of the non-paraxial vector Lissajous singularity beams in free space

    Science.gov (United States)

    Chen, Haitao; Gao, Zenghui

    2016-12-01

    The analytic expressions for the free-space propagation of paraxial and non-paraxial vector Lissajous singularity beams are derived, and used to compare the propagation property of a Lissajous singularity carried by paraxial and non-paraxial vector beams in free space. It is found that the creation of a single Lissajous singularity, the creation and annihilation of pairs Lissajous singularities may take place for the both cases. However, after the annihilation of a pair of singularities, no Lissajous singularities appear in the output field for non-paraxial vector Lissajous singularity beams, which is different from the paraxial vector Lissajous singularity beams.

  20. Quantum healing of classical singularities in power-law spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Helliwell, T M [Department of Physics, Harvey Mudd College, Claremont, CA 91711 (United States); Konkowski, D A [Department of Mathematics, US Naval Academy, Annapolis, MD 21402 (United States)

    2007-07-07

    We study a broad class of spacetimes whose metric coefficients reduce to powers of a radius r in the limit of small r. Among these four-parameter 'power-law' metrics, we identify those parameters for which the spacetimes have classical singularities as r {yields} 0. We show that a large set of such classically-singular spacetimes is nevertheless non-singular quantum mechanically, in that the Hamiltonian operator is essentially self-adjoint, so that the evolution of quantum wave packets lacks the ambiguity associated with scattering off singularities. Using these metrics, the broadest class yet studied to compare classical with quantum singularities, we explore the physical reasons why some that are singular classically are 'healed' quantum mechanically, while others are not. We show that most (but not all) of the remaining quantum-mechanically singular spacetimes can be excluded if either the weak energy condition or the dominant energy condition is invoked, and we briefly discuss the effect of this work on the strong cosmic censorship conjecture.

  1. Terminal singularities, Milnor numbers, and matter in F-theory

    Science.gov (United States)

    Arras, Philipp; Grassi, Antonella; Weigand, Timo

    2018-01-01

    We initiate a systematic investigation of F-theory on elliptic fibrations with singularities which cannot be resolved without breaking the Calabi-Yau condition, corresponding to Q-factorial terminal singularities. It is the purpose of this paper to elucidate the physical origin of such non-crepant singularities in codimension two and to systematically analyze F-theory compactifications containing such singularities. The singularities reflect the presence of localized matter states from wrapped M2-branes which are not charged under any massless gauge potential. We identify a class of Q-factorial terminal singularities on elliptically fibered Calabi-Yau threefolds for which we can compute the number of uncharged localized hypermultiplets in terms of their associated Milnor numbers. These count the local complex deformations of the singularities. The resulting six-dimensional spectra are shown to be anomaly-free. We exemplify this in a variety of cases, including models with non-perturbative gauge groups with both charged and uncharged localized matter. The underlying mathematics will be discussed further in a forthcoming publication.

  2. Solutions of dissimilar material singularity and contact problems

    International Nuclear Information System (INIS)

    Yang, Y.

    2003-09-01

    Due to the mismatch of the material properties of joined components, after a homogeneous temperature change or under a mechanical loading, very high stresses occur near the intersection of the interface and the outer surface, or near the intersection of two interfaces. For most material combinations and joint geometries, there exists even a stress singularity. These high stresses may cause fracture of the joint. The investigation of the stress situation near the singular point, therefore, is of great interest. Especially, the relationship between the singular stress exponent, the material data and joint geometry is important for choosing a suitable material combination and joint geometry. In this work, the singular stress field is described analytically in case of the joint having a real and a complex eigenvalue. Solutions of different singularity problems are given, which are two dissimilar materials joint with free edges; dissimilar materials joint with edge tractions; joint with interface corner; joint with a given displacement at one edge; cracks in dissimilar materials joint; contact problem in dissimilar materials and logarithmic stress singularity. For an arbitrary joint geometry and material combination, the stress singular exponent, the angular function and the regular stress term can be calculated analytically. The stress intensity factors for a finite joint can be determined applying numerical methods, e.g. the finite element method (FEM). The method to determine more than one stress intensity factor is presented. The characteristics of the eigenvalues and the stress intensity factors are shown for different joint conditions. (orig.)

  3. Singular Dimensions of theN= 2 Superconformal Algebras. I

    Science.gov (United States)

    Dörrzapf, Matthias; Gato-Rivera, Beatriz

    Verma modules of superconfomal algebras can have singular vector spaces with dimensions greater than 1. Following a method developed for the Virasoro algebra by Kent, we introduce the concept of adapted orderings on superconformal algebras. We prove several general results on the ordering kernels associated to the adapted orderings and show that the size of an ordering kernel implies an upper limit for the dimension of a singular vector space. We apply this method to the topological N= 2 algebra and obtain the maximal dimensions of the singular vector spaces in the topological Verma modules: 0, 1, 2 or 3 depending on the type of Verma module and the type of singular vector. As a consequence we prove the conjecture of Gato-Rivera and Rosado on the possible existing types of topological singular vectors (4 in chiral Verma modules and 29 in complete Verma modules). Interestingly, we have found two-dimensional spaces of singular vectors at level 1. Finally, by using the topological twists and the spectral flows, we also obtain the maximal dimensions of the singular vector spaces for the Neveu-Schwarz N= 2 algebra (0, 1 or 2) and for the Ramond N= 2 algebra (0, 1, 2 or 3).

  4. An investigation of singular Lagrangians as field systems

    International Nuclear Information System (INIS)

    Rabei, E.M.

    1995-07-01

    The link between the treatment of singular Lagrangians as field systems and the general approach is studied. It is shown that singular Lagrangians as field systems are always in exact agreement with the general approach. Two examples and the singular Lagrangian with zero rank Hessian matrix are studied. The equations of motion in the field systems are equivalent to the equations which contain acceleration, and the constraints are equivalent to the equations which do not contain acceleration in the general approach treatment. (author). 10 refs

  5. Singularity Preserving Numerical Methods for Boundary Integral Equations

    Science.gov (United States)

    Kaneko, Hideaki (Principal Investigator)

    1996-01-01

    In the past twelve months (May 8, 1995 - May 8, 1996), under the cooperative agreement with Division of Multidisciplinary Optimization at NASA Langley, we have accomplished the following five projects: a note on the finite element method with singular basis functions; numerical quadrature for weakly singular integrals; superconvergence of degenerate kernel method; superconvergence of the iterated collocation method for Hammersteion equations; and singularity preserving Galerkin method for Hammerstein equations with logarithmic kernel. This final report consists of five papers describing these projects. Each project is preceeded by a brief abstract.

  6. Repulsive and attractive timelike singularities in vacuum cosmologies

    International Nuclear Information System (INIS)

    Miller, B.D.

    1979-01-01

    Spherically symmetric cosmologies whose big bang is partially spacelike and partially timelike are constrained to occur only in the presence of certain types of matter, and in such cosmologies the timelike part of the big bang is a negative-mass singularity. In this paper examples are given of cylindrically symmetric cosmologies whose big bang is partially spacelike and partially timelike. These cosmologies are vacuum. In some of them, the timelike part of the big bang is clearly a (generalized) negative-mass singularity, while in others it is a (generalized) positive-mass singularity

  7. Finger image quality based on singular point localization

    DEFF Research Database (Denmark)

    Wang, Jinghua; Olsen, Martin A.; Busch, Christoph

    2014-01-01

    Singular points are important global features of fingerprints and singular point localization is a crucial step in biometric recognition. Moreover the presence and position of the core point in a captured fingerprint sample can reflect whether the finger is placed properly on the sensor. Therefore...... and analyze the importance of singular points on biometric accuracy. The experiment is based on large scale databases and conducted by relating the measured quality of a fingerprint sample, given by the positions of core points, to the biometric performance. The experimental results show the positions of core...

  8. Gauss-Jacobi quadratures for weakly, strongly, hyper- and nearly-singular integrals in boundary integral equation methods for domains with sharp edges and corners

    Science.gov (United States)

    Tsalamengas, John L.

    2016-11-01

    We present Gauss-Jacobi quadrature rules in terms of hypergeometric functions for the discretization of weakly singular, strongly singular, hypersingular, and nearly singular integrals that arise in integral equation formulations of potential problems for domains with sharp edges and corners. The rules are tailored to weight functions with algebraic endpoint singularities of a fairly general form, thus allowing one to easily incorporate a wide class of domains into the analysis. Numerical examples illustrate the accuracy and stability of the proposed algorithms; it is shown that the same level of high accuracy can be achieved for any choice of the external variable. The usefulness of the method is exemplified by application to the solution of a singular integral equation that arises in time-harmonic electromagnetic scattering by either closed or open perfectly conducting cylindrical objects with edges and corners, such as polygon cylinders and bent strips. Some practical aspects concerning the role of nearby singularities in achieving a highly accurate solution of singular integral equations are, also, discussed.

  9. Singularity fitting in hydrodynamical calculations II

    International Nuclear Information System (INIS)

    Richtmyer, R.D.; Lazarus, R.B.

    1975-09-01

    This is the second report in a series on the development of techniques for the proper handling of singularities in fluid-dynamical calculations; the first was called Progress Report on the Shock-Fitting Project. This report contains six main results: derivation of a free-surface condition, which relates the acceleration of the surface with the gradient of the square of the sound speed just behind it; an accurate method for the early and middle stages of the development of a rarefaction wave, two orders of magnitude more accurate than a simple direct method used for comparison; the similarity theory of the collapsing free surface, where it is shown that there is a two-parameter family of self-similar solutions for γ = 3.9; the similarity theory for the outgoing shock, which takes into account the entropy increase; a ''zooming'' method for the study of the asymptotic behavior of solutions of the full initial boundary-value problem; comparison of two methods for determining the similarity parameter delta by zooming, which shows that the second method is preferred. Future reports in the series will contain discussions of the self-similar solutions for this problem, and for that of the collapsing shock, in more detail and for the full range (1, infinity) of γ; the values of certain integrals related to neutronic and thermonuclear rates near collapse; and methods for fitting shocks, contact discontinuities, interfaces, and free surfaces in two-dimensional flows

  10. Singular perturbation in the physical sciences

    CERN Document Server

    Neu, John C

    2015-01-01

    This book is the testimony of a physical scientist whose language is singular perturbation analysis. Classical mathematical notions, such as matched asymptotic expansions, projections of large dynamical systems onto small center manifolds, and modulation theory of oscillations based either on multiple scales or on averaging/transformation theory, are included. The narratives of these topics are carried by physical examples: Let's say that the moment when we "see" how a mathematical pattern fits a physical problem is like "hitting the ball." Yes, we want to hit the ball. But a powerful stroke includes the follow-through. One intention of this book is to discern in the structure and/or solutions of the equations their geometric and physical content. Through analysis, we come to sense directly the shape and feel of phenomena. The book is structured into a main text of fundamental ideas and a subtext of problems with detailed solutions. Roughly speaking, the former is the initial contact between mathematics and p...

  11. Singular limits in thermodynamics of viscous fluids

    CERN Document Server

    Feireisl, Eduard

    2017-01-01

    This book is about singular limits of systems of partial differential equations governing the motion of thermally conducting compressible viscous fluids. "The main aim is to provide mathematically rigorous arguments how to get from the compressible Navier-Stokes-Fourier system several less complex systems of partial differential equations used e.g. in meteorology or astrophysics. However, the book contains also a detailed introduction to the modelling in mechanics and thermodynamics of fluids from the viewpoint of continuum physics. The book is very interesting and important. It can be recommended not only to specialists in the field, but it can also be used for doctoral students and young researches who want to start to work in the mathematical theory of compressible fluids and their asymptotic limits." Milan Pokorný (zbMATH) "This book is of the highest quality from every point of view. It presents, in a unified way, recent research material of fundament al importance. It is self-contained, thanks to Chapt...

  12. Optimal control of dissipative nonlinear dynamical systems with triggers of coupled singularities

    International Nuclear Information System (INIS)

    Hedrih, K

    2008-01-01

    This paper analyses the controllability of motion of nonconservative nonlinear dynamical systems in which triggers of coupled singularities exist or appear. It is shown that the phase plane method is useful for the analysis of nonlinear dynamics of nonconservative systems with one degree of freedom of control strategies and also shows the way it can be used for controlling the relative motion in rheonomic systems having equivalent scleronomic conservative or nonconservative system For the system with one generalized coordinate described by nonlinear differential equation of nonlinear dynamics with trigger of coupled singularities, the functions of system potential energy and conservative force must satisfy some conditions defined by a Theorem on the existence of a trigger of coupled singularities and the separatrix in the form of 'an open a spiral form' of number eight. Task of the defined dynamical nonconservative system optimal control is: by using controlling force acting to the system, transfer initial state of the nonlinear dynamics of the system into the final state of the nonlinear dynamics in the minimal time for that optimal control task

  13. Optimal control of dissipative nonlinear dynamical systems with triggers of coupled singularities

    Energy Technology Data Exchange (ETDEWEB)

    Hedrih, K [Faculty of Mechanical Engineering University of Nis, Mathematical Institute SANU, ul. Vojvode Tankosic 3/V/22, 18000-Nis (Serbia)], E-mail: katica@masfak.ni.ac.yu, E-mail: khedrih@eunet.yu

    2008-02-15

    This paper analyses the controllability of motion of nonconservative nonlinear dynamical systems in which triggers of coupled singularities exist or appear. It is shown that the phase plane method is useful for the analysis of nonlinear dynamics of nonconservative systems with one degree of freedom of control strategies and also shows the way it can be used for controlling the relative motion in rheonomic systems having equivalent scleronomic conservative or nonconservative system For the system with one generalized coordinate described by nonlinear differential equation of nonlinear dynamics with trigger of coupled singularities, the functions of system potential energy and conservative force must satisfy some conditions defined by a Theorem on the existence of a trigger of coupled singularities and the separatrix in the form of 'an open a spiral form' of number eight. Task of the defined dynamical nonconservative system optimal control is: by using controlling force acting to the system, transfer initial state of the nonlinear dynamics of the system into the final state of the nonlinear dynamics in the minimal time for that optimal control task.

  14. A spin-liquid with pinch-line singularities on the pyrochlore lattice.

    Science.gov (United States)

    Benton, Owen; Jaubert, L D C; Yan, Han; Shannon, Nic

    2016-05-26

    The mathematics of gauge theories lies behind many of the most profound advances in physics in the past 200 years, from Maxwell's theory of electromagnetism to Einstein's theory of general relativity. More recently it has become clear that gauge theories also emerge in condensed matter, a prime example being the spin-ice materials which host an emergent electromagnetic gauge field. In spin-ice, the underlying gauge structure is revealed by the presence of pinch-point singularities in neutron-scattering measurements. Here we report the discovery of a spin-liquid where the low-temperature physics is naturally described by the fluctuations of a tensor field with a continuous gauge freedom. This gauge structure underpins an unusual form of spin correlations, giving rise to pinch-line singularities: line-like analogues of the pinch points observed in spin-ice. Remarkably, these features may already have been observed in the pyrochlore material Tb2Ti2O7.

  15. Fuzzy Stochastic Optimal Guaranteed Cost Control of Bio-Economic Singular Markovian Jump Systems.

    Science.gov (United States)

    Li, Li; Zhang, Qingling; Zhu, Baoyan

    2015-11-01

    This paper establishes a bio-economic singular Markovian jump model by considering the price of the commodity as a Markov chain. The controller is designed for this system such that its biomass achieves the specified range with the least cost in a finite-time. Firstly, this system is described by Takagi-Sugeno fuzzy model. Secondly, a new design method of fuzzy state-feedback controllers is presented to ensure not only the regularity, nonimpulse, and stochastic singular finite-time boundedness of this kind of systems, but also an upper bound achieved for the cost function in the form of strict linear matrix inequalities. Finally, two examples including a practical example of eel seedling breeding are given to illustrate the merit and usability of the approach proposed in this paper.

  16. Singularities of the transmission coefficient and anomalous scattering by a dielectric slab

    Science.gov (United States)

    Shestopalov, Yury

    2018-03-01

    We prove the existence and describe the distribution on the complex plane of the singularities, resonant states (RSs), of the transmission coefficient in the problem of the plane wave scattering by a parallel-plate dielectric slab in free space. It is shown that the transmission coefficient has isolated poles all with nonzero imaginary parts that form countable sets in the complex plane of the refraction index or permittivity of the slab with the only accumulation point at infinity. The transmission coefficient never vanishes and anomalous scattering, when its modulus exceeds unity, occurs at arbitrarily small loss of the dielectric filling the layer. These results are extended to the cases of scattering by arbitrary multi-layer parallel-plane media. Connections are established between RSs, spectral singularities, eigenvalues of the associated Sturm-Liouville problems on the line, and zeros of the corresponding Jost function.

  17. Singular perturbation for nonlinear boundary-value problems

    Directory of Open Access Journals (Sweden)

    Rina Ling

    1979-01-01

    studied. The problem is a model arising in nuclear energy distribution. For large values of the parameter, the differential equations are of the singular-perturbation type and approximations are constructed by the method of matched asymptotic expansions.

  18. A constraint algorithm for singular Lagrangians subjected to nonholonomic constraints

    Energy Technology Data Exchange (ETDEWEB)

    de Leon, M. [Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain); de Diego, D.M. [Departamento de Economia Aplicada Cuantitativa, Facultad de Ciencias Economicas y Empresariales, UNED, 28040 Madrid (Spain)

    1997-06-01

    We construct a constraint algorithm for singular Lagrangian systems subjected to nonholonomic constraints which generalizes that of Dirac for constrained Hamiltonian systems. {copyright} {ital 1997 American Institute of Physics.}

  19. A singular value sensitivity approach to robust eigenstructure assignment

    DEFF Research Database (Denmark)

    Søgaard-Andersen, Per; Trostmann, Erik; Conrad, Finn

    1986-01-01

    A design technique for improving the feedback properties of multivariable state feedback systems designed using eigenstructure assignment is presented. Based on a singular value analysis of the feedback properties a design parameter adjustment procedure is outlined. This procedure allows...

  20. Quantum gravitational collapse: non-singularity and non-locality

    International Nuclear Information System (INIS)

    Greenwood, Eric; Stojkovic, Dejan

    2008-01-01

    We investigate gravitational collapse in the context of quantum mechanics. We take primary interest in the behavior of the collapse near the horizon and near the origin (classical singularity) from the point of view of an infalling observer. In the absence of radiation, quantum effects near the horizon do not change the classical conclusions for an infalling observer, meaning the horizon is not an obstacle for him. However, quantum effects are able to remove the classical singularity at the origin, since the wave function is non-singular at the origin. Also, near the classical singularity, some non-local effects become important. In the Schrodinger equation describing behavior near the origin, derivatives of the wave function at one point are related to the value of the wave function at some other distant point.

  1. A singularity-free WEC-respecting time machine

    OpenAIRE

    Krasnikov, S. V.

    1997-01-01

    A time machine (TM) is constructed whose creating in contrast to all TMs known so far requires neither singularities, nor violation of the weak energy condition (WEC). The spacetime exterior to the TM closely resembles the Friedmann universe.

  2. Pulses in singularly perturbed reaction-diffusion systems

    NARCIS (Netherlands)

    Veerman, Frederik Willem Johan

    2013-01-01

    In this thesis, the existence and stability of pulse solutions in two-component, singularly perturbed reaction-diffusion systems is analysed using dynamical systems techniques. New phenomena in very general types of systems emerge when geometrical techniques are applied.

  3. Propagation of singularities for linearised hybrid data impedance tomography

    DEFF Research Database (Denmark)

    Bal, Guillaume; Hoffmann, Kristoffer; Knudsen, Kim

    2017-01-01

    For a general formulation of linearised hybrid inverse problems in impedance tomography, the qualitative properties of the solutions are analysed. Using an appropriate scalar pseudo-differential formulation, the problems are shown to permit propagating singularities under certain non...

  4. Object detection with a multistatic array using singular value decomposition

    Science.gov (United States)

    Hallquist, Aaron T.; Chambers, David H.

    2014-07-01

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across a surface and that travels down the surface. The detection system converts the return signals from a time domain to a frequency domain, resulting in frequency return signals. The detection system then performs a singular value decomposition for each frequency to identify singular values for each frequency. The detection system then detects the presence of a subsurface object based on a comparison of the identified singular values to expected singular values when no subsurface object is present.

  5. Statistical analysis of effective singular values in matrix rank determination

    Science.gov (United States)

    Konstantinides, Konstantinos; Yao, Kung

    1988-01-01

    A major problem in using SVD (singular-value decomposition) as a tool in determining the effective rank of a perturbed matrix is that of distinguishing between significantly small and significantly large singular values to the end, conference regions are derived for the perturbed singular values of matrices with noisy observation data. The analysis is based on the theories of perturbations of singular values and statistical significance test. Threshold bounds for perturbation due to finite-precision and i.i.d. random models are evaluated. In random models, the threshold bounds depend on the dimension of the matrix, the noisy variance, and predefined statistical level of significance. Results applied to the problem of determining the effective order of a linear autoregressive system from the approximate rank of a sample autocorrelation matrix are considered. Various numerical examples illustrating the usefulness of these bounds and comparisons to other previously known approaches are given.

  6. Geometric singular perturbation analysis of systems with friction

    DEFF Research Database (Denmark)

    Bossolini, Elena

    This thesis is concerned with the application of geometric singular perturbation theory to mechanical systems with friction. The mathematical background on geometric singular perturbation theory, on the blow-up method, on non-smooth dynamical systems and on regularization is presented. Thereafter...... use a Poincaré compactification to study the system near infinity. At infinity, the critical manifold loses hyperbolicity with an exponential rate. We use an adaptation of the blow-up method to recover the hyperbolicity. This enables the identification of a new attracting manifold, that organises...... singular, in contrast to the regular stiction solutions that are forward unique. In order to further the understanding of the non-unique dynamics, we introduce a regularization of the model. This gives a singularly perturbed problem that captures the main features of the original discontinuous problem. We...

  7. Singularities of robot mechanisms numerical computation and avoidance path planning

    CERN Document Server

    Bohigas, Oriol; Ros, Lluís

    2017-01-01

    This book presents the singular configurations associated with a robot mechanism, together with robust methods for their computation, interpretation, and avoidance path planning. Having such methods is essential as singularities generally pose problems to the normal operation of a robot, but also determine the workspaces and motion impediments of its underlying mechanical structure. A distinctive feature of this volume is that the methods are applicable to nonredundant mechanisms of general architecture, defined by planar or spatial kinematic chains interconnected in an arbitrary way. Moreover, singularities are interpreted as silhouettes of the configuration space when seen from the input or output spaces. This leads to a powerful image that explains the consequences of traversing singular configurations, and all the rich information that can be extracted from them. The problems are solved by means of effective branch-and-prune and numerical continuation methods that are of independent interest in themselves...

  8. Two-Sided Gravitational Mirror: Sealing off Curvature Singularities

    OpenAIRE

    Davidson, Aharon; Yellin, Ben

    2011-01-01

    A gravitational mirror is a non-singular finite redshift surface which bounces all incident null geodesics. While a white mirror (outward bouncing) resembles 't Hooft's brick wall, a black mirror (inward bouncing) offers a novel mechanism for sealing off curvature singularities. The geometry underlying a two-sided mirror is characterized by a single signature change, to be contrasted with the signature flip which governs the black hole geometry. To demonstrate the phenomenon analytically, we ...

  9. Wave-breaking and generic singularities of nonlinear hyperbolic equations

    International Nuclear Information System (INIS)

    Pomeau, Yves; Le Berre, Martine; Guyenne, Philippe; Grilli, Stephan

    2008-01-01

    Wave-breaking is studied analytically first and the results are compared with accurate numerical simulations of 3D wave-breaking. We focus on the time dependence of various quantities becoming singular at the onset of breaking. The power laws derived from general arguments and the singular behaviour of solutions of nonlinear hyperbolic differential equations are in excellent agreement with the numerical results. This shows the power of the analysis by methods using generic concepts of nonlinear science. (open problem)

  10. Uniqueness of singular solution of semilinear elliptic equation

    Indian Academy of Sciences (India)

    Nonhomogeneous semilinear elliptic equation; positive solutions; asymptotic behavior; singular ... a removable singular point of a solution of equation (1.1), the existence of the derivatives of the solution depends on the 'blow up' ..... On the other hand, for 0 <ε

  11. Singularity confinement for maps with the Laurent property

    International Nuclear Information System (INIS)

    Hone, A.N.W.

    2007-01-01

    The singularity confinement test is very useful for isolating integrable cases of discrete-time dynamical systems, but it does not provide a sufficient criterion for integrability. Quite recently a new property of the bilinear equations appearing in discrete soliton theory has been noticed: The iterates of such equations are Laurent polynomials in the initial data. A large class of non-integrable mappings of the plane are presented which both possess this Laurent property and have confined singularities

  12. Resonance scattering and singularities of the scattering function

    Energy Technology Data Exchange (ETDEWEB)

    Heiss, W.D. [National Institute for Theoretical Physics, Stellenbosch Institute for Advanced Study, and Institute of Theoretical Physics, University of Stellenbosch (South Africa); Nazmitdinov, R.G. [Department de Fisica, Universitat de les Illes Balears, Palma de Mallorca (Spain); Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2010-05-15

    Recent studies of transport phenomena with complex potentials are explained by generic square root singularities of spectrum and eigenfunctions of non-Hermitian Hamiltonians. Using a two channel problem we demonstrate that such singularities produce a significant effect upon the pole behaviour of the scattering matrix, and more significantly upon the associated residues. This mechanism explains why by proper choice of the system parameters the resonance cross section is increased drastically in one channel and suppressed in the other channel. (authors)

  13. Multifractal signal reconstruction based on singularity power spectrum

    International Nuclear Information System (INIS)

    Xiong, Gang; Yu, Wenxian; Xia, Wenxiang; Zhang, Shuning

    2016-01-01

    Highlights: • We propose a novel multifractal reconstruction method based on singularity power spectrum analysis (MFR-SPS). • The proposed MFR-SPS method has better power characteristic than the algorithm in Fraclab. • Further, the SPS-ISE algorithm performs better than the SPS-MFS algorithm. • Based on the proposed MFR-SPS method, we can restructure singularity white fractal noise (SWFN) and linear singularity modulation (LSM) multifractal signal, in equivalent sense, similar with the linear frequency modulation(LFM) signal and WGN in the Fourier domain. - Abstract: Fractal reconstruction (FR) and multifractal reconstruction (MFR) can be considered as the inverse problem of singularity spectrum analysis, and it is challenging to reconstruct fractal signal in accord with multifractal spectrum (MFS). Due to the multiple solutions of fractal reconstruction, the traditional methods of FR/MFR, such as FBM based method, wavelet based method, random wavelet series, fail to reconstruct fractal signal deterministically, and besides, those methods neglect the power spectral distribution in the singular domain. In this paper, we propose a novel MFR method based singularity power spectrum (SPS). Supposing the consistent uniform covering of multifractal measurement, we control the traditional power law of each scale of wavelet coefficients based on the instantaneous singularity exponents (ISE) or MFS, simultaneously control the singularity power law based on the SPS, and deduce the principle and algorithm of MFR based on SPS. Reconstruction simulation and error analysis of estimated ISE, MFS and SPS show the effectiveness and the improvement of the proposed methods compared to those obtained by the Fraclab package.

  14. Modified Differential Transform Method for Two Singular Boundary Values Problems

    Directory of Open Access Journals (Sweden)

    Yinwei Lin

    2014-01-01

    Full Text Available This paper deals with the two singular boundary values problems of second order. Two singular points are both boundary values points of the differential equation. The numerical solutions are developed by modified differential transform method (DTM for expanded point. Linear and nonlinear models are solved by this method to get more reliable and efficient numerical results. It can also solve ordinary differential equations where the traditional one fails. Besides, we give the convergence of this new method.

  15. Averaging approximation to singularly perturbed nonlinear stochastic wave equations

    Science.gov (United States)

    Lv, Yan; Roberts, A. J.

    2012-06-01

    An averaging method is applied to derive effective approximation to a singularly perturbed nonlinear stochastic damped wave equation. Small parameter ν > 0 characterizes the singular perturbation, and να, 0 ⩽ α ⩽ 1/2, parametrizes the strength of the noise. Some scaling transformations and the martingale representation theorem yield the effective approximation, a stochastic nonlinear heat equation, for small ν in the sense of distribution.

  16. Classical resolution of black hole singularities via wormholes

    Energy Technology Data Exchange (ETDEWEB)

    Olmo, Gonzalo J. [Universidad de Valencia, Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Valencia (Spain); Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, Paraiba (Brazil); Rubiera-Garcia, D. [Universidade de Lisboa, Faculdade de Ciencias, Instituto de Astrofisica e Ciencias do Espaco, Lisbon (Portugal); Fudan University, Department of Physics, Center for Field Theory and Particle Physics, Shanghai (China); Sanchez-Puente, A. [Universidad de Valencia, Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Valencia (Spain)

    2016-03-15

    In certain extensions of General Relativity, wormholes generated by spherically symmetric electric fields can resolve black hole singularities without necessarily removing curvature divergences. This is shown by studying geodesic completeness, the behavior of time-like congruences going through the divergent region, and by means of scattering of waves off the wormhole. This provides an example of the logical independence between curvature divergences and space-time singularities, concepts very often identified with each other in the literature. (orig.)

  17. Fields generated by sums and products of singular moduli

    OpenAIRE

    Faye, Bernadette; Riffaut, Antonin

    2017-01-01

    We show that the field $\\mathbb{Q}(x,y)$, generated by two singular moduli~$x$ and~$y$, is generated by their sum ${x+y}$, unless~$x$ and~$y$ are conjugate over~$\\mathbb{Q}$, in which case ${x+y}$ generates a subfield of degree at most~$2$. We obtain a similar result for the product of two singular moduli.

  18. Removal of apparent singularity in grid computations

    International Nuclear Information System (INIS)

    Jakubovics, J.P.

    1993-01-01

    A self-consistency test for magnetic domain wall models was suggested by Aharoni. The test consists of evaluating the ratio S = var-epsilon wall /var-epsilon wall , where var-epsilon wall is the wall energy, and var-epsilon wall is the integral of a certain function of the direction cosines of the magnetization, α, β, γ over the volume occupied by the domain wall. If the computed configuration is a good approximation to one corresponding to an energy minimum, the ratio is close to 1. The integrand of var-epsilon wall contains terms that are inversely proportional to γ. Since γ passes through zero at the centre of the domain wall, these terms have a singularity at these points. The integral is finite and its evaluation does not usually present any problems when the direction cosines are known in terms of continuous functions. In many cases, significantly better results for magnetization configurations of domain walls can be obtained by computations using finite element methods. The direction cosines are then only known at a set of discrete points, and integration over the domain wall is replaced by summation over these points. Evaluation of var-epsilon wall becomes inaccurate if the terms in the summation are taken to be the values of the integrand at the grid points, because of the large contribution of points close to where γ changes sign. The self-consistency test has recently been generalised to a larger number of cases. The purpose of this paper is to suggest a method of improving the accuracy of the evaluation of integrals in such cases. Since the self-consistency test has so far only been applied to two-dimensional magnetization configurations, the problem and its solution will be presented for that specific case. Generalisation to three or more dimensions is straight forward

  19. On the singular values decoupling in the Singular Spectrum Analysis of volcanic tremor at Stromboli

    Directory of Open Access Journals (Sweden)

    R. Carniel

    2006-01-01

    Full Text Available The well known strombolian activity at Stromboli volcano is occasionally interrupted by rarer episodes of paroxysmal activity which can lead to considerable hazard for Stromboli inhabitants and tourists. On 5 April 2003 a powerful explosion, which can be compared in size with the latest one of 1930, covered with bombs a good part of the normally tourist-accessible summit area. This explosion was not forecasted, although the island was by then effectively monitored by a dense deployment of instruments. After having tackled in a previous paper the problem of highlighting the timescale of preparation of this event, we investigate here the possibility of highlighting precursors in the volcanic tremor continuously recorded by a short period summit seismic station. We show that a promising candidate is found by examining the degree of coupling between successive singular values that result from the Singular Spectrum Analysis of the raw seismic data. We suggest therefore that possible anomalies in the time evolution of this parameter could be indicators of volcano instability to be taken into account e.g. in a bayesian eruptive scenario evaluator. Obviously, further (and possibly forward testing on other cases is needed to confirm the usefulness of this parameter.

  20. Self-consistent removal of sawtooth oscillations from transient plasma data by generalized singular value decomposition

    International Nuclear Information System (INIS)

    Erba, M.; Mattioli, M.; Segui, J.L.

    1997-10-01

    This paper addresses the problem of removing sawtooth oscillations from multichannel plasma data in a self-consistent way, thereby preserving transients that have a different physical origin. The technique which does this is called the Generalized Singular Value Decomposition (GSVD), and its properties are discussed. Using the GSVD, we analyze spatially resolved electron temperature measurements from the Tore Supra tokamak, made in transient regimes that are perturbed either by the laser blow-off injection of impurities or by pellet injection. Non-local transport issues are briefly discussed. (author)

  1. IKIGAI: Reflection on Life Goals Optimizes Performance and Happiness : Address delivered in shortened form on the occasion of accepting the appointment of Professor of Behaviour and Performance Management at the Rotterdam School of Management, Erasmus University

    NARCIS (Netherlands)

    M.C. Schippers (Michaéla)

    2017-01-01

    textabstractIn her inaugural address, Michaéla discusses the role of self-regulatory behaviors that people can employ in order to live a full-filling life. These behaviors include reflection and personal goal setting, in order to formulate a direction or purpose in life (Ikigai). In the inaugural

  2. Singular vectors, predictability and ensemble forecasting for weather and climate

    International Nuclear Information System (INIS)

    Palmer, T N; Zanna, Laure

    2013-01-01

    The local instabilities of a nonlinear dynamical system can be characterized by the leading singular vectors of its linearized operator. The leading singular vectors are perturbations with the greatest linear growth and are therefore key in assessing the system’s predictability. In this paper, the analysis of singular vectors for the predictability of weather and climate and ensemble forecasting is discussed. An overview of the role of singular vectors in informing about the error growth rate in numerical models of the atmosphere is given. This is followed by their use in the initialization of ensemble weather forecasts. Singular vectors for the ocean and coupled ocean–atmosphere system in order to understand the predictability of climate phenomena such as ENSO and meridional overturning circulation are reviewed and their potential use to initialize seasonal and decadal forecasts is considered. As stochastic parameterizations are being implemented, some speculations are made about the future of singular vectors for the predictability of weather and climate for theoretical applications and at the operational level. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Lyapunov analysis: from dynamical systems theory to applications’. (review)

  3. Curing Black Hole Singularities with Local Scale Invariance

    Directory of Open Access Journals (Sweden)

    Predrag Dominis Prester

    2016-01-01

    Full Text Available We show that Weyl-invariant dilaton gravity provides a description of black holes without classical space-time singularities. Singularities appear due to the ill behaviour of gauge fixing conditions, one example being the gauge in which theory is classically equivalent to standard General Relativity. The main conclusions of our analysis are as follows: (1 singularities signal a phase transition from broken to unbroken phase of Weyl symmetry; (2 instead of a singularity, there is a “baby universe” or a white hole inside a black hole; (3 in the baby universe scenario, there is a critical mass after which reducing mass makes the black hole larger as viewed by outside observers; (4 if a black hole could be connected with white hole through the “singularity,” this would require breakdown of (classical geometric description; (5 the singularity of Schwarzschild BH solution is nongeneric and so it is dangerous to rely on it in deriving general results. Our results may have important consequences for resolving issues related to information loss puzzle. Though quantum effects are still crucial and may change the proposed classical picture, a position of building quantum theory around essentially regular classical solutions normally provides a much better starting point.

  4. Double parton scattering singularity in one-loop integrals

    Science.gov (United States)

    Gaunt, Jonathan R.; Stirling, W. James

    2011-06-01

    We present a detailed study of the double parton scattering (DPS) singularity, which is a specific type of Landau singularity that can occur in certain one-loop graphs in theories with massless particles. A simple formula for the DPS singular part of a four-point diagram with arbitrary internal/external particles is derived in terms of the transverse momentum integral of a product of light cone wavefunctions with tree-level matrix elements. This is used to reproduce and explain some results for DPS singularities in box integrals that have been obtained using traditional loop integration techniques. The formula can be straightforwardly generalised to calculate the DPS singularity in loops with an arbitrary number of external particles. We use the generalised version to explain why the specific MHV and NMHV six-photon amplitudes often studied by the NLO multileg community are not divergent at the DPS singular point, and point out that whilst all NMHV amplitudes are always finite, certain MHV amplitudes do contain a DPS divergence. It is shown that our framework for calculating DPS divergences in loop diagrams is entirely consistent with the `two-parton GPD' framework of Diehl and Schafer for calculating proton-proton DPS cross sections, but is inconsistent with the `double PDF' framework of Snigirev.

  5. Reach Address Database (RAD)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Reach Address Database (RAD) stores the reach address of each Water Program feature that has been linked to the underlying surface water features (streams,...

  6. Geometric Desingularization of a Cusp Singularity in Slow-Fast Systems with Applications to Zeeman's Examples

    NARCIS (Netherlands)

    Broer, Henk W.; Kaper, Tasso J.; Krupa, Martin

    2013-01-01

    The cusp singularity-a point at which two curves of fold points meet-is a prototypical example in Takens' classification of singularities in constrained equations, which also includes folds, folded saddles, folded nodes, among others. In this article, we study cusp singularities in singularly

  7. The mental representation of singular and plural nouns in Algerian Arabic as revealed through auditory priming in agrammatic aphasic patients.

    Science.gov (United States)

    Mimouni, Z; Kehayia, E; Jarema, G

    1998-01-01

    Working within the theoretical framework of prosodic nonconcatenative morphology developed by McCarthy (1975) for Semitic languages, we addressed, in the present paper, the issues of lexical representation, morphological relatedness, and modes of access in Algerian Arabic--a dialect of Standard Arabic--in an auditory morphological priming experiment. More specifically, we investigated the process of word recognition of singular and plural nouns in the performance of 24 non-brain-damaged subjects and 2 Algerian-speaking agrammatic aphasics. Plurals in Arabic involve either suffixation as in the sound plural (e.g., lbas "dress"/lbasat "dresses"), or stem-internal changes as in the broken plurals (e.g., kursi "chair"/krasa "chairs"). Our findings reveal a differential processing of the two forms, indicating whole word access for broken plurals and decomposition into word and suffix for suffixed plurals. Further, the evidence suggests for Algerian Arabic an architecture of the lexicon reflecting a family-like organization which takes into account language-specific features.

  8. Existence of localizing solutions in plasticity via the geometric singular perturbation theory

    KAUST Repository

    Lee, Min-Gi

    2017-01-31

    Shear bands are narrow zones of intense shear observed during plastic deformations of metals at high strain rates. Because they often precede rupture, their study attracted attention as a mechanism of material failure. Here, we aim to reveal the onset of localization into shear bands using a simple model from viscoplasticity. We exploit the properties of scale invariance of the model to construct a family of self-similar focusing solutions that capture the nonlinear mechanism of shear band formation. The key step is to desingularize a reduced system of singular ordinary differential equations and reduce the problem into the construction of a heteroclinic orbit for an autonomous system of three first-order equations. The associated dynamical system has fast and slow time scales, forming a singularly perturbed problem. Geometric singular perturbation theory is applied to this problem to achieve an invariant surface. The flow on the invariant surface is analyzed via the Poincaré--Bendixson theorem to construct a heteroclinic orbit.

  9. On Singularities and Black Holes in Combination-Driven Models of Technological Innovation Networks.

    Science.gov (United States)

    Solé, Ricard; Amor, Daniel R; Valverde, Sergi

    2016-01-01

    It has been suggested that innovations occur mainly by combination: the more inventions accumulate, the higher the probability that new inventions are obtained from previous designs. Additionally, it has been conjectured that the combinatorial nature of innovations naturally leads to a singularity: at some finite time, the number of innovations should diverge. Although these ideas are certainly appealing, no general models have been yet developed to test the conditions under which combinatorial technology should become explosive. Here we present a generalised model of technological evolution that takes into account two major properties: the number of previous technologies needed to create a novel one and how rapidly technology ages. Two different models of combinatorial growth are considered, involving different forms of ageing. When long-range memory is used and thus old inventions are available for novel innovations, singularities can emerge under some conditions with two phases separated by a critical boundary. If the ageing has a characteristic time scale, it is shown that no singularities will be observed. Instead, a "black hole" of old innovations appears and expands in time, making the rate of invention creation slow down into a linear regime.

  10. On Singularities and Black Holes in Combination-Driven Models of Technological Innovation Networks.

    Directory of Open Access Journals (Sweden)

    Ricard Solé

    Full Text Available It has been suggested that innovations occur mainly by combination: the more inventions accumulate, the higher the probability that new inventions are obtained from previous designs. Additionally, it has been conjectured that the combinatorial nature of innovations naturally leads to a singularity: at some finite time, the number of innovations should diverge. Although these ideas are certainly appealing, no general models have been yet developed to test the conditions under which combinatorial technology should become explosive. Here we present a generalised model of technological evolution that takes into account two major properties: the number of previous technologies needed to create a novel one and how rapidly technology ages. Two different models of combinatorial growth are considered, involving different forms of ageing. When long-range memory is used and thus old inventions are available for novel innovations, singularities can emerge under some conditions with two phases separated by a critical boundary. If the ageing has a characteristic time scale, it is shown that no singularities will be observed. Instead, a "black hole" of old innovations appears and expands in time, making the rate of invention creation slow down into a linear regime.

  11. Interaction-induced singular Fermi surface in a high-temperature oxypnictide superconductor.

    Science.gov (United States)

    Charnukha, A; Thirupathaiah, S; Zabolotnyy, V B; Büchner, B; Zhigadlo, N D; Batlogg, B; Yaresko, A N; Borisenko, S V

    2015-05-21

    In the family of iron-based superconductors, LaFeAsO-type materials possess the simplest electronic structure due to their pronounced two-dimensionality. And yet they host superconductivity with the highest transition temperature Tc ≈ 55K. Early theoretical predictions of their electronic structure revealed multiple large circular portions of the Fermi surface with a very good geometrical overlap (nesting), believed to enhance the pairing interaction and thus superconductivity. The prevalence of such large circular features in the Fermi surface has since been associated with many other iron-based compounds and has grown to be generally accepted in the field. In this work we show that a prototypical compound of the 1111-type, SmFe(0.92)Co(0.08)AsO , is at odds with this description and possesses a distinctly different Fermi surface, which consists of two singular constructs formed by the edges of several bands, pulled to the Fermi level from the depths of the theoretically predicted band structure by strong electronic interactions. Such singularities dramatically affect the low-energy electronic properties of the material, including superconductivity. We further argue that occurrence of these singularities correlates with the maximum superconducting transition temperature attainable in each material class over the entire family of iron-based superconductors.

  12. A numerical method for singular boundary value problem of ordinary differential equation

    International Nuclear Information System (INIS)

    He Qibing

    1992-12-01

    A numerical method, regularizing method, is suggested to treat the singular boundary problem of ordinary differential equation that is raised from controlled nuclear fusion science and other fields owing to their singular physical mechanism. This kind of singular boundary problem has been successfully solved by special treatment near the singular points and using difference method. This method overcomes difficulties in numerical calculation due to the singularity. The convergence results and numerical test are also given

  13. Singular boundary perturbations of distributed systems

    DEFF Research Database (Denmark)

    Pedersen, Michael

    1990-01-01

    Some problems arising in real-life control applications are addressed--namely, problems concerning non-smooth control inputs on the boundary of the spatial domain. The classical variational approach is extended, and sufficient conditions are given for the solutions to continuous functions of time...

  14. The initial value problem for linearized gravitational perturbations of the Schwarzschild naked singularity

    Energy Technology Data Exchange (ETDEWEB)

    Dotti, Gustavo; Gleiser, Reinaldo J [Facultad de Matematica, AstronomIa y Fisica (FaMAF), Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2009-11-07

    The coupled equations for the scalar modes of the linearized Einstein equations around Schwarzschild's spacetime were reduced by Zerilli to a (1+1) wave equation partial deriv{sup 2}PSI{sub z} /partial derivt{sup 2} +HPSI{sub z} =0, where H= -partial deriv{sup 2} /partial derivx{sup 2} + V(x) is the Zerilli 'Hamiltonian' and x is the tortoise radial coordinate. From its definition, for smooth metric perturbations the field PSI{sub z} is singular at r{sub s} = -6M/(l - 1)(l +2), with l being the mode harmonic number. The equation PSI{sub z} obeys is also singular, since V has a second-order pole at r{sub s}. This is irrelevant to the black hole exterior stability problem, where r > 2M > 0, and r{sub s} < 0, but it introduces a non-trivial problem in the naked singular case where M < 0, then r{sub s} > 0, and the singularity appears in the relevant range of r (0 < r < infinity). We solve this problem by developing a new approach to the evolution of the even mode, based on a new gauge invariant function, PSI-circumflex, that is a regular function of the metric perturbation for any value of M. The relation of PSI-circumflex to PSI{sub z} is provided by an intertwiner operator. The spatial pieces of the (1 + 1) wave equations that PSI-circumflex and PSI{sub z} obey are related as a supersymmetric pair of quantum Hamiltonians H and H-circumflex. For M < 0,H-circumflex has a regular potential and a unique self-adjoint extension in a domain D defined by a physically motivated boundary condition at r = 0. This allows us to address the issue of evolution of gravitational perturbations in this non-globally hyperbolic background. This formulation is used to complete the proof of the linear instability of the Schwarzschild naked singularity, by showing that a previously found unstable mode belongs to a complete basis of H-circumflex in D, and thus is excitable by generic initial data. This is further illustrated by numerically solving the linearized equations for

  15. Singular value correlation functions for products of Wishart random matrices

    International Nuclear Information System (INIS)

    Akemann, Gernot; Kieburg, Mario; Wei, Lu

    2013-01-01

    We consider the product of M quadratic random matrices with complex elements and no further symmetry, where all matrix elements of each factor have a Gaussian distribution. This generalizes the classical Wishart–Laguerre Gaussian unitary ensemble with M = 1. In this paper, we first compute the joint probability distribution for the singular values of the product matrix when the matrix size N and the number M are fixed but arbitrary. This leads to a determinantal point process which can be realized in two different ways. First, it can be written as a one-matrix singular value model with a non-standard Jacobian, or second, for M ⩾ 2, as a two-matrix singular value model with a set of auxiliary singular values and a weight proportional to the Meijer G-function. For both formulations, we determine all singular value correlation functions in terms of the kernels of biorthogonal polynomials which we explicitly construct. They are given in terms of the hypergeometric and Meijer G-functions, generalizing the Laguerre polynomials for M = 1. Our investigation was motivated from applications in telecommunication of multi-layered scattering multiple-input and multiple-output channels. We present the ergodic mutual information for finite-N for such a channel model with M − 1 layers of scatterers as an example. (paper)

  16. Topological strings on singular elliptic Calabi-Yau 3-folds and minimal 6d SCFTs

    Science.gov (United States)

    Del Zotto, Michele; Gu, Jie; Huang, Min-xin; Kashani-Poor, Amir-Kian; Klemm, Albrecht; Lockhart, Guglielmo

    2018-03-01

    We apply the modular approach to computing the topological string partition function on non-compact elliptically fibered Calabi-Yau 3-folds with higher Kodaira singularities in the fiber. The approach consists in making an ansatz for the partition function at given base degree, exact in all fiber classes to arbitrary order and to all genus, in terms of a rational function of weak Jacobi forms. Our results yield, at given base degree, the elliptic genus of the corresponding non-critical 6d string, and thus the associated BPS invariants of the 6d theory. The required elliptic indices are determined from the chiral anomaly 4-form of the 2d worldsheet theories, or the 8-form of the corresponding 6d theories, and completely fix the holomorphic anomaly equation constraining the partition function. We introduce subrings of the known rings of Weyl invariant Jacobi forms which are adapted to the additional symmetries of the partition function, making its computation feasible to low base wrapping number. In contradistinction to the case of simpler singularities, generic vanishing conditions on BPS numbers are no longer sufficient to fix the modular ansatz at arbitrary base wrapping degree. We show that to low degree, imposing exact vanishing conditions does suffice, and conjecture this to be the case generally.

  17. General fractional calculus in non-singular power-law kernel applied to model anomalous diffusion phenomena in heat transfer problems

    Directory of Open Access Journals (Sweden)

    Gao Feng

    2017-01-01

    Full Text Available In this paper we address the general fractional calculus of Liouville-Weyl and Liouville-Caputo general fractional derivative types with non-singular power-law kernel for the first time. The Fourier transforms and the anomalous diffusions are discussed in detail. The formulations are adopted to describe complex phenomena of the heat transfer problems.

  18. Role of higher-dimensional evolving wormholes in the formation of a big rip singularity

    Science.gov (United States)

    Setare, M. R.; Sepehri, A.

    2015-03-01

    We study the four-dimensional Universe on the M2-M5 BIon in the thermal background. The BIon is a configuration in a flat space of a D-brane and a parallel anti-D-brane connected by a wormhole. When the branes and antibranes are well separated and the brane's spike is far from the antibrane's spike, the wormhole cannot be formed. However, when two branes are close to each other, they can be connected by a wormhole. Under this condition, there exist many channels for flowing energy from extra dimensions into our Universe. This energy dominates all other forms of energy, such as the gravitational repulsion, and brings our brief epoch of the Universe to an end in the big rip singularity. We show that at this singularity the Universe is destroyed, and one black M2-brane is formed. Finally, we test our model against WMAP, Planck, and BICEP2 data, and we obtain the ripping time. According to experimental data, the N ≃50 case leads to ns≃0.96 , where N and ns are the number e -folds and the spectral index, respectively. This standard case may be found in 0.01 singularity occurs in a finite time trip=31 (Gyr ) for WMAP and Planck data and trip=28 (Gyr ) for BICEP2 data. By comparing this time with the time of the big rip in the brane-antibrane, we find that the wormhole in the BIonic system accelerates the destruction of the Universe.

  19. Hidden singularities in non-abelian gauge fields

    International Nuclear Information System (INIS)

    Bollini, C.G.; Giambiagi, J.J.; Tiomno, J.

    1978-01-01

    It is shown that the potential (and field) of a non-abelian gauge theory is not well determined when it has a singular point. When this is the cause, it is important to specify the regularization procedure used to give a precise definition of physical quantities at the singularity at any stage of the computation. The fact that a certain A sub(μ) (associated with the given regularization) represents the vacuum when F sub(μν) is a zero distribution not only on the global space but also in all its projections to arbitrary subspaces is discussed. The example used as a base for the discussion is A vetor = i (sigma vetor Λ r vetor / r 2 ). For this example it is shown that different regularizations give the same field in the global space but they give different distributions when projected to subspaces containing the singular point [pt

  20. Analytic Evolution of Singular Distribution Amplitudes in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Radyushkin, Anatoly V. [Old Dominion University, Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Tandogan Kunkel, Asli [Old Dominion University, Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2014-03-01

    We describe a method of analytic evolution of distribution amplitudes (DA) that have singularities, such as non-zero values at the end-points of the support region, jumps at some points inside the support region and cusps. We illustrate the method by applying it to the evolution of a flat (constant) DA, anti-symmetric at DA and then use it for evolution of the two-photon generalized distribution amplitude. Our approach has advantages over the standard method of expansion in Gegenbauer polynomials, which requires infinite number of terms in order to accurately reproduce functions in the vicinity of singular points, and over a straightforward iteration of an initial distribution with evolution kernel. The latter produces logarithmically divergent terms at each iteration, while in our method the logarithmic singularities are summed from the start, which immediately produces a continuous curve, with only one or two iterations needed afterwards in order to get rather precise results.

  1. Polarization singularity anarchy in three dimensional ellipse fields

    Science.gov (United States)

    Freund, Isaac

    2004-11-01

    Lines of circular polarization, C lines, and lines of linear polarization, L lines, are studied in a computer simulated random three-dimensional ellipse field. Although we verify existing predictions for the location of particular points on these lines at which the sign of the topological index of the line inverts, we show that from the point of view of foliations of the field such points are better described as points of pair production. We find a new set of true sign inversion points, and show that when all possible foliations are considered this set includes all points on the line. We also find three new families of polarization singularities whose members include all polarization ellipses. The recently described polarization singularity democracy in two-dimensional fields evidently explodes into polarization singularity anarchy in three-dimensional fields.

  2. hp-finite element methods for singular perturbations

    CERN Document Server

    Melenk, Jens M

    2002-01-01

    Many partial differential equations arising in practice are parameter-dependent problems that are of singularly perturbed type. Prominent examples include plate and shell models for small thickness in solid mechanics, convection-diffusion problems in fluid mechanics, and equations arising in semi-conductor device modelling. Common features of these problems are layers and, in the case of non-smooth geometries, corner singularities. Mesh design principles for the efficient approximation of both features by the hp-version of the finite element method (hp-FEM) are proposed in this volume. For a class of singularly perturbed problems on polygonal domains, robust exponential convergence of the hp-FEM based on these mesh design principles is established rigorously.

  3. Singular cosmological evolution using canonical and ghost scalar fields

    Energy Technology Data Exchange (ETDEWEB)

    Nojiri, Shin' ichi [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Odintsov, S.D. [Institut de Ciencies de l' Espai (IEEC-CSIC), Campus UAB, Torre C5-Par-2a pl, E-08193 Bellaterra, Barcelona (Spain); Oikonomou, V.K. [Department of Theoretical Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Saridakis, Emmanuel N., E-mail: nojiri@gravity.phys.nagoya-u.ac.jp, E-mail: odintsov@ieec.uab.es, E-mail: v.k.oikonomou1979@gmail.com, E-mail: Emmanuel_Saridakis@baylor.edu [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece)

    2015-09-01

    We demonstrate that finite time singularities of Type IV can be consistently incorporated in the Universe's cosmological evolution, either appearing in the inflationary era, or in the late-time regime. While using only one scalar field instabilities can in principle occur at the time of the phantom-divide crossing, when two fields are involved we are able to avoid such instabilities. Additionally, the two-field scalar-tensor theories prove to be able to offer a plethora of possible viable cosmological scenarios, at which various types of cosmological singularities can be realized. Amongst others, it is possible to describe inflation with the appearance of a Type IV singularity, and phantom late-time acceleration which ends in a Big Rip. Finally, for completeness, we also present the Type IV realization in the context of suitably reconstructed F(R) gravity.

  4. PT -symmetric spectral singularity and negative-frequency resonance

    Science.gov (United States)

    Pendharker, Sarang; Guo, Yu; Khosravi, Farhad; Jacob, Zubin

    2017-03-01

    Vacuum consists of a bath of balanced and symmetric positive- and negative-frequency fluctuations. Media in relative motion or accelerated observers can break this symmetry and preferentially amplify negative-frequency modes as in quantum Cherenkov radiation and Unruh radiation. Here, we show the existence of a universal negative-frequency-momentum mirror symmetry in the relativistic Lorentzian transformation for electromagnetic waves. We show the connection of our discovered symmetry to parity-time (PT ) symmetry in moving media and the resulting spectral singularity in vacuum fluctuation-related effects. We prove that this spectral singularity can occur in the case of two metallic plates in relative motion interacting through positive- and negative-frequency plasmonic fluctuations (negative-frequency resonance). Our work paves the way for understanding the role of PT -symmetric spectral singularities in amplifying fluctuations and motivates the search for PT symmetry in novel photonic systems.

  5. Image Fakery Detection Based on Singular Value Decomposition

    Directory of Open Access Journals (Sweden)

    T. Basaruddin

    2009-11-01

    Full Text Available The growing of image processing technology nowadays make it easier for user to modify and fake the images. Image fakery is a process to manipulate part or whole areas of image either in it content or context with the help of digital image processing techniques. Image fakery is barely unrecognizable because the fake image is looking so natural. Yet by using the numerical computation technique it is able to detect the evidence of fake image. This research is successfully applied the singular value decomposition method to detect image fakery. The image preprocessing algorithm prior to the detection process yields two vectors orthogonal to the singular value vector which are important to detect fake image. The result of experiment to images in several conditions successfully detects the fake images with threshold value 0.2. Singular value decomposition-based detection of image fakery can be used to investigate fake image modified from original image accurately.

  6. Breakdown of predictability: an investigation on the nature of singularities

    International Nuclear Information System (INIS)

    Tahir Shah, K.

    1980-12-01

    When relations are extrapolated beyond their premises of discovery, the operation sometimes results in an undefined object, i.e., one which cannot be identified within the given structure. The thesis is put forth that the occurrence of singularities is due to ''incompleteness'' in knowledge. An intuitive answer on how to deal with singularities (in, for instance, the real number system, space-time, quantum field theory) is presented first. Then a quasi-formalistic approach, e.g. non-standard models in higher-order languages and Lawvere's axiomatic formulation of categories, is set out. The independence of singularity with respect to other primitive notions of the Universe of knowledge is noted

  7. Symposium on Singularities, Representation of Algebras, and Vector Bundles

    CERN Document Server

    Trautmann, Günther

    1987-01-01

    It is well known that there are close relations between classes of singularities and representation theory via the McKay correspondence and between representation theory and vector bundles on projective spaces via the Bernstein-Gelfand-Gelfand construction. These relations however cannot be considered to be either completely understood or fully exploited. These proceedings document recent developments in the area. The questions and methods of representation theory have applications to singularities and to vector bundles. Representation theory itself, which had primarily developed its methods for Artinian algebras, starts to investigate algebras of higher dimension partly because of these applications. Future research in representation theory may be spurred by the classification of singularities and the highly developed theory of moduli for vector bundles. The volume contains 3 survey articles on the 3 main topics mentioned, stressing their interrelationships, as well as original research papers.

  8. Two-scale approach to oscillatory singularly perturbed transport equations

    CERN Document Server

    Frénod, Emmanuel

    2017-01-01

    This book presents the classical results of the two-scale convergence theory and explains – using several figures – why it works. It then shows how to use this theory to homogenize ordinary differential equations with oscillating coefficients as well as oscillatory singularly perturbed ordinary differential equations. In addition, it explores the homogenization of hyperbolic partial differential equations with oscillating coefficients and linear oscillatory singularly perturbed hyperbolic partial differential equations. Further, it introduces readers to the two-scale numerical methods that can be built from the previous approaches to solve oscillatory singularly perturbed transport equations (ODE and hyperbolic PDE) and demonstrates how they can be used efficiently. This book appeals to master’s and PhD students interested in homogenization and numerics, as well as to the Iter community.

  9. Singularity problem of control moment gyro cluster with vibration isolators

    Directory of Open Access Journals (Sweden)

    Cui Yinghui

    2016-02-01

    Full Text Available As powerful torque amplification actuators, control moment gyros (CMGs are often used in the attitude control of many state-of-the-art high resolution satellites. However, the disturbance generated by the CMGs can not only reduce the attitude stability of a satellite but also deteriorate the performance of optic payloads. Currently, CMG vibration isolators are widely used to target this problem. The isolators can affect the singularity of the CMG system as they are placed between the CMGs and the satellite bus and provide additional freedoms to the CMG system due to their flexibility. The formulation of the output torque of a CMG is studied first considering the dynamic imbalance of its spin rotor and then the deformation angle as a result of the isolator’s flexibility is calculated. With the additional freedoms, the influence of isolator on the singularity problem is studied and a new steering logic to escape from the singular states is proposed.

  10. Exact solutions, finite time singularities and non-singular universe models from a variety of Λ(t) cosmologies

    Science.gov (United States)

    Pan, Supriya

    2018-01-01

    Cosmological models with time-dependent Λ (read as Λ(t)) have been investigated widely in the literature. Models that solve background dynamics analytically are of special interest. Additionally, the allowance of past or future singularities at finite cosmic time in a specific model signals for a generic test on its viabilities with the current observations. Following these, in this work we consider a variety of Λ(t) models focusing on their evolutions and singular behavior. We found that a series of models in this class can be exactly solved when the background universe is described by a spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) line element. The solutions in terms of the scale factor of the FLRW universe offer different universe models, such as power-law expansion, oscillating, and the singularity free universe. However, we also noticed that a large number of the models in this series permit past or future cosmological singularities at finite cosmic time. At last we close the work with a note that the avoidance of future singularities is possible for certain models under some specific restrictions.

  11. Compatibility conditions of a singular hypersurface in the relativistic mechanics of the continuous media

    International Nuclear Information System (INIS)

    Maugin, G.A.

    1976-01-01

    In this work the compatibility conditions verified by the discontinuities of relativistic fields and of their space-time and time-like derivatives up to be second order are systematically constructed in terms of the local geometry of the wave front (singular hypersurface). A new time-like derivative that generalizes Thomas' delta-derivative of classical continuum mechanics is thus introduced in the relativistic frame. It allows to formulate these conditions in compact forms. It is thus expected that the relativistic analogue of T.Y. Thomas' (1957) classical theory is produced [fr

  12. Finite-Time Stability Analysis of Discrete-Time Linear Singular Systems

    Directory of Open Access Journals (Sweden)

    Songlin Wo

    2014-01-01

    Full Text Available The finite-time stability (FTS problem of discrete-time linear singular systems (DTLSS is considered in this paper. A necessary and sufficient condition for FTS is obtained, which can be expressed in terms of matrix inequalities. Then, another form of the necessary and sufficient condition for FTS is also given by using matrix-null space technology. In order to solve the stability problem expediently, a sufficient condition for FTS is given via linear matrix inequality (LMI approach; this condition can be expressed in terms of LMIs. Finally, an illustrating example is also given to show the effectiveness of the proposed method.

  13. Singularity analysis of potential fields to enhance weak anomalies

    Science.gov (United States)

    Chen, G.; Cheng, Q.; Liu, T.

    2013-12-01

    Geoanomalies generally are nonlinear, non-stationary and weak, especially in the land cover areas, however, the traditional methods of geoanomaly identification are usually based on linear theory. In past two decades, many power-law function models have been developed based on fractal concept in mineral exploration and mineral resource assessment, such that the density-area (C-A) model and spectrum-area model (S-A) suggested by Qiuming Cheng have played important roles in extracting geophysical and geochemical anomalies. Several power-law relationships are evident in geophysical potential fields, such as field value-distance, power spectrum-wave number as well as density-area models. The singularity index based on density-area model involves the first derivative transformation of the measure. Hence, we introduce the singularity analysis to develop a novel high-pass filter for extracting gravity and magnetic anomalies with the advantage of scale invariance. Furthermore, we suggest that the statistics of singularity indices can provide a new edge detection scheme for the gravity or magnetic source bodies. Meanwhile, theoretical magnetic anomalies are established to verify these assertions. In the case study from Nanling mineral district in south China and Qikou Depression in east China, compared with traditional geophysical filtering methods including multiscale wavelet analysis and total horizontal gradient methods, the singularity method enhances and extracts the weak anomalies caused by buried magmatic rocks more effectively, and provides more distinct boundary information of rocks. Moreover, the singularity mapping results have good correspondence relationship with both the outcropping rocks and known mineral deposits to support future mineral resource exploration. The singularity method based on fractal analysis has potential to be a new useful theory and technique for processing gravity and magnetic anomaly data.

  14. Seung-Nelson representation for singular thin sheets

    Science.gov (United States)

    Witten, Thomas; Wang, Jin

    2011-03-01

    We extend the popular Seung-Nelson model to better study thin elastic sheets with singular or multi-scale structures, which are common phenomena in thin sheets. Because it requires a uniform distribution of lattice points over the simulated sheets, the original model is ill-equipped to study these singular structures. Our extended model retains the essence of the original one, but it allows lattice points to be concentrated as needed in regions of large curvatures. We will compare the two methods by applying them to study the energy of the core region of a developable cone. Supported by NSF award DMR 0820054.

  15. Propagation of singularities for linearised hybrid data impedance tomography

    Science.gov (United States)

    Bal, Guillaume; Hoffmann, Kristoffer; Knudsen, Kim

    2018-02-01

    For a general formulation of linearised hybrid inverse problems in impedance tomography, the qualitative properties of the solutions are analysed. Using an appropriate scalar pseudo-differential formulation, the problems are shown to permit propagating singularities under certain non-elliptic conditions, and the associated directions of propagation are precisely identified relative to the directions in which ellipticity is lost. The same result is found in the setting for the corresponding normal formulation of the scalar pseudo-differential equations. A numerical reconstruction procedure based of the least squares finite element method is derived, and a series of numerical experiments visualise exactly how the loss of ellipticity manifests itself as propagating singularities.

  16. Surface singularities in Eddington-inspired Born-Infeld gravity.

    Science.gov (United States)

    Pani, Paolo; Sotiriou, Thomas P

    2012-12-21

    Eddington-inspired Born-Infeld gravity was recently proposed as an alternative to general relativity that offers a resolution of spacetime singularities. The theory differs from Einstein's gravity only inside matter due to nondynamical degrees of freedom, and it is compatible with all current observations. We show that the theory is reminiscent of Palatini f(R) gravity and that it shares the same pathologies, such as curvature singularities at the surface of polytropic stars and unacceptable Newtonian limit. This casts serious doubt on its viability.

  17. Harnack's Inequality for Degenerate and Singular Parabolic Equations

    CERN Document Server

    DiBenedetto, Emmanuele; Vespri, Vincenzo

    2012-01-01

    Degenerate and singular parabolic equations have been the subject of extensive research for the last 25 years. Despite important achievements, the issue of the Harnack inequality for non-negative solutions to these equations, both of p-Laplacian and porous medium type, while raised by several authors, has remained basically open. Recently considerable progress has been made on this issue, to the point that, except for the singular sub-critical range, both for the p-laplacian and the porous medium equations, the theory is reasonably complete. It seemed therefore timely to trace a comprehensive

  18. Fatigue crack shape prediction based on the stress singularity exponent

    Czech Academy of Sciences Publication Activity Database

    Hutař, Pavel; Ševčík, Martin; Náhlík, Luboš; Knésl, Zdeněk

    488-489, č. 1 (2012), s. 178-181 ISSN 1013-9826. [International Conference on Fracture and Damage Mechanics - FDM 2011 /10./. Dubrovník, 19.09.2011-21.09.2011] R&D Projects: GA ČR GA101/09/0867 Grant - others:GA AV ČR(CZ) M100420901 Institutional research plan: CEZ:AV0Z2041904 Keywords : stress singularity exponent * crack front curvature * vertex singularity * free surface effect Subject RIV: JL - Materials Fatigue, Friction Mechanics

  19. Can noncommutativity resolve the Big-Bang singularity?

    CERN Document Server

    Maceda, M; Manousselis, P; Zoupanos, George

    2004-01-01

    A possible way to resolve the singularities of general relativity is proposed based on the assumption that the description of space-time using commuting coordinates is not valid above a certain fundamental scale. Beyond that scale it is assumed that the space-time has noncommutative structure leading in turn to a resolution of the singularity. As a first attempt towards realizing the above programme a noncommutative version of the Kasner metric is constructed which is nonsingular at all scales and becomes commutative at large length scales.

  20. Gauge invariance properties and singularity cancellations in a modified PQCD

    CERN Document Server

    Cabo-Montes de Oca, Alejandro; Cabo, Alejandro; Rigol, Marcos

    2006-01-01

    The gauge-invariance properties and singularity elimination of the modified perturbation theory for QCD introduced in previous works, are investigated. The construction of the modified free propagators is generalized to include the dependence on the gauge parameter $\\alpha $. Further, a functional proof of the independence of the theory under the changes of the quantum and classical gauges is given. The singularities appearing in the perturbative expansion are eliminated by properly combining dimensional regularization with the Nakanishi infrared regularization for the invariant functions in the operator quantization of the $\\alpha$-dependent gauge theory. First-order evaluations of various quantities are presented, illustrating the gauge invariance-properties.

  1. Cardy-Verlinde formula in FRW Universe with inhomogeneous generalized fluid and dynamical entropy bounds near the future singularity

    International Nuclear Information System (INIS)

    Brevik, Iver; Nojiri, Shin'ichi; Odintsov, Sergei D.; Saez-Gomez, Diego

    2010-01-01

    We derive a formula for the entropy for a multicomponent coupled fluid, which under special conditions reduces to the Cardy-Verlinde form relating the entropy of a closed FRW universe to its energy together with its Casimir energy. The generalized fluid obeys an inhomogeneous equation of state. A viscous dark fluid is included, and also modified gravity is included in terms of its fluid representation. It is demonstrated how such an expression reduces to the standard Cardy-Verlinde formula corresponding to the 2d CFT entropy in some special cases. The dynamical entropy bound for a closed FRW universe with dark components is obtained. The universality of the dynamical entropy bound near a future singularity (of all known four types), as well as near the Big Bang singularity, is investigated. It is demonstrated that, except from some special cases of Type II and Type IV singularities, the dynamical entropy bound is violated near the singularity even if quantum effects are taken into account. The dynamical entropy bound seems to be universal for the case of a regular universe, including the asymptotic de Sitter universe. (orig.)

  2. Addressing Ozone Layer Depletion

    Science.gov (United States)

    Access information on EPA's efforts to address ozone layer depletion through regulations, collaborations with stakeholders, international treaties, partnerships with the private sector, and enforcement actions under Title VI of the Clean Air Act.

  3. Teaching Form as Form

    DEFF Research Database (Denmark)

    Keiding, Tina Bering

    2012-01-01

    understanding of form per se, or, to use an expression from this text, of form as form. This challenge can be reduced to one question: how can design teaching support students in achieving not only the ability to recognize and describe different form-related concepts in existing design (i.e. analytical...... and concepts from real designs by studying form in abstract contexts. The challenge for the first approach is how to support students in decoupling form from the work as a whole. The challenge for the second approach is how to translate general form into real design. Hence, choosing between the two approaches...

  4. Singular limit analysis of a model for earthquake faulting

    DEFF Research Database (Denmark)

    Bossolini, Elena; Brøns, Morten; Kristiansen, Kristian Uldall

    2017-01-01

    In this paper we consider the one dimensional spring-block model describing earthquake faulting. By using geometric singular perturbation theory and the blow-up method we provide a detailed description of the periodicity of the earthquake episodes. In particular, the limit cycles arise from...

  5. Transitions of the Multi-Scale Singularity Trees

    DEFF Research Database (Denmark)

    Somchaipeng, Kerawit; Sporring, Jon; Kreiborg, Sven

    2005-01-01

    Multi-Scale Singularity Trees(MSSTs) [10] are multi-scale image descriptors aimed at representing the deep structures of images. Changes in images are directly translated to changes in the deep structures; therefore transitions in MSSTs. Because MSSTs can be used to represent the deep structure o...

  6. Analysis of the essential spectrum of singular matrix differential operators

    Czech Academy of Sciences Publication Activity Database

    Ibrogimov, O. O.; Siegl, Petr; Tretter, C.

    2016-01-01

    Roč. 260, č. 4 (2016), s. 3881-3926 ISSN 0022-0396 Institutional support: RVO:61389005 Keywords : essential spectrum * system of singular differential equations * operator matrix * Schur complement * magnetohydrodynamics * Stellar equilibrium model Subject RIV: BE - Theoretical Physics Impact factor: 1.988, year: 2016

  7. Stability of naked singularity arising in gravitational collapse of Type ...

    Indian Academy of Sciences (India)

    big' ... data in spherically symmetric gravitational collapse for Type I matter fields. ... data. In §2, we briefly summarize the analysis given in [3] and state the conditions on the initial data under which the collapse will lead to a naked singularity.

  8. Solitary wave solution to a singularly perturbed generalized Gardner ...

    Indian Academy of Sciences (India)

    2015-11-27

    Home; Journals; Pramana – Journal of Physics; Volume 88; Issue 4. Solitary wave solution to a singularly perturbed generalized ... Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science (IWCCMP-2015). Posted on November 27, 2015. Guest Editors: ...

  9. Singular nonlinear H-infinity optimal control problem

    NARCIS (Netherlands)

    Maas, W.C.A.; Maas, W.C.A.; van der Schaft, Arjan

    1996-01-01

    The theory of nonlinear H∞ of optimal control for affine nonlinear systems is extended to the more general context of singular H∞ optimal control of nonlinear systems using ideas from the linear H∞ theory. Our approach yields under certain assumptions a necessary and sufficient condition for

  10. Probing singularities in quantum cosmology with curvature scalars

    International Nuclear Information System (INIS)

    Oliveira-Neto, G.; Correa Silva, E.V.; Lemos, N.A.; Monerat, G.A.

    2009-01-01

    We provide further evidence that the canonical quantization of cosmological models eliminates the classical Big Bang singularity, using the de Broglie-Bohm interpretation of quantum mechanics. We compute the 'local expectation value' of the Ricci and Kretschmann scalars, for some quantum FRW models. We show that they are finite for all time.

  11. Image Denoising Using Singular Value Difference in the Wavelet Domain

    Directory of Open Access Journals (Sweden)

    Min Wang

    2018-01-01

    Full Text Available Singular value (SV difference is the difference in the singular values between a noisy image and the original image; it varies regularly with noise intensity. This paper proposes an image denoising method using the singular value difference in the wavelet domain. First, the SV difference model is generated for different noise variances in the three directions of the wavelet transform and the noise variance of a new image is used to make the calculation by the diagonal part. Next, the single-level discrete 2-D wavelet transform is used to decompose each noisy image into its low-frequency and high-frequency parts. Then, singular value decomposition (SVD is used to obtain the SVs of the three high-frequency parts. Finally, the three denoised high-frequency parts are reconstructed by SVD from the SV difference, and the final denoised image is obtained using the inverse wavelet transform. Experiments show the effectiveness of this method compared with relevant existing methods.

  12. Nuclear power plant sensor fault detection using singular value ...

    Indian Academy of Sciences (India)

    In this paper, a method is proposed to detect and identify any degradation of sensor performance. The validation process consists of two steps: (i) residual generation and (ii) fault detection by residual evaluation.Singular value decomposition (SVD) and Euclidean distance (ED) methods are used to generate the residual ...

  13. Positive solutions for higher order singular p-Laplacian boundary ...

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 118; Issue 2. Positive Solutions for Higher Order Singular -Laplacian Boundary Value Problems. Guoliang Shi Junhong Zhang ... Guoliang Shi1 Junhong Zhang1. Department of Mathematics, Tianjin University, Tianjin 300072, People's Republic of China ...

  14. A generalized Dirichlet distribution accounting for singularities of the variables

    DEFF Research Database (Denmark)

    Lewy, Peter

    1996-01-01

    A multivariate generalized Dirichlet distribution has been formulated for the case where the stochastic variables are allowed to have singularities at 0 and 1. Small sample properties of the estimates of moments of the variables based on maximum likelihood estimates of the parameters have been co...

  15. Boundary triples for Schrodinger operators with singular interactions on hypersurfaces

    Czech Academy of Sciences Publication Activity Database

    Behrndt, J.; Langer, M.; Lotoreichik, Vladimir

    2016-01-01

    Roč. 7, č. 2 (2016), s. 290-302 ISSN 2220-8054 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : boundary triple * Weyl function * Schrodinger operator * singular potential * delta-interaction * hypersurface Subject RIV: BE - Theoretical Physics

  16. On p dependent boundedness of singular integral operators

    Czech Academy of Sciences Publication Activity Database

    Honzík, Petr

    2011-01-01

    Roč. 267, 3-4 (2011), s. 931-937 ISSN 0025-5874 Institutional research plan: CEZ:AV0Z10190503 Keywords : singular integral operators Subject RIV: BA - General Mathematics Impact factor: 0.749, year: 2011 http://www.springerlink.com/content/k507g30163351250/

  17. Quantum jump from singularity to outside of black hole

    Energy Technology Data Exchange (ETDEWEB)

    Dündar, Furkan Semih [Physics and Mathematics Departments, Sakarya University, 54050, Sakarya (Turkey); Hajian, Kamal [School of Physics, Institute for Research in Fundamental Sciences, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Department of Physics, Sharif University of Technology, P.O. Box 11365-8639, Tehran (Iran, Islamic Republic of)

    2016-02-26

    Considering the role of black hole singularity in quantum evolution, a resolution to the firewall paradox is presented. It is emphasized that if an observer has the singularity as a part of his spacetime, then the semi-classical evolution would be non-unitary as viewed by him. Specifically, a free-falling observer inside the black hole would have a Hilbert space with non-unitary evolution; a quantum jump for particles encountering the singularity to outside of the horizon as late Hawking radiations. The non-unitarity in the jump resembles the one in collapse of wave function, but preserves entanglements. Accordingly, we elaborate the first postulate of black hole complementarity: freely falling observers who pass through the event horizon would have non-unitary evolution, while it does not have physically measurable effects for them. Besides, no information would be lost in the singularity. Taking the modified picture into account, the firewall paradox can be resolved, respecting No Drama. A by-product of our modification is that roughly half of the entropy of the black hole is released close to the end of evaporation in the shape of very hot Hawking radiation.

  18. Long Range Prospects of Education – from Now until Singularity

    Directory of Open Access Journals (Sweden)

    Vatroslav Zovko

    2014-04-01

    Full Text Available This work describes key characteristics and genesis of educational system today. As it is considered that we live in information society, presented are major goals of information society education and the school system in general in relation to the labour market. Briefly is described the concept of singularity and how it will make a quantum leap in the history of human development. Education is briefly put in the singularity framework and the concept of future society that is more technologically advanced. This paper also discusses the chronology of future technological development until the singularity age. It is argued that once we reach the singularity age the consequence will be the shift away from economic centered education and employment and toward humanities research. Ultimately, the goal of this paper is to open up a discussion about the different possible future scenarios of education, its long term perspective and the role in society rather than making a precise forecast about the education in mid-21st century.

  19. Spatial Behaviour of Singularities in Fractal- and Gaussian Speckle Fields

    DEFF Research Database (Denmark)

    Angelsky, Oleg V.; Maksimyak, Alexander P.; Maksimyak, Peter P.

    2009-01-01

    Peculiarities of the spatial behaviour of the dislocation lines resulting from scattering of coherent radiation from random and fractal rough surfaces are studied. The technique of optical correlation is proposed for diagnostics of phase singularities in a complex speckle field by comparing...

  20. Print to Paint: Breaking Away from Singular Images

    Science.gov (United States)

    Alexander, Kristi

    2010-01-01

    Each fall, the author presents a printmaking unit, starting with simple techniques such as rubbings, stamping and stenciling. In this article, the author describes a linoleum printmaking lesson wherein students are challenged to break away from singular images of peace signs and initials, and create illustrative plates that could communicate a…

  1. Universality of mass singularities beyond leading logarithm approximation

    International Nuclear Information System (INIS)

    Kripfganz, J.

    1978-08-01

    Lepton pair production is studied in low order QCD perturbation theory. Mass singularities are analyzed. Also non-leading logarithms are found to factorize. This allows the consistent computation of correction terms to the Drell-Yan formula. The same factorization properties remain true in case of polarized initial state hadrons and final state leptons. Working in Coulomb gauge greatly simplifies the calculations. (author)

  2. Laplacian growth, elliptic growth, and singularities of the Schwarz potential

    Science.gov (United States)

    Lundberg, Erik

    2011-04-01

    The Schwarz function has played an elegant role in understanding and in generating new examples of exact solutions to the Laplacian growth (or 'Hele-Shaw') problem in the plane. The guiding principle in this connection is the fact that 'non-physical' singularities in the 'oil domain' of the Schwarz function are stationary, and the 'physical' singularities obey simple dynamics. We give an elementary proof that the same holds in any number of dimensions for the Schwarz potential, introduced by Khavinson and Shapiro (1989 Technical Report TRITA-MAT-1989-36 Royal Institute of Technology, Stockholm). An extension is also given for the so-called elliptic growth problem by defining a generalized Schwarz potential. New exact solutions are constructed, and we solve inverse problems of describing the driving singularities of a given flow. We demonstrate, by example, how {C}^n-techniques can be used to locate the singularity set of the Schwarz potential. One of our methods is to prolong available local extension theorems by constructing 'globalizing families'.

  3. Laplacian growth, elliptic growth, and singularities of the Schwarz potential

    International Nuclear Information System (INIS)

    Lundberg, Erik

    2011-01-01

    The Schwarz function has played an elegant role in understanding and in generating new examples of exact solutions to the Laplacian growth (or 'Hele-Shaw') problem in the plane. The guiding principle in this connection is the fact that 'non-physical' singularities in the 'oil domain' of the Schwarz function are stationary, and the 'physical' singularities obey simple dynamics. We give an elementary proof that the same holds in any number of dimensions for the Schwarz potential, introduced by Khavinson and Shapiro (1989 Technical Report TRITA-MAT-1989-36 Royal Institute of Technology, Stockholm). An extension is also given for the so-called elliptic growth problem by defining a generalized Schwarz potential. New exact solutions are constructed, and we solve inverse problems of describing the driving singularities of a given flow. We demonstrate, by example, how C n -techniques can be used to locate the singularity set of the Schwarz potential. One of our methods is to prolong available local extension theorems by constructing 'globalizing families'.

  4. Properties of singular integral operators S α , β

    Indian Academy of Sciences (India)

    18

    45E10, 47B35, 47B20, 30D55. Key words and phrases. Singular integral operator, Toeplitz operator, Hardy space. The first author is supported by the NBHM Postdoctoral Fellowship, Govt. of India. The second author is supported by the Feinberg Postdoctoral Fellowship of the Weizmann Institute of Science. 1. Manuscript. 1.

  5. Transcendental smallness in singularly perturbed equations of volterra type

    International Nuclear Information System (INIS)

    Bijura, Angelina M.

    2003-11-01

    The application of different limit processes to a physical problem is an important tool in layer type techniques. Hence the study of initial layer correction functions is of central importance for understanding layer-type problems. It is shown that for singularly perturbed problems of Volterra type, the concept of transcendental smallness is an asymptotic one. Transcendentally small terms may be numerically important. (author)

  6. Slowly growing solutions of singular linear functional differential systems

    Czech Academy of Sciences Publication Activity Database

    Pylypenko, V.; Rontó, András

    2012-01-01

    Roč. 285, 5-6 (2012), s. 727-743 ISSN 0025-584X Institutional support: RVO:67985840 Keywords : functional differential equation * singular Cauchy problem * slowly growing solution Subject RIV: BA - General Mathematics Impact factor: 0.576, year: 2012 http://onlinelibrary.wiley.com/doi/10.1002/ mana .201000014/abstract

  7. Solutions for a class of iterated singular equations

    Indian Academy of Sciences (India)

    Euler) equation as special cases. In [1] and [2], Altın studied radial type solutions of a class of singular partial differential equations of even order and obtained Lord Kelvin principle for this class of equations. In [5], all radial type solutions of eq.

  8. Fourth order compact finite difference method for solving singularly ...

    African Journals Online (AJOL)

    A numerical method based on finite difference scheme with uniform mesh is presented for solving singularly perturbed two-point boundary value problems of 1D reaction-diffusion equations. First, the derivatives of the given differential equation is replaced by the finite difference approximations and then, solved by using ...

  9. Robust Monotone Iterates for Nonlinear Singularly Perturbed Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Boglaev Igor

    2009-01-01

    Full Text Available This paper is concerned with solving nonlinear singularly perturbed boundary value problems. Robust monotone iterates for solving nonlinear difference scheme are constructed. Uniform convergence of the monotone methods is investigated, and convergence rates are estimated. Numerical experiments complement the theoretical results.

  10. Existence of solutions to singular fractional differential systems with impulses

    Directory of Open Access Journals (Sweden)

    Xingyuan Liu

    2012-11-01

    Full Text Available By constructing a weighted Banach space and a completely continuous operator, we establish the existence of solutions for singular fractional differential systems with impulses. Our results are proved using the Leray-Schauder nonlinear alternative, and are illustrated with examples.

  11. Entanglement entropy of singular surfaces under relevant deformations in holography

    Science.gov (United States)

    Ghasemi, Mostafa; Parvizi, Shahrokh

    2018-02-01

    In the vacuum state of a CFT, the entanglement entropy of singular surfaces contains a logarithmic universal term which is only due to the singularity of the entangling surface. We consider the relevant perturbation of a three dimensional CFT for singular entangling surface. We observe that in addition to the universal term due to the entangling surface, there is a new logarithmic term which corresponds to a relevant perturbation of the conformal field theory with a coefficient depending on the scaling dimension of the relevant operator. We also find a new power law divergence in the holographic entanglement entropy. In addition, we study the effect of a relevant perturbation in the Gauss-Bonnet gravity for a singular entangling surface. Again a logarithmic term shows up. This new term is proportional to both the dimension of the relevant operator and the Gauss-Bonnet coupling. We also introduce the renormalized entanglement entropy for a kink region which in the UV limit reduces to a universal positive finite term.

  12. Non-perturbative string theories and singular surfaces

    International Nuclear Information System (INIS)

    Bochicchio, M.

    1990-01-01

    Singular surfaces are shown to be dense in the Teichmueller space of all Riemann surfaces and in the grasmannian. This happens because a regular surface of genus h, obtained identifying 2h disks in pairs, can be approximated by a very large genus singular surface with punctures dense in the 2h disks. A scale ε is introduced and the approximate genus is defined as half the number of connected regions covered by punctures of radius ε. The non-perturbative partition function is proposed to be a scaling limit of the partition function on such infinite genus singular surfaces with a weight which is the coupling constant g raised to the approximate genus. For a gaussian model in any space-time dimension the regularized partition function on singular surfaces of infinite genus is the partition function of a two-dimensional lattice gas of charges and monopoles. It is shown that modular invariance of the partition function implies a version of the Dirac quantization condition for the values of the e/m charges. Before the scaling limit the phases of the lattice gas may be classified according to the 't Hooft criteria for the condensation of e/m operators. (orig.)

  13. Positive solutions of singular boundary value problem of negative ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Thus we complete the proof of. Theorem 2.2. Acknowledgement. This work is supported in part by the NSF(Youth) of Shandong Province and NNSF of. China. References. [1] Fink A M, Gatica J A, Hernandez G E and Waltman P, Approximation of solutions of singular second order boundary value problems, SIAM J. Math.

  14. New singularities in nonrelativistic coupled channel scattering. II. Fourth order

    International Nuclear Information System (INIS)

    Khuri, N.N.; Tsun Wu, T.

    1997-01-01

    We consider a two-channel nonrelativistic potential scattering problem, and study perturbation theory in fourth order for the forward amplitude. The main result is that the new singularity demonstrated in second order in the preceding paper I also occurs at the same point in fourth order. Its strength is again that of a pole. copyright 1997 The American Physical Society

  15. Singularity free non-rotating cosmological solutions for perfect fluids ...

    Indian Academy of Sciences (India)

    Again an analysis leads to the Senovilla solution with. = ½. ¿ i.e.. Ф = ½. ¿p. 6. Conclusion. Our motivation was to examine whether non-singular non-rotating perfect fluid (with Ф = ) cosmologies exist besides those already discovered and presented in the literature. We have not been able to give an unequivocal answer but ...

  16. Fitted-Stable Finite Difference Method for Singularly Perturbed Two ...

    African Journals Online (AJOL)

    A fitted-stable central difference method is presented for solving singularly perturbed two point boundary value problems with the boundary layer at one end (left or right) of the interval. A fitting factor is introduced in second order stable central difference scheme (SCD Method) and its value is obtained using the theory of ...

  17. Application of singular eigenfunctions method of neutron transport theory

    International Nuclear Information System (INIS)

    Simovicj, R.

    1974-11-01

    A possibility of applying analitical method of neutron transport theory was investigated in research of processes governed by linearized Boltzmann equation, especially in semiconducting media. Analitical singular eigenfunctions method was developed and improved. It was applied in solving the electron transport equation for nonpolar semiconductors in case of constant high electrical field. Energy and angular distribution of high energy electrons was obtained

  18. Discrete singular convolution for the generalized variable-coefficient ...

    African Journals Online (AJOL)

    Numerical solutions of the generalized variable-coefficient Korteweg-de Vries equation are obtained using a discrete singular convolution and a fourth order singly diagonally implicit Runge-Kutta method for space and time discretisation, respectively. The theoretical convergence of the proposed method is rigorously ...

  19. Identifying secondary series for stepwise common singular spectrum ...

    African Journals Online (AJOL)

    Abstract. Common singular spectrum analysis is a technique which can be used to forecast a pri- mary time series by using the information from a secondary series. Not all secondary series, however, provide useful information. A first contribution in this paper is to point out the properties which a secondary series should ...

  20. Singular diffusionless limits of double-diffusive instabilities in magnetohydrodynamics.

    Science.gov (United States)

    Kirillov, Oleg N

    2017-09-01

    We study local instabilities of a differentially rotating viscous flow of electrically conducting incompressible fluid subject to an external azimuthal magnetic field. In the presence of the magnetic field, the hydrodynamically stable flow can demonstrate non-axisymmetric azimuthal magnetorotational instability (AMRI) both in the diffusionless case and in the double-diffusive case with viscous and ohmic dissipation. Performing stability analysis of amplitude transport equations of short-wavelength approximation, we find that the threshold of the diffusionless AMRI via the Hamilton-Hopf bifurcation is a singular limit of the thresholds of the viscous and resistive AMRI corresponding to the dissipative Hopf bifurcation and manifests itself as the Whitney umbrella singular point. A smooth transition between the two types of instabilities is possible only if the magnetic Prandtl number is equal to unity, Pm =1. At a fixed Pm ≠1, the threshold of the double-diffusive AMRI is displaced by finite distance in the parameter space with respect to the diffusionless case even in the zero dissipation limit. The complete neutral stability surface contains three Whitney umbrella singular points and two mutually orthogonal intervals of self-intersection. At these singularities, the double-diffusive system reduces to a marginally stable system which is either Hamiltonian or parity-time-symmetric.

  1. Priapism after a Singular Dose of Chlorpromazine | Suleekwe ...

    African Journals Online (AJOL)

    A case of priapism in a young Nigerian man following a singular dose of chlorpromazine is presented. Complete detumescence was achieved with needle aspiration and adrenaline infiltration. Potency was retained. A review of relevant literature is done. Key words: Priapism, Chlorpromazine, Needle aspiration.

  2. Nuclear power plant sensor fault detection using singular value

    Indian Academy of Sciences (India)

    The validation process consists of two steps: (i) residual generation and (ii) fault detection by residual evaluation.Singular value decomposition (SVD) and Euclidean distance (ED) methods are used to generate the residual and evaluate the fault on the residual space, respectively. This paper claims that SVD-based fault ...

  3. Singular technology – the research area promoting sustainable noosphere d evelopment in Belarus, Russia and other CIS nations

    Directory of Open Access Journals (Sweden)

    Petr Georgievich Nikitenko

    2014-05-01

    Full Text Available The article is devoted to nano- and femtotechnology as the basis for sustainable noosphere development of the global socio-economic mega system “nature–man–society” in its relation with the Universe (cosmos in Belarus, Kazakhstan, Russia, Ukraine and other CIS nations. Such factors as the formation of a new (noospheric political and economic outlook and the changes in scientific and technological structure of economy are gaining paramount importance under the action of the law of time and the adequate need to change the logic of socio-economic behavior of the population of planet Earth. Singular technology can become a strategic priority in finding practical solutions to these issues. When creating new productive forces and relations of production, these technologies act as a synergetic and bifurcation (unpredictable interaction of the three system technologies: artificial intelligence, molecular nanotechnology and molecular biotechnology. As soon as man grasps the essence of singular technology, it will be possible to create a new structure of matter at the nano- and femtotechnology levels, and to exercise control over this process. The new structure of matter is the basis for the creation of new productive forces and relations of production in the noosphere economy. Technological singularity originated in the mapping of the human genome, creation of a self-replicating organism, and a self-replicating machine. The nearest strategic objective (2020–2030s of singular technology is to create an artificial brain – a “digital man” on the basis of nano-and femtotechnology. This research area and practice will open the way to new forms of energy, productive forces, industrial relations and socio-economic noosphere systems in general. The wide application of singular technology in the economy will contribute to the conservation and civilizational development of the planetary megasystem “cosmos–nature–man–society”

  4. Classification of three-dimensional exceptional log canonical hypersurface singularities. II

    International Nuclear Information System (INIS)

    Kudryavtsev, S A

    2004-01-01

    We study three-dimensional exceptional canonical hypersurface singularities which do not satisfy the condition of well-formedness. The result obtained completes the classification of three-dimensional exceptional log canonical hypersurface singularities begun in [4

  5. Classification of three-dimensional exceptional log canonical hypersurface singularities. I

    International Nuclear Information System (INIS)

    Kudryavtsev, S A

    2002-01-01

    We describe three-dimensional exceptional strictly log canonical hypersurface singularities and give a detailed classification of three-dimensional exceptional canonical hypersurface singularities under the condition of well-formedness

  6. Classification of three-dimensional exceptional log canonical hypersurface singularities. I

    Science.gov (United States)

    Kudryavtsev, S. A.

    2002-10-01

    We describe three-dimensional exceptional strictly log canonical hypersurface singularities and give a detailed classification of three-dimensional exceptional canonical hypersurface singularities under the condition of well-formedness.

  7. Classification of three-dimensional exceptional log canonical hypersurface singularities. II

    Science.gov (United States)

    Kudryavtsev, S. A.

    2004-04-01

    We study three-dimensional exceptional canonical hypersurface singularities which do not satisfy the condition of well-formedness. The result obtained completes the classification of three-dimensional exceptional log canonical hypersurface singularities begun in [4].

  8. The dating game at dimension zero: creation and annihilation of phase singularities in optical random waves

    NARCIS (Netherlands)

    De Angelis, L.; Alpeggiani, F.; Di Falco, Andrea; Kuipers, L.

    2017-01-01

    Phase singularities can be created and annihilated, but always in pairs. With optical near-field measurements, we track singularities in random waves as a function of wavelength, and discover correlations between creation and annihilation events.

  9. Constructing diabatic representations using adiabatic and approximate diabatic data - Coping with diabolical singularities

    Science.gov (United States)

    Zhu, Xiaolei; Yarkony, David R.

    2016-01-01

    We have recently introduced a diabatization scheme, which simultaneously fits and diabatizes adiabatic ab initio electronic wave functions, Zhu and Yarkony J. Chem. Phys. 140, 024112 (2014). The algorithm uses derivative couplings in the defining equations for the diabatic Hamiltonian, Hd, and fits all its matrix elements simultaneously to adiabatic state data. This procedure ultimately provides an accurate, quantifiably diabatic, representation of the adiabatic electronic structure data. However, optimizing the large number of nonlinear parameters in the basis functions and adjusting the number and kind of basis functions from which the fit is built, which provide the essential flexibility, has proved challenging. In this work, we introduce a procedure that combines adiabatic state and diabatic state data to efficiently optimize the nonlinear parameters and basis function expansion. Further, we consider using direct properties based diabatizations to initialize the fitting procedure. To address this issue, we introduce a systematic method for eliminating the debilitating (diabolical) singularities in the defining equations of properties based diabatizations. We exploit the observation that if approximate diabatic data are available, the commonly used approach of fitting each matrix element of Hd individually provides a starting point (seed) from which convergence of the full Hd construction algorithm is rapid. The optimization of nonlinear parameters and basis functions and the elimination of debilitating singularities are, respectively, illustrated using the 1,2,3,41A states of phenol and the 1,21A states of NH3, states which are coupled by conical intersections.

  10. Constructing diabatic representations using adiabatic and approximate diabatic data – Coping with diabolical singularities

    International Nuclear Information System (INIS)

    Zhu, Xiaolei; Yarkony, David R.

    2016-01-01

    We have recently introduced a diabatization scheme, which simultaneously fits and diabatizes adiabatic ab initio electronic wave functions, Zhu and Yarkony J. Chem. Phys. 140, 024112 (2014). The algorithm uses derivative couplings in the defining equations for the diabatic Hamiltonian, H d , and fits all its matrix elements simultaneously to adiabatic state data. This procedure ultimately provides an accurate, quantifiably diabatic, representation of the adiabatic electronic structure data. However, optimizing the large number of nonlinear parameters in the basis functions and adjusting the number and kind of basis functions from which the fit is built, which provide the essential flexibility, has proved challenging. In this work, we introduce a procedure that combines adiabatic state and diabatic state data to efficiently optimize the nonlinear parameters and basis function expansion. Further, we consider using direct properties based diabatizations to initialize the fitting procedure. To address this issue, we introduce a systematic method for eliminating the debilitating (diabolical) singularities in the defining equations of properties based diabatizations. We exploit the observation that if approximate diabatic data are available, the commonly used approach of fitting each matrix element of H d individually provides a starting point (seed) from which convergence of the full H d construction algorithm is rapid. The optimization of nonlinear parameters and basis functions and the elimination of debilitating singularities are, respectively, illustrated using the 1,2,3,4 1 A states of phenol and the 1,2 1 A states of NH 3 , states which are coupled by conical intersections

  11. Singular lensing from the scattering on special space-time defects

    Science.gov (United States)

    Mavromatos, Nick E.; Papavassiliou, Joannis

    2018-01-01

    It is well known that certain special classes of self-gravitating point-like defects, such as global (non gauged) monopoles, give rise to non-asymptotically flat space-times characterized by solid angle deficits, whose size depends on the details of the underlying microscopic models. The scattering of electrically neutral particles on such space-times is described by amplitudes that exhibit resonant behaviour when thescattering and deficit angles coincide. This, in turn, leads to ring-like structures where the cross sections are formally divergent ("singular lensing"). In this work, we revisit this particular phenomenon, with the twofold purpose of placing it in a contemporary and more general context, in view of renewed interest in the theory and general phenomenology of such defects, and, more importantly, of addressing certain subtleties that appear in the particular computation that leads to the aforementioned effect. In particular, by adopting a specific regularization procedure for the formally infinite Legendre series encountered, we manage to ensure the recovery of the Minkowski space-time, and thus the disappearance of the lensing phenomenon, in the no-defect limit, and the validity of the optical theorem for the elastic total cross section. In addition, the singular nature of the phenomenon is confirmed by means of an alternative calculation, which, unlike the original approach, makes no use of the generating function of the Legendre polynomials, but rather exploits the asymptotic properties of the Fresnel integrals.

  12. Addressing Sexual Harassment

    Science.gov (United States)

    Young, Ellie L.; Ashbaker, Betty Y.

    2008-01-01

    This article discusses ways on how to address the problem of sexual harassment in schools. Sexual harassment--simply defined as any unwanted and unwelcome sexual behavior--is a sensitive topic. Merely providing students, parents, and staff members with information about the school's sexual harassment policy is insufficient; schools must take…

  13. Addressing Social Issues.

    Science.gov (United States)

    Schoebel, Susan

    1991-01-01

    Maintains that advertising can help people become more aware of social responsibilities. Describes a successful nationwide newspaper advertising competition for college students in which ads address social issues such as literacy, drugs, teen suicide, and teen pregnancy. Notes how the ads have helped grassroots programs throughout the United…

  14. Light-like big bang singularities in string and matrix theories

    International Nuclear Information System (INIS)

    Craps, Ben; Evnin, Oleg

    2011-01-01

    Important open questions in cosmology require a better understanding of the big bang singularity. In string and matrix theories, light-like analogues of cosmological singularities (singular plane wave backgrounds) turn out to be particularly tractable. We give a status report on the current understanding of such light-like big bang models, presenting both solved and open problems.

  15. The analysis of optimal singular controls for SEIR model of tuberculosis

    Science.gov (United States)

    Marpaung, Faridawaty; Rangkuti, Yulita M.; Sinaga, Marlina S.

    2014-12-01

    The optimally of singular control for SEIR model of Tuberculosis is analyzed. There are controls that correspond to time of the vaccination and treatment schedule. The optimally of singular control is obtained by differentiate a switching function of the model. The result shows that vaccination and treatment control are singular.

  16. Singular ferromagnetic susceptibility of the transverse-field Ising antiferromagnet on the triangular lattice

    Science.gov (United States)

    Biswas, Sounak; Damle, Kedar

    2018-02-01

    A transverse magnetic field Γ is known to induce antiferromagnetic three-sublattice order of the Ising spins σz in the triangular lattice Ising antiferromagnet at low enough temperature. This low-temperature order is known to melt on heating in a two-step manner, with a power-law ordered intermediate temperature phase characterized by power-law correlations at the three-sublattice wave vector Q : ˜cos(Q .R ⃗) /|R⃗| η (T ) with the temperature-dependent power-law exponent η (T )∈(1 /9 ,1 /4 ) . Here, we use a quantum cluster algorithm to study the ferromagnetic easy-axis susceptibility χu(L ) of an L ×L sample in this power-law ordered phase. Our numerical results are consistent with a recent prediction of a singular L dependence χu(L ) ˜L2 -9 η when η (T ) is in the range (1 /9 ,2 /9 ) . This finite-size result implies, via standard scaling arguments, that the ferromagnetic susceptibility χu(B ) to a uniform field B along the easy axis is singular at intermediate temperatures in the small B limit, χu(B ) ˜|B| -4/-18 η 4 -9 η for η (T )∈(1 /9 ,2 /9 ) , although there is no ferromagnetic long-range order in the low temperature state. Additionally we establish similar two-step melting behavior (via a study of the order parameter susceptibility χQ) in the case of the ferrimagnetic three-sublattice ordered phase which is stabilized by ferromagnetic next-neighbor couplings (J2) and confirm that the ferromagnetic susceptibility obeys the predicted singular form in the associated power-law ordered phase.

  17. Multiset singular value decomposition for joint analysis of multi-modal data: application to fingerprint analysis

    Science.gov (United States)

    Emge, Darren K.; Adalı, Tülay

    2014-06-01

    As the availability and use of imaging methodologies continues to increase, there is a fundamental need to jointly analyze data that is collected from multiple modalities. This analysis is further complicated when, the size or resolution of the images differ, implying that the observation lengths of each of modality can be highly varying. To address this expanding landscape, we introduce the multiset singular value decomposition (MSVD), which can perform a joint analysis on any number of modalities regardless of their individual observation lengths. Through simulations, the inter modal relationships across the different modalities which are revealed by the MSVD are shown. We apply the MSVD to forensic fingerprint analysis, showing that MSVD joint analysis successfully identifies relevant similarities for further analysis, significantly reducing the processing time required. This reduction, takes this technique from a laboratory method to a useful forensic tool with applications across the law enforcement and security regimes.

  18. Full-Order Disturbance-Observer-Based Control for Singular Hybrid System

    Directory of Open Access Journals (Sweden)

    Xiuming Yao

    2013-01-01

    Full Text Available The problem of the disturbance-observer-based control for singular hybrid system with two types of disturbances is addressed in this paper. Under the assumption that the system states are, unavailable, full-order observers (for both system states and the disturbance and a nonlinear control scheme are constructed, such that the composite system can be guaranteed to be stochastically admissible, and the two types of disturbances can be attenuated and rejected, simultaneously. Based on the Lyapunov stability theory, sufficient conditions for the existence of the desired full-order disturbance-observer-based controllers are established in terms of linear matrix inequalities (LMIs. Finally, a numerical example is provided to show the effectiveness of the proposed approaches.

  19. Singular Spectrum Analysis: A Note on Data Processing for Fourier Transform Hyperspectral Imagers.

    Science.gov (United States)

    Rafert, J Bruce; Zabalza, Jaime; Marshall, Stephen; Ren, Jinchang

    2016-09-01

    Hyperspectral remote sensing is experiencing a dazzling proliferation of new sensors, platforms, systems, and applications with the introduction of novel, low-cost, low-weight sensors. Curiously, relatively little development is now occurring in the use of Fourier transform (FT) systems, which have the potential to operate at extremely high throughput without use of a slit or reductions in both spatial and spectral resolution that thin film based mosaic sensors introduce. This study introduces a new physics-based analytical framework called singular spectrum analysis (SSA) to process raw hyperspectral imagery collected with FT imagers that addresses some of the data processing issues associated with the use of the inverse FT. Synthetic interferogram data are analyzed using SSA, which adaptively decomposes the original synthetic interferogram into several independent components associated with the signal, photon and system noise, and the field illumination pattern. © The Author(s) 2016.

  20. Vafa-Witten theorem and Lee-Yang singularities

    International Nuclear Information System (INIS)

    Aguado, M.; Asorey, M.

    2009-01-01

    We prove the analyticity of the finite volume QCD partition function for complex values of the θ-vacuum parameter. The absence of singularities different from Lee-Yang zeros only permits and cusp singularities in the vacuum energy density and never or cusps. This fact together with the Vafa-Witten diamagnetic inequality implies the vanishing of the density of Lee-Yang zeros at θ=0 and has an important consequence: the absence of a first order phase transition at θ=0. The result provides a key missing link in the Vafa-Witten proof of parity symmetry conservation in vectorlike gauge theories and follows from renormalizability, unitarity, positivity, and existence of Bogomol'nyi-Prasad-Sommerfield bounds. Generalizations of this theorem to other physical systems are also discussed, with particular interest focused on the nonlinear CP N sigma model.

  1. Naked singularity formation in Brans-Dicke theory

    Energy Technology Data Exchange (ETDEWEB)

    Ziaie, Amir Hadi; Atazadeh, Khedmat [Department of Physics, Shahid Beheshti University, Evin, Tehran 19839 (Iran, Islamic Republic of); Tavakoli, Yaser, E-mail: am.ziaie@mail.sbu.ac.i, E-mail: k-atazadeh@sbu.ac.i, E-mail: tavakoli@ubi.p [Departamento de Fisica, Universidade da Beira Interior, Rua Marques d' Avila e Bolama, 6200 Covilha (Portugal)

    2010-04-07

    Gravitational collapse of the Brans-Dicke scalar field with non-zero potential in the presence of matter fluid obeying the barotropic equation of state, p = wrho, is studied. Utilizing the concept of the expansion parameter, it is seen that the cosmic censorship conjecture may be violated for w=-1/3 and w=-2/3 which correspond to the cosmic string and domain wall, respectively. We have shown that physically, it is the rate of collapse that governs the formation of a black hole or a naked singularity as the final fate of dynamical evolution and only for these two cases can the singularity be naked as the collapse end state. Also the weak energy condition is satisfied by the collapsing configuration.

  2. Correlation energy for elementary bosons: Physics of the singularity

    Energy Technology Data Exchange (ETDEWEB)

    Shiau, Shiue-Yuan, E-mail: syshiau@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Tainan, 701, Taiwan (China); Combescot, Monique [Institut des NanoSciences de Paris, Université Pierre et Marie Curie, CNRS, 4 place Jussieu, 75005 Paris (France); Chang, Yia-Chung, E-mail: yiachang@gate.sinica.edu.tw [Research Center for Applied Sciences, Academia Sinica, Taipei, 115, Taiwan (China); Department of Physics, National Cheng Kung University, Tainan, 701, Taiwan (China)

    2016-04-15

    We propose a compact perturbative approach that reveals the physical origin of the singularity occurring in the density dependence of correlation energy: like fermions, elementary bosons have a singular correlation energy which comes from the accumulation, through Feynman “bubble” diagrams, of the same non-zero momentum transfer excitations from the free particle ground state, that is, the Fermi sea for fermions and the Bose–Einstein condensate for bosons. This understanding paves the way toward deriving the correlation energy of composite bosons like atomic dimers and semiconductor excitons, by suggesting Shiva diagrams that have similarity with Feynman “bubble” diagrams, the previous elementary boson approaches, which hide this physics, being inappropriate to do so.

  3. Singularities at the contact point of two kissing Neumann balls

    Science.gov (United States)

    Nazarov, Sergey A.; Taskinen, Jari

    2018-02-01

    We investigate eigenfunctions of the Neumann Laplacian in a bounded domain Ω ⊂Rd, where a cuspidal singularity is caused by a cavity consisting of two touching balls, or discs in the planar case. We prove that the eigenfunctions with all of their derivatives are bounded in Ω ‾, if the dimension d equals 2, but in dimension d ≥ 3 their gradients have a strong singularity O (| x - O|-α), α ∈ (0 , 2 -√{ 2 } ] at the point of tangency O. Our study is based on dimension reduction and other asymptotic procedures, as well as the Kondratiev theory applied to the limit differential equation in the punctured hyperplane R d - 1 ∖ O. We also discuss other shapes producing thinning gaps between touching cavities.

  4. Bifurcations of a class of singular biological economic models

    International Nuclear Information System (INIS)

    Zhang Xue; Zhang Qingling; Zhang Yue

    2009-01-01

    This paper studies systematically a prey-predator singular biological economic model with time delay. It shows that this model exhibits two bifurcation phenomena when the economic profit is zero. One is transcritical bifurcation which changes the stability of the system, and the other is singular induced bifurcation which indicates that zero economic profit brings impulse, i.e., rapid expansion of the population in biological explanation. On the other hand, if the economic profit is positive, at a critical value of bifurcation parameter, the system undergoes a Hopf bifurcation, i.e., the increase of delay destabilizes the system and bifurcates into small amplitude periodic solution. Finally, by using Matlab software, numerical simulations illustrate the effectiveness of the results obtained here. In addition, we study numerically that the system undergoes a saddle-node bifurcation when the bifurcation parameter goes through critical value of positive economic profit.

  5. Formation of current singularity in a topologically constrained plasma

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yao [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences; Huang, Yi-Min [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences; Qin, Hong [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences; Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China.; Bhattacharjee, A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences

    2016-02-01

    Recently a variational integrator for ideal magnetohydrodynamics in Lagrangian labeling has been developed. Its built-in frozen-in equation makes it optimal for studying current sheet formation. We use this scheme to study the Hahm-Kulsrud-Taylor problem, which considers the response of a 2D plasma magnetized by a sheared field under sinusoidal boundary forcing. We obtain an equilibrium solution that preserves the magnetic topology of the initial field exactly, with a fluid mapping that is non-differentiable. Unlike previous studies that examine the current density output, we identify a singular current sheet from the fluid mapping. These results are benchmarked with a constrained Grad-Shafranov solver. The same signature of current singularity can be found in other cases with more complex magnetic topologies.

  6. Asymptotically AdS spacetimes with a timelike Kasner singularity

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jie [Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel)

    2016-07-21

    Exact solutions to Einstein’s equations for holographic models are presented and studied. The IR geometry has a timelike cousin of the Kasner singularity, which is the less generic case of the BKL (Belinski-Khalatnikov-Lifshitz) singularity, and the UV is asymptotically AdS. This solution describes a holographic RG flow between them. The solution’s appearance is an interpolation between the planar AdS black hole and the AdS soliton. The causality constraint is always satisfied. The entanglement entropy and Wilson loops are discussed. The boundary condition for the current-current correlation function and the Laplacian in the IR is examined. There is no infalling wave in the IR, but instead, there is a normalizable solution in the IR. In a special case, a hyperscaling-violating geometry is obtained after a dimensional reduction.

  7. Singular symmetric functionals and Banach limits with additional invariance properties

    International Nuclear Information System (INIS)

    Dodds, P G; Pagter, B de; Sedaev, A A; Semenov, E M; Sukochev, F A

    2003-01-01

    For symmetric spaces of measurable functions on the real half-line, we study the problem of existence of positive linear functionals monotone with respect to the Hardy-Littlewood semi-ordering, the so-called symmetric functionals. Two new wide classes of symmetric spaces are constructed which are distinct from Marcinkiewicz spaces and for which the set of symmetric functionals is non-empty. We consider a new construction of singular symmetric functionals based on the translation-invariance of Banach limits defined on the space of bounded sequences. We prove the existence of Banach limits invariant under the action of the Hardy operator and all dilation operators. This result is used to establish the stability of the new construction of singular symmetric functionals for an important class of generating sequences

  8. Wentzel-Bardeen singularity in coupled Luttinger liquids: Transport properties

    International Nuclear Information System (INIS)

    Martin, T.

    1994-01-01

    The recent progress on 1 D interacting electrons systems and their applications to study the transport properties of quasi one dimensional wires is reviewed. We focus on strongly correlated elections coupled to low energy acoustic phonons in one dimension. The exponents of various response functions are calculated, and their striking sensitivity to the Wentzel-Bardeen singularity is discussed. For the Hubbard model coupled to phonons the equivalent of a phase diagram is established. By increasing the filling factor towards half filling the WB singularity is approached. This in turn suppresses antiferromagnetic fluctuations and drives the system towards the superconducting regime, via a new intermediate (metallic) phase. The implications of this phenomenon on the transport properties of an ideal wire as well as the properties of a wire with weak or strong scattering are analyzed in a perturbative renormalization group calculation. This allows to recover the three regimes predicted from the divergence criteria of the response functions

  9. Multiscale singular value manifold for rotating machinery fault diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yi; Lu, BaoChun; Zhang, Deng Feng [School of Mechanical Engineering, Nanjing University of Science and Technology,Nanjing (United States)

    2017-01-15

    Time-frequency distribution of vibration signal can be considered as an image that contains more information than signal in time domain. Manifold learning is a novel theory for image recognition that can be also applied to rotating machinery fault pattern recognition based on time-frequency distributions. However, the vibration signal of rotating machinery in fault condition contains cyclical transient impulses with different phrases which are detrimental to image recognition for time-frequency distribution. To eliminate the effects of phase differences and extract the inherent features of time-frequency distributions, a multiscale singular value manifold method is proposed. The obtained low-dimensional multiscale singular value manifold features can reveal the differences of different fault patterns and they are applicable to classification and diagnosis. Experimental verification proves that the performance of the proposed method is superior in rotating machinery fault diagnosis.

  10. Heterogeneous ice nucleation: bridging stochastic and singular freezing behavior

    Science.gov (United States)

    Niedermeier, D.; Shaw, R. A.; Hartmann, S.; Wex, H.; Clauss, T.; Voigtländer, J.; Stratmann, F.

    2011-01-01

    Heterogeneous ice nucleation, a primary pathway for ice formation in the atmosphere, has been described alternately as being stochastic, in direct analogy with homogeneous nucleation, or singular, with ice nuclei initiating freezing at deterministic temperatures. We present an idealized model that bridges these stochastic and singular descriptions of heterogeneous ice nucleation. This "soccer ball" model treats statistically similar particles as being covered with surface sites (patches of finite area) characterized by different nucleation barriers, but with each surface site following the stochastic nature of ice embryo formation. The model provides a phenomenological explanation for seemingly contradictory experimental results obtained in our research groups. We suggest that ice nucleation is fundamentally a stochastic process but that for realistic atmospheric particle populations this process can be masked by the heterogeneity of surface properties. Full evaluation of the model will require experiments with well characterized ice nucleating particles and the ability to vary both temperature and waiting time for freezing.

  11. Lecture notes on mean curvature flow, barriers and singular perturbations

    CERN Document Server

    Bellettini, Giovanni

    2013-01-01

    The aim of the book is to study some aspects of geometric evolutions, such as mean curvature flow and anisotropic mean curvature flow of hypersurfaces. We analyze the origin of such flows and their geometric and variational nature. Some of the most important aspects of mean curvature flow are described, such as the comparison principle and its use in the definition of suitable weak solutions. The anisotropic evolutions, which can be considered as a generalization of mean curvature flow, are studied from the view point of Finsler geometry. Concerning singular perturbations, we discuss the convergence of the Allen–Cahn (or Ginsburg–Landau) type equations to (possibly anisotropic) mean curvature flow before the onset of singularities in the limit problem. We study such kinds of asymptotic problems also in the static case, showing convergence to prescribed curvature-type problems.

  12. Horizon quantum fuzziness for non-singular black holes

    Science.gov (United States)

    Giugno, Andrea; Giusti, Andrea; Helou, Alexis

    2018-03-01

    We study the extent of quantum gravitational effects in the internal region of non-singular, Hayward-like solutions of Einstein's field equations according to the formalism known as horizon quantum mechanics. We grant a microscopic description to the horizon by considering a huge number of soft, off-shell gravitons, which superimpose in the same quantum state, as suggested by Dvali and Gomez. In addition to that, the constituents of such a configuration are understood as loosely confined in a binding harmonic potential. A simple analysis shows that the resolution of a central singularity through quantum physics does not tarnish the classical description, which is bestowed upon this extended self-gravitating system by General Relativity. Finally, we estimate the appearance of an internal horizon as being negligible, because of the suppression of the related probability caused by the large number of virtual gravitons.

  13. A Schwarz alternating procedure for singular perturbation problems

    Energy Technology Data Exchange (ETDEWEB)

    Garbey, M. [Universit Claude Bernard Lyon, Villeurbanne (France); Kaper, H.G. [Argonne National Lab., IL (United States)

    1994-12-31

    The authors show that the Schwarz alternating procedure offers a good algorithm for the numerical solution of singular perturbation problems, provided the domain decomposition is properly designed to resolve the boundary and transition layers. They give sharp estimates for the optimal position of the domain boundaries and present convergence rates of the algorithm for various second-order singular perturbation problems. The splitting of the operator is domain-dependent, and the iterative solution of each subproblem is based on a modified asymptotic expansion of the operator. They show that this asymptotic-induced method leads to a family of efficient massively parallel algorithms and report on implementation results for a turning-point problem and a combustion problem.

  14. Propagation of the Lissajous singularity dipole emergent from non-paraxial polychromatic beams

    Science.gov (United States)

    Haitao, Chen; Gao, Zenghui; Wang, Wanqing

    2017-06-01

    The propagation of the Lissajous singularity dipole (LSD) emergent from the non-paraxial polychromatic beams is studied. It is found that the handedness reversal of Lissajous singularities, the change in the shape of Lissajous figures, as well as the creation and annihilation of the LSD may take place by varying the propagation distance, off-axis parameter, wavelength, or amplitude factor. Comparing with the LSD emergent from paraxial polychromatic beams, the output field of non-paraxial polychromatic beams is more complicated, which results in some richer dynamic behaviors of Lissajous singularities, such as more Lissajous singularities and no vanishing of a single Lissajous singularity at the plane z>0.

  15. On new bulk singularity structures, RR couplings in the asymmetric picture and their all order α{sup '} corrections

    Energy Technology Data Exchange (ETDEWEB)

    Hatefi, Ehsan [Queen Mary University of London, Centre for Research in String Theory, School of Physics and Astronomy, London (United Kingdom); TU Wien, Institute for Theoretical Physics, Vienna (Austria)

    2017-08-15

    We have analyzed in detail four and five point functions of the string theory amplitudes, including a closed string Ramond-Ramond (RR) in an asymmetric picture and either two or three transverse scalar fields in both IIA and IIB. The complete forms of these S-matrices are derived and these asymmetric S-matrices are also compared with their own symmetric results. This leads us to explore two different kinds of bulk singularity structures as well as various new couplings in the asymmetric picture of the amplitude in type II string theory. All order α{sup '} higher derivative corrections to these new couplings have been discovered as well. Several remarks for these two new bulk singularity structures and for contact interactions of the S-matrix have also been made. (orig.)

  16. Singular twisting moment in a cracked thin plate under an electric current flow and a magnetic field

    International Nuclear Information System (INIS)

    Shindo, Yasuhide; Tamura, Hitoshi

    1988-01-01

    This paper deals with the electromagneto-elastic problem of an elastic conducting thin plate containing a through crack under a uniform electric current flow and a constant magnetic field. The current flow is disturbed by the presence of the crack and a twisting moment is caused by the interaction between the magnetic field and the disturbed current. Two problems concerning the electric current density field and the electromagneto-elastic field are formulated by means of integral transform techniques and reduced to two pairs of dual integral equations. These integral equations are solved exactly, and the singular current densities, the displacement of the crack surface and the singular moments near the crack tip are expressed in closed forms. (author)

  17. On new bulk singularity structures, RR couplings in the asymmetric picture and their all order α ' corrections

    Science.gov (United States)

    Hatefi, Ehsan

    2017-08-01

    We have analyzed in detail four and five point functions of the string theory amplitudes, including a closed string Ramond-Ramond (RR) in an asymmetric picture and either two or three transverse scalar fields in both IIA and IIB. The complete forms of these S-matrices are derived and these asymmetric S-matrices are also compared with their own symmetric results. This leads us to explore two different kinds of bulk singularity structures as well as various new couplings in the asymmetric picture of the amplitude in type II string theory. All order α ' higher derivative corrections to these new couplings have been discovered as well. Several remarks for these two new bulk singularity structures and for contact interactions of the S-matrix have also been made.

  18. Pronouns, Address Forms and Politeness Strategies in Odia

    OpenAIRE

    Kalyanamalini SAHOO

    2013-01-01

    This study discusses how various politeness strategies are implemented linguistically and how linguistic usage is related to social and contextual factors in the Indic language Odia. The study extends the validity of politeness theory (Brown & Levinson, 1978) with reference to Odia speech-patterns and shows that Odia usage of politeness would be more differentiated according to the social relationship and gender than the content of the message.  In Brown and Levinson’s model, individual speec...

  19. Pronouns, Address Forms and Politeness Strategies in Odia

    Directory of Open Access Journals (Sweden)

    Kalyanamalini SAHOO

    2013-04-01

    Full Text Available This study discusses how various politeness strategies are implemented linguistically and how linguistic usage is related to social and contextual factors in the Indic language Odia. The study extends the validity of politeness theory (Brown & Levinson, 1978 with reference to Odia speech-patterns and shows that Odia usage of politeness would be more differentiated according to the social relationship and gender than the content of the message.  In Brown and Levinson’s model, individual speech acts are considered to be inherently polite or impolite.  However, in Odia, it is found that communities of practice, rather than individuals, determine whether speech acts are considered polite or impolite. Thus, politeness should be considered as a set of strategies or practices set by particular groups or communities of practice as a socially constructed norm for themselves.

  20. Solitary wave solution to a singularly perturbed generalized Gardner ...

    Indian Academy of Sciences (India)

    2017-03-24

    Mar 24, 2017 ... This paper is concerned with the existence of travelling wave solutions to a singularly perturbed gen- eralized Gardner equation .... will be used in §3 for our purpose. For convenience, we use a version of this theory due to Jones [2]. For the system. { x (t) = f (x, y, ε), y (t) = εg(x, y, ε),. (2.1) where x ∈ Rn, y ...

  1. Fundamental groups of singular quasi-projective varieties

    International Nuclear Information System (INIS)

    Eyral, Christophe

    2002-09-01

    We express, under appropriate conditions, the fundamental group of a singular complex quasi-projective variety as a quotient of the fundamental group of a general hyperplane section, using a generic pencil. The subgroup by which the quotient is taken is described with the help of the monodromies around the exceptional hyperplanes of the pencil. This is a new generalization of the classical Zariski-van Kampen theorem on curves. (author)

  2. Singular divergence instability thresholds of kinematically constrained circulatory systems

    Energy Technology Data Exchange (ETDEWEB)

    Kirillov, O.N., E-mail: o.kirillov@hzdr.de [Magnetohydrodynamics Division, Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, D-01314 Dresden (Germany); Challamel, N. [University of South Brittany, LIMATB, Lorient (France); Darve, F. [Laboratoire Sols Solides Structures, UJF-INPG-CNRS, Grenoble (France); Lerbet, J. [IBISC, Universite d' Evry Val d' Essone, 40 Rue Pelvoux, CE 1455 Courcouronnes, 91020 Evry Cedex (France); Nicot, F. [Cemagref, Unite de Recherche Erosion Torrentielle Neige et Avalanches, Grenoble (France)

    2014-01-10

    Static instability or divergence threshold of both potential and circulatory systems with kinematic constraints depends singularly on the constraints' coefficients. Particularly, the critical buckling load of the kinematically constrained Ziegler's pendulum as a function of two coefficients of the constraint is given by the Plücker conoid of degree n=2. This simple mechanical model exhibits a structural instability similar to that responsible for the Velikhov–Chandrasekhar paradox in the theory of magnetorotational instability.

  3. Singularity theory and N = 2 superconformal field theories

    International Nuclear Information System (INIS)

    Warner, N.P.

    1989-01-01

    The N = 2 superconformal field theories that appear at the fixed points of the renormalization group flows of Landau-Ginsburg models are discussed. Some of the techniques of singularity theory are employed to deduce properties of these superconformal theories. These ideas are then used to deduce the relationship between Calabi-Yau compactifications and tensored discrete series models. The chiral rings of general N = 2 superconformal theories are also described. 14 refs

  4. Dyslexia singular brain; Le singulier cerveau des dyslexiques

    Energy Technology Data Exchange (ETDEWEB)

    Habis, M.; Robichon, F. [Centre Hospitalier Universitaire de la Timone, 13 - Marseille (France); Demonet, J.F. [Centre Hospitalier Universitaire la Grave, 31 - Toulouse (France)

    1996-07-01

    Of late ten years, neurologists are studying the brain of the dyslectics. The cerebral imagery (NMR imaging, positron computed tomography) has allowed to confirm the anatomical particularities discovered by some of them: asymmetry default of cerebral hemispheres, size abnormally large of the white substance mass which connect the two hemispheres. The functional imagery, when visualizing this singular brain at work, allows to understand why it labors to reading. (O.M.). 4 refs.

  5. The index of a holomorphic flow with an isolated singularity

    International Nuclear Information System (INIS)

    Verjovsky, A.; Gomez-Mont, X.; Seade, J.

    1987-05-01

    The index of a holomorphic vector field Z defined on a germ of a hypersurface V with an isolated singularity is defined. The index coincides with the Hopf index in the smooth case. Formulae for the index in terms of the ideals defining Z and V are given. Topological invariance of the index and the Chern class as well as formulae relating global invariants of the Poincare-Hopf type are proven. (author). 26 refs

  6. Geomechanical time series and its singularity spectrum analysis

    Czech Academy of Sciences Publication Activity Database

    Lyubushin, Alexei A.; Kaláb, Zdeněk; Lednická, Markéta

    2012-01-01

    Roč. 47, č. 1 (2012), s. 69-77 ISSN 1217-8977 R&D Projects: GA ČR GA105/09/0089 Institutional research plan: CEZ:AV0Z30860518 Keywords : geomechanical time series * singularity spectrum * time series segmentation * laser distance meter Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.347, year: 2012 http://www.akademiai.com/content/88v4027758382225/fulltext.pdf

  7. Singular value decomposition methods for wave propagation analysis

    Czech Academy of Sciences Publication Activity Database

    Santolík, Ondřej; Parrot, M.; Lefeuvre, F.

    2003-01-01

    Roč. 38, č. 1 (2003), s. 10-1-10-13 ISSN 0048-6604 R&D Projects: GA ČR GA205/01/1064 Grant - others:Barrande(CZ) 98039/98055 Institutional research plan: CEZ:AV0Z3042911; CEZ:MSM 113200004 Keywords : wave propagation * singular value decomposition Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.832, year: 2003

  8. Positive solutions for higher order singular p-Laplacian boundary ...

    Indian Academy of Sciences (India)

    (1.4). The singular or nonsingular fourth-order boundary value problems (1.4) have been exten- sively studied by many authors [1,2,6,7,10,13–15]. Shi and Chen [10,11] gave the sufficient and necessary conditions for the existence of positive solutions to superlinear problem (1.4) by the fixed point theorem in cones when 1 ...

  9. Singularity problems of the power law for modeling creep compliance

    Science.gov (United States)

    Dillard, D. A.; Hiel, C.

    1985-01-01

    An explanation is offered for the extreme sensitivity that has been observed in the power law parameters of the T300/934 graphite epoxy material systems during experiments to evaluate the system's viscoelastic response. It is shown that the singularity associated with the power law can explain the sensitivity as well as the observed variability in the calculated parameters. Techniques for minimizing errors are suggested.

  10. The structure and singularities of quotient arc complexes

    DEFF Research Database (Denmark)

    Penner, Robert

    2008-01-01

    A well-known combinatorial fact is that the simplicial complex consisting of disjointly embedded chords in a convex planar polygon is a sphere. For any surface F with non-empty boundary, there is an analogous complex QA(F) consisting of equivalence classes of arcs in F connecting a given finite s...... with a related quotient arc complex in the punctured case with no boundary. Namely, the essential singularities of the natural cellular compactification of Riemann's moduli space can be described....

  11. On linear viscoelasticity within general fractional derivatives without singular kernel

    Directory of Open Access Journals (Sweden)

    Gao Feng

    2017-01-01

    Full Text Available The Riemann-Liouville and Caputo-Liouville fractional derivatives without singular kernel are proposed as mathematical tools to describe the mathematical models in line viscoelasticity in the present article. The fractional mechanical models containing the Maxwell and Kelvin-Voigt elements are graphically discussed with the Laplace transform. The results are accurate and efficient to reveal the complex behaviors of the real materials.

  12. Singular perturbation method for evolution equations in Banach spaces

    International Nuclear Information System (INIS)

    Mika, J.

    1976-01-01

    The singular perturbation method is applied to linear evolution equations in Banach spaces containing a small parameter multiplying the time derivative. Outer and inner asymptotic solutions are formulated and the sense in which they converge to the exact solution is rigorously defined. It is then shown that the sum of the two asymptotic solutions converges uniformly to the exact solution. Possible applications to various physical situations are indicated. (Auth.)

  13. Bifurcation for non linear ordinary differential equations with singular perturbation

    Directory of Open Access Journals (Sweden)

    Safia Acher Spitalier

    2016-10-01

    Full Text Available We study a family of singularly perturbed ODEs with one parameter and compare their solutions to the ones of the corresponding reduced equations. The interesting characteristic here is that the reduced equations have more than one solution for a given set of initial conditions. Then we consider how those solutions are organized for different values of the parameter. The bifurcation associated to this situation is studied using a minimal set of tools from non standard analysis.

  14. A Parameter Robust Method for Singularly Perturbed Delay Differential Equations

    Directory of Open Access Journals (Sweden)

    Erdogan Fevzi

    2010-01-01

    Full Text Available Uniform finite difference methods are constructed via nonstandard finite difference methods for the numerical solution of singularly perturbed quasilinear initial value problem for delay differential equations. A numerical method is constructed for this problem which involves the appropriate Bakhvalov meshes on each time subinterval. The method is shown to be uniformly convergent with respect to the perturbation parameter. A numerical example is solved using the presented method, and the computed result is compared with exact solution of the problem.

  15. Relaxation periodic solutions of one singular perturbed system with delay

    Science.gov (United States)

    Kashchenko, A. A.

    2017-12-01

    In this paper, we consider a singularly perturbed system of two differential equations with delay, simulating two coupled oscillators with a nonlinear compactly supported feedback. We reduce studying nonlocal dynamics of initial system to studying dynamics of special finite-dimensional mappings: rough stable (unstable) cycles of these mappings correspond to exponentially orbitally stable (unstable) relaxation solutions of initial problem. We show that dynamics of initial model depends on coupling coefficient crucially. Multistability is proved.

  16. Fatigue crack shape prediction based on vertex singularity

    Czech Academy of Sciences Publication Activity Database

    Hutař, Pavel; Náhlík, Luboš

    2008-01-01

    Roč. 2, č. 1 (2008), s. 45-52 ISSN 1802-680X R&D Projects: GA ČR GA101/08/1623; GA ČR GP106/06/P239 Institutional research plan: CEZ:AV0Z20410507 Keywords : 3D vertex singularity * crack shape * fatigue crack propagation Subject RIV: JL - Materials Fatigue, Friction Mechanics

  17. A rapid local singularity analysis algorithm with applications

    Science.gov (United States)

    Chen, Zhijun; Cheng, Qiuming; Agterberg, Frits

    2015-04-01

    The local singularity model developed by Cheng is fast gaining popularity in characterizing mineralization and detecting anomalies of geochemical, geophysical and remote sensing data. However in one of the conventional algorithms involving the moving average values with different scales is time-consuming especially while analyzing a large dataset. Summed area table (SAT), also called as integral image, is a fast algorithm used within the Viola-Jones object detection framework in computer vision area. Historically, the principle of SAT is well-known in the study of multi-dimensional probability distribution functions, namely in computing 2D (or ND) probabilities (area under the probability distribution) from the respective cumulative distribution functions. We introduce SAT and it's variation Rotated Summed Area Table in the isotropic, anisotropic or directional local singularity mapping in this study. Once computed using SAT, any one of the rectangular sum can be computed at any scale or location in constant time. The area for any rectangular region in the image can be computed by using only 4 array accesses in constant time independently of the size of the region; effectively reducing the time complexity from O(n) to O(1). New programs using Python, Julia, matlab and C++ are implemented respectively to satisfy different applications, especially to the big data analysis. Several large geochemical and remote sensing datasets are tested. A wide variety of scale changes (linear spacing or log spacing) for non-iterative or iterative approach are adopted to calculate the singularity index values and compare the results. The results indicate that the local singularity analysis with SAT is more robust and superior to traditional approach in identifying anomalies.

  18. Adaptive Control of the Chaotic System via Singular System Approach

    Directory of Open Access Journals (Sweden)

    Yudong Li

    2014-01-01

    Full Text Available This paper deals with the control problem of the chaotic system subject to disturbance. The sliding mode surface is designed by singular system approach, and sufficient condition for convergence is given. Then, the adaptive sliding mode controller is designed to make the state arrive at the sliding mode surface in finite time. Finally, Lorenz system is considered as an example to show the effectiveness of the proposed method.

  19. On the Initial Singularity Problem in Two Dimensional Quantum Cosmology

    OpenAIRE

    Gamboa, J.

    1995-01-01

    The problem of how to put interactions in two-dimensional quantum gravity in the strong coupling regime is studied. It shows that the most general interaction consistent with this symmetry is a Liouville term that contain two parameters $(\\alpha, \\beta)$ satisfying the algebraic relation $2\\beta - \\alpha =2$ in order to assure the closure of the diffeomorphism algebra. The model is classically soluble and it contains as general solution the temporal singularity. The theory is quantized and we...

  20. Solving singular convolution equations using the inverse fast Fourier transform

    Czech Academy of Sciences Publication Activity Database

    Krajník, E.; Montesinos, V.; Zizler, P.; Zizler, Václav

    2012-01-01

    Roč. 57, č. 5 (2012), s. 543-550 ISSN 0862-7940 R&D Projects: GA AV ČR IAA100190901 Institutional research plan: CEZ:AV0Z10190503 Keywords : singular convolution equations * fast Fourier transform * tempered distribution Subject RIV: BA - General Mathematics Impact factor: 0.222, year: 2012 http://www.springerlink.com/content/m8437t3563214048/

  1. Canard solutions of two-dimensional singularly perturbed systems

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xianfeng [Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240 (China)]. E-mail: chenxf@sjtu.edu.cn; Yu Pei [Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Applied Mathematics, University of Western Ontario London, Ont., N6A 5B7 (Canada); Han Maoan [Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang Weijiang [Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2005-02-01

    In this paper, some new lemmas on asymptotic analysis are established. We apply an asymptotic method to study generalized two-dimensional singularly perturbed systems with one parameter, whose critical manifold has an m-22 th-order degenerate extreme point. Certain sufficient conditions are obtained for the existence of canard solutions, which are the extension and correction of some existing results. Finally, one numerical example is given.

  2. Singularities in and stability of Ooguri-Vafa-Verlinde cosmologies

    International Nuclear Information System (INIS)

    McInnes, B.

    2005-04-01

    Ooguri, Vafa, and Verlinde have recently proposed an approach to string cosmology which is based on the idea that cosmological string moduli should be selected by a Hartle-Hawking wave function. They are led to consider a certain Euclidean space which has two different Lorentzian interpretations, one of which is a model of an accelerating cosmology. We describe in detail how to implement this idea without resorting to a 'complex metric'. We show that the four-dimensional version of the OVV cosmology is null geodesically incomplete but has no curvature singularity; also that it is (barely) stable against the Seiberg-Witten process (nucleation of brane pairs). The introduction of matter satisfying the Null Energy Condition has the paradoxical effect of both stabilizing the spacetime and rendering it genuinely singular. We show however that it is possible to arrange for an effective violation of the NEC in such a way that the singularity is avoided and yet the spacetime remains stable. The possible implications for the early history of these cosmologies are discussed. (author)

  3. Special frequencies and Lifshitz singularities in binary random harmonic chains

    International Nuclear Information System (INIS)

    Nieuwenhuizen, T.M.; Luck, J.M.; Canisius, J.; van Hemmen, J.L.; Ventevogel, W.J.

    1986-01-01

    The authors consider a one-dimensional chain of coupled harmonic oscillators; the mass of each atom is a random variable taking only two values (M or 1). They investigate the integrated density of states H(omega 2 ) near special frequencies: a given frequency omega/sub s/ with rational wavelength becomes special if the mass ratio M exceeds a certain critical value M/sub c/. They show that H has essential singularities of the types H/sub sg/∼ exp(-C 1 absolute value of omega 2 -omega/sub s/ 2 /sup 1/2/) or exp(-C 2 absolute value of omega 2 -omega/sub s/ 2 -1 ), according to the value of M and the sign of (omega 2 -omega/sub s/ 2 ). The Lifshitz singularity at the band edge is analyzed in the same way. In each case, the constant C 1 or C 2 is evaluated explicitly and compared with a vast amount of numerical work. All these exponential singularities are modulated by periodic amplitudes. The properties of the eigenfunctions with frequencies close to the special values are also discussed, and are illustrated by numerical data

  4. Analytic Evolution of Singular Distribution Amplitudes in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Tandogan Kunkel, Asli [Old Dominion Univ., Norfolk, VA (United States)

    2014-08-01

    Distribution amplitudes (DAs) are the basic functions that contain information about the quark momentum. DAs are necessary to describe hard exclusive processes in quantum chromodynamics. We describe a method of analytic evolution of DAs that have singularities such as nonzero values at the end points of the support region, jumps at some points inside the support region and cusps. We illustrate the method by applying it to the evolution of a at (constant) DA, antisymmetric at DA, and then use the method for evolution of the two-photon generalized distribution amplitude. Our approach to DA evolution has advantages over the standard method of expansion in Gegenbauer polynomials [1, 2] and over a straightforward iteration of an initial distribution with evolution kernel. Expansion in Gegenbauer polynomials requires an infinite number of terms in order to accurately reproduce functions in the vicinity of singular points. Straightforward iteration of an initial distribution produces logarithmically divergent terms at each iteration. In our method the logarithmic singularities are summed from the start, which immediately produces a continuous curve. Afterwards, in order to get precise results, only one or two iterations are needed.

  5. Non-singular bounce transitions in the multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Garriga, Jaume [Departament de Fisica Fonamental i Institut de Ciencies del Cosmos, Universitat de Barcelona, Marti i Franques, 1, 08028, Barcelona (Spain); Vilenkin, Alexander; Zhang, Jun, E-mail: jaume.garriga@ub.edu, E-mail: vilenkin@cosmos.phy.tufts.edu, E-mail: jun.zhang@tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)

    2013-11-01

    According to classical GR, negative-energy (AdS) bubbles in the multiverse terminate in big crunch singularities. It has been conjectured, however, that the fundamental theory may resolve these singularities and replace them by non-singular bounces. Here we explore possible dynamics of such bounces using a simple modification of the Friedmann equation, which ensures that the scale factor bounces when the matter density reaches some critical value ρ{sub c}. This is combined with a simple scalar field 'landscape', where the energy barriers between different vacua are small compared to ρ{sub c}. We find that the bounce typically results in a transition to another vacuum, with a scalar field displacement Δφ ∼ 1 in Planck units. If the new vacuum is AdS, we have another bounce, and so on, until the field finally transits to a positive-energy (de Sitter) vacuum. We also consider perturbations about the homogeneous solution and discuss some of their amplification mechanisms (e.g., tachyonic instability and parametric resonance). For a generic potential, these mechanisms are much less efficient than in models of slow-roll inflation. But the amplification may still be strong enough to cause the bubble to fragment into a mosaic of different vacua.

  6. Towards realistic string vacua from branes at singularities

    Science.gov (United States)

    Conlon, Joseph P.; Maharana, Anshuman; Quevedo, Fernando

    2009-05-01

    We report on progress towards constructing string models incorporating both realistic D-brane matter content and moduli stabilisation with dynamical low-scale supersymmetry breaking. The general framework is that of local D-brane models embedded into the LARGE volume approach to moduli stabilisation. We review quiver theories on del Pezzo n (dPn) singularities including both D3 and D7 branes. We provide supersymmetric examples with three quark/lepton families and the gauge symmetries of the Standard, Left-Right Symmetric, Pati-Salam and Trinification models, without unwanted chiral exotics. We describe how the singularity structure leads to family symmetries governing the Yukawa couplings which may give mass hierarchies among the different generations. We outline how these models can be embedded into compact Calabi-Yau compactifications with LARGE volume moduli stabilisation, and state the minimal conditions for this to be possible. We study the general structure of soft supersymmetry breaking. At the singularity all leading order contributions to the soft terms (both gravity- and anomaly-mediation) vanish. We enumerate subleading contributions and estimate their magnitude. We also describe model-independent physical implications of this scenario. These include the masses of anomalous and non-anomalous U(1)'s and the generic existence of a new hyperweak force under which leptons and/or quarks could be charged. We propose that such a gauge boson could be responsible for the ghost muon anomaly recently found at the Tevatron's CDF detector.

  7. Analysis of scintigrams by singular value decomposition (SVD) technique

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, S.E.; Liewendahl, B.K. (Helsinki Univ. (Finland). Dept. of Physics)

    1994-05-01

    The singular value decomposition (SVD) method is presented as a potential tool for analyzing gamma camera images. Mathematically image analysis is a study of matrixes as the standard scintigram is a digitized matrix presentation of the recorded photon fluence from radioactivity of the object. Each matrix element (pixel) consists of a number, which equals the detected counts of the object position. The analysis of images can be reduced to the analysis of the singular values of the matrix decomposition. In the present study the clinical usefulness of SVD was tested by analyzing two different kinds of scintigrams: brain images by single photon emission tomography (SPET), and liver and spleen planar images. It is concluded that SVD can be applied to the analysis of gamma camera images, and that it provides an objective method for interpretation of clinically relevant information contained in the images. In image filtering, SVD provides results comparable to conventional filtering. In addition, the study of singular values can be used for semiquantitation of radionuclide images as exemplified by brain SPET studies and liver-spleen planar studies. (author).

  8. Cosmic Evolutionary Philosophy and a Dialectical Approach to Technological Singularity

    Directory of Open Access Journals (Sweden)

    Cadell Last

    2018-04-01

    Full Text Available The anticipated next stage of human organization is often described by futurists as a global technological singularity. This next stage of complex organization is hypothesized to be actualized by scientific-technic knowledge networks. However, the general consequences of this process for the meaning of human existence are unknown. Here, it is argued that cosmic evolutionary philosophy is a useful worldview for grounding an understanding of the potential nature of this futures event. In the cosmic evolutionary philosophy, reality is conceptualized locally as a universal dynamic of emergent evolving relations. This universal dynamic is structured by a singular astrophysical origin and an organizational progress from sub-atomic particles to global civilization mediated by qualitative phase transitions. From this theoretical ground, we attempt to understand the next stage of universal dynamics in terms of the motion of general ideation attempting to actualize higher unity. In this way, we approach technological singularity dialectically as an event caused by ideational transformations and mediated by an emergent intersubjective objectivity. From these speculations, a historically-engaged perspective on the nature of human consciousness is articulated where the truth of reality as an emergent unity depends on the collective action of a multiplicity of human observers.

  9. Cosmological applications of singular hypersurfaces in general relativity

    Science.gov (United States)

    Laguna-Castillo, Pablo

    Three applications to cosmology of surface layers, based on Israel's formalism of singular hypersurfaces and thin shells in general relativity, are presented. Einstein's field equations are analyzed in the presence of a bubble nucleated in vacuum phase transitions within the context of the old inflationary universe scenario. The evolution of a bubble with vanishing surface energy density is studied. It is found that such bubbles lead to a worm-hole matching. Next, the observable four-dimensional universe is considered as a singular hypersurface of discontinuity embedded in a five-dimensional Kaluza-Klein cosmology. It is possible to rewrite the projected five-dimensional Einstein equations on the surface layer in a similar way to the four-dimensional Robertson-Walker cosmology equations. Next, a model is described for an infinite-length, straight U(1) cosmic string as a cylindrical, singular shell enclosing a region of false vacuum. A set of equations is introduced which are required to develop a three-dimensional computer code whose purpose is to study the process of intercommuting cosmic strings with the inclusion of gravitational effects. The outcome is evolution and constraint equations for the gravitational, scalar and gauge field of two initially separated, perpendicular, cosmic strings.

  10. Blind Audio Watermarking in Transform Domain Based on Singular Value Decomposition and Exponential-Log Operations

    Directory of Open Access Journals (Sweden)

    P. K. Dhar

    2017-06-01

    Full Text Available Digital watermarking has drawn extensive attention for copyright protection of multimedia data. This paper introduces a blind audio watermarking scheme in discrete cosine transform (DCT domain based on singular value decomposition (SVD, exponential operation (EO, and logarithm operation (LO. In our proposed scheme, initially the original audio is segmented into non-overlapping frames and DCT is applied to each frame. Low frequency DCT coefficients are divided into sub-bands and power of each sub band is calculated. EO is performed on the sub-band with highest power of the DCT coefficients of each frame. SVD is applied to the exponential coefficients of each sub bands with highest power represented in matrix form. Watermark information is embedded into the largest singular value by using a quantization function. Simulation results indicate that the proposed watermarking scheme is highly robust against different attacks. In addition, it has high data payload and shows low error probability rates. Moreover, it provides good performance in terms of imperceptibility, robustness, and data payload compared with some recent state-of-the-art watermarking methods.

  11. Use of multiple singular value decompositions to analyze complex intracellular calcium ion signals

    KAUST Repository

    Martinez, Josue G.

    2009-12-01

    We compare calcium ion signaling (Ca(2+)) between two exposures; the data are present as movies, or, more prosaically, time series of images. This paper describes novel uses of singular value decompositions (SVD) and weighted versions of them (WSVD) to extract the signals from such movies, in a way that is semi-automatic and tuned closely to the actual data and their many complexities. These complexities include the following. First, the images themselves are of no interest: all interest focuses on the behavior of individual cells across time, and thus, the cells need to be segmented in an automated manner. Second, the cells themselves have 100+ pixels, so that they form 100+ curves measured over time, so that data compression is required to extract the features of these curves. Third, some of the pixels in some of the cells are subject to image saturation due to bit depth limits, and this saturation needs to be accounted for if one is to normalize the images in a reasonably un-biased manner. Finally, the Ca(2+) signals have oscillations or waves that vary with time and these signals need to be extracted. Thus, our aim is to show how to use multiple weighted and standard singular value decompositions to detect, extract and clarify the Ca(2+) signals. Our signal extraction methods then lead to simple although finely focused statistical methods to compare Ca(2+) signals across experimental conditions.

  12. Piercing the water surface with a blade: Singularities of the contact line

    Energy Technology Data Exchange (ETDEWEB)

    Alimov, Mars M. [Kazan Federal University, Kazan 420008 (Russian Federation); Kornev, Konstantin G. [Department of Materials Science & Engineering, Clemson University, Clemson, South Carolina 29634 (United States)

    2016-01-15

    An external meniscus on a narrow blade with a slit-like cross section is studied using the hodograph formulation of the Laplace nonlinear equation of capillarity. On narrow blades, the menisci are mostly shaped by the wetting and capillary forces; gravity plays a secondary role. To describe a meniscus in this asymptotic case, the model of Alimov and Kornev [“Meniscus on a shaped fibre: Singularities and hodograph formulation,” Proc. R. Soc. A 470, 20140113 (2014)] has been employed. It is shown that at the sharp edges of the blade, the contact line makes a jump. In the wetting case, the contact line sitting at each side of the blade is lifted above the points where the meniscus first meets the blade edges. In the non-wetting case, the contact line is lowered below these points. The contours of the constant height emanating from the blade edges generate unusual singularities with infinite curvatures at some points at the blade edges. The meniscus forms a unique surface made of two mirror-symmetric sheets fused together. Each sheet is supported by the contact line sitting at each side of the blade.

  13. Piercing the water surface with a blade: Singularities of the contact line

    International Nuclear Information System (INIS)

    Alimov, Mars M.; Kornev, Konstantin G.

    2016-01-01

    An external meniscus on a narrow blade with a slit-like cross section is studied using the hodograph formulation of the Laplace nonlinear equation of capillarity. On narrow blades, the menisci are mostly shaped by the wetting and capillary forces; gravity plays a secondary role. To describe a meniscus in this asymptotic case, the model of Alimov and Kornev [“Meniscus on a shaped fibre: Singularities and hodograph formulation,” Proc. R. Soc. A 470, 20140113 (2014)] has been employed. It is shown that at the sharp edges of the blade, the contact line makes a jump. In the wetting case, the contact line sitting at each side of the blade is lifted above the points where the meniscus first meets the blade edges. In the non-wetting case, the contact line is lowered below these points. The contours of the constant height emanating from the blade edges generate unusual singularities with infinite curvatures at some points at the blade edges. The meniscus forms a unique surface made of two mirror-symmetric sheets fused together. Each sheet is supported by the contact line sitting at each side of the blade

  14. Influence of the non-singular stress on the crack extension and fatigue life

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Recho, N.; Niu, Z.R.

    2012-01-01

    Highlights: ► BEM is combined by characteristic analysis to calculate the singular stress field. ► A new method is proposed to evaluate the full stress field at crack tip region. ► Effect of non-singular stress on the propagation direction of the fatigue crack is analyzed. ► The influence of non-singular stress on the fatigue crack life is evaluated. - Abstract: The complete elasticity stress field at a crack tip region can be presented by the sum of the singular stress and several non-singular stress terms according to the Williams asymptotic expansion theory. The non-singular stress has a non-negligible influence on the prediction of the crack extension direction and crack growth rate under the fatigue loading. A novel method combining the boundary element method and the singularity characteristic analysis is proposed here to evaluate the complete stress field at a crack tip region. In this new method, any non-singular stress term in the Williams series expansion can be evaluated according to the computational accuracy requirement. Then, a modified Paris law is introduced to predict the crack propagation under the mixed-mode loading for exploring the influence of the non-singular stress on the fatigue life duration. By comparing with the existed experimental results, the predicted crack fatigue life when the non-singular stress is taken into consideration is more accurate than the predicted ones only considering the singular stress.

  15. Singularities of plane complex curves and limits of Kähler metrics with cone singularities. I: Tangent Cones

    Directory of Open Access Journals (Sweden)

    Borbon Martin de

    2017-02-01

    Full Text Available The goal of this article is to provide a construction and classification, in the case of two complex dimensions, of the possible tangent cones at points of limit spaces of non-collapsed sequences of Kähler-Einstein metrics with cone singularities. The proofs and constructions are completely elementary, nevertheless they have an intrinsic beauty. In a few words; tangent cones correspond to spherical metrics with cone singularities in the projective line by means of the Kähler quotient construction with respect to the S1-action generated by the Reeb vector field, except in the irregular case ℂβ₁×ℂβ₂ with β₂/ β₁ ∉ Q.

  16. EEASA 2004 Keynote Address

    African Journals Online (AJOL)

    Jenny

    standing ovation at the EEASA conference, as EEASA members recognised his humility, honesty, scholarship and deep respect for all forms of life, which is articulated through an equally deep commitment to education, and environmental education in particular. Abstract. In this paper I discuss the constructs environment ...

  17. Explicit bounds of unknown function of some new weakly singular retarded integral inequalities for discontinuous functions and their applications.

    Science.gov (United States)

    Li, Zizun; Wang, Wu-Sheng

    2017-01-01

    The purpose of the present paper is to establish some new retarded weakly singular integral inequalities of Gronwall-Bellman type for discontinuous functions, which generalize some known weakly singular and impulsive integral inequalities. The inequalities given here can be used in the analysis of the qualitative properties of certain classes of singular differential equations and singular impulsive equations.

  18. Enhancing reproducibility in scientific computing: Metrics and registry for Singularity containers.

    Directory of Open Access Journals (Sweden)

    Vanessa V Sochat

    Full Text Available Here we present Singularity Hub, a framework to build and deploy Singularity containers for mobility of compute, and the singularity-python software with novel metrics for assessing reproducibility of such containers. Singularity containers make it possible for scientists and developers to package reproducible software, and Singularity Hub adds automation to this workflow by building, capturing metadata for, visualizing, and serving containers programmatically. Our novel metrics, based on custom filters of content hashes of container contents, allow for comparison of an entire container, including operating system, custom software, and metadata. First we will review Singularity Hub's primary use cases and how the infrastructure has been designed to support modern, common workflows. Next, we conduct three analyses to demonstrate build consistency, reproducibility metric and performance and interpretability, and potential for discovery. This is the first effort to demonstrate a rigorous assessment of measurable similarity between containers and operating systems. We provide these capabilities within Singularity Hub, as well as the source software singularity-python that provides the underlying functionality. Singularity Hub is available at https://singularity-hub.org, and we are excited to provide it as an openly available platform for building, and deploying scientific containers.

  19. Singularities of n-fold integrals of the Ising class and the theory of elliptic curves

    International Nuclear Information System (INIS)

    Boukraa, S; Hassani, S; Maillard, J-M; Zenine, N

    2007-01-01

    We introduce some multiple integrals that are expected to have the same singularities as the singularities of the n-particle contributions χ (n) to the susceptibility of the square lattice Ising model. We find the Fuchsian linear differential equation satisfied by these multiple integrals for n = 1, 2, 3, 4 and only modulo some primes for n = 5 and 6, thus providing a large set of (possible) new singularities of χ (n) . We discuss the singularity structure for these multiple integrals by solving the Landau conditions. We find that the singularities of the associated ODEs identify (up to n = 6) with the leading pinch Landau singularities. The second remarkable obtained feature is that the singularities of the ODEs associated with the multiple integrals reduce to the singularities of the ODEs associated with a finite number of one-dimensional integrals. Among the singularities found, we underline the fact that the quadratic polynomial condition 1 + 3w + 4w 2 = 0, that occurs in the linear differential equation of χ (3) , actually corresponds to a remarkable property of selected elliptic curves, namely the occurrence of complex multiplication. The interpretation of complex multiplication for elliptic curves as complex fixed points of the selected generators of the renormalization group, namely isogenies of elliptic curves, is sketched. Most of the other singularities occurring in our multiple integrals are not related to complex multiplication situations, suggesting an interpretation in terms of (motivic) mathematical structures beyond the theory of elliptic curves

  20. Unified Singularity Modeling and Reconfiguration of 3rTPS Metamorphic Parallel Mechanisms with Parallel Constraint Screws

    Directory of Open Access Journals (Sweden)

    Yufeng Zhuang

    2015-01-01

    Full Text Available This paper presents a unified singularity modeling and reconfiguration analysis of variable topologies of a class of metamorphic parallel mechanisms with parallel constraint screws. The new parallel mechanisms consist of three reconfigurable rTPS limbs that have two working phases stemming from the reconfigurable Hooke (rT joint. While one phase has full mobility, the other supplies a constraint force to the platform. Based on these, the platform constraint screw systems show that the new metamorphic parallel mechanisms have four topologies by altering the limb phases with mobility change among 1R2T (one rotation with two translations, 2R2T, and 3R2T and mobility 6. Geometric conditions of the mechanism design are investigated with some special topologies illustrated considering the limb arrangement. Following this and the actuation scheme analysis, a unified Jacobian matrix is formed using screw theory to include the change between geometric constraints and actuation constraints in the topology reconfiguration. Various singular configurations are identified by analyzing screw dependency in the Jacobian matrix. The work in this paper provides basis for singularity-free workspace analysis and optimal design of the class of metamorphic parallel mechanisms with parallel constraint screws which shows simple geometric constraints with potential simple kinematics and dynamics properties.

  1. Addressing the final consumer

    International Nuclear Information System (INIS)

    Zoellner, W.

    1994-01-01

    Market economy structures for the gas supply in the new Laender now being established, the next task is to secure the future for natural gas supply companies. This forms the background to the present constribution on natural gas marketing with a special emphasis on natural gas advertising in 1994. The device industry and skilled trades are considered particularly important partners. Adverts and posters alone will not do the job. For this reason, futher media are being developed such as an ''infomobile'', a natural gas circus, and fairs and exhibitions. (BWI) [de

  2. Singular inverse square potential in coordinate space with a minimal length

    Science.gov (United States)

    Bouaziz, Djamil; Birkandan, Tolga

    2017-12-01

    The problem of a particle of mass m in the field of the inverse-square potential α /r2 is studied in quantum mechanics with a generalized uncertainty principle, characterized by the existence of a minimal length. Using the coordinate representation, for a specific form of the generalized uncertainty relation, we solve the deformed Schrödinger equation analytically in terms of confluent Heun functions. We explicitly show the regularizing effect of the minimal length on the singularity of the potential. We discuss the problem of bound states in detail and we derive an expression for the energy spectrum in a natural way from the square integrability condition; the results are in complete agreement with the literature.

  3. Singular solutions for the rigid plastic double slip and rotation model under plane strain

    Science.gov (United States)

    Alexandrov, S.; Lyamina, E.

    2018-02-01

    In the mechanics of granular and other materials the system of equations comprising the rigid plastic double slip and rotation model together with the stress equilibrium equations under plane strain conditions forms a hyperbolic system. Boundary value problems for this system of equations can involve a frictional interface. An envelope of characteristics may coincide with this interface. In this case, the solution is singular. In particular, some components of the strain rate tensor approach infinity in the vicinity of the frictional interface. Such behavior of solutions is in qualitative agreement with experimental data that show that a narrow layer of localized plastic deformation is often generated near frictional interfaces. The present paper deals with asymptotic analysis of the aforementioned system of equations in the vicinity of an envelope of characteristics. It is shown that the shear strain rate and the spin component in a local coordinate system connected to the envelope follow an inverse square root rule in its vicinity.

  4. Fatou type weighted pointwise convergence of nonlinear singular integral operators Depending on two parameters

    Directory of Open Access Journals (Sweden)

    Uysal Gumrah

    2016-01-01

    Full Text Available In this paper we present some theorems concerning existence and Fatou type weighted pointwise convergence of nonlinear singular integral operators of the form: (Tλf(x=∫RKλ(t−x; f(tdt, x∈R, λ∈Λ$({T_\\lambda }f(x = \\int\\limits_R {{K_\\lambda }} (t - x;{\\rm{ }}f(tdt,{\\rm{ x}} \\in R,{\\rm{ }}\\lambda \\in \\Lambda $ where Λ ≠ ∅ is a set of non-negative indices, at a common generalized Lebesgue point of the functions f ∈ L1,ϕ (R and positive weight function φ. Here, L1,ϕ (R is the space of all measurable functions for which |fϕ|$\\left| {{f \\over \\phi }} \\right|$ is integrable on R.

  5. Solving differential equations for Feynman integrals by expansions near singular points

    Science.gov (United States)

    Lee, Roman N.; Smirnov, Alexander V.; Smirnov, Vladimir A.

    2018-03-01

    We describe a strategy to solve differential equations for Feynman integrals by powers series expansions near singular points and to obtain high precision results for the corresponding master integrals. We consider Feynman integrals with two scales, i.e. non-trivially depending on one variable. The corresponding algorithm is oriented at situations where canonical form of the differential equations is impossible. We provide a computer code constructed with the help of our algorithm for a simple example of four-loop generalized sunset integrals with three equal non-zero masses and two zero masses. Our code gives values of the master integrals at any given point on the real axis with a required accuracy and a given order of expansion in the regularization parameter ɛ.

  6. Controllability of switched singular mix-valued logical control networks with constraints

    Science.gov (United States)

    Deng, Lei; Gong, Mengmeng; Zhu, Peiyong

    2018-03-01

    The present paper investigates the controllability problem of switched singular mix-valued logical control networks (SSMLCNs) with constraints on states and controls. First, using the semi-tenser product (STP) of matrices, the SSMLCN is expressed in an algebraic form, based on which a necessary and sufficient condition is given for the uniqueness of solution of SSMLCNs. Second, a necessary and sufficient criteria is derived for the controllability of constrained SSMLCNs, by converting a constrained SSMLCN into a parallel constrained switched mix-valued logical control network. Third, an algorithm is presented to design a proper switching sequence and a control scheme which force a state to a reachable state. Finally, a numerical example is given to demonstrate the efficiency of the results obtained in this paper.

  7. Counting addressing method: Command addressable element and extinguishing module

    Directory of Open Access Journals (Sweden)

    Ristić Jovan D.

    2009-01-01

    Full Text Available The specific requirements that appear in addressable fire detection and alarm systems and the shortcomings of the existing addressing methods were discussed. A new method of addressing of detectors was proposed. The basic principles of addressing and responding of a called element are stated. Extinguishing module is specific subsystem in classic fire detection and alarm systems. Appearing of addressable fire detection and alarm systems didn't caused essential change in the concept of extinguishing module because of long calling period of such systems. Addressable fire security system based on counting addressing method reaches high calling rates and enables integrating of the extinguishing module in addressable system. Solutions for command addressable element and integrated extinguishing module are given in this paper. The counting addressing method was developed for specific requirements in fire detection and alarm systems, yet its speed and reliability justifies its use in the acquisition of data on slowly variable parameters under industrial conditions. .

  8. Prevalence of superficial siderosis following singular, acute aneurysmal subarachnoid hemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Lummel, N.; Bochmann, K. [Ludwig-Maximilian-University, Department of Neuroradiology, Klinikum Grosshadern, Munich (Germany); Bernau, C. [Leibniz-Rechenzentrum, Munich (Germany); Thon, N. [Ludwig-Maximilian-University, Department of Neurosurgery, Klinikum Grosshadern, Munich (Germany); Linn, J. [Technical University, Department of Neuroradiology, Klinikum Dresden, Dresden (Germany)

    2015-04-01

    Superficial siderosis is presumably a consequence of recurrent bleeding into the subarachnoid space. The objective of this study was to assess the prevalence of superficial siderosis after singular, aneurysmal subarachnoid hemorrhage (SAH) in the long term. We retrospectively identified all patients who presented with a singular, acute, aneurysmal SAH at our institution between 2010 and 2013 and in whom a magnetic resonance imaging (MRI) including T2*-weighted imaging was available at least 4 months after the acute bleeding event. MRI scans were judged concerning the presence and distribution of superficial siderosis. Influence of clinical data, Fisher grade, localization, and cause of SAH as well as the impact of neurosurgical interventions on the occurrence of superficial siderosis was tested. Seventy-two patients with a total of 117 MRIs were included. Mean delay between SAH and the last available MRI was 47.4 months (range 4-129). SAH was Fisher grade 1 in 2 cases, 2 in 4 cases, 3 in 10 cases, and 4 in 56 cases. Superficial siderosis was detected in 39 patients (54.2 %). In all patients with more than one MRI scan, localization and distribution of superficial siderosis did not change over time. Older age (p = 0.02) and higher degree of SAH (p = 0.03) were significantly associated with the development of superficial siderosis. Superficial siderosis develops in approximately half of patients after singular, aneurysmal SAH and might be more common in patients with an older age and a greater amount of blood. However, additional factors must play a role in whether a patient is prone to develop superficial siderosis or not. (orig.)

  9. Singular gauge fields in inclusive and differential cross sections

    International Nuclear Information System (INIS)

    Ore, F.R. Jr.; Sterman, G.

    1981-01-01

    We study differential and inclusive cross sections for the creation of massless fermions in the presence of a static external non-Abelian field A/sub c1/. We calculate to all orders in A/sub cl/ the correction to the quantum cross section which is suppressed by one power of the energy. Corrections of this type are found to be important even at high energy for sufficiently exclusive cross sections if the classical field has singularities along a line. Their contribution to inclusive cross sections, on the other hand, remains small at high energies

  10. Conical flow near singular rays. [shock generation in ideal gas

    Science.gov (United States)

    Zahalak, G. I.; Myers, M. K.

    1974-01-01

    The steady flow of an ideal gas past a conical body is investigated by the method of matched asymptotic expansions, with particular emphasis on the flow near the singular ray occurring in linearized theory. The first-order problem governing the flow in this region is formulated, leading to the equation of Kuo, and an approximate solution is obtained in the case of compressive flow behind the main front. This solution is compared with the results of previous investigations with a view to assessing the applicability of the Lighthill-Whitham theories.

  11. Total graph of a module with respect to singular submodule

    Directory of Open Access Journals (Sweden)

    Jituparna Goswami

    2016-07-01

    Full Text Available Let R be a commutative ring with unity and M be an R-module. We introduce the total graph of a module M with respect to singular submodule Z(M of M as an undirected graph T(Γ(M with vertex set as M and any two distinct vertices x and y are adjacent if and only if x+y∈Z(M. We investigate some properties of the total graph T(Γ(M and its induced subgraphs Z(Γ(M and Z¯(Γ(M. In some aspects, we have noticed some sort of finiteness.

  12. Singularly perturbed hyperbolic problems on metric graphs: asymptotics of solutions

    Directory of Open Access Journals (Sweden)

    Golovaty Yuriy

    2017-04-01

    Full Text Available We are interested in the evolution phenomena on star-like networks composed of several branches which vary considerably in physical properties. The initial boundary value problem for singularly perturbed hyperbolic differential equation on a metric graph is studied. The hyperbolic equation becomes degenerate on a part of the graph as a small parameter goes to zero. In addition, the rates of degeneration may differ in different edges of the graph. Using the boundary layer method the complete asymptotic expansions of solutions are constructed and justified.

  13. Tachyon cosmology, supernovae data and the Big Brake singularity

    OpenAIRE

    Keresztes, Z.; Gergely, L. A.; Gorini, V.; Moschella, U.; Yu, Kamenshchik A.

    2009-01-01

    We compare the existing observational data on type Ia Supernovae with the evolutions of the universe predicted by a one-parameter family of tachyon models which we have introduced recently in paper \\cite{we-tach}. Among the set of the trajectories of the model which are compatible with the data there is a consistent subset for which the universe ends up in a new type of soft cosmological singularity dubbed Big Brake. This opens up yet another scenario for the future history of the universe be...

  14. Analytical study for singular system of transistor circuits

    Directory of Open Access Journals (Sweden)

    Devendra Kumar

    2014-06-01

    Full Text Available In this paper, we propose a user friendly algorithm based on homotopy analysis transform method for solving observer design in generalized state space or singular system of transistor circuits. The homotopy analysis transform method is an innovative adjustment in Laplace transform method and makes the calculation much simpler. The effectiveness of technique is described and illustrated with an example. The obtained results are in a good agreement with the existing ones in open literature and it is shown that the scheme proposed here is robust, efficient, easy to implement and computationally very attractive.

  15. A singularly perturbed SIS model with age structure.

    Science.gov (United States)

    Banasiak, Jacek; Phongi, Eddy Kimba; Lachowicz, Mirosław

    2013-06-01

    We present a preliminary study of an SIS model with a basic age structure and we focus on a disease with quick turnover, such as influenza or common cold. In such a case the difference between the characteristic demographic and epidemiological times naturally introduces two time scales in the model which makes it singularly perturbed. Using the Tikhonov theorem we prove that for certain classes of initial conditions the nonlinear structured SIS model can be approximated with very good accuracy by lower dimensional linear models.

  16. Existence and regularity of weak solutions for singular elliptic problems

    Directory of Open Access Journals (Sweden)

    Brahim Bougherara

    2015-11-01

    Full Text Available In this article we study the semilinear singular elliptic problem $$\\displaylines{ -\\Delta u = \\frac{p(x}{u^{\\alpha}}\\quad \\text{in } \\Omega \\cr u = 0\\quad \\text{on } \\partial\\Omega,\\quad u>0 \\text{ in } \\Omega, }$$ where $\\Omega$ is a regular bounded domain of $\\mathbb R^{N}$, $\\alpha\\in\\mathbb R$, $p\\in C(\\Omega$ which behaves as $d(x^{-\\beta}$ as $x\\to\\partial\\Omega$ with $d$ the distance function up to the boundary and $0\\leq \\beta 1$.

  17. Black Holes, Geons, and Singularities in Metric-Affine Gravity

    OpenAIRE

    Sanchez-Puente, Antonio

    2017-01-01

    Uno de los problemas abiertos en la descripción de la gravedad es la existencia de singularidades. Las geometrías singulares se caracterizan por geodésicas incompletas, lo que físicamente se corresponde con observadores que desaparecen del espacio-tiempo, o que aparecen de la nada. Múltiples extensiones de la Relatividad General tratan de resolver este problema de algún modo. Por ello, en esta tesis estudio modificaciones al Lagrangiano de Relatividad General, tales como gravedad cuadráti...

  18. The Singular Universe and the Reality of Time

    Science.gov (United States)

    Mangabeira Unger, Roberto; Smolin, Lee

    2015-01-01

    Introduction; Part I. Roberto Mangabeira Unger: 1. The science of the one universe in time; 2. The context and consequences of the argument; 3. The singular existence of the universe; 4. The inclusive reality of time; 5. The mutability of the laws of nature; 6. The selective realism of mathematics; Part II. Lee Smolin: 1. Cosmology in crisis; 2. Principles for a cosmological theory; 3. The setting: the puzzles of contemporary cosmology; 4. Hypotheses for a new cosmology; 5. Mathematics; 6. Approaches to solving the metalaw dilemma; 7. Implications of temporal naturalism for philosophy of mind; 8. An agenda for science; 9. Concluding remarks; A note concerning disagreements between our views.

  19. Cosmological BCS mechanism and the big bang singularity

    Science.gov (United States)

    Alexander, Stephon; Biswas, Tirthabir

    2009-07-01

    We provide a novel mechanism that resolves the big bang singularity present in Friedman-Lemaitre-Robertson-Walker space-times without the need for ghost fields. Building on the fact that a four-fermion interaction arises in general relativity when fermions are covariantly coupled, we show that at early times the decrease in scale factor enhances the correlation between pairs of fermions. This enhancement leads to a BCS-like condensation of the fermions and opens a gap dynamically driving the Hubble parameter H to zero and results in a nonsingular bounce, at least in some special cases.

  20. The method of rigged spaces in singular perturbation theory of self-adjoint operators

    CERN Document Server

    Koshmanenko, Volodymyr; Koshmanenko, Nataliia

    2016-01-01

    This monograph presents the newly developed method of rigged Hilbert spaces as a modern approach in singular perturbation theory. A key notion of this approach is the Lax-Berezansky triple of Hilbert spaces embedded one into another, which specifies the well-known Gelfand topological triple. All kinds of singular interactions described by potentials supported on small sets (like the Dirac δ-potentials, fractals, singular measures, high degree super-singular expressions) admit a rigorous treatment only in terms of the equipped spaces and their scales. The main idea of the method is to use singular perturbations to change inner products in the starting rigged space, and the construction of the perturbed operator by the Berezansky canonical isomorphism (which connects the positive and negative spaces from a new rigged triplet). The approach combines three powerful tools of functional analysis based on the Birman-Krein-Vishik theory of self-adjoint extensions of symmetric operators, the theory of singular quadra...