WorldWideScience

Sample records for singlet oxygen sensor

  1. Singlet Oxygen Sensor Green: Photochemical Behavior in Solution and in a Mammalian Cell

    DEFF Research Database (Denmark)

    Gollmer, Anita; Arnbjerg, Jacob; Blaikie, Frances Helen

    2011-01-01

    The development of efficient and selective luminescent probes for reactive oxygen species, particularly for singlet molecular oxygen, is currently of great importance. In this study, the photochemical behavior of Singlet Oxygen Sensor Green® (SOSG), a commercially available fluorescent probe...... of the reaction between SOSG and singlet oxygen is, itself, an efficient singlet oxygen photosensitizer. Second, SOSG appears to efficiently bind to proteins which, in turn, can influence uptake by a cell as well as behavior in the cell. As such, incorrect use of SOSG can yield misleading data on yields...

  2. Singlet Oxygen Sensor Green: Photochemical Behavior in Solution and in a Mammalian Cell

    DEFF Research Database (Denmark)

    Gollmer, Anita; Arnbjerg, Jacob; Blaikie, Frances Helen

    2011-01-01

    The development of efficient and selective luminescent probes for reactive oxygen species, particularly for singlet molecular oxygen, is currently of great importance. In this study, the photochemical behavior of Singlet Oxygen Sensor Green® (SOSG), a commercially available fluorescent probe...... for singlet oxygen, was examined. Despite published claims to the contrary, the data presented herein indicate that SOSG can, in fact, be incorporated into a living mammalian cell. However, for a number of reasons, caution must be exercised when using SOSG. First, it is shown that the immediate product...... of the reaction between SOSG and singlet oxygen is, itself, an efficient singlet oxygen photosensitizer. Second, SOSG appears to efficiently bind to proteins which, in turn, can influence uptake by a cell as well as behavior in the cell. As such, incorrect use of SOSG can yield misleading data on yields...

  3. Singlet Oxygen at the Laundromat

    Science.gov (United States)

    Keeports, David

    1995-09-01

    Singlet molecular oxygen is an interesting molecule both visually and theoretically, since its red chemiluminescence can be analyzed by the application of simple molecular orbital theory. It can be produced from the reaction of hydrogen peroxide from either chlorine gas or hypochlorite ion from household bleach. Here we demostrate how to produce it using simple laundry cleansers.

  4. Glow discharge in singlet oxygen

    International Nuclear Information System (INIS)

    Vagin, N.P.; Ionin, A.A.; Klimachev, Yu.M.; Sinitsyn, D.V.; Yuryshev, N.N.; Kochetov, I.V.; Napartovich, A.P.

    2003-01-01

    Currently, there is no experimental data on the plasma balance in gas mixtures with a high content of singlet delta oxygen O 2 ( 1 Δ g ). These data can be obtained by studying the parameters of an electric discharge in singlet oxygen produced by a chemical generator. The O 2 ( 1 Δ g ) molecules significantly change the kinetics of electrons and negative ions in plasma. Hence, the discharge conditions at low and high O 2 ( 1 Δ g ) concentrations are very different. Here, the parameters of the positive column of a glow discharge in a gas flow from a chemical singlet-oxygen generator are studied. It is experimentally shown that, at an O 2 ( 1 Δ g ) concentration of 50% and at pressures of 1.5 and 2 torr, the electric field required to sustain the discharge is considerably lower than in the case when all of the oxygen molecules are in the ground state. A theoretical model of the glow discharge is proposed whose predictions are in good agreement with the experimental data

  5. Singlet oxygen quenching by oxygen in tetraphenyl-porphyrin solutions

    International Nuclear Information System (INIS)

    Dedic, Roman; Korinek, Miloslav; Molnar, Alexander; Svoboda, Antonin; Hala, Jan

    2006-01-01

    Time-resolved measurement of singlet oxygen infrared phosphorescence is a powerful tool for determination of quantum yields and kinetics of its photosensitization. This technique was employed to investigate in detail the previously observed effect of singlet oxygen quenching by oxygen. The question whether the singlet oxygen is quenched by oxygen in ground or in excited state was addressed by study of two complementary dependencies of singlet oxygen lifetimes: on dissolved oxygen concentration and on excitation intensity. Oxygen concentration dependence study of meso-tetra(4-sulphonato)phenylporphyrin (TPPS 4 ) phosphorescence kinetics showed linearity of the dependence of TPPS 4 triplet state rate-constant. Corresponding bimolecular quenching constant of (1.5±0.1)x10 9 l/mol s was obtained. On the other hand, rate constants of singlet oxygen depopulation exhibit nonlinear dependence on oxygen concentration. Comparison of zero oxygen concentration-extrapolated value of singlet oxygen lifetime of (6.5±0.4) μs to (3.7±0.1) μs observed under air-saturated conditions indicates importance of the effect of quenching of singlet oxygen by oxygen. Upward-sloping dependencies of singlet oxygen depopulation rate-constant on excitation intensity evidence that singlet oxygen is predominantly quenched by oxygen in excited singlet state

  6. Advanced Singlet Oxygen Generator for a COIL

    National Research Council Canada - National Science Library

    Kodymova, Jarmila; Zagidullin, M; Nikolaev, V; Svistun, M; Khvatov, N; Hruby, J; Spalek, O; Jirasek, V; Censsky, M

    2005-01-01

    This report results from a contract tasking Academy of Sciences as follows: The Grantee will develop new and radically different ideas for a high performance, advanced singlet oxygen generator for driving a supersonic COIL...

  7. Holographic monitoring of spatial distributions of singlet oxygen in water

    Science.gov (United States)

    Belashov, A. V.; Bel'tyukova, D. M.; Vasyutinskii, O. S.; Petrov, N. V.; Semenova, I. V.; Chupov, A. S.

    2014-12-01

    A method for monitoring spatial distributions of singlet oxygen in biological media has been developed. Singlet oxygen was generated using Radachlorin® photosensitizer, while thermal disturbances caused by nonradiative deactivation of singlet oxygen were detected by the holographic interferometry technique. Processing of interferograms yields temperature maps that characterize the deactivation process and show the distribution of singlet oxygen species.

  8. High-power generator of singlet oxygen

    Czech Academy of Sciences Publication Activity Database

    Jirásek, Vít; Čenský, Miroslav; Špalek, Otomar; Kodymová, Jarmila

    2013-01-01

    Roč. 36, č. 10 (2013), s. 1755-1763 ISSN 0930-7516 Grant - others:Laser Science and Technology Centre(IN) LASTEC/FE/RKT/54/10-11 Institutional research plan: CEZ:AV0Z10100523 Keywords : high-pressure singlet oxygen generator * spray generator * centrifugal separation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.175, year: 2013

  9. Molecular and Cell Mechanisms of Singlet Oxygen Effect on Biosystems

    OpenAIRE

    Martusevich А.А.; Peretyagin S.P.; Martusevich А.К.

    2012-01-01

    There has been considered a poorly studied form of activated oxygensinglet oxygen. Its physicochemical properties (electron configuration of a molecule, reactive capacity, features) are analyzed, and enzymic and nonenzymic ways of singlet oxygen generation in body are specified. There are shown in detail biological effects of the compound as a regulator of cell activity including that determining the mechanism of apoptosis initiation. The relation of singlet oxygen and photodynamic effect ...

  10. The development of efficient two-photon singlet oxygen sensitizers

    DEFF Research Database (Denmark)

    Nielsen, Christian Benedikt

    The development of efficient two-photon singlet oxygen sensitizers is addressed focusing on organic synthesis. Photophysical measurements were carried out on new lipophilic molecules, where two-photon absorption cross sections and singlet oxygen quantumyields were measured. Design principles...... for making efficient two-photon singlet oxygen sensitizers were then constructed from these results. Charge-transfer in the excited state of the prepared molecules was shown to play a pivotal role in the generationof singlet oxygen. This was established through studies of substituent effects on both...... the singlet oxygen yield and the two-photon absorption cross section, where it was revealed that a careful balancing of the amount of charge transfer present in theexcited state of the sensitizer is necessary to obtain both a high singlet oxygen quantum yield and a high two-photon cross section. An increasing...

  11. Singlet oxygen-mediated protein oxidation

    DEFF Research Database (Denmark)

    Wright, Adam; Bubb, William A; Hawkins, Clare Louise

    2002-01-01

    Singlet oxygen (1O2) is generated by a number of enzymes as well as by UV or visible light in the presence of a sensitizer and has been proposed as a damaging agent in a number of pathologies including cataract, sunburn, and skin cancers. Proteins, and Cys, Met, Trp, Tyr and His side chains...... in particular, are major targets for 1O2 as a result of their abundance and high rate constants for reaction. In this study it is shown that long-lived peroxides are formed on free Tyr, Tyr residues in peptides and proteins, and model compounds on exposure to 1O2 generated by both photochemical and chemical....... These studies demonstrate that long-lived Tyr-derived peroxides are formed on proteins exposed to 1O2 and that these may promote damage to other targets via further radical generation....

  12. Optical detection of singlet oxygen from single cells

    DEFF Research Database (Denmark)

    Snyder, John; Skovsen, Esben; Lambert, John D. C.

    2006-01-01

    The lowest excited electronic state of molecular oxygen, singlet molecular oxygen, O2(a 1g), is a reactive species involved in many chemical and biological processes. To better understand the roles played by singlet oxygen in biological systems, particularly at the sub-cellular level, optical tools...... including across the cell membrane into the extracellular environment. On one hand, these results demonstrate that the behavior of singlet oxygen in an intact cell can be significantly different from that inferred from model bulk studies. More generally, these results provide a new perspective...

  13. Singlet oxygen: photosensitized generation, detection and reaction with organic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Barik, Atanu; Indira Priyadarsini, K; Mohan, Hari; Bajaj, P N; Sapre, A V; Mittal, J P; Mukherjee, T [Radiation and Photochemistry Div., Bhabha Atomic Research Centre, Mumbai (India)

    2006-10-15

    Singlet molecular oxygen ({sup 1}O{sub 2}) is an excited state of molecular oxygen, having antiparallel spin in the same {pi} antibonding orbital. The study of singlet oxygen production and reactivity has emerged as a rich and diverse area, with implication in diverse fields, such as synthetic chemistry, polymer chemistry, photodynamic therapy, etc. There are several known methods to produce singlet oxygen, and also various techniques employed to detect it. Out of these, photosensitization method is the most popular one. In this article, photosensitized production of singlet oxygen from triplet oxygen and photosensitizers in presence of light, and its detection by the infrared luminescence at 1270 nm have been presented. Further, some results using different types of photosensitizers, effect of solvent on singlet oxygen quantum yields and lifetime have been discussed. The quenching rate constants of singlet oxygen have been determined with different types of organic molecules such as derivatives of thiourea and its analogues, hydroxy indoles and antioxidants and the results have been presented. (author)

  14. Singlet oxygen: photosensitized generation, detection and reaction with organic molecules

    International Nuclear Information System (INIS)

    Barik, Atanu; Indira Priyadarsini, K.; Hari Mohan; Bajaj, P.N.; Sapre, A.V.; Mittal, J.P.; Mukherjee, T.

    2006-10-01

    Singlet molecular oxygen ( 1 O 2 ) is an excited state of molecular oxygen, having antiparallel spin in the same π antibonding orbital. The study of singlet oxygen production and reactivity has emerged as a rich and diverse area, with implication in diverse fields, such as synthetic chemistry, polymer chemistry, photodynamic therapy, etc. There are several known methods to produce singlet oxygen, and also various techniques employed to detect it. Out of these, photosensitization method is the most popular one. In this article, photosensitized production of singlet oxygen from triplet oxygen and photosensitizers in presence of light, and its detection by the infrared luminescence at 1270 nm have been presented. Further, some results using different types of photosensitizers, effect of solvent on singlet oxygen quantum yields and lifetime have been discussed. The quenching rate constants of singlet oxygen have been determined with different types of organic molecules such as derivatives of thiourea and its analogues, hydroxy indoles and antioxidants and the results have been presented. (author)

  15. Singlet oxygen-mediated damage to proteins and its consequences

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    2003-01-01

    by the transfer of energy to ground state (triplet) molecular oxygen by either protein-bound, or other, chromophores. Singlet oxygen can also be generated by a range of other enzymatic and non-enzymatic reactions including processes mediated by heme proteins, lipoxygenases, and activated leukocytes, as well...... the absorption of UV radiation by the protein, or bound chromophore groups, thereby generating excited states (singlet or triplets) or radicals via photo-ionisation. The second major process involves indirect oxidation of the protein via the formation and subsequent reactions of singlet oxygen generated...... as radical termination reactions. This paper reviews the data available on singlet oxygen-mediated protein oxidation and concentrates primarily on the mechanisms by which this excited state species brings about changes to both the side-chains and backbone of amino acids, peptides, and proteins. Recent work...

  16. Singlet-oxygen therapy. Scientific and methodological materials

    OpenAIRE

    Chukhraiev, N.; Chukhraieva, E.; Gun'ko, M.; Kurik, L.; Lomeiko, S.; Marushko, Y.; Samosyuk, N.; Tkalina, A.; Vladimirov, A.; Unichenko, A.; Zavorotnaya, R.; Zukow, W.

    2018-01-01

    Radomska Szkoła Wyższa w Radomiu MEDICAL INNOVATIVE TECHNOLOGIES SINGLET-OXYGEN THERAPY Scientific and methodological materials 2018 This edition had extended and translated from ukrainian Edited by Chukhraiev N., Vladimirov A., Zukow W. Radom, Kyiv Radomska Szkoła Wyższa w Radomiu MEDICAL INNOVATIVE TECHNOLOGIES SINGLET-OXYGEN THERAPY Scientific and methodological materials 2018 This edition had extended and translated from ukrainian Edited by ...

  17. In-vivo singlet oxygen threshold doses for PDT.

    Science.gov (United States)

    Zhu, Timothy C; Kim, Michele M; Liang, Xing; Finlay, Jarod C; Busch, Theresa M

    2015-02-01

    Dosimetry of singlet oxygen ( 1 O 2 ) is of particular interest because it is the major cytotoxic agent causing biological effects for type-II photosensitizers during photodynamic therapy (PDT). An in-vivo model to determine the singlet oxygen threshold dose, [ 1 O 2 ] rx,sh , for PDT was developed. An in-vivo radiation-induced fibrosarcoma (RIF) tumor mouse model was used to correlate the radius of necrosis to the calculation based on explicit PDT dosimetry of light fluence distribution, tissue optical properties, and photosensitizer concentrations. Inputs to the model include five photosensitizer-specific photochemical parameters along with [ 1 O 2 ] rx,sh . Photosensitizer-specific model parameters were determined for benzoporphyrin derivative monoacid ring A (BPD) and compared with two other type-II photosensitizers, Photofrin ® and m-tetrahydroxyphenylchlorin (mTHPC) from the literature. The mean values (standard deviation) of the in-vivo [ 1 O 2 ] rx,sh are approximately 0.56 (0.26) and 0.72 (0.21) mM (or 3.6×10 7 and 4.6×10 7 singlet oxygen per cell to reduce the cell survival to 1/e) for Photofrin ® and BPD, respectively, assuming that the fraction of generated singlet oxygen that interacts with the cell is 1. While the values for the photochemical parameters (ξ, σ, g , β) used for BPD were preliminary and may need further refinement, there is reasonable confidence for the values of the singlet oxygen threshold doses. In comparison, the [ 1 O 2 ] rx,sh value derived from in-vivo mouse study was reported to be 0.4 mM for mTHPC-PDT. However, the singlet oxygen required per cell is reported to be 9×10 8 per cell per 1/ e fractional kill in an in-vitro mTHPC-PDT study on a rat prostate cancer cell line (MLL cells) and is reported to be 7.9 mM for a multicell in-vitro EMT6/Ro spheroid model for mTHPC-PDT. A theoretical analysis is provided to relate the number of in-vitro singlet oxygen required per cell to reach cell killing of 1/ e to in-vivo singlet

  18. Singlet oxygen production and quenching mechanisms in travelling microwave discharges

    International Nuclear Information System (INIS)

    Savin, Yu V; Goryachev, L V; Adamenkov, Yu A; Rakhimova, T V; Mankelevich, Yu A; Popov, N A; Adamenkov, A A; Egorov, V V; Ilyin, S P; Kolobyanin, Yu V; Kudryashov, E A; Rogozhnikov, G S; Vyskubenko, B A

    2004-01-01

    Experimental and theoretical studies of singlet oxygen excitation in travelling microwave (TMW) discharges are presented. Singlet oxygen O 2 (a 1 Δ g ) concentrations and atomic oxygen mole fraction have been measured for different pressures, input powers and distances from the MW resonator. It was shown that a steady-state TMW discharge with a coaxial cavity resonator could provide a maximal O 2 (a 1 Δ g ) yield of 22% for 2 Torr of pure oxygen and 27-30% for He : O 2 = 1 : 1 mixture. The two-dimensional (r, z) model developed for calculations of plasma-chemical kinetics, heat and mass transfer was used for simulation of processes in the TMW discharge under study. Effects of gas pressure, gas flow rate and input power are studied and compared with experimental measurements of O 2 (a 1 Δ g ) concentrations and atomic oxygen mole fractions

  19. Singlet oxygen reactions with flavonoids. A theoretical-experimental study.

    Science.gov (United States)

    Morales, Javier; Günther, Germán; Zanocco, Antonio L; Lemp, Else

    2012-01-01

    Detection of singlet oxygen emission, λ(max) = 1270 nm, following laser excitation and steady-state methods were employed to measure the total reaction rate constant, k(T), and the reactive reaction rate constant, k(r), for the reaction between singlet oxygen and several flavonoids. Values of k(T) determined in deuterated water, ranging from 2.4×10(7) M(-1) s(-1) to 13.4×10(7) M(-1) s(-1), for rutin and morin, respectively, and the values measured for k(r), ranging from 2.8×10(5) M(-1) s(-1) to 65.7×10(5) M(-1) s(-1) for kaempferol and morin, respectively, being epicatechin and catechin chemically unreactive. These results indicate that all the studied flavonoids are good quenchers of singlet oxygen and could be valuable antioxidants in systems under oxidative stress, in particular if a flavonoid-rich diet was previously consumed. Analysis of the dependence of rate constant values with molecular structure in terms of global descriptors and condensed Fukui functions, resulting from electronic structure calculations, supports the formation of a charge transfer exciplex in all studied reactions. The fraction of exciplex giving reaction products evolves through a hydroperoxide and/or an endoperoxide intermediate produced by singlet oxygen attack on the double bond of the ring C of the flavonoid.

  20. Singlet oxygenation in microemulsion catalysed by vanadium chloroperoxidase

    NARCIS (Netherlands)

    Renirie, R.; Pierlot, C.; Wever, R.; Aubry, J.-M.

    2009-01-01

    Non-ionic microemulsions compatible with the enzyme vanadium chloroperoxidase were designed to perform singlet oxygenation of apolar substrates. The media were based on mono- and polydisperse ethoxylated fatty alcohols (CiEj). octane and aqueous buffer. "Fish" diagrams were determined to identify

  1. Label-free electrochemical detection of singlet oxygen protein damage

    Czech Academy of Sciences Publication Activity Database

    Vargová, Veronika; Gimenez, R.E.; Černocká, Hana; Trujillo, D.C.; Tulli, F.; Zanini, V.I.P.; Paleček, Emil; Borsarelli, C.D.; Ostatná, Veronika

    2016-01-01

    Roč. 187, JAN 2016 (2016), s. 662-669 ISSN 0013-4686 R&D Projects: GA ČR GA13-00956S Institutional support: RVO:68081707 Keywords : singlet oxygen protein damage * surface-attached protein stability * mercury and carbon electrodes Subject RIV: BO - Biophysics Impact factor: 4.798, year: 2016

  2. Singlet Oxygen Reactions with Flavonoids. A Theoretical – Experimental Study

    Science.gov (United States)

    Morales, Javier; Günther, Germán; Zanocco, Antonio L.; Lemp, Else

    2012-01-01

    Detection of singlet oxygen emission, λmax = 1270 nm, following laser excitation and steady-state methods were employed to measure the total reaction rate constant, kT, and the reactive reaction rate constant, kr, for the reaction between singlet oxygen and several flavonoids. Values of kT determined in deuterated water, ranging from 2.4×107 M−1s−1 to 13.4×107 M−1s−1, for rutin and morin, respectively, and the values measured for kr, ranging from 2.8×105 M−1s−1 to 65.7×105 M−1s−1 for kaempferol and morin, respectively, being epicatechin and catechin chemically unreactive. These results indicate that all the studied flavonoids are good quenchers of singlet oxygen and could be valuable antioxidants in systems under oxidative stress, in particular if a flavonoid-rich diet was previously consumed. Analysis of the dependence of rate constant values with molecular structure in terms of global descriptors and condensed Fukui functions, resulting from electronic structure calculations, supports the formation of a charge transfer exciplex in all studied reactions. The fraction of exciplex giving reaction products evolves through a hydroperoxide and/or an endoperoxide intermediate produced by singlet oxygen attack on the double bond of the ring C of the flavonoid. PMID:22802966

  3. Singlet oxygen reactions with flavonoids. A theoretical-experimental study.

    Directory of Open Access Journals (Sweden)

    Javier Morales

    Full Text Available Detection of singlet oxygen emission, λ(max = 1270 nm, following laser excitation and steady-state methods were employed to measure the total reaction rate constant, k(T, and the reactive reaction rate constant, k(r, for the reaction between singlet oxygen and several flavonoids. Values of k(T determined in deuterated water, ranging from 2.4×10(7 M(-1 s(-1 to 13.4×10(7 M(-1 s(-1, for rutin and morin, respectively, and the values measured for k(r, ranging from 2.8×10(5 M(-1 s(-1 to 65.7×10(5 M(-1 s(-1 for kaempferol and morin, respectively, being epicatechin and catechin chemically unreactive. These results indicate that all the studied flavonoids are good quenchers of singlet oxygen and could be valuable antioxidants in systems under oxidative stress, in particular if a flavonoid-rich diet was previously consumed. Analysis of the dependence of rate constant values with molecular structure in terms of global descriptors and condensed Fukui functions, resulting from electronic structure calculations, supports the formation of a charge transfer exciplex in all studied reactions. The fraction of exciplex giving reaction products evolves through a hydroperoxide and/or an endoperoxide intermediate produced by singlet oxygen attack on the double bond of the ring C of the flavonoid.

  4. Reversible Photochemical Control of Singlet Oxygen Generation Using Diarylethene Photochromic Switches

    NARCIS (Netherlands)

    Hou, Lili; Zhang, Xiaoyan; Pijper, Thomas C.; Browne, Wesley R.; Feringa, Bernard

    2014-01-01

    Reversible noninvasive control over the generation of singlet oxygen is demonstrated in a bicomponent system comprising a diarylethene photochromic switch and a porphyrin photosensitizer by selective irradiation at distinct wavelengths. The efficient generation of singlet oxygen by the

  5. Photorelease of triplet and singlet oxygen from dioxygen complexes

    Czech Academy of Sciences Publication Activity Database

    Wagnerová, Dana Marie; Lang, Kamil

    2011-01-01

    Roč. 255, 23-24 (2011), s. 2904-2911 ISSN 0010-8545 R&D Projects: GA ČR GAP207/10/1447; GA ČR GAP208/10/1678 Institutional research plan: CEZ:AV0Z40320502 Keywords : singlet oxygen * triplet oxygen * photochemical elimination * photorelease * Dioxygen complex Subject RIV: CA - Inorganic Chemistry Impact factor: 12.110, year: 2011

  6. Spray generator of singlet oxygen for a chemical oxygen-iodine laser

    Czech Academy of Sciences Publication Activity Database

    Jirásek, Vít; Hrubý, Jan; Špalek, Otomar; Čenský, Miroslav; Kodymová, Jarmila

    2010-01-01

    Roč. 100, č. 4 (2010), s. 779-791 ISSN 0946-2171 Grant - others:European Office of Aerospace R&D(US) FA8655-09-1-3091 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20760514 Keywords : spray generator of singlet oxygen * singlet oxygen * chemical oxygen-iodine laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.239, year: 2010

  7. Single Cell Responses to Spatially Controlled Photosensitized Production of Extracellular Singlet Oxygen

    DEFF Research Database (Denmark)

    Pedersen, Brian Wett; Sinks, Louise E.; Breitenbach, Thomas

    2011-01-01

    The response of individual HeLa cells to extracellularly produced singlet oxygen was examined. The spatial domain of singlet oxygen production was controlled using the combination of a membrane-impermeable Pd porphyrin-dendrimer, which served as a photosensitizer, and a focused laser, which served...... to localize the sensitized production of singlet oxygen. Cells in close proximity to the domain of singlet oxygen production showed morphological changes commonly associated with necrotic cell death. The elapsed post-irradiation “waiting period” before necrosis became apparent depended on (a) the distance...... between the cell membrane and the domain irradiated, (b) the incident laser fluence and, as such, the initial concentration of singlet oxygen produced, and (c) the lifetime of singlet oxygen. The data imply that singlet oxygen plays a key role in this process of light-induced cell death. The approach...

  8. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling☆

    Science.gov (United States)

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-01-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2.) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. PMID:26225731

  9. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling.

    Science.gov (United States)

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-12-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2(.)) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  10. New strategies to produce and detect singlet oxygen in a cell

    DEFF Research Database (Denmark)

    Gollmer, Anita

    2012-01-01

    of the general methodology to generate and detect singlet oxygen is currently of great importance in order to better understand the roles played by singlet oxygen in photo-induced cell death. From a mechanistic perspective, experiments performed at the level of a single cell provide unique insight......Singlet oxygen, the first excited electronic state of molecular oxygen, plays a major role in oxygen-dependent photo-induced cell death. In such systems, singlet oxygen is generally produced in a photosensitized process wherein light is absorbed by a molecule (the so-called sensitizer) which......, and that is the perspective of this study. Although the direct optical detection of singlet oxygen by its near IR phosphorescence is the ideal way to monitor this species, it suffers from the problem of weak signal intensity. Fluorescent probes can be a more sensitive way to detect singlet oxygen. The photochemical behavior...

  11. Singlet oxygen-mediated formation of protein peroxides within cells

    International Nuclear Information System (INIS)

    Wright, A.; Policarpio, V.

    2003-01-01

    Full text: Singlet oxygen is generated by a number of cellular, enzymatic and chemical reactions as well as by exposure to UV, or visible light in the presence of a sensitizer; as a consequence this oxidant has been proposed as a damaging agent in a number of pathologies including photo-aging and skin cancer. Proteins are major targets for singlet oxygen as a result of their abundance and high rate constants for reaction. In this study it is shown that illumination of viable, sensitizer-loaded, THP-1 (human monocyte-like) cells with visible light gives rise to intra-cellular protein-derived peroxides. The peroxide yield increases with illumination time, requires the presence of the sensitizer, is enhanced in D 2 O, and decreased by azide; these data are consistent with the mediation of singlet oxygen. The concentration of peroxides detected, which is not affected by glucose or ascorbate loading of the cells, corresponds to ca. 1.5 nmoles peroxide per 10 6 cells using rose bengal as sensitizer, or 10 nmoles per mg cell protein and account for up to ca. 15% of the O 2 consumed by the cells. Similar peroxides have been detected on isolated cellular proteins exposed to light in the presence of rose bengal and oxygen. After cessation of illumination, the cellular protein peroxide levels decreases with t 1/2 ca. 4 hrs at 37 deg C, and this is associated with increased cell lysis. Decomposition of protein peroxides formed within cells, or on isolated cellular proteins, by metal ions, gives rise to radicals as detected by EPR spin trapping. These protein peroxides, and radicals derived from them, can inactivate key cellular enzymes (including caspases, GAPDH and glutathione reductase) and induce DNA base oxidation, strand breaks and DNA-protein cross-links. These studies demonstrate that exposure of intact cells to visible light in the presence of a sensitizer gives rise to novel long-lived, but reactive, intra-cellular protein peroxides via singlet oxygen

  12. Reactive species formed on proteins exposed to singlet oxygen

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    2004-01-01

    Singlet oxygen ((1)O(2)) is believed to be generated in biological systems by a range of endogenous processes (e.g. enzymatic and chemical reactions) and exogenous stimuli (e.g. UV or visible light in the presence of a sensitiser). Kinetic data is consistent with proteins being a major target...... hydroperoxides, which can be reduced to the corresponding alcohols; other products arising from radical intermediates can also be generated, particularly in the presence of UV light and metal ions. With His side-chains, poorly characterised peroxides are also formed. Reaction with Met and Cys has been proposed...

  13. Detection of Singlet Oxygen Formation inside Photoactive Biohybrid Composite Material

    Directory of Open Access Journals (Sweden)

    Kata Hajdu

    2017-12-01

    Full Text Available Photosynthetic reaction center proteins (RCs are the most efficient light energy converter systems in nature. The first steps of the primary charge separation in photosynthesis take place in these proteins. Due to their unique properties, combining RCs with nano-structures promising applications can be predicted in optoelectronic systems. In the present work RCs purified from Rhodobacter sphaeroides purple bacteria were immobilized on multiwalled carbon nanotubes (CNTs. Carboxyl—and amine-functionalised CNTs were used, so different binding procedures, physical sorption and chemical sorption as well, could be applied as immobilization techniques. Light-induced singlet oxygen production was measured in the prepared photoactive biocomposites in water-based suspension by histidine mediated chemical trapping. Carbon nanotubes were applied under different conditions in order to understand their role in the equilibration of singlet oxygen concentration in the suspension. CNTs acted as effective quenchers of 1O2 either by physical (resonance energy transfer or by chemical (oxidation reaction and their efficiency showed dependence on the diffusion distance of 1O2.

  14. Singlet Oxygen Detection Using Red Wine Extracts as Photosensitizers.

    Science.gov (United States)

    Lagunes, Irene; Vázquez-Ortega, Fernanda; Trigos, Ángel

    2017-09-01

    Moderate consumption of red wine provides beneficial effects to health. This is attributed to polyphenol compounds present in wine such as resveratrol, quercetin, gallic acid, rutin, and vanillic acid. The amount of these antioxidants is variable; nevertheless, the main beneficial effects of red wine are attributed to resveratrol. However, it has been found that resveratrol and quercetin are able to photosensitize singlet oxygen generation and conversely, gallic acid acts as quencher. Therefore, and since resveratrol and quercetin are some of the most important antioxidants reported in red wines, the aim of this research was to evaluate the photosensitizing ability of 12 red wine extracts through photo-oxidation of ergosterol. The presence of 1 O 2 was detected by ergosterol conversion into peroxide of ergosterol through 1 H NMR analysis. Our results showed that 10 wine extracts were able to act as photosensitizers in the generation of singlet oxygen. The presence of 1 O 2 can damage other compounds of red wine and cause possible organoleptic alterations. Finally, although the reaction conditions employed in this research do not resemble the inherent conditions in wine making processing or storing, or even during its consumption, this knowledge could be useful to prevent possible pro-oxidant effects and avoid detrimental effects in red wines. © 2017 Institute of Food Technologists®.

  15. X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy: determination of singlet oxygen quantum yield

    OpenAIRE

    Clement, Sandhya; Deng, Wei; Camilleri, Elizabeth; Wilson, Brian C.; Goldys, Ewa M.

    2016-01-01

    Singlet oxygen is a primary cytotoxic agent in photodynamic therapy. We show that CeF3 nanoparticles, pure as well as conjugated through electrostatic interaction with the photosensitizer verteporfin, are able to generate singlet oxygen as a result of UV light and 8?keV X-ray irradiation. The X-ray stimulated singlet oxygen quantum yield was determined to be 0.79???0.05 for the conjugate with 31 verteporfin molecules per CeF3 nanoparticle, the highest conjugation level used. From this result ...

  16. Non-self-sustained electric discharge in oxygen gas mixtures: singlet delta oxygen production

    CERN Document Server

    Ionin, A A; Kotkov, A A; Kochetov, I V; Napartovich, A P; Seleznev, L V; Sinitsyn, D V; Hager, G D

    2003-01-01

    The possibility of obtaining a high specific input energy in an electron-beam sustained discharge ignited in oxygen gas mixtures O sub 2 : Ar : CO (or H sub 2) at the total gas pressures of 10-100 Torr was experimentally demonstrated. The specific input energy per molecular component exceeded approx 6 kJ l sup - sup 1 atm sup - sup 1 (150 kJ mol sup - sup 1) as a small amount of carbon monoxide was added into a gas mixture of oxygen and argon. It was theoretically demonstrated that one might expect to obtain a singlet delta oxygen yield of 25% exceeding its threshold value needed for an oxygen-iodine laser operation at room temperature, when maintaining a non-self-sustained discharge in oxygen gas mixtures with molecular additives CO, H sub 2 or D sub 2. The efficiency of singlet delta oxygen production can be as high as 40%.

  17. Kinetics of oxygen species in an electrically driven singlet oxygen generator

    Science.gov (United States)

    Azyazov, V. N.; Torbin, A. P.; Pershin, A. A.; Mikheyev, P. A.; Heaven, M. C.

    2015-12-01

    The kinetics of oxygen species in the gaseous medium of a discharge singlet oxygen generator has been revisited. Vibrationally excited ozone O3(υ) formed in O + O2 recombination is thought to be a significant agent in the deactivation of singlet oxygen O2(a1Δ), oxygen atom removal and ozone formation. It is shown that the process O3(υ ⩾ 2) + O2(a1Δ) → 2O2 + O is the main O2(a1Δ) deactivation channel in the post-discharge zone. If no measures are taken to decrease the oxygen atom concentration, the contribution of this process to the overall O2(a1Δ) removal is significant, even in the discharge zone. A simplified model for the kinetics of vibrationally excited ozone is proposed. Calculations based on this model yield results that are in good agreement with the experimental data.

  18. Singlet oxygen oxygenation of enol ethers; the synthesis of optically active 1,2-dioxetanes. II

    NARCIS (Netherlands)

    Meijer, E.W.; Wynberg, H.

    1979-01-01

    (+)-(Methoxymethylene)fenchane I (R = H, R1 = OMe) on singlet O oxidn. gave dioxetanes II and III, which on thermal decompn. underwent chemiluminescence in which (+)-fenchone was the only chemiluminescent species at lmax 420 nm. Photosensitized oxygenation of I (R = OMe, R1 = H) also gave 2 isomeric

  19. In-vitro singlet oxygen threshold dose at PDT with Radachlorin photosensitizer

    Science.gov (United States)

    Klimenko, V. V.; Shmakov, S. V.; Kaydanov, N. E.; Knyazev, N. A.; Kazakov, N. V.; Rusanov, A. A.; Bogdanov, A. A.; Dubina, M. V.

    2017-07-01

    In this present study we investigate the Radachlorin photosensitizer accumulation in K562 cells and Hela cells and determined the cell viability after PDT. Using the macroscopic singlet oxygen modeling and cellular photosensitizer concentration the singlet oxygen threshold doses for K562 cells and Hela cells were calculated.

  20. Singlet oxygen in the low-temperature plasma of an electron-beam-sustained discharge

    International Nuclear Information System (INIS)

    Vagin, N. P.; Ionin, A. A.; Klimachev, Yu. M.; Kotkov, A. A.; Kochetov, I. V.; Napartovich, A. P.; Podmar'kov, Yu. P.; Rulev, O. A.; Seleznev, L. V.; Sinitsyn, D. V.; Frolov, M. P.; Yuryshev, N. N.

    2006-01-01

    Results are presented from experimental and theoretical studies of the production of singlet delta oxygen in a pulsed electron-beam-sustained discharge ignited in a large (∼18-1) volume at a total gas mixture pressure of up to 210 Torr. The measured yield of singlet oxygen reaches 10.5%. It is found that varying the reduced electric field from ∼2 to ∼11 kV/(cm atm) slightly affects singlet oxygen production. It is shown experimentally that an increase in the gas mixture pressure or the specific input energy reduces the duration of singlet oxygen luminescence. The calculated time evolution of the singlet oxygen concentration is compared with experimental results

  1. Centrifugal spray generator of singlet oxygen for a chemical oxygen-iodine laser

    Czech Academy of Sciences Publication Activity Database

    Špalek, Otomar; Hrubý, Jan; Čenský, Miroslav; Jirásek, Vít; Kodymová, Jarmila

    2010-01-01

    Roč. 100, č. 4 (2010), s. 793-802 ISSN 0946-2171 Grant - others:European Office of Aerospace R&D(US) FA8655-09-1-3091 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20760514 Keywords : centrifugal generator of singlet oxygen * chemical oxygen-iodine laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.239, year: 2010

  2. Photo-excitation of carotenoids causes cytotoxicity via singlet oxygen production

    International Nuclear Information System (INIS)

    Yoshii, Hiroshi; Yoshii, Yukie; Asai, Tatsuya; Furukawa, Takako; Takaichi, Shinichi; Fujibayashi, Yasuhisa

    2012-01-01

    Highlights: ► Some photo-excited carotenoids have photosensitizing ability. ► They are able to produce ROS. ► Photo-excited fucoxanthin can produce singlet oxygen through energy transfer. -- Abstract: Carotenoids, natural pigments widely distributed in algae and plants, have a conjugated double bond system. Their excitation energies are correlated with conjugation length. We hypothesized that carotenoids whose energy states are above the singlet excited state of oxygen (singlet oxygen) would possess photosensitizing properties. Here, we demonstrated that human skin melanoma (A375) cells are damaged through the photo-excitation of several carotenoids (neoxanthin, fucoxanthin and siphonaxanthin). In contrast, photo-excitation of carotenoids that possess energy states below that of singlet oxygen, such as β-carotene, lutein, loroxanthin and violaxanthin, did not enhance cell death. Production of reactive oxygen species (ROS) by photo-excited fucoxanthin or neoxanthin was confirmed using a reporter assay for ROS production with HeLa Hyper cells, which express a fluorescent indicator protein for intracellular ROS. Fucoxanthin and neoxanthin also showed high cellular penetration and retention. Electron spin resonance spectra using 2,2,6,6-tetramethil-4-piperidone as a singlet oxygen trapping agent demonstrated that singlet oxygen was produced via energy transfer from photo-excited fucoxanthin to oxygen molecules. These results suggest that carotenoids such as fucoxanthin, which are capable of singlet oxygen production through photo-excitation and show good penetration and retention in target cells, are useful as photosensitizers in photodynamic therapy for skin disease.

  3. Mechanism of singlet oxygen deactivation in an electric discharge oxygen – iodine laser

    Energy Technology Data Exchange (ETDEWEB)

    Azyazov, V N; Mikheyev, P A; Torbin, A P [Samara Branch of the P.N. Lebedev Physical Institute, Russian Academy of Sciences, Samara (Russian Federation); Pershin, A A [S.P. Korolev Samara State Aerospace University, Samara (Russian Federation); Heaven, M C [Emory University, Atlanta, GA, 30322 (United States)

    2014-12-31

    We have determined the influence of the reaction of molecular singlet oxygen with a vibrationally excited ozone molecule O{sub 2}(a {sup 1}Δ) + O{sub 3}(ν) → 2O{sub 2} + O on the removal rate of O{sub 2}(a {sup 1}Δ) in an electric-discharge-driven oxygen – iodine laser. This reaction has been shown to be a major channel of O{sub 2}(a {sup 1}Δ) loss at the output of an electric-discharge singlet oxygen generator. In addition, it can also contribute significantly to the loss of O{sub 2}(a {sup 1}Δ) in the discharge region of the generator. (lasers)

  4. Cytotoxicity But No Mutagenicity In Bacteria With Externally Generated Singlet Oxygen

    Science.gov (United States)

    Midden, W. Robert; Dahl, Thomas A.; Hartman, Philip E.

    1988-02-01

    Singlet oxygen is believed to be an important intermediate responsible for the cytotoxicity of HpD phototherapy. It has been recognized as a possible intermediate in photosensitization for more than 20 years. However, it has been difficult to obtain conclusive evidence of its biological characteristics in the past because most of the methods available for its generation that are compatible with biological systems also generate other reactive intermediates whose effects are difficult to distinguish from singlet oxygen. We have used a recently devised separated-surface-sensi-tizer (S-S-S) system for singlet oxygen generation' to measure the cytotoxicity and mutagenicity of singlet oxygen in bacteria. The S-S-S system employs rose bengal as a sensitizer immobilized on one surface of a glass plate. The glass plate is placed sensitizer-side down a small distance (plate is illuminated from above to generate singlet oxygen at the surface of the sensitizer. The singlet oxygen thus generated can diffuse the short dis-tance to the surface of the membrane to react with the bacteria. Because of the short lifetime of singlet oxygen in air, increasing the distance between the sensitizer and the membrane causes a decline in the amount of singlet oxygen reaching the membrane according to a function derived from the Einstein-Smoluchowski equation for net displacement by diffusion. Plotting the log of the effect measured (e.g., cytotoxicity) vs. the square of the distance gives a straight line. The slope of this line can be used to calculate the gas phase half life of the intermediate responsible for the observed effects. We have found that bacteria are rapidly killed in the illuminated S-S-S system and that the gas phase half life of the agent responsible for cell killing is the same as that of singlet oxygen. This observation and other simple chemical tests have conclusively estab-lished that singlet oxygen is responsible for the cytotoxicity observed with bacteria. Dosimetry

  5. Bromorhodamines - new singlet oxygen photosensitizers for oxidative water and wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Slivka, L.; Alekseeva, V.; Kuznetsova, N.; Marinina, L.; Savvina, L.; Kaliya, O.; Lukyanets, E.; Vorozhtsov, G. [Organic Intermediates and Dyes Inst., Moscow (Russian Federation); Krasnovsky, A.; Butorina, D. [Inst. of Biochemistry RAS, Moscow (Russian Federation)

    2003-07-01

    The cationic mono-, di- and tetrabromoderivatives of rhodamine 123 have been synthesized and studied as sensitizers for singlet oxygen formation in application for oxidative water treatment. Singlet oxygen quantum yields for compounds under investigation have been determined by using its near IR luminescence at 1270 nm. Bromorhodamines123 have been shown to sensitize the formation of singlet oxygen in aqueous solution with high quantum yields. Efficient oxidation of tryptophan in aqueous solutions sensitized by dibromorhodamine 123 has been demonstrated. This dye was tested as sensitizer for photodynamic treatment of water contaminated with coliform bacteria. It was shown to participate in the photosensitization of coliform bacteria, resulting in their efficient killing. (orig.)

  6. Wavelength dependence of the efficiency of singlet oxygen generation upon photoexcitation of photosensitizers

    Directory of Open Access Journals (Sweden)

    Starukhin A.

    2017-01-01

    Full Text Available The dependence of the efficiency of singlet oxygen (1Δg generation upon excitation of photosensitizer at different wavelength was observed for several derivatives of palladium porphyrin in carbon tetrachloride. The efficiency of singlet oxygen generation upon excitation in a blue region of the spectrum (Soret band exceeds by several times the efficiency at excitation in the red spectral region (Q band. The effect of enhancement of singlet oxygen generation upon CW photoexcitation to Soret band of photosensitizer may be explained by influence of high laying triplet states of a donor molecule on the triplet-triplet energy transfer.

  7. Regulation of singlet oxygen-induced apoptosis by cytosolic NADP+-dependent isocitrate dehydrogenase.

    Science.gov (United States)

    Kim, Sun Yee; Lee, Su Min; Tak, Jean Kyoung; Choi, Kyeong Sook; Kwon, Taeg Kyu; Park, Jeen-Woo

    2007-08-01

    Singlet oxygen is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules and it also promotes deleterious processes such as cell death. Recently, we demonstrated that the control of redox balance and the cellular defense against oxidative damage are the primary functions of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) through supplying NADPH for antioxidant systems. In this report, we demonstrate that modulation of IDPc activity in HL-60 cells regulates singlet oxygen-induced apoptosis. When we examined the protective role of IDPc against singlet oxygen-induced apoptosis with HL-60 cells transfected with the cDNA for mouse IDPc in sense and antisense orientations, a clear inverse relationship was observed between the amount of IDPc expressed in target cells and their susceptibility to apoptosis. The results suggest that IDPc plays an important protective role in apoptosis of HL-60 cells induced by singlet oxygen.

  8. Pallidol, a resveratrol dimer from red wine, is a selective singlet oxygen quencher

    International Nuclear Information System (INIS)

    He Shan; Jiang Liyan; Wu Bin; Pan Yuanjiang; Sun Cuirong

    2009-01-01

    Pallidol is a naturally occurring resveratrol dimer from red wine with antioxidant and antifungal activities. In this report, with the use of the EPR spin-trapping technique, the scavenging and quenching effects of pallidol on reactive oxygen species (ROS) were investigated. The results demonstrated that pallidol showed strong quenching effects on singlet oxygen at very low concentrations, but it was ineffective to scavenge hydroxyl radicals or superoxide anions. Further kinetic study revealed that the reaction of pallidol with singlet oxygen had an extremely high rate constant (k a = 1.71 x 10 10 ). Therefore, pallidol is a potent and selective singlet oxygen quencher in aqueous systems. It may be used in singlet oxygen-mediated diseases as a pharmacological agent, which may contribute to the health beneficial effects of red wine.

  9. Label-free electrochemical detection of singlet oxygen protein damage

    International Nuclear Information System (INIS)

    Vargová, Veronika; Giménez, Rodrigo E.; Černocká, Hana; Trujillo, Diana Chito; Tulli, Fiorella; Zanini, Verónica I. Paz; Paleček, Emil; Borsarelli, Claudio D.; Ostatná, Veronika

    2016-01-01

    Oxidative damage of proteins results in changes of their structures and functions. In this work, the singlet oxygen ( 1 O 2 )-mediated oxidation of bovine serum albumin (BSA) and urease by blue-light photosensitization of the tris(2,2′-bipyridine)ruthenium(II) cation [Ru(bpy) 3 ] 2+ was studied by square wave voltammetry at glassy carbon electrode and by constant current chronopotentiometry at mercury electrode. Small changes in voltammetric oxidation Tyr and Trp peaks did not indicate significant changes in the BSA structure after photo-oxidation at carbon electrode. On the other hand chronopotentiometric peak H of BSA at HMDE increased during blue-light photosensitization, indicating that photo-oxidized BSA was more susceptible to the electric field-induced denaturation than non-oxidized native BSA. Similar results were obtained for urease, where enzymatic activity was also evaluated. The present results show the capability of label- and reagent-free electrochemical methods to detect oxidative changes in proteins. We believe that these methods will become important tools for detection of various protein damages.

  10. Singlet oxygen-induced oxidation of alkylthiocarboxylic acids

    International Nuclear Information System (INIS)

    Celuch, M.; Pogocki, D.; Enache, M.

    2006-01-01

    Singlet oxygen ( 1 O 2 ) could be generated in biological systems by endogenous and exogenous processes (e.g. enzymatic and chemical reactions, UV or visible light in the presence of a sensitizer). Numerous data show that proteins are the major targets of 1 O 2 -induced damage in the living cells. In particular, reaction of 1 O 2 with thioether sulphur of methionine (Met) leads to the formation of persulphoxide >S (+) O-O (-) which is in equilibrium with superoxide radical-anion (O 2 ·- ) and respective sulphur-centered-radical-cation >S ·+ . In presented work, investigation the mechanisms of deprotonation and decarboxylation of the S ·+ - the irreversible processes, which competes with the formation of sulphoxide. Using thioethers dissevering by the number and positions of carboxylate groups it has been shown that efficiency of both decarboxylation and deprotonation could be influenced by various factors such as neighbouring group participation and environmental effects. The observed influence of carboxylate groups in β-position relative to the sulphur on the efficiency of decarboxylation suggests furthermore that they may also catalyze decarboxylation of α-positioned carboxylate in a manner similar to hydroxide anion

  11. A pulse radiolysis based singlet oxygen luminescence facility

    International Nuclear Information System (INIS)

    Gorman, A.A.; Hamblett, I.; Land, E.J.

    1989-01-01

    In this paper the authors report the first successful time-resolved detection of singlet oxygen, O 2 ( 1 Δ g ), luminescence using the pulse radiolysis technique. The use of this technique (a) to produce high concentrations of solute (S) triplet states in aerated benzene (B) via a combination of channels 1-4 and (b) to subsequently form O 2 ( 1 Δ g ) via channel 5 has already been described. The method complements direct pulsed laser excitation of S in that formation of 3 S*, and therefore of O 2 ( 1 Δ g ), is still efficient in those instances where intersystem crossing (channel 4) is unimportant. In the latter situation a laser-based experiment would require an additional light-absorbing sensitizer which could subsequently transfer triplet energy to high concentrations of S. Such experiments, certainly of a quantitative nature, are usually doomed to failure because of competitive light absorption problems. No such problems exist with pulse radiolysis, and the high available triplet energy of 3 B* (84 kcal mol -1 ) ensures that virtually any solute of interest, in the O 2 ( 1 Δ g ) context, will be efficiently promoted to its triplet state

  12. Kinetics of oxygen species in an electrically driven singlet oxygen generator

    International Nuclear Information System (INIS)

    Azyazov, V.N.; Torbin, A.P.; Pershin, A.A.; Mikheyev, P.A.; Heaven, M.C.

    2015-01-01

    Highlights: • Vibrational excitation of O_3 increases the rate constant for O_3 + O_2(a) → 2O_2(X) + O. • Vibrationally excited O_3 is produced by the O + O_2(X) + M → O_3 + M reaction. • Ozone concentrations are impacted by the reactions of vibrationally excited O_3. • Relevant to ozone concentrations in oxygen discharges and the upper atmosphere. - Abstract: The kinetics of oxygen species in the gaseous medium of a discharge singlet oxygen generator has been revisited. Vibrationally excited ozone O_3(υ) formed in O + O_2 recombination is thought to be a significant agent in the deactivation of singlet oxygen O_2(a"1Δ), oxygen atom removal and ozone formation. It is shown that the process O_3(υ ⩾ 2) + O_2(a"1Δ) → 2O_2 + O is the main O_2(a"1Δ) deactivation channel in the post-discharge zone. If no measures are taken to decrease the oxygen atom concentration, the contribution of this process to the overall O_2(a"1Δ) removal is significant, even in the discharge zone. A simplified model for the kinetics of vibrationally excited ozone is proposed. Calculations based on this model yield results that are in good agreement with the experimental data.

  13. Novel nanostructured oxygen sensor

    Science.gov (United States)

    Boardman, Alan James

    New government regulations and industry requirements for medical oxygen sensors require the development of alternate materials and process optimization of primary sensor components. Current oxygen sensors are not compliant with the Restriction of Hazardous Substances (RoHS) Directive. This work focused on two areas. First, was finding suitable readily available materials for the sensor anodes. Second was optimizing the processing of the sensor cathode membrane for reduced delamination. Oxygen sensors were made using tin (Sn) and bismuth (Bi) electrodes, potassium hydroxide (KOH) and acetic acid (CH3COOH) electrolytes with platinum (Pt) and gold (Au) reference electrodes. Bi electrodes were fabricated by casting and pressing processes. Electrochemical characterization of the Sn and Bi electrodes was performed by Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS) and sensing characterization per BSEN ISO 21647:2009 at various oxygen percentages, 0%, 20.9% and 100% oxygen levels with an automated test apparatus. The Sn anode with both electrolyte solutions showed good oxygen sensing properties and performance in a sensor. This system shows promise for replacement of Pb electrodes as required by the RoHS Directive. The Bi anode with Au cathode in both KOH and CH3COOH electrolytes showed acceptable performance and oxygen sensing properties. The Bi anodes fabricated by separate manufacturing methods demonstrated effectiveness for use in medical oxygen sensors. Gold thin films were prepared by magnetron sputtering on Flouroethylene Polymer (FEP) films. The FEP substrate temperature ranged from -77°C to 50°C. X-Ray Diffraction (XRD) and 4-point resistivity characterized the effects of substrate temperature to Au thin film particle size. XRD peak broadening and resistivity measurements showed a strong correlation of particle size to FEP substrate temperature. Particle size at 50°C was 594A and the -77°C particle size was 2.4 x 103A. Substrate

  14. Singlet Delta Oxygen: A Quantitative Analysis Using Off-Axis Integrated-Cavity-Output-Spectroscopy (ICOS)

    National Research Council Canada - National Science Library

    Gallagher, Jeffrey E

    2006-01-01

    .... The method is based on off-axis integrated-cavity-output spectroscopy (ICOS). The primary goal for this research effort is to utilize the ICOS technique and demonstrate its ability to provide quantitative data of singlet delta oxygen...

  15. Molecular Tuning of Phenylene-Vinylene Derivatives for Two-Photon Photosensitized Singlet Oxygen Production

    DEFF Research Database (Denmark)

    Nielsen, Christian B.; Arnbjerg, Jacob; Johnsen, Mette

    2009-01-01

    Substituent-dependent features and properties of the sensitizer play an important role in the photosensitized production of singlet oxygen, O2(a1Δg). In this work, we systematically examine the effect of molecular changes in the sensitizer on the efficiency of singlet oxygen production using......, as the sensitizer, oligophenylene-vinylene derivatives designed to optimally absorb light in a nonlinear two-photon process. We demonstrate that one cannot always rely on rule-of-thumb guidelines when attempting to construct efficient two-photon singlet oxygen sensitizers. Rather, as a consequence of behavior...... that can deviate from the norm, a full investigation of the photophysical properties of the system is generally required. For example, it is acknowledged that the introduction of a ketone moiety to the sensitizer chromophore often results in more efficient production of singlet oxygen. However, we show...

  16. Highly sensitive time resolved singlet oxygen luminescence detection using LEDs as the excitation source

    International Nuclear Information System (INIS)

    Hackbarth, S; Schlothauer, J; Preuss, A; Röder, B

    2013-01-01

    For the first time singlet oxygen luminescence kinetics in living cells were detected at high precision using LED light for excitation. As LED technology evolves, the light intensity emitted by standard LEDs allows photosensitized singlet oxygen luminescence detection in solution and cell suspensions. We present measurements superior to those of most actual laser powered setups regarding precision of singlet oxygen kinetics in solutions and cell suspensions. Data presented here show that LED based setups allow the determination of the photosensitizer triplet and singlet oxygen decay times in vitro with an accuracy of 0.1 μs. This enables monitoring of the photosensitizer efficiency and interaction with the cellular components using illumination doses small enough not to cause cell death. (letter)

  17. Exposure of vitamins to UVB and UVA radiation generates singlet oxygen.

    Science.gov (United States)

    Knak, Alena; Regensburger, Johannes; Maisch, Tim; Bäumler, Wolfgang

    2014-05-01

    Deleterious effects of UV radiation in tissue are usually attributed to different mechanisms. Absorption of UVB radiation in cell constituents like DNA causes photochemical reactions. Absorption of UVA radiation in endogenous photosensitizers like vitamins generates singlet oxygen via photosensitized reactions. We investigated two further mechanisms that might be involved in UV mediated cell tissue damage. Firstly, UVB radiation and vitamins also generate singlet oxygen. Secondly, UVB radiation may change the chemical structure of vitamins that may change the role of such endogenous photosensitizers in UVA mediated mechanisms. Vitamins were irradiated in solution using monochromatic UVB (308 nm) or UVA (330, 355, or 370 nm) radiation. Singlet oxygen was directly detected and quantified by its luminescence at 1270 nm. All investigated molecules generated singlet oxygen with a quantum yield ranging from 0.007 (vitamin D3) to 0.64 (nicotinamide) independent of the excitation wavelength. Moreover, pre-irradiation of vitamins with UVB changed their absorption in the UVB and UVA spectral range. Subsequently, molecules such as vitamin E and vitamin K1, which normally exhibit no singlet oxygen generation in the UVA, now produce singlet oxygen when exposed to UVA at 355 nm. This interplay of different UV sources is inevitable when applying serial or parallel irradiation with UVA and UVB in experiments in vitro. These results should be of particular importance for parallel irradiation with UVA and UVB in vivo, e.g. when exposing the skin to solar radiation.

  18. Spatial and temporal distribution of singlet oxygen in Lake Superior.

    Science.gov (United States)

    Peterson, Britt M; McNally, Ann M; Cory, Rose M; Thoemke, John D; Cotner, James B; McNeill, Kristopher

    2012-07-03

    A multiyear field study was undertaken on Lake Superior to investigate singlet oxygen ((1)O(2)) photoproduction. Specifically, trends within the lake were examined, along with an assessment of whether correlations existed between chromophoric dissolved organic matter (CDOM) characteristics and (1)O(2) production rates and quantum yields. Quantum yield values were determined and used to estimate noontime surface (1)O(2) steady-state concentrations ([(1)O(2)](ss)). Samples were subdivided into three categories based on their absorbance properties (a300): riverine, river-impacted, or open lake sites. Using calculated surface [(1)O(2)](ss), photochemical half-lives under continuous summer sunlight were calculated for cimetidine, a pharmaceutical whose reaction with (1)O(2) has been established, to be on the order of hours, days, and a week for the riverine, river-impacted, and open lake waters, respectively. Of the CDOM properties investigated, it was found that dissolved organic carbon (DOC) and a300 were the best parameters for predicting production rates of [(1)O(2)](ss). For example, given the correlations found, one could predict [(1)O(2)](ss) within a factor of 4 using a300 alone. Changes in the quantum efficiency of (1)O(2) production upon dilution of river water samples with lake water samples demonstrated that the CDOM found in the open lake is not simply diluted riverine organic matter. The open lake pool was characterized by low absorption coefficient, low fluorescence, and low DOC, but more highly efficient (1)O(2) production and predominates the Lake Superior system spatially. This study establishes that parameters that reflect the quantity of CDOM (e.g., a300 and DOC) correlate with (1)O(2) production rates, while parameters that characterize the absorbance spectrum (e.g., spectral slope coefficient and E2:E3) correlate with (1)O(2) production quantum yields.

  19. Kinetics of oxygen species in an electrically driven singlet oxygen generator

    Energy Technology Data Exchange (ETDEWEB)

    Azyazov, V.N., E-mail: azyazov@fian.smr.ru [Samara State Aerospace University, 443086 (Russian Federation); Lebedev Physical Institute of RAS, Samara 443011 (Russian Federation); Torbin, A.P.; Pershin, A.A. [Samara State Aerospace University, 443086 (Russian Federation); Lebedev Physical Institute of RAS, Samara 443011 (Russian Federation); Mikheyev, P.A., E-mail: mikheyev@fian.smr.ru [Samara State Aerospace University, 443086 (Russian Federation); Lebedev Physical Institute of RAS, Samara 443011 (Russian Federation); Heaven, M.C., E-mail: mheaven@emory.edu [Emory University, Atlanta, GA 30322 (United States)

    2015-12-16

    Highlights: • Vibrational excitation of O{sub 3} increases the rate constant for O{sub 3} + O{sub 2}(a) → 2O{sub 2}(X) + O. • Vibrationally excited O{sub 3} is produced by the O + O{sub 2}(X) + M → O{sub 3} + M reaction. • Ozone concentrations are impacted by the reactions of vibrationally excited O{sub 3}. • Relevant to ozone concentrations in oxygen discharges and the upper atmosphere. - Abstract: The kinetics of oxygen species in the gaseous medium of a discharge singlet oxygen generator has been revisited. Vibrationally excited ozone O{sub 3}(υ) formed in O + O{sub 2} recombination is thought to be a significant agent in the deactivation of singlet oxygen O{sub 2}(a{sup 1}Δ), oxygen atom removal and ozone formation. It is shown that the process O{sub 3}(υ ⩾ 2) + O{sub 2}(a{sup 1}Δ) → 2O{sub 2} + O is the main O{sub 2}(a{sup 1}Δ) deactivation channel in the post-discharge zone. If no measures are taken to decrease the oxygen atom concentration, the contribution of this process to the overall O{sub 2}(a{sup 1}Δ) removal is significant, even in the discharge zone. A simplified model for the kinetics of vibrationally excited ozone is proposed. Calculations based on this model yield results that are in good agreement with the experimental data.

  20. Cellular defense against singlet oxygen-induced oxidative damage by cytosolic NADP+-dependent isocitrate dehydrogenase.

    Science.gov (United States)

    Kim, Sun Yee; Park, Jeen-Woo

    2003-03-01

    Singlet oxygen (1O2) is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. Recently, we have shown that NADP+-dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study, we investigated the role of cytosolic form of NADP+-dependent isocitrate dehydrogenase (IDPc) against singlet oxygen-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to singlet oxygen generated from photoactivated dye, the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against singlet oxygen, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against singlet oxygen-induced oxidative injury.

  1. Phenomenological model of photoluminescence degradation and photoinduced defect formation in silicon nanocrystal ensembles under singlet oxygen generation

    Energy Technology Data Exchange (ETDEWEB)

    Gongalsky, Maxim B., E-mail: mgongalsky@gmail.com; Timoshenko, Victor Yu. [Faculty of Physics, Moscow State M.V. Lomonosov University, 119991 Moscow (Russian Federation)

    2014-12-28

    We propose a phenomenological model to explain photoluminescence degradation of silicon nanocrystals under singlet oxygen generation in gaseous and liquid systems. The model considers coupled rate equations, which take into account the exciton radiative recombination in silicon nanocrystals, photosensitization of singlet oxygen generation, defect formation on the surface of silicon nanocrystals as well as quenching processes for both excitons and singlet oxygen molecules. The model describes well the experimentally observed power law dependences of the photoluminescence intensity, singlet oxygen concentration, and lifetime versus photoexcitation time. The defect concentration in silicon nanocrystals increases by power law with a fractional exponent, which depends on the singlet oxygen concentration and ambient conditions. The obtained results are discussed in a view of optimization of the photosensitized singlet oxygen generation for biomedical applications.

  2. Oxidative damage of U937 human leukemic cells caused by hydroxyl radical results in singlet oxygen formation.

    Directory of Open Access Journals (Sweden)

    Marek Rác

    Full Text Available The exposure of human cells to oxidative stress leads to the oxidation of biomolecules such as lipids, proteins and nuclei acids. In this study, the oxidation of lipids, proteins and DNA was studied after the addition of hydrogen peroxide and Fenton reagent to cell suspension containing human leukemic monocyte lymphoma cell line U937. EPR spin-trapping data showed that the addition of hydrogen peroxide to the cell suspension formed hydroxyl radical via Fenton reaction mediated by endogenous metals. The malondialdehyde HPLC analysis showed no lipid peroxidation after the addition of hydrogen peroxide, whereas the Fenton reagent caused significant lipid peroxidation. The formation of protein carbonyls monitored by dot blot immunoassay and the DNA fragmentation measured by comet assay occurred after the addition of both hydrogen peroxide and Fenton reagent. Oxidative damage of biomolecules leads to the formation of singlet oxygen as conformed by EPR spin-trapping spectroscopy and the green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. It is proposed here that singlet oxygen is formed by the decomposition of high-energy intermediates such as dioxetane or tetroxide formed by oxidative damage of biomolecules.

  3. Development of Singlet Oxygen Luminescence Kinetics during the Photodynamic Inactivation of Green Algae

    Directory of Open Access Journals (Sweden)

    Tobias Bornhütter

    2016-04-01

    Full Text Available Recent studies show the feasibility of photodynamic inactivation of green algae as a vital step towards an effective photodynamic suppression of biofilms by using functionalized surfaces. The investigation of the intrinsic mechanisms of photodynamic inactivation in green algae represents the next step in order to determine optimization parameters. The observation of singlet oxygen luminescence kinetics proved to be a very effective approach towards understanding mechanisms on a cellular level. In this study, the first two-dimensional measurement of singlet oxygen kinetics in phototrophic microorganisms on surfaces during photodynamic inactivation is presented. We established a system of reproducible algae samples on surfaces, incubated with two different cationic, antimicrobial potent photosensitizers. Fluorescence microscopy images indicate that one photosensitizer localizes inside the green algae while the other accumulates along the outer algae cell wall. A newly developed setup allows for the measurement of singlet oxygen luminescence on the green algae sample surfaces over several days. The kinetics of the singlet oxygen luminescence of both photosensitizers show different developments and a distinct change over time, corresponding with the differences in their localization as well as their photosensitization potential. While the complexity of the signal reveals a challenge for the future, this study incontrovertibly marks a crucial, inevitable step in the investigation of photodynamic inactivation of biofilms: it shows the feasibility of using the singlet oxygen luminescence kinetics to investigate photodynamic effects on surfaces and thus opens a field for numerous investigations.

  4. Parabanic acid is the singlet oxygen specific oxidation product of uric acid.

    Science.gov (United States)

    Iida, Sayaka; Ohkubo, Yuki; Yamamoto, Yorihiro; Fujisawa, Akio

    2017-11-01

    Uric acid quenches singlet oxygen physically or reacts with it, but the oxidation product has not been previously characterized. The present study determined that the product is parabanic acid, which was confirmed by LC/TOFMS analysis. Parabanic acid was stable at acidic pH (acid at neutral or alkaline pH. The total yields of parabanic acid and oxaluric acid based on consumed uric acid were ~100% in clean singlet oxygen production systems such as UVA irradiation of Rose Bengal and thermal decomposition of 3-(1,4-dihydro-1,4-epidioxy-4-methyl-1-naphthyl)propionic acid. However, the ratio of the amount of uric acid consumed to the total amount of singlet oxygen generated was less than 1/180, indicating that most of the singlet oxygen was physically quenched. The total yields of parabanic acid and oxaluric acid were high in the uric acid oxidation systems with hydrogen peroxide plus hypochlorite or peroxynitrite. They became less than a few percent in peroxyl radical-, hypochlorite- or peroxynitrite-induced oxidation of uric acid. These results suggest that parabanic acid could be an in vivo probe of singlet oxygen formation because of the wide distribution of uric acid in human tissues and extracellular spaces. In fact, sunlight exposure significantly increased human skin levels of parabanic acid.

  5. Microscopic time-resolved imaging of singlet oxygen by delayed fluorescence in living cells.

    Science.gov (United States)

    Scholz, Marek; Dědic, Roman; Hála, Jan

    2017-11-08

    Singlet oxygen is a highly reactive species which is involved in a number of processes, including photodynamic therapy of cancer. Its very weak near-infrared emission makes imaging of singlet oxygen in biological systems a long-term challenge. We address this challenge by introducing Singlet Oxygen Feedback Delayed Fluorescence (SOFDF) as a novel modality for semi-direct microscopic time-resolved wide-field imaging of singlet oxygen in biological systems. SOFDF has been investigated in individual fibroblast cells incubated with a well-known photosensitizer aluminium phthalocyanine tetrasulfonate. The SOFDF emission from the cells is several orders of magnitude stronger and much more readily detectable than the very weak near-infrared phosphorescence of singlet oxygen. Moreover, the analysis of SOFDF kinetics enables us to estimate the lifetimes of the involved excited states. Real-time SOFDF images with micrometer spatial resolution and submicrosecond temporal-resolution have been recorded. Interestingly, a steep decrease in the SOFDF intensity after the photodynamically induced release of a photosensitizer from lysosomes has been demonstrated. This effect could be potentially employed as a valuable diagnostic tool for monitoring and dosimetry in photodynamic therapy.

  6. Cytometric quantification of singlet oxygen in the human malaria parasite Plasmodium falciparum

    NARCIS (Netherlands)

    Butzloff, Sabine; Groves, Matthew R; Wrenger, Carsten; Müller, Ingrid B

    The malaria parasite Plasmodium falciparum proliferates within human erythrocytes and is thereby exposed to a variety of reactive oxygen species (ROS) such as hydrogen peroxide, hydroxyl radical, superoxide anion, and highly reactive singlet oxygen ((1)O(2)). While most ROS are already well studied

  7. Photosensitized production of singlet oxygen: spatially-resolved optical studies in single cells

    DEFF Research Database (Denmark)

    Breitenbach, Thomas; Kuimova, Marina; Gbur, Peter

    2009-01-01

    be monitored using viability assays. Time- and spatially-resolved optical measurements of both singlet oxygen and its precursor, the excited state sensitizer, reflect the complex and dynamic morphology of the cell. These experiments help elucidate photoinduced, oxygen-dependent events that compromise cell...

  8. Bactericidal action of photogenerated singlet oxygen from photosensitizers used in plaque disclosing agents.

    Directory of Open Access Journals (Sweden)

    Kirika Ishiyama

    Full Text Available BACKGROUND: Photodynamic therapy (PDT has been suggested as an efficient clinical approach for the treatment of dental plaque in the field of dental care. In PDT, once the photosensitizer is irradiated with light of a specific wavelength, it transfers the excitation energy to molecular oxygen, which gives rise to singlet oxygen. METHODOLOGY/PRINCIPAL FINDINGS: Since plaque disclosing agents usually contain photosensitizers such as rose bengal, erythrosine, and phloxine, they could be used for PTD upon photoactivation. The aim of the present study is to compare the ability of these three photosensitizers to produce singlet oxygen in relation to their bactericidal activity. The generation rates of singlet oxygen determined by applying an electron spin resonance technique were in the order phloxine > erythrosine ≒ rose bengal. On the other hand, rose bengal showed the highest bactericidal activity against Streptococcus mutans, a major causative pathogen of caries, followed by erythrosine and phloxine, both of which showed activity similar to each other. One of the reasons for the discrepancy between the singlet oxygen generating ability and bactericidal activity was the incorporation efficiency of the photosensitizers into the bacterial cells. The incorporation rate of rose bengal was the highest among the three photosensitizers examined in the present study, likely leading to the highest bactericidal activity. Meanwhile, the addition of L-histidine, a singlet oxygen quencher, cancelled the bactericidal activity of any of the three photoactivated photosensitizers, proving that singlet oxygen was responsible for the bactericidal action. CONCLUSIONS: It is strongly suggested that rose bengal is a suitable photosensitizer for the plaque disclosing agents as compared to the other two photosensitizers, phloxine and erythrosine, when used for PDT.

  9. Singlet Oxygen and Free Radical Reactions of Retinoids and Carotenoids—A Review

    Science.gov (United States)

    Truscott, T. George

    2018-01-01

    We report on studies of reactions of singlet oxygen with carotenoids and retinoids and a range of free radical studies on carotenoids and retinoids with emphasis on recent work, dietary carotenoids and the role of oxygen in biological processes. Many previous reviews are cited and updated together with new data not previously reviewed. The review does not deal with computational studies but the emphasis is on laboratory-based results. We contrast the ease of study of both singlet oxygen and polyene radical cations compared to neutral radicals. Of particular interest is the switch from anti- to pro-oxidant behavior of a carotenoid with change of oxygen concentration: results for lycopene in a cellular model system show total protection of the human cells studied at zero oxygen concentration, but zero protection at 100% oxygen concentration. PMID:29301252

  10. Inactivation of Neurospora crassa conidia by singlet molecular oxygen generated by a photosensitized reaction

    International Nuclear Information System (INIS)

    Shimizu, M.; Egashira, T.; Takahama, U.

    1979-01-01

    Photodynamic damage of Neurospora crassa conidia was studied in the presence of the photosensitizing dye, toluidine blue O. Conidia which germinated to form colonies decreased in number as irradiation time became longer. The photoinactivation of conidia was suppressed by azide, bovine serum albumin, and histidine, and was stimulated in deuterium oxide. Wild-type conidia were less sensitive to the irradiation that albino conidia. In the wild type, carotenoid-enriched conidia were more resistant against the lethal damage than the conidia which contained small amounts of carotenoids. These results suggest that singlet molecular oxygen causes photodynamic lethal damage to N. crassa conidia and that singlet molecular oxygen is quenched by endogenous carotenoids

  11. Singlet oxygen produced by quasi-continuous photo-excitation of hypericin in dimethyl-sulfoxide

    Energy Technology Data Exchange (ETDEWEB)

    Varchola, J.; Želonková, K. [Department of Biophysics, Faculty of Science, P. J. Šafárik University, Jesenná 5, 041 54 Košice (Slovakia); Chorvat Jr, D. [International Laser Centre, Ilkovicova 3, 841 05 Bratislava (Slovakia); Jancura, D. [Department of Biophysics, Faculty of Science, P. J. Šafárik University, Jesenná 5, 041 54 Košice (Slovakia); Center for Interdisciplinary Biosciences, Faculty of Science, P. J. Šafárik University, Jesenná 5, 041 54 Košice (Slovakia); Miskovsky, P. [Department of Biophysics, Faculty of Science, P. J. Šafárik University, Jesenná 5, 041 54 Košice (Slovakia); International Laser Centre, Ilkovicova 3, 841 05 Bratislava (Slovakia); Center for Interdisciplinary Biosciences, Faculty of Science, P. J. Šafárik University, Jesenná 5, 041 54 Košice (Slovakia); and others

    2016-09-15

    Singlet oxygen (O{sub 2}({sup 1}Δ{sub g})) production by photo-excited hypericin (Hyp) dissolved in dimethyl-sulfoxide (DMSO) was studied by means of time-resolved phosphorescence measurements. In order to minimize photo-bleaching, the samples were excited in quasi-continuous mode using long-pulse (35 μs) laser excitation. The measured lifetime of singlet oxygen is τ{sub Δ}=5.5±0.3 μs. This result helps to resolve the discrepancy existing in the literature concerning singlet oxygen lifetime in DMSO. The obtained quantum yield of singlet oxygen photosensitized by Hyp in air-saturated DMSO is Φ{sub Δ}=0.4±0.03. The rate constant for Hyp triplet state depopulation in reaction with ground state molecular oxygen is measured to be k{sub q}=1.6±0.3×10{sup 9} M{sup −1} s{sup −1}.

  12. Irradiation- and Sensitizer-Dependent Changes in the Lifetime of Intracellular Singlet Oxygen Produced in a Photosensitized Process

    DEFF Research Database (Denmark)

    Silva, Elsa; Pedersen, Brian Wett; Breitenbach, Thomas

    2012-01-01

    Singlet oxygen, O2(a1Δg), was produced upon pulsed-laser irradiation of an intracellular photosensitizer and detected by its 1275 nm O2(a1Δg) →O2(X3Σg-) phosphorescence in time-resolved experiments using (1) individual mammalian cells on the stage of a microscope and (2) suspensions of mammalian...... cells in a 1 cm cuvette. Data were recorded using hydrophilic and, independently, hydrophobic sensitizers. The microscope-based single cell results are consistent with a model in which the behavior of singlet oxygen reflects the environment in which it is produced; nevertheless, the data also indicate...... that a significant fraction of a given singlet oxygen population readily crosses barriers between phase-separated intracellular domains. The singlet oxygen phosphorescence signals reflect the effects of singlet-oxygen-mediated damage on cell components which, at the limit, mean that data were collected from dead...

  13. BODIPY-Au(I): A Photosensitizer for Singlet Oxygen Generation and Photodynamic Therapy.

    Science.gov (United States)

    Üçüncü, Muhammed; Karakuş, Erman; Kurulgan Demirci, Eylem; Sayar, Melike; Dartar, Suay; Emrullahoğlu, Mustafa

    2017-05-19

    Upon complexation with Au(I), a photoinactive BODIPY derivative was transformed into a highly photoactive triplet sensitizer. Along with high efficiency in singlet oxygen generation (Φ Δ = 0.84), the new BODIPY-Au(I) skeleton showed excellent photocytotoxic activity against cancer cell lines (EC 50 = 2.5 nM).

  14. Laser-induced generation of singlet oxygen and its role in the cerebrovascular physiology

    Science.gov (United States)

    Semyachkina-Glushkovskaya, O. V.; Sokolovski, S. G.; Goltsov, A.; Gekaluyk, A. S.; Saranceva, E. I.; Bragina, O. A.; Tuchin, V. V.; Rafailov, E. U.

    2017-09-01

    For over 55 years, laser technology has expanded from laboratory research to widespread fields, for example telecommunication and data storage amongst others. Recently application of lasers in biology and medicine presents itself as one of the emerging areas. In this review, we will outline the recent advances in using lasers for the generation of singlet oxygen, traditionally used to kill tumour cells or induce thrombotic stroke model due to damage vascular effects. Over the last two decade, completely new results on cerebrovascular effects of singlet oxygen generated during photodynamic therapy (PDT) have been shown alongside promising applications for delivery of drugs and nanoparticles into the brain for therapy of brain cancer. Furthermore, a ;gold key; has been found to overcome the limitations of PDT, such as low light penetration and high toxicity of photosensitizers, by direct generation of singlet oxygen using quantum-dot laser diodes emitting in the near infrared (NIR) spectral range. It is our motivation to highlight these pioneering results in this review, to improve understanding of the biological role of singlet oxygen and to provide new perspectives for improving clinical application of laser based therapy in further research.

  15. Singlet oxygen generator for a solar powered chemically pumped iodine laser

    Science.gov (United States)

    Busch, G. E.

    1984-01-01

    The potential of solid phase endoperoxides as a means to produce single-delta oxygen in the gas phase in concentrations useful to chemical oxygen-iodine lasers was investigated. The 1,4 - endoperoxide of ethyl 3- (4-methyl - 1-naphthyl) propanoate was deposited over an indium-oxide layer on a glass plate. Single-delta oxygen was released from the endoperoxide upon heating the organic film by means of an electrical discharge through the conductive indium oxide coating. The evolution of singlet-delta oxygen was determined by measuring the dimol emission signal at 634 nm. Comparison of the measured signal with an analytic model leads to two main conclusions: virtually all the oxygen being evolved is in the singlet-delta state and in the gas phase, and there is no significant quenching other than energy pooling on the time scale of the experiment (approximately 10 msec). The use of solid phase endoperoxide as a singlet-delta oxygen generator for an oxygen-iodine laser appears promising.

  16. Impact of photosensitized oxidation and singlet oxygen on degradation of stabilized polymers

    Czech Academy of Sciences Publication Activity Database

    Pospíšil, Jan; Nešpůrek, Stanislav; Pilař, Jan

    2008-01-01

    Roč. 93, č. 9 (2008), s. 1681-1688 ISSN 0141-3910 R&D Projects: GA AV ČR IAA100100622; GA AV ČR KAN400720701; GA AV ČR IAA400500804 Institutional research plan: CEZ:AV0Z40500505 Keywords : photosensitized oxidation * singlet molecular oxygen * oxygenation Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.320, year: 2008

  17. Real-Time Monitoring of Singlet Oxygen and Oxygen Partial Pressure During the Deep Photodynamic Therapy In Vitro.

    Science.gov (United States)

    Li, Weitao; Huang, Dong; Zhang, Yan; Liu, Yangyang; Gu, Yueqing; Qian, Zhiyu

    2016-09-01

    Photodynamic therapy (PDT) is an effective noninvasive method for the tumor treatment. The major challenge in current PDT research is how to quantitatively evaluate therapy effects. To our best knowledge, this is the first time to combine multi-parameter detection methods in PDT. More specifically, we have developed a set of system, including the high-sensitivity measurement of singlet oxygen, oxygen partial pressure and fluorescence image. In this paper, the detection ability of the system was validated by the different concentrations of carbon quantum dots. Moreover, the correlation between singlet oxygen and oxygen partial pressure with laser irradiation was observed. Then, the system could detect the signal up to 0.5 cm tissue depth with 660 nm irradiation and 1 cm tissue depth with 980 nm irradiation by using up-conversion nanoparticles during PDT in vitro. Furthermore, we obtained the relationship among concentration of singlet oxygen, oxygen partial pressure and tumor cell viability under certain conditions. The results indicate that the multi-parameter detection system is a promising asset to evaluate the deep tumor therapy during PDT. Moreover, the system might be potentially used for the further study in biology and molecular imaging.

  18. Production of Singlet Oxygen in a Non-Self-Sustained Discharge

    International Nuclear Information System (INIS)

    Vasil'eva, A.N.; Klopovskii, K.S.; Kovalev, A.S.; Lopaev, D.V.; Mankelevich, Yu.A.; Popov, N.A.; Rakhimov, A.T.; Rakhimova, T.V.

    2005-01-01

    The production of O 2 (a 1 Δ g ) singlet oxygen in non-self-sustained discharges in pure oxygen and mixtures of oxygen with noble gases (Ar or He) was studied experimentally. It is shown that the energy efficiency of O 2 (a 1 Δ g ) production can be optimized with respect to the reduced electric field E/N. It is shown that the optimal E/N values correspond to electron temperatures of 1.2-1.4 eV. At these E/N values, a decrease in the oxygen percentage in the mixture leads to an increase in the excitation rate of singlet oxygen because of the increase in the specific energy deposition per O 2 molecule. The onset of discharge instabilities not only greatly reduces the energy efficiency of singlet oxygen production but also makes it impossible to achieve high energy deposition in a non-self-sustained discharge. A model of a non-self-sustained discharge in pure oxygen is developed. It is shown that good agreement between the experimental and computed results for a discharge in oxygen over a wide range of reduced electric fields can be achieved only by taking into account the ion component of the discharge current. The cross section for the electron-impact excitation of O 2 (a 1 Δ g ) and the kinetic scheme of the discharge processes with the participation of singlet oxygen are verified by comparing the experimental and computed data on the energy efficiency of the production of O 2 (a 1 Δ g ) and the dynamics of its concentration. It is shown that, in the dynamics of O 2 (a 1 Δ g ) molecules in the discharge afterglow, an important role is played by their deexcitation in a three-body reaction with the participation of O( 3 P) atoms. At high energy depositions in a non-self-sustained discharge, this reaction can reduce the maximal attainable concentration of singlet oxygen. The effect of a hydrogen additive to an Ar : O 2 mixture is analyzed based on the results obtained using the model developed. It is shown that, for actual electron beam current densities, a

  19. Scope and limitations of the TEMPO/EPR method for singlet oxygen detection: the misleading role of electron transfer.

    Science.gov (United States)

    Nardi, Giacomo; Manet, Ilse; Monti, Sandra; Miranda, Miguel A; Lhiaubet-Vallet, Virginie

    2014-12-01

    For many biological and biomedical studies, it is essential to detect the production of (1)O2 and quantify its production yield. Among the available methods, detection of the characteristic 1270-nm phosphorescence of singlet oxygen by time-resolved near-infrared (TRNIR) emission constitutes the most direct and unambiguous approach. An alternative indirect method is electron paramagnetic resonance (EPR) in combination with a singlet oxygen probe. This is based on the detection of the TEMPO free radical formed after oxidation of TEMP (2,2,6,6-tetramethylpiperidine) by singlet oxygen. Although the TEMPO/EPR method has been widely employed, it can produce misleading data. This is demonstrated by the present study, in which the quantum yields of singlet oxygen formation obtained by TRNIR emission and by the TEMPO/EPR method are compared for a set of well-known photosensitizers. The results reveal that the TEMPO/EPR method leads to significant overestimation of singlet oxygen yield when the singlet or triplet excited state of the photosensitizer is efficiently quenched by TEMP, acting as electron donor. In such case, generation of the TEMP(+) radical cation, followed by deprotonation and reaction with molecular oxygen, gives rise to an EPR-detectable TEMPO signal that is not associated with singlet oxygen production. This knowledge is essential for an appropriate and error-free application of the TEMPO/EPR method in chemical, biological, and medical studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Highly efficient oxidation of amines to imines by singlet oxygen and its application in Ugi-type reactions.

    Science.gov (United States)

    Jiang, Gaoxi; Chen, Jian; Huang, Jie-Sheng; Che, Chi-Ming

    2009-10-15

    A variety of secondary benzylic amines were oxidized to imines in 90% to >99% yields by singlet oxygen generated from oxygen and a porphyrin photosensitizer. On the basis of these reactions, a protocol was developed for oxidative Ugi-type reactions with singlet oxygen as the oxidant. This protocol has been used to synthesize C1- and N-functionalized benzylic amines in up to 96% yields.

  1. Singlet oxygen production by combining erythrosine and halogen light for photodynamic inactivation of Streptococcus mutans.

    Science.gov (United States)

    Fracalossi, Camila; Nagata, Juliana Yuri; Pellosi, Diogo Silva; Terada, Raquel Sano Suga; Hioka, Noboru; Baesso, Mauro Luciano; Sato, Francielle; Rosalen, Pedro Luiz; Caetano, Wilker; Fujimaki, Mitsue

    2016-09-01

    Photodynamic inactivation of microorganisms is based on a photosensitizing substance which, in the presence of light and molecular oxygen, produces singlet oxygen, a toxic agent to microorganisms and tumor cells. This study aimed to evaluate singlet oxygen quantum yield of erythrosine solutions illuminated with a halogen light source in comparison to a LED array (control), and the photodynamic effect of erythrosine dye in association with the halogen light source on Streptococcus mutans. Singlet oxygen quantum yield of erythrosine solutions was quantified using uric acid as a chemical-probe in an aqueous solution. The in vitro effect of the photodynamic antimicrobial activity of erythrosine in association with the halogen photopolimerizing light on Streptococcus mutans (UA 159) was assessed during one minute. Bacterial cultures treated with erythrosine alone served as negative control. Singlet oxygen with 24% and 2.8% degradation of uric acid in one minute and a quantum yield of 0.59 and 0.63 was obtained for the erythrosine samples illuminated with the halogen light and the LED array, respectively. The bacterial cultures with erythrosine illuminated with the halogen light presented a decreased number of CFU mL(-1) in comparison with the negative control, with minimal inhibitory concentrations between 0.312 and 0.156mgmL(-1). The photodynamic response of erythrosine induced by the halogen light was capable of killing S. mutans. Clinical trials should be conducted to better ascertain the use of erythrosine in association with halogen light source for the treatment of dental caries. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Metal bacteriochlorins which act as dual singlet oxygen and superoxide generators.

    Science.gov (United States)

    Fukuzumi, Shunichi; Ohkubo, Kei; Zheng, Xiang; Chen, Yihui; Pandey, Ravindra K; Zhan, Riqiang; Kadish, Karl M

    2008-03-06

    A series of stable free-base, Zn(II) and Pd(II) bacteriochlorins containing a fused six- or five-member diketo- or imide ring have been synthesized as good candidates for photodynamic therapy sensitizers, and their electrochemical, photophysical, and photochemical properties were examined. Photoexcitation of the palladium bacteriochlorin affords the triplet excited state without fluorescence emission, resulting in formation of singlet oxygen with a high quantum yield due to the heavy atom effect of palladium. Electrochemical studies revealed that the zinc bacteriochlorin has the smallest HOMO-LUMO gap of the investigated compounds, and this value is significantly lower than the triplet excited-state energy of the compound in benzonitrile. Such a small HOMO-LUMO gap of the zinc bacteriochlorin enables intermolecular photoinduced electron transfer from the triplet excited state to the ground state to produce both the radical cation and the radical anion. The radical anion thus produced can transfer an electron to molecular oxygen to produce superoxide anion which was detected by electron spin resonance. The same photosensitizer can also act as an efficient singlet oxygen generator. Thus, the same zinc bacteriochlorin can function as a sensitizer with a dual role in that it produces both singlet oxygen and superoxide anion in an aprotic solvent (benzonitrile).

  3. Single Molecule Atomic Force Microscopy Studies of Photosensitized Singlet Oxygen Behavior on a DNA Origami Template

    DEFF Research Database (Denmark)

    Helmig, Sarah Wendelboe; Rotaru, Alexandru; Arian, Dumitru

    2010-01-01

    DNA origami, the folding of a long single-stranded DNA sequence (scaffold strand) by hundreds of short synthetic oligonucleotides (staple strands) into parallel aligned helices, is a highly efficient method to form advanced self-assembled DNA-architectures. Since molecules and various materials can...... be conjugated to each of the short staple strands, the origami method offers a unique possibility of arranging molecules and materials in well-defined positions on a structured surface. Here we combine the action of light with AFM and DNA nanostructures to study the production of singlet oxygen from a single...... photosensitizer molecule conjugated to a selected DNA origami staple strand on an origami structure. We demonstrate a distance-dependent oxidation of organic moieties incorporated in specific positions on DNA origami by singlet oxygen produced from a single photosensitizer located at the center of each origami....

  4. Singlet oxygen reactivity in water-rich solvent mixtures

    Directory of Open Access Journals (Sweden)

    Cristina Sousa

    2008-01-01

    Full Text Available The 3-methylindole (3MI oxygenation sensitized by psoralen (PSO has been investigated in 100%, 20% and 5% O2-saturated water/dioxane (H2O/Dx mixtures. The lowering of the ¹O2* chemical rate when water (k chem∆3MI = 1.4 × 109 M-1 s-1 is replaced by deuterated water (k chem∆3MI = 1.9 × 108 M-1 s-1 suggests that hydrogen abstraction is involved in the rate determining step. A high dependence of the chemical rate constant on water concentration in H2O/Dx mixtures was found showing that water molecules are absolutely essential for the success of the 3MI substrate oxidation by ¹O2* in water-rich solvent mixtures.

  5. Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments.

    Science.gov (United States)

    Landry, Markita P; McCall, Patrick M; Qi, Zhi; Chemla, Yann R

    2009-10-21

    Optical traps or "tweezers" use high-power, near-infrared laser beams to manipulate and apply forces to biological systems, ranging from individual molecules to cells. Although previous studies have established that optical tweezers induce photodamage in live cells, the effects of trap irradiation have yet to be examined in vitro, at the single-molecule level. In this study, we investigate trap-induced damage in a simple system consisting of DNA molecules tethered between optically trapped polystyrene microspheres. We show that exposure to the trapping light affects the lifetime of the tethers, the efficiency with which they can be formed, and their structure. Moreover, we establish that these irreversible effects are caused by oxidative damage from singlet oxygen. This reactive state of molecular oxygen is generated locally by the optical traps in the presence of a sensitizer, which we identify as the trapped polystyrene microspheres. Trap-induced oxidative damage can be reduced greatly by working under anaerobic conditions, using additives that quench singlet oxygen, or trapping microspheres lacking the sensitizers necessary for singlet state photoexcitation. Our findings are relevant to a broad range of trap-based single-molecule experiments-the most common biological application of optical tweezers-and may guide the development of more robust experimental protocols.

  6. Theoretical study of singlet oxygen molecule generation via an exciplex with valence-excited thiophene.

    Science.gov (United States)

    Sumita, Masato; Morihashi, Kenji

    2015-02-05

    Singlet-oxygen [O2((1)Δg)] generation by valence-excited thiophene (TPH) has been investigated using multireference Møller-Plesset second-order perturbation (MRMP2) theory of geometries optimized at the complete active space self-consistent field (CASSCF) theory level. Our results indicate that triplet TPH(1(3)B2) is produced via photoinduced singlet TPH(2(1)A1) because 2(1)A1 TPH shows a large spin-orbit coupling constant with the first triplet excited state (1(3)B2). The relaxed TPH in the 1(3)B2 state can form an exciplex with O2((3)Σg(-)) because this exciplex is energetically more stable than the relaxed TPH. The formation of the TPH(1(3)B2) exciplex with O2((3)Σg(-)) whose total spin multiplicity is triplet (T1 state) increases the likelihood of transition from the T1 state to the singlet ground or first excited singlet state. After the transition, O2((1)Δg) is emitted easily although the favorable product is that from a 2 + 4 cycloaddition reaction.

  7. PHOTOGENERATION OF SINGLET OXYGEN AND FREE RADICALS IN DISSOLVED ORGANIC MATTER ISOLATED FROM THE MISSISSIPPI AND ATCHAFALAYA RIVER PLUMES

    Science.gov (United States)

    The photoreactivity to UV light of ultrafiltered dissolved organic matter (DOM) collected during cruises along salinity transects in the Mississippi and Atchafalaya River plumes was examined by measuring photogenerated free radicals and singlet molecular oxygen (1O2) photosensiti...

  8. Pulsed electron-beam-sustained discharge in oxygen-containing gas mixtures: electrical characteristics, spectroscopy,and singlet oxygen yield

    International Nuclear Information System (INIS)

    Vagin, Nikolai P; Ionin, Andrei A; Klimachev, Yu M; Kotkov, A A; Podmar'kov, Yu P; Seleznev, L V; Sinitsyn, D V; Frolov, M P; Yuryshev, Nikolai N; Kochetov, Igor' V; Napartovich, A P; Hager, G D

    2004-01-01

    The electrical and spectroscopic characteristics of electron-beam-sustained discharge (EBSD) in oxygen and oxygen-containing gas mixtures are studied experimentally under gas pressures up to 100 Torr in a large excitation volume (∼18 L). It is shown that the EBSD in pure oxygen and its mixtures with inert gases is unstable and is characterised by a small specific energy contribution. The addition of small amounts (∼1%-10%) of carbon monoxide or hydrogen to oxygen or its mixtures with inert gases considerably improves the stability of the discharge, while the specific energy contribution W increases by more then an order of magnitude, achieving ∼6.5 kJ L -1 atm -1 per molecular component of the gas mixture. A part of the energy supplied to the EBSD is spent to excite vibrational levels of molecular additives. This was demonstrated experimentally by the initiation of a CO laser based on the O 2 : Ar : CO = 1 : 1 : 0.1 mixture. Experimental results on spectroscopy of the excited electronic states O 2 (a 1 Δ g ) and O 2 (b 1 Σ g + ), of oxygen formed in the EBSD are presented. A technique was worked out for measuring the concentration of singlet oxygen in the O 2 (a 1 Δ g ) state in the afterglow of the pulsed EBSD by comparing with the radiation intensity of singlet oxygen of a given concentration produced in a chemical generator. Preliminary measurements of the singlet-oxygen yield in the EBSD show that its value ∼3% for W ∼ 1.0 kJ L -1 atm -1 is in agreement with the theoretical estimate. Theoretical calculations performed for W ∼ 6.5 kJ L -1 atm -1 at a fixed temperature show that the singlet-oxygen yield may be ∼20%, which is higher than the value required to achieve the lasing threshold in an oxygen-iodine laser at room temperature. (laser applications and other topics in quantum electronics)

  9. BODIPY-pyrene and perylene dyads as heavy atom-free singlet oxygen sensitizers

    KAUST Repository

    Filatov, Mikhail A.

    2018-02-23

    Dyads combining BODIPY as an electron acceptor and pyrene or perylene as electron donor subunits were prepared and studied their photophysical properties studied by steady-state and transient spectroscopy. Depending on the structure of the subunits and polarity of the media, the dyads show either bright fluorescence or photo-induced electron transfer (PeT) in solution. Charge-transfer (CT) states formed as a result of PeT and were found to yield triplet excited states of the BODIPY. In the presence of molecular oxygen, the dyads sensitize singlet oxygen (1O2) with quantum yields of up to 0.75.

  10. BODIPY-pyrene and perylene dyads as heavy atom-free singlet oxygen sensitizers

    KAUST Repository

    Filatov, Mikhail A.; Karuthedath, Safakath; Polestshuk, Pavel M.; Callaghan, Susan; Flanagan, Keith J.; Wiesner, Thomas; Laquai, Fré dé ric; Senge, Mathias O.

    2018-01-01

    Dyads combining BODIPY as an electron acceptor and pyrene or perylene as electron donor subunits were prepared and studied their photophysical properties studied by steady-state and transient spectroscopy. Depending on the structure of the subunits and polarity of the media, the dyads show either bright fluorescence or photo-induced electron transfer (PeT) in solution. Charge-transfer (CT) states formed as a result of PeT and were found to yield triplet excited states of the BODIPY. In the presence of molecular oxygen, the dyads sensitize singlet oxygen (1O2) with quantum yields of up to 0.75.

  11. Singlet oxygen generation during the oxidation of L-tyrosine and L-dopa with mushroom tyrosinase

    Energy Technology Data Exchange (ETDEWEB)

    Miyaji, Akimitsu [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259-G1-14, Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Kohno, Masahiro [Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-G1-25 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Inoue, Yoshihiro [Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 194-8543 (Japan); Baba, Toshihide, E-mail: tbaba@chemenv.titech.ac.jp [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259-G1-14, Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan)

    2016-03-18

    The generation of singlet oxygen during the oxidation of tyrosine and L-dopa using mushroom tyrosinase in a phosphate buffer (pH 7.4), the model of melanin synthesis in melanocytes, was examined. The reaction was performed in the presence of 2,2,6,6-tetramethyl-4-piperidone (4-oxo-TEMP), an acceptor of singlet oxygen and the electron spin resonance (ESR) of the spin adduct, 4-oxo-2,2,6,6-tetramethyl-1-piperidinyloxy (4-oxo-TEMPO), was measured. An increase in the ESR signal attributable to 4-oxo-TEMPO was observed during the oxidation of tyrosine and L-dopa with tyrosinase, indicating the generation of singlet oxygen. The results suggest that {sup 1}O{sub 2} generation via tyrosinase-catalyzed melanin synthesis occurs in melanocyte. - Highlights: • Generation of singlet oxygen was observed during tyrosinase-catalyzed tyrosine oxidation. • The singlet oxygen generated when tyrosine was converted into dopachrome. • The amount of singlet oxygen is not sufficient for cell toxicity. • It decreased when the hydroxyl radicals and/or superoxide anions were trapped.

  12. Deletion of CGLD1 Impairs PSII and Increases Singlet Oxygen Tolerance of Green Alga Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Jiale Xing

    2017-12-01

    Full Text Available The green alga Chlamydomonas reinhardtii is a key model organism for studying photosynthesis and oxidative stress in unicellular eukaryotes. Using a forward genetics approach, we have identified and characterized a mutant x32, which lacks a predicted protein named CGLD1 (Conserved in Green Lineage and Diatom 1 in GreenCut2, under normal and stress conditions. We show that loss of CGLD1 resulted in minimal photoautotrophic growth and PSII activity in the organism. We observed reduced amount of PSII complex and core subunits in the x32 mutant based on blue-native (BN/PAGE and immunoblot analysis. Moreover, x32 exhibited increased sensitivity to high-light stress and altered tolerance to different reactive oxygenic species (ROS stress treatments, i.e., decreased resistance to H2O2/or tert-Butyl hydroperoxide (t-BOOH and increased tolerance to neutral red (NR and rose bengal (RB that induce the formation of singlet oxygen, respectively. Further analysis via quantitative real-time PCR (qRT-PCR indicated that the increased singlet-oxygen tolerance of x32 was largely correlated with up-regulated gene expression of glutathione-S-transferases (GST. The phenotypical and physiological implications revealed from our experiments highlight the important roles of CGLD1 in maintaining structure and function of PSII as well as in protection of Chlamydomonas under photo-oxidative stress conditions.

  13. Singlet Oxygen-Mediated Oxidation during UVA Radiation Alters the Dynamic of Genomic DNA Replication.

    Directory of Open Access Journals (Sweden)

    Dany Graindorge

    Full Text Available UVA radiation (320-400 nm is a major environmental agent that can exert its deleterious action on living organisms through absorption of the UVA photons by endogenous or exogenous photosensitizers. This leads to the production of reactive oxygen species (ROS, such as singlet oxygen (1O2 and hydrogen peroxide (H2O2, which in turn can modify reversibly or irreversibly biomolecules, such as lipids, proteins and nucleic acids. We have previously reported that UVA-induced ROS strongly inhibit DNA replication in a dose-dependent manner, but independently of the cell cycle checkpoints activation. Here, we report that the production of 1O2 by UVA radiation leads to a transient inhibition of replication fork velocity, a transient decrease in the dNTP pool, a quickly reversible GSH-dependent oxidation of the RRM1 subunit of ribonucleotide reductase and sustained inhibition of origin firing. The time of recovery post irradiation for each of these events can last from few minutes (reduction of oxidized RRM1 to several hours (replication fork velocity and origin firing. The quenching of 1O2 by sodium azide prevents the delay of DNA replication, the decrease in the dNTP pool and the oxidation of RRM1, while inhibition of Chk1 does not prevent the inhibition of origin firing. Although the molecular mechanism remains elusive, our data demonstrate that the dynamic of replication is altered by UVA photosensitization of vitamins via the production of singlet oxygen.

  14. Efficiency factors of singlet oxygen generation from core-modified expanded porphyrin: tetrathiarubyrin in ethanol

    CERN Document Server

    Ha, J H; Kim, Y R; Jung, G Y; Lee, Y H; Shin, K

    2001-01-01

    The photophysical properties and the singlet oxygen generation efficiency of tetrathiarubyrin have been investigated to elucidate the possibility of its use as a photodynamic therapy (PDT) photosensitizer by steady-state and time-resolved spectroscopic methods. The observed photophysical properties were affected by various molecular aspects, such as extended pi conjugation, structural distortion, and internal heavy atom. The steady-state electronic absorption spectrum was red-shifted due to the extended pi-conjugation, and the spin orbital coupling was enhanced by the structural distortion and the internal heavy atom effect. As a result of the enhanced spin orbital coupling, the triplet quantum yield increased to 0.90 +- 0.10 and the triplet state lifetime was shortened to 7.0 +- 1.2 mu s. Since the triplet state decays at a relatively faster rate, the efficiency of the oxygen quenching of the triplet state decreases. The singlet oxygen quantum yield was estimated to be 0.52 +- 0.02, which is somewhat lower t...

  15. Singlet Oxygen-Mediated Oxidation during UVA Radiation Alters the Dynamic of Genomic DNA Replication

    Science.gov (United States)

    Graindorge, Dany; Martineau, Sylvain; Machon, Christelle; Arnoux, Philippe; Guitton, Jérôme; Francesconi, Stefania; Frochot, Céline; Sage, Evelyne; Girard, Pierre-Marie

    2015-01-01

    UVA radiation (320–400 nm) is a major environmental agent that can exert its deleterious action on living organisms through absorption of the UVA photons by endogenous or exogenous photosensitizers. This leads to the production of reactive oxygen species (ROS), such as singlet oxygen (1O2) and hydrogen peroxide (H2O2), which in turn can modify reversibly or irreversibly biomolecules, such as lipids, proteins and nucleic acids. We have previously reported that UVA-induced ROS strongly inhibit DNA replication in a dose-dependent manner, but independently of the cell cycle checkpoints activation. Here, we report that the production of 1O2 by UVA radiation leads to a transient inhibition of replication fork velocity, a transient decrease in the dNTP pool, a quickly reversible GSH-dependent oxidation of the RRM1 subunit of ribonucleotide reductase and sustained inhibition of origin firing. The time of recovery post irradiation for each of these events can last from few minutes (reduction of oxidized RRM1) to several hours (replication fork velocity and origin firing). The quenching of 1O2 by sodium azide prevents the delay of DNA replication, the decrease in the dNTP pool and the oxidation of RRM1, while inhibition of Chk1 does not prevent the inhibition of origin firing. Although the molecular mechanism remains elusive, our data demonstrate that the dynamic of replication is altered by UVA photosensitization of vitamins via the production of singlet oxygen. PMID:26485711

  16. The participation of singlet oxygen in a photocitotoxicity of extract from amazon plant to cancer cells

    Science.gov (United States)

    Tcibulnikova, Anna V.; Degterev, Igor A.; Bryukhanov, Valery V.; Roberto, Mantuanelly M.; Campos Pereira, F. D.; Marin-Morales, M. A.; Slezhkin, Vasily A.; Samusev, Ilya G.

    2018-01-01

    We have been searching for new photosensitizers (PS) for photodynamic therapy (PDT) of cancer based on extracts from Amazonian plants since 2009. In this paper, we demonstrate that, under certain conditions, the extract from fruits of the Amazonian palm Euterpe oleraceae (popular name Açaí) can serve as a PS for PDT treatment of murine breast cancer cells (4T1 cell line). We have been first to show directly that the photodynamic effect of plant PS is due to singlet oxygen.

  17. Layered Double Hydroxides with Intercalated Porphyrins as Photofunctional Materials: Subtle Structural Changes Modify Singlet Oxygen Production

    Czech Academy of Sciences Publication Activity Database

    Lang, Kamil; Bezdička, Petr; Bourdelande, J.L.; Hernando, J.; Jirka, Ivan; Káfuňková, Eva; Kubát, Pavel; Mosinger, Jiří; Wagnerová, Dana Marie

    2007-01-01

    Roč. 19, č. 15 (2007), s. 3822-3829 ISSN 0897-4756 R&D Projects: GA ČR(CZ) GA203/06/1244; GA ČR GA203/07/1424; GA AV ČR KAN100500651 Grant - others:MESS(ES) CTQ2006-01040 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40400503 Keywords : singlet oxygen Subject RIV: CA - Inorganic Chemistry Impact factor: 4.883, year: 2007

  18. Influence of nitrogen oxides NO and NO2 on singlet delta oxygen production in pulsed discharge

    International Nuclear Information System (INIS)

    Ionin, A A; Klimachev, Yu M; Kozlov, A Yu; Kotkov, A A; Rulev, O A; Seleznev, L V; Sinitsyn, D V; Vagin, N P; Yuryshev, N N; Kochetov, I V; Napartovich, A P

    2009-01-01

    The influence of nitrogen oxides NO and NO 2 on the specific input energy (SIE) and the time behaviour of singlet delta oxygen (SDO) luminescence excited by a pulsed e-beam sustained discharge in oxygen were experimentally and theoretically studied. NO and NO 2 addition into oxygen results in a small increase and decrease in the SIE, respectively, the latter being connected with a large energy of electron affinity to NO 2 . The addition of 0.1-0.3% nitrogen oxides was experimentally and theoretically demonstrated to result in a notable enhancement of the SDO lifetime, which is related to a decrease in the atomic oxygen concentration in afterglow. It was experimentally demonstrated that to get a high SDO concentration at the gas pressure 30-60 Torr for a time interval of less than ∼0.5 s one needs to add not less than 0.2% nitrogen oxides into oxygen. The temperature dependence of the relaxation constant for SDO quenching by unexcited oxygen was estimated by using experimental data on the time behaviour of SDO luminescence.

  19. Singlet oxygen feedback delayed fluorescence of protoporphyrin IX in organic solutions.

    Science.gov (United States)

    Vinklárek, Ivo S; Scholz, Marek; Dědic, Roman; Hála, Jan

    2017-04-12

    Delayed fluorescence (DF) of protoporphyrin IX (PpIX) has been recently proposed as a tool for monitoring of mitochondrial oxygen tension in vivo as well as for observation of the effectiveness of photodynamic therapy (PDT) [E. G. Mik, Anesth. Analg., 2013, 117, 834-346; F. Piffaretti et al., J. Biomed. Opt., 2012, 17, 115007]. However, the efficiency of the mechanism of thermal activation (E-type DF), which was considered in the papers, is limited due to a large energy gap between the first excited singlet and the first triplet state of PpIX at room or body temperatures. Moreover, the energy gap is roughly equal to other porphyrinoid photosensitizers that generate DF mostly through the Singlet Oxygen Feedback-Induced mechanism (SOFDF) under certain conditions [M. Scholz and R. Dědic, Singlet Oxygen: Applications in Biosciences and Nanosciences, 2016, vol. 2, pp. 63-81]. The mechanisms of delayed fluorescence of PpIX dissolved either in dimethylformamide (DMF) or in the mixture of DMF with ethylene glycol (EG) were investigated at atmospheric partial pressure of oxygen by means of a simultaneous time-resolved detection of 1 O 2 phosphorescence and PpIX DF which makes a direct comparison of the kinetics and lifetimes of both the luminescence channels possible. Samples of PpIX (100 μM) exhibit concave DF kinetics, which is a typical footprint of the SOFDF mechanism. The dramatic decrease in the DF intensity after adding a selective 1 O 2 quencher sodium azide (NaN 3 , 10 mM) proves that >90% of DF is indeed generated through SOFDF. Moreover, the analysis of the DF kinetics in the presence of NaN 3 implies that the second significant mechanism of DF generation is the triplet-triplet annihilation (P-type DF). The bimolecular mechanism of DF was further confirmed by the decrease of the DF intensity in the more viscous mixture DMF/EG and by the increase of the ratio of DF to the prompt fluorescence (PF) intensity with the increasing excitation intensity. These results

  20. UVA Photoirradiation of Oxygenated Benz[a]anthracene and 3-Methylcholanthene - Generation of Singlet Oxygen and Induction of Lipid Peroxidation

    Directory of Open Access Journals (Sweden)

    Diógenes Herreño Sáenz

    2008-03-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are widespread genotoxic environmental pollutants and potentially pose a health risk to humans. Although the biological and toxicological activities, including metabolism, mutagenicity, and carcinogenicity, of PAHs have been thoroughly studied, their phototoxicity and photo-induced biological activity have not been well examined. We have long been interested in phototoxicity of PAHs and their derivatives induced by irradiation with UV light. In this paper we report the photoirradiation of a series of oxygenated benz[a]anthracene (BA and 3-methylcholanthene (3-MC by UVA light in the presence of a lipid, methyl linoleate. The studied PAHs include 2-hydroxy-BA (2-OH-BA, 3-hydroxy-BA (3-OH-BA, 5-hydroxymethyl-BA (5-CH2OH-BA, 7-hydroxymethyl-BA (7-CH2OH-BA, 12-hydroxymethyl-BA (12-CH2OH-BA, 7-hydroxymethyl-12-methyl-BA (7-CH2OH-12-MBA, 5-formyl-BA (5-CHO-BA, BA 5,6-cis-dihydrodiol (BA 5,6-cis-diol, 1-hydroxy-3- methylcholanthene (1-OH-3-MC, 1-keto-3-methylcholanthene (1-keto-3-MC, and 3-MC 1,2-diol. The results indicate that upon photoirradiation by UVA at 7 and 21 J/cm2, respectively all these compounds induced lipid peroxidation and exhibited a relationship between the dose of the light and the level of lipid peroxidation induced. To determine whether or not photoirradiation of these compounds by UVA light produces ROS, an ESR spin-trap technique was employed to provide direct evidence. Photoirradiation of 3-keto-3-MC by UVA (at 389 nm in the presence of 2,2,6,6-tetramethylpiperidine (TEMP, a specific probe for singlet oxygen, resulted in the formation of TEMPO, indicating that singlet oxygen was generated. These overall results suggest that UVA photoirradiation of oxygenated BA and 3-methylcholanthrene generates singlet oxygen, one of the reactive oxygen species (ROS, which induce lipid peroxidation.

  1. Continuous-flow oxidative cyanation of primary and secondary amines using singlet oxygen.

    Science.gov (United States)

    Ushakov, Dmitry B; Gilmore, Kerry; Kopetzki, Daniel; McQuade, D Tyler; Seeberger, Peter H

    2014-01-07

    Primary and secondary amines can be rapidly and quantitatively oxidized to the corresponding imines by singlet oxygen. This reactive form of oxygen was produced using a variable-temperature continuous-flow LED-photoreactor with a catalytic amount of tetraphenylporphyrin as the sensitizer. α-Aminonitriles were obtained in good to excellent yields when trimethylsilyl cyanide served as an in situ imine trap. At 25°C, primary amines were found to undergo oxidative coupling prior to cyanide addition and yielded secondary α-aminonitriles. Primary α-aminonitriles were synthesized from the corresponding primary amines for the first time, by an oxidative Strecker reaction at -50 °C. This atom-economic and protecting-group-free pathway provides a route to racemic amino acids, which was exemplified by the synthesis of tert-leucine hydrochloride from neopentylamine. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Influence of clay minerals on curcumin properties: Stability and singlet oxygen generation

    Science.gov (United States)

    Gonçalves, Joyce L. S.; Valandro, Silvano R.; Poli, Alessandra L.; Schmitt, Carla C.

    2017-09-01

    Curcumin (CUR) has showed promising photophysical properties regarding to biological and chemical sciences. However, the main barrier for those applications are their low solubility and stability in aqueous solution. The effects of two different clay minerals, the montmorillonite (SWy-2) and the Laponite RD (Lap) nanoclay, on the stabilization of Curcumin were investigated. Their effects were compared with two well-established environments (acidic and neutral aqueous media). CUR/clay hybrids were prepared using a simple and fast method, where CUR solution was added into clay suspensions, to obtain well dispersed hybrids in water. The degradation process of CUR and CUR/clays hybrids was investigated using UV-Vis spectroscopic. For both studied hybrids, the CUR degradation process was suppressed by the presence of the clay particles. Furthermore, the Lap showed a great stabilization effect than SWy-2. This behavior was due to the smaller particle size and higher exfoliation ability of Lap, providing a large surface for CUR adsorption compared to SWy-2. The degradation process of CUR solutions and CUR/clay hybrids was also studied in the presence of light. CUR photodegradation process was faster not only in the aqueous solution but also in the clay suspension compared to those studied in the dark. The presence of clay particles accelerated the photodegradation of CUR due to the products formation in the reactions between CUR and oxygen radicals. Our results showed that the singlet oxygen quantum yield (ΦΔ) of CUR were about 59% higher in the clay suspensions than CUR in aqueous solution. Therefore, the formation of CUR/clay hybrids, in particularly with Lap, suppressed the degradation in absence light of CUR and increased the singlet oxygen generation, which makes this hybrids of CUR/clay a promising material to enlarge the application of CUR in the biological sciences.

  3. Stability of O/W Emulsion with Synthetic Perfumes Oxidized by Singlet Oxygen

    Directory of Open Access Journals (Sweden)

    Naoki Watabe

    2013-01-01

    Full Text Available We prepared O/W emulsion composed of a synthetic perfume, n-dodecane, protoporphyrin IX disodium salt (PpIX-2Na, sodium dodecyl sulfate, and water and investigated oxidative decomposition of the synthetic perfume in the emulsion and change in the stability of the emulsion by singlet oxygen (1O2 generated by photosensitization of PpIX-2Na. We used eugenol, linalool, benzyl acetate, α-ionone, α-hexylcinnamaldehyde, and d-limonene as a synthetic perfume. The stability of the O/W emulation including eugenol and linalool significantly decreased with increasing light irradiation time. The decrease in the emulsion stability may be attributable to oxidative decomposition of eugenol and linalool by 1O2 and enlargement of the oil droplet size.

  4. Factors influencing the regioselectivity of the oxidation of asymmetric secondary amines with singlet oxygen.

    Science.gov (United States)

    Ushakov, Dmitry B; Plutschack, Matthew B; Gilmore, Kerry; Seeberger, Peter H

    2015-04-20

    Aerobic amine oxidation is an attractive and elegant process for the α functionalization of amines. However, there are still several mechanistic uncertainties, particularly the factors governing the regioselectivity of the oxidation of asymmetric secondary amines and the oxidation rates of mixed primary amines. Herein, it is reported that singlet-oxygen-mediated oxidation of 1° and 2° amines is sensitive to the strength of the α-C-H bond and steric factors. Estimation of the relative bond dissociation energy by natural bond order analysis or by means of one-bond C-H coupling constants allowed the regioselectivity of secondary amine oxidations to be explained and predicted. In addition, the findings were utilized to synthesize highly regioselective substrates and perform selective amine cross-couplings to produce imines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Gold nanoring-enhanced generation of singlet oxygen: an intricate correlation with surface plasmon resonance and polyelectrolyte bilayers

    Czech Academy of Sciences Publication Activity Database

    Hu, Y.; Kaňka, Jiří; Liu, K.; Yang, Y.; Wang, H.; Du, H.

    2016-01-01

    Roč. 6, č. 106 (2016), s. 104819-104826 ISSN 2046-2069 R&D Projects: GA ČR(CZ) GBP205/12/G118 Institutional support: RVO:67985882 Keywords : Singlet oxygen * Fluorescence * Gold nanorings Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.108, year: 2016

  6. Irradiation- and Sensitizer-Dependent Changes in the Lifetime of Intracellular Singlet Oxygen Produced in a Photosensitized Process

    DEFF Research Database (Denmark)

    Silva, Elsa; Pedersen, Brian Wett; Breitenbach, Thomas

    2012-01-01

    Singlet oxygen, O2(a1Δg), was produced upon pulsed-laser irradiation of an intracellular photosensitizer and detected by its 1275 nm O2(a1Δg) →O2(X3Σg-) phosphorescence in time-resolved experiments using (1) individual mammalian cells on the stage of a microscope and (2) suspensions of mammalian...

  7. Fluorescent proteins as singlet oxygen photosensitizers: mechanistic studies in photodynamic inactivation of bacteria

    Science.gov (United States)

    Ruiz-González, Rubén.; White, John H.; Cortajarena, Aitziber L.; Agut, Montserrat; Nonell, Santi; Flors, Cristina

    2013-02-01

    Antimicrobial photodynamic therapy (aPDT) combines a photosensitizer, light and oxygen to produce reactive oxygen species (ROS), mainly singlet oxygen (1O2), to photo-oxidize important biomolecules and induce cell death. aPDT is a promising alternative to standard antimicrobial strategies, but its mechanisms of action are not well understood. One of the reasons for that is the lack of control of the photosensitizing drugs location. Here we report the use of geneticallyencoded fluorescent proteins that are also 1O2 photosensitizers to address the latter issue. First, we have chosen the red fluorescent protein TagRFP as a photosensitizer, which unlike other fluorescent proteins such as KillerRed, is able to produce 1O2 but not other ROS. TagRFP photosensitizes 1O2 with a small, but not negligible, quantum yield. In addition, we have used miniSOG, a more efficient 1O2 photosensitizing fluorescent flavoprotein that has been recently engineered from phototropin 2. We have genetically incorporated these two photosensitizers into the cytosol of E. coli and demonstrated that intracellular 1O2 is sufficient to kill bacteria. Additional assays have provided further insight into the mechanism of cell death. Photodamage seems to occur primarily in the inner membrane, and extends to the outer membrane if the photosensitizer's efficiency is high enough. These observations are markedly different to those reported for external photosensitizers, suggesting that the site where 1O2 is primarily generated proves crucial for inflicting different types of cell damage.

  8. Physics and engineering of singlet delta oxygen production in low-temperature plasma

    International Nuclear Information System (INIS)

    Ionin, A A; Kochetov, I V; Napartovich, A P; Yuryshev, N N

    2007-01-01

    An overview is presented of experimental and theoretical research in the field of physics and engineering of singlet delta oxygen (SDO) production in low-temperature plasma of various electric discharges. Attention is paid mainly to the SDO production with SDO yield adequate for the development of an electric discharge oxygen-iodine laser (DOIL). The review comprises a historical sketch describing the main experimental results on SDO physics in low-temperature plasma obtained since the first detection of SDO in electric discharge in the 1950s and the first attempt to launch a DOIL in the 1970s up to the mid-1980s when several research groups started their activity aimed at DOIL development, stimulated by success in the development of a chemical oxygen-iodine laser (COIL). A detailed analysis of theoretical and experimental research on SDO production in electric discharge from the mid-1980s to the present, when the first DOIL has been launched, is given. Different kinetic models of oxygen low-temperature plasma are compared with the model developed by the authors. The latter comprises electron kinetics based on the accompanying solution of the electron Boltzmann equation, plasma chemistry including reactions of excited molecules and numerous ion-molecular reactions, thermal energy balance and electric circuit equation. The experimental part of the overview is focused on the experimental methods of SDO detection including experiments on the measurements of the Einstein coefficient for SDO transition a 1 Δ g - X 3 Σ g - and experimental procedures of SDO production in self-sustained and non-self-sustained discharges and analysis of different plasma-chemical processes occurring in oxygen low-temperature plasma which brings limitation to the maximum SDO yield and to the lifetime of the SDO in an electric discharge and its afterglow. Quite recently obtained results on gain and output characteristics of DOIL and some projects aimed at the development of high-power DOIL

  9. The generation of singlet oxygen (o(2)) by the nitrodiphenyl ether herbicide oxyfluorfen is independent of photosynthesis.

    Science.gov (United States)

    Haworth, P; Hess, F D

    1988-03-01

    The mechanism of action of the p-nitrodiphenyl ether herbicides has remained ambiguous because of conflicting reports in the literature. The diphenyl ether herbicide oxyfluorfen causes a light induced consumption of oxygen which resembles the electron acceptor reaction of paraquat. However, this reaction is not linked to the transport of electrons through photosystem I. This conclusion is based on the observation that the rate of oxygen consumption, in the presence of oxyfluorfen, does not demonstrate a first order rate dependence on light intensity. Using the bleaching of N,N-dimethyl p-nitrosoaniline as a specific detector of singlet oxygen, we demonstrate that oxyfluorfen is a potent generator of this toxic radical. The production of singlet oxygen occurs in the presence of inhibitors of photosynthetic electron transport (oxyfluorfen at 10(-4) molar and paraquat) and also under temperature conditions (3 degrees C) which prevent electron transport. This light induced reaction results in oxygen consumption and is the primary cause of lethality for oxyfluorfen. The production of singlet oxygen occurs rapidly and at low herbicide concentrations (10(-9) molar). The reaction occurs without photosynthetic electron transport but does require an intact thylakoid membrane.

  10. The Generation of Singlet Oxygen (1O2) by the Nitrodiphenyl Ether Herbicide Oxyfluorfen Is Independent of Photosynthesis

    Science.gov (United States)

    Haworth, Phil; Hess, F. Dan

    1988-01-01

    The mechanism of action of the p-nitrodiphenyl ether herbicides has remained ambiguous because of conflicting reports in the literature. The diphenyl ether herbicide oxyfluorfen causes a light induced consumption of oxygen which resembles the electron acceptor reaction of paraquat. However, this reaction is not linked to the transport of electrons through photosystem I. This conclusion is based on the observation that the rate of oxygen consumption, in the presence of oxyfluorfen, does not demonstrate a first order rate dependence on light intensity. Using the bleaching of N,N-dimethyl p-nitrosoaniline as a specific detector of singlet oxygen, we demonstrate that oxyfluorfen is a potent generator of this toxic radical. The production of singlet oxygen occurs in the presence of inhibitors of photosynthetic electron transport (oxyfluorfen at 10−4 molar and paraquat) and also under temperature conditions (3°C) which prevent electron transport. This light induced reaction results in oxygen consumption and is the primary cause of lethality for oxyfluorfen. The production of singlet oxygen occurs rapidly and at low herbicide concentrations (10−9 molar). The reaction occurs without photosynthetic electron transport but does require an intact thylakoid membrane. PMID:16665968

  11. High-sensitivity imaging method of singlet oxygen and superoxide anion in photodynamic and sonodynamic actions

    Science.gov (United States)

    Xing, Da; He, Yonghong; Hao, Min; Chen, Qun

    2004-07-01

    A novel method of photodynamic diagnosis (PDD) of cancer mediated by chemiluminescence (CL) probe is presented. The mechanism for photodynamic therapy (PDT) involves reactive oxygen species (ROS), such as singlet oxygen (1O2) and superoxide (O2-), generated by during the photochemical process. Both 1O2 and O2- can react with Cypridina luciferin analogue (FCLA), a highly selective CL probe for detecting the ROS. Chemiluminescence from the reaction of FCLA with the ROS, at about 530 nm, was detected by a highly sensitive ICCD system. The CL was markedly inhibited by the addition of 10 mmol/L sodium azide (NaN3) in a sample solution. Similar phenomena, with lesser extents of changes, were observed at the additions of 10 μmol/L superoxide dismutase (SOD), 10 mmol/L mannitol, and 100 μg/mL catalase, respectively. This indicates that the detected CL signals were mainly from ROS generated during the photosensitization reactions. Also, the chemiluminescence method was used to detect the ROS during sonodynamic action, both in vitro and in vivo. ROS formation during sonosensitizations of HpD and ATX-70 were detected using our newly-developed imaging technique, in real time, on tumor bearing animals. This method can provide a new means in clinics for tumor diagnosis.

  12. Singlet oxygen explicit dosimetry to predict local tumor control for HPPH-mediated photodynamic therapy

    Science.gov (United States)

    Penjweini, Rozhin; Kim, Michele M.; Ong, Yi Hong; Zhu, Timothy C.

    2017-02-01

    This preclinical study examines four dosimetric quantities (light fluence, photosensitizer photobleaching ratio, PDT dose, and reacted singlet oxygen ([1O2]rx)) to predict local control rate (LCR) for 2-(1-Hexyloxyethyl)-2-devinyl pyropheophorbide (HPPH)-mediated photodynamic therapy (PDT). Mice bearing radiation-induced fibrosarcoma (RIF) tumors were treated with different in-air fluences (135, 250 and 350 J/cm2) and in-air fluence rates (50, 75 and 150 mW/cm2) at 0.25 mg/kg HPPH and a drug-light interval of 24 hours using a 1 cm diameter collimated laser beam at 665 nm wavelength. A macroscopic model was used to calculate ([1O2]rx)) based on in vivo explicit dosimetry of the initial tissue oxygenation, photosensitizer concentration, and tissue optical properties. PDT dose was defined as a temporal integral of drug concentration and fluence rate (φ) at a 3 mm tumor depth. Light fluence rate was calculated throughout the treatment volume based on Monte-Carlo simulation and measured tissue optical properties. The tumor volume of each mouse was tracked for 30 days after PDT and Kaplan-Meier analyses for LCR were performed based on a tumor volume <=100 mm3, for four dose metrics: fluence, HPPH photobleaching rate, PDT dose, and ([1O2]rx)). The results of this study showed that ([1O2]rx)) is the best dosimetric quantity that can predict tumor response and correlate with LCR.

  13. Robust high temperature oxygen sensor electrodes

    DEFF Research Database (Denmark)

    Lund, Anders

    Platinum is the most widely used material in high temperature oxygen sensor electrodes. However, platinum is expensive and the platinum electrode may, under certain conditions, suffer from poisoning, which is detrimental for an oxygen sensor. The objective of this thesis is to evaluate electrode...... materials as candidates for robust oxygen sensor electrodes. The present work focuses on characterising the electrochemical properties of a few electrode materials to understand which oxygen electrode processes are limiting for the response time of the sensor electrode. Three types of porous platinum......-Dansensor. The electrochemical properties of the electrodes were characterised by electrochemical impedance spectroscopy (EIS), and the structures were characterised by x-ray diffraction and electron microscopy. At an oxygen partial pressures of 0.2 bar, the response time of the sensor electrode was determined by oxygen...

  14. Effects of light irradiation upon photodynamic therapy based on 5-aminolevulinic acid–gold nanoparticle conjugates in K562 cells via singlet oxygen generation

    Directory of Open Access Journals (Sweden)

    Xu H

    2012-09-01

    Full Text Available Hao Xu, Chen Liu, Jiansheng Mei, Cuiping Yao, Sijia Wang, Jing Wang, Zheng Li, Zhenxi ZhangKey Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shannxi, People’s Republic of ChinaPurpose: As a precursor of the potent photosensitizer protoporphyrin IX (PpIX, 5-aminolevulinic acid (5-ALA, was conjugated onto cationic gold nanoparticles (GNPs to improve the efficacy of photodynamic therapy (PDT.Methods: Cationic GNPs reduced by branched polyethyleneimine and 5-ALA were conjugated onto the cationic GNPs by creating an electrostatic interaction at physiological pH. The efficacy of ALA-GNP conjugates in PDT was investigated under irradiation with a mercury lamp (central wavelength of 395 nm and three types of light-emitting diode arrays (central wavelengths of 399, 502, and 621 nm, respectively. The impacts of GNPs on PDT were then analyzed by measuring the intracellular PpIX levels in K562 cells and the singlet oxygen yield of PpIX under irradiation.Results: The 2 mM ALA-GNP conjugates showed greater cytotoxicity against K562 cells than ALA alone. Light-emitting diode (505 nm irradiation of the conjugates caused a level of K562 cell destruction similar to that with irradiation by a mercury lamp, although it had no adverse effects on drug-free control cells. These results may be attributed to the singlet oxygen yield of PpIX, which can be enhanced by GNPs.Conclusion: Under irradiation with a suitable light source, ALA-GNP conjugates can effectively destroy K562 cells. The technique offers a new strategy of PDT.Keywords: nonradiative energy transfer, photodamage, protoporphyrin IX, selective destruction, singlet oxygen sensor green reagent, surface plasmon resonance

  15. Activation of transcription factor AP-2 mediates UVA radiation- and singlet oxygen-induced expression of the human intercellular adhesion molecule 1 gene

    International Nuclear Information System (INIS)

    Grether-Beck, S.; Olaizola-Horn, S.; Schmitt, H.; Grewe, M.

    1996-01-01

    UVA radiation is the major component of the UV solar spectrum that reaches the earth, and the therapeutic application of UVA radiation is increasing in medicine. Analysis of the cellular effects of UVA radiation has revealed that exposure of human cells to UVA radiation at physiological doses leads to increased gene expression and that this UVA response is primarily mediated through the generation of singlet oxygen. In this study, the mechanisms by which UVA radiation induces transcriptional activation of the human intercellular adhesion molecule 1 (ICAM-1) were examined. UVA radiation was capable of inducing activation of the human ICAM-1 promoter and increasing OCAM-1 mRNA and protein expression. These UVA radiation effects were inhibited by singlet oxygen quenchers, augmented by enhancement of singlet oxygen life-time, and mimicked in unirradiated cells by a singlet oxygen-generating system. UVA radiation as well as singlet oxygen-induced ICAM-1 promoter activation required activation of the transcription factor AP-2. Accordingly, both stimuli activated AP-2, and deletion of the putative AP-2-binding site abrogated ICAM-1 promoter activation in this system. This study identified the AP-2 site as the UVA radiation- and singlet oxygen-responsive element of the human ICAM-1 gene. The capacity of UVA radiation and/or singlet oxygen to induce human gene expression through activation of AP-2 indicates a previously unrecognized role of this transcription factor in the mammalian stress response. 38 refs., 3 figs., 3 tabs

  16. Singlet oxygen generation in a high pressure non-self-sustained electric discharge

    International Nuclear Information System (INIS)

    Hicks, Adam; Norberg, Seth; Shawcross, Paul; Lempert, Walter R; Rich, J William; Adamovich, Igor V

    2005-01-01

    This paper presents results of singlet oxygen generation experiments in a high-pressure, non-self-sustained crossed discharge. The discharge consists of a high-voltage, short pulse duration, high repetition rate pulsed discharge, which produces ionization in the flow, and a low-voltage dc discharge which sustains current in a decaying plasma between the pulses. The sustainer voltage can be independently varied to maximize the energy input into electron impact excitation of singlet delta oxygen (SDO). The results demonstrate operation of a stable and diffuse crossed discharge in O 2 -He mixtures at static pressures of at least up to P 0 = 380 Torr and sustainer discharge powers of at least up to 1200 W, achieved at P 0 = 120 Torr. The reduced electric field in the positive column of the sustainer discharge varies from E/N = 0.3 x 10 -16 to 0.65 X 10 -16 V cm 2 , which is significantly lower than E/N in self-sustained discharges and close to the theoretically predicted optimum value for O 2 (a 1 Δ) excitation. Measurements of visible emission spectra O 2 (b 1 Σ → X 3 Σ) in the discharge afterglow show the O 2 (b 1 Σ) concentration to increase with the sustainer discharge power and to decrease as the O 2 fraction in the flow is increased. Rotational temperatures inferred from these spectra in 10% O 2 -90% He flows at P 0 = 120 Torr and mass flow rates of m-dot = 2.2 are 365-465 K. SDO yield at these conditions, 1.7% to 4.4%, was inferred from the integrated intensity of the (0, 0) band of the O 2 (a 1 Δ → X 3 Σ) infrared emission spectra calibrated using a blackbody source. The yield remains nearly constant in the discharge afterglow, up to at least 15 cm distance from the discharge. Kinetic modelling calculations using a quasi-one-dimensional nonequilibrium pulser-sustainer discharge model coupled with the Boltzmann equation for plasma electrons predict gas temperature rise in the discharge in satisfactory agreement with the experimental measurements

  17. A Singlet Oxygen Photogeneration and Luminescence Study of Unsymmetrically Substituted Mesoporphyrinic Compounds

    Directory of Open Access Journals (Sweden)

    Anabela Sousa Oliveira

    2009-01-01

    Full Text Available This paper deals with a series of new unsymmetrically substituted mesoporphyrins: 5-(2-hydroxyphenyl-10,15,20-tris-phenyl-21,23-H-porphyrin (TPPOHO, 5-(3-hydroxyphenyl-10,15,20-tris-phenyl-21,23-H-porphyrin (TPPOHM, 5-(4-hydroxyphenyl-10,15,20-tris-phenyl-21,23-H-porphyrin (TPPOHP, 5-(2-hydroxyphenyl-10,15,20-tris-butyl-21,23-H-porphyrin (TBPOHO, and their parent nonsubstituted compounds, respectively, 5,10,15,20-tetrakis-phenyl-21,23-H-porphyrin (TPP and 5,10,15,20-tetrakis-butyl-21,23-H-porphyrin (TBP. Several photophysical studies were carried out to access the influence of the unsymmetrical substitution at the porphyrinic macrocycle on porthyrin's photophysical properties, especially porthyrin's efficiency as singlet oxygen sensitizers. The quantum yields of singlet oxygen generation were determined in benzene (ΦΔ(TPP = 0.66 ± 0.05; ΦΔ(TPPOHO = 0.69 ± 0.04; ΦΔ(TPPOHM = 0.62 ± 0.04; ΦΔ(TPPOHP = 0.73 ± 0.03; ΦΔ(TBP = 0.76 ± 0.03; ΦΔ(TBPOHO = 0.73 ± 0.02 using the 5,10,15,20-tetraphenyl-21,23-H-porphine (ΦΔ(TPP = 0.66 and Phenazine (ΦΔ(Phz = 0.83 as reference compounds. Their fluorescence quantum yields were found to be (Φf(TPPOHO = 0.10 ± 0.04; Φf(TPPOHM = 0.09 ± 0.03; Φf(TPPOHP = 0.13 ± 0.02; Φf(TBP = 0.08 ± 0.03 and Φf(TBPOHO = 0.08 ± 0.02 using 5,10,15,20-tetraphenyl-21,23-H-porphine as reference Φf(TPP = 0.13. Singlet state lifetimes were also determined in the same solvent. All the porphyrins presented very similar fluorescence lifetimes (mean values of τS (with O2, air equilibrated = 9.6 ± 0.3 nanoseconds and (without O2, argon purged = 10.1 ± 0.6 nanoseconds, resp.. The phosphorescence emission was found to be negligible for this series of unsymmetrically substituted mesoporphyrins, but an E-type, thermally activated, delayed fluorescence process was proved to occur at room temperature.

  18. The effect of gold nanoparticles on exchange processes in collision complexes of triplet and singlet oxygen molecules with excited eosin molecules

    Science.gov (United States)

    Bryukhanov, V. V.; Minaev, B. M.; Tsibul'nikova, A. V.; Slezhkin, V. A.

    2015-07-01

    We have studied exchange processes in contact complexes of triplet eosin molecules with oxygen molecules in the triplet (3Σ{/g -}) and singlet (1Δ g ) states in thin polyvinylbutyral films in the presence of gold nanoparticles. Upon resonant excitation of surface plasmons in gold nanoparticles into the absorption band of eosin molecules-singlet oxygen sensitizers-we have obtained an increase in the intensity of the delayed fluorescence and an increase in the lifetime of the dye with simultaneous quenching of the luminescence of singlet oxygen. The kinetics of the delayed fluorescence of the dye as a result of singlet-triplet annihilation of triplet eosin molecules with singlet oxygen molecules has been investigated. To compare theoretical and experimental data, we have numerically simulated energy transfer processes. Rate constants of energy transfer and of singlet-triplet annihilation, as well as quenching constants of triplet states of the dye by molecular oxygen, have been calculated. Luminescence quantum yield 1Δ g of polyvinylbutyral has been estimated. We have analyzed quantum-chemically electronic mechanisms of singlet-triplet annihilation of oxygen and eosin.

  19. Formation of singlet oxygen by decomposition of protein hydroperoxide in photosystem II.

    Directory of Open Access Journals (Sweden)

    Vinay Pathak

    Full Text Available Singlet oxygen (1O2 is formed by triplet-triplet energy transfer from triplet chlorophyll to O2 via Type II photosensitization reaction in photosystem II (PSII. Formation of triplet chlorophyll is associated with the change in spin state of the excited electron and recombination of triplet radical pair in the PSII antenna complex and reaction center, respectively. Here, we have provided evidence for the formation of 1O2 by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex. Protein hydroperoxide is formed by protein oxidation initiated by highly oxidizing chlorophyll cation radical and hydroxyl radical formed by Type I photosensitization reaction. Under highly oxidizing conditions, protein hydroperoxide is oxidized to protein peroxyl radical which either cyclizes to dioxetane or recombines with another protein peroxyl radical to tetroxide. These highly unstable intermediates decompose to triplet carbonyls which transfer energy to O2 forming 1O2. Data presented in this study show for the first time that 1O2 is formed by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex.

  20. Singlet Oxygen Production by Illuminated Road Dust and Winter Street Sweepings

    Science.gov (United States)

    Schneider, S.; Gan, L.; Gao, S.; Hoy, K. S.; Kwasny, J. R.; Styler, S. A.

    2017-12-01

    Road dust is an important urban source of primary particulate matter, especially in cities where sand and other traction materials are applied to roadways in winter. Although the composition and detrimental health effects of road dust are reasonably well characterized, little is currently known regarding its chemical behaviour. Motivated by our previous work, in which we showed that road dust is a photochemical source of singlet oxygen (1O2), we investigated 1O2 production by bulk winter street sweepings and by road dust collected in a variety of urban, industrial, and suburban locations in both autumn and spring. In all cases, the production of 1O2 by road dust was greater than that by Arizona test dust and desert-sourced dust, which highlights the unique photochemical environment afforded by this substrate. Mechanistically, we observed correlations between 1O2 production and the UV absorbance properties of dust extracts, which suggests the involvement of chromophoric dissolved organic matter in the observed photochemistry. Taken together, this work provides evidence that road dust-mediated photochemistry may influence the environmental lifetime of pollutants that react via 1O2-mediated pathways, including polycyclic aromatic hydrocarbons.

  1. Fluorescence behavior and singlet oxygen generating abilities of aluminum phthalocyanine in the presence of anisotropic gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mthethwa, Thandekile; Nyokong, Tebello, E-mail: t.nyokong@ru.ac.za

    2015-01-15

    Gold nanoparticles (spheres, rods and bipyramids) were synthesized. The nanocrystals were characterized by UV–visible spectrometry, transmission electron microscopy (TEM) and X-ray diffractometry (XRD). The as prepared gold nanoparticles were then conjugated to a quaternized 2,(3)-tetra [2-(dimethylamino) ethanethio] substituted Al(OH) phthalocyanine (complex 1). The conjugation of phthalocyanines with gold nanoparticles resulted in a decrease in the fluorescence quantum yields and lifetimes. Conversely, an increase in the singlet oxygen quantum yields was observed for the conjugated complex 1 in the presence of AuNPs. - Highlights: • Gold nanoparticles (spheres, rods and bipyramids) were synthesized. • Gold nanoparticles were then conjugated to a quaternized ClAl phthalocyanine. • Conjugation of phthalocyanines with gold nanoparticles resulted in a decrease in the fluorescence quantum yields. • An increase in the singlet oxygen quantum yields was observed for the phthalocyanine in the presence of nanoparticles.

  2. One-Pot Synthesis of (+)-Nootkatone via Dark Singlet Oxygenation of Valencene: The Triple Role of the Amphiphilic Molybdate Catalyst

    OpenAIRE

    Bing Hong; Raphaël Lebeuf; Stéphanie Delbaere; Paul L. Alsters; Véronique Nardello-Rataj

    2016-01-01

    Efficient one-pot catalytic synthesis of (+)-nootkatone was performed from (+)-valencene using only hydrogen peroxide and amphiphilic molybdate ions. The process required no solvent and proceeded in three cascade reactions: (i) singlet oxygenation of valencene according to the ene reaction; (ii) Schenck rearrangement of one hydroperoxide into the secondary β-hydroperoxide; and (iii) dehydration of the hydroperoxide into the desired (+)-nootkatone. The solvent effect on the hydroperoxide rearr...

  3. Pharmaceutical micelles featured with singlet oxygen-responsive cargo release and mitochondrial targeting for enhanced photodynamic therapy

    Science.gov (United States)

    Zhang, Xin; Yan, Qi; Naer Mulatihan, Di; Zhu, Jundong; Fan, Aiping; Wang, Zheng; Zhao, Yanjun

    2018-06-01

    The efficacy of nanoparticulate photodynamic therapy is often compromised by the short life time and limited diffusion radius of singlet oxygen as well as uncontrolled intracellular distribution of photosensitizer. It was hypothesized that rapid photosensitizer release upon nanoparticle internalization and its preferred accumulation in mitochondria would address the above problems. Hence, the aim of this study was to engineer a multifunctional micellar nanosystem featured with singlet oxygen-responsive cargo release and mitochondria-targeting. An imidazole-bearing amphiphilic copolymer was employed as the micelle building block to encapsulate triphenylphosphonium-pyropheophorbide a (TPP-PPa) conjugate or PPa. Upon laser irradiation, the singlet oxygen produced by TPP-PPa/PPa oxidized the imidazole moiety to produce hydrophilic urea, leading to micelle disassembly and rapid cargo release. The co-localization analysis showed that the TPP moiety significantly enhanced the photosensitizer uptake by mitochondria, improved mitochondria depolarization upon irradiation, and hence boosted the cytotoxicity in 4T1 cells. The targeting strategy also dramatically reduced the intracellular ATP concentration as a consequence of mitochondria injury. The mitochondria damage was accompanied with the activation of the apoptosis signals (caspase 3 and caspase 9), whose level was directly correlated to the apoptosis extent. The current work provides a facile and robust means to enhance the efficacy of photodynamic therapy.

  4. Efficient and selective singlet oxygen sensitized NIR luminescence of a neodymium(III) complex and its application in biological imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Wai-Sum [Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region (Hong Kong); Li, Hongguang [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong); Law, Ga-Lai, E-mail: ga-lai.law@polyu.edu.hk [Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region (Hong Kong); Wong, Wing-Tak, E-mail: bcwtwong@polyu.edu.hk [Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region (Hong Kong); Wong, Ka-Leung, E-mail: klwong@hkbu.edu.hk [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong)

    2016-01-15

    A responsive neodymium NIR emission ({sup 4}F{sub 3/2}→{sup 4}I{sub 11/2,} {sub 9/2}) was recorded upon binding with singlet oxygen (K{sub B}=1.79×10{sup 6} M{sup −1}) via the anthracene moiety. The motif ytterbium analog served as a negative control with no significant NIR enhancement/quenching with the addition of the same amount of singlet oxygen. Our complex was also found to react with {sup 1}O{sub 2} generated by a known photosensitizer TMPyP inside HeLa cells without inducing cell death and display no significant cytotoxicity. - Highlights: • A turn-on NIR-emissive {sup 1}O{sub 2} probe has been synthesized for potential biological applications. • It has a binding constant of 1.9×10{sup 6} M{sup −1} and the emission intensity has a 5-fold increase upon binding. • The probe was also found to quench singlet oxygen in vitro generated by known photosensitizer TMPyP.

  5. Limitations of potentiometric oxygen sensors operating at low oxygen levels

    DEFF Research Database (Denmark)

    Lund, Anders; Jacobsen, Torben; Hansen, Karin Vels

    2011-01-01

    The electrochemical processes that limit the range of oxygen partial pressures in which potentiometric oxygen sensors can be used, were analysed using a theoretical and an experimental approach. Electrochemical impedance spectroscopy was performed on porous Pt/yttria stabilised zirconia (YSZ......) electrodes between 10−6 and 0.2 bar and at temperatures between 500 and 950 °C. The flow of oxide ions and electron holes through a sensor cell, with a YSZ electrolyte, were calculated under similar conditions. The oxygen permeation of the sensor cell was insignificant at an oxygen partial pressure of 10......−6 bar for an inlet flow rate higher than 2 L h−1 between 600 and 800 °C. The polarisation resistance measured between 10−6 and 10−4 bar was found to be inversely proportional to the oxygen partial pressure, nearly temperature independent and inversely proportional to the inlet gas flow rate, which shows...

  6. On the factors influencing the performance of solar reactors for water disinfection with photosensitized singlet oxygen.

    Science.gov (United States)

    Manjón, Francisco; Villén, Laura; García-Fresnadillo, David; Orellana, Guillermo

    2008-01-01

    Two solar reactors based on compound parabolic collectors (CPCs) were optimized for water disinfection by photosensitized singlet oxygen (1O2) production in the heterogeneous phase. Sensitizing materials containing Ru(II) complexes immobilized on porous silicone were produced, photochemically characterized, and successfully tested for the inactivation of up to 10(4) CFU mL(-1) of waterborne Escherichia coli (gram-negative) or Enterococcus faecalis (gram-positive) bacteria. The main factors determining the performance of the solar reactors are the type of photosensitizing material, the sensitizer loading, the CPC collector geometry (fin- vs coaxial-type), the fluid rheology, and the balance between concurrent photothermal--photolytic and 1O2 effects on the microorganisms' inactivation. In this way, at the 40 degrees N latitude of Spain, water can be disinfected on a sunny day (0.6-0.8 MJ m(-2) L(-1) accumulated solar radiation dose in the 360-700 nm range, typically 5-6 h of sunlight) with a fin-type reactor containing 0.6 m2 of photosensitizing material saturated with tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) (ca. 2.0 g m(-2)). The optimum rheological conditions require laminar-to-transitional water flow in both prototypes. The fin-type system showed better inactivation efficiency than the coaxial reactor due to a more important photolytic contribution. The durability of the sensitizing materials was tested and the operational lifetime of the photocatalyst is at least three months without any reduction in the bacteria inactivation efficiency. Solar water disinfection with 1O2-generating films is demonstrated to be an effective technique for use in isolated regions of developing countries with high yearly average sunshine.

  7. Resistive Oxygen Gas Sensors for Harsh Environments

    Science.gov (United States)

    Moos, Ralf; Izu, Noriya; Rettig, Frank; Reiß, Sebastian; Shin, Woosuck; Matsubara, Ichiro

    2011-01-01

    Resistive oxygen sensors are an inexpensive alternative to the classical potentiometric zirconia oxygen sensor, especially for use in harsh environments and at temperatures of several hundred °C or even higher. This device-oriented paper gives a historical overview on the development of these sensor materials. It focuses especially on approaches to obtain a temperature independent behavior. It is shown that although in the past 40 years there have always been several research groups working concurrently with resistive oxygen sensors, novel ideas continue to emerge today with respect to improvements of the sensor response time, the temperature dependence, the long-term stability or the manufacture of the devices themselves using novel techniques for the sensitive films. Materials that are the focus of this review are metal oxides; especially titania, titanates, and ceria-based formulations. PMID:22163805

  8. Investigation of the generation of singlet oxygen in ensembles of photoexcited silicon nanocrystals by electron paramagnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Konstantinova, E. A.; Demin, V. A.; Timoshenko, V. Yu.

    2008-01-01

    The generation of singlet oxygen is investigated and its concentration upon photoexcitation of silicon nanocrystals in porous silicon layers is determined using electron paramagnetic resonance spectroscopy. The relaxation times of spin centers, i.e., silicon dangling bonds, in vacuum and in an oxygen atmosphere in the dark and under illumination of the samples are measured for the first time. It is revealed that the spin-lattice relaxation in porous silicon is retarded as compared to that in a single-crystal substrate. From analyzing experimental data, a microscopic model is proposed for interaction of oxygen molecules in the triplet state and spin centers at the surface of silicon nanocrystals. The results obtained have demonstrated that porous silicon holds promise for the use as a photosensitizer of molecular oxygen in biomedical applications

  9. A mechanistic study on the phototoxicity of atorvastatin: singlet oxygen generation by a phenanthrene-like photoproduct.

    Science.gov (United States)

    Montanaro, Sara; Lhiaubet-Vallet, Virginie; Iesce, MariaRosaria Iesce; Previtera, Lucio; Miranda, Miguel Angel

    2009-01-01

    Atorvastatin calcium (ATV) is one of the most frequently prescribed drugs worldwide. Among the adverse effects observed for this lipid-lowering agent, clinical cases of cutaneous adverse reactions have been reported and associated with photosensitivity disorders. Previous work dealing with ATV photochemistry has shown that exposure to natural sunlight in aqueous solution leads to photoproducts resulting from oxidation of the pyrrole ring and from cyclization to a phenanthrene derivative. Laser flash photolysis of ATV, at both 266 and 308 nm, led to a transient spectrum with two maxima at lambda= 360 and lambda= 580 nm (tau= 41 micro), which was assigned to the primary intermediate of the stilbene-like photocyclization. On the basis of the absence of a triplet-triplet absorption, the role of the parent drug as singlet oxygen photosensitizer can be discarded. By contrast, a stable phenanthrene-like photoproduct would be a good candidate to play this role. Laser flash photolysis of this compound showed a triplet-triplet transient absorption at lambdamax = 460 nm with a lifetime of 26 micro, which was efficiently quenched by oxygen (kq = 3 (+/-0.2) x 10(9) M(-1) s(-1)). Its potential to photosensitize formation of singlet oxygen was confirmed by spin trapping experiments, through conversion of TEMP to the stable free radical TEMPO. The photoreactivity of the phenanthrene-like photoproduct was investigated using Trp as a marker. The disappearance of the amino acid fluorescence (lambdamax = 340 nm) after increasing irradiation times at 355 nm was taken as a measurement of photodynamic oxidation. To confirm the involvement of a type II mechanism, the same experiment was also performed in D2O; this resulted in a significant enhancement of the reaction rate. On the basis of the obtained photophysical and photochemical results, the phototoxicity of atorvastatin can be attributed to singlet oxygen formation with the phenanthrene-like photoproduct as a photosensitizer.

  10. Time-resolved EPR study of singlet oxygen in the gas phase.

    Science.gov (United States)

    Ruzzi, Marco; Sartori, Elena; Moscatelli, Alberto; Khudyakov, Igor V; Turro, Nicholas J

    2013-06-27

    X-band EPR spectra of singlet O2((1)Δg) and triplet O2((3)Σg(-)) were observed in the gas phase under low molecular-oxygen pressures PO2 = 0.175-0.625 Torr, T = 293-323 K. O2((1)Δg) was produced by quenching of photogenerated triplet sensitizers naphthalene C8H10, perdeuterated naphthalene, and perfluoronaphthalene in the gas phase. The EPR spectrum of O2((1)Δg) was also observed under microwave discharge. Integrated intensities and line widths of individual components of the EPR spectrum of O2((3)Σg(-)) were used as internal standards for estimating the concentration of O2 species and PO2 in the EPR cavity. Time-resolved (TR) EPR experiments of C8H10 were the main focus of this Article. Pulsed irradiation of C8H10 in the presence of O2((3)Σg(-)) allowed us to determine the kinetics of formation and decay for each of the four components of the O2((1)Δg) EPR signal, which lasted for only a few seconds. We found that the kinetics of EPR-component decay fit nicely to a biexponential kinetics law. The TR EPR 2D spectrum of the third component of the O2((1)Δg) EPR spectrum was examined in experiments using C8H10. This spectrum vividly presents the time evolution of an EPR component. The largest EPR signal and the longest lifetime of O2((1)Δg), τ = 0.4 s, were observed at medium pressure PO2 = 0.4 Torr, T = 293 K. The mechanism of O2((1)Δg) decay in the presence of photosensitizers is discussed. EPR spectra of O2((1)Δg) evidence that the spin-rotational states of O2((1)Δg) are populated according to Boltzmann distribution in the studied time range of 10-100 ms. We believe that this is the first report dealing with the dependence of O2((1)Δg) EPR line width on PO2 and T.

  11. Study of the metastable singlet of molecular nitrogen and of oxygen atoms in discharges and post-discharges

    International Nuclear Information System (INIS)

    Magne, Lionel

    1991-01-01

    Whereas discharges in nitrogen, in oxygen and in their mixtures are used in many different industrial processes (surface treatment, nitridation, oxidation, and so on), in order to get a better knowledge on nitrogen electronic states, this research thesis reports the study of the metastable singlet state of molecular nitrogen, and of oxygen atoms in their fundamental state. The molecular metastable has been observed by far-UV optical emission spectroscopy, in the positive column of a continuous discharge and in time post-discharge. As far as continuous discharge is concerned, the author measured the vibrational distribution of this state. A kinetic model has been developed, and calculated vibrational distributions are in good agreement with measurements. The density of oxygen atoms in fundamental state in time post-discharge has been measured by far-UV absorption optical spectroscopy. The probability of atom re-association of glass walls is deduced from the obtained results [fr

  12. A comparative study of the processes of generation of singlet oxygen upon irradiation of aqueous preparations on the basis of chlorin e6 and coproporphyrin III

    Science.gov (United States)

    Bagrov, I. V.; Belousova, I. M.; Gorelov, S. I.; Dobrun, M. V.; Kiselev, V. M.; Kislyakov, I. M.; Kris'ko, A. V.; Kris'ko, T. K.

    2017-02-01

    The photosensitizing ability of an agent based on chlorin e6 (Photoditazin), which is used for photodynamic diagnosis and therapy, is compared with that of a new preparation on the basis of coproporphyrin III in the environment of a phosphate buffer and a simulated biological environment (albumin solution). The efficiency of singlet-oxygen production was estimated by EPR spectroscopy and spectroscopy in the UV and visible ranges with the use of "chemical traps" of singlet oxygen. By irradiating drugs with LED emission centered at λmax = 520 nm, we determined the quantum yield of singlet-oxygen production in a buffer solution; the obtained values are 0.60 and 0.37 for chlorine and coproporphyrin, respectively. The steady-state concentration of singlet oxygen upon irradiation of solutions of the studied photosensitizers with concentrations of 12-43 μM and the density of radiation power within the 6-96 W/cm2 region was found to be in the region of 1010-1011 molecules/cm3. It is shown that the introduction into the solution of egg albumin (0.1%) reduces the sensitizing properties of the two drugs by two to three times, while the efficiencies of the preparations with respect to singlet-oxygen production become almost identical (0.19 and 0.17).

  13. Oxygen sensitive polymeric nanocapsules for optical dissolved oxygen sensors

    Science.gov (United States)

    Sun, Zhijuan; Cai, Chenxin; Guo, Fei; Ye, Changhuai; Luo, Yingwu; Ye, Shuming; Luo, Jianchao; Zhu, Fan; Jiang, Chunyue

    2018-04-01

    Immobilization of the oxygen-sensitive probes (OSPs) in the host matrix greatly impacts the performance and long-term usage of the optical dissolved oxygen (DO) sensors. In this work, fluorescent dyes, as the OSPs, were encapsulated with a crosslinked fluorinated polymer shell by interfacial confined reversible addition fragmentation chain transfer miniemulsion polymerization to fabricate oxygen sensitive polymeric nanocapsules (NCs). The location of fluorescent dyes and the fluorescent properties of the NCs were fully characterized by fourier transform infrared spectrometer, x-ray photoelectron spectrometer and fluorescent spectrum. Dye-encapsulated capacity can be precisely tuned from 0 to 1.3 wt% without self-quenching of the fluorescent dye. The crosslinked fluorinated polymer shell is not only extremely high gas permeability, but also prevents the fluorescent dyes from leakage in aqueous as well as in various organic solvents, such as ethanol, acetone and tetrahydrofuran (THF). An optical DO sensor based on the oxygen sensitive NCs was fabricated, showing high sensitivity, short response time, full reversibility, and long-term operational stability of online monitoring DO. The sensitivity of the optical DO sensor is 7.02 (the ratio of the response value in fully deoxygenated and saturated oxygenated water) in the range 0.96-14.16 mg l-1 and the response time is about 14.3 s. The sensor’s work curve was fit well using the modified Stern-Volmer equation by two-site model, and its response values are hardly affected by pH ranging from 2 to 12 and keep constant during continuous measurement for 3 months. It is believed that the oxygen sensitive polymeric NCs-based optical DO sensor could be particularly useful in long-term online DO monitoring in both aqueous and organic solvent systems.

  14. Light-triggered liposomal cargo delivery platform incorporating photosensitizers and gold nanoparticles for enhanced singlet oxygen generation and increased cytotoxicity

    Science.gov (United States)

    Kautzka, Zofia; Clement, Sandhya; Goldys, Ewa M.; Deng, Wei

    2018-02-01

    We developed light-triggered liposomes incorporating gold nanoparticles and Rose Bengal (RB), a well-known photosensitizer used for photodynamic therapy. Singlet oxygen generated by these liposomes with 532 nm light illumination was characterized by adjusting the molar ratio of lipids and gold nanoparticles while keeping the amount of RB constant. Gold nanoparticles were found to enhance the singlet oxygen generation rate, with a maximum enhancement factor of 1.75 obtained for the molar ratio of HSPC: PE-NH2: gold of 57:5:17 compared with liposomes loaded with RB alone. The experimental results could be explained by the local electric field enhancement caused by gold nanoparticles. We further assessed cellular cytotoxicity of these liposomes by encapsulating an antitumor drug, doxorubicin (Dox); such Dox loaded liposomes were applied to human colorectal cancer cells, HCT116, and exposed to light. Gold-loaded liposomes containing RB and Dox where Dox release was triggered by light were found to exhibit higher cytotoxicity, compared to the liposomes loaded with RB and Dox alone. Our results indicate that gold-loaded liposomes incorporating photosensitizers may have improved therapeutic efficacy in photodynamic therapy and chemotherapy.

  15. Photogeneration of singlet oxygen by the phenothiazine derivatives covalently bound to the surface-modified glassy carbon

    Energy Technology Data Exchange (ETDEWEB)

    Blacha-Grzechnik, Agata, E-mail: agata.blacha@polsl.pl [Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland); Piwowar, Katarzyna; Krukiewicz, Katarzyna [Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland); Koscielniak, Piotr; Szuber, Jacek [Institute of Electronics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice (Poland); Zak, Jerzy K. [Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland)

    2016-05-15

    Highlights: • The selected group of four NH{sub 2}-derivatives of phenothiazine was grafted to Glassy Carbon (GC) surface. • The grafted phenothiazines are able to generate {sup 1}O{sub 2} when activated by the radiation. • Such modified solid surfaces may find their application in the wastewater treatment. - Abstract: The selected group of four amine-derivatives of phenothiazine was covalently grafted to the glassy carbon surface in the four-step procedure consisting of the electrochemical reduction of the diazonium salt followed by the electrochemical and chemical post-modification steps. The proposed strategy involves the bonding of linker molecule to which the photosensitizer is attached. The synthesized organic layers were characterized by means of cyclic voltammetry, XPS and Raman Spectroscopy. It was shown that the phenothiazines immobilized via proposed strategy retain their photochemical properties and are able to generate {sup 1}O{sub 2} when activated by the laser radiation. The effectiveness of in situ singlet oxygen generation by those new solid photoactive materials was determined by means of UVVis spectroscopy. The reported, covalently modified solid surfaces may find their application as the singlet oxygen photogenerators in the fine chemicals’ synthesis or in the wastewater treatment.

  16. Light absorption and the photoformation of hydroxyl radical and singlet oxygen in fog waters

    Science.gov (United States)

    Kaur, R.; Anastasio, C.

    2017-09-01

    The atmospheric aqueous-phase is a rich medium for chemical transformations of organic compounds, in part via photooxidants generated within the drops. Here we measure light absorption, photoformation rates and steady-state concentrations of two photooxidants - hydroxyl radical (•OH) and singlet molecular oxygen (1O2*) - in 8 illuminated fog waters from Davis, California and Baton Rouge, Louisiana. Mass absorption coefficients for dissolved organic compounds (MACDOC) in the samples are large, with typical values of 10,000-15,000 cm2 g-C-1 at 300 nm, and absorption extends to wavelengths as long as 450-600 nm. While nitrite and nitrate together account for an average of only 1% of light absorption, they account for an average of 70% of •OH photoproduction. Mean •OH photoproduction rates in fogs at the two locations are very similar, with an overall mean of 1.2 (±0.7) μM h-1 under Davis winter sunlight. The mean (±1σ) lifetime of •OH is 1.6 (±0.6) μs, likely controlled by dissolved organic compounds. Including calculated gas-to-drop partitioning of •OH, the average aqueous concentration of •OH is approximately 2 × 10-15 M (midday during Davis winter), with aqueous reactions providing approximately one-third of the hydroxyl radical source. At this concentration, calculated lifetimes of aqueous organics are on the order of 10 h for compounds with •OH rate constants of 1 × 1010 M-1 s-1 or higher (e.g., substituted phenols such as syringol (6.4 h) and guaiacol (8.4 h)), and on the order of 100 h for compounds with rate constants near 1 × 109 M-1 s-1 (e.g., isoprene oxidation products such as glyoxal (152 h), glyoxylic acid (58 h), and pyruvic acid (239 h)). Steady-state concentrations of 1O2* are approximately 100 times higher than those of •OH, in the range of (0.1-3.0) × 10-13 M. Since 1O2* is a more selective oxidant than •OH, it will only react appreciably with electron-rich species such as dimethyl furan (lifetime of 2.0 h) and

  17. Bimodular high temperature planar oxygen gas sensor

    Directory of Open Access Journals (Sweden)

    Xiangcheng eSun

    2014-08-01

    Full Text Available A bimodular planar O2 sensor was fabricated using NiO nanoparticles (NPs thin film coated yttria-stabilized zirconia (YSZ substrate. The thin film was prepared by radio frequency (r.f. magnetron sputtering of NiO on YSZ substrate, followed by high temperature sintering. The surface morphology of NiO nanoparticles film was characterized by atomic force microscopy (AFM and scanning electron microscopy (SEM. X-ray diffraction (XRD patterns of NiO NPs thin film before and after high temperature O2 sensing demonstrated that the sensing material possesses a good chemical and structure stability. The oxygen detection experiments were performed at 500 °C, 600 °C and 800 °C using the as-prepared bimodular O2 sensor under both potentiometric and resistance modules. For the potentiometric module, a linear relationship between electromotive force (EMF output of the sensor and the logarithm of O2 concentration was observed at each operating temperature, following the Nernst law. For the resistance module, the logarithm of electrical conductivity was proportional to the logarithm of oxygen concentration at each operating temperature, in good agreement with literature report. In addition, this bimodular sensor shows sensitive, reproducible and reversible response to oxygen under both sensing modules. Integration of two sensing modules into one sensor could greatly enrich the information output and would open a new venue in the development of high temperature gas sensors.

  18. Thin film oxygen partial pressure sensor

    Science.gov (United States)

    Wortman, J. J.; Harrison, J. W.; Honbarrier, H. L.; Yen, J.

    1972-01-01

    The development is described of a laboratory model oxygen partial pressure sensor using a sputtered zinc oxide thin film. The film is operated at about 400 C through the use of a miniature silicon bar. Because of the unique resistance versus temperature relation of the silicon bar, control of the operational temperature is achieved by controlling the resistance. A circuit for accomplishing this is described. The response of sputtered zinc oxide films of various thicknesses to oxygen, nitrogen, argon, carbon dioxide, and water vapor caused a change in the film resistance. Over a large range, film conductance varied approximately as the square root of the oxygen partial pressure. The presence of water vapor in the gas stream caused a shift in the film conductance at a given oxygen partial pressure. A theoretical model is presented to explain the characteristic features of the zinc oxide response to oxygen.

  19. Lifetime of the internal reference oxygen sensor

    DEFF Research Database (Denmark)

    Hu, Qiang; Jacobsen, Torben; Hansen, Karin Vels

    2013-01-01

    The internal reference oxygen sensor (IROS) based on a binary mixture of metal and its stoichiometric oxide is subject to leaks that result in consumption of the binary mixture. An IROS loses the functionality when the binary mixture is exhausted. Among the possible leak sources the electronic leak...

  20. Novel approaches to singlet oxygen photosensitization in the nano- and bio-era

    OpenAIRE

    Planas Marquès, Oriol

    2017-01-01

    En aquesta tesis es detallen noves aproximacions nano- i biomoleculars amb l’objectiu de millorar la fotosensibilització i detecció d’oxigen singlet en medi biològic. En primer lloc es presenta una nova reacció fluoro- i cromogènica pel marcatge de proteïnes i nanopartícules amb derivats de porficè. Concretament, la reacció de porficens isotiocianat amb amines primàries i secundaries generen 2-aminotiazolo[4,5-c]poricè derivats amb un desplaçament concomitant en els seus espectres d’absor...

  1. Oxygen-Partial-Pressure Sensor for Aircraft Oxygen Mask

    Science.gov (United States)

    Kelly, Mark; Pettit, Donald

    2003-01-01

    A device that generates an alarm when the partial pressure of oxygen decreases to less than a preset level has been developed to help prevent hypoxia in a pilot or other crewmember of a military or other high-performance aircraft. Loss of oxygen partial pressure can be caused by poor fit of the mask or failure of a hose or other component of an oxygen distribution system. The deleterious physical and mental effects of hypoxia cause the loss of a military aircraft and crew every few years. The device is installed in the crewmember s oxygen mask and is powered via communication wiring already present in all such oxygen masks. The device (see figure) includes an electrochemical sensor, the output potential of which is proportional to the partial pressure of oxygen. The output of the sensor is amplified and fed to the input of a comparator circuit. A reference potential that corresponds to the amplified sensor output at the alarm oxygen-partial-pressure level is fed to the second input of the comparator. When the sensed partial pressure of oxygen falls below the minimum acceptable level, the output of the comparator goes from the low state (a few millivolts) to the high state (near the supply potential, which is typically 6.8 V for microphone power). The switching of the comparator output to the high state triggers a tactile alarm in the form of a vibration in the mask, generated by a small 1.3-Vdc pager motor spinning an eccentric mass at a rate between 8,000 and 10,000 rpm. The sensation of the mask vibrating against the crewmember s nose is very effective at alerting the crewmember, who may already be groggy from hypoxia and is immersed in an environment that is saturated with visual cues and sounds. Indeed, the sensation is one of rudeness, but such rudeness could be what is needed to stimulate the crewmember to take corrective action in a life-threatening situation.

  2. One-Pot Synthesis of (+-Nootkatone via Dark Singlet Oxygenation of Valencene: The Triple Role of the Amphiphilic Molybdate Catalyst

    Directory of Open Access Journals (Sweden)

    Bing Hong

    2016-11-01

    Full Text Available Efficient one-pot catalytic synthesis of (+-nootkatone was performed from (+-valencene using only hydrogen peroxide and amphiphilic molybdate ions. The process required no solvent and proceeded in three cascade reactions: (i singlet oxygenation of valencene according to the ene reaction; (ii Schenck rearrangement of one hydroperoxide into the secondary β-hydroperoxide; and (iii dehydration of the hydroperoxide into the desired (+-nootkatone. The solvent effect on the hydroperoxide rearrangement is herein discussed. The amphiphilic dimethyldioctyl ammonium molybdate, which is also a balanced surfactant, played a triple role in this process, as molybdate ions catalyzed at both Step 1 and Step 3 and it allowed the rapid formation of a three-phase microemulsion system that highly facilitates product recovery. Preparative synthesis of the high added value (+-nootkatone was thus performed at room temperature with an isolated yield of 46.5%. This is also the first example of a conversion of allylic hydroperoxides into ketones catalyzed by molybdate ions.

  3. Eclipta yellow vein virus enhances chlorophyll destruction, singlet oxygen production and alters endogenous redox status in Andrographis paniculata.

    Science.gov (United States)

    Khan, Asifa; Luqman, Suaib; Masood, Nusrat; Singh, Dhananjay Kumar; Saeed, Sana Tabanda; Samad, Abdul

    2016-07-01

    The infection of Eclipta yellow vein virus [EcYVV-IN, Accession No. KC476655], recently reported for the first time, on Andrographis paniculata was studied for redox-mediated alteration mechanism in infected plants. A. paniculata, an important medicinal plant, is used in traditional Indian, Chinese and modern system of medicine. Andrographolide, one of the foremost components of this plant, is known for its varied pharmacological properties. Our investigation provides insight into the effect of virus-induced changes in the singlet oxygen quenching due to the alteration in pigment content (chlorophyll and carotenoids) as well as activation of plant secondary metabolism along with defense activation leading to changes in enzymatic and non-enzymatic redox status. Due to infection, a reduction in carotenoid content was observed which leads to reduced quenching of singlet oxygen. An increased level of enzymatic (SOD and APX) and non-enzymatic antioxidant (DPPH, FRAP, RP, NO, TAC and TP) activities were also observed in virus-infected plants with a positive correlation (>0.9). However, CAT activity was diminished which could be either due to its proteolytic degradation or inactivation by superoxide anions (O(2-.)), NO or peroxynitrite radicals. A significant (p < 0.05) increase in total phenolic content was observed in the infected plants while no considerable difference was seen in the total flavonoid content. Our results highlighted the alteration in redox status caused by virus-induced biotic stress on the plants and could be useful for understanding the after effects of viral infection This study could also be helpful in developing biomimetic methods for improving the production of secondary metabolites of pharmaceutical importance. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Kinetic and mechanisms of methanimine reactions with singlet and triplet molecular oxygen: Substituent and catalyst effects

    Science.gov (United States)

    Asgharzadeh, Somaie; Vahedpour, Morteza

    2018-06-01

    Methanimine reaction with O2 on singlet and triplet potential energy surfaces are investigated using B3PW91, M06-2X, MP2 and CCSD(T) methods. Thermodynamic and kinetic parameters are calculated at M06-2X method. The most favorable channel involves H-abstraction of CH2NH+O2 to the formation of HCN + H2O2 products via low level energy barrier. The catalytic effect of water molecule on HCN + H2O2 products pathway are investigated. Result shows that contribution of water molecule using complex formation with methanimine can decreases barrier energy of transition state and the reaction rate increases. Also, substituent effect of fluorine atom as deactivating group are investigated on the main reaction pathway.

  5. Two-Photon Irradiation of an Intracellular Singlet Oxygen Photosensitizer: Achieving Localized Sub-Cellular Excitation in Spatially-Resolved Experiments

    DEFF Research Database (Denmark)

    Pedersen, Brian Wett; Breitenbach, Thomas; Redmond, Robert W.

    2010-01-01

    The response of a given cell to spatially-resolved sub-cellular irradiation of a singlet oxygen photosensitizer (protoporphyrin IX, PpIX) using a focused laser was assessed. In these experiments, incident light was scattered over a volume greater than that defi ned by the dimensions of the laser...

  6. Preliminary study on singlet oxygen production using CeF.sub.3./sub.:Tb.sup.3+./sup.@SiO.sub.2./sub.-PpIX

    Czech Academy of Sciences Publication Activity Database

    Popovich, K.; Procházková, L.; Pelikánová, I.T.; Vlk, M.; Palkovský, M.; Jarý, Vítězslav; Nikl, Martin; Múčka, V.; Mihóková, Eva; Čuba, V.

    2016-01-01

    Roč. 90, Jul (2016), s. 325-328 ISSN 1350-4487 R&D Projects: GA ČR GA13-09876S; GA ČR GA13-28721S Institutional support: RVO:68378271 Keywords : singlet oxygen * cerium fluoride * photodynamic therapy * biofunctionalization * scintillator Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.442, year: 2016

  7. Luminescence spectroscopic observation of singlet oxygen formation in extra virgin olive oil as affected by irradiation light wavelengths, 1,4-diazabicyclo[2.2.2]octane, irradiation time, and oxygen bubbling.

    Science.gov (United States)

    Jung, Mun Y; Choi, Dong S; Park, Ki H; Lee, Bosoon; Min, David B

    2011-01-01

    A spectrofluorometer equipped with a highly sensitive near-IR InGaAs detector was used for the direct visualization of singlet oxygen emission at 1268 nm in olive oil during light irradiation with various different wavelengths. The virgin olive oil in methylene chloride (20% w/v, oxygen saturated) was irradiated at the 301, 417, 454, 483, and 668 nm, then the emission at 1268 nm, singlet oxygen dimole decaying was observed. The result showed the highest production of (1)O(2) with light irradiation at 417 nm, and followed by at 668 nm in virgin olive oil, indicating that pheophytin a and chlorophyll a were the most responsible components for the production of singlet oxygen. The UV light irradiations at the wavelength of 200, 250, and 300 nm did not induce any detectable luminescence emission at 1268 nm, but 350 nm produced weak emission at 1269 nm. The quantity of (1)O(2) produced with excitation at 350 nm was about 1/6 of that of irradiation at 417 nm. Addition of an efficient (1)O(2) quencher, 1,4-diazabicyclo[2.2.2]octane, in virgin olive oil in methylene chloride greatly decreased the luminescence emission at 1268 nm, confirming the singlet oxygen production in olive oil. Singlet oxygen production was more efficient in oxygen-purged virgin olive oil than in oxygen non-purged olive oil. This represents first report on the direct observation of singlet oxygen formation in olive oil as well as in real-food system after visible light illumination. Practical Application: The present results show the positive evidence of the singlet oxygen involvement in rapid oxidative deterioration of virgin olive oil under visible light. This paper also shows the effects of different wavelength of light irradiation on the formation of singlet oxygen in olive oil. The present results would provide important information for the understanding of the mechanism involved in rapid oxidative quality deterioration of virgin olive oil under light illumination and for searching the

  8. Effective photo-enhancement of cellular activity of fluorophore-octaarginine antisense PNA conjugates correlates with singlet oxygen formation, endosomal escape and chromophore lipophilicity

    DEFF Research Database (Denmark)

    Yarani, Reza; Shiraishi, Takehiko; Nielsen, Peter E.

    2018-01-01

    Photochemical internalization (PCI) is a cellular drug delivery method based on the generation of light-induced reactive oxygen species (ROS) causing damage to the endosomal membrane and thereby resulting in drug release to the cytoplasm. In our study a series of antisense fluorophore octaarginin...... indicate that efficient photodynamic endosomal escape is strongly dependent on the quantum yield for photochemical singlet oxygen formation, photostability as well as the lipophilicity of the chromophore....

  9. Singlet oxygen explicit dosimetry to predict long-term local tumor control for Photofrin-mediated photodynamic therapy

    Science.gov (United States)

    Penjweini, Rozhin; Kim, Michele M.; Ong, Yi Hong; Zhu, Timothy C.

    2017-02-01

    Although photodynamic therapy (PDT) is an established modality for the treatment of cancer, current dosimetric quantities do not account for the variations in PDT oxygen consumption for different fluence rates (φ). In this study we examine the efficacy of reacted singlet oxygen concentration ([1O2]rx) to predict long-term local control rate (LCR) for Photofrin-mediated PDT. Radiation-induced fibrosarcoma (RIF) tumors in the right shoulders of female C3H mice are treated with different in-air fluences of 225-540 J/cm2 and in-air fluence rate (φair) of 50 and 75 mW/cm2 at 5 mg/kg Photofrin and a drug-light interval of 24 hours using a 1 cm diameter collimated laser beam at 630 nm wavelength. [1O2]rx is calculated by using a macroscopic model based on explicit dosimetry of Photofrin concentration, tissue optical properties, tissue oxygenation and blood flow changes during PDT. The tumor volume of each mouse is tracked for 90 days after PDT and Kaplan-Meier analyses for LCR are performed based on a tumor volume defined as a temporal integral of photosensitizer concentration and Φ at a 3 mm tumor depth. φ is calculated throughout the treatment volume based on Monte-Carlo simulation and measured tissue optical properties. Our preliminary studies show that [1O2]rx is the best dosimetric quantity that can predict tumor response and correlate with LCR. Moreover, [1O2]rx calculated using the blood flow changes was in agreement with [1O2]rx calculated based on the actual tissue oxygenation.

  10. Decontamination of chemical-warfare agent simulants by polymer surfaces doped with the singlet oxygen generator zinc octaphenoxyphthalocyanine.

    Science.gov (United States)

    Gephart, Raymond T; Coneski, Peter N; Wynne, James H

    2013-10-23

    Using reactive singlet oxygen (1O2), the oxidation of chemical-warfare agent (CWA) simulants has been demonstrated. The zinc octaphenoxyphthalocyanine (ZnOPPc) complex was demonstrated to be an efficient photosensitizer for converting molecular oxygen (O2) to 1O2 using broad-spectrum light (450-800 nm) from a 250 W halogen lamp. This photosensitization produces 1O2 in solution as well as within polymer matrices. The oxidation of 1-naphthol to naphthoquinone was used to monitor the rate of 1O2 generation in the commercially available polymer film Hydrothane that incorporates ZnOPPc. Using electrospinning, nanofibers of ZnOPPc in Hydrothane and polycarbonate were formed and analyzed for their ability to oxidize demeton-S, a CWA simulant, on the surface of the polymers and were found to have similar reactivity as their corresponding films. The Hydrothane films were then used to oxidize CWA simulants malathion, 2-chloroethyl phenyl sulfide (CEPS), and 2-chloroethyl ethyl sulfide (CEES). Through this oxidation process, the CWA simulants are converted into less toxic compounds, thus decontaminating the surface using only O2 from the air and light.

  11. Experimental and theoretical studies of nuclear generation of ozone and its photolysis into singlet delta oxygen

    International Nuclear Information System (INIS)

    Elsayed-Ali, H.E.

    1985-01-01

    The radiation chemistry of oxygen discharges is better-studied system. The discharges were made by irradiation with high energy helium and lithium ions created by a neutron-induced reaction in boron (10). A detailed numerical model and a simplified analytical model of oxygen radiolysis have been developed to interpret the data. A summary of the data on the ozone yield from irradiation of He-O2, Ne-O2 and Ar-O2 is presented. Dose rates are also indicated. The present work appears to be the first to measure the steady state ozone concentration in noble gas-oxygen discharges and the effect of SF6 on this steady state concentration. 106 refs

  12. Singlet oxygen explicit dosimetry to predict long-term local tumor control for BPD-mediated photodynamic therapy

    Science.gov (United States)

    Kim, Michele M.; Penjweini, Rozhin; Ong, Yi Hong; Zhu, Timothy C.

    2017-02-01

    Photodynamic therapy (PDT) is a well-established treatment modality for cancer and other malignant diseases; however, quantities such as light fluence, photosensitizer photobleaching rate, and PDT dose do not fully account for all of the dynamic interactions between the key components involved. In particular, fluence rate (Φ) effects are not accounted for, which has a large effect on the oxygen consumption rate. In this preclinical study, reacted singlet oxygen [1O2]rx was investigated as a dosimetric quantity for PDT outcome. The ability of [1O2]rx to predict the long-term local tumor control rate (LCR) for BPD-mediated PDT was examined. Mice bearing radioactivelyinduced fibrosarcoma (RIF) tumors were treated with different in-air fluences (250, 300, and 350 J/cm2) and in-air ϕ (75, 100, and150 mW/cm2) with a BPD dose of 1 mg/kg and a drug-light interval of 3 hours. Treatment was delivered with a collimated laser beam of 1 cm diameter at 690 nm. Explicit dosimetry of initial tissue oxygen concentration, tissue optical properties, and BPD concentration was used to calculate [1O2]rx. Φ was calculated for the treatment volume based on Monte-Carlo simulations and measured tissue optical properties. Kaplan-Meier analyses for LCR were done for an endpoint of tumor volume defined as the product of the timeintegral of photosensitizer concentration and Φ at a 3 mm tumor depth. Preliminary studies show that [1O2]rx better correlates with LCR and is an effective dosimetric quantity that can predict treatment outcome.

  13. Antibacterial nitric oxide- and singlet oxygen-releasing polystyrene nanoparticles responsive to light and temperature triggers

    Czech Academy of Sciences Publication Activity Database

    Dolanský, Jiří; Henke, P.; Malá, Z.; Žárská, L.; Kubát, Pavel; Mosinger, Jiří

    2018-01-01

    Roč. 10, č. 5 (2018), s. 2639-2648 ISSN 2040-3364 R&D Projects: GA ČR(CZ) GA16-15020S Institutional support: RVO:61388980 ; RVO:61388955 Keywords : nanofiber materials * porphyrin photosensitizers * photophysical properties * reactive oxygen Subject RIV: CA - Inorganic Chemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) OBOR OECD: Inorganic and nuclear chemistry; Physical chemistry (UFCH-W) Impact factor: 7.367, year: 2016

  14. Influence of gamma radiation and singlet oxygen on nucleic acid constituents

    International Nuclear Information System (INIS)

    Balland, Alain.

    1979-10-01

    The action of single oxygen on nucleosides proved to be extremely specific of deoxy-2' guanosine. The use of high performance liquid chromatography and spectrometric techniques (IR, mass and NMR) made it possible to isolate and characterise five main products of degradation. Ionizing radiations act mainly through radical species resulting from the radiolysis of water. The effects of the presence of DNA nucleosides in irradiated aqueous solutions of thymidine were investigated. It would appear, in these conditions, that the change in radio-sensitivity of thymidine in oxygenated solution can be explained essentially in terms of the competition of hydroxyl radicals. A study of the action of gamma rays on aqueous solutions of deoxy-2' guanilyl thymidine was carried out in the absence and presence of oxygen. The significant action of neutral radical species on the 'osidic' fragment explaining the break in the phosphodiester bond was noticed. The radio-induced modifications on the substrate were characterised indirectly by enzime hydrolysis (phosphodiesterasis). In an aerated aqueous solution, the monophosphate dinucleosides modified on the thymidine motive were identified by comparison with the substances obtained by synthesis. The characterisation of new substances and the study of synthetic ones required the use of NMR. Hence the configuration study of modified nucleosides was given much room [fr

  15. Singlet oxygen autoxidation of vegetable oils: evidences for lack of synergy between β-carotene and tocopherols.

    Science.gov (United States)

    Smyk, Bogdan

    2015-09-01

    The synergy between β-carotene and tocopherols--antioxidants protecting oils from oxidation, was analyzed in a model system. The model used stripped borage and evening primrose oils. A chlorophyll extract, β-carotene and one of the tocopherols were added together or separately to the oils. Oil oxidation was initiated by singlet oxygen that was produced by chlorophylls irradiated with the use of a xenon lamp equipped with the cut-off 600 nm filter. Experiments were carried out at two mole ratios of tocopherols to β-carotene, i.e. at 1:1 and 23:1. Analyses were performed using absorption and fluorescence spectra in the UV+Vis region. The results demonstrated an antagonistic action of the antioxidants. The protective effect of unsaturated fatty acids was significantly better in the case of β-carotene compared to the tocopherols. Furthermore, tocopherols were less effective in protecting the oils in the presence of β-carotene than without it. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Correlation of in vivo tumor response and singlet oxygen luminescence detection in mTHPC-mediated photodynamic therapy

    Directory of Open Access Journals (Sweden)

    Brian C. Wilson

    2015-01-01

    Full Text Available Excited-state singlet oxygen (1O2, generated during photodynamic therapy (PDT, is believed to be the primary cytotoxic agent with a number of clinically approved photosensitizers. Its relative concentration in cells or tissues can be measured directly through its near-infrared (NIR luminescence emission, which has correlated well with in vitro cell and in vivo normal skin treatment responses. Here, its correlation with the response of tumor tissue in vivo is examined, using the photosensitizer meso-tetrahydroxyphenylchlorin (mTHPC in an animal model comprising luciferase- and green fluorescent protein (GFP-transduced gliosarcoma grown in a dorsal window chamber. The change in the bioluminescence signal, imaged pretreatment and at 2, 5 and 9 d post treatment, was used as a quantitative measure of the tumor response, which was classified in individual tumors as "non", "moderate" and "strong" in order to reduce the variance in the data. Plotting the bioluminescence-based response vs the 1O2 counts demonstrated clear correlation, indicating that 1O2 luminescence provides a valid dosimetric technique for PDT in tumor tissue.

  17. Influence of pulse-height discrimination threshold for photon counting on the accuracy of singlet oxygen luminescence measurement

    International Nuclear Information System (INIS)

    Lin, Huiyun; Chen, Defu; Wang, Min; Lin, Juqiang; Li, Buhong; Xie, Shusen

    2011-01-01

    Direct measurement of near-infrared (NIR) luminescence around 1270 nm is the golden standard of singlet oxygen ( 1 O 2 ) identification. In this study, the influence of pulse-height discrimination threshold on measurement accuracy of the 1 O 2 luminescence that is generated from the photoirradiation of meso-tetra (N-methyl-4-pyridyl) morphine tetra-tosylate (TMPyP) in aqueous solution was investigated by using our custom-developed detection system. Our results indicate that the discrimination threshold has a significant influence on the absolute 1 O 2 luminescence counts, and the optimal threshold for our detection system is found to be about − 41.2 mV for signal discrimination. After optimization, the derived triplet-state and 1 O 2 lifetimes of TMPyP in aqueous solution are found to be 1.73 ± 0.03 and 3.70 ± 0.04 µs, respectively, and the accuracy of measurement was further independently demonstrated using the laser flash photolysis technique

  18. Ultrasound-assisted interaction between chlorin-e6 and human serum albumin: pH dependence, singlet oxygen production, and formulation effect

    Science.gov (United States)

    Mocanu, Mihaela N.; Yan, Fei

    2018-02-01

    The interaction between chlorin e6 (Ce6) and human serum albumin (HSA) in the presence and absence of ultrasound have been investigated by ultraviolet-visible absorption spectroscopy and fluorescence spectroscopy. Ce6 is found to bind strongly to HSA at or near physiological pH conditions, but the strength of the binding is significantly weakened at lower pHs. The intrinsic fluorescence of HSA is incrementally quenched with increasing concentration of Ce6, and the quenching is enhanced after exposure to high-frequency ultrasound. Our experimental results suggest that Ce6-induced sonodynamic oxidation of HSA is mainly mediated by singlet oxygen. The formulation of Ce6 by high molecular weight polyvinylpyrrolidone (PVP) increased its stability in aqueous solutions and its quantum yield of singlet oxygen under ultrasound irradiation.

  19. Interaction of singlet oxygen with bovine serum albumin and the role of the protein nano-compartmentalization.

    Science.gov (United States)

    Giménez, Rodrigo E; Vargová, Veronika; Rey, Valentina; Turbay, M Beatriz Espeche; Abatedaga, Inés; Morán Vieyra, Faustino E; Paz Zanini, Verónica I; Mecchia Ortiz, Juan H; Katz, Néstor E; Ostatná, Veronika; Borsarelli, Claudio D

    2016-05-01

    Singlet molecular oxygen ((1)O2) contributes to protein damage triggering biophysical and biochemical changes that can be related with aging and oxidative stress. Serum albumins, such as bovine serum albumin (BSA), are abundant proteins in blood plasma with different biological functions. This paper presents a kinetic and spectroscopic study of the (1)O2-mediated oxidation of BSA using the tris(2,2'-bipyridine)ruthenium(II) cation [Ru(bpy)3](2+) as sensitizer. BSA quenches efficiently (1)O2 with a total (chemical+physical interaction) rate constant kt(BSA)=7.3(±0.4)×10(8)M(-1)s(-1), where the chemical pathway represented 37% of the interaction. This efficient quenching by BSA indicates the participation of several reactive residues. MALDI-TOF MS analysis of intact BSA confirmed that after oxidation by (1)O2, the mass protein increased the equivalent of 13 oxygen atoms. Time-resolved emission spectra analysis of BSA established that Trp residues were oxidized to N'-formylkynurenine, being the solvent-accessible W134 preferentially oxidized by (1)O2 as compared with the buried W213. MS confirmed oxidation of at least two Tyr residues to form dihydroxyphenylalanine, with a global reactivity towards (1)O2 six-times lower than for Trp residues. Despite the lack of MS evidences, kinetic and chemical analysis also suggested that residues other than Trp and Tyr, e.g. Met, must react with (1)O2. Modeling of the 3D-structure of BSA indicated that the oxidation pattern involves a random distribution of (1)O2 into BSA; allowing also the interaction of (1)O2 with buried residues by its diffusion from the bulk solvent through interconnected internal hydrophilic and hydrophobic grooves. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Preliminary study on singlet oxygen production using CeF.sub.3./sub.:Tb.sup.3+./sup.@SiO.sub.2./sub.-PpIX.

    Czech Academy of Sciences Publication Activity Database

    Popovich, K.; Procházková, L.; Pelikánová, I.T.; Vlk, M.; Palkovský, M.; Jarý, Vítězslav; Nikl, Martin; Múčka, V.; Mihóková, Eva; Čuba, V.

    2016-01-01

    Roč. 90, Jul (2016), s. 325-328 ISSN 1350-4487. [International Conference on Luminescent Detectors and Transformers of Ionizing Radiation (LUMDETR). Tartu (Estonsko), 20.09.2015-25.09.2015] R&D Projects: GA ČR GA13-09876S; GA ČR GA13-28721S Institutional support: RVO:68378271 Keywords : singlet oxygen * cerium fluoride * photodynamic therapy * biofunctionalization * scintillator Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.442, year: 2016

  1. Internal-reference solid-electrolyte oxygen sensor

    International Nuclear Information System (INIS)

    Haaland, D.M.

    1977-01-01

    A new solid-electrolyte oxygen sensor has been developed that eliminates the conventional oxygen reference in previous solid-electrolyte oxygen sensor designs and is, therefore, ideally suited as an insertion device for remote oxygen monitoring applications. It is constructed with two cells of stabilized zirconia sealed into a small unit using a new high-temperature platinum-zirconia seal. One electrochemical cell monitors the ratio of oxygen partial pressures inside and outside the sensor while the other solid-electrolyte cell is used for quantitative electrochemical pumping of oxygen. The internal oxygen reference is generated by initially pumping all oxygen out of the known internal volume of the sensor and then quantitatively pumping oxygen back in until oxygen partial pressures are equal inside and out. This information is used with the ideal gas law to calculate oxygen partial pressures. Tests were conducted from 400 to 1000 0 C in mixtures of oxygen and nitrogen spanning approximately 0.2 to 21 percent oxygen concentration range. Sensors with sputtered platinum and porous platinum paste electrodes were compared

  2. Chemical luminescence measurement of singlet oxygen generated by photodynamic therapy in solutions in real time

    Science.gov (United States)

    Luo, Shiming; Xing, Da; Zhou, Jing; Qin, Yanfang; Chen, Qun

    2005-04-01

    Photodynamic therapy (PDT) is a cancer therapy that utilizes optical energy to activate a photosensitizer drug in a target tissue. Reactive oxygen species (ROS), such as 1O2 and superoxide, are believed to be the major cytotoxic agents involved in PDT. Although current PDT dosimetry mostly involves measurements of light and photosensitizer doses delivered to a patient, the quantification of ROS production during a treatment would be the ultimate dosimetry of PDT. Technically, it is very difficult and expensive to directly measure the fluorescence from 1O2, due to its extreme short lifetime and weak signal strength. In this paper, Photofrin(R) and 635nm laser were used to generate 1O2 and superoxide in a PDT in solution. Compound 3,7- dihydro-6-{4-[2-(N"-(5-fluoresceinyl) thioureido) ethoxy] phenyl}-2- methylimidazo{1,2-a} pyrazin-3-one sodium salt,an Cyp- ridina luciferin analog commonly referred as FCLA, was used as a chemical reporter of ROS. The 532nm chemiluminescence (CL) from the reaction of the FCLA and ROS was detected with a photon multiplier tube (PMT) system operating at single photon counting mode. With the setup, we have made detections of ROS generated by PDT in real time. By varying the amount of conventional PDT dosage (photosensitizer concentration, light irradiation fluence and its delivery rate) and the amount of FCLA, the intensity of CL and its consumption rate were investigated. The results show that the intensity and temporal profile of CL are highly related to the PDT treatment parameters. This suggests that FCLA CL may provide a highly potential alternative for ROS detection during PDT.

  3. Singlet oxygen mediated apoptosis by anthrone involving lysosomes and mitochondria at ambient UV exposure

    Energy Technology Data Exchange (ETDEWEB)

    Mujtaba, Syed Faiz [Photobiology Division, (CSIR)-Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh (India); College of Pharmacy, Faculty of Pharmaceutical Sciences, Pt. B.D.S University of Health Sciences, Rohtak, Haryana (India); Dwivedi, Ashish; Yadav, Neera [Photobiology Division, (CSIR)-Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh (India); Ray, R.S., E-mail: ratanray.2011@rediffmail.com [Photobiology Division, (CSIR)-Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh (India); Singh, Gajendra [College of Pharmacy, Faculty of Pharmaceutical Sciences, Pt. B.D.S University of Health Sciences, Rohtak, Haryana (India)

    2013-05-15

    Highlights: ► Photomodification of anthrone at ambient environmental intensities of UV-radiation. ► Phototoxicity of anthrone through type-II photodynamic reaction by generating {sup 1}O{sub 2}. ► Role of DNA damage and lipid peroxidation in anthrone phototoxicity. ► Apototic cell death and involvement of lysosomes and mitochondria. ► Up-regulation of p21 and bax concomitantly down regulation of bcl2 genes expression. -- Abstract: Anthrone a tricyclic aromatic hydrocarbon which is toxic environmental pollutant comes in the environment through photooxidation of anthracene. We have studied the photomodification of anthrone under environmental conditions. Anthrone generates reactive oxygen species (ROS) like {sup 1}O{sub 2} through Type-II photodynamic reaction. Significant intracellular ROS generation was measured through dichlorohydrofluorescein fluorescence intensity. The generation of {sup 1}O{sub 2} was further substantiated by using specific quencher like sodium azide. UV induced photodegradation of 2-deoxyguanosine and photoperoxidation of linoleic acid accorded the involvement of {sup 1}O{sub 2} in the manifestation of anthrone phototoxicity. Phototoxicity of anthrone was done on human keratinocytes (HaCaT) through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and neutral red uptake assays. Anthrone induced cell cycle arrest (G2/M-phase) and DNA damage in a concentration dependent manner. We found apoptosis as a pattern of cell death which was confirmed through sub-G1 fraction, morphological changes, caspase-3 activation, acridine orange/ethidium bromide staining and phosphatidylserine translocation. Mitochondrial depolarization and lysosomal destabilization was parallel to apoptotic process. Our RT-PCR results strongly supports our view point of apoptotic cell death through up-regulation of pro-apoptotic genes p21 and Bax, and down regulation of anti-apoptotic gene Bcl{sub 2}. Therefore, much attention should be paid to concomitant

  4. Experimental and theoretical studies of nuclear generation of ozone and its photolysis into singlet delta oxygen

    International Nuclear Information System (INIS)

    Elsayed-Ali, H.E.

    1985-01-01

    A series of measurements of O 3 yield in nuclear induced O 2 and O 2 -SF 6 discharges created by bombardment with energetic particles from the 10 B(n,α) 7 Li reaction are reported. Continuous irradiation at dose ratios of 10 15 -10 17 eV.cm -3 .s -1 and pulsed irradiation (approx.10 ms FWHM) at a peak dose rate of approx.10 20 eV.cm -3 .s -1 were conducted. At the lower dose rates, SF 6 addition generally increased the ozone yield, which at the high dose rates, SF 6 addition decreased the observed ozone concentration. A numerical model was developed and applied to experimental conditions. The steady-state ozone concentration was found to be limited by the reaction O 3 - + O 3 → 2O 2 + O 2 - . A simplified analytical model of steady-state conditions was used to predict model sensitivity to various parameters. In addition to dose rate effects, pressure and temperature effect on ozone production were discussed. The present study was extended to noble gas (He, Ne, and Ar)-O 2 and noble gas - O 2 -SF 6 mixtures. Without SF 6 , steady-state ozone concentrations were found to be about an order of magnitude lower than that observed for oxygen at similar dose rates. Addition of SF 6 was found to significantly increase the steady-state ozone concentration (3-6 times) in noble gas-O 2 mixtures. The developed models were amended to study noble gas-O 2 discharges. A detailed computer model of ultraviolet irradiation of O 3 -O 2 -noble gas mixtures was presented. Dependence of O 2 (a 1 Δ/sub g/) yield on various parameters was investigated. Conditions needed to create O 2 (a 1 Δ/sub g/) concentrations sufficient for pumping an atomic iodine laser were identified. The model was tested by applying it to date on quantum yield of ozone decomposition for various mixtures and by observation of the absolute O 2 (a 1 Δ/sub g/) concentration generated under various conditions

  5. Mitochondria Targetable Time-Gated Luminescence Probe for Singlet Oxygen Based on a β-Diketonate-Europium Complex.

    Science.gov (United States)

    Sun, Jingyan; Song, Bo; Ye, Zhiqiang; Yuan, Jingli

    2015-12-21

    Singlet oxygen ((1)O2) plays a key role in the photodynamic therapy (PDT) technique of neoplastic diseases. In this work, by using a 9,10-dimethyl-2-anthryl-containing β-diketone, 1,1,1,2,2-pentafluoro-5-(9',10'-dimethyl-2'-anthryl)-3,5-pentanedione (Hpfdap), as a (1)O2-recognition ligand, a novel β-diketonate-europium(III) complex that can act as a luminescence probe for (1)O2, [Eu(pfdap)3(tpy)] (tpy = 2,2',2″-terpyridine), has been designed and synthesized for the time-gated luminescence detection of (1)O2 in living cells. The complex is weakly luminescent due to the quenching effect of 9,10-dimethyl-2-anthryl groups. After reaction with (1)O2, accompanied by the formation of endoperoxides of 9,10-dimethyl-2-anthryl groups, the luminescence quenching disappears, so that the long-lived luminescence of the europium(III) complex is switched on. The complex showed highly selective luminescence response to (1)O2 with a remarkable luminescence enhancement. Combined with the time-gated luminescence imaging technique, the complex was successfully used as a luminescent probe for the monitoring of the time-dependent generation of (1)O2 in 5-aminolevulinic acid (a PDT drug) loaded HepG2 cells during the photodynamic process. In addition, by coloading the complex and a mitochondrial indicator, Mito-Tracker Green, into HepG2 cells, the specific localization of [Eu(pfdap)3(tpy)] molecules in mitochondria of HepG2 cells was demonstrated by confocal fluorescence imaging measurements.

  6. A Possible Role for Singlet Oxygen in the Degradation of Various Antioxidants. A Meta-Analysis and Review of Literature Data

    Directory of Open Access Journals (Sweden)

    Athinoula L. Petrou

    2018-02-01

    Full Text Available The thermodynamic parameters Eact, ΔH≠, ΔS≠, and ΔG≠ for various processes involving antioxidants were calculated using literature kinetic data (k, T. The ΔG≠ values of the antioxidants’ processes vary in the range 91.27–116.46 kJmol−1 at 310 K. The similarity of the ΔG≠ values (for all of the antioxidants studied is supported to be an indication that a common mechanism in the above antioxidant processes may be taking place. A value of about 10–30 kJmol−1 is the activation energy for the diffusion of reactants depending on the reaction and the medium. The energy 92 kJmol−1 is needed for the excitation of O2 from the ground to the first excited state (1Δg, singlet oxygen. We suggest the same role of the oxidative stress and specifically of singlet oxygen to the processes of antioxidants as in the processes of proteinaceous diseases. We therefore suggest a competition between the various antioxidants and the proteins of proteinaceous diseases in capturing singlet oxygen’s empty π* orbital. The concentration of the antioxidants could be a crucial factor for the competition. Also, the structures of the antioxidant molecules play a significant role since the various structures have a different number of regions of high electron density.

  7. A fibre optic oxygen sensor for monitoring of human breathing

    Science.gov (United States)

    Chen, Rongsheng; Farmery, Andrew D.; Chen, Rui; Hahn, Clive E. W.

    2011-11-01

    A reliable and cost effective fibre optic oxygen sensor for monitoring of human breathing has been developed using a normal 200μm silica core/silica cladding optical fibre and a polymer sensing matrix. The fibre optic oxygen sensor is based on the fluorescence quenching of a fluorophore by oxygen. The sensing matrix, containing immobilized Pt(II) complexes, was coated at the end of the silica core/silica cladding optical fibre. The sensitivity and time response of the sensor were evaluated using the method of luminescence lifetime measurement. The polymer substrate influence on the time response of the sensor was improved by using a fibre taper design, and the response time of the optimized sensor was less than 200ms. This silica fibre based optic oxygen sensor is suitable for monitoring of patient breathing in intensive care unit in terms of safety and low cost.

  8. Singlet oxygen generation in O2 flow excited by RF discharge: I. Homogeneous discharge mode: α-mode

    International Nuclear Information System (INIS)

    Braginskiy, O V; Vasilieva, A N; Klopovskiy, K S; Kovalev, A S; Lopaev, D V; Proshina, O V; Rakhimova, T V; Rakhimov, A T

    2005-01-01

    The production and transport dynamics of O 2 (a 1 Δ g ) and O 2 (b 1 Σ g + ) molecules as well as O( 3 P) atoms has been studied in an O 2 flow excited by a 13.56 MHz RF discharge in a quartz tube at pressures of 1-20 Torr. It has been shown that the densities of O 2 (a 1 Δ g ) and O( 3 P) are saturated with increasing energy input into the discharge. The maximum yield of singlet oxygen (SO) and the O 2 dissociation degree drops with pressure. It is demonstrated that depending on the energy input the RF discharge can exist in three modes: I-in the spatially homogeneous mode or α-mode; III-in the substantially inhomogeneous mode, when plasma jets are present outside the discharge; and II-in the transient mode between modes I and III. In this paper only the homogeneous mode of RF discharge in the O 2 flow is considered in detail. A self-consistent model of the α-mode is developed, that allows us to analyse elementary processes responsible for the production and loss of O 2 (a 1 Δ g ) and O 2 (b 1 Σ g + ) molecules as well as O( 3 P) atoms in detail. To verify both the kinetic scheme of the model and the conclusions, some experiments have been carried out at lower flow velocities and higher pressures (≥10 Torr), when the stationary densities of O 2 (a 1 Δ g ), O 2 (b 1 Σ g + ) and O( 3 P) in the discharge area were established not by the escape of particles but by the losses due to the volumetric and surface reactions. The O 2 (b 1 Σ g + ) density under these conditions is determined by the balance of O 2 (b 1 Σ g + ) production by both direct electron impact and electronic excitation transfer from metastable O( 1 D) atoms and deactivation by oxygen atoms and tube walls, including quenching by ozone in the afterglow. The O( 3 P) density is determined by the balance between the production through O 2 dissociation by electron impact and heterogeneous loss at the wall recombination. The stationary density of O 2 (a 1 Δ g ) is provided by the processes of O

  9. Protection by DABCO against inactivation of transforming DNA by near-ultraviolet light: action spectra and implications for involvement of singlet oxygen

    International Nuclear Information System (INIS)

    Peak, J.G.; Peak, M.J.; Foote, C.S.

    1981-01-01

    Diazobicyclo (2.2.2) octane (DABCO) protects the genetic activity of purified transforming Bacillus subtilis DNA against inactivation by near-, but not far-, UV light. The maximum dose-modifying factor is 0.4, at 0.1 M DABCO. Maximal protection is at about 350 nm and no protection occurs below 313 nm. The spectrum for protection is similar to that described for 2-aminoethylisothiouronium bromide hydrobromide. The relevance of these observations with regard to the role of singlet oxygen in near-UV effects is discussed. (author)

  10. Influence of singlet oxygen (1O2) generated by a lipophilic photosensitizer (Pyropheophorbide-a, PPa) on membrane and firing properties of cultured hippocampus neurons

    DEFF Research Database (Denmark)

    Breitenbach, Thomas; Ogilby, Peter Remsen; Lambert, John D. C.

    2008-01-01

    . The spiking pattern was altered significantly, reflected by changes in spike threshold, frequency and tendency for fast APs to be followed by a plateau phase. These effects were correlated with the intensity and/or duration of illumination. Since we have previously documented that the lifetime and diffusion...... range of singlet oxygen are very small, its effects will be restricted. The intra-membrane generated 1O2 alters the composition of the lipid and also proteins or channels. This is reflected both in the immediate response to low irradiation-dose and in formation of long plateaus, which could be caused...

  11. An oxygen pressure sensor using surface acoustic wave devices

    Science.gov (United States)

    Leighty, Bradley D.; Upchurch, Billy T.; Oglesby, Donald M.

    1993-01-01

    Surface acoustic wave (SAW) piezoelectric devices are finding widespread applications in many arenas, particularly in the area of chemical sensing. We have developed an oxygen pressure sensor based on coating a SAW device with an oxygen binding agent which can be tailored to provide variable sensitivity. The coating is prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer which is then sprayed onto the surface of the SAW device. Experimental data shows the feasibility of tailoring sensors to measure the partial pressure of oxygen from 2.6 to 67 KPa (20 to 500 torr). Potential applications of this technology are discussed.

  12. Precision remote sensor for oxygen and carbon dioxide, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Mesa Photonics proposes development of a passive optical sensor for simultaneous high-precision measurement of oxygen and carbon dioxide profiles within the full...

  13. Investigation of the singlet delta oxygen and ozone yields from the pulsed radiolysis of oxygen and oxygen-noble gas mixtures

    International Nuclear Information System (INIS)

    Zediker, M.S.

    1984-01-01

    The experiments discussed herein were performed with a flowing gas apparatus coupled to the University of Illinois TRIGA reactor. The detectors (lambda = 1.27 μ 634 nm) were calibrated with a novel NO 2 titration scheme and the absorbed dose was estimated from the ozone concentrations measured in pure oxygen. The results of these experiments revealed an O 2 (a 1 Δ) production efficiency of 0.14% for direct nuclear pumping in an argon-oxygen mixture. Extensive modeling of the oxygen and argon-oxygen mixtures were benchmarked against these and other experiments. However, good agreement over a broad absorbed dose range was only possible if the O 4 + + O 4 - neutralization reaction was assumed to be nondissociative. In a second set of experiments with a nuclear sustained electrical discharge (low E/N), the O 2 (a 1 Δ) production efficiency was approx.0.40% for the electrical power densities examined. In addition, the O 2 (a 1 Δ) was observed to scale with the square root of the electrical power deposition but was independent of the oxygen concentration. A simple analytic model was developed which explains this behavior as a characteristic of an externally sustained discharge involving an electron attaching gas such as oxygen. The results of these experiments and the modeling of the chemical kinetics are discussed with an emphasis on optimizing the O 2 (a 1 Δ) and O 3 yields

  14. Relationship between symmetry of porphyrinic pi-conjugated systems and singlet oxygen (1Delta g) yields: low-symmetry tetraazaporphyrin derivatives.

    Science.gov (United States)

    Ishii, Kazuyuki; Itoya, Hatsumi; Miwa, Hideya; Fujitsuka, Mamoru; Ito, Osamu; Kobayashi, Nagao

    2005-07-07

    We have investigated the excited-state properties and singlet oxygen ((1)Delta(g)) generation mechanism in phthalocyanines (4M; M = H(2), Mg, or Zn) and in low-symmetry metal-free, magnesium, and zinc tetraazaporphyrins (TAPs), that is, monobenzo-substituted (1M), adjacently dibenzo-substituted (2AdM), oppositely dibenzo-substituted (2OpM), and tribenzo-substituted (3M) TAP derivatives, whose pi conjugated systems were altered by fusing benzo rings. The S(1)(x) and S(1)(y) states (these lowest excited singlet states are degenerate in D(4)(h) symmetry) split in the low-symmetry TAP derivatives. The excited-state energies were quantitatively determined from the electronic absorption spectra. The lowest excited triplet (T(1)(x)) energies were also determined from phosphorescence spectra, while the second lowest excited triplet (T(1)(y)) states were evaluated by using the energy splitting between the T(1)(x) and T(1)(y) states previously reported (Miwa, H.; Ishii, K.; Kobayashi, N. Chem. Eur. J. 2004, 10, 4422-4435). The singlet oxygen quantum yields (Phi(Delta)) are strongly dependent on the pi conjugated system. In particular, while the Phi(Delta) value of 2AdH(2) is smallest in our system, that of 2OpH(2), an isomer of 2AdH(2), is larger than that of 4Zn, in contrast to the heavy atom effect. The relationship between the molecular structure and Phi(Delta) values can be transformed into a relationship between the S(1)(x) --> T(1)(y) intersystem crossing rate constant (k(ISC)) and the energy difference between the S(1)(x) and T(1)(y) states (DeltaE(S)(x)(T)(y)). In each of the Zn, Mg, and metal-free compounds, the Phi(Delta)/tau(F) values (tau(F): fluorescence lifetime), which are related to the k(ISC) values, are proportional to exp(-DeltaE(S)(x)(T)(y)), indicating that singlet oxygen ((1)Delta(g)) is produced via the T(1)(y) state and that the S(1)(x) --> T(1)(y) ISC process follows the energy-gap law. From the viewpoint of photodynamic therapy, our methodology

  15. A fibre-optic oxygen sensor for monitoring human breathing

    International Nuclear Information System (INIS)

    Chen, Rongsheng; Formenti, Federico; Hahn, Clive E W; Farmery, Andrew D; Obeid, Andy

    2013-01-01

    The development and construction of a tapered-tip fibre-optic fluorescence based oxygen sensor is described. The sensor is suitable for fast and real-time monitoring of human breathing. The sensitivity and response time of the oxygen sensor were evaluated in vitro with a gas pressure chamber system, where oxygen partial pressure was rapidly changed between 5 and 15 kPa, and then in vivo in five healthy adult participants who synchronized their breathing to a metronome set at 10, 20, 30, 40, 50, and 60 breaths min –1 . A Datex Ultima medical gas analyser was used to monitor breathing rate as a comparator. The sensor's response time in vitro was less than 150 ms, which allows accurate continuous measurement of inspired and expired oxygen pressure. Measurements of breathing rate by means of our oxygen sensor and of the Datex Ultima were in strong agreement. The results demonstrate that the device can reliably resolve breathing rates up to 60 breaths min –1 , and that it is a suitable cost-effective alternative for monitoring breathing rates and end-tidal oxygen partial pressure in the clinical setting. The rapid response time of the sensor may allow its use for monitoring rapid breathing rates as occur in children and the newborn. (note)

  16. Calibration Of Partial-Pressure-Of-Oxygen Sensors

    Science.gov (United States)

    Yount, David W.; Heronimus, Kevin

    1995-01-01

    Report and analysis of, and discussion of improvements in, procedure for calibrating partial-pressure-of-oxygen sensors to satisfy Spacelab calibration requirements released. Sensors exhibit fast drift, which results in short calibration period not suitable for Spacelab. By assessing complete process of determining total drift range available, calibration procedure modified to eliminate errors and still satisfy requirements without compromising integrity of system.

  17. Thin film devices used as oxygen partial pressure sensors

    Science.gov (United States)

    Canady, K. S.; Wortman, J. J.

    1970-01-01

    Electrical conductivity of zinc oxide films to be used in an oxygen partial pressure sensor is measured as a function of temperature, oxygen partial pressure, and other atmospheric constituents. Time response following partial pressure changes is studied as a function of temperature and environmental changes.

  18. Surface acoustic wave oxygen pressure sensor

    Science.gov (United States)

    Oglesby, Donald M. (Inventor); Upchurch, Billy T. (Inventor); Leighty, Bradley D. (Inventor)

    1994-01-01

    A transducer for the measurement of absolute gas-state oxygen pressure from pressures of less than 100 Pa to atmospheric pressure (1.01 x 10(exp 5) Pa) is based on a standard surface acoustic wave (SAW) device. The piezoelectric material of the SAW device is coated with a compound which will selectively and reversibly bind oxygen. When oxygen is bound by the coating, the mass of the coating increases by an amount equal to the mass of the bound oxygen. Such an increase in the mass of the coating causes a corresponding decrease in the resonant frequency of the SAW device.

  19. Generation of Triplet Excited States via Photoinduced Electron Transfer in meso-anthra-BODIPY: Fluorogenic Response toward Singlet Oxygen in Solution and in Vitro

    KAUST Repository

    Filatov, Mikhail A.; Karuthedath, Safakath; Polestshuk, Pavel M.; Savoie, Huguette; Flanagan, Keith J.; Sy, Cindy; Sitte, Elisabeth; Telitchko, Maxime; Laquai, Fré dé ric; Boyle, Ross W.; Senge, Mathias O.

    2017-01-01

    Heavy atom-free BODIPY-anthracene dyads (BADs) generate locally excited triplet states by way of photoinduced electron transfer (PeT), followed by recombination of the resulting charge-separated states (CSS). Subsequent quenching of the triplet states by molecular oxygen produces singlet oxygen (1O2), which reacts with the anthracene moiety yielding highly fluorescent species. The steric demand of the alkyl substituents in the BODIPY subunit defines the site of 1O2 addition. Novel bis- and tetraepoxides and bicyclic acetal products, arising from rearrangements of anthracene endoperoxides were isolated and characterized. 1O2 generation by BADs in living cells enables visualization of the dyads distribution, promising new imaging applications.

  20. Generation of Triplet Excited States via Photoinduced Electron Transfer in meso-anthra-BODIPY: Fluorogenic Response toward Singlet Oxygen in Solution and in Vitro

    KAUST Repository

    Filatov, Mikhail A.

    2017-04-14

    Heavy atom-free BODIPY-anthracene dyads (BADs) generate locally excited triplet states by way of photoinduced electron transfer (PeT), followed by recombination of the resulting charge-separated states (CSS). Subsequent quenching of the triplet states by molecular oxygen produces singlet oxygen (1O2), which reacts with the anthracene moiety yielding highly fluorescent species. The steric demand of the alkyl substituents in the BODIPY subunit defines the site of 1O2 addition. Novel bis- and tetraepoxides and bicyclic acetal products, arising from rearrangements of anthracene endoperoxides were isolated and characterized. 1O2 generation by BADs in living cells enables visualization of the dyads distribution, promising new imaging applications.

  1. Singlet oxygen and ROS in a new light: low-dose subcellular photodynamic treatment enhances proliferation at the single cell level.

    Science.gov (United States)

    Blázquez-Castro, Alfonso; Breitenbach, Thomas; Ogilby, Peter R

    2014-09-01

    Two-photon excitation of a sensitizer with a focused laser beam was used to create a spatially-localized subcellular population of reactive oxygen species, ROS, in single HeLa cells. The sensitizer used was protoporphyrin IX, PpIX, endogenously derived from 5-aminolevulinic acid delivered to the cells. Although we infer that singlet oxygen, O2(a(1)Δg), is one ROS produced upon irradiation of PpIX under these conditions, it is possible that the superoxide ion, O2(-˙), may also play a role in this system. With a "high" dose of PpIX-sensitized ROS, the expected death of the cell was observed. However, under "low dose" conditions, clear signs of cell proliferation were observed. The present results facilitate studies of ROS-mediated signalling in imaging-based single cell experiments.

  2. Development of oxygen sensors for use in liquid metal

    International Nuclear Information System (INIS)

    Van Nieuwenhove, Rudi; Ejenstam, Jesper; Szakalos, Peter

    2015-01-01

    For generation IV reactor concepts, based on liquid metal cooling, there is a need for robust oxygen sensors which can be used in the core of the reactor since corrosion can only be kept sufficiently low by controlling the dissolved oxygen content in the liquid metal. A robust, ceramic membrane type sensor has been developed at IFE/Halden (Norway) and tested in an autoclave system at KTH (Sweden). The sensor has been tested in lead-bismuth at 550 deg. C and performed well. (authors)

  3. Development of oxygen sensors for use in liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Van Nieuwenhove, Rudi [Institutt for Energiteknikk, Halden, (Norway); Ejenstam, Jesper; Szakalos, Peter [KTH Royal Institute of Technology, Division of Surface and Corrosion Science, Stockholm, (Sweden)

    2015-07-01

    For generation IV reactor concepts, based on liquid metal cooling, there is a need for robust oxygen sensors which can be used in the core of the reactor since corrosion can only be kept sufficiently low by controlling the dissolved oxygen content in the liquid metal. A robust, ceramic membrane type sensor has been developed at IFE/Halden (Norway) and tested in an autoclave system at KTH (Sweden). The sensor has been tested in lead-bismuth at 550 deg. C and performed well. (authors)

  4. Theory and development of fluorescence-based optochemical oxygen sensors: oxygen optodes.

    Science.gov (United States)

    Opitz, N; Lübbers, D W

    1987-01-01

    As the preceding considerations concerning the physical and technical features of oxygen optodes have demonstrated, fluorescence-based optochemical oxygen sensors possess certain advantages and peculiarities compared to conventionally applied electrochemical sensors such as polarographic oxygen electrodes. First, in contrast to oxygen electrodes, oxygen measurements with oxygen optodes do not suffer from distortions caused by the reference electrodes. In addition, because of the polarographic process, platinum electrodes continuously consume oxygen, which falsifies the results, especially when small sample volumes or long-term measurements, or both, are involved, whereas the sensor layer of oxygen optodes must only be equilibrated. Moreover, the surface of the platinum wire has to be catalytically clean in order to obtain a plateau of the polarogram and, consequently, to achieve a low rest current at zero PO2. Unfortunately, the demand for catalytically clean platinum surfaces turns out to be rather critical, since surface contamination occurs even with membranized electrodes, resulting in the well-known phenomenon of "electrode poisoning." The question of the specificity of oxygen electrodes also must be considered. In this context, CO2 and halothane may interfere with oxygen measurements, whereas fluorescence quenching is unaffected by CO2 and halothane affects the measurements only slightly, depending on the special indicator used. Furthermore, because of the flow dependence, oxygen measurements with the oxygen electrode show a distinct "stirring effect" caused by the turbulence in front of the electrode, which disturbs the diffusion field. Because of the completely different physical principle of fluorescence optical sensors, such influences are not observed with oxygen optodes. In addition, isolation and shielding of electrical circuits found in electrodes are not necessary for optodes. Furthermore, the sensitivity of oxygen optodes can be tuned to the desired

  5. Oxygen partial pressure sensor for gases

    International Nuclear Information System (INIS)

    Barbero, J.A.; Azcona, M.A.; Orce, A.

    1997-01-01

    Precise measurement of very low oxygen partial pressure is important in both laboratories and industries. Particularly in nuclear industry, it is relevant in the different steps of the nuclear fuel fabrication. It is presented an instrument which is handy and of easy construction, suitable for the measurement of oxygen partial pressure of gases, in the range of 10 -6 -1 atm. It is based on a solid electrolyte galvanic cell, using Yttria doped zirconia as a ceramic membrane. Through an indirect measurement and calibration, the instrument can be used to measure the content of free oxygen in liquids. It is a import feature in NPP instrumentation. The equipment was calibrated with mixtures of special nonreactive gases. (author). 5 refs

  6. Oxygen partial pressure sensor for gases

    Energy Technology Data Exchange (ETDEWEB)

    Barbero, J.A.; Azcona, M.A.; Orce, A. [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche

    1997-10-01

    Precise measurement of very low oxygen partial pressure is important in both laboratories and industries. Particularly in nuclear industry, it is relevant in the different steps of the nuclear fuel fabrication. It is presented an instrument which is handy and of easy construction, suitable for the measurement of oxygen partial pressure of gases, in the range of 10{sup -6}-1 atm. It is based on a solid electrolyte galvanic cell, using Yttria doped zirconia as a ceramic membrane. Through an indirect measurement and calibration, the instrument can be used to measure the content of free oxygen in liquids. It is a import feature in NPP instrumentation. The equipment was calibrated with mixtures of special nonreactive gases. (author). 5 refs.

  7. Biomedical sensor for transcutaneous oxygen measurements using thick film technology

    OpenAIRE

    Lam, Yu-Zhi (Liza)

    2003-01-01

    The measurement of the partial pressure of oxygen in arterial blood is essential for the analysis of a patient's respiratory condition. There are several commercially available methods and systems to measure this parameter transcutaneously. However, they tend to be cumbersome and costly. To overcome the disadvantages presented, a new type of sensor for transcutaneous blood gas measurement was investigated, employing thick film technology, which is an excellent technique to produce sensors in ...

  8. Modulation of the Singlet Oxygen Generation from the Double Strand DNA-SYBR Green I Complex Mediated by T-Melamine-T Mismatch for Visual Detection of Melamine.

    Science.gov (United States)

    Hu, Hao; Zhang, Jinyi; Ding, Yu; Zhang, Xinfeng; Xu, Kailai; Hou, Xiandeng; Wu, Peng

    2017-05-02

    Singlet oxygen ( 1 O 2 ), generated via photosensitization, has been proved to oxidize chromogenic substrates with neither H 2 O 2 oxidation nor enzyme (horseradish peroxidase, HRP) catalysis. Of the various methods for modulation of the 1 O 2 generation, DNA-controlled photosensitization received great attention. Therefore, integration of the formation/deformation DNA structures with DNA-controlled photosensitization will be extremely appealing in visual biosensor developments. Here, the stable melamine-thymine complex was explored in combination with DNA-controlled photosensitization for visual detection of melamine. A T-rich single stand DNA was utilized as the recognition unit. Upon the formation of the T-M-T complex, double stand DNA was formed, which was ready for the binding of SYBR Green I and activated the photosensitization. Subsequent oxidation of TMB allowed visual detection of melamine in dairy products, with spike-recoveries ranging from 94% to 106%.

  9. An electrochemical sensor for monitoring oxygen or hydrogen in water

    International Nuclear Information System (INIS)

    Leitai Yang; Morris, D.R.; Lister, D.H.

    1997-01-01

    Preliminary studies have been done on a simple electrochemical sensor which shows promise as a cheap, robust instrument for measuring dissolved oxygen or hydrogen in water. The sensor is based upon the solid-state electrolyte ''Nafion'' (trade name of perfluorinated sulphonic acid, manufactured by DuPont Inc.). The Nafion was dissolved in a mixture of aliphatic alcohols, made into a slurry with platinum black, and applied to a ∼1 cm-square electrode made of stainless steel gauze. The potential of the electrode was measured relative to a standard calomel electrode (SCE) in acid solutions at room temperature through which mixtures of oxygen and nitrogen or hydrogen and nitrogen were bubbled. The sensor was responsive to the equilibrating gas with good reproducibility. A similar sensor without the Nafion was not at all sensitive to changes in oxygen concentration. The voltage response of the sensor showed non-Nernstian behaviour, which suggests that the electrochemical reactions at the electrode surface are complex. Further testing of the sensor is required to verify its sensitivity and responsiveness in typical reactor coolant chemistries and to demonstrate its durability over a range of temperatures. (author). 4 refs, 4 figs, 1 tab

  10. An electrochemical sensor for monitoring oxygen or hydrogen in water

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Leitai; Morris, D R; Lister, D H [University of New Brunswick, Fredericton (Canada). Dept. of Chemical Engineering

    1997-02-01

    Preliminary studies have been done on a simple electrochemical sensor which shows promise as a cheap, robust instrument for measuring dissolved oxygen or hydrogen in water. The sensor is based upon the solid-state electrolyte ``Nafion`` (trade name of perfluorinated sulphonic acid, manufactured by DuPont Inc.). The Nafion was dissolved in a mixture of aliphatic alcohols, made into a slurry with platinum black, and applied to a {approx}1 cm-square electrode made of stainless steel gauze. The potential of the electrode was measured relative to a standard calomel electrode (SCE) in acid solutions at room temperature through which mixtures of oxygen and nitrogen or hydrogen and nitrogen were bubbled. The sensor was responsive to the equilibrating gas with good reproducibility. A similar sensor without the Nafion was not at all sensitive to changes in oxygen concentration. The voltage response of the sensor showed non-Nernstian behaviour, which suggests that the electrochemical reactions at the electrode surface are complex. Further testing of the sensor is required to verify its sensitivity and responsiveness in typical reactor coolant chemistries and to demonstrate its durability over a range of temperatures. (author). 4 refs, 4 figs, 1 tab.

  11. C60 and Sc3N@C80(TMB-PPO derivatives as constituents of singlet oxygen generating, thiol-ene polymer nanocomposites

    Directory of Open Access Journals (Sweden)

    Ashli R. Toles

    2016-07-01

    Full Text Available Numerous functionalization methods have been employed to increase the solubility, and therefore, the processability of fullerenes in composite structures, and of these radical addition reactions continue to be an important methodology. C60 and Sc3N@C80 derivatives were prepared via radical addition of the photodecomposition products from the commercial photoinitiator TMB-PPO, yielding C60(TMB-PPO5 and Sc3N@C80(TMB-PPO3 as preferred soluble derivatives obtained in high yields. Characterization of the mixture of isomers using standard techniques suggests an overall 1PPO:6TMB ratio of addends, reflecting the increased reactivity of the carbon radical. Although, a higher percentage of PPO is observed in the Sc3N@C80(TMB-PPO3 population, perhaps due to reverse electronic requirements of the substrate. Visually dispersed thiol-ene nanocomposites with low extractables were prepared using two monomer compositions (PETMP:TTT and TMPMP:TMPDE with increasing fullerene derivative loading to probe network structure-property relationships. Thermal stability of the derivatives and the resulting networks decreased with increased functionality and at high fullerene loadings, respectively. TMPMP:TMPDE composite networks show well-dispersed derivatives via TEM imaging, and increasing Tg’s with fullerene loading, as expected for the incorporation of a more rigid network component. PETMP:TTT composites show phase separation in TEM, which is supported by the observed Tg’s. Singlet oxygen generation of the derivatives decreases with increased functionality; however, this is compensated for by the tremendous increase in solubility in organic solvents and miscibility with monomers. Most importantly, singlet oxygen generation from the composites increased with fullerene derivative loading, with good photostability of the networks.

  12. Dissolved hydrogen and oxygen sensors using semiconductor devices

    International Nuclear Information System (INIS)

    Hara, Nobuyoshi; Sugimoto, Katsuhisa

    1995-01-01

    The concentrations of DH and DO in aqueous solution are the factors that determine the equilibrium potential of hydrogen and oxygen electrode reactions, respectively, and are the quantities which directly related to the rates of hydrogen generation type and oxygen consumption type corrosion reactions, therefore, they have the important meaning in the electrochemistry of corrosion. In the hydrogen injection into BWR cooling water, the concentration of hydrogen must be controlled strictly, accordingly DH and DO sensors and electrochemical potential sensors are required. For the chemical sensors used in reactor cooling water, the perfectly solid state sensors made of high corrosion resistance materials, which are small size and withstand high temperature and high pressure, must be developed. The structure and the characteristics of the semiconductor devices used as gas sensors, and the principles of DH and DO sensors are described. If the idea of porous or discontinuous membrane gate is developed, the ion sensor of solid structure with one-body reference electrode may be made. (K.I.)

  13. Retrievable micro-inserts containing oxygen sensors for monitoring tissue oxygenation using EPR oximetry

    International Nuclear Information System (INIS)

    Dinguizli, M; Beghein, N; Gallez, B

    2008-01-01

    Tissue oxygenation is a crucial parameter in various physiopathological situations and can influence the therapeutic response of tumours. EPR oximetry is a reliable method for assessing and monitoring oxygen levels in vivo over long periods of time. Among the different paramagnetic oxygen sensors available for EPR oximetry, lithium phthalocyanine (LiPc) is a serious candidate for in vivo applications because of its narrow linewidth and its high signal-to-noise ratio. To enhance the biocompatibility of the sensors, fluoropolymer Teflon AF2400 was used to make cylindrical micro-inserts containing LiPc crystals. This new micro-pellet design has several advantages for in vivo studies, including the possibility of being able to choose the implant size, a high sensor content, the facility of in vivo insertion and complete protection with preservation of the oxygen sensor's characteristics. The response to oxygen and the kinetics of this response were tested using in vivo EPR: no differences were observed between micro-inserts and uncoated LiPc crystals. Pellets implanted in vivo in muscles conserved their responsiveness over a long period of time (∼two months), which is much longer than the few days of stability observed using LiPc crystals without protection by the implant. Finally, evaluation of the biocompatibility of the implants revealed no inflammatory reaction around the implantation area

  14. Roles of singlet oxygen and triplet excited state of dissolved organic matter formed by different organic matters in bacteriophage MS2 inactivation

    KAUST Repository

    Rosado-Lausell, Sahid L.; Wang, Hanting; Gutié rrez, Leonardo A.; Romero-Maraccini, Ofelia C.; Niu, Xi-Zhi; Gin, Karina; Croue, Jean-Philippe; Nguyen, Thanh Ha

    2013-01-01

    Inactivation of bacteriophage MS2 by reactive oxygen species (ROS) and triplet excited state of dissolved organic matter (3DOM*) produced by irradiation of natural and synthetic sensitizers with simulated sunlight of wavelengths greater than 320nm was investigated. Natural sensitizers included purified DOM isolates obtained from wastewater and river waters, and water samples collected from Singapore River, Stamford Canal, and Marina Bay Reservoir in Singapore. Linear correlations were found between MS2 inactivation rate constants (kobs) and the photo-induced reaction rate constants of 2,4,6-trimethylphenol (TMP), a probe compound shown to react mainly with 3DOM*. Linear correlations between MS2 kobs and singlet oxygen (1O2) concentrations were also found for both purified DOM isolates and natural water samples. These correlations, along with data from quenching experiments and experiments with synthetic sensitizers, Rose Bengal (RB), 3'-methoxyacetophenone (3'-MAP), and nitrite (NO2-), suggest that 1O2, 3DOM*, and hydroxyl radicals (•OH) could inactivate bacteriophage MS2. Linear correlations between MS2 kobs and Specific Ultraviolet Absorption determined at 254nm (SUVA254) were also found for both purified DOM isolates and natural samples. These results suggest the potential use of TMP as a chemical probe and SUVA254 as an indicator for virus inactivation in natural and purified DOM water samples. © 2013 Elsevier Ltd.

  15. Roles of singlet oxygen and triplet excited state of dissolved organic matter formed by different organic matters in bacteriophage MS2 inactivation

    KAUST Repository

    Rosado-Lausell, Sahid L.

    2013-09-01

    Inactivation of bacteriophage MS2 by reactive oxygen species (ROS) and triplet excited state of dissolved organic matter (3DOM*) produced by irradiation of natural and synthetic sensitizers with simulated sunlight of wavelengths greater than 320nm was investigated. Natural sensitizers included purified DOM isolates obtained from wastewater and river waters, and water samples collected from Singapore River, Stamford Canal, and Marina Bay Reservoir in Singapore. Linear correlations were found between MS2 inactivation rate constants (kobs) and the photo-induced reaction rate constants of 2,4,6-trimethylphenol (TMP), a probe compound shown to react mainly with 3DOM*. Linear correlations between MS2 kobs and singlet oxygen (1O2) concentrations were also found for both purified DOM isolates and natural water samples. These correlations, along with data from quenching experiments and experiments with synthetic sensitizers, Rose Bengal (RB), 3\\'-methoxyacetophenone (3\\'-MAP), and nitrite (NO2-), suggest that 1O2, 3DOM*, and hydroxyl radicals (•OH) could inactivate bacteriophage MS2. Linear correlations between MS2 kobs and Specific Ultraviolet Absorption determined at 254nm (SUVA254) were also found for both purified DOM isolates and natural samples. These results suggest the potential use of TMP as a chemical probe and SUVA254 as an indicator for virus inactivation in natural and purified DOM water samples. © 2013 Elsevier Ltd.

  16. Development of oxygen sensing technology in an irradiated fuel rod. Characteristic test of oxygen sensor

    International Nuclear Information System (INIS)

    Saito, Junichi; Hoshiya, Taiji; Sakurai, Fumio; Sakai, Haruyuki

    1996-03-01

    At the Department of JMTR (Japan Materials Test Reactor), the re-instrumentation technologies to a high burnup fuel rod irradiated in an LWR have been developed to study irradiation behavior of the fuel during power transient. It has been progressed developing a chemical sensor as one of the re-instrumentation technologies. This report summarizes the results of characteristic tests of an oxygen sensor made of Yttria Stabilized Zirconia (YSZ) as a solid electrolyte. Several kinds of experiments were carried out to evaluate the electromotive force (emf) performance, stability and lifetime of the oxygen sensor with Ni/NiO, Cr/Cr 2 O 3 and Fe/FeO, respectively as a reference electrode. From the experimental data, it is suggested that the reference electrode of Ni/NiO reveals the most appropriate characteristic of the sensor to measure the partial oxygen pressure in a fuel rod. It is the final goal of this development to clarify the change of oxygen chemical potential in a fuel rod during power transient. (author)

  17. Interaction of singlet oxygen with bovine serum albumin and the role of the protein nano-compartmentalization

    Czech Academy of Sciences Publication Activity Database

    Gimenez, R.E.; Vargová, Veronika; Rey, V.; Turbay, M.B.E.; Abatedaga, I.; Vieyra, F.E.M.; Zanini, V.I.P.; Ortiz, J.H.M.; Katz, N. E.; Ostatná, Veronika; Borsarelli, C.D.

    2016-01-01

    Roč. 94, MAY2016 (2016), s. 99-109 ISSN 0891-5849 R&D Projects: GA ČR GBP206/12/G151 Institutional support: RVO:68081707 Keywords : oxidative stress * molecular-oxygen * amino - acids Subject RIV: BO - Biophysics Impact factor: 5.606, year: 2016

  18. Improved Internal Reference Oxygen Sensors with Composite Ceramic Electrodes

    DEFF Research Database (Denmark)

    Hu, Qiang; Jacobsen, Torben; Hansen, Karin Vels

    2012-01-01

    Potentiometric oxygen sensors with an internal reference electrode, which uses the equilibrium pO2 of the binary mixture of Ni/NiO as the reference, are demonstrated. The cells employ Pt or composite ceramics as the sensing electrode. The cells are fabricated by a flexible and potentially low cost...... and performance are highly reproducible. The composite ceramics, based on strontium doped manganite and yttria doped zirconia, are proven superior over Pt to serve as the electrode material....

  19. Contact CMOS imaging of gaseous oxygen sensor array.

    Science.gov (United States)

    Daivasagaya, Daisy S; Yao, Lei; Yi Yung, Ka; Hajj-Hassan, Mohamad; Cheung, Maurice C; Chodavarapu, Vamsy P; Bright, Frank V

    2011-10-01

    We describe a compact luminescent gaseous oxygen (O 2 ) sensor microsystem based on the direct integration of sensor elements with a polymeric optical filter and placed on a low power complementary metal-oxide semiconductor (CMOS) imager integrated circuit (IC). The sensor operates on the measurement of excited-state emission intensity of O 2 -sensitive luminophore molecules tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) ([Ru(dpp) 3 ] 2+ ) encapsulated within sol-gel derived xerogel thin films. The polymeric optical filter is made with polydimethylsiloxane (PDMS) that is mixed with a dye (Sudan-II). The PDMS membrane surface is molded to incorporate arrays of trapezoidal microstructures that serve to focus the optical sensor signals on to the imager pixels. The molded PDMS membrane is then attached with the PDMS color filter. The xerogel sensor arrays are contact printed on top of the PDMS trapezoidal lens-like microstructures. The CMOS imager uses a 32 × 32 (1024 elements) array of active pixel sensors and each pixel includes a high-gain phototransistor to convert the detected optical signals into electrical currents. Correlated double sampling circuit, pixel address, digital control and signal integration circuits are also implemented on-chip. The CMOS imager data is read out as a serial coded signal. The CMOS imager consumes a static power of 320 µW and an average dynamic power of 625 µW when operating at 100 Hz sampling frequency and 1.8 V DC. This CMOS sensor system provides a useful platform for the development of miniaturized optical chemical gas sensors.

  20. Monte Carlo modeling of in vivo protoporphyrin IX fluorescence and singlet oxygen production during photodynamic therapy for patients presenting with superficial basal cell carcinomas

    Science.gov (United States)

    Valentine, Ronan M.; Brown, C. Tom A.; Moseley, Harry; Ibbotson, Sally; Wood, Kenny

    2011-04-01

    We present protoporphyrin IX (PpIX) fluorescence measurements acquired from patients presenting with superficial basal cell carcinoma during photodynamic therapy (PDT) treatment, facilitating in vivo photobleaching to be monitored. Monte Carlo (MC) simulations, taking into account photobleaching, are performed on a three-dimensional cube grid, which represents the treatment geometry. Consequently, it is possible to determine the spatial and temporal changes to the origin of collected fluorescence and generated singlet oxygen. From our clinical results, an in vivo photobleaching dose constant, β of 5-aminolaevulinic acid-induced PpIX fluorescence is found to be 14 +/- 1 J/cm2. Results from our MC simulations suggest that an increase from our typical administered treatment light dose of 75-150 J/cm2 could increase the effective PDT treatment initially achieved at a depth of 2.7-3.3 mm in the tumor, respectively. Moreover, this increase reduces the surface PpIX fluorescence from 0.00012 to 0.000003 of the maximum value recorded before treatment. The recommendation of administrating a larger light dose, which advocates an increase in the treatment time after surface PpIX fluorescence has diminished, remains valid for different sets of optical properties and therefore should have a beneficial outcome on the total treatment effect.

  1. Correlation among Singlet-Oxygen Quenching, Free-Radical Scavenging, and Excited-State Intramolecular-Proton-Transfer Activities in Hydroxyflavones, Anthocyanidins, and 1-Hydroxyanthraquinones.

    Science.gov (United States)

    Nagaoka, Shin-Ichi; Bandoh, Yuki; Nagashima, Umpei; Ohara, Keishi

    2017-10-26

    Singlet-oxygen ( 1 O 2 ) quenching, free-radical scavenging, and excited-state intramolecular proton-transfer (ESIPT) activities of hydroxyflavones, anthocyanidins, and 1-hydroxyanthraquinones were studied by means of laser, stopped-flow, and steady-state spectroscopies. In hydroxyflavones and anthocyanidins, the 1 O 2 quenching activity positively correlates to the free-radical scavenging activity. The reason for this correlation can be understood by considering that an early step of each reaction involves electron transfer from the unfused phenyl ring (B-ring), which is singly bonded to the bicyclic chromen or chromenylium moiety (A- and C-rings). Substitution of an electron-donating OH group at B-ring enhances the electron transfer leading to activation of the 1 O 2 quenching and free-radical scavenging. In 3-hydroxyflavones, the OH substitution at B-ring reduces the activity of ESIPT within C-ring, which can be explained in terms of the nodal-plane model. As a result, the 1 O 2 quenching and free-radical scavenging activities negatively correlate to the ESIPT activity. A catechol structure at B-ring is another factor that enhances the free-radical scavenging in hydroxyflavones. In contrast to these hydroxyflavones, 1-hydroxyanthraquinones having an electron-donating OH substituent adjacent to the O-H---O═C moiety susceptible to ESIPT do not show a simple correlation between their 1 O 2 quenching and ESIPT activities, because the OH substitution modulates these reactions.

  2. Ligand-based photooxidations of dithiomaltolato complexes of Ru(II) and Zn(II): photolytic CH activation and evidence of singlet oxygen generation and quenching.

    Science.gov (United States)

    Bruner, Britain; Walker, Malin Backlund; Ghimire, Mukunda M; Zhang, Dong; Selke, Matthias; Klausmeyer, Kevin K; Omary, Mohammad A; Farmer, Patrick J

    2014-08-14

    The complex [Ru(bpy)2(ttma)](+) (bpy = 2,2'-bipyridine; ttma = 3-hydroxy-2-methyl-thiopyran-4-thionate, 1, has previously been shown to undergo an unusual C-H activation of the dithiomaltolato ligand upon outer-sphere oxidation. The reaction generated alcohol and aldehyde products 2 and 3 from C-H oxidation of the pendant methyl group. In this report, we demonstrate that the same products are formed upon photolysis of 1 in presence of mild oxidants such as methyl viologen, [Ru(NH3)6](3+) and [Co(NH3)5Cl](2+), which do not oxidize 1 in the dark. This reactivity is engendered only upon excitation into an absorption band attributed to the ttma ligand. Analogous experiments with the homoleptic Zn(ttma)2, 4, also result in reduction of electron acceptors upon excitation of the ttma absorption band. Complexes 1 and 4 exhibit short-lived visible fluorescence and long-lived near-infrared phosphorescence bands. Singlet oxygen is both generated and quenched during aerobic excitation of 1 or 4, but is not involved in the C-H activation process.

  3. Effects of the cryptochrome CryB from Rhodobacter sphaeroides on global gene expression in the dark or blue light or in the presence of singlet oxygen.

    Directory of Open Access Journals (Sweden)

    Sebastian Frühwirth

    Full Text Available Several regulators are controlling the formation of the photosynthetic apparatus in the facultatively photosynthetic bacterium Rhodobacter sphaeroides. Among the proteins affecting photosynthesis gene expression is the blue light photoreceptor cryptochrome CryB. This study addresses the effect of CryB on global gene expression. The data reveal that CryB does not only influence photosynthesis gene expression but also genes for the non-photosynthetic energy metabolism like citric acid cycle and oxidative phosphorylation. In addition several genes involved in RNA processing and in transcriptional regulation are affected by a cryB deletion. Although CryB was shown to undergo a photocycle it does not only affect gene expression in response to blue light illumination but also in response to singlet oxygen stress conditions. While there is a large overlap in these responses, some CryB-dependent effects are specific for blue-light or photooxidative stress. In addition to protein-coding genes some genes for sRNAs show CryB-dependent expression. These findings give new insight into the function of bacterial cryptochromes and demonstrate for the first time a function in the oxidative stress response.

  4. Singlet molecular oxygen generation by light-activated DHN-melanin of the fungal pathogen Mycosphaerella fijiensis in black Sigatoka disease of bananas.

    Directory of Open Access Journals (Sweden)

    Miguel J Beltrán-García

    Full Text Available In pathogenic fungi, melanin contributes to virulence, allowing tissue invasion and inactivation of the plant defence system, but has never been implicated as a factor for host cell death, or as a light-activated phytotoxin. Our research shows that melanin synthesized by the fungal banana pathogen Mycosphaerella fijiensis acts as a virulence factor through the photogeneration of singlet molecular oxygen O2 (1Δg. Using analytical tools, including elemental analysis, ultraviolet/infrared absorption spectrophometry and MALDI-TOF mass spectrometry analysis, we characterized both pigment content in mycelia and secreted to the culture media as 1,8-dihydroxynaphthalene (DHN-melanin type compound. This is sole melanin-type in M. fijiensis. Isolated melanins irradiated with a Nd:YAG laser at 532 nm produced monomol light emission at 1270 nm, confirming generation of O2 (1Δg, a highly reactive oxygen specie (ROS that causes cellular death by reacting with all cellular macromolecules. Intermediary polyketides accumulated in culture media by using tricyclazole and pyroquilon (two inhibitors of DHN-melanin synthesis were identified by ESI-HPLC-MS/MS. Additionally, irradiation at 532 nm of that mixture of compounds and whole melanized mycelium also generated O2 (1Δg. A pigmented-strain generated more O2 (1Δg than a strain with low melanin content. Banana leaves of cultivar Cavendish, naturally infected with different stages of black Sigatoka disease, were collected from field. Direct staining of the naturally infected leaf tissues showed the presence of melanin that was positively correlated to the disease stage. We also found hydrogen peroxide (H2O2 but we cannot distinguish the source. Our results suggest that O2 (1Δg photogenerated by DHN-melanin may be involved in the destructive effects of Mycosphaerella fijiensis on banana leaf tissues. Further studies are needed to fully evaluate contributions of melanin-mediated ROS to microbial pathogenesis.

  5. Singlet molecular oxygen generation by light-activated DHN-melanin of the fungal pathogen Mycosphaerella fijiensis in black Sigatoka disease of bananas.

    Science.gov (United States)

    Beltrán-García, Miguel J; Prado, Fernanda M; Oliveira, Marilene S; Ortiz-Mendoza, David; Scalfo, Alexsandra C; Pessoa, Adalberto; Medeiros, Marisa H G; White, James F; Di Mascio, Paolo

    2014-01-01

    In pathogenic fungi, melanin contributes to virulence, allowing tissue invasion and inactivation of the plant defence system, but has never been implicated as a factor for host cell death, or as a light-activated phytotoxin. Our research shows that melanin synthesized by the fungal banana pathogen Mycosphaerella fijiensis acts as a virulence factor through the photogeneration of singlet molecular oxygen O2 (1Δg). Using analytical tools, including elemental analysis, ultraviolet/infrared absorption spectrophometry and MALDI-TOF mass spectrometry analysis, we characterized both pigment content in mycelia and secreted to the culture media as 1,8-dihydroxynaphthalene (DHN)-melanin type compound. This is sole melanin-type in M. fijiensis. Isolated melanins irradiated with a Nd:YAG laser at 532 nm produced monomol light emission at 1270 nm, confirming generation of O2 (1Δg), a highly reactive oxygen specie (ROS) that causes cellular death by reacting with all cellular macromolecules. Intermediary polyketides accumulated in culture media by using tricyclazole and pyroquilon (two inhibitors of DHN-melanin synthesis) were identified by ESI-HPLC-MS/MS. Additionally, irradiation at 532 nm of that mixture of compounds and whole melanized mycelium also generated O2 (1Δg). A pigmented-strain generated more O2 (1Δg) than a strain with low melanin content. Banana leaves of cultivar Cavendish, naturally infected with different stages of black Sigatoka disease, were collected from field. Direct staining of the naturally infected leaf tissues showed the presence of melanin that was positively correlated to the disease stage. We also found hydrogen peroxide (H2O2) but we cannot distinguish the source. Our results suggest that O2 (1Δg) photogenerated by DHN-melanin may be involved in the destructive effects of Mycosphaerella fijiensis on banana leaf tissues. Further studies are needed to fully evaluate contributions of melanin-mediated ROS to microbial pathogenesis.

  6. Improved Internal Reference Oxygen Sensors Using Composite Oxides as Electrodes

    DEFF Research Database (Denmark)

    Hu, Qiang

    The thesis describes the research on and development of an internal reference oxygen sensor (IROS). The IROS is potentiometric and uses the equilibrium pO2of the binary mixture of Ni/NiO as the reference pO2. The sensing electrode of the IROS are made from metallic Pt or the composite of (La0.75S...... the application of IROSes are provided. Based on the concepts and fundamentals of the IROS, internal reference sensors that detect other gas species such as hydrogen, chlorine and bromine may be developed.......The thesis describes the research on and development of an internal reference oxygen sensor (IROS). The IROS is potentiometric and uses the equilibrium pO2of the binary mixture of Ni/NiO as the reference pO2. The sensing electrode of the IROS are made from metallic Pt or the composite of (La0.75Sr0...... from 8YSZ is evaluated quantitatively and figures that may be used to design the depletion period of an IROS due to the electronic leak of 8YSZ are provided. One dimensional numerical simulations are performed to study the variation in cell voltage during the process of gas mixing, and the asymmetric...

  7. Singlet oxygen sensitizing materials based on porous silicone: photochemical characterization, effect of dye reloading and application to water disinfection with solar reactors.

    Science.gov (United States)

    Manjón, Francisco; Santana-Magaña, Montserrat; García-Fresnadillo, David; Orellana, Guillermo

    2010-06-01

    Photogeneration of singlet molecular oxygen ((1)O(2)) is applied to organic synthesis (photooxidations), atmosphere/water treatment (disinfection), antibiofouling materials and in photodynamic therapy of cancer. In this paper, (1)O(2) photosensitizing materials containing the dyes tris(4,4'-diphenyl-2,2'-bipyridine)ruthenium(II) (1, RDB(2+)) or tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) (2, RDP(2+)), immobilized on porous silicone (abbreviated RDB/pSil and RDP/pSil), have been produced and tested for waterborne Enterococcus faecalis inactivation using a laboratory solar simulator and a compound parabolic collector (CPC)-based solar photoreactor. In order to investigate the feasibility of its reuse, the sunlight-exposed RDP/pSil sensitizing material (RDP/pSil-a) has been reloaded with RDP(2+) (RDP/pSil-r). Surprisingly, results for bacteria inactivation with the reloaded material have demonstrated a 4-fold higher efficiency compared to those of either RDP/pSil-a, unused RDB/pSil and the original RDP/pSil. Surface and bulk photochemical characterization of the new material (RDP/pSil-r) has shown that the bactericidal efficiency enhancement is due to aggregation of the silicone-supported photosensitizer on the surface of the polymer, as evidenced by confocal fluorescence lifetime imaging microscopy (FLIM). Photogenerated (1)O(2) lifetimes in the wet sensitizer-doped silicone have been determined to be ten times longer than in water. These facts, together with the water rheology in the solar reactor and the interfacial production of the biocidal species, account for the more effective disinfection observed with the reloaded photosensitizing material. These results extend and improve the operational lifetime of photocatalytic materials for point-of-use (1)O(2)-mediated solar water disinfection.

  8. Measuring a 10,000-fold enhancement of singlet molecular oxygen (1O2*) concentration on illuminated ice relative to the corresponding liquid solution

    Science.gov (United States)

    Bower, Jonathan P.; Anastasio, Cort

    2013-08-01

    Much attention has focused on the highly reactive hydroxyl radical in the oxidation of trace organic compounds on snow and ice (and subsequent release of volatile organics to the atmospheric boundary layer) but other oxidants are likely also important in this processing. Here we examine the ice chemistry of singlet molecular oxygen (1O2*), which can be significant in atmospheric water drops but has not been examined in ice or snow. To examine 1O2* on ice we illuminate laboratory ices containing Rose Bengal (RB) as the source of 1O2*, furfuryl alcohol (FFA) as the probe, and Na2SO4 to control the total solute concentration. We find that the 1O2*-mediated loss of FFA (and, thus, the 1O2* concentration) is up to 11,000 times greater on ice than in the equivalent liquid sample at the same photon flux. We attribute this large increase in the 1O2* steady-state concentration to the freeze-concentration of solutes into liquid-like regions (LLRs) in/on ice: compared to the initial solution, in the LLRs of ice the sources for 1O2* are highly concentrated, while the concentration of the dominant sink for 1O2* (i.e., water) remains largely unchanged. Similar to results expected in liquid solution, rates of FFA loss in ice depend on both the initial sensitizer concentration and temperature, providing evidence that these reactions occur in LLRs. However, we find that the enhancement in 1O2* concentrations on ice does not follow predictions from freezing-point depression, likely because experiments were conducted below the eutectic temperature for sodium sulfate, where all of the salt should have precipitated. We also explore a method for separating 1O2* and rad OH contributions to FFA oxidation in laboratory ices and show its application to two natural snow samples. We find that 1O2* concentrations in these snows are approximately 100 times higher than observed in polluted, mid-latitude fog waters, showing that the enhancement of 1O2* on ice is environmentally relevant and that

  9. About Error in Measuring Oxygen Concentration by Solid-Electrolyte Sensors

    Directory of Open Access Journals (Sweden)

    V. I. Nazarov

    2008-01-01

    Full Text Available The paper evaluates additional errors while measuring oxygen concentration in a gas mixture by a solid-electrolyte cell. Experimental dependences of additional errors caused by changes in temperature in a sensor zone, discharge of gas mixture supplied to a sensor zone, partial pressure in the gas mixture and fluctuations in oxygen concentrations in the air.

  10. Online analysis of oxygen inside silicon-glass microreactors with integrated optical sensors

    DEFF Research Database (Denmark)

    Ehgartner, Josef; Sulzer, Philipp; Burger, Tobias

    2016-01-01

    A powerful online analysis set-up for oxygen measurements within microfluidic devices is presented. It features integration of optical oxygen sensors into microreactors, which enables contactless, accurate and inexpensive readout using commercially available oxygen meters via luminescent lifetime...... monitoring of enzyme transformations, including d-alanine or d-phenylalanine oxidation by d-amino acid oxidase, and glucose oxidation by glucose oxidase....

  11. Oxygen sensor development and low temperature corrosion study in lead-alloy coolant loop

    International Nuclear Information System (INIS)

    Hwang, Il Soon; Bahn, Chi Bum; Lee, Seung Gi; Jeong, Seung Ho; Nam, Hyo On; Lim, Jun

    2007-07-01

    Oxygen sensor to measure dissolved oxygen concentration at liquid lead-bismuth eutectic environments have been developed. Developed oxygen sensor for application in lead-bismuth eutectic (LBE) system was based on the oxygen ion conductor made of YSZ ceramic having Bi/Bi2O3 reference joined by electro-magnetic swaging. Leakage problem, which was major problem of existing sensors, can be solved by using electro-magnetic swaging method. A new calibration strategy combining the oxygen titration with electrochemical impedance spectroscopy (EIS) was performed to increase the reliability of sensor. Another calibration was also conducted by controlling the oxygen concentration using OCS (oxygen control system). Materials corrosion tests of various metals (SS316, EP823, T91 and HT9) were conducted for up to 1,000 hours with specimen inspection after every 333hours at 450 .deg. C in HELIOS. Oxygen concentration was controlled at 10 -6 wt% by using the direct gas bubbling of Ar+4%H 2 , Ar+5%O 2 and pure Ar. The dissolved oxygen concentration in LBE was also monitored by two calibrated YSZ oxygen sensors located at different places under different temperatures within HELIOS. It shows a good performance during 1000 hours. Liquid metal embrittlement (LME) test of SS316L specimen in the LBE was performed at various temperature and strain rate. The result shows that the liquid metal embrittlement effect is not crucial at tested conditions

  12. Oxygen sensors for Heavy Liquid Metal coolants: Calibration and assessment of the minimum reading temperature

    Energy Technology Data Exchange (ETDEWEB)

    Bassini, S., E-mail: serena.bassini@enea.it; Antonelli, A.; Di Piazza, I.; Tarantino, M.

    2017-04-01

    Oxygen sensors for Heavy Liquid Metals (HLMs) such as lead and LBE (lead-bismuth eutectic) will be essential devices in future Lead Fast Reactor (LFR) and Accelerator Driven System (ADS). Potentiometric sensors based on solid electrolytes were developed in recent years to this purpose. Internal reference electrodes such as Pt-air and Bi/Bi{sub 2}O{sub 3} liquid metal/metal-oxide are among the most used but they both have a weak point: Pt-air sensor has a high minimum reading temperature around 400 °C whereas Bi/Bi{sub 2}O{sub 3} suffers from internal stresses induced by Bi volume variations with temperature, which may lead to the sensor failure in the long-term. The present work describes the performance of standard Pt-air and Bi/Bi{sub 2}O{sub 3} sensors and compares them with recent Cu/Cu{sub 2}O sensor. Sensors with Yttria Partially Stabilized Zirconia (YPSZ) electrolyte were calibrated in oxygen-saturated HLM between 160 and 550 °C and the electric potential compared to the theoretical one to define the accuracy and the minimum reading temperature. Standard Pt-air sensor were also tested using Yttria Totally Stabilized Zirconia (YTSZ) to assess the effect of a different electrolyte on the minimum reading temperature. The performance of Pt-air and Cu/Cu{sub 2}O sensors with YPSZ electrolyte were then tested together in low-oxygen HLM between 200 and 450 °C. The results showed that Pt-air, Bi/Bi{sub 2}O{sub 3} and Cu/Cu{sub 2}O sensors with YPSZ measured oxygen in HLMs down to 400 °C, 290 °C and 200 °C respectively. When the YTSZ electrolyte was used in place of the YPSZ, the Pt-air sensor measured correctly down to at least 350 °C thanks to the superior ionic conductivity of the YTSZ. When Cu/Cu{sub 2}O and Pt-air sensors were tested together in the same low-oxygen HLM between 200 and 450 °C, Cu/Cu{sub 2}O sensor worked predictably in the whole temperature range whereas Pt-air sensor exhibited a correct output only above 400 °C. - Highlights: •Oxygen

  13. A prototype of an electric-discharge gas flow oxygen−iodine laser: I. Modeling of the processes of singlet oxygen generation in a transverse cryogenic slab RF discharge

    International Nuclear Information System (INIS)

    Vagin, N. P.; Ionin, A. A.; Kochetov, I. V.; Napartovich, A. P.; Sinitsyn, D. V.; Yuryshev, N. N.

    2017-01-01

    The existing kinetic model describing self-sustained and electroionization discharges in mixtures enriched with singlet oxygen has been modified to calculate the characteristics of a flow RF discharge in molecular oxygen and its mixtures with helium. The simulations were performed in the gas plug-flow approximation, i.e., the evolution of the plasma components during their motion along the channel was represented as their evolution in time. The calculations were carried out for the O 2 : He = 1: 0, 1: 1, 1: 2, and 1: 3 mixtures at an oxygen partial pressure of 7.5 Torr. It is shown that, under these conditions, volumetric gas heating in a discharge in pure molecular oxygen prevails over gas cooling via heat conduction even at an electrode temperature as low as ~100 K. When molecular oxygen is diluted with helium, the behavior of the gas temperature changes substantially: heat removal begins to prevail over volumetric gas heating, and the gas temperature at the outlet of the discharge zone drops to ~220–230 K at room gas temperature at the inlet, which is very important in the context of achieving the generation threshold in an electric-discharge oxygen−iodine laser based on a slab cryogenic RF discharge.

  14. A prototype of an electric-discharge gas flow oxygen−iodine laser: I. Modeling of the processes of singlet oxygen generation in a transverse cryogenic slab RF discharge

    Energy Technology Data Exchange (ETDEWEB)

    Vagin, N. P.; Ionin, A. A., E-mail: aion@sci.lebedev.ru; Kochetov, I. V.; Napartovich, A. P.; Sinitsyn, D. V., E-mail: dsinit@sci.lebedev.ru; Yuryshev, N. N. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-03-15

    The existing kinetic model describing self-sustained and electroionization discharges in mixtures enriched with singlet oxygen has been modified to calculate the characteristics of a flow RF discharge in molecular oxygen and its mixtures with helium. The simulations were performed in the gas plug-flow approximation, i.e., the evolution of the plasma components during their motion along the channel was represented as their evolution in time. The calculations were carried out for the O{sub 2}: He = 1: 0, 1: 1, 1: 2, and 1: 3 mixtures at an oxygen partial pressure of 7.5 Torr. It is shown that, under these conditions, volumetric gas heating in a discharge in pure molecular oxygen prevails over gas cooling via heat conduction even at an electrode temperature as low as ~100 K. When molecular oxygen is diluted with helium, the behavior of the gas temperature changes substantially: heat removal begins to prevail over volumetric gas heating, and the gas temperature at the outlet of the discharge zone drops to ~220–230 K at room gas temperature at the inlet, which is very important in the context of achieving the generation threshold in an electric-discharge oxygen−iodine laser based on a slab cryogenic RF discharge.

  15. Characterization and re-activation of oxygen sensors for use in liquid lead-bismuth

    International Nuclear Information System (INIS)

    Kurata, Yuji; Abe, Yuji; Futakawa, Masatoshi; Oigawa, Hiroyuki

    2010-01-01

    Control of oxygen concentration in liquid lead-bismuth is one of the most important tasks to develop accelerator driven systems. In order to improve the reliability of oxygen sensors, re-activation treatments were investigated as well as characterization of oxygen sensors for use in liquid lead-bismuth. The oxygen sensor with a solid electrolyte of yttria-stabilized zirconia and a Pt/gas reference electrode showed almost the same electromotive force values in gas and liquid lead-bismuth, respectively, as the theoretical ones at temperatures above 400 deg. C or 450 deg. C. After long-term use of 6500 h, the outputs of the sensor became incorrect in liquid lead-bismuth. The state of the sensor that indicated incorrect outputs could not be recovered by cleaning with a nitric acid. However, it was found that the oxygen sensor became a correct sensor indicating theoretical values in liquid lead-bismuth after re-activation by the Pt-treatment of the outer surface of the sensor.

  16. Investigations of a zirconia solid electrolyte oxygen sensor in liquid lead

    Energy Technology Data Exchange (ETDEWEB)

    Rivai, Abu Khalid, E-mail: rivai.abukhalid@jaea.go.j [Department of Nuclear Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, N1-18, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Takahashi, Minoru, E-mail: mtakahas@nr.titech.ac.j [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, N1-18, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2010-03-15

    Investigations of a magnesia-stabilized zirconia solid electrolyte oxygen sensor for oxygen control measurement in liquid lead were carried out. The fluid of Bi/Bi{sub 2}O{sub 3} as a reference electrode and a molybdenum wire as a working electrode to detect the output signal of the sensor were used. The Nernst equation was used to estimate the electromotive force (EMF) values theoretically. The temperatures of liquid lead were 500, 550 and 600 deg. C. The results showed that the injection gas temperatures did not affect the detected EMF, the sensor responded well to quick changes of oxygen activity in liquid lead, and the discrepancy between the measured and theoretical EMF of the oxygen sensor output signal was higher at 500 deg. C than at 550 and 600 deg. C.

  17. Optical Sensors for Hydrogen and Oxygen for Unambiguous Detection in Their Mutual Presence, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Phase I SBIR project is to develop sensors that can discriminate the presence of combustible gases like oxygen (O2) in hydrogen (H2) or H2 in O2...

  18. Oxygen optodes as fast sensors for eddy correlation measurements in aquatic systems

    DEFF Research Database (Denmark)

    Chipman, Lindsay; Huettel, Markus; Berg, Peter

    2012-01-01

    The aquatic eddy-correlation technique can be used to noninvasively determine the oxygen exchange across the sediment-water interface by analyzing the covariance of vertical flow velocity and oxygen concentration in a small measuring volume above the sea bed. The method requires fast sensors...... that combine the advantages of noninvasive measurements and integration of fluxes over a large footprint area, using a relatively rugged and less expensive sensor....

  19. Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, H. [PBI-Dansensor A/S (Denmark); Toft Soerensen, O. [Risoe National Lab., Materials Research Dept. (Denmark)

    1999-10-01

    A new type of ceramic oxygen sensors based on semiconducting oxides was developed in this project. The advantage of these sensors compared to standard ZrO{sub 2} sensors is that they do not require a reference gas and that they can be produced in small sizes. The sensor design and the techniques developed for production of these sensors are judged suitable by the participating industry for a niche production of a new generation of oxygen sensors. Materials research on new oxygen ion conducting conductors both for applications in oxygen sensors and in fuel was also performed in this project and finally a new process was developed for fabrication of ceramic tubes by dip-coating. (EHS)

  20. Effect of Humid Aging on the Oxygen Adsorption in SnO₂ Gas Sensors.

    Science.gov (United States)

    Suematsu, Koichi; Ma, Nan; Watanabe, Ken; Yuasa, Masayoshi; Kida, Tetsuya; Shimanoe, Kengo

    2018-01-16

    To investigate the effect of aging at 580 °C in wet air (humid aging) on the oxygen adsorption on the surface of SnO₂ particles, the electric properties and the sensor response to hydrogen in dry and humid atmospheres for SnO₂ resistive-type gas sensors were evaluated. The electric resistance in dry and wet atmospheres at 350 °C was strongly increased by humid aging. From the results of oxygen partial pressure dependence of the electric resistance, the oxygen adsorption equilibrium constants ( K ₁; for O - adsorption, K ₂; for O 2- adsorption) were estimated on the basis of the theoretical model of oxygen adsorption. The K ₁ and K ₂ in dry and wet atmospheres at 350 °C were increased by humid aging at 580 °C, indicating an increase in the adsorption amount of both O - and O 2- . These results suggest that hydroxyl poisoning on the oxygen adsorption is suppressed by humid aging. The sensor response to hydrogen in dry and wet atmosphere at 350 °C was clearly improved by humid aging. Such an improvement of the sensor response seems to be caused by increasing the oxygen adsorption amount. Thus, the humid aging offers an effective way to improve the sensor response of SnO₂ resistive-type gas sensors in dry and wet atmospheres.

  1. Effect of Humid Aging on the Oxygen Adsorption in SnO2 Gas Sensors

    Directory of Open Access Journals (Sweden)

    Koichi Suematsu

    2018-01-01

    Full Text Available To investigate the effect of aging at 580 °C in wet air (humid aging on the oxygen adsorption on the surface of SnO2 particles, the electric properties and the sensor response to hydrogen in dry and humid atmospheres for SnO2 resistive-type gas sensors were evaluated. The electric resistance in dry and wet atmospheres at 350 °C was strongly increased by humid aging. From the results of oxygen partial pressure dependence of the electric resistance, the oxygen adsorption equilibrium constants (K1; for O− adsorption, K2; for O2− adsorption were estimated on the basis of the theoretical model of oxygen adsorption. The K1 and K2 in dry and wet atmospheres at 350 °C were increased by humid aging at 580 °C, indicating an increase in the adsorption amount of both O− and O2−. These results suggest that hydroxyl poisoning on the oxygen adsorption is suppressed by humid aging. The sensor response to hydrogen in dry and wet atmosphere at 350 °C was clearly improved by humid aging. Such an improvement of the sensor response seems to be caused by increasing the oxygen adsorption amount. Thus, the humid aging offers an effective way to improve the sensor response of SnO2 resistive-type gas sensors in dry and wet atmospheres.

  2. Calibration and testing of a polarographic sensor for the measurement of oxygen in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Boniforti, R; Dell' Amico, F; Marri, P

    1987-04-01

    The procedures for the calibration and testing of a polarographic oxygen sensor, mounted on a CTD probe, are reported. As an example of in-field use, oxygen and temperature profiles obtained in Fossa del Pomo (Central Adriatic Sea), are given.

  3. Development status of oxygen solid electrolyte sensors in HLMC in respect to monoblock reactor facilities

    International Nuclear Information System (INIS)

    Martynov, P.N.; Askhadullin, R.Sh.; Storozhenko, A.N.; Shelemet'ev, V.M.; Sadovnichij, R.P.; Ivanov, I.I.

    2014-01-01

    The results of developing sensors on the base of solid electrolytes to control oxygen in lead and lead-bismuth coolants are considered. It is found out that ceramic detecting elements on the base of solid electrolytes from oxide ceramics are able to work a long time in conditions of high temperatures and thermal shocks in molten metals (in gases). They show stable conducting and mechanical properties, thermal resistance, low gas permeability. Using considered detecting elements different sensors, including ones for monoblock reactors and facilities, are developed and manufactured. The given sensors can be used for both continuous and periodical oxygen control in heavy liquid metal coolants [ru

  4. A new immersion sensor for rapid electrochemical determination of dissolved oxygen in liquid metals

    International Nuclear Information System (INIS)

    Janke, D.; Schwerdtfeger, K.

    1978-01-01

    Development of a new solid electrolyte 'needle sensor' with ZrO 2 or ThO 2 electrolyte and metal-metal oxide reference mixture for the rapid determination of oxygen in steel melts. Details of the manufacture of the layer-structured, miniaturized probe. Test results of simultaneous measurements performed with the newly developed ZrO 2 needle sensor and the hitherto usual tubular sensor in iron melts at oxygen activities between 0.00005 and 0.030. (orig.) [de

  5. Oxygen Optode Sensors: Principle, Characterization, Calibration, and Application in the Ocean

    Directory of Open Access Journals (Sweden)

    Henry C. Bittig

    2018-01-01

    Full Text Available Recently, measurements of oxygen concentration in the ocean—one of the most classical parameters in chemical oceanography—are experiencing a revival. This is not surprising, given the key role of oxygen for assessing the status of the marine carbon cycle and feeling the pulse of the biological pump. The revival, however, has to a large extent been driven by the availability of robust optical oxygen sensors and their painstakingly thorough characterization. For autonomous observations, oxygen optodes are the sensors of choice: They are used abundantly on Biogeochemical-Argo floats, gliders and other autonomous oceanographic observation platforms. Still, data quality and accuracy are often suboptimal, in some part because sensor and data treatment are not always straightforward and/or sensor characteristics are not adequately taken into account. Here, we want to summarize the current knowledge about oxygen optodes, their working principle as well as their behavior with respect to oxygen, temperature, hydrostatic pressure, and response time. The focus will lie on the most widely used and accepted optodes made by Aanderaa and Sea-Bird. We revisit the essentials and caveats of in-situ in air calibration as well as of time response correction for profiling applications, and provide requirements for a successful field deployment. In addition, all required steps to post-correct oxygen optode data will be discussed. We hope this summary will serve as a comprehensive, yet concise reference to help people get started with oxygen observations, ensure successful sensor deployments and acquisition of highest quality data, and facilitate post-treatment of oxygen data. In the end, we hope that this will lead to more and higher-quality oxygen observations and help to advance our understanding of ocean biogeochemistry in a changing ocean.

  6. A plastic optical fiber sensor for the dual sensing of temperature and oxygen

    Science.gov (United States)

    Lo, Yu-Lung; Chu, Chen-Shane

    2008-04-01

    This study presents a low-cost plastic optical fiber sensor for the dual sensing of temperature and oxygen. The sensor features a commercially available epoxy glue coated on the side-polished fiber surface for temperature sensing and a fluorinated xerogel doped with platinum tetrakis pentrafluoropheny porphine (PtTFPP) coated on the fiber end for oxygen sensing. The temperature and oxygen indicators are both excited using a UV LED light source with a wavelength of 380 nm. The luminescence emission spectra of the two indicators are well resolved and exhibit no cross-talk effects. Overall, the results indicate that the dual sensor presented in this study provides an ideal solution for the non-contact, simultaneous sensing of temperature and oxygen in general biological and medical applications.

  7. Effects of palladium coatings on oxygen sensors of titanium dioxide thin films

    International Nuclear Information System (INIS)

    Castaneda, L.

    2007-01-01

    Titanium dioxide (TiO 2 -anatase phase) thin films were deposited by the ultrasonic spray pyrolysis technique employing titanium (IV) oxide acetylacetonate (TiO(acac) 2 ) dissolved in pure methanol as a source material. In order to prepare oxygen sensors, TiO 2 thin films were deposited on interdigitated gold electrodes with contacted alumina substrates. Palladium (Pd) coatings were carried out by vacuum thermal evaporation through a metallic mask. The effect of the surface additive (Pd) on the response of the thin film TiO 2 oxygen sensors was monitored in a mixture with zero-grade air. The electrical characterization (monitoring of the electrical surface resistance with the operation temperature) of the sensors in an atmosphere of oxygen (diluted in zero-grade air) was performed in a vacuum chamber (10 -6 Torr), where the gas pressure can be controlled. The films sensitivity was estimated by the following relation: s=R gas -R 0 /R 0 . The response time of the sensor is defined to be the time needed to reach a 0.9R 0 value when the oxygen excess is removed. The gas-sensing properties of TiO 2 sensors in an atmosphere of 10 4 ppm of oxygen were measured between 100 and 450 deg. C. Experimental results obtained using palladium as a surface additive show that the sensitivity reaches a stationary value of 1.18 for O 2 concentration of 100ppm in zero-grade air at 300 deg. C, which is as high as those reported for oxygen sensors prepared with more expensive and complex techniques. The role and activity of palladium coatings incorporated on solid-state oxygen sensors are determined by their chemical state, aggregation form and interaction with the metal-oxide semiconductor

  8. Pericellular oxygen monitoring with integrated sensor chips for reproducible cell culture experiments.

    Science.gov (United States)

    Kieninger, J; Aravindalochanan, K; Sandvik, J A; Pettersen, E O; Urban, G A

    2014-04-01

    Here we present an application, in two tumour cell lines, based on the Sensing Cell Culture Flask system as a cell culture monitoring tool for pericellular oxygen sensing. T-47D (human breast cancer) and T98G (human brain cancer) cells were cultured either in atmospheric air or in a glove-box set at 4% oxygen, in both cases with 5% CO2 in the gas phase. Pericellular oxygen tension was measured with the help of an integrated sensor chip comprising oxygen sensor arrays. Obtained results illustrate variation of pericellular oxygen tension in attached cells covered by stagnant medium. Independent of incubation conditions, low pericellular oxygen concentration levels, usually associated with hypoxia, were found in dense cell cultures. Respiration alone brought pericellular oxygen concentration down to levels which could activate hypoxia-sensing regulatory processes in cultures believed to be aerobic. Cells in culture believed to experience conditions of mild hypoxia may, in reality, experience severe hypoxia. This would lead to incorrect assumptions and suggests that pericellular oxygen concentration readings are of great importance to obtain reproducible results when dealing with hypoxic and normoxic (aerobic) incubation conditions. The Sensing Cell Culture Flask system allows continuous monitoring of pericellular oxygen concentration with outstanding long-term stability and no need for recalibration during cell culture experiments. The sensor is integrated into the flask bottom, thus in direct contact with attached cells. No additional equipment needs to be inserted into the flask during culturing. Transparency of the electrochemical sensor chip allows optical inspection of cells attached on top of the sensor. © 2014 John Wiley & Sons Ltd.

  9. Development of sensors for monitoring oxygen and free radicals in plant physiology

    Science.gov (United States)

    Chaturvedi, Prachee

    Oxygen plays a critical role in the physiology of photosynthetic organisms, including bioenergetics, metabolism, development, and stress response. Oxygen levels affect photosynthesis, respiration, and alternative oxidase pathways. Likewise, the metabolic rate of spatially distinct plant cells (and therefore oxygen flux) is known to be affected by biotic stress (e.g., herbivory) and environmental stress (e.g., salt/nutrient stress). During aerobic metabolism, cells produce reactive oxygen species (ROS) as a by product. Plants also produce ROS during adaptation to stress (e.g., abscisic acid (ABA) mediated stress responses). If stress conditions are prolonged, ROS levels surpass the capacity of detoxifying mechanisms within the cell, resulting in oxidative damage. While stress response pathways such as ABA-mediated mechanisms have been well characterized (e.g., water stress, inhibited shoot growth, synthesis of storage proteins in seeds), the connection between ROS production, oxygen metabolism and stress response remains unknown. In part, this is because details of oxygen transport at the interface of cell(s) and the surrounding microenvironment remains nebulous. The overall goal of this research was to develop oxygen and Free radical sensors for studying stress signaling in plants. Recent developments in nanomaterials and data acquisition systems were integrated to develop real-time, non-invasive oxygen and Free radical sensors. The availability of these sensors for plant physiologists is an exciting opportunity to probe the functional realm of cells and tissues in ways that were not previously possible.

  10. A miniaturized oxygen sensor integrated on fiber surface based on evanescent-wave induced fluorescence quenching

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Yan [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500 (China); Tan, Jun; Wang, Chengjie; Zhu, Ying [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Fang, Shenwen [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500 (China); Wu, Jiayi; Wang, Qing [School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Duan, Ming, E-mail: swpua124@126.com [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500 (China); School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500 (China)

    2016-11-15

    In this work, a miniaturized sensor was integrated on fiber surface and developed for oxygen determination through evanescent-wave induced fluorescence quenching. The sensor was designed by using light emitting diode (LED) as light source and optical fiber as light transmission element. Tris(2,2′-bipyridyl) ruthenium ([Ru(bpy){sub 3}]{sup 2+}) fluorophore was immobilized in the organically modified silicates (ORMOSILs) film and coated onto the fiber surface. When light propagated by total internal reflection (TIR) in the fiber core, evanescent wave could be produced on the fiber surface and excite [Ru(bpy){sub 3}]{sup 2+} fluorophore to produce fluorescence emission. Then oxygen could be determinated by its quenching effect on the fluorescence and its concentration could be evaluated according to Stern–Volumer model. Through integrating evanescent wave excitation and fluorescence quenching on fiber surface, the sensor was successfully miniaturized and exhibit improved performances of high sensitivity (1.4), excellent repeatability (1.2%) and fast analysis (12 s) for oxygen determination. The sensor provided a newly portable method for in-situ and real-time measurement of oxygen and showed potential for practical oxygen analysis in different application fields. Furthermore, the fabrication of this sensor provides a miniaturized and portable detection platform for species monitoring by simple modular design. - Highlights: • ORMOSILs sensing film immobilized with [Ru(bpy){sub 3}]{sup 2+} fluorophore was coated on fiber surface. • Evanescent wave on the fiber surface was utilized as excitation source to produce fluorescence. • Oxygen was measured based on its quenching effect on evanescent wave-induce fluorescence. • Sensor fabrication was miniaturized by integrating detection and sensing elements on the fiber. • The modular design sensor provides a detection platform for other species monitoring.

  11. Performance of solid electrolyte type oxygen sensor in flowing lead bismuth

    International Nuclear Information System (INIS)

    Kondo, Masatoshi; Takahashi, Minoru

    2005-01-01

    A solid electrolyte type oxygen sensor for liquid 45%lead-55%bismuth (Pb-Bi) was developed. The performance of the oxygen sensor in the flowing lead-bismuth (Pb-Bi) was investigated. The initial performance of the sensor was not reliable, since the reference fluid of the oxygen saturated bismuth in the sensor cell was not compact initially. The electromotive force (EMF) obtained from the yttria stabilized zirconia (YSZ) cell was the same as that from the magnesia stabilized zirconia (MSZ) cell in the flowing Pb-Bi. The EMF of the sensor in the flowing Pb-Bi was lower than that in the stagnant Pb-Bi. However, the difference was small. The sensor showed repeatability after the long term interruption and the Pb-Bi drain/charge operation. After the performance tests, the corrosion of the sensor cells were investigated metallurgically. The YSZ cell was eroded around the free surface of the flowing Pb-Bi after 3500 hour-exposure in the flowing Pb-Bi. The MSZ cell showed smooth surface without the erosion. Although the YSZ cell worked more stably than the MSZ cell, the mechanical strength of the YSZ cell is weaker than that of the MSZ cell. (author)

  12. Inhomogeneous Oxygen Vacancy Distribution in Semiconductor Gas Sensors: Formation, Migration and Determination on Gas Sensing Characteristics

    Directory of Open Access Journals (Sweden)

    Jianqiao Liu

    2017-08-01

    Full Text Available The density of oxygen vacancies in semiconductor gas sensors was often assumed to be identical throughout the grain in the numerical discussion of the gas-sensing mechanism of the devices. In contrast, the actual devices had grains with inhomogeneous distribution of oxygen vacancy under non-ideal conditions. This conflict between reality and discussion drove us to study the formation and migration of the oxygen defects in semiconductor grains. A model of the gradient-distributed oxygen vacancy was proposed based on the effects of cooling rate and re-annealing on semiconductive thin films. The model established the diffusion equations of oxygen vacancy according to the defect kinetics of diffusion and exclusion. We described that the steady-state and transient-state oxygen vacancy distributions, which were used to calculate the gas-sensing characteristics of the sensor resistance and response to reducing gases under two different conditions. The gradient-distributed oxygen vacancy model had the applications in simulating the sensor performances, such as the power law, the grain size effect and the effect of depletion layer width.

  13. Inhomogeneous Oxygen Vacancy Distribution in Semiconductor Gas Sensors: Formation, Migration and Determination on Gas Sensing Characteristics.

    Science.gov (United States)

    Liu, Jianqiao; Gao, Yinglin; Wu, Xu; Jin, Guohua; Zhai, Zhaoxia; Liu, Huan

    2017-08-10

    The density of oxygen vacancies in semiconductor gas sensors was often assumed to be identical throughout the grain in the numerical discussion of the gas-sensing mechanism of the devices. In contrast, the actual devices had grains with inhomogeneous distribution of oxygen vacancy under non-ideal conditions. This conflict between reality and discussion drove us to study the formation and migration of the oxygen defects in semiconductor grains. A model of the gradient-distributed oxygen vacancy was proposed based on the effects of cooling rate and re-annealing on semiconductive thin films. The model established the diffusion equations of oxygen vacancy according to the defect kinetics of diffusion and exclusion. We described that the steady-state and transient-state oxygen vacancy distributions, which were used to calculate the gas-sensing characteristics of the sensor resistance and response to reducing gases under two different conditions. The gradient-distributed oxygen vacancy model had the applications in simulating the sensor performances, such as the power law, the grain size effect and the effect of depletion layer width.

  14. Development of oxygen sensors using zirconia solid electrolyte for fuel rods

    International Nuclear Information System (INIS)

    Hiura, Nobuo; Endou, Yasuichi; Yamaura, Takayuki; Matui, Yoshinori; Niimi, Motoji; Hoshiya, Taiji; Kobiyama, Mamoru; Motohashi, Yoshinobu

    1999-01-01

    The oxygen potential in oxide fuel pellet is an important parameter to understand behavior of high burn up fuel and its integrity. Zirconia solid electrolyte which is durable under irradiation and high temperature is considered as candidate material for the oxygen potential. Combined use of solid electrolyte and Ni/NiO as a solid standard electrode will realize small size oxygen sensor which can be easily loaded in the fuel rod. Prototypes of the oxygen sensor made of these materials were irradiated with neutrons the Japan Materials Testing Reactor (JMTR), and characteristics of electromotive force (EMF) by sensors were examined under irradiation. For a prototype using zirconia solid electrolyte stabilized by Y 2 O 3 (YSZ), measured EMF under irradiation was nearly equivalent to the value under unirradiated condition, and very stable within a range of neutron fluence (E>1 MeV) up to 1.52 x 10 23 m -2 and for the time of 600 h. However, the measured EMFs were slightly smaller than the theoretical values. The reason for this decrease of the EMF was thought as due to insufficient adhesion forces between solid electrolyte and standard electrode. After modification of the sensor to increase adhesion force, EMF was measured again under irradiation. The results showed improvement of the characteristics of the sensor in which measured EMFs were almost equivalent to the theoretical values. (author)

  15. Low-temperature behavior of ZrO2 oxygen sensors

    International Nuclear Information System (INIS)

    Badwal, S.P.S.; Bannister, M.J.

    1983-01-01

    The relative importance of the solid electrolyte and the electrodes in determining the low-temperature behavior of stabilized zirconia oxygen sensors is considered. Contrary to general belief, the electrodes play the more important role at low temperatures. The performance may be greatly improved by using, instead of porous platinum, oxide electrodes comprising solid solutions based on UO 2 . Laboratory tests and plant trials show that ideal behavior in oxygen-excess gases can be achieved below 400 0 C

  16. Singlet Ground State Magnetism:

    DEFF Research Database (Denmark)

    Loidl, A.; Knorr, K.; Kjems, Jørgen

    1979-01-01

    The magneticGamma 1 –Gamma 4 exciton of the singlet ground state system TbP has been studied by inelastic neutron scattering above the antiferromagnetic ordering temperature. Considerable dispersion and a pronounced splitting was found in the [100] and [110] directions. Both the band width...

  17. Singlet Oxygen Production and Biological Activity of Hexanuclear Chalcocyanide Rhenium Cluster Complexes [{Re(6)Q(8)}(CN)(6)](4-) (Q = S, Se, Te)

    Czech Academy of Sciences Publication Activity Database

    Solovieva, A.O.; Kirakci, Kaplan; Ivanov, A.; Kubát, Pavel; Pozmogova, T.N.; Miroshnichenko, S.M.; Vorontsova, E.V.; Chechushkov, A.V.; Trifonova, K.E.; Fufaeva, M.S.; Kretov, E.I.; Mironov, Y.V.; Poveshchenko, A.F.; Lang, Kamil; Shestopalov, M.A.

    2017-01-01

    Roč. 56, č. 21 (2017), s. 13491-13499 ISSN 0020-1669 R&D Projects: GA ČR(CZ) GA16-15020S Institutional support: RVO:61388980 ; RVO:61388955 Keywords : photophysical properties * silica nanoparticles * molecular-oxygen * iodide cluster * luminescence Subject RIV: CA - Inorganic Chemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) OBOR OECD: Inorganic and nuclear chemistry; Physical chemistry (UFCH-W) Impact factor: 4.857, year: 2016

  18. Small CAB-like proteins prevent formation of singlet oxygen in the damaged photosystem II complex of the cyanobacterium Synechocystis sp PCC 6803

    Czech Academy of Sciences Publication Activity Database

    Sinha, R. K.; Komenda, Josef; Knoppová, Jana; Sedlářová, M.; Pospíšil, P.

    2012-01-01

    Roč. 35, č. 4 (2012), s. 806-818 ISSN 0140-7791 R&D Projects: GA MŠk(CZ) ED2.1.00/03.0110; GA ČR(CZ) GAP501/11/0377 Institutional research plan: CEZ:AV0Z50200510 Keywords : oxidative stress * photoinhibition * reactive oxygen species Subject RIV: EE - Microbiology, Virology Impact factor: 5.135, year: 2012

  19. Enzymatic Sensor of Putrescine with Optical Oxygen Transducer - Mathematical Model of Responses of Sensitive Layer.

    Czech Academy of Sciences Publication Activity Database

    Maixnerová, Lucie; Horvitz, Alexandar; Kuncová, Gabriela; Přibyl, M.; Šebela, M.; Koštejn, Martin

    2015-01-01

    Roč. 69, č. 1 (2015), s. 158-166 ISSN 0366-6352 R&D Projects: GA TA ČR TA03010548; GA MŠk(CZ) LO1204 Institutional support: RVO:67985858 Keywords : enzymatic sensor * putrescine * optical oxygen transducer Subject RIV: CE - Biochemistry Impact factor: 1.326, year: 2015

  20. A comparison of oxygen saturation measurements obtained from a 'blue sensor' with a standard sensor.

    Science.gov (United States)

    Mawson, Isabel E; Dawson, Jennifer A; Donath, Susan M; Davis, Peter G

    2011-10-01

    The study aims to investigate pulse oximetry measurements from a 'blue' pulse oximeter sensor against measurements from a 'standard' pulse oximeter sensor in newly born infants. Immediately after birth, both sensors were attached to the infant, one to each foot. SpO₂ measurements were recorded simultaneously from each sensor for 10 min. Agreement between pairs of SpO₂ measurements were calculated using Bland-Altman analysis. Thirty-one infants were studied. There was good correlation between simultaneous SpO₂ measurements from both sensors (r² = 0.75). However, the mean difference between 'blue' and 'standard' sensors was -1.6%, with wide 95% limits of agreement +18.4 to -21.6%. The range of mean difference between sensors from each infant ranged from -20 to +20. The mean difference between the blue and standard sensor SpO₂ measurements is not clinically important. © 2011 The Authors. Journal of Paediatrics and Child Health © 2011 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  1. Fluorophore-based sensor for oxygen radicals in processing plasmas

    International Nuclear Information System (INIS)

    Choudhury, Faraz A.; Shohet, J. Leon; Sabat, Grzegorz; Sussman, Michael R.; Nishi, Yoshio

    2015-01-01

    A high concentration of radicals is present in many processing plasmas, which affects the processing conditions and the properties of materials exposed to the plasma. Determining the types and concentrations of free radicals present in the plasma is critical in order to determine their effects on the materials being processed. Current methods for detecting free radicals in a plasma require multiple expensive and bulky instruments, complex setups, and often, modifications to the plasma reactor. This work presents a simple technique that detects reactive-oxygen radicals incident on a surface from a plasma. The measurements are made using a fluorophore dye that is commonly used in biological and cellular systems for assay labeling in liquids. Using fluorometric analysis, it was found that the fluorophore reacts with oxygen radicals incident from the plasma, which is indicated by degradation of its fluorescence. As plasma power was increased, the quenching of the fluorescence significantly increased. Both immobilized and nonimmobilized fluorophore dyes were used and the results indicate that both states function effectively under vacuum conditions. The reaction mechanism is very similar to that of the liquid dye

  2. Fluorophore-based sensor for oxygen radicals in processing plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Faraz A.; Shohet, J. Leon, E-mail: shohet@engr.wisc.edu [Plasma Processing and Technology Laboratory and Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Sabat, Grzegorz; Sussman, Michael R. [Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Nishi, Yoshio [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2015-11-15

    A high concentration of radicals is present in many processing plasmas, which affects the processing conditions and the properties of materials exposed to the plasma. Determining the types and concentrations of free radicals present in the plasma is critical in order to determine their effects on the materials being processed. Current methods for detecting free radicals in a plasma require multiple expensive and bulky instruments, complex setups, and often, modifications to the plasma reactor. This work presents a simple technique that detects reactive-oxygen radicals incident on a surface from a plasma. The measurements are made using a fluorophore dye that is commonly used in biological and cellular systems for assay labeling in liquids. Using fluorometric analysis, it was found that the fluorophore reacts with oxygen radicals incident from the plasma, which is indicated by degradation of its fluorescence. As plasma power was increased, the quenching of the fluorescence significantly increased. Both immobilized and nonimmobilized fluorophore dyes were used and the results indicate that both states function effectively under vacuum conditions. The reaction mechanism is very similar to that of the liquid dye.

  3. Synthesis, singlet-oxygen photogeneration, two-photon absorption, photo-induced DNA cleavage and cytotoxic properties of an amphiphilic β-Schiff-base linked Ru(II) polypyridyl–porphyrin conjugate

    International Nuclear Information System (INIS)

    Ke, Hanzhong; Ma, Wanpeng; Wang, Hongda; Cheng, Guoe; Yuan, Han; Wong, Wai-Kwok; Kwong, Daniel W.J.; Tam, Hoi-Lam; Cheah, Kok-Wai; Chan, Chi-Fai; Wong, Ka-Leung

    2014-01-01

    A novel porphyrin–polypyridyl ruthenium(II) conjugate (TPP–Ru), in which the ruthenium(II) polypyridyl moiety is linked to the β-position of the tetraphenylporphyrin via a Schiff base linkage, has been synthesized and characterized by 1 H NMR, HRMS and UV–visible spectroscopy. The relative singlet oxygen quantum yield and two-photon absorption cross-section of this conjugate, together with its photo-induced DNA cleavage and cytotoxic activities were measured. The results show that the amphiphilic ruthenium(II) polypyridyl–porphyrin conjugate is an effective DNA photocleavage agent, with potential application in one- and two-photon absorption anti-cancer photodynamic therapy. - Highlights: • New porphyrin–ruthenium(II) polypyridyl complexes (TTP–Ru) have been synthesized. • The TTP–Ru shows substantial two-photon absorption cross-section (σ 2 =391 GM). • The TTP–Ru exhibits a substantial 1 O 2 quantum yield (0.64±0.13). • The TTP–Ru exhibits a strong DNA cleavage activity upon photo-excitation. • The TTP–Ru is available for in vitro imaging and as a photodynamic therapy agent

  4. Synthesis, singlet-oxygen photogeneration, two-photon absorption, photo-induced DNA cleavage and cytotoxic properties of an amphiphilic β-Schiff-base linked Ru(II) polypyridyl–porphyrin conjugate

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Hanzhong, E-mail: kehanz@163.com [Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074 (China); Ma, Wanpeng; Wang, Hongda; Cheng, Guoe [Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074 (China); Yuan, Han [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Wong, Wai-Kwok, E-mail: wkwong@hkbu.edu.hk [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Institute of Advanced Materials, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Kwong, Daniel W.J. [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Tam, Hoi-Lam; Cheah, Kok-Wai [Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Institute of Advanced Materials, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Chan, Chi-Fai; Wong, Ka-Leung [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China)

    2014-10-15

    A novel porphyrin–polypyridyl ruthenium(II) conjugate (TPP–Ru), in which the ruthenium(II) polypyridyl moiety is linked to the β-position of the tetraphenylporphyrin via a Schiff base linkage, has been synthesized and characterized by {sup 1}H NMR, HRMS and UV–visible spectroscopy. The relative singlet oxygen quantum yield and two-photon absorption cross-section of this conjugate, together with its photo-induced DNA cleavage and cytotoxic activities were measured. The results show that the amphiphilic ruthenium(II) polypyridyl–porphyrin conjugate is an effective DNA photocleavage agent, with potential application in one- and two-photon absorption anti-cancer photodynamic therapy. - Highlights: • New porphyrin–ruthenium(II) polypyridyl complexes (TTP–Ru) have been synthesized. • The TTP–Ru shows substantial two-photon absorption cross-section (σ{sub 2}=391 GM). • The TTP–Ru exhibits a substantial {sup 1}O{sub 2} quantum yield (0.64±0.13). • The TTP–Ru exhibits a strong DNA cleavage activity upon photo-excitation. • The TTP–Ru is available for in vitro imaging and as a photodynamic therapy agent.

  5. Neutron irradiation characteristic tests of oxygen sensors using zirconia solid electrolyte

    International Nuclear Information System (INIS)

    Hiura, Nobuo; Endou, Yasuichi; Yamaura, Takayuki; Niimi, Motoji; Hoshiya, Taiji; Saito, Junichi; Souzawa, Shizuo; Ooka, Norikazu; Kobiyama, Mamoru.

    1997-03-01

    In the Department of JMTR of Japan Atomic Energy Research Institute (JAERI), the in-situ measuring technique of oxygen potential has been being developed to study the chemical behavior of high burn-up fuel base-irradiated in the Light Water Reactor. In this test for development of the technique, oxygen sensors using zirconia solid electrolyte stabilized by MgO, CaO and Y 2 O 3 , named MSZ, CSZ and YSZ, respectively, were irradiated by neutrons in the Japan Materials Testing Reactor (JMTR) of JAERI and the characteristics of electromotive force of these sensors under and after irradiation were discussed. From the experimental results, the electromotive force of YSZ sample under irradiation decreased with an increase in irradiation fluence within a range of neutron fluence (E>1 MeV) up to 1 x 10 23 m -2 . The electromotive force of MSZ sensor irradiated with neutron fluences (E>1 MeV) up to 9 x 10 21 m -2 was almost equal to the theoretical value of the electromotive force. It was shown that after irradiation, a decrease in the electromotive force of CSZ sensor was smaller than those of MSZ and YSZ sensors, although the electromotive forces of MSZ, CSZ and YSZ sensors were smaller than the theoretical value. (author)

  6. Oxygen toxicity

    Directory of Open Access Journals (Sweden)

    C. A. van der Westhuizen

    1990-07-01

    Full Text Available Oxygen has been discovered about 200 years ago. Since then the vital physiological involvement of oxygen in various biologi­cal processes, mainly energy production, has been established. However, in the body molecular oxygen can be converted to toxic oxygen metabolites such as superoxide anion, hydrogen peroxide, the hydroxyl radical and singlet oxygen. These toxic metabolites are produced mainly in the mitochondria, plasma membranes and endoplasmic reticulum.

  7. Highly sensitive fiber-optic oxygen sensor based on palladium tetrakis (4-carboxyphenyl)porphyrin doped in ormosil

    International Nuclear Information System (INIS)

    Chu, Cheng-Shane; Chuang, Chih-Yung

    2014-01-01

    A simple, low-cost technique for fabrication of highly sensitive fiber-optic oxygen sensor is described. An organically modified silicate (ORMOSIL) as a matrix for the fabrication of oxygen sensing film was produced. The technique is based on coating the end of a plastic optical fiber with ormosil composite xerogel film sequestered with luminophore palladium (II) meso-tetra(4-carboxyphenyl)porphyrin (PdTCPP) prepared by a sol–gel process. The composite xerogel studied is tetraethylorthosilane (TEOS)/n-octyltriethoxysilane (Octyl-triEOS). Result shows that, expect for PdTCPP-doped TEOS/Octyl-triEOS composite xerogel show the high sensitivity and linear Stern–Volmer relationship which indicate the homogenous environment of the luminophore. The sensitivity of the optical oxygen sensor is quantified in terms of the ratio I N2 /I O2 , where I N2 and I O2 represent the detected fluorescence intensities in pure nitrogen and pure oxygen environments, respectively. The experimental result reveals that the PdTCPP-doped TEOS/Octyl-triEOS oxygen sensor has sensitivity of 153. - Highlights: • A simple, low-cost technique for fabrication of highly sensitive fiber-optic oxygen sensor is described. • ORMOSIL was produced to serve as a matrix for the fabrication of oxygen sensing film. • The fiber-optic oxygen sensor has sensitivity of I N2 /I 100O2 =153. • The stable and reproducible signals were obtained with the fiber-optic oxygen sensor

  8. Oxygen sensor using proton-conductor thick-film operative at room temperature. Puroton dodentai atsumaku wo mochiita joon sadogata sanso sensor

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Norio; Yoshida, Nobuaki; Matayoshi, Naoko; Shimizu, Yoichi; Yamazoe, Noboru; Kuwata, Shigeki [Kyushu Univ., Fukuoka, (Japan) Niihama National College of Tech., Ehime, (Japan)

    1989-10-01

    An amperometric solid-state oxygen sensor using a proton-conductor thick-film was examined as a miniaturized and intelligent oxygen sensor operative at room temperature. The good-conditioned proton-conductor film of about 10{mu}m in thickness without holes was formed on a porous alumina substrate by spin-coating the paste containing antimonic acid and a polyvinyl alcohol binder. Using this material, the thick-film oxygen sensor was made. A limiting current, controlled by oxygen permeation through the gas-diffusion layer, was observed when an external voltage was over 1.4V. The limiting current increased linearly with an increase in oxygen partial pressure up to 1.0 atm at an external voltage of 1.6V. The 90% response time for increasing oxygen partial pressure was about 40 seconds at 30 centigrade. Moreover, it was found that the sensor could also respond to dissolved oxygen in water at room temperature. With a sensor using a hydrophobic gas-diffusion layer containing a polystyrene binder, the limiting current was linear to the dissolved oxygen concentration up to 20ppm. 15 refs., 5 figs.

  9. Flexible Sheet-Type Sensor for Noninvasive Measurement of Cellular Oxygen Metabolism on a Culture Dish.

    Directory of Open Access Journals (Sweden)

    Mari Kojima

    Full Text Available A novel flexible sensor was developed for the noninvasive oxygen metabolism measurement of cultivated cells and tissues. This device is composed of a transparent double-layered polymer sheet of ethylene-vinyl alcohol (EVOH and poly(dimethylsiloxane (PDMS having an array of microhole structures of 90 μm diameter and 50 μm depth on its surface. All the microhole structures were equipped with a 1-μm-thick optical chemical sensing layer of platinum porphyrin-fluoropolymer on their bottom. The three-dimensional microstructures of the sensor were fabricated by a newly developed simple and low-cost production method named self-aligned hot embossing. The device was designed to be attached slightly above the cells cultivated on a dish to form a temporarily closed microspace over the target cells during measurement. Since the change in oxygen concentration is relatively fast in the microcompartmentalized culture medium, a rapid evaluation of the oxygen consumption rate is possible by measuring the phosphorescence lifetime of the platinum porphyrin-fluoropolymer. The combined use of the device and an automated optical measurement system enabled the high-throughput sensing of cellular oxygen consumption (100 points/min. We monitored the oxygen metabolism of the human breast cancer cell line MCF7 on a Petri dish and evaluated the oxygen consumption rate to be 0.72 ± 0.12 fmol/min/cell. Furthermore, to demonstrate the utility of the developed sensing system, we demonstrated the mapping of the oxygen consumption rate of rat brain slices and succeeded in visualizing a clear difference among the layer structures of the hippocampus, i.e., the cornu ammonis (CA1 and CA3 and dentate gyrus (DG.

  10. Quantifying oxygen in paper-based cell cultures with luminescent thin film sensors.

    Science.gov (United States)

    Boyce, Matthew W; Kenney, Rachael M; Truong, Andrew S; Lockett, Matthew R

    2016-04-01

    Paper-based scaffolds are an attractive material for generating 3D tissue-like cultures because paper is readily available and does not require specialized equipment to pattern, cut, or use. By controlling the exchange of fresh culture medium with the paper-based scaffolds, we can engineer diffusion-dominated environments similar to those found in spheroids or solid tumors. Oxygen tension directly regulates cellular phenotype and invasiveness through hypoxia-inducible transcription factors and also has chemotactic properties. To date, gradients of oxygen generated in the paper-based cultures have relied on cellular response-based readouts. In this work, we prepared a luminescent thin film capable of quantifying oxygen tensions in apposed cell-containing paper-based scaffolds. The oxygen sensors, which are polystyrene films containing a Pd(II) tetrakis(pentafluorophenyl)porphyrin dye, are photostable, stable in culture conditions, and not cytotoxic. They have a linear response for oxygen tensions ranging from 0 to 160 mmHg O2, and a Stern-Volmer constant (K sv) of 0.239 ± 0.003 mmHg O2 (-1). We used these oxygen-sensing films to measure the spatial and temporal changes in oxygen tension for paper-based cultures containing a breast cancer line that was engineered to constitutively express a fluorescent protein. By acquiring images of the oxygen-sensing film and the fluorescently labeled cells, we were able to approximate the oxygen consumption rates of the cells in our cultures.

  11. Photochemical characterization of water samples from Minnesota and Vermont sites with malformed frogs: potential influence of photosensitization by singlet molecular oxygen (1O2) and free radicals on aquatic toxicity

    International Nuclear Information System (INIS)

    Bilski, P.; Burkhart, J.G.; Chignell, C.F.

    2003-01-01

    Environmental pollutants activated by UV sunlight may have contributed to the recent decline in frog populations and the concomitant increase in malformations in the USA and abroad. UV radiation is able to mutate DNA and to initiate photosensitization processes that generate mutagenic and biologically disruptive oxygen transients. We have examined water from selected sites in Minnesota and Vermont using singlet molecular oxygen ( 1 O 2 ), detected by its phosphorescence and free radicals detected by spin trapping, as markers for photosensitization. Water from a pond in Minnesota with malformed frogs, which also causes malformations in the laboratory, photosensitized more 1 O 2 , even though it absorbed less UV light compared to water from a site that did not cause malformations. This suggested that unknown natural or pollutant agents were present, and that photosensitization may be involved. Although UV irradiation of the two Minnesota water samples in the presence of the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) revealed the presence of the DMPO/·OH, DMPO/·H(e aq - ) and DMPO/·C(unknown) adducts there were no qualitative or quantitative differences between them. We also examined water samples from several sites in Vermont, and compared them by measuring the quantum yield of 1 O 2 photosensitization. While all the Vermont samples produced a small amount of 1 O 2 , there was no clear correlation with the incidence of frog malformations. However, the samples differed strongly in absorption spectra and the ability to quench 1 O 2 . These factors may determine how much UV light is absorbed and converted into chemical reactions. Our results show that photochemical characterization of 1 O 2 photosensitization is possible in untreated natural water samples. Photosensitization falls into the category of global factors that may be closely associated with the effects of UV irradiation of the Earth's environments. Thus, photosensitization might be an important

  12. Photochemical characterization of water samples from Minnesota and Vermont sites with malformed frogs: potential influence of photosensitization by singlet molecular oxygen ({sup 1}O{sub 2}) and free radicals on aquatic toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Bilski, P.; Burkhart, J.G.; Chignell, C.F

    2003-11-19

    Environmental pollutants activated by UV sunlight may have contributed to the recent decline in frog populations and the concomitant increase in malformations in the USA and abroad. UV radiation is able to mutate DNA and to initiate photosensitization processes that generate mutagenic and biologically disruptive oxygen transients. We have examined water from selected sites in Minnesota and Vermont using singlet molecular oxygen ({sup 1}O{sub 2}), detected by its phosphorescence and free radicals detected by spin trapping, as markers for photosensitization. Water from a pond in Minnesota with malformed frogs, which also causes malformations in the laboratory, photosensitized more {sup 1}O{sub 2}, even though it absorbed less UV light compared to water from a site that did not cause malformations. This suggested that unknown natural or pollutant agents were present, and that photosensitization may be involved. Although UV irradiation of the two Minnesota water samples in the presence of the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) revealed the presence of the DMPO/{center_dot}OH, DMPO/{center_dot}H(e{sub aq}{sup -}) and DMPO/{center_dot}C(unknown) adducts there were no qualitative or quantitative differences between them. We also examined water samples from several sites in Vermont, and compared them by measuring the quantum yield of {sup 1}O{sub 2} photosensitization. While all the Vermont samples produced a small amount of {sup 1}O{sub 2}, there was no clear correlation with the incidence of frog malformations. However, the samples differed strongly in absorption spectra and the ability to quench {sup 1}O{sub 2}. These factors may determine how much UV light is absorbed and converted into chemical reactions. Our results show that photochemical characterization of {sup 1}O{sub 2} photosensitization is possible in untreated natural water samples. Photosensitization falls into the category of global factors that may be closely associated with the effects of

  13. Oxygen sensor via the quenching of room-temperature phosphorescence of perdeuterated phenanthrene adsorbed on Whatman 1PS filter paper.

    Science.gov (United States)

    Ramasamy, S M; Hurtubise, R J

    1998-11-01

    Perdeuterated phenanthrene (d-phen) exhibits strong room-temperature phosphorescence (RTP) when adsorbed on Whatman 1PS filter paper. An oxygen sensor was developed that depends on oxygen quenching of RTP intensity of adsorbed d-phen. The system designed employed a continuous flow of nitrogen or nitrogen-air onto the adsorbed phosphor. The sensor is simple to prepare and needs no elaborate fabrication procedure, but did show a somewhat drifting baseline for successive determinations of oxygen. Nevertheless, very good reproducibility was achieved with the RTP quenching data by measuring the RTP intensities just before and at the end of each oxygen determination. The calibration plots gave a nonlinear relationship over the entire range of oxygen (0-21%). However, a linear range was obtained up to 1.10% oxygen. A detection limit of 0.09% oxygen in dry nitrogen was acquired. Also, carbon dioxide was found to have a minimal effect on the RTP quenching. Thus, oxygen could be measured accurately in relatively large amounts of carbon dioxide. The performance of the oxygen sensor was evaluated by comparing data obtained with a commercial electrochemical trace oxygen analyzer. Also, additional information on the quenching phenomena for this system was obtained from the RTP lifetime data acquired at various oxygen contents.

  14. Singlets of fermionic gauge symmetries

    NARCIS (Netherlands)

    Bergshoeff, E.A.; Kallosh, R.E.; Rahmanov, M.A.

    1989-01-01

    We investigate under which conditions singlets of fermionic gauge symmetries which are "square roots of gravity" can exist. Their existence is non-trivial because there are no fields neutral in gravity. We tabulate several examples of singlets of global and local supersymmetry and κ-symmetry and

  15. Steady-state modelling of the universal exhaust gas oxygen (UEGO) sensor

    International Nuclear Information System (INIS)

    Collings, N; Hegarty, K; Ramsander, T

    2012-01-01

    The universal exhaust gas oxygen (UEGO) sensor is a well-established device which was developed for the measurement of relative air fuel ratio in internal combustion engines. There is, however, little information available which allows for the prediction of the UEGO's behaviour when exposed to arbitrary gas mixtures, pressures and temperatures. Here we present a steady-state model for the sensor, based on a solution of the Stefan–Maxwell equation, and which includes a momentum balance. The response of the sensor is dominated by a diffusion barrier, which controls the rate of diffusion of gas species between the exhaust and a cavity. Determination of the diffusion barrier characteristics, especially the mean pore size, porosity and tortuosity, is essential for the purposes of modelling, and a measurement technique based on identification of the sensor pressure giving zero temperature sensitivity is shown to be a convenient method of achieving this. The model, suitably calibrated, is shown to make good predictions of sensor behaviour for large variations of pressure, temperature and gas composition. (paper)

  16. Performance Evaluation of an Oxygen Sensor as a Function of the Samaria Doped Ceria Film Thickness

    International Nuclear Information System (INIS)

    Sanghavi, Rahul P.; Nandasiri, Manjula I.; Kuchibhatla, Satyanarayana; Nachimuthu, Ponnusamy; Engelhard, Mark H.; Shutthanandan, V.; Jiang, Weilin; Thevuthasan, Suntharampillai; Kayani, Asghar N.; Prasad, Shalini

    2010-01-01

    The current demand in the automobile industry is in the control of air-fuel mixture in the combustion engine of automobiles. Oxygen partial pressure can be used as an input parameter for regulating or controlling systems in order to optimize the combustion process. Our goal is to identify and optimize the material system that would potentially function as the active sensing material for such a device that monitors oxygen partial pressure in these systems. We have used thin film samaria doped ceria (SDC) as the sensing material for the sensor operation, exploiting the fact that at high temperatures, oxygen vacancies generated due to samarium doping act as conducting medium for oxygen ions which hop through the vacancies from one side to the other contributing to an electrical signal. We have recently established that 6 atom% Sm doping in ceria films has optimum conductivity. Based on this observation, we have studied the variation in the overall conductivity of 6 atom% samaria doped ceria thin films as a function of thickness in the range of 50 nm to 300 nm at a fixed bias voltage of 2 volts. A direct proportionality in the increase in the overall conductivity is observed with the increase in sensing film thickness. For a range of oxygen pressure values from 1 mTorr to 100 Torr, a tolerable hysteresis error, good dynamic response and a response time of less than 10 seconds was observed

  17. Integrated oxygen sensors based on Mg-doped SrTiO3 fabricated by screen-printing

    DEFF Research Database (Denmark)

    Zheng, H.; Toft Sørensen, O.

    1998-01-01

    This paper describes the fabrication and testing of Mg-doped SrTiO3 thick-film oxygen sensors with an integrated Pt heater. The results show that the sensor exhibits a PO2 dependence according to R proportional to PO2-1/4 in the considered PO2 range(2.5 x 10(-5) bar

  18. Development of oxygen and pH sensors for aqueous systems

    International Nuclear Information System (INIS)

    Stvartak, C.; Alcock, C.B.; Li, B.; Wang, L.; Fergus, J.W.; Bakshi, N.

    1994-04-01

    Corrosion science has long recognized that two of the most important parameters in characterizing the corrosivity of an aqueous environment are oxygen chemical potential and pH. These parameters not only determine the thermodynamic driving forces for various corrosion reactions, but also characterize the rates of these reactions and hence the lifetime of a particular component. The primary goal of this project is to develop an electrochemical oxygen and pH sensor for continuous use in the cycle chemistry control of power plants. In the past year, electrochemical sensors with a metal/metal oxide or metal/metal hydride internal reference electrode and a fluoride-based electrolyte tube have been developed and tested in this laboratory. The corrosion tests showed that the LaF 3 -based solid electrolyte was very stable both chemically and physically in water. Furthermore, its electrical conductivity is 4 to 5 orders of magnitude higher than that of stabilized zirconia below 573 K (300 degree C), which is the main advantage of a fluoride-based electrolyte at low temperatures. With this electrolyte and the selected internal oxygen reference electrode (Ag/Ag 2 O), the electrochemical probe demonstrated Nernstian responses to the oxygen chemical potential and pH of the aqueous solution with good reproducibility. A similar cell with Zr/ZrH 1+x as the internal hydrogen reference electrode showed promising pH sensing characteristics. It is proposed that these two cells be combined to form a double-headed electrochemical probe to determine oxygen chemical potential and pH in the solution simultaneously

  19. An optode sensor array for long term in situ Oxygen measurements in soil and sediment

    DEFF Research Database (Denmark)

    Rickelt, Lars F; Jensen, Louise Askær; Walpersdorf, Eva Christine

    2013-01-01

    Long-term measurements of molecular oxygen (O2) dynamics in wetlands are highly relevant for understanding the eff ects of water level changes on net greenhouse gas budgets in these ecosystems. However, such measurements have been limited due to a lack of suitable measuring equipment. We construc......Long-term measurements of molecular oxygen (O2) dynamics in wetlands are highly relevant for understanding the eff ects of water level changes on net greenhouse gas budgets in these ecosystems. However, such measurements have been limited due to a lack of suitable measuring equipment. We...... constructed an O2 optode sensor array for long-term in situ measurements in soil and sediment. Th e new device consists of a 1.3-m-long, cylindrical, spear-shaped rod equipped with 10 sensor spots along the shaft . Each spot contains a thermocouple fi xed with a robust fi beroptic O2 optode made...... characteristics of the sensor array system are presented along with a novel approach for temperature compensation of O2 optodes. During in situ application over several months in a peat bog, we used the new device to document pronounced variations in O2 distribution aft er marked shift s in water level. Th e...

  20. Microfabricated Collector-Generator Electrode Sensor for Measuring Absolute pH and Oxygen Concentrations.

    Science.gov (United States)

    Dengler, Adam K; Wightman, R Mark; McCarty, Gregory S

    2015-10-20

    Fast-scan cyclic voltammetry (FSCV) has attracted attention for studying in vivo neurotransmission due to its subsecond temporal resolution, selectivity, and sensitivity. Traditional FSCV measurements use background subtraction to isolate changes in the local electrochemical environment, providing detailed information on fluctuations in the concentration of electroactive species. This background subtraction removes information about constant or slowly changing concentrations. However, determination of background concentrations is still important for understanding functioning brain tissue. For example, neural activity is known to consume oxygen and produce carbon dioxide which affects local levels of oxygen and pH. Here, we present a microfabricated microelectrode array which uses FSCV to detect the absolute levels of oxygen and pH in vitro. The sensor is a collector-generator electrode array with carbon microelectrodes spaced 5 μm apart. In this work, a periodic potential step is applied at the generator producing transient local changes in the electrochemical environment. The collector electrode continuously performs FSCV enabling these induced changes in concentration to be recorded with the sensitivity and selectivity of FSCV. A negative potential step applied at the generator produces a transient local pH shift at the collector. The generator-induced pH signal is detected using FSCV at the collector and correlated to absolute solution pH by postcalibration of the anodic peak position. In addition, in oxygenated solutions a negative potential step at the generator produces hydrogen peroxide by reducing oxygen. Hydrogen peroxide is detected with FSCV at the collector electrode, and the magnitude of the oxidative peak is proportional to absolute oxygen concentrations. Oxygen interference on the pH signal is minimal and can be accounted for with a postcalibration.

  1. Net community production at Ocean Station Papa observed with nitrate and oxygen sensors on profiling floats

    Science.gov (United States)

    Plant, Joshua N.; Johnson, Kenneth S.; Sakamoto, Carole M.; Jannasch, Hans W.; Coletti, Luke J.; Riser, Stephen C.; Swift, Dana D.

    2016-06-01

    Six profiling floats equipped with nitrate and oxygen sensors were deployed at Ocean Station P in the Gulf of Alaska. The resulting six calendar years and 10 float years of nitrate and oxygen data were used to determine an average annual cycle for net community production (NCP) in the top 35 m of the water column. NCP became positive in February as soon as the mixing activity in the surface layer began to weaken, but nearly 3 months before the traditionally defined mixed layer began to shoal from its winter time maximum. NCP displayed two maxima, one toward the end of May and another in August with a summertime minimum in June corresponding to the historical peak in mesozooplankton biomass. The average annual NCP was determined to be 1.5 ± 0.6 mol C m-2 yr-1 using nitrate and 1.5 ± 0.7 mol C m-2 yr-1 using oxygen. The results from oxygen data proved to be quite sensitive to the gas exchange model used as well as the accuracy of the oxygen measurement. Gas exchange models optimized for carbon dioxide flux generally ignore transport due to gas exchange through the injection of bubbles, and these models yield NCP values that are two to three time higher than the nitrate-based estimates. If nitrate and oxygen NCP rates are assumed to be related by the Redfield model, we show that the oxygen gas exchange model can be optimized by tuning the exchange terms to reproduce the nitrate NCP annual cycle.

  2. Gaugino mass without singlets

    International Nuclear Information System (INIS)

    Giudice, Gian F.; Luty, Markus A.; Murayama, Hitoshi; Rattazzi, Riccardo

    1998-01-01

    In models with dynamical supersymmetry breaking in the hidden sector, the gaugino masses in the observable sector have been believed to be extremely suppressed (below 1 keV), unless there is a gauge singlet in the hidden sector with specific couplings to the observable sector gauge multiplets. We point out that there is a pure supergravity contribution to gaugino masses at the quantum level arising from the superconformal anomaly. Our results are valid to all orders in perturbation theory and are related to the ''exact'' beta functions for soft terms. There is also an anomaly contribution to the A terms proportional to the beta function of the corresponding Yukawa coupling. The gaugino masses are proportional to the corresponding gauge beta functions, and so do not satisfy the usual GUT relations

  3. Engineering glucose oxidase to minimize the influence of oxygen on sensor response

    International Nuclear Information System (INIS)

    Horaguchi, Yohei; Saito, Shoko; Kojima, Katsuhiro; Tsugawa, Wakako; Ferri, Stefano; Sode, Koji

    2014-01-01

    Glucose oxidase (GOx) is an important industrial enzyme and is recognized as the gold standard for monitoring blood glucose. However, due to its inherent oxidase property, the presence of oxygen affects electrochemical measurements of venous blood glucose employing artificial electron mediators. We therefore attempted to engineer Penicillium amagasakiense-derived GOx into a dehydrogenase by focusing on the amino acid residues predicted to interact with oxygen. Our rational amino acid substitution approach resulted in the construction of the Ser114Ala/Phe355Leu mutant, which has an 11-fold decrease in oxidase activity and 2.8-fold increase in dehydrogenase activity compared with wild-type GOx. As a result, the dehydrogenase/oxidase activity ratio of the engineered enzyme was 32-fold greater than that of the wild-type enzyme. The enzyme sensor constructed with Ser114Ala/Phe355Leu was considerably less affected by oxygen than the wild-type GOx-based sensor at lower glucose concentrations

  4. Methods and Best Practice to Intercompare Dissolved Oxygen Sensors and Fluorometers/Turbidimeters for Oceanographic Applications

    Directory of Open Access Journals (Sweden)

    Sara Pensieri

    2016-05-01

    Full Text Available In European seas, ocean monitoring strategies in terms of key parameters, space and time scale vary widely for a range of technical and economic reasons. Nonetheless, the growing interest in the ocean interior promotes the investigation of processes such as oxygen consumption, primary productivity and ocean acidity requiring that close attention is paid to the instruments in terms of measurement setup, configuration, calibration, maintenance procedures and quality assessment. To this aim, two separate hardware and software tools were developed in order to test and simultaneously intercompare several oxygen probes and fluorometers/turbidimeters, respectively in the same environmental conditions, with a configuration as close as possible to real in-situ deployment. The chamber designed to perform chlorophyll-a and turbidity tests allowed for the simultaneous acquisition of analogue and digital signals of several sensors at the same time, so it was sufficiently compact to be used in both laboratory and onboard vessels. Methodologies and best practice committed to the intercomparison of dissolved oxygen sensors and fluorometers/turbidimeters have been used, which aid in the promotion of interoperability to access key infrastructures, such as ocean observatories and calibration facilities. Results from laboratory tests as well as field tests in the Mediterranean Sea are presented.

  5. Composite Sr- and V-doped LaCrO3/YSZ sensor electrode operating at low oxygen levels

    DEFF Research Database (Denmark)

    Lund, Anders; Jacobsen, Torben; Hansen, Karin Vels

    2012-01-01

    A porous composite electrode of La0.8Sr0.2Cr0.97V0.03O3 -delta (LSCV) and yttria-stabilised zirconia (YSZ) was evaluated as a possible candidate for high-temperature potentiometric oxygen sensor measuring electrodes. The oxygen processes at the electrode were characterised by performing electroch....... The relatively low response time at 700º C at an oxygen partial pressure of around 5x10-6 bar and an inlet gas flow rate of 8 L h-1 makes the LSCV/YSZ electrode suitable for use as an potentiometric oxygen sensor electrodes.......A porous composite electrode of La0.8Sr0.2Cr0.97V0.03O3 -delta (LSCV) and yttria-stabilised zirconia (YSZ) was evaluated as a possible candidate for high-temperature potentiometric oxygen sensor measuring electrodes. The oxygen processes at the electrode were characterised by performing...... and 400 nm. At oxygen partial pressures around 0.2 bar at 700º C, the oxygen reaction is dominated by solid-state diffusion of oxide ions and surface reaction kinetics. At oxygen partial pressures around 10-5 bar above 800º C, gas phase mass transport processes dominate the impedance spectra...

  6. A laser-based sensor for measurement of off-gas composition and temperature in basic oxygen steelmaking

    International Nuclear Information System (INIS)

    Ottesen, D.; Allendorf, S.; Ludowise, P.; Hardesty, D.; Miller, T.; Goldstein, D.; Smith, C.; Bonin, M.

    1999-01-01

    We are developing an optical sensor for process control in basic oxygen steelmaking. The sensor measures gas temperature and relative CO/CO 2 concentration ratios in the furnace off-gas by transmitting the laser probe beam directly above the furnace lip and below the exhaust hood during oxygen blowing. Dynamic off-gas information is being evaluated for optimizing variables such as lance height, oxygen flow, post-combustion control, and prediction of final melt-carbon content. The non-invasive nature of the optical sensor renders it robust and relatively maintenance-free. Additional potential applications of the method are process control for electric arc furnace and bottom-blown oxygen steelmaking processes. (author)

  7. Nanostructured oxygen sensor--using micelles to incorporate a hydrophobic platinum porphyrin.

    Directory of Open Access Journals (Sweden)

    Fengyu Su

    Full Text Available Hydrophobic platinum(II-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorophenyl-porphyrin (PtTFPP was physically incorporated into micelles formed from poly(ε-caprolactone-block-poly(ethylene glycol to enable the application of PtTFPP in aqueous solution. Micelles were characterized using dynamic light scattering (DLS and atomic force microscopy (AFM to show an average diameter of about 140 nm. PtTFPP showed higher quantum efficiency in micellar solution than in tetrahydrofuran (THF and dichloromethane (CH₂Cl₂. PtTFPP in micelles also exhibited higher photostability than that of PtTFPP suspended in water. PtTFPP in micelles exhibited good oxygen sensitivity and response time. This study provided an efficient approach to enable the application of hydrophobic oxygen sensors in a biological environment.

  8. Singlet-triplet annihilation in single LHCII complexes

    NARCIS (Netherlands)

    Gruber, J.M.; Chmeliov, J.; Kruger, T.P.J.; Valkunas, L.; van Grondelle, R.

    2015-01-01

    In light harvesting complex II (LHCII) of higher plants and green algae, carotenoids (Cars) have an important function to quench chlorophyll (Chl) triplet states and therefore avoid the production of harmful singlet oxygen. The resulting Car triplet states lead to a non-linear self-quenching

  9. Search for Singlet Fission Chromophores

    Energy Technology Data Exchange (ETDEWEB)

    Havlas, Z.; Akdag, A.; Smith, M. B.; Dron, P.; Johnson, J. C.; Nozik, A. J.; Michl, J.

    2012-01-01

    Singlet fission, in which a singlet excited chromophore shares its energy with a ground-state neighbor and both end up in their triplet states, is of potential interest for solar cells. Only a handful of compounds, mostly alternant hydrocarbons, are known to perform efficiently. In view of the large number of conditions that a successful candidate for a practical cell has to meet, it appears desirable to extend the present list of high performers to additional classes of compounds. We have (i) identified design rules for new singlet fission chromophores and for their coupling to covalent dimers, (ii) synthesized them, and (iii) evaluated their performance as neat solids or covalent dimers.

  10. Microbial nar-GFP cell sensors reveal oxygen limitations in highly agitated and aerated laboratory-scale fermentors

    Directory of Open Access Journals (Sweden)

    Rao Govind

    2009-01-01

    Full Text Available Abstract Background Small-scale microbial fermentations are often assumed to be homogeneous, and oxygen limitation due to inadequate micromixing is often overlooked as a potential problem. To assess the relative degree of micromixing, and hence propensity for oxygen limitation, a new cellular oxygen sensor has been developed. The oxygen responsive E. coli nitrate reductase (nar promoter was used to construct an oxygen reporter plasmid (pNar-GFPuv which allows cell-based reporting of oxygen limitation. Because there are greater than 109 cells in a fermentor, one can outfit a vessel with more than 109 sensors. Our concept was tested in high density, lab-scale (5 L, fed-batch, E. coli fermentations operated with varied mixing efficiency – one verses four impellers. Results In both cases, bioreactors were maintained identically at greater than 80% dissolved oxygen (DO during batch phase and at approximately 20% DO during fed-batch phase. Trends for glucose consumption, biomass and DO showed nearly identical behavior. However, fermentations with only one impeller showed significantly higher GFPuv expression than those with four, indicating a higher degree of fluid segregation sufficient for cellular oxygen deprivation. As the characteristic time for GFPuv expression (approx 90 min. is much larger than that for mixing (approx 10 s, increased specific fluorescence represents an averaged effect of oxygen limitation over time and by natural extension, over space. Conclusion Thus, the pNar-GFPuv plasmid enabled bioreactor-wide oxygen sensing in that bacterial cells served as individual recirculating sensors integrating their responses over space and time. We envision cell-based oxygen sensors may find utility in a wide variety of bioprocessing applications.

  11. Low cost chemical oxygen demand sensor based on electrodeposited nano-copper film

    Directory of Open Access Journals (Sweden)

    Hamdy H. Hassan

    2018-02-01

    Full Text Available A commercially available copper electrical cable and pure Cu disk were used as substrates for the electrodeposition of copper nanoparticles (nano-Cu. The surface morphology of the prepared nano-Cu/Cu electrodes was investigated by scanning electron microscope (SEM and energy dispersive X-ray spectrometer (EDX. The bare copper substrates and the nano-copper modified electrodes were utilized and optimized for electrochemical assay of chemical oxygen demand (COD using glycine as a standard. A comparison was made among the four electrodes (i.e., bare and nano-Cu coated copper cable and pure copper disk as potential COD sensors. The oxidation behavior of glycine was investigated on the surface of the prepared sensors using linear sweep voltammetry (LSV. The results indicate significant enhancement of the electrochemical oxidation of glycine by the deposited nano-Cu. The effects of different deposition parameters, such as Cu2+ concentration, deposition potential, deposition time, pH, and scan rate on the response of the prepared sensors were investigated. Under optimized conditions, the optimal nano-Cu based COD sensor exhibited a linear range of 2–595 mg/L, lower limit of detection (LOD as low as 1.07 mg/L (S/N = 3. The developed method exhibited high tolerance level to Cl− ion where 1.0 M Cl− exhibited minimal influence. The sensor was utilized for the detection of COD in different real water samples. The results obtained were validated using the standard dichromate method.

  12. Optical monitoring of kidney oxygenation and hemodynamics using a miniaturized near-infrared sensor

    Science.gov (United States)

    Shadgan, Babak; Macnab, Andrew; Nigro, Mark; Nguan, Christopher

    2017-02-01

    Background: Following human renal allograft transplant primary graft dysfunction can occur early in the postoperative period as a result of acute tubular necrosis, acute rejection, drug toxicity, and vascular complications. Successful treatment of graft dysfunction requires early detection and accurate diagnosis so that disease-specific medical and/or surgical intervention can be provided promptly. However, current diagnostic methods are not sensitive or specific enough, so that identifying the cause of graft dysfunction is problematic and often delayed. Near-infrared spectroscopy (NIRS) is an established optical method that monitors changes in tissue hemodynamics and oxygenation in real time. We report the feasibility of directly monitoring kidney the kidney in an animal model using NIRS to detect renal ischemia and hypoxia. Methods: In an anesthetized pig, a customized continuous wave spatially resolved (SR) NIRS sensor was fixed directly to the surface of the surgically exposed kidney. Changes in the concentration of oxygenated (O2Hb) deoxygenated (HHb) and total hemoglobin (THb) were monitored before, during and after renal artery clamping and reperfusion, and the resulting fluctuations in chromophore concentration from baseline used to measure variations in renal perfusion and oxygenation. Results: On clamping the renal artery THb and O2Hb concentrations declined progressively while HHb rose. With reperfusion after releasing the artery clamp O2Hb and THb rose while HHb fell with all parameters returning to its baseline. This pattern was similar in all three trials. Conclusion: This pilot study indicates that a miniaturized NIRS sensor applied directly to the surface of a kidney in an animal model can detect the onset of renal ischemia and tissue hypoxia. With modification, our NIRS-based method may contribute to early detection of renal vascular complications and graft dysfunction following renal transplant.

  13. Study on the inside gas flow visualization of oxygen sensor cover; Kashika ni yoru O2 sensor cover nai no gas nagare hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Hocho, S; Mitsuishi, Y; Inagaki, M [Nippon Soken, Inc., Tokyo (Japan); Hamaguchi, S; Mizusawa, K [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    In order to make clear the difference of the response time between the oxygen sensors with different protection covers, we visualized gas flow inside of sensor covers by means of two experimental methods: One is `Smoke Suspension Method` using liquid paraffin vapor as the smoke. With smoke suspension method, we detected the streamlines inside of the covers. The other is `Color Reaction Method` using the reaction of phenolphthalein and NH3 gas. With color reaction method, we confirmed the streamline inside of the cover and furthermore detected the difference of the response time of each sensor. 3 refs., 7 figs., 1 tab.

  14. Elaboration and characterization of solid electrolytes for electrochemical oxygen sensors in liquid sodium

    International Nuclear Information System (INIS)

    Gabard, M.

    2013-01-01

    This PhD thesis was prepared within the framework of the research program on 'Generation IV' nuclear reactors with sodium as coolant. One of the main technological problem concerns the control of the corrosion processes of the materials (structural materials, fuel claddings, etc.) by liquid sodium. A key parameter is the dissolved oxygen content in the coolant. This thesis focuses on the development and characterization of ceramic materials based on ThO 2 doped with Y 2 O 3 for making potentiometric oxygen sensor used in liquid sodium. Work has been carried out and probes were tested in the past, however, the probes had at the time, a lack of reliability. The objective of this thesis is to develop and characterize electrolytes based on thorium oxide doped with yttrium oxide using specific synthesis techniques to control purity, grain size, compactness, etc. To develop experimental protocols a ceramic model has been chosen, i.e., yttria-doped ceria. Transport processes were studied using the impedance spectroscopy technique. An interpretation of the blocking phenomena of the ionic conduction in both ceramics as a function of the oxygen partial pressure has been given. (author) [fr

  15. Subpicosecond oxygen trapping in the heme pocket of the oxygen sensor FixL observed by time-resolved resonance Raman spectroscopy.

    Science.gov (United States)

    Kruglik, Sergei G; Jasaitis, Audrius; Hola, Klara; Yamashita, Taku; Liebl, Ursula; Martin, Jean-Louis; Vos, Marten H

    2007-05-01

    Dissociation of oxygen from the heme domain of the bacterial oxygen sensor protein FixL constitutes the first step in hypoxia-induced signaling. In the present study, the photodissociation of the heme-O2 bond was used to synchronize this event, and time-resolved resonance Raman (TR(3)) spectroscopy with subpicosecond time resolution was implemented to characterize the heme configuration of the primary photoproduct. TR(3) measurements on heme-oxycomplexes are highly challenging and have not yet been reported. Whereas in all other known six-coordinated heme protein complexes with diatomic ligands, including the oxymyoglobin reported here, heme iron out-of-plane motion (doming) occurs faster than 1 ps after iron-ligand bond breaking; surprisingly, no sizeable doming is observed in the oxycomplex of the Bradyrhizobium japonicum FixL sensor domain (FixLH). This assessment is deduced from the absence of the iron-histidine band around 217 cm(-1) as early as 0.5 ps. We suggest that efficient ultrafast oxygen rebinding to the heme occurs on the femtosecond time scale, thus hindering heme doming. Comparing WT oxy-FixLH, mutant proteins FixLH-R220H and FixLH-R220Q, the respective carbonmonoxy-complexes, and oxymyoglobin, we show that a hydrogen bond of the terminal oxygen atom with the residue in position 220 is responsible for the observed behavior; in WT FixL this residue is arginine, crucially implicated in signal transmission. We propose that the rigid O2 configuration imposed by this residue, in combination with the hydrophobic and constrained properties of the distal cavity, keep dissociated oxygen in place. These results uncover the origin of the "oxygen cage" properties of this oxygen sensor protein.

  16. Integrated oxygen sensors based on Mg-doped SrTiO3 fabricated by screen-printing

    DEFF Research Database (Denmark)

    Zheng, H.; Sørensen, Ole Toft

    2000-01-01

    This paper describes the fabrication and testing of Mg-doped SrTiO3 thick-film oxygen sensors with an integrated Pt heater. The results show that the sensor exhibits a P-o2 dependence according to R proportional to p(o2)(-1/4) in the considered P-o2 range(2.5 x 10(-5) bar

  17. A flowing liquid test system for assessing the linearity and time-response of rapid fibre optic oxygen partial pressure sensors.

    Science.gov (United States)

    Chen, R; Hahn, C E W; Farmery, A D

    2012-08-15

    The development of a methodology for testing the time response, linearity and performance characteristics of ultra fast fibre optic oxygen sensors in the liquid phase is presented. Two standard medical paediatric oxygenators are arranged to provide two independent extracorporeal circuits. Flow from either circuit can be diverted over the sensor under test by means of a system of rapid cross-over solenoid valves exposing the sensor to an abrupt change in oxygen partial pressure, P O2. The system is also capable of testing the oxygen sensor responses to changes in temperature, carbon dioxide partial pressure P CO2 and pH in situ. Results are presented for a miniature fibre optic oxygen sensor constructed in-house with a response time ≈ 50 ms and a commercial fibre optic sensor (Ocean Optics Foxy), when tested in flowing saline and stored blood. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. First experience with a novel luminescence-based optical sensor for measurement of oxygenation in tumors

    International Nuclear Information System (INIS)

    Jarm, T.; Miklavcic, D.; Lesnicar, H.; Sersa, G.

    2001-01-01

    Background. The purpose of this preliminary study was to evaluate a novel luminescence-based fiber-optic sensor (OxyLite system) for the measurement of partial pressure of oxygen (pO 2 ) in tumors and for the detection of changes in pO 2 as a function of time. The new method was used simultaneously with the laser Doppler flowmetry method for the measurement of relative tissue perfusion. Materials and methods. Blood perfusion and pO 2 were measured continuously via fiber-optic sensors inserted into SA-1 tumors in anesthetized A/J mice. The changes in blood flow and oxygenation of tumors were induced by transient changes of the parameters of anesthesia and by injection of a vasoactive drug hydralazine. Results. Both optical methods used in the study successfully detected the induced changes in blood flow and pO 2 . The measurements of pO 2 were well correlated with measurements of microcirculatory blood perfusion. In the majority of pO 2 measurements, we observed an unexpected behavior of the signal during the stabilization process immediately after the insertion of the probe into tumor. This behaviour of the pO 2 signal was most probably caused by local tissue damage induced by the insertion of the probe. Conclusion. The novel luminescence-based optical oximetry can reliably detect local pO 2 changes in tumors as a function of time but some aspects of prolonged pO 2 measurement by this method require further investigation. (author)

  19. THE DEVELOPMENT OF BIOCHEMICAL OXYGEN DEMAND SENSOR USING LOCAL YEAST: Candida fukuyamaensis, UICC Y-247

    Directory of Open Access Journals (Sweden)

    Endang Saepudin

    2011-04-01

    Full Text Available In order to shorten the measurement time of biochemical oxygen demand (BOD, a BOD sensor based on yeastmetabolism was developed. Local yeast, Indonesian Origin, Candida fukuyamaensis UICC Y-247, was used as atransducer. The yeast was immobilized as a thin film in agarose matrix with the auxiliary of Nafion® acting as themembrane for ion exchange process. The film was then attached to gold-modified glassy carbons and used as transduceron the working electrodes. The measurements were conducted by observing the depletion of glucose concentrationusing multipulse amperometric method and then converted to BOD values. Optimum condition was observed in awaiting measurement time of 30 min at an applied potential of 450 mV (vs. Ag/AgCl. Linearity was shown in glucoseconcentration range of 0.1–0.5 mM, which was equivalent to BOD concentration range of 10–50 mg/L. A detectionlimit of 1.13 mg/L BOD could be achieved. Good repeatability was shown by a relative standard deviation (RSD of2.7% (n = 15. However, decreasing current response of ~50% was found after 3 days. Comparing to the conventionalBOD measurement, this BOD sensor can be used as an alternative method for BOD measurements.

  20. Phosphorus doped TiO2 as oxygen sensor with low operating temperature and sensing mechanism

    International Nuclear Information System (INIS)

    Han, Zhizhong; Wang, Jiejie; Liao, Lan; Pan, Haibo; Shen, Shuifa; Chen, Jianzhong

    2013-01-01

    Nano-scale TiO 2 powders doped with phosphorus were prepared by sol–gel method. The characterization of the materials was performed by XRD, BET, FT-IR spectroscopy, Zeta potential measurement and XPS analysis. The results indicate that the phosphorus suppresses the crystal growth and phase transformation and, at the same time, increases the surface area and enhances the sensitivity and selectivity for the P-doped TiO 2 oxygen sensors. In this system, the operating temperature is low, only 116 °C, and the response time is short. The spectra of FT-IR and XPS show that the phosphorus dopant presents as the pentavalent-oxidation state in TiO 2 , further phosphorus can connect with Ti 4+ through the bond of Ti-O-P. The positive shifts of XPS peaks indicate that electron depleted layer of P-doped TiO 2 is narrowed compared with that of pure TiO 2 , and the results of Zeta potential illuminate that the density of surface charge carrier is intensified. The adsorptive active site and Lewis acid characteristics of the surface are reinforced by phosphorus doping, where phosphorus ions act as a new active site. Thus, the sensitivity of P-doped TiO 2 is improved, and the 5 mol% P-doped sample has the optimal oxygen sensing properties.

  1. Nanosized TiO[subscript 2] for Photocatalytic Water Splitting Studied by Oxygen Sensor and Data Logger

    Science.gov (United States)

    Zhang, Ruinan; Liu, Song; Yuan, Hongyan; Xiao, Dan; Choi, Martin M. F.

    2012-01-01

    Photocatalytic water splitting by semiconductor photocatalysts has attracted considerable attention in the past few decades. In this experiment, nanosized titanium dioxide (nano-TiO[subscript 2]) particles are used to photocatalytically split water, which is then monitored by an oxygen sensor. Sacrificial reagents such as organics (EDTA) and metal…

  2. Using micro-patterned sensors and cell self-assembly for measuring the oxygen consumption rate of single cells

    International Nuclear Information System (INIS)

    Etzkorn, James R; Parviz, Babak A; Wu, Wen-Chung; Tian, Zhiyuan; Kim, Prince; Jang, Sei-Hum; Jen, Alex K-Y; Meldrum, Deirdre R

    2010-01-01

    We present a method for self-assembling arrays of live single cells on a glass chip using a photopatternable polymer to form micro-traps. We have studied the single-cell self-assembly method and optimized the process to obtain a 52% yield of single-trapped cells. We also report a method to measure the oxygen consumption rate of a single cell using micro-patterned sensors. These molecular oxygen sensors were fabricated around each micro-trap allowing optical interrogation of oxygen concentration in the immediate environment of the trapped cell. Micromachined micro-wells were then used to seal the trap, sensor and cell in order to determine the oxygen consumption rate of single cells. These techniques reported here add to the collection of tools for performing 'singe-cell' biology. An oxygen consumption rate of 1.05 ± 0.28 fmol min −1 was found for a data set consisting of 25 single A549 cells.

  3. Hydrogen generation monitoring and mass gain analysis during the steam oxidation for Zircaloy using hydrogen and oxygen sensors

    International Nuclear Information System (INIS)

    Fukumoto, Michihisa; Hara, Motoi; Kaneko, Hiroyuki; Sakuraba, Takuya

    2015-01-01

    The oxidation behavior of Zircaloy-4 at high temperatures in a flowing Ar-H_2O (saturated at 323 K) mixed gas was investigated using hydrogen and oxygen sensors installed at a gas outlet, and the utility of the gas sensing methods by using both sensors was examined. The generated amount of hydrogen was determined from the hydrogen partial pressure continuously measured by the hydrogen sensor, and the resultant calculated oxygen amount that reacted with the specimen was in close agreement with the mass gain gravimetrically measured after the experiment. This result demonstrated that the hydrogen partial pressure measurement using a hydrogen sensor is an effective method for examining the steam oxidation of this metal as well as monitoring the hydrogen evolution. The advantage of this method is that the oxidation rate of the metal at any time as a differential quantity is able to be obtained, compared to the oxygen amount gravimetrically measured as an integral quantity. When the temperature was periodically changed in the range of 1173 K to 1523 K, highly accurate measurements could be carried out using this gas monitoring method, although reasonable measurements were not gravimetrically performed due to the fluctuating thermo-buoyancy during the experiment. A change of the oxidation rate was clearly detected at a monoclinic tetragonal transition temperature of ZrO_2. From the calculation of the water vapor partial pressure during the thermal equilibrium condition using the hydrogen and oxygen partial pressures, it became clear that a thermal equilibrium state is maintained when the isothermal condition is maintained, but is not when the temperature increases or decreases with time. Based on these results, it was demonstrated that the gas monitoring system using hydrogen and oxygen sensors is very useful for investigating the oxidation process of the Zircaloy in steam. (author)

  4. Oxygen partial pressure effects on the RF sputtered p-type NiO hydrogen gas sensors

    Science.gov (United States)

    Turgut, Erdal; Çoban, Ömer; Sarıtaş, Sevda; Tüzemen, Sebahattin; Yıldırım, Muhammet; Gür, Emre

    2018-03-01

    NiO thin films were grown by Radio Frequency (RF) Magnetron Sputtering method under different oxygen partial pressures, which are 0.6 mTorr, 1.3 mTorr and 2.0 mTorr. The effects of oxygen partial pressures on the thin films were analyzed through Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and Hall measurements. The change in the surface morphology of the thin films has been observed with the SEM and AFM measurements. While nano-pyramids have been obtained on the thin film grown at the lowest oxygen partial pressure, the spherical granules lower than 60 nm in size has been observed for the samples grown at higher oxygen partial pressures. The shift in the dominant XRD peak is realized to the lower two theta angle with increasing the oxygen partial pressures. XPS measurements showed that the Ni2p peak involves satellite peaks and two oxidation states of Ni, Ni2+ and Ni3+, have been existed together with the corresponding splitting in O1s spectrum. P-type conductivity of the grown NiO thin films are confirmed by the Hall measurements with concentrations on the order of 1013 holes/cm-3. Gas sensor measurements revealed minimum of 10% response to the 10 ppm H2 level. Enhanced responsivity of the gas sensor devices of NiO thin films is shown as the oxygen partial pressure increases.

  5. New hybrid reflectance optical pulse oximetry sensor for lower oxygen saturation measurement and for broader clinical application

    Science.gov (United States)

    Nogawa, Masamichi; Ching, Chong Thong; Ida, Takeyuki; Itakura, Keiko; Takatani, Setsuo

    1997-06-01

    A new reflectance pulse oximeter sensor for lower arterial oxygen saturation (Sa)2) measurement has been designed and evaluated in animals prior to clinical trials. The new sensor incorporates ten light emitting diode chips for each wavelength of 730 and 880 nm mounted symmetrically and at the radial separation distance of 7 mm around a photodiode chip. The separation distance of 7 mm was chosen to maximize the ratio of the pulsatile to the average plethysmographic signal level at each wavelength. The 730 and 880 wavelength combination was determined to obtain a linear relationship between the reflectance ratio of the 730 and 880 nm wavelengths and Sa)2. In addition to these features of the sensor, the Fast Fourier Transform method was employed to compute the pulsatile and average signal level at each wavelength. The performance of the new reflectance pulse oximeter sensor was evaluated in dogs in comparison to the 665/910 nm sensor. As predicted by the theoretical simulation based on a 3D photon diffusion theory, the 730/880 nm sensor demonstrated an excellent linearity over the SaO2 range from 100 to 30 percent. For the SaO2 range between 100 and 70 percent, the 665/910 and 730/880 sensors showed the standard error of around 3.5 percent and 2.1 percent, respectively, in comparison to the blood samples. For the range between 70 and 30 percent, the standard error of the 730/880 nm sensor was only 2.7 percent, while that of the 665/910 nm sensor was 9.5 percent. The 730/880 sensor showed improved accuracy for a wide range of SaO2 particularly over the range between 70 and 30 percent. This new reflectance sensor can provide noninvasive measurement of SaO2 accurately over the wide saturation range from 100 to 30 percent.

  6. Novel nanostructured materials to develop oxygen-sensitive films for optical sensors

    International Nuclear Information System (INIS)

    Fernandez-Sanchez, Jorge F.; Cannas, Rita; Spichiger, Stefan; Steiger, Rolf; Spichiger-Keller, Ursula E.

    2006-01-01

    Novel nanostructured materials, such as aluminum oxide (AlOOH), silicon oxide (SiO 2 ) or zirconium oxide (ZrO 2 ) embedded into PVA, were investigated as potential matrices to incorporate organometallic compounds (OMCs) for the development of optical oxygen-sensitive sensors which make use of the principle of luminescence quenching. In order to assess the benefits and drawbacks of the nanoporous material, the luminescence quantum yield and the Stern-Volmer constants were investigated and compared with the values shown for the same OMCs solubilized in polymer films (polystyrene). Referred to polymer films, the incorporation of the dyes into nanoporous membranes increased the Stern-Volmer constant by more than a factor of 100. Their response time was less than 1 s and the optode membranes were stable at room temperature for at least 9 months. Sterilization by autoclavation and gamma irradiation resulted in a marginal loss in activity. The photostability and sterilizability of the oxygen-sensitive membranes and the performance of the optodes with respect to of different types of metal oxides are discussed in the paper, as well as the influence of the total pore volume (TPV), the pore diameter (PD), the transparency of the film and the geometry of the pores. The OMCs used in this work were: ETH T -3003 (tris(4,7-bis(4-octylphenyl)-1,10-phenanthroline) ruthenium(II)), N-926 (bis(2-phenylpyridinyl)-N 4 ,N 4 ,N 4 ',N 4 '-tetramethyl-(4,4'-diamine-2,2'-bipyridine) iridium(III) chlorate), N-833 (tetrabutylammonium bis(isothiocyanate) bis(2-phenylpyridinyl)-iridium(III)) and N-837 (tetrabutylammonium bis(cyanate) bis(2-phenylpyridinyl)-iridium(III))

  7. A fibre optic oxygen sensor that detects rapid PO2 changes under simulated conditions of cyclical atelectasis in vitro.

    Science.gov (United States)

    Formenti, Federico; Chen, Rongsheng; McPeak, Hanne; Matejovic, Martin; Farmery, Andrew D; Hahn, Clive E W

    2014-01-15

    Two challenges in the management of Acute Respiratory Distress Syndrome are the difficulty in diagnosing cyclical atelectasis, and in individualising mechanical ventilation therapy in real-time. Commercial optical oxygen sensors can detect [Formula: see text] oscillations associated with cyclical atelectasis, but are not accurate at saturation levels below 90%, and contain a toxic fluorophore. We present a computer-controlled test rig, together with an in-house constructed ultra-rapid sensor to test the limitations of these sensors when exposed to rapidly changing [Formula: see text] in blood in vitro. We tested the sensors' responses to simulated respiratory rates between 10 and 60 breaths per minute. Our sensor was able to detect the whole amplitude of the imposed [Formula: see text] oscillations, even at the highest respiratory rate. We also examined our sensor's resistance to clot formation by continuous in vivo deployment in non-heparinised flowing animal blood for 24h, after which no adsorption of organic material on the sensor's surface was detectable by scanning electron microscopy. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Oxygen sensor equipped engine operation on methanol/gasoline blends and phase separation problems

    Energy Technology Data Exchange (ETDEWEB)

    Last, A J; Lawson, A; Simmons, E W; Mackay, D; Tsang, M; Maund, G B

    1980-01-01

    A study was made to address problems related to Canadian utilization of methanol/gasoline blends. These problems are: (1) cold weather operation; (2) water sensitivity to phase separation in winter; (3) vehicle compatibility: fuel/air ratio control, flexibility for vehicle movement outside of areas where methanol might be available. Specifically, the operation of the HydroShear (an in-line hydraulic emulsifier) on the two separated phases of a methanol/gasoline/water blend was examined. Fuel maps, by engine dynamometer testing, were generated using methanol/gasoline blends containing 15% to 65% methanol. The capability of an oxygen sensor, located in the exhaust system, to control the fuel/air ratio was found to be adequate within the 15% to 65% methanol/gasoline blends. A fuel injected Volvo 244DL with lambda-sond emission control and a carburetted Chevrolet Monza with 3-way catalyst closed loop feedback emission control system were the two engines selected for this study.

  9. Crossed Optical Fiber Sensor Arrays for High-Spatial-Resolution Sensing: Application to Dissolved Oxygen Concentration Measurements

    Directory of Open Access Journals (Sweden)

    M. Veronica Rigo

    2012-01-01

    Full Text Available Optical fiber sensors using luminescent probes located along an optical fiber in the cladding of this fiber are of great interest for monitoring physical and chemical properties in their environment. The interrogation of a luminophore with a short laser pulse propagating through the fiber core allows for the measurement of the location of these luminophores. To increase the spatial resolution of such a measurements and to measure multiple analytes and properties in a confined space, a crossed optical fiber sensing platform can be employed. Here we describe the application of this platform to measuring the concentration of dissolved oxygen. The sensor is based on luminescence quenching of a ruthenium complex immobilized in a highly crosslinked film and covalently attached to the optical fibers. Both luminescence-intensity and luminescence-lifetime changes of the sensor molecules in response to changes in the concentration of oxygen dissolved in water are reported. For luminescence-intensity measurements, a second adjacent sensor region is employed as reference to account for laser pulse energy fluctuations. Enhanced quenching response in water is demonstrated by the use of organically modified poly(ethylene glycol precursors, which increase the hydrophobicity of the film surface.

  10. Study and Development of a Fluorescence Based Sensor System for Monitoring Oxygen in Wine Production: The WOW Project.

    Science.gov (United States)

    Trivellin, Nicola; Barbisan, Diego; Badocco, Denis; Pastore, Paolo; Meneghesso, Gaudenzio; Meneghini, Matteo; Zanoni, Enrico; Belgioioso, Giuseppe; Cenedese, Angelo

    2018-04-07

    The importance of oxygen in the winemaking process is widely known, as it affects the chemical aspects and therefore the organoleptic characteristics of the final product. Hence, it is evident the usefulness of a continuous and real-time measurements of the levels of oxygen in the various stages of the winemaking process, both for monitoring and for control. The WOW project (Deployment of WSAN technology for monitoring Oxygen in Wine products) has focused on the design and the development of an innovative device for monitoring the oxygen levels in wine. This system is based on the use of an optical fiber to measure the luminescent lifetime variation of a reference metal/porphyrin complex, which decays in presence of oxygen. The developed technology results in a high sensitivity and low cost sensor head that can be employed for measuring the dissolved oxygen levels at several points inside a wine fermentation or aging tank. This system can be complemented with dynamic modeling techniques to provide predictive behavior of the nutrient evolution in space and time given few sampled measuring points, for both process monitoring and control purposes. The experimental validation of the technology has been first performed in a controlled laboratory setup to attain calibration and study sensitivity with respect to different photo-luminescent compounds and alcoholic or non-alcoholic solutions, and then in an actual case study during a measurement campaign at a renown Italian winery.

  11. Study and Development of a Fluorescence Based Sensor System for Monitoring Oxygen in Wine Production: The WOW Project

    Science.gov (United States)

    Trivellin, Nicola; Barbisan, Diego; Badocco, Denis; Pastore, Paolo; Meneghini, Matteo; Zanoni, Enrico; Belgioioso, Giuseppe

    2018-01-01

    The importance of oxygen in the winemaking process is widely known, as it affects the chemical aspects and therefore the organoleptic characteristics of the final product. Hence, it is evident the usefulness of a continuous and real-time measurements of the levels of oxygen in the various stages of the winemaking process, both for monitoring and for control. The WOW project (Deployment of WSAN technology for monitoring Oxygen in Wine products) has focused on the design and the development of an innovative device for monitoring the oxygen levels in wine. This system is based on the use of an optical fiber to measure the luminescent lifetime variation of a reference metal/porphyrin complex, which decays in presence of oxygen. The developed technology results in a high sensitivity and low cost sensor head that can be employed for measuring the dissolved oxygen levels at several points inside a wine fermentation or aging tank. This system can be complemented with dynamic modeling techniques to provide predictive behavior of the nutrient evolution in space and time given few sampled measuring points, for both process monitoring and control purposes. The experimental validation of the technology has been first performed in a controlled laboratory setup to attain calibration and study sensitivity with respect to different photo-luminescent compounds and alcoholic or non-alcoholic solutions, and then in an actual case study during a measurement campaign at a renown Italian winery. PMID:29642468

  12. The oxygen reactivity index and its relation to sensor technology in patients with severe brain lesions.

    Science.gov (United States)

    Dengler, Julius; Frenzel, Christin; Vajkoczy, Peter; Horn, Peter; Wolf, Stefan

    2013-08-01

    The oxygen reactivity index (ORx) has been introduced to assess the status of cerebral autoregulation after traumatic brain injury (TBI) or subarachnoid hemorrhage (SAH). Currently, there is some controversy about whether the ORx depends on the type of PbrO2-sensor technology used for its calculation. To examine if the probe technology does matter, we compared the ORx and the resulting optimal cerebral perfusion pressures (CPPopt) of simultaneously implanted Licox (CC1.SB, Integra Neuroscience, France) and Neurovent-PTO (Raumedic, Germany) probes in patients after aneurysmal SAH or severe TBI. Licox and Raumedic probes were implanted side by side in 11 patients after TBI or SAH. ORx and CPPopt were recorded continuously. The equivalence of both probes was examined using Bland-Altman analyses. The mean difference in ORx was 0.1, with Licox producing higher values. The limits of agreement regarding ORx ranged from -0.6 to +0.7. When both probes' ORx values were compared in each patient, no specific pattern in their relationship was seen. The mean difference in CPPopt was 0 mmHg with limits of agreement between -16.5 and +16.4 mmHg. Owing to the rather limited number of patients, we view the results of this study as preliminary. The main result is that Licox and Raumedic showed consistent differences in ORx and CPPopt. Therefore, ORx values of both probes cannot be interchanged and should not be viewed as equivalent. This should be taken into consideration when discussing ORx data generated by different PbrO2 probe types.

  13. An Oxidase-Based Electrochemical Fluidic Sensor with High-Sensitivity and Low-Interference by On-Chip Oxygen Manipulation

    Directory of Open Access Journals (Sweden)

    Chang-Soo Kim

    2012-06-01

    Full Text Available Utilizing a simple fluidic structure, we demonstrate the improved performance of oxidase-based enzymatic biosensors. Electrolysis of water is utilized to generate bubbles to manipulate the oxygen microenvironment close to the biosensor in a fluidic channel. For the proper enzyme reactions to occur, a simple mechanical procedure of manipulating bubbles was developed to maximize the oxygen level while minimizing the pH change after electrolysis. The sensors show improved sensitivities based on the oxygen dependency of enzyme reaction. In addition, this oxygen-rich operation minimizes the ratio of electrochemical interference signal by ascorbic acid during sensor operation (i.e., amperometric detection of hydrogen peroxide. Although creatinine sensors have been used as the model system in this study, this method is applicable to many other biosensors that can use oxidase enzymes (e.g., glucose, alcohol, phenol, etc. to implement a viable component for in-line fluidic sensor systems.

  14. Multiple approaches for enhancing all-organic electronics photoluminescent sensors: Simultaneous oxygen and pH monitoring

    International Nuclear Information System (INIS)

    Liu, Rui; Xiao, Teng; Cui, Weipan; Shinar, Joseph; Shinar, Ruth

    2013-01-01

    Graphical abstract: -- Highlights: •Novel simply-fabricated all-organic electronics pH and oxygen optical monitor. •Excitation sources: directionally emitting, narrowed multicolor microcavity OLEDs. •Photodetectors: small molecule- or polymer-based with selective spectral responses. •Sensor film: structured high molecular weight polystyrene:polyethylene glycol blend. •×1.9 sensitivity enhancement and ×2.7 increase in the photoluminescence for oxygen. -- Abstract: Key issues in using organic light emitting diodes (OLEDs) as excitation sources in structurally integrated photoluminescence (PL)-based sensors are the low forward light outcoupling, the OLEDs’ broad electroluminescence (EL) bands, and the long-lived remnant EL that follows an EL pulse. The outcoupling issue limits the detection sensitivity (S) as only ∼20% of the light generated within standard OLEDs can be forward outcoupled and used for sensor probe excitation. The EL broad band interferes with the analyte-sensitive PL, leading to a background that reduces S and dynamic range. In particular, these issues hinder designing compact sensors, potentially miniaturizable, that are devoid of optical filters and couplers. We address these shortcomings by introducing easy-to-employ multiple approaches for outcoupling improvement, PL enhancement, and background EL reduction leading to novel, compact all-organic device architectures demonstrated for simultaneous monitoring of oxygen and pH. The sensor comprises simply-fabricated, directionally-emitting, narrower-band, multicolor microcavity OLED excitation and small molecule- and polymer-based organic photodetectors (OPDs) with a more selective spectral response. Additionally, S and PL intensity for oxygen are enhanced by using polystyrene (PS):polyethylene glycol (PEG) blends as the sensing film matrix. By utilizing higher molecular weight PS, the ratio τ 0 /τ 100 (PL decay time τ at 0% O 2 /τ at 100% O 2 ) that is often used to express S

  15. A spin exchange model for singlet fission

    Science.gov (United States)

    Yago, Tomoaki; Wakasa, Masanobu

    2018-03-01

    Singlet fission has been analyzed with the Dexter model in which electron exchange occurs between chromophores, conserving the spin for each electron. In the present study, we propose a spin exchange model for singlet fission. In the spin exchange model, spins are exchanged by the exchange interaction between two electrons. Our analysis with simple spin functions demonstrates that singlet fission is possible by spin exchange. A necessary condition for spin exchange is a variation in exchange interactions. We also adapt the spin exchange model to triplet fusion and triplet energy transfer, which often occur after singlet fission in organic solids.

  16. The Role of Oxygen Sensors, Hydroxylases, and HIF in Cardiac Function and Disease

    Directory of Open Access Journals (Sweden)

    W. H. Davin Townley-Tilson

    2015-01-01

    Full Text Available Ischemic heart disease is the leading cause of death worldwide. Oxygen-sensing proteins are critical components of the physiological response to hypoxia and reperfusion injury, but the role of oxygen and oxygen-mediated effects is complex in that they can be cardioprotective or deleterious to the cardiac tissue. Over 200 oxygen-sensing proteins mediate the effects of oxygen tension and use oxygen as a substrate for posttranslational modification of other proteins. Hydroxylases are an essential component of these oxygen-sensing proteins. While a major role of hydroxylases is regulating the transcription factor HIF, we investigate the increasing scope of hydroxylase substrates. This review discusses the importance of oxygen-mediated effects in the heart as well as how the field of oxygen-sensing proteins is expanding, providing a more complete picture into how these enzymes play a multifaceted role in cardiac function and disease. We also review how oxygen-sensing proteins and hydroxylase function could prove to be invaluable in drug design and therapeutic targets for heart disease.

  17. Radiative lifetime measurements of the singlet-G states of H2 and the 4p35p and 4d5D0 states of neutral oxygen atom

    International Nuclear Information System (INIS)

    Day, R.L.

    1981-01-01

    The present work reports measurements of the mean radiative lifetime for the G 1 μ/sub g/ + (v' = 0,1,2,3) and l 1 II/sub g/ + (v' = 0) Rydberg states and the K 1 μ/sub g/ + (v' = 0,1,2),M 1 μ/sub g/ + (v' = 0) and N 1 μ/sub g/ + (v' - 1,2) doubly excited of the H 2 molecule. In particular, the resulting radiative transitions G 1 μ/sub g/ + (v' = 0,1,2,3) → B 1 μ/sub u/ + (v'' = 0,1,3,5,7), l 1 II/sub g/ + (v' = 0) → B 1 μ/sub u/ + (v'' = 0), K 1 μ/sub g/ + (v' = 0,1,2) → B 1 μ/sub u/ + (v'' = 0,1), M 1 μ/sub g/ + (v' = 0) → B 1 μ/sub u/ + (v'' = 0) and N 1 μ/sub g/ + (v' = 1,2) → B 1 μ/sub u/ + (v'' = 0,2) are observed using time-resolved techniques. Radiative lifetime measurements in the range approx. 21 to 70 ns are obtained at 50 eV incident electron energy and approx. 30 mtorr H 2 gas pressure. In addition, H 2 - H 2 * quenching rate data are obtained for several rovibronic levels of the singlet-g states over the pressure range approx. 10 to 400 mtorr. In addition, time-resolved techniques are also used to observe the 4p 5 P → 3s 5 S 0 , 4p 3 P → 3s 3 S 0 , and 4d 5 D 0 → 3p 3 P multiplet transitions of the Ol spectrum occurring at lambda = 3947 A, lambda = 4368 A, and lambda = 6157 A, respectively. The excited atomic states are produced through dissociative-excitation of O 2 target gas by a pulsed electron beam of approx. 0.5 and 2 μs pulse width and 100 eV incident energy. The mean radiative lifetimes of the 4p 5 P, 4p 3 P and 4d 5 D 0 multiplets are obtained from analysis of the resulting radiative decay over the pressure range approx. 20 - 100 mtorr, and are reported as 194 ns, 161 ns, and 95 ns, respectively. The corresponding collisional deactivation cross sections for the multiplets are also obtained from the lifetime versus pressure measurements and are reported as 3.2 x 10 - 15 cm 2 , 7.7 x 10 - 15 cm 2 , and 1.6 x 10 - 15 cm 2 , respectively

  18. Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ayyaru, Sivasankaran; Dharmalingam, Sangeetha, E-mail: sangeetha@annauniv.edu

    2014-03-01

    Graphical abstract: - Highlights: • Sulfonated poly ether ether ketone (SPEEK) membrane in SCMFC used to determine the BOD. • The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm. • This sensing range was 62.5% higher than that of Nafion{sup ®}. • SPEEK exhibited one order lesser oxygen permeability than Nafion{sup ®}. • Nafion{sup ®} shows high anodic internal resistance (67 Ω) than the SPEEK (39 Ω). - Abstract: The present study is focused on the development of single chamber microbial fuel cell (SCMFC) using sulfonated poly ether ether ketone (SPEEK) membrane to determine the biochemical oxygen demand (BOD) matter present in artificial wastewater (AW). The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm when using artificial wastewater. This sensing range was 62.5% higher than that of Nafion{sup ®}. The most serious problem in using MFC as a BOD sensor is the oxygen diffusion into the anode compartment, which consumes electrons in the anode compartment, thereby reducing the coulomb yield and reducing the electrical signal from the MFC. SPEEK exhibited one order lesser oxygen permeability than Nafion{sup ®}, resulting in low internal resistance and substrate loss, thus improving the sensing range of BOD. The system was further improved by making a double membrane electrode assembly (MEA) with an increased electrode surface area which provide high surface area for electrically active bacteria.

  19. Colour singlets in perturbative QCD

    International Nuclear Information System (INIS)

    Bassetto, A.

    1979-01-01

    In the axial gauge and at the leading log level, a definite and consistent picture seems to emerge of a parton decay into states in which many partons are found just before confinement should take place. They are grouped into colourless clusters in a number sufficient to exhaust the ''final'' state, still possessing a finite average mass. This result is peculiar of QCD, in particular of its non-abelian nature. Large transverse momenta or more generally average invariant quantities of partons are mainly due to the multiplicities involved in the branching processes. If eventually confinement would convert these clusters into hadrons (and this is of course the main issue which has still to be proven) without a large rearrangement of the colour lines, the picture we have found for colour singlets could apply to the real hadronic world. (author)

  20. Singlet fission in pentacene dimers

    Science.gov (United States)

    Zirzlmeier, Johannes; Lehnherr, Dan; Coto, Pedro B.; Chernick, Erin T.; Casillas, Rubén; Basel, Bettina S.; Thoss, Michael; Tykwinski, Rik R.; Guldi, Dirk M.

    2015-01-01

    Singlet fission (SF) has the potential to supersede the traditional solar energy conversion scheme by means of boosting the photon-to-current conversion efficiencies beyond the 30% Shockley–Queisser limit. Here, we show unambiguous and compelling evidence for unprecedented intramolecular SF within regioisomeric pentacene dimers in room-temperature solutions, with observed triplet quantum yields reaching as high as 156 ± 5%. Whereas previous studies have shown that the collision of a photoexcited chromophore with a ground-state chromophore can give rise to SF, here we demonstrate that the proximity and sufficient coupling through bond or space in pentacene dimers is enough to induce intramolecular SF where two triplets are generated on one molecule. PMID:25858954

  1. Multiple approaches for enhancing all-organic electronics photoluminescent sensors: simultaneous oxygen and pH monitoring.

    Science.gov (United States)

    Liu, Rui; Xiao, Teng; Cui, Weipan; Shinar, Joseph; Shinar, Ruth

    2013-05-17

    Key issues in using organic light emitting diodes (OLEDs) as excitation sources in structurally integrated photoluminescence (PL)-based sensors are the low forward light outcoupling, the OLEDs' broad electroluminescence (EL) bands, and the long-lived remnant EL that follows an EL pulse. The outcoupling issue limits the detection sensitivity (S) as only ~20% of the light generated within standard OLEDs can be forward outcoupled and used for sensor probe excitation. The EL broad band interferes with the analyte-sensitive PL, leading to a background that reduces S and dynamic range. In particular, these issues hinder designing compact sensors, potentially miniaturizable, that are devoid of optical filters and couplers. We address these shortcomings by introducing easy-to-employ multiple approaches for outcoupling improvement, PL enhancement, and background EL reduction leading to novel, compact all-organic device architectures demonstrated for simultaneous monitoring of oxygen and pH. The sensor comprises simply-fabricated, directionally-emitting, narrower-band, multicolor microcavity OLED excitation and small molecule- and polymer-based organic photodetectors (OPDs) with a more selective spectral response. Additionally, S and PL intensity for oxygen are enhanced by using polystyrene (PS):polyethylene glycol (PEG) blends as the sensing film matrix. By utilizing higher molecular weight PS, the ratio τ0/τ100 (PL decay time τ at 0% O2/τ at 100% O2) that is often used to express S increases ×1.9 to 20.7 relative to the lower molecular weight PS, where this ratio is 11.0. This increase reduces to ×1.7 when the PEG is added (τ0/τ100=18.2), but the latter results in an increase ×2.7 in the PL intensity. The sensor's response time is <10s in all cases. The microporous structure of these blended films, with PEG decorating PS pores, serves a dual purpose. It results in light scattering that reduces the EL that is waveguided in the substrate of the OLEDs and

  2. Multiple approaches for enhancing all-organic electronics photoluminescent sensors: Simultaneous oxygen and pH monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rui; Xiao, Teng; Cui, Weipan [Ames Laboratory-USDOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Shinar, Joseph, E-mail: jshinar@iastate.edu [Ames Laboratory-USDOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Shinar, Ruth, E-mail: rshinar@iastate.edu [Microelectronics Research Center and Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011 (United States)

    2013-05-17

    Graphical abstract: -- Highlights: •Novel simply-fabricated all-organic electronics pH and oxygen optical monitor. •Excitation sources: directionally emitting, narrowed multicolor microcavity OLEDs. •Photodetectors: small molecule- or polymer-based with selective spectral responses. •Sensor film: structured high molecular weight polystyrene:polyethylene glycol blend. •×1.9 sensitivity enhancement and ×2.7 increase in the photoluminescence for oxygen. -- Abstract: Key issues in using organic light emitting diodes (OLEDs) as excitation sources in structurally integrated photoluminescence (PL)-based sensors are the low forward light outcoupling, the OLEDs’ broad electroluminescence (EL) bands, and the long-lived remnant EL that follows an EL pulse. The outcoupling issue limits the detection sensitivity (S) as only ∼20% of the light generated within standard OLEDs can be forward outcoupled and used for sensor probe excitation. The EL broad band interferes with the analyte-sensitive PL, leading to a background that reduces S and dynamic range. In particular, these issues hinder designing compact sensors, potentially miniaturizable, that are devoid of optical filters and couplers. We address these shortcomings by introducing easy-to-employ multiple approaches for outcoupling improvement, PL enhancement, and background EL reduction leading to novel, compact all-organic device architectures demonstrated for simultaneous monitoring of oxygen and pH. The sensor comprises simply-fabricated, directionally-emitting, narrower-band, multicolor microcavity OLED excitation and small molecule- and polymer-based organic photodetectors (OPDs) with a more selective spectral response. Additionally, S and PL intensity for oxygen are enhanced by using polystyrene (PS):polyethylene glycol (PEG) blends as the sensing film matrix. By utilizing higher molecular weight PS, the ratio τ{sub 0}/τ{sub 100} (PL decay time τ at 0% O{sub 2}/τ at 100% O{sub 2}) that is often used

  3. Microencapsulated 3-dimensional sensor for the measurement of oxygen in single isolated pancreatic islets.

    Directory of Open Access Journals (Sweden)

    Wanyu Chen

    Full Text Available Oxygen consumption reflects multiple processes in pancreatic islets including mechanisms contributing to insulin secretion, oxidative stress and viability, providing an important readout in studies of islet function, islet viability and drug testing. Due to the scarcity, heterogeneity, and intrinsic kinetic properties of individual islets, it would be of great benefit to detect oxygen consumption by single islets. We present a novel method we have developed to image oxygen in single islets.Using a microfluidics system, individual islets and a fluorescent oxygen-sensitive dye were encased within a thin alginate polymer layer. Insulin secretion by the encapsulated islets was normal. Fluorescent signal from the encased dye, detected using a standard inverted fluorescence microscope and digital camera, was stable and proportional to the amount of oxygen in the media. When integrated into a perifusion system, the sensing system detected changes in response to metabolic substrates, mitochondrial poisons, and induced-oscillations. Glucose responses averaged 30.1±7.1% of the response to a metabolic inhibitor (cyanide, increases were observed in all cases (n = 6, and the system was able to resolve changes in oxygen consumption that had a period greater than 0.5 minutes. The sensing system operated similarly from 2-48 hours following encapsulation, and viability and function of the islets were not significantly affected by the encapsulation process.An oxygen-dependent dye situated around and within a pancreatic islet encapsulated by a thin layer of alginate was sensitive to changes in oxygen consumption, and was not harmful to the function or viability of islets over the course of two days. The microcapsule-based sensing method is particularly suited to assessing the effects of compounds (dose responses and time courses and chronic changes occurring over the course of days. The approach should be applicable to other cell types and dyes sensitive to other

  4. Microencapsulated 3-Dimensional Sensor for the Measurement of Oxygen in Single Isolated Pancreatic Islets

    Science.gov (United States)

    Khalil, Gamal; Sweet, Ian R.; Shen, Amy Q.

    2012-01-01

    Background Oxygen consumption reflects multiple processes in pancreatic islets including mechanisms contributing to insulin secretion, oxidative stress and viability, providing an important readout in studies of islet function, islet viability and drug testing. Due to the scarcity, heterogeneity, and intrinsic kinetic properties of individual islets, it would be of great benefit to detect oxygen consumption by single islets. We present a novel method we have developed to image oxygen in single islets. Methodology/Principal Findings Using a microfluidics system, individual islets and a fluorescent oxygen-sensitive dye were encased within a thin alginate polymer layer. Insulin secretion by the encapsulated islets was normal. Fluorescent signal from the encased dye, detected using a standard inverted fluorescence microscope and digital camera, was stable and proportional to the amount of oxygen in the media. When integrated into a perifusion system, the sensing system detected changes in response to metabolic substrates, mitochondrial poisons, and induced-oscillations. Glucose responses averaged 30.1±7.1% of the response to a metabolic inhibitor (cyanide), increases were observed in all cases (n = 6), and the system was able to resolve changes in oxygen consumption that had a period greater than 0.5 minutes. The sensing system operated similarly from 2–48 hours following encapsulation, and viability and function of the islets were not significantly affected by the encapsulation process. Conclusions/Significance An oxygen-dependent dye situated around and within a pancreatic islet encapsulated by a thin layer of alginate was sensitive to changes in oxygen consumption, and was not harmful to the function or viability of islets over the course of two days. The microcapsule-based sensing method is particularly suited to assessing the effects of compounds (dose responses and time courses) and chronic changes occurring over the course of days. The approach should be

  5. A highly sensitive amperometric sensor for oxygen based on iron(II) tetrasulfonated phthalocyanine and iron(III) tetra-(N-methyl-pyridyl)-porphyrin multilayers

    International Nuclear Information System (INIS)

    Duarte, Juliana C.; Luz, Rita C.S.; Damos, Flavio S.; Tanaka, Auro A.; Kubota, Lauro T.

    2008-01-01

    The development of a highly sensitive sensor for oxygen is proposed using a glassy carbon (GC) electrode modified with alternated layers of iron(II) tetrasulfonated phthalocyanine (FeTsPc) and iron(III) tetra-(N-methyl-pyridyl)-porphyrin (FeT4MPyP). The modified electrode showed excellent catalytic activity for the oxygen reduction. The reduction potential of the oxygen was shifted about 330 mV toward less negative values with this modified electrode, presenting a peak current much higher than those observed on a bare GC electrode. Cyclic voltammetry and rotating disk electrode (RDE) experiments indicated that the oxygen reduction reaction involves 4 electrons with a heterogenous rate constant (k obs ) of 3 x 10 5 mol -1 L s -1 . A linear response range from 0.2 up to 6.4 mg L -1 , with a sensitivity of 4.12 μA L mg -1 (or 20.65 μA cm -2 L mg -1 ) and a detection limit of 0.06 mg L -1 were obtained with this sensor. The repeatability of the proposed sensor, evaluated in terms of relative standard deviation (R.S.D.) was 2.0% for 10 measurements of a solution of 6.4 mg L -1 oxygen. The sensor was applied to determine oxygen in pond and tap water samples showing to be a promising tool for this purpose

  6. A Micro Oxygen Sensor Based on a Nano Sol-Gel TiO2 Thin Film

    Directory of Open Access Journals (Sweden)

    Hairong Wang

    2014-09-01

    Full Text Available An oxygen gas microsensor based on nanostructured sol-gel TiO2 thin films with a buried Pd layer was developed on a silicon substrate. The nanostructured titania thin films for O2 sensors were prepared by the sol-gel process and became anatase after heat treatment. A sandwich TiO2 square board with an area of 350 μm × 350 μm was defined by both wet etching and dry etching processes and the wet one was applied in the final process due to its advantages of easy control for the final structure. A pair of 150 nm Pt micro interdigitated electrodes with 50 nm Ti buffer layer was fabricated on the board by a lift-off process. The sensor chip was tested in a furnace with changing the O2 concentration from 1.0% to 20% by monitoring its electrical resistance. Results showed that after several testing cycles the sensor’s output becomes stable, and its sensitivity is 0.054 with deviation 2.65 × 10−4 and hysteresis is 8.5%. Due to its simple fabrication process, the sensor has potential for application in environmental monitoring, where lower power consumption and small size are required.

  7. A Macroporous TiO2 Oxygen Sensor Fabricated Using Anodic Aluminium Oxide as an Etching Mask

    Directory of Open Access Journals (Sweden)

    Sheng-Po Wu

    2010-01-01

    Full Text Available An innovative fabrication method to produce a macroporous Si surface by employing an anodic aluminium oxide (AAO nanopore array layer as an etching template is presented. Combining AAO with a reactive ion etching (RIE processes, a homogeneous and macroporous silicon surface can be effectively configured by modulating AAO process parameters and alumina film thickness, thus hopefully replacing conventional photolithography and electrochemical etch methods. The hybrid process integration is considered fully CMOS compatible thanks to the low-temperature AAO and CMOS processes. The gas-sensing characteristics of 50 nm TiO2 nanofilms deposited on the macroporous surface are compared with those of conventional plain (or non-porous nanofilms to verify reduced response noise and improved sensitivity as a result of their macroporosity. Our experimental results reveal that macroporous geometry of the TiO2 chemoresistive gas sensor demonstrates 2-fold higher (~33% improved sensitivity than a non-porous sensor at different levels of oxygen exposure. In addition, the macroporous device exhibits excellent discrimination capability and significantly lessened response noise at 500 °C. Experimental results indicate that the hybrid process of such miniature and macroporous devices are compatible as well as applicable to integrated next generation bio-chemical sensors.

  8. Injectable LiNc-BuO loaded microspheres as in vivo EPR oxygen sensors after co-implantation with tumor cells.

    Science.gov (United States)

    Frank, Juliane; Gündel, Daniel; Drescher, Simon; Thews, Oliver; Mäder, Karsten

    2015-12-01

    Electron paramagnetic resonance (EPR) oximetry is a technique which allows accurate and repeatable oxygen measurements. We encapsulated a highly oxygen sensitive particulate EPR spin probe into microparticles to improve its dispersibility and, hence, facilitate the administration. These biocompatible, non-toxic microspheres contained 5-10 % (w/w) spin probe and had an oxygen sensitivity of 0.60 ± 0.01 µT/mmHg. To evaluate the performance of the microparticles as oxygen sensors, they were co-implanted with syngeneic tumor cells in 2 different rat strains. Thus, tissue injury was avoided and the microparticles were distributed all over the tumor tissue. Dynamic changes of the intratumoral oxygen partial pressure during inhalation of 8 %, 21 %, or 100 % oxygen were monitored in vivo by EPR spectroscopy and quantified. Values were verified in vivo by invasive fluorometric measurements using Oxylite probes and ex vivo by pimonidazole adduct accumulation. There were no hints that the tumor physiology or tissue oxygenation had been altered by the microparticles. Hence, these microprobes offer great potential as oxygen sensors in preclinical research, not only for EPR spectroscopy but also for EPR imaging. For instance, the assessment of tissue oxygenation during therapeutic interventions might help understanding pathophysiological processes and lead to an individualized treatment planning or the use of formulations with hypoxia triggered release of active agents. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Spin nematics next to spin singlets

    Science.gov (United States)

    Yokoyama, Yuto; Hotta, Chisa

    2018-05-01

    We provide a route to generate nematic order in a spin-1/2 system. Unlike the well-known magnon-binding mechanism, our spin nematics requires neither the frustration effect nor spin polarization in a high field or in the vicinity of a ferromagnet, but instead appears next to the spin singlet phase. We start from a state consisting of a quantum spin-1/2 singlet dimer placed on each site of a triangular lattice, and show that interdimer ring exchange interactions efficiently dope the SU(2) triplets that itinerate and interact, easily driving a stable singlet state to either Bose-Einstein condensates or a triplet crystal, some hosting a spin nematic order. A variety of roles the ring exchange serves includes the generation of a bilinear-biquadratic interaction between nearby triplets, which is responsible for the emergent nematic order separated from the singlet phase by a first-order transition.

  10. Signatures for exotic quark singlets from superstrings

    International Nuclear Information System (INIS)

    Barger, V.; Deshpande, N.G.; Gunion, J.F.

    1986-09-01

    We consider various scenarios, at Superconducting Super Collider energy and luminosity, for detection of the extra colored, weak isospin singlet, charge -1/3 heavy fermion resulting from E 6 compactification in superstring theories

  11. Singlet fermionic dark matter with Veltman conditions

    OpenAIRE

    Kim, Yeong Gyun; Lee, Kang Young; Nam, Soo-hyeon

    2018-01-01

    We reexamine a renormalizable model of a fermionic dark matter with a gauge singlet Dirac fermion and a real singlet scalar which can ameliorate the scalar mass hierarchy problem of the Standard Model (SM). Our model setup is the minimal extension of the SM for which a realistic dark matter (DM) candidate is provided and the cancellation of one-loop quadratic divergence to the scalar masses can be achieved by the Veltman condition (VC) simultaneously. This model extension, although renormaliz...

  12. Singlet axial constant from QCD sum rules

    International Nuclear Information System (INIS)

    Belitskij, A.V.; Teryaev, O.V.

    1995-01-01

    We analyze the singlet axial form factor of the proton for small momentum transferred in the framework of QCD sum rules using the interpolating nucleon current which explicitly accounts for the gluonic degrees of freedom. As the result we come to the quantitative prediction of the singlet axial constant. It is shown that the bilocal power corrections play the most important role in the analysis. 21 refs., 3 figs

  13. Improvement in the Sensitivity of PbO Doped Tin Oxide Thick Film Gas Sensor by RF and Microwave Oxygen Plasma Treatment

    Directory of Open Access Journals (Sweden)

    J. K. SRIVASTAVA

    2010-07-01

    Full Text Available In the present work efforts have been made to analyze the effect of oxygen plasma and PbO doping on the sensitivity of SnO2-based thick film gas sensor for methanol, propanol and acetone. The effect of substrate temperature on the response of dual frequency (RF and microwave plasma treated thick film sensor array has also been studied. To achieve this, three sensor arrays (each with four tin oxide sensors doped with different (1 %, 2 %, 3 % and 4 % PbO concentrations were fabricated by thick film technology and then treated with oxygen plasma for various durations (5 min, 10 min. and 15 min.. The plasma treated sensors were found to possess appreciably high sensitivity at room temperature in comparison to untreated sensor. The sensitivity showed the increasing trend with plasma exposure time and 15 minutes exposure time was found to be most suitable as the sensitivity of the plasma treated sensors for this duration were high towards all the chosen vapors with maximum (97 % value for propanol. The sensitivity of the sensors were found to be increasing gradually as PbO concentration was varied from 1- 4%.

  14. The Determination of the Percent of Oxygen in Air Using a Gas Pressure Sensor

    Science.gov (United States)

    Gordon, James; Chancey, Katherine

    2005-01-01

    The experiment of determination of the percent of oxygen in air is performed in a general chemistry laboratory in which students compare the results calculated from the pressure measurements obtained with the calculator-based systems to those obtained in a water-measurement method. This experiment allows students to explore a fundamental reaction…

  15. Effect of oxygen and hydrogen on the optical and electrical characteristics of porous silicon. Towards sensor applications

    International Nuclear Information System (INIS)

    Green, S.

    2000-02-01

    The effect of adsorbed oxygen and hydrogen gas on porous silicon has been investigated using two different techniques, viz. optical and electrical. The photoluminescence quenching by oxygen and hydrogen was found to be reversible with a response time of the order of 3000 s. Unlike any reported porous silicon gas quenching systems, both the extent and rate of quenching were found to be a function of photoluminescence wavelength. The quenching is attributed to charge transfer from the conduction band of porous silicon to the lowest unoccupied molecular orbital of oxygen and hydrogen, respectively. Surface conductance measurements (aluminium contacts) show that the principal charge transfer process is via tunnelling, with some conduction through the underlying bulk p-type silicon layer. Symmetrical current-voltage plots were obtained for this system which were attributed to pinning of the aluminium-porous silicon Fermi level at mid-gap by the high surface trap density. An approximate doubling of the aluminium electrode separation was found to reduce approximately fourfold the initial rate of increase in surface conductance on adsorption of oxygen at a pressure of 10 torr. To the best of the author's knowledge this is the first time that such an effect has been reported in a room temperature solid state gas sensor. Gas sensitivity measurements using surface contacts show a logarithmic response to the concentration of oxygen up to a pressure of 100 torr with a rapid response, of 300 s. A 39% increase in surface conductance occurs on exposure of the device to 100 torr of oxygen. The surface conductance of the device decreases by 34% on exposure to one atmosphere of hydrogen with a response time of the order 2000 s. Transverse conductance (DC) measurements show that Au/PS/p-Si/Al..Ag devices behave like a field-dependent diode. An admittance spectroscopy technique has been applied to porous silicon for the first time to calculate g 0 , the trap density at the Fermi level

  16. Role of distal arginine in early sensing intermediates in the heme domain of the oxygen sensor FixL.

    Science.gov (United States)

    Jasaitis, Audrius; Hola, Klara; Bouzhir-Sima, Latifa; Lambry, Jean-Christophe; Balland, Veronique; Vos, Marten H; Liebl, Ursula

    2006-05-16

    FixL is a bacterial heme-based oxygen sensor, in which release of oxygen from the sensing PAS domain leads to activation of an associated kinase domain. Static structural studies have suggested an important role of the conserved residue arginine 220 in signal transmission at the level of the heme domain. To assess the role of this residue in the dynamics and properties of the initial intermediates in ligand release, we have investigated the effects of R220X (X = I, Q, E, H, or A) mutations in the FixLH heme domain on the dynamics and spectral properties of the heme upon photolysis of O(2), NO, and CO using femtosecond transient absorption spectroscopy. Comparison of transient spectra for CO and NO dissociation with steady-state spectra indicated less strain on the heme in the ligand dissociation species for all mutants compared to the wild type (WT). For CO and NO, the kinetics were similar to those of the wild type, with the exception of (1) a relatively low yield of picosecond NO rebinding to R220A, presumably related to the increase in the free volume of the heme pocket, and (2) substantial pH-dependent picosecond to nanosecond rebinding of CO to R220H, related to formation of a hydrogen bond between CO and histidine 220. Upon excitation of the complex bound with the physiological sensor ligand O(2), a 5-8 ps decay phase and a nondecaying (>4 ns) phase were observed for WT and all mutants. The strong distortion of the spectrum associated with the decay phase in WT is substantially diminished in all mutant proteins, indicating an R220-induced role of the heme in the primary intermediate in signal transmission. Furthermore, the yield of dissociated oxygen after this phase ( approximately 10% in WT) is increased in all mutants, up to almost unity in R220A, indicating a key role of R220 in caging the oxygen near the heme through hydrogen bonding. Molecular dynamics simulations corroborate these findings and suggest motions of O(2) and arginine 220 away from the heme

  17. A Lab Assembled Microcontroller-Based Sensor Module for Continuous Oxygen Measurement in Portable Hypoxia Chambers

    OpenAIRE

    Mathupala, Saroj P.; Kiousis, Sam; Szerlip, Nicholas J.

    2016-01-01

    Background Hypoxia-based cell culture experiments are routine and essential components of in vitro cancer research. Most laboratories use low-cost portable modular chambers to achieve hypoxic conditions for cell cultures, where the sealed chambers are purged with a gas mixture of preset O2 concentration. Studies are conducted under the assumption that hypoxia remains unaltered throughout the 48 to 72 hour duration of such experiments. Since these chambers lack any sensor or detection system t...

  18. Simultaneous monitoring of singlet and triplet exciton variations in solid organic semiconductors driven by an external static magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Baofu, E-mail: b.ding@ecu.edu.au; Alameh, Kamal, E-mail: k.alameh@ecu.edu.au [Electron Science Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027 (Australia)

    2014-07-07

    The research field of organic spintronics has remarkably and rapidly become a promising research area for delivering a range of high-performance devices, such as magnetic-field sensors, spin valves, and magnetically modulated organic light emitting devices (OLEDs). Plenty of microscopic physical and chemical models based on exciton or charge interactions have been proposed to explain organic magneto-optoelectronic phenomena. However, the simultaneous observation of singlet- and triplet-exciton variations in an external magnetic field is still unfeasible, preventing a thorough theoretical description of the spin dynamics in organic semiconductors. Here, we show that we can simultaneously observe variations of singlet excitons and triplet excitons in an external magnetic field, by designing an OLED structure employing a singlet-exciton filtering and detection layer in conjunction with a separate triplet-exciton detection layer. This OLED structure enables the observation of a Lorentzian and a non-Lorentzian line-shape magnetoresponse for singlet excitons and triplet excitons, respectively.

  19. Simultaneous monitoring of singlet and triplet exciton variations in solid organic semiconductors driven by an external static magnetic field

    International Nuclear Information System (INIS)

    Ding, Baofu; Alameh, Kamal

    2014-01-01

    The research field of organic spintronics has remarkably and rapidly become a promising research area for delivering a range of high-performance devices, such as magnetic-field sensors, spin valves, and magnetically modulated organic light emitting devices (OLEDs). Plenty of microscopic physical and chemical models based on exciton or charge interactions have been proposed to explain organic magneto-optoelectronic phenomena. However, the simultaneous observation of singlet- and triplet-exciton variations in an external magnetic field is still unfeasible, preventing a thorough theoretical description of the spin dynamics in organic semiconductors. Here, we show that we can simultaneously observe variations of singlet excitons and triplet excitons in an external magnetic field, by designing an OLED structure employing a singlet-exciton filtering and detection layer in conjunction with a separate triplet-exciton detection layer. This OLED structure enables the observation of a Lorentzian and a non-Lorentzian line-shape magnetoresponse for singlet excitons and triplet excitons, respectively.

  20. Sensors

    CERN Document Server

    Pigorsch, Enrico

    1997-01-01

    This is the 5th edition of the Metra Martech Directory "EUROPEAN CENTRES OF EXPERTISE - SENSORS." The entries represent a survey of European sensors development. The new edition contains 425 detailed profiles of companies and research institutions in 22 countries. This is reflected in the diversity of sensors development programmes described, from sensors for physical parameters to biosensors and intelligent sensor systems. We do not claim that all European organisations developing sensors are included, but this is a good cross section from an invited list of participants. If you see gaps or omissions, or would like your organisation to be included, please send details. The data base invites the formation of effective joint ventures by identifying and providing access to specific areas in which organisations offer collaboration. This issue is recognised to be of great importance and most entrants include details of collaboration offered and sought. We hope the directory on Sensors will help you to find the ri...

  1. A multiplexed electronic architecture for opto-electronic patch sensor to effectively monitor heart rate and oxygen saturation

    Science.gov (United States)

    Yan, Liangwen; Hu, Sijung; Alharbi, Samah; Blanos, Panagiotis

    2018-02-01

    To effectively capture human vital signs, a multi-wavelength optoelectronic patch sensor (MOEPS), together with a schematic architecture of electronics, was developed to overcome the drawbacks of present photoplethysmographic (PPG) sensors. To obtain a better performance of in vivo physiological measurement, the optimal illuminations, i.e., light emitting diodes (LEDs) in the MOEPS, whose wavelength is automatically adjusted to each specific subject, were selected to capture better PPG signals. A multiplexed electronic architecture has been well established to properly drive the MOEPS and effectively capture pulsatile waveforms at rest. The protocol was designed to investigate its performance with the participation of 11 healthy subjects aged between 18 and 30. The signals obtained from green (525nm) and orange (595nm) illuminations were used to extract heart rate (HR) and oxygen saturation (SpO2%). These results were compared with data, simultaneously acquired, from a commercial ECG and a pulse oximeter. Considering the difficulty for current devices to attain the SpO2%, a new computing method, to obtain the value of SpO2%, is proposed depended on the green and orange wavelength illuminations. The values of SpO2% between the MOEPS and the commercial Pulse Oximeter devics showed that the results were in good agreement. The values of HR showed close correlation between commercial devices and the MOEPS (HR: r1=0.994(Green); r2=0.992(Orange); r3=0.975(Red); r4=0.990(IR)).

  2. A Lab Assembled Microcontroller-Based Sensor Module for Continuous Oxygen Measurement in Portable Hypoxia Chambers

    Science.gov (United States)

    Mathupala, Saroj P.; Kiousis, Sam; Szerlip, Nicholas J.

    2016-01-01

    Background Hypoxia-based cell culture experiments are routine and essential components of in vitro cancer research. Most laboratories use low-cost portable modular chambers to achieve hypoxic conditions for cell cultures, where the sealed chambers are purged with a gas mixture of preset O2 concentration. Studies are conducted under the assumption that hypoxia remains unaltered throughout the 48 to 72 hour duration of such experiments. Since these chambers lack any sensor or detection system to monitor gas-phase O2, the cell-based data tend to be non-uniform due to the ad hoc nature of the experimental setup. Methodology With the availability of low-cost open-source microcontroller-based electronic project kits, it is now possible for researchers to program these with easy-to-use software, link them to sensors, and place them in basic scientific apparatus to monitor and record experimental parameters. We report here the design and construction of a small-footprint kit for continuous measurement and recording of O2 concentration in modular hypoxia chambers. The low-cost assembly (US$135) consists of an Arduino-based microcontroller, data-logging freeware, and a factory pre-calibrated miniature O2 sensor. A small, intuitive software program was written by the authors to control the data input and output. The basic nature of the kit will enable any student in biology with minimal experience in hobby-electronics to assemble the system and edit the program parameters to suit individual experimental conditions. Results/Conclusions We show the kit’s utility and stability of data output via a series of hypoxia experiments. The studies also demonstrated the critical need to monitor and adjust gas-phase O2 concentration during hypoxia-based experiments to prevent experimental errors or failure due to partial loss of hypoxia. Thus, incorporating the sensor-microcontroller module to a portable hypoxia chamber provides a researcher a capability that was previously available

  3. A Lab Assembled Microcontroller-Based Sensor Module for Continuous Oxygen Measurement in Portable Hypoxia Chambers.

    Directory of Open Access Journals (Sweden)

    Saroj P Mathupala

    Full Text Available Hypoxia-based cell culture experiments are routine and essential components of in vitro cancer research. Most laboratories use low-cost portable modular chambers to achieve hypoxic conditions for cell cultures, where the sealed chambers are purged with a gas mixture of preset O2 concentration. Studies are conducted under the assumption that hypoxia remains unaltered throughout the 48 to 72 hour duration of such experiments. Since these chambers lack any sensor or detection system to monitor gas-phase O2, the cell-based data tend to be non-uniform due to the ad hoc nature of the experimental setup.With the availability of low-cost open-source microcontroller-based electronic project kits, it is now possible for researchers to program these with easy-to-use software, link them to sensors, and place them in basic scientific apparatus to monitor and record experimental parameters. We report here the design and construction of a small-footprint kit for continuous measurement and recording of O2 concentration in modular hypoxia chambers. The low-cost assembly (US$135 consists of an Arduino-based microcontroller, data-logging freeware, and a factory pre-calibrated miniature O2 sensor. A small, intuitive software program was written by the authors to control the data input and output. The basic nature of the kit will enable any student in biology with minimal experience in hobby-electronics to assemble the system and edit the program parameters to suit individual experimental conditions.We show the kit's utility and stability of data output via a series of hypoxia experiments. The studies also demonstrated the critical need to monitor and adjust gas-phase O2 concentration during hypoxia-based experiments to prevent experimental errors or failure due to partial loss of hypoxia. Thus, incorporating the sensor-microcontroller module to a portable hypoxia chamber provides a researcher a capability that was previously available only to labs with access to

  4. A Lab Assembled Microcontroller-Based Sensor Module for Continuous Oxygen Measurement in Portable Hypoxia Chambers.

    Science.gov (United States)

    Mathupala, Saroj P; Kiousis, Sam; Szerlip, Nicholas J

    2016-01-01

    Hypoxia-based cell culture experiments are routine and essential components of in vitro cancer research. Most laboratories use low-cost portable modular chambers to achieve hypoxic conditions for cell cultures, where the sealed chambers are purged with a gas mixture of preset O2 concentration. Studies are conducted under the assumption that hypoxia remains unaltered throughout the 48 to 72 hour duration of such experiments. Since these chambers lack any sensor or detection system to monitor gas-phase O2, the cell-based data tend to be non-uniform due to the ad hoc nature of the experimental setup. With the availability of low-cost open-source microcontroller-based electronic project kits, it is now possible for researchers to program these with easy-to-use software, link them to sensors, and place them in basic scientific apparatus to monitor and record experimental parameters. We report here the design and construction of a small-footprint kit for continuous measurement and recording of O2 concentration in modular hypoxia chambers. The low-cost assembly (US$135) consists of an Arduino-based microcontroller, data-logging freeware, and a factory pre-calibrated miniature O2 sensor. A small, intuitive software program was written by the authors to control the data input and output. The basic nature of the kit will enable any student in biology with minimal experience in hobby-electronics to assemble the system and edit the program parameters to suit individual experimental conditions. We show the kit's utility and stability of data output via a series of hypoxia experiments. The studies also demonstrated the critical need to monitor and adjust gas-phase O2 concentration during hypoxia-based experiments to prevent experimental errors or failure due to partial loss of hypoxia. Thus, incorporating the sensor-microcontroller module to a portable hypoxia chamber provides a researcher a capability that was previously available only to labs with access to sophisticated (and

  5. Low Power Resistive Oxygen Sensor Based on Sonochemical SrTi0.6Fe0.4O2.8 (STFO40

    Directory of Open Access Journals (Sweden)

    Alisa Stratulat

    2015-07-01

    Full Text Available The current paper reports on a sonochemical synthesis method for manufacturing nanostructured (typical grain size of 50 nm SrTi0.6Fe0.4O2.8 (Sono-STFO40 powder. This powder is characterized using X ray-diffraction (XRD, Mössbauer spectroscopy and Scanning Electron Microscopy (SEM, and results are compared with commercially available SrTi0.4Fe0.6O2.8 (STFO60 powder. In order to manufacture resistive oxygen sensors, both Sono-STFO40 and STFO60 are deposited, by dip-pen nanolithography (DPN method, on an SOI (Silicon-on-Insulator micro-hotplate, employing a tungsten heater embedded within a dielectric membrane. Oxygen detection tests are performed in both dry (RH = 0% and humid (RH = 60% nitrogen atmosphere, varying oxygen concentrations between 1% and 16% (v/v, at a constant heater temperature of 650 °C. The oxygen sensor, based on the Sono-STFO40 sensing layer, shows good sensitivity, low power consumption (80 mW, and short response time (25 s. These performance are comparable to those exhibited by state-of-the-art O2 sensors based on STFO60, thus proving Sono-STFO40 to be a material suitable for oxygen detection in harsh environments.

  6. Arteriolar oxygen reactivity: where is the sensor and what is the mechanism of action?

    Science.gov (United States)

    2016-01-01

    Abstract Arterioles in the peripheral microcirculation are exquisitely sensitive to changes in PO2 in their environment: increases in PO2 cause vasoconstriction while decreases in PO2 result in vasodilatation. However, the cell type that senses O2 (the O2 sensor) and the signalling pathway that couples changes in PO2 to changes in arteriolar tone (the mechanism of action) remain unclear. Many (but not all) ex vivo studies of isolated cannulated resistance arteries and large, first‐order arterioles support the hypothesis that these vessels are intrinsically sensitive to PO2 with the smooth muscle, endothelial cells, or red blood cells serving as the O2 sensor. However, in situ studies testing these hypotheses in downstream arterioles have failed to find evidence of intrinsic O2 sensitivity, and instead have supported the idea that extravascular cells sense O2. Similarly, ex vivo studies of isolated, cannulated resistance arteries and large first‐order arterioles support the hypotheses that O2‐dependent inhibition of production of vasodilator cyclooxygenase products or O2‐dependent destruction of nitric oxide mediates O2 reactivity of these upstream vessels. In contrast, most in vivo studies of downstream arterioles have disproved these hypotheses and instead have provided evidence supporting the idea that O2‐dependent production of vasoconstrictors mediates arteriolar O2 reactivity, with significant regional heterogeneity in the specific vasoconstrictor involved. Oxygen‐induced vasoconstriction may serve as a protective mechanism to reduce the oxidative burden to which a tissue is exposed, a process that is superimposed on top of the local mechanisms which regulate tissue blood flow to meet a tissue's metabolic demand. PMID:27324312

  7. Magnetic particles-based biosensor for biogenic amines using an optical oxygen sensor as a transducer

    International Nuclear Information System (INIS)

    Pospiskova, K.; Sebela, M.; Safarik, I.; Kuncova, G.

    2013-01-01

    We have developed a fibre optic biosensor with incorporated magnetic microparticles for the determination of biogenic amines. The enzyme diamine oxidase from Pisum sativum was immobilized either on chitosan-coated magnetic microparticles or on commercial microbeads modified with a ferrofluid. Both the immobilized enzyme and the ruthenium complex were incorporated into a UV-cured inorganic-organic polymer composite and deposited on a lens that was connected, by optical fibres, to an electro-optical detector. The enzyme catalyzes the oxidation of amines under consumption of oxygen. The latter was determined by measuring the quenched fluorescence lifetime of the ruthenium complex. The limits of detection for the biogenic amines putrescine and cadaverine are 25-30 μmol L -1 , and responses are linear up to a concentration of 1 mmol L -1 . (author)

  8. Accuracy of different sensors for the estimation of pollutant concentrations (total suspended solids, total and dissolved chemical oxygen demand) in wastewater and stormwater.

    Science.gov (United States)

    Lepot, Mathieu; Aubin, Jean-Baptiste; Bertrand-Krajewski, Jean-Luc

    2013-01-01

    Many field investigations have used continuous sensors (turbidimeters and/or ultraviolet (UV)-visible spectrophotometers) to estimate with a short time step pollutant concentrations in sewer systems. Few, if any, publications compare the performance of various sensors for the same set of samples. Different surrogate sensors (turbidity sensors, UV-visible spectrophotometer, pH meter, conductivity meter and microwave sensor) were tested to link concentrations of total suspended solids (TSS), total and dissolved chemical oxygen demand (COD), and sensors' outputs. In the combined sewer at the inlet of a wastewater treatment plant, 94 samples were collected during dry weather, 44 samples were collected during wet weather, and 165 samples were collected under both dry and wet weather conditions. From these samples, triplicate standard laboratory analyses were performed and corresponding sensors outputs were recorded. Two outlier detection methods were developed, based, respectively, on the Mahalanobis and Euclidean distances. Several hundred regression models were tested, and the best ones (according to the root mean square error criterion) are presented in order of decreasing performance. No sensor appears as the best one for all three investigated pollutants.

  9. Entanglement and Metrology with Singlet-Triplet Qubits

    Science.gov (United States)

    Shulman, Michael Dean

    nuclear magnetic field control, as well as new techniques for calibrated measurement of the density matrix in a singlet-triplet qubit to entangle two adjacent single-triplet qubits. We fully characterize the generated entangled states and prove that they are, indeed, entangled. This work opens new opportunities to use qubits as sensors for improved metrological capabilities, as well as for improved quantum information processing. The singlet-triplet qubit is unique in that it can be used to probe two fundamentally different noise baths, which are important for a large variety of solid state qubits. More specifically, this work establishes the singlet-triplet qubit as a viable candidate for the building block of a scalable quantum information processor.

  10. ZrO2 oxygen and hydrogen sensors: A geologic perspective

    International Nuclear Information System (INIS)

    Ulmer, G.C.

    1983-01-01

    The geosciences have been attracted to the high accuracy of 5 ZrO 2 cells for both f(O 2 ) and pH sensors. That the very same ZrO 2 membrane can be used above 600 0 C to sense f(O 2 ) and used between 25 0 and 300 0 C (maybe higher) to sense pH has been demonstrated. Specific resistivity measurements for such cells follow the equation log R = -2.20 + 4000/T (for T(K) from 298-1573 K) (for Y 2 O 3 levels of 4-8 mol%). In the lower-temperature regime, i.e., pH sensing, the ZrO 2 cell does not respond to changes in molecular O 2 or H 2 in its environment. Geochemical raw material impurities and ZrO 2 membrane fabrication techniques that affect f(O 2 ) and pH sensing are discussed. The application of ZrO 2 cells to various geologic redox equilibria are demonstrated by a few selected examples

  11. Non-diagonal processes of singlet and ordinary quark production

    International Nuclear Information System (INIS)

    Bejlin, V.A.; Vereshkov, G.M.; Kuksa, V.I.

    1995-01-01

    Non-diagonal processes of singlet and ordinary quark production are analyzed in the model where the down singlet quark mixes with the ordinary ones. The possibility of experimental selection of h-quark effects is demonstrated

  12. Virucidal Nanofiber Textiles Based on Photosensitized Production of Singlet Oxygen

    Czech Academy of Sciences Publication Activity Database

    Lhotáková, Y.; Plištil, L.; Morávková, A.; Kubát, Pavel; Lang, Kamil; Forstová, J.; Mosinger, J.

    2012-01-01

    Roč. 7, č. 11 (2012), e49226 E-ISSN 1932-6203 R&D Projects: GA ČR GAP208/10/1678 Institutional support: RVO:61388955 ; RVO:61388980 Keywords : photosynthesis * biomaterials * nanofiber textiles Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.730, year: 2012

  13. Recycling and imaging of nuclear singlet hyperpolarization

    DEFF Research Database (Denmark)

    Pileio, Giuseppe; Bowen, Sean; Laustsen, Christoffer

    2013-01-01

    observation of the same batch of polarized nuclei over a period of 30 min and more. We report a recycling protocol in which the enhanced nuclear polarization achieved by dissolution-DNP is observed with full intensity and then returned to singlet order. MRI experiments may be run on a portion of the available...

  14. Singlet fermionic dark matter with Veltman conditions

    Science.gov (United States)

    Kim, Yeong Gyun; Lee, Kang Young; Nam, Soo-hyeon

    2018-07-01

    We reexamine a renormalizable model of a fermionic dark matter with a gauge singlet Dirac fermion and a real singlet scalar which can ameliorate the scalar mass hierarchy problem of the Standard Model (SM). Our model setup is the minimal extension of the SM for which a realistic dark matter (DM) candidate is provided and the cancellation of one-loop quadratic divergence to the scalar masses can be achieved by the Veltman condition (VC) simultaneously. This model extension, although renormalizable, can be considered as an effective low-energy theory valid up to cut-off energies about 10 TeV. We calculate the one-loop quadratic divergence contributions of the new scalar and fermionic DM singlets, and constrain the model parameters using the VC and the perturbative unitarity conditions. Taking into account the invisible Higgs decay measurement, we show the allowed region of new physics parameters satisfying the recent measurement of relic abundance. With the obtained parameter set, we predict the elastic scattering cross section of the new singlet fermion into target nuclei for a direct detection of the dark matter. We also perform the full analysis with arbitrary set of parameters without the VC as a comparison, and discuss the implication of the constraints by the VC in detail.

  15. Update on scalar singlet dark matter

    NARCIS (Netherlands)

    Cline, J.M.; Scott, P.; Kainulainen, K.; Weniger, C.

    2013-01-01

    One of the simplest models of dark matter is where a scalar singlet field S comprises some or all of the dark matter and interacts with the standard model through an vertical bar H vertical bar S-2(2) coupling to the Higgs boson. We update the present limits on the model from LHC searches for

  16. Design and Characterization of a Sensorized Microfluidic Cell-Culture System with Electro-Thermal Micro-Pumps and Sensors for Cell Adhesion, Oxygen, and pH on a Glass Chip

    Directory of Open Access Journals (Sweden)

    Sebastian M. Bonk

    2015-07-01

    Full Text Available We combined a multi-sensor glass-chip with a microfluidic channel grid for the characterization of cellular behavior. The grid was imprinted in poly-dimethyl-siloxane. Mouse-embryonal/fetal calvaria fibroblasts (MC3T3-E1 were used as a model system. Thin-film platinum (Pt sensors for respiration (amperometric oxygen electrode, acidification (potentiometric pH electrodes and cell adhesion (interdigitated-electrodes structures, IDES allowed us to monitor cell-physiological parameters as well as the cell-spreading behavior. Two on-chip electro-thermal micro-pumps (ETμPs permitted the induction of medium flow in the system, e.g., for medium mixing and drug delivery. The glass-wafer technology ensured the microscopic observability of the on-chip cell culture. Connecting Pt structures were passivated by a 1.2 μm layer of silicon nitride (Si3N4. Thin Si3N4 layers (20 nm or 60 nm were used as the sensitive material of the pH electrodes. These electrodes showed a linear behavior in the pH range from 4 to 9, with a sensitivity of up to 39 mV per pH step. The oxygen sensors were circular Pt electrodes with a sensor area of 78.5 μm2. Their sensitivity was 100 pA per 1% oxygen increase in the range from 0% to 21% oxygen (air saturated. Two different IDES geometries with 30- and 50-μm finger spacings showed comparable sensitivities in detecting the proliferation rate of MC3T3 cells. These cells were cultured for 11 days in vitro to test the biocompatibility, microfluidics and electric sensors of our system under standard laboratory conditions.

  17. Factors affecting the performance of a single-chamber microbial fuel cell-type biological oxygen demand sensor.

    Science.gov (United States)

    Yang, Gai-Xiu; Sun, Yong-Ming; Kong, Xiao-Ying; Zhen, Feng; Li, Ying; Li, Lian-Hua; Lei, Ting-Zhou; Yuan, Zhen-Hong; Chen, Guan-Yi

    2013-01-01

    Microbial fuel cells (MFCs) are devices that exploit microorganisms as biocatalysts to degrade organic matter or sludge present in wastewater (WW), and thereby generate electricity. We developed a simple, low-cost single-chamber microbial fuel cell (SCMFC)-type biochemical oxygen demand (BOD) sensor using carbon felt (anode) and activated sludge, and demonstrated its feasibility in the construction of a real-time BOD measurement system. Further, the effects of anodic pH and organic concentration on SCMFC performance were examined, and the correlation between BOD concentration and its response time was analyzed. Our results demonstrated that the SCMFC exhibited a stable voltage after 132 min following the addition of synthetic WW (BOD concentration: 200 mg/L). Notably, the response signal increased with an increase in BOD concentration (range: 5-200 mg/L) and was found to be directly proportional to the substrate concentration. However, at higher BOD concentrations (>120 mg/L) the response signal remained unaltered. Furthermore, we optimized the SCMFC using synthetic WW, and tested it with real WW. Upon feeding real WW, the BOD values exhibited a standard deviation from 2.08 to 8.3% when compared to the standard BOD5 method, thus demonstrating the practical applicability of the developed system to real treatment effluents.

  18. Amperometric NOx-sensor for Combustion Exhaust Gas Control. Studies on transport properties and catalytic activity of oxygen permeable ceramic membranes

    International Nuclear Information System (INIS)

    Romer, E.W.J.

    2001-01-01

    The aim of the research described in this thesis is the development of a mixed conducting oxide layer, which can be used as an oxygen permselective membrane in an amperometric NOx sensor. The sensor will be used in exhaust gas systems. The exhaust gas-producing engine will run in the lean mix mode. The preparation of this sensor is carried out using screen-printing technology, in which the different layers of the sensor are applied successively. Hereafter, a co-firing step is applied in which all layers are sintered together. This co-firing step imposes several demands on the selection of materials. The design specifications of the sensor further include requirements concerning the operating temperature, measurement range and overall stability. The operating temperature of the sensor varies between 700 and 850C, enabling measurement of NOx concentrations between 50 and 1200 ppm with a measurement accuracy of 10 ppm. Concerning the stability of the sensor, it must withstand the exhaust gas atmosphere containing, amongst others, smoke, acids, abrasive particles and sulphur. Because of the chosen lean-mix engine concept, in which the fuel/air mixture switches continuously between lean (excess oxygen) and fat (excess fuel) mixtures, the sensor must withstand alternately oxidising and reducing atmospheres. Besides, it should be resistant to thermal shock and show no cross-sensitivity of NOx with other exhaust gas constituents like oxygen and hydrocarbons. The response time should be short, typically less than 500 ms. Because of the application in combustion engines of cars, the operational lifetime should be longer than 10 years. Demands on the mixed conducting oxide layer include the following ones. The layer should show minimal catalytic activity towards NOx-reduction. The oxygen permeability must be larger than 6.22 10 -8 mol/cm 2 s at a layer thickness between 3-50 μm. Since the mixed conducting oxide layer is coated on the YSZ electrolyte embodiment, the two

  19. Long-term performance of Aanderaa optodes and sea-bird SBE-43 dissolved-oxygen sensors bottom mounted at 32 m in Massachusetts Bay

    Science.gov (United States)

    Martini, Marinna A.; Butman, Bradford; Mickelson, Michael J.

    2007-01-01

    A field evaluation of two new dissolved-oxygen sensing technologies, the Aanderaa Instruments AS optode model 3830 and the Sea-Bird Electronics, Inc., model SBE43, was carried out at about 32-m water depth in western Massachusetts Bay. The optode is an optical sensor that measures fluorescence quenching by oxygen molecules, while the SBE43 is a Clark polarographic membrane sensor. Optodes were continuously deployed on bottom tripod frames by exchanging sensors every 4 months over a 19-month period. A Sea-Bird SBE43 was added during one 4-month deployment. These moored observations compared well with oxygen measurements from profiles collected during monthly shipboard surveys conducted by the Massachusetts Water Resources Authority. The mean correlation coefficient between the moored measurements and shipboard survey data was >0.9, the mean difference was 0.06 mL L−1, and the standard deviation of the difference was 0.15 mL L−1. The correlation coefficient between the optode and the SBE43 was >0.9 and the mean difference was 0.07 mL L−1. Optode measurements degraded when fouling was severe enough to block oxygen molecules from entering the sensing foil over a significant portion of the sensing window. Drift observed in two optodes beginning at about 225 and 390 days of deployment is attributed to degradation of the sensing foil. Flushing is necessary to equilibrate the Sea-Bird sensor. Power consumption by the SBE43 and required pump was 19.2 mWh per sample, and the optode consumed 0.9 mWh per sample, both within expected values based on manufacturers’ specifications.

  20. Inkjet printing of nanoporous gold electrode arrays on cellulose membranes for high-sensitive paper-like electrochemical oxygen sensors using ionic liquid electrolytes.

    Science.gov (United States)

    Hu, Chengguo; Bai, Xiaoyun; Wang, Yingkai; Jin, Wei; Zhang, Xuan; Hu, Shengshui

    2012-04-17

    A simple approach to the mass production of nanoporous gold electrode arrays on cellulose membranes for electrochemical sensing of oxygen using ionic liquid (IL) electrolytes was established. The approach, combining the inkjet printing of gold nanoparticle (GNP) patterns with the self-catalytic growth of these patterns into conducting layers, can fabricate hundreds of self-designed gold arrays on cellulose membranes within several hours using an inexpensive inkjet printer. The resulting paper-based gold electrode arrays (PGEAs) had several unique properties as thin-film sensor platforms, including good conductivity, excellent flexibility, high integration, and low cost. The porous nature of PGEAs also allowed the addition of electrolytes from the back cellulose membrane side and controllably produced large three-phase electrolyte/electrode/gas interfaces at the front electrode side. A novel paper-based solid-state electrochemical oxygen (O(2)) sensor was therefore developed using an IL electrolyte, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF(6)). The sensor looked like a piece of paper but possessed high sensitivity for O(2) in a linear range from 0.054 to 0.177 v/v %, along with a low detection limit of 0.0075% and a short response time of less than 10 s, foreseeing its promising applications in developing cost-effective and environment-friendly paper-based electrochemical gas sensors.

  1. Magnetic properties of singlet ground state systems

    International Nuclear Information System (INIS)

    Diederix, K.M.

    1979-01-01

    Experiments are described determining the properties of a magnetic system consisting of a singlet ground state. Cu(NO 3 ) 2 .2 1/2H 2 O has been studied which is a system of S = 1/2 alternating antiferromagnetic Heisenberg chains. The static properties, spin lattice relaxation time and field-induced antiferromagnetically ordered state measurements are presented. Susceptibility and magnetic cooling measurements of other compounds are summarised. (Auth.)

  2. Minimizing the effects of oxygen interference on l-lactate sensors by a single amino acid mutation in Aerococcus viridansl-lactate oxidase.

    Science.gov (United States)

    Hiraka, Kentaro; Kojima, Katsuhiro; Lin, Chi-En; Tsugawa, Wakako; Asano, Ryutaro; La Belle, Jeffrey T; Sode, Koji

    2018-04-30

    l-lactate biosensors employing l-lactate oxidase (LOx) have been developed mainly to measure l-lactate concentration for clinical diagnostics, sports medicine, and the food industry. Some l-lactate biosensors employ artificial electron mediators, but these can negatively impact the detection of l-lactate by competing with the primary electron acceptor: molecular oxygen. In this paper, a strategic approach to engineering an AvLOx that minimizes the effects of oxygen interference on sensor strips was reported. First, we predicted an oxygen access pathway in Aerococcus viridans LOx (AvLOx) based on its crystal structure. This was subsequently blocked by a bulky amino acid substitution. The resulting Ala96Leu mutant showed a drastic reduction in oxidase activity using molecular oxygen as the electron acceptor and a small increase in dehydrogenase activity employing an artificial electron acceptor. Secondly, the Ala96Leu mutant was immobilized on a screen-printed carbon electrode using glutaraldehyde cross-linking method. Amperometric analysis was performed with potassium ferricyanide as an electron mediator under argon or atmospheric conditions. Under argon condition, the response current increased linearly from 0.05 to 0.5mM l-lactate for both wild-type and Ala96Leu. However, under atmospheric conditions, the response of wild-type AvLOx electrode was suppressed by 9-12% due to oxygen interference. The Ala96Leu mutant maintained 56-69% of the response current at the same l-lactate level and minimized the relative bias error to -19% from -49% of wild-type. This study provided significant insight into the enzymatic reaction mechanism of AvLOx and presented a novel approach to minimize oxygen interference in sensor applications, which will enable accurate detection of l-lactate concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Sensor

    OpenAIRE

    Gleeson, Helen; Dierking, Ingo; Grieve, Bruce; Woodyatt, Christopher; Brimicombe, Paul

    2015-01-01

    An electrical temperature sensor (10) comprises a liquid crystalline material (12). First and second electrically conductive contacts (14), (16), having a spaced relationship there between, contact the liquid crystalline material (12). An electric property measuring device is electrically connected to the first and second contacts (14), (16) and is arranged to measure an electric property of the liquid crystalline material (12). The liquid crystalline material (12) has a transition temperatur...

  4. Hot spot in GdBa2Cu3O7-δ-based composite ceramics rods and their applications for oxygen sensors

    International Nuclear Information System (INIS)

    Okamoto, T; Takata, M

    2011-01-01

    A hot spot, which is a local area glowing orange, appears in a LnBa 2 Cu 3 O 7-δ (Ln: rare earth element) ceramic rod when a voltage exceeding a certain value is applied to the rod at room temperature. After the appearance of the hot spot, the current changes according to the oxygen partial pressure in ambient atmosphere, which acts as an oxygen sensor without the need for any heating system. The GdBa 2 Cu 3 O 7-δ rod tended to be melted and broken by a sustained presence of the hot spot in a high oxygen partial pressure Po 2 (∼100 kPa). The composite rod containing high melting point materials, such as BaAl 2 O 4 , BaZrO 3 and Gd 2 BaCuO 5 , showed a remarkable high durability in O 2 atmosphere. In a low Po 2 ( 2 Cu3O 7-δ rod decreases to almost zero and the hot spot disappeared, resulting in an insensitive rod to oxygen. The composite rod containing CuO detected oxygen even in Po 2 < 0.002 kPa.

  5. Dissolved Oxygen Sensor in Animal-Borne Instruments: An Innovation for Monitoring the Health of Oceans and Investigating the Functioning of Marine Ecosystems.

    Science.gov (United States)

    Bailleul, Frederic; Vacquie-Garcia, Jade; Guinet, Christophe

    2015-01-01

    The current decline in dissolved oxygen concentration within the oceans is a sensitive indicator of the effect of climate change on marine environment. However the impact of its declining on marine life and ecosystems' health is still quite unclear because of the difficulty in obtaining in situ data, especially in remote areas, like the Southern Ocean (SO). Southern elephant seals (Mirounga leonina) proved to be a relevant alternative to the traditional oceanographic platforms to measure physical and biogeochemical structure of oceanic regions rarely observed. In this study, we use a new stage of development in biologging technology to draw a picture of dissolved oxygen concentration in the SO. We present the first results obtained from a dissolved oxygen sensor added to Argos CTD-SRDL tags and deployed on 5 female elephant seals at Kerguelen. From October 2010 and October 2011, 742 oxygen profiles associated with temperature and salinity measurements were recorded. Whether a part of the data must be considered cautiously, especially because of offsets and temporal drifts of the sensors, the range of values recorded was consistent with a concomitant survey conducted from a research vessel (Keops-2 project). Once again, elephant seals reinforced the relationship between marine ecology and oceanography, delivering essential information about the water masses properties and the biological status of the Southern Ocean. But more than the presentation of a new stage of development in animal-borne instrumentation, this pilot study opens a new field of investigation in marine ecology and could be enlarged in a near future to other key marine predators, especially large fish species like swordfish, tuna or sharks, for which dissolved oxygen is expected to play a crucial role in distribution and behaviour.

  6. Dissolved Oxygen Sensor in Animal-Borne Instruments: An Innovation for Monitoring the Health of Oceans and Investigating the Functioning of Marine Ecosystems.

    Directory of Open Access Journals (Sweden)

    Frederic Bailleul

    Full Text Available The current decline in dissolved oxygen concentration within the oceans is a sensitive indicator of the effect of climate change on marine environment. However the impact of its declining on marine life and ecosystems' health is still quite unclear because of the difficulty in obtaining in situ data, especially in remote areas, like the Southern Ocean (SO. Southern elephant seals (Mirounga leonina proved to be a relevant alternative to the traditional oceanographic platforms to measure physical and biogeochemical structure of oceanic regions rarely observed. In this study, we use a new stage of development in biologging technology to draw a picture of dissolved oxygen concentration in the SO. We present the first results obtained from a dissolved oxygen sensor added to Argos CTD-SRDL tags and deployed on 5 female elephant seals at Kerguelen. From October 2010 and October 2011, 742 oxygen profiles associated with temperature and salinity measurements were recorded. Whether a part of the data must be considered cautiously, especially because of offsets and temporal drifts of the sensors, the range of values recorded was consistent with a concomitant survey conducted from a research vessel (Keops-2 project. Once again, elephant seals reinforced the relationship between marine ecology and oceanography, delivering essential information about the water masses properties and the biological status of the Southern Ocean. But more than the presentation of a new stage of development in animal-borne instrumentation, this pilot study opens a new field of investigation in marine ecology and could be enlarged in a near future to other key marine predators, especially large fish species like swordfish, tuna or sharks, for which dissolved oxygen is expected to play a crucial role in distribution and behaviour.

  7. Probing color-singlet exchange at D0

    International Nuclear Information System (INIS)

    Abbott, B.; Abolins, M.; Acharya, B.S.

    1997-07-01

    We present latest preliminary results on hard color-singlet exchange in proton-antiproton collisions. The fraction of dijet events produced via color-singlet exchange is measured as a function of jet transverse energy, dijet pseudorapidity separation, and proton-antiproton center-of-mass energy. These results are qualitatively consistent with a color-singlet fraction that increases with increasing quark-initiated processes

  8. Deep inelastic singlet structure functions and scaling violation

    Energy Technology Data Exchange (ETDEWEB)

    Wen-zhu, Li; Bing-xun, Hu

    1984-02-01

    The flavour singlet structure functions of deep inelastic scattering processes can yield more decisive tests of QCD than the non-singlet. We give analytical expression for flavour singlet structure functions through analysing the lepton-nucleon deep inelastic scattering processes by means of QCD and using Jacobi polynomials. This expression contains 4 to 5 parameters and shows the changes of the singlet structure functions with x and Q/sup 2/ very well. In QCD leading order, the conclusion is in reasonable agreement with experimental data.

  9. Astrophysical constraints on singlet scalars at LHC

    Science.gov (United States)

    Hertzberg, Mark P.; Masoumi, Ali

    2017-04-01

    We consider the viability of new heavy gauge singlet scalar particles at colliders such as the LHC . Our original motivation for this study came from the possibility of a new heavy particle of mass ~ TeV decaying significantly into two photons at colliders, such as LHC, but our analysis applies more broadly. We show that there are significant constraints from astrophysics and cosmology on the simplest UV complete models that incorporate such new particles and its associated collider signal. The simplest and most obvious UV complete model that incorporates such signals is that it arises from a new singlet scalar (or pseudo-scalar) coupled to a new electrically charged and colored heavy fermion. Here we show that these new fermions (and anti-fermions) would be produced in the early universe, then form new color singlet heavy mesons with light quarks, obtain a non-negligible freeze-out abundance, and remain in kinetic equilibrium until decoupling. These heavy mesons possess interesting phenomenology, dependent on their charge, including forming new bound states with electrons and protons. We show that a significant number of these heavy states would survive for the age of the universe and an appreciable number would eventually be contained within the earth and solar system. We show that this leads to detectable consequences, including the production of highly energetic events from annihilations on earth, new spectral lines, and, spectacularly, the destabilization of stars. The lack of detection of these consequences rules out such simple UV completions, putting pressure on the viability of such new particles at LHC . To incorporate such a scalar would require either much more complicated UV completions or even further new physics that provides a decay channel for the associated fermion.

  10. Astrophysical constraints on singlet scalars at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Hertzberg, Mark P.; Masoumi, Ali, E-mail: mark.hertzberg@tufts.edu, E-mail: ali@cosmos.phy.tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)

    2017-04-01

    We consider the viability of new heavy gauge singlet scalar particles at colliders such as the LHC . Our original motivation for this study came from the possibility of a new heavy particle of mass ∼ TeV decaying significantly into two photons at colliders, such as LHC, but our analysis applies more broadly. We show that there are significant constraints from astrophysics and cosmology on the simplest UV complete models that incorporate such new particles and its associated collider signal. The simplest and most obvious UV complete model that incorporates such signals is that it arises from a new singlet scalar (or pseudo-scalar) coupled to a new electrically charged and colored heavy fermion. Here we show that these new fermions (and anti-fermions) would be produced in the early universe, then form new color singlet heavy mesons with light quarks, obtain a non-negligible freeze-out abundance, and remain in kinetic equilibrium until decoupling. These heavy mesons possess interesting phenomenology, dependent on their charge, including forming new bound states with electrons and protons. We show that a significant number of these heavy states would survive for the age of the universe and an appreciable number would eventually be contained within the earth and solar system. We show that this leads to detectable consequences, including the production of highly energetic events from annihilations on earth, new spectral lines, and, spectacularly, the destabilization of stars. The lack of detection of these consequences rules out such simple UV completions, putting pressure on the viability of such new particles at LHC . To incorporate such a scalar would require either much more complicated UV completions or even further new physics that provides a decay channel for the associated fermion.

  11. Singlet exciton interactions in crystalline naphthalene

    International Nuclear Information System (INIS)

    Heisel, F.; Miehe, J.A.; Sipp, B.

    1978-01-01

    The decay of prompt fluorescence in crystalline naphthalene at 300 K, excited by picosecond 266 nm pulse, has been studied as a function of excitation intensity. Experimental decay curves can be fitted only when the exponential distribution in depth of excitation and the radial (gaussian) intensity profile of the excitation are both taken into account. From analysis of decay at early time ( -10 cm 3 s -1 . If the reaction is diffusion-limited, this rate implies an average singlet diffusivity Dsub(S)=(2+-1)10 -4 cm 2 s -1

  12. Singlet deflected anomaly/gauge mediation

    International Nuclear Information System (INIS)

    Blas, J. de; Delgado, A.

    2012-01-01

    We study an extension of the standard anomaly/gauge mediation scenario where the messenger fields have direct interactions with an extra gauge singlet. This realizes a phenomenologically viable NMSSM-like scenario free of the μ-b μ problem. Current cosmological constraints imply a small size for the anomaly-mediation contributions, unless some source of R-parity violation is permitted. In the latter case the allowed regions in the parameter space can be substantially larger than in the corresponding gauge-mediation scenario.

  13. Intramolecular singlet-singlet energy transfer in antenna-substituted azoalkanes.

    Science.gov (United States)

    Pischel, Uwe; Huang, Fang; Nau, Werner M

    2004-03-01

    Two novel azoalkane bichromophores and related model compounds have been synthesised and photophysically characterised. Dimethylphenylsiloxy (DPSO) or dimethylnaphthylsiloxy (DNSO) serve as aromatic donor groups (antenna) and the azoalkane 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) as the acceptor. The UV spectral window of DBO (250-300 nm) allows selective excitation of the donor. Intramolecular singlet-singlet energy transfer to DBO is highly efficient and proceeds with quantum yields of 0.76 with DPSO and 0.99 with DNSO. The photophysical and spectral properties of the bichromophoric systems suggest that energy transfer occurs through diffusional approach of the donor and acceptor within a van der Waals contact at which the exchange mechanism is presumed to dominate. Furthermore, akin to the behaviour of electron-transfer systems in the Marcus inverted region, a rate of energy transfer 2.5 times slower was observed for the system with the more favourable energetics, i.e. singlet-singlet energy transfer from DPSO proceeded slower than from DNSO, although the process is more exergonic for DPSO (-142 kJ mol(-1) for DPSO versus-67 kJ mol(-1) for DNSO).

  14. Study and development of a fluorescence based sensor system for monitoring oxygen in wine production : the WOW project

    NARCIS (Netherlands)

    Trivellin, Nicola; Barbisan, Diego; Badocco, Denis; Pastore, Paolo; Meneghesso, Gaudenzio; Meneghini, Matteo; Zanoni, Enrico; Belgioioso, Giuseppe; Cenedese, Angelo

    2018-01-01

    The importance of oxygen in the winemaking process is widely known, as it affects the chemical aspects and therefore the organoleptic characteristics of the final product. Hence, it is evident the usefulness of a continuous and real-time measurements of the levels of oxygen in the various stages of

  15. Influence of zirconium doping in ceria lattice as an active electrode in amperometric electrochemical ammonia gas sensor using oxygen pumping current

    International Nuclear Information System (INIS)

    Sharan, R.; Dutta, Atanu; Roy, Mainak

    2016-01-01

    An amperometric electrochemical sensor using Ce-Zr system as ammonia gas detecting electrode is reported. Using lanthanum gallate based electrolyte La_0_._8Sr_0_._2Ga_0_._8Mg_0_._1Ni_0_._1O_3 (LSGMN) and lanthanum strontium cobaltite La_0_._5Sr_0_._5CoO_3 (LSC) as oxygen reduction electrode, the sensor was found to be highly sensitive to NH_3 gas down to few ppm level, when operated in the temperature range 300-450°C. Keeping LSC electrodecomposition same, when sensing properties were studied with the variation of Zr concentration in ceria for active electrode, sensor with 30 mol % Zr doped ceria showed highest sensitivity of 28μA/ decade at 400°C. For all active electrodecompositions Ce_1_-_xZr_xO_2 (x = 0 to 0.7) highest sensitivity was observed at 400°C. All the sensors performed reproducibly with time response and recovery time 40 and 120 seconds respectively. (author)

  16. Effects of the Oxygenation level on Formation of Different Reactive Oxygen Species During Photodynamic Therapy

    OpenAIRE

    Price, Michael; Heilbrun, Lance; Kessel, David

    2013-01-01

    We examined the effect of the oxygenation level on efficacy of two photosensitizing agents, both of which target lysosomes for photodamage but via different photochemical pathways. Upon irradiation, the chlorin termed NPe6 forms singlet oxygen in high yield while the bacteriopheophorbide WST11 forms only oxygen radicals (in an aqueous environment). Photokilling efficacy by WST11 in cell culture was impaired when the atmospheric oxygen concentration was reduced from 20% to 1%, while photokilli...

  17. Stability of singlet and triplet trions in carbon nanotubes

    International Nuclear Information System (INIS)

    Ronnow, Troels F.; Pedersen, Thomas G.; Cornean, Horia D.

    2009-01-01

    We investigate singlet and triplet trion states in semiconducting carbon nanotubes using a one-dimensional model. It is concluded that singlet trion states in bind up to 13.6% stronger than exciton states, and that they lower the optical transition energy with up to 50% of the tight binding band gap energy.

  18. Stability of singlet and triplet trions in carbon nanotubes

    DEFF Research Database (Denmark)

    Rønnow, Troels Frimodt; Pedersen, Thomas Garm; Cornean, Horia

    2009-01-01

    We investigate singlet and triplet trion states in semiconducting carbon nanotubes using a one-dimensional model. It is concluded that singlet trion states in bind up to 13.5% stronger than exciton states, and that they lower the optical transition energy with up to 50% of the tight binding band...

  19. Magnetic excitons in singlet-ground-state ferromagnets

    DEFF Research Database (Denmark)

    Birgeneau, R.J.; Als-Nielsen, Jens Aage; Bucher, E.

    1971-01-01

    The authors report measurements of the dispersion of singlet-triplet magnetic excitons as a function of temperature in the singlet-ground-state ferromagnets fcc Pr and Pr3Tl. Well-defined excitons are observed in both the ferromagnetic and paramagnetic regions, but with energies which are nearly...

  20. Magnetism of singlet - singlet ions interacting with an electron gas: application to PrAl2

    International Nuclear Information System (INIS)

    Palermo, L.

    1986-01-01

    Various magnetic quantities are investigated for a system consisting of singlet-singlet ions interacting with an electron gas. In obtaining the magnetic state equations, the molecular field approximation is used. At T=0, an onset magnetic order condition in function of crystal field and exchange parameters and eletronic density of states at Fermi level is derived. A parametric study of the model is performed numerically. Main results are shown on diagrams. From the experimental data existent in the literature for magnetisation, susceptibility and magnetic specific heat of the PrAl 2 , a fitting with the model predictions is obtained using the following parameters: exchange interaction: 611meV; crystal field parameters: 2,5 meV; band with: 10 eV (of a rectangular density of states with 0,8 el/atom). (author) [pt

  1. Complex singlet extension of the standard model

    International Nuclear Information System (INIS)

    Barger, Vernon; McCaskey, Mathew; Langacker, Paul; Ramsey-Musolf, Michael; Shaughnessy, Gabe

    2009-01-01

    We analyze a simple extension of the standard model (SM) obtained by adding a complex singlet to the scalar sector (cxSM). We show that the cxSM can contain one or two viable cold dark matter candidates and analyze the conditions on the parameters of the scalar potential that yield the observed relic density. When the cxSM potential contains a global U(1) symmetry that is both softly and spontaneously broken, it contains both a viable dark matter candidate and the ingredients necessary for a strong first order electroweak phase transition as needed for electroweak baryogenesis. We also study the implications of the model for discovery of a Higgs boson at the Large Hadron Collider.

  2. Singlet versus Triplet Excited State Mediated Photoinduced Dehalogenation Reactions of Itraconazole in Acetonitrile and Aqueous Solutions.

    Science.gov (United States)

    Zhu, Ruixue; Li, Ming-de; Du, Lili; Phillips, David Lee

    2017-04-06

    Photoinduced dehalogenation of the antifungal drug itraconazole (ITR) in acetonitrile (ACN) and ACN/water mixed solutions was investigated using femtosecond and nanosecond time-resolved transient absorption (fs-TA and ns-TA, respectively) and nanosecond time-resolved resonance Raman spectroscopy (ns-TR 3 ) experiments. An excited resonance energy transfer is found to take place from the 4-phenyl-4,5-dihydro-3H-1,2,4-triazol-3-one part of the molecule to the 1,3-dichlorobenzene part of the molecule when ITR is excited by ultraviolet light. This photoexcitation is followed by a fast carbon-halogen bond cleavage that leads to the generation of radical intermediates via either triplet and/or singlet excited states. It is found that the singlet excited state-mediated carbon-halogen cleavage is the predominant dehalogenation process in ACN solvent, whereas a triplet state-mediated carbon-halogen cleavage prefers to occur in the ACN/water mixed solutions. The singlet-to-triplet energy gap is decreased in the ACN/water mixed solvents and this helps facilitate an intersystem crossing process, and thus, the carbon-halogen bond cleavage happens mostly through an excited triplet state in the aqueous solutions examined. The ns-TA and ns-TR 3 results also provide some evidence that radical intermediates are generated through a homolytic carbon-halogen bond cleavage via predominantly the singlet excited state pathway in ACN but via mainly the triplet state pathway in the aqueous solutions. In strong acidic solutions, protonation at the oxygen and/or nitrogen atoms of the 1,2,4-triazole-3-one group appears to hinder the dehalogenation reactions. This may offer the possibility that the phototoxicity of ITR due to the generation of aryl or halogen radicals can be reduced by protonation of certain moieties in suitably designed ITR halogen-containing derivatives.

  3. DELETION OR INHIBITION OF THE OXYGEN SENSOR PHD1 PROTECTS AGAINST ISCHEMIC STROKE VIA REPROGRAMMING OF NEURONAL METABOLISM

    Science.gov (United States)

    Quaegebeur, Annelies; Segura, Inmaculada; Schmieder, Roberta; Verdegem, Dries; Decimo, Ilaria; Bifari, Francesco; Dresselaers, Tom; Eelen, Guy; Ghosh, Debapriva; Schoors, Sandra; Janaki Raman, Sudha Rani; Cruys, Bert; Govaerts, Kristof; De Legher, Carla; Bouché, Ann; Schoonjans, Luc; Ramer, Matt S.; Hung, Gene; Bossaert, Goele; Cleveland, Don W.; Himmelreich, Uwe; Voets, Thomas; Lemmens, Robin; Bennett, C. Frank; Robberecht, Wim; De Bock, Katrien; Dewerchin, Mieke; Fendt, Sarah-Maria; Ghesquière, Bart; Carmeliet, Peter

    2016-01-01

    Summary The oxygen-sensing prolyl hydroxylase domain proteins (PHDs) regulate cellular metabolism, but their role in neuronal metabolism during stroke is unknown. Here we report that PHD1 deficiency provides neuroprotection in a murine model of permanent brain ischemia. This was not due to an increased collateral vessel network, nor to enhanced neurotrophin expression. Instead, PHD1−/− neurons were protected against oxygen-nutrient deprivation by reprogramming glucose metabolism. Indeed, PHD1−/− neurons enhanced glucose flux through the oxidative pentose phosphate pathway by diverting glucose from glycolysis. As a result, PHD1−/− neurons increased their redox buffering capacity to scavenge oxygen radicals in ischemia. Intracerebroventricular injection of PHD1-antisense oligonucleotides reduced the cerebral infarct size and neurological deficits following stroke. These data identify PHD1 as a novel regulator of neuronal metabolism and a potential therapeutic target in ischemic stroke. PMID:26774962

  4. Deletion or Inhibition of the Oxygen Sensor PHD1 Protects against Ischemic Stroke via Reprogramming of Neuronal Metabolism.

    Science.gov (United States)

    Quaegebeur, Annelies; Segura, Inmaculada; Schmieder, Roberta; Verdegem, Dries; Decimo, Ilaria; Bifari, Francesco; Dresselaers, Tom; Eelen, Guy; Ghosh, Debapriva; Davidson, Shawn M; Schoors, Sandra; Broekaert, Dorien; Cruys, Bert; Govaerts, Kristof; De Legher, Carla; Bouché, Ann; Schoonjans, Luc; Ramer, Matt S; Hung, Gene; Bossaert, Goele; Cleveland, Don W; Himmelreich, Uwe; Voets, Thomas; Lemmens, Robin; Bennett, C Frank; Robberecht, Wim; De Bock, Katrien; Dewerchin, Mieke; Ghesquière, Bart; Fendt, Sarah-Maria; Carmeliet, Peter

    2016-02-09

    The oxygen-sensing prolyl hydroxylase domain proteins (PHDs) regulate cellular metabolism, but their role in neuronal metabolism during stroke is unknown. Here we report that PHD1 deficiency provides neuroprotection in a murine model of permanent brain ischemia. This was not due to an increased collateral vessel network. Instead, PHD1(-/-) neurons were protected against oxygen-nutrient deprivation by reprogramming glucose metabolism. Indeed, PHD1(-/-) neurons enhanced glucose flux through the oxidative pentose phosphate pathway by diverting glucose away from glycolysis. As a result, PHD1(-/-) neurons increased their redox buffering capacity to scavenge oxygen radicals in ischemia. Intracerebroventricular injection of PHD1-antisense oligonucleotides reduced the cerebral infarct size and neurological deficits following stroke. These data identify PHD1 as a regulator of neuronal metabolism and a potential therapeutic target in ischemic stroke. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Hypoxia-dependent sequestration of an oxygen sensor by a widespread structural motif can shape the hypoxic response - a predictive kinetic model

    Directory of Open Access Journals (Sweden)

    Novák Béla

    2010-10-01

    Full Text Available Abstract Background The activity of the heterodimeric transcription factor hypoxia inducible factor (HIF is regulated by the post-translational, oxygen-dependent hydroxylation of its α-subunit by members of the prolyl hydroxylase domain (PHD or EGLN-family and by factor inhibiting HIF (FIH. PHD-dependent hydroxylation targets HIFα for rapid proteasomal degradation; FIH-catalysed asparaginyl-hydroxylation of the C-terminal transactivation domain (CAD of HIFα suppresses the CAD-dependent subset of the extensive transcriptional responses induced by HIF. FIH can also hydroxylate ankyrin-repeat domain (ARD proteins, a large group of proteins which are functionally unrelated but share common structural features. Competition by ARD proteins for FIH is hypothesised to affect FIH activity towards HIFα; however the extent of this competition and its effect on the HIF-dependent hypoxic response are unknown. Results To analyse if and in which way the FIH/ARD protein interaction affects HIF-activity, we created a rate equation model. Our model predicts that an oxygen-regulated sequestration of FIH by ARD proteins significantly shapes the input/output characteristics of the HIF system. The FIH/ARD protein interaction is predicted to create an oxygen threshold for HIFα CAD-hydroxylation and to significantly sharpen the signal/response curves, which not only focuses HIFα CAD-hydroxylation into a defined range of oxygen tensions, but also makes the response ultrasensitive to varying oxygen tensions. Our model further suggests that the hydroxylation status of the ARD protein pool can encode the strength and the duration of a hypoxic episode, which may allow cells to memorise these features for a certain time period after reoxygenation. Conclusions The FIH/ARD protein interaction has the potential to contribute to oxygen-range finding, can sensitise the response to changes in oxygen levels, and can provide a memory of the strength and the duration of a

  6. Luminescent Oxygen Gas Sensors Based on Nanometer-Thick Hybrid Films of Iridium Complexes and Clay Minerals

    Directory of Open Access Journals (Sweden)

    Hisako Sato

    2014-01-01

    Full Text Available The use of Ir(III complexes in photo-responsive molecular devices for oxygen gas sensing is reviewed. Attention is focused on the immobilization of Ir(III complexes in organic or inorganic host materials such as polymers, silica and clays in order to enhance robustness and reliability. Our recent works on constructing nanometer-thick films comprised of cyclometalated cationic Ir(III complexes and clay minerals are described. The achievement of multi-emitting properties in response to oxygen pressure is demonstrated.

  7. Effects of the oxygenation level on formation of different reactive oxygen species during photodynamic therapy.

    Science.gov (United States)

    Price, Michael; Heilbrun, Lance; Kessel, David

    2013-01-01

    We examined the effect of the oxygenation level on efficacy of two photosensitizing agents, both of which target lysosomes for photodamage, but via different photochemical pathways. Upon irradiation, the chlorin termed NPe6 forms singlet oxygen in high yield while the bacteriopheophorbide WST11 forms only oxygen radicals (in an aqueous environment). Photokilling efficacy by WST11 in cell culture was impaired when the atmospheric oxygen concentration was reduced from 20% to 1%, while photokilling by NPe6 was unaffected. Studies in a cell-free system revealed that the rates of photobleaching of these agents, as a function of the oxygenation level, were correlated with results described above. Moreover, the rate of formation of oxygen radicals by either agent was more sensitive to the level of oxygenation than was singlet oxygen formation by NPe6. These data indicate that the photochemical process that leads to oxygen radical formation is more dependent on the oxygenation level than is the pathway leading to formation of singlet oxygen. © 2013 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2013 The American Society of Photobiology.

  8. The electroweak phase transition in models with gauge singlets

    International Nuclear Information System (INIS)

    Ahriche, A.

    2007-01-01

    A strong first order phase transition is needed for generating the baryon asymmetry; and also to save it during the electroweak phase transition (EWPT). However this condition is not fulfilled within the Standard Model (SM), but in its extensions. It is widely believed that the existence of singlet scalars in some Standard Model extensions can easily make the EWPT strongly first order. In this work, we will examine the strength of the EWPT in the simplest extension of the SM with a real gauge singlet using the sphaleron energy at the critical temperature. We find that the phase transition is stronger by adding a singlet; and also that the criterion for a strong phase transition Ω(T c )/T c >or similar 1, where Ω = (v 2 + (x - x 0 ) 2 ) ( 1)/(2) and x(x 0 ) is the singlet vacuum expectation value in the broken (symmetric) phase, is not valid for models containing singlets, even though often used in the literature. The usual condition v c /T c >or similar 1 is more meaningful, and it is satisfied for the major part of the parameter space for physically allowed Higgs masses. Then it is convenient to study the EWPT in models with singlets that couple only to the Higgs doublets, by replacing the singlets by their vevs. (orig.)

  9. The electroweak phase transition in models with gauge singlets

    Energy Technology Data Exchange (ETDEWEB)

    Ahriche, A.

    2007-04-18

    A strong first order phase transition is needed for generating the baryon asymmetry; and also to save it during the electroweak phase transition (EWPT). However this condition is not fulfilled within the Standard Model (SM), but in its extensions. It is widely believed that the existence of singlet scalars in some Standard Model extensions can easily make the EWPT strongly first order. In this work, we will examine the strength of the EWPT in the simplest extension of the SM with a real gauge singlet using the sphaleron energy at the critical temperature. We find that the phase transition is stronger by adding a singlet; and also that the criterion for a strong phase transition {omega}(T{sub c})/T{sub c} >or similar 1, where {omega} = (v{sup 2} + (x - x{sub 0}){sup 2}){sup (}1)/(2) and x(x{sub 0}) is the singlet vacuum expectation value in the broken (symmetric) phase, is not valid for models containing singlets, even though often used in the literature. The usual condition v{sub c}/T{sub c} >or similar 1 is more meaningful, and it is satisfied for the major part of the parameter space for physically allowed Higgs masses. Then it is convenient to study the EWPT in models with singlets that couple only to the Higgs doublets, by replacing the singlets by their vevs. (orig.)

  10. Oxygen sensor nanoparticles for monitoring bacterial growth and characterization of dose–response functions in microfluidic screenings

    International Nuclear Information System (INIS)

    Cao, Jialan; Köhler, J. Michael; Nagl, Stefan; Kothe, Erika

    2015-01-01

    We are presenting a microfluidic droplet-based system for non-invasive, simultaneous optical monitoring of oxygen during bacterial cultivation in nL-sized droplets using ∼350 nm nanobeads made from polystyrene and doped with the NIR-emitting oxygen probe platinum (II) 5, 10, 15, 20-meso-tetraphenyltetrabenzoporphyrin (PtTPTBP). Data were readout by a two-channel micro flow-through fluorimeter and a two-channel micro flow-through photometer. The time-resolved miniaturized optical multi endpoint detection was applied to simultaneously sense dissolved oxygen, cellular autofluorescence, and cell density in nL-sized segments. Two bacterial strains were studied that are resistant to heavy metal ions, viz. Streptomyces acidiscabies E13 and Psychrobacillus psychrodurans UrPLO1. The study has two main features in that it demonstrates (a) the possibility to monitor the changes in oxygen partial pressure during metabolic activity of different bacterial cultures inside droplets, and (b) the efficiency of droplet-based microfluidic techniques along with multi-parameter optical sensing for highly resolved microtoxicological screenings in aquatic systems. (author)

  11. Biocatalyst Screening with a Twist: Application of Oxygen Sensors Integrated in Microchannels for Screening Whole Cell Biocatalyst Variants

    DEFF Research Database (Denmark)

    Fernandes, Ana C.; Halder, Julia M.; Nestl, Bettina M.

    2018-01-01

    Selective oxidative functionalization of molecules is a highly relevant and often demanding reaction in organic chemistry. The use of biocatalysts allows the stereo- and regioselective introduction of oxygen molecules in organic compounds at milder conditions and avoids the use of complex group-p...

  12. Differential signal pathway activation and 5-HT function: the role of gut enterochromaffin cells as oxygen sensors.

    Science.gov (United States)

    Haugen, Martin; Dammen, Rikard; Svejda, Bernhard; Gustafsson, Bjorn I; Pfragner, Roswitha; Modlin, Irvin; Kidd, Mark

    2012-11-15

    The chemomechanosensory function of the gut enterochromaffin (EC) cell enables it to respond to dietary agents and mechanical stretch. We hypothesized that the EC cell, which also sensed alterations in luminal or mucosal oxygen level, was physiologically sensitive to fluctuations in O(2). Given that low oxygen levels induce 5-HT production and secretion through a hypoxia inducible factor 1α (HIF-1α)-dependent pathway, we also hypothesized that increasing O(2) would reduce 5-HT production and secretion. Isolated normal EC cells as well as the well-characterized EC cell model KRJ-I were used to examine HIF signaling (luciferase-assays), hypoxia transcriptional response element (HRE)-mediated transcription (PCR), signaling pathways (Western blot), and 5-HT release (ELISA) during exposure to different oxygen levels. Normal EC cells and KRJ-I cells express HIF-1α, and transient transfection with Renilla luciferase under HRE control identified a hypoxia-mediated pathway in these cells. PCR confirmed activation of HIF-downstream targets, GLUT1, IGF2, and VEGF under reduced O(2) levels (0.5%). Reducing O(2) also elevated 5-HT secretion (2-3.2-fold) as well as protein levels of HIF-1α (1.7-3-fold). Increasing O(2) to 100% inhibited HRE-mediated signaling, transcription, reduced 5-HT secretion, and significantly lowered HIF-1α levels (∼75% of control). NF-κB signaling was also elevated during hypoxia (1.2-1.6-fold), but no significant changes were noted in PKA/cAMP. We concluded that gut EC cells are oxygen responsive, and alterations in O(2) levels differentially activate HIF-1α and tryptophan hydroxylase 1, as well as NF-κB signaling. This results in alterations in 5-HT production and secretion and identifies that the chemomechanosensory role of EC cells extends to oxygen sensing.

  13. Singlet Extensions of the MSSM with ℤ4R Symmetry

    International Nuclear Information System (INIS)

    Ratz, Michael; Vaudrevange, Patrick K. S.

    2015-01-01

    We discuss singlet extensions of the MSSM with ℤ 4 R symmetry. We show that holomorphic zeros can avoid a potentially large coefficient of the term linear in the singlet. The emerging model has both an effective μ term and a supersymmetric mass term for the singlet μ N which are controlled by the gravitino mass. The μ term turns out to be suppressed against μ N by about one or two orders of magnitude. We argue that this class of models might provide us with a solution to the little hierarchy problem of the MSSM

  14. Photochemical Dynamics of Intramolecular Singlet Fission

    Science.gov (United States)

    Lin, Zhou; Iwasaki, Hikari; Van Voorhis, Troy

    2017-06-01

    Singlet fission (SF) converts a singlet exciton (S_1) into a pair of triplet ones (T_1) via a ``multi-exciton'' (ME) intermediate: S_1 \\longleftrightarrow ^1ME \\longleftrightarrow ^1(T_1T_1) \\longrightarrow 2T_1. In exothermic cases, e.g., crystalline pentacene or its derivatives, the quantum yield of SF can reach 200%. With SF doubling the electric current generated by an incident high-energy photon, the solar conversion efficiency in pentacene-based organic photovoltaics (OPVs) can exceed the Shockley-Queisser limit of 33.7%. The ME state is popularly considered to be a dimeric state with significant charge transfer (CT) character that is strongly coupled to both S_1 and ^1(T_1T_1), while this local model lacks strong support from full quantum dynamics studies. Intramolecular SF (ISF) occurring to covalently-bound dimers in the solution phase is an excellent model for a straightforward dynamics simulation of local excitons. In the present study, we investigate the ISF mechanisms for three covalently-bound dimers of pentacene derivatives, including ortho-, meta-, and para-bis(6,13-bis(triisopropylsilylethynyl)pentacene)benzene, in non-protic solvents. Specifically, we propagate the real-time, non-adiabatic quantum mechanical/molecular mechanical (QM/MM) dynamics on the potential energy surfaces associated with the states of S_1, ^1(T_1T_1) and CT. We explore how the energies of these ISF-relevant states and the non-adiabatic couplings between each other fluctuate with time and the instantaneous molecular configuration (e.g., intermonomer distance and orientation). We also quantitatively compare Condon and non-Condon ISF dynamics with solution-phase spectroscopic data. Our results allow us to understand the roles of CT energy levels in the ISF mechanism and propose a design strategy to maximize ISF efficiency. M. B. Smith and J. Michl, Chem. Rev. 110, 6891 (2010). W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961). T. C. Berkelbach, M. S. Hybertsen

  15. Hyperpolarized singlet NMR on a small animal imaging system

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Pileio, Giuseppe; Tayler, Michael C. D.

    2012-01-01

    Nuclear spin hyperpolarization makes a significant advance toward overcoming the sensitivity limitations of in vivo magnetic resonance imaging, particularly in the case of low-gamma nuclei. The sensitivity may be improved further by storing the hyperpolarization in slowly relaxing singlet...... populations of spin- 1/2 pairs. Here, we report hyperpolarized 13C spin order transferred into and retrieved from singlet spin order using a small animal magnetic resonance imaging scanner. For spins in sites with very similar chemical shifts, singlet spin order is sustained in high magnetic field without...... requiring strong radiofrequency irradiation. The demonstration of robust singlet-to-magnetization conversion, and vice versa, on a small animal scanner, is promising for future in vivo and clinical deployments....

  16. Microscopic theory of singlet exciton fission. III. Crystalline pentacene

    International Nuclear Information System (INIS)

    Berkelbach, Timothy C.; Reichman, David R.; Hybertsen, Mark S.

    2014-01-01

    We extend our previous work on singlet exciton fission in isolated dimers to the case of crystalline materials, focusing on pentacene as a canonical and concrete example. We discuss the proper interpretation of the character of low-lying excited states of relevance to singlet fission. In particular, we consider a variety of metrics for measuring charge-transfer character, conclusively demonstrating significant charge-transfer character in the low-lying excited states. The impact of this electronic structure on the subsequent singlet fission dynamics is assessed by performing real-time master-equation calculations involving hundreds of quantum states. We make direct comparisons with experimental absorption spectra and singlet fission rates, finding good quantitative agreement in both cases, and we discuss the mechanistic distinctions that exist between small isolated aggregates and bulk systems

  17. Microscopic theory of singlet exciton fission. III. Crystalline pentacene

    Energy Technology Data Exchange (ETDEWEB)

    Berkelbach, Timothy C., E-mail: tcb2112@columbia.edu; Reichman, David R., E-mail: drr2103@columbia.edu [Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027 (United States); Hybertsen, Mark S., E-mail: mhyberts@bnl.gov [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)

    2014-08-21

    We extend our previous work on singlet exciton fission in isolated dimers to the case of crystalline materials, focusing on pentacene as a canonical and concrete example. We discuss the proper interpretation of the character of low-lying excited states of relevance to singlet fission. In particular, we consider a variety of metrics for measuring charge-transfer character, conclusively demonstrating significant charge-transfer character in the low-lying excited states. The impact of this electronic structure on the subsequent singlet fission dynamics is assessed by performing real-time master-equation calculations involving hundreds of quantum states. We make direct comparisons with experimental absorption spectra and singlet fission rates, finding good quantitative agreement in both cases, and we discuss the mechanistic distinctions that exist between small isolated aggregates and bulk systems.

  18. 2HDM portal for Singlet-Doublet Dark Matter

    OpenAIRE

    Arcadi, Giorgio

    2018-01-01

    We present an extensive analysis of a model in which the (Majorana) Dark Matter candidate is a mixture between a SU(2) singlet and two SU(2) doublets. This kind of setup takes the name of singlet-doublet model. We will investigate in detail an extension of this model in which the Dark Matter sector interactions with a 2-doublet Higgs sector enforcing the complementarity between Dark Matter phenomenology and searches of extra Higgs bosons.

  19. Singlet Fission in Rubrene Derivatives: Impact of Molecular Packing

    KAUST Repository

    Sutton, Christopher

    2017-03-13

    We examine the properties of six recently synthesized rubrene derivatives (with substitutions on the side phenyl rings) that show vastly different crystal structures. In order to understand how packing in the solid state affects the excited states and couplings relevant for singlet fission, the lowest excited singlet (S), triplet (T), multiexciton (TT), and charge-transfer (CT) states of the rubrene derivatives are compared to known singlet fission materials [tetracene, pentacene, 5,12-diphenyltetracene (DPT), and rubrene itself]. While a small difference of less than 0.2 eV is calculated for the S and TT energies, a range of 0.50 to 1.2 eV in the CT energies and nearly 3 orders of magnitude in the electronic couplings are computed for the rubrene derivatives in their crystalline packings, which strongly affects the role of the CT state in facilitating SF. To rationalize experimental observations of singlet fission occurring in amorphous phases of rubrene, DPT, and tetracene, we use molecular dynamics (MD) simulations to assess the impact of molecular packing and orientations and to gain a better understanding of the parameters that control singlet fission in amorphous films compared to crystalline packings. The MD simulations point to a crystalline-like packing for thin films of tetracene; on the other hand, DPT, rubrene, and the rubrene derivatives all show various degrees of disorder with a number of sites that have larger electronic couplings than in the crystal, which can facilitate singlet fission in such thin films. Our analysis underlines the potential of these materials as promising candidates for singlet fission and helps understand how various structural motifs affect the critical parameters that control the ability of a system to undergo singlet fission.

  20. Investigation of photoplethysmographic signals and blood oxygen saturation values on healthy volunteers during cuff-induced hypoperfusion using a multimode PPG/SpO₂ sensor.

    Science.gov (United States)

    Shafique, M; Kyriacou, P A; Pal, S K

    2012-06-01

    Photoplethysmography (PPG) is a technique widely used to monitor volumetric blood changes induced by cardiac pulsations. Pulse oximetry uses the technique of PPG to estimate arterial oxygen saturation values (SpO₂). In poorly perfused tissues, SpO₂ readings may be compromised due to the poor quality of the PPG signals. A multimode finger PPG probe that operates simultaneously in reflectance, transmittance and a combined mode called "transreflectance" was developed, in an effort to improve the quality of the PPG signals in states of hypoperfusion. Experiments on 20 volunteers were conducted to evaluate the performance of the multimode PPG sensor and compare the results with a commercial transmittance pulse oximeter. A brachial blood pressure cuff was used to induce artificial hypoperfusion. Results showed that the amplitude of the transreflectance AC PPG signals were significantly different (p signals obtained from the other two conventional PPG sensors (reflectance and transmittance). At induced brachial pressures between 90 and 135 mmHg, the reflectance finger pulse oximeter failed 25 times (failure rate 42.2 %) to estimate SpO₂ values, whereas the transmittance pulse oximeter failed 8 times (failure rate 15.5 %). The transreflectance pulse oximeter failed only 3 times (failure rate 6.8 %) and the commercial pulse oximeter failed 17 times (failure rate 29.4 %).

  1. Structural characterization of the heme-based oxygen sensor, AfGcHK, its interactions with the cognate response regulator, and their combined mechanism of action in a bacterial two-component signaling system

    Czech Academy of Sciences Publication Activity Database

    Stráňava, M.; Martínek, V.; Man, Petr; Fojtíková, V.; Kavan, Daniel; Vaněk, O.; Shimizu, T.; Martínková, M.

    2016-01-01

    Roč. 84, č. 10 (2016), s. 1375-1389 ISSN 1097-0134 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : heme-based oxygen sensor * histidine kinase * two-component signal transduction system Subject RIV: CE - Biochemistry

  2. Sensor employing internal reference electrode

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same.......The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same....

  3. Oxygen sensors and energy sensors act synergistically to achieve a graded alteration in gene expression: consequences for assessing the level of neuroprotection in response to stressors.

    Science.gov (United States)

    Renshaw, Gillian M C; Warburton, Joshua; Girjes, Adeeb

    2004-01-01

    Changes in gene expression are associated with switching to an autoprotected phenotype in response to environmental and physiological stress. Ubiquitous molecular chaperones from the heat shock protein (HSP) superfamily confer neuronal protection that can be blocked by antibodies. Recent research has focused on the interactions between the molecular sensors that affect the increased expression of neuroprotective HSPs above constitutive levels. An examination of the conditions under which the expression of heat shock protein 70 (Hsp70) was up regulated in a hypoxia and anoxia tolerant tropical species, the epaulette shark (Hemiscyllium ocellatum), revealed that up-regulation was dependent on exceeding a stimulus threshold for an oxidative stressor. While hypoxic-preconditioning confers neuroprotective changes, there was no increase in the level of Hsp70 indicating that its increased expression was not associated with achieving a neuroprotected state in response to hypoxia in the epaulette shark. Conversely, there was a significant increase in Hsp70 in response to anoxic-preconditioning, highlighting the presence of a stimulus threshold barrier and raising the possibility that, in this species, Hsp70 contributes to the neuroprotective response to extreme crises, such as oxidative stress. Interestingly, there was a synergistic effect of coincident stressors on Hsp70 expression, which was revealed when metabolic stress was superimposed upon oxidative stress. Brain energy charge was significantly lower when adenosine receptor blockade, provided by treatment with aminophylline, was present prior to the final anoxic episode, under these circumstances, the level of Hsp70 induced was significantly higher than in the pair-matched saline treated controls. An understanding of the molecular and metabolic basis for neuroprotective switches, which result in an up-regulation of neuroprotective Hsp70 expression in the brain, is needed so that intervention strategies can be devised

  4. Kinetic Investigations of the Role of Factor Inhibiting Hypoxia-inducible Factor (FIH) as an Oxygen Sensor.

    Science.gov (United States)

    Tarhonskaya, Hanna; Hardy, Adam P; Howe, Emily A; Loik, Nikita D; Kramer, Holger B; McCullagh, James S O; Schofield, Christopher J; Flashman, Emily

    2015-08-07

    The hypoxia-inducible factor (HIF) hydroxylases regulate hypoxia sensing in animals. In humans, they comprise three prolyl hydroxylases (PHD1-3 or EGLN1-3) and factor inhibiting HIF (FIH). FIH is an asparaginyl hydroxylase catalyzing post-translational modification of HIF-α, resulting in reduction of HIF-mediated transcription. Like the PHDs, FIH is proposed to have a hypoxia-sensing role in cells, enabling responses to changes in cellular O2 availability. PHD2, the most important human PHD isoform, is proposed to be biochemically/kinetically suited as a hypoxia sensor due to its relatively high sensitivity to changes in O2 concentration and slow reaction with O2. To ascertain whether these parameters are conserved among the HIF hydroxylases, we compared the reactions of FIH and PHD2 with O2. Consistent with previous reports, we found lower Km(app)(O2) values for FIH than for PHD2 with all HIF-derived substrates. Under pre-steady-state conditions, the O2-initiated FIH reaction is significantly faster than that of PHD2. We then investigated the kinetics with respect to O2 of the FIH reaction with ankyrin repeat domain (ARD) substrates. FIH has lower Km(app)(O2) values for the tested ARDs than HIF-α substrates, and pre-steady-state O2-initiated reactions were faster with ARDs than with HIF-α substrates. The results correlate with cellular studies showing that FIH is active at lower O2 concentrations than the PHDs and suggest that competition between HIF-α and ARDs for FIH is likely to be biologically relevant, particularly in hypoxic conditions. The overall results are consistent with the proposal that the kinetic properties of individual oxygenases reflect their biological capacity to act as hypoxia sensors. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. The effect of oxygen exposure on pentacene electronic structure

    NARCIS (Netherlands)

    Vollmer, A; Jurchescu, OD; Arfaoui, [No Value; Salzmann, [No Value; Palstra, TTM; Rudolf, P; Niemax, J; Pflaum, J; Rabe, JP; Koch, N; Arfaoui, I.; Salzmann, I.

    We use ultraviolet photoelectron spectroscopy to investigate the effect of oxygen and air exposure on the electronic structure of pentacene single crystals and thin films. it is found that O-2 and water do not react noticeably with pentacene, whereas singlet oxygen/ozone readily oxidize the organic

  6. Coordination and redox state-dependent structural changes of the heme-based oxygen sensor AfGcHK associated with intraprotein signal transduction.

    Science.gov (United States)

    Stranava, Martin; Man, Petr; Skálová, Tereza; Kolenko, Petr; Blaha, Jan; Fojtikova, Veronika; Martínek, Václav; Dohnálek, Jan; Lengalova, Alzbeta; Rosůlek, Michal; Shimizu, Toru; Martínková, Markéta

    2017-12-22

    The heme-based oxygen sensor histidine kinase Af GcHK is part of a two-component signal transduction system in bacteria. O 2 binding to the Fe(II) heme complex of its N-terminal globin domain strongly stimulates autophosphorylation at His 183 in its C-terminal kinase domain. The 6-coordinate heme Fe(III)-OH - and -CN - complexes of Af GcHK are also active, but the 5-coordinate heme Fe(II) complex and the heme-free apo-form are inactive. Here, we determined the crystal structures of the isolated dimeric globin domains of the active Fe(III)-CN - and inactive 5-coordinate Fe(II) forms, revealing striking structural differences on the heme-proximal side of the globin domain. Using hydrogen/deuterium exchange coupled with mass spectrometry to characterize the conformations of the active and inactive forms of full-length Af GcHK in solution, we investigated the intramolecular signal transduction mechanisms. Major differences between the active and inactive forms were observed on the heme-proximal side (helix H5), at the dimerization interface (helices H6 and H7 and loop L7) of the globin domain and in the ATP-binding site (helices H9 and H11) of the kinase domain. Moreover, separation of the sensor and kinase domains, which deactivates catalysis, increased the solvent exposure of the globin domain-dimerization interface (helix H6) as well as the flexibility and solvent exposure of helix H11. Together, these results suggest that structural changes at the heme-proximal side, the globin domain-dimerization interface, and the ATP-binding site are important in the signal transduction mechanism of Af GcHK. We conclude that Af GcHK functions as an ensemble of molecules sampling at least two conformational states. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Insights into signal transduction by a hybrid FixL: Denaturation study of on and off states of a multi-domain oxygen sensor.

    Science.gov (United States)

    Guimarães, Wellinson G; Gondim, Ana C S; Costa, Pedro Mikael da Silva; Gilles-Gonzalez, Marie-Alda; Lopes, Luiz G F; Carepo, Marta S P; Sousa, Eduardo H S

    2017-07-01

    FixL from Rhizobium etli (ReFixL) is a hybrid oxygen sensor protein. Signal transduction in ReFixL is effected by a switch off of the kinase activity on binding of an oxygen molecule to ferrous heme iron in another domain. Cyanide can also inhibit the kinase activity upon binding to the heme iron in the ferric state. The unfolding by urea of the purified full-length ReFixL in both active pentacoordinate form, met-FixL(Fe III ) and inactive cyanomet-FixL (Fe III -CN - ) form was monitored by UV-visible absorption spectroscopy, circular dichroism (CD) and fluorescence spectroscopy. The CD and UV-visible absorption spectroscopy revealed two states during unfolding, whereas fluorescence spectroscopy identified a three-state unfolding mechanism. The unfolding mechanism was not altered for the active compared to the inactive state; however, differences in the ΔG H2O were observed. According to the CD results, compared to cyanomet-FixL, met-FixL was more stable towards chemical denaturation by urea (7.2 vs 4.8kJmol -1 ). By contrast, electronic spectroscopy monitoring of the Soret band showed cyanomet-FixL to be more stable than met-FixL (18.5 versus 36.2kJmol -1 ). For the three-state mechanism exhibited by fluorescence, the ΔG H2O for both denaturation steps were higher for the active-state met-FixL than for cyanomet-FixL. The overall stability of met-FixL is higher in comparison to cyanomet-FixL suggesting a more compact protein in the active form. Nonetheless, hydrogen bonding by bound cyanide in the inactive state promotes the stability of the heme domain. This work supports a model of signal transduction by FixL that is likely shared by other heme-based sensors. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. An applicable approach for extracting human heart rate and oxygen saturation during physical movements using a multi-wavelength illumination optoelectronic sensor system

    Science.gov (United States)

    Alharbi, Samah; Hu, Sijung; Mulvaney, David; Blanos, Panagiotis

    2018-02-01

    The ability to gather physiological parameters such as heart rate (HR) and oxygen saturation (SpO2%) during physical movement allows to continuously monitor personal health status without disrupt their normal daily activities. Photoplethysmography (PPG) based pulse oximetry and similar principle devices are unable to extract the HR and SpO2% reliably during physical movement due to interference in the signals that arise from motion artefacts (MAs). In this research, a flexible reflectance multi-wavelength optoelectronic patch sensor (OEPS) has been developed to overcome the susceptibility of conventional pulse oximetry readings to MAs. The OEPS incorporates light embittered diodes as illumination sources with four different wavelengths, e.g. green, orange, red, and infrared unlike the conventional pulse oximetry devices that normally measure the skin absorption of only two wavelengths (red and infrared). The additional green and orange wavelengths were found to be distinguish to the absorption of deoxyhemoglobin (RHb) and oxyhemoglobin (HbO2). The reliability of extracting physiological parameters from the green and orange wavelengths is due to absorbed near to the surface of the skin, thereby shortening the optical path and so effectively reducing the influence of physical movements. To compensate of MAs, a three-axis accelerometer was used as a reference with help of adaptive filter to reduce MAs. The experiments were performed using 15 healthy subjects aged 20 to 30. The primary results show that there are no significant difference of heart rate and oxygen saturation measurements between commercial devices and OEPS Green (r=0.992), Orange(r=0.984), Red(r=0.952) and IR(r=0.97) and SpO2% (r = 0.982, p = 0.894).

  9. Iron-sulfur clusters as biological sensors: the chemistry of reactions with molecular oxygen and nitric oxide.

    Science.gov (United States)

    Crack, Jason C; Green, Jeffrey; Thomson, Andrew J; Le Brun, Nick E

    2014-10-21

    Iron-sulfur cluster proteins exhibit a range of physicochemical properties that underpin their functional diversity in biology, which includes roles in electron transfer, catalysis, and gene regulation. Transcriptional regulators that utilize iron-sulfur clusters are a growing group that exploit the redox and coordination properties of the clusters to act as sensors of environmental conditions including O2, oxidative and nitrosative stress, and metabolic nutritional status. To understand the mechanism by which a cluster detects such analytes and then generates modulation of DNA-binding affinity, we have undertaken a combined strategy of in vivo and in vitro studies of a range of regulators. In vitro studies of iron-sulfur cluster proteins are particularly challenging because of the inherent reactivity and fragility of the cluster, often necessitating strict anaerobic conditions for all manipulations. Nevertheless, and as discussed in this Account, significant progress has been made over the past decade in studies of O2-sensing by the fumarate and nitrate reduction (FNR) regulator and, more recently, nitric oxide (NO)-sensing by WhiB-like (Wbl) and FNR proteins. Escherichia coli FNR binds a [4Fe-4S] cluster under anaerobic conditions leading to a DNA-binding dimeric form. Exposure to O2 converts the cluster to a [2Fe-2S] form, leading to protein monomerization and hence loss of DNA binding ability. Spectroscopic and kinetic studies have shown that the conversion proceeds via at least two steps and involves a [3Fe-4S](1+) intermediate. The second step involves the release of two bridging sulfide ions from the cluster that, unusually, are not released into solution but rather undergo oxidation to sulfane (S(0)) subsequently forming cysteine persulfides that then coordinate the [2Fe-2S] cluster. Studies of other [4Fe-4S] cluster proteins that undergo oxidative cluster conversion indicate that persulfide formation and coordination may be more common than previously

  10. Oxygen diffusion in bilayer polymer films

    DEFF Research Database (Denmark)

    Poulsen, Lars; Zebger, Ingo; Tofte, Jannik Pentti

    2004-01-01

    Experiments to quantify oxygen diffusion have been performed on polymer samples in which a film of poly(ethylene-co-norbornene) was cast onto a film of polystyrene which, in turn, was cast onto an oxygen-impermeable substrate. In the technique employed, the time evolution of oxygen transport...... through the film of poly(ethylene-co-norbornene) and into the polystyrene film was monitored using the phosphorescence of singlet oxygen as a spectroscopic probe. To analyze the data, it was necessary to solve Fick's second law of diffusion for both polymer films. Tractable analytical and numerical...

  11. Singlet fission efficiency in tetracene-based organic solar cells

    International Nuclear Information System (INIS)

    Wu, Tony C.; Thompson, Nicholas J.; Congreve, Daniel N.; Hontz, Eric; Yost, Shane R.; Van Voorhis, Troy; Baldo, Marc A.

    2014-01-01

    Singlet exciton fission splits one singlet exciton into two triplet excitons. Using a joint analysis of photocurrent and fluorescence modulation under a magnetic field, we determine that the triplet yield within optimized tetracene organic photovoltaic devices is 153% ± 5% for a tetracene film thickness of 20 nm. The corresponding internal quantum efficiency is 127% ± 18%. These results are used to prove the effectiveness of a simplified triplet yield measurement that relies only on the magnetic field modulation of fluorescence. Despite its relatively slow rate of singlet fission, the measured triplet yields confirm that tetracene is presently the best candidate for use with silicon solar cells

  12. Singlet channel coupling in deuteron elastic scattering at intermediate energies

    International Nuclear Information System (INIS)

    Al-Khalili, J.S.; Tostevin, J.A.; Johnson, R.C.

    1990-01-01

    Intermediate energy deuteron elastic scattering is investigated in a three-body model incorporating relativistic kinematics. The effects of deuteron breakup to singlet spin intermediate states, on the elastic scattering observables for the 58 Ni(d vector, d) 58 Ni reaction at 400 and 700 MeV, are studied quantitatively. The singlet-breakup contributions to the elastic amplitude are estimated within an approximate two-step calculation. The calculation makes an adiabatic approximation in the intermediate states propagator which allows the use of closure over the np intermediate states continuum. The singlet channel coupling is found to produce large effects on the calculated reaction tensor analysing power A yy , characteristic of a dynamically induced second-rank tensor interaction. By inspection of the calculated breakup amplitudes we show this induced interaction to be of the T L tensor type. (orig.)

  13. Assessment and Use of Optical Oxygen Sensors as Tools to Assist in Optimal Product Component Selection for the Development of Packs of Ready-to-Eat Mixed Salads and for the Non-Destructive Monitoring of in-Pack Oxygen Levels Using Chilled Storage.

    Science.gov (United States)

    Hempel, Andreas W; O'Sullivan, Maurice G; Papkovsky, Dmitri B; Kerry, Joseph P

    2013-05-22

    Optical oxygen sensors were used to ascertain the level of oxygen consumed by individual salad leaves for optimised packaging of ready-to-eat (RTE) Italian salad mixes during refrigerated storage. Seven commonly found leaves in Italian salad mixes were individually assessed for oxygen utilisation in packs. Each leaf showed varying levels of respiration throughout storage. Using the information obtained, an experimental salad mix was formulated (termed Mix 3) which consisted of the four slowest respiring salad leaves-Escarole, Frisee, Red Batavia, Lollo Rosso. Mix 3 was then compared against two commercially available Italian salads; Mix 1 (Escarole, Frisee, Radicchio, Lollo Rosso) and Mix 2 (Cos, Frisee, Radicchio, Lollo Rosso). Optical sensors were used to non-destructively monitor oxygen usage in all mixes throughout storage. In addition to oxygen consumption, all three salad mixes were quality assessed in terms of microbial load and sensorial acceptability. In conclusion, Mix 3 was found to consume the least amount of oxygen over time, had the lowest microbial load and was most sensorially preferred ( p products.

  14. Development of QCD jets emitted by color-singlet sources

    International Nuclear Information System (INIS)

    Ellis, R.K.; Gunion, J.F.; Kalinowski, J.; Webber, B.R.

    1985-01-01

    We compare the angular-ordering approximation to QCD jet development with full calculations to order αsub(s) in the following cases: emission of quark jets by a color-singlet vector source (as in e + e - annihilation) and emission of gluon jets by a color-singlet scalar (Fsup(a)sub(μν)Fsup(aμν)) source. In contrast to the case of a color-octet (gluon) source, we find that the approximation is good in those regions of phase space where the next-to-leading corrections to the amplitude are large. (orig.)

  15. Singlet Exciton Lifetimes in Conjugated Polymer Films for Organic Solar Cells

    KAUST Repository

    Dimitrov, Stoichko; Schroeder, Bob; Nielsen, Christian; Bronstein, Hugo; Fei, Zhuping; McCulloch, Iain; Heeney, Martin; Durrant, James

    2016-01-01

    The lifetime of singlet excitons in conjugated polymer films is a key factor taken into account during organic solar cell device optimization. It determines the singlet exciton diffusion lengths in polymer films and has a direct impact

  16. Robust singlet fission in pentacene thin films with tuned charge transfer interactions.

    Science.gov (United States)

    Broch, K; Dieterle, J; Branchi, F; Hestand, N J; Olivier, Y; Tamura, H; Cruz, C; Nichols, V M; Hinderhofer, A; Beljonne, D; Spano, F C; Cerullo, G; Bardeen, C J; Schreiber, F

    2018-03-05

    Singlet fission, the spin-allowed photophysical process converting an excited singlet state into two triplet states, has attracted significant attention for device applications. Research so far has focused mainly on the understanding of singlet fission in pure materials, yet blends offer the promise of a controlled tuning of intermolecular interactions, impacting singlet fission efficiencies. Here we report a study of singlet fission in mixtures of pentacene with weakly interacting spacer molecules. Comparison of experimentally determined stationary optical properties and theoretical calculations indicates a reduction of charge-transfer interactions between pentacene molecules with increasing spacer molecule fraction. Theory predicts that the reduced interactions slow down singlet fission in these blends, but surprisingly we find that singlet fission occurs on a timescale comparable to that in pure crystalline pentacene. We explain the observed robustness of singlet fission in such mixed films by a mechanism of exciton diffusion to hot spots with closer intermolecular spacings.

  17. Modeling the oxygen microheterogeneity of tumors for photodynamic therapy dosimetry

    Science.gov (United States)

    Pogue, Brian W.; Paulsen, Keith D.; O'Hara, Julia A.; Hoopes, P. Jack; Swartz, Harold

    2000-03-01

    Photodynamic theory of tumors uses optical excitation of a sensitizing drug within tissue to produce large deposits of singlet oxygen, which are thought to ultimately cause the tumor destruction. Predicting dose deposition of singlet oxygen in vivo is challenging because measurement of this species in vivo is not easily achieved. But it is possible to follow the concentration of oxygen in vivo, and so measuring the oxygen concentration transients during PDT may provide a viable method of estimating the delivered dose of singlet oxygen. However modeling the microscopic heterogeneity of the oxygen distribution within a tumor is non-trivial, and predicting the microscopic dose deposition requires further study, but this study present the framework and initial calibration needed or modeling oxygen transport in complex geometries. Computational modeling with finite elements provides a versatile structure within which oxygen diffusion and consumption can be modeled within realistic tissue geometries. This study develops the basic tools required to simulate a tumor region, and examines the role of (i) oxygen supply and consumption rates, (ii) inter- capillary spacing, (iii) photosensitizer distribution, and (iv) differences between simulated tumors and those derived directly from histology. The result of these calculations indicate that realistic tumor tissue capillary networks can be simulated using the finite element method, without excessive computational burden for 2D regions near 1 mm2, and 3D regions near 0.1mm3. These simulations can provide fundamental information about tissue and ways to implement appropriate oxygen measurements. These calculations suggest that photodynamic therapy produces the majority of singlet oxygen in and near the blood vessels, because these are the sites of highest oxygen tension. These calculations support the concept that tumor vascular regions are the major targets for PDT dose deposition.

  18. First-Principle Characterization for Singlet Fission Couplings.

    Science.gov (United States)

    Yang, Chou-Hsun; Hsu, Chao-Ping

    2015-05-21

    The electronic coupling for singlet fission, an important parameter for determining the rate, has been found to be too small unless charge-transfer (CT) components were introduced in the diabatic states, mostly through perturbation or a model Hamiltonian. In the present work, the fragment spin difference (FSD) scheme was generalized to calculate the singlet fission coupling. The largest coupling strength obtained was 14.8 meV for two pentacenes in a crystal structure, or 33.7 meV for a transition-state structure, which yielded a singlet fission lifetime of 239 or 37 fs, generally consistent with experimental results (80 fs). Test results with other polyacene molecules are similar. We found that the charge on one fragment in the S1 diabatic state correlates well with FSD coupling, indicating the importance of the CT component. The FSD approach is a useful first-principle method for singlet fission coupling, without the need to include the CT component explicitly.

  19. 1,3-Diphenylisobenzofuran: a Model Chromophore for Singlet Fission

    Czech Academy of Sciences Publication Activity Database

    Johnson, J. C.; Michl, Josef

    2017-01-01

    Roč. 375, č. 5 (2017), č. článku 80. ISSN 2365-0869 R&D Projects: GA ČR GA15-19143S Institutional support: RVO:61388963 Keywords : 1,3-diphenylisobenzofuran * photophysics * solar energy * singlet fission * covalent dimers Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.033, year: 2016

  20. Status of the scalar singlet dark matter model

    Energy Technology Data Exchange (ETDEWEB)

    Athron, Peter; Balazs, Csaba [Monash University, School of Physics and Astronomy, Melbourne, VIC (Australia); Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); Bringmann, Torsten; Dal, Lars A.; Krislock, Abram; Raklev, Are [University of Oslo, Department of Physics, Oslo (Norway); Buckley, Andy [University of Glasgow, SUPA, School of Physics and Astronomy, Glasgow (United Kingdom); Chrzaszcz, Marcin [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Polish Academy of Sciences, H. Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Conrad, Jan; Edsjoe, Joakim; Farmer, Ben [AlbaNova University Centre, Oskar Klein Centre for Cosmoparticle Physics, Stockholm (Sweden); Stockholm University, Department of Physics, Stockholm (Sweden); Cornell, Jonathan M. [McGill University, Department of Physics, Montreal, QC (Canada); Jackson, Paul; White, Martin [Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); University of Adelaide, Department of Physics, Adelaide, SA (Australia); Kahlhoefer, Felix [DESY, Hamburg (Germany); Kvellestad, Anders; Savage, Christopher [NORDITA, Stockholm (Sweden); McKay, James; Scott, Pat [Imperial College London, Department of Physics, Blackett Laboratory, London (United Kingdom); Mahmoudi, Farvah [Univ. Lyon, Univ. Lyon 1, ENS de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, Saint-Genis-Laval (France); CERN, Theoretical Physics Department, Geneva (Switzerland); Martinez, Gregory D. [University of California, Physics and Astronomy Department, Los Angeles, CA (United States); Putze, Antje [LAPTh, Universite de Savoie, CNRS, Annecy-le-Vieux (France); Rogan, Christopher [Harvard University, Department of Physics, Cambridge, MA (United States); Saavedra, Aldo [Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); The University of Sydney, Centre for Translational Data Science, Faculty of Engineering and Information Technologies, School of Physics, Sydney, NSW (Australia); Serra, Nicola [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Weniger, Christoph [University of Amsterdam, GRAPPA, Institute of Physics, Amsterdam (Netherlands); Collaboration: The GAMBIT Collaboration

    2017-08-15

    One of the simplest viable models for dark matter is an additional neutral scalar, stabilised by a Z{sub 2} symmetry. Using the GAMBIT package and combining results from four independent samplers, we present Bayesian and frequentist global fits of this model. We vary the singlet mass and coupling along with 13 nuisance parameters, including nuclear uncertainties relevant for direct detection, the local dark matter density, and selected quark masses and couplings. We include the dark matter relic density measured by Planck, direct searches with LUX, PandaX, SuperCDMS and XENON100, limits on invisible Higgs decays from the Large Hadron Collider, searches for high-energy neutrinos from dark matter annihilation in the Sun with IceCube, and searches for gamma rays from annihilation in dwarf galaxies with the Fermi-LAT. Viable solutions remain at couplings of order unity, for singlet masses between the Higgs mass and about 300 GeV, and at masses above ∝ 1 TeV. Only in the latter case can the scalar singlet constitute all of dark matter. Frequentist analysis shows that the low-mass resonance region, where the singlet is about half the mass of the Higgs, can also account for all of dark matter, and remains viable. However, Bayesian considerations show this region to be rather fine-tuned. (orig.)

  1. Generation of deviation parameters for amino acid singlets, doublets ...

    Indian Academy of Sciences (India)

    We present a new method, secondary structure prediction by deviation parameter (SSPDP) for predicting the secondary structure of proteins from amino acid sequence. Deviation parameters (DP) for amino acid singlets, doublets and triplets were computed with respect to secondary structural elements of proteins based on ...

  2. Flavor-singlet spectrum in multi-flavor QCD

    Science.gov (United States)

    Aoki, Yasumichi; Aoyama, Tatsumi; Bennett, Ed; Kurachi, Masafumi; Maskawa, Toshihide; Miura, Kohtaroh; Nagai, Kei-ichi; Ohki, Hiroshi; Rinaldi, Enrico; Shibata, Akihiro; Yamawaki, Koichi; Yamazaki, Takeshi

    2018-03-01

    Studying SU(3) gauge theories with increasing number of light fermions is relevant both for understanding the strong dynamics of QCD and for constructing strongly interacting extensions of the Standard Model (e.g. UV completions of composite Higgs models). In order to contrast these many-flavors strongly interacting theories with QCD, we study the flavor-singlet spectrum as an interesting probe. In fact, some composite Higgs models require the Higgs boson to be the lightest flavor-singlet scalar in the spectrum of a strongly interacting new sector with a well defined hierarchy with the rest of the states. Moreover, introducing many light flavors at fixed number of colors can influence the dynamics of the lightest flavor-singlet pseudoscalar. We present the on-going study of these flavor-singlet channels using multiple interpolating operators on high-statistics ensembles generated by the LatKMI collaboration and we compare results with available data obtained by the Lattice Strong Dynamics collaboration. For the theory with 8 flavors, the two collaborations have generated configurations that complement each others with the aim to tackle the massless limit using the largest possible volumes.

  3. Flavor-singlet spectrum in multi-flavor QCD

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Yasamichi; Rinaldi, Enrico

    2017-06-18

    Studying SU(3) gauge theories with increasing number of light fermions is relevant both for understanding the strong dynamics of QCD and for constructing strongly interacting extensions of the Standard Model (e.g. UV completions of composite Higgs models). In order to contrast these many-flavors strongly interacting theories with QCD, we study the flavor-singlet spectrum as an interesting probe. In fact, some composite Higgs models require the Higgs boson to be the lightest flavor-singlet scalar in the spectrum of a strongly interacting new sector with a well defined hierarchy with the rest of the states. Moreover, introducing many light flavors at fixed number of colors can influence the dynamics of the lightest flavor-singlet pseudoscalar. We present the on-going study of these flavor-singlet channels using multiple interpolating operators on high-statistics ensembles generated by the LatKMI collaboration and we compare results with available data obtained by the Lattice Strong Dynamics collaboration. For the theory with 8 flavors, the two collaborations have generated configurations that complement each others with the aim to tackle the massless limit using the largest possible volumes.

  4. Status of the scalar singlet dark matter model

    Science.gov (United States)

    Athron, Peter; Balázs, Csaba; Bringmann, Torsten; Buckley, Andy; Chrząszcz, Marcin; Conrad, Jan; Cornell, Jonathan M.; Dal, Lars A.; Edsjö, Joakim; Farmer, Ben; Jackson, Paul; Kahlhoefer, Felix; Krislock, Abram; Kvellestad, Anders; McKay, James; Mahmoudi, Farvah; Martinez, Gregory D.; Putze, Antje; Raklev, Are; Rogan, Christopher; Saavedra, Aldo; Savage, Christopher; Scott, Pat; Serra, Nicola; Weniger, Christoph; White, Martin

    2017-08-01

    One of the simplest viable models for dark matter is an additional neutral scalar, stabilised by a Z_2 symmetry. Using the GAMBIT package and combining results from four independent samplers, we present Bayesian and frequentist global fits of this model. We vary the singlet mass and coupling along with 13 nuisance parameters, including nuclear uncertainties relevant for direct detection, the local dark matter density, and selected quark masses and couplings. We include the dark matter relic density measured by Planck, direct searches with LUX, PandaX, SuperCDMS and XENON100, limits on invisible Higgs decays from the Large Hadron Collider, searches for high-energy neutrinos from dark matter annihilation in the Sun with IceCube, and searches for gamma rays from annihilation in dwarf galaxies with the Fermi-LAT. Viable solutions remain at couplings of order unity, for singlet masses between the Higgs mass and about 300 GeV, and at masses above ˜ 1 TeV. Only in the latter case can the scalar singlet constitute all of dark matter. Frequentist analysis shows that the low-mass resonance region, where the singlet is about half the mass of the Higgs, can also account for all of dark matter, and remains viable. However, Bayesian considerations show this region to be rather fine-tuned.

  5. Sea quark matrix elements and flavor singlet spectroscopy on the lattice

    International Nuclear Information System (INIS)

    Lagae, J.F.

    1996-01-01

    I summarize the results of three recent lattice studies which use stochastic estimator techniques in order to investigate the flavor singlet dynamics in QCD. These include a measurement of the pion-nucleon σ-term, the computation of the flavor singlet axial coupling constant of the nucleon and a determination of flavor singlet meson screening lengths in finite temperature QCD

  6. Singlet exciton fission in polycrystalline pentacene: from photophysics toward devices.

    Science.gov (United States)

    Wilson, Mark W B; Rao, Akshay; Ehrler, Bruno; Friend, Richard H

    2013-06-18

    Singlet exciton fission is the process in conjugated organic molecules bywhich a photogenerated singlet exciton couples to a nearby chromophore in the ground state, creating a pair of triplet excitons. Researchers first reported this phenomenon in the 1960s, an event that sparked further studies in the following decade. These investigations used fluorescence spectroscopy to establish that exciton fission occurred in single crystals of several acenes. However, research interest has been recently rekindled by the possibility that singlet fission could be used as a carrier multiplication technique to enhance the efficiency of photovoltaic cells. The most successful architecture to-date involves sensitizing a red-absorbing photoactive layer with a blue-absorbing material that undergoes fission, thereby generating additional photocurrent from higher-energy photons. The quest for improved solar cells has spurred a drive to better understand the fission process, which has received timely aid from modern techniques for time-resolved spectroscopy, quantum chemistry, and small-molecule device fabrication. However, the consensus interpretation of the initial studies using ultrafast transient absorption spectroscopy was that exciton fission was suppressed in polycrystalline thin films of pentacene, a material that would be otherwise expected to be an ideal model system, as well as a viable candidate for fission-sensitized photovoltaic devices. In this Account, we review the results of our recent transient absorption and device-based studies of polycrystalline pentacene. We address the controversy surrounding the assignment of spectroscopic features in transient absorption data, and illustrate how a consistent interpretation is possible. This work underpins our conclusion that singlet fission in pentacene is extraordinarily rapid (∼80 fs) and is thus the dominant decay channel for the photoexcited singlet exciton. Further, we discuss our demonstration that triplet excitons

  7. Effects of Intermolecular Coupling on Excimer Formation and Singlet Fission

    Science.gov (United States)

    Mauck, Catherine McKay

    The development of organic photovoltaic devices benefits from understanding the fundamental processes underlying charge generation in thin films of organic semiconductors. This dissertation exploits model systems of pi-stacked chromophores such as perylene-3,4:9,10-bis(dicarboximide) (PDI) and 3,6-bis(aryl)diketopyrrolopyrrole (DPP) to study these processes using ultrafast electronic and vibrational spectroscopy. In particular, the characterization of covalent molecular dimers, thin films, and solution aggregates can reveal how supramolecular order affects photophysical properties. PDI and DPP are organic semiconductors that have been widely studied in organic photovoltaics, due to their strong visible absorption and excellent chemical stability. As solution-phase monomers, they are highly fluorescent, but in the thin film environment of photovoltaic devices these planar aromatic molecules couple to one another, stacking largely through pi-pi interactions. In self-assembled stacks of PDI, strong interchromophore coupling may disrupt charge separation through the formation of excimer states, preventing the generation of free carriers. By studying molecular dimers of PDI with different pi-stacked geometry, femtosecond visible pump mid-infrared probe spectroscopy allows direct observation of the structural dynamics associated with excimer state relaxation, showing that this low-energy state is primarily coupled to the core modes that shift as planarization and rotation lead to the most stable excimer geometry. PDI is also able to undergo singlet fission in thin films and aggregates. Singlet fission is the process in which a singlet excited state is downconverted into two triplet excitons, when the energy of its first singlet excited state is at least twice the energy of the lowest triplet state in an appropriately coupled molecular system. This spin-allowed, ultrafast process enables a theoretical yield of two charge carriers per incident photon, making it a

  8. Lithium-Oxygen Batteries: At a Crossroads?

    DEFF Research Database (Denmark)

    Vegge, Tejs; García Lastra, Juan Maria; Siegel, Donald Jason

    2017-01-01

    In this current opinion, we critically review and discuss some of the most important recent findings in the field of rechargeable lithium-oxygen batteries. We discuss recent discoveries like the evolution of reactive singlet oxygen and the use of organic additives to bypass reactive LiO2 reaction...... intermediates, and their possible implications on the potential for commercialization of lithium-oxygen batteries. Finally, we perform a critical assessment of lithium-superoxide batteries and the reversibility of lithium-hydroxide batteries....

  9. Introduction of water into the heme distal side by Leu65 mutations of an oxygen sensor, YddV, generates verdoheme and carbon monoxide, exerting the heme oxygenase reaction.

    Science.gov (United States)

    Stranava, Martin; Martínková, Markéta; Stiborová, Marie; Man, Petr; Kitanishi, Kenichi; Muchová, Lucie; Vítek, Libor; Martínek, Václav; Shimizu, Toru

    2014-11-01

    The globin-coupled oxygen sensor, YddV, is a heme-based oxygen sensor diguanylate cyclase. Oxygen binding to the heme Fe(II) complex in the N-terminal sensor domain of this enzyme substantially enhances its diguanylate cyclase activity which is conducted in the C-terminal functional domain. Leu65 is located on the heme distal side and is important for keeping the stability of the heme Fe(II)-O2 complex by preventing the entry of the water molecule to the heme complex. In the present study, it was found that (i) Escherichia coli-overexpressed and purified L65N mutant of the isolated heme-bound domain of YddV (YddV-heme) contained the verdoheme iron complex and other modified heme complexes as determined by optical absorption spectroscopy and mass spectrometry; (ii) CO was generated in the reconstituted system composed of heme-bound L65N and NADPH:cytochrome P450 reductase as confirmed by gas chromatography; (iii) CO generation of heme-bound L65N in the reconstituted system was inhibited by superoxide dismutase and catalase. In a concordance with the result, the reactive oxygen species increased the CO generation; (iv) the E. coli cells overexpressing the L65N protein of YddV-heme also formed significant amounts of CO compared to the cells overexpressing the wild type protein; (v) generation of verdoheme and CO was also observed for other mutants at Leu65 as well, but to a lesser extent. Since Leu65 mutations are assumed to introduce the water molecule into the heme distal side of YddV-heme, it is suggested that the water molecule would significantly contribute to facilitating heme oxygenase reactions for the Leu65 mutants. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Organic light-emitting devices (OLEDs) and OLED-based chemical and biological sensors: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Shinar, Joseph [Ames Laboratory-USDOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Shinar, Ruth [Microelectronics Research Center, Iowa State University, Ames, IA 50011 (United States)

    2008-07-07

    The basic photophysics, transport properties, state of the art, and challenges in OLED science and technology, and the major developments in structurally integrated OLED-based luminescent chemical and biological sensors are reviewed briefly. The dramatic advances in OLED performance have resulted in devices with projected continuous operating lifetimes of {approx}2 x 10{sup 5} h ({approx}23 yr) at {approx}150 Cd m{sup -2} (the typical brightness of a computer monitor or TV). Consequently, commercial products incorporating OLEDs, e.g., cell phones, MP3 players, and, most recently, OLED TVs, are rapidly proliferating. The progress in elucidating the photophysics and transport properties, occurring in tandem with the development of OLEDs, has been no less dramatic. It has resulted in a detailed understanding of the dynamics of trapped and mobile negative and positive polarons (to which the electrons and holes, respectively, relax upon injection), and of singlet and triplet excitons. It has also yielded a detailed understanding of the spin dynamics of polarons and triplet excitons, which affects their overall dynamics significantly. Despite the aforementioned progress, there are outstanding challenges in OLED science and technology, notably in improving the efficiency of the devices and their stability at high brightness (>1000 Cd m{sup -2}). One of the most recent emerging OLED-based technologies is that of structurally integrated photoluminescence-based chemical and biological sensors. This sensor platform, pioneered by the authors, yields uniquely simple and potentially very low-cost sensor (micro)arrays. The second part of this review describes the recent developments in implementing this platform for gas phase oxygen, dissolved oxygen (DO), anthrax lethal factor, and hydrazine sensors, and for a DO, glucose, lactate, and ethanol multianalyte sensor. (topical review)

  11. Organic light-emitting devices (OLEDs) and OLED-based chemical and biological sensors: an overview

    International Nuclear Information System (INIS)

    Shinar, Joseph; Shinar, Ruth

    2008-01-01

    The basic photophysics, transport properties, state of the art, and challenges in OLED science and technology, and the major developments in structurally integrated OLED-based luminescent chemical and biological sensors are reviewed briefly. The dramatic advances in OLED performance have resulted in devices with projected continuous operating lifetimes of ∼2 x 10 5 h (∼23 yr) at ∼150 Cd m -2 (the typical brightness of a computer monitor or TV). Consequently, commercial products incorporating OLEDs, e.g., cell phones, MP3 players, and, most recently, OLED TVs, are rapidly proliferating. The progress in elucidating the photophysics and transport properties, occurring in tandem with the development of OLEDs, has been no less dramatic. It has resulted in a detailed understanding of the dynamics of trapped and mobile negative and positive polarons (to which the electrons and holes, respectively, relax upon injection), and of singlet and triplet excitons. It has also yielded a detailed understanding of the spin dynamics of polarons and triplet excitons, which affects their overall dynamics significantly. Despite the aforementioned progress, there are outstanding challenges in OLED science and technology, notably in improving the efficiency of the devices and their stability at high brightness (>1000 Cd m -2 ). One of the most recent emerging OLED-based technologies is that of structurally integrated photoluminescence-based chemical and biological sensors. This sensor platform, pioneered by the authors, yields uniquely simple and potentially very low-cost sensor (micro)arrays. The second part of this review describes the recent developments in implementing this platform for gas phase oxygen, dissolved oxygen (DO), anthrax lethal factor, and hydrazine sensors, and for a DO, glucose, lactate, and ethanol multianalyte sensor. (topical review)

  12. Confinement sensitivity in quantum dot singlet-triplet relaxation

    Science.gov (United States)

    Wesslén, C. J.; Lindroth, E.

    2017-11-01

    Spin-orbit mediated phonon relaxation in a two-dimensional quantum dot is investigated using different confining potentials. Elliptical harmonic oscillator and cylindrical well results are compared to each other in the case of a two-electron GaAs quantum dot subjected to a tilted magnetic field. The lowest energy set of two-body singlet and triplet states are calculated including spin-orbit and magnetic effects. These are used to calculate the phonon induced transition rate from the excited triplet to the ground state singlet for magnetic fields up to where the states cross. The roll of the cubic Dresselhaus effect, which is found to be much more important than previously assumed, and the positioning of ‘spin hot-spots’ are discussed and relaxation rates for a few different systems are exhibited.

  13. Trap-induced photoconductivity in singlet fission pentacene diodes

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Xianfeng, E-mail: qiaoxianfeng@hotmail.com; Zhao, Chen; Chen, Bingbing; Luan, Lin [WuHan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wu Han 430074 (China)

    2014-07-21

    This paper reports a trap-induced photoconductivity in ITO/pentacene/Al diodes by using current-voltage and magneto-conductance measurements. The comparison of photoconductivity between pentacene diodes with and without trap clearly shows that the traps play a critical role in generating photoconductivity. It shows that no observable photoconductivity is detected for trap-free pentacene diodes, while significant photoconductivity is observed in diodes with trap. This is because the initial photogenerated singlet excitons in pentacene can rapidly split into triplet excitons with higher binding energy prior to dissociating into free charge carriers. The generated triplet excitons react with trapped charges to release charge-carriers from traps, leading to a trap-induced photoconductivity in the single-layer pentacene diodes. Our studies elucidated the formation mechanisms of photoconductivity in pentacene diodes with extremely fast singlet fission rate.

  14. Stability of mass hierarchy in models with a sliding singlet

    International Nuclear Information System (INIS)

    Smirnov, A.Yu.; Tainov, E.A.

    1986-01-01

    In the broad class of models with a heavy sliding singlet and softly broken supersymmetry (e.g. by the effects of N=1 supergravity) it is shown that the doublet-triplet hierarchy obtained at the tree level is not destroyed by quantum correction at any loop order. As an example the simplest SU(5) model with a stable doublet-triplet hierarchy is proposed. The necessary and sufficient conditions of the hierarchy stability are discussed. (orig.)

  15. Standard Model with a real singlet scalar and inflation

    Energy Technology Data Exchange (ETDEWEB)

    Enqvist, Kari; Nurmi, Sami; Tenkanen, Tommi; Tuominen, Kimmo, E-mail: kari.enqvist@helsinki.fi, E-mail: sami.nurmi@helsinki.fi, E-mail: tommi.tenkanen@helsinki.fi, E-mail: kimmo.i.tuominen@helsinki.fi [University of Helsinki and Helsinki Institute of Physics, P.O. Box 64, FI-00014, Helsinki (Finland)

    2014-08-01

    We study the post-inflationary dynamics of the Standard Model Higgs and a real singlet scalar s, coupled together through a renormalizable coupling λ{sub sh}h{sup 2}s{sup 2}, in a Z{sub 2} symmetric model that may explain the observed dark matter abundance and/or the origin of baryon asymmetry. The initial values for the Higgs and s condensates are given by inflationary fluctuations, and we follow their dissipation and relaxation to the low energy vacua. We find that both the lowest order perturbative and the non-perturbative decays are blocked by thermal effects and large background fields and that the condensates decay by two-loop thermal effects. Assuming instant reheating at T=10{sup 16} GeV, the characteristic temperature for the Higgs condensate thermalization is found to be T{sub h} ∼ 10{sup 14} GeV, whereas s thermalizes typically around T{sub s} ∼ 10{sup 6} GeV. By that time, the amplitude of the singlet is driven very close to the vacuum value by the expansion of the universe, unless the portal coupling takes a value λ{sub sh}∼< 10{sup -7} and the singlet s never thermalizes. With these values of the coupling, it is possible to slowly produce a sizeable fraction of the observed dark matter abundance via singlet condensate fragmentation and thermal Higgs scattering. Physics also below the electroweak scale can therefore be affected by the non-vacuum initial conditions generated by inflation.

  16. Singlet-paired coupled cluster theory for open shells

    Science.gov (United States)

    Gomez, John A.; Henderson, Thomas M.; Scuseria, Gustavo E.

    2016-06-01

    Restricted single-reference coupled cluster theory truncated to single and double excitations accurately describes weakly correlated systems, but often breaks down in the presence of static or strong correlation. Good coupled cluster energies in the presence of degeneracies can be obtained by using a symmetry-broken reference, such as unrestricted Hartree-Fock, but at the cost of good quantum numbers. A large body of work has shown that modifying the coupled cluster ansatz allows for the treatment of strong correlation within a single-reference, symmetry-adapted framework. The recently introduced singlet-paired coupled cluster doubles (CCD0) method is one such model, which recovers correct behavior for strong correlation without requiring symmetry breaking in the reference. Here, we extend singlet-paired coupled cluster for application to open shells via restricted open-shell singlet-paired coupled cluster singles and doubles (ROCCSD0). The ROCCSD0 approach retains the benefits of standard coupled cluster theory and recovers correct behavior for strongly correlated, open-shell systems using a spin-preserving ROHF reference.

  17. Singlet-paired coupled cluster theory for open shells

    International Nuclear Information System (INIS)

    Gomez, John A.; Henderson, Thomas M.; Scuseria, Gustavo E.

    2016-01-01

    Restricted single-reference coupled cluster theory truncated to single and double excitations accurately describes weakly correlated systems, but often breaks down in the presence of static or strong correlation. Good coupled cluster energies in the presence of degeneracies can be obtained by using a symmetry-broken reference, such as unrestricted Hartree-Fock, but at the cost of good quantum numbers. A large body of work has shown that modifying the coupled cluster ansatz allows for the treatment of strong correlation within a single-reference, symmetry-adapted framework. The recently introduced singlet-paired coupled cluster doubles (CCD0) method is one such model, which recovers correct behavior for strong correlation without requiring symmetry breaking in the reference. Here, we extend singlet-paired coupled cluster for application to open shells via restricted open-shell singlet-paired coupled cluster singles and doubles (ROCCSD0). The ROCCSD0 approach retains the benefits of standard coupled cluster theory and recovers correct behavior for strongly correlated, open-shell systems using a spin-preserving ROHF reference.

  18. pH dependence of cyanide binding to the ferric heme domain of the direct oxygen sensor from Escherichia coli and the effect of alkaline denaturation.

    Science.gov (United States)

    Bidwai, Anil K; Ok, Esther Y; Erman, James E

    2008-09-30

    The spectrum of the ferric heme domain of the direct oxygen sensor protein from Escherichia coli ( EcDosH) has been measured between pH 3.0 and 12.6. EcDosH undergoes acid denaturation with an apparent p K a of 4.24 +/- 0.05 and a Hill coefficient of 3.1 +/- 0.6 and reversible alkaline denaturation with a p K a of 9.86 +/- 0.04 and a Hill coefficient of 1.1 +/- 0.1. Cyanide binding to EcDosH has been investigated between pH 4 and 11. The EcDosH-cyanide complex is most stable at pH 9 with a K D of 0.29 +/- 0.06 microM. The kinetics of cyanide binding are monophasic between pH 4 and 8. At pH >or=8.5, the reaction is biphasic with the fast phase dependent upon the cyanide concentration and the slow phase independent of cyanide. The slow phase is attributed to conversion of denatured EcDosH to the native state, with a pH-independent rate of 0.052 +/- 0.006 s (-1). The apparent association rate constant for cyanide binding to EcDosH increases from 3.6 +/- 0.1 M (-1) s (-1) at pH 4 to 520 +/- 20 M (-1) s (-1) at pH 11. The dissociation rate constant averages (8.6 +/- 1.3) x 10 (-5) s (-1) between pH 5 and 9, increasing to (1.4 +/- 0.1) x 10 (-3) s (-1) at pH 4 and (2.5 +/- 0.1) x 10 (-3) s (-1) at pH 12.2. The mechanism of cyanide binding is consistent with preferential binding of the cyanide anion to native EcDosH. The reactions of imidazole and H 2O 2 with ferric EcDosH were also investigated and show little reactivity.

  19. Reactive oxygen species produced by irradiation of some phthalocyanine derivatives

    Czech Academy of Sciences Publication Activity Database

    Černý, J.; Karásková, M.; Rakušan, J.; Nešpůrek, Stanislav

    2010-01-01

    Roč. 210, č. 1 (2010), s. 82-88 ISSN 1010-6030 R&D Projects: GA AV ČR KAN400720701 Institutional research plan: CEZ:AV0Z40500505 Keywords : singlet oxygen * photosensitizer * phthalocyanine Subject RIV: CG - Electrochemistry Impact factor: 2.243, year: 2010

  20. Benchmarking singlet and triplet excitation energies of molecular semiconductors for singlet fission: Tuning the amount of HF exchange and adjusting local correlation to obtain accurate functionals for singlet-triplet gaps

    Science.gov (United States)

    Brückner, Charlotte; Engels, Bernd

    2017-01-01

    Vertical and adiabatic singlet and triplet excitation energies of molecular p-type semiconductors calculated with various DFT functionals and wave-function based approaches are benchmarked against MS-CASPT2/cc-pVTZ reference values. A special focus lies on the singlet-triplet gaps that are very important in the process of singlet fission. Singlet fission has the potential to boost device efficiencies of organic solar cells, but the scope of existing singlet-fission compounds is still limited. A computational prescreening of candidate molecules could enlarge it; yet it requires efficient methods accurately predicting singlet and triplet excitation energies. Different DFT formulations (Tamm-Dancoff approximation, linear response time-dependent DFT, Δ-SCF) and spin scaling schemes along with several ab initio methods (CC2, ADC(2)/MP2, CIS(D), CIS) are evaluated. While wave-function based methods yield rather reliable singlet-triplet gaps, many DFT functionals are shown to systematically underestimate triplet excitation energies. To gain insight, the impact of exact exchange and correlation is in detail addressed.

  1. Oxygen negative glow: reactive species and emissivity

    International Nuclear Information System (INIS)

    Sahli, Khaled

    1991-01-01

    This research thesis addresses the study of a specific type of oxygen plasma created by electron beams (1 keV, 20 mA/cm"2), negative glow of a luminescent discharge in abnormal regime. The objective is to test the qualities of this plasma as source of two 'active' species of oxygen (singlet molecular oxygen and atomic oxygen) which are useful in applications. The experiment mainly bears on the use of VUV (120 to 150 nm) absorption spectroscopy measurements of concentrations of these both species, and on the recording of plasma emissivity space profiles in the visible region (450 to 850 nm). It appears that low concentrations of singlet oxygen definitely exclude this type of discharge for iodine laser applications. On the contrary, concentrations measured for atomic oxygen show it is a good candidate for the oxidation of large surfaces by sheets of beams. The satisfying comparison of emissivity results with a published model confirm the prevailing role of fast electrons, and gives evidence of an important effect of temperature: temperature can reach 1000 K, and this is in agreement with the presented measurement [fr

  2. MEKANISME DAN KINETIKA QUENCHING OKSIGEN SINGLET DARI SENYAWA FENOLIK DAUN CENGKEH TERHADAP FOTOKSIDASI YANG DISENSITASI OLEH ERITROSIN

    Directory of Open Access Journals (Sweden)

    Edi Suryanto

    2012-02-01

    isolate phenolic compound of clove leaves and to study the mechanism and kinetic of singlet oxygen quenching. Clove leaves was extracted by steam distillation using water for 6 hours. Crude clove leaves oil was purifi ed by distillation under reduced pressure. Isolated fractions were determined its structure by infrared (IR, nuclear magnetic resonance (1H-NMR, and mass spectrometry (MS techniques. The effects of 0, 500, 1000 and 1500 ppm isolated compound on the photooxidation of linoleic acid (0,03M containing 15 ppm erythrosine in ethanol were studied by measuring peroxide value of the oil. The quenching mechanism and kinetics of eugenol were studied by the steady-state kinetic method. Samples of 0; 0,06 x 10-4; 0,12 x 10-4; 0,24 x 10-4 dan 0,48x 10-4 mM eugenol prepared in water contained 0; 17,05 x10-4; 34,10 x 10-4; 68,19 x 10-4 and 136,39 x 10-4 mM of erythrosine stored under fl uorescent light (4000 lux at room temperature for 15 hours. The result indicated that eugenol content of clove oil, F1, F2, F3 and F4 were 49.68; 54.32; 87.16 and 73.65%, respectively. The structure of F3 was identifi ed by IR spectrometry which shows strong absorption at 3448 cm-1 indicating hydroxyl group from the phenolic compound and the 1H NMR spectra showed that the number of proton ring was 3 hydrogen while the mass spectrometry showed the molecular ion peak at m/e = 164 as base peak and the absence of peak at (M-41+ as the indicator of eugenol. The result showed that eugenol had antiphotooxidation activity on erythrosine sensitized photooxidation of oil. The mechanism of singlet oxygen quenching on erythrosine photodegradation showed that eugenol only quenched singlet oxygen. The total quenching rate constant of eugenol was 4,42 x 108/M/s. Keywords: Clove leave, eugenol, quencher, erythrosine, singlet oxygen

  3. Unitarity constraints in the standard model with a singlet scalar field

    International Nuclear Information System (INIS)

    Kang, Sin Kyu; Park, Jubin

    2015-01-01

    Motivated by the discovery of a new scalar field and amelioration of the electroweak vacuum stability ascribed to a singlet scalar field embedded in the standard model (SM), we examine the implication of the perturbative unitarity in the SM with a singlet scalar field. Taking into account the full contributions to the scattering amplitudes, we derive unitarity conditions on the scattering matrix which can be translated into bounds on the masses of the scalar fields. In the case that the singlet scalar field develops vacuum expectation value (VEV), we get the upper bound on the singlet scalar mass varying with the mixing between the singlet and Higgs scalars. On the other hand, the mass of the Higgs scalar can be constrained by the unitarity condition in the case that the VEV of the singlet scalar is not generated. Applying the upper bound on the Higgs mass to the scenario of the unitarized Higgs inflation, we discuss how the unitarity condition can constrain the Higgs inflation. The singlet scalar mass is not constrained by the unitarity itself when we impose Z 2 in the model because of no mixing with the Higgs scalar. But, regarding the singlet scalar field as a cold dark matter candidate, we derive upper bound on the singlet scalar mass by combining the observed relic abundance with the unitarity condition.

  4. Toward Singlet-Triplet Bistable Nonalternant Kekulé Hydrocarbons: Azulene-to-Naphthalene Rearrangement.

    Science.gov (United States)

    Das, Soumyajit; Wu, Jishan

    2015-12-04

    Recent developments of open-shell singlet diradicaloids motivated the search for stable singlet-triplet bistable nonalternant polycyclic hydrocarbons. During the synthesis of this type of molecule, such as the dibenzo-cyclohepta[def]fluorene 3, an unexpected azulene-to-naphthalene rearrangement was observed at room temperature, which resulted in new nonalternant hydrocarbons 8a/8b with a closed-shell singlet ground state. These studies provided insight into the unique chemistry of azulene and challenges for the synthesis of singlet-triplet bistable polycyclic hydrocarbons.

  5. Quadrupole singlet focusing for achromatic parallel-to-parallel devices

    International Nuclear Information System (INIS)

    Brown, K.L.

    1983-01-01

    A first order achromatic magnetic deflection system for use in conjunction with a charged particle accelerator is realized from a stepped gap magnet wherein charged particles propagating through the system are subject to at least two adjacent homogeneous magnetic fields in adjacent regions in traversing one-half of a symmetric trajectory through the system. A quadrupole singlet element Q of adjustable focal length disposed substantially at the entrance plane of such a symmetric system makes possible the coincidence of the waists of the beam in both the vertical (transverse) and (radial) bending planes. (author)

  6. Singlet vs Nonsinglet Perturbative Renormalization factors of Staggered Fermion Bilinears

    Science.gov (United States)

    Panagopoulos, Haralambos; Spanoudes, Gregoris

    2018-03-01

    In this paper we present the perturbative computation of the difference between the renormalization factors of flavor singlet (Σfψ¯fΓψf', f : flavor index) and nonsinglet (ψ¯f1Γψf2,f1 ≠ f2) bilinear quark operators (where Γ = 𝟙, γ5, γ µ, γ5 γ µ, γ5 σµv on the lattice. The computation is performed to two loops and to lowest order in the lattice spacing, using Symanzik improved gluons and staggered fermions with twice stout-smeared links. The stout smearing procedure is also applied to the definition of bilinear operators. A significant part of this work is the development of a method for treating some new peculiar divergent integrals stemming from the staggered formalism. Our results can be combined with precise simulation results for the renormalization factors of the nonsinglet operators, in order to obtain an estimate of the renormalization factors for the singlet operators. The results have been published in Physical Review D [1].

  7. Discrete R symmetries for the MSSM and its singlet extensions

    CERN Document Server

    Lee, Hyun Min; Ratz, Michael; Ross, Graham G; Schieren, Roland; Schmidt-Hoberg, Kai; Vaudrevange, Patrick K S

    2011-01-01

    We determine the anomaly free discrete R symmetries, consistent with the MSSM, that commute with SU(5) and suppress the $\\mu$ parameter and nucleon decay. We show that the order M of such $Z_M^R$ symmetries has to divide 24 and identify 5 viable symmetries. The simplest possibility is a $Z_4^R$ symmetry which commutes with SO(10). We present a string-derived model with this $Z_4^R$ symmetry and the exact MSSM spectrum below the GUT scale; in this model $Z_4^R$ originates from the Lorentz symmetry of compactified dimensions. We extend the discussion to include the singlet extensions of the MSSM and find $Z_4^R$ and $Z_8^R$ are the only possible symmetries capable of solving the $\\mu$ problem in the NMSSM. We also show that a singlet extension of the MSSM based on a $Z_{24}^R$ symmetry can provide a simultaneous solution to the $\\mu$ and strong CP problem with the axion coupling in the favoured window.

  8. Singlet structure function F_1 in double-logarithmic approximation

    Science.gov (United States)

    Ermolaev, B. I.; Troyan, S. I.

    2018-03-01

    The conventional ways to calculate the perturbative component of the DIS singlet structure function F_1 involve approaches based on BFKL which account for the single-logarithmic contributions accompanying the Born factor 1 / x. In contrast, we account for the double-logarithmic (DL) contributions unrelated to 1 / x and because of that they were disregarded as negligibly small. We calculate the singlet F_1 in the double-logarithmic approximation (DLA) and account at the same time for the running α _s effects. We start with a total resummation of both quark and gluon DL contributions and obtain the explicit expression for F_1 in DLA. Then, applying the saddle-point method, we calculate the small- x asymptotics of F_1, which proves to be of the Regge form with the leading singularity ω _0 = 1.066. Its large value compensates for the lack of the factor 1 / x in the DLA contributions. Therefore, this Reggeon can be identified as a new Pomeron, which can be quite important for the description of all QCD processes involving the vacuum (Pomeron) exchanges at very high energies. We prove that the expression for the small- x asymptotics of F_1 scales: it depends on a single variable Q^2/x^2 only instead of x and Q^2 separately. Finally, we show that the small- x asymptotics reliably represent F_1 at x ≤ 10^{-6}.

  9. Natural NMSSM with a light singlet Higgs and singlino LSP

    International Nuclear Information System (INIS)

    Potter, C.T.

    2016-01-01

    Supersymmetry (SUSY) is an attractive extension of the Standard Model (SM) of particle physics which solves the SM hierarchy problem. Motivated by the theoretical μ-term problem of the Minimal Supersymmetric Model (MSSM), the Next-to MSSM (NMSSM) can also account for experimental deviations from the SM like the anomalous muon magnetic moment and the dark matter relic density. Natural SUSY, motivated by naturalness considerations, exhibits small fine tuning and a characteristic phenomenology with light higgsinos, stops, and gluinos. We describe a scan in NMSSM parameter space motivated by Natural SUSY and guided by the phenomenology of an NMSSM with a slightly broken Peccei-Quinn symmetry and a lightly coupled singlet. We identify a scenario which survives experimental constraints with a light singlet Higgs and a singlino lightest SUSY particle. We then discuss how the scenario is not presently excluded by searches at the Large Hadron Collider (LHC) and which channels are promising for discovery at the LHC and International Linear Collider. (orig.)

  10. Silica Aerogels Doped with Ru(II) Tris 1,l0-Phenanthro1ine)-Electron Acceptor Dyads: Improving the Dynamic Range, Sensitivity and Response Time of Sol-Gel Based Oxygen Sensors

    Science.gov (United States)

    Kevebtusm Bucgikas; Rawashdeh, Abdel M.; Elder, Ian A.; Yang, Jinhua; Dass, Amala; Sotiriou-Leventis, Chariklia

    2005-01-01

    Complexes 1 and 2 were characterized in fluid and frozen solution and as dopants of silica aerogels. The intramolecular quenching efficiency of pendant 4-benzoyl-N-methylpyridinium group (4BzPy) is solvent dependent: emission is quenched completely in acetonitrile but not in alcohols. On the other hand, N-benzyl-N'-methylviologen (BzMeV) quenches the emission in all solvents completely. The differences are traced electrochemically to a stronger solvation effect by the alcohol in the case of 1. In fiozen matrices or absorbed on the surfaces of silica aerogel, both 1 and 2 are photoluminescent. The lack of quenching has been traced to the environmental rigidity. When doped aerogels are cooled to 77K, the emission shifts to the blue and its intensity increases in analogy to what is observed with Ru(II) complexes in media undergoing fluid-to-rigid transition. The photoluminescence of 1 and 2 from the aerogel is quenched by oxygen diffusing through the pores. In the presence of oxygen, aerogels doped with 1 can modulate their emission over a wider dynamic range than aerogels doped with 2, and both are more sensitive than aerogels doped with Ru(II) tris(1,l0- phenanthroline). In contrast to frozen solutions, the luminescent moieties in the bulk of aerogels kept at 77K are still accessible, leading to more sensitive platforms for oxygen sensors than other ambient temperature configurations.

  11. Search for Colour Singlet and Colour Reconnection Effects in Hadronic Z Decays at LEP

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, F; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novák, T; Nowak, H; Ofierzynski, R A; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Rubio, J A; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Schäfer, C; Shchegelskii, V; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, Q; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M

    2004-01-01

    A search is performed in symmetric 3-jet hadronic Z decay events for evidence of colour singlet production or colour reconnection effects. Asymmetries in the angular separation of particles are found to be sensitive indicators of such effects. Upper limits on the level of colour singlet production and colour reconnection effects are established for a variety of models.

  12. Design of porphyrin-based conjugated microporous polymers with enhanced singlet oxygen productivity

    Czech Academy of Sciences Publication Activity Database

    Hynek, Jan; Rathouský, Jiří; Demel, Jan; Lang, Kamil

    2016-01-01

    Roč. 6, č. 50 (2016), s. 44279-44287 ISSN 2046-2069 R&D Projects: GA ČR(CZ) GA16-15020S Institutional support: RVO:61388980 ; RVO:61388955 Keywords : Conjugated microporous polymers * Crystalline materials * Metal organic framework * biomimetic catalysis Subject RIV: CA - Inorganic Chemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 3.108, year: 2016

  13. A Gas-Solid Singlet Delta Oxygen Generator for the Chemical Iodine Laser

    National Research Council Canada - National Science Library

    Alfano, Angelo

    2002-01-01

    ... at 1.27 microns by passing chlorine gas through aqueous, basic hydrogen peroxide (H2O2/OH). Unfortunately, the process of nonradiative relaxation used in COIL results in the creation of undesired heat and not the desired light emission...

  14. Ultrafast intramolecular charge transfer in tetrapyrazinoporphyrazines controls the quantum yields of fluorescence and singlet oxygen

    Czech Academy of Sciences Publication Activity Database

    Nováková, V.; Zimčík, P.; Miletín, M.; Váchová, L.; Kopecký, K.; Lang, Kamil; Chábera, P.; Polívka, T.

    2010-01-01

    Roč. 12, č. 11 (2010), s. 2555-2563 ISSN 1463-9076 R&D Projects: GA ČR GA203/07/1424 Institutional research plan: CEZ:AV0Z40320502 Keywords : photoinduced electron-transfer * phthalocyanine -fullerene ensembles * nonlinear-optical properties Subject RIV: CA - Inorganic Chemistry Impact factor: 3.454, year: 2010

  15. Magnetic field protects plants against high light by slowing down production of singlet oxygen

    Czech Academy of Sciences Publication Activity Database

    Hakala-Yatkin, M.; Sarvikas, P.; Paturi, P.; Mattila, H.; Tyystjärvi, T.; Nedbal, Ladislav; Tyystjärvi, E.

    2011-01-01

    Roč. 142, č. 1 (2011), s. 26-34 ISSN 0031-9317 Institutional research plan: CEZ:AV0Z60870520 Keywords : photosynthetic reaction-center * Photosystem-II * alpha-tocopherol * environmental-stress * manganese complex * evolving complex * oxidative stress Subject RIV: EH - Ecology, Behaviour Impact factor: 3.112, year: 2011

  16. Solar photolysis of ozone to singlet D oxygen atoms, O(1D)

    International Nuclear Information System (INIS)

    Blackburn, T.E.

    1984-01-01

    Ground level solar photolysis rate coefficients (jO 3 ) were measured for the photolysis of ozone by sunlight, (O 3 + hnu( 2 + O( 1 D)). The O( 1 D) atoms produced react with nitrous oxide (N 2 O) carrier gas to form higher oxides of nitrogen (NOx). Computer model predictions show that these are mainly N 2 O 5 and NO 3 . Seventy five days of data were taken during the summer of 1983, at Ann Arbor, Michigan, and are presented in the appendix. Over 390 clear air jO 3 values are correlated with effective ozone column densities, and 500 nm aerosol optical depths. The solar direct beam component of ozone photolysis was measured for the different aerosol optical depths, over two entire days from sun-up to sun-down. Temperature dependence of jO 3 was measured from 10 0 C to 39 0 C with good agreement to models. Comparison of jO 3 versus global and ultraviolet radiation are made under various ozone column densities and aerosol optical depths. A jO 3 -photometer was built using an interference filter to pass only ozone photolyzing light. Improvements to instrumental parts are shown for balloon and aircraft flyable payloads

  17. Protective mechanisms against peptide and protein peroxides generated by singlet oxygen

    DEFF Research Database (Denmark)

    Morgan, Philip E; Dean, Roger T; Davies, Michael Jonathan

    2004-01-01

    or detoxify such peroxides. It is shown that catalase, horseradish peroxidase, and Cu/Zn superoxide dismutase do not react rapidly with these peroxides. Oxymyoglobin and oxyhemoglobin, but not the met (Fe3+) forms of these proteins, react with peptide but not protein, peroxides with oxidation of the heme iron...

  18. Porous Silicon Nanoparticle Photosensitizers for Singlet Oxygen and Their Phototoxicity Against Cancer Cells

    Science.gov (United States)

    Xiao, Ling; Gu, Luo; Howell, Stephen B.; Sailor, Michael J.

    2011-01-01

    Porous Si nanoparticles, prepared from electrochemically etched single crystal Si wafers, function as photosensitizers to generate 1O2 in ethanol and in aqueous media. The preparation conditions for the porous Si nanoparticles were optimized to maximize (1) the yield of material; (2) its quantum yield of 1O2 production; and (3) its in vitro degradation properties. The optimal formulation was determined to consist of nanoparticles 146 ± 7 nm in diameter, with nominal pore sizes of 12 ± 4 nm. The quantum yield for 1O2 production is 0.10 ± 0.02 in ethanol and 0.17 ± 0.01 in H2O. HeLa or NIH-3T3 cells treated with 100 µg/mL porous Si nanoparticles and exposed to 60 J/cm2 white light (infrared filtered, 100 mW/cm2 for 10 min) exhibit ~ 45% cell death, while controls containing no nanoparticles show 10% or 25% cell death, respectively. The dark control experiment yields < 10% cytotoxicity for either cell type. PMID:21452822

  19. Development of antifouling of electrochemical solid-state dissolved oxygen sensors based on nanostructured Cu0.4Ru3.4O7 + RuO2 sensing electrodes

    International Nuclear Information System (INIS)

    Zhuiykov, Serge; Kalantar-zadeh, Kourosh

    2012-01-01

    Tailoring nanostructured sensing electrode materials to high antifouling resistance has been one of the main priorities of the development of water quality sensors in the 21st century. Nanostructured Cu 0.4 Ru 3.4 O 7 + RuO 2 -SEs have been developed to address the bio-fouling problem. The change in Cu 0.4 Ru 3.4 O 7 + RuO 2 structural development being promoted by advances in nano- and micro-scale pattering. Nanostructured Cu 0.4 Ru 3.4 O 7 + RuO 2 -SEs with different mol% of Cu 2 O were screen-printed on alumina sensor substrates and were consequently subjected to a 3-month field trial at the Water Treatment Plant. Their structural and electrochemical properties before and after the experiment were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical cyclic voltammerty (CV) techniques. The relationship between dissolved oxygen (DO) and the sensor's potential difference was found to be relatively linear, with the maximum sensitivity of −46 mV per decade being achieved at 20 mol% Cu 2 O at 7.27 pH. Moreover, a 3-month field trial in the sewerage environment has shown that Cu 0.4 Ru 3.4 O 7 + RuO 2 -SE with 20 mol% of Cu 2 O possesses much higher defences against bio-fouling than the same SE with only 10 mol% of Cu 2 O. The super-hydrophobic property of the developed Cu 0.4 Ru 3.4 O 7 + RuO 2 complex oxide has been considered as one of the essential pre-requisites for high antifouling resistance. Multiple antifouling defence strategies from biomimetic to bio-inspired must be incorporated in further development of nanostructured oxide SE to solve problems of bio-fouling on the sensor's SE.

  20. Luteolin as reactive oxygen generator by X-ray and UV irradiation

    Science.gov (United States)

    Toyama, Michiru; Mori, Takashi; Takahashi, Junko; Iwahashi, Hitoshi

    2018-05-01

    Non-toxic X-ray-responsive substances can be used in the radiosensitization of cancer, like porphyrin mediated radiotherapy. However, most X-ray-responsive substances are toxic. To find novel non-toxic X-ray-responsive substances, we studied the X-ray and UV reactivity of 40 non-toxic compounds extracted from plants. Dihydroethidium was used as an indicator to detect reactive oxygen species (ROS) generated by the compounds under X-ray or UV irradiation. We found that 13 of the investigated compounds generated ROS under X-ray irradiation and 17 generated ROS under UV irradiation. Only 4 substances generated ROS under both X-ray and UV. In particular, luteolin exhibited the highest activity among the investigated compounds; therefore, the ROS generated by luteolin were thoroughly characterized. To identify the ROS, we employed a combination of ROS detection reagents and their quenchers. O2·- generation by luteolin was monitored using dihydroethidium and superoxide dismutase (as an O2·- quencher). OH· and 1O2 generation was determined using aminophenyl fluorescein with ethanol (OH· quencher) and Singlet Oxygen Sensor Green® with NaN3 (1O2 quencher), respectively. Generation of O2·- under X-ray and UV irradiation was observed; however, no OH· or 1O2 was detected. The production of ROS from luteolin is surprising, because luteolin is a well-known antioxidant.

  1. Controlling Long-Lived Triplet Generation from Intramolecular Singlet Fission in the Solid State

    KAUST Repository

    Pace, Natalie A.

    2017-11-30

    The conjugated polymer poly(benzothiophene dioxide) (PBTDO1) has recently been shown to exhibit efficient intramolecular singlet fission in solution. In this paper, we investigate the role of intermolecular interactions in triplet separation dynamics after singlet fission. We use transient absorption spectroscopy to determine the singlet fission rate and triplet yield in two polymers differing only by side chain motif in both solution and the solid state. Whereas solid-state films show singlet fission rates identical to those measured in solution, the average lifetime of the triplet population increases dramatically, and is strongly dependent on side-chain identity. These results show that it may be necessary to carefully engineer the solid-state microstructure of these “singlet fission polymers” in order to produce the long-lived triplets needed to realize efficient photovoltaic devices.

  2. Controlling Long-Lived Triplet Generation from Intramolecular Singlet Fission in the Solid State

    KAUST Repository

    Pace, Natalie A.; Zhang, Weimin; Arias, Dylan H.; McCulloch, Iain; Rumbles, Garry; Johnson, Justin C.

    2017-01-01

    The conjugated polymer poly(benzothiophene dioxide) (PBTDO1) has recently been shown to exhibit efficient intramolecular singlet fission in solution. In this paper, we investigate the role of intermolecular interactions in triplet separation dynamics after singlet fission. We use transient absorption spectroscopy to determine the singlet fission rate and triplet yield in two polymers differing only by side chain motif in both solution and the solid state. Whereas solid-state films show singlet fission rates identical to those measured in solution, the average lifetime of the triplet population increases dramatically, and is strongly dependent on side-chain identity. These results show that it may be necessary to carefully engineer the solid-state microstructure of these “singlet fission polymers” in order to produce the long-lived triplets needed to realize efficient photovoltaic devices.

  3. WIMP Dark Matter and Unitarity-Conserving Inflation via a Gauge Singlet Scalar

    International Nuclear Information System (INIS)

    Kahlhoefer, Felix; McDonald, John

    2015-07-01

    A gauge singlet scalar with non-minimal coupling to gravity can drive inflation and later freeze out to become cold dark matter. We explore this idea by revisiting inflation in the singlet direction (S-inflation) and Higgs Portal Dark Matter in light of the Higgs discovery, limits from LUX and observations by Planck. We show that large regions of parameter space remain viable, so that successful inflation is possible and the dark matter relic abundance can be reproduced. Moreover, the scalar singlet can stabilise the electroweak vacuum and at the same time overcome the problem of unitarity-violation during inflation encountered by Higgs Inflation, provided the singlet is a real scalar. The 2-σ Planck upper bound on n s imposes that the singlet mass is below 2 TeV, so that almost the entire allowed parameter range can be probed by XENON1T.

  4. Unified model for singlet fission within a non-conjugated covalent pentacene dimer

    Science.gov (United States)

    Basel, Bettina S.; Zirzlmeier, Johannes; Hetzer, Constantin; Phelan, Brian T.; Krzyaniak, Matthew D.; Reddy, S. Rajagopala; Coto, Pedro B.; Horwitz, Noah E.; Young, Ryan M.; White, Fraser J.; Hampel, Frank; Clark, Timothy; Thoss, Michael; Tykwinski, Rik R.; Wasielewski, Michael R.; Guldi, Dirk M.

    2017-01-01

    When molecular dimers, crystalline films or molecular aggregates absorb a photon to produce a singlet exciton, spin-allowed singlet fission may produce two triplet excitons that can be used to generate two electron–hole pairs, leading to a predicted ∼50% enhancement in maximum solar cell performance. The singlet fission mechanism is still not well understood. Here we report on the use of time-resolved optical and electron paramagnetic resonance spectroscopy to probe singlet fission in a pentacene dimer linked by a non-conjugated spacer. We observe the key intermediates in the singlet fission process, including the formation and decay of a quintet state that precedes formation of the pentacene triplet excitons. Using these combined data, we develop a single kinetic model that describes the data over seven temporal orders of magnitude both at room and cryogenic temperatures. PMID:28516916

  5. Femtosecond stimulated Raman evidence for charge-transfer character in pentacene singlet fission.

    Science.gov (United States)

    Hart, Stephanie M; Silva, W Ruchira; Frontiera, Renee R

    2018-02-07

    Singlet fission is a spin-allowed process in which an excited singlet state evolves into two triplet states. We use femtosecond stimulated Raman spectroscopy, an ultrafast vibrational technique, to follow the molecular structural evolution during singlet fission in order to determine the mechanism of this process. In crystalline pentacene, we observe the formation of an intermediate characterized by pairs of excited state peaks that are red- and blue-shifted relative to the ground state features. We hypothesize that these features arise from the formation of cationic and anionic species due to partial transfer of electron density from one pentacene molecule to a neighboring molecule. These observations provide experimental evidence for the role of states with significant charge-transfer character which facilitate the singlet fission process in pentacene. Our work both provides new insight into the singlet fission mechanism in pentacene and demonstrates the utility of structurally-sensitive time-resolved spectroscopic techniques in monitoring ultrafast processes.

  6. A rigorous nonorthogonal configuration interaction approach for the calculation of electronic couplings between diabatic states applied to singlet fission

    NARCIS (Netherlands)

    Wibowo, Meilani; Broer, Ria; Havenith, Remco W. A.

    2017-01-01

    For the design of efficient singlet fission chromophores, knowledge of the factors that govern the singlet fission rate is important. This rate is approximately proportional to the electronic coupling between the lowest (diabatic) spin singlet state that is populated following photoexcitation state

  7. Evolution of truncated moments of singlet parton distributions

    International Nuclear Information System (INIS)

    Forte, S.; Magnea, L.; Piccione, A.; Ridolfi, G.

    2001-01-01

    We define truncated Mellin moments of parton distributions by restricting the integration range over the Bjorken variable to the experimentally accessible subset x 0 ≤x≤1 of the allowed kinematic range 0≤x≤1. We derive the evolution equations satisfied by truncated moments in the general (singlet) case in terms of an infinite triangular matrix of anomalous dimensions which couple each truncated moment to all higher moments with orders differing by integers. We show that the evolution of any moment can be determined to arbitrarily good accuracy by truncating the system of coupled moments to a sufficiently large but finite size, and show how the equations can be solved in a way suitable for numerical applications. We discuss in detail the accuracy of the method in view of applications to precision phenomenology

  8. Resummation of singlet parton evolution at small x

    CERN Document Server

    Altarelli, Guido; Forte, Stefano; Altarelli, Guido; Ball, Richard D.; Forte, Stefano

    2000-01-01

    We propose an improvement of the splitting functions at small x which overcomes the apparent problems encountered by the BFKL approach. We obtain a stable expansion for the x-evolution function chi(M) near M=0 by including in it a sequence of terms derived from the one- and two-loop anomalous dimension gamma. The requirement of momentum conservation is always satisfied. The residual ambiguity on the splitting functions is effectively parameterized in terms of the value of lambda, which fixes the small x asymptotic behaviour x^-lambda of the singlet parton distributions. We derive from this improved evolution function an expansion of the splitting function which leads to good apparent convergence, and to a description of scaling violations valid both at large and small x.

  9. Generation of macroscopic singlet states in atomic ensembles

    Science.gov (United States)

    Tóth, Géza; Mitchell, Morgan W.

    2010-05-01

    We study squeezing of the spin uncertainties by quantum non-demolition (QND) measurement in non-polarized spin ensembles. Unlike the case of polarized ensembles, the QND measurements can be performed with negligible back-action, which allows, in principle, perfect spin squeezing as quantified by Tóth et al (2007 Phys. Rev. Lett. 99 250405). The generated spin states approach many-body singlet states and contain a macroscopic number of entangled particles even when individual spin is large. We introduce the Gaussian treatment of unpolarized spin states and use it to estimate the achievable spin squeezing for realistic experimental parameters. Our proposal might have applications for magnetometry with a high spatial resolution or quantum memories storing information in decoherence free subspaces.

  10. Signal for a light singlet scalar at the LHC

    Science.gov (United States)

    Chang, We-Fu; Modak, Tanmoy; Ng, John N.

    2018-03-01

    In the general Higgs portal-like models, the extra neutral scalar, S , can mix with the Standard Model (SM) Higgs boson, H . We perform an exploratory study focusing on the direct search for such a light singlet S at the Large Hadron Collider (LHC). After careful study of the SM background, we find the process p p →t t ¯ S followed by S →b b ¯ can be used to investigate S with mass in the 20 Higgs factories. With similar luminosity, the current Large Electron-Positron Collider (LEP) limits on the mixing between S and H can be improved by at least one or two order of magnitudes.

  11. Color-singlet production at NNLO in MCFM

    Energy Technology Data Exchange (ETDEWEB)

    Boughezal, Radja [Argonne National Laboratory, High Energy Physics Division, Argonne, IL (United States); Campbell, John M.; Giele, Walter [Fermilab, P.O.Box 500, Batavia, IL (United States); Ellis, R.K. [University of Durham, Department of Physics, Institute for Particle Physics Phenomenology, Durham (United Kingdom); Focke, Christfried [Northwestern University, Department of Physics and Astronomy, Evanston, IL (United States); Liu, Xiaohui [University of Maryland, Maryland Center for Fundamental Physics, College Park, Maryland (United States); Petriello, Frank [Argonne National Laboratory, High Energy Physics Division, Argonne, IL (United States); Northwestern University, Department of Physics and Astronomy, Evanston, IL (United States); Williams, Ciaran [University at Buffalo, The State University of New York, Department of Physics, Buffalo (United States)

    2017-01-15

    We present the implementation of several color-singlet final-state processes at Next-to-Next-to Leading Order (NNLO) accuracy in QCD to the publicly available parton-level Monte Carlo program MCFM. Specifically we discuss the processes pp → H, pp → Z, pp → W, pp → HZ, pp → HW and pp → γγ. Decays of the unstable bosons are fully included, resulting in a flexible fully differential Monte Carlo code. The NNLO corrections have been calculated using the non-local N-jettiness subtraction approach. Special attention is given to the numerical aspects of running MCFM for these processes at this order. We pay particular attention to the systematic uncertainties due to the power corrections induced by the N-jettiness regularization scheme and the evaluation time needed to run the hybrid openMP/MPI version of MCFM at NNLO on multi-processor systems. (orig.)

  12. Two-singlet model for light cold dark matter

    International Nuclear Information System (INIS)

    Abada, Abdessamad; Ghaffor, Djamal; Nasri, Salah

    2011-01-01

    We extend the standard model by adding two gauge-singlet Z 2 -symmetric scalar fields that interact with visible matter only through the Higgs particle. One is a stable dark matter WIMP, and the other one undergoes a spontaneous breaking of the symmetry that opens new channels for the dark matter annihilation, hence lowering the mass of the WIMP. We study the effects of the observed dark matter relic abundance on the WIMP annihilation cross section and find that in most regions of the parameters' space, light dark matter is viable. We also compare the elastic-scattering cross section of our dark matter candidate off a nucleus with existing (CDMSII and XENON100) and projected (SuperCDMS and XENON1T) experimental exclusion bounds. We find that most of the allowed mass range for light dark matter will be probed by the projected sensitivity of the XENON1T experiment.

  13. Device-independent parallel self-testing of two singlets

    Science.gov (United States)

    Wu, Xingyao; Bancal, Jean-Daniel; McKague, Matthew; Scarani, Valerio

    2016-06-01

    Device-independent self-testing offers the possibility of certifying the quantum state and measurements, up to local isometries, using only the statistics observed by querying uncharacterized local devices. In this paper we study parallel self-testing of two maximally entangled pairs of qubits; in particular, the local tensor product structure is not assumed but derived. We prove two criteria that achieve the desired result: a double use of the Clauser-Horne-Shimony-Holt inequality and the 3 ×3 magic square game. This demonstrate that the magic square game can only be perfectly won by measuring a two-singlet state. The tolerance to noise is well within reach of state-of-the-art experiments.

  14. Singlet Higgs phenomenology and the electroweak phase transition

    International Nuclear Information System (INIS)

    Profumo, Stefano; Ramsey-Musolf, Michael J.; Shaughnessy, Gabe

    2007-01-01

    We study the phenomenology of gauge singlet extensions of the Standard Model scalar sector and their implications for the electroweak phase transition. We determine the conditions on the scalar potential parameters that lead to a strong first order phase transition as needed to produce the observed baryon asymmetry of the universe. We analyze the constraints on the potential parameters derived from Higgs boson searches at LEP and electroweak precision observables. For models that satisfy these constraints and that produce a strong first order phase transition, we discuss the prospective signatures in future Higgs studies at the Large Hadron Collider and a Linear Collider. We argue that such studies will provide powerful probes of phase transition dynamics in models with an extended scalar sector

  15. Theory of singlet-doublet excitations in praseodymium

    International Nuclear Information System (INIS)

    Bak, P.

    1975-10-01

    The magnetic excitation spectrum in a paramagnetic singlet-doublet system is calculated using a diagrammatic high density expansion technique. The lowest order diagrams, which correspond to the random phase approximation (RPA), give a detailed description of the wave vector and temperature dependence of the four exciton modes in praseodymium in terms of a Hamiltonian including isotropic Heisenberg exchange interactions and anisotropic, dipolar-like interactions. The leading contributions to the linewidths of the excitations are obtained by extending the 1/Z expansion of the generalized susceptibility propagators one order beyond the random phase approximation. This damping corresponds to spin wave scattering on single-site fluctuations. The theoretical spectral functions are in detailed agreement with experiment

  16. Amperometric glucose sensor based on enhanced catalytic reduction of oxygen using glucose oxidase adsorbed onto core-shell Fe3O4-silica-Au magnetic nanoparticles

    International Nuclear Information System (INIS)

    Wang Aijun; Li Yongfang; Li Zhonghua; Feng Jiuju; Sun Yanli; Chen Jianrong

    2012-01-01

    Monodisperse Fe 3 O 4 magnetic nanoparticles (NPs) were prepared under facile solvothermal conditions and successively functionalized with silica and Au to form core/shell Fe 3 O 4 -silica-Au NPs. Furthermore, the samples were used as matrix to construct a glucose sensor based on glucose oxidase (GOD). The immobilized GOD retained its bioactivity with high protein load of 3.92 × 10 −9 mol·cm −2 , and exhibited a surface-controlled quasi-reversible redox reaction, with a fast heterogeneous electron transfer rate of 7.98 ± 0.6 s −1 . The glucose biosensor showed a broad linear range up to 3.97 mM with high sensitivity of 62.45 μA·mM −1 cm −2 and fast response (less than 5 s). - Graphical abstract: Core-shell structured Fe 3 O 4 -silica-Au nanoparticles were prepared and used as matrix to construct an amperometric glucose sensor based on glucose oxidase, which showed broad linear range, high sensitivity, and fast response. Highlights: ► Synthesis of monodispersed Fe 3 O 4 nanoparticles. ► Fabrication of core/shell Fe 3 O 4 -silica-Au nanoparticles. ► Construction of a novel glucose sensor with wide linear range, high sensitivity and fast response.

  17. Measurement of pO2 in a Pre-clinical Model of Rabbit Tumor Using OxyChip, a Paramagnetic Oxygen Sensor.

    Science.gov (United States)

    Hou, H; Khan, N; Kuppusamy, P

    2017-01-01

    The objective of this work was to establish a novel and robust technology, based on electron paramagnetic resonance (EPR) oximetry, as a practical tool for measurement of tumor oxygen. Previously, we have reported on the development of oxygen-sensing paramagnetic crystals (LiNc-BuO) encapsulated in a biocompatible polymer, called OxyChip. In this report we present our recent data on the use of OxyChip for pO 2 measurements in the tumor of a pre-clinical, large-animal rabbit model. The results establish that OxyChip is capable of noninvasive and repeated measurement of pO 2 in a large animal model.

  18. Determination of dissolved oxygen in saline waters applying mathematical methods and as a membrane electrode sensor; Determinacion de oxigeno disuelto en aguas salinas aplicando modelos matematicos y como sensor electrodo de membrana

    Energy Technology Data Exchange (ETDEWEB)

    Mayari, R.; Espinosa, M. C.; Ruiz, M. [Centro Nacional de Investigaciones Ceintificas. La Habana (Cuba); Romero, E. [Universidad de Huelva (Spain)

    2000-07-01

    This work shows as specific methodology for the determination of dissolved oxygen in saline waters that allows to consider the variations of temperature and of concentration of salts. Both factors influence the solubility of the gases in water, making possible in place measurements, in bodies of water with content of salts unto of the concentration of sea water, with greater dependability. The mathematical models obtained are shown, the errors due to equipment, as well as the results obtained when applying this methodology in saline waters with diverse levels of contamination this allows to discern when the decrease of dissolved oxygen levels is due to an increase in the salinity or to an increase in the contamination of the water body. (Author) 7 refs.

  19. On the behaviour of non-singlet structure functions at small x

    International Nuclear Information System (INIS)

    Bluemlein, J.

    1995-10-01

    The resummation of O(α s l+1 ln 2l x) terms in the evolution kernels of non-singlet combinations of unpolarized and polarized structure functions is investigated. The agreement with complete calculations up to order α s 2 is demonstrated, and the leading small-x contributions to the three-loop non-singlet splitting functions P ± are derived. The additional contributions due to the resummed terms are studied numerically for the most important non-singlet structure functions. They are found to be about 1% or smaller in the kinematical regions accessible at present and in the forseeable future. (orig.)

  20. A novel chalcone-analogue as an optical sensor based on ground and excited states intramolecular charge transfer: A combined experimental and theoretical study

    International Nuclear Information System (INIS)

    Fayed, Tarek A.

    2006-01-01

    Steady-state absorption and emission spectroscopic techniques as well as semiempirical quantum calculations at the AM1 and ZINDO/S levels have been used to investigate the intramolecular charge transfer (ICT) behaviour of a novel chalcone namely; 1-(2-pyridyl)-5-(4-dimethylaminophenyl)-penta-2,4-diene-1-one, DMAC. The ground state DMAC has a significant ICT character and a great sensitivity to the hydrogen bond donating ability of the medium as reflected from the change of the absorption spectra in pure and mixed organic solvents. On the other hand, its excited singlet state exhibits high ICT characters as manifested by the drastic solvatochromic effects. These results are consistent with the data of charge density calculations in both the ground and excited state, which indicates enhancement of the charge transfer from the dimethyl-amino group to the carbonyl oxygen upon excitation. Also, the dipole moment calculations indicates a highly dipolar excited singlet state (Δμ eg = 15.5 D). The solvent dependence of the fluorescence quantum yield of DMAC was interpreted on the basis of positive and negative solvatokinetic as well as the hydrogen bonding effects. Incorporation of the 2-pyridyl group in the chemical structure of the present DMAC led to design of a potential optical sensor for probing acidity of the medium and metal cations such as Zn 2+ , Cd 2+ and Hg 2+ . This was concluded from the high acidochromic and metallochromic behaviour of DMAC on adding such cations to its acetonitrile solutions

  1. Effect of low-oxygen-concentration layer on iron gettering capability of carbon-cluster ion-implanted Si wafer for CMOS image sensors

    Science.gov (United States)

    Onaka-Masada, Ayumi; Nakai, Toshiro; Okuyama, Ryosuke; Okuda, Hidehiko; Kadono, Takeshi; Hirose, Ryo; Koga, Yoshihiro; Kurita, Kazunari; Sueoka, Koji

    2018-02-01

    The effect of oxygen (O) concentration on the Fe gettering capability in a carbon-cluster (C3H5) ion-implanted region was investigated by comparing a Czochralski (CZ)-grown silicon substrate and an epitaxial growth layer. A high Fe gettering efficiency in a carbon-cluster ion-implanted epitaxial growth layer, which has a low oxygen region, was observed by deep-level transient spectroscopy (DLTS) and secondary ion mass spectroscopy (SIMS). It was demonstrated that the amount of gettered Fe in the epitaxial growth layer is approximately two times higher than that in the CZ-grown silicon substrate. Furthermore, by measuring the cathodeluminescence, the number of intrinsic point defects induced by carbon-cluster ion implantation was found to differ between the CZ-grown silicon substrate and the epitaxial growth layer. It is suggested that Fe gettering by carbon-cluster ion implantation comes through point defect clusters, and that O in the carbon-cluster ion-implanted region affects the formation of gettering sinks for Fe.

  2. A two-component dark matter model with real singlet scalars ...

    Indian Academy of Sciences (India)

    2016-01-05

    component dark matter model with real singlet scalars confronting GeV -ray excess from galactic centre and Fermi bubble. Debasish Majumdar Kamakshya Prasad Modak Subhendu Rakshit. Special: Cosmology Volume 86 Issue ...

  3. Spin-singlet quantum Hall states and Jack polynomials with a prescribed symmetry

    International Nuclear Information System (INIS)

    Estienne, Benoit; Bernevig, B. Andrei

    2012-01-01

    We show that a large class of bosonic spin-singlet Fractional Quantum Hall model wavefunctions and their quasihole excitations can be written in terms of Jack polynomials with a prescribed symmetry. Our approach describes new spin-singlet quantum Hall states at filling fraction ν=(2k)/(2r-1) and generalizes the (k,r) spin-polarized Jack polynomial states. The NASS and Halperin spin-singlet states emerge as specific cases of our construction. The polynomials express many-body states which contain configurations obtained from a root partition through a generalized squeezing procedure involving spin and orbital degrees of freedom. The corresponding generalized Pauli principle for root partitions is obtained, allowing for counting of the quasihole states. We also extract the central charge and quasihole scaling dimension, and propose a conjecture for the underlying CFT of the (k,r) spin-singlet Jack states.

  4. Interference effects of two scalar boson propagators on the LHC search for the singlet fermion DM

    Energy Technology Data Exchange (ETDEWEB)

    Ko, P., E-mail: pko@kias.re.kr; Li, Jinmian, E-mail: jmli@kias.re.kr

    2017-02-10

    A gauge invariant UV-completion for singlet fermion DM interacting with the standard model (SM) particles involves a new singlet scalar. Therefore the model contains two scalar mediators, mixtures of the SM Higgs boson and a singlet scalar boson. Collider phenomenology of the interference effect between these two scalar propagators is studied in this work. This interference effect can be either constructive or destructive in the DM production cross section depending on both singlet scalar and DM masses, and it will soften the final state jets in the full mass region. Applying the CMS mono-jet search to our model, we find the interference effect plays a very important role in the DM search sensitivity, and the DM production cross section of our model is more than one order of magnitude below the LHC sensitivity at current stage.

  5. The low-lying electronic states of pentacene and their roles in singlet fission.

    Science.gov (United States)

    Zeng, Tao; Hoffmann, Roald; Ananth, Nandini

    2014-04-16

    We present a detailed study of pentacene monomer and dimer that serves to reconcile extant views of its singlet fission. We obtain the correct ordering of singlet excited-state energy levels in a pentacene molecule (E (S1) pentacene, we use a well-developed diabatization scheme to characterize the six low-lying singlet states of a pentacene dimer that approximates the unit cell structure of crystalline pentacene. The local, single-excitonic diabats are not directly coupled with the important multiexcitonic state but rather mix through their mutual couplings with one of the charge-transfer configurations. We analyze the mixing of diabats as a function of monomer separation and pentacene rotation. By defining an oscillator strength measure of the coherent population of the multiexcitonic diabat, essential to singlet fission, we find this population can, in principle, be increased by small compression along a specific crystal direction.

  6. Oxygen Therapy

    Science.gov (United States)

    ... their breathing to dangerously low levels. Will I need oxygen when I sleep? Usually if you use supplemental oxygen during the ... your health care provider tells you you only need to use oxygen for exercise or sleep. Even if you feel “fine” off of your ...

  7. Analyzing of singlet fermionic dark matter via the updated direct detection data

    Energy Technology Data Exchange (ETDEWEB)

    Ettefaghi, M.M.; Moazzemi, R. [University of Qom, Department of Physics, Qom (Iran, Islamic Republic of)

    2017-05-15

    We revisit the parameter space of singlet fermionic cold dark matter model in order to determine the role of the mixing angle between the standard model Higgs and a new singlet one. Furthermore, we restudy the direct detection constraints with the updated and new experimental data. As an important conclusion, this model is completely excluded by recent XENON100, PandaX II and LUX data. (orig.)

  8. Modeling temperature dependent singlet exciton dynamics in multilayered organic nanofibers

    Science.gov (United States)

    de Sousa, Leonardo Evaristo; de Oliveira Neto, Pedro Henrique; Kjelstrup-Hansen, Jakob; da Silva Filho, Demétrio Antônio

    2018-05-01

    Organic nanofibers have shown potential for application in optoelectronic devices because of the tunability of their optical properties. These properties are influenced by the electronic structure of the molecules that compose the nanofibers and also by the behavior of the excitons generated in the material. Exciton diffusion by means of Förster resonance energy transfer is responsible, for instance, for the change with temperature of colors in the light emitted by systems composed of different types of nanofibers. To study in detail this mechanism, we model temperature dependent singlet exciton dynamics in multilayered organic nanofibers. By simulating absorption and emission spectra, the possible Förster transitions are identified. Then, a kinetic Monte Carlo model is employed in combination with a genetic algorithm to theoretically reproduce time-resolved photoluminescence measurements for several temperatures. This procedure allows for the obtainment of different information regarding exciton diffusion in such a system, including temperature effects on the Förster transfer efficiency and the activation energy of the Förster mechanism. The method is general and may be employed for different systems where exciton diffusion plays a role.

  9. A Simple Singlet Fermionic Dark-Matter Model Revisited

    International Nuclear Information System (INIS)

    Qin Hong-Yi; Wang Wen-Yu; Xiong Zhao-Hua

    2011-01-01

    We evaluate the spin-independent elastic dark matter-nucleon scattering cross section in the framework of the simple singlet fermionic dark matter extension of the standard model and constrain the model parameter space with the following considerations: (i) new dark matter measurement, in which, apart from WMAP and CDMS, the results from the XENON experiment are also used in constraining the model; (ii) new fitted value of the quark fractions in nucleons, in which the updated value of f T s from the recent lattice simulation is much smaller than the previous one and may reduce the scattering rate significantly; (iii) new dark matter annihilation channels, in which the scenario where top quark and Higgs pairs produced by dark matter annihilation was not included in the previous works. We find that unlike in the minimal supersymmetric standard model, the cross section is just reduced by a factor of about 1/4 and dark matter lighter than 100 GeV is not favored by the WMAP, CDMS and XENON experiments. (the physics of elementary particles and fields)

  10. The nature of singlet excitons in oligoacene molecular crystals

    KAUST Repository

    Yamagata, H.; Norton, J.; Hontz, E.; Olivier, Y.; Beljonne, D.; Brédas, J. L.; Silbey, R. J.; Spano, F. C.

    2011-01-01

    A theory for polarized absorption in crystalline oligoacenes is presented, which includes Frenkel exciton coupling, the coupling between Frenkel and charge-transfer (CT) excitons, and the coupling of all neutral and ionic excited states to the dominant ring-breathing vibrational mode. For tetracene, spectra calculated using all Frenkel couplings among the five lowest energy molecular singlet states predict a Davydov splitting (DS) of the lowest energy (0-0) vibronic band of only -32cm-1, far smaller than the measured value of 631cm-1 and of the wrong sign-a negative sign indicating that the polarizations of the lower and upper Davydov components are reversed from experiment. Inclusion of Frenkel-CT coupling dramatically improves the agreement with experiment, yielding a 0-0 DS of 601cm-1 and a nearly quantitative reproduction of the relative spectral intensities of the 0-n vibronic components. Our analysis also shows that CT mixing increases with the size of the oligoacenes. We discuss the implications of these results on exciton dissociation and transport. © 2011 American Institute of Physics.

  11. Dynamics of Singlet Fission and Electron Injection in Self-Assembled Acene Monolayers on Titanium Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Justin C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pace, Natalie A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Arias, Dylan H [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Christensen, Steven T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Granger, Devin B. [University of Kentucky; Anthony, John E. [University of Kentucky

    2018-02-26

    We employ a combination of linear spectroscopy, electrochemistry, and transient absorption spectroscopy to characterize the interplay between electron transfer and singlet fission dynamics in polyacene-based dyes attached to nanostructured TiO2. For triisopropyl silylethynyl (TIPS)-pentacene, we find that the singlet fission time constant increases to 6.5 ps on a nanostructured TiO2 surface relative to a thin film time constant of 150 fs, and that triplets do not dissociate after they are formed. In contrast, TIPS-tetracene singlets quickly dissociate in 2 ps at the molecule/TiO2 interface, and this dissociation outcompetes the relatively slow singlet fission process. The addition of an alumina layer slows down electron injection, allowing the formation of triplets from singlet fission in 40 ps. However, the triplets do not inject electrons, which is likely due to a lack of sufficient driving force for triplet dissociation. These results point to the critical balance required between efficient singlet fission and appropriate energetics for interfacial charge transfer.

  12. Organic Electroluminescent Sensor for Pressure Measurement

    Directory of Open Access Journals (Sweden)

    Tomohide Niimi

    2012-10-01

    Full Text Available We have proposed a novel concept of a pressure sensor called electroluminescent pressure sensor (ELPS based on oxygen quenching of electroluminescence. The sensor was fabricated as an organic light-emitting device (OLED with phosphorescent dyes whose phosphorescence can be quenched by oxygenmolecules, and with a polymer electrode which permeates oxygen molecules. The sensor was a single-layer OLED with Platinum (II octaethylporphine (PtOEP doped into poly(vinylcarbazole (PVK as an oxygen sensitive emissive layer and poly(3,4-ethylenedioxythiophene mixed with poly(styrenesulfonate (PEDOT:PSS as an oxygen permeating polymer anode. The pressure sensitivity of the fabricated ELPS sample was equivalent to that of the sensor excited by an illumination light source. Moreover, the pressure sensitivity of the sensor is equivalent to that of conventional pressure-sensitive paint (PSP, which is an optical pressure sensor based on photoluminescence.

  13. Oxygen Therapy

    Directory of Open Access Journals (Sweden)

    Bonnie Solmes

    2000-01-01

    Full Text Available LTOT is prescribed for people with chronic lung disease in whom there is a decrease in the ability of the lungs to supply enough oxygen to the body. The heart is obliged to pump faster to meet the body's oxygen requirements. This may place undue stress on the heart, resulting in palpitations, dizziness and fatigue. A low oxygen level in arterial blood is also harmful to the heart, the brain and the pulmonary blood vessels. Oxygen therapy is used to break this cycle. A person with low blood oxygen will often be able to accomplish more with less fatigue with the help of supplemental oxygen therapy. Shortness of breath is a mechanical problem resulting from the effects of chronic obstructive pulmonary disease. Oxygen therapy may or may not reduce shortness of breath, but it will help the lungs and heart to function with less stress.

  14. Sensor for ionizable elements

    International Nuclear Information System (INIS)

    Berkey, E.; Reed, W.A. III; Hickam, W.M.

    1977-01-01

    Sensor to detect thermally ionizable elements or molucules in air, water vapour or oxygen or to be used as alkali leak detector in vacuum systems, e.g. in the pipe system of a liquid-metal cooled FBR. The sensor consists of an filament made of thorium-containing iridium as cathode with a temperature upto 1000 0 C and an anode sheet of molybdenum, nickel or stainless steal. (ORU) [de

  15. Water quality sensor

    International Nuclear Information System (INIS)

    Ishizuka, Keiko; Takahashi, Masanori; Watanabe, Atsushi; Ibe, Hidefumi.

    1994-01-01

    The sensor of the present invention can directly measure oxygen/hydrogen peroxide concentrations in reactor water under radiation irradiation condition, and it has a long life time. Namely, an oxygen sensor comprises electrodes attached on both sides of high temperature/radiation resistant ion conductive material in which ions are sufficiently diffused within a temperature range of from a room temperature to 300degC. It has a performance for measuring electromotive force caused by the difference of a partial pressure between a reference gas and a gas to be measured contained in the high temperature/radiation resistant material. A hydrogen peroxide sensor has the oxygen sensor described above, to which a filter for causing decomposition of hydrogen peroxide is attached. The sensor of the present invention can directly measure oxygen/hydrogen peroxide concentrations in a reactor water of a BWR type reactor under high temperature/radiation irradiation condition. Accordingly, accurate water quality environment in the reactor water can be recognized. As a result, determination of incore corrosion environment is established thereby enabling to attain reactor integrity, safety and long life. (I.S.)

  16. A reduced-order adaptive neuro-fuzzy inference system model as a software sensor for rapid estimation of five-day biochemical oxygen demand

    Science.gov (United States)

    Noori, Roohollah; Safavi, Salman; Nateghi Shahrokni, Seyyed Afshin

    2013-07-01

    The five-day biochemical oxygen demand (BOD5) is one of the key parameters in water quality management. In this study, a novel approach, i.e., reduced-order adaptive neuro-fuzzy inference system (ROANFIS) model was developed for rapid estimation of BOD5. In addition, an uncertainty analysis of adaptive neuro-fuzzy inference system (ANFIS) and ROANFIS models was carried out based on Monte-Carlo simulation. Accuracy analysis of ANFIS and ROANFIS models based on both developed discrepancy ratio and threshold statistics revealed that the selected ROANFIS model was superior. Pearson correlation coefficient (R) and root mean square error for the best fitted ROANFIS model were 0.96 and 7.12, respectively. Furthermore, uncertainty analysis of the developed models indicated that the selected ROANFIS had less uncertainty than the ANFIS model and accurately forecasted BOD5 in the Sefidrood River Basin. Besides, the uncertainty analysis also showed that bracketed predictions by 95% confidence bound and d-factor in the testing steps for the selected ROANFIS model were 94% and 0.83, respectively.

  17. Properties of pseudoscalar flavor singlet mesons from lattice QCD

    International Nuclear Information System (INIS)

    Ottnad, Konstantin

    2014-01-01

    indeed described well by a single mixing angle, indicating that the η' is mostly a flavor singlet state. Moreover, our results confirm that the charm quark does not contribute to any of the two states within errors. Apart from the flavor singlet sector, we also perform calculations of masses for the remaining light pseudoscalar octet mesons. Matching these masses to two-flavor Wilson chiral perturbation theory allows for a determination of the low energy constants W 6 ' , W 8 ' and their linear combination c 2 which controls the O(a 2 ) mass splitting between charged and neutral pion. We study the dependence of these low energy constants on the number of dynamical quark flavors and for different choices of the lattice action.

  18. Antibacterial, Antiviral, and Oxygen-Sensing Nanoparticles Prepared from Electrospun Materials

    Czech Academy of Sciences Publication Activity Database

    Henke, P.; Kirakci, Kaplan; Kubát, Pavel; Fraiberk, M.; Forstová, J.; Mosinger, Jiří

    2016-01-01

    Roč. 8, č. 38 (2016), s. 25127-25136 ISSN 1944-8244 R&D Projects: GA ČR(CZ) GA16-15020S; GA MŠk(CZ) LM2015073 Institutional support: RVO:61388980 ; RVO:61388955 Keywords : antibacterial * antiviral * nanoparticles * oxygen-sensing * singlet oxygen Subject RIV: CA - Inorganic Chemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 7.504, year: 2016

  19. Reactions of atomic oxygen with the chlorate ion and the perchlorate ion

    Science.gov (United States)

    Anan'ev, Vladimir; Miklin, Mikhail; Kriger, Ludmila

    2014-06-01

    The reactions of the chlorate ion with atomic oxygen formed under photolysis of the nitrate ion introduced to potassium chlorate crystal by co-crystallization were studied by optical and infrared absorption spectroscopy. The perchlorate ion was found to form in solids as product of addition reaction of singlet atomic oxygen, formed under dissociation of the peroxynitrite ion - the product of isomerization of the excited nitrate ion. Triplet atomic oxygen does not react with the chlorate ion. The atomic oxygen formed under photolysis of the nitrate ion introduced to potassium perchlorate crystal by co-crystallization does not react with the perchlorate ion.

  20. Explicit role of dynamical and nondynamical electron correlation on singlet-triplet splitting in carbenes

    International Nuclear Information System (INIS)

    Seal, Prasenjit; Chakrabarti, Swapan

    2007-01-01

    Density functional theoretical studies have been performed on carbene systems to determine the singlet-triplet splitting and also to explore the role of electron correlation. Using an approximate method of separation of dynamical and nondynamical correlation, it is found that dynamical and nondynamical electron correlation stabilizes the singlet state relative to the triplet for halo carbenes in both BLYP and B3LYP methods. Calculations performed on higher homologues of methylene suggest that beyond CH(CH 3 ), both the electron correlations have leveling effect in stabilizing the singlet state relative to the triplet. It has also been observed while dynamical electron correlation fails to provide any substantial degree of stabilization to the singlet states of higher homologues of methylene in B3LYP method, an opposite trend is observed for nondynamical counterpart. Among the larger systems studied (9-triptycyl)(α-naphthyl)-carbene has the highest stability of the triplet state whereas bis-imidazol-2-ylidenes has the most stable singlet state. Interestingly, the values of the dynamical electron correlation for each state of each system studied are different for the two methods used. The reason behind this apparent discrepancy lies in the fact that the coefficients of the LYP part in B3LYP and BLYP functionals are different

  1. Origins of Singlet Fission in Solid Pentacene from an ab initio Green's Function Approach

    Science.gov (United States)

    Refaely-Abramson, Sivan; da Jornada, Felipe H.; Louie, Steven G.; Neaton, Jeffrey B.

    2017-12-01

    We develop a new first-principles approach to predict and understand rates of singlet fission with an ab initio Green's-function formalism based on many-body perturbation theory. Starting with singlet and triplet excitons computed from a G W plus Bethe-Salpeter equation approach, we calculate the exciton-biexciton coupling to lowest order in the Coulomb interaction, assuming a final state consisting of two noninteracting spin-correlated triplets with finite center-of-mass momentum. For crystalline pentacene, symmetries dictate that the only purely Coulombic fission decay process from a bright singlet state requires a final state consisting of two inequivalent nearly degenerate triplets of nonzero, equal and opposite, center-of-mass momenta. For such a process, we predict a singlet lifetime of 30-70 fs, in very good agreement with experimental data, indicating that this process can dominate singlet fission in crystalline pentacene. Our approach is general and provides a framework for predicting and understanding multiexciton interactions in solids.

  2. A flexible infrared sensor for tissue oximetry

    DEFF Research Database (Denmark)

    Petersen, Søren Dahl; Thyssen, Anders; Engholm, Mathias

    2013-01-01

    We present a flexible infrared sensor for use in tissue oximetry with the aim of treating prematurely born infants. The sensor will detect the oxygen saturation in brain tissue through near infrared spectroscopy. The sensor itself consists of several individual silicon photo detectors fully...

  3. Direct detection of singlet dark matter in classically scale-invariant standard model

    Directory of Open Access Journals (Sweden)

    Kazuhiro Endo

    2015-10-01

    Full Text Available Classical scale invariance is one of the possible solutions to explain the origin of the electroweak scale. The simplest extension is the classically scale-invariant standard model augmented by a multiplet of gauge singlet real scalar. In the previous study it was shown that the properties of the Higgs potential deviate substantially, which can be observed in the International Linear Collider. On the other hand, since the multiplet does not acquire vacuum expectation value, the singlet components are stable and can be dark matter. In this letter we study the detectability of the real singlet scalar bosons in the experiment of the direct detection of dark matter. It is shown that a part of this model has already been excluded and the rest of the parameter space is within the reach of the future experiment.

  4. Interplay between singlet and triplet excited states in a conformationally locked donor–acceptor dyad

    KAUST Repository

    Filatov, Mikhail A.

    2015-10-13

    The synthesis and photophysical characterization of a palladium(II) porphyrin – anthracene dyad bridged via short and conformationally rigid bicyclo[2.2.2]octadiene spacer were achieved. A spectroscopic investigation of the prepared molecule in solution has been undertaken to study electronic energy transfer in excited singlet and triplet states between the anthracene and porphyrin units. By using steady-state and time-resolved photoluminescence spectroscopy it was shown that excitation of the singlet excited state of the anthracene leads to energy transfer to the lower-lying singlet state of porphyrin. Alternatively, excitation of the porphyrin followed by intersystem crossing to the triplet state leads to very fast energy transfer to the triplet state of anthracene. The rate of this energy transfer has been determined by transient absorption spectroscopy. Comparative studies of the dynamics of triplet excited states of the dyad and reference palladium octaethylporphyrin (PdOEP) have been performed.

  5. Flavor-singlet baryons in the graded symmetry approach to partially quenched QCD

    Science.gov (United States)

    Hall, Jonathan M. M.; Leinweber, Derek B.

    2016-11-01

    Progress in the calculation of the electromagnetic properties of baryon excitations in lattice QCD presents new challenges in the determination of sea-quark loop contributions to matrix elements. A reliable estimation of the sea-quark loop contributions represents a pressing issue in the accurate comparison of lattice QCD results with experiment. In this article, an extension of the graded symmetry approach to partially quenched QCD is presented, which builds on previous theory by explicitly including flavor-singlet baryons in its construction. The formalism takes into account the interactions among both octet and singlet baryons, octet mesons, and their ghost counterparts; the latter enables the isolation of the quark-flow disconnected sea-quark loop contributions. The introduction of flavor-singlet states enables systematic studies of the internal structure of Λ -baryon excitations in lattice QCD, including the topical Λ (1405 ).

  6. Interplay between singlet and triplet excited states in a conformationally locked donor–acceptor dyad

    KAUST Repository

    Filatov, Mikhail A.; Etzold, Fabian; Gehrig, Dominik; Laquai, Fré dé ric; Busko, Dmitri; Landfester, Katharina; Baluschev, Stanislav

    2015-01-01

    The synthesis and photophysical characterization of a palladium(II) porphyrin – anthracene dyad bridged via short and conformationally rigid bicyclo[2.2.2]octadiene spacer were achieved. A spectroscopic investigation of the prepared molecule in solution has been undertaken to study electronic energy transfer in excited singlet and triplet states between the anthracene and porphyrin units. By using steady-state and time-resolved photoluminescence spectroscopy it was shown that excitation of the singlet excited state of the anthracene leads to energy transfer to the lower-lying singlet state of porphyrin. Alternatively, excitation of the porphyrin followed by intersystem crossing to the triplet state leads to very fast energy transfer to the triplet state of anthracene. The rate of this energy transfer has been determined by transient absorption spectroscopy. Comparative studies of the dynamics of triplet excited states of the dyad and reference palladium octaethylporphyrin (PdOEP) have been performed.

  7. Diradical character dependences of the first and second hyperpolarizabilities of asymmetric open-shell singlet systems.

    Science.gov (United States)

    Nakano, Masayoshi; Champagne, Benoît

    2013-06-28

    The static first and second hyperpolarizabilities (referred to as β and γ, respectively) of asymmetric open-shell singlet systems have been investigated using the asymmetric two-site diradical model within the valence configuration interaction level of theory in order to reveal the effect of the asymmetric electron distribution on the diradical character and subsequently on β and γ. It is found that the increase of the asymmetric electron distribution causes remarkable changes in the amplitude and the sign of β and γ, and that their variations are intensified with the increase of the diradical character. These results demonstrate that the asymmetric open-shell singlet systems with intermediate diradical characters can exhibit further enhancements of β and γ as compared to conventional asymmetric closed-shell systems and also to symmetric open-shell singlet systems with intermediate diradical characters.

  8. Response behaviour of oxygen sensing solid electrolytes

    NARCIS (Netherlands)

    Winnubst, Aloysius J.A.; Scharenborg, A.H.A.; Burggraaf, A.J.

    1985-01-01

    The response time (t r) after a step change in oxygen partial pressure was investigated for some solid electrolytes used in Nernst type oxygen sensors. The electrolyte as well as the (porous) electrode material affect the value oft r. Stabilized Bi2O3 materials exhibit slower response rates (largert

  9. Measurement of oxygen transfer from air into organic solvents

    DEFF Research Database (Denmark)

    Ramesh, Hemalata; Mayr, Torsten; Hobisch, Mathias

    2016-01-01

    biological reactions require the supply of oxygen, most normally from air. However, reliable on-line measurements of oxygen concentration in organic solvents (and hence oxygen transfer rates from air to the solvent) has to date proven impossible due limitations in the current analytical methods. Results...... applications). Subsequently, we measured the oxygen transfer rates from air into these organic solvents. Conclusion The measurement of oxygen transfer rates from air into organic solvents using the dynamic method was established using the solvent resistant optical sensor. The feasibility of online oxygen...... For the first time, we demonstrate on-line oxygen measurements in non-aqueous media using a novel optical sensor. The sensor was used to measure oxygen concentration in various organic solvents including toluene, THF, isooctane, DMF, heptane and hexane (which have all been shown suitable for several biological...

  10. Spin-Triplet Pairing Induced by Spin-Singlet Interactions in Noncentrosymmetric Superconductors

    Science.gov (United States)

    Matsuzaki, Tomoaki; Shimahara, Hiroshi

    2017-02-01

    In noncentrosymmetric superconductors, we examine the effect of the difference between the intraband and interband interactions, which becomes more important when the band splitting increases. We define the difference ΔVμ between their coupling constants, i.e., that between the intraband and interband hopping energies of intraband Cooper pairs. Here, the subscript μ of ΔVμ indicates that the interactions scatter the spin-singlet and spin-triplet pairs when μ = 0 and μ = 1,2,3, respectively. It is shown that the strong antisymmetric spin-orbit interaction reverses the target spin parity of the interaction: it converts the spin-singlet and spin-triplet interactions represented by ΔV0 and ΔVμ>0 into effective spin-triplet and spin-singlet pairing interactions, respectively. Hence, for example, triplet pairing can be induced solely by the singlet interaction ΔV0. We name the pairing symmetry of the system after that of the intraband Cooper pair wave function, but with an odd-parity phase factor excluded. The pairing symmetry must then be even, even for the triplet component, and the following results are obtained. When ΔVμ is small, the spin-triplet p-wave interactions induce spin-triplet s-wave and spin-triplet d-wave pairings in the regions where the repulsive singlet s-wave interaction is weak and strong, respectively. When ΔV0 is large, a repulsive interband spin-singlet interaction can stabilize spin-triplet pairing. When the Rashba interaction is adopted for the spin-orbit interaction, the spin-triplet pairing interactions mediated by transverse magnetic fluctuations do not contribute to triplet pairing.

  11. On the Josephson effect between superconductors in singlet and triplet spin-pairing states

    International Nuclear Information System (INIS)

    Pals, J.A.; Haeringen, W. van

    1977-01-01

    An expression is derived for the Josephson current between two weakly coupled superconductors of which one or both have pairs in a spin-triplet state. It is shown that there can be no Josephson effect up to second order in the transition matrix elements between a superconductor with spin-triplet pairs and one with spin-singlet pairs if the coupling between the two superconductors can be described with a spin-conserving tunnel hamiltonian. This is shown to offer a possibility to investigate experimentally whether a particular superconductor has spin-triplet pairs by coupling it weakly to a well-known spin-singlet pairing superconductor. (Auth.)

  12. Second-order contributions to the structure functions in deep inelastic scattering III The singlet

    CERN Document Server

    González-Arroyo, A

    1980-01-01

    For pt.II see ibid., vol.159, p.512 (1979). Pointlike QCD predictions for the singlet part of the structure functions are given up to next- to-leading order of perturbation theory. This generalises the result obtained in pt.I (see ibid., vol.153, p.161, 1979) which deals with the non-singlet case. An interesting by-product is an exact and simple analytical expression for the anomalous dimension matrix to second non-trivial order in the QCD coupling constant. (18 refs).

  13. Baryogenesis in the two doublet and inert singlet extension of the Standard Model

    DEFF Research Database (Denmark)

    Alanne, Tommi; Kainulainen, Kimmo; Tuominen, Kimmo

    2016-01-01

    We investigate an extension of the Standard Model containing two Higgs doublets and a singlet scalar field (2HDSM). We show that the model can have a strongly first-order phase transition and give rise to the observed baryon asymmetry of the Universe, consistent with all experimental constraints...... with the critical temperature, Tn Tc, which can significantly alter the usual phase-transition pattern in 2HD models with Tn ≈ Tc. Furthermore, the singlet field can be the dark matter particle. However, in models with a strong first-order transition its abundance is typically but a thousandth of the observed dark...... matter abundance....

  14. Slow light enhanced singlet exciton fission solar cells with a 126% yield of electrons per photon

    International Nuclear Information System (INIS)

    Thompson, Nicholas J.; Congreve, Daniel N.; Baldo, Marc A.; Goldberg, David; Menon, Vinod M.

    2013-01-01

    Singlet exciton fission generates two triplet excitons per absorbed photon. It promises to increase the power extracted from sunlight without increasing the number of photovoltaic junctions in a solar cell. We demonstrate solar cells with an external quantum efficiency of 126% by enhancing absorption in thin films of the singlet exciton fission material pentacene. The device structure exploits the long photon dwell time at the band edge of a distributed Bragg reflector to achieve enhancement over a broad range of angles. Measuring the reflected light from the solar cell establishes a lower bound of 137% for the internal quantum efficiency

  15. Dimensional reduction of the Standard Model coupled to a new singlet scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Brauner, Tomáš [Faculty of Science and Technology, University of Stavanger,N-4036 Stavanger (Norway); Tenkanen, Tuomas V.I. [Department of Physics and Helsinki Institute of Physics,P.O. Box 64, FI-00014 University of Helsinki (Finland); Tranberg, Anders [Faculty of Science and Technology, University of Stavanger,N-4036 Stavanger (Norway); Vuorinen, Aleksi [Department of Physics and Helsinki Institute of Physics,P.O. Box 64, FI-00014 University of Helsinki (Finland); Weir, David J. [Faculty of Science and Technology, University of Stavanger,N-4036 Stavanger (Norway); Department of Physics and Helsinki Institute of Physics,P.O. Box 64, FI-00014 University of Helsinki (Finland)

    2017-03-01

    We derive an effective dimensionally reduced theory for the Standard Model augmented by a real singlet scalar. We treat the singlet as a superheavy field and integrate it out, leaving an effective theory involving only the Higgs and SU(2){sub L}×U(1){sub Y} gauge fields, identical to the one studied previously for the Standard Model. This opens up the possibility of efficiently computing the order and strength of the electroweak phase transition, numerically and nonperturbatively, in this extension of the Standard Model. Understanding the phase diagram is crucial for models of electroweak baryogenesis and for studying the production of gravitational waves at thermal phase transitions.

  16. Storage of magnetization as singlet order by optimal control designed pulses

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Bowen, Sean; Vinding, Mads Sloth

    2014-01-01

    The use of hyperpolarization to enhance the sensitivity of MRI has so far been limited by the decay of the polarization through T1 relaxation. Recently, methods have been proposed that extend the lifetime of the hyperpolarization by storing the spin order in slowly relaxing singlet states....... With this aim, optimal control theory was applied to create pulses that for near‐equivalent spins accomplish transfers in and out of the singlet state with maximum efficiency while ensuring robustness toward variations in the nuclear spin system Hamiltonian (chemical shift, J‐couplings, B1 and B magnetic field...

  17. Singlet Ground State Magnetism: III Magnetic Excitons in Antiferromagnetic TbP

    DEFF Research Database (Denmark)

    Knorr, K.; Loidl, A.; Kjems, Jørgen

    1981-01-01

    The dispersion of the lowest magnetic excitations of the singlet ground state system TbP has been studied in the antiferromagnetic phase by inelastic neutron scattering. The magnetic exchange interaction and the magnetic and the rhombohedral molecular fields have been determined.......The dispersion of the lowest magnetic excitations of the singlet ground state system TbP has been studied in the antiferromagnetic phase by inelastic neutron scattering. The magnetic exchange interaction and the magnetic and the rhombohedral molecular fields have been determined....

  18. Sterile Neutrinos, Dark Matter, and Pulsar Velocities in Models with a Higgs Singlet

    International Nuclear Information System (INIS)

    Kusenko, Alexander

    2006-01-01

    We identify the range of parameters for which the sterile neutrinos can simultaneously explain the cosmological dark matter and the observed velocities of pulsars. To satisfy all cosmological bounds, the relic sterile neutrinos must be produced sufficiently cold. This is possible in a class of models with a gauge-singlet Higgs boson coupled to the neutrinos. Sterile dark matter can be detected by the x-ray telescopes. The presence of the singlet in the Higgs sector can be tested at the CERN Large Hadron Collider

  19. Slow light enhanced singlet exciton fission solar cells with a 126% yield of electrons per photon

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Nicholas J.; Congreve, Daniel N.; Baldo, Marc A., E-mail: vmenon@qc.cuny.edu, E-mail: baldo@mit.edu [Energy Frontier Research Center for Excitonics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Goldberg, David; Menon, Vinod M., E-mail: vmenon@qc.cuny.edu, E-mail: baldo@mit.edu [Department of Physics, Queens College and Graduate Center, The City University of New York, Flushing, New York 11367 (United States)

    2013-12-23

    Singlet exciton fission generates two triplet excitons per absorbed photon. It promises to increase the power extracted from sunlight without increasing the number of photovoltaic junctions in a solar cell. We demonstrate solar cells with an external quantum efficiency of 126% by enhancing absorption in thin films of the singlet exciton fission material pentacene. The device structure exploits the long photon dwell time at the band edge of a distributed Bragg reflector to achieve enhancement over a broad range of angles. Measuring the reflected light from the solar cell establishes a lower bound of 137% for the internal quantum efficiency.

  20. On colour non-singlet representations of the quark-gluon system at finite temperature

    International Nuclear Information System (INIS)

    Abbas, A.; Paria, L.

    2000-01-01

    We use a group theoretical technique to project out the partition function for a system of quarks, antiquarks and gluons onto a particular representation of the internal symmetry group SU(3): the colour singlet, colour octet and colour 27-plet, at finite temperature. We do this to calculate the thermodynamic quantities for those representations. We also calculate the change in free energy of the plasma droplet formed from the hot hadronic gas. We find that the size of the droplet in the colour-octet representation is smaller than that in the colour-singlet representations at different temperatures in the vicinity of the critical temperatures of the phase transitions. (orig.)