WorldWideScience

Sample records for single-shot spectrally resolved

  1. A single-shot nonlinear autocorrelation approach for time-resolved physics in the vacuum ultraviolet spectral range

    International Nuclear Information System (INIS)

    Rompotis, Dimitrios

    2016-02-01

    In this work, a single-shot temporal metrology scheme operating in the vacuum-extreme ultraviolet spectral range has been designed and experimentally implemented. Utilizing an anti-collinear geometry, a second-order intensity autocorrelation measurement of a vacuum ultraviolet pulse can be performed by encoding temporal delay information on the beam propagation coordinate. An ion-imaging time-of-flight spectrometer, offering micrometer resolution has been set-up for this purpose. This instrument enables the detection of a magnified image of the spatial distribution of ions exclusively generated by direct two-photon absorption in the combined counter-propagating pulse focus and thus obtain the second-order intensity autocorrelation measurement on a single-shot basis. Additionally, an intense VUV light source based on high-harmonic generation has been experimentally realized. It delivers intense sub-20 fs Ti:Sa fifth-harmonic pulses utilizing a loose-focusing geometry in a long Ar gas cell. The VUV pulses centered at 161.8 nm reach pulse energies of 1.1 μJ per pulse, while the corresponding pulse duration is measured with a second-order, fringe-resolved autocorrelation scheme to be 18 ± 1 fs on average. Non-resonant, two-photon ionization of Kr and Xe and three-photon ionization of Ne verify the fifth-harmonic pulse intensity and indicate the feasibility of multi-photon VUV pump/VUV probe studies of ultrafast atomic and molecular dynamics. Finally, the extended functionally of the counter-propagating pulse metrology approach is demonstrated by a single-shot VUV pump/VUV probe experiment aiming at the investigation of ultrafast dissociation dynamics of O 2 excited in the Schumann-Runge continuum at 162 nm.

  2. Spectrally resolved single-shot wavefront sensing of broadband high-harmonic sources

    Science.gov (United States)

    Freisem, L.; Jansen, G. S. M.; Rudolf, D.; Eikema, K. S. E.; Witte, S.

    2018-03-01

    Wavefront sensors are an important tool to characterize coherent beams of extreme ultraviolet radiation. However, conventional Hartmann-type sensors do not allow for independent wavefront characterization of different spectral components that may be present in a beam, which limits their applicability for intrinsically broadband high-harmonic generation (HHG) sources. Here we introduce a wavefront sensor that measures the wavefronts of all the harmonics in a HHG beam in a single camera exposure. By replacing the mask apertures with transmission gratings at different orientations, we simultaneously detect harmonic wavefronts and spectra, and obtain sensitivity to spatiotemporal structure such as pulse front tilt as well. We demonstrate the capabilities of the sensor through a parallel measurement of the wavefronts of 9 harmonics in a wavelength range between 25 and 49 nm, with up to lambda/32 precision.

  3. Angle-resolved spectral Fabry-Pérot interferometer for single-shot measurement of refractive index dispersion over a broadband spectrum

    Science.gov (United States)

    Dong, J. T.; Ji, F.; Xia, H. J.; Liu, Z. J.; Zhang, T. D.; Yang, L.

    2018-01-01

    An angle-resolved spectral Fabry-Pérot interferometer is reported for fast and accurate measurement of the refractive index dispersion of optical materials with parallel plate shape. The light sheet from the wavelength tunable laser is incident on the parallel plate with converging angles. The transmitted interference light for each angle is dispersed and captured by a 2D sensor, in which the rows and the columns are used to simultaneously record the intensities as a function of wavelength and incident angle, respectively. The interferogram, named angle-resolved spectral intensity distribution, is analyzed by fitting the phase information instead of finding the fringe peak locations that present periodic ambiguity. The refractive index dispersion and the physical thickness can be then retrieved from a single-shot interferogram within 18 s. Experimental results of an optical substrate standard indicate that the accuracy of the refractive index dispersion is less than 2.5  ×  10-5 and the relative uncertainty of the thickness is 6  ×  10-5 mm (3σ) due to the high stability and the single-shot measurement of the proposed system.

  4. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes

    Science.gov (United States)

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ˜400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  5. Single shot, double differential spectral measurements of inverse Compton scattering in the nonlinear regime

    Directory of Open Access Journals (Sweden)

    Y. Sakai

    2017-06-01

    Full Text Available Inverse Compton scattering (ICS is a unique mechanism for producing fast pulses—picosecond and below—of bright photons, ranging from x to γ rays. These nominally narrow spectral bandwidth electromagnetic radiation pulses are efficiently produced in the interaction between intense, well-focused electron and laser beams. The spectral characteristics of such sources are affected by many experimental parameters, with intense laser effects often dominant. A laser field capable of inducing relativistic oscillatory motion may give rise to harmonic generation and, importantly for the present work, nonlinear redshifting, both of which dilute the spectral brightness of the radiation. As the applications enabled by this source often depend sensitively on its spectra, it is critical to resolve the details of the wavelength and angular distribution obtained from ICS collisions. With this motivation, we present an experimental study that greatly improves on previous spectral measurement methods based on x-ray K-edge filters, by implementing a multilayer bent-crystal x-ray spectrometer. In tandem with a collimating slit, this method reveals a projection of the double differential angular-wavelength spectrum of the ICS radiation in a single shot. The measurements enabled by this diagnostic illustrate the combined off-axis and nonlinear-field-induced redshifting in the ICS emission process. The spectra obtained illustrate in detail the strength of the normalized laser vector potential, and provide a nondestructive measure of the temporal and spatial electron-laser beam overlap.

  6. Single-shot LIBS spectral quality for waste particles in open air

    NARCIS (Netherlands)

    Xia, H.; Bakker, M.C.M.

    2015-01-01

    This work investigates the ability of LIBS to produce quality spectra from small particles of concrete demolition waste using single-shot spectra collected in open air. The 2–8?mm materials are rounded river gravel, green glass shards, and plastic flakes. Considered are focal length, air, moisture,

  7. Highly Resolved Mg/Ca Depth Profiles of Planktic Foraminifer test Walls Using Single shot Measurements of fs-LA-ICPMS

    Science.gov (United States)

    Jochum, K. P.; Schiebel, R.; Stoll, B.; Weis, U.; Haug, G. H.

    2017-12-01

    Foraminifers are sensitive archives of changes in climate and marine environment. It has been shown that the Mg/Ca signal is a suitable proxy of seawater temperature, because the incorporation of Mg depends on ambient water temperature. In contrast to most former studies, where this ratio is determined by solution-based bulk analysis of 20 - 30 specimens, we have investigated Mg/Ca in single specimens and single chambers at high resolution. A new fs-200 nm-LA-ICPMS technique was developed for the µm-sized layered calcite shells. To generate depth profiles with a resolution of about 50 nm/shot, we chose a low fluence of about 0.3 Jcm-2 and performed single shot measurements of the double charged 44Ca++ and the single charged 25Mg+ ions together. Precision (RSD) of the Mg/Ca data is about 5 %. Calibration was performed with the carbonate reference material MACS-3 from the USGS. Our results for different species from the Arabian Sea and Caribbean Sea demonstrate that Mg/Ca of different chambers vary and indicate that the foraminifer individuals built their chambers in different water depths and/or experienced seasonal changes in seawater temperature caused, for example, by upwelling (cold) versus stratified (warm) conditions. Typically, the Mg/Ca ratios of the final two chambers of the planktic foraminifer Globorotalia menardii from a sediment core of the Arabian Sea differ by about 5 mmol/mol from earlier chambers (2 mmol/mol) corresponding to seawater temperatures of 28 °C and 18 °C, respectively. In addition, mass fractions of other elements like Sr, Mn, Fe, Ba, and U have been determined with fs-LA-ICPMS using fast line scans, and thus provide further insights in the ecology of foraminifers.

  8. Single-shot 35 fs temporal resolution electron shadowgraphy

    Energy Technology Data Exchange (ETDEWEB)

    Scoby, C. M.; Li, R. K.; Threlkeld, E.; To, H.; Musumeci, P. [Department of Physics and Astronomy, UCLA, Los Angeles, California 90095 (United States)

    2013-01-14

    We obtain single-shot time-resolved shadowgraph images of the electromagnetic fields resulting from the interaction of a high intensity ultrashort laser pulse with a metal surface. Using a high brightness relativistic electron beam and a high streaking speed radiofrequency deflector, we report <35 fs temporal resolution enabling a direct visualization of the retarded-time dominated field evolution which follows the laser-induced charge emission. A model including the finite signal propagation speed well reproduces the data and yields measurements of fundamental parameters in short pulse laser-matter interaction such as the amount of emitted charge and the emission time scale.

  9. Spectrally resolved longitudinal spatial coherence inteferometry

    Science.gov (United States)

    Woodard, Ethan R.; Kudenov, Michael W.

    2017-05-01

    We present an alternative imaging technique using spectrally resolved longitudinal spatial coherence interferometry to encode a scene's angular information onto the source's power spectrum. Fourier transformation of the spectrally resolved channeled spectrum output yields a measurement of the incident scene's angular spectrum. Theory for the spectrally resolved interferometric technique is detailed, demonstrating analogies to conventional Fourier transform spectroscopy. An experimental proof of concept system and results are presented using an angularly-dependent Fabry-Perot interferometer-based optical design for successful reconstruction of one-dimensional sinusoidal angular spectra. Discussion for a potential future application of the technique, in which polarization information is encoded onto the source's power spectrum is also given.

  10. Single-shot work extraction in quantum thermodynamics revisited

    Science.gov (United States)

    Wang, Shang-Yung

    2018-01-01

    We revisit the problem of work extraction from a system in contact with a heat bath to a work storage system, and the reverse problem of state formation from a thermal system state in single-shot quantum thermodynamics. A physically intuitive and mathematically simple approach using only elementary majorization theory and matrix analysis is developed, and a graphical interpretation of the maximum extractable work, minimum work cost of formation, and corresponding single-shot free energies is presented. This approach provides a bridge between two previous methods based respectively on the concept of thermomajorization and a comparison of subspace dimensions. In addition, a conceptual inconsistency with regard to general work extraction involving transitions between multiple energy levels of the work storage system is clarified and resolved. It is shown that an additional contribution to the maximum extractable work in those general cases should be interpreted not as work extracted from the system, but as heat transferred from the heat bath. Indeed, the additional contribution is an artifact of a work storage system (essentially a suspended ‘weight’ that can be raised or lowered) that does not truly distinguish work from heat. The result calls into question the common concept that a work storage system in quantum thermodynamics is simply the quantum version of a suspended weight in classical thermodynamics.

  11. Optimization of laser energy deposition for single-shot high aspect-ratio microstructuring of thick BK7 glass

    Energy Technology Data Exchange (ETDEWEB)

    Garzillo, Valerio; Grigutis, Robertas [Dipartimento di Scienza e Alta Tecnologia, University of Insubria, Via Valleggio 11, I-22100 Como (Italy); Jukna, Vytautas [Centre de Physique Theorique, CNRS, Ecole Polytechnique, Université Paris-Saclay, F-91128 Palaiseau (France); LOA, ENSTA-ParisTech, CNRS, Ecole Polytechnique, Université Paris Saclay, F-91762 Palaiseau (France); Couairon, Arnaud [Centre de Physique Theorique, CNRS, Ecole Polytechnique, Université Paris-Saclay, F-91128 Palaiseau (France); Di Trapani, Paolo [Dipartimento di Scienza e Alta Tecnologia, University of Insubria and CNISM UdR Como, Via Valleggio 11, I-22100 Como (Italy); Jedrkiewicz, Ottavia, E-mail: ottavia.jedrkiewicz@ifn.cnr.it [Istituto di Fotonica e Nanotecnologie, CNR and CNISM UdR Como, Via Valleggio 11, I-22100 Como (Italy)

    2016-07-07

    We investigate the generation of high aspect ratio microstructures across 0.7 mm thick glass by means of single shot Bessel beam laser direct writing. We study the effect on the photoinscription of the cone angle, as well as of the energy and duration of the ultrashort laser pulse. The aim of the study is to optimize the parameters for the writing of a regular microstructure due to index modification along the whole sample thickness. By using a spectrally resolved single pulse transmission diagnostics at the output surface of the glass, we correlate the single shot material modification with observations of the absorption in different portions of the retrieved spectra, and with the absence or presence of spectral modulation. Numerical simulations of the evolution of the Bessel pulse intensity and of the energy deposition inside the sample help us interpret the experimental results that suggest to use picosecond pulses for an efficient and more regular energy deposition. Picosecond pulses take advantage of nonlinear plasma absorption and avoid temporal dynamics effects which can compromise the stationarity of the Bessel beam propagation.

  12. Single shot damage mechanism of Mo/Si multilayer optics under intense pulsed XUV-exposures

    NARCIS (Netherlands)

    Khorsand, A.R.; Sobierajski, R.; Louis, Eric; Bruijn, S.; Gleeson, A.; van de Kruijs, Robbert Wilhelmus Elisabeth; Gullikson, E.M.; Bijkerk, Frederik

    2010-01-01

    We investigated single shot damage of Mo/Si multilayer coatings exposed to the intense fs XUV radiation at the Free-electron LASer facility in Hamburg - FLASH. The interaction process was studied in situ by XUV reflectometry, time resolved optical microscopy, and “post-mortem” by

  13. The single-shot opto-digitizer

    International Nuclear Information System (INIS)

    Nail, M.; Gibert, Ph.

    2000-01-01

    Laser-plasma experiments need to measure signals provided either by X-ray, photonic or neutronic detector. The measurement should have 50 GHz bandwidth and up to several hundred of Giga-Hertz for sub picosecond plasmas. For this purpose, a 35 GHz single shot opto-digitizer (10 ps risetime) has been studied and built. The device is made up of a 50 ohms microstrip propagation line, periodically lined by 100 sampled gates. The propagation line is long enough to measure a 400 ps duration. The sampling rate is 250 Gsa/s (every 4 ps). The sampled gates are made with fast recombining photo-material and turn on by a subpicosecond laser pulse which is synchronized exactly with the analysed phenomena. Every gate is recording to a storing capacitor. After the recording, every capacitor charge is needed to built the signal that was displayed on the propagation line. The dynamic range of measurement is 47 for the entire device. The device can measure positive or negative signals from 1.5 to 70 Volts. To increase the bandwidth, two another kinds of opto-digitizer were studied: one is a buried stripline with 56 GHz band width, the other a 70 GHz coplanar transmission line. For the purpose of subpicosecond plasmas, a 30 coplanar waveguide opto-digitizer was studied. Characteristics are as followed: window of measurement 40 ps, sampling rate 1 ps, bandwidth 230 GHz. Finally, a bundle of optical fibers was used to propagate the laser beam on semiconductor gates. If the gates are lighted at the same time, i.e. if the optical fibers have the same length, we get a simultaneous addressing. By using different lengths of optical fibers, we can do a sequential addressing. So, the sampling rate becomes a combination of the distance between two adjacent sampled channels, and the difference in length of optical fibers. (author)

  14. Quantitative single shot and spatially resolved plasma wakefield diagnostics

    CERN Document Server

    Kasim, Muhammad Firmansyah; Ceurvorst, Luke; Levy, Matthew C; Ratan, Naren; Sadler, James; Bingham, Robert; Burrows, Philip N; Trines, Raoul; Wing, Matthew; Norreys, Peter

    2015-01-01

    Diagnosing plasma conditions can give great advantages in optimizing plasma wakefield accelerator experiments. One possible method is that of photon acceleration. By propagating a laser probe pulse through a plasma wakefield and extracting the imposed frequency modulation, one can obtain an image of the density modulation of the wakefield. In order to diagnose the wakefield parameters at a chosen point in the plasma, the probe pulse crosses the plasma at oblique angles relative to the wakefield. In this paper, mathematical expressions relating the frequency modulation of the laser pulse and the wakefield density profile of the plasma for oblique crossing angles are derived. Multidimensional particle-in-cell simulation results presented in this paper confirm that the frequency modulation profiles and the density modulation profiles agree to within 10%. Limitations to the accuracy of the measurement are discussed in this paper. This technique opens new possibilities to quantitatively diagnose the plasma wakefie...

  15. Algorithms for image recovery calculation in extended single-shot phase-shifting digital holography

    Science.gov (United States)

    Hasegawa, Shin-ya; Hirata, Ryo

    2018-02-01

    The single-shot phase-shifting method of image recovery using an inclined reference wave has the advantages of reducing the effects of vibration, being capable of operating in real time, and affording low-cost sensing. In this method, relatively low reference angles compared with that in the conventional method using phase shift between three or four pixels has been required. We propose an extended single-shot phase-shifting technique which uses the multiple-step phase-shifting algorithm and the corresponding multiple pixels which are the same as that of the period of an interference fringe. We have verified the theory underlying this recovery method by means of Fourier spectral analysis and its effectiveness by evaluating the visibility of the image using a high-resolution pattern. Finally, we have demonstrated high-contrast image recovery experimentally using a resolution chart. This method can be used in a variety of applications such as color holographic interferometry.

  16. Algorithms for image recovery calculation in extended single-shot phase-shifting digital holography

    Science.gov (United States)

    Hasegawa, Shin-ya; Hirata, Ryo

    2018-04-01

    The single-shot phase-shifting method of image recovery using an inclined reference wave has the advantages of reducing the effects of vibration, being capable of operating in real time, and affording low-cost sensing. In this method, relatively low reference angles compared with that in the conventional method using phase shift between three or four pixels has been required. We propose an extended single-shot phase-shifting technique which uses the multiple-step phase-shifting algorithm and the corresponding multiple pixels which are the same as that of the period of an interference fringe. We have verified the theory underlying this recovery method by means of Fourier spectral analysis and its effectiveness by evaluating the visibility of the image using a high-resolution pattern. Finally, we have demonstrated high-contrast image recovery experimentally using a resolution chart. This method can be used in a variety of applications such as color holographic interferometry.

  17. Infrared single shot diagnostics for the longitudinal profile of the electron bunches at FLASH

    International Nuclear Information System (INIS)

    Delsim-Hashemi, Hossein

    2008-09-01

    The longitudinal profile of electron bunches plays an important role in the design of single-pass free electron lasers and future linear e + e - colliders. For the free electron laser FLASH in Hamburg, a longitudinal compression scheme is used which results in an asymmetric longitudinal bunch profile with a 'spike'. This 'spike', which has a very high peak current, is used in a high-gain SASE-FEL process to produce high intensity (about 70 μJ) femtosecond photon pulses in the XUV wavelength range. The required high peak current of the electron bunch is realized by confining a large number of electrons in a width, measured in time units, of few tens of femtosecond, making the diagnostics of such bunches a challenge. Furthermore, the operation of facilities such as FLASH shows that single-shot diagnostics is indispensable. It is intuitive to use a time domain method to measure the electron bunch length. However, when the structures present in the bunch profile fall in the femtoseconds range, this is beyond the resolution of time-resolved methods developed so far. In this thesis, a wavelength-domain technique is described that can fulfill both requirements of single shot and high resolution reaching to the femtoseconds range. The amount of charge that is confined in a typical length of several femtoseconds (FWHM of the spike) can be determined by a novel single-shot spectrometer that resolves the coherent radiation (e.g. coherent transition radiation) in the far-infrared and mid-infrared range. Furthermore the extension of this single-shot spectroscopy to shorter wavelengths reaching the near-infrared, makes it possible to investigate the presence of structures in the bunch profile that might correlate or anti-correlate to the SASE intensity. (orig.)

  18. Infrared single shot diagnostics for the longitudinal profile of the electron bunches at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Delsim-Hashemi, Hossein

    2008-09-15

    The longitudinal profile of electron bunches plays an important role in the design of single-pass free electron lasers and future linear e{sup +}e{sup -} colliders. For the free electron laser FLASH in Hamburg, a longitudinal compression scheme is used which results in an asymmetric longitudinal bunch profile with a 'spike'. This 'spike', which has a very high peak current, is used in a high-gain SASE-FEL process to produce high intensity (about 70 {mu}J) femtosecond photon pulses in the XUV wavelength range. The required high peak current of the electron bunch is realized by confining a large number of electrons in a width, measured in time units, of few tens of femtosecond, making the diagnostics of such bunches a challenge. Furthermore, the operation of facilities such as FLASH shows that single-shot diagnostics is indispensable. It is intuitive to use a time domain method to measure the electron bunch length. However, when the structures present in the bunch profile fall in the femtoseconds range, this is beyond the resolution of time-resolved methods developed so far. In this thesis, a wavelength-domain technique is described that can fulfill both requirements of single shot and high resolution reaching to the femtoseconds range. The amount of charge that is confined in a typical length of several femtoseconds (FWHM of the spike) can be determined by a novel single-shot spectrometer that resolves the coherent radiation (e.g. coherent transition radiation) in the far-infrared and mid-infrared range. Furthermore the extension of this single-shot spectroscopy to shorter wavelengths reaching the near-infrared, makes it possible to investigate the presence of structures in the bunch profile that might correlate or anti-correlate to the SASE intensity. (orig.)

  19. Single shot diffraction of picosecond 8.7-keV x-ray pulses

    Directory of Open Access Journals (Sweden)

    F. H. O’Shea

    2012-02-01

    Full Text Available We demonstrate multiphoton, single shot diffraction images of x rays produced by inverse Compton scattering a high-power CO_{2} laser from a relativistic electron beam, creating a pulse of 8.7 keV x rays. The tightly focused, relatively high peak brightness electron beam and high photon density from the 2 J CO_{2} laser yielded 6×10^{7} x-ray photons over the full opening angle in a single shot. Single shot x-ray diffraction is performed by passing the x rays though a vertical slit and on to a flat silicon (111 crystal. 10^{2} diffracted photons were detected. The spectrum of the detected x rays is compared to simulation. The diffraction and detection of 10^{2} x rays is a key step to a more efficient time resolved diagnostic in which the number of observed x rays might reach 10^{4}; enabling a unique, flexible x-ray source as a sub-ps resolution diagnostic for studying the evolution of chemical reactions, lattice deformation and melting, and magnetism.

  20. Measurement of the X-ray Spectrum of a Free Electron Laser with a Wide-Range High-Resolution Single-Shot Spectrometer

    Directory of Open Access Journals (Sweden)

    Yuichi Inubushi

    2017-06-01

    Full Text Available We developed a single-shot X-ray spectrometer for wide-range high-resolution measurements of Self-Amplified Spontaneous Emission (SASE X-ray Free Electron Laser (XFEL pulses. The spectrometer consists of a multi-layer elliptical mirror for producing a large divergence of 22 mrad around 9070 eV and a silicon (553 analyzer crystal. We achieved a wide energy range of 55 eV with a fine spectral resolution of 80 meV, which enabled the observation of a whole SASE-XFEL spectrum with fully-resolved spike structures. We found that a SASE-XFEL pulse has around 60 longitudinal modes with a pulse duration of 7.7 ± 1.1 fs.

  1. Single-shot parallel full range complex Fourier-domain optical coherence tomography

    International Nuclear Information System (INIS)

    Huang Bingjie; Bu Peng; Nan Nan; Wang Xiangzhao

    2011-01-01

    We present a method of parallel full range complex Fourier-domain optical coherence tomography (FDOCT) that is capable of acquiring an artifacts-free two-dimensional (2-D) cross-sectional image, i.e. a full range B-scan tomogram, by a single shot of 2-D CCD camera. This method is based on a spatial carrier technique, in which the spatial carrier-frequency is instantaneously introduced into the 2-D spectral interferogram registered in parallel FDOCT by using a grating-generated reference beam. The spatial-carrier-contained 2-D spectral interferogram is processed through Fourier transformation to obtain a complex 2-D spectral interferogram. From the 2-D complex spectral interferomgram, a full range B-scan tomogram is reconstructed. The principle of our method is confirmed by imaging an onion sample.

  2. Spectrally resolved single-molecule electrometry

    Science.gov (United States)

    Ruggeri, F.; Krishnan, M.

    2018-03-01

    Escape-time electrometry is a recently developed experimental technique that offers the ability to measure the effective electrical charge of a single biomolecule in solution with sub-elementary charge precision. The approach relies on measuring the average escape-time of a single charged macromolecule or molecular species transiently confined in an electrostatic fluidic trap. Comparing the experiments with the predictions of a mean-field model of molecular electrostatics, we have found that the measured effective charge even reports on molecular conformation, e.g., folded or disordered state, and non-uniform charge distribution in disordered proteins or polyelectrolytes. Here we demonstrate the ability to use the spectral dimension to distinguish minute differences in electrical charge between individual molecules or molecular species in a single simultaneous measurement, under identical experimental conditions. Using one spectral channel for referenced measurement, this kind of photophysical distinguishability essentially eliminates the need for accurate knowledge of key experimental parameters, otherwise obtained through intensive characterization of the experimental setup. As examples, we demonstrate the ability to detect small differences (˜5%) in the length of double-stranded DNA fragments as well as single amino acid exchange in an intrinsically disordered protein, prothymosin α.

  3. Single shot near edge x-ray absorption fine structure spectroscopy in the laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Mantouvalou, I., E-mail: ioanna.mantouvalou@tu-berlin.de; Witte, K.; Martyanov, W.; Jonas, A.; Grötzsch, D.; Kanngießer, B. [Institute for Optics and Atomic Physics, Technical University of Berlin, D-10623 Berlin (Germany); Streeck, C. [Physikalisch-Technische Bundesanstalt (PTB), D-10587 Berlin (Germany); Löchel, H.; Rudolph, I.; Erko, A. [Helmholtz-Zentrum Berlin, D-14109 Berlin (Germany); Stiel, H. [Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, D-12489 Berlin (Germany)

    2016-05-16

    With the help of adapted off-axis reflection zone plates, near edge X-ray absorption fine structure spectra at the C and N K-absorption edge have been recorded using a single 1.2 ns long soft X-ray pulse. The transmission experiments were performed with a laser-produced plasma source in the laboratory rendering time resolved measurements feasible independent on large scale facilities. A resolving power of E/ΔE ∼ 950 at the respective edges could be demonstrated. A comparison of single shot spectra with those collected with longer measuring time proves that all features of the used reference samples (silicon nitrate and polyimide) can be resolved in 1.2 ns. Hence, investigations of radiation sensitive biological specimen become possible due to the high efficiency of the optical elements enabling low dose experiments.

  4. Spectrally resolved digital holography using a white light LED

    Science.gov (United States)

    Claus, D.; Pedrini, G.; Buchta, D.; Osten, W.

    2017-06-01

    This paper introduces the concept of spectrally resolved digital holography. The measurement principle and the analysis of the data will be discussed in detail. The usefulness of spectrally resolved digital holography is demonstrated for colour imaging and optical metrology with regards to the recovery of modulus information and phase information, respectively. The phase information will be used to measure the shape of an object via the application of the dual wavelength method. Based on the large degree of data available, multiple speckle de-correlated dual wavelength phase maps can be obtained, which when averaged result in a signal to noise ratio improvement.

  5. Improved focal liver lesion detection: comparison of single-shot diffusion-weighted echoplanar and single-shot T-2 weighted turbo spin echo techniques

    NARCIS (Netherlands)

    Coenegrachts, K.; Delanote, J.; ter Beek, L.; Haspeslagh, M.; Bipat, S.; Stoker, J.; van Kerkhove, F.; Steyaert, L.; Rigauts, H.; Casselman, J. W.

    2007-01-01

    The purpose of this study was to compare diffusion-weighted respiratory-triggered single-shot spin echo echoplanar imaging (SS SE-EPI) sequence using four b-values (b=0, b=20, b=300, b=800 s mm(-2)) and single-shot T-2 weighted turbo spin echo (T2W SS TSE) in patients with focal liver lesions, with

  6. Single-shot photonic time-stretch digitizer using a dissipative soliton-based passively mode-locked fiber laser.

    Science.gov (United States)

    Peng, Di; Zhang, Zhiyao; Zeng, Zhen; Zhang, Lingjie; Lyu, Yanjia; Liu, Yong; Xie, Kang

    2018-03-19

    We demonstrate a single-shot photonic time-stretch digitizer using a dissipative soliton-based passively mode-locked fiber laser. The theoretical analysis and simulation results indicate that the dissipative soliton-based optical source with a flat spectrum relieves the envelope-induced signal distortion, and its high energy spectral density helps to improve the signal-to-noise ratio, both of which are favorable for simplifying the optical front-end architecture of a photonic time-stretch digitizer. By employing a homemade dissipative soliton-based passively mode-locked erbium-doped fiber laser in a single-shot photonic time-stretch digitizer, an effective number of bits of 4.11 bits under an effective sampling rate of 100 GS/s is experimentally obtained without optical amplification in the link and pulse envelope removing process.

  7. Spectrally resolved far-fields of terahertz quantum cascade lasers

    OpenAIRE

    Brandstetter, Martin; Schönhuber, Sebastian; Krall, Michael; Kainz, Martin A.; Detz, Hermann; Zederbauer, Tobias; Andrews, Aaron M.; Strasser, Gottfried; Unterrainer, Karl

    2016-01-01

    We demonstrate a convenient and fast method to measure the spectrally resolved far-fields of multimode terahertz quantum cascade lasers by combining a microbolometer focal plane array with an FTIR spectrometer. Far-fields of fundamental TM0 and higher lateral order TM1 modes of multimode Fabry-P\\'erot type lasers have been distinguished, which very well fit to the results obtained by a 3D finite-element simulation. Furthermore, multimode random laser cavities have been investigated, analyzing...

  8. Optimization And Single-Shot Characterization Of Ultrashort Thz Pulses From A Laser Wakefield Accelerator

    International Nuclear Information System (INIS)

    Plateau, G.R.; Matlis, N.H.; van Tilborg, J.; Geddes, C.G.R.; Toth, Cs.; Schroeder, C.B.; Leemans, W.P.

    2009-01-01

    We present spatiotemporal characterization of μJ-class ultrashort THz pulses generated from a laser wakefield accelerator (LWFA). Accelerated electrons, resulting from the interaction of a high-intensity laser pulse with a plasma, emit high-intensity THz pulses as coherent transition radiation. Such high peak-power THz pulses, suitable for high-field (MV/cm) pump-probe experiments, also provide a non-invasive bunch-length diagnostic and thus feedback for the accelerator. The characterization of the THz pulses includes energy measurement using a Golay cell, 2D sign-resolved electro-optic measurement and single-shot spatiotemporal electric-field distribution retrieval using a new technique, coined temporal electric-field cross-Correlation (TEX). All three techniques corroborate THz pulses of ∼ 5 μJ, with peak fields of 100's of kV/cm and ∼ 0.4 ps rms duration.

  9. Hyperspectral interferometry for single-shot absolute measurement of 3-D shape and displacement fields

    Directory of Open Access Journals (Sweden)

    Ruiz P. D.

    2010-06-01

    Full Text Available We propose a method that we call Hyperspectral Interferometry (HSI to resolve the 2π phase unwrapping problem in the analysis of interferograms recorded with a narrow-band light source. By using a broad-band light source and hyperspectral imaging system, a set of interferograms at different wavenumbers are recorded simultaneously on a high resolution image sensor. These are then assembled to form a three-dimensional intensity distribution. By Fourier transformation along the wavenumber axis, an absolute optical path difference is obtained for each pixel independently of the other pixels in the field of view. As a result, interferograms with spatially distinct regions are analysed as easily as continuous ones. The approach is illustrated with a HSI system to measure 3-D profiles of optically smooth or rough surfaces. Compared to existing profilometers able to measure absolute path differences, the single shot nature of the approach provides greater immunity from environmental disturbance.

  10. Single-shot polarimetry imaging of multicore fiber.

    Science.gov (United States)

    Sivankutty, Siddharth; Andresen, Esben Ravn; Bouwmans, Géraud; Brown, Thomas G; Alonso, Miguel A; Rigneault, Hervé

    2016-05-01

    We report an experimental test of single-shot polarimetry applied to the problem of real-time monitoring of the output polarization states in each core within a multicore fiber bundle. The technique uses a stress-engineered optical element, together with an analyzer, and provides a point spread function whose shape unambiguously reveals the polarization state of a point source. We implement this technique to monitor, simultaneously and in real time, the output polarization states of up to 180 single-mode fiber cores in both conventional and polarization-maintaining fiber bundles. We demonstrate also that the technique can be used to fully characterize the polarization properties of each individual fiber core, including eigen-polarization states, phase delay, and diattenuation.

  11. Snapshot hyperspectral retinal imaging using compact spectral resolving detector array.

    Science.gov (United States)

    Li, Hao; Liu, Wenzhong; Dong, Biqin; Kaluzny, Joel V; Fawzi, Amani A; Zhang, Hao F

    2017-06-01

    Hyperspectral retinal imaging captures the light spectrum from each imaging pixel. It provides spectrally encoded retinal physiological and morphological information, which could potentially benefit diagnosis and therapeutic monitoring of retinal diseases. The key challenges in hyperspectral retinal imaging are how to achieve snapshot imaging to avoid motions between the images from multiple spectral bands, and how to design a compact snapshot imager suitable for clinical use. Here, we developed a compact, snapshot hyperspectral fundus camera for rodents using a novel spectral resolving detector array (SRDA), on which a thin-film Fabry-Perot cavity filter was monolithically fabricated on each imaging pixel. We achieved hyperspectral retinal imaging with 16 wavelength bands (460 to 630 nm) at 20 fps. We also demonstrated false-color vessel contrast enhancement and retinal oxygen saturation (sO 2 ) measurement through spectral analysis. This work could potentially bring hyperspectral retinal imaging from bench to bedside. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Spectrally resolved surface plasmon resonance dispersion using half-ball optics

    Science.gov (United States)

    Dehmel, Raphael; Baumberg, Jeremy J.; Steiner, Ullrich; Wilts, Bodo D.

    2017-11-01

    In this work, a variant of a Kretschmann-type surface plasmon resonance (SPR) sensor is introduced. k-space imaging is combined with half-ball glass optics to facilitate the measurement of SPRs across the visible spectral range. In contrast to current state-of-the-art techniques, which are widely utilized in commercially available systems, the presented method allows single-shot-acquisition of the full angular reflection without any moving parts, as well as mapping of the surface plasmon dispersion by scanning across the entire visible wavelength range. Measurements on various thin metallic films demonstrate the sensitivity of the system towards minute changes of the metal surface and its close vicinity. The fast and precise measurement of surface plasmon resonances paves the way for improved detection in applications such as immunoassays or gas-sensors, especially for real-time in situ measurements.

  13. Spectral cumulus parameterization based on cloud-resolving model

    Science.gov (United States)

    Baba, Yuya

    2018-02-01

    We have developed a spectral cumulus parameterization using a cloud-resolving model. This includes a new parameterization of the entrainment rate which was derived from analysis of the cloud properties obtained from the cloud-resolving model simulation and was valid for both shallow and deep convection. The new scheme was examined in a single-column model experiment and compared with the existing parameterization of Gregory (2001, Q J R Meteorol Soc 127:53-72) (GR scheme). The results showed that the GR scheme simulated more shallow and diluted convection than the new scheme. To further validate the physical performance of the parameterizations, Atmospheric Model Intercomparison Project (AMIP) experiments were performed, and the results were compared with reanalysis data. The new scheme performed better than the GR scheme in terms of mean state and variability of atmospheric circulation, i.e., the new scheme improved positive bias of precipitation in western Pacific region, and improved positive bias of outgoing shortwave radiation over the ocean. The new scheme also simulated better features of convectively coupled equatorial waves and Madden-Julian oscillation. These improvements were found to be derived from the modification of parameterization for the entrainment rate, i.e., the proposed parameterization suppressed excessive increase of entrainment, thus suppressing excessive increase of low-level clouds.

  14. RAiSE II: resolved spectral evolution in radio AGN

    Science.gov (United States)

    Turner, Ross J.; Rogers, Jonathan G.; Shabala, Stanislav S.; Krause, Martin G. H.

    2018-01-01

    The active galactic nuclei (AGN) lobe radio luminosities modelled in hydrodynamical simulations and most analytical models do not address the redistribution of the electron energies due to adiabatic expansion, synchrotron radiation and inverse-Compton scattering of cosmic microwave background photons. We present a synchrotron emissivity model for resolved sources that includes a full treatment of the loss mechanisms spatially across the lobe, and apply it to a dynamical radio source model with known pressure and volume expansion rates. The bulk flow and dispersion of discrete electron packets is represented by tracer fields in hydrodynamical simulations; we show that the mixing of different aged electrons strongly affects the spectrum at each point of the radio map in high-powered Fanaroff & Riley type II (FR-II) sources. The inclusion of this mixing leads to a factor of a few discrepancy between the spectral age measured using impulsive injection models (e.g. JP model) and the dynamical age. The observable properties of radio sources are predicted to be strongly frequency dependent: FR-II lobes are expected to appear more elongated at higher frequencies, while jetted FR-I sources appear less extended. The emerging FR0 class of radio sources, comprising gigahertz peaked and compact steep spectrum sources, can potentially be explained by a population of low-powered FR-Is. The extended emission from such sources is shown to be undetectable for objects within a few orders of magnitude of the survey detection limit and to not contribute to the curvature of the radio spectral energy distribution.

  15. Single-shot spectro-temporal characterization of XUV pulses from a seeded free-electron laser

    Science.gov (United States)

    de Ninno, Giovanni; Gauthier, David; Mahieu, Benoît; Ribič, Primož Rebernik; Allaria, Enrico; Cinquegrana, Paolo; Danailov, Miltcho Bojanov; Demidovich, Alexander; Ferrari, Eugenio; Giannessi, Luca; Penco, Giuseppe; Sigalotti, Paolo; Stupar, Matija

    2015-08-01

    Intense ultrashort X-ray pulses produced by modern free-electron lasers (FELs) allow one to probe biological systems, inorganic materials and molecular reaction dynamics with nanoscale spatial and femtoscale temporal resolution. These experiments require the knowledge, and possibly the control, of the spectro-temporal content of individual pulses. FELs relying on seeding have the potential to produce spatially and temporally fully coherent pulses. Here we propose and implement an interferometric method, which allows us to carry out the first complete single-shot spectro-temporal characterization of the pulses, generated by an FEL in the extreme ultraviolet spectral range. Moreover, we provide the first direct evidence of the temporal coherence of a seeded FEL working in the extreme ultraviolet spectral range and show the way to control the light generation process to produce Fourier-limited pulses. Experiments are carried out at the FERMI FEL in Trieste.

  16. Characterization of temporal coherence of hard X-ray free-electron laser pulses with single-shot interferograms

    Directory of Open Access Journals (Sweden)

    Taito Osaka

    2017-11-01

    Full Text Available Temporal coherence is one of the most fundamental characteristics of light, connecting to spectral information through the Fourier transform relationship between time and frequency. Interferometers with a variable path-length difference (PLD between the two branches have widely been employed to characterize temporal coherence properties for broad spectral regimes. Hard X-ray interferometers reported previously, however, have strict limitations in their operational photon energies, due to the specific optical layouts utilized to satisfy the stringent requirement for extreme stability of the PLD at sub-ångström scales. The work presented here characterizes the temporal coherence of hard X-ray free-electron laser (XFEL pulses by capturing single-shot interferograms. Since the stability requirement is drastically relieved with this approach, it was possible to build a versatile hard X-ray interferometer composed of six separate optical elements to cover a wide photon energy range from 6.5 to 11.5 keV while providing a large variable delay time of up to 47 ps at 10 keV. A high visibility of up to 0.55 was observed at a photon energy of 10 keV. The visibility measurement as a function of time delay reveals a mean coherence time of 5.9 ± 0.7 fs, which agrees with that expected from the single-shot spectral information. This is the first result of characterizing the temporal coherence of XFEL pulses in the hard X-ray regime and is an important milestone towards ultra-high energy resolutions at micro-electronvolt levels in time-domain X-ray spectroscopy, which will open up new opportunities for revealing dynamic properties in diverse systems on timescales from femtoseconds to nanoseconds, associated with fluctuations from ångström to nanometre spatial scales.

  17. Spatio-temporally resolved spectral measurements of laser-produced plasma and semiautomated spectral measurement-control and analysis software

    Science.gov (United States)

    Cao, S. Q.; Su, M. G.; Min, Q.; Sun, D. X.; O'Sullivan, G.; Dong, C. Z.

    2018-02-01

    A spatio-temporally resolved spectral measurement system of highly charged ions from laser-produced plasmas is presented. Corresponding semiautomated computer software for measurement control and spectral analysis has been written to achieve the best synchronicity possible among the instruments. This avoids the tedious comparative processes between experimental and theoretical results. To demonstrate the capabilities of this system, a series of spatio-temporally resolved experiments of laser-produced Al plasmas have been performed and applied to benchmark the software. The system is a useful tool for studying the spectral structures of highly charged ions and for evaluating the spatio-temporal evolution of laser-produced plasmas.

  18. Single shot three-dimensional pulse sequence for hyperpolarized13C MRI.

    Science.gov (United States)

    Wang, Jiazheng; Wright, Alan J; Hu, De-En; Hesketh, Richard; Brindle, Kevin M

    2017-02-01

    Metabolic imaging with hyperpolarized 13 C-labeled cell substrates is a promising technique for imaging tissue metabolism in vivo. However, the transient nature of the hyperpolarization, and its depletion following excitation, limits the imaging time and the number of excitation pulses that can be used. We describe here a single-shot three-dimensional (3D) imaging sequence and demonstrate its capability to generate 13 C MR images in tumor-bearing mice injected with hyperpolarized [1- 13 C]pyruvate. The pulse sequence acquires a stack-of-spirals at two spin echoes after a single excitation pulse and encodes the kz-dimension in an interleaved manner to enhance robustness to B 0 inhomogeneity. Spectral-spatial pulses are used to acquire dynamic 3D images from selected hyperpolarized 13 C-labeled metabolites. A nominal spatial/temporal resolution of 1.25 × 1.25 × 2.5 mm 3  × 2 s was achieved in tumor images of hyperpolarized [1- 13 C]pyruvate and [1- 13 C]lactate acquired in vivo. Higher resolution in the z-direction, with a different k-space trajectory, was demonstrated in measurements on a thermally polarized [1- 13 C]lactate phantom. The pulse sequence is capable of imaging hyperpolarized 13 C-labeled substrates at relatively high spatial and temporal resolutions and is robust to moderate system imperfections. Magn Reson Med 77:740-752, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  19. Single-shot self-interference incoherent digital holography using off-axis configuration.

    Science.gov (United States)

    Hong, Jisoo; Kim, Myung K

    2013-12-01

    We propose a single-shot incoherent holographic imaging technique that adopts self-interference incoherent digital holography (SIDH) with slight tilt of the plane mirror in the optical configuration. The limited temporal coherence length of the illumination leads the guide-star hologram of the proposed system to have a Gaussian envelope of elliptical ring shape. The observation shows that the reconstruction by cross correlation with the guide-star hologram achieves better quality than the usual propagation methods. Experimentally, we verify that the hologram and 3D reconstruction can be implemented incoherently with the proposed single-shot off-axis SIDH.

  20. Characterization of weakly absorbing thin films by multiple linear regression analysis of absolute unwrapped phase in angle-resolved spectral reflectometry.

    Science.gov (United States)

    Dong, Jingtao; Lu, Rongsheng

    2018-04-30

    The simultaneous determination of t, n(λ), and κ(λ) of thin films can be a tough task for the high correlation of fit parameters. The strong assumptions about the type of dispersion relation are commonly used as a consequence to alleviate correlation concerns by reducing the free parameters before the nonlinear regression analysis. Here we present an angle-resolved spectral reflectometry for the simultaneous determination of weakly absorbing thin film parameters, where a reflectance interferogram is recorded in both angular and spectral domains in a single-shot measurement for the point of the sample being illuminated. The variations of the phase recovered from the interferogram as functions of t, n, and κ reveals that the unwrapped phase is monotonically related to t, n, and κ, thereby allowing the problem of correlation to be alleviated by multiple linear regression. After removing the 2π ambiguity of the unwrapped phase, the merit function based on the absolute unwrapped phase performs a 3D data cube with variables of t, n and κ at each wavelength. The unique solution of t, n, and κ can then be directly determined from the extremum of the 3D data cube at each wavelength with no need of dispersion relation. A sample of GaN thin film grown on a polished sapphire substrate is tested. The experimental data of t and [n(λ), κ(λ)] are confirmed by the scanning electron microscopy and the comparison with the results of other related works, respectively. The consistency of the results shows the proposed method provides a useful tool for the determination of the thickness and optical constants of weakly absorbing thin films.

  1. Pin-hole array production and detailed data analysis for advanced single-shot X-ray imaging of laboratory plasmas

    Science.gov (United States)

    Levato, T.; Labate, L.; Pathak, N. C.; Cecchetti, C.; Koester, P.; Di Fabrizio, E.; Delogu, P.; Giulietti, A.; Giulietti, D.; Gizzi, L. A.

    2010-11-01

    Laser produced plasmas offer the unique opportunity to investigate physical mechanisms working at extremely high field in pulsed regime [1] (Gizzi et al., 2009). Future large scale infrastructure like HiPER and ELI may open new frontiers of knowledge in this way. Technologies needed for improving diagnostic in this field have a strong impact on a wide range of multi-disciplinary applications as for compact plasma-based accelerators [1,2] (Gizzi et al., 2009; Betti et al., 2009) laser fusion oriented experiments, three-dimensional microscopy and lithography. As an example the X-ray imaging, being a powerful diagnostic tool for deep investigation on different variety of laser produced plasma, has obtained a grooving effort in recent years. Large scale facilities working in single-pulse regime for laser fusion oriented experiments have evidenced the necessity to obtain spectrally resolved X-ray images of produced plasmas in a single shot. By combining the charge coupled devices (CCD) based single-photon detection technique with a pin-hole array (PHA) a new diagnostic technique was developed, as shown in recent experiments related to the European HiPER project [3] (Labate et al., 2009). Here we qualitatively describe the PHA production process on a heavy metal substrate by means of SEM images that show an internal diameter on the micrometer scale and an aspect ratio of about 20. The characterization of the X-ray contrast up to 90 keV is presented. The data analysis of the X-ray photons interaction on CCD, for spectrum reconstruction up to high energy, is described [4] (Levato et al., 2008).

  2. Pin-hole array production and detailed data analysis for advanced single-shot X-ray imaging of laboratory plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Levato, T., E-mail: tadzio.levato@lnf.infn.i [FLAME, Laboratori Nazionali di Frascati (LNF), Via E. Fermi 40, 00044 Frascati (Italy); Labate, L.; Pathak, N.C.; Cecchetti, C.; Koester, P. [ILIL, Consiglio Nazionale delle Ricerche (CNR), Pisa (Italy); Di Fabrizio, E. [BIONEM, Campus Magna Graecia University of Catanzaro (UMG) (Italy); Delogu, P. [University of Pisa, Department of Physics (Italy); Giulietti, A. [ILIL, Consiglio Nazionale delle Ricerche (CNR), Pisa (Italy); Giulietti, D. [University of Pisa, Department of Physics (Italy); Gizzi, L.A. [ILIL, Consiglio Nazionale delle Ricerche (CNR), Pisa (Italy)

    2010-11-11

    Laser produced plasmas offer the unique opportunity to investigate physical mechanisms working at extremely high field in pulsed regime (Gizzi et al., 2009). Future large scale infrastructure like HiPER and ELI may open new frontiers of knowledge in this way. Technologies needed for improving diagnostic in this field have a strong impact on a wide range of multi-disciplinary applications as for compact plasma-based accelerators (Gizzi et al., 2009; Betti et al., 2009) laser fusion oriented experiments, three-dimensional microscopy and lithography. As an example the X-ray imaging, being a powerful diagnostic tool for deep investigation on different variety of laser produced plasma, has obtained a grooving effort in recent years. Large scale facilities working in single-pulse regime for laser fusion oriented experiments have evidenced the necessity to obtain spectrally resolved X-ray images of produced plasmas in a single shot. By combining the charge coupled devices (CCD) based single-photon detection technique with a pin-hole array (PHA) a new diagnostic technique was developed, as shown in recent experiments related to the European HiPER project (Labate et al., 2009). Here we qualitatively describe the PHA production process on a heavy metal substrate by means of SEM images that show an internal diameter on the micrometer scale and an aspect ratio of about 20. The characterization of the X-ray contrast up to 90 keV is presented. The data analysis of the X-ray photons interaction on CCD, for spectrum reconstruction up to high energy, is described (Levato et al., 2008).

  3. Single-shot two-dimensional full-range optical coherence tomography achieved by dispersion control

    NARCIS (Netherlands)

    Witte, S.; Baclayon, M.; Peterman, E.J.G.; Toonen, R.F.G.; Mansvelder, H.D.; Groot, M.L.

    2009-01-01

    We present a full-range Fourier-domain optical coherence tomography (OCT) system that is capable of acquiring two-dimensional images of living tissue in a single shot. By using line illumination of the sample in combination with a two-dimensional imaging spectrometer, 1040 depth scans are performed

  4. Comparative Study on the Efficacy of Two Regimens of Single-Shot ...

    African Journals Online (AJOL)

    ... mother by increasing self esteem and improving bonding with the baby. Objective: To assess and compare the satisfaction and efficacy of two regimens of single-shot spinal blocks for the relief of labor pain in women who present in active phase of labour. Design: A prospective randomised single-blind observational study

  5. A second-order autocorrelator for single-shot measurement of ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    mental and second-harmonic frequency respectively, and 2α is the crossover angle of the beams inside the ... dispersion (GVD) effects in the crystal and spatial resolution of the imaging system. In the case ... Figure 3a shows the image of SH radiation from the KDP crystal corresponding to the single- shot operation of the ...

  6. Inversion recovery single-shot TurboFLASH for assessment of myocardial infarction at 3 Tesla.

    Science.gov (United States)

    Bauner, Kerstin U; Muehling, Olaf; Wintersperger, Bernd J; Winnik, Eva; Reiser, Maximilian F; Huber, Armin

    2007-06-01

    The aim of the study was to assess the diagnostic accuracy of imaging myocardial infarction with a single-shot inversion recovery turbofast low-angle shot (SS IR turboFLASH) sequence at 3.0 Tesla in comparison with an established segmented inversion recovery turboFLASH sequence at 1.5 Tesla. Fifteen patients with myocardial infarction were examined at a 1.5 Tesla magnetic resonance (MR) System (Avanto, Siemens, Medical Solutions) and at a 3.0 Tesla MR system (TIM Trio, Siemens, Medical Solutions). Imaging delayed enhancement was started 15 minutes after application of contrast material. A SS IR turboFLASH was performed at 3.0 Tesla and compared with a segmented IR turboFLASH sequence at 1.5 and at 3.0 Tesla. The IR turboFLASH sequence at 1.5 Tesla served as reference method. Infarct volumes, contrast/noise ratio (CNR) of infarcted and normal myocardium were compared with the reference method. The Single-Shot IR turboFLASH technique allows imaging 9 slices during a single breath-hold. The CNR between infarction and normal myocardium of the reference method was 6.4 at 1.5 Tesla. The mean value of CNR of the IR turboFLASH sequence was 7.3 at 3.0 Tesla for the single-shot technique and 14.1 at 3.0 Tesla for the segmented technique. No significant difference was found for the CNR values of the reference technique at 1.5 Tesla and the single-shot technique at 3.0 Tesla, however for the comparison of the segmented technique at 1.5 and at 3 Tesla (P = 0.0001). The correlation coefficients of the infarct volumes, determined with the Single-Shot IR turboFLASH and the segmented IR turboFLASH technique at 3.0 compared with the reference method, were r = 0.95 (P < 0.0001) and r = 0.95 (P < 0.0001). The loss of CNR, which is caused by replacement of the segmented technique by the single-shot technique, is completely compensated by the approximately 2-fold CNR increase at the higher field strength. The IR turboFLASH technique at 3.0 Tesla IR can be used as a single-shot technique

  7. MR cholangiopancreatography of pancreaticobiliary diseases: Comparison of single-shot RARE and multislice HASTE sequences

    Energy Technology Data Exchange (ETDEWEB)

    Morrin, Martina M.; Farrell, Richard J.; McEntee, Gerry; MacMathuna, Padraic; Stack, John P.; Murrah, John G

    2000-11-01

    AIMS: We prospectively compared two breath-hold magnetic resonance cholangiopancreatography (MRCP) sequences: single-shot rapid acquisition with relaxation enhancement (RARE) and multislice half-Fourier acquisition single-shot turbo spin echo (HASTE) in imaging the pancreaticobiliary system. PATIENTS AND METHODS: The diagnostic accuracy of single-shot RARE and multislice HASTE was studied in 34 subjects who had undergone conventional cholangiopancreatography. Overall image quality, duct conspicuity, image artifact, signal intensity and contrast-to-noise ratios were assessed independently by two radiologists who were unaware of the underlying diagnosis. RESULTS: Both sequences had comparable diagnostic accuracy regarding a normal biliary system, choledocholithiasis, extra-hepatic and intra-hepatic strictures. Single-shot RARE was superior to multislice HASTE in diagnosing a normal pancreatic system, pancreatic and intrahepatic duct strictures, while providing significantly better image quality (mean {+-} SE 3.7 {+-} 0.07 vs 3.3 {+-} 0.08: P = 0.02) and significantly less image artifact (mean {+-} SE 3.6 {+-} 0.07 vs 3.2 {+-} 0.08:P = 0.01). Single-shot RARE provided significantly better duct conspicuity regarding the pancreatic duct within the body (2.7 {+-} 0.2 vs 2.1 {+-} 0.2: P = 0.003) and tail (2.4 {+-} 0.2 vs 1.6 {+-} 0.2;P = 0.0001), as well as the intrahepatic ducts (3.0 {+-} 0.1 vs 2.6 {+-} 0.1: P = 0.004) but there was no significant difference regarding the remainder of the biliary tree. CONCLUSION: Single-shot RARE provides superior image quality, duct conspicuity with the added advantage of less image artifact and shorter acquisition time. However, volume averaging can cause common bile duct stones to be missed. Therefore, multislice HASTE sequences should still be acquired if choledocholithiasis is suspected. Larger studies are required to assess the diagnostic efficacy of single-shot RARE sequences in pancreatic duct and intra-hepatic duct disease

  8. Time-resolved spectral investigations of laser light induced microplasma

    Science.gov (United States)

    Nánai, L.; Hevesi, I.

    1992-01-01

    The dynamical and spectral properties of an optical breakdown microplasma created by pulses of different lasers on surfaces of insulators (KCI), metals (Cu) and semiconductors (V 2O 5), have been investigated. Experiments were carried out in air and vacuum using different wavelengths (λ = 0.694μm, type OGM-20,λ = 1.06μm with a home-made laser based on neodymium glass crystal, and λ = 10.6μm, similarly home-made) and pulse durations (Q-switched and free-running regimes). To follow the integral, dynamical and spectral characteristics of the luminous spot of microplasma we have used fast cameras (SFR-2M, IMACON-HADLAND), a high speed spectral camera (AGAT-2) and a spectrograph (STE-1). It has been shown that the microplasma consists of two parts: fast front (peak) with τ≈100 ns and slow front (tail) with τ≈1μs durations. The detonation front speed is of the order of ≈10 5 cm s -1 and follows the temporal dependence of to t0.4. It depends on the composition of the surrounding gas and its pressure and could be connected with quick evaporation of the material investigated (peak) and optical breakdown of the ambient gaseous atmosphere (tail). From the delay in appearance of different characteristic spectral lines of the target material and its gaseous surrounding we have shown that the evolution of the microplasma involves evaporation and ionization of the atoms of the parent material followed by optical breakdown due to the incident and absorbed laser light, together with microplasma expansion.

  9. Spatially Resolved Spectral Powder Analysis: Experiments and Modeling.

    Science.gov (United States)

    Scheibelhofer, Otto; Wahl, Patrick R; Larchevêque, Boris; Chauchard, Fabien; Khinast, Johannes G

    2018-01-01

    Understanding the behavior of light in granular media is necessary for determining the sample size, shape, and weight when probing using fiber optic setups. This is required for a correct estimate of the active pharmaceutical ingredient content in a pharmaceutical blend via near-infrared spectroscopy. Several strategies to describe the behavior of light in granular and turbid media exist. A common approach is the Monte-Carlo simulation of individual photons and their description using mean free path lengths for scattering and absorption. In this work, we chose a complementary method by approximating these parameters via real physical counterparts, i.e., the particle size, shape, and density and the resulting chord lengths. Additionally, the wavelength dependence of refractive indices is incorporated. The obtained results were compared with those obtained in an experimental setup that included the SAM-Spec Felin probe head by Indatech for detecting spatially resolved spectra of samples. Our method facilitates the interpretation of the acquired experimental results by contrasting the optical response, the physical particle attributes, and the simulation results.

  10. Speckle noise reduction in single-shot holographic two-wavelength contouring

    Science.gov (United States)

    Agour, Mostafa; Klattenhoff, Reiner; Falldorf, Claas; Bergmann, Ralf B.

    2017-05-01

    We present an experimental configuration that enables form measurement from a single-shot camera exposure. It combines two-wavelength contouring with spatial multiplexing synthetic-aperture digital holography. The synthetic-aperture in this work is formed by simultaneously illuminating the test object from two different angles. The two illumination directions and the two-wavelength contouring result in four holograms which are spatially multiplexed on a single camera target avoiding unwanted cross-interference between them by means of coherence gating. In contrast to standard holographic contouring methods, the proposed technique reduces speckle decorrelation noise and enables single shot form measurement. To demonstrate this technique, the shape of a micro cold drawing part is determined.

  11. Single-shot observation of growing streamers using an ultrafast camera

    International Nuclear Information System (INIS)

    Takahashi, E; Kato, S; Furutani, H; Sasaki, A; Kishimoto, Y; Takada, K; Matsumura, S; Sasaki, H

    2011-01-01

    A recently developed ultrafast camera that can acquire 10 8 frames per second was used to investigate positive streamer discharge. It enabled single-shot evaluation of streamer evolution without the need to consider shot-to-shot reproducibility. This camera was used to investigate streamers in argon. Growing branches, the transition when a streamer forms a return stroke, and related phenomena were clearly observed. (fast track communication)

  12. Single-Shot Readout of a Superconducting Qubit using a Josephson Parametric Oscillator

    Science.gov (United States)

    2016-01-11

    Single-shot Readout of a Superconducting Qubit using a Josephson Parametric Oscillator Philip Kranz1, Andreas Bengtsson1, Michaël Simoen1, Simon...Josephson Parametric Oscillator Philip Krantz1, Andreas Bengtsson1, Michaël Simoen1, Simon Gustavsson2, Vitaly Shumeiko1, W. D. Oliver2,3, C. M...2016) We propose and demonstrate a new read-out technique for a superconducting qubit by dispersively coupling it to a Josephson parametric

  13. Reliability Assessment of a Single-Shot System by Use of Screen Test Results

    Science.gov (United States)

    2018-02-01

    unlimited. NUWC Keyport #17-002. Reliability Assessment of a Single-Shot System by Use of Screen Test Results Abstract: Field reliability prediction...approach described here assumes that the defect density during testing takes the form of an exponential decay, although other mathematical functions can...be substituted for the exponential. In order to apply the decay rate function to a discrete pass/fail test scheme, the approach provides for

  14. Spectrally resolved imaging of Cabot rings and Howell-Jolly bodies.

    Science.gov (United States)

    Rothmann, C; Malik, Z; Cohen, A M

    1998-10-01

    The spectral characteristics of erythropoietic cellular inclusions stained by May-Grunwald Giemsa (MGG) were determined by spectrally resolved imaging. Multipixel spectra were obtained from Cabot rings and Howell-Jolly (HJ) bodies, displaying a range of wavelengths of transmitted light. The spectral characteristics of these inclusions were compared with those of isolated DNA, histones (type II) and arginine-rich histones (type VI), all stained by MGG. Results of single-cell spectroscopy show that the spectra of Cabot rings and HJ bodies share spectral characteristics with the type II and type VI histones. However, no resemblance was found between Cabot rings and DNA spectra. The spectral analysis of heterochromatin displayed a spectral pattern with characteristics of both DNA and histones, while the euchromatin showed a major contribution of the DNA component.

  15. Single-shot echo-planar imaging of multiple sclerosis: effects of varying echo time

    International Nuclear Information System (INIS)

    Wolansky, L.J.; Chong, S.; Liu, W.C.; Kang, E.; Simpson, S.W.; Karimi, S.; Akbari, H.

    1999-01-01

    Our aim was to determine the relative merits of short and long echo times (TE) with single-shot echo-planar imaging for imaging cerebral lesions such as multiple sclerosis. We examined seven patients with clinically definite multiple sclerosis were imaged at 1.5 T. Patients were scanned with spin-echo, single-shot echo-planar imaging, using TEs of 45, 75, 105, and 135 ms. Region of interest (ROI) measurements were performed on 36 lesions at or above the level of the corona radiata. The mean image contrast (IC) was highest (231.1) for a TE of 45 ms, followed by 75 ms (218.9), 105 ms (217.9), and 135 ms (191.6). When mean contrast-to-noise ratios (C/N) were compared, the value was again highest (29.7) for TE 45 ms, followed by 75 ms (28.9), 105 ms (28.5), and 135 ms (26.3). In a lesion-by-lesion comparison, TE 45 ms had the highest IC and C/N in the largest number of cases (50 % and 47.2 %, respectively). IC and C/N for TE 45 ms were superior to those of 75 ms in 64 % and 58 %, respectively. These results support the use of relatively short TEs for single-shot echo-planar imaging in the setting of cerebral lesions such as multiple sclerosis. (orig.) (orig.)

  16. Ultrafast Holographic Image Recording by Single Shot Femtosecond Spectral Hole Burning

    National Research Council Canada - National Science Library

    Rebane, Aleksander

    2001-01-01

    .... This allowed us to record image holograms with 150-fs duration pulses without need to accumulate the SHB effect from many exposures. Results of this research show that it is possible to perform optical recording of data in frequency-domain on ultrafast time scale. These results can be used also as a new diagnostic tool for femtosecond dynamics in various ultrafast optical interactions.

  17. Measuring evolution of a photon in an interferometer with spectrally resolved modes

    Czech Academy of Sciences Publication Activity Database

    Bula, M.; Bartkiewicz, K.; Černoch, Antonín; Javůrek, D.; Lemr, K.; Michálek, Václav; Soubusta, Jan

    2016-01-01

    Roč. 94, č. 5 (2016), 1-6, č. článku 052106. ISSN 2469-9926 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : Mach-Zehnder interferometer * spectrally resolved modes * photon Subject RIV: BH - Optics , Masers, Lasers Impact factor: 2.925, year: 2016

  18. Single-Shot, Volumetrically Illuminated, Three-Dimensional, Tomographic Laser-Induced-Fluorescence Imaging in a Gaseous Free Jet

    Science.gov (United States)

    2016-04-28

    Single- shot , volumetrically illuminated, three- dimensional, tomographic laser-induced- fluorescence imaging in a gaseous free jet Benjamin R. Halls...37081 Göttingen, Germany 4School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA 5trmeyer@purdue.edu 6james.gord...us.af.mil Abstract: Single- shot , tomographic imaging of the three-dimensional concentration field is demonstrated in a turbulent gaseous free jet in co-flow

  19. Anti-botulism single-shot vaccine using chitosan for protein encapsulation by simple coacervation.

    Science.gov (United States)

    Sari, Roger S; de Almeida, Anna Christina; Cangussu, Alex S R; Jorge, Edson V; Mozzer, Otto D; Santos, Hércules Otacílio; Quintilio, Wagner; Brandi, Igor Viana; Andrade, Viviane Aguiar; Miguel, Angelo Samir M; Sobrinho Santos, Eliane M

    2016-12-01

    The aim of the present study was to compare the potency and safety of vaccines against Clostridium botulinum (C. botulinum) type C and D formulated with chitosan as controlled release matrix and vaccines formulated in conventional manner using aluminum hydroxide. Parameters were established for the development of chitosan microspheres, using simple coacervation to standardize the use of this polymer in protein encapsulation for vaccine formulation. To formulate a single shot vaccine inactivated antigens of C. botulinum type C and D were used with original toxin titles equal to 5.2 and 6.2 log LD50/ml, respectively. For each antigen a chitosan based solution of 50 mL was prepared. Control vaccines were formulated by mixing toxoid type C and D with aluminum hydroxide [25% Al(OH) 3 , pH 6.3]. The toxoid sterility, innocuity and potency of vaccines were evaluated as stipulated by MAPA-BRASIL according to ministerial directive no. 23. Encapsulation efficiency of BSA in chitosan was 32.5-40.37%, while that the encapsulation efficiency to toxoid type C was 41,03% (1.94 mg/mL) and of the toxoid type D was 32.30% (1.82 mg/mL). The single shot vaccine formulated using chitosan for protein encapsulation through simple coacervation showed potency and safety similar to conventional vaccine currently used in Brazilian livestock (10 and 2 IU/mL against C. botulinum type C and D, respectively). The present work suggests that our single shot vaccine would be a good option as a cattle vaccine against these C. botulinum type C and D. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Partial Fourier techniques in single-shot cross-term spatiotemporal encoded MRI.

    Science.gov (United States)

    Zhang, Zhiyong; Frydman, Lucio

    2018-03-01

    Cross-term spatiotemporal encoding (xSPEN) is a single-shot approach with exceptional immunity to field heterogeneities, the images of which faithfully deliver 2D spatial distributions without requiring a priori information or using postacquisition corrections. xSPEN, however, suffers from signal-to-noise ratio penalties due to its non-Fourier nature and due to diffusion losses-especially when seeking high resolution. This study explores partial Fourier transform approaches that, acting along either the readout or the spatiotemporally encoded dimensions, reduce these penalties. xSPEN uses an orthogonal (e.g., z) gradient to read, in direct space, the low-bandwidth (e.g., y) dimension. This substantially changes the nature of partial Fourier acquisitions vis-à-vis conventional imaging counterparts. A suitable theoretical analysis is derived to implement these procedures, along either the spatiotemporally or readout axes. Partial Fourier single-shot xSPEN images were recorded on preclinical and human scanners. Owing to their reduction in the experiments' acquisition times, this approach provided substantial sensitivity gains vis-à-vis previous implementations for a given targeted in-plane resolution. The physical origins of these gains are explained. Partial Fourier approaches, particularly when implemented along the low-bandwidth spatiotemporal dimension, provide several-fold sensitivity advantages at minimal costs to the execution and processing of the single-shot experiments. Magn Reson Med 79:1506-1514, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  1. Single-shot secure quantum network coding on butterfly network with free public communication

    Science.gov (United States)

    Owari, Masaki; Kato, Go; Hayashi, Masahito

    2018-01-01

    Quantum network coding on the butterfly network has been studied as a typical example of quantum multiple cast network. We propose a secure quantum network code for the butterfly network with free public classical communication in the multiple unicast setting under restricted eavesdropper’s power. This protocol certainly transmits quantum states when there is no attack. We also show the secrecy with shared randomness as additional resource when the eavesdropper wiretaps one of the channels in the butterfly network and also derives the information sending through public classical communication. Our protocol does not require verification process, which ensures single-shot security.

  2. Deconvolution single shot multibox detector for supermarket commodity detection and classification

    Science.gov (United States)

    Li, Dejian; Li, Jian; Nie, Binling; Sun, Shouqian

    2017-07-01

    This paper proposes an image detection model to detect and classify supermarkets shelves' commodity. Based on the principle of the features directly affects the accuracy of the final classification, feature maps are performed to combine high level features with bottom level features. Then set some fixed anchors on those feature maps, finally the label and the position of commodity is generated by doing a box regression and classification. In this work, we proposed a model named Deconvolutiuon Single Shot MultiBox Detector, we evaluated the model using 300 images photographed from real supermarket shelves. Followed the same protocol in other recent methods, the results showed that our model outperformed other baseline methods.

  3. Single-shot femtosecond-pulsed phase-shifting digital holography.

    Science.gov (United States)

    Kakue, Takashi; Itoh, Seiya; Xia, Peng; Tahara, Tatsuki; Awatsuji, Yasuhiro; Nishio, Kenzo; Ura, Shogo; Kubota, Toshihiro; Matoba, Osamu

    2012-08-27

    Parallel phase-shifting digital holography is capable of three-dimensional measurement of a dynamically moving object with a single-shot recording. In this letter, we demonstrated a parallel phase-shifting digital holography using a single femtosecond light pulse whose central wavelength and temporal duration were 800 nm and 96 fs, respectively. As an object, we set spark discharge in atmospheric pressure air induced by applying a high voltage to between two electrodes. The instantaneous change in phase caused by the spark discharge was clearly reconstructed. The reconstructed phase image shows the change of refractive index of air was -3.7 × 10(-4).

  4. Single-shot beam profile diagnostics for x-ray FEL's using gas fluorescence

    Science.gov (United States)

    Feng, Yiping; Zhu, Diling; Weninger, Clemens; Alonso-Mori, Roberto; Chollet, Matthieu; Damiani, Daniel S.; Glownia, James M.; Hastings, Jerome B.; Nelson, Silke; Song, Sanghoon; Robert, Aymeric

    2017-06-01

    We report experimental demonstration of capturing single-shot X-ray Free-electron Laser (FEL) beam profiles using gas fluorescence. The measurement was carried out at the Linac Coherent Light Source using 7 keV hard X-rays propagating through ambient air. The nitrogen fluorescence emitted upon the passage of the X-ray FEL beam were imaged using a highly sensitive optical setup, and there was sufficient optical yield that single-shot measurements were feasible. By taking two orthogonal and simultaneous images, the beam trajectory could be determined in a nearly non-invasive manner, and is best suited for photon energies in the soft X-ray regime, where such a diagnostic capability has been largely unavailable previously. The integrated intensity of the images could also serve as a non-invasive intensity monitor, complementary to current implementations of gas- and solidbased monitors. High repetition-rate Free-electron Lasers can greatly benefit from such a new diagnostic tool for eliminating potential thermal damages.

  5. Spectrally resolved, broadband frequency response characterization of photodetectors using continuous-wave supercontinuum sources

    Science.gov (United States)

    Choudhury, Vishal; Prakash, Roopa; Nagarjun, K. P.; Supradeepa, V. R.

    2018-02-01

    A simple and powerful method using continuous wave supercontinuum lasers is demonstrated to perform spectrally resolved, broadband frequency response characterization of photodetectors in the NIR Band. In contrast to existing techniques, this method allows for a simple system to achieve the goal, requiring just a standard continuous wave(CW) high-power fiber laser source and an RF spectrum analyzer. From our recent work, we summarize methods to easily convert any high-power fiber laser into a CW supercontinuum. These sources in the time domain exhibit interesting properties all the way down to the femtosecond time scale. This enables measurement of broadband frequency response of photodetectors while the wide optical spectrum of the supercontinuum can be spectrally filtered to obtain this information in a spectrally resolved fashion. The method involves looking at the RF spectrum of the output of a photodetector under test when incident with the supercontinuum. By using prior knowledge of the RF spectrum of the source, the frequency response can be calculated. We utilize two techniques for calibration of the source spectrum, one using a prior measurement and the other relying on a fitted model. Here, we characterize multiple photodetectors from 150MHz bandwidth to >20GHz bandwidth at multiple bands in the NIR region. We utilize a supercontinuum source spanning over 700nm bandwidth from 1300nm to 2000nm. For spectrally resolved measurement, we utilize multiple wavelength bands such as around 1400nm and 1600nm. Interesting behavior was observed in the frequency response of the photodetectors when comparing broadband spectral excitation versus narrower band excitation.

  6. Spectrally resolved bioluminescence tomography with the third-order simplified spherical harmonics approximation

    Science.gov (United States)

    Lu, Yujie; Douraghy, Ali; Machado, Hidevaldo B.; Stout, David; Tian, Jie; Herschman, Harvey; Chatziioannou, Arion F.

    2009-11-01

    Bioluminescence imaging has been extensively applied to in vivo small animal imaging. Quantitative three-dimensional bioluminescent source information obtained by using bioluminescence tomography can directly and much more accurately reflect biological changes as opposed to planar bioluminescence imaging. Preliminary simulated and experimental reconstruction results demonstrate the feasibility and promise of bioluminescence tomography. However, the use of multiple approximations, particularly the diffusion approximation theory, affects the quality of in vivo small animal-based image reconstructions. In the development of new reconstruction algorithms, high-order approximation models of the radiative transfer equation and spectrally resolved data introduce new challenges to the reconstruction algorithm and speed. In this paper, an SP3-based (the third-order simplified spherical harmonics approximation) spectrally resolved reconstruction algorithm is proposed. The simple linear relationship between the unknown source distribution and the spectrally resolved data is established in this algorithm. A parallel version of this algorithm is realized, making BLT reconstruction feasible for the whole body of small animals especially for fine spatial domain discretization. In simulation validations, the proposed algorithm shows improved reconstruction quality compared with diffusion approximation-based methods when high absorption, superficial sources and detection modes are considered. In addition, comparisons between fine and coarse mesh-based BLT reconstructions show the effects of numerical errors in reconstruction image quality. Finally, BLT reconstructions using in vivo mouse experiments further demonstrate the potential and effectiveness of the SP3-based reconstruction algorithm.

  7. Time- and spectrally resolved characteristics of flavin fluorescence in U87MG cancer cells in culture

    Science.gov (United States)

    Horilova, Julia; Cunderlikova, Beata; Marcek Chorvatova, Alzbeta

    2015-05-01

    Early detection of cancer is crucial for the successful diagnostics of its presence and its subsequent treatment. To improve cancer detection, we tested the progressive multimodal optical imaging of U87MG cells in culture. A combination of steady-state spectroscopic methods with the time-resolved approach provides a new insight into the native metabolism when focused on endogenous tissue fluorescence. In this contribution, we evaluated the metabolic state of living U87MG cancer cells in culture by means of endogenous flavin fluorescence. Confocal microscopy and time-resolved fluorescence imaging were employed to gather spectrally and time-resolved images of the flavin fluorescence. We observed that flavin fluorescence in U87MG cells was predominantly localized outside the cell nucleus in mitochondria, while exhibiting a spectral maximum under 500 nm and fluorescence lifetimes under 1.4 ns, suggesting the presence of bound flavins. In some cells, flavin fluorescence was also detected inside the cell nuclei in the nucleoli, exhibiting longer fluorescence lifetimes and a red-shifted spectral maximum, pointing to the presence of free flavin. Extra-nuclear flavin fluorescence was diminished by 2-deoxyglucose, but failed to increase with 2,4-dinitrophenol, the uncoupler of oxidative phosphorylation, indicating that the cells use glycolysis, rather than oxidative phosphorylation for functioning. These gathered data are the first step toward monitoring the metabolic state of U87MG cancer cells.

  8. Application of Satellite-Based Spectrally-Resolved Solar Radiation Data to PV Performance Studies

    Directory of Open Access Journals (Sweden)

    Ana Maria Gracia Amillo

    2015-04-01

    Full Text Available In recent years, satellite-based solar radiation data resolved in spectral bands have become available. This has for the first time made it possible to produce maps of the geographical variation in the solar spectrum. It also makes it possible to estimate the influence of these variations on the performance of photovoltaic (PV modules. Here, we present a study showing the magnitude of the spectral influence on PV performance over Europe and Africa. The method has been validated using measurements of a CdTe module in Ispra, Italy, showing that the method predicts the spectral influence to within ±2% on a monthly basis and 0.1% over a 19-month period. Application of the method to measured spectral responses of crystalline silicon, CdTe and single-junction amorphous silicon (a-Si modules shows that the spectral effect is smallest over desert areas for all module types, higher in temperate Europe and highest in tropical Africa, where CdTe modules would be expected to yield +6% and single- junction a-Si modules up to +10% more energy due to spectral effects. In contrast, the effect for crystalline silicon modules is less than ±1% in nearly all of Africa and Southern Europe, rising to +1% or +2% in Northern Europe.

  9. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC.

    Directory of Open Access Journals (Sweden)

    Zachary F Phillips

    Full Text Available We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification-an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC, is a single-shot variant of Differential Phase Contrast (DPC, which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps for various in vitro cell samples and c. elegans in a micro-fluidic channel.

  10. Single-Shot Quantum Nondemolition Detection of Individual Itinerant Microwave Photons

    Science.gov (United States)

    Besse, Jean-Claude; Gasparinetti, Simone; Collodo, Michele C.; Walter, Theo; Kurpiers, Philipp; Pechal, Marek; Eichler, Christopher; Wallraff, Andreas

    2018-04-01

    Single-photon detection is an essential component in many experiments in quantum optics, but it remains challenging in the microwave domain. We realize a quantum nondemolition detector for propagating microwave photons and characterize its performance using a single-photon source. To this aim, we implement a cavity-assisted conditional phase gate between the incoming photon and a superconducting artificial atom. By reading out the state of this atom in a single shot, we reach an external (internal) photon-detection fidelity of 50% (71%), limited by transmission efficiency between the source and the detector (75%) and the coherence properties of the qubit. By characterizing the coherence and average number of photons in the field reflected off the detector, we demonstrate its quantum nondemolition nature. We envisage applications in generating heralded remote entanglement between qubits and for realizing logic gates between propagating microwave photons.

  11. Fast Detection of Airports on Remote Sensing Images with Single Shot MultiBox Detector

    Science.gov (United States)

    Xia, Fei; Li, HuiZhou

    2018-01-01

    This paper introduces a method for fast airport detection on remote sensing images (RSIs) using Single Shot MultiBox Detector (SSD). To our knowledge, this could be the first study which introduces an end-to-end detection model into airport detection on RSIs. Based on the common low-level features between natural images and RSIs, a convolution neural network trained on large amounts of natural images was transferred to tackle the airport detection problem with limited annotated data. To deal with the specific characteristics of RSIs, some related parameters in the SSD, such as the scales and layers, were modified for more accurate and rapider detection. The experiments show that the proposed method could achieve 83.5% Average Recall at 8 FPS on RSIs with the size of 1024*1024. In contrast to Faster R-CNN, an improvement on AP and speed could be obtained.

  12. Kinematic MRI using short TR single shot fast spin echo (SSFSE) in evaluating swallowing

    International Nuclear Information System (INIS)

    Isogai, Satoshi; Takehara, Yasuo; Isoda, Haruo; Kodaira, Nami; Masunaga, Hatsuko; Ozawa, Fukujirou; Kaneko, Masao; Nozaki, Atsushi; Kabasawa, Hiroyuki

    1999-01-01

    The utility of short TR single shot fast spin echo (SSFSE) MR imaging for evaluating swallowing was determined. Five healthy volunteers underwent kinematic MR imaging of swallowing with a 1.5 T MR scanner using the short TR (300 ms) SSFSE sequence. Twenty phases of sagittal sections were acquired within 6 sec, where the temporal resolution was 300 ms. For oral contrast medium, we used prune yogurt juice with Fe added. The image contrast of short TR SSFSE was found to be somewhere like that of T1-weighted images. In all cases, both the buccal and pharyngeal stages of swallowing were successfully depicted. The Fe-added prune yogurt juice performed as a positive contrast medium and helped determine anatomical structures in the buccal stage. Short TR (300 ms) SSFSE was useful in evaluating swallowing. The combined use of Fe-added prune yogurt juice was helpful in enhancing the surface of the oropharynx. (author)

  13. Single-shot in-line digital holography without twin image

    Science.gov (United States)

    Nomura, Takanori

    2018-01-01

    In-line digital holography is conventional but still attractive because of its simple optical setup. In general, sequential phase-shifting technique is mandatory to remove twin-image which makes the reconstructed image quality low. However, sequential phase-shifting technique requires multiple recording. Multiple recording means that it is not suitable for a dynamic phenomenon. In this paper, two kinds of a single-shot in-line digital holography without twin-image using a diffused illumination are presented. One is a generalized phase-shifting digital holography and the other is a computational removal of twin-image. The ideas and their experimental results are given to confirm the feasibility.

  14. Single-shot read-out of a superconducting qubit using a Josephson parametric oscillator

    Science.gov (United States)

    Krantz, Philip; Bengtsson, Andreas; Simoen, Michaël; Gustavsson, Simon; Shumeiko, Vitaly; Oliver, W. D.; Wilson, C. M.; Delsing, Per; Bylander, Jonas

    2016-01-01

    We propose and demonstrate a read-out technique for a superconducting qubit by dispersively coupling it with a Josephson parametric oscillator. We employ a tunable quarter wavelength superconducting resonator and modulate its resonant frequency at twice its value with an amplitude surpassing the threshold for parametric instability. We map the qubit states onto two distinct states of classical parametric oscillation: one oscillating state, with 185±15 photons in the resonator, and one with zero oscillation amplitude. This high contrast obviates a following quantum-limited amplifier. We demonstrate proof-of-principle, single-shot read-out performance, and present an error budget indicating that this method can surpass the fidelity threshold required for quantum computing. PMID:27156732

  15. Compressive sensing sectional imaging for single-shot in-line self-interference incoherent holography

    Science.gov (United States)

    Weng, Jiawen; Clark, David C.; Kim, Myung K.

    2016-05-01

    A numerical reconstruction method based on compressive sensing (CS) for self-interference incoherent digital holography (SIDH) is proposed to achieve sectional imaging by single-shot in-line self-interference incoherent hologram. The sensing operator is built up based on the physical mechanism of SIDH according to CS theory, and a recovery algorithm is employed for image restoration. Numerical simulation and experimental studies employing LEDs as discrete point-sources and resolution targets as extended sources are performed to demonstrate the feasibility and validity of the method. The intensity distribution and the axial resolution along the propagation direction of SIDH by angular spectrum method (ASM) and by CS are discussed. The analysis result shows that compared to ASM the reconstruction by CS can improve the axial resolution of SIDH, and achieve sectional imaging. The proposed method may be useful to 3D analysis of dynamic systems.

  16. 3 ns single-shot read-out in a quantum dot-based memory structure

    International Nuclear Information System (INIS)

    Nowozin, T.; Bimberg, D.; Beckel, A.; Lorke, A.; Geller, M.

    2014-01-01

    Fast read-out of two to six charges per dot from the ground and first excited state in a quantum dot (QD)-based memory is demonstrated using a two-dimensional electron gas. Single-shot measurements on modulation-doped field-effect transistor structures with embedded InAs/GaAs QDs show read-out times as short as 3 ns. At low temperature (T = 4.2 K) this read-out time is still limited by the parasitics of the setup and the device structure. Faster read-out times and a larger read-out signal are expected for an improved setup and device structure

  17. Method for single-shot measurement of picosecond laser pulse-lengths without electronic time dispersion

    International Nuclear Information System (INIS)

    Kyrala, G.A.

    1987-01-01

    A two-source shear pattern recording is proposed as a method for single-shot measurement of the pulse shape from nearly monochromatic sources whose pulse lengths are shorter than their coherence times. The basis of this method relies on the assertion that if two identical electromagnetic pulses are recombined with a time delay greater than the sum of their pulse widths, the recordable spatial pattern has no fringes in it. At an arbitrary delay, translated into an actual spatial recording position, the recorded modulated intensity will sample the corresponding laser intensity at that delay time, but with a modulation due to the coherence function of the electromagnetic pulse. Two arrangements are proposed for recording the pattern. The principles, the design parameters, and the methodologies of these arrangements are presented. Resolutions of the configurations and their limitations are given as well

  18. Single-shot measurements of low emittance beams from laser-plasma accelerators comparing two triggered injection methods

    Science.gov (United States)

    van Tilborg, Jeroen

    2017-10-01

    The success of laser plasma accelerator (LPA) based applications, such as a compact x-ray free electron laser (FEL), relies on the ability to produce electron beams with excellent 6D brightness, where brightness is defined as the ratio of charge to the product of the three normalized emittances. As such, parametric studies of the emittance of LPA generated electron beams are essential. Profiting from a stable and tunable LPA setup, combined with a carefully designed single-shot energy-dispersed emittance diagnostic, we present a direct comparison of charge dependent emittance measurements of electron beams generated by two different injection mechanisms: ionization injection and shock-induced density down-ramp injection. Both injection mechanisms have gained in popularity in recent years due to their demonstrated stable LPA performance. For the down-ramp injection configuration, normalized emittances a factor of two lower were recorded: less than 1 micron at spectral charge densities up to 2 pC/MeV. For both injection mechanisms, a contributing correlation of space charge to the emittance was identified. This measurement technique in general, and these results specifically, are critical to the evaluation of LPA injection methods and development of high-quality LPA beam lines worldwide. This work is supported by the U.S. DOE under Contract No. DE-AC02-05CH11231, by the U.S. DOE NNSA, DNN R&D (NA22), by the National Science Foundation under Grant No. PHY-1415596, and by the Gordon and Betty Moore Foundation under Grant ID GBMF4898.

  19. Feasibility study of a single-shot 3D electron bunch shape monitor with an electro-optic sampling technique

    Directory of Open Access Journals (Sweden)

    Yuichi Okayasu

    2013-05-01

    Full Text Available We developed a three-dimensional electron bunch charge distribution (3D-BCD monitor with single-shot detection, and a spectral decoding based electro-optic (EO sampling technique for a nondestructive monitor enables real-time reconstruction of the three-dimensional distribution of a bunch charge. We realized three goals by simultaneously probing a number of Pockels EO crystals that surround the electron beam axis with hollow and radial polarized laser pulses. First, we performed a feasibility test as a simple case of a 3D-BCD monitor probing two ZnTe crystals as EO detectors installed on the opposite angle to the electron beam axis and confirmed that we simultaneously obtained both EO signals. Since the adopted hollow probe laser pulse is not only radially polarized but also temporally shifted azimuthally, some disorders in the radial polarization distribution of such a laser pulse were numerically analyzed with a plane-wave expansion method. Based on the above investigations, the 3D-BCD monitor is feasible both in experimental and numerical estimations. Furthermore, we previously developed a femtosecond response organic crystal as a Pockels EO detector and a broadband probe laser (≥350  nm in FWHM; the 3D-BCD monitor realizes 30- to 40-fs (FWHM temporal resolution. Eventually, the monitor is expected to be equipped in such advanced accelerators as XFEL to measure and adjust the electron bunch charge distribution in real time. The 3D-BCD measurement works as a critical tool to provide feedback to seeded FELs.

  20. A spatially resolved radio spectral index study of the dwarf irregular galaxy NGC 1569

    Science.gov (United States)

    Westcott, Jonathan; Brinks, Elias; Hindson, Luke; Beswick, Robert; Heesen, Volker

    2018-04-01

    We study the resolved radio continuum spectral energy distribution of the dwarf irregular galaxy, NGC 1569, on a beam-by-beam basis to isolate and study its spatially resolved radio emission characteristics. Utilizing high-quality NRAO Karl G. Jansky Very Large Array observations that densely sample the 1-34 GHz frequency range, we adopt a Bayesian fitting procedure, where we use H α emission that has not been corrected for extinction as a prior, to produce maps of how the separated thermal emission, non-thermal emission, and non-thermal spectral index vary across NGC 1569's main disc. We find a higher thermal fraction at 1 GHz than is found in spiral galaxies (26^{+2}_{-3} {per cent}) and find an average non-thermal spectral index α = -0.53 ± 0.02, suggesting that a young population of cosmic ray electrons is responsible for the observed non-thermal emission. By comparing our recovered map of the thermal radio emission with literature H α maps, we estimate the total reddening along the line of sight to NGC 1569 to be E(B - V) = 0.49 ± 0.05, which is in good agreement with other literature measurements. Spatial variations in the reddening indicate that a significant portion of the total reddening is due to internal extinction within NGC 1569.

  1. Full momentum- and energy-resolved spectral function of a 2D electronic system

    Science.gov (United States)

    Jang, Joonho; Yoo, Heun Mo; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Ashoori, Raymond C.

    2017-11-01

    The single-particle spectral function measures the density of electronic states in a material as a function of both momentum and energy, providing central insights into strongly correlated electron phenomena. Here we demonstrate a high-resolution method for measuring the full momentum- and energy-resolved electronic spectral function of a two-dimensional (2D) electronic system embedded in a semiconductor. The technique remains operational in the presence of large externally applied magnetic fields and functions even for electronic systems with zero electrical conductivity or with zero electron density. Using the technique on a prototypical 2D system, a GaAs quantum well, we uncover signatures of many-body effects involving electron-phonon interactions, plasmons, polarons, and a phonon analog of the vacuum Rabi splitting in atomic systems.

  2. Analysis of the uniformity of the localized area epitaxy by spectrally resolved scanning photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Nuban, M.F.; Krawczyk, S.K.; Buchheit, M.; Blanchet, R.C. [Ecole Centrale de Lyon, Ecully (France). Lab. d`Electronique; Nagy, S.C.; Robinson, B.J.; Thompson, D.A.; Simmons, J.G. [McMaster Univ., Hamilton, Ontario (Canada). Center for Electrophonic Materials and Devices

    1996-12-31

    In this contribution, room temperature spectrally resolved scanning photoluminescence technique with spatial resolution (<1 {micro}m) is introduced and applied to control the uniformity of the composition and of the thickness of quantum well (Q.W.) structures obtained by localized area epitaxy. Furthermore, this technique is applied here to study lateral uniformity of Q.W. InGaAs/InP heterostructures grown by localized area Gas Source Molecular Beam Epitaxy (GSMBE) at various conditions (temperature, Arsine flow rate) and as a function of stripe width and spacing.

  3. Modelling single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources

    NARCIS (Netherlands)

    Loch, R.A.; Sobierajski, R.; Louis, Eric; Bosgra, J.; Bosgra, J.; Bijkerk, Frederik

    2012-01-01

    The single shot damage thresholds of multilayer optics for highintensity short-wavelength radiation sources are theoretically investigated, using a model developed on the basis of experimental data obtained at the FLASH and LCLS free electron lasers. We compare the radiation hardness of commonly

  4. Spectrally Resolved and Functional Super-resolution Microscopy via Ultrahigh-Throughput Single-Molecule Spectroscopy.

    Science.gov (United States)

    Yan, Rui; Moon, Seonah; Kenny, Samuel J; Xu, Ke

    2018-03-20

    As an elegant integration of the spatial and temporal dimensions of single-molecule fluorescence, single-molecule localization microscopy (SMLM) overcomes the diffraction-limited resolution barrier of optical microscopy by localizing single molecules that stochastically switch between fluorescent and dark states over time. While this type of super-resolution microscopy (SRM) technique readily achieves remarkable spatial resolutions of ∼10 nm, it typically provides no spectral information. Meanwhile, current scanning-based single-location approaches for mapping the positions and spectra of single molecules are limited by low throughput and are difficult to apply to densely labeled (bio)samples. In this Account, we summarize the rationale, design, and results of our recent efforts toward the integration of the spectral dimension of single-molecule fluorescence with SMLM to achieve spectrally resolved SMLM (SR-SMLM) and functional SRM ( f-SRM). By developing a wide-field scheme for spectral measurement and implementing single-molecule fluorescence on-off switching typical of SMLM, we first showed that in densely labeled (bio)samples it is possible to record the fluorescence spectra and positions of millions of single molecules synchronously within minutes, giving rise to ultrahigh-throughput single-molecule spectroscopy and SR-SMLM. This allowed us to first show statistically that for many dyes, single molecules of the same species exhibit near identical emission in fixed cells. This narrow distribution of emission wavelengths, which contrasts markedly with previous results at solid surfaces, allowed us to unambiguously identify single molecules of spectrally similar dyes. Crosstalk-free, multiplexed SRM was thus achieved for four dyes that were merely 10 nm apart in emission spectrum, with the three-dimensional SRM images of all four dyes being automatically aligned within one image channel. The ability to incorporate single-molecule fluorescence measurement with

  5. Frequency-Domain Tomography for Single-shot, Ultrafast Imaging of Evolving Laser-Plasma Accelerators

    Science.gov (United States)

    Li, Zhengyan; Zgadzaj, Rafal; Wang, Xiaoming; Downer, Michael

    2011-10-01

    Intense laser pulses propagating through plasma create plasma wakefields that often evolve significantly, e.g. by expanding and contracting. However, such dynamics are known in detail only through intensive simulations. Laboratory visualization of evolving plasma wakes in the ``bubble'' regime is important for optimizing and scaling laser-plasma accelerators. Recently snap-shots of quasi-static wakes were recorded using frequency-domain holography (FDH). To visualize the wake's evolution, we have generalized FDH to frequency-domain tomography (FDT), which uses multiple probes propagating at different angles with respect to the pump pulse. Each probe records a phase streak, imprinting a partial record of the evolution of pump-created structures. We then topographically reconstruct the full evolution from all phase streaks. To prove the concept, a prototype experiment visualizing nonlinear index evolution in glass is demonstrated. Four probes propagating at 0, 0.6, 2, 14 degrees to the index ``bubble'' are angularly and temporally multiplexed to a single spectrometer to achieve cost-effective FDT. From these four phase streaks, an FDT algorithm analogous to conventional CT yields a single-shot movie of the pump's self-focusing dynamics.

  6. Single shot imaging through turbid medium and around corner using coherent light

    Science.gov (United States)

    Li, Guowei; Li, Dayan; Situ, Guohai

    2018-01-01

    Optical imaging through turbid media and around corner is a difficult challenge. Even a very thin layer of a turbid media, which randomly scatters the probe light, can appear opaque and hide any objects behind it. Despite many recent advances, no current method can image the object behind turbid media with single record using coherent laser illumination. Here we report a method that allows non-invasive single-shot optical imaging through turbid media and around corner via speckle correlation. Instead of being as an obstacle in forming diffractionlimited images, speckle actually can be a carrier that encodes sufficient information to imaging through visually opaque layers. Optical imaging through turbid media and around corner is experimentally demonstrated using traditional imaging system with the aid of iterative phase retrieval algorithm. Our method require neither scan of illumination nor two-arm interferometry or long-time exposure in acquisition, which has new implications in optical sensing through common obscurants such as fog, smoke and haze.

  7. Truly work-like work extraction via a single-shot analysis.

    Science.gov (United States)

    Aberg, Johan

    2013-01-01

    The work content of non-equilibrium systems in relation to a heat bath is often analysed in terms of expectation values of an underlying random work variable. However, when optimizing the expectation value of the extracted work, the resulting extraction process is subject to intrinsic fluctuations, uniquely determined by the Hamiltonian and the initial distribution of the system. These fluctuations can be of the same order as the expected work content per se, in which case the extracted energy is unpredictable, thus intuitively more heat-like than work-like. This raises the question of the 'truly' work-like energy that can be extracted. Here we consider an alternative that corresponds to an essentially fluctuation-free extraction. We show that this quantity can be expressed in terms of a one-shot relative entropy measure introduced in information theory. This suggests that the relations between information theory and statistical mechanics, as illustrated by concepts like Maxwell's demon, Szilard engines and Landauer's principle, extends to the single-shot regime.

  8. Efficient Background Segmentation and Seed Point Generation for a Single-Shot Stereo System

    Science.gov (United States)

    Chen, Xiaobo; Xi, Juntong

    2017-01-01

    Single-shot stereo 3D shape measurement is becoming more popular due to its advantages of noise robustness and short acquisition period. One of the key problems is stereo matching, which is related to the efficiency of background segmentation and seed point generation, etc. In this paper, a more efficient and automated matching algorithm based on digital image correlation (DIC) is proposed. The standard deviation of image gradients and an adaptive threshold are employed to segment the background. Scale-invariant feature transform (SIFT)-based feature matching and two-dimensional triangulation are combined to estimate accurate initial parameters for seed point generation. The efficiency of background segmentation and seed point generation, as well as the measuring precision, are evaluated by experimental simulation and real tests. Experimental results show that the average segmentation time for an image with a resolution of 1280 × 960 pixels is 240 milliseconds. The efficiency of seed point generation is verified to be high with different convergence criteria. PMID:29194415

  9. Single-shot readout of multiple nuclear spin qubits in diamond under ambient conditions

    Science.gov (United States)

    Jacques, Vincent

    2013-03-01

    Nuclear spins are attractive candidates for solid-state quantum information storage and processing owing to their extremely long coherence time. However, since this appealing property results from a high level of isolation from the environment, it remains a challenging task to polarize, manipulate and readout with high fidelity individual nuclear spins. A promising approach to overcome this limitation consists in utilizing an ancillary single electronic spin to detect and control remote nuclear spins coupled by hyperfine interaction. In this talk, I will show how the electronic spin of a single Nitrogen-Vacancy (NV) defect in diamond can be used as a robust platform to observe the real-time evolution of surrounding single nuclear spins under ambient conditions. Using a diamond sample with a natural abundance of 13C isotopes, we first demonstrate high fidelity initialization and single-shot readout of an individual 13C nuclear spin. By including the intrinsic 14N nuclear spin of the NV defect in the quantum register, we then report the simultaneous observation of quantum jumps linked to both nuclear spin species, providing an efficient initialization of the two qubits. These results open up new avenues for diamond-based quantum information processing (QIP) including active feedback in quantum error correction protocols and tests of quantum correlations with solid-state single spins at room temperature.

  10. Efficient Multiple Exciton Generation Observed in Colloidal PbSe Quantum Dots with Temporally and Spectrally Resolved Intraband Excitation

    KAUST Repository

    Ji, Minbiao

    2009-03-11

    We have spectrally resolved the intraband transient absorption of photogenerated excitons to quantify the exciton population dynamics in colloidal PbSe quantum dots (QDs). These measurements demonstrate that the spectral distribution, as well as the amplitude, of the transient spectrum depends on the number of excitons excited in a QD. To accurately quantify the average number of excitons per QD, the transient spectrum must be spectrally integrated. With spectral integration, we observe efficient multiple exciton generation In colloidal PbSe QDs. © 2009 American Chemical Society.

  11. Spectrally-resolved Soft X-ray Observations and the Temperature Structure of the Solar Corona

    Science.gov (United States)

    Caspi, Amir; Warren, Harry; McTiernan, James; Woods, Thomas N.

    2015-04-01

    Solar X-ray observations provide important diagnostics of plasma heating and particle acceleration, during solar flares and quiescent periods. How the corona is heated to its ~1-3 MK nominal temperature remains one of the fundamental unanswered questions of solar physics; heating of plasma to tens of MK during solar flares -- particularly to the hottest observed temperatures of up to ~50 MK -- is also still poorly understood. Soft X-ray emission (~0.1-10 keV; or ~0.1-10 nm) is particularly sensitive to hot coronal plasma and serves as a probe of the thermal processes driving coronal plasma heating. Spectrally- and temporally-resolved measurements are crucial for understanding these energetic processes, but there have historically been very few such observations. We present new solar soft X-ray spectra from the Amptek X123-SDD, measuring quiescent solar X-ray emission from ~0.5 to ~30 keV with ~0.15 keV FWHM resolution from two SDO/EVE calibration sounding rocket underflights in 2012 and 2013. Combined with observations from RHESSI, GOES/XRS, SDO/EVE, and SDO/AIA, the temperature distribution derived from these data suggest significant hot (5-10 MK) emission from active regions, and the 2013 spectra suggest a low-FIP enhancement of only ~1.6 relative to the photosphere, 40% of the usually-observed value from quiescent coronal plasma. We explore the implications of these findings on coronal heating. We discuss future missions for spectrally-resolved soft X-ray observations using the X123-SDD, including the upcoming MinXSS 3U CubeSat using the X123-SDD and scheduled for deployment in mid-2015, and the CubIXSS 6U CubeSat mission concept.

  12. Analysis and enhancement of 3D shape accuracy in a single-shot LIDAR sensor

    Science.gov (United States)

    Han, Munhyun; Choi, Gudong; Song, Minhyup; Seo, Hongseok; Mheen, Bongki

    2017-02-01

    The accuracy of timing jitter is of prime importance in the prevalent utilization of Light Detection and Ranging (LiDAR) technology for the real-time high-resolution three-dimensional (3D) image sensor, especially for relatively small object detection in various applications, such as in the fully automated car navigation and military surveillance. To assess the accuracy of timing, that is, the accuracy of the distance or three-dimensional shape, the standard deviation method can be used in the Time-of-Flight (ToF) LiDAR technology. While most timing jitter analyses are mainly based on a fiber-network or open space at a relatively short range distance, more accurate analyses are required to extract more information about the timing jitter at in a 3D image sensor long-range free space conditions for extended LiDAR-related applications. In this paper, utilizing a Single-Shot LiDAR System (SSLs) model with a 400 MHz wideband InGaAs Avalanche Photodiode and a 1550 nm 2 nsec full width at half maximum MOPA fiber laser, we analyzed the precise timing jitter for the implemented SSLs to characterize the measurement results. Additionally, we report the enhanced results for the resolution and precision in the given SSLs using the spline interpolation method from the measured results, and multiple-shot averaging (MSA). Finally, by adapting the proposed method to an implemented high resolution 3D LiDAR prototype, called the STUD LiDAR prototype, which can be understood as one kind of SSLs because it has a single source and a single detector as in a SSLs, we observed and analyzed the 3D resolution enhancement.

  13. The single-shot opto-digitizer; L'optoechantillonneur monocoup

    Energy Technology Data Exchange (ETDEWEB)

    Nail, M.; Gibert, Ph. [CEA/DAM-Ile de France, Dept. de Conception et Realisation des Experimentations (DCRE), 91 - Bruyeres-le-Chatel (France); CEA/DAM-Ile de France, Dept. Laser Puissance, DLP, 91 - Bruyeres-Le-Chatel (France)

    2000-07-01

    Laser-plasma experiments need to measure signals provided either by X-ray, photonic or neutronic detector. The measurement should have 50 GHz bandwidth and up to several hundred of Giga-Hertz for sub picosecond plasmas. For this purpose, a 35 GHz single shot opto-digitizer (10 ps risetime) has been studied and built. The device is made up of a 50 ohms microstrip propagation line, periodically lined by 100 sampled gates. The propagation line is long enough to measure a 400 ps duration. The sampling rate is 250 Gsa/s (every 4 ps). The sampled gates are made with fast recombining photo-material and turn on by a subpicosecond laser pulse which is synchronized exactly with the analysed phenomena. Every gate is recording to a storing capacitor. After the recording, every capacitor charge is needed to built the signal that was displayed on the propagation line. The dynamic range of measurement is 47 for the entire device. The device can measure positive or negative signals from 1.5 to 70 Volts. To increase the bandwidth, two another kinds of opto-digitizer were studied: one is a buried stripline with 56 GHz band width, the other a 70 GHz coplanar transmission line. For the purpose of subpicosecond plasmas, a 30 coplanar waveguide opto-digitizer was studied. Characteristics are as followed: window of measurement 40 ps, sampling rate 1 ps, bandwidth 230 GHz. Finally, a bundle of optical fibers was used to propagate the laser beam on semiconductor gates. If the gates are lighted at the same time, i.e. if the optical fibers have the same length, we get a simultaneous addressing. By using different lengths of optical fibers, we can do a sequential addressing. So, the sampling rate becomes a combination of the distance between two adjacent sampled channels, and the difference in length of optical fibers. (author)

  14. Self-Calibrating Wave-Encoded Variable-Density Single-Shot Fast Spin Echo Imaging.

    Science.gov (United States)

    Chen, Feiyu; Taviani, Valentina; Tamir, Jonathan I; Cheng, Joseph Y; Zhang, Tao; Song, Qiong; Hargreaves, Brian A; Pauly, John M; Vasanawala, Shreyas S

    2018-04-01

    It is highly desirable in clinical abdominal MR scans to accelerate single-shot fast spin echo (SSFSE) imaging and reduce blurring due to T 2 decay and partial-Fourier acquisition. To develop and investigate the clinical feasibility of wave-encoded variable-density SSFSE imaging for improved image quality and scan time reduction. Prospective controlled clinical trial. With Institutional Review Board approval and informed consent, the proposed method was assessed on 20 consecutive adult patients (10 male, 10 female, range, 24-84 years). A wave-encoded variable-density SSFSE sequence was developed for clinical 3.0T abdominal scans to enable high acceleration (3.5×) with full-Fourier acquisitions by: 1) introducing wave encoding with self-refocusing gradient waveforms to improve acquisition efficiency; 2) developing self-calibrated estimation of wave-encoding point-spread function and coil sensitivity to improve motion robustness; and 3) incorporating a parallel imaging and compressed sensing reconstruction to reconstruct highly accelerated datasets. Image quality was compared pairwise with standard Cartesian acquisition independently and blindly by two radiologists on a scale from -2 to 2 for noise, contrast, confidence, sharpness, and artifacts. The average ratio of scan time between these two approaches was also compared. A Wilcoxon signed-rank tests with a P value under 0.05 considered statistically significant. Wave-encoded variable-density SSFSE significantly reduced the perceived noise level and improved the sharpness of the abdominal wall and the kidneys compared with standard acquisition (mean scores 0.8, 1.2, and 0.8, respectively, P variable-density sampling SSFSE achieves improved image quality with clinically relevant echo time and reduced scan time, thus providing a fast and robust approach for clinical SSFSE imaging. 1 Technical Efficacy: Stage 6 J. Magn. Reson. Imaging 2018;47:954-966. © 2017 International Society for Magnetic Resonance in Medicine.

  15. Reference-free unwarping of single-shot spatiotemporally encoded MRI using asymmetric self-refocused echoes acquisition

    Science.gov (United States)

    Chen, Ying; Chen, Song; Zhong, Jianhui; Chen, Zhong

    2015-05-01

    This paper presents a phase evolution rewinding algorithm for correcting the geometric and intensity distortions in single-shot spatiotemporally encoded (SPEN) MRI with acquisition of asymmetric self-refocused echo trains. Using the field map calculated from the phase distribution of the source image, the off-resonance induced phase errors are successfully rewound through deconvolution. The alias-free partial Fourier transform reconstruction helps improve the signal-to-noise ratio of the field maps and the output images. The effectiveness of the proposed algorithm was validated through 7 T MRI experiments on a lemon, a water phantom, and in vivo rat head. SPEN imaging was evaluated using rapid acquisition by sequential excitation and refocusing (RASER) which produces uniform T2 weighting. The results indicate that the new technique can more robustly deal with the cases in which the images obtained with conventional single-shot spin-echo EPI are difficult to be restored due to serious field variations.

  16. Multishot versus single-shot pulse sequences in very high field fMRI: a comparison using retinotopic mapping.

    Directory of Open Access Journals (Sweden)

    Jascha D Swisher

    Full Text Available High-resolution functional MRI is a leading application for very high field (7 Tesla human MR imaging. Though higher field strengths promise improvements in signal-to-noise ratios (SNR and BOLD contrast relative to fMRI at 3 Tesla, these benefits may be partially offset by accompanying increases in geometric distortion and other off-resonance effects. Such effects may be especially pronounced with the single-shot EPI pulse sequences typically used for fMRI at standard field strengths. As an alternative, one might consider multishot pulse sequences, which may lead to somewhat lower temporal SNR than standard EPI, but which are also often substantially less susceptible to off-resonance effects. Here we consider retinotopic mapping of human visual cortex as a practical test case by which to compare examples of these sequence types for high-resolution fMRI at 7 Tesla. We performed polar angle retinotopic mapping at each of 3 isotropic resolutions (2.0, 1.7, and 1.1 mm using both accelerated single-shot 2D EPI and accelerated multishot 3D gradient-echo pulse sequences. We found that single-shot EPI indeed led to greater temporal SNR and contrast-to-noise ratios (CNR than the multishot sequences. However, additional distortion correction in postprocessing was required in order to fully realize these advantages, particularly at higher resolutions. The retinotopic maps produced by both sequence types were qualitatively comparable, and showed equivalent test/retest reliability. Thus, when surface-based analyses are planned, or in other circumstances where geometric distortion is of particular concern, multishot pulse sequences could provide a viable alternative to single-shot EPI.

  17. Single-shot readout of a superconducting flux qubit with a flux-driven Josephson parametric amplifier

    Science.gov (United States)

    Lin, Z. R.; Inomata, K.; Oliver, W. D.; Koshino, K.; Nakamura, Y.; Tsai, J. S.; Yamamoto, T.

    2013-09-01

    We report single-shot readout of a superconducting flux qubit by using a flux-driven Josephson parametric amplifier (JPA). After optimizing the readout power, gain of the JPA, and timing of the data acquisition, we observe the Rabi oscillations with a contrast of 74%, which is mainly limited by the bandwidth of the JPA and the energy relaxation of the qubit. The observation of quantum jumps between the qubit eigenstates under continuous monitoring indicates the nondestructiveness of the readout scheme.

  18. Clinical evaluation of single-shot and readout-segmented diffusion-weighted imaging in stroke patients at 3 T

    International Nuclear Information System (INIS)

    Morelli, John; Porter, David; Ai, Fei

    2013-01-01

    Background: Diffusion-weighted imaging (DWI) magnetic resonance imaging (MRI) is most commonly performed utilizing a single-shot echo-planar imaging technique (ss-EPI). Susceptibility artifact and image blur are severe when this sequence is utilized at 3 T. Purpose: To evaluate a readout-segmented approach to DWI MR in comparison with single-shot echo planar imaging for brain MRI. Material and Methods: Eleven healthy volunteers and 14 patients with acute and early subacute infarctions underwent DWI MR examinations at 1.5 and 3T with ss-EPI and readout-segmented echo-planar (rs-EPI) DWI at equal nominal spatial resolutions. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) calculations were made, and two blinded readers ranked the scans in terms of high signal intensity bulk susceptibility artifact, spatial distortions, image blur, overall preference, and motion artifact. Results: SNR and CNR were greatest with rs-EPI (8.1 ± 0.2 SNR vs. 6.0 ± 0.2; P -4 at 3T). Spatial distortions were greater with single-shot (0.23 ± 0.03 at 3T; P <0.001) than with rs-EPI (0.12 ± 0.02 at 3T). Combined with blur and artifact reduction, this resulted in a qualitative preference for the readout-segmented scans overall. Conclusion: Substantial image quality improvements are possible with readout-segmented vs. single-shot EPI - the current clinical standard for DWI - regardless of field strength (1.5 or 3 T). This results in improved image quality secondary to greater real spatial resolution and reduced artifacts from susceptibility in MR imaging of the brain

  19. Broad-band time-resolved near infrared spectroscopy in the TJ-II stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, M.C.; Pastor, I.; Cal, E. de la; McCarthy, K.J. [Laboratorio Nacional de Fusion, CIEMAT, Madrid (Spain); Diaz, D. [Universidad Autonoma de Madrid, Dept Quimica Fisica Aplicada, Madrid (Spain)

    2014-11-15

    First experimental results on broad-band, time-resolved Near Infrared (NIR;here loosely defined as covering from 750 to 1650 nm) passive spectroscopy using a high sensitivity InGaAs detector are reported for the TJ-II Stellarator. Experimental set-up is described together with its main characteristics, the most remarkable ones being its enhanced NIR response, broadband spectrum acquisition in a single shot, and time-resolved measurements with up to 1.8 kHz spectral rate. Prospects for future work and more extended physics studies in this newly open spectral region in TJ-II are discussed. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Single-shot echo-planar MR sequences in the diagnosis of intracranial infectious diseases

    International Nuclear Information System (INIS)

    Tsuchiya, Kazuhiro; Katase, Shichiro; Yoshino, Ayako; Yamakami, Norio; Hachiya, Junichi

    1998-01-01

    The purpose of this study was to present our preliminary experience in the application of echo-planar-imaging (EPI) MR sequences for the diagnosis of intracranial infectious diseases and to assess the value of these sequences. We reviewed single-shot EPI MR images obtained at 1.5 T in 17 patients and compared these images with conventional or fast spin-echo (SE) or fluid attenuated inversion-recovery (FLAIR) images. The clinical diagnoses for the 17 patients were meningitis (2 patients), encephalitis or meningoencephalitis (7 patients), brain abscess (5 patients), epidural empyema (2 patients) and Creutzfeldt-Jakob disease (1 patient). We obtained EPI-T 2 -weighted (T 2 W) images in 8 patients, EPI-FLAIR images in 13 patients and EPI-diffusion-weighted (DW) images in 14 patients. Among the 8 patients for whom EPI-T 2 W imaging was performed, EPI-T 2 W imaging yielded superior results compared with SE-T 2 W imaging in 3 patients as a consequence of patient motion and equal results compared with SE-T 2 W imaging in 5 patients. Among the 13 patients for whom EPI-FLAIR imaging was performed, the EPI-FLAIR images were superior to conventional FLAIR images in 3 unstable patients. In the remaining 10 patients for whom EPI-FLAIR imaging was performed, EPI-FLAIR images were equivalent or inferior to conventional FLAIR images. In 6 patients with encephalitis or meningoencephalitis, the encephalitic lesions showed hyperintensity in EPI-DW images to a greater extent than in images obtained with the other techniques. In 3 patients, EPI-DW images also demonstrated hyperintensity for the contents of abscesses or areas of empyema that was not seen with the other imaging techniques. The value of EPI-T 2 W and EPI-FLAIR imaging is limited in uncooperative patients. EPI-DW imaging was found to be of value for the evaluation of several intracranial infectious diseases. (author)

  1. Single-shot echo-planar MR sequences in the diagnosis of intracranial infectious diseases

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Kazuhiro; Katase, Shichiro; Yoshino, Ayako; Yamakami, Norio; Hachiya, Junichi [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1998-06-01

    The purpose of this study was to present our preliminary experience in the application of echo-planar-imaging (EPI) MR sequences for the diagnosis of intracranial infectious diseases and to assess the value of these sequences. We reviewed single-shot EPI MR images obtained at 1.5 T in 17 patients and compared these images with conventional or fast spin-echo (SE) or fluid attenuated inversion-recovery (FLAIR) images. The clinical diagnoses for the 17 patients were meningitis (2 patients), encephalitis or meningoencephalitis (7 patients), brain abscess (5 patients), epidural empyema (2 patients) and Creutzfeldt-Jakob disease (1 patient). We obtained EPI-T{sub 2}-weighted (T{sub 2}W) images in 8 patients, EPI-FLAIR images in 13 patients and EPI-diffusion-weighted (DW) images in 14 patients. Among the 8 patients for whom EPI-T{sub 2}W imaging was performed, EPI-T{sub 2}W imaging yielded superior results compared with SE-T{sub 2}W imaging in 3 patients as a consequence of patient motion and equal results compared with SE-T{sub 2}W imaging in 5 patients. Among the 13 patients for whom EPI-FLAIR imaging was performed, the EPI-FLAIR images were superior to conventional FLAIR images in 3 unstable patients. In the remaining 10 patients for whom EPI-FLAIR imaging was performed, EPI-FLAIR images were equivalent or inferior to conventional FLAIR images. In 6 patients with encephalitis or meningoencephalitis, the encephalitic lesions showed hyperintensity in EPI-DW images to a greater extent than in images obtained with the other techniques. In 3 patients, EPI-DW images also demonstrated hyperintensity for the contents of abscesses or areas of empyema that was not seen with the other imaging techniques. The value of EPI-T{sub 2}W and EPI-FLAIR imaging is limited in uncooperative patients. EPI-DW imaging was found to be of value for the evaluation of several intracranial infectious diseases. (author)

  2. Pharmaceutical and immunological evaluation of a single-shot hepatitis B vaccine formulated with PLGA microspheres.

    Science.gov (United States)

    Shi, Li; Caulfield, Michael J; Chern, Rey T; Wilson, Roger A; Sanyal, Gautam; Volkin, David B

    2002-04-01

    A single-shot Hepatitis B vaccine formulation using poly(d,l)-lactide-co-glycolide acid (PLGA) microspheres as a delivery system was examined using a variety of biophysical and biochemical techniques as well as immunological evaluation in C3H mice. PLGA microsphere encapsulation of the Hepatitis B surface antigen (HBsAg), a lipoprotein particle, resulted in good recoveries of protein mass, protein particle conformational integrity, and in vitro antigenicity. Some partial delipidation of the HBsAg, however, was observed. The loading and encapsulation efficiency of HBsAg into the PLGA microspheres were measured along with the morphology and size distribution of the vaccine-loaded PLGA microspheres. The in vitro release kinetics of HBsAg from the PLGA microspheres was evaluated and found to be affected by experimental conditions such as stirring rate. HBsAg showed enhanced storage stability at 37 degrees C in the slightly acidic pH range reported to be found inside PLGA microspheres; thus, the antigen is relatively stable under conditions of temperature and pH that may mimic in vivo conditions. The immunogenicity of the microsphere formulations of HBsAg was compared with conventional aluminum adjuvant formulated HBsAg vaccine in C3H mice. Comparisons were made between aluminum formulations (one and two injections), PLGA microsphere formulations (single injection), and a mixture of aluminum and PLGA microsphere formulations (single injection). The nine-month serum antibody titers indicate that a single injection of a mixture of aluminum and PLGA-formulated HBsAg results in equal or better immune responses than two injections of aluminum-formulated HBsAg vaccine. Based on these in vitro and in vivo studies, it is concluded that HBsAg can be successfully encapsulated and recovered from the PLGA microspheres and a mixture of aluminum-adjuvanted and PLGA-formulated HBsAg can auto-boost an immune response in manner comparable to multiple injections of an aluminum

  3. Climatic impact of spectrally resolved irradiances during the late Archean as modeled with EMAC-FUB

    Science.gov (United States)

    Kunze, M.; Langematz, U.; Godolt, M.; Hamann-Reinus, A.; Rauer, H.; Joeckel, P.

    2011-12-01

    During the Archean eon the surface temperatures of the Earth are assumed to have been high enough to support liquid water, despite a lower luminosity of the young Sun. This fact, known as the faint young Sun paradox, can be explained by assuming higher concentrations of greenhouse gases during the early stages of the Earth. But there is still an ongoing debate about the possible range of greenhouse gas concentrations that are consistent with the geologic evidence. We present a study in which we investigate this problem using the Chemistry Climate model EMAC (ECHAM/MESSy Atmospheric Chemistry) in a resolution of T42/L39 with the high-resolution shortwave radiation scheme FUBRad (EMAC-FUB). We are using a constructed, spectrally resolved irradiance dataset valid for the Archean Sun, and analyze the climatic impact of the reduced solar luminosity, an anoxic environment, an increased CO2 concentration, and the different land mass. In total six simulations have been performed, where two simulations only differ by the O2 and O3 content and otherwise have present day conditions. Four simulations use a global ocean, as the distribution and fraction of the continents are highly uncertain during the Archean, and anoxic conditions. Three simulations use a reduced solar luminosity, where two CO2 scenarios are tested (3 ± PAL and 10 ± PAL). As proxy for the early Sun during the late Archean at 2.5 Ga (109 years ago) we take the dwarf star β Com. The spectrally resolved irradiances are compiled from measurements and modeled data, and scaled to a total solar irradiance (TSI) of 82 % the present TSI (i.e. 1121 W m-2). We show that in an anoxic environment with reduced solar luminosity at 2.5 Ga, a global ocean, and present day greenhouse gases, it is still possible to have liquid water in tropical latitudes, even though the global, annual mean surface temperature is below the freezing point of water. When the CO2 concentration is increased, the region of open water widens. The

  4. Spectrally resolved detection of sodium in the atmosphere of HD 189733b with the HARPS spectrograph

    Science.gov (United States)

    Wyttenbach, A.; Ehrenreich, D.; Lovis, C.; Udry, S.; Pepe, F.

    2015-05-01

    Context. Atmospheric properties of exoplanets can be constrained with transit spectroscopy. At low spectral resolution, this technique is limited by the presence of clouds. The signature of atomic sodium (Na i), known to be present above the clouds, is a powerful probe of the upper atmosphere, where it can be best detected and characterized at high spectral resolution. Aims: Our goal is to obtain a high-resolution transit spectrum of HD 189733b in the region around the resonance doublet of Na i at 589 nm, to characterize the absorption signature that was previously detected from space at low resolution. Methods: We analyzed archival transit data of HD 189733b obtained with the HARPS spectrograph (ℛ = 115 000) at the ESO 3.6-m telescope. We performed differential spectroscopy to retrieve the transit spectrum and light curve of the planet, implementing corrections for telluric contamination and planetary orbital motion. We compared our results to synthetic transit spectra calculated from isothermal models of the planetary atmosphere. Results: We spectrally resolve the Na i D doublet and measure line contrasts of 0.64 ± 0.07% (D2) and 0.40 ± 0.07% (D1) and FWHMs of 0.52 ± 0.08 Å. This corresponds to a detection at the 10σ level of excess of absorption of 0.32 ± 0.03% in a passband of 2 × 0.75 Å centered on each line. We derive temperatures of 2600 ± 600 K and 3270 ± 330 K at altitudes of 9800 ± 2800 and 12 700 ± 2600 km in the Na i D1 and D2 line cores, respectively. We measure a temperature gradient of ~0.2 K km-1 in the region where the sodium absorption dominates the haze absorption from a comparison with theoretical models. We also detect a blueshift of 0.16 ± 0.04 Å (4σ) in the line positions. This blueshift may be the result of winds blowing at 8 ± 2 km s-1 in the upper layers of the atmosphere. Conclusions: We demonstrate the relevance of studying exoplanet atmospheres with high-resolution spectrographs mounted on 4-m-class telescopes. Our

  5. Quantitative material decomposition using spectral computed tomography with an energy-resolved photon-counting detector

    International Nuclear Information System (INIS)

    Lee, Seungwan; Choi, Yu-Na; Kim, Hee-Joung

    2014-01-01

    Dual-energy computed tomography (CT) techniques have been used to decompose materials and characterize tissues according to their physical and chemical compositions. However, these techniques are hampered by the limitations of conventional x-ray detectors operated in charge integrating mode. Energy-resolved photon-counting detectors provide spectral information from polychromatic x-rays using multiple energy thresholds. These detectors allow simultaneous acquisition of data in different energy ranges without spectral overlap, resulting in more efficient material decomposition and quantification for dual-energy CT. In this study, a pre-reconstruction dual-energy CT technique based on volume conservation was proposed for three-material decomposition. The technique was combined with iterative reconstruction algorithms by using a ray-driven projector in order to improve the quality of decomposition images and reduce radiation dose. A spectral CT system equipped with a CZT-based photon-counting detector was used to implement the proposed dual-energy CT technique. We obtained dual-energy images of calibration and three-material phantoms consisting of low atomic number materials from the optimal energy bins determined by Monte Carlo simulations. The material decomposition process was accomplished by both the proposed and post-reconstruction dual-energy CT techniques. Linear regression and normalized root-mean-square error (NRMSE) analyses were performed to evaluate the quantitative accuracy of decomposition images. The calibration accuracy of the proposed dual-energy CT technique was higher than that of the post-reconstruction dual-energy CT technique, with fitted slopes of 0.97–1.01 and NRMSEs of 0.20–4.50% for all basis materials. In the three-material phantom study, the proposed dual-energy CT technique decreased the NRMSEs of measured volume fractions by factors of 0.17–0.28 compared to the post-reconstruction dual-energy CT technique. It was concluded that the

  6. Wide-field spectrally resolved quantitative fluorescence imaging system: toward neurosurgical guidance in glioma resection

    Science.gov (United States)

    Xie, Yijing; Thom, Maria; Ebner, Michael; Wykes, Victoria; Desjardins, Adrien; Miserocchi, Anna; Ourselin, Sebastien; McEvoy, Andrew W.; Vercauteren, Tom

    2017-11-01

    In high-grade glioma surgery, tumor resection is often guided by intraoperative fluorescence imaging. 5-aminolevulinic acid-induced protoporphyrin IX (PpIX) provides fluorescent contrast between normal brain tissue and glioma tissue, thus achieving improved tumor delineation and prolonged patient survival compared with conventional white-light-guided resection. However, commercially available fluorescence imaging systems rely solely on visual assessment of fluorescence patterns by the surgeon, which makes the resection more subjective than necessary. We developed a wide-field spectrally resolved fluorescence imaging system utilizing a Generation II scientific CMOS camera and an improved computational model for the precise reconstruction of the PpIX concentration map. In our model, the tissue's optical properties and illumination geometry, which distort the fluorescent emission spectra, are considered. We demonstrate that the CMOS-based system can detect low PpIX concentration at short camera exposure times, while providing high-pixel resolution wide-field images. We show that total variation regularization improves the contrast-to-noise ratio of the reconstructed quantitative concentration map by approximately twofold. Quantitative comparison between the estimated PpIX concentration and tumor histopathology was also investigated to further evaluate the system.

  7. Development of Compton X-ray spectrometer for high energy resolution single-shot high-flux hard X-ray spectroscopy.

    Science.gov (United States)

    Kojima, Sadaoki; Ikenouchi, Takahito; Arikawa, Yasunobu; Sakata, Shohei; Zhang, Zhe; Abe, Yuki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Ozaki, Tetsuo; Miyamoto, Shuji; Yamaguchi, Masashi; Takemoto, Akinori; Fujioka, Shinsuke; Azechi, Hiroshi

    2016-04-01

    Hard X-ray spectroscopy is an essential diagnostics used to understand physical processes that take place in high energy density plasmas produced by intense laser-plasma interactions. A bundle of hard X-ray detectors, of which the responses have different energy thresholds, is used as a conventional single-shot spectrometer for high-flux (>10(13) photons/shot) hard X-rays. However, high energy resolution (Δhv/hv spectrometer because its energy resolution is limited by energy differences between the response thresholds. Experimental demonstration of a Compton X-ray spectrometer has already been performed for obtaining higher energy resolution than that of DET spectrometers. In this paper, we describe design details of the Compton X-ray spectrometer, especially dependence of energy resolution and absolute response on photon-electron converter design and its background reduction scheme, and also its application to the laser-plasma interaction experiment. The developed spectrometer was used for spectroscopy of bremsstrahlung X-rays generated by intense laser-plasma interactions using a 200 μm thickness SiO2 converter. The X-ray spectrum obtained with the Compton X-ray spectrometer is consistent with that obtained with a DET X-ray spectrometer, furthermore higher certainly of a spectral intensity is obtained with the Compton X-ray spectrometer than that with the DET X-ray spectrometer in the photon energy range above 5 MeV.

  8. Supplemental single shot femoral nerve block for total hip arthroplasty: impact on early postoperative care, pain management and lung function.

    Science.gov (United States)

    Wiesmann, T; Steinfeldt, T; Wagner, G; Wulf, H; Schmitt, J; Zoremba, M

    2014-01-01

    Peripheral regional anesthesia is beneficial in the management of postoperative pain in hip surgery, and can also reduce post-operative care unit (PACU) stay. Its opioid-sparing actions may also be beneficial for respiratory mechanics and pulmonary function. The aim of our pilot study was to evaluate the effect of a supplemental single shot femoral block for elective total hip arthroplasty on early respiratory function and postoperative management within the first 24 postoperative hours. We prospectively studied 80 patients undergoing total hip arthroplasty. Written informed consent was obtained after ethics committee approval. Forty patients were randomLy assigned to receive single shot femoral nerve block (FNB) using 15mL bupivacaine 0.25% and 20 mg clonidine while the remainder received standard treatment without nerve block (STN). Premedication and general anesthesia were standardized. Pulse oximetry saturation and spirometric lung function were measured preoperatively (baseline) and at 0.5 h, 2 h, 6 h and 24 h, after extubation breathing room air. PACU surveillance and postoperative pain therapy was standardized. Oxygen saturation and spirometry results were significantly better within the FNB group during the first six postoperative hours. Although VAS scores during the PACU stay did not significantly differ between the study groups, PACU discharge criteria were met earlier in the FNB group (116±40 min [mean±SD] vs. 152±47 min in the STN group). The FNB group exhibited significantly lower VAS scores at 6 and 24 hours. Supplemental single shot femoral nerve block for total hip arthroplasty resulted in earlier PACU discharge capability, improved lung function during the first six hours and better pain control within the first 24 postoperative hours.

  9. X-Ray Emission Spectrometer Design with Single-Shot Pump-Probe and Resonant Excitation Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Spoth, Katherine; /SUNY, Buffalo /SLAC

    2012-08-28

    Core-level spectroscopy in the soft X-ray regime is a powerful tool for the study of chemical bonding processes. The ultrafast, ultrabright X-ray pulses generated by the Linac Coherent Light Source (LCLS) allow these reactions to be studied in greater detail than ever before. In this study, we investigated a conceptual design of a spectrometer for the LCLS with imaging in the non-dispersive direction. This would allow single-shot collection of X-ray emission spectroscopy (XES) measurements with varying laser pump X-ray probe delay or a variation of incoming X-ray energy over the illuminated area of the sample. Ray-tracing simulations were used to demonstrate how the components of the spectrometer affect its performance, allowing a determination of the optimal final design. These simulations showed that the spectrometer's non-dispersive focusing is extremely sensitive to the size of the sample footprint; the spectrometer is not able to image a footprint width larger than one millimeter with the required resolution. This is compatible with a single shot scheme that maps out the laser pump X-ray probe delay in the non-dispersive direction as well as resonant XES applications at normal incidence. However, the current capabilities of the Soft X-Ray (SXR) beamline at the LCLS do not produce the required energy range in a small enough sample footprint, hindering the single shot resonant XES application at SXR for chemical dynamics studies at surfaces. If an upgraded or future beamline at LCLS is developed with lower monochromator energy dispersion the width can be made small enough at the required energy range to be imaged by this spectrometer design.

  10. Spectrally resolved efficiencies of carbon monoxide (CO photoproduction in the western Canadian Arctic: particles versus solutes

    Directory of Open Access Journals (Sweden)

    G. Song

    2013-06-01

    Full Text Available Spectrally resolved efficiency (i.e. apparent quantum yield, AQY of carbon monoxide (CO photoproduction is a useful indicator of substrate photoreactivity and a crucial parameter for modeling CO photoproduction rates in the water column. Recent evidence has suggested that CO photoproduction from particles in marine waters is significant compared to the well-known CO production from chromophoric dissolved organic matter (CDOM photodegradation. Although CDOM-based CO AQY spectra have been extensively determined, little is known of this information on the particulate phase. Using water samples collected from the Mackenzie estuary, shelf, and Canada Basin in the southeastern Beaufort Sea, the present study for the first time quantified the AQY spectra of particle-based CO photoproduction and compared them with the concomitantly determined CDOM-based CO AQY spectra. CO AQYs of both particles and CDOM decreased with wavelength but the spectral shape of the particulate AQY was flatter in the visible regime. This feature resulted in a disproportionally higher visible light-driven CO production by particles, thereby increasing the ratio of particle- to CDOM-based CO photoproduction with depth in the euphotic zone. In terms of depth-integrated production in the euphotic zone, CO formation from CDOM was dominated by the ultraviolet (UV, 290–400 nm radiation whereas UV and visible light played roughly equal roles in CO production from particles. Spatially, CO AQY of bulk particulate matter (i.e. the sum of organics and inorganics augmented from the estuary and shelf to the basin while CO AQY of CDOM trended inversely. Water from the deep chlorophyll maximum layer revealed higher CO AQYs than did surface water for both particles and CDOM. CO AQY of bulk particulate matter exceeded that of CDOM on the shelf and in the basin, but the sequence reversed in the estuary. Without consideration of the potential role of metal oxides (e.g. iron oxides in particle

  11. Femtosecond Single-Shot Imaging of Nanoscale Ferromagnetic Order in Co/Pd Multilayers using Resonant X-ray Holography

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tianhan; Zhu, Diling; Benny Wu,; Graves, Catherine; Schaffert, Stefan; Rander, Torbjorn; Muller, leonard; Vodungbo, Boris; Baumier, Cedric; Bernstein, David P.; Brauer, Bjorn; Cros, Vincent; Jong, Sanne de; Delaunay, Renaud; Fognini, Andreas; Kukreja, Roopali; Lee, Sooheyong; Lopez-Flores, Victor; Mohanty, Jyoti; Pfau, Bastian; Popescu, 5 Horia

    2012-05-15

    We present the first single-shot images of ferromagnetic, nanoscale spin order taken with femtosecond x-ray pulses. X-ray-induced electron and spin dynamics can be outrun with pulses shorter than 80 fs in the investigated fluence regime, and no permanent aftereffects in the samples are observed below a fluence of 25 mJ/cm{sup 2}. Employing resonant spatially-muliplexed x-ray holography results in a low imaging threshold of 5 mJ/cm{sup 2}. Our results open new ways to combine ultrafast laser spectroscopy with sequential snapshot imaging on a single sample, generating a movie of excited state dynamics.

  12. Observation of Quantum Jumps of a Single Quantum Dot Spin Using Submicrosecond Single-Shot Optical Readout

    Science.gov (United States)

    Delteil, Aymeric; Gao, Wei-bo; Fallahi, Parisa; Miguel-Sanchez, Javier; Imamoǧlu, Atac

    2014-03-01

    Single-shot readout of individual qubits is typically the slowest process among the elementary single- and two-qubit operations required for quantum information processing. Here, we use resonance fluorescence from a single-electron charged quantum dot to read out the spin-qubit state in 800 nanoseconds with a fidelity exceeding 80%. Observation of the spin evolution on longer time scales reveals quantum jumps of the spin state: we use the experimentally determined waiting-time distribution to characterize the quantum jumps.

  13. Single shot fringe pattern phase demodulation using Hilbert-Huang transform aided by the principal component analysis.

    Science.gov (United States)

    Trusiak, Maciej; Służewski, Łukasz; Patorski, Krzysztof

    2016-02-22

    Hybrid single shot algorithm for accurate phase demodulation of complex fringe patterns is proposed. It employs empirical mode decomposition based adaptive fringe pattern enhancement (i.e., denoising, background removal and amplitude normalization) and subsequent boosted phase demodulation using 2D Hilbert spiral transform aided by the Principal Component Analysis method for novel, correct and accurate local fringe direction map calculation. Robustness to fringe pattern significant noise, uneven background and amplitude modulation as well as local fringe period and shape variations is corroborated by numerical simulations and experiments. Proposed automatic, adaptive, fast and comprehensive fringe analysis solution compares favorably with other previously reported techniques.

  14. Simultaneous single-shot readout of multi-qubit circuits using a traveling-wave parametric amplifier

    Science.gov (United States)

    O'Brien, Kevin

    Observing and controlling the state of ever larger quantum systems is critical for advancing quantum computation. Utilizing a Josephson traveling wave parametric amplifier (JTWPA), we demonstrate simultaneous multiplexed single shot readout of 10 transmon qubits in a planar architecture. We employ digital image sideband rejection to eliminate noise at the image frequencies. We quantify crosstalk and infidelity due to simultaneous readout and control of multiple qubits. Based on current amplifier technology, this approach can scale to simultaneous readout of at least 20 qubits. This work was supported by the Army Research Office.

  15. Real time quantitative phase microscopy based on single-shot transport of intensity equation (ssTIE) method

    Science.gov (United States)

    Yu, Wei; Tian, Xiaolin; He, Xiaoliang; Song, Xiaojun; Xue, Liang; Liu, Cheng; Wang, Shouyu

    2016-08-01

    Microscopy based on transport of intensity equation provides quantitative phase distributions which opens another perspective for cellular observations. However, it requires multi-focal image capturing while mechanical and electrical scanning limits its real time capacity in sample detections. Here, in order to break through this restriction, real time quantitative phase microscopy based on single-shot transport of the intensity equation method is proposed. A programmed phase mask is designed to realize simultaneous multi-focal image recording without any scanning; thus, phase distributions can be quantitatively retrieved in real time. It is believed the proposed method can be potentially applied in various biological and medical applications, especially for live cell imaging.

  16. Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs

    Science.gov (United States)

    Hsieh, Yi-Da; Iyonaga, Yuki; Sakaguchi, Yoshiyuki; Yokoyama, Shuko; Inaba, Hajime; Minoshima, Kaoru; Hindle, Francis; Araki, Tsutomu; Yasui, Takeshi

    2014-01-01

    Optical frequency combs are innovative tools for broadband spectroscopy because a series of comb modes can serve as frequency markers that are traceable to a microwave frequency standard. However, a mode distribution that is too discrete limits the spectral sampling interval to the mode frequency spacing even though individual mode linewidth is sufficiently narrow. Here, using a combination of a spectral interleaving and dual-comb spectroscopy in the terahertz (THz) region, we achieved a spectral sampling interval equal to the mode linewidth rather than the mode spacing. The spectrally interleaved THz comb was realized by sweeping the laser repetition frequency and interleaving additional frequency marks. In low-pressure gas spectroscopy, we achieved an improved spectral sampling density of 2.5 MHz and enhanced spectral accuracy of 8.39 × 10-7 in the THz region. The proposed method is a powerful tool for simultaneously achieving high resolution, high accuracy, and broad spectral coverage in THz spectroscopy.

  17. Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs.

    Science.gov (United States)

    Hsieh, Yi-Da; Iyonaga, Yuki; Sakaguchi, Yoshiyuki; Yokoyama, Shuko; Inaba, Hajime; Minoshima, Kaoru; Hindle, Francis; Araki, Tsutomu; Yasui, Takeshi

    2014-01-22

    Optical frequency combs are innovative tools for broadband spectroscopy because a series of comb modes can serve as frequency markers that are traceable to a microwave frequency standard. However, a mode distribution that is too discrete limits the spectral sampling interval to the mode frequency spacing even though individual mode linewidth is sufficiently narrow. Here, using a combination of a spectral interleaving and dual-comb spectroscopy in the terahertz (THz) region, we achieved a spectral sampling interval equal to the mode linewidth rather than the mode spacing. The spectrally interleaved THz comb was realized by sweeping the laser repetition frequency and interleaving additional frequency marks. In low-pressure gas spectroscopy, we achieved an improved spectral sampling density of 2.5 MHz and enhanced spectral accuracy of 8.39 × 10(-7) in the THz region. The proposed method is a powerful tool for simultaneously achieving high resolution, high accuracy, and broad spectral coverage in THz spectroscopy.

  18. High-resolution spectrally-resolved fiber optic sensor interrogation system based on a standard DWDM laser module.

    Science.gov (United States)

    Njegovec, Matej; Donlagic, Denis

    2010-11-08

    This paper presents a spectrally-resolved integration system suitable for the reading of Bragg grating, all-fiber Fabry-Perot, and similar spectrally-resolved fiber-optic sensors. This system is based on a standard telecommunication dense wavelength division multiplexing transmission module that contains a distributed feedback laser diode and a wavelength locker. Besides the transmission module, only a few additional opto-electronic components were needed to build an experimental interrogation system that demonstrated over a 2 nm wide wavelength interrogation range, and a 1 pm wavelength resolution. When the system was combined with a typical Bragg grating sensor, a strain resolution of 1 με and temperature resolution of 0.1 °C were demonstrated experimentally. The proposed interrogation system relies entirely on Telecordia standard compliant photonic components and can thus be straightforwardly qualified for use within the range of demanding applications.

  19. Development and Characterization of Two-Dimensional Gratings for Single-Shot X-ray Phase-Contrast Imaging

    Directory of Open Access Journals (Sweden)

    Margarita Zakharova

    2018-03-01

    Full Text Available Single-shot grating-based phase-contrast imaging techniques offer additional contrast modalities based on the refraction and scattering of X-rays in a robust and versatile configuration. The utilization of a single optical element is possible in such methods, allowing the shortening of the acquisition time and increasing flux efficiency. One of the ways to upgrade single-shot imaging techniques is to utilize customized optical components, such as two-dimensional (2D X-ray gratings. In this contribution, we present the achievements in the development of 2D gratings with UV lithography and gold electroplating. Absorption gratings represented by periodic free-standing gold pillars with lateral structure sizes from 5 µm to 25 µm and heights from 5 µm to 28 µm have shown a high degree of periodicity and defect-free patterns. Grating performance was tested in a radiographic setup using a self-developed quality assessment algorithm based on the intensity distribution histograms. The algorithm allows the final user to estimate the suitability of a specific grating to be used in a particular setup.

  20. Generating multiple contrasts using single-shot radial T1 sensitive and insensitive steady-state imaging.

    Science.gov (United States)

    Benkert, Thomas; Bartsch, Andreas J; Blaimer, Martin; Jakob, Peter M; Breuer, Felix A

    2015-06-01

    Recently, the (Resolution Enhanced-) T1 insensitive steady-state imaging (TOSSI) approach has been proposed for the fast acquisition of T2 -weighted images. This has been achieved by balanced steady-state free precession (bSSFP) imaging between unequally spaced inversion pulses. The purpose of this work is to present an extension of this technique, considerably increasing both the efficiency and possibilities of TOSSI. A radial trajectory in combination with an appropriate view-sharing reconstruction is used. Because each projection traverses the contrast defining k-space center, several different contrasts can be extracted from a single-shot measurement. These contrasts include various T2 -weightings and T2 /T1 -weighting if an even number of inversion pulses is used, while an odd number allow the generation of several images with predefined tissue types cancelled. The approach is validated for brain and abdominal imaging at 3.0 Tesla. Results are compared with RE-TOSSI, bSSFP, and turbo spin-echo images and are shown to provide similar contrasts in a fraction of scan time. Furthermore, the potential utility of the approach is illustrated by images obtained from a brain tumor patient. Radial T1 sensitive and insensitive steady-state imaging is able to generate multiple contrasts out of one single-shot measurement in a short scan time. © 2014 Wiley Periodicals, Inc.

  1. New Instruments for Spectrally-Resolved Solar Soft X-ray Observations from CubeSats, and Larger Missions

    Science.gov (United States)

    Caspi, A.; Shih, A.; Warren, H. P.; DeForest, C. E.; Woods, T. N.

    2015-12-01

    Solar soft X-ray (SXR) observations provide important diagnostics of plasma heating, during solar flares and quiescent times. Spectrally- and temporally-resolved measurements are crucial for understanding the dynamics and evolution of these energetic processes; spatially-resolved measurements are critical for understanding energy transport. A better understanding of the thermal plasma informs our interpretation of hard X-ray (HXR) observations of nonthermal particles, improving our understanding of the relationships between particle acceleration, plasma heating, and the underlying release of magnetic energy during reconnection. We introduce a new proposed mission, the CubeSat Imaging X-ray Solar Spectrometer (CubIXSS), to measure spectrally- and spatially-resolved SXRs from the quiescent and flaring Sun from a 6U CubeSat platform in low-Earth orbit during a nominal 1-year mission. CubIXSS includes the Amptek X123-SDD silicon drift detector, a low-noise, commercial off-the-shelf (COTS) instrument enabling solar SXR spectroscopy from ~0.5 to ~30 keV with ~0.15 keV FWHM spectral resolution with low power, mass, and volume requirements. An X123-CdTe cadmium-telluride detector is also included for ~5-100 keV HXR spectroscopy with ~0.5-1 keV FWHM resolution. CubIXSS also includes a novel spectro-spatial imager -- the first ever solar imager on a CubeSat -- utilizing a pinhole aperture and X-ray transmission diffraction grating to provide full-Sun imaging from ~0.1 to ~10 keV, with ~25 arcsec and ~0.1 Å FWHM spatial and spectral resolutions, respectively. We discuss scaled versions of these instruments, with greater sensitivity and dynamic range, and significantly improved spectral and spatial resolutions for the imager, for deployment on larger platforms such as Small Explorer missions.

  2. FLASH free-electron laser single-shot temporal diagnostic: terahertz-field-driven streaking.

    Science.gov (United States)

    Ivanov, Rosen; Liu, Jia; Brenner, Günter; Brachmanski, Maciej; Düsterer, Stefan

    2018-01-01

    The commissioning of a terahertz-field-driven streak camera installed at the free-electron laser (FEL) FLASH at DESY in Hamburg, being able to deliver photon pulse duration as well as arrival time information with ∼10 fs resolution for each single XUV FEL pulse, is reported. Pulse durations between 300 fs and terahertz-streaking setup was operated simultaneously to an alternative method to determine the FEL pulse duration based on spectral analysis. FLASH pulse duration derived from simple spectral analysis is in good agreement with that from terahertz-streaking measurement.

  3. Spectrally resolved measurements of the terahertz beam profile generated from a two-color air plasma

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Zalkovskij, Maksim; Strikwerda, Andrew

    2014-01-01

    Using a THz camera and THz bandpass filters, we measure the frequency - resolved beam profile emitted from a two - color air plasma. We observe a frequency - independent emission angle from the plasma .......Using a THz camera and THz bandpass filters, we measure the frequency - resolved beam profile emitted from a two - color air plasma. We observe a frequency - independent emission angle from the plasma ....

  4. Spectrally resolved multiphoton imaging of in vivo and excised mouse skin tissues

    NARCIS (Netherlands)

    Palero, Jonathan A.; de Bruijn, Henriëtte S.; van der Ploeg van den Heuvel, Angélique; Sterenborg, Henricus J. C. M.; Gerritsen, Hans C.

    2007-01-01

    The deep tissue penetration and submicron spatial resolution of multiphoton microscopy and the high detection efficiency and nanometer spectral resolution of a spectrograph were utilized to record spectral images of the intrinsic emission of mouse skin tissues. Autofluorescence from both cellular

  5. Spectrally resolved eclipse maps of the accretion disk in UX Ursae Majoris

    Science.gov (United States)

    Rutten, Rene G. M.; Dhillon, V. S.; Horne, Keith; Kuulkers, E.; Van Paradijs, J.

    1993-01-01

    An effort is made to observationally constrain accretion disks on the basis of light curves from the eclipsing cataclysmic variable UX Ursae Majoris, reconstructing the spectral energy distribution across the face of an accretion disk. The spectral resolution obtained suffices to reveal not only the radial dependence of absorption and emission line features within the disk, but also the spectral details of the bright spot that is formed where the accretion stream from the secondary star collides with the disk. The importance of such constraints for theoretical models is noted.

  6. High Resolving Power Volume Diffractive Gratings for 400-2700 nm Spectral Range, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The main purpose of this NASA SBIR Phase II proposal is development of a novel type of high resolving power diffraction gratings based on volume Bragg gratings...

  7. High Resolving Power Volume Diffractive Gratings for 400-2700 nm Spectral Range Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this NASA SBIR Phase I proposal is to develop a novel type of high resolving power diffraction gratings based on volume Bragg gratings technology. The...

  8. Single-shot mega-electronvolt ultrafast electron diffraction for structure dynamic studies of warm dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Mo, M. Z., E-mail: mmo09@slac.stanford.edu; Shen, X.; Chen, Z.; Li, R. K.; Dunning, M.; Zheng, Q.; Weathersby, S. P.; Reid, A. H.; Coffee, R.; Makasyuk, I.; Edstrom, S.; McCormick, D.; Jobe, K.; Hast, C.; Glenzer, S. H.; Wang, X. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Sokolowski-Tinten, K. [Faculty of Physics and Centre for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Lotharstrasse 1, D-47048 Duisburg (Germany)

    2016-11-15

    We have developed a single-shot mega-electronvolt ultrafast-electron-diffraction system to measure the structural dynamics of warm dense matter. The electron probe in this system is featured by a kinetic energy of 3.2 MeV and a total charge of 20 fC, with the FWHM pulse duration and spot size at sample of 350 fs and 120 μm respectively. We demonstrate its unique capability by visualizing the atomic structural changes of warm dense gold formed from a laser-excited 35-nm freestanding single-crystal gold foil. The temporal evolution of the Bragg peak intensity and of the liquid signal during solid-liquid phase transition are quantitatively determined. This experimental capability opens up an exciting opportunity to unravel the atomic dynamics of structural phase transitions in warm dense matter regime.

  9. Measurement of the single-shot pulse energy of a free electron laser using a cryogenic radiometer

    Energy Technology Data Exchange (ETDEWEB)

    Masahiro, Kato; Norio, Saito; Yuichiro, Morishita; Takahiro, Tanaka [National Institute of Advanced Industrial Science and Technology (AIST), NMIJ, Tsukuba (Japan); Masahiro, Kato; Norio, Saito; Kai, Tiedtke; Pavle N, Juranic; Sorokin, A.A.; Richter, M.; Takahiro, Tanaka; Mitsuru, Nagasono; Makina, Yabashi; Kensuke, Tono; Tadashi, Togashi; Tetsuya, Ishikawa [RIKEN, XFEL Project Head Office, Kouto, Sayo, Hyogo (Japan); Kai, Tiedtke; Pavle N, Juranic; Sorokin, A.A.; Jastrow, U. [Deutsches Elektronen-Synchrotron, DESY, Hamburg (Germany); Sorokin, A.A. [Ioffe Physico-Technical Institute, Polytekhnicheskaya 26, St Petersburg (Russian Federation); Richter, M.; Kroth, U.; Schoppe, H. [Physikalisch-Technische Bundesanstalt, PTB, Berlin (Germany); Tadashi, Togashi; Hiroaki, Kimura; Haruhiko, Ohashi [Japan Synchrotron Radiation Research Institute, Sayo, Hyogo (Japan)

    2010-10-15

    The absolute single-shot pulse energy of the SPring 8 extreme ultraviolet (EUV) free electron laser (FEL) was measured using a cryogenic radiometer with a relative standard uncertainty of 3%. The temperature change of the cavity in the cryogenic radiometer caused by an incident FEL pulse was determined using a lock-in amplifier and an ac Wheatstone bridge. The measured pulse energies were compared with a gas-monitor detector developed by Physikalisch-Technische Bundesanstalt/Deutsches Elektronen-Synchrotron/Ioffe Physico-Technical Institute (Ioffe) at a wavelength of 51.3 nm at the SPring-8 EUV-FEL in a shot-to-shot mode. The pulse energies measured using the two detectors agree within 2.0%. (authors)

  10. Spectrally resolved multiphoton imaging of post-mortem biopsy and in-vivo mouse skin tissues

    Science.gov (United States)

    Palero, Jonathan A.; de Bruijn, Henriëtte S.; van der Ploeg van den Heuvel, Angélique; Sterenborg, Henricus J. C. M.; Gerritsen, Hans C.

    2007-02-01

    The deep-tissue penetration and submicron spatial resolution of multi-photon microscopy and the high-detection efficiency and nanometer spectral resolution capability of a spectrograph were combined to study the intrinsic emission of mouse skin post mortem biopsy and section, and in vivo tissue samples. The different layers of skin could be clearly distinguished based on both their spectral signature and morphology. Auto fluorescence could be detected from both cellular and extra cellular structures. In addition SHG from collagen and a narrowband spectral emission band related to collagen were observed. Visualization of the spectral images in RGB color allowed us to identify tissue structures such as epidermal cells, lipid-rich keratinocytes and intercellular structures, hair follicles, collagen, elastin, and dermal fibroblasts. The results also showed morphological and spectral differences between the mouse skin post mortem biopsy and in vivo samples which explained by biochemical differences, specifically of NAD(P)H. Overall, spectral imaging provided a wealth of information not easily obtainable with present conventional multi-photon imaging methods.

  11. Spectrally resolved multiphoton imaging of in vivo and excised mouse skin tissues.

    Science.gov (United States)

    Palero, Jonathan A; de Bruijn, Henriëtte S; van der Ploeg van den Heuvel, Angélique; Sterenborg, Henricus J C M; Gerritsen, Hans C

    2007-08-01

    The deep tissue penetration and submicron spatial resolution of multiphoton microscopy and the high detection efficiency and nanometer spectral resolution of a spectrograph were utilized to record spectral images of the intrinsic emission of mouse skin tissues. Autofluorescence from both cellular and extracellular structures, second-harmonic signal from collagen, and a narrowband emission related to Raman scattering of collagen were detected. Visualization of the spectral images by wavelength-to-RGB color image conversion allowed us to identify and discriminate tissue structures such as epidermal keratinocytes, lipid-rich corneocytes, intercellular structures, hair follicles, collagen, elastin, and dermal cells. Our results also showed morphological and spectral differences between excised tissue section, thick excised tissue, and in vivo tissue samples of mouse skin. Results on collagen excitation at different wavelengths suggested that the origin of the narrowband emission was collagen Raman peaks. Moreover, the oscillating spectral dependency of the collagen second-harmonic intensity was experimentally studied. Overall, spectral imaging provided a wealth of information not easily obtainable with present conventional multiphoton imaging systems.

  12. Development of Compton X-ray spectrometer for high energy resolution single-shot high-flux hard X-ray spectroscopy

    International Nuclear Information System (INIS)

    Kojima, Sadaoki; Ikenouchi, Takahito; Arikawa, Yasunobu; Sakata, Shohei; Zhang, Zhe; Abe, Yuki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke; Azechi, Hiroshi; Ozaki, Tetsuo; Miyamoto, Shuji; Yamaguchi, Masashi; Takemoto, Akinori

    2016-01-01

    Hard X-ray spectroscopy is an essential diagnostics used to understand physical processes that take place in high energy density plasmas produced by intense laser-plasma interactions. A bundle of hard X-ray detectors, of which the responses have different energy thresholds, is used as a conventional single-shot spectrometer for high-flux (>10 13 photons/shot) hard X-rays. However, high energy resolution (Δhv/hv < 0.1) is not achievable with a differential energy threshold (DET) X-ray spectrometer because its energy resolution is limited by energy differences between the response thresholds. Experimental demonstration of a Compton X-ray spectrometer has already been performed for obtaining higher energy resolution than that of DET spectrometers. In this paper, we describe design details of the Compton X-ray spectrometer, especially dependence of energy resolution and absolute response on photon-electron converter design and its background reduction scheme, and also its application to the laser-plasma interaction experiment. The developed spectrometer was used for spectroscopy of bremsstrahlung X-rays generated by intense laser-plasma interactions using a 200 μm thickness SiO 2 converter. The X-ray spectrum obtained with the Compton X-ray spectrometer is consistent with that obtained with a DET X-ray spectrometer, furthermore higher certainly of a spectral intensity is obtained with the Compton X-ray spectrometer than that with the DET X-ray spectrometer in the photon energy range above 5 MeV.

  13. Diffusion-weighted single shot echo planar imaging of colorectal cancer using a sensitivity-encoding technique

    International Nuclear Information System (INIS)

    Nasu, Katsuhiro; Kuroki, Yoshihumi; Murakami, Koji; Nawano, Shigeru; Kuroki, Seiko; Moriyama, Noriyuki

    2004-01-01

    We wanted to determine the feasibility of diffusion-weighted single shot echo planar imaging using a sensitivity encoding diffusion weighted imaging (SENSE-DWI) technique in depicting colorectal cancer. Forty-two patients with sigmoid colon cancer and rectal cancer, all proven pathologically, were examined on T2-turbo spin echo (TSE) and SENSE-DWI. No bowel preparation was performed before examination. The b-factors used in SENSE-DWI were zero and 1000 s/mm 2 . In 10 randomly selected cases, the images whose b-factors were 250 and 500 s/mm 2 were also obtained. The reduction factor of SENSE was 2.0 in all sequences. Two radiologists evaluated the obtained images from the viewpoints of tumor detectability, image distortion and misregistration of the tumors. The apparent diffusion coefficients (ADCs) of the tumors and urine in the urinary bladders in each patient were measured to evaluate the correlation between ADC and pathological classification of each tumor. All tumors were depicted hyperintensely on SENSE-DWI. Even though single shot echo planar imaging (EPI) was used, the image distortion and misregistration was quite pronounced because of simultaneous use of SENSE. On SENSE-DWI whose b-factor was 1000 s/mm 2 , the normal colon wall and feces were always hypointense and easily differentiated from the tumors. The mean ADC value of each tumor was 1.02±0.1 (x 10 -3 ) mm 2 /s. No overt correlation can be pointed out between ADC and pathological classification of each tumor. SENSE-DWI is a feasible method for depicting colorectal cancer. SENSE-DWI provides strong contrast among colorectal cancers, normal rectal wall and feces. (authors)

  14. Clinical application of Half Fourier Acquisition Single Shot Turbo Spin Echo (HASTE) imaging accelerated by simultaneous multi-slice acquisition.

    Science.gov (United States)

    Schulz, Jenni; P Marques, José; Ter Telgte, Annemieke; van Dorst, Anouk; de Leeuw, Frank-Erik; Meijer, Frederick J A; Norris, David G

    2018-01-01

    As a single-shot sequence with a long train of refocusing pulses, Half-Fourier Acquisition Single-Shot Turbo-Spin-Echo (HASTE) suffers from high power deposition limiting use at high resolutions and high field strengths, particularly if combined with acceleration techniques such as simultaneous multi-slice (SMS) imaging. Using a combination of multiband (MB)-excitation and PINS-refocusing pulses will effectively accelerate the acquisition time while staying within the SAR limitations. In particular, uncooperative and young patients will profit from the speed of the MB-PINS HASTE sequence, as clinical diagnosis can be possible without sedation. Materials and MethodsMB-excitation and PINS-refocusing pulses were incorporated into a HASTE-sequence with blipped CAIPIRINHA and TRAPS including an internal FLASH reference scan for online reconstruction. Whole brain MB-PINS HASTE data were acquired on a Siemens 3T-Prisma system from 10 individuals and compared to a clinical HASTE protocol. ResultsThe proposed MB-PINS HASTE protocol accelerates the acquisition by about a factor 2 compared to the clinical HASTE. The diagnostic image quality proved to be comparable for both sequences for the evaluation of the overall aspect of the brain, the detection of white matter changes and areas of tissue loss, and for the evaluation of the CSF spaces although artifacts were more frequently encountered with MB-PINS HASTE. ConclusionsMB-PINS HASTE enables acquisition of slice accelerated highly T2-weighted images and provides good diagnostic image quality while reducing acquisition time. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Blood Bupivacaine Concentrations After a Combined Single-Shot Sciatic Block and a Continuous Femoral Nerve Block in Pediatric Patients: A Prospective Observational Study.

    Science.gov (United States)

    Suresh, Santhanam; De Oliveira, Gildasio S

    2017-05-01

    We evaluated blood bupivacaine concentrations in children having a single-shot sciatic and continuous femoral blocks after anterior cruciate ligament repair. Dried blood spot samples were analyzed for bupivacaine levels at 0, 5, 15, 30, 60, and 120 minutes and 4, 24, and 48 hours. The highest 99% upper confidence interval limit was 135 ng/mL at the 4-hour evaluation point. The 99% upper confidence interval was below potentially toxic levels (1500 ng/mL) across all sampling times. The risk of local anesthetic toxicity in pediatric patients receiving single-shot sciatic and continuous femoral nerve blocks is very low.

  16. Single shot ultrafast dynamic ellipsometry (UDE) of laser-driven shocks in single crystal explosives

    Energy Technology Data Exchange (ETDEWEB)

    Whitley, Von H [Los Alamos National Laboratory; Mcgrane, Shawn D [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory; Eakins, Dan E [Los Alamos National Laboratory; Bolme, Cindy A [Los Alamos National Laboratory

    2009-01-01

    We report on the first experiments to measure states in shocked energetic single crystals with dynamic ellipsometry. We demonstrate that these ellipsometric techniques can produce reasonable Hugoniot values using small amounts of crystalline RDX and PETN. Pressures, particle velocities and shock velocities obtained using shocked ellipsometry are comparable to those found using gas-gun flyer plates and molecular dynamics calculations. The adaptation of the technique from uniform thin films of polymers to thick non-perfect crystalline materials was a significant achievement. Correct sample preparation proved to be a crucial component. Through trial and error, we were able to resolve polishing issues, sample quality problems, birefringence effects and mounting difficulties that were not encountered using thin polymer films.

  17. A spectral pyrometer to spatially resolve the blackbody temperature of a warm dense plasma

    Science.gov (United States)

    Coleman, J. E.

    2016-12-01

    A pyrometer has been developed to spatially resolve the blackbody temperature of a radiatively cooling warm dense plasma. The pyrometer is composed of a lens coupled fiber array, Czerny-Turner visible spectrometer, and an intensified gated CCD for the detector. The radiatively cooling warm dense plasma is generated by a ˜100-ns-long intense relativistic electron bunch with an energy of 19.1 MeV and a current of 0.2 kA interacting with 100-μm-thick low-Z foils. The continuum spectrum is measured over 250 nm with a low groove density grating. These plasmas emit visible light or blackbody radiation on relatively long time scales (˜0.1 to 100 μs). The diagnostic layout, calibration, and proof-of-principle measurement of a radiatively cooling aluminum plasma is presented, which includes a spatially resolved temperature gradient and the ability to temporally resolve it also.

  18. Spaced resolved analysis of suprathermal electrons in dense plasma

    Directory of Open Access Journals (Sweden)

    Moinard A.

    2013-11-01

    Full Text Available The investigation of the hot electron fraction is a crucial topic for high energy density laser driven plasmas: first, energy losses and radiative properties depend strongly on the hot electron fraction and, second, in ICF hohlraums suprathermal electrons preheat the D-T-capsule and seriously reduce the fusion performance. In the present work we present our first experimental and theoretical studies to analyze single shot space resolved hot electron fractions inside dense plasmas via optically thin X-ray line transitions from autoionizing states. The benchmark experiment has been carried out at an X-pinch in order to create a dense, localized plasma with a well defined symmetry axis of hot electron propagation. Simultaneous high spatial and spectral resolution in the X-ray spectral range has been obtained with a spherically bent quartz Bragg crystal. The high performance of the X-ray diagnostics allowed to identify space resolved hot electron fractions via the X-ray spectral distribution of multiple excited states.

  19. Resolving Nonstationary Spectral Information in Wind Speed Time Series Using the Hilbert-Huang Transform

    DEFF Research Database (Denmark)

    Vincent, Claire Louise; Giebel, Gregor; Pinson, Pierre

    2010-01-01

    a 4-yr time series of 10-min wind speed observations. An adaptive spectral analysis method called the Hilbert–Huang transform is chosen for the analysis, because the nonstationarity of time series of wind speed observations means that they are not well described by a global spectral analysis method...... such as the Fourier transform. The Hilbert–Huang transform is a local method based on a nonparametric and empirical decomposition of the data followed by calculation of instantaneous amplitudes and frequencies using the Hilbert transform. The Hilbert–Huang transformed 4-yr time series is averaged and summarized...

  20. Resolving spectral information from time domain induced polarization data through 2-D inversion

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca; Ramm, James; Binley, A.

    2013-01-01

    SUMMARY Field-based time domain (TD) induced polarization (IP) surveys are usually modelled by taking into account only the integral chargeability, thus disregarding spectral content. Furthermore, the effect of the transmitted waveform is commonly neglected, biasing inversion results. Given...... these limitations of conventional approaches, a new 2-D inversion algorithm has been developed using the full voltage decay of the IP response, together with an accurate description of the transmitter waveform and receiver transfer function. This allows reconstruction of the spectral information contained in the TD...

  1. Algorithms for spectral calibration of energy-resolving small-pixel detectors

    International Nuclear Information System (INIS)

    Scuffham, J; Veale, M C; Wilson, M D; Seller, P

    2013-01-01

    Small pixel Cd(Zn)Te detectors often suffer from inter-pixel variations in gain, resulting in shifts in the individual energy spectra. These gain variations are mainly caused by inclusions and defects within the crystal structure, which affect the charge transport within the material causing a decrease in the signal pulse height. In imaging applications, spectra are commonly integrated over a particular peak of interest. This means that the individual pixels must be accurately calibrated to ensure that the same portion of the spectrum is integrated in every pixel. The development of large-area detectors with fine pixel pitch necessitates automated algorithms for this spectral calibration, due to the very large number of pixels. Algorithms for automatic spectral calibration require accurate determination of characteristic x-ray or photopeak positions on a pixelwise basis. In this study, we compare two peak searching spectral calibration algorithms for a small-pixel CdTe detector in gamma spectroscopic imaging. The first algorithm uses rigid search ranges to identify peaks in each pixel spectrum, based on the average peak positions across all pixels. The second algorithm scales the search ranges on the basis of the position of the highest-energy peak relative to the average across all pixels. In test spectra acquired with Tc-99m, we found that the rigid search algorithm failed to correctly identify the target calibraton peaks in up to 4% of pixels. In contrast, the scaled search algorithm failed in only 0.16% of pixels. Failures in the scaled search algorithm were attributed to the presence of noise events above the main photopeak, and possible non-linearities in the spectral response in a small number of pixels. We conclude that a peak searching algorithm based on scaling known peak spacings is simple to implement and performs well for the spectral calibration of pixellated radiation detectors

  2. Time-resolved ARPES with sub-15 fs temporal and near Fourier-limited spectral resolution.

    Science.gov (United States)

    Rohde, G; Hendel, A; Stange, A; Hanff, K; Oloff, L-P; Yang, L X; Rossnagel, K; Bauer, M

    2016-10-01

    An experimental setup for time- and angle-resolved photoelectron spectroscopy with sub-15 fs temporal resolution is presented. A hollow-fiber compressor is used for the generation of 6.5 fs white light pump pulses, and a high-harmonic-generation source delivers 11 fs probe pulses at a photon energy of 22.1 eV. A value of 13 fs full width at half-maximum of the pump-probe cross correlation signal is determined by analyzing a photoemission intensity transient probing a near-infrared interband transition in 1T-TiSe 2 . Notably, the energy resolution of the setup conforms to typical values reported in conventional time-resolved photoemission studies using high harmonics, and an ultimate resolution of 170 meV is feasible.

  3. Diffusion-weighted imaging of the sellar region: A comparison study of BLADE and single-shot echo planar imaging sequences

    Energy Technology Data Exchange (ETDEWEB)

    Yiping, Lu [Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqi Rd. Middle, Shanghai 200040 (China); Hui, Liu [MR Collaboration NE Asia, Siemens Healthcare, Siemens Ltd., China, Shanghai 201318 (China); Kun, Zhou [MR PLM APPL, Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen 518057 (China); Daoying, Geng, E-mail: GengdaoyingGDY@163.com [Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqi Rd. Middle, Shanghai 200040 (China); Bo, Yin, E-mail: yinbo7@163.com [Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqi Rd. Middle, Shanghai 200040 (China)

    2014-07-15

    Purpose: The purpose of this study is to compare BLADE diffusion-weighted imaging (DWI) with single-shot echo planar imaging (EPI) DWI on the aspects of feasibility of imaging the sellar region and image quality. Methods: A total of 3 healthy volunteers and 52 patients with suspected lesions in the sellar region were included in this prospective intra-individual study. All exams were performed at 3.0 T with a BLADE DWI sequence and a standard single-shot EP-DWI sequence. Phantom measurements were performed to measure the objective signal-to-noise ratio (SNR). Two radiologists rated the image quality according to the visualisation of the internal carotid arteries, optic chiasm, pituitary stalk, pituitary gland and lesion, and the overall image quality. One radiologist measured lesion sizes for detecting their relationship with the image score. Results: The SNR in BLADE DWI sequence showed no significant difference from the single-shot EPI sequence (P > 0.05). All of the assessed regions received higher scores in BLADE DWI images than single-shot EP-DWI.

  4. Ankle Block vs Single-Shot Popliteal Fossa Block as Primary Anesthesia for Forefoot Operative Procedures: Prospective, Randomized Comparison.

    Science.gov (United States)

    Schipper, Oliver N; Hunt, Kenneth J; Anderson, Robert B; Davis, W Hodges; Jones, Carroll P; Cohen, Bruce E

    2017-11-01

    Postoperative pain is often difficult to control with oral medications, requiring large doses of opioid analgesia. Regional anesthesia may be used for primary anesthesia, reducing the need for general anesthetic and postoperative pain medication requirements in the immediate postoperative period. The purpose of this study was to compare the analgesic effects of an ankle block (AB) to a single-shot popliteal fossa block (PFB) for patients undergoing orthopedic forefoot procedures. All patients having elective outpatient orthopedic forefoot procedures were invited to participate in the study. Patients were prospectively randomized to receive either an ultrasound-guided AB or PFB by a board-certified anesthesiologist prior to their procedure. Intraoperative conversion to general anesthesia and postanesthesia care unit (PACU) opioid requirements were recorded. Postoperative pain was assessed using the visual analog scale (VAS) at regular time intervals until 8 am on postoperative day (POD) 2. Patients rated the effectiveness of the block on a 1 to 5 scale, with 5 being very effective. A total of 167 patients participated in the study with 88 patients (53%) receiving an AB and 79 (47%) receiving a single-shot PFB. There was no significant difference in the rate of conversion to general anesthesia between the 2 groups (13.6% [12/88] AB vs 12.7% [10/79] PFB). PACU morphine requirements and doses were significantly reduced in the PFB group ( P = .004) when compared to the AB group. The VAS was also significantly lower for the PFB patients at 10 pm on POD 0 (4.6 vs 1.6, P PFB 10.1%, P = .51) and there were no significant differences in residual sensory paresthesias (AB 2.3% [2/88] vs PFB 5.1% [4/79], P = .29), motor loss (0% vs 0%), or block site pain and/or erythema (AB 6.9% [6/88] vs PFB 5.1% [4/79], P = .44). The analgesic effect of the PFB lasted significantly longer when compared to the ankle block (AB 14.5 hours vs PFB 20.9 hours, P PFB 4.82/5, P = .68). Regional

  5. LITGS: a new technique for single shot temperature and fuel concentration measurements in turbulent combusting environments

    Energy Technology Data Exchange (ETDEWEB)

    Fantoni, Roberta; Giorgi, M. [ENEA, Centro Ricerche Frascati, Frascati, RM (Italy). Dipt. Innovazione; De Risi, A.; Laforgia, D. [Lecce Univ., Lecce (Italy). Dipt. di Ingegneria dell' Innovazione

    1999-07-01

    In the present study the possibility to apply time resolved Laser Induced Thermal Grating Spectroscopy (LITGS) to detect fuel concentration and temperature in mixtures and flames at atmospheric pressure or higher is investigated. The resonant IR single photon absorption of two short pulse pump beams is used to initially generate a population grating, decaying into a thermal grating due to relaxation processes in the gas mixture. The thermal grating evolution is followed by monitoring the scattered signal of a cw visible probe beam after the end of the pump pulse. The use of the IR optical transition of diesel fuel assured a high species selectivity and a negligible influence of the visible emission background due to the presence of electronically excited species in flames. Fuel concentration and temperature measurements in a pressurized cell, with pressure ranging between 0.1 an 1.5 MPa, and in a diffusion turbulent flame generated by a burner feed with diesel fuel operating at atmospheric pressure are presented. The experimental investigation shows that LITGS signal increase linearly with gas density. This characteristic makes LITGS a very interesting technique for fuel distribution and temperature measurements in hostile (high-pressure and turbulent flow) environments. Detection limit for diesel fuel at atmospheric pressure is found to be about 40 ppm and it decreases with the increase of the pressure. The low detection limit which can be reached makes this technique suitable also for monitoring minor species and radicals. [Italian] Nel presente studio si investiga la possibilita' di applicare la tecnica LITGS (Laser Induced Thermal Grating Spectroscopy) per misurare la concentrazione e la temperatura di carburante in miscele e fiamme a pressiona atmosferica o superiore. L'assorbimento risonante di un singolo fotone IR proveniente da uno dei due laser impulsati di pompa e' utilizzato per generare inizialmente un reticolo di popolazione, che decade

  6. Time-resolved spectral analysis of prompt emission from long gamma-ray bursts with GeV emission

    International Nuclear Information System (INIS)

    Rao Arikkala Raghurama; Basak Rupal; Bhattacharya Jishnu; Chandra Sarthak; Maheshwari Nikunj; Choudhury Manojendu; Misra Ranjeev

    2014-01-01

    We performed detailed time-resolved spectroscopy of bright long gamma-ray bursts (GRBs) which show significant GeV emissions (GRB 080916C, GRB 090902B and GRB 090926A). In addition to the standard Band model, we also use a model consisting of a black body and a power law to fit the spectra. We find that for the latter model there are indications of an additional soft component in the spectra. While previous studies have shown that such models are required for GRB 090902B, here we find that a composite spectral model consisting of two blackbodies and a power law adequately fits the data of all the three bright GRBs. We investigate the evolution of the spectral parameters and find several interesting features that appear in all three GRBs, like (a) temperatures of the blackbodies are strongly correlated with each other, (b) fluxes in the black body components are strongly correlated with each other, (c) the temperatures of the black body trace the profile of the individual pulses of the GRBs, and (d) the characteristics of power law components like the spectral index and the delayed onset bear a close similarity to the emission characteristics in the GeV regions. We discuss the implications of these results and the possibility of identifying the radiation mechanisms during the prompt emission of GRBs. (research papers)

  7. Generation of a new spectral format, the lifetime synchronous spectrum (LiSS), using phase-resolved fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Shaver, J.M.; McGown, L.B.

    1994-01-01

    A new fluorescence spectral format is introduced in which fluorescence lifetime is shown as a function of synchronously scanned wavelength to generate a Lifetime Synchronous Spectrum (LiSS). Lifetimes are determined in the frequency domain with the use of Phase-Resolved Fluorescence Spectroscopy (PRFS) to obtain the phase of the fluorescence signal. Theory and construction of the LiSS are presented and experimental results are shown for solutions of single components and simple binary and ternary mixtures. These results show how the lifetime information in the LiSS augments the steady-state intensity information of a standard synchronous spectrum, providing unique information for identification of components and resolution of overlapping spectral peaks. The LiSS technique takes advantage of noise reduction inherent in the extraction of lifetime from PRFS in addition to standard spectral smoothing techniques. The precision of phase determination through PRFS is found to be comparable to that of direct phase measurements at normal fluorescence intensities and superior for low-intensity signals

  8. The value of single-shot black-blood MR imaging for mapping of the coronary arteries: a comparison of four different orientations during breath-holding and free breathing.

    NARCIS (Netherlands)

    Holland, A.E.; Engelbrecht, M.R.W.; Barentsz, J.O.; Heijstraten, F.M.J.; Goldfarb, J.W.

    2002-01-01

    The value of ECG-gated single-shot black-blood MR imaging for rapid visualization of the origin and course of the coronary arteries was investigated. The study population included 28 patients with known or suspected cardiac disease. ECG-gated single-shot black-blood MR acquisitions were acquired in

  9. Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout

    Science.gov (United States)

    England, Troy; Lilly, Michael; Curry, Matthew; Carr, Stephen; Carroll, Malcolm

    Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout of electrons bound to Si:P donors. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will introduce two new amplifier topologies that provide excellent gain versus power tradeoffs using silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs). The AC HBT allows in-situ adjustment of power dissipation during an experiment and can provide gain in the millikelvin temperature regime while dissipating less than 500 nW. The AC Current Amplifier maximizes gain at nearly 800 A/A. We will also show results of using these amplifiers with SETs at 4 K. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout.

  10. Real-Time, Single-Shot Temporal Measurements of Short Electron Bunches, Terahertz CSR and FEL Radiation

    CERN Document Server

    Berden, G; Van der Meer, A F G

    2005-01-01

    Electro-optic detection of the Coulomb field of electron bunches is a promising technique for single-shot measurements of the bunch length and shape in the sub-picosecond time domain. This technique has been applied to the measurement of 50 MeV electron bunches in the FELIX free electron laser, showing the longitudinal profile of single bunches of around 650 fs FWHM [Phys. Rev. Lett. 93, 114802 (2004)]. The method is non-destructive and real-time, and therefore ideal for online monitoring of the longitudinal shape of single electron bunches. At FELIX we have used it for real-time optimization of sub-picosecond electron bunches. Electro-optic detection has also been used to measure the electric field profiles of far-infrared (or terahertz) optical pulses generated by the relativistic electrons. We have characterised the far-infrared output of the free electron laser, and more recently, we have measured the temporal profile of terahertz optical pulses generated at one of the bending magnets.

  11. Fast and robust automatic calibration for single-shot dual-wavelength digital holography based on speckle displacements.

    Science.gov (United States)

    Khodadad, Davood; Bergström, Per; Hällstig, Emil; Sjödahl, Mikael

    2015-06-01

    The objective of this paper is to describe a fast and robust automatic single-shot dual-wavelength holographic calibration method that can be used for online shape measurement applications. We present a model of the correction in two terms for each lobe, one to compensate the systematic errors caused by off-axis angles and the other for the curvature of the reference waves, respectively. Each hologram is calibrated independently without a need for an iterative procedure or information of the experimental set-up. The calibration parameters are extracted directly from speckle displacements between different reconstruction planes. The parameters can be defined as any fraction of a pixel to avoid the effect of quantization. Using the speckle displacements, problems associated with phase wrapping is avoided. The procedure is shown to give a shape accuracy of 34 μm using a synthetic wavelength of 1.1 mm for a measurement on a cylindrical test object with a trace over a field of view of 18  mm×18  mm.

  12. Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout

    Science.gov (United States)

    Sukachev, D. D.; Sipahigil, A.; Nguyen, C. T.; Bhaskar, M. K.; Evans, R. E.; Jelezko, F.; Lukin, M. D.

    2017-12-01

    The negatively charged silicon-vacancy (SiV- ) color center in diamond has recently emerged as a promising system for quantum photonics. Its symmetry-protected optical transitions enable the creation of indistinguishable emitter arrays and deterministic coupling to nanophotonic devices. Despite this, the longest coherence time associated with its electronic spin achieved to date (˜250 ns ) has been limited by coupling to acoustic phonons. We demonstrate coherent control and suppression of phonon-induced dephasing of the SiV- electronic spin coherence by 5 orders of magnitude by operating at temperatures below 500 mK. By aligning the magnetic field along the SiV- symmetry axis, we demonstrate spin-conserving optical transitions and single-shot readout of the SiV- spin with 89% fidelity. Coherent control of the SiV- spin with microwave fields is used to demonstrate a spin coherence time T2 of 13 ms and a spin relaxation time T1 exceeding 1 s at 100 mK. These results establish the SiV- as a promising solid-state candidate for the realization of quantum networks.

  13. Single-shot T1 mapping of the corpus callosum: A rapid characterization of fiber bundle anatomy

    Directory of Open Access Journals (Sweden)

    Sabine eHofer

    2015-05-01

    Full Text Available Using diffusion-tensor MRI and fiber tractography the topographic organization of the corpus callosum (CC has been described to comprise 5 segments with fibers projecting into prefrontal (I, premotor and supplementary motor (II, primary motor (III, and primary sensory areas (IV, as well as into parietal, temporal, and occipital cortical areas (V. In order to more rapidly characterize the underlying anatomy of these segments, this study used a novel single-shot T1 mapping method to quantitatively determine T1 relaxation times in the human CC. A region-of-interest analysis revealed a tendency for the lowest T1 relaxation times in the genu and the highest T1 relaxation times in the somatomotor region of the CC. This observation separates regions dominated by myelinated fibers with large diameters (somatomotor area from densely packed smaller axonal bundles (genu with less myelin. The results indicate that characteristic T1 relaxation times in callosal profiles provide an additional means to monitor differences in fiber anatomy, fiber density, and gray matter in respective neocortical areas. In conclusion, rapid T1 mapping allows for a characterization of the axonal architecture in an individual CC in less than 10 s. The approach emerges as a valuable means for studying neocortical brain anatomy with possible implications for the diagnosis of neurodegenerative processes.

  14. Anti-spoof touchless 3D fingerprint recognition system using single shot fringe projection and biospeckle analysis

    Science.gov (United States)

    Chatterjee, Amit; Bhatia, Vimal; Prakash, Shashi

    2017-08-01

    Fingerprint is a unique, un-alterable and easily collected biometric of a human being. Although it is a 3D biological characteristic, traditional methods are designed to provide only a 2D image. This touch based mapping of 3D shape to 2D image losses information and leads to nonlinear distortions. Moreover, as only topographic details are captured, conventional systems are potentially vulnerable to spoofing materials (e.g. artificial fingers, dead fingers, false prints, etc.). In this work, we demonstrate an anti-spoof touchless 3D fingerprint detection system using a combination of single shot fringe projection and biospeckle analysis. For fingerprint detection using fringe projection, light from a low power LED source illuminates a finger through a sinusoidal grating. The fringe pattern modulated because of features on the fingertip is captured using a CCD camera. Fourier transform method based frequency filtering is used for the reconstruction of 3D fingerprint from the captured fringe pattern. In the next step, for spoof detection using biospeckle analysis a visuo-numeric algorithm based on modified structural function and non-normalized histogram is proposed. High activity biospeckle patterns are generated because of interaction of collimated laser light with internal fluid flow of the real finger sample. This activity reduces abruptly in case of layered fake prints, and is almost absent in dead or fake fingers. Furthermore, the proposed setup is fast, low-cost, involves non-mechanical scanning and is highly stable.

  15. Near field flow characteristics of the Bjork-Shiley Monostrut valve in a modified single shot valve chamber.

    Science.gov (United States)

    Manning, Keefe B; Przybysz, T Michael; Fontaine, Arnold A; Tarbell, John M; Deutsch, Steven

    2005-01-01

    In certain mechanical heart valves, cavitation has been shown to develop during closure and rebound, leading to valve damage, blood damage, and strokes. Whereas it is uncertain what causes mechanical heart valve related strokes, some evidence suggests that stable bubbles may be the culprits. Previous work has indicated that vortex cavitation may contribute to stable bubble growth. Therefore, in an effort to understand the vortex cavitation, laser Doppler velocimetry data are collected in a plane parallel to and 3 mm away from the major orifice during closure and rebound of a Bjork-Shiley Monostrut mechanical heart valve. A modified single shot chamber is used that incorporates a more realistic near valve geometry than those used in previous studies. The results show the formation of a vortex during closure, which intensifies during rebound and dissipates during the final closing cycle. A regurgitant jet with mean velocities up to 3 m/s through the clearance gap of the valve provides energy to the vortex. During the final closing cycle, the vortex breaks up into asymmetrical, small scale flow patterns. This study provides further evidence that stable bubble formation may stem from the intense vortex cavitation occurring during valve closure and rebound.

  16. MR imaging of the gastrointestinal tract with half-fourier single-shot fast spin echo (SSFSE)

    International Nuclear Information System (INIS)

    Boku, Houjun; Takehara, Yasuo; Isoda, Haruo; Isogai, Satoshi; Kaneko, Masao

    1999-01-01

    Our objective was to implement a non-invasive magnetic resonance imaging (MRI) technique combined with concentrated milk ingestion for depicting the gastrointestinal (GI) tract and detecting gastrointestinal motility and transit. The half-Fourier SSFSE (single-shot fast spin echo) sequence was optimized on the basis of a phantom study. In order to determine the feasibility of milk ingestion as a substitute for contrast medium, ten human volunteers were examined with SSFSE after two types of liquid ingestion (i.e., milk and water). The snapshot images provided subsecond data acquisition for each coronal plane, allowing visualization of peristalsis in the gastrointestinal tract in an almost real-time fashion, without motion-related image degradation, as would normally be seen using conventional MRI. There was no significant difference between concentrated milk and water in terms of depiction of the upper gastrointestinal tract; however, 10 min and 30 min after ingestion, concentrated milk showed better delineation of the intestine than that observed after water ingestion (p<0.01). MR gastrointestinal imaging is a non-invasive method that allows gastrointestinal depiction as well as analysis of motility and passage. Especially with concentrated milk ingestion, the distal intestines were well depicted with adequate contrast filling and distention. (author)

  17. Poloxamer 407-chitosan grafted thermoresponsive hydrogels achieve synchronous and sustained release of antigen and adjuvant from single-shot vaccines.

    Science.gov (United States)

    Bobbala, Sharan; Gibson, Blake; Gamble, Allan B; McDowell, Arlene; Hook, Sarah

    2018-03-02

    Sustained release vaccine delivery systems may enhance the immunogenicity of subunit vaccines and reduce the need for multiple vaccinations. The aim of this study was to develop a thermoresponsive hydrogel using poloxamer 407-chitosan (CP) grafted copolymer as a delivery system for single-shot sustained release vaccines. The CP copolymer was synthesized using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxysuccinimide (NHS) chemistry. The CP copolymer was a free flowing solution at ambient temperature and transformed rapidly into a gel at body temperature. The hydrogels were loaded with vaccine antigen and adjuvants or the vaccine components were encapsulated in poly (lactic-co-glycolic acid) nanoparticles (PLGA-NP) in order to ensure synchronous release. The CP hydrogels were stable for up to 18 days in vitro. Release of both nanoparticles and the individual components was complete, with release of the individual components being modulated by incorporation into nanoparticles. In vivo, a single dose of CP hydrogel vaccine induced strong, long lasting, cellular and humoral responses that could protect against the development of tumors in a murine melanoma model. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. MR imaging of the gastrointestinal tract with half-fourier single-shot fast spin echo (SSFSE)

    Energy Technology Data Exchange (ETDEWEB)

    Boku, Houjun; Takehara, Yasuo; Isoda, Haruo; Isogai, Satoshi; Kaneko, Masao [Hamamatsu Univ. School of Medicine, Shizuoka (Japan)

    1999-04-01

    Our objective was to implement a non-invasive magnetic resonance imaging (MRI) technique combined with concentrated milk ingestion for depicting the gastrointestinal (GI) tract and detecting gastrointestinal motility and transit. The half-Fourier SSFSE (single-shot fast spin echo) sequence was optimized on the basis of a phantom study. In order to determine the feasibility of milk ingestion as a substitute for contrast medium, ten human volunteers were examined with SSFSE after two types of liquid ingestion (i.e., milk and water). The snapshot images provided subsecond data acquisition for each coronal plane, allowing visualization of peristalsis in the gastrointestinal tract in an almost real-time fashion, without motion-related image degradation, as would normally be seen using conventional MRI. There was no significant difference between concentrated milk and water in terms of depiction of the upper gastrointestinal tract; however, 10 min and 30 min after ingestion, concentrated milk showed better delineation of the intestine than that observed after water ingestion (p<0.01). MR gastrointestinal imaging is a non-invasive method that allows gastrointestinal depiction as well as analysis of motility and passage. Especially with concentrated milk ingestion, the distal intestines were well depicted with adequate contrast filling and distention. (author)

  19. Tunable optical setup with high flexibility for spectrally resolved coherent anti-Stokes Raman scattering microscopy

    International Nuclear Information System (INIS)

    Bergner, G; Akimov, D; Bartelt, H; Dietzek, B; Popp, J; Schlücker, S

    2011-01-01

    A simplified setup for coherent anti-Stokes Raman scattering (CARS) microscopy is introduced, which allows for recording CARS images with 30 cm -1 excitation bandwidth for probing Raman bands between 500 and 900 cm -1 with minimal requirements for alignment. The experimental arrangement is based on electronic switching between CARS images recorded at different Raman resonances by combining a photonic crystal fiber (PCF) as broadband light source and an acousto-optical programmable dispersive filter (AOPDF) as tunable wavelength filter. Such spatial light modulator enables selection of a narrow-band spectrum to yield high vibrational contrast and hence chemical contrast in the resultant CARS images. Furthermore, an experimental approach to reconstruct spectral information from CARS image contrast is introduced

  20. Simulation tools for scattering corrections in spectrally resolved X-ray Computed Tomography using McXtrace

    DEFF Research Database (Denmark)

    Busi, Matteo; Olsen, Ulrik L.; Knudsen, Erik B.

    2018-01-01

    -ray and the sample is the incoherent scattering. The scattered radiation causes a loss of contrast in the results, and its correction has proven to be a complex problem, due to its dependence on energy, material composition, and geometry. Monte Carlo simulations can utilize a physical model to estimate...... the scattering contribution to the signal, at the cost of high computational time. We present a fast Monte Carlo simulation tool, based on McXtrace, to predict the energy resolved radiation being scattered and absorbed by objects of complex shapes. We validate the tool through measurements using a CdTe single...... PCD (Multix ME-100) and use it for scattering correction in a simulation of a spectral CT. We found the correction to account for up to 7% relative amplification in the reconstructed linear attenuation. It is a useful tool for x-ray CT to obtain a more accurate material discrimination, especially...

  1. Magnetic resonance urography in pediatrics: utilization of ultrafast single-shot spin echo sequences; Urografia por resonancia magnetic en pediatria: utilizacion de las secuencias ultrarrapidas single shot en eco del espin

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C.; Martin, J.; Duran, C. [Unidad de Diagnostico por la Imagen de Alta Tecnologia (UDIAT). Sabadell (Spain); Rigol, S.; Rojo, J. C. [Corporacion Sanatiaria Parc Tauli. Sabadell (Spain)

    1999-07-01

    To determine the value of magnetic resonance urography (MRU) using ultrafast single-shot (SS) rapid acquisition with relaxation enhancement (RARE) and half-Fourier (HF) SS-RARE (SS-HF-RARE or HASTE) in the evaluation of congenital urinary tract anomalies in pediatric patients, and their possible application as alternatives to intravenous urography (IVU). Eighteen children (11 boys and 7 girls) aged 2 months to 15 years (mean: 5 years) with a total of 19 congenital urinary tract anomalies were studies by MU using SS-RARE and HASTE sequences in a 1 Tesla scanner. All the patients had previously been studies by ultrasound (US) and IVU. Twelve patients required anesthesia. The images were acquired by means of a HASTE sequence with multisection technique (TR, infinite; TE{sub e}f, 87 msec; echo train, 128; interval between echoes, 10.9 msec; total acquisition time, 13 sections/12 seconds), and SS-RARE (TR, infinite; TE{sub e}f, 1.100 msec; echo train, 240, and acquisition time, 7 seconds). Four radiologists evaluated the images independently; two who reviewed the IV images in consensus and two who reviewed the MRU images in consensus. The images were evaluated to assess the dilatation of the urinary tract and their utility in detecting the level and cause of the obstruction. MRU images revealed the urinary tract dilation, the level of the obstruction and the type of anomaly in 18 patients (100%), while IVU provided this information in only 10 [ sensitivity, 53%, 95% confidence interval (29%, 76%)]. The mean time required for MRU was 20 minutes (range: 7 to 30 minutes), while that of IVU was 1,242 minutes (range: 45 to 1,440 minutes). MRU using ultrafast single-short spin echo sequences is a rapid and effective technique that permits and excellent evaluation of congenital urinary tract anomalies in pediatric patients and does not require the administration of contrast media or ionizing radiation. (Author) 10 refs.

  2. Time-resolved photoluminescence spectroscopy of semiconductors for optical applications beyond the visible spectral range

    Energy Technology Data Exchange (ETDEWEB)

    Chernikov, Alexey A.

    2011-07-01

    The work discussed in this thesis is focused on the experimental studies regarding these three steps: (1) investigation of the fundamental effects, (2) characterization of new material systems, and (3) optimization of the semiconductor devices. In all three cases, the experimental technique of choice is photoluminescence (PL) spectroscopy. The thesis is organized as follows. Chapter 2 gives a summary of the PL properties of semiconductors relevant for this work. The first section deals with the intrinsic processes in an ideal direct band gap material, starting with a brief summary of the theoretical background followed by the overview of a typical PL scenario. In the second part of the chapter, the role of the lattice-vibrations, the internal electric fields as well as the influence of the band-structure and the dielectric environment are discussed. Finally, extrinsic PL properties are presented in the third section, focusing on defects and disorder in real materials. In chapter 3, the experimental realization of the spectroscopic studies is discussed. The time-resolved photoluminescence (TRPL) setup is presented, focusing on the applied excitation source, non-linear frequency mixing, and the operation of the streak camera used for the detection. In addition, linear spectroscopy setup for continous-wave (CW) PL and absorption measurements is illustrated. Chapter 4 aims at the study of the interactions between electrons and lattice-vibrations in semiconductor crystals relevant for the proper description of carrier dynamics as well as the heat-transfer processes. The presented discussion covers the experimental studies of many-body effects in phonon-assisted emission of semiconductors due to the carriercarrier Coulomb-interaction. The corresponding theoretical background is discussed in detail in chapter 2. The investigations are focused on the two main questions regarding electron-hole plasma contributions to the phonon-assisted light-matter interaction as well as

  3. Non-contrast-enhanced imaging of haemodialysis fistulas using quiescent-interval single-shot (QISS) MRA: a feasibility study

    International Nuclear Information System (INIS)

    Okur, A.; Kantarci, M.; Karaca, L.; Yildiz, S.; Sade, R.; Pirimoglu, B.; Keles, M.; Avci, A.; Çankaya, E.; Schmitt, P.

    2016-01-01

    Aim: To assess the efficiency of a novel quiescent-interval single-shot (QISS) technique for non-contrast-enhanced magnetic resonance angiography (MRA) of haemodialysis fistulas. Materials and methods: QISS MRA and colour Doppler ultrasound (CDU) images were obtained from 22 haemodialysis patients with end-stage renal disease (ESRD). A radiologist with extensive experience in vascular imaging initially assessed the fistulas using CDU. Two observers analysed each QISS MRA data set in terms of image quality, using a five-point scale ranging from 0 (non-diagnostic) to 4 (excellent), and lumen diameters of all segments were measured. Results: One hundred vascular segments were analysed for QISS MRA. Two anastomosis segments were considered non-diagnostic. None of the arterial or venous segments were evaluated as non-diagnostic. The image quality was poorer for the anastomosis level compared to the other segments (p<0.001 for arterial segments, and p<0.05 for venous segments), while no significant difference was determined for other vascular segments. Conclusion: QISS MRA has the potential to provide valuable complementary information to CDU regarding the imaging of haemodialysis fistulas. In addition, QISS non-enhanced MRA represents an alternative for assessment of haemodialysis fistulas, in which the administration of iodinated or gadolinium-based contrast agents is contraindicated. - Highlights: • Close monitoring and early intervention in hemodialysis fistulas may prolong longevity fistulas. • DopplerUS, contrast enhanced CT and MRI are using assessment of hemodialysis fistulas. • QISS nonenhanced MR angiography represents an alternative for assessment of hemodialysis fistulas.

  4. Utility of single shot fast spin echo technique in evaluating pancreaticobiliary diseases: T2-weighted image and magnetic resonance cholangiopancreatography

    International Nuclear Information System (INIS)

    Choi, Byoung Wook; Kim, Myeong Jin; Chung, Jae Bok; Ko, Heung Kyu; Kim, Dong Joon; Kim, Joo Hee; Chung, Jae Joon; Yoo, Hyung Sik; Lee, Jong Tae

    1999-01-01

    To evaluate the accuracy of T2-weighted imaging an MR cholangiopancreatography using the single shot fast spin-echo technique for evaluating pancreaticobiliary disease. Between March and July 1997, axial and coronal T2-weighted images(TE: 80-200 msec) and MR cholangiopancreatograms (TE: 800-1200 msec) were obtained in two ways [single slab (thickness: 30-50 mm) and multislice acquisition under chemical fat saturation] using SSFSE pulse sequencing in 131 cases of suspected pancreati-cobiliary disease. The accuracy of SSFSE MR imaging was assessed in 89 lesions of 74 patients [male, 48; female, 26; age range, 30-86 (mean, 59) years] confirmed surgicopathologically (50 lesions in 39 patients) and clinically (39 lesions in 35 patients). Two radiologists reviewed the MR images and diagnosis was determined by consensus. Correct diagnosis was confirmed in 84 of 89 lesions (94%). Seven lesions were falsely interpreted, false positive and false negative results accounting for two and five cases, respectively. Two pancreatic cancers were misdiagnosed as pancreatitis and a cancer of the proximal common bile duct(CBD) was interpreted as a distal CBD cancer. The sensitivity of SSFSE MR imaging for malignancy was 93 %. One CBD stone revealed by endoscopic retrograde cholangiopancreatography (ERCP) was not detected on MR images. In contrast, a stone in the CBD seen on MR images was not apparent on subsequent ERCP. Sensitivity and specificity for calculous disease were 96% and 99.7%, respectively. A benign stricture of the ampulla of Vater was falsely interpreted as normal, and correct diagnosis was possible in two falsely diagnosed cases when MR images were reviewed retrospectively. The combination of T2-weighted and cholangiographic images using SSFSE is an accurate method for diagnosing pancreatcobiliary diseases

  5. Resolving mass spectral overlaps in atom probe tomography by isotopic substitutions - case of TiSi15N.

    Science.gov (United States)

    Engberg, David L J; Johnson, Lars J S; Jensen, Jens; Thuvander, Mattias; Hultman, Lars

    2018-01-01

    Mass spectral overlaps in atom probe tomography (APT) analyses of complex compounds typically limit the identification of elements and microstructural analysis of a material. This study concerns the TiSiN system, chosen because of severe mass-to-charge-state ratio overlaps of the 14 N + and 28 Si 2+ peaks as well as the 14 N 2 + and 28 Si + peaks. By substituting 14 N with 15 N, mass spectrum peaks generated by ions composed of one or more N atoms will be shifted toward higher mass-to-charge-state ratios, thereby enabling the separation of N from the predominant Si isotope. We thus resolve thermodynamically driven Si segregation on the nanometer scale in cubic phase Ti 1- x Si x 15 N thin films for Si contents 0.08 ≤ x ≤ 0.19 by APT, as corroborated by transmission electron microscopy. The APT analysis yields a composition determination that is in good agreement with energy dispersive X-ray spectroscopy and elastic recoil detection analyses. Additionally, a method for determining good voxel sizes for visualizing small-scale fluctuations is presented and demonstrated for the TiSiN system. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Multiple-view spectrally resolved x-ray imaging observations of polar-direct-drive implosions on OMEGA

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, R. C.; Johns, H. M.; Joshi, T.; Mayes, D.; Nagayama, T. [Physics Department, University of Nevada, Reno, Nevada 89557 (United States); Hsu, S. C.; Baumgaertel, J. A.; Cobble, J.; Krasheninnikova, N. S.; Bradley, P. A.; Hakel, P.; Murphy, T. J.; Schmitt, M. J.; Shah, R. C.; Tregillis, I. L.; Wysocki, F. J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-12-15

    We present spatially, temporally, and spectrally resolved narrow- and broad-band x-ray images of polar-direct-drive (PDD) implosions on OMEGA. These self-emission images were obtained during the deceleration phase and bang time using several multiple monochromatic x-ray imaging instruments fielded along two or three quasi-orthogonal lines-of-sight, including equatorial and polar views. The instruments recorded images based on K-shell lines from a titanium tracer located in the shell as well as continuum emission. These observations constitute the first such data obtained for PDD implosions. The image data show features attributed to laser imprinting and zero-order hydrodynamics. Equatorial-view images show a “double bun” structure that is consistent with synthetic images obtained from post-processing 2D and 3D radiation-hydrodynamic simulations of the experiment. Polar-view images show a pentagonal, petal pattern that correlates with the PDD laser illumination used on OMEGA, thus revealing a 3D aspect of PDD OMEGA implosions not previously observed. Differences are noted with respect to a PDD experiment performed at National Ignition Facility.

  7. Radiation damage to amorphous carbon thin films irradiated by multiple 46.9 nm laser shots below the single-shot damage threshold

    Czech Academy of Sciences Publication Activity Database

    Juha, Libor; Hájková, Věra; Chalupský, Jaromír; Vorlíček, Vladimír; Ritucci, A.; Reale, A.; Zuppella, P.; Störmer, M.

    2009-01-01

    Roč. 105, č. 9 (2009), 093117/1-093117/3 ISSN 0021-8979 R&D Projects: GA AV ČR KAN300100702; GA MŠk LC510; GA MŠk(CZ) LC528; GA MŠk LA08024; GA AV ČR IAA400100701 Institutional research plan: CEZ:AV0Z10100523 Keywords : single-shot damage threshold * multiple-shot exposure damage * amorphous carbon * radiation erosion * capillary-discharge XUV laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.072, year: 2009

  8. Wavefront Analysis of Nonlinear Self-Amplified Spontaneous-Emission Free-Electron Laser Harmonics in the Single-Shot Regime

    Energy Technology Data Exchange (ETDEWEB)

    Bachelard, R.; Chubar, O.; Mercere, P.; Idir, M.; Couprie, M.E.; Lambert, G.; Zeitoun, Ph.; Kimura, H.; Ohashi, H.; Higashiya, A.; Yabashi, M.; Nagasono, M.; Hara, T. and Ishikawa, T.

    2011-06-08

    The single-shot spatial characteristics of the vacuum ultraviolet self-amplified spontaneous emission of a free electron laser (FEL) is measured at different stages of amplification up to saturation with a Hartmann wavefront sensor. We show that the fundamental radiation at 61.5 nm tends towards a single-mode behavior as getting closer to saturation. The measurements are found in good agreement with simulations and theory. A near diffraction limited wavefront was measured. The analysis of Fresnel diffraction through the Hartmann wavefront sensor hole array also provides some further insight for the evaluation of the FEL transverse coherence, of high importance for various applications.

  9. Infrared-spectroscopic single-shot laser mapping ellipsometry: Proof of concept for fast investigations of structured surfaces and interactions in organic thin films

    Science.gov (United States)

    Furchner, Andreas; Kratz, Christoph; Gkogkou, Dimitra; Ketelsen, Helge; Hinrichs, Karsten

    2017-11-01

    We present a novel infrared-spectroscopic laser mapping ellipsometer based on a single-shot measurement concept. The ellipsometric set-up employs multiple analyzers and detectors to simultaneously measure the sample's optical response under different analyzer azimuths. An essential component is a broadly tunable quantum cascade laser (QCL) covering the important marker region of 1800-1540 cm-1. The ellipsometer allows for fast single-wavelength as well as spectroscopic studies with thin-film sensitivity at temporal resolutions of 60 ms per wavelength. We applied the single-shot mapping ellipsometer for the characterization of metal-island enhancement surfaces as well as of molecular interactions in organic thin films. In less than 3 min, a linescan with 1600 steps revealed profile and infrared-enhancement properties of a gradient gold-island film for sensing applications. Spectroscopic measurements were performed to probe the amide I band of thin films of poly(N-isopropylacrylamide) [PNIPAAm], a stimuli-responsive polymer for bioapplications. The QCL spectra agree well with conventional FT-IR ellipsometric results, showing different band components associated with hydrogen-bond interactions between polymer and adsorbed water. Multi-wavelength ellipsometric maps were used to analyze homogeneity and surface contaminations of the polymer films.

  10. Diffusion-weighted MRI of the cervical spinal cord using a single-shot fast spin-echo technique: findings in normal subjects and in myelomalacia

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, K.; Katase, S.; Fujikawa, A.; Hachiya, J. [Department of Radiology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, 181-8611, Tokyo (Japan); Kanazawa, H. [Toshiba Corporation, 1-1-1 Shibaura, Minato-ku, 105-8001, Tokyo (Japan); Yodo, K. [Toshiba Medical Systems, 3-26-5 Hongo, Bunkyo-ku, 113-8456, Tokyo (Japan)

    2003-02-01

    We have implemented a new diffusion-weighted MRI (DWI) sequence based on the single-shot fast spin-echo technique. We hypothesised that this would add information to conventional MRI for diagnosis of lesions of the cervical spinal cord. DWI was performed using a technique in which echo collection after the application of motion-probing gradients was done in the same manner as in the single-shot fast spin-echo technique. We first imaged six healthy volunteers to demonstrate the cervical spinal cord using the sequence. Then we applied the sequence to 12 patients with cervical myelomalacia due to chronic cord compression. The spinal cord was well seen in all subjects without the distortion associated with echo-planar DWI. In the patients, lesions appeared as areas of low- or isointense signal on DWI. Calculated apparent diffusion coefficients of the lesions (3.30{+-}0.38 x 10{sup -3} mm{sup 2}/s) were significantly higher than those of normal volunteers (2.26{+-}0.08 x 10{sup -3} mm{sup 2}/s). Increased diffusion in areas of cervical myelomalacia, suggesting irreversible damage, can be detected using this technique. (orig.)

  11. A single-shot T2mapping protocol based on echo-split gradient-spin-echo acquisition and parametric multiplexed sensitivity encoding based on projection onto convex sets reconstruction.

    Science.gov (United States)

    Chu, Mei-Lan; Chang, Hing-Chiu; Oshio, Koichi; Chen, Nan-Kuei

    2018-01-01

    To develop a high-speed T 2 mapping protocol that is capable of accurately measuring T 2 relaxation time constants from a single-shot acquisition. A new echo-split single-shot gradient-spin-echo (GRASE) pulse sequence is developed to acquire multicontrast data while suppressing signals from most nonprimary echo pathways in Carr-Purcell-Meiboom-Gill (CPMG) echoes. Residual nonprimary pathway signals are taken into consideration when performing T 2 mapping using a parametric multiplexed sensitivity encoding based on projection onto convex sets (parametric-POCSMUSE) reconstruction method that incorporates extended phase graph modeling of GRASE signals. The single-shot echo-split GRASE-based T 2 mapping procedure was evaluated in human studies at 3 Tesla. The acquired data were compared with reference data obtained with a more time-consuming interleaved spin-echo echo planar imaging protocol. T 2 maps derived from conventional single-shot GRASE scans, in which nonprimary echo pathways were not appropriately addressed, were also evaluated. Using the developed single-shot T 2 mapping protocol, quantitatively accurate T 2 maps can be obtained with a short scan time (parametric-POCSMUSE reconstruction. Magn Reson Med 79:383-393, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  12. Detailed Time-Resolved Spectral Analysis of Ultra-Fast Four-Wave Mixing in Silicon Nanowires

    DEFF Research Database (Denmark)

    Ma, M.; Galili, Michael; Oxenløwe, Leif Katsuo

    2011-01-01

    We present an experimental set-up for measuring spectral and temporal nonlinear responses of silicon nanowires. We find that switching windows are independent of device lengths and there is no memory effect of the FWM response.......We present an experimental set-up for measuring spectral and temporal nonlinear responses of silicon nanowires. We find that switching windows are independent of device lengths and there is no memory effect of the FWM response....

  13. Single-shot characterization of enzymatic reaction constants Km and kcat by an acoustic-driven, bubble-based fast micromixer

    Science.gov (United States)

    Xie, Yuliang; Ahmed, Daniel; Lapsley, Michael Ian; Lin, Sz-Chin Steven; Nawaz, Ahmad Ahsan; Wang, Lin; Huang, Tony Jun

    2014-01-01

    In this work we present an acoustofluidic approach for rapid, single-shot characterization of enzymatic reaction constants Km and kcat. The acoustofluidic design involves a bubble anchored in a horseshoe structure which can be stimulated by a piezoelectric transducer to generate vortices in the fluid. The enzyme and substrate can thus be mixed rapidly, within 100 ms, by the vortices to yield the product. Enzymatic reaction constants Km and kcat can then be obtained from the reaction rate curves for different concentrations of substrate while holding the enzyme concentration constant. We studied the enzymatic reaction for β-galactosidase and its substrate (resorufin β-D-galactopyranoside) and found Km and kcat to be 333±130 =M and 64±8 s−1 respectively, which are in agreement with published data. Our approach is valuable for studying the kinetics of high-speed enzymatic reactions and other chemical reactions. PMID:22880882

  14. Observation of single artificial atom optical bi-stability and its application to single-shot readout in circuit quantum electrodynamics

    Science.gov (United States)

    Sun, Luyan; Ginossar, Eran; Guy, Mikhael; Reed, Matthew; Paik, Hanhee; Bishop, Lev S.; Sears, Adam; Petrenko, Andrei; Brecht, Teresa; Frunzio, Luigi; Girvin, Steven; Schoelkopf, Robert

    2012-02-01

    The high power transient behavior of superconducting qubit-cavity systems has recently been used to perform high fidelity readout of transmon qubits [1]. We show that in the steady state, the system exhibits a bi-stable behavior that can be observed on the single-shot level, with the cavity state switching stochastically between dim and bright states. The switching times are shown to be long compared to the cavity and qubit lifetimes. Some features of the bi-stability can be explained by mean field theory, while its switching dynamics is studied with large scale simulations. Understanding these dynamics will be crucial for studying the transient response, an essential aspect of the qubit readout. We will discuss progress on optimizing readout by shaping the measurement pulse. [4pt] [1] M. D. Reed, L. DiCarlo, B. R. Johnson, L. Sun, D. I. Schuster, L. Frunzio, and R. J. Schoelkopf, Phys. Rev. Lett. 105, 173601 (2010)

  15. Clinical single-shot diffusion-weighted MRI of the human brain on a short-bore medium-field imager

    International Nuclear Information System (INIS)

    Loevblad, K.O.; Remonda, L.; Schneider, J.; Goenner, F.; Schroth, G.; Heid, O.

    1999-01-01

    Diffusion-weighted MRI (DWI) is becoming important for assessment of acute stroke. Until recently single-shot DWI required expensive technology such as echo-planar imaging (EPI) available only at some research sites. A new medium-field (1.0 T) short-bore MR imager has been developed with which DWI data sets can be acquired. We prospectively studied 169 patients on this 1.0 T commercial system. After conventional imaging, DWI was performed with a single-shot multi-slice sequence with b values 0 an 900 s/mm 2 , and with the gradients switched in three directions. The apparent diffusion coefficients were calculated with online calculation software. There were 50 patients with totally normal MRI, and 17 had strokes, these strokes were detected as areas of high signal on the images at a maximal b value. There was a drop in the ADC in ischaemic regions: in subacute infarcts, the values were between 0.41 and 0.531 x 10 - 3 mm 2 /s. In old infarcts the ADC was 1.15 x 10 - 3 mm 2 /s. Cerebrospinal fluid (CSF) gave low signal whereas areas in the brain had more intermediate intensities (CSF: 3.00; deep white matter: 0.75, cortical grey matter: 0.80, basal ganglia (thalamus): 0.70 and cerebellar white matter: 0.65 x 10 - 3 mm 2 /s). Anisotropy was detected as areas of restricted diffusion along the tracts. These preliminary data show that DWI can be aquired successfully on a medium-field short-bore system. This should allow the technique to be implemented at more sites, therefore facilitating the diagnosis of acute stroke and rendering early intervention feasible. (orig.)

  16. Quantitative analysis of the breath-holding half-Fourier acquisition single-shot turbo spin-echo technique in abdominal MRI

    Science.gov (United States)

    Dong, Kyung-Rae; Goo, Eun-Hoe; Lee, Jae-Seung; Chung, Woon-Kwan

    2013-01-01

    A consecutive series of 50 patients (28 males and 22 females) who underwent hepatic magnetic resonance imaging (MRI) from August to December 2011 were enrolled in this study. The appropriate parameters for abdominal MRI scans were determined by comparing the images (TE = 90 and 128 msec) produced using the half-Fourier acquisition single-shot turbo spin-echo (HASTE) technique at different signal acquisition times. The patients consisted of 15 normal patients, 25 patients with a hepatoma and 10 patients with a hemangioma. The TE in a single patient was set to either 90 msec or 128 msec. This was followed by measurements using the four normal rendering methods of the biliary tract system and the background signal intensity using the maximal signal intensity techniques in the liver, spleen, pancreas, gallbladder, fat, muscles and hemangioma. The signal-to-noise and the contrast-to-noise ratios were obtained. The image quality was assessed subjectively, and the results were compared. The signal-to-noise and the contrast-to-noise ratios were significantly higher at TE = 128 msec than at TE = 90 when diseases of the liver, spleen, pancreas, gallbladder, and fat and muscles, hepatocellular carcinomas and hemangiomas, and rendering the hepatobiliary tract system based on the maximum signal intensity technique were involved (p breath-hold half-Fourier acquisition single-shot turbo spin-echo (HASTE) was found to be effective in illustrating the abdominal organs for TE = 128 msec. Overall, the image quality at TE = 128 msec was better than that at TE = 90 msec due to the improved signal-to-noise (SNR) and contrast-to-noise (CNR) ratios. Overall, the HASTE technique for abdominal MRI based on a high-magnetic field (3.0 T) at a TE of 128 msec can provide useful data.

  17. Structural evolution in the isothermal crystallization process of the molten nylon 10/10 traced by time-resolved infrared spectral measurements and synchrotron SAXS/WAXD measurements

    International Nuclear Information System (INIS)

    Tashiro, Kohji; Nishiyama, Asami; Tsuji, Sawako; Hashida, Tomoko; Hanesaka, Makoto; Takeda, Shinichi; Weiyu, Cao; Reddy, Kummetha Raghunatha; Masunaga, Hiroyasu; Sasaki, Sono; Takata, Masaki; Ito, Kazuki

    2009-01-01

    The structural evolution in the isothermal crystallization process of nylon 10/10 from the melt has been clarified concretely on the basis of the time-resolved infrared spectral measurement as well as the synchrotron wide-angle and small-angle X-ray scattering measurements. Immediately after the temperature jump from the melt to the crystallization point, the isolated domains consisting of the hydrogen-bonded random coils were formed in the melt, as revealed by Guinier plot of SAXS data and the infrared spectral data. With the passage of time these domains approached each other with stronger correlation as analyzed by Debye-Bueche equation. These domains transformed finally to the stacked crystalline lamellae, in which the conformationally-regularized methylene segments of the CO sides were connected each other by stronger intermolecular hydrogen bonds to form the crystal lattice.

  18. A first-principles model of spectrally resolved 5.3 μm nitric oxide emission from aurorally dosed nighttime high-altitude terrestrial thermosphere

    Science.gov (United States)

    Duff, J. W.; Dothe, H.; Sharma, R. D.

    2005-09-01

    The spectrally resolved nighttime 5.3 μm emission from NO observed by the Cryogenic Infrared Radiance Instrumentation for Shuttle (CIRRIS-1A) experiment aboard space shuttle Discovery at 195 km tangent altitude during a strong auroral event is modeled using a first-principles kinetics model. An appropriate SHARC (Strategic High Altitude Radiance Code) Atmospheric Generator (SAG) is dosed with an IBC class III aurora. The spectrally resolved fundamental vibration-rotation band emissions from NO around 5.3 μm resulting from impacts of ambient NO with O as well as reactions of N atoms with O2 are calculated under steady state conditions. The calculated results, using a local translational temperature derived from the observed spectrum, are in excellent agreement with the CIRRIS-1A observations, validating our model. The importance of the accurate nascent vibrational and rotational distribution of chemically produced NO as well as the collisonally induced rotation-to-vibration relaxation of rotationally hot NO is pointed out.

  19. Using 2D correlation analysis to enhance spectral information available from highly spatially resolved AFM-IR spectra

    Science.gov (United States)

    Marcott, Curtis; Lo, Michael; Hu, Qichi; Kjoller, Kevin; Boskey, Adele; Noda, Isao

    2014-07-01

    The recent combination of atomic force microscopy and infrared spectroscopy (AFM-IR) has led to the ability to obtain IR spectra with nanoscale spatial resolution, nearly two orders-of-magnitude better than conventional Fourier transform infrared (FT-IR) microspectroscopy. This advanced methodology can lead to significantly sharper spectral features than are typically seen in conventional IR spectra of inhomogeneous materials, where a wider range of molecular environments are coaveraged by the larger sample cross section being probed. In this work, two-dimensional (2D) correlation analysis is used to examine position sensitive spectral variations in datasets of closely spaced AFM-IR spectra. This analysis can reveal new key insights, providing a better understanding of the new spectral information that was previously hidden under broader overlapped spectral features. Two examples of the utility of this new approach are presented. Two-dimensional correlation analysis of a set of AFM-IR spectra were collected at 200-nm increments along a line through a nucleation site generated by remelting a small spot on a thin film of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). There are two different crystalline carbonyl band components near 1720 cm-1 that sequentially disappear before a band at 1740 cm-1 due to more disordered material appears. In the second example, 2D correlation analysis of a series of AFM-IR spectra spaced every 1 μm of a thin cross section of a bone sample measured outward from an osteon center of bone growth. There are many changes in the amide I and phosphate band contours, suggesting changes in the bone structure are occurring as the bone matures.

  20. Spectrally resolved modulated infrared radiometry of photothermal, photocarrier, and photoluminescence response of CdSe crystals: Determination of optical, thermal, and electronic transport parameters

    Energy Technology Data Exchange (ETDEWEB)

    Pawlak, M., E-mail: mpawlak@fizyka.umk.pl [Institute of Physics, Nicolaus Copernicus University, Grudziadzka, 87-100 Torun (Poland); Chirtoc, M.; Horny, N. [Multiscale Thermophysics Lab. GRESPI, Université de Reims Champagne Ardenne URCA, Moulin de la Housse BP 1039, 51687 Reims (France); Pelzl, J. [Institut für Experimentalphysik VI, Ruhr-Universität Bochum, 44801 Bochum (Germany)

    2016-03-28

    Spectrally resolved modulated infrared radiometry (SR-MIRR) with super-band gap photoexcitation is introduced as a self-consistent method for semiconductor characterization (CdSe crystals grown under different conditions). Starting from a theoretical model combining the contributions of the photothermal (PT) and photocarrier (PC) signal components, an expression is derived for the thermal-to-plasma wave transition frequency f{sub tc} which is found to be wavelength-independent. The deviation of the PC component from the model at high frequency is quantitatively explained by a quasi-continuous distribution of carrier recombination lifetimes. The integral, broad frequency band (0.1 Hz–1 MHz) MIRR measurements simultaneously yielded the thermal diffusivity a, the effective IR optical absorption coefficient β{sub eff}, and the bulk carrier lifetime τ{sub c}. Spectrally resolved frequency scans were conducted with interchangeable IR bandpass filters (2.2–11.3 μm) in front of the detector. The perfect spectral match of the PT and PC components is the direct experimental evidence of the key assumption in MIRR that de-exciting carriers are equivalent to blackbody (Planck) radiators. The exploitation of the β spectrum measured by MIRR allowed determining the background (equilibrium) free carrier concentration n{sub 0}. At the shortest wavelength (3.3 μm), the photoluminescence (PL) component supersedes the PC one and has distinct features. The average sample temperature influences the PC component but not the PT one.

  1. Focal liver lesion detection and characterization: Comparison of non-contrast enhanced and SPIO-enhanced diffusion-weighted single-shot spin echo echo planar and turbo spin echo T2-weighted imaging

    NARCIS (Netherlands)

    Coenegrachts, Kenneth; Matos, Celso; ter Beek, Léon; Metens, Thierry; Haspeslagh, Marc; Bipat, Shandra; Stoker, Jaap; Rigauts, Hans

    2009-01-01

    Purpose: To compare lesion conspicuity and image quality between single-shot spin echo echo planar imaging (SS SE-EPI) before, immediately and 5 min after intravenous (IV) injection of superparamagnetic iron oxide (SPIO) for detecting and characterizing focal liver lesions (FLLs). Materials and

  2. Optimization of mass spectrometric parameters improve the identification performance of capillary zone electrophoresis for single-shot bottom-up proteomics analysis.

    Science.gov (United States)

    Zhang, Zhenbin; Dovichi, Norman J

    2018-02-25

    The effects of MS1 injection time, MS2 injection time, dynamic exclusion time, intensity threshold, and isolation width were investigated on the numbers of peptide and protein identifications for single-shot bottom-up proteomics analysis using CZE-MS/MS analysis of a Xenopus laevis tryptic digest. An electrokinetically pumped nanospray interface was used to couple a linear-polyacrylamide coated capillary to a Q Exactive HF mass spectrometer. A sensitive method that used a 1.4 Th isolation width, 60,000 MS2 resolution, 110 ms MS2 injection time, and a top 7 fragmentation produced the largest number of identifications when the CZE loading amount was less than 100 ng. A programmable autogain control method (pAGC) that used a 1.4 Th isolation width, 15,000 MS2 resolution, 110 ms MS2 injection time, and top 10 fragmentation produced the largest number of identifications for CZE loading amounts greater than 100 ng; 7218 unique peptides and 1653 protein groups were identified from 200 ng by using the pAGC method. The effect of mass spectrometer conditions on the performance of UPLC-MS/MS was also investigated. A fast method that used a 1.4 Th isolation width, 30,000 MS2 resolution, 45 ms MS2 injection time, and top 12 fragmentation produced the largest number of identifications for 200 ng UPLC loading amount (6025 unique peptides and 1501 protein groups). This is the first report where the identification number for CZE surpasses that of the UPLC at the 200 ng loading level. However, more peptides (11476) and protein groups (2378) were identified by using UPLC-MS/MS when the sample loading amount was increased to 2 μg with the fast method. To exploit the fast scan speed of the Q-Exactive HF mass spectrometer, higher sample loading amounts are required for single-shot bottom-up proteomics analysis using CZE-MS/MS. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. [In-phase and out-of-phase single-shot magnetization-prepared gradient recalled echo: description and optimization of technique at 1.5 T].

    Science.gov (United States)

    Ramalho, M; Herédia, V; de Campos, R O P; de Toni, M; Dale, B M; Semelka, R C

    2014-01-01

    To implement in-phase and out-of-phase (IP/OP) techniques with Magnetization-Prepared Gradient Recalled Echo (MP-GRE) and to evaluate the feasibility and diagnostic image quality among pre and post-optimized MP-GRE sequences, including patients unable to cooperate with breath-hold requirements. Institutional review board approval with waiver of informed consent was obtained for this HIPAA-compliant retrospective study. Two groups of patients were included in the study, before and after optimization of MP-GRE parameters, with seventy-three (24 noncooperative/49 cooperative) and sixty-four (22 noncooperative/42 cooperative) consecutive patients, respectively. The motion-insensitive sequence used in this study was a single-shot 2D MP-GRE. Two radiologists qualitatively evaluated the sequences to identify the presence of phase cancellation artifact in OP images and to determine image quality, extent of artifacts (respiratory ghosting, bounce-point artifact, spatial misregistration and pixel graininess) and lesion conspicuity on the various sequences. The ability to visually detect liver steatosis and fatty adrenal adenomas was evaluated. Qualitative analyses were compared using the Wilcoxon and Mann-Whitney tests. There were statistically significant differences between all MP-GRE sequences concerning phase cancellation artifact (P<.0001) which was present in MP-GRE OP sequences and negligible to absent in the pre (IP1) and post-optimized (IP2) MP-GRE IP sequences, respectively, in all patients. Bounce point artifacts were significantly more pronounced in MP-GRE IP1 (P<.0001). Spatial misregistration was slightly more prominent in noncooperative patients with MP-GRE IP2 (P=.0027). MP-GRE OP and MP-GRE IP2 showed significantly higher overall image quality (P<.0001). MP-GRE sequences subjectively identified hepatic steatosis (n=20) and adrenal adenomas (n=5) based on signal loss from IP to OP sequence. Single shot IP/OP MP-GRE is feasible and allows motion resistant

  4. Single shot spinal anesthesia with very low hyperbaric bupivacaine dose (3.75 mg) for hip fracture repair surgery in the elderly. A randomized, double blinded study.

    Science.gov (United States)

    Errando, C L; Peiró, C M; Gimeno, A; Soriano, J L

    2014-11-01

    Single shot spinal anesthesia is used worldwide for hip fracture repair surgery in the elderly. Arterial hypotension is a frequent adverse effect. We hypothesized that lowering local anesthetics dose could decrease the incidence of arterial hypotension, while maintaining quality of surgical anesthesia. In a randomized double blinded study, 66 patients over the age of 65 years, with hip fracture needing surgical repair, were assigned to B0.5 group 7.5mg hyperbaric bupivacaine 5mg/ml (control group), and B0.25 group 3.75mg hyperbaric bupivacaine 2.5mg/ml (study group). Sensory and motor block level, and hemodynamic parameters including blood presure, heart rate and vasopressor dose administration were registered, along with rescue anesthesia needs, the feasibility of surgery, its duration, and regression time of sensory anesthesia to T12. After exclusions, 61 patients were included in the final analysis. Arterial hypotension incidence was lower in the B0.25 group (at the 5, 10, and 15min determinations), and a lower amount of vasopressor drugs was needed (mean accumulated ephedrine dose 1.6mg vs. 8.7mg in the B0.5 group, p<0.002). Sensory block regression time to T12 was shorter in the B0.25 group, mean 78.6±23.6 (95% CI 51.7-110.2)min vs. 125.5±37.9 (95% CI 101.7-169.4)min in the B0.5 group, p=0.033. All but one patient in the B0.25 group were operated on under the anesthetic procedure first intended. No rescue anesthesia was needed. Lowering bupivacaine dose for single shot spinal anesthesia for hip fracture repair surgery in elderly patients was effective in decreasing the occurrence of arterial hypotension and vasopressor use, while intraoperative quality remained. Copyright © 2014 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. RESOLVING THE ACTIVE GALACTIC NUCLEUS AND HOST EMISSION IN THE MID-INFRARED USING A MODEL-INDEPENDENT SPECTRAL DECOMPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Hernán-Caballero, Antonio; Alonso-Herrero, Almudena [Instituto de Física de Cantabria, CSIC-UC, Avenida de los Castros s/n, E-39005, Santander (Spain); Hatziminaoglou, Evanthia [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München (Germany); Spoon, Henrik W. W. [Cornell University, CRSR, Space Sciences Building, Ithaca, NY 14853 (United States); Almeida, Cristina Ramos [Instituto de Astrofísica de Canarias, Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Santos, Tanio Díaz [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Hönig, Sebastian F. [School of Physics and Astronomy, University of Southampton, Southampton SO18 1BJ (United Kingdom); González-Martín, Omaira [Centro de Radioastronomía y Astrofísica (CRyA-UNAM), 3-72 (Xangari), 8701, Morelia (Mexico); Esquej, Pilar, E-mail: ahernan@ifca.unican.es [Departamento de Astrofísica, Facultad de CC. Físicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2015-04-20

    We present results on the spectral decomposition of 118 Spitzer Infrared Spectrograph (IRS) spectra from local active galactic nuclei (AGNs) using a large set of Spitzer/IRS spectra as templates. The templates are themselves IRS spectra from extreme cases where a single physical component (stellar, interstellar, or AGN) completely dominates the integrated mid-infrared emission. We show that a linear combination of one template for each physical component reproduces the observed IRS spectra of AGN hosts with unprecedented fidelity for a template fitting method with no need to model extinction separately. We use full probability distribution functions to estimate expectation values and uncertainties for observables, and find that the decomposition results are robust against degeneracies. Furthermore, we compare the AGN spectra derived from the spectral decomposition with sub-arcsecond resolution nuclear photometry and spectroscopy from ground-based observations. We find that the AGN component derived from the decomposition closely matches the nuclear spectrum with a 1σ dispersion of 0.12 dex in luminosity and typical uncertainties of ∼0.19 in the spectral index and ∼0.1 in the silicate strength. We conclude that the emission from the host galaxy can be reliably removed from the IRS spectra of AGNs. This allows for unbiased studies of the AGN emission in intermediate- and high-redshift galaxies—currently inaccesible to ground-based observations—with archival Spitzer/IRS data and in the future with the Mid-InfraRed Instrument of the James Webb Space Telescope. The decomposition code and templates are available at http://denebola.org/ahc/deblendIRS.

  6. Measuring polarization dependent dispersion of non-polarizing beam splitter cubes with spectrally resolved white light interferometry

    Science.gov (United States)

    Csonti, K.; Hanyecz, V.; Mészáros, G.; Kovács, A. P.

    2017-06-01

    In this work we have measured the group-delay dispersion of an empty Michelson interferometer for s- and p-polarized light beams applying two different non-polarizing beam splitter cubes. The interference pattern appearing at the output of the interferometer was resolved with two different spectrometers. It was found that the group-delay dispersion of the empty interferometer depended on the polarization directions in case of both beam splitter cubes. The results were checked by inserting a glass plate in the sample arm of the interferometer and similar difference was obtained for the two polarization directions. These results show that to reach high precision, linearly polarized white light beam should be used and the residual dispersion of the empty interferometer should be measured at both polarization directions.

  7. Nonenhanced ECG-gated quiescent-interval single-shot MRA (QISS-MRA) of the lower extremities: Comparison with contrast-enhanced MRA

    Energy Technology Data Exchange (ETDEWEB)

    Klasen, J. [Department of Diagnostic and Interventional Radiology, University of Duesseldorf, Medical Faculty, Duesseldorf (Germany); Blondin, D., E-mail: blondin@med.uni-duesseldorf.de [Department of Diagnostic and Interventional Radiology, University of Duesseldorf, Medical Faculty, Duesseldorf (Germany); Schmitt, P. [Siemens AG, Healthcare Sector, Erlangen (Germany); Bi, X. [Siemens Healthcare, Chicago, IL (United States); Sansone, R. [Department of Cardiology, University of Duesseldorf, Medical Faculty, Duesseldorf (Germany); Wittsack, H.-J.; Kroepil, P.; Quentin, M.; Kuhlemann, J.; Miese, F. [Department of Diagnostic and Interventional Radiology, University of Duesseldorf, Medical Faculty, Duesseldorf (Germany); Heiss, C.; Kelm, M. [Department of Cardiology, University of Duesseldorf, Medical Faculty, Duesseldorf (Germany); Antoch, G.; Lanzman, R.S. [Department of Diagnostic and Interventional Radiology, University of Duesseldorf, Medical Faculty, Duesseldorf (Germany)

    2012-05-15

    Aim: To evaluate electrocardiogram (ECG)-gated quiescent-interval single-shot magnetic resonance angiography (QISS-MRA) for nonenhanced assessment of peripheral artery occlusive disease (PAOD) using contrast-enhanced MRA (CE-MRA) as the reference standard. Materials and methods: Twenty-seven patients (mean age 66.6 {+-} 10.8 years) with PAOD were included in the study. QISS-MRA and CE-MRA of the lower extremity were performed using a 1.5 T MR scanner. In each patient, subjective image quality and the degree of stenosis were evaluated on a four-point scale for 15 predefined arterial segments. Results: Twenty-five of the 27 patients were considered for analysis. Subjective image quality of QISS-MRA was significantly lower for the distal aorta, pelvic arteries, and femoral arteries as compared to CE-MRA (p < 0.01), while no significant difference was found for other vascular segments. The degree of stenosis was overestimated with QISS-MRA in 23 of 365 (6.3%) segments and underestimated in two of 365 (0.5%) segments. As compared to CE-MRA, QISS-MRA had a high sensitivity (98.6%), specificity (96%) as well as positive and negative predictive value (88.7 and 99.6%, respectively) for the detection of significant stenosis ({>=}50%). Conclusion: ECG-gated QISS-MRA is a promising imaging technique for reliable assessment of PAOD without the use of contrast material.

  8. Single-shot characterization of enzymatic reaction constants Km and kcat by an acoustic-driven, bubble-based fast micromixer.

    Science.gov (United States)

    Xie, Yuliang; Ahmed, Daniel; Lapsley, Michael Ian; Lin, Sz-Chin Steven; Nawaz, Ahmad Ahsan; Wang, Lin; Huang, Tony Jun

    2012-09-04

    In this work we present an acoustofluidic approach for rapid, single-shot characterization of enzymatic reaction constants K(m) and k(cat). The acoustofluidic design involves a bubble anchored in a horseshoe structure which can be stimulated by a piezoelectric transducer to generate vortices in the fluid. The enzyme and substrate can thus be mixed rapidly, within 100 ms, by the vortices to yield the product. Enzymatic reaction constants K(m) and k(cat) can then be obtained from the reaction rate curves for different concentrations of substrate while holding the enzyme concentration constant. We studied the enzymatic reaction for β-galactosidase and its substrate (resorufin-β-D-galactopyranoside) and found K(m) and k(cat) to be 333 ± 130 μM and 64 ± 8 s(-1), respectively, which are in agreement with published data. Our approach is valuable for studying the kinetics of high-speed enzymatic reactions and other chemical reactions.

  9. The value of single-shot turbo spin-echo diffusion-weighted MR imaging in the detection of middle ear cholesteatoma

    International Nuclear Information System (INIS)

    De Foer, Bert; Bernaerts, Anja; Maes, Joachim; Deckers, Filip; Pouillon, Marc; Vercruysse, Jean-Philippe; Somers, Thomas; Offeciers, Erwin; Michiels, Johan; Casselman, Jan W.

    2007-01-01

    Single-shot (SS) turbo spin-echo (TSE) diffusion-weighted (DW) magnetic resonance imaging (MRI) is a non echo-planar imaging (EPI) technique recently reported for the evaluation of middle ear cholesteatoma. We prospectively evaluated a SS TSE DW sequence in detecting congenital or acquired middle ear cholesteatoma and evaluated the size of middle ear cholesteatoma detectable with this sequence. The aim of this study was not to differentiate between inflammatory tissue and cholesteatoma using SS TSE DW imaging. A group of 21 patients strongly suspected clinically and/or otoscopically of having a middle ear cholesteatoma without any history of prior surgery were evaluated with late post-gadolinium MRI including this SS TSE DW sequence. A total of 21 middle ear cholesteatomas (5 congenital and 16 acquired) were found at surgery with a size varying between 2 and 19 mm. Hyperintense signal on SS TSE DW imaging compatible with cholesteatoma was found in 19 patients. One patient showed no hyperintensity due to autoevacuation of the cholesteatoma sac into the external auditory canal. Another patient showed no hyperintensity because of motion artifacts. This study shows the high sensitivity of this SS TSE DW sequence in detecting small middle ear cholesteatomas, with a size limit as small as 2 mm. (orig.)

  10. Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout.

    Science.gov (United States)

    Sukachev, D D; Sipahigil, A; Nguyen, C T; Bhaskar, M K; Evans, R E; Jelezko, F; Lukin, M D

    2017-12-01

    The negatively charged silicon-vacancy (SiV^{-}) color center in diamond has recently emerged as a promising system for quantum photonics. Its symmetry-protected optical transitions enable the creation of indistinguishable emitter arrays and deterministic coupling to nanophotonic devices. Despite this, the longest coherence time associated with its electronic spin achieved to date (∼250  ns) has been limited by coupling to acoustic phonons. We demonstrate coherent control and suppression of phonon-induced dephasing of the SiV^{-} electronic spin coherence by 5 orders of magnitude by operating at temperatures below 500 mK. By aligning the magnetic field along the SiV^{-} symmetry axis, we demonstrate spin-conserving optical transitions and single-shot readout of the SiV^{-} spin with 89% fidelity. Coherent control of the SiV^{-} spin with microwave fields is used to demonstrate a spin coherence time T_{2} of 13 ms and a spin relaxation time T_{1} exceeding 1 s at 100 mK. These results establish the SiV^{-} as a promising solid-state candidate for the realization of quantum networks.

  11. Readout-Segmented Echo-Planar Imaging in Diffusion-Weighted MR Imaging in Breast Cancer: Comparison with Single-Shot Echo-Planar Imaging in Image Quality

    International Nuclear Information System (INIS)

    Kim, Yun Ju; Kim, Sung Hun; Kang, Bong Joo; Park, Chang Suk; Kim, Hyeon Sook; Son, Yo Han; Porter, David Andrew; Song, Byung Joo

    2014-01-01

    The purpose of this study was to compare the image quality of standard single-shot echo-planar imaging (ss-EPI) and that of readout-segmented EPI (rs-EPI) in patients with breast cancer. Seventy-one patients with 74 breast cancers underwent both ss-EPI and rs-EPI. For qualitative comparison of image quality, three readers independently assessed the two sets of diffusion-weighted (DW) images. To evaluate geometric distortion, a comparison was made between lesion lengths derived from contrast enhanced MR (CE-MR) images and those obtained from the corresponding DW images. For assessment of image parameters, signal-to-noise ratio (SNR), lesion contrast, and contrast-to-noise ratio (CNR) were calculated. The rs-EPI was superior to ss-EPI in most criteria regarding the qualitative image quality. Anatomical structure distinction, delineation of the lesion, ghosting artifact, and overall image quality were significantly better in rs-EPI. Regarding the geometric distortion, lesion length on ss-EPI was significantly different from that of CE-MR, whereas there were no significant differences between CE-MR and rs-EPI. The rs-EPI was superior to ss-EPI in SNR and CNR. Readout-segmented EPI is superior to ss-EPI in the aspect of image quality in DW MR imaging of the breast

  12. Nonenhanced ECG-gated quiescent-interval single-shot MRA (QISS-MRA) of the lower extremities: Comparison with contrast-enhanced MRA

    International Nuclear Information System (INIS)

    Klasen, J.; Blondin, D.; Schmitt, P.; Bi, X.; Sansone, R.; Wittsack, H.-J.; Kröpil, P.; Quentin, M.; Kuhlemann, J.; Miese, F.; Heiss, C.; Kelm, M.; Antoch, G.; Lanzman, R.S.

    2012-01-01

    Aim: To evaluate electrocardiogram (ECG)-gated quiescent-interval single-shot magnetic resonance angiography (QISS-MRA) for nonenhanced assessment of peripheral artery occlusive disease (PAOD) using contrast-enhanced MRA (CE-MRA) as the reference standard. Materials and methods: Twenty-seven patients (mean age 66.6 ± 10.8 years) with PAOD were included in the study. QISS-MRA and CE-MRA of the lower extremity were performed using a 1.5 T MR scanner. In each patient, subjective image quality and the degree of stenosis were evaluated on a four-point scale for 15 predefined arterial segments. Results: Twenty-five of the 27 patients were considered for analysis. Subjective image quality of QISS-MRA was significantly lower for the distal aorta, pelvic arteries, and femoral arteries as compared to CE-MRA (p < 0.01), while no significant difference was found for other vascular segments. The degree of stenosis was overestimated with QISS-MRA in 23 of 365 (6.3%) segments and underestimated in two of 365 (0.5%) segments. As compared to CE-MRA, QISS-MRA had a high sensitivity (98.6%), specificity (96%) as well as positive and negative predictive value (88.7 and 99.6%, respectively) for the detection of significant stenosis (≥50%). Conclusion: ECG-gated QISS-MRA is a promising imaging technique for reliable assessment of PAOD without the use of contrast material.

  13. Evidence of non-LTE Effects in Mesospheric Water Vapor from Spectrally-Resolved Emissions Observed by CIRRIS-1A

    Science.gov (United States)

    Zhou, D. K.; Mlynczak, M. G.; Lopez-Puertas, M.; Zaragoza, G.

    1999-01-01

    Evidence of non-LTE effects in mesospheric water vapor as determined by infrared spectral emission measurements taken from the space shuttle is reported. A cryogenic Michelson interferometer in the CIRRIS-1A shuttle payload yielded high quality, atmospheric infrared spectra. These measurements demonstrate the enhanced daytime emissions of H2O (020-010) which are the result of non-LTE processes and in agreement with non-LTE models. The radiance ratios of H2O (010 to 000) and (020 to 010) Q(1) transitions during daytime are compared with non-LTE model calculations to assess the vibration-to-vibration exchange rate between H2O and O2 in the mesosphere. An exchange rate of 1.2 x 10(exp -12)cc/s is derived.

  14. Spectral- and size-resolved mass absorption efficiency of mineral dust aerosols in the shortwave spectrum: a simulation chamber study

    Science.gov (United States)

    Caponi, Lorenzo; Formenti, Paola; Massabó, Dario; Di Biagio, Claudia; Cazaunau, Mathieu; Pangui, Edouard; Chevaillier, Servanne; Landrot, Gautier; Andreae, Meinrat O.; Kandler, Konrad; Piketh, Stuart; Saeed, Thuraya; Seibert, Dave; Williams, Earle; Balkanski, Yves; Prati, Paolo; Doussin, Jean-François

    2017-06-01

    This paper presents new laboratory measurements of the mass absorption efficiency (MAE) between 375 and 850 nm for 12 individual samples of mineral dust from different source areas worldwide and in two size classes: PM10. 6 (mass fraction of particles of aerodynamic diameter lower than 10.6 µm) and PM2. 5 (mass fraction of particles of aerodynamic diameter lower than 2.5 µm). The experiments were performed in the CESAM simulation chamber using mineral dust generated from natural parent soils and included optical and gravimetric analyses. The results show that the MAE values are lower for the PM10. 6 mass fraction (range 37-135 × 10-3 m2 g-1 at 375 nm) than for the PM2. 5 (range 95-711 × 10-3 m2 g-1 at 375 nm) and decrease with increasing wavelength as λ-AAE, where the Ångström absorption exponent (AAE) averages between 3.3 and 3.5, regardless of size. The size independence of AAE suggests that, for a given size distribution, the dust composition did not vary with size for this set of samples. Because of its high atmospheric concentration, light absorption by mineral dust can be competitive with black and brown carbon even during atmospheric transport over heavy polluted regions, when dust concentrations are significantly lower than at emission. The AAE values of mineral dust are higher than for black carbon (˜ 1) but in the same range as light-absorbing organic (brown) carbon. As a result, depending on the environment, there can be some ambiguity in apportioning the aerosol absorption optical depth (AAOD) based on spectral dependence, which is relevant to the development of remote sensing of light-absorbing aerosols and their assimilation in climate models. We suggest that the sample-to-sample variability in our dataset of MAE values is related to regional differences in the mineralogical composition of the parent soils. Particularly in the PM2. 5 fraction, we found a strong linear correlation between the dust light-absorption properties and elemental

  15. Spectral- and size-resolved mass absorption efficiency of mineral dust aerosols in the shortwave spectrum: a simulation chamber study

    Directory of Open Access Journals (Sweden)

    L. Caponi

    2017-06-01

    Full Text Available This paper presents new laboratory measurements of the mass absorption efficiency (MAE between 375 and 850 nm for 12 individual samples of mineral dust from different source areas worldwide and in two size classes: PM10. 6 (mass fraction of particles of aerodynamic diameter lower than 10.6 µm and PM2. 5 (mass fraction of particles of aerodynamic diameter lower than 2.5 µm. The experiments were performed in the CESAM simulation chamber using mineral dust generated from natural parent soils and included optical and gravimetric analyses. The results show that the MAE values are lower for the PM10. 6 mass fraction (range 37–135  ×  10−3 m2 g−1 at 375 nm than for the PM2. 5 (range 95–711  ×  10−3 m2 g−1 at 375 nm and decrease with increasing wavelength as λ−AAE, where the Ångström absorption exponent (AAE averages between 3.3 and 3.5, regardless of size. The size independence of AAE suggests that, for a given size distribution, the dust composition did not vary with size for this set of samples. Because of its high atmospheric concentration, light absorption by mineral dust can be competitive with black and brown carbon even during atmospheric transport over heavy polluted regions, when dust concentrations are significantly lower than at emission. The AAE values of mineral dust are higher than for black carbon (∼ 1 but in the same range as light-absorbing organic (brown carbon. As a result, depending on the environment, there can be some ambiguity in apportioning the aerosol absorption optical depth (AAOD based on spectral dependence, which is relevant to the development of remote sensing of light-absorbing aerosols and their assimilation in climate models. We suggest that the sample-to-sample variability in our dataset of MAE values is related to regional differences in the mineralogical composition of the parent soils. Particularly in the PM2. 5 fraction, we found a strong

  16. Parallel phase-shifting digital holography using spectral estimation technique.

    Science.gov (United States)

    Xia, Peng; Awatsuji, Yasuhiro; Nishio, Kenzo; Ura, Shogo; Matoba, Osamu

    2014-09-20

    We propose a parallel phase-shifting digital holography using a spectral estimation technique, which enables the instantaneous acquisition of spectral information and three-dimensional (3D) information of a moving object. In this technique, an interference fringe image that contains six holograms with two phase shifts for three laser lines, such as red, green, and blue, is recorded by a space-division multiplexing method with single-shot exposure. The 3D monochrome images of these three laser lines are numerically reconstructed by a computer and used to estimate the spectral reflectance distribution of object using a spectral estimation technique. Preliminary experiments demonstrate the validity of the proposed technique.

  17. Three-dimensional, time-resolved profiling of ferroelectric domain wall dynamics by spectral-domain optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Haussmann, Alexander; Schmidt, Sebastian; Wehmeier, Lukas; Eng, Lukas M. [Technische Universitaet Dresden, Institute of Applied Physics and Center for Advancing Electronics Dresden (cfaed), Dresden (Germany); Kirsten, Lars; Cimalla, Peter; Koch, Edmund [Technische Universitaet Dresden, Faculty of Medicine Carl Gustav Carus, Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, Dresden (Germany)

    2017-08-15

    We apply here spectral-domain optical coherence tomography (SD-OCT) for the precise detection and temporal tracking of ferroelectric domain walls (DWs) in magnesium-doped periodically poled lithium niobate (Mg:PPLN). We reproducibly map static DWs at an axial (depth) resolution down to ∝ 0.6 μm, being located up to 0.5 mm well inside the single crystalline Mg:PPLN sample. We show that a full 3-dimensional (3D) reconstruction of the DW geometry is possible from the collected data, when applying a special algorithm that accounts for the nonlinear optical dispersion of the material. Our OCT investigation provides valuable reference information on the DWs' polarization charge distribution, which is known to be the key to the electrical conductivity of ferroelectric DWs in such systems. Hence, we carefully analyze the SD-OCT signal dependence both when varying the direction of incident polarization, and when applying electrical fields along the polar axis. Surprisingly, the large backreflection intensities recorded under extraordinary polarization are not affected by any electrical field, at least for field strengths below the switching threshold, while no significant signals above noise floor are detected under ordinary polarization. Finally, we employed the high-speed SD-OCT setup for the real-time DW tracking upon ferroelectric domain switching under high external fields. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Smart design to resolve spectral overlapping of phosphor-in-glass for high-powered remote-type white light-emitting devices.

    Science.gov (United States)

    Lee, Jin Seok; Arunkumar, P; Kim, Sunghoon; Lee, In Jae; Lee, Hyungeui; Im, Won Bin

    2014-02-15

    The white light-emitting diode (WLED) is a state-of-the-art solid state technology, which has replaced conventional lighting systems due to its reduced energy consumption, its reliability, and long life. However, the WLED presents acute challenges in device engineering, due to its lack of color purity, efficacy, and thermal stability of the lighting devices. The prime cause for inadequacies in color purity and luminous efficiency is the spectral overlapping of red components with yellow/green emissions when generating white light by pumping a blue InGaN chip with yellow YAG:Ce³⁺ phosphor, where red phosphor is included, to compensate for deficiencies in the red region. An innovative strategy was formulated to resolve this spectral overlapping by alternatively arranging phosphor-in-glass (PiG) through cutting and reassembling the commercial red CaAlSiN₃:Eu²⁺ and green Lu₃Al₅O₁₂:Ce³⁺ PiG. PiGs were fabricated using glass frits with a low softening temperature of 600°C, which exhibited excellent thermal stability and high transparency, improving life time even at an operating temperature of 200°C. This strategy overcomes the spectral overlapping issue more efficiently than the randomly mixed and patented stacking design of multiple phosphors for a remote-type WLED. The protocol for the current design of PiG possesses excellent thermal and chemical stability with high luminous efficiency and color purity is an attempt to make smarter solid state lighting for high-powered remote-type white light-emitting devices.

  19. Non-contrast-enhanced MR angiography in critical limb ischemia: performance of quiescent-interval single-shot (QISS) and TSE-based subtraction techniques

    International Nuclear Information System (INIS)

    Altaha, Mustafa A.; Jaskolka, Jeffrey D.; Tan, Kongteng; Menezes, Ravi J.; Rick, Manuela; Schmitt, Peter; Wintersperger, Bernd J.

    2017-01-01

    The aim of this study was to evaluate diagnostic performance of non-contrast-enhanced 2D quiescent-interval single-shot (QISS) and 3D turbo spin-echo (TSE)-based subtraction magnetic resonance angiography (MRA) in the assessment of peripheral arteries in patients with critical limb ischemia (CLI). Nineteen consecutive patients (74 % male, 72.8 ± 9.9 years) with CLI underwent 2D QISS and 3D TSE-based subtraction MRA at 1.5 T. Axial-overlapping QISS MRA (3 mm/2 mm; 1 x 1 mm 2 ) covered from the toes to the aortic bifurcation while coronal 3D TSE-based subtraction MRA (1.3 x 1.2 x 1.3 mm 3 ) was restricted to the calf only. MRA data sets (two readers) were evaluated for stenosis (≥50 %) and image quality. Results were compared with digital subtraction angiography (DSA). Two hundred and sixty-seven (267) segments were available for MRA-DSA comparison, with a prevalence of stenosis ≥50 % of 41.9 %. QISS MRA was rated as good to excellent in 79.5-96.0 % of segments without any nondiagnostic segments; 89.8-96.1 % of segments in 3D TSE-based subtraction MRA were rated as nondiagnostic or poor. QISS MRA sensitivities and specificities (segmental) were 92 % and 95 %, respectively, for reader one and 81-97 % for reader two. Due to poor image quality of 3D TSE-based subtraction MRA, diagnostic performance measures were not calculated. QISS MRA demonstrates excellent diagnostic performance and higher robustness than 3D TSE-based subtraction MRA in the challenging patient population with CLI. (orig.)

  20. Diffusion tensor trace mapping in normal adult brain using single-shot EPI technique: A methodological study of the aging brain

    International Nuclear Information System (INIS)

    Chen, Z.G.; Hindmarsh, T.; Li, T.Q.

    2001-01-01

    Purpose: To quantify age-related changes of the average diffusion coefficient value in normal adult brain using orientation-independent diffusion tensor trace mapping and to address the methodological influences on diffusion quantification. Material and Methods: Fifty-four normal subjects (aged 20-79 years) were studied on a 1.5-T whole-body MR medical unit using a diffusion-weighted single-shot echo-planar imaging technique. Orientation-independent diffusion tensor trace maps were constructed for each subject using diffusion-weighted MR measurements in four different directions using a tetrahedral gradient combination pattern. The global average (including cerebral spinal fluid) and the tissue average of diffusion coefficients in adult brains were determined by analyzing the diffusion coefficient distribution histogram for the entire brain. Methodological influences on the measured diffusion coefficient were also investigated by comparing the results obtained using different experimental settings. Results: Both global and tissue averages of the diffusion coefficient are significantly correlated with age (p<0.03). The global average of the diffusion coefficient increases 3% per decade after the age of 40, whereas the increase in the tissue average of diffusion coefficient is about 1% per decade. Experimental settings for self-diffusion measurements, such as data acquisition methods and number of b-values, can slightly influence the statistical distribution histogram of the diffusion tensor trace and its average value. Conclusion: Increased average diffusion coefficient in adult brains with aging are consistent with findings regarding structural changes in the brain that have been associated with aging. The study also demonstrates that it is desirable to use the same experimental parameters for diffusion coefficient quantification when comparing between different subjects and groups of interest

  1. Faster pediatric 3-T abdominal magnetic resonance imaging: comparison between conventional and variable refocusing flip-angle single-shot fast spin-echo sequences.

    Science.gov (United States)

    Ruangwattanapaisarn, Nichanan; Loening, Andreas M; Saranathan, Manojkumar; Litwiller, Daniel V; Vasanawala, Shreyas S

    2015-06-01

    Single-shot fast spin echo (SSFSE) is particularly appealing in pediatric patients because of its motion robustness. However radiofrequency energy deposition at 3 tesla forces long pauses between slices, leading to longer scans, longer breath-holds and more between-slice motion. We sought to learn whether modulation of the SSFSE refocusing flip-angle train could reduce radiofrequency energy deposition without degrading image quality, thereby reducing inter-slice pauses and overall scan times. We modulated the refocusing flip-angle train for SSFSE to minimize energy deposition while minimizing blurring and motion-related signal loss. In a cohort of 50 consecutive patients (25 boys, mean age 5.5 years, range 1 month to 17 years) referred for abdominal MRI we obtained standard SSFSE and variable refocusing flip-angle (vrfSSFSE) images and recorded sequence scan times. Two readers independently scored the images in blinded, randomized order for noise, tissue contrast, sharpness, artifacts and left lobe hepatic signal uniformity on a four-point scale. The null hypothesis of no difference between SSFSE and vrfSSFSE image-quality was assessed with a Mann-Whitney U test, and the null hypothesis of no scan time difference was assessed with the paired t-test. SSFSE and vrfSSFSE mean acquisition times were 54.3 and 26.2 s, respectively (P-value <0.0001). For each reader, SSFSE and vrfSSFSE noise, tissue contrast, sharpness and artifacts were not significantly different (P-values 0.18-0.86). However, SSFSE had better left lobe hepatic signal uniformity (P < 0.01, both readers). vrfSSFSE is twice as fast as SSFSE, with equivalent image quality with the exception of left hepatic lobe signal heterogeneity.

  2. Faster pediatric 3-T abdominal magnetic resonance imaging: comparison between conventional and variable refocusing flip-angle single-shot fast spin-echo sequences

    International Nuclear Information System (INIS)

    Ruangwattanapaisarn, Nichanan; Loening, Andreas M.; Saranathan, Manojkumar; Vasanawala, Shreyas S.; Litwiller, Daniel V.

    2015-01-01

    Single-shot fast spin echo (SSFSE) is particularly appealing in pediatric patients because of its motion robustness. However radiofrequency energy deposition at 3 tesla forces long pauses between slices, leading to longer scans, longer breath-holds and more between-slice motion. We sought to learn whether modulation of the SSFSE refocusing flip-angle train could reduce radiofrequency energy deposition without degrading image quality, thereby reducing inter-slice pauses and overall scan times. We modulated the refocusing flip-angle train for SSFSE to minimize energy deposition while minimizing blurring and motion-related signal loss. In a cohort of 50 consecutive patients (25 boys, mean age 5.5 years, range 1 month to 17 years) referred for abdominal MRI we obtained standard SSFSE and variable refocusing flip-angle (vrfSSFSE) images and recorded sequence scan times. Two readers independently scored the images in blinded, randomized order for noise, tissue contrast, sharpness, artifacts and left lobe hepatic signal uniformity on a four-point scale. The null hypothesis of no difference between SSFSE and vrfSSFSE image-quality was assessed with a Mann-Whitney U test, and the null hypothesis of no scan time difference was assessed with the paired t-test. SSFSE and vrfSSFSE mean acquisition times were 54.3 and 26.2 s, respectively (P-value <0.0001). For each reader, SSFSE and vrfSSFSE noise, tissue contrast, sharpness and artifacts were not significantly different (P-values 0.18-0.86). However, SSFSE had better left lobe hepatic signal uniformity (P < 0.01, both readers). vrfSSFSE is twice as fast as SSFSE, with equivalent image quality with the exception of left hepatic lobe signal heterogeneity. (orig.)

  3. Comparison of respiratory-triggered 3-D fast spin-echo and single-shot fast spin-echo radial slab MR cholangiopancreatography images in children

    International Nuclear Information System (INIS)

    Chavhan, Govind B.; Almehdar, Abeer; Gupta, Sumeet; Moineddin, Rahim; Babyn, Paul S.

    2013-01-01

    The two most commonly performed magnetic resonance cholangiopancreatography (MRCP) sequences, 3-D fast spin-echo (3-D FSE) and single-shot fast spin-echo radial slabs (radial slabs), have not been compared in children. The purpose of this study was to compare 3-D FSE and radial slabs MRCP sequences on a 3-T scanner to determine their ability to show various segments of pancreaticobiliary tree and presence of artifacts in children. We reviewed 79 consecutive MRCPs performed in 74 children on a 3-T scanner. We noted visibility of major ducts on 3-D FSE and radial slabs. We noted the order of branching of ducts in the right and left hepatic ducts and the degree of visibility of the pancreatic duct. Statistical analysis was performed using McNemar and signed rank tests. There was no significant difference in the visibility of major bile ducts and the order of branching in the right hepatic lobe between sequences. A higher order of branching in the left lobe was seen on radial slabs than 3-D FSE (mean order of branching 2.82 versus 2.27; P-value = 0.0002). The visibility of pancreatic duct was better on radial slabs as compared to 3-D FSE (mean value of 1.53 vs. 0.90; P-value < 0.0001). 3-D FSE sequence was artifact-free in 25/79 (31.6%) MRCP exams as compared to radial slabs, which were artifact-free in 18/79 (22.8%) MRCP exams (P-value = 0.0001). There is no significant difference in the visibility of major bile ducts between 3-D FSE and radial slab MRCP sequences at 3-T in children. However, radial slab MRCP shows a higher order of branching in the left hepatic lobe and superior visibility of the pancreatic duct than 3-D FSE. (orig.)

  4. Faster pediatric 3-T abdominal magnetic resonance imaging: comparison between conventional and variable refocusing flip-angle single-shot fast spin-echo sequences

    Energy Technology Data Exchange (ETDEWEB)

    Ruangwattanapaisarn, Nichanan [Mahidol University, Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Bangkok (Thailand); Stanford University, LPCH Department of Radiology, Stanford, CA (United States); Loening, Andreas M.; Saranathan, Manojkumar; Vasanawala, Shreyas S. [Stanford University, LPCH Department of Radiology, Stanford, CA (United States); Litwiller, Daniel V. [GE Healthcare, Rochester, MN (United States)

    2015-06-15

    Single-shot fast spin echo (SSFSE) is particularly appealing in pediatric patients because of its motion robustness. However radiofrequency energy deposition at 3 tesla forces long pauses between slices, leading to longer scans, longer breath-holds and more between-slice motion. We sought to learn whether modulation of the SSFSE refocusing flip-angle train could reduce radiofrequency energy deposition without degrading image quality, thereby reducing inter-slice pauses and overall scan times. We modulated the refocusing flip-angle train for SSFSE to minimize energy deposition while minimizing blurring and motion-related signal loss. In a cohort of 50 consecutive patients (25 boys, mean age 5.5 years, range 1 month to 17 years) referred for abdominal MRI we obtained standard SSFSE and variable refocusing flip-angle (vrfSSFSE) images and recorded sequence scan times. Two readers independently scored the images in blinded, randomized order for noise, tissue contrast, sharpness, artifacts and left lobe hepatic signal uniformity on a four-point scale. The null hypothesis of no difference between SSFSE and vrfSSFSE image-quality was assessed with a Mann-Whitney U test, and the null hypothesis of no scan time difference was assessed with the paired t-test. SSFSE and vrfSSFSE mean acquisition times were 54.3 and 26.2 s, respectively (P-value <0.0001). For each reader, SSFSE and vrfSSFSE noise, tissue contrast, sharpness and artifacts were not significantly different (P-values 0.18-0.86). However, SSFSE had better left lobe hepatic signal uniformity (P < 0.01, both readers). vrfSSFSE is twice as fast as SSFSE, with equivalent image quality with the exception of left hepatic lobe signal heterogeneity. (orig.)

  5. Non-contrast-enhanced MR angiography in critical limb ischemia: performance of quiescent-interval single-shot (QISS) and TSE-based subtraction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Altaha, Mustafa A. [University Health Network, Department of Medical Imaging, Peter Munk Cardiac Centre, Toronto, Ontario (Canada); Jaskolka, Jeffrey D.; Tan, Kongteng; Menezes, Ravi J. [University Health Network, Department of Medical Imaging, Peter Munk Cardiac Centre, Toronto, Ontario (Canada); University of Toronto, Department of Medical Imaging, Toronto, Ontario (Canada); Rick, Manuela; Schmitt, Peter [Siemens Healthcare, Erlangen (Germany); Wintersperger, Bernd J. [University Health Network, Department of Medical Imaging, Peter Munk Cardiac Centre, Toronto, Ontario (Canada); University of Toronto, Department of Medical Imaging, Toronto, Ontario (Canada); Toronto General Hospital, Department of Medical Imaging, Toronto, Ontario (Canada)

    2017-03-15

    The aim of this study was to evaluate diagnostic performance of non-contrast-enhanced 2D quiescent-interval single-shot (QISS) and 3D turbo spin-echo (TSE)-based subtraction magnetic resonance angiography (MRA) in the assessment of peripheral arteries in patients with critical limb ischemia (CLI). Nineteen consecutive patients (74 % male, 72.8 ± 9.9 years) with CLI underwent 2D QISS and 3D TSE-based subtraction MRA at 1.5 T. Axial-overlapping QISS MRA (3 mm/2 mm; 1 x 1 mm{sup 2}) covered from the toes to the aortic bifurcation while coronal 3D TSE-based subtraction MRA (1.3 x 1.2 x 1.3 mm{sup 3}) was restricted to the calf only. MRA data sets (two readers) were evaluated for stenosis (≥50 %) and image quality. Results were compared with digital subtraction angiography (DSA). Two hundred and sixty-seven (267) segments were available for MRA-DSA comparison, with a prevalence of stenosis ≥50 % of 41.9 %. QISS MRA was rated as good to excellent in 79.5-96.0 % of segments without any nondiagnostic segments; 89.8-96.1 % of segments in 3D TSE-based subtraction MRA were rated as nondiagnostic or poor. QISS MRA sensitivities and specificities (segmental) were 92 % and 95 %, respectively, for reader one and 81-97 % for reader two. Due to poor image quality of 3D TSE-based subtraction MRA, diagnostic performance measures were not calculated. QISS MRA demonstrates excellent diagnostic performance and higher robustness than 3D TSE-based subtraction MRA in the challenging patient population with CLI. (orig.)

  6. Non-chromatographic preparation of a bacterially produced single-shot modular virus-like particle capsomere vaccine for avian influenza.

    Science.gov (United States)

    Wibowo, Nani; Wu, Yang; Fan, Yuanyuan; Meers, Joanne; Lua, Linda H L; Middelberg, Anton P J

    2015-11-04

    Highly pathogenic avian influenza (HPAI) causes significant economic loss, reduced food security and poses an ongoing pandemic threat. Poultry vaccination significantly decreases these problems and recognizes that the health of humans, animals and ecosystems are connected. Low-cost manufacture of poultry vaccine matched quickly to the ever-changing circulating strain is needed for effective vaccination. Here, we re-engineered the process to manufacture bacterially synthesized modular capsomere comprising influenza M2e, previously shown to confer complete protection in challenged mice, for application in poultry. Modular capsomere was prepared using a simplified non-chromatographic salting-out precipitation method and its immunogenicity tested in vivo in poultry. Modular capsomere crudely purified by precipitation (pCapM2e) contained more contaminants than equivalent product purified by chromatography (cCapM2e). Unadjuvanted pCapM2e containing 80 EU of endotoxin per dose was inferior to highly purified and adjuvanted cCapM2e (2 EU per dose). However, addition of adjuvant to pCapM2e resulting in high immunogenicity after only a single dose of vaccination, yet without any local adverse reaction. This finding suggests a strong synergy between adjuvant, antigen and contaminants, and the possible existence of a "Goldilocks" level of contaminants, where high immunogenicity and low reactogenicity can be obtained in a single-shot vaccination. The simplified process offers potential cost and speed advantages to address the needs in influenza poultry vaccination in low-cost veterinary markets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Image quality assessment of single-shot turbo spin echo diffusion-weighted imaging with parallel imaging technique: a phantom study.

    Science.gov (United States)

    Yoshida, Tsukasa; Urikura, Atsushi; Shirata, Kensei; Nakaya, Yoshihiro; Terashima, Shingo; Hosokawa, Yoichiro

    2016-09-01

    This study aimed to evaluate the image quality and apparent diffusion coefficient (ADC) values of single-shot turbo spin echo (TSE) diffusion-weighted (DW) images obtained using a parallel imaging (PI) technique. All measurements were performed on a 3.0-T whole-body MRI system and 32-channel phased-array coil. Signal-to-noise ratio (SNR) and ADC values were measured with a DW imaging (DWI) phantom comprising granulated sugar and agar. The SNRs were calculated using a subtraction method and compared among TSE-DW images at acceleration factors (AFs) of 1-4. Image blur was visually assessed on TSE-DW images of a pin phantom at AFs of 1-4. The ADC values were calculated using DW images with b = 0 and 1000 s mm(-2). The ADC values of TSE-DW images and echo-planar imaging EPI-DW images were compared. The SNRs decreased as AFs increased, despite selecting the shortest echo time. A lower AF caused increased image blur in the phase-encoding direction. The ADC values of TSE-DWI tended to be lower than those of EPI-DWI, and AFs of 3 and 4 yielded variable ADC values on TSE-DW images. TSE-DWI with an AF of 3 or 4 yielded reduced SNRs; in addition, the image noise and artefacts associated with PI technique may have affected ADC measurements, despite improving image blur in the phase-encoding direction. Optimizing the imaging parameters of TSE-DWI is useful for providing good image quality and accurate ADC measurements.

  8. ChromAIX2: A large area, high count-rate energy-resolving photon counting ASIC for a Spectral CT Prototype

    Science.gov (United States)

    Steadman, Roger; Herrmann, Christoph; Livne, Amir

    2017-08-01

    Spectral CT based on energy-resolving photon counting detectors is expected to deliver additional diagnostic value at a lower dose than current state-of-the-art CT [1]. The capability of simultaneously providing a number of spectrally distinct measurements not only allows distinguishing between photo-electric and Compton interactions but also discriminating contrast agents that exhibit a K-edge discontinuity in the absorption spectrum, referred to as K-edge Imaging [2]. Such detectors are based on direct converting sensors (e.g. CdTe or CdZnTe) and high-rate photon counting electronics. To support the development of Spectral CT and show the feasibility of obtaining rates exceeding 10 Mcps/pixel (Poissonian observed count-rate), the ChromAIX ASIC has been previously reported showing 13.5 Mcps/pixel (150 Mcps/mm2 incident) [3]. The ChromAIX has been improved to offer the possibility of a large area coverage detector, and increased overall performance. The new ASIC is called ChromAIX2, and delivers count-rates exceeding 15 Mcps/pixel with an rms-noise performance of approximately 260 e-. It has an isotropic pixel pitch of 500 μm in an array of 22×32 pixels and is tile-able on three of its sides. The pixel topology consists of a two stage amplifier (CSA and Shaper) and a number of test features allowing to thoroughly characterize the ASIC without a sensor. A total of 5 independent thresholds are also available within each pixel, allowing to acquire 5 spectrally distinct measurements simultaneously. The ASIC also incorporates a baseline restorer to eliminate excess currents induced by the sensor (e.g. dark current and low frequency drifts) which would otherwise cause an energy estimation error. In this paper we report on the inherent electrical performance of the ChromAXI2 as well as measurements obtained with CZT (CdZnTe)/CdTe sensors and X-rays and radioactive sources.

  9. Time-resolved spectral characterization of ring cavity surface emitting and ridge-type distributed feedback quantum cascade lasers by step-scan FT-IR spectroscopy.

    Science.gov (United States)

    Brandstetter, Markus; Genner, Andreas; Schwarzer, Clemens; Mujagic, Elvis; Strasser, Gottfried; Lendl, Bernhard

    2014-02-10

    We present the time-resolved comparison of pulsed 2nd order ring cavity surface emitting (RCSE) quantum cascade lasers (QCLs) and pulsed 1st order ridge-type distributed feedback (DFB) QCLs using a step-scan Fourier transform infrared (FT-IR) spectrometer. Laser devices were part of QCL arrays and fabricated from the same laser material. Required grating periods were adjusted to account for the grating order. The step-scan technique provided a spectral resolution of 0.1 cm(-1) and a time resolution of 2 ns. As a result, it was possible to gain information about the tuning behavior and potential mode-hops of the investigated lasers. Different cavity-lengths were compared, including 0.9 mm and 3.2 mm long ridge-type and 0.97 mm (circumference) ring-type cavities. RCSE QCLs were found to have improved emission properties in terms of line-stability, tuning rate and maximum emission time compared to ridge-type lasers.

  10. ECG-gated quiescent-interval single-shot MR angiography of the lower extremities: Initial experience at 3 T

    International Nuclear Information System (INIS)

    Knobloch, G.; Gielen, M.; Lauff, M.-T.; Romano, V.C.; Schmitt, P.; Rick, M.; Kröncke, T.J.; Huppertz, A.; Hamm, B.; Wagner, M.

    2014-01-01

    Aim: To evaluate the feasibility of unenhanced electrocardiography (ECG)-gated quiescent-interval single-shot magnetic resonance angiography (QISS-MRA) of the lower extremities at 3 T. Materials and methods: Twenty-five patients with known or suspected peripheral arterial disease underwent ECG-gated QISS-MRA and contrast-enhanced MRA (CE-MRA) at 3 T. Two independent readers performed a per-segment evaluation of the MRA datasets. Image quality was rated on a four-point scale (1 = excellent to 4 = non-diagnostic; presented as medians with interquartile range). Diagnostic performance of QISS-MRA was evaluated using CE-MRA as the reference standard. Results: QISS-MRA and CE-MRA of all patients were considered for analysis, resulting in 807 evaluated vessel segments for each MRA technique. Readers 1 and 2 rated image quality of QISS-MRA as diagnostic in 97.3% and 97% of the vessel segments, respectively. CE-MRA was rated diagnostic in all vessel segments. Image quality of the proximal vessel segments, including the infrarenal aorta, iliac arteries, and common femoral artery, was significantly lower on QISS-MRA compared to CE-MRA [image quality score across readers: 2 (1,3) versus 1 (1,1) p < 0.001]. In the more distal vessel segments, image quality of QISS-MRA was excellent and showed no significant difference compared to CE-MRA [image quality score across readers: 1 (1,1) versus 1 (1,1) p = 0.036]. Diagnostic performance of QISS-MRA was as follows (across readers): sensitivity: 87.5% (95% CI: 80.2–92.4%); specificity: 96.1% (95% CI: 93.6–97.6%); diagnostic accuracy: 94.9% (95% CI: 92.6–96.5%). Conclusions: QISS-MRA of the lower extremities is feasible at 3 T and provides high image quality, especially in the distal vessel segments

  11. Time-resolved brightness measurements by streaking

    Science.gov (United States)

    Torrance, Joshua S.; Speirs, Rory W.; McCulloch, Andrew J.; Scholten, Robert E.

    2018-03-01

    Brightness is a key figure of merit for charged particle beams, and time-resolved brightness measurements can elucidate the processes involved in beam creation and manipulation. Here we report on a simple, robust, and widely applicable method for the measurement of beam brightness with temporal resolution by streaking one-dimensional pepperpots, and demonstrate the technique to characterize electron bunches produced from a cold-atom electron source. We demonstrate brightness measurements with 145 ps temporal resolution and a minimum resolvable emittance of 40 nm rad. This technique provides an efficient method of exploring source parameters and will prove useful for examining the efficacy of techniques to counter space-charge expansion, a critical hurdle to achieving single-shot imaging of atomic scale targets.

  12. Whole-body multicolor spectrally resolved fluorescence imaging for development of target-specific optical contrast agents using genetically engineered probes

    Science.gov (United States)

    Kobayashi, Hisataka; Hama, Yukihiro; Koyama, Yoshinori; Barrett, Tristan; Urano, Yasuteru; Choyke, Peter L.

    2007-02-01

    Target-specific contrast agents are being developed for the molecular imaging of cancer. Optically detectable target-specific agents are promising for clinical applications because of their high sensitivity and specificity. Pre clinical testing is needed, however, to validate the actual sensitivity and specificity of these agents in animal models, and involves both conventional histology and immunohistochemistry, which requires large numbers of animals and samples with costly handling. However, a superior validation tool takes advantage of genetic engineering technology whereby cell lines are transfected with genes that induce the target cell to produce fluorescent proteins with characteristic emission spectra thus, identifying them as cancer cells. Multicolor fluorescence imaging of these genetically engineered probes can provide rapid validation of newly developed exogenous probes that fluoresce at different wavelengths. For example, the plasmid containing the gene encoding red fluorescent protein (RFP) was transfected into cell lines previously developed to either express or not-express specific cell surface receptors. Various antibody-based or receptor ligand-based optical contrast agents with either green or near infrared fluorophores were developed to concurrently target and validate cancer cells and their positive and negative controls, such as β-D-galactose receptor, HER1 and HER2 in a single animal/organ. Spectrally resolved fluorescence multicolor imaging was used to detect separate fluorescent emission spectra from the exogenous agents and RFP. Therefore, using this in vivo imaging technique, we were able to demonstrate the sensitivity and specificity of the target-specific optical contrast agents, thus reducing the number of animals needed to conduct these experiments.

  13. Intra-Articular, Single-Shot Hylan G-F 20 Hyaluronic Acid Injection Compared with Corticosteroid in Knee Osteoarthritis: A Double-Blind, Randomized Controlled Trial.

    Science.gov (United States)

    Tammachote, Nattapol; Kanitnate, Supakit; Yakumpor, Thanasak; Panichkul, Phonthakorn

    2016-06-01

    The treatment of knee osteoarthritis with hyaluronic acid or corticosteroid injection has been widely used. The purpose of this study was to compare the efficacy of hyaluronic acid (hylan G-F 20) with triamcinolone acetonide as a single intra-articular injection for knee osteoarthritis. This study was a prospective, randomized, double-blind clinical trial. Participants with symptomatic knee osteoarthritis were recruited. They were randomized to receive a single-shot, intra-articular injection of either 6 mL of hylan G-F 20 or 6 mL of a solution comprising 1 mL of 40-mg triamcinolone acetonide and 5 mL of 1% lidocaine with epinephrine. The primary outcomes were knee pain severity, knee function, and range of motion at 6 months. Ninety-nine patients were assessed before injection and underwent a 6-month follow-up. Patients and evaluators were blinded. Multilevel regression models were used to estimate differences between the groups. At the 6-month follow-up, compared with patients who took hylan G-F 20, patients who took triamcinolone acetonide had similar improvement in knee pain, knee function, and range of motion. The difference in mean outcome scores between groups was, with regard to knee pain, a visual analog scale (VAS) score of 3 points (95% confidence interval [95% CI], -6 to 11 points); with regard to knee function, a modified Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score of 0 points (95% CI, -8 to 6 points); and, with regard to range of motion, flexion of -1° (95% CI, -5° to 2°) and extension of 0° (95% CI, -0.5° to 0.5°). However, patients who took triamcinolone acetonide had better pain improvement from 24 hours until 1 week after injection; the mean difference between groups with regard to the VAS score was 12 points (95% CI, 5 to 20 points; p = 0.002) at 24 hours and 9 points (95% CI, 1 to 15 points; p = 0.018) at 1 week. At 2 weeks after injection, patients who took triamcinolone acetonide also had better knee

  14. Small Field-of-view single-shot EPI-DWI of the prostate: Evaluation of spatially-tailored two-dimensional radiofrequency excitation pulses.

    Science.gov (United States)

    Attenberger, Ulrike I; Rathmann, Nils; Sertdemir, Metin; Riffel, Philipp; Weidner, Anja; Kannengiesser, Stefan; Morelli, John N; Schoenberg, Stefan O; Hausmann, Daniel

    2016-06-01

    Spatially-tailored (RF) excitation pulses in echo-planar imaging (EPI), combined with a decreased FOV in the phase-encoding direction, enable a reduction of k-space acquisition lines, which shortens the echo train length (ETL) and reduces susceptibility artifacts. The purpose of this study was to evaluate the image quality of a zoomed EPI (z-EPI) sequence in diffusion-weighted imaging (DWI) of the prostate in comparison to a conventional single-shot EPI using single-channel (c-EPI1) and multi-channel (c-EPI2) RF excitation, with and without use of an endorectal coil. 33 consecutive patients (mean age: 61 +/- 9 years; mean PSA: 8.67±6.23 ng/ml) with examinations between 10/2012 and 02/2014 were analyzed in this retrospective study. In 26 of 33 patients the initial multiparametric (mp)-MRI was performed on a whole-body 3T scanner (Magnetom Trio, Siemens, Erlangen, Germany) using an endorectal coil (c (conventional)-EPI1). Zoomed-EPI (Z-EPI) examinations of these patients and a complete mp-MRI protocol including c-EPI2 of 7 additional patients were carried out on another 3T wb MR scanner with two-channel dynamic parallel transmit capability (Magnetom Skyra with TimTX TrueShape, Siemens). For z-EPI, the one-dimensional spatially selective RF excitation pulse was replaced by a two-dimensional RF pulse. Degree of image blur and susceptibility artifacts (0=not present to 3= non-diagnostic), maximum image distortion (mm), apparent diffusion coefficient (ADC) values, as well as overall scan preference were evaluated. SNR maps were generated to compare c-EPI2 and z-EPI. Overall image quality of z-EPI was preferred by both readers in all examinations with a single exception. Susceptibility artifacts were rated significantly lower on z-EPI compared to both other methods (z-EPI vs c-EPI1: p<0.01; z-EPI vs c-EPI2: p<0.01) as well as image blur (z-EPI vs c-EPI1: p<0.01; z-EPI vs c-EPI2: p<0.01). Image distortion was not statistically significantly reduced with z-EPI (z-EPI vs c

  15. Spectral Imaging by Upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2011-01-01

    We present a method to obtain spectrally resolved images using upconversion. By this method an image is spectrally shifted from one spectral region to another wavelength. Since the process is spectrally sensitive it allows for a tailored spectral response. We believe this will allow standard sili...... silicon based cameras designed for visible/near infrared radiation to be used for spectral images in the mid infrared. This can lead to much lower costs for such imaging devices, and a better performance.......We present a method to obtain spectrally resolved images using upconversion. By this method an image is spectrally shifted from one spectral region to another wavelength. Since the process is spectrally sensitive it allows for a tailored spectral response. We believe this will allow standard...

  16. Interscalene brachial plexus block for open-shoulder surgery: a randomized, double-blind, placebo-controlled trial between single-shot anesthesia and patient-controlled catheter system.

    Science.gov (United States)

    Goebel, Sascha; Stehle, Jens; Schwemmer, Ulrich; Reppenhagen, Stephan; Rath, Beatrice; Gohlke, Frank

    2010-04-01

    Interscalene brachial plexus block (ISB) is widely used as an adjuvant regional pain therapy in patients undergoing major shoulder surgery and has proved its effectiveness on postoperative pain reduction and opioid-sparing effect. This single-center, prospective, double-blind, randomized and placebo-controlled study was to compare the effectiveness of a single-shot and a patient-controlled catheter insertion ISB system after major open-shoulder surgeries. Seventy patients were entered to receive an ISB and a patient-controlled interscalene catheter. The catheter was inserted under ultrasound guidance. Patients were then assigned to receive one of two different postoperative infusions, either 0.2% ropivacaine (catheter group) or normal saline solution (single-shot group) via a disposable patient-controlled infusion pump. The study variables were amount of rescue medication, pain at rest and during physiotherapy, patient satisfaction and incidence of unwanted side effects. The ropivacaine group revealed significantly less consumption of rescue medication within the first 24 h after surgery. Incidence of side effects did not differ between the two groups. Based on our results, we recommend the use of interscalene plexus block in combination with a patient-controlled catheter system under ultrasound guidance only for the first 24 h after major open-shoulder surgery.

  17. Radiofrequency encoded angular-resolved light scattering

    DEFF Research Database (Denmark)

    Buckley, Brandon W.; Akbari, Najva; Diebold, Eric D.

    2015-01-01

    The sensitive, specific, and label-free classification of microscopic cells and organisms is one of the outstanding problems in biology. Today, instruments such as the flow cytometer use a combination of light scatter measurements at two distinct angles to infer the size and internal complexity...... of cells at rates of more than 10,000 per second. However, by examining the entire angular light scattering spectrum it is possible to classify cells with higher resolution and specificity. Current approaches to performing these angular spectrum measurements all have significant throughput limitations...... Encoded Angular-resolved Light Scattering (REALS), this technique multiplexes angular light scattering in the radiofrequency domain, such that a single photodetector captures the entire scattering spectrum from a particle over approximately 100 discrete incident angles on a single shot basis. As a proof...

  18. Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate

    Energy Technology Data Exchange (ETDEWEB)

    Song, Shaozhen; Wei, Wei; Hsieh, Bao-Yu; Pelivanov, Ivan; O' Donnell, Matthew [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Shen, Tueng T.; Wang, Ruikang K., E-mail: wangrk@uw.edu [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Department of Ophthalmology, University of Washington, Seattle, Washington 98104 (United States)

    2016-05-09

    We present single-shot phase-sensitive imaging of propagating mechanical waves within tissue, enabled by an ultrafast optical coherence tomography (OCT) system powered by a 1.628 MHz Fourier domain mode-locked (FDML) swept laser source. We propose a practical strategy for phase-sensitive measurement by comparing the phases between adjacent OCT B-scans, where the B-scan contains a number of A-scans equaling an integer number of FDML buffers. With this approach, we show that micro-strain fields can be mapped with ∼3.0 nm sensitivity at ∼16 000 fps. The system's capabilities are demonstrated on porcine cornea by imaging mechanical wave propagation launched by a pulsed UV laser beam, promising non-contact, real-time, and high-resolution optical coherence elastography.

  19. Mode-Locked Multichromatic X-Rays in a Seeded Free-Electron Laser for Single-Shot X-Ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Dao; Ding, Yuantao; Raubenheimer, Tor; Wu, Juhao; /SLAC

    2012-05-10

    We present the promise of generating gigawatt mode-locked multichromatic x rays in a seeded free-electron laser (FEL). We show that, by using a laser to imprint periodic modulation in electron beam phase space, a single-frequency coherent seed can be amplified and further translated to a mode-locked multichromatic output in an FEL. With this configuration the FEL output consists of a train of mode-locked ultrashort pulses which span a wide frequency gap with a series of equally spaced sharp lines. These gigawatt multichromatic x rays may potentially allow one to explore the structure and dynamics of a large number of atomic states simultaneously. The feasibility of generating mode-locked x rays ranging from carbon K edge ({approx}284 eV) to copper L{sub 3} edge ({approx}931 eV) is confirmed with numerical simulation using the realistic parameters of the linac coherent light source (LCLS) and LCLS-II. We anticipate that the mode-locked multichromatic x rays in FELs may open up new opportunities in x-ray spectroscopy (i.e. resonant inelastic x-ray scattering, time-resolved scattering and spectroscopy, etc.).

  20. A multi-channel THz and infrared spectrometer for femtosecond electron bunch diagnostics by single-shot spectroscopy of coherent radiation

    International Nuclear Information System (INIS)

    Wesch, Stephan; Schmidt, Bernhard; Behrens, Christopher; Delsim-Hashemi, Hossein; Schmueser, Peter

    2011-08-01

    The high peak current required in free-electron lasers (FELs) is realized by longitudinal compression of the electron bunches to sub-picosecond length. In this paper, a frequency-domain diagnostic method is described that is capable of resolving structures in the femtosecond regime. A novel in-vacuum spectrometer has been developed for spectroscopy of coherent radiation in the THz and infrared range. The spectrometer is equipped with five consecutive dispersion gratings and 120 parallel readout channels; it can be operated either in short wavelength mode (5-44 μm) or in long wavelength mode (45-430 μm). Fast parallel readout permits the spectroscopy of coherent radiation from single electron bunches. Test measurements at the soft X-ray free-electron laser FLASH, using coherent transition radiation, demonstrate excellent performance of the spectrometer. The high sensitivity down to a few micrometers allows study of short bunch features caused for example by microbunching e ects in magnetic chicanes. The device is planned for use as an online bunch profile monitor during regular FEL operation. (orig.)

  1. A multi-channel THz and infrared spectrometer for femtosecond electron bunch diagnostics by single-shot spectroscopy of coherent radiation

    Energy Technology Data Exchange (ETDEWEB)

    Wesch, Stephan; Schmidt, Bernhard; Behrens, Christopher; Delsim-Hashemi, Hossein; Schmueser, Peter

    2011-08-15

    The high peak current required in free-electron lasers (FELs) is realized by longitudinal compression of the electron bunches to sub-picosecond length. In this paper, a frequency-domain diagnostic method is described that is capable of resolving structures in the femtosecond regime. A novel in-vacuum spectrometer has been developed for spectroscopy of coherent radiation in the THz and infrared range. The spectrometer is equipped with five consecutive dispersion gratings and 120 parallel readout channels; it can be operated either in short wavelength mode (5-44 {mu}m) or in long wavelength mode (45-430 {mu}m). Fast parallel readout permits the spectroscopy of coherent radiation from single electron bunches. Test measurements at the soft X-ray free-electron laser FLASH, using coherent transition radiation, demonstrate excellent performance of the spectrometer. The high sensitivity down to a few micrometers allows study of short bunch features caused for example by microbunching e ects in magnetic chicanes. The device is planned for use as an online bunch profile monitor during regular FEL operation. (orig.)

  2. UV spectral measurements at moderately high resolution and of OH resonance scattering resolved by polarization during the MANTRA 2002-2004 stratospheric balloon flights

    International Nuclear Information System (INIS)

    Tarasick, D.W.; Wardle, D.I.; McElroy, C.T.; McLinden, C.; Brown, S.; Solheim, B.

    2009-01-01

    A moderately high-resolution (<0.1 nm) grating spectrometer designed to measure the solar radiation in the spectral range 295-315 nm was flown on the MANTRA stratospheric balloon payloads of 2002 and 2004. The instrument measures both the direct sunlight and the radiation scattered by the atmosphere. The latter can be observed in two orthogonal polarization directions, at 90 deg. from the solar azimuth and at several elevations above the horizon. As the OH molecule is the principal resonant scatterer in this spectral region, this permits the inference of both ozone and OH column amounts as well as limited profile information. This paper describes the instrument and its in-flight characterization, the basic data processing and the influence of several aspects of the flight profile. The direct sun measurements are analyzed both to characterize the spectrometer responsivity to scattered radiation and to estimate the ozone abundance at the flight altitude and above. An example of a high-resolution solar spectrum at 37 km altitude is presented and compared with others in the literature. The measured OH and Rayleigh-scattered spectra are used to derive OH radiation intensity measurements (the OH airglow), which are compared with others in the literature

  3. Time resolved temperature measurement of polymer surface irradiated by mid-IR free electron laser

    Science.gov (United States)

    Araki, Mitsunori; Chiba, Tomoyuki; Oyama, Takahiro; Imai, Takayuki; Tsukiyama, Koichi

    2017-08-01

    We have developed the time-resolved temperature measurement system by using a radiation thermometer FLIR SC620. Temporal temperature profiles of an acrylic resin surface by the irradiation of infrared free electron laser (FEL) pulse were recorded in an 8 ms resolution to measure an instantaneous temperature rise and decay profile. Under the single-shot condition, a peak temperature defined as the temperature jump from the ambient temperature was found to be proportional to the absorbance. Under the multi-shot condition, the temperature accumulation was found to reach a roughly constant value where the supply and release of the heat is balanced.

  4. Spectral characterization of crude oil using fluorescence (synchronous and time-resolved) and NIR (Near Infrared Spectroscopy); Caracterizacao espectral do petroleo utilizando fluorescencia (sincronizada e resolvida no tempo) e NIR (Near Infrared Spectroscopy)

    Energy Technology Data Exchange (ETDEWEB)

    Falla Sotelo, F.; Araujo Pantoja, P.; Lopez-Gejo, J.; Le Roux, G.A.C.; Nascimento, C.A.O. [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Engenharia Quimica. Lab. de Simulacao e Controle de Processos; Quina, F.H. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Centro de Capacitacao e Pesquisa em Meio Ambiente (CEPEMA)

    2008-07-01

    The objective of the present work is to evaluate the performance of two spectroscopic techniques employed in the crude oil characterization: NIR spectroscopy and fluorescence spectroscopy (Synchronous fluorescence - SF and Time Resolved Fluorescence - TRF) for the development of correlation models between spectral profiles of crude oil samples and both physical properties (viscosity and API density) and physico-chemical properties (SARA analysis: Saturated, Aromatic, Resins and Asphaltenes). The better results for viscosity and density were obtained using NIR whose prediction capacity was good (1.5 cP and 0.5 deg API, respectively). For SARA analysis, fluorescence spectroscopy revealed its potential in the model calibration showing good results (R2 coefficients greater than 0.85). TRF spectroscopy had better performance than SF spectroscopy. (author)

  5. Changes in susceptibility signs on serial T2*-weighted single-shot echo-planar gradient-echo images in acute embolic infarction: comparison with recanalization status on 3D time-of-flight magnetic resonance angiography

    International Nuclear Information System (INIS)

    Shinohara, Yuki; Kinoshita, Toshibumi; Kinoshita, Fumiko

    2012-01-01

    The present study compares changes in susceptibility signs on follow-up single-shot echo-planar gradient-echo T2*-weighted images (GRE-EPI) with vascular status on follow-up magnetic resonance angiography (MRA) in acute embolic infarction. Twenty consecutive patients with acute embolic infarction repeatedly underwent MR imaging including GRE-EPI and MRA using a 1.5-T MR superconducting system. All patients underwent initial MR examination within 24 h of onset and follow-up MR imaging within 1 month after onset. Changes in susceptibility signs on follow-up GRE-EPI were compatible with vascular status on follow-up MRA in 19 of the 20 patients. Susceptibility signs disappeared with complete recanalization in 13 patients, migrated with partial recanalization in 3, did not change together with the absence of recanalization in 2, and became extended together with the absence of recanalization in 1. Cerebral hemorrhage obscured susceptibility signs in the one remaining patient. Susceptibility signs on follow-up GRE-EPI can reflect changes in an acute embolus, such as recanalization or migration, in this study. Serial GRE-EPI in acute embolism complements the diagnostic certainty of MRA by directly detecting an embolus as a susceptibility sign. (orig.)

  6. VLTI-AMBER velocity-resolved aperture-synthesis imaging of η Carinae with a spectral resolution of 12 000. Studies of the primary star wind and innermost wind-wind collision zone

    Science.gov (United States)

    Weigelt, G.; Hofmann, K.-H.; Schertl, D.; Clementel, N.; Corcoran, M. F.; Damineli, A.; de Wit, W.-J.; Grellmann, R.; Groh, J.; Guieu, S.; Gull, T.; Heininger, M.; Hillier, D. J.; Hummel, C. A.; Kraus, S.; Madura, T.; Mehner, A.; Mérand, A.; Millour, F.; Moffat, A. F. J.; Ohnaka, K.; Patru, F.; Petrov, R. G.; Rengaswamy, S.; Richardson, N. D.; Rivinius, T.; Schöller, M.; Teodoro, M.; Wittkowski, M.

    2016-10-01

    Context. The mass loss from massive stars is not understood well. η Carinae is a unique object for studying the massive stellar wind during the luminous blue variable phase. It is also an eccentric binary with a period of 5.54 yr. The nature of both stars is uncertain, although we know from X-ray studies that there is a wind-wind collision whose properties change with orbital phase. Aims: We want to investigate the structure and kinematics of η Car's primary star wind and wind-wind collision zone with a high spatial resolution of ~6 mas (~14 au) and high spectral resolution of R = 12 000. Methods: Observations of η Car were carried out with the ESO Very Large Telescope Interferometer (VLTI) and the AMBER instrument between approximately five and seven months before the August 2014 periastron passage. Velocity-resolved aperture-synthesis images were reconstructed from the spectrally dispersed interferograms. Interferometric studies can provide information on the binary orbit, the primary wind, and the wind collision. Results: We present velocity-resolved aperture-synthesis images reconstructed in more than 100 different spectral channels distributed across the Brγ 2.166 μm emission line. The intensity distribution of the images strongly depends on wavelength. At wavelengths corresponding to radial velocities of approximately -140 to - 376 km s-1 measured relative to line center, the intensity distribution has a fan-shaped structure. At the velocity of - 277 km s-1, the position angle of the symmetry axis of the fan is ~126°. The fan-shaped structure extends approximately 8.0 mas (~18.8 au) to the southeast and 5.8 mas (~13.6 au) to the northwest, measured along the symmetry axis at the 16% intensity contour. The shape of the intensity distributions suggests that the obtained images are the first direct images of the innermost wind-wind collision zone. Therefore, the observations provide velocity-dependent image structures that can be used to test three

  7. VLTI-AMBER Velocity-Resolved Aperture-Synthesis Imaging of Eta Carinae with a Spectral Resolution of 12 000: Studies of the Primary Star Wind and Innermost Wind-Wind Collision Zone

    Science.gov (United States)

    Weigelt, G.; Hofmann, K.-H.; Schertl, D.; Clementel, N.; Corcoran, M. F.; Damineli, A.; de Wit, W.-J.; Grellmann, R.; Groh, J.; Guieu, S.; hide

    2016-01-01

    The mass loss from massive stars is not understood well. Eta Carinae is a unique object for studying the massive stellar wind during the luminous blue variable phase. It is also an eccentric binary with a period of 5.54 yr. The nature of both stars is uncertain, although we know from X-ray studies that there is a wind-wind collision whose properties change with orbital phase. Aims. We want to investigate the structure and kinematics of Car's primary star wind and wind-wind collision zone with a high spatial resolution of approx.6 mas (approx.14 au) and high spectral resolution of R = 12 000. Methods. Observations of Car were carried out with the ESO Very Large Telescope Interferometer (VLTI) and the AMBER instrument between approximately five and seven months before the August 2014 periastron passage. Velocity-resolved aperture-synthesis images were reconstructed from the spectrally dispersed interferograms. Interferometric studies can provide information on the binary orbit, the primary wind, and the wind collision. Results. We present velocity-resolved aperture-synthesis images reconstructed in more than 100 di erent spectral channels distributed across the Br(gamma) 2.166 micron emission line. The intensity distribution of the images strongly depends on wavelength. At wavelengths corresponding to radial velocities of approximately -140 to -376 km/s measured relative to line center, the intensity distribution has a fan-shaped structure. At the velocity of -277 km/s, the position angle of the symmetry axis of the fan is 126. The fan-shaped structure extends approximately 8.0 mas (approx.18:8 au) to the southeast and 5.8 mas (approx.13:6 au) to the northwest, measured along the symmetry axis at the 16% intensity contour. The shape of the intensity distributions suggests that the obtained images are the first direct images of the innermost wind-wind collision zone. Therefore, the observations provide velocity-dependent image structures that can be used to test three

  8. Performance evaluation of a sub-millimetre spectrally resolved CT system on high- and low-frequency imaging tasks: a simulation

    Science.gov (United States)

    Yveborg, Moa; Danielsson, Mats; Bornefalk, Hans

    2012-04-01

    We are developing a photon-counting silicon strip detector with 0.4 × 0.5 mm2 detector elements for clinical CT applications. Except for the limited detection efficiency of approximately 0.8 for a spectrum of 80 kVp, the largest discrepancies from ideal spectral behaviour have been shown to be Compton interactions in the detector and electronic noise. Using the framework of cascaded system analysis, we reconstruct the 3D MTF and NPS of a silicon strip detector including the influence of scatter and charge sharing inside the detector. We compare the reconstructed noise and signal characteristics with a reconstructed 3D MTF and NPS of an ideal energy-integrating detector system with unity detection efficiency, no scatter or charge sharing inside the detector, unity presampling MTF and 1 × 1 mm2 detector elements. The comparison is done by calculating the dose-normalized detectability index for some clinically relevant imaging tasks and spectra. This work demonstrates that although the detection efficiency of the silicon detector rapidly drops for the acceleration voltages encountered in clinical computed tomography practice, and despite the high fraction of Compton interactions due to the low atomic number, silicon detectors can perform on a par with ideal energy-integrating detectors for routine imaging tasks containing low-frequency components. For imaging tasks containing high-frequency components, the proposed silicon detector system can perform approximately 1.1-1.3 times better than a fully ideal energy-integrating system.

  9. Single shot high resolution digital holography.

    Science.gov (United States)

    Khare, Kedar; Ali, P T Samsheer; Joseph, Joby

    2013-02-11

    We demonstrate a novel computational method for high resolution image recovery from a single digital hologram frame. The complex object field is obtained from the recorded hologram by solving a constrained optimization problem. This approach which is unlike the physical hologram replay process is shown to provide high quality image recovery even when the dc and the cross terms in the hologram overlap in the Fourier domain. Experimental results are shown for a Fresnel zone hologram of a resolution chart, intentionally recorded with a small off-axis reference beam angle. Excellent image recovery is observed without the presence of dc or twin image terms and with minimal speckle noise.

  10. Single-Shot Echo-Planar Diffusion-Weighted MR Imaging at 3T and 1.5T for Differentiation of Benign Vertebral Fracture Edema and Tumor Infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hee Jin; Lee, So Yeon; Rho, Myung Ho; Chung, Eun Chul; Kim, Mi Sung; Kwon, Heon Ju; Youn, In Young [Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181 (Korea, Republic of)

    2016-11-01

    To compare the apparent diffusion coefficient (ADC) value using single-shot echo-planar imaging sequences at 3T and 1.5T for differentiation of benign fracture edema and tumor infiltration of the vertebral body. A total of 46 spinal examinations were included in the 1.5T MRI group, and a total of 40 spinal examinations were included in the 3T MRI group. The ADC values of the lesion were measured and calculated. The diagnostic performance of the conventional MR image containing sagittal T2-weighted fat saturated image and each diffusion weighted image (DWI) with an ADC value with different b values were evaluated. The mean ADC value of the benign lesions was higher than that of the malignant lesions on 1.5T and 3T (p < 0.05). The sensitivity of the diagnostic performance was higher with an additional DWI in both 1.5T and 3T, but the sensitivities were similar with the addition of b values of 400 and 1000. The specificities of the diagnostic performances did not show significant differences (p value > 0.05). The diagnostic accuracies were higher when either of the DWIs (b values of 400 and 1000) was added to routine MR image for 1.5T and 3T. Statistical differences between 1.5T and 3T or between b values of 400 and 1000 were not seen. The ADC values of the benign lesions were significantly higher than those of the malignant lesions on 1.5T and 3T. There was no statistically significant difference in the diagnostic performances when either of the DWIs (b values of 400 and 1000) was added to the routine MR image for 1.5T and 3T.

  11. Code aperture optimization for spectrally agile compressive imaging.

    Science.gov (United States)

    Arguello, Henry; Arce, Gonzalo R

    2011-11-01

    Coded aperture snapshot spectral imaging (CASSI) provides a mechanism for capturing a 3D spectral cube with a single shot 2D measurement. In many applications selective spectral imaging is sought since relevant information often lies within a subset of spectral bands. Capturing and reconstructing all the spectral bands in the observed image cube, to then throw away a large portion of this data, is inefficient. To this end, this paper extends the concept of CASSI to a system admitting multiple shot measurements, which leads not only to higher quality of reconstruction but also to spectrally selective imaging when the sequence of code aperture patterns is optimized. The aperture code optimization problem is shown to be analogous to the optimization of a constrained multichannel filter bank. The optimal code apertures allow the decomposition of the CASSI measurement into several subsets, each having information from only a few selected spectral bands. The rich theory of compressive sensing is used to effectively reconstruct the spectral bands of interest from the measurements. A number of simulations are developed to illustrate the spectral imaging characteristics attained by optimal aperture codes.

  12. Ratiometric Phosphorescent Probe for Thallium in Serum, Water, and Soil Samples Based on Long-Lived, Spectrally Resolved, Mn-Doped ZnSe Quantum Dots and Carbon Dots.

    Science.gov (United States)

    Lu, Xiaomei; Zhang, Jinyi; Xie, Ya-Ni; Zhang, Xinfeng; Jiang, Xiaoming; Hou, Xiandeng; Wu, Peng

    2018-02-20

    Thallium (Tl) is an extremely toxic heavy metal and exists in very low concentrations in the environment, but its sensing is largely underexplored as compared to its neighboring elements in the periodic table (especially mercury and lead). In this work, we developed a ratiometric phosphorescent nanoprobe for thallium detection based on Mn-doped ZnSe quantum dots (QDs) and water-soluble carbon dots (C-dots). Upon excitation with 360 nm, Mn-doped ZnSe QDs and C-dots can emit long-lived and spectrally resolved phosphorescence at 580 and 440 nm, respectively. In the presence of thallium, the phosphorescence emission from Mn-doped ZnSe QDs could be selectively quenched, while that from C-dots retained unchanged. Therefore, a ratiometric phosphorescent probe was thus developed, which can eliminate the potential influence from both background fluorescence and other analyte-independent external environment factors. Several other heavy metal ions caused interferences to thallium detection but could be efficiently masked with EDTA. The proposed method offered a detection limit of 1 μg/L, which is among the most sensitive probes ever reported. Successful application of this method for thallium detection in biological serum as well as in environmental water and soil samples was demonstrated.

  13. Readout-segmented echo-planar imaging improves the image quality of diffusion-weighted MR imaging in rectal cancer: Comparison with single-shot echo-planar diffusion-weighted sequences

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Chun-chao; Liu, Xi; Peng, Wan-lin; Li, Lei; Zhang, Jin-ge [Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan 610041 (China); Meng, Wen-jian; Deng, Xiang-bing [Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan 610041 (China); Zuo, Pan-li [Siemens Healthcare, MR Collaborations NE Asia, 100010, Beijing (China); Li, Zhen-lin, E-mail: lzlcd01@126.com [Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan 610041 (China)

    2016-10-15

    Purpose: To determine whether readout-segmented echo-planar imaging (rs-EPI) diffusion-weighted imaging (DWI) can improve the image quality in patients with rectal cancer compared with single-shot echo-planar imaging (ss-EPI) DWI using 3.0 T magnetic resonance (MR) imaging. Materials and methods: This study was approved by the Institutional Review Board, and informed consent was obtained from all patients. Seventy-one patients with rectal cancer were enrolled in this study. For all patients, both rs-EPI and ss-EPI DWI were performed using a 3T MR scanner. Two radiologists independently assessed the overall image quality, lesion conspicuity, geometric distortion and distinction of anatomical structures. The signal-to-noise ratio (SNR), lesion contrast, contrast-to-noise ratio (CNR), and apparent diffusion coefficient (ADC) were also measured. Comparisons of the quantitative and qualitative parameters between the two sequences were performed using the paired t-test and the Wilcoxon signed rank test. Results: The scores of overall image quality, lesion conspicuity, geometric distortion and distinction of anatomical structures of rs-EPI were all significantly higher than those of ss-EPI (all p < 0.05). The SNR and CNR were higher in rs-EPI than those in ss-EPI (all p < 0.05). There was no significant difference between ss-EPI and rs-EPI with regard to ROI size and mean ADCs of the tumour (p = 0.574 and p = 0.479, respectively), but the mean ADC of the normal tissue was higher in rs-EPI than in ss-EPI (1.73 ± 0.30 × 10{sup −3} mm{sup 2}/s vs. 1.60 ± 0.31 × 10{sup −3} mm{sup 2}/s, p = 0.001). Conclusions: DW imaging based on readout-segmented echo-planar imaging is a clinically useful technique to improve the image quality for the purpose of evaluating lesions in patients with rectal tumours.

  14. Time-resolved imaging using x-ray free electron lasers

    International Nuclear Information System (INIS)

    Barty, Anton

    2010-01-01

    The ultra-intense, ultra-short x-ray pulses provided by x-ray free electron laser (XFEL) sources are ideally suited to time-resolved studies of structural dynamics with spatial resolution from nanometre to atomic length scales and a temporal resolution of 10 fs or less. With enough photons in a single pulse to enable single-shot measurements and short enough pulses to freeze atomic motion, researchers now have a new window into the time evolution ultrafast phenomena that are intrinsically not cyclic in nature. In this paper we recap some of the key time-resolved imaging experiments performed at FLASH and look ahead to a new generation of experiments at higher resolution using a new generation of new XFEL sources that are only just becoming available.

  15. Few-femtosecond time-resolved measurements of X-ray free-electron lasers.

    Science.gov (United States)

    Behrens, C; Decker, F-J; Ding, Y; Dolgashev, V A; Frisch, J; Huang, Z; Krejcik, P; Loos, H; Lutman, A; Maxwell, T J; Turner, J; Wang, J; Wang, M-H; Welch, J; Wu, J

    2014-04-30

    X-ray free-electron lasers, with pulse durations ranging from a few to several hundred femtoseconds, are uniquely suited for studying atomic, molecular, chemical and biological systems. Characterizing the temporal profiles of these femtosecond X-ray pulses that vary from shot to shot is not only challenging but also important for data interpretation. Here we report the time-resolved measurements of X-ray free-electron lasers by using an X-band radiofrequency transverse deflector at the Linac Coherent Light Source. We demonstrate this method to be a simple, non-invasive technique with a large dynamic range for single-shot electron and X-ray temporal characterization. A resolution of less than 1 fs root mean square has been achieved for soft X-ray pulses. The lasing evolution along the undulator has been studied with the electron trapping being observed as the X-ray peak power approaches 100 GW.

  16. SNAPSHOT SPECTRAL AND COLOR IMAGING USING A REGULAR DIGITAL CAMERA WITH A MONOCHROMATIC IMAGE SENSOR

    Directory of Open Access Journals (Sweden)

    J. Hauser

    2017-10-01

    Full Text Available Spectral imaging (SI refers to the acquisition of the three-dimensional (3D spectral cube of spatial and spectral data of a source object at a limited number of wavelengths in a given wavelength range. Snapshot spectral imaging (SSI refers to the instantaneous acquisition (in a single shot of the spectral cube, a process suitable for fast changing objects. Known SSI devices exhibit large total track length (TTL, weight and production costs and relatively low optical throughput. We present a simple SSI camera based on a regular digital camera with (i an added diffusing and dispersing phase-only static optical element at the entrance pupil (diffuser and (ii tailored compressed sensing (CS methods for digital processing of the diffused and dispersed (DD image recorded on the image sensor. The diffuser is designed to mix the spectral cube data spectrally and spatially and thus to enable convergence in its reconstruction by CS-based algorithms. In addition to performing SSI, this SSI camera is capable to perform color imaging using a monochromatic or gray-scale image sensor without color filter arrays.

  17. Time-resolved studies

    International Nuclear Information System (INIS)

    Mills, D.M.

    1992-01-01

    When new or more powerful probes become available that offer both shorter data-collection times and the opportunity to apply innovative approaches to established techniques, it is natural that investigators consider the feasibility of exploring the kinetics of time-evolving systems. This stimulating area of research not only can lead to insights into the metastable or excited states that a system may populate on its way to a ground state, but can also lead to a better understanding of that final state. Synchrotron radiation, with its unique properties, offers just such a tool to extend X-ray measurements from the static to the time-resolved regime. The most straight-forward application of synchrotron radiation to the study of transient phenomena is directly through the possibility of decreased data-collection times via the enormous increase in flux over that of a laboratory X-ray system. Even further increases in intensity can be obtained through the use of novel X-ray optical devices. Widebandpass monochromators, e.g., that utilize the continuous spectral distribution of synchrotron radiation, can increase flux on the sample several orders of magnitude over conventional X-ray optical systems thereby allowing a further shortening of the data-collection time. Another approach that uses the continuous spectral nature of synchrotron radiation to decrease data-collection times is the open-quote parallel data collectionclose quotes method. Using this technique, intensities as a function of X-ray energy are recorded simultaneously for all energies rather than sequentially recording data at each energy, allowing for a dramatic decrease in the data-collection time

  18. Spectral Characterization of a Prototype SFA Camera for Joint Visible and NIR Acquisition.

    Science.gov (United States)

    Thomas, Jean-Baptiste; Lapray, Pierre-Jean; Gouton, Pierre; Clerc, Cédric

    2016-06-28

    Multispectral acquisition improves machine vision since it permits capturing more information on object surface properties than color imaging. The concept of spectral filter arrays has been developed recently and allows multispectral single shot acquisition with a compact camera design. Due to filter manufacturing difficulties, there was, up to recently, no system available for a large span of spectrum, i.e., visible and Near Infra-Red acquisition. This article presents the achievement of a prototype of camera that captures seven visible and one near infra-red bands on the same sensor chip. A calibration is proposed to characterize the sensor, and images are captured. Data are provided as supplementary material for further analysis and simulations. This opens a new range of applications in security, robotics, automotive and medical fields.

  19. Spectral Characterization of a Prototype SFA Camera for Joint Visible and NIR Acquisition

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Thomas

    2016-06-01

    Full Text Available Multispectral acquisition improves machine vision since it permits capturing more information on object surface properties than color imaging. The concept of spectral filter arrays has been developed recently and allows multispectral single shot acquisition with a compact camera design. Due to filter manufacturing difficulties, there was, up to recently, no system available for a large span of spectrum, i.e., visible and Near Infra-Red acquisition. This article presents the achievement of a prototype of camera that captures seven visible and one near infra-red bands on the same sensor chip. A calibration is proposed to characterize the sensor, and images are captured. Data are provided as supplementary material for further analysis and simulations. This opens a new range of applications in security, robotics, automotive and medical fields.

  20. Spectral unmixing using the concept of pure variables

    DEFF Research Database (Denmark)

    Kucheryavskiy, Sergey V.

    2016-01-01

    This comprehensive book presents an interdisciplinary approach to demonstrate how and why data analysis, signal processing, and chemometrics are essential to resolving the spectral unmixing problem.......This comprehensive book presents an interdisciplinary approach to demonstrate how and why data analysis, signal processing, and chemometrics are essential to resolving the spectral unmixing problem....

  1. Real-time single-shot electron bunch length measurements

    CERN Document Server

    Wilke, I; Gillespie, W A; Berden, G; Knippels, G M H; Meer, A F G

    2002-01-01

    Linear accelerators employed as drivers for X-ray free electron lasers (FELs) require relativistic electron bunch with sub-picosecond bunch length. Precise bunch length measurements are important for the tuning and operation of the FELs. Previously, we have demonstrated that electro-optic detection is a powerful technique for sub-picosecond electron bunch length measurements. In those experiments, the measured bunch length was the average of all electron bunches within a macropulse. Here, for the first time, we present the measurement of the length of individual electron bunches using a development of our previous technique. In this experiment, the longitudinal electron bunch shape is encoded electro-optically on to the frequency spectrum of a chirped laser pulse. Subsequently, the laser pulse is dispersed by a grating and the spectrum is imaged with a CCD camera. Single bunch measurements are achieved by using a nanosecond gated camera, and synchronizing the gate with both the electron bunch and the laser pu...

  2. Single-shot fluctuations in waveguided high-harmonic generation

    NARCIS (Netherlands)

    Goh, S.J.; Tao, Y.; van der Slot, Petrus J.M.; Bastiaens, Hubertus M.J.; Herek, Jennifer Lynn; Biedron, S.G.; Danailov, M.B.; Milton, S.V.; Boller, Klaus J.

    2015-01-01

    For exploring the application potential of coherent soft x-ray (SXR) and extreme ultraviolet radiation (XUV) provided by high-harmonic generation, it is important to characterize the central output parameters. Of specific importance are pulse-to-pulse (shot-to-shot) fluctuations of the high-harmonic

  3. The challenges of single-shot spinal anaesthesia for cesearean ...

    African Journals Online (AJOL)

    An unusual case of morbid obesity, severe hypertension and twin gestation at 36weeks in an unbooked multigravid patient was presented for cesarean section. She was referred from a private clinic to the obstetric emergency unit of the University College Hospital, Ibadan with history of hypertension in pregnancy. She was ...

  4. Solar Spectral Irradiance and Climate

    Science.gov (United States)

    Pilewskie, P.; Woods, T.; Cahalan, R.

    2012-01-01

    Spectrally resolved solar irradiance is recognized as being increasingly important to improving our understanding of the manner in which the Sun influences climate. There is strong empirical evidence linking total solar irradiance to surface temperature trends - even though the Sun has likely made only a small contribution to the last half-century's global temperature anomaly - but the amplitudes cannot be explained by direct solar heating alone. The wavelength and height dependence of solar radiation deposition, for example, ozone absorption in the stratosphere, absorption in the ocean mixed layer, and water vapor absorption in the lower troposphere, contribute to the "top-down" and "bottom-up" mechanisms that have been proposed as possible amplifiers of the solar signal. New observations and models of solar spectral irradiance are needed to study these processes and to quantify their impacts on climate. Some of the most recent observations of solar spectral variability from the mid-ultraviolet to the near-infrared have revealed some unexpected behavior that was not anticipated prior to their measurement, based on an understanding from model reconstructions. The atmospheric response to the observed spectral variability, as quantified in climate model simulations, have revealed similarly surprising and in some cases, conflicting results. This talk will provide an overview on the state of our understanding of the spectrally resolved solar irradiance, its variability over many time scales, potential climate impacts, and finally, a discussion on what is required for improving our understanding of Sun-climate connections, including a look forward to future observations.

  5. High-resolution three-dimensional diffusion-weighted imaging of middle ear cholesteatoma at 3.0 T MRI: Usefulness of 3D turbo field-echo with diffusion-sensitized driven-equilibrium preparation (TFE–DSDE) compared to single-shot echo-planar imaging

    International Nuclear Information System (INIS)

    Yamashita, Koji; Yoshiura, Takashi; Hiwatashi, Akio; Obara, Makoto; Togao, Osamu; Matsumoto, Nozomu; Kikuchi, Kazufumi; Honda, Hiroshi

    2013-01-01

    Objective: To prospectively evaluate the usefulness of a newly developed high-resolution three-dimensional diffusion-weighted imaging method, turbo field-echo with diffusion-sensitized driven-equilibrium (TFE–DSDE) in diagnosing middle-ear cholesteatoma by comparing it to conventional single-shot echo-planar diffusion-weighted imaging (SS-EP DWI). Materials and methods: Institutional review board approval and informed consent from all participants were obtained. We studied 30 patients with preoperatively suspected acquired cholesteatoma. Each patient underwent an MR examination including both SS-EP DWI and DSDE-TFE using a 3.0 T MR scanner. Images of the 30 patients (60 temporal bones including 30 with and 30 without cholesteatoma) were reviewed by two independent neuroradiologists. The confidence level for the presence of cholesteatoma was graded on a scale of 0–2 (0 = definite absence, 1 = equivocal, 2 = definite presence). Interobserver agreement as well as sensitivity, specificity, and accuracy for detection were assessed for the two reviewers. Results: Excellent interobserver agreement was shown for TFE–DSDE (κ = 0.821) whereas fair agreement was obtained for SS-EP DWI (κ = 0.416). TFE–DSDE was associated with significantly higher sensitivity (83.3%) and accuracy (90.0%) compared to SS-EP DWI (sensitivity = 35.0%, accuracy = 66.7%; p < 0.05). No significant difference was found in specificity (96.7% for TFE–DSDE, 98.3% for SS-EP DWI) Conclusion: With increased spatial resolution and reduced susceptibility artifacts, TFE–DSDE improves the accuracy in diagnosing acquired middle ear cholesteatomas compared to SS-EP DWI

  6. New Light Source Setup for Angle Resolved Light Absorption measurement of PV samples

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Poulsen, Peter Behrensdorff; Thorsteinsson, Sune

    Here, we introduce measurements of angle resolved light absorption by PV cells, using broadband laser driven white light source with a bright, stable, broad spectral range and well collimated light.......Here, we introduce measurements of angle resolved light absorption by PV cells, using broadband laser driven white light source with a bright, stable, broad spectral range and well collimated light....

  7. New Light Source Setup for Angle Resolved Light Absorption measurement of PV sample

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Poulsen, Peter Behrensdorff; Thorsteinsson, Sune

    Here, we introduce measurements of angle resolved light absorption by PV cells, using broadband laser driven white light source with a bright, stable, broad spectral range and well collimated light.......Here, we introduce measurements of angle resolved light absorption by PV cells, using broadband laser driven white light source with a bright, stable, broad spectral range and well collimated light....

  8. Spectral Pollution

    OpenAIRE

    Davies, E B; Plum, M

    2003-01-01

    We discuss the problems arising when computing eigenvalues of self-adjoint operators which lie in a gap between two parts of the essential spectrum. Spectral pollution, i.e. the apparent existence of eigenvalues in numerical computations, when no such eigenvalues actually exist, is commonplace in problems arising in applied mathematics. We describe a geometrically inspired method which avoids this difficulty, and show that it yields the same results as an algorithm of Zimmermann and Mertins.

  9. Time-resolved fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Gustavsson, Thomas; Mialocq, Jean-Claude

    2007-01-01

    This article addresses the evolution in time of light emitted by a molecular system after a brief photo-excitation. The authors first describe fluorescence from a photo-physical point of view and discuss the characterization of the excited state. Then, they explain some basic notions related to fluorescence characterization (lifetime and decays, quantum efficiency, so on). They present the different experimental methods and techniques currently used to study time-resolved fluorescence. They discuss basic notions of time resolution and spectral reconstruction. They briefly present some conventional methods: intensified Ccd cameras, photo-multipliers and photodiodes associated with a fast oscilloscope, and phase modulation. Other methods and techniques are more precisely presented: time-correlated single photon counting (principle, examples, and fluorescence lifetime imagery), streak camera (principle, examples), and optical methods like the Kerr optical effect (principle and examples) and fluorescence up-conversion (principle and theoretical considerations, examples of application)

  10. Depth-resolved fluorescence of biological tissue

    Science.gov (United States)

    Wu, Yicong; Xi, Peng; Cheung, Tak-Hong; Yim, So Fan; Yu, Mei-Yung; Qu, Jianan Y.

    2005-06-01

    The depth-resolved autofluorescence ofrabbit oral tissue, normal and dysplastic human ectocervical tissue within l20μm depth were investigated utilizing a confocal fluorescence spectroscopy with the excitations at 355nm and 457nm. From the topmost keratinizing layer of oral and ectocervical tissue, strong keratin fluorescence with the spectral characteristics similar to collagen was observed. The fluorescence signal from epithelial tissue between the keratinizing layer and stroma can be well resolved. Furthermore, NADH and FADfluorescence measured from the underlying non-keratinizing epithelial layer were strongly correlated to the tissue pathology. This study demonstrates that the depth-resolved fluorescence spectroscopy can reveal fine structural information on epithelial tissue and potentially provide more accurate diagnostic information for determining tissue pathology.

  11. U 5f spectral weight variation in UPd 3- xPt x

    Science.gov (United States)

    Allen, J. W.; Denlinger, J. D.; Zhang, Y. X.; Gweon, G.-H.; Yang, S.-H.; Oh, S.-J.; Cho, E.-J.; Ellis, W. P.; Gajewski, D. A.; Chau, R.; Maple, M. B.

    2000-06-01

    We report a photoemission study of the 5f spectral weight variation in UPd 3- xPt x. Relative to a previous study the results show both agreement and very significant differences. New spectral detail is resolved.

  12. Extracting attosecond delays from spectrally overlapping interferograms

    Science.gov (United States)

    Jordan, Inga; Wörner, Hans Jakob

    2018-02-01

    Attosecond interferometry is becoming an increasingly popular technique for measuring the dynamics of photoionization in real time. Whereas early measurements focused on atomic systems with very simple photoelectron spectra, the technique is now being applied to more complex systems including isolated molecules and solids. The increase in complexity translates into an augmented spectral congestion, unavoidably resulting in spectral overlap in attosecond interferograms. Here, we discuss currently used methods for phase retrieval and introduce two new approaches for determining attosecond photoemission delays from spectrally overlapping photoelectron spectra. We show that the previously used technique, consisting in the spectral integration of the areas of interest, does in general not provide reliable results. Our methods resolve this problem, thereby opening the technique of attosecond interferometry to complex systems and fully exploiting its specific advantages in terms of spectral resolution compared to attosecond streaking.

  13. Spatially resolved and time-resolved imaging of transport of indirect excitons in high magnetic fields

    Science.gov (United States)

    Dorow, C. J.; Hasling, M. W.; Calman, E. V.; Butov, L. V.; Wilkes, J.; Campman, K. L.; Gossard, A. C.

    2017-06-01

    We present the direct measurements of magnetoexciton transport. Excitons give the opportunity to realize the high magnetic-field regime for composite bosons with magnetic fields of a few tesla. Long lifetimes of indirect excitons allow the study of kinetics of magnetoexciton transport with time-resolved optical imaging of exciton photoluminescence. We performed spatially, spectrally, and time-resolved optical imaging of transport of indirect excitons in high magnetic fields. We observed that an increasing magnetic field slows down magnetoexciton transport. The time-resolved measurements of the magnetoexciton transport distance allowed for an experimental estimation of the magnetoexciton diffusion coefficient. An enhancement of the exciton photoluminescence energy at the laser excitation spot was found to anticorrelate with the exciton transport distance. A theoretical model of indirect magnetoexciton transport is presented and is in agreement with the experimental data.

  14. Spectral Decomposition Algorithm (SDA)

    Data.gov (United States)

    National Aeronautics and Space Administration — Spectral Decomposition Algorithm (SDA) is an unsupervised feature extraction technique similar to PCA that was developed to better distinguish spectral features in...

  15. Spectral broadening of 25 fs laser pulses via self-phase modulation in a neon filled hollow core fibre

    Energy Technology Data Exchange (ETDEWEB)

    Weichert, Stefan

    2017-05-15

    The goal of this work was the realisation of a setup for spectral broadening and subsequent compression of 25 fs laser pulses provided by a commercial Ti:Sapphire based CPA laser system by means of the hollow core fibre chirped mirror compressor technique. For the spectral broadening a vessel containing the hollow waveguide filled with a noble gas serving as the nonlinear medium was set up and an alignment procedure was developed. Neon was chosen as the nonlinear medium for the self-phase modulation of the pulses. With this setup spectral broadening, sufficient for supporting sub 5 fs pulses, was observed. The spectra at different input energies and neon gas pressures were measured and the stability of these and their respective Fourier transform-limited pulses determined in order to find an operating point. For the compression of the self-phase modulated pulses a chirped mirror compressor was designed and set up, but not tested yet. The layout of a single-shot intensity autocorrelator capable of estimating the pulse duration of sub 10 fs pulses was given.

  16. Time resolved spectroscopy of GRB 030501 using INTEGRAL

    DEFF Research Database (Denmark)

    Beckmann, V.; Borkowski, J.; Courvoisier, T.J.L.

    2003-01-01

    The gamma-ray instruments on-board INTEGRAL offer an unique opportunity to perform time resolved analysis on GRBs. The imager IBIS allows accurate positioning of GRBs and broad band spectral analysis, while SPI provides high resolution spectroscopy. GRB 030501 was discovered by the INTEGRAL Burst...... the Ulysses and RHESSI experiments....

  17. Depth resolved hyperspectral imaging spectrometer based on structured light illumination and Fourier transform interferometry

    Science.gov (United States)

    Choi, Heejin; Wadduwage, Dushan; Matsudaira, Paul T.; So, Peter T.C.

    2014-01-01

    A depth resolved hyperspectral imaging spectrometer can provide depth resolved imaging both in the spatial and the spectral domain. Images acquired through a standard imaging Fourier transform spectrometer do not have the depth-resolution. By post processing the spectral cubes (x, y, λ) obtained through a Sagnac interferometer under uniform illumination and structured illumination, spectrally resolved images with depth resolution can be recovered using structured light illumination algorithms such as the HiLo method. The proposed scheme is validated with in vitro specimens including fluorescent solution and fluorescent beads with known spectra. The system is further demonstrated in quantifying spectra from 3D resolved features in biological specimens. The system has demonstrated depth resolution of 1.8 μm and spectral resolution of 7 nm respectively. PMID:25360367

  18. Time-resolved studies. Ch. 9

    International Nuclear Information System (INIS)

    Mills, Dennis M.; Argonne National Lab., IL

    1991-01-01

    Synchrotron radiation, with its unique properties, offers a tool to extend X-ray measurements from the static to the time-resolved regime. The most straight-forward application of synchrotron radiation to the study of transient phenomena is directly through the possibility of decreased data-collection times via the enormous increase in flux over that of a laboratory X-ray system. Even further increases in intensity can be obtained through the use of novel X-ray optical devices. Wide-bandpass monochromators, e.g., that utilize the continuous spectral distribution of synchrotron radiation, can increase flux on the sample several orders of magnitude over conventional X-ray optical systems thereby allowing a further shortening of the data-collection time. Another approach that uses the continuous spectral nature of synchrotron radiation to decrease data-collection times is the 'parallel data collection' method. Using this technique, intensities as a function of X-ray energy are recorded simultaneously for all energies rather than sequentially recording data at each energy, allowing for a dramatic decrease in data-collection time. Perhaps the most exciting advances in time-resolved X-ray studies will be made by those methods that exploit the pulsed nature of the radiation emitted from storage rings. Pulsed techniques have had an enormous impact in the study of the temporal evolution of transient phenomena. The extension from continuous to modulated sources for use in time-resolved work has been carried over in a host of fields that use both pulsed particle and pulsed electro-magnetic beams. In this chapter the new experimental techniques are reviewed and illustrated with some experiments. (author). 98 refs.; 20 figs.; 5 tabs

  19. Development of a high resolution cylindrical crystal spectrometer for line shape and spectral diagnostics of x-rays emitted from - hot - plasmas. Final report, June 1, 1976-December 31, 1983

    International Nuclear Information System (INIS)

    Kaellne, E.G.

    1984-01-01

    The development, installation and evaluation of a high resolution X-ray spectroscopic diagnostics are reported. The approach has been to optimize spectrometer throughput to enable single shot plasma diagnostics with good time resolution and to ensure sufficient energy resolution to allow line profile analysis. These goals have been achieved using a new X-ray geometry combined with a new position sensitive X-ray detector. These diagnostics have been used at Alcator C to detect X-ray emission of highly ionized impurity elements as well as argon seed elements specially introduced into the plasma for this diagnostic. Temporally resolved ion temperature profiles have been obtained from the recorded X-ray spectra simultaneously with other plasma parameters such as electron temperature, ionization temperature and ionization stage distribution. Radial profiles have also been measured. The developed X-ray diagnostics thus serve as a major multiparameter probe of the central core of the plasma with complementary informtion on radial profiles

  20. Resolvent-based feedback control for turbulent friction drag reduction

    Science.gov (United States)

    Kawagoe, Aika; Nakashima, Satoshi; Luhar, Mitul; Fukagata, Koji

    2017-11-01

    Suboptimal control for turbulent friction drag reduction has been studied extensively. Nakashima et al. (accepted) extended resolvent analysis to suboptimal control, and for the control where the streamwise wall shear stress is used as an input (Case ST), they revealed the control effect across spectral space is mixed: there are regions of drag increase as well as reduction. This suggests that control performance may be improved if the control is applied for selective wavelengths, or if a new law is designed to suppress the spectral region leading to drag increase. In the present study, we first assess the effect of suboptimal control for selective wavelengths via DNS. The friction Reynolds number is set at 180. For Case ST, resolvent analysis predicts drag reduction at long streamwise wavelengths. DNS with control applied only for this spectral region, however, did not result in drag reduction. Then, we seek an effective control law using resolvent analysis and propose a new law. DNS results for this law are consistent with predictions from resolvent analysis, and about 10% drag reduction is attained. Further, we discuss how this law reduces the drag from a dynamical and theoretical point of view. This work was supported through Grant-in-Aid for Scientic Research (C) (No. 25420129) by Japan Society for the Promotion of Science (JSPS).

  1. Spectral encoding method for measuring the relative arrival time between x-ray/optical pulses

    International Nuclear Information System (INIS)

    Bionta, M. R.; Hartmann, N.; Weaver, M.; French, D.; Glownia, J. M.; Bostedt, C.; Chollet, M.; Ding, Y.; Fritz, D. M.; Fry, A. R.; Krzywinski, J.; Lemke, H. T.; Messerschmidt, M.; Schorb, S.; Zhu, D.; White, W. E.; Nicholson, D. J.; Cryan, J. P.; Baker, K.; Kane, D. J.

    2014-01-01

    The advent of few femtosecond x-ray light sources brings promise of x-ray/optical pump-probe experiments that can measure chemical and structural changes in the 10–100 fs time regime. Widely distributed timing systems used at x-ray Free-Electron Laser facilities are typically limited to above 50 fs fwhm jitter in active x-ray/optical synchronization. The approach of single-shot timing measurements is used to sort results in the event processing stage. This has seen wide use to accommodate the insufficient precision of active stabilization schemes. In this article, we review the current technique for “measure-and-sort” at the Linac Coherent Light Source at the SLAC National Accelerator Laboratory. The relative arrival time between an x-ray pulse and an optical pulse is measured near the experimental interaction region as a spectrally encoded cross-correlation signal. The cross-correlation provides a time-stamp for filter-and-sort algorithms used for real-time sorting. Sub-10 fs rms resolution is common in this technique, placing timing precision at the same scale as the duration of the shortest achievable x-ray pulses

  2. STUDY OF CHARACTERISTICS OF SPECTRAL INTERFERENCE SIGNALS IN THE NEAR INFRARED SPECTRAL RANGE

    Directory of Open Access Journals (Sweden)

    I. P. Gurov

    2014-01-01

    Full Text Available Peculiarities of signals formation in spectral interferometry and optical coherence tomography are considered. Basic relations are given defining minimal depth coordinate value of an investigated object, where single period of spectral interference signal is acquired and a value of the wave length increment set according to the depth range, where spectral interference signals are registered. The estimate of resolving power of the spectral interfereometry and optical coherence tomography systems with tunable wave length is given taking into account a spectral range of wave length tuning. It is shown that the ratio of the wave length mean value and the range of the wave length tuning defines the resolving power in depth of an investigated object, while the maximum depth range, within which investigation of an object’s micro structure by the spectral optical coherence tomography is possible does not depend on the range of the wave length tuning being determined by the wave length (wave number tuning step. Numerical estimates of the parameters mentioned above are presented when using light sources in near infrared range, as well as relations and estimates of interference fringe visibility dependent on registered relative intensity of a measuring wave.

  3. Highly resolving computerized tomography

    International Nuclear Information System (INIS)

    Kurtz, B.; Petersen, D.; Walter, E.

    1984-01-01

    With the development of highly-resolving devices for computerized tomography, CT diagnosis of the lumbar vertebral column has gained increasing importance. As an ambulatory, non-invasive method it has proved in comparative studies to be at least equivalent to myelography in the detection of dislocations of inter-vertebral disks (4,6,7,15). Because with modern devices not alone the bones, but especially the spinal soft part structures are clearly and precisely presented with a resolution of distinctly below 1 mm, a further improvement of the results is expected as experience will increase. The authors report on the diagnosis of the lumbar vertebral column with the aid of a modern device for computerized tomography and wish to draw particular attention to the possibility of doing this investigation as a routine, and to the diagnostic value of secondary reconstructions. (BWU) [de

  4. BioCARS: a synchrotron resource for time-resolved X-ray science.

    Science.gov (United States)

    Graber, T; Anderson, S; Brewer, H; Chen, Y S; Cho, H S; Dashdorj, N; Henning, R W; Kosheleva, I; Macha, G; Meron, M; Pahl, R; Ren, Z; Ruan, S; Schotte, F; Srajer, V; Viccaro, P J; Westferro, F; Anfinrud, P; Moffat, K

    2011-07-01

    BioCARS, a NIH-supported national user facility for macromolecular time-resolved X-ray crystallography at the Advanced Photon Source (APS), has recently completed commissioning of an upgraded undulator-based beamline optimized for single-shot laser-pump X-ray-probe measurements with time resolution as short as 100 ps. The source consists of two in-line undulators with periods of 23 and 27 mm that together provide high-flux pink-beam capability at 12 keV as well as first-harmonic coverage from 6.8 to 19 keV. A high-heat-load chopper reduces the average power load on downstream components, thereby preserving the surface figure of a Kirkpatrick-Baez mirror system capable of focusing the X-ray beam to a spot size of 90 µm horizontal by 20 µm vertical. A high-speed chopper isolates single X-ray pulses at 1 kHz in both hybrid and 24-bunch modes of the APS storage ring. In hybrid mode each isolated X-ray pulse delivers up to ~4 × 10(10) photons to the sample, thereby achieving a time-averaged flux approaching that of fourth-generation X-FEL sources. A new high-power picosecond laser system delivers pulses tunable over the wavelength range 450-2000 nm. These pulses are synchronized to the storage-ring RF clock with long-term stability better than 10 ps RMS. Monochromatic experimental capability with Biosafety Level 3 certification has been retained.

  5. Time-Resolved Hard X-Ray Spectrometer

    International Nuclear Information System (INIS)

    Kenneth Moya; Ian McKennaa; Thomas Keenana; Michael Cuneob

    2007-01-01

    Wired array studies are being conducted at the SNL Z accelerator to maximize the x-ray generation for inertial confinement fusion targets and high energy density physics experiments. An integral component of these studies is the characterization of the time-resolved spectral content of the x-rays. Due to potential spatial anisotropy in the emitted radiation, it is also critical to diagnose the time-evolved spectral content in a space-resolved manner. To accomplish these two measurement goals, we developed an x-ray spectrometer using a set of high-speed detectors (silicon PIN diodes) with a collimated field-of-view that converged on a 1-cm-diameter spot at the pinch axis. Spectral discrimination is achieved by placing high Z absorbers in front of these detectors. We built two spectrometers to permit simultaneous different angular views of the emitted radiation. Spectral data have been acquired from recent Z shots for the radial and polar views. UNSPEC1 has been adapted to analyze and unfold the measured data to reconstruct the x-ray spectrum. The unfold operator code, UFO2, is being adapted for a more comprehensive spectral unfolding treatment

  6. Resolving inventory differences

    International Nuclear Information System (INIS)

    Weber, J.H.; Clark, J.P.

    1991-01-01

    Determining the cause of an inventory difference (ID) that exceeds warning or alarm limits should not only involve investigation into measurement methods and reexamination of the model assumptions used in the calculation of the limits, but also result in corrective actions that improve the quality of the accountability measurements. An example illustrating methods used by Savannah River Site (SRS) personnel to resolve an ID is presented that may be useful to other facilities faced with a similar problem. After first determining that no theft or diversion of material occurred and correcting any accountability calculation errors, investigation into the IDs focused on volume and analytical measurements, limit of error of inventory difference (LEID) modeling assumptions, and changes in the measurement procedures and methods prior to the alarm. There had been a gradual gain trend in IDs prior to the alarm which was reversed by the alarm inventory. The majority of the NM in the facility was stored in four large tanks which helped identify causes for the alarm. The investigation, while indicating no diversion or theft, resulted in changes in the analytical method and in improvements in the measurement and accountability that produced a 67% improvement in the LEID

  7. Adaptive Spectral Doppler Estimation

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jakobsson, Andreas; Jensen, Jørgen Arendt

    2009-01-01

    . The methods can also provide better quality of the estimated power spectral density (PSD) of the blood signal. Adaptive spectral estimation techniques are known to pro- vide good spectral resolution and contrast even when the ob- servation window is very short. The 2 adaptive techniques are tested......In this paper, 2 adaptive spectral estimation techniques are analyzed for spectral Doppler ultrasound. The purpose is to minimize the observation window needed to estimate the spectrogram to provide a better temporal resolution and gain more flexibility when designing the data acquisition sequence...... and compared with the averaged periodogram (Welch’s method). The blood power spectral capon (BPC) method is based on a standard minimum variance technique adapted to account for both averaging over slow-time and depth. The blood amplitude and phase estimation technique (BAPES) is based on finding a set...

  8. Spectral confocal reflection microscopy using a white light source

    Science.gov (United States)

    Booth, M.; Juškaitis, R.; Wilson, T.

    2008-08-01

    We present a reflection confocal microscope incorporating a white light supercontinuum source and spectral detection. The microscope provides images resolved spatially in three-dimensions, in addition to spectral resolution covering the wavelength range 450-650nm. Images and reflection spectra of artificial and natural specimens are presented, showing features that are not normally revealed in conventional microscopes or confocal microscopes using discrete line lasers. The specimens include thin film structures on semiconductor chips, iridescent structures in Papilio blumei butterfly scales, nacre from abalone shells and opal gemstones. Quantitative size and refractive index measurements of transparent beads are derived from spectral interference bands.

  9. The use of BAS-TR imaging plates calibration in determining the resolving power of Fuji BAS-1800II image plate reader

    Science.gov (United States)

    Alnaimi, R.

    2018-01-01

    The importance of this work lies in assuring the reliability of the results obtained from both imaging plates type BAS-TR and Fuji Image Reader BAS-1800II as they are widely used in calculating essential x-ray sources parameters such as the source size, x-ray flux and brilliance, hence, the calibration presented in this work. For such quantitative analysis, a common practice used by many researchers, where Gold resolution meshes are utilised for such purpose, however not quite successful due to the transmission effect of high energy photons at their edges as well as the pixeling effect while magnifying the scanned image to secure the edge spread function (ESF) data. In contrast, the use of resolution test target (RTT) and wire mesh grid together with a set of test samples i.e. Stanley blades, Ta, Ti and Si wafer of 100, 300, 15, and 490 micron thickness respectively appeared to be efficient in determining IP pixel size and the resolution of the reader. Two different experiments were conducted using two different targets and lasers of very different performance. The first, was a 15 μm VHS video tape composed of Mylar as carrier film with Fe2O3 and CrO2 powder. Nd:YAG laser of long pulse 800 ps, 50 Hz repetition rate and single shot were utilised. Whereas, the second experiment were conducted on a 9μm C wire and a short pulse 500fs Cerberus single shot laser was used. The results obtained from both experiments were pretty much similar. The imaging plate spatial resolution was measured to be: 3.4 ± 0.2 pixels and a pixel size of 41.26 ± 1.4 μm, whereas the smallest resolvable object visible to the reader (1:1 imaging with magnification factor) was of order 140.3 ± 0.3 microns. This appeared to be worse by a factor of three which indicates the importance of the reader's calibration on a regular basis, and at the same time one has to reconsider any related work and calculation based upon the previous nominal values.

  10. Spectral radius of graphs

    CERN Document Server

    Stevanovic, Dragan

    2015-01-01

    Spectral Radius of Graphs provides a thorough overview of important results on the spectral radius of adjacency matrix of graphs that have appeared in the literature in the preceding ten years, most of them with proofs, and including some previously unpublished results of the author. The primer begins with a brief classical review, in order to provide the reader with a foundation for the subsequent chapters. Topics covered include spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem. From this introduction, the

  11. Unmixing of spectrally similar minerals

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2009-01-01

    Full Text Available techniques is complicated when considering very similar spectral signatures. Iron-bearing oxide/hydroxide/sulfate minerals have similar spectral signatures. The study focuses on how could estimates of abundances of spectrally similar iron-bearing oxide...

  12. Time resolved techniques: An overview

    International Nuclear Information System (INIS)

    Larson, B.C.; Tischler, J.Z.

    1990-06-01

    Synchrotron sources provide exceptional opportunities for carrying out time-resolved x-ray diffraction investigations. The high intensity, high angular resolution, and continuously tunable energy spectrum of synchrotron x-ray beams lend themselves directly to carrying out sophisticated time-resolved x-ray scattering measurements on a wide range of materials and phenomena. When these attributes are coupled with the pulsed time-structure of synchrotron sources, entirely new time-resolved scattering possibilities are opened. Synchrotron beams typically consist of sub-nanosecond pulses of x-rays separated in time by a few tens of nanoseconds to a few hundred nanoseconds so that these beams appear as continuous x-ray sources for investigations of phenomena on time scales ranging from hours down to microseconds. Studies requiring time-resolution ranging from microseconds to fractions of a nanosecond can be carried out in a triggering mode by stimulating the phenomena under investigation in coincidence with the x-ray pulses. Time resolution on the picosecond scale can, in principle, be achieved through the use of streak camera techniques in which the time structure of the individual x-ray pulses are viewed as quasi-continuous sources with ∼100--200 picoseconds duration. Techniques for carrying out time-resolved scattering measurements on time scales varying from picoseconds to kiloseconds at present and proposed synchrotron sources are discussed and examples of time-resolved studies are cited. 17 refs., 8 figs

  13. Vowel Inherent Spectral Change

    CERN Document Server

    Assmann, Peter

    2013-01-01

    It has been traditional in phonetic research to characterize monophthongs using a set of static formant frequencies, i.e., formant frequencies taken from a single time-point in the vowel or averaged over the time-course of the vowel. However, over the last twenty years a growing body of research has demonstrated that, at least for a number of dialects of North American English, vowels which are traditionally described as monophthongs often have substantial spectral change. Vowel Inherent Spectral Change has been observed in speakers’ productions, and has also been found to have a substantial effect on listeners’ perception. In terms of acoustics, the traditional categorical distinction between monophthongs and diphthongs can be replaced by a gradient description of dynamic spectral patterns. This book includes chapters addressing various aspects of vowel inherent spectral change (VISC), including theoretical and experimental studies of the perceptually relevant aspects of VISC, the relationship between ar...

  14. High Resolution Spectral Analysis

    Science.gov (United States)

    2006-10-25

    liable methods for high resolution spectral analysis of multivariable processes, as well as to distance measures for quantitative assessment of...called "modern nonlinear spectral analysis methods " [27]. An alternative way to reconstruct /„(#), based on Tn, is the periodogram/correlogram f{6...eie). A homotopy method was proposed in [8, 9] leading to a differential equation for A(T) in a homotopy variable r. If the statistics are consistent

  15. Spectral evolution of gamma-ray bursts

    Science.gov (United States)

    Band, D.; Matteson, J.; Ford, L.; Schaefer, B.; Teegarden, B.; Cline, T.; Paciesas, W.; Pendleton, G.; Fishman, G.; Meegan, C.

    1992-01-01

    BATSE's Spectral Detectors provide a series of high resolution spectra over the duration of a gamma-ray burst; fits to these spectra show the evolution of the continuum as the burst progresses. The burst continuum can usually be fit by the spectral form AE sup alpha exp(-E/kT) from around 25 keV to more than 3 MeV, with varying trends in the value and evolution of the spectral parameters. As a result of limited statistics for E greater than 1 - 2 MeV in the individual spectra, a high energy power law is not required. Only long duration strong bursts can be studied by fitting a series of spectra, and therefore our conclusions concern only this class of burst. The bursts we analyzed tend to be characterized by a hard-to-soft trend both for individual intensity spikes and for the burst as a whole: the hardness leads the count rate in spectra which resolve the temporal variations, while the hardness of successive spikes decreases. We also summarize the performance of the Spectral Detectors and the development of analysis tools to date.

  16. Spectral solution of the inverse Mie problem

    Science.gov (United States)

    Romanov, Andrey V.; Konokhova, Anastasiya I.; Yastrebova, Ekaterina S.; Gilev, Konstantin V.; Strokotov, Dmitry I.; Chernyshev, Andrei V.; Maltsev, Valeri P.; Yurkin, Maxim A.

    2017-10-01

    We developed a fast method to determine size and refractive index of homogeneous spheres from the power Fourier spectrum of their light-scattering patterns (LSPs), measured with the scanning flow cytometer. Specifically, we used two spectral parameters: the location of the non-zero peak and zero-frequency amplitude, and numerically inverted the map from the space of particle characteristics (size and refractive index) to the space of spectral parameters. The latter parameters can be reliably resolved only for particle size parameter greater than 11, and the inversion is unique only in the limited range of refractive index with upper limit between 1.1 and 1.25 (relative to the medium) depending on the size parameter and particular definition of uniqueness. The developed method was tested on two experimental samples, milk fat globules and spherized red blood cells, and resulted in accuracy not worse than the reference method based on the least-square fit of the LSP with the Mie theory. Moreover, for particles with significant deviation from the spherical shape the spectral method was much closer to the Mie-fit result than the estimated uncertainty of the latter. The spectral method also showed adequate results for synthetic LSPs of spheroids with aspect ratios up to 1.4. Overall, we present a general framework, which can be used to construct an inverse algorithm for any other experimental signals.

  17. Spectrally selective glazings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    Spectrally selective glazing is window glass that permits some portions of the solar spectrum to enter a building while blocking others. This high-performance glazing admits as much daylight as possible while preventing transmission of as much solar heat as possible. By controlling solar heat gains in summer, preventing loss of interior heat in winter, and allowing occupants to reduce electric lighting use by making maximum use of daylight, spectrally selective glazing significantly reduces building energy consumption and peak demand. Because new spectrally selective glazings can have a virtually clear appearance, they admit more daylight and permit much brighter, more open views to the outside while still providing the solar control of the dark, reflective energy-efficient glass of the past. This Federal Technology Alert provides detailed information and procedures for Federal energy managers to consider spectrally selective glazings. The principle of spectrally selective glazings is explained. Benefits related to energy efficiency and other architectural criteria are delineated. Guidelines are provided for appropriate application of spectrally selective glazing, and step-by-step instructions are given for estimating energy savings. Case studies are also presented to illustrate actual costs and energy savings. Current manufacturers, technology users, and references for further reading are included for users who have questions not fully addressed here.

  18. Angle-resolved photoemission spectroscopy with quantum gas microscopes

    Science.gov (United States)

    Bohrdt, A.; Greif, D.; Demler, E.; Knap, M.; Grusdt, F.

    2018-03-01

    Quantum gas microscopes are a promising tool to study interacting quantum many-body systems and bridge the gap between theoretical models and real materials. So far, they were limited to measurements of instantaneous correlation functions of the form 〈O ̂(t ) 〉 , even though extensions to frequency-resolved response functions 〈O ̂(t ) O ̂(0 ) 〉 would provide important information about the elementary excitations in a many-body system. For example, single-particle spectral functions, which are usually measured using photoemission experiments in electron systems, contain direct information about fractionalization and the quasiparticle excitation spectrum. Here, we propose a measurement scheme to experimentally access the momentum and energy-resolved spectral function in a quantum gas microscope with currently available techniques. As an example for possible applications, we numerically calculate the spectrum of a single hole excitation in one-dimensional t -J models with isotropic and anisotropic antiferromagnetic couplings. A sharp asymmetry in the distribution of spectral weight appears when a hole is created in an isotropic Heisenberg spin chain. This effect slowly vanishes for anisotropic spin interactions and disappears completely in the case of pure Ising interactions. The asymmetry strongly depends on the total magnetization of the spin chain, which can be tuned in experiments with quantum gas microscopes. An intuitive picture for the observed behavior is provided by a slave-fermion mean-field theory. The key properties of the spectra are visible at currently accessible temperatures.

  19. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1989-06-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1989) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. Also included are a number of enforcement actions that had been previously resolved but not published in this NUREG. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  20. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1990-05-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1990) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. Also included are a number of enforcement actions that had been previously resolved but not published in this NUREG. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  1. Resolving Ethical Issues at School

    Science.gov (United States)

    Benninga, Jacques S.

    2013-01-01

    Although ethical dilemmas are a constant in teachers' lives, the profession has offered little in the way of training to help teachers address such issues. This paper presents a framework, based on developmental theory, for resolving professional ethical dilemmas. The Four-Component Model of Moral Maturity, when used in conjunction with a…

  2. Time-resolved quantitative phosphoproteomics

    DEFF Research Database (Denmark)

    Verano-Braga, Thiago; Schwämmle, Veit; Sylvester, Marc

    2012-01-01

    proteins involved in the Ang-(1-7) signaling, we performed a mass spectrometry-based time-resolved quantitative phosphoproteome study of human aortic endothelial cells (HAEC) treated with Ang-(1-7). We identified 1288 unique phosphosites on 699 different proteins with 99% certainty of correct peptide...

  3. Time-resolved vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tokmakoff, Andrei [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Champion, Paul [Northeastern Univ., Boston, MA (United States); Heilweil, Edwin J. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Nelson, Keith A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ziegler, Larry [Boston Univ., MA (United States)

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE's Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all fiveof DOE's grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  4. Spectral Interferometry with Electron Microscopes.

    Science.gov (United States)

    Talebi, Nahid

    2016-09-21

    Interference patterns are not only a defining characteristic of waves, but also have several applications; characterization of coherent processes and holography. Spatial holography with electron waves, has paved the way towards space-resolved characterization of magnetic domains and electrostatic potentials with angstrom spatial resolution. Another impetus in electron microscopy has been introduced by ultrafast electron microscopy which uses pulses of sub-picosecond durations for probing a laser induced excitation of the sample. However, attosecond temporal resolution has not yet been reported, merely due to the statistical distribution of arrival times of electrons at the sample, with respect to the laser time reference. This is however, the very time resolution which will be needed for performing time-frequency analysis. These difficulties are addressed here by proposing a new methodology to improve the synchronization between electron and optical excitations through introducing an efficient electron-driven photon source. We use focused transition radiation of the electron as a pump for the sample. Due to the nature of transition radiation, the process is coherent. This technique allows us to perform spectral interferometry with electron microscopes, with applications in retrieving the phase of electron-induced polarizations and reconstructing dynamics of the induced vector potential.

  5. CRISS power spectral density

    International Nuclear Information System (INIS)

    Vaeth, W.

    1979-04-01

    The correlation of signal components at different frequencies like higher harmonics cannot be detected by a normal power spectral density measurement, since this technique correlates only components at the same frequency. This paper describes a special method for measuring the correlation of two signal components at different frequencies: the CRISS power spectral density. From this new function in frequency analysis, the correlation of two components can be determined quantitatively either they stem from one signal or from two diverse signals. The principle of the method, suitable for the higher harmonics of a signal as well as for any other frequency combinations is shown for the digital frequency analysis technique. Two examples of CRISS power spectral densities demonstrates the operation of the new method. (orig.) [de

  6. Parametric Explosion Spectral Model

    Energy Technology Data Exchange (ETDEWEB)

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  7. Spectral analysis by correlation

    International Nuclear Information System (INIS)

    Fauque, J.M.; Berthier, D.; Max, J.; Bonnet, G.

    1969-01-01

    The spectral density of a signal, which represents its power distribution along the frequency axis, is a function which is of great importance, finding many uses in all fields concerned with the processing of the signal (process identification, vibrational analysis, etc...). Amongst all the possible methods for calculating this function, the correlation method (correlation function calculation + Fourier transformation) is the most promising, mainly because of its simplicity and of the results it yields. The study carried out here will lead to the construction of an apparatus which, coupled with a correlator, will constitute a set of equipment for spectral analysis in real time covering the frequency range 0 to 5 MHz. (author) [fr

  8. Minimum resolvable power contrast model

    Science.gov (United States)

    Qian, Shuai; Wang, Xia; Zhou, Jingjing

    2018-01-01

    Signal-to-noise ratio and MTF are important indexs to evaluate the performance of optical systems. However,whether they are used alone or joint assessment cannot intuitively describe the overall performance of the system. Therefore, an index is proposed to reflect the comprehensive system performance-Minimum Resolvable Radiation Performance Contrast (MRP) model. MRP is an evaluation model without human eyes. It starts from the radiance of the target and the background, transforms the target and background into the equivalent strips,and considers attenuation of the atmosphere, the optical imaging system, and the detector. Combining with the signal-to-noise ratio and the MTF, the Minimum Resolvable Radiation Performance Contrast is obtained. Finally the detection probability model of MRP is given.

  9. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1994-03-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October - December 1993) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  10. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1992-11-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July - September 1992) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  11. Spectral Ensemble Kalman Filters

    Czech Academy of Sciences Publication Activity Database

    Mandel, Jan; Kasanický, Ivan; Vejmelka, Martin; Fuglík, Viktor; Turčičová, Marie; Eben, Kryštof; Resler, Jaroslav; Juruš, Pavel

    2014-01-01

    Roč. 11, - (2014), EMS2014-446 [EMS Annual Meeting /14./ & European Conference on Applied Climatology (ECAC) /10./. 06.10.2014-10.10.2014, Prague] R&D Projects: GA ČR GA13-34856S Grant - others:NSF DMS -1216481 Institutional support: RVO:67985807 Keywords : data assimilation * spectral filter Subject RIV: DG - Athmosphere Sciences, Meteorology

  12. A Simple Spectral Observer

    Directory of Open Access Journals (Sweden)

    Lizeth Torres

    2018-05-01

    Full Text Available The principal aim of a spectral observer is twofold: the reconstruction of a signal of time via state estimation and the decomposition of such a signal into the frequencies that make it up. A spectral observer can be catalogued as an online algorithm for time-frequency analysis because is a method that can compute on the fly the Fourier transform (FT of a signal, without having the entire signal available from the start. In this regard, this paper presents a novel spectral observer with an adjustable constant gain for reconstructing a given signal by means of the recursive identification of the coefficients of a Fourier series. The reconstruction or estimation of a signal in the context of this work means to find the coefficients of a linear combination of sines a cosines that fits a signal such that it can be reproduced. The design procedure of the spectral observer is presented along with the following applications: (1 the reconstruction of a simple periodical signal, (2 the approximation of both a square and a triangular signal, (3 the edge detection in signals by using the Fourier coefficients, (4 the fitting of the historical Bitcoin market data from 1 December 2014 to 8 January 2018 and (5 the estimation of a input force acting upon a Duffing oscillator. To round out this paper, we present a detailed discussion about the results of the applications as well as a comparative analysis of the proposed spectral observer vis-à-vis the Short Time Fourier Transform (STFT, which is a well-known method for time-frequency analysis.

  13. Wavelength conversion based spectral imaging

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin

    There has been a strong, application driven development of Si-based cameras and spectrometers for imaging and spectral analysis of light in the visible and near infrared spectral range. This has resulted in very efficient devices, with high quantum efficiency, good signal to noise ratio and high...... resolution for this spectral region. Today, an increasing number of applications exists outside the spectral region covered by Si-based devices, e.g. within cleantech, medical or food imaging. We present a technology based on wavelength conversion which will extend the spectral coverage of state of the art...... visible or near infrared cameras and spectrometers to include other spectral regions of interest....

  14. Resolving the inner disk of UX Orionis

    Science.gov (United States)

    Kreplin, A.; Madlener, D.; Chen, L.; Weigelt, G.; Kraus, S.; Grinin, V.; Tambovtseva, L.; Kishimoto, M.

    2016-05-01

    Aims: The cause of the UX Ori variability in some Herbig Ae/Be stars is still a matter of debate. Detailed studies of the circumstellar environment of UX Ori objects (UXORs) are required to test the hypothesis that the observed drop in photometry might be related to obscuration events. Methods: Using near- and mid-infrared interferometric AMBER and MIDI observations, we resolved the inner circumstellar disk region around UX Ori. Results: We fitted the K-, H-, and N-band visibilities and the spectral energy distribution (SED) of UX Ori with geometric and parametric disk models. The best-fit K-band geometric model consists of an inclined ring and a halo component. We obtained a ring-fit radius of 0.45 ± 0.07 AU (at a distance of 460 pc), an inclination of 55.6 ± 2.4°, a position angle of the system axis of 127.5 ± 24.5°, and a flux contribution of the over-resolved halo component to the total near-infrared excess of 16.8 ± 4.1%. The best-fit N-band model consists of an elongated Gaussian with a HWHM ~ 5 AU of the semi-major axis and an axis ration of a/b ~ 3.4 (corresponding to an inclination of ~72°). With a parametric disk model, we fitted all near- and mid-infrared visibilities and the SED simultaneously. The model disk starts at an inner radius of 0.46 ± 0.06 AU with an inner rim temperature of 1498 ± 70 K. The disk is seen under an nearly edge-on inclination of 70 ± 5°. This supports any theories that require high-inclination angles to explain obscuration events in the line of sight to the observer, for example, in UX Ori objects where orbiting dust clouds in the disk or disk atmosphere can obscure the central star. Based on observations made with ESO telescopes at Paranal Observatory under program IDs: 090.C-0769, 074.C-0552.

  15. Spectral components of cytosolic [Ca2+] spiking in neurons

    DEFF Research Database (Denmark)

    Kardos, J; Szilágyi, N; Juhász, G

    1998-01-01

    We show here, by means of evolutionary spectral analysis and synthesis of cytosolic Ca2+ ([Ca2+]c) spiking observed at the single cell level using digital imaging fluorescence microscopy of fura-2-loaded mouse cerebellar granule cells in culture, that [Ca2+]c spiking can be resolved into evolutio......We show here, by means of evolutionary spectral analysis and synthesis of cytosolic Ca2+ ([Ca2+]c) spiking observed at the single cell level using digital imaging fluorescence microscopy of fura-2-loaded mouse cerebellar granule cells in culture, that [Ca2+]c spiking can be resolved...... into evolutionary spectra of a characteristic set of frequencies. Non-delayed small spikes on top of sustained [Ca2+]c were synthesized by a main component frequency, 0.132+/-0.012 Hz, showing its maximal amplitude in phase with the start of depolarization (25 mM KCI) combined with caffeine (10 mM) application...

  16. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1993-03-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October--December 1992) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  17. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1991-02-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October--December 1990) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  18. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1992-08-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (April--June 1992) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  19. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1992-03-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October--December 1991) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  20. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1991-07-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (April-June 1991) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  1. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1993-12-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July--September 1993) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  2. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1993-06-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1993) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  3. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1992-05-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1992) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  4. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1990-11-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July--September 1990) and includes copies of letters, notices, and orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  5. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1991-11-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July--September 1991) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  6. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1990-03-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October--December 1989) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  7. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1989-12-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July--September 1989) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  8. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1991-05-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1991) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  9. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1993-09-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (April--June 1993) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  10. Hybrid spectral CT reconstruction

    Science.gov (United States)

    Clark, Darin P.

    2017-01-01

    Current photon counting x-ray detector (PCD) technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID). In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM). Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with a spectral

  11. Context Dependent Spectral Unmixing

    Science.gov (United States)

    2014-08-01

    remote sensing [1–13]. It is also used in food safety [14–17], pharmaceutical process monitoring and quality control [18–22], as well as in biomedical...23,24], industrial [25], biometric [26] and forensic applications [27]. Hyperspectral sensors capture both the spatial and spectral information of a...imagery,” IEEE Signal Processing Magazine, vol. 19, no. 1, pp. 58–69, 2002. [12] A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile , L. Bruzzone, G

  12. Hybrid spectral CT reconstruction.

    Directory of Open Access Journals (Sweden)

    Darin P Clark

    Full Text Available Current photon counting x-ray detector (PCD technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID. In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM. Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with

  13. Spectral distributions and symmetries

    International Nuclear Information System (INIS)

    Quesne, C.

    1980-01-01

    As it is now well known, the spectral distribution method has both statistical and group theoretical aspects which make for great simplifications in many-Fermion system calculations with respect to more conventional ones. Although both aspects intertwine and are equally essential to understand what is going on, we are only going to discuss some of the group theoretical aspects, namely those connected with the propagation of information, in view of their fundamental importance for the actual calculations of spectral distributions. To be more precise, let us recall that the spectral distribution method may be applied in principle to many-Fermion spaces which have a direct-product structure, i.e., are obtained by distributing a certain number n of Fermions over N single-particle states (O less than or equal to n less than or equal to N), as it is the case for instance for the nuclear shell model spaces. For such systems, the operation of a central limit theorem is known to provide us with a simplifying principle which, when used in conjunction with exact or broken symmetries, enables us to make definite predictions in those cases which are not amendable to exact shell model diagonalizations. The distribution (in energy) of the states corresponding to a fixed symmetry is then defined by a small number of low-order energy moments. Since the Hamiltonian is defined in few-particle subspaces embedded in the n-particlespace, the low-order moments, we are interested in, can be expressed in terms of simpler quantities defined in those few-particle subspaces: the information is said to propagate from the simple subspaces to the more complicated ones. The possibility of actually calculating spectral distributions depends upon the finding of simple ways to propagate the information

  14. Spectral and Diffraction Tomography

    OpenAIRE

    Lionheart, William

    2016-01-01

    We discuss several cases of what we call "Rich Tomography" problems in which more data is measured than a scalar for each ray. We give examples of infra red spectral tomography and Bragg edge neutron tomography in which the data is insufficient. For diffraction tomography of strain for polycrystaline materials we give an explicit reconstruction procedure. We go on to describe a way to find six independent rotation axes using Pascal's theorem of projective geometry

  15. Mechanical spectral shift reactor

    International Nuclear Information System (INIS)

    Wilson, J.F.; Sherwood, D.G.

    1982-01-01

    A mechanical spectral shift reactor comprises a reactive core having fuel assemblies accommodating both water displacer elements and neutron absorbing control rods for selectively changing the volume of water-moderator in the core. The fuel assemblies with displacer and control rods are arranged in alternating fashion so that one displacer element drive mechanism may move displacer elements in more than one fuel assembly without interfering with the movement of control rods of a corresponding control rod drive mechanisms. (author)

  16. Convergent spectral representation for three-dimensional inverse MHD equilibria

    International Nuclear Information System (INIS)

    Hirshman, S.P.

    1984-10-01

    By rearranging terms in a polar representation for the cylindrical spatial coordinates (R, theta, Z), a renormalized Fourier series moment expansion is obtained that possesses superior convergence properties in mode number space. This convergent spectral representation also determines a unique poloidal angle and thus resolves the underdetermined structure of previous moment expansions. A conformal mapping technique is used to demonstrate the existence and uniqueness of the new representation

  17. Panchromatic SED modelling of spatially resolved galaxies

    Science.gov (United States)

    Smith, Daniel J. B.; Hayward, Christopher C.

    2018-05-01

    We test the efficacy of the energy-balance spectral energy distribution (SED) fitting code MAGPHYS for recovering the spatially resolved properties of a simulated isolated disc galaxy, for which it was not designed. We perform 226 950 MAGPHYS SED fits to regions between 0.2 and 25 kpc in size across the galaxy's disc, viewed from three different sight-lines, to probe how well MAGPHYS can recover key galaxy properties based on 21 bands of UV-far-infrared model photometry. MAGPHYS yields statistically acceptable fits to >99 per cent of the pixels within the r-band effective radius and between 59 and 77 percent of pixels within 20 kpc of the nucleus. MAGPHYS is able to recover the distribution of stellar mass, star formation rate (SFR), specific SFR, dust luminosity, dust mass, and V-band attenuation reasonably well, especially when the pixel size is ≳ 1 kpc, whereas non-standard outputs (stellar metallicity and mass-weighted age) are recovered less well. Accurate recovery is more challenging in the smallest sub-regions of the disc (pixel scale ≲ 1 kpc), where the energy balance criterion becomes increasingly incorrect. Estimating integrated galaxy properties by summing the recovered pixel values, the true integrated values of all parameters considered except metallicity and age are well recovered at all spatial resolutions, ranging from 0.2 kpc to integrating across the disc, albeit with some evidence for resolution-dependent biases. These results must be considered when attempting to analyse the structure of real galaxies with actual observational data, for which the `ground truth' is unknown.

  18. The structure of protoplanetary disks surrounding three young intermediate mass stars: I. Resolving the disk rotation in the [OI] 6300 Å line

    NARCIS (Netherlands)

    van der Plas, G.; van den Ancker, M.E.; Fedele, D.; Acke, B.; Dominik, C.; Waters, L.B.F.M.; Bouwman, J.

    2008-01-01

    We present high-spectral-resolution, optical spectra of three young, intermediate-mass stars, in all of which we spectrally resolve the 6300 Å [OI] emission line. Two of these have a double-peaked line-profile. We attempt to fit these data using a simple model of [OI] emission, which is generated by

  19. Comparing SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout

    Science.gov (United States)

    England, Troy; Curry, Matthew; Carr, Stephen; Mounce, Andrew; Jock, Ryan; Sharma, Peter; Bureau-Oxton, Chloe; Rudolph, Martin; Hardin, Terry; Carroll, Malcolm

    Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will compare two amplifiers based on single-transistor circuits implemented with silicon germanium heterojunction bipolar transistors. Both amplifiers provide gain at low power levels, but the dynamics of each circuit vary significantly. We will explore the gain mechanisms, linearity, and noise of each circuit and explain the situations in which each amplifier is best used. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  20. Development of single shot 1D-Raman scattering measurements for flames

    Science.gov (United States)

    Biase, Amelia; Uddi, Mruthunjaya

    2017-11-01

    The majority of energy consumption in the US comes from burning fossil fuels which increases the concentration of carbon dioxide in the atmosphere. The increasing concentration of carbon dioxide in the atmosphere has negative impacts on the environment. One solution to this problem is to study the oxy-combustion process. A pure oxygen stream is used instead of air for combustion. Products contain only carbon dioxide and water. It is easy to separate water from carbon dioxide by condensation and the carbon dioxide can be captured easily. Lower gas volume allows for easier removal of pollutants from the flue gas. The design of a system that studies the oxy-combustion process using advanced laser diagnostic techniques and Raman scattering measurements is presented. The experiments focus on spontaneous Raman scattering. This is one of the few techniques that can provide quantitative measurements of the concentration and temperature of different chemical species in a turbulent flow. The experimental design and process of validating the design to ensure the data is accurate is described. The Raman data collected form an experimental data base that is used for the validation of spontaneous Raman scattering in high pressure environments for the oxy-combustion process. NSF EEC 1659710.

  1. A second-order autocorrelator for single-shot measurement of ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    background intensity contrast ratio of 25 ps laser pulses from an active-passive mode-locked. Nd:YLF laser carried out in this mode are also presented. 2. Principle. The second order autocorrelation technique basically involves splitting a laser beam into two beams of equal intensity and overlapping them in a nonlinear ...

  2. Single-shot EPI with Nyquist ghost compensation: Interleaved Dual-Echo with Acceleration (IDEA) EPI

    Science.gov (United States)

    Poser, Benedikt A; Barth, Markus; Goa, Pål-Erik; Deng, Weiran; Stenger, V Andrew

    2012-01-01

    Echo planar imaging is most commonly used for BOLD fMRI, owing to its sensitivity and acquisition speed. A major problem with EPI is Nyquist (N/2) ghosting, most notably at high field. EPI data are acquired under an oscillating readout gradient and hence vulnerable to gradient imperfections such as eddy current delays and off-resonance effects, as these cause inconsistencies between odd and even k-space lines after time reversal. We propose a straightforward and pragmatic method herein termed Interleaved Dual Echo with Acceleration (IDEA) EPI: Two k-spaces (echoes) are acquired under the positive and negative readout lobes, respectively, by performing phase blips only before alternate readout gradients. From these two k-spaces, two almost entirely ghost free images per shot can be constructed, without need for phase correction. The doubled echo train length can be compensated by parallel imaging and/or partial Fourier acquisition. The two k-spaces can either be complex-averaged during reconstruction, which results in near-perfect cancellation of residual phase errors, or reconstructed into separate images. We demonstrate the efficacy of IDEA EPI and show phantom and in vivo images at both 3 and 7 Tesla. PMID:22411762

  3. Simple and Reproducible Sample Preparation for Single-Shot Phosphoproteomics with High Sensitivity

    DEFF Research Database (Denmark)

    Jersie-Christensen, Rosa R.; Sultan, Abida; Olsen, Jesper V

    2016-01-01

    The traditional sample preparation workflow for mass spectrometry (MS)-based phosphoproteomics is time consuming and usually requires multiple steps, e.g., lysis, protein precipitation, reduction, alkylation, digestion, fractionation, and phosphopeptide enrichment. Each step can introduce chemical...... artifacts, in vitro protein and peptide modifications, and contaminations. Those often result in sample loss and affect the sensitivity, dynamic range and accuracy of the mass spectrometric analysis. Here we describe a simple and reproducible phosphoproteomics protocol, where lysis, denaturation, reduction......, and alkylation are performed in a single step, thus reducing sample loss and increasing reproducibility. Moreover, unlike standard cell lysis procedures the cell harvesting is performed at high temperatures (99 °C) and without detergents and subsequent need for protein precipitation. Phosphopeptides are enriched...

  4. Single shot damage mechanism of Mo/Si multilayer optics under intense pulsed XUV-exposure

    Czech Academy of Sciences Publication Activity Database

    Khorsand, A.R.; Sobierajski, R.; Louis, E.; Bruijn, S.; van Hattum, E.D.; van de Kruijs, R.W.E.; Jurek, M.; Klinger, D.; Pelka, J. B.; Juha, Libor; Burian, Tomáš; Chalupský, Jaromír; Cihelka, Jaroslav; Hájková, Věra; Vyšín, Luděk; Jastrow, U.; Stojanovic, N.; Toleikis, S.; Wabnitz, H.; Tiedtke, K.; Sokolowski-Tinten, K.; Shymanovich, U.; Krzywinski, J.; Hau-Riege, S.; London, R.; Gleeson, A.; Gullikson, E.M.; Bijkerk, F.

    2010-01-01

    Roč. 18, č. 2 (2010), 700-712 ISSN 1094-4087 R&D Projects: GA AV ČR KAN300100702; GA MŠk LC510; GA MŠk(CZ) LC528; GA MŠk LA08024; GA AV ČR IAA400100701 Institutional research plan: CEZ:AV0Z10100523 Keywords : laser damage * thermal effects * multilayers * optical design and fabrication * free-electron lasers Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.749, year: 2010

  5. Cardiocirculatory intraoperative assessment during single-shot caudal anaesthesia in children: comparison between levobupivacaine and ropivacaine

    Directory of Open Access Journals (Sweden)

    A. Gentili

    2012-06-01

    Full Text Available Background: Caudal block with levobupivacaine or ropivacaine is the most commonly used regional anaesthesia in children. Methods: The aim of study was to compare the cardiocirculatory profile induced in two matched groups of young patients, submitted to caudal anaesthesia with levobupivacaine or ropivacaine for an elective subumbilical surgery. Sixty children were enrolled: thirty received levopubivacaine 0.25% and thirty ropivacaine 0.2%. Intraoperative heart rate (HR, systolic blood pressure (SBP, diastolic blood pressure (DBP were monitored at following times: Ta0 (after anaesthesia induction, Ta1 (after caudal anaesthesia, Ta2 (five minutes later, Ta3 (ten minutes later, Ts1 (at surgical incision, Ts2, Ts3, Ts4, Ts5 (every 10 minutes during surgery, Taw (at the awakening. Results: In both groups the cardiocirculatory trend remained within normal ranges at all times considered, demonstrating the safety of the method with both drugs. Both groups showed a similar trend at the different monitoring times: low decrease in HR, SBP and DBP after caudal block, slight increase in parameters after skin incision, slight decrease during surgery, increase at awakening. Regarding SBP and DBP, the levobupivacaine group children generally showed higher levels compared to the ropivacaine group, especially for DBP. Conclusions: Paediatric caudal anaesthesia is an effective method with an very infrequent complication rate. Possible hypotheses for differing haemodynamic behaviour could include a stronger vasoconstriction reflex of innervated areas during caudal anaesthesia with levobupivacaine and a lower levobupivacaine induced block of the sympathetic fibers, related to different pharmacokinetic profile of low concentrations of the local anaesthetics used in paediatric epidural space.

  6. Tracking Quantum Jumps of Light with Repeated Single-Shot Parity Measurements

    Science.gov (United States)

    Sun, Luyan; Petrenko, Andrei; Leghtas, Zaki; Vlastakis, Brian; Kirchmair, Gerhard; Sliwa, Katrina; Narla, Anirudh; Hatridge, Michael; Shankar, Shyam; Blumoff, Jacob; Frunzio, Luigi; Mirrahimi, Mazyar; Devoret, Michel; Schoelkopf, Robert

    2014-03-01

    Quantum error correction (QEC) is required for a practical quantum computer because of the fragile nature of quantum information. A measurement-based QEC requires the measurement of error syndromes in a quantum non-demolition way and at a rate which is faster than errors occur. In a 3D circuit quantum electrodynamics architecture, we realize a parity measurement of a microwave field with about 90% fidelity by mapping its parity onto an ancilla qubit. The projective nature of the parity measurement onto a degenerate parity eigenspace, the cat states, is confirmed by Wigner tomography after a single parity measurement, showing 84% fidelity to ideal cats. The parity can therefore serve as an error syndrome for a recently proposed QEC scheme [Leghtas et.al. PRL (2013)]. We then demonstrate a tracking of quantum jumps of this error syndrome by repeated parity measurements. We will also discuss a quantum filter developed to mitigate the imperfections during the parity measurement for a best estimate of the photon state parity. The demonstrated extraction of error syndromes without perturbing the encoded information is essential for QEC. Current address: CQI, IIIS, Tsinghua University, Beijing, China.

  7. In vivo single-shot (13)C spectroscopic imaging of hyperpolarized metabolites by spatiotemporal encoding

    DEFF Research Database (Denmark)

    Schmidt, Rita; Laustsen, Christoffer; Dumez, Jean-Nicolas

    2014-01-01

    Hyperpolarized metabolic imaging is a growing field that has provided a new tool for analyzing metabolism, particularly in cancer. Given the short life times of the hyperpolarized signal, fast and effective spectroscopic imaging methods compatible with dynamic metabolic characterizations are nece......Hyperpolarized metabolic imaging is a growing field that has provided a new tool for analyzing metabolism, particularly in cancer. Given the short life times of the hyperpolarized signal, fast and effective spectroscopic imaging methods compatible with dynamic metabolic characterizations...

  8. Single-shot beam-position monitor for x-ray free electron laser

    Science.gov (United States)

    Tono, Kensuke; Kudo, Togo; Yabashi, Makina; Tachibana, Takeshi; Feng, Yiping; Fritz, David; Hastings, Jerome; Ishikawa, Tetsuya

    2011-02-01

    We have developed an x-ray beam-position monitor for detecting the radiation properties of an x-ray free electron laser (FEL). It is composed of four PIN photodiodes that detect backscattered x-rays from a semitransparent diamond film placed in the beam path. The signal intensities from the photodiodes are used to compute the beam intensity and position. A proof-of-principle experiment at a synchrotron light source revealed that the error in the beam position is reduced to below 7 μm by using a nanocrystal diamond film prepared by plasma-enhanced chemical vapor deposition. Owing to high dose tolerance and transparency of the diamond film, the monitor is suitable for routine diagnostics of extremely intense x-ray pulses from the FEL.

  9. Single-shot color fringe projection for three-dimensional shape measurement of objects with discontinuities.

    Science.gov (United States)

    Dai, Meiling; Yang, Fujun; He, Xiaoyuan

    2012-04-20

    A simple but effective fringe projection profilometry is proposed to measure 3D shape by using one snapshot color sinusoidal fringe pattern. One color fringe pattern encoded with a sinusoidal fringe (as red component) and one uniform intensity pattern (as blue component) is projected by a digital video projector, and the deformed fringe pattern is recorded by a color CCD camera. The captured color fringe pattern is separated into its RGB components and division operation is applied to red and blue channels to reduce the variable reflection intensity. Shape information of the tested object is decoded by applying an arcsine algorithm on the normalized fringe pattern with subpixel resolution. In the case of fringe discontinuities caused by height steps, or spatially isolated surfaces, the separated blue component is binarized and used for correcting the phase demodulation. A simple and robust method is also introduced to compensate for nonlinear intensity response of the digital video projector. The experimental results demonstrate the validity of the proposed method.

  10. Single shot of 17D vaccine may not confer life-long protection against yellow fever.

    Science.gov (United States)

    Vasconcelos, Pedro Fc

    2018-02-01

    The yellow fever (YF) vaccine has been used since the 1930s to prevent YF, which is a severe infectious disease caused by the yellow fever virus (YFV), and mainly transmitted by Culicidae mosquitoes from the genera Aedes and Haemagogus . Until 2013, the World Health Organization (WHO) recommended the administration of a vaccine dose every ten years. A new recommendation of a single vaccine dose to confer life-long protection against YFV infection has since been established. Recent evidence published elsewhere suggests that at least a second dose is needed to fully protect against YF disease. Here, we discuss the feasibility of administering multiple doses, the necessity for a new and modern vaccine, and recommend that the WHO conveys a meeting to discuss YFV vaccination strategies for people living in or travelling to endemic areas.

  11. Symptomatic hepatic cyst in a child: treatment with single-shot injection of tetracycline hydrochloride

    International Nuclear Information System (INIS)

    Fabrizzi, Giancarlo; Lanza, Cecilia; Bolli, Valeria; Pieroni, Giovanni

    2009-01-01

    The prevalence of hepatic cysts is 0.1% to 0.5% based on autopsy studies, and 2.5% based on US examinations. Percutaneous therapies are a new alternative to surgery. They include simple percutaneous aspiration, catheter drainage alone, and catheter drainage with sclerotherapy. We present an 11-year-old boy admitted to hospital because of abdominal pain. A diagnosis of simple hepatic cyst was made, which was treated with aspiration and tetracycline hydrochloride solution (5%) injection into the cystic cavity. Complete regression was seen on US and MRI examination at 3 months, with total collapse and deflation of the cyst. The cyst regressed totally, leaving a hyperechoic linear scar on US examination at 1 year. On the basis of the clinical and imaging results obtained, percutaneous sclerotherapy of hepatic cysts can be recommended as the treatment of choice and as a valid alternative to laparoscopy in children. (orig.)

  12. Symptomatic hepatic cyst in a child: treatment with single-shot injection of tetracycline hydrochloride

    Energy Technology Data Exchange (ETDEWEB)

    Fabrizzi, Giancarlo; Lanza, Cecilia; Bolli, Valeria; Pieroni, Giovanni [Azienda Ospedaliero-Universitaria Ospedali Riuniti, Servizio di Radiologia Generale e Pediatrica, Ancona (Italy)

    2009-10-15

    The prevalence of hepatic cysts is 0.1% to 0.5% based on autopsy studies, and 2.5% based on US examinations. Percutaneous therapies are a new alternative to surgery. They include simple percutaneous aspiration, catheter drainage alone, and catheter drainage with sclerotherapy. We present an 11-year-old boy admitted to hospital because of abdominal pain. A diagnosis of simple hepatic cyst was made, which was treated with aspiration and tetracycline hydrochloride solution (5%) injection into the cystic cavity. Complete regression was seen on US and MRI examination at 3 months, with total collapse and deflation of the cyst. The cyst regressed totally, leaving a hyperechoic linear scar on US examination at 1 year. On the basis of the clinical and imaging results obtained, percutaneous sclerotherapy of hepatic cysts can be recommended as the treatment of choice and as a valid alternative to laparoscopy in children. (orig.)

  13. Single-shot X-ray phase-contrast imaging using two-dimensional gratings

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Genta; Itoh, Hidenosuke; Nagai, Kentaro; Nakamura, Takashi; Yamaguchi, Kimiaki; Kondoh, Takeshi; Handa, Soichiro; Ouchi, Chidane; Teshima, Takayuki; Setomoto, Yutaka; Den, Toru [Frontier Research Center, Corporate R and D Headquarters, Canon Inc., 3-30-2 Shimomaruko, Ohta-ku, Tokyo 146-8501 (Japan); Optics Technology Development Center, Corporate R and D Headquarters, Canon Inc., 23-10, Kiyohara-Kogyodanchi, Utsunomiya Tochigi 321-3231 (Japan); Nanotechnology R and D Center, Corporate R and D Headquarters, Canon Inc., 3-30-2 Shimomaruko, Ohta-ku, Tokyo 146-8501 (Japan)

    2012-07-31

    We developed a two-dimensional gratings-based X-ray interferometer that requires only a single exposure for clinical radiography. The interferometer consisted of a checkerboard phase grating for {pi} phase modulation and a latticed amplitude grating. Using a synchrotron radiation source, the phase grating modulates the X-rays and generates a self-image, transformed to a moire fringe by the amplitude grating. To allow use of a conventional X-ray tube, the latticed source grating was installed downstream from the X-ray tube. Differential phase-contrast and scattering images in two orthogonal directions were obtained by Fourier analysis of the single moire fringe image and an absorption image. Results show that characteristic features of soft tissue in two orthogonal directions were clearly shown in the differential phase-contrast images.

  14. Analgesia in patients with or without single-shot lamina thoracic ...

    African Journals Online (AJOL)

    We compared the time to the first request for analgesic, total analgesic (opioid and non-opioid) consumption (in mg) and postoperative pain scores over 72 h between the two groups. Results: One patient was excluded from the cohort due to block failure. The median time to first request for analgesic was 43 h (25.2-73.0 h) ...

  15. Effect of Single Shot Intrathecal Sufentanil on Delivery Time and Analgesia in Nuliparae

    Directory of Open Access Journals (Sweden)

    E. Khoshraftar

    2008-04-01

    Full Text Available Introduction & Objective : The objective of this study was to determine the evaluation of intrathecal sufentanil for labor analgesia with respect to duration of labor stages and relief of pain during labor.Materials & Methods : In a clinical trial 60 subjects with ASA class I were selected and randomly divided in two equal groups. 30 subjects had received sufentanil 10 gr in 1 ml of saline during active phase of first stage of labor. The other group as controls, did not receive anything for analgesia. Parturient visual analog scale (VAS , HR, RR, BP, sensory and motor block, FHR and complications such as nausea, vomiting, pruritus and duration of stage I been monitored recorded and compared among those two groups.Results : Comparison of results in two groups have showed that sufentanil does not prolong the duration of labor in stage 1 and 2. We observed lack of hypotension and respiratory depression in sufentanil group FHR changes that had been associated with adverse neonatal out come had not occurred. The apgar scores in two groups were identical. There was itching in majority of parturient who had received sufentanil (83.3%. The pruritus were defined as mild and moderate. Conclusion : Intrathecal sufentanil provide a good analgesia in stage I labor and does not prolong the duration of labor with minimum adverse effects on parturient and fetus.

  16. Rapid High-Fidelity Single-Shot Dispersive Readout of Superconducting Qubits

    Science.gov (United States)

    Walter, T.; Kurpiers, P.; Gasparinetti, S.; Magnard, P.; Potočnik, A.; Salathé, Y.; Pechal, M.; Mondal, M.; Oppliger, M.; Eichler, C.; Wallraff, A.

    2017-05-01

    The speed of quantum gates and measurements is a decisive factor for the overall fidelity of quantum protocols when performed on physical qubits with a finite coherence time. Reducing the time required to distinguish qubit states with high fidelity is, therefore, a critical goal in quantum-information science. The state-of-the-art readout of superconducting qubits is based on the dispersive interaction with a readout resonator. Here, we bring this technique to its current limit and demonstrate how the careful design of system parameters leads to fast and high-fidelity measurements without affecting qubit coherence. We achieve this result by increasing the dispersive-interaction strength, by choosing an optimal linewidth of the readout resonator, by employing a Purcell filter, and by utilizing phase-sensitive parametric amplification. In our experiment, we measure 98.25% readout fidelity in only 48 ns, when minimizing readout time, and 99.2% in 88 ns, when maximizing the fidelity, limited predominantly by the qubit lifetime of 7.6 μ s . The presented scheme is also expected to be suitable for integration into a multiplexed readout architecture.

  17. A Convolution Tree with Deconvolution Branches: Exploiting Geometric Relationships for Single Shot Keypoint Detection

    OpenAIRE

    Kumar, Amit; Chellappa, Rama

    2017-01-01

    Recently, Deep Convolution Networks (DCNNs) have been applied to the task of face alignment and have shown potential for learning improved feature representations. Although deeper layers can capture abstract concepts like pose, it is difficult to capture the geometric relationships among the keypoints in DCNNs. In this paper, we propose a novel convolution-deconvolution network for facial keypoint detection. Our model predicts the 2D locations of the keypoints and their individual visibility ...

  18. Tabletop single-shot extreme ultraviolet Fourier transform holography of an extended object.

    Science.gov (United States)

    Malm, Erik B; Monserud, Nils C; Brown, Christopher G; Wachulak, Przemyslaw W; Xu, Huiwen; Balakrishnan, Ganesh; Chao, Weilun; Anderson, Erik; Marconi, Mario C

    2013-04-22

    We demonstrate single and multi-shot Fourier transform holography with the use of a tabletop extreme ultraviolet laser. The reference wave was produced by a Fresnel zone plate with a central opening that allowed the incident beam to illuminate the sample directly. The high reference wave intensity allows for larger objects to be imaged compared to mask-based lensless Fourier transform holography techniques. We obtain a spatial resolution of 169 nm from a single laser pulse and a resolution of 128 nm from an accumulation of 20 laser pulses for an object ~11x11μm(2) in size. This experiment utilized a tabletop extreme ultraviolet laser that produces a highly coherent ~1.2 ns laser pulse at 46.9 nm wavelength.

  19. Gradient ROtating Outer Volume Excitation (GROOVE): A Novel Method for Single-Shot 2-D OVS

    Science.gov (United States)

    Powell, Nathaniel J.; Jang, Albert; Park, Jang-Yeon; Valette, Julien; Garwood, Michael; Marjańska, Małgorzata

    2014-01-01

    Purpose A new outer volume suppression (OVS) technique is introduced that uses a single pulse and rotating gradients to accomplish frequency-swept excitation. This new technique, which is called Gradient ROtating Outer Volume Excitation (GROOVE), produces a circular or elliptical suppression band rather than suppressing the entire outer volume. Methods Theoretical and k-space descriptions of GROOVE are provided. The properties of GROOVE were investigated with simulations, phantom, and human experiments performed using a 4 T horizontal bore magnet equipped with a TEM coil. Results Similar suppression performance was obtained in phantom and human brain using GROOVE with circular and elliptical shapes. Simulations indicate that GROOVE requires less SAR and time than traditional OVS schemes, but traditional schemes provide a sharper transition zone and less residual signal. Conclusion GROOVE represents a new way of performing OVS in which spins are excited temporally in space on a trajectory which can be tailored to fit the shape of the suppression region. In addition, GROOVE is capable of suppressing tailored regions of space with more flexibility and in a shorter period of time than conventional methods. GROOVE provides a fast, low SAR alternative to conventional OVS methods in some applications (e.g., scalp suppression). PMID:24478130

  20. Time-resolved resonance Raman spectroscopy of radiation-chemical processes

    International Nuclear Information System (INIS)

    Tripathi, G.N.R.

    1983-01-01

    A tunable pulsed laser Raman spectrometer for time resolved Raman studies of radiation-chemical processes is described. This apparatus utilizes the state of art optical multichannel detection and analysis techniques for data acquisition and electron pulse radiolysis for initiating the reactions. By using this technique the resonance Raman spectra of intermediates with absorption spectra in the 248-900 nm region, and mean lifetimes > 30 ns can be examined. This apparatus can be used to time resolve the vibrational spectral overlap between transients absorbing in the same region, and to follow their decay kinetics by monitoring the well resolved Raman peaks. For kinetic measurements at millisecond time scale, the Raman technique is preferable over optical absorption method where low frequency noise is quite bothersome. A time resolved Raman study of the pulse radiolytic oxidation of aqueous tetrafluorohydroquinone and p-methoxyphenol is briefly discussed. 15 references, 5 figures

  1. Time-resolved Sensing of Meso-scale Shock Compression with Multilayer Photonic Crystal Structures

    Science.gov (United States)

    Scripka, David; Lee, Gyuhyon; Summers, Christopher J.; Thadhani, Naresh

    2017-06-01

    Multilayer Photonic Crystal structures can provide spatially and temporally resolved data needed to validate theoretical and computational models relevant for understanding shock compression in heterogeneous materials. Two classes of 1-D photonic crystal multilayer structures were studied: optical microcavities (OMC) and distributed Bragg reflectors (DBR). These 0.5 to 5 micron thick structures were composed of SiO2, Al2O3, Ag, and PMMA layers fabricated primarily via e-beam evaporation. The multilayers have unique spectral signatures inherently linked to their time-resolved physical states. By observing shock-induced changes in these signatures, an optically-based pressure sensor was developed. Results to date indicate that both OMCs and DBRs exhibit nanosecond-resolved spectral shifts of several to 10s of nanometers under laser-driven shock compression loads of 0-10 GPa, with the magnitude of the shift strongly correlating to the shock load magnitude. Additionally, spatially and temporally resolved spectral shifts under heterogeneous laser-driven shock compression created by partial beam blocking have been successfully demonstrated. These results illustrate the potential for multilayer structures to serve as meso-scale sensors, capturing temporal and spatial pressure profile evolutions in shock-compressed heterogeneous materials, and revealing meso-scale pressure distributions across a shocked surface. Supported by DTRA Grant HDTRA1-12-1-005 and DoD, AFOSR, National Defense Science and Eng. Graduate Fellowship, 32 CFR 168a.

  2. Spectral Longwave Cloud Radiative Forcing as Observed by AIRS

    Science.gov (United States)

    Blaisdell, John M.; Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2016-01-01

    AIRS V6 products contain the spectral contributions to Outgoing Longwave Radiation (OLR), clear-sky OLR (OLR(sub CLR)), and Longwave Cloud Radiative Forcing (LWCRF) in 16 bands from 100 cm(exp -1) to 3260 cm(exp -1). We show climatologies of selected spectrally resolved AIRS V6 products over the period of September 2002 through August 2016. Spectrally resolved LWCRF can better describe the response of the Earth system to cloud and cloud feedback processes. The spectral LWCRF enables us to estimate the fraction of each contributing factor to cloud forcing, i.e.: surface temperature, mid to upper tropospheric water vapor, and tropospheric temperature. This presentation also compares the spatial characteristics of LWCRF from AIRS, CERES_EBAF Edition-2.8, and MERRA-2. AIRS and CERES LWCRF products show good agreement. The OLR bias between AIRS and CERES is very close to that of OLR(sub CLR). This implies that both AIRS and CERES OLR products accurately account for the effect of clouds on OLR.

  3. Spectral theory of infinite-area hyperbolic surfaces

    CERN Document Server

    Borthwick, David

    2016-01-01

    This text introduces geometric spectral theory in the context of infinite-area Riemann surfaces, providing a comprehensive account of the most recent developments in the field. For the second edition the context has been extended to general surfaces with hyperbolic ends, which provides a natural setting for development of the spectral theory while still keeping technical difficulties to a minimum. All of the material from the first edition is included and updated, and new sections have been added. Topics covered include an introduction to the geometry of hyperbolic surfaces, analysis of the resolvent of the Laplacian, scattering theory, resonances and scattering poles, the Selberg zeta function, the Poisson formula, distribution of resonances, the inverse scattering problem, Patterson-Sullivan theory, and the dynamical approach to the zeta function. The new sections cover the latest developments in the field, including the spectral gap, resonance asymptotics near the critical line, and sharp geometric constan...

  4. Spectral classifying base on color of live corals and dead corals covered with algae

    Science.gov (United States)

    Nurdin, Nurjannah; Komatsu, Teruhisa; Barille, Laurent; Akbar, A. S. M.; Sawayama, Shuhei; Fitrah, Muh. Nur; Prasyad, Hermansyah

    2016-05-01

    Pigments in the host tissues of corals can make a significant contribution to their spectral signature and can affect their apparent color as perceived by a human observer. The aim of this study is classifying the spectral reflectance of corals base on different color. It is expected that they can be used as references in discriminating between live corals, dead coral covered with algae Spectral reflectance data was collected in three small islands, Spermonde Archipelago, Indonesia by using a hyperspectral radiometer underwater. First and second derivative analysis resolved the wavelength locations of dominant features contributing to reflectance in corals and support the distinct differences in spectra among colour existed. Spectral derivative analysis was used to determine the specific wavelength regions ideal for remote identification of substrate type. The analysis results shown that yellow, green, brown and violet live corals are spectrally separable from each other, but they are similar with dead coral covered with algae spectral.

  5. QCD spectral sum rules

    CERN Document Server

    Narison, Stéphan

    The aim of the book is to give an introduction to the method of QCD Spectral Sum Rules and to review its developments. After some general introductory remarks, Chiral Symmetry, the Historical Developments of the Sum Rules and the necessary materials for perturbative QCD including the MS regularization and renormalization schemes are discussed. The book also gives a critical review and some improvements of the wide uses of the QSSR in Hadron Physics and QSSR beyond the Standard Hadron Phenomenology. The author has participated actively in this field since 1978 just before the expanding success

  6. Spectral signatures of chirality

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Mortensen, Asger

    2009-01-01

    We present a new way of measuring chirality, via the spectral shift of photonic band gaps in one-dimensional structures. We derive an explicit mapping of the problem of oblique incidence of circularly polarized light on a chiral one-dimensional photonic crystal with negligible index contrast...... to the formally equivalent problem of linearly polarized light incident on-axis on a non-chiral structure with index contrast. We derive analytical expressions for the first-order shifts of the band gaps for negligible index contrast. These are modified to give good approximations to the band gap shifts also...

  7. On spectral pollution

    International Nuclear Information System (INIS)

    Llobet, X.; Appert, K.; Bondeson, A.; Vaclavik, J.

    1990-01-01

    Finite difference and finite element approximations of eigenvalue problems, under certain circumstances exhibit spectral pollution, i.e. the appearance of eigenvalues that do not converge to the correct value when the mesh density is increased. In the present paper this phenomenon is investigated in a homogeneous case by means of discrete dispersion relations: the polluting modes belong to a branch of the dispersion relation that is strongly distorted by the discretization method employed, or to a new, spurious branch. The analysis is applied to finite difference methods and to finite element methods, and some indications about how to avoiding polluting schemes are given. (author) 5 figs., 10 refs

  8. Spectral unfolding of fast neutron energy distributions

    Science.gov (United States)

    Mosby, Michelle; Jackman, Kevin; Engle, Jonathan

    2015-10-01

    The characterization of the energy distribution of a neutron flux is difficult in experiments with constrained geometry where techniques such as time of flight cannot be used to resolve the distribution. The measurement of neutron fluxes in reactors, which often present similar challenges, has been accomplished using radioactivation foils as an indirect probe. Spectral unfolding codes use statistical methods to adjust MCNP predictions of neutron energy distributions using quantified radioactive residuals produced in these foils. We have applied a modification of this established neutron flux characterization technique to experimentally characterize the neutron flux in the critical assemblies at the Nevada National Security Site (NNSS) and the spallation neutron flux at the Isotope Production Facility (IPF) at Los Alamos National Laboratory (LANL). Results of the unfolding procedure are presented and compared with a priori MCNP predictions, and the implications for measurements using the neutron fluxes at these facilities are discussed.

  9. Spectral and dual-energy X-ray imaging for medical applications

    Science.gov (United States)

    Fredenberg, Erik

    2018-01-01

    Spectral imaging is an umbrella term for energy-resolved X-ray imaging in medicine. The technique makes use of the energy dependence of X-ray attenuation to either increase the contrast-to-noise ratio, or to provide quantitative image data and reduce image artefacts by so-called material decomposition. Spectral imaging is not new, but has gained interest in recent years because of rapidly increasing availability of spectral and dual-energy CT and the dawn of energy-resolved photon-counting detectors. This review examines the current technological status of spectral and dual-energy imaging and a number of practical applications of the technology in medicine.

  10. Intensity Conserving Spectral Fitting

    Science.gov (United States)

    Klimchuk, J. A.; Patsourakos, S.; Tripathi, D.

    2015-01-01

    The detailed shapes of spectral line profiles provide valuable information about the emitting plasma, especially when the plasma contains an unresolved mixture of velocities, temperatures, and densities. As a result of finite spectral resolution, the intensity measured by a spectrometer is the average intensity across a wavelength bin of non-zero size. It is assigned to the wavelength position at the center of the bin. However, the actual intensity at that discrete position will be different if the profile is curved, as it invariably is. Standard fitting routines (spline, Gaussian, etc.) do not account for this difference, and this can result in significant errors when making sensitive measurements. Detection of asymmetries in solar coronal emission lines is one example. Removal of line blends is another. We have developed an iterative procedure that corrects for this effect. It can be used with any fitting function, but we employ a cubic spline in a new analysis routine called Intensity Conserving Spline Interpolation (ICSI). As the name implies, it conserves the observed intensity within each wavelength bin, which ordinary fits do not. Given the rapid convergence, speed of computation, and ease of use, we suggest that ICSI be made a standard component of the processing pipeline for spectroscopic data.

  11. Lateral resonant Doppler flow measurement by spectral domain optical coherence tomography

    Science.gov (United States)

    Walther, Julia; Koch, Edmund

    2017-07-01

    In spectral domain optical coherence tomography (SD-OCT), any transverse motion component of a detected obliquely moving sample results in a nonlinear relationship between the Doppler phase shift and the axial sample velocity restricting phase-resolved Doppler OCT. To circumvent the limitation, we propose the lateral resonant Doppler flow quantification in spectral domain OCT, where the scanner movement velocity is matched to the transverse velocity component of the sample motion.

  12. Spectral clustering for water body spectral types analysis

    Science.gov (United States)

    Huang, Leping; Li, Shijin; Wang, Lingli; Chen, Deqing

    2017-11-01

    In order to study the spectral types of water body in the whole country, the key issue of reservoir research is to obtain and to analyze the information of water body in the reservoir quantitatively and accurately. A new type of weight matrix is constructed by utilizing the spectral features and spatial features of the spectra from GF-1 remote sensing images comprehensively. Then an improved spectral clustering algorithm is proposed based on this weight matrix to cluster representative reservoirs in China. According to the internal clustering validity index which called Davies-Bouldin(DB) index, the best clustering number 7 is obtained. Compared with two clustering algorithms, the spectral clustering algorithm based only on spectral features and the K-means algorithm based on spectral features and spatial features, simulation results demonstrate that the proposed spectral clustering algorithm based on spectral features and spatial features has a higher clustering accuracy, which can better reflect the spatial clustering characteristics of representative reservoirs in various provinces in China - similar spectral properties and adjacent geographical locations.

  13. Detector response artefacts in spectral reconstruction

    Science.gov (United States)

    Olsen, Ulrik L.; Christensen, Erik D.; Khalil, Mohamad; Gu, Yun; Kehres, Jan

    2017-09-01

    Energy resolved detectors are gaining traction as a tool to achieve better material contrast. K-edge imaging and tomography is an example of a method with high potential that has evolved on the capabilities of photon counting energy dispersive detectors. Border security is also beginning to see instruments taking advantage of energy resolved detectors. The progress of the field is halted by the limitations of the detectors. The limitations include nonlinear response for both x-ray intensity and x-ray spectrum. In this work we investigate how the physical interactions in the energy dispersive detectors affect the quality of the reconstruction and how corrections restore the quality. We have modeled detector responses for the primary detrimental effects occurring in the detector; escape peaks, charge sharing/loss and pileup. The effect of the change in the measured spectra is evaluated based on the artefacts occurring in the reconstructed images. We also evaluate the effect of a correction algorithm for reducing these artefacts on experimental data acquired with a setup using Multix ME-100 V-2 line detector modules. The artefacts were seen to introduce 20% deviation in the reconstructed attenuation coefficient for the uncorrected detector. We performed tomography experiments on samples with various materials interesting for security applications and found the SSIM to increase > 5% below 60keV. Our work shows that effective corrections schemes are necessary for the accurate material classification in security application promised by the advent of high flux detectors for spectral tomography

  14. Spectral Automorphisms in Quantum Logics

    Science.gov (United States)

    Ivanov, Alexandru; Caragheorgheopol, Dan

    2010-12-01

    In quantum mechanics, the Hilbert space formalism might be physically justified in terms of some axioms based on the orthomodular lattice (OML) mathematical structure (Piron in Foundations of Quantum Physics, Benjamin, Reading, 1976). We intend to investigate the extent to which some fundamental physical facts can be described in the more general framework of OMLs, without the support of Hilbert space-specific tools. We consider the study of lattice automorphisms properties as a “substitute” for Hilbert space techniques in investigating the spectral properties of observables. This is why we introduce the notion of spectral automorphism of an OML. Properties of spectral automorphisms and of their spectra are studied. We prove that the presence of nontrivial spectral automorphisms allow us to distinguish between classical and nonclassical theories. We also prove, for finite dimensional OMLs, that for every spectral automorphism there is a basis of invariant atoms. This is an analogue of the spectral theorem for unitary operators having purely point spectrum.

  15. Flavour from partially resolved singularities

    Energy Technology Data Exchange (ETDEWEB)

    Bonelli, G. [International School of Advanced Studies (SISSA) and INFN, Sezione di Trieste, via Beirut 2-4, 34014 Trieste (Italy)]. E-mail: bonelli@sissa.it; Bonora, L. [International School of Advanced Studies (SISSA) and INFN, Sezione di Trieste, via Beirut 2-4, 34014 Trieste (Italy); Ricco, A. [International School of Advanced Studies (SISSA) and INFN, Sezione di Trieste, via Beirut 2-4, 34014 Trieste (Italy)

    2006-06-15

    In this Letter we study topological open string field theory on D-branes in a IIB background given by non-compact CY geometries O(n)-bar O(-2-n) on P{sup 1} with a singular point at which an extra fiber sits. We wrap N D5-branes on P{sup 1} and M effective D3-branes at singular points, which are actually D5-branes wrapped on a shrinking cycle. We calculate the holomorphic Chern-Simons partition function for the above models in a deformed complex structure and find that it reduces to multi-matrix models with flavour. These are the matrix models whose resolvents have been shown to satisfy the generalized Konishi anomaly equations with flavour. In the n=0 case, corresponding to a partial resolution of the A{sub 2} singularity, the quantum superpotential in the N=1 unitary SYM with one adjoint and M fundamentals is obtained. The n=1 case is also studied and shown to give rise to two-matrix models which for a particular set of couplings can be exactly solved. We explicitly show how to solve such a class of models by a quantum equation of motion technique.

  16. Rectangular spectral collocation

    KAUST Repository

    Driscoll, Tobin A.

    2015-02-06

    Boundary conditions in spectral collocation methods are typically imposed by removing some rows of the discretized differential operator and replacing them with others that enforce the required conditions at the boundary. A new approach based upon resampling differentiated polynomials into a lower-degree subspace makes differentiation matrices, and operators built from them, rectangular without any row deletions. Then, boundary and interface conditions can be adjoined to yield a square system. The resulting method is both flexible and robust, and avoids ambiguities that arise when applying the classical row deletion method outside of two-point scalar boundary-value problems. The new method is the basis for ordinary differential equation solutions in Chebfun software, and is demonstrated for a variety of boundary-value, eigenvalue and time-dependent problems.

  17. Direct angle resolved photoemission spectroscopy and ...

    Indian Academy of Sciences (India)

    Keywords. Condensed matter physics; high-c superconductivity; electronic properties; photoemission spectroscopy; angle resolved photoemission spectroscopy; cuprates; films; strain; pulsed laser deposition.

  18. [Review of digital ground object spectral library].

    Science.gov (United States)

    Zhou, Xiao-Hu; Zhou, Ding-Wu

    2009-06-01

    A higher spectral resolution is the main direction of developing remote sensing technology, and it is quite important to set up the digital ground object reflectance spectral database library, one of fundamental research fields in remote sensing application. Remote sensing application has been increasingly relying on ground object spectral characteristics, and quantitative analysis has been developed to a new stage. The present article summarized and systematically introduced the research status quo and development trend of digital ground object reflectance spectral libraries at home and in the world in recent years. Introducing the spectral libraries has been established, including desertification spectral database library, plants spectral database library, geological spectral database library, soil spectral database library, minerals spectral database library, cloud spectral database library, snow spectral database library, the atmosphere spectral database library, rocks spectral database library, water spectral database library, meteorites spectral database library, moon rock spectral database library, and man-made materials spectral database library, mixture spectral database library, volatile compounds spectral database library, and liquids spectral database library. In the process of establishing spectral database libraries, there have been some problems, such as the lack of uniform national spectral database standard and uniform standards for the ground object features as well as the comparability between different databases. In addition, data sharing mechanism can not be carried out, etc. This article also put forward some suggestions on those problems.

  19. Spectral Theory of Chemical Bonding

    National Research Council Canada - National Science Library

    Langhoff, P. W; Boatz, J. A; Hinde, R. J; Sheehy, J. A

    2004-01-01

    New theoretical methods are reported for obtaining the binding energies of molecules and other chemical aggregates employing the spectral eigenstates and related properties of their atomic constituents...

  20. Spectral and time-resolved properties of photoinduced hydroxyquinolines doped thin polymer films

    Science.gov (United States)

    Mehata, Mohan Singh

    2018-01-01

    Quinoline and its derivatives have a wide range of biological and pharmacological activities. Quinoline ring is used to design functional materials (quinoline derivatives) for OLEDs and field-induce electrooptics. It possesses antibacterial, antifungal, antimalarial, cardiotonic, anthelmintic, anti-inflammatory, anticonvulsant and analgesic activity. Here, we have examined photoexcitation dynamics of 6-hydroxyquinoline (6-HQ) doped in polymer films of polymethyl methacrylate (PMMA), polyvinyl alcohol (PVA) and cellulose acetate (CA) at atmospheric conditions. The absorption maximum of 6-HQ in polymer films was observed at 333 ± 1 nm, whereas fluorescence (FL) maximum fell in the range of 365-371 nm. In PVA film, in addition to the typical FL, a band maximum at 432 nm appeared as a result of an excited-state intermolecular proton transfer (ESIPT) reaction facilitated in the hydrogen-bonded complex formed in the ground state between 6-HQ:PVA. The multi-exponential decay behavior of 6-HQ in all the three polymer films indicates a nanoscale heterogeneity of the polymer environments.

  1. Jupiter's Deep Cloud Structure Revealed Using Keck Observations of Spectrally Resolved Line Shapes

    Science.gov (United States)

    Bjoraker, G. L.; Wong, M.H.; de Pater, I.; Adamkovics, M.

    2015-01-01

    Technique: We present a method to determine the pressure at which significant cloud opacity is present between 2 and 6 bars on Jupiter. We use: a) the strength of a Fraunhofer absorption line in a zone to determine the ratio of reflected sunlight to thermal emission, and b) pressure- broadened line profiles of deuterated methane (CH3D) at 4.66 meters to determine the location of clouds. We use radiative transfer models to constrain the altitude region of both the solar and thermal components of Jupiter's 5-meter spectrum. Results: For nearly all latitudes on Jupiter the thermal component is large enough to constrain the deep cloud structure even when upper clouds are present. We find that Hot Spots, belts, and high latitudes have broader line profiles than do zones. Radiative transfer models show that Hot Spots in the North and South Equatorial Belts (NEB, SEB) typically do not have opaque clouds at pressures greater than 2 bars. The South Tropical Zone (STZ) at 32 degrees South has an opaque cloud top between 4 and 5 bars. From thermochemical models this must be a water cloud. We measured the variation of the equivalent width of CH3D with latitude for comparison with Jupiter's belt-zone structure. We also constrained the vertical profile of H2O in an SEB Hot Spot and in the STZ. The Hot Spot is very dry for a probability less than 4.5 bars and then follows the H2O profile observed by the Galileo Probe. The STZ has a saturated H2O profile above its cloud top between 4 and 5 bars.

  2. Spectrally resolved confocal microscopy using lanthanide centred near-IR emission

    DEFF Research Database (Denmark)

    Liao, Zhiyu; Tropiano, Manuel; Mantulnikovs, Konstantins

    2015-01-01

    The narrow, near infrared (NIR) emission from lanthanide ions has attracted great interest, particularly with regard to developing tools for bioimaging, where the long lifetimes of lanthanide excited states can be exploited to address problems arising from autofluorescence and sample transparency....... Despite the promise of lanthanide-based probes for near-IR imaging, few reports on their use are present in the literature. Here, we demonstrate that images can be recorded by monitoring NIR emission from lanthanide complexes using detectors, optical elements and a microscope that were primarily designed...... for the visible part of the spectrum....

  3. Spectrally and angularly resolved measurements of three-halves harmonic emission from laser-produced plasmas

    Science.gov (United States)

    Kang, N.; Liu, H.; Lin, Z.; Lei, A.; Zhou, S.; Fang, Z.; An, H.; Li, K.; Fan, W.

    2017-10-01

    Spectra of three-halves harmonic emissions (3{ω }0/2) from laser-produced plasmas were measured at different angles, including both forward and backward sides, from the direction of incident laser beams. The 3{ω }0/2 emitted from carbon-hydrogen (CH) targets was observed to be larger than that from aluminum (Al) targets with the same incident laser intensity, which supports the argument that the two-plasmon decay (TPD) instability could be inhibited by using medium-Z ablator instead of CH ablator in direct-drive inertial confinement fusion. Besides, the measured 3{ω }0/2-incident intensity curves for both materials suggest relatively lower threshold of TPD than the calculated values. In experiments with thin Al targets, the angular distribution of the blue- and red-shifted peaks of 3{ω }0/2 spectra were obtained, which shows that the most intense blue- and red-shifted peaks may not be produced in paired plasmons, but the spectra produced by their ‘twin’ plasmons were not observed. Because 3{ω }0/2 may have been influenced by other physical processes during their propagation from their birth places to the detectors, the mismatches on emission angle, wavelength shift, and threshold may be qualitatively explained through the assumption that small-scale light filaments widely existed in the corona of laser-produced plasmas.

  4. Time and spectral resolved phosphorescence of singlet oxygen and pigments in photosystem II particles

    Czech Academy of Sciences Publication Activity Database

    Dědic, R.; Svoboda, A.; Pšenčík, J.; Lupínková, Lenka; Komenda, Josef; Hála, J.

    2003-01-01

    Roč. 102, - (2003), s. 313-317 ISSN 0022-2313 R&D Projects: GA ČR GA203/00/1257; GA MŠk LN00A141 Grant - others:GA ČR(CZ) GP202/01/D100 Institutional research plan: CEZ:MSM 113200001 Keywords : singlet oxygen phosphorescence * triplet kinetics Subject RIV: BO - Biophysics Impact factor: 1.314, year: 2003

  5. Spectrally resolved pressure dependence measurements of air fluorescence emission with AIRFLY

    Czech Academy of Sciences Publication Activity Database

    Ave, M.; Boháčová, Martina; Buonomo, B.; Hrabovský, Miroslav; Nožka, Libor; Palatka, Miroslav; Řídký, Jan; Schovánek, Petr

    2008-01-01

    Roč. 597, č. 1 (2008), s. 41-45 ISSN 0168-9002 R&D Projects: GA MŠk LC527; GA MŠk(CZ) LA08016; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100502; CEZ:AV0Z10100522 Keywords : air fluorescence * cosmic rays Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.019, year: 2008

  6. Time and spectrum-resolving multiphoton correlator for 300–900 nm

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Kelsey D.; Thibault, Marilyne; Jennewein, Thomas [Institute for Quantum Computing and Department for Physics and Astronomy, University of Waterloo, 200 University Ave. West, Waterloo, Ontario N2L 3G1 (Canada); Kolenderski, Piotr, E-mail: kolenderski@fizyka.umk.pl [Institute for Quantum Computing and Department for Physics and Astronomy, University of Waterloo, 200 University Ave. West, Waterloo, Ontario N2L 3G1 (Canada); Faculty of Physics, Astronomy and Informatics, Institute of Physics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Scarcella, Carmelo; Tosi, Alberto [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy)

    2014-10-14

    We demonstrate a single-photon sensitive spectrometer in the visible range, which allows us to perform time-resolved and multi-photon spectral correlation measurements at room temperature. It is based on a monochromator composed of two gratings, collimation optics, and an array of single photon avalanche diodes. The time resolution can reach 110 ps and the spectral resolution is 2 nm/pixel, limited by the design of the monochromator. This technique can easily be combined with commercial monochromators and can be useful for joint spectrum measurements of two photons emitted in the process of parametric down conversion, as well as time-resolved spectrum measurements in optical coherence tomography or medical physics applications.

  7. Laser induced vaporization time resolved mass spectrometry of refractories

    International Nuclear Information System (INIS)

    Bonnell, D.W.; Schenck, P.K.; Hastie, J.W.

    1988-01-01

    An experimental approach is described which can yield information about refractory surfaces by examining the time history of the gasdynamic process occurring during pulsed Nd/YAG laser induced degradation/vaporization of the surface. Boron nitride (BN) and graphite are considered as example systems. Time resolved mass spectrometric measurements of evolved species permit direct determination of gas species identities and concentration, independent of mass spectral cracking patterns. Of particular note is the observation of local thermodynamic equilibrium in both systems for the observed gas species laser vaporized from surfaces at temperatures of 2900 K (BN) and 3800-4100 K (graphite). Indirect methods of determining surface temperature, as alternatives to direct measurement of radiance temperature, are discussed. Also, a preliminary analysis of time-of-arrival (TOA), data is presented, including discussion of the elimination of amplifier RG response delays convoluted with the TOA data and extraction of true species time-of-arrival distributions

  8. Perspectives in Super-resolved Fluorescence Microscopy: What comes next?

    Directory of Open Access Journals (Sweden)

    Christoph eCremer

    2016-04-01

    Full Text Available The Nobel Prize in Chemistry 2014 has been awarded to three scientists involved in the development of STED and PALM super-resolution fluorescence microscopy (SRM methods. They have proven that it is possible to overcome the hundred year old theoretical limit for the resolution potential of light microscopy (of about 200 nm for visible light, which for decades has precluded a direct glimpse of the molecular machinery of life. None of the present-day super-resolution techniques have invalidated the Abbe limit for light optical detection; however, they have found clever ways around it. In this report, we discuss some of the challenges still to be resolved before arising SRM approaches will be fit to bring about the revolution in Biology and Medicine envisaged. Some of the challenges discussed are the applicability to image live and/or large samples, the further enhancement of resolution, future developments of labels, and multi-spectral approaches.

  9. Understanding Soliton Spectral Tunneling as a Spectral Coupling Effect

    DEFF Research Database (Denmark)

    Guo, Hairun; Wang, Shaofei; Zeng, Xianglong

    2013-01-01

    Soliton eigenstate is found corresponding to a dispersive phase profile under which the soliton phase changes induced by the dispersion and nonlinearity are instantaneously counterbalanced. Much like a waveguide coupler relying on a spatial refractive index profile that supports mode coupling...... between channels, here we suggest that the soliton spectral tunneling effect can be understood supported by a spectral phase coupler. The dispersive wave number in the spectral domain must have a coupler-like symmetric profile for soliton spectral tunneling to occur. We show that such a spectral coupler...... exactly implies phase as well as group-velocity matching between the input soliton and tunneled soliton, namely a soliton phase matching condition. Examples in realistic photonic crystal fibers are also presented....

  10. Timing and Spectral Properties of Bright Hard GRBs Observed by Suzaku-WAM

    OpenAIRE

    杉田, 聡司; Sugita, Satoshi; 吉田, 篤正; Yoshida, Atsumasa; 田代, 信; Tashiro, Makoto; 大野, 雅功; Ohno, Masanori; Suzaku/WAM team and HETE-2 team

    2010-01-01

    We report on a detailed comparison between short GRBs and spikes of long GRBs in timing and spectral properties using bright GRBs observed by Suzaku-WAM. We first performed spectral time lag analysis of 217 spikes in 102 bright GRBs. We found a clear proportional correlation between hard/soft lags and widths of spikes for long GRBs, which is smoothly connected with those of short GRBs. We next performed spike-resolved spectral analysis of 63 spikes for 12 long GRBs with known redshifts, using...

  11. Optimization of experimental conditions in uranium trace determination using laser time-resolved fluorimetry

    International Nuclear Information System (INIS)

    Baly, L.; Garcia, M.A.

    1996-01-01

    At the present paper a new sample excitation geometry is presented for the uranium trace determination in aqueous solutions by the Time-Resolved Laser-Induced Fluorescence. This new design introduces the laser radiation through the top side of the cell allowing the use of cells with two quartz sides, less expensive than commonly used at this experimental set. Optimization of the excitation conditions, temporal discrimination and spectral selection are presented

  12. Electronic structure of Sr2RuO4 studied by angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Iwasawa, H.; Aiura, Y.; Saitoh, T.; Yoshida, Y.; Hase, I.; Ikeda, S.I.; Bando, H.; Kubota, M.; Ono, K.

    2007-01-01

    Electronic structure of the monolayer strontium ruthenate Sr 2 RuO 4 was investigated by high-resolution angle-resolved photoemission spectroscopy. We present photon-energy (hν) dependence of the electronic structure near the Fermi level along the ΓM line. The hν dependence has shown a strong spectral weight modulation of the Ru 4d xy and 4d zx bands

  13. Time resolved spectroscopic studies on some nanophosphors

    Indian Academy of Sciences (India)

    Wintec

    Abstract. Time resolved spectroscopy is an important tool for studying photophysical processes in phosphors. Present work investigates the steady state and time resolved photoluminescence (PL) spectroscopic characteristics of ZnS, ZnO and (Zn, Mg)O nanophosphors both in powder as well as thin film form.

  14. In situ, rapid, and temporally resolved measurements of cellulase adsorption onto lignocellulosic substrates by UV-vis spectrophotometry

    Science.gov (United States)

    Hao Liu; J. Y. Zhu; X. S. Chai

    2011-01-01

    This study demonstrated two in situ UV-vis spectrophotometric methods for rapid and temporally resolved measurements of cellulase adsorption onto cellulosic and lignocellulosic substrates during enzymatic hydrolysis. The cellulase protein absorption peak at 280 nm was used for quantification. The spectral interferences from light scattering by small fibers (fines) and...

  15. SPECTRAL ANALYSIS OF EXCHANGE RATES

    Directory of Open Access Journals (Sweden)

    ALEŠA LOTRIČ DOLINAR

    2013-06-01

    Full Text Available Using spectral analysis is very common in technical areas but rather unusual in economics and finance, where ARIMA and GARCH modeling are much more in use. To show that spectral analysis can be useful in determining hidden periodic components for high-frequency finance data as well, we use the example of foreign exchange rates

  16. Intersection numbers of spectral curves

    CERN Document Server

    Eynard, B

    2011-01-01

    We compute the symplectic invariants of an arbitrary spectral curve with only 1 branchpoint in terms of integrals of characteristic classes in the moduli space of curves. Our formula associates to any spectral curve, a characteristic class, which is determined by the laplace transform of the spectral curve. This is a hint to the key role of Laplace transform in mirror symmetry. When the spectral curve is y=\\sqrt{x}, the formula gives Kontsevich--Witten intersection numbers, when the spectral curve is chosen to be the Lambert function \\exp{x}=y\\exp{-y}, the formula gives the ELSV formula for Hurwitz numbers, and when one chooses the mirror of C^3 with framing f, i.e. \\exp{-x}=\\exp{-yf}(1-\\exp{-y}), the formula gives the topological vertex formula, i.e. the generating function of Gromov-Witten invariants of C^3. In some sense this formula generalizes ELSV formula, and Mumford formula.

  17. Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging

    Science.gov (United States)

    Pian, Qi; Yao, Ruoyang; Sinsuebphon, Nattawut; Intes, Xavier

    2017-07-01

    Spectrally resolved fluorescence lifetime imaging and spatial multiplexing have offered information content and collection-efficiency boosts in microscopy, but efficient implementations for macroscopic applications are still lacking. An imaging platform based on time-resolved structured light and hyperspectral single-pixel detection has been developed to perform quantitative macroscopic fluorescence lifetime imaging (MFLI) over a large field of view (FOV) and multiple spectral bands simultaneously. The system makes use of three digital micromirror device (DMD)-based spatial light modulators (SLMs) to generate spatial optical bases and reconstruct N by N images over 16 spectral channels with a time-resolved capability (∼40 ps temporal resolution) using fewer than N2 optical measurements. We demonstrate the potential of this new imaging platform by quantitatively imaging near-infrared (NIR) Förster resonance energy transfer (FRET) both in vitro and in vivo. The technique is well suited for quantitative hyperspectral lifetime imaging with a high sensitivity and paves the way for many important biomedical applications.

  18. Spectral imagery collection experiment

    Science.gov (United States)

    Romano, Joao M.; Rosario, Dalton; Farley, Vincent; Sohr, Brian

    2010-04-01

    The Spectral and Polarimetric Imagery Collection Experiment (SPICE) is a collaborative effort between the US Army ARDEC and ARL for the collection of mid-wave and long-wave infrared imagery using hyperspectral, polarimetric, and broadband sensors. The objective of the program is to collect a comprehensive database of the different modalities over the course of 1 to 2 years to capture sensor performance over a wide variety of adverse weather conditions, diurnal, and seasonal changes inherent to Picatinny's northern New Jersey location. Using the Precision Armament Laboratory (PAL) tower at Picatinny Arsenal, the sensors will autonomously collect the desired data around the clock at different ranges where surrogate 2S3 Self-Propelled Howitzer targets are positioned at different viewing perspectives at 549 and 1280m from the sensor location. The collected database will allow for: 1) Understand of signature variability under the different weather conditions; 2) Development of robust algorithms; 3) Development of new sensors; 4) Evaluation of hyperspectral and polarimetric technologies; and 5) Evaluation of fusing the different sensor modalities. In this paper, we will present the SPICE data collection objectives, the ongoing effort, the sensors that are currently deployed, and how this work will assist researches on the development and evaluation of sensors, algorithms, and fusion applications.

  19. ULTRAVIOLET RAMAN SPECTRAL SIGNATURE ACQUISITION: UV RAMAN SPECTRAL FINGERPRINTS.

    Energy Technology Data Exchange (ETDEWEB)

    SEDLACEK,III, A.J.FINFROCK,C.

    2002-09-01

    As a member of the science-support part of the ITT-lead LISA development program, BNL is tasked with the acquisition of UV Raman spectral fingerprints and associated scattering cross-sections for those chemicals-of-interest to the program's sponsor. In support of this role, the present report contains the first installment of UV Raman spectral fingerprint data on the initial subset of chemicals. Because of the unique nature associated with the acquisition of spectral fingerprints for use in spectral pattern matching algorithms (i.e., CLS, PLS, ANN) great care has been undertaken to maximize the signal-to-noise and to minimize unnecessary spectral subtractions, in an effort to provide the highest quality spectral fingerprints. This report is divided into 4 sections. The first is an Experimental section that outlines how the Raman spectra are performed. This is then followed by a section on Sample Handling. Following this, the spectral fingerprints are presented in the Results section where the data reduction process is outlined. Finally, a Photographs section is included.

  20. Late vitreomacular traction in toxoplasma retinochoroiditis resolved by vitrectomy

    Directory of Open Access Journals (Sweden)

    Scarpa G

    2013-09-01

    Full Text Available Giuseppe Scarpa, Stefano Fabris, Marco Di Gregorio, Francesca Urban Ophthalmic Department Regional Hospital, Ca' Foncello Piazza Ospedale 1, Treviso, Italy Abstract: This paper reports a case of late vitreomacular traction in a young patient secondary to toxoplasma retinochoroiditis resolved by vitrectomy. A 17-year-old female with chronic inflammatory bowel disease developed severe vitreomacular traction 8 months after resolution of ocular toxoplasmosis with medical therapy. Best-corrected visual acuity, full ophthalmic slit-lamp examination, colour fundus photography, spectral domain optical coherence tomography, and fluorescein angiography were performed. The patient underwent vitrectomy with removal of the clinically evident posterior hyaloid. Vitrectomy was rapidly successful in resolving the vitreomacular traction, with full recovery in best-corrected visual acuity of 20/20. Vitreoretinal traction in patients with previous toxoplasma retinochoroiditis may appear several months after resolution of the inflammatory condition. We suggest observing carefully for possible development of late vitreoretinal traction during follow-up of such patients. Keywords: ocular toxoplasmosis, toxoplasma retinochoroiditis, vitreomacular traction, vitrectomy, inflammatory bowel disease

  1. Atlas of time-resolved spectrophotometry of cataclysmic variables

    International Nuclear Information System (INIS)

    Honeycutt, R.K.; Schlegel, E.M.; Kaitchuck, R.H.; Ohio State Univ., Columbus)

    1987-01-01

    Whole-orbit, time-resolved spectrophotometry of 18 cataclysmic variables is reduced and displayed in a homogeneous fashion. Each set of digital data is binned into a phase-dependent gray-scale image which resembles a single-trailed photographic spectrogram. This technique permits convient comparison of phase-dependent spectral changes among the different systems. The approximate wavelength interval 4250-4950 A was observed at 2.5 A resolution. This interval contains the accretion disk emission lines of H-beta, H-gamma, He I 4471 A, and He II 4686 A. A brief commentary on the phenomena that can be seen in the image of each star is given. These effects include orbital motion, line-profile changes during eclipse, and s-waves. Several epochs of data on UX UMa are presented, displaying yearly changes in the spectrum. A series of outburst spectra of RX And are included, showing how phase-dependent spectra evolve during outburst. EX Hya spectra are displayed folded on both the 98 minute and the 67 minute photometric periods. In all, 23 spectral data sets are displayed and discussed for the 18 systems. 53 references

  2. Temporally resolved infrared spectra from the detonation of advanced munitions

    Science.gov (United States)

    Gordon, Joe Motos; Gross, Kevin C.; Perram, Glen P.

    2009-05-01

    A suite of instruments including a 100 kHz 4-channel radiometer, a rapid scanning Fourier-transform infrared spectrometer, and two high-speed visible imagers was used to observe the detonation of several novel insensitive munitions being developed by the Air Force Research Laboratory. The spectral signatures exhibited from several different explosive compositions are discernable and may be exploited for event classification. The spectra are initially optically thick, resembling a Planckian distribution. In time, selective emission in the wings of atmospheric absorption bands becomes apparent, and the timescale and degree to which this occurs is correlated with aluminum content in the explosive formulation. By analyzing the high-speed imagery in conjunction with the time-resolved spectral measurements, it may be possible to interpret these results in terms of soot production and oxidation rates. These variables allow for an investigation into the chemical kinetics of explosions and perhaps reveal other phenomenology not yet readily apparent. With an increased phenomenological understanding, a model could be created to explain the kinetic behavior of the temperature and by-product concentration profiles and thus improve the ability of military sensing platforms to identify explosive types and sources.

  3. Spectral analysis in microscopy : a study of FRET and single quantum dot luminescence

    NARCIS (Netherlands)

    Frederix, Patrick Louis Theodorus Martin

    2001-01-01

    This thesis deals with the development of new techniques and luminescent markers, to improve the quality of luminescence studies in microscopy. A sensitive spectrograph that can be used for spectrally resolved emission spectroscopy in the microscope is described, including design considerations,

  4. Biosonar resolving power: Echo-acoustic perception of surface structures in the submillimeter range

    Directory of Open Access Journals (Sweden)

    Ralph eSimon

    2014-02-01

    Full Text Available The minimum distance for which two points still can be separated from each other defines the resolving power of a visual system. In an echo-acoustic context, the resolving power is usually measured as the smallest perceivable distance of two reflecting surfaces on the range axis and is found to be around half a millimetre for bats employing frequency modulated echolocation calls. Only few studies measured such thresholds with physical objects, most often bats were trained on virtual echoes i.e. echoes generated and played back by a computer; moreover, bats were sitting while they received the stimuli. In these studies differences in structure depth between 200 µm and 340 µm were found. However, these low thresholds were never verified for free-flying bats and real physical objects. Here, we show behavioural evidence that the echo-acoustic resolving power for surface structures in fact can be as low as measured for computer generated echoes and even lower, sometimes below 100 µm. We found this exceptional fine discrimination ability only when one of the targets showed spectral interferences in the frequency range of the bats' echolocation call while the other target did not. This result indicates that surface structure is likely to be perceived as a spectral quality rather than being perceived strictly in the time domain. Further, it points out that sonar resolving power directly depends on the highest frequency/shortest wavelength of the signal employed.

  5. An experimentalist's guide to the matrix element in angle resolved photoemission

    International Nuclear Information System (INIS)

    Moser, Simon

    2017-01-01

    Highlights: • An introduction to the art of angle resolved photoemission is presented. • Matrix element effects are described by a nearly free electron final state model. • ARPES spectral weight of a Bloch band can be calculated from the Fourier transform of its Wannier orbital. • Experimental handedness and improper polarization introduce dichroism. • Instructive showcases from modern ARPES are discussed in detail. - Abstract: Angle resolved photoemission spectroscopy (ARPES) is commonly known as a powerful probe of the one-electron removal spectral function in ordered solid state. With increasing efficiency of light sources and spectrometers, experiments over a wide range of emission angles become more and more common. Consequently, the angular variation of ARPES spectral weight – often times termed “matrix element effect” – enters as an additional source of information. In this tutorial, we develop a simple but instructive free electron final state approach based on the three-step model to describe the intensity distribution in ARPES. We find a compact expression showing that the ARPES spectral weight of a given Bloch band is essentially determined by the momentum distribution (the Fourier transform) of its associated Wannier orbital – times a polarization dependent pre-factor. While the former is giving direct information on the symmetry and shape of the electronic wave function, the latter can give rise to surprising geometric effects. We discuss a variety of modern and instructive experimental showcases for which this simplistic formalism works astonishingly well and discuss the limits of this approach.

  6. HERSCHEL -RESOLVED OUTER BELTS OF TWO-BELT DEBRIS DISKS—EVIDENCE OF ICY GRAINS

    Energy Technology Data Exchange (ETDEWEB)

    Morales, F. Y.; Bryden, G.; Werner, M. W.; Stapelfeldt, K. R., E-mail: Farisa@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2016-11-01

    We present dual-band Herschel /PACS imaging for 59 main-sequence stars with known warm dust ( T {sub warm} ∼ 200 K), characterized by Spitzer . Of 57 debris disks detected at Herschel wavelengths (70 and/or 100 and 160 μ m), about half have spectral energy distributions (SEDs) that suggest two-ring disk architectures mirroring that of the asteroid–Kuiper Belt geometry; the rest are consistent with single belts of warm, asteroidal material. Herschel observations spatially resolve the outer/cold dust component around 14 A-type and 4 solar-type stars with two-belt systems, 15 of which for the first time. Resolved disks are typically observed with radii >100 AU, larger than expected from a simple blackbody fit. Despite the absence of narrow spectral features for ice, we find that the shape of the continuum, combined with resolved outer/cold dust locations, can help constrain the grain size distribution and hint at the dust’s composition for each resolved system. Based on the combined Spitzer /IRS+Multiband Imaging Photometer (5-to-70 μ m) and Herschel /PACS (70-to-160 μ m) data set, and under the assumption of idealized spherical grains, we find that over half of resolved outer/cold belts are best fit with a mixed ice/rock composition. Minimum grain sizes are most often equal to the expected radiative blowout limit, regardless of composition. Three of four resolved systems around the solar-type stars, however, tend to have larger minimum grains compared to expectation from blowout ( f {sub MB} = a {sub min}/ a {sub BOS} ∼ 5). We also probe the disk architecture of 39 Herschel -unresolved systems by modeling their SEDs uniformly, and find them to be consistent with 31 single- and 8 two-belt debris systems.

  7. Differential resolvents of minimal order and weight

    Directory of Open Access Journals (Sweden)

    John Michael Nahay

    2004-01-01

    Full Text Available We will determine the number of powers of α that appear with nonzero coefficient in an α-power linear differential resolvent of smallest possible order of a univariate polynomial P(t whose coefficients lie in an ordinary differential field and whose distinct roots are differentially independent over constants. We will then give an upper bound on the weight of an α-resolvent of smallest possible weight. We will then compute the indicial equation, apparent singularities, and Wronskian of the Cockle α-resolvent of a trinomial and finish with a related determinantal formula.

  8. Fluorescence spectral studies of Gum Arabic: Multi-emission of Gum Arabic in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Dhenadhayalan, Namasivayam, E-mail: ndhena@gmail.com [Department of Chemistry, National Taiwan University, Taipei, Taiwan (China); Mythily, Rajan, E-mail: rajanmythily@gmail.com [Department of Chemistry, Dwaraka Doss Goverdhan Doss Vaishnav College (Autonomous), 833, Gokul Bagh, E.V.R. Periyar Road, Arumbakkam, Chennai 600 106 (India); Kumaran, Rajendran, E-mail: kumaranwau@rediffmail.com [Department of Chemistry, Dwaraka Doss Goverdhan Doss Vaishnav College (Autonomous), 833, Gokul Bagh, E.V.R. Periyar Road, Arumbakkam, Chennai 600 106 (India)

    2014-11-15

    Gum Arabic (GA), a food hydrocolloid is a natural composite obtained from the stems and branches of Acacia Senegal and Acacia Seyal trees. GA structure is made up of highly branched arabinogalactan polysaccharides. Steady-state absorption, fluorescence, and time-resolved fluorescence spectral studies of acid hydrolyzed GA solutions were carried out at various pH conditions. The fluorescence in GA is predominantly attributed to the presence of tyrosine and phenylalanine amino acids. The presence of multi-emissive peaks at different pH condition is attributed to the exposure of the fluorescing amino acids to the aqueous phase, which contains several sugar units, hydrophilic and hydrophobic moieties. Time-resolved fluorescence studies of GA exhibits a multi-exponential decay with different fluorescence lifetime of varying amplitude which confirms that tyrosine is confined to a heterogeneous microenvironment. The existence of multi-emissive peaks with large variation in the fluorescence intensities were established by 3D emission contour spectral studies. The probable location of the fluorophore in a heterogeneous environment was further ascertained by constructing a time-resolved emission spectrum (TRES) and time-resolved area normalized emission spectrum (TRANES) plots. Fluorescence spectral technique is used as an analytical tool in understanding the photophysical properties of a water soluble complex food hydrocolloid containing an intrinsic fluorophore located in a multiple environment is illustrated. - Highlights: • The Manuscript deals with the steady state absorption, emission, fluorescence lifetime and time-resolved emission spectrum studies of Gum Arabic in aqueous medium at various pH conditions. • The fluorescence emanates from the tyrosine amino acid present in GA. • Change in pH results in marked variation in the fluorescence spectral properties of tyrosine. • Fluorescence spectral techniques are employed as a tool in establishing the

  9. Spectral modeling of laser-produced underdense titanium plasmas

    Science.gov (United States)

    Chung, Hyun-Kyung; Back, Christina A.; Scott, Howard A.; Constantin, Carmen; Lee, Richard W.

    2004-11-01

    Experiments were performed at the NIKE laser to create underdense low-Z plasmas with a small amount of high-Z dopant in order to study non-LTE population kinetics. An absolutely calibrated spectra in 470-3000 eV was measured in time-resolved and time-averaged fashion from SiO2 aerogel target with 3% Ti dopant. K-shell Ti emission was observed as well as L-shell Ti emission. Time-resolved emission show that lower energy photons peak later than higher energy photons due to plasma cooling. In this work, we compare the measured spectra with non-LTE spectral calculations of titanium emission at relatively low temperatures distributions dominated by L-shell ions will be discussed.

  10. Integrated spectral study of small angular diameter galactic open clusters

    Science.gov (United States)

    Clariá, J. J.; Ahumada, A. V.; Bica, E.; Pavani, D. B.; Parisi, M. C.

    2017-10-01

    This paper presents flux-calibrated integrated spectra obtained at Complejo Astronómico El Leoncito (CASLEO, Argentina) for a sample of 9 Galactic open clusters of small angular diameter. The spectra cover the optical range (3800-6800 Å), with a resolution of ˜14 Å. With one exception (Ruprecht 158), the selected clusters are projected into the fourth Galactic quadrant (282o evaluate their membership status. The current cluster sample complements that of 46 open clusters previously studied by our group in an effort to gather a spectral library with several clusters per age bin. The cluster spectral library that we have been building is an important tool to tie studies of resolved and unresolved stellar content.

  11. Spectral selective fluorescence molecular imaging with volume holographic imaging system

    Directory of Open Access Journals (Sweden)

    Yanlu Lv

    2016-03-01

    Full Text Available A compact volume holographic imaging (VHI method that can detect fluorescence objects located in diffusive medium in spectral selective imaging manner is presented. The enlargement of lateral field of view of the VHI system is realized by using broadband illumination and demagnification optics. Each target spectrum of fluorescence emitting from a diffusive medium is probed by tuning the inclination angle of the transmission volume holographic grating (VHG. With the use of the single transmission VHG, fluorescence images with different spectrum are obtained sequentially and precise three-dimensional (3D information of deep fluorescent objects located in a diffusive medium can be reconstructed from these images. The results of phantom experiments demonstrate that two fluorescent objects with a sub-millimeter distance can be resolved by spectral selective imaging.

  12. Time-resolved absorption measurements on OMEGA

    International Nuclear Information System (INIS)

    Jaanimagi, P.A.; DaSilva, L.; Delettrez, J.; Gregory, G.G.; Richardson, M.C.

    1986-01-01

    Time-resolved measurements of the incident laser light that is scattered and/or refracted from targets irradiated by the 24 uv-beam OMEGA laser at LLE, have provided some interesting features related to time-resolved absorption. The decrease in laser absorption characteristic of irradiating a target that implodes during the laser pulse has been observed. The increase in absorption expected as the critical density surface moves from a low to a high Z material in the target has also been noted. The detailed interpretation of these results is made through comparisons with simulation using the code LILAC, as well as with streak data from time-resolved x-ray imaging and spectroscopy. In addition, time and space-resolved imaging of the scattered light yields information on laser irradiation uniformity conditions on the target. The report consists of viewgraphs

  13. Component resolved testing for allergic sensitization

    DEFF Research Database (Denmark)

    Skamstrup Hansen, Kirsten; Poulsen, Lars K

    2010-01-01

    Component resolved diagnostics introduces new possibilities regarding diagnosis of allergic diseases and individualized, allergen-specific treatment. Furthermore, refinement of IgE-based testing may help elucidate the correlation or lack of correlation between allergenic sensitization and allergi...

  14. Time resolved spectroscopic studies on some nanophosphors

    Indian Academy of Sciences (India)

    Wintec

    . 1. Introduction. Time resolved spectroscopy is an important tool for study- ing energy and charge transfer processes, coupling of electronic and vibrational degrees of freedom, vibrational and conformational relaxation, isomerization, etc. The.

  15. Resolving Inconsistencies in de Broglie's Relation

    Directory of Open Access Journals (Sweden)

    Wagener P.

    2010-01-01

    Full Text Available Modern quantum theory is based on de Broglie's relation between momentum and wave-length. In this article we investigate certain inconsistencies in its formulation and propose a reformulation to resolve them.

  16. Spectral Unmixing With Multiple Dictionaries

    Science.gov (United States)

    Cohen, Jeremy E.; Gillis, Nicolas

    2018-02-01

    Spectral unmixing aims at recovering the spectral signatures of materials, called endmembers, mixed in a hyperspectral or multispectral image, along with their abundances. A typical assumption is that the image contains one pure pixel per endmember, in which case spectral unmixing reduces to identifying these pixels. Many fully automated methods have been proposed in recent years, but little work has been done to allow users to select areas where pure pixels are present manually or using a segmentation algorithm. Additionally, in a non-blind approach, several spectral libraries may be available rather than a single one, with a fixed number (or an upper or lower bound) of endmembers to chose from each. In this paper, we propose a multiple-dictionary constrained low-rank matrix approximation model that address these two problems. We propose an algorithm to compute this model, dubbed M2PALS, and its performance is discussed on both synthetic and real hyperspectral images.

  17. Special topics in spectral distributions

    International Nuclear Information System (INIS)

    French, J.B.

    1980-01-01

    We discuss two problems which relate to the foundations of the subject, and a third about asymptotic properties of spectral distributions. We give also a brief list of topics which should be further explored

  18. Substitution dynamical systems spectral analysis

    CERN Document Server

    Queffélec, Martine

    2010-01-01

    This volume mainly deals with the dynamics of finitely valued sequences, and more specifically, of sequences generated by substitutions and automata. Those sequences demonstrate fairly simple combinatorical and arithmetical properties and naturally appear in various domains. As the title suggests, the aim of the initial version of this book was the spectral study of the associated dynamical systems: the first chapters consisted in a detailed introduction to the mathematical notions involved, and the description of the spectral invariants followed in the closing chapters. This approach, combined with new material added to the new edition, results in a nearly self-contained book on the subject. New tools - which have also proven helpful in other contexts - had to be developed for this study. Moreover, its findings can be concretely applied, the method providing an algorithm to exhibit the spectral measures and the spectral multiplicity, as is demonstrated in several examples. Beyond this advanced analysis, many...

  19. Spatial and spectral imaging of LMA photonic crystal fiber amplifiers

    DEFF Research Database (Denmark)

    Laurila, Marko; Lægsgaard, Jesper; Alkeskjold, Thomas Tanggaard

    2011-01-01

    We demonstrate modal characterization using spatial and spectral resolved (S2) imaging, on an Ytterbium-doped large-mode-area photonic crystal fiber (PCF) amplifier and compare results with conventional cut-off methods. We apply numerical simulations and step-index fiber experiments to calibrate...... our mathematical and experimental routines of our S2 imaging system. We systematically analyze higher order mode (HOM) content of a polarizing 40μm core double-clad PCF amplifier with various launching and coiling configurations. We demonstrate a HOM suppression of more than -24dB with variance of 2...

  20. Spectral dimensionality reduction for HMMs

    OpenAIRE

    Foster, Dean P.; Rodu, Jordan; Ungar, Lyle H.

    2012-01-01

    Hidden Markov Models (HMMs) can be accurately approximated using co-occurrence frequencies of pairs and triples of observations by using a fast spectral method in contrast to the usual slow methods like EM or Gibbs sampling. We provide a new spectral method which significantly reduces the number of model parameters that need to be estimated, and generates a sample complexity that does not depend on the size of the observation vocabulary. We present an elementary proof giving bounds on the rel...

  1. Compressive spectroscopy by spectral modulation

    Science.gov (United States)

    Oiknine, Yaniv; August, Isaac; Stern, Adrian

    2017-05-01

    We review two compressive spectroscopy techniques based on modulation in the spectral domain that we have recently proposed. Both techniques achieve a compression ratio of approximately 10:1, however each with a different sensing mechanism. The first technique uses a liquid crystal cell as a tunable filter to modulate the spectral signal, and the second technique uses a Fabry-Perot etalon as a resonator. We overview the specific properties of each of the techniques.

  2. Spectral unmixing: estimating partial abundances

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2009-01-01

    Full Text Available the ingredients for this chocolate cake? Debba (CSIR) Spectral Unmixing LQM 2009 3 / 22 Background and Research Question Ingredients Quantity unsweetened chocolate unsweetened cocoa powder boiling water flour baking powder baking soda salt unsalted... butter white sugar eggs pure vanilla extract milk Table: Chocolate cake ingredients Debba (CSIR) Spectral Unmixing LQM 2009 4 / 22 Background and Research Question Ingredients Quantity unsweetened chocolate 120 grams unsweetened cocoa powder 28...

  3. Crosstalk-free multicolor RICS using spectral weighting.

    Science.gov (United States)

    Schrimpf, Waldemar; Lemmens, Veerle; Smisdom, Nick; Ameloot, Marcel; Lamb, Don C; Hendrix, Jelle

    2018-02-21

    Raster image cross-correlation spectroscopy (ccRICS) can be used to quantify the interaction affinities between diffusing molecules by analyzing the fluctuations between two-color confocal images. Spectral crosstalk compromises the quantitative analysis of ccRICS experiments, limiting multicolor implementations to dyes with well-separated emission spectra. Here, we remove this restriction by introducing raster spectral image correlation spectroscopy (RSICS), which employs statistical filtering based on spectral information to quantitatively separate signals of fluorophores during spatial correlation analysis. We investigate the performance of RSICS by testing how different levels of spectral overlap or different relative signal intensities affect the correlation function and analyze the influence of statistical filter quality. We apply RSICS in vitro to resolve dyes with very similar emission spectra, and carry out RSICS in live cells to simultaneously analyze the diffusion of molecules carrying three different fluorescent protein labels (eGFP, Venus and mCherry). Finally, we successfully apply statistical weighting to data that was recorded with only a single detection channel per fluorophore, highlighting the general applicability of this method to data acquired with any type of multicolor detection. In conclusion, RSICS enables artifact-free quantitative analysis of concentrations, mobility and interactions of multiple species labeled with different fluorophores. It can be performed on commercial laser scanning microscopes, and the algorithm can be easily extended to other image correlation methods. Thus, RSICS opens the door to quantitative multicolor fluctuation analyses of complex (bio-) molecular systems. Copyright © 2018. Published by Elsevier Inc.

  4. The Infrared Telescope Facility (IRTF) Spectral Library: Cool Stars

    Science.gov (United States)

    Rayner, John T.; Cushing, Michael C.; Vacca, William D.

    2009-12-01

    We present a 0.8-5 μm spectral library of 210 cool stars observed at a resolving power of R ≡ λ/Δλ ~ 2000 with the medium-resolution infrared spectrograph, SpeX, at the 3.0 m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. The stars have well-established MK spectral classifications and are mostly restricted to near-solar metallicities. The sample not only contains the F, G, K, and M spectral types with luminosity classes between I and V, but also includes some AGB, carbon, and S stars. In contrast to some other spectral libraries, the continuum shape of the spectra is measured and preserved in the data reduction process. The spectra are absolutely flux calibrated using the Two Micron All Sky Survey photometry. Potential uses of the library include studying the physics of cool stars, classifying and studying embedded young clusters and optically obscured regions of the Galaxy, evolutionary population synthesis to study unresolved stellar populations in optically obscured regions of galaxies and synthetic photometry. The library is available in digital form from the IRTF Web site.

  5. Spectral decomposition of asteroid Itokawa based on principal component analysis

    Science.gov (United States)

    Koga, Sumire C.; Sugita, Seiji; Kamata, Shunichi; Ishiguro, Masateru; Hiroi, Takahiro; Tatsumi, Eri; Sasaki, Sho

    2018-01-01

    The heliocentric stratification of asteroid spectral types may hold important information on the early evolution of the Solar System. Asteroid spectral taxonomy is based largely on principal component analysis. However, how the surface properties of asteroids, such as the composition and age, are projected in the principal-component (PC) space is not understood well. We decompose multi-band disk-resolved visible spectra of the Itokawa surface with principal component analysis (PCA) in comparison with main-belt asteroids. The obtained distribution of Itokawa spectra projected in the PC space of main-belt asteroids follows a linear trend linking the Q-type and S-type regions and is consistent with the results of space-weathering experiments on ordinary chondrites and olivine, suggesting that this trend may be a space-weathering-induced spectral evolution track for S-type asteroids. Comparison with space-weathering experiments also yield a short average surface age (component of Itokawa surface spectra is consistent with spectral change due to space weathering and that the spatial variation in the degree of space weathering is very large (a factor of three in surface age), which would strongly suggest the presence of strong regional/local resurfacing process(es) on this small asteroid.

  6. Time-resolved spectroscopy in synchrotron radiation

    International Nuclear Information System (INIS)

    Rehn, V.; Stanford Univ., CA

    1980-01-01

    Synchrotron radiation (SR) from large-diameter storage rings has intrinsic time structure which facilitates time-resolved measurements form milliseconds to picoseconds and possibly below. The scientific importance of time-resolved measurements is steadily increasing as more and better techniques are discovered and applied to a wider variety of scientific problems. This paper presents a discussion of the importance of various parameters of the SR facility in providing for time-resolved spectroscopy experiments, including the role of beam-line optical design parameters. Special emphasis is placed on the requirements of extremely fast time-resolved experiments with which the effects of atomic vibrational or relaxation motion may be studied. Before discussing the state-of-the-art timing experiments, we review several types of time-resolved measurements which have now become routine: nanosecond-range fluorescence decay times, time-resolved emission and excitation spectroscopies, and various time-of-flight applications. These techniques all depend on a short SR pulse length and a long interpulse period, such as is provided by a large-diameter ring operating in a single-bunch mode. In most cases, the pulse shape and even the stability of the pulse shape is relatively unimportant as long as the pulse length is smaller than the risetime of the detection apparatus, typically 1 to 2 ns. For time resolution smaller than 1 ns, the requirements on the pulse shape become more stringent. (orig./FKS)

  7. Change Detection Analysis With Spectral Thermal Imagery

    National Research Council Canada - National Science Library

    Behrens, Richard

    1998-01-01

    ... (LWIR) region. This study used analysis techniques of differencing, histograms, and principal components analysis to detect spectral changes and investigate the utility of spectral change detection...

  8. Angle-resolved catholdoluminescence imaging polarimetry

    NARCIS (Netherlands)

    Osorio, C.I.; Coenen, T.; Brenny, B.J.M.; Polman, A.; Koenderink, A.F.

    2015-01-01

    Cathodoluminescence spectroscopy (CL) allows characterizing light emission in bulk and nanostructured materials and is a key tool in fields ranging from materials science to nanophotonics. Previously, CL measurements focused on the spectral content and angular distribution of emission, while the

  9. Laser-induced fluorescence imaging of subsurface tissue structures with a volume holographic spatial-spectral imaging system.

    Science.gov (United States)

    Luo, Yuan; Gelsinger-Austin, Paul J; Watson, Jonathan M; Barbastathis, George; Barton, Jennifer K; Kostuk, Raymond K

    2008-09-15

    A three-dimensional imaging system incorporating multiplexed holographic gratings to visualize fluorescence tissue structures is presented. Holographic gratings formed in volume recording materials such as a phenanthrenquinone poly(methyl methacrylate) photopolymer have narrowband angular and spectral transmittance filtering properties that enable obtaining spatial-spectral information within an object. We demonstrate this imaging system's ability to obtain multiple depth-resolved fluorescence images simultaneously.

  10. Spectral filtering for plant production

    Energy Technology Data Exchange (ETDEWEB)

    Young, R.E.; McMahon, M.J.; Rajapakse, N.C.; Becoteau, D.R.

    1994-12-31

    Research to date suggests that spectral filtering can be an effective alternative to chemical growth regulators for altering plant development. If properly implemented, it can be nonchemical and environmentally friendly. The aqueous CuSO{sub 4}, and CuCl{sub 2} solutions in channelled plastic panels have been shown to be effective filters, but they can be highly toxic if the solutions contact plants. Some studies suggest that spectral filtration limited to short EOD intervals can also alter plant development. Future research should be directed toward confirmation of the influence of spectral filters and exposure times on a broader range of plant species and cultivars. Efforts should also be made to identify non-noxious alternatives to aqueous copper solutions and/or to incorporate these chemicals permanently into plastic films and panels that can be used in greenhouse construction. It would also be informative to study the impacts of spectral filters on insect and microbal populations in plant growth facilities. The economic impacts of spectral filtering techniques should be assessed for each delivery methodology.

  11. Spectral element simulation of ultrafiltration

    DEFF Research Database (Denmark)

    Hansen, M.; Barker, Vincent A.; Hassager, Ole

    1998-01-01

    A spectral element method for simulating stationary 2-D ultrafiltration is presented. The mathematical model is comprised of the Navier-Stokes equations for the velocity field of the fluid and a transport equation for the concentration of the solute. In addition to the presence of the velocity...... vector in the transport equation, the system is coupled by the dependency of the fluid viscosity on the solute concentration and by a concentration-dependent boundary condition for the Navier-Stokes equations at the membrane surface. The spectral element discretization yields a nonlinear algebraic system....... The performance of the spectral element code when applied to several ultrafiltration problems is reported. (C) 1998 Elsevier Science Ltd. All rights reserved....

  12. Spectrally Compatible Iterative Water Filling

    Science.gov (United States)

    Verlinden, Jan; Bogaert, Etienne Vanden; Bostoen, Tom; Zanier, Francesca; Luise, Marco; Cendrillon, Raphael; Moonen, Marc

    2006-12-01

    Until now static spectrum management has ensured that DSL lines in the same cable are spectrally compatible under worst-case crosstalk conditions. Recently dynamic spectrum management (DSM) has been proposed aiming at an increased capacity utilization by adaptation of the transmit spectra of DSL lines to the actual crosstalk interference. In this paper, a new DSM method for downstream ADSL is derived from the well-known iterative water-filling (IWF) algorithm. The amount of boosting of this new DSM method is limited, such that it is spectrally compatible with ADSL. Hence it is referred to as spectrally compatible iterative water filling (SC-IWF). This paper focuses on the performance gains of SC-IWF. This method is an autonomous DSM method (DSM level 1) and it will be investigated together with two other DSM level-1 algorithms, under various noise conditions, namely, iterative water-filling algorithm, and flat power back-off (flat PBO).

  13. Spectrally Compatible Iterative Water Filling

    Directory of Open Access Journals (Sweden)

    Cendrillon Raphael

    2006-01-01

    Full Text Available Until now static spectrum management has ensured that DSL lines in the same cable are spectrally compatible under worst-case crosstalk conditions. Recently dynamic spectrum management (DSM has been proposed aiming at an increased capacity utilization by adaptation of the transmit spectra of DSL lines to the actual crosstalk interference. In this paper, a new DSM method for downstream ADSL is derived from the well-known iterative water-filling (IWF algorithm. The amount of boosting of this new DSM method is limited, such that it is spectrally compatible with ADSL. Hence it is referred to as spectrally compatible iterative water filling (SC-IWF. This paper focuses on the performance gains of SC-IWF. This method is an autonomous DSM method (DSM level 1 and it will be investigated together with two other DSM level-1 algorithms, under various noise conditions, namely, iterative water-filling algorithm, and flat power back-off (flat PBO.

  14. The conforming brain and deontological resolve.

    Science.gov (United States)

    Pincus, Melanie; LaViers, Lisa; Prietula, Michael J; Berns, Gregory

    2014-01-01

    Our personal values are subject to forces of social influence. Deontological resolve captures how strongly one relies on absolute rules of right and wrong in the representation of one's personal values and may predict willingness to modify one's values in the presence of social influence. Using fMRI, we found that a neurobiological metric for deontological resolve based on relative activity in the ventrolateral prefrontal cortex (VLPFC) during the passive processing of sacred values predicted individual differences in conformity. Individuals with stronger deontological resolve, as measured by greater VLPFC activity, displayed lower levels of conformity. We also tested whether responsiveness to social reward, as measured by ventral striatal activity during social feedback, predicted variability in conformist behavior across individuals but found no significant relationship. From these results we conclude that unwillingness to conform to others' values is associated with a strong neurobiological representation of social rules.

  15. The conforming brain and deontological resolve.

    Directory of Open Access Journals (Sweden)

    Melanie Pincus

    Full Text Available Our personal values are subject to forces of social influence. Deontological resolve captures how strongly one relies on absolute rules of right and wrong in the representation of one's personal values and may predict willingness to modify one's values in the presence of social influence. Using fMRI, we found that a neurobiological metric for deontological resolve based on relative activity in the ventrolateral prefrontal cortex (VLPFC during the passive processing of sacred values predicted individual differences in conformity. Individuals with stronger deontological resolve, as measured by greater VLPFC activity, displayed lower levels of conformity. We also tested whether responsiveness to social reward, as measured by ventral striatal activity during social feedback, predicted variability in conformist behavior across individuals but found no significant relationship. From these results we conclude that unwillingness to conform to others' values is associated with a strong neurobiological representation of social rules.

  16. Imposing resolved turbulence in CFD simulations

    DEFF Research Database (Denmark)

    Gilling, L.; Sørensen, Niels N.

    2011-01-01

    In large‐eddy simulations, the inflow velocity field should contain resolved turbulence. This paper describes and analyzes two methods for imposing resolved turbulence in the interior of the domain in Computational Fluid Dynamics simulations. The intended application of the methods is to impose...... resolved turbulence immediately upstream of the region or structure of interest. Comparing to the alternative of imposing the turbulence at the inlet, there is a large potential to reduce the computational cost of the simulation by reducing the total number of cells. The reduction comes from a lower demand...... of modifying the source terms. None of the two methods can impose synthetic turbulence with good results, but it is shown that by running the turbulence field through a short precursor simulation, very good results are obtained. Copyright © 2011 John Wiley & Sons, Ltd....

  17. Resolving Discrepancies Between Observed and Predicted Dynamic Topography on Earth

    Science.gov (United States)

    Richards, F. D.; Hoggard, M.; White, N. J.

    2017-12-01

    Compilations of well-resolved oceanic residual depth measurements suggest that present-day dynamic topography differs from that predicted by geodynamic simulations in two significant respects. At short wavelengths (λ ≤ 5,000 km), much larger amplitude variations are observed, whereas at long wavelengths (λ > 5,000 km), observed dynamic topography is substantially smaller. Explaining the cause of this discrepancy with a view to reconciling these different approaches is central to constraining the structure and dynamics of the deep Earth. Here, we first convert shear wave velocity to temperature using an experimentally-derived anelasticity model. This relationship is calibrated using a pressure and temperature-dependent plate model that satisfies age-depth subsidence, heat flow measurements, and seismological constraints on the depth to the lithosphere-asthenosphere boundary. In this way, we show that, at short-wavelengths, observed dynamic topography is consistent with ±150 ºC asthenospheric temperature anomalies. These inferred thermal buoyancy variations are independently verified by temperature measurements derived from geochemical analyses of mid-ocean ridge basalts. Viscosity profiles derived from the anelasticity model suggest that the asthenosphere has an average viscosity that is two orders of magnitude lower than that of the underlying upper mantle. The base of this low-viscosity layer coincides with a peak in azimuthal anisotropy observed in recent seismic experiments. This agreement implies that lateral asthenospheric flow is rapid with respect to the underlying upper mantle. We conclude that improved density and viscosity models of the uppermost mantle, which combine a more comprehensive physical description of the lithosphere-asthenosphere system with recent seismic tomographic models, can help to resolve spectral discrepancies between observed and predicted dynamic topography. Finally, we explore possible solutions to the long

  18. Spectral scheme for spacetime physics

    International Nuclear Information System (INIS)

    Seriu, Masafumi

    2002-01-01

    Based on the spectral representation of spatial geometry, we construct an analysis scheme for spacetime physics and cosmology, which enables us to compare two or more universes with each other. In this scheme the spectral distance plays a central role, which is the measure of closeness between two geometries defined in terms of the spectra. We apply this scheme for analyzing the averaging problem in cosmology; we explicitly investigate the time evolution of the spectra, distance between two nearby spatial geometries, simulating the relation between the real Universe and its model. We then formulate the criteria for a model to be a suitable one

  19. Spectral ellipsometry of nanodiamond composite

    International Nuclear Information System (INIS)

    Yastrebov, S.G.; Ivanov-Omskij, V.I.; Gordeev, S.K.; Garriga, M.; Alonso, I.A.

    2006-01-01

    Methods of spectral ellipsometry were applied for analysis of optical properties of nanodiamond based composite in spectral region 1.4-5 eV. The nanocomposite was synthesized by molding of ultradispersed nanodiamond powder in the course of heterogeneous chemical reaction of decomposition of methane, forming pyrocarbon interconnecting nanodiamond grains. The energy of σ + π plasmon of pyrocarbon component of nanodiamond composite was restored which proves to be ∼ 24 eV; using this value, an estimation was done of pyrocarbon matrix density, which occurs to be 2 g/cm 3 [ru

  20. Resolving Ethical Dilemmas in Financial Audit

    OpenAIRE

    Professor PhD Turlea Eugeniu; PhD Student Mocanu Mihaela

    2010-01-01

    Resolving ethical dilemmas is a difficult endeavor in any field and financial auditing makes no exception. Ethical dilemmas are complex situations which derive from a conflict and in which a decision among several alternatives is needed. Ethical dilemmas are common in the work of the financial auditor, whose mission is to serve the interests of the public at large, not those of the auditee’s managers who mandate him/her. The objective of the present paper is to offer support in resolving ethi...

  1. Broadband Comb-Resolved Cavity Enhanced Spectrometer with Graphene Modulator

    Science.gov (United States)

    Lee, Kevin; Mohr, Christian; Jiang, Jie; Fermann, Martin; Lee, Chien-Chung; Schibli, Thomas R.; Kowzan, Grzegorz; Maslowski, Piotr

    2015-06-01

    300 wn bandwidth at 2 μm, we simultaneously measure the full comb line resolved CO_2 vibrational manifold at 4850 wn. Other spectral ranges can be accessed by using graphene with different gain fibers or nonlinear frequency conversion.

  2. A variational multi-scale method with spectral approximation of the sub-scales: Application to the 1D advection-diffusion equations

    KAUST Repository

    Chacón Rebollo, Tomás

    2015-03-01

    This paper introduces a variational multi-scale method where the sub-grid scales are computed by spectral approximations. It is based upon an extension of the spectral theorem to non necessarily self-adjoint elliptic operators that have an associated base of eigenfunctions which are orthonormal in weighted L2 spaces. This allows to element-wise calculate the sub-grid scales by means of the associated spectral expansion. We propose a feasible VMS-spectral method by truncation of this spectral expansion to a finite number of modes. We apply this general framework to the convection-diffusion equation, by analytically computing the family of eigenfunctions. We perform a convergence and error analysis. We also present some numerical tests that show the stability of the method for an odd number of spectral modes, and an improvement of accuracy in the large resolved scales, due to the adding of the sub-grid spectral scales.

  3. SPECTRAL DEPENDENT ELECTRICAL CHARACTERISTICS OF ...

    African Journals Online (AJOL)

    ABSTRACT: The illuminated current-voltage characteristics of thin film a-Si:H. p-i-n solar cells were measured for the visible and near infrared spectral regions. The fill factor, the conversion efficiency, the open circuit Voltage and the short circuit current were compared to the parameters of crystalline silicon pit-junction.

  4. Speech recognition from spectral dynamics

    Indian Academy of Sciences (India)

    Abstract. Information is carried in changes of a signal. The paper starts with revis- iting Dudley's concept of the carrier nature of speech. It points to its close connection to modulation spectra of speech and argues against short-term spectral envelopes as dominant carriers of the linguistic information in speech. The history of ...

  5. Optical Spectral Variability of Blazars

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... It is well established that blazars show flux variations in the complete electromagnetic (EM) spectrum on all possible time scales ranging from a few tens of minutes to several years. Here, we report the review of optical flux and spectral variability properties of different classes of blazars on IDV and STV ...

  6. Speech recognition from spectral dynamics

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Some of the history of gradual infusion of the modulation spectrum concept into Automatic recognition of speech (ASR) comes next, pointing to the relationship of modulation spectrum processing to wellaccepted ASR techniques such as dynamic speech features or RelAtive SpecTrAl (RASTA) filtering. Next ...

  7. Spectral problems for operator matrices

    NARCIS (Netherlands)

    Bátkai, A.; Binding, P.; Dijksma, A.; Hryniv, R.; Langer, H.

    2005-01-01

    We study spectral properties of 2 × 2 block operator matrices whose entries are unbounded operators between Banach spaces and with domains consisting of vectors satisfying certain relations between their components. We investigate closability in the product space, essential spectra and generation of

  8. Spectral Methods for Numerical Relativity

    Directory of Open Access Journals (Sweden)

    Grandclément Philippe

    2009-01-01

    Full Text Available Equations arising in general relativity are usually too complicated to be solved analytically and one must rely on numerical methods to solve sets of coupled partial differential equations. Among the possible choices, this paper focuses on a class called spectral methods in which, typically, the various functions are expanded in sets of orthogonal polynomials or functions. First, a theoretical introduction of spectral expansion is given with a particular emphasis on the fast convergence of the spectral approximation. We then present different approaches to solving partial differential equations, first limiting ourselves to the one-dimensional case, with one or more domains. Generalization to more dimensions is then discussed. In particular, the case of time evolutions is carefully studied and the stability of such evolutions investigated. We then present results obtained by various groups in the field of general relativity by means of spectral methods. Work, which does not involve explicit time-evolutions, is discussed, going from rapidly-rotating strange stars to the computation of black-hole–binary initial data. Finally, the evolution of various systems of astrophysical interest are presented, from supernovae core collapse to black-hole–binary mergers.

  9. Functional Analysis-Spectral Theoryl

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 4. Functional Analysis - Spectral Theory1. Cherian Varughese. Book Review Volume 6 Issue 4 April 2001 pp 91-92 ... Author Affiliations. Cherian Varughese1. Indian Statistical Institute, 8th Mile, Mysore Road, Bangalore 560 059, India.

  10. Spectral Diagonal Ensemble Kalman Filters

    Czech Academy of Sciences Publication Activity Database

    Kasanický, Ivan; Mandel, Jan; Vejmelka, Martin

    2015-01-01

    Roč. 22, č. 4 (2015), s. 485-497 ISSN 1023-5809 R&D Projects: GA ČR GA13-34856S Grant - others:NSF(US) DMS -1216481 Institutional support: RVO:67985807 Keywords : data assimilation * ensemble Kalman filter * spectral representation Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.321, year: 2015

  11. Speech recognition from spectral dynamics

    Indian Academy of Sciences (India)

    Some of the history of gradual infusion of the modulation spectrum concept into Automatic recognition of speech (ASR) comes next, pointing to the relationship of modulation spectrum processing to wellaccepted ASR techniques such as dynamic speech features or RelAtive SpecTrAl (RASTA) filtering. Next, the frequency ...

  12. Speech recognition from spectral dynamics

    Indian Academy of Sciences (India)

    automatic recognition of speech (ASR). Instead, likely for historical reasons, envelopes of power spectrum were adopted as main carrier of linguistic information in ASR. However, the relationships between phonetic values of sounds and their short-term spectral envelopes are not straightforward. Consequently, this asks for ...

  13. Spectral representation of Gaussian semimartingales

    DEFF Research Database (Denmark)

    Basse-O'Connor, Andreas

    2009-01-01

    The aim of the present paper is to characterize the spectral representation of Gaussian semimartingales. That is, we provide necessary and sufficient conditions on the kernel K for X t =∫ K t (s) dN s to be a semimartingale. Here, N denotes an independently scattered Gaussian random measure...

  14. Approaches for Resolving Dynamic IP Addressing.

    Science.gov (United States)

    Foo, Schubert; Hui, Siu Cheung; Yip, See Wai; He, Yulan

    1997-01-01

    A problem with dynamic Internet protocol (IP) addressing arises when the Internet connection is through an Internet provider since the IP address is allocated only at connection time. This article examines a number of online and offline methods for resolving the problem. Suggests dynamic domain name system (DNS) and directory service look-up are…

  15. Resolved resonance parameters for 236Np

    International Nuclear Information System (INIS)

    Morogovskij, G.B.; Bakhanovich, L.A.

    2002-01-01

    Multilevel Breit-Wigner parameters were obtained for fission cross-section representation in the 0.01-33 eV energy region from evaluation of a 236 Np experimental fission cross-section in the resolved resonance region. (author)

  16. The resolved stellar population of Leo A

    NARCIS (Netherlands)

    Tolstoy, E

    1996-01-01

    New observations of the resolved stellar population of the extremely metal-poor Magellanic dwarf irregular galaxy Leo A in Thuan-Gunn r, g, i, and narrowband Ha filters are presented. Using the recent Cepheid variable star distance determination to Leo A by Hoessel et al., we are able to create an

  17. Direct angle resolved photoemission spectroscopy and ...

    Indian Academy of Sciences (India)

    Since 1997 we systematically perform direct angle resolved photoemission spectroscopy (ARPES) on in-situ grown thin (< 30 nm) cuprate films. Specifically, we probe low-energy electronic structure and properties of high-c superconductors (HTSC) under different degrees of epitaxial (compressive vs. tensile) strain.

  18. Generalized Darcy–Oseen resolvent problem

    Czech Academy of Sciences Publication Activity Database

    Medková, Dagmar; Ptashnyk, M.; Varnhorn, W.

    2016-01-01

    Roč. 39, č. 6 (2016), s. 1621-1630 ISSN 0170-4214 Institutional support: RVO:67985840 Keywords : Darcy -Oseen resolvent problem * semipermeable membrane * Brinkman- Darcy equations * fluid flow between free-fluid domains and porous media Subject RIV: BA - General Mathematics Impact factor: 1.017, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/mma.3872/abstract

  19. Reverse Universal Resolving Algorithm and inverse driving

    DEFF Research Database (Denmark)

    Pécseli, Thomas

    2012-01-01

    Inverse interpretation is a semantics based, non-standard interpretation of programs. Given a program and a value, an inverse interpreter finds all or one of the inputs, that would yield the given value as output with normal forward evaluation. The Reverse Universal Resolving Algorithm is a new v...

  20. Topoisomerase IB of Deinococcus radiodurans resolves guanine ...

    Indian Academy of Sciences (India)

    2015-11-28

    Nov 28, 2015 ... structure in vitro and it may be one such protein that could resolve G4 DNA under normal growth conditions in. D. radiodurans. [Kota S and Misra HS 2015 Topoisomerase IB of ..... 2004 Intracellular transcription of G-rich DNAs induces forma- tion of G-loops, novel structures containing G4 DNA. Genes. Dev.

  1. Topoisomerase IB of Deinococcus radiodurans resolves guanine ...

    Indian Academy of Sciences (India)

    2015-11-28

    Nov 28, 2015 ... [Kota S and Misra HS 2015 Topoisomerase IB of Deinococcus radiodurans resolves guanine quadruplex DNA structures in vitro. J. Biosci. 40 833–843] ... known for its efficient DNA double strand break repair. (Zahradka et al. ..... These samples were analysed on 12% native PAGE in KCl buffer (a). For CD ...

  2. Decomposition of time-resolved tomographic PIV

    NARCIS (Netherlands)

    Schmid, P.J.; Violato, D.; Scarano, F.

    2012-01-01

    An experimental study has been conducted on a transitional water jet at a Reynolds number of Re = 5,000. Flow fields have been obtained by means of time-resolved tomographic particle image velocimetry capturing all relevant spatial and temporal scales. The measured threedimensional flow fields have

  3. Assessing FRET using Spectral Techniques

    Science.gov (United States)

    Leavesley, Silas J.; Britain, Andrea L.; Cichon, Lauren K.; Nikolaev, Viacheslav O.; Rich, Thomas C.

    2015-01-01

    Förster resonance energy transfer (FRET) techniques have proven invaluable for probing the complex nature of protein–protein interactions, protein folding, and intracellular signaling events. These techniques have traditionally been implemented with the use of one or more fluorescence band-pass filters, either as fluorescence microscopy filter cubes, or as dichroic mirrors and band-pass filters in flow cytometry. In addition, new approaches for measuring FRET, such as fluorescence lifetime and acceptor photobleaching, have been developed. Hyperspectral techniques for imaging and flow cytometry have also shown to be promising for performing FRET measurements. In this study, we have compared traditional (filter-based) FRET approaches to three spectral-based approaches: the ratio of acceptor-to-donor peak emission, linear spectral unmixing, and linear spectral unmixing with a correction for direct acceptor excitation. All methods are estimates of FRET efficiency, except for one-filter set and three-filter set FRET indices, which are included for consistency with prior literature. In the first part of this study, spectrofluorimetric data were collected from a CFP–Epac–YFP FRET probe that has been used for intracellular cAMP measurements. All comparisons were performed using the same spectrofluorimetric datasets as input data, to provide a relevant comparison. Linear spectral unmixing resulted in measurements with the lowest coefficient of variation (0.10) as well as accurate fits using the Hill equation. FRET efficiency methods produced coefficients of variation of less than 0.20, while FRET indices produced coefficients of variation greater than 8.00. These results demonstrate that spectral FRET measurements provide improved response over standard, filter-based measurements. Using spectral approaches, single-cell measurements were conducted through hyperspectral confocal microscopy, linear unmixing, and cell segmentation with quantitative image analysis

  4. The Complete Spectral Catalog of Bright BATSE Gamma-Ray Bursts

    Science.gov (United States)

    Kaneko, Yuki; Preece, Robert D.; Briggs, Michael S.; Paciesas, William S.; Meegan, Charles A.; Band, David L.

    2006-01-01

    We present a systematic spectral analysis of 350 bright Gamma-Ray Bursts (GRBs) observed by the Burst and Transient Source Experiment (BATSE; approx. 30 keV - 2 MeV; including 17 short GRBs) with high energy and time resolution. Our sample was selected from the complete set of 2704 BATSE GRBs based on their energy fluence or peak photon flux values to assure good statistics. To obtain well-constrained, model-unbiased spectral parameters, a set of various photon models is used to fit each spectrum, and internal characteristics of each model are also investigated. A thorough analysis has been performed on 342 time-integrated and 8459 time-resolved burst spectra, and the effects of integration times in determining the spectral parameters are explored. The analysis results presented here provide the most detailed perspective of spectral aspects of the GRB prompt emission to date. Using the results, we study correlations among spectral parameters and spectral evolutions. The results of all spectral fits are available electronically in FITS format, from the High-Energy Astrophysics Science Archive Research Center (HEASARC).

  5. Resolving deconvolution ambiguity in gene alternative splicing

    Directory of Open Access Journals (Sweden)

    Hubbell Earl

    2009-08-01

    Full Text Available Abstract Background For many gene structures it is impossible to resolve intensity data uniquely to establish abundances of splice variants. This was empirically noted by Wang et al. in which it was called a "degeneracy problem". The ambiguity results from an ill-posed problem where additional information is needed in order to obtain an unique answer in splice variant deconvolution. Results In this paper, we analyze the situations under which the problem occurs and perform a rigorous mathematical study which gives necessary and sufficient conditions on how many and what type of constraints are needed to resolve all ambiguity. This analysis is generally applicable to matrix models of splice variants. We explore the proposal that probe sequence information may provide sufficient additional constraints to resolve real-world instances. However, probe behavior cannot be predicted with sufficient accuracy by any existing probe sequence model, and so we present a Bayesian framework for estimating variant abundances by incorporating the prediction uncertainty from the micro-model of probe responsiveness into the macro-model of probe intensities. Conclusion The matrix analysis of constraints provides a tool for detecting real-world instances in which additional constraints may be necessary to resolve splice variants. While purely mathematical constraints can be stated without error, real-world constraints may themselves be poorly resolved. Our Bayesian framework provides a generic solution to the problem of uniquely estimating transcript abundances given additional constraints that themselves may be uncertain, such as regression fit to probe sequence models. We demonstrate the efficacy of it by extensive simulations as well as various biological data.

  6. Group velocity measurement using spectral interference in near-field scanning optical microscopy

    International Nuclear Information System (INIS)

    Mills, John D.; Chaipiboonwong, Tipsuda; Brocklesby, William S.; Charlton, Martin D. B.; Netti, Caterina; Zoorob, Majd E.; Baumberg, Jeremy J.

    2006-01-01

    Near-field scanning optical microscopy provides a tool for studying the behavior of optical fields inside waveguides. In this experiment the authors measure directly the variation of group velocity between different modes of a planar slab waveguide as the modes propagate along the guide. The measurement is made using the spectral interference between pulses propagating inside the waveguide with different group velocities, collected using a near-field scanning optical microscope at different points down the guide and spectrally resolved. The results are compared to models of group velocities in simple guides

  7. VIBRATIONS DETECTION IN INDUSTRIAL PUMPS BASED ON SPECTRAL ANALYSIS TO INCREASE THEIR EFFICIENCY

    Directory of Open Access Journals (Sweden)

    Belhadef RACHID

    2016-01-01

    Full Text Available Spectral analysis is the key tool for the study of vibration signals in rotating machinery. In this work, the vibration analy-sis applied for conditional preventive maintenance of such machines is proposed, as part of resolved problems related to vibration detection on the organs of these machines. The vibration signal of a centrifugal pump was treated to mount the benefits of the approach proposed. The obtained results present the signal estimation of a pump vibration using Fourier transform technique compared by the spectral analysis methods based on Prony approach.

  8. Effects of NMR spectral resolution on protein structure calculation.

    Directory of Open Access Journals (Sweden)

    Suhas Tikole

    Full Text Available Adequate digital resolution and signal sensitivity are two critical factors for protein structure determinations by solution NMR spectroscopy. The prime objective for obtaining high digital resolution is to resolve peak overlap, especially in NOESY spectra with thousands of signals where the signal analysis needs to be performed on a large scale. Achieving maximum digital resolution is usually limited by the practically available measurement time. We developed a method utilizing non-uniform sampling for balancing digital resolution and signal sensitivity, and performed a large-scale analysis of the effect of the digital resolution on the accuracy of the resulting protein structures. Structure calculations were performed as a function of digital resolution for about 400 proteins with molecular sizes ranging between 5 and 33 kDa. The structural accuracy was assessed by atomic coordinate RMSD values from the reference structures of the proteins. In addition, we monitored also the number of assigned NOESY cross peaks, the average signal sensitivity, and the chemical shift spectral overlap. We show that high resolution is equally important for proteins of every molecular size. The chemical shift spectral overlap depends strongly on the corresponding spectral digital resolution. Thus, knowing the extent of overlap can be a predictor of the resulting structural accuracy. Our results show that for every molecular size a minimal digital resolution, corresponding to the natural linewidth, needs to be achieved for obtaining the highest accuracy possible for the given protein size using state-of-the-art automated NOESY assignment and structure calculation methods.

  9. On the Resolvability of Steam Assisted Gravity Drainage Reservoirs Using Time-Lapse Gravity Gradiometry

    Science.gov (United States)

    Elliott, E. Judith; Braun, Alexander

    2017-11-01

    Unconventional heavy oil resource plays are important contributors to oil and gas production, as well as controversial for posing environmental hazards. Monitoring those reservoirs before, during, and after operations would assist both the optimization of economic benefits and the mitigation of potential environmental hazards. This study investigates how gravity gradiometry using superconducting gravimeters could resolve depletion areas in steam assisted gravity drainage (SAGD) reservoirs. This is achieved through modelling of a SAGD reservoir at 1.25 and 5 years of operation. Specifically, the density change structure identified from geological, petrological, and seismic observations is forward modelled for gravity and gradients. Three main parameters have an impact on the resolvability of bitumen depletion volumes and are varied through a suitable parameter space: well pair separation, depth to the well pairs, and survey grid sampling. The results include a resolvability matrix, which identifies reservoirs that could benefit from time-lapse gravity gradiometry monitoring. After 1.25 years of operation, during the rising phase, the resolvable maximum reservoir depth ranges between the surface and 230 m, considering a well pair separation between 80 and 200 m. After 5 years of production, during the spreading phase, the resolvability of depletion volumes around single well pairs is greatly compromised as the depletion volume is closer to the surface, which translates to a larger portion of the gravity signal. The modelled resolvability matrices were derived from visual inspection and spectral analysis of the gravity gradient signatures and can be used to assess the applicability of time-lapse gradiometry to monitor reservoir density changes.

  10. Spectral model for clear sky atmospheric longwave radiation

    Science.gov (United States)

    Li, Mengying; Liao, Zhouyi; Coimbra, Carlos F. M.

    2018-04-01

    An efficient spectrally resolved radiative model is used to calculate surface downwelling longwave (DLW) radiation (0 ∼ 2500 cm-1) under clear sky (cloud free) conditions at the ground level. The wavenumber spectral resolution of the model is 0.01 cm-1 and the atmosphere is represented by 18 non-uniform plane-parallel layers with pressure in each layer determined on a pressure-based coordinate system. The model utilizes the most up-to-date (2016) HITRAN molecular spectral data for 7 atmospheric gases: H2O, CO2, O3, CH4, N2O, O2 and N2. The MT_CKD model is used to calculate water vapor and CO2 continuum absorption coefficients. Longwave absorption and scattering coefficients for aerosols are modeled using Mie theory. For the non-scattering atmosphere (aerosol free), the surface DLW agrees within 2.91% with mean values from the InterComparison of Radiation Codes in Climate Models (ICRCCM) program, with spectral deviations below 0.035 W cm m-2. For a scattering atmosphere with typical aerosol loading, the DLW calculated by the proposed model agrees within 3.08% relative error when compared to measured values at 7 climatologically diverse SURFRAD stations. This relative error is smaller than a calibrated parametric model regressed from data for those same 7 stations, and within the uncertainty (+/- 5 W m-2) of pyrgeometers commonly used for meteorological and climatological applications. The DLW increases by 1.86 ∼ 6.57 W m-2 when compared with aerosol-free conditions, and this increment decreases with increased water vapor content due to overlap with water vapor bands. As expected, the water vapor content at the layers closest to the surface contributes the most to the surface DLW, especially in the spectral region 0 ∼ 700 cm-1. Additional water vapor content (mostly from the lowest 1 km of the atmosphere) contributes to the spectral range of 400 ∼ 650 cm-1. Low altitude aerosols ( ∼ 3.46 km or less) contribute to the surface value of DLW mostly in the

  11. Spatially-resolved mid-IR spectroscopy of NGC 1068

    Science.gov (United States)

    Mason, R. E.; Geballe, T. R.; Packham, C.; Levenson, N. A.; Elitzur, M.; Fisher, R. S.; Perlman, E.

    2006-06-01

    We present spatially-resolved, near-diffraction-limited 10μm spectra of the nucleus of the Seyfert 2 galaxy NGC068. The spectra reveal striking variations in continuum slope, silicate feature profile and depth, and fine structure line fluxes on subarcsecond scales, illustrating in unprecedented detail the complexity of the circumnuclear regions of this galaxy at mid-IR wavelengths. The acquisition images show two distinct components: a compact (radius dust in the ionization cones. The observed spectrum of the compact source is compared with clumpy torus models, the first detailed comparison of such models with observational data. The models require most of the clouds to be located within a few parsecs of the central engine, in good agreement with recent mid-IR interferometric observations. However, the mid-IR flux measured with apertures larger than about 1 arcsec dominated by the dust emission from the ionization cones. Many previous attempts to determine the torus spectral energy distribution are thus likely to be significantly affected by contamination from the extended emission, highlighting the importance of spatial resolution in IR studies of nearby AGN.

  12. Time-Resolved Synchronous Fluorescence for Biomedical Diagnosis

    Science.gov (United States)

    Zhang, Xiaofeng; Fales, Andrew; Vo-Dinh, Tuan

    2015-01-01

    This article presents our most recent advances in synchronous fluorescence (SF) methodology for biomedical diagnostics. The SF method is characterized by simultaneously scanning both the excitation and emission wavelengths while keeping a constant wavelength interval between them. Compared to conventional fluorescence spectroscopy, the SF method simplifies the emission spectrum while enabling greater selectivity, and has been successfully used to detect subtle differences in the fluorescence emission signatures of biochemical species in cells and tissues. The SF method can be used in imaging to analyze dysplastic cells in vitro and tissue in vivo. Based on the SF method, here we demonstrate the feasibility of a time-resolved synchronous fluorescence (TRSF) method, which incorporates the intrinsic fluorescent decay characteristics of the fluorophores. Our prototype TRSF system has clearly shown its advantage in spectro-temporal separation of the fluorophores that were otherwise difficult to spectrally separate in SF spectroscopy. We envision that our previously-tested SF imaging and the newly-developed TRSF methods will combine their proven diagnostic potentials in cancer diagnosis to further improve the efficacy of SF-based biomedical diagnostics. PMID:26404289

  13. The time resolved measurement of ultrashort terahertz-band electric fields without an ultrashort probe

    International Nuclear Information System (INIS)

    Walsh, D. A.; Snedden, E. W.; Jamison, S. P.

    2015-01-01

    The time-resolved detection of ultrashort pulsed THz-band electric field temporal profiles without an ultrashort laser probe is demonstrated. A non-linear interaction between a narrow-bandwidth optical probe and the THz pulse transposes the THz spectral intensity and phase information to the optical region, thereby generating an optical pulse whose temporal electric field envelope replicates the temporal profile of the real THz electric field. This optical envelope is characterised via an autocorrelation based FROG (frequency resolved optical gating) measurement, hence revealing the THz temporal profile. The combination of a narrow-bandwidth, long duration, optical probe, and self-referenced FROG makes the technique inherently immune to timing jitter between the optical probe and THz pulse and may find particular application where the THz field is not initially generated via ultrashort laser methods, such as the measurement of longitudinal electron bunch profiles in particle accelerators

  14. Multi-correlation Fourier transform spectroscopy with the resolved modes of a frequency comb laser

    Energy Technology Data Exchange (ETDEWEB)

    Zeitouny, Mounir; Horsten, Ronald C.; Urbach, H. Paul; Bhattacharya, Nandini [Technische Universiteit Delft (Netherlands); Balling, Petr; Kren, Petr; Masika, Pavel [Czech Metrology Institute, Laboratories of Fundamental Metrology, Prague (Czech Republic); Persijn, Stefan T. [VSL, Delft (Netherlands)

    2013-06-15

    An instrument achieving 100 KHz spectral precision using multiple correlation Fourier transform spectroscopy has been demonstrated. The instrument can measure the individual frequency comb modes of 100 MHz frequency comb lasers in air. The experiments show {proportional_to}400,000 resolved modes at linewidths of 85 MHz in the region of 829 nm and {proportional_to} 182,000 resolved modes at linewidths of 28 MHz in the region of 1.5 {mu}m, with a recording time of few minutes. The precision of the instrument, defined by the frequency positioning, attains sub-MHz even when the scan is performed in air. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Compton scattering for spectroscopic detection of ultra-fast, high flux, broad energy range X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Cipiccia, S.; Wiggins, S. M.; Brunetti, E.; Vieux, G.; Yang, X.; Welsh, G. H.; Anania, M.; Islam, M. R.; Ersfeld, B.; Jaroszynski, D. A. [Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, John Anderson Building, 107 Rottenrow, Glasgow G4 0NG (United Kingdom); Maneuski, D.; Montgomery, R.; Smith, G.; Hoek, M.; Hamilton, D. J.; Shea, V. O. [Scottish Universities Physics Alliance, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Issac, R. C. [Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, John Anderson Building, 107 Rottenrow, Glasgow G4 0NG (United Kingdom); Research Department of Physics, Mar Athanasius College, Kothamangalam 686666, Kerala (India); Lemos, N. R. C.; Dias, J. M. [GoLP/Instituto de Plasmas eFusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon (Portugal); Symes, D. R. [Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, OX11 0QX Didcot (United Kingdom); and others

    2013-11-15

    Compton side-scattering has been used to simultaneously downshift the energy of keV to MeV energy range photons while attenuating their flux to enable single-shot, spectrally resolved, measurements of high flux X-ray sources to be undertaken. To demonstrate the technique a 1 mm thick pixelated cadmium telluride detector has been used to measure spectra of Compton side-scattered radiation from a Cobalt-60 laboratory source and a high flux, high peak brilliance X-ray source of betatron radiation from a laser-plasma wakefield accelerator.

  16. MONSTIR II: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Robert J., E-mail: robert.cooper@ucl.ac.uk; Magee, Elliott; Everdell, Nick; Magazov, Salavat; Varela, Marta; Airantzis, Dimitrios; Gibson, Adam P.; Hebden, Jeremy C. [Biomedical Optics Research Laboratory, Department of Medical Physics and Bioengineering, University College London, London WC1E 6BT (United Kingdom)

    2014-05-15

    We detail the design, construction and performance of the second generation UCL time-resolved optical tomography system, known as MONSTIR II. Intended primarily for the study of the newborn brain, the system employs 32 source fibres that sequentially transmit picosecond pulses of light at any four wavelengths between 650 and 900 nm. The 32 detector channels each contain an independent photo-multiplier tube and temporally correlated photon-counting electronics that allow the photon transit time between each source and each detector position to be measured with high temporal resolution. The system's response time, temporal stability, cross-talk, and spectral characteristics are reported. The efficacy of MONSTIR II is demonstrated by performing multi-spectral imaging of a simple phantom.

  17. PHASE-RESOLVED TIMING ANALYSIS OF GRS 1915+105 IN ITS ρ STATE

    International Nuclear Information System (INIS)

    Yan, Shu-Ping; Wang, Na; Ding, Guo-Qiang; Qu, Jin-Lu

    2013-01-01

    We made a phase-resolved timing analysis of GRS 1915+105 in its ρ state and obtained detailed ρ cycle evolutions of the frequency, amplitude, and coherence of the low-frequency quasi-periodic oscillation (LFQPO). We combined our timing results with the spectral study by Neilsen et al. to perform an elaborate comparison analysis. Our analyses show that the LFQPO frequency does not scale with the inner disk radius, but it is related to the spectral index, indicating a possible correlation between the LFQPO and the corona. The LFQPO amplitude spectrum and other results are naturally explained by tying the LFQPO to the corona. The similarities of the spectra of variability parameters between the LFQPOs from ρ state and those from more steady states indicate that the LFQPOs of GRS 1915+105 in very different states seem to share the same origin.

  18. PHASE-RESOLVED TIMING ANALYSIS OF GRS 1915+105 IN ITS {rho} STATE

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Shu-Ping; Wang, Na; Ding, Guo-Qiang [Xinjiang Astronomical Observatory, Chinese Academy of Sciences, 150 Science 1-Street, Urumqi, Xinjiang 830011 (China); Qu, Jin-Lu, E-mail: yanshup@xao.ac.cn, E-mail: na.wang@xao.ac.cn [Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049 (China)

    2013-04-10

    We made a phase-resolved timing analysis of GRS 1915+105 in its {rho} state and obtained detailed {rho} cycle evolutions of the frequency, amplitude, and coherence of the low-frequency quasi-periodic oscillation (LFQPO). We combined our timing results with the spectral study by Neilsen et al. to perform an elaborate comparison analysis. Our analyses show that the LFQPO frequency does not scale with the inner disk radius, but it is related to the spectral index, indicating a possible correlation between the LFQPO and the corona. The LFQPO amplitude spectrum and other results are naturally explained by tying the LFQPO to the corona. The similarities of the spectra of variability parameters between the LFQPOs from {rho} state and those from more steady states indicate that the LFQPOs of GRS 1915+105 in very different states seem to share the same origin.

  19. High Resolution Angle Resolved Photoemission Studies on Quasi-Particle Dynamics in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Leem, C.S.

    2010-06-02

    We obtained the spectral function of the graphite H point using high resolution angle resolved photoelectron spectroscopy (ARPES). The extracted width of the spectral function (inverse of the photo-hole lifetime) near the H point is approximately proportional to the energy as expected from the linearly increasing density of states (DOS) near the Fermi energy. This is well accounted by our electron-phonon coupling theory considering the peculiar electronic DOS near the Fermi level. And we also investigated the temperature dependence of the peak widths both experimentally and theoretically. The upper bound for the electron-phonon coupling parameter is 0.23, nearly the same value as previously reported at the K point. Our analysis of temperature dependent ARPES data at K shows that the energy of phonon mode of graphite has much higher energy scale than 125K which is dominant in electron-phonon coupling.

  20. A tunable low-energy photon source for high-resolution angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Harter, John W.; Monkman, Eric J.; Shai, Daniel E.; Nie Yuefeng; Uchida, Masaki; Burganov, Bulat; Chatterjee, Shouvik; King, Philip D. C.; Shen, Kyle M.

    2012-01-01

    We describe a tunable low-energy photon source consisting of a laser-driven xenon plasma lamp coupled to a Czerny-Turner monochromator. The combined tunability, brightness, and narrow spectral bandwidth make this light source useful in laboratory-based high-resolution photoemission spectroscopy experiments. The source supplies photons with energies up to ∼7 eV, delivering under typical conditions >10 12 ph/s within a 10 meV spectral bandwidth, which is comparable to helium plasma lamps and many synchrotron beamlines. We first describe the lamp and monochromator system and then characterize its output, with attention to those parameters which are of interest for photoemission experiments. Finally, we present angle-resolved photoemission spectroscopy data using the light source and compare its performance to a conventional helium plasma lamp.

  1. Note: Reflection zone plates as highly resolving broadband optics for soft X-ray laboratory spectrometers.

    Science.gov (United States)

    Jonas, A; Meurer, T; Kanngießer, B; Mantouvalou, I

    2018-02-01

    The resolving power and relative efficiency of two off-axis reflection zone plates (RZPs) in the soft X-ray range between 1 nm and 5 nm were investigated. RZPs focus only a very narrow bandwidth around the design wavelength. By misaligning the RZP, the focused wavelength can be tuned through a much wider spectral range. Using a laser-produced plasma source, we demonstrate that a single RZP can be efficiently used for spectroscopy at arbitrary wavelengths in the investigated soft X-ray range.

  2. A sensitive time-resolved radiation pyrometer for shock-temperature measurements above 1500 K

    Science.gov (United States)

    Boslough, Mark B.; Ahrens, Thomas J.

    1989-01-01

    The general design, calibration, and performance of a new high-sensitivity radiation pyrometer are described. The pyrometer can determine time-resolved temperatures (as low as 1500 K) in shocked materials by measuring the spectral radiance of light emitted from shocked solid samples in the visible and near-infrared wavelength range (0.5-1.0 micron). The high sensitivity of the radiation pyrometer is attributed to the large angular aperture (0.06 sr), the large bandwidth per channel (up to 0.1 micron), the large photodiode detection areas (1.0 sq cm), and the small number of calibrated channels (4) among which light is divided.

  3. Bogoliubov Angle, Particle-Hole Mixture and Angular Resolved Photoemission Spectroscopy in Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Balatsky, A.

    2010-05-04

    Superconducting excitations - Bogoliubov quasiparticles - are the quantum mechanical mixture of negatively charged electron (-e) and positively charged hole (+e). We propose a new observable for Angular Resolved Photoemission Spectroscopy (ARPES) studies that is the manifestation of the particle-hole entanglement of the superconducting quasiparticles. We call this observable a Bogoliubov angle. This angle measures the relative weight of particle and hole amplitude in the superconducting (Bogoliubov) quasiparticle. We show how this quantity can be measured by comparing the ratio of spectral intensities at positive and negative energies.

  4. Time-resolved protein dynamics using synchronized Ti sapphire regenerative amplifier/infrared FEL

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, R.J.; Haar, P.; Boxer, S.G. [Stanford Univ., CA (United States)

    1995-12-31

    We have synchronized a femtosecond 5 kHz Ti Sapphire regenerative amplifier (regen) to the Stanford Superconducting Accelerator/Free Electron laser (SCA/FEL) to within 2 picoseconds time jitter. We are using this capability to measure the time resolved spectral evolution of the radical cation band of the initial electron donor from bacterial reaction centers (Rb sphaeroides) after the initiation of electron transfer using a {approximately} 120 fs NIR pulse from the regen. The FEL is used to probe for the appearance of the radical cation band at {approximately} 4 {mu}m.

  5. Spectral Tensor-Train Decomposition

    DEFF Research Database (Denmark)

    Bigoni, Daniele; Engsig-Karup, Allan Peter; Marzouk, Youssef M.

    2016-01-01

    discretizations of the target function. We assess the performance of the method on a range of numerical examples: a modified set of Genz functions with dimension up to 100, and functions with mixed Fourier modes or with local features. We observe significant improvements in performance over an anisotropic......The accurate approximation of high-dimensional functions is an essential task in uncertainty quantification and many other fields. We propose a new function approximation scheme based on a spectral extension of the tensor-train (TT) decomposition. We first define a functional version of the TT.......e., the “cores”) comprising the functional TT decomposition. This result motivates an approximation scheme employing polynomial approximations of the cores. For functions with appropriate regularity, the resulting spectral tensor-train decomposition combines the favorable dimension-scaling of the TT...

  6. Spectral computations for bounded operators

    CERN Document Server

    Ahues, Mario; Limaye, Balmohan

    2001-01-01

    Exact eigenvalues, eigenvectors, and principal vectors of operators with infinite dimensional ranges can rarely be found. Therefore, one must approximate such operators by finite rank operators, then solve the original eigenvalue problem approximately. Serving as both an outstanding text for graduate students and as a source of current results for research scientists, Spectral Computations for Bounded Operators addresses the issue of solving eigenvalue problems for operators on infinite dimensional spaces. From a review of classical spectral theory through concrete approximation techniques to finite dimensional situations that can be implemented on a computer, this volume illustrates the marriage of pure and applied mathematics. It contains a variety of recent developments, including a new type of approximation that encompasses a variety of approximation methods but is simple to verify in practice. It also suggests a new stopping criterion for the QR Method and outlines advances in both the iterative refineme...

  7. Deflection evaluation using time-resolved radiography

    International Nuclear Information System (INIS)

    Fry, D.A.; Lucero, J.P.

    1990-01-01

    Time-resolved radiography is the creation of an x-ray image for which both the start-exposure and stop-exposure times are known with respect to the event under study. The combination of image and timing are used to derive information about the event. The authors have applied time-resolved radiography to evaluate motions of explosive-driven events. In the particular application discussed in this paper, the author's intent is to measure maximum deflections of the components involved. Exposures are made during the time just before to just after the event of interest occurs. A smear or blur of motion out to its furthest extent is recorded on the image. Comparison of the dynamic images with static images allows deflection measurements to be made

  8. Biomarkers and Biological Spectral Imaging

    Science.gov (United States)

    2001-01-23

    karyotyping (SKY) in hematological neoplasia [4259-13] B. S. Preiss, R. K. Pedersen, G. B. Kerndrup, Odense Univ. Hospital (Denmark) 60 Structure of...astronomy and airborne monitoring to forensic and biomedical sciences or industrial qualit\\ and process monitoring. There is growing need for a sensitive...SPIE Vol. 4259 55 Spectral Karyotyping (SKY) in Hematologic Neoplasia. Birgitte S. Preiss*a, Rikke K. Pedersena, Gitte B. Kerndrupa aInstitute of

  9. Chebyshev and Fourier spectral methods

    CERN Document Server

    Boyd, John P

    2001-01-01

    Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.

  10. Abundance estimation of spectrally similar minerals

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2009-07-01

    Full Text Available This paper evaluates a spectral unmixing method for estimating the partial abundance of spectrally similar minerals in complex mixtures. The method requires formulation of a linear function of individual spectra of individual minerals. The first...

  11. A spin-resolved photoemission study

    Indian Academy of Sciences (India)

    Stoner vs. spin-mixing behavior in the bulk magnetism of Gd: A spin-resolved photoemission study. K MAITI1,2,∗. , M C MALAGOLI2, A DALLMEYER2 and C CARBONE2,3. 1Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India. 2Institut für Festkörperforschung, Forschungszentrum Jülich, ...

  12. WFIRST: Resolving the Milky Way Galaxy

    Science.gov (United States)

    Kalirai, Jason; Conroy, Charlie; Dressler, Alan; Geha, Marla; Levesque, Emily; Lu, Jessica; Tumlinson, Jason

    2018-01-01

    WFIRST will yield a transformative impact in measuring and characterizing resolved stellar populations in the Milky Way. The proximity and level of detail that such populations need to be studied at directly map to all three pillars of WFIRST capabilities - sensitivity from a 2.4 meter space based telescope, resolution from 0.1" pixels, and large 0.3 degree field of view from multiple detectors. In this poster, we describe the activities of the WFIRST Science Investigation Team (SIT), "Resolving the Milky Way with WFIRST". Notional programs guiding our analysis include targeting sightlines to establish the first well-resolved large scale maps of the Galactic bulge aand central region, pockets of star formation in the disk, benchmark star clusters, and halo substructure and ultra faint dwarf satellites. As an output of this study, our team is building optimized strategies and tools to maximize stellar population science with WFIRST. This will include: new grids of IR-optimized stellar evolution and synthetic spectroscopic models; pipelines and algorithms for optimal data reduction at the WFIRST sensitivity and pixel scale; wide field simulations of Milky Way environments including new astrometric studies; and strategies and automated algorithms to find substructure and dwarf galaxies in the Milky Way through the WFIRST High Latitude Survey.

  13. A method to decompose spectral changes in Synechocystis PCC 6803 during light-induced state transitions

    Czech Academy of Sciences Publication Activity Database

    Acuna, A.M.; Kaňa, Radek; Gwizdala, M.; Snellenburg, J.J.; van Alphen, P.; van Oort, B.; Kirilovsky, D.; van Grondelle, R.; van Stokkum, I.H.M.

    2016-01-01

    Roč. 130, 1-3 SI (2016), s. 237-249 ISSN 0166-8595 R&D Projects: GA ČR GBP501/12/G055; GA MŠk(CZ) LO1416; GA MŠk(CZ) ED2.1.00/19.0392 Institutional support: RVO:61388971 Keywords : Cyanobacteria * Spectrally resolved fluorometry * Singular value decomposition Subject RIV: EF - Botanics Impact factor: 3.864, year: 2016

  14. Spectral transform and solvability of nonlinear evolution equations

    International Nuclear Information System (INIS)

    Degasperis, A.

    1979-01-01

    These lectures deal with an exciting development of the last decade, namely the resolving method based on the spectral transform which can be considered as an extension of the Fourier analysis to nonlinear evolution equations. Since many important physical phenomena are modeled by nonlinear partial wave equations this method is certainly a major breakthrough in mathematical physics. We follow the approach, introduced by Calogero, which generalizes the usual Wronskian relations for solutions of a Sturm-Liouville problem. Its application to the multichannel Schroedinger problem will be the subject of these lectures. We will focus upon dynamical systems described at time t by a multicomponent field depending on one space coordinate only. After recalling the Fourier technique for linear evolution equations we introduce the spectral transform method taking the integral equations of potential scattering as an example. The second part contains all the basic functional relationships between the fields and their spectral transforms as derived from the Wronskian approach. In the third part we discuss a particular class of solutions of nonlinear evolution equations, solitons, which are considered by many physicists as a first step towards an elementary particle theory, because of their particle-like behaviour. The effect of the polarization time-dependence on the motion of the soliton is studied by means of the corresponding spectral transform, leading to new concepts such as the 'boomeron' and the 'trappon'. The rich dynamic structure is illustrated by a brief report on the main results of boomeron-boomeron and boomeron-trappon collisions. In the final section we discuss further results concerning important properties of the solutions of basic nonlinear equations. We introduce the Baecklund transform for the special case of scalar fields and demonstrate how it can be used to generate multisoliton solutions and how the conservation laws are obtained. (HJ)

  15. Calibration with near-continuous spectral measurements

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg; Rasmussen, Michael; Madsen, Henrik

    2001-01-01

    In chemometrics traditional calibration in case of spectral measurements express a quantity of interest (e.g. a concentration) as a linear combination of the spectral measurements at a number of wavelengths. Often the spectral measurements are performed at a large number of wavelengths and in thi...... by an example in which the octane number of gasoline is related to near infrared spectral measurements. The performance is found to be much better that for the traditional calibration methods....

  16. USGS Spectral Library Version 7

    Science.gov (United States)

    Kokaly, Raymond F.; Clark, Roger N.; Swayze, Gregg A.; Livo, K. Eric; Hoefen, Todd M.; Pearson, Neil C.; Wise, Richard A.; Benzel, William M.; Lowers, Heather A.; Driscoll, Rhonda L.; Klein, Anna J.

    2017-04-10

    We have assembled a library of spectra measured with laboratory, field, and airborne spectrometers. The instruments used cover wavelengths from the ultraviolet to the far infrared (0.2 to 200 microns [μm]). Laboratory samples of specific minerals, plants, chemical compounds, and manmade materials were measured. In many cases, samples were purified, so that unique spectral features of a material can be related to its chemical structure. These spectro-chemical links are important for interpreting remotely sensed data collected in the field or from an aircraft or spacecraft. This library also contains physically constructed as well as mathematically computed mixtures. Four different spectrometer types were used to measure spectra in the library: (1) Beckman™ 5270 covering the spectral range 0.2 to 3 µm, (2) standard, high resolution (hi-res), and high-resolution Next Generation (hi-resNG) models of Analytical Spectral Devices (ASD) field portable spectrometers covering the range from 0.35 to 2.5 µm, (3) Nicolet™ Fourier Transform Infra-Red (FTIR) interferometer spectrometers covering the range from about 1.12 to 216 µm, and (4) the NASA Airborne Visible/Infra-Red Imaging Spectrometer AVIRIS, covering the range 0.37 to 2.5 µm. Measurements of rocks, soils, and natural mixtures of minerals were made in laboratory and field settings. Spectra of plant components and vegetation plots, comprising many plant types and species with varying backgrounds, are also in this library. Measurements by airborne spectrometers are included for forested vegetation plots, in which the trees are too tall for measurement by a field spectrometer. This report describes the instruments used, the organization of materials into chapters, metadata descriptions of spectra and samples, and possible artifacts in the spectral measurements. To facilitate greater application of the spectra, the library has also been convolved to selected spectrometer and imaging spectrometers sampling and

  17. Time-resolved and position-resolved X-ray spectrometry with a pixelated detector

    Energy Technology Data Exchange (ETDEWEB)

    Sievers, Peter

    2012-12-07

    stability of the applied Bayesian deconvolution method enabled the possibility of performing time-resolved spectrometric measurements. By measuring in ToA mode and in parallel performing a THL scan, it is possible to gain information on both energy and time. This method was then tested for a conventional X-ray tube for measuring the time dependence of the spectrum emitted during the switching-on process of the radiation. As expected, the results showed a relatively long time-dependent change of the spectrum. This method was then applied for proving that a newly developed X-ray source shows a spectral change of the spectrum emitted on a very low time scale only. As this time dependence is much shorter compared to the total pulse duration of the radiation, it is negligible. This result guarantees that both pulse duration and energy can be adjusted independently. This enables further investigations with this new X-ray tube in the field of pulsed radiation and its use for e.g. type tests.

  18. Time-resolved and position-resolved X-ray spectrometry with a pixelated detector

    International Nuclear Information System (INIS)

    Sievers, Peter

    2012-01-01

    stability of the applied Bayesian deconvolution method enabled the possibility of performing time-resolved spectrometric measurements. By measuring in ToA mode and in parallel performing a THL scan, it is possible to gain information on both energy and time. This method was then tested for a conventional X-ray tube for measuring the time dependence of the spectrum emitted during the switching-on process of the radiation. As expected, the results showed a relatively long time-dependent change of the spectrum. This method was then applied for proving that a newly developed X-ray source shows a spectral change of the spectrum emitted on a very low time scale only. As this time dependence is much shorter compared to the total pulse duration of the radiation, it is negligible. This result guarantees that both pulse duration and energy can be adjusted independently. This enables further investigations with this new X-ray tube in the field of pulsed radiation and its use for e.g. type tests.

  19. Calibrating spectral images using penalized likelihood

    NARCIS (Netherlands)

    Heijden, van der G.W.A.M.; Glasbey, C.

    2003-01-01

    A new method is presented for automatic correction of distortions and for spectral calibration (which band corresponds to which wavelength) of spectral images recorded by means of a spectrograph. The method consists of recording a bar-like pattern with an illumination source with spectral bands

  20. Spectral properties of generalized eigenparameter dependent ...

    African Journals Online (AJOL)

    Jost function, spectrum, the spectral singularities, and the properties of the principal vectors corresponding to the spectral singularities of L, if. ∞Σn=1 n(∣1 - an∣ + ∣bnl) < ∞. Mathematics Subject Classication (2010): 34L05, 34L40, 39A70, 47A10, 47A75. Key words: Discrete equations, eigenparameter, spectral analysis, ...

  1. Spectral Lag Evolution among -Ray Burst Pulses

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We analyse the spectral lag evolution of -ray burst (GRB) pulses with observations by CGRO/BATSE. No universal spectral lag evolution feature and pulse luminosity-lag relation within a GRB is observed.Our results suggest that the spectral lag would be due to radiation physics and dynamics of a given ...

  2. On Holo-Hilbert Spectral Analysis: A Full Informational Spectral Representation for Nonlinear and Non-Stationary Data

    Science.gov (United States)

    Huang, Norden E.; Hu, Kun; Yang, Albert C. C.; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Huang; Peng, Chung Kang; hide

    2016-01-01

    The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert-Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through convolutional integral transforms based on additive expansions of an a priori determined basis, mostly under linear and stationary assumptions. Thus, for non-stationary processes, the best one could do historically was to use the time- frequency representations, in which the amplitude (or energy density) variation is still represented in terms of time. For nonlinear processes, the data can have both amplitude and frequency modulations (intra-mode and inter-mode) generated by two different mechanisms: linear additive or nonlinear multiplicative processes. As all existing spectral analysis methods are based on additive expansions, either a priori or adaptive, none of them could possibly represent the multiplicative processes. While the earlier adaptive HHT spectral analysis approach could accommodate the intra-wave nonlinearity quite remarkably, it remained that any inter-wave nonlinear multiplicative mechanisms that include cross-scale coupling and phase-lock modulations were left untreated. To resolve the multiplicative processes issue, additional dimensions in the spectrum result are needed to account for the variations in both the amplitude and frequency modulations simultaneously. HHSA accommodates all the processes: additive and multiplicative, intra-mode and inter-mode, stationary and nonstationary, linear and nonlinear interactions. The Holo prefix in HHSA denotes a multiple dimensional representation with both additive and multiplicative capabilities.

  3. On Holo-Hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data

    Science.gov (United States)

    Huang, Norden E.; Hu, Kun; Yang, Albert C. C.; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Hung; Peng, Chung Kang; Meijer, Johanna H.; Wang, Yung-Hung; Long, Steven R.; Wu, Zhauhua

    2016-01-01

    The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert–Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through convolutional integral transforms based on additive expansions of an a priori determined basis, mostly under linear and stationary assumptions. Thus, for non-stationary processes, the best one could do historically was to use the time–frequency representations, in which the amplitude (or energy density) variation is still represented in terms of time. For nonlinear processes, the data can have both amplitude and frequency modulations (intra-mode and inter-mode) generated by two different mechanisms: linear additive or nonlinear multiplicative processes. As all existing spectral analysis methods are based on additive expansions, either a priori or adaptive, none of them could possibly represent the multiplicative processes. While the earlier adaptive HHT spectral analysis approach could accommodate the intra-wave nonlinearity quite remarkably, it remained that any inter-wave nonlinear multiplicative mechanisms that include cross-scale coupling and phase-lock modulations were left untreated. To resolve the multiplicative processes issue, additional dimensions in the spectrum result are needed to account for the variations in both the amplitude and frequency modulations simultaneously. HHSA accommodates all the processes: additive and multiplicative, intra-mode and inter-mode, stationary and non-stationary, linear and nonlinear interactions. The Holo prefix in HHSA denotes a multiple dimensional representation with both additive and multiplicative capabilities. PMID:26953180

  4. Spectral multitude and spectral dynamics reflect changing conjugation length in single molecules of oligophenylenevinylenes

    KAUST Repository

    Kobayashi, Hiroyuki

    2012-01-01

    Single-molecule study of phenylenevinylene oligomers revealed distinct spectral forms due to different conjugation lengths which are determined by torsional defects. Large spectral jumps between different spectral forms were ascribed to torsional flips of a single phenylene ring. These spectral changes reflect the dynamic nature of electron delocalization in oligophenylenevinylenes and enable estimation of the phenylene torsional barriers. © 2012 The Owner Societies.

  5. Fast Multispectral Imaging by Spatial Pixel-Binning and Spectral Unmixing.

    Science.gov (United States)

    Pan, Zhi-Wei; Shen, Hui-Liang; Li, Chunguang; Chen, Shu-Jie; Xin, John H

    2016-08-01

    Multispectral imaging system is of wide application in relevant fields for its capability in acquiring spectral information of scenes. Its limitation is that, due to the large number of spectral channels, the imaging process can be quite time-consuming when capturing high-resolution (HR) multispectral images. To resolve this limitation, this paper proposes a fast multispectral imaging framework based on the image sensor pixel-binning and spectral unmixing techniques. The framework comprises a fast imaging stage and a computational reconstruction stage. In the imaging stage, only a few spectral images are acquired in HR, while most spectral images are acquired in low resolution (LR). The LR images are captured by applying pixel binning on the image sensor, such that the exposure time can be greatly reduced. In the reconstruction stage, an optimal number of basis spectra are computed and the signal-dependent noise statistics are estimated. Then the unknown HR images are efficiently reconstructed by solving a closed-form cost function that models the spatial and spectral degradations. The effectiveness of the proposed framework is evaluated using real-scene multispectral images. Experimental results validate that, in general, the method outperforms the state of the arts in terms of reconstruction accuracy, with additional 20× or more improvement in computational efficiency.

  6. [Spectral analysis in nanometer material science].

    Science.gov (United States)

    Chen, Wei; Sun, Shi-gang

    2002-06-01

    Spectral analysis is an important means in studies of nanometer scale systems, and is essential for deep understanding the structure and properties of nanometer materials. This paper reviews the recent progresses made in studies of nanometer materials using spectral analysis methods such as UV-Visible spectroscopy, FTIR spectroscopy, Raman spectroscopy, Mössbauer spectroscopy, positron annihilation and photoacoustic spectroscopy. The principle, characteristics and applications of most frequently employed spectral methods are introduced briefly and illustrated with typical examples. Future perspectives of spectral analysis in nanometer field are discussed. New directions of establishing spectral analysis methods at nanometer scale resolution and developing new spectroscopy technology in nanometer material studies are also emphasized.

  7. Directional and Spectral Irradiance in Ocean Models: Effects on Simulated Global Phytoplankton, Nutrients, and Primary Production

    Science.gov (United States)

    Gregg, Watson W.; Rousseaux, Cecile S.

    2016-01-01

    The importance of including directional and spectral light in simulations of ocean radiative transfer was investigated using a coupled biogeochemical-circulation-radiative model of the global oceans. The effort focused on phytoplankton abundances, nutrient concentrations and vertically-integrated net primary production. The importance was approached by sequentially removing directional (i.e., direct vs. diffuse) and spectral irradiance and comparing results of the above variables to a fully directionally and spectrally-resolved model. In each case the total irradiance was kept constant; it was only the pathways and spectral nature that were changed. Assuming all irradiance was diffuse had negligible effect on global ocean primary production. Global nitrate and total chlorophyll concentrations declined by about 20% each. The largest changes occurred in the tropics and sub-tropics rather than the high latitudes, where most of the irradiance is already diffuse. Disregarding spectral irradiance had effects that depended upon the choice of attenuation wavelength. The wavelength closest to the spectrally-resolved model, 500 nm, produced lower nitrate (19%) and chlorophyll (8%) and higher primary production (2%) than the spectral model. Phytoplankton relative abundances were very sensitive to the choice of non-spectral wavelength transmittance. The combined effects of neglecting both directional and spectral irradiance exacerbated the differences, despite using attenuation at 500 nm. Global nitrate decreased 33% and chlorophyll decreased 24%. Changes in phytoplankton community structure were considerable, representing a change from chlorophytes to cyanobacteria and coccolithophores. This suggested a shift in community function, from light-limitation to nutrient limitation: lower demands for nutrients from cyanobacteria and coccolithophores favored them over the more nutrient-demanding chlorophytes. Although diatoms have the highest nutrient demands in the model, their

  8. Spectra-resolved technique of a sensitive time-resolved fluorescence immunoassay instrument

    Science.gov (United States)

    Guo, Zhouyi; Tian, Zhen; Jia, Yali

    2004-07-01

    The lanthanide trivalence ion and its chelates are used for marking substance in time-resolved fluorescence immunoassay (TRFIA), marking the protein, hormone, antibody, nucleic acid probe or biologica alive cell, to measure the concentration of the analysis substance inside the reaction system with time-resolved fluorometry after the reaction system occurred, and attain the quantitative analysis's purpose. TRFIA has been become a kind of new and more sensitive measure method after radioisotope marking, enzymatic marking, chemiluminescence, electrochemiluminescence, it primarily is decided by the special physics and chemistry characteristic of lanthanide trivalence ion and its chelates. In this paper, the result of spectroscopic evaluation of europium trivalence ion and its chelate, and the principle of spectra-resolved technology and a sensitive time-resolved fluorescence immunoassay instrument made by ourselves are reported. In the set, a high frequency Xenon pulsed-light was adopted as exciting light, and two special filters was utilized according to spectra-resolved technique. Thus the influence of scattering light and short-lifetime fluorescence was removed. And the sensitivity is 10-12mol/L (when Eu3+ was used for marking substance), examination repeat is CV = 95% (p < 0.01).

  9. Simulating high-frequency seismograms in complicated media: A spectral approach

    International Nuclear Information System (INIS)

    Orrey, J.L.; Archambeau, C.B.

    1993-01-01

    The main attraction of using a spectral method instead of a conventional finite difference or finite element technique for full-wavefield forward modeling in elastic media is the increased accuracy of a spectral approximation. While a finite difference method accurate to second order typically requires 8 to 10 computational grid points to resolve the smallest wavelengths on a 1-D grid, a spectral method that approximates the wavefield by trignometric functions theoretically requires only 2 grid points per minimum wavelength and produces no numerical dispersion from the spatial discretization. The resultant savings in computer memory, which is very significant in 2 and 3 dimensions, allows for larger scale and/or higher frequency simulations

  10. Study on the correlations between color rendering indices and the spectral power distribution.

    Science.gov (United States)

    Lin, Yue; Deng, Zhonghua; Guo, Ziquan; Liu, Zhuguang; Lan, Hai; Lu, Yijun; Cao, Yongge

    2014-06-30

    The intrinsic spectrally resolved sensitivity (ISRS) of color rendering indices (CRIs) is investigated by using spectral loss simulations. It is demonstrated that R(a) exhibits large sensitivities around 444, 480, 564, and 622 nm, while for R(9) the sensitivity peaks are around 461, 581 and 630 nm, which all shift slightly with the correlated color temperature. If considering the ISRS as a bridge between the spectral power distribution of LED and its CRI, one could obtain a high CRI by minimizing the deviation between the shapes of the illuminant spectrum and the reference spectrum, both after modulations by the ISRS as a weighting function. This approach, recommended as a guideline for the spectra design aiming at a high CRI, is described and justified in depth via a mathematical model. This method is spectra-oriented and could largely facilitate the spectra design.

  11. A stabilised nodal spectral element method for fully nonlinear water waves

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Eskilsson, C.; Bigoni, Daniele

    2016-01-01

    We present an arbitrary-order spectral element method for general-purpose simulation of non-overturning water waves, described by fully nonlinear potential theory. The method can be viewed as a high-order extension of the classical finite element method proposed by Cai et al. (1998) [5], although...... the numerical implementation differs greatly. Features of the proposed spectral element method include: nodal Lagrange basis functions, a general quadrature-free approach and gradient recovery using global L2 projections. The quartic nonlinear terms present in the Zakharov form of the free surface conditions...... can cause severe aliasing problems and consequently numerical instability for marginally resolved or very steep waves. We show how the scheme can be stabilised through a combination of over-integration of the Galerkin projections and a mild spectral filtering on a per element basis. This effectively...

  12. Multiple irradiation sensing of the optical effective attenuation coefficient for spectral correction in handheld OA imaging

    Directory of Open Access Journals (Sweden)

    K. Gerrit Held

    2016-06-01

    Full Text Available Spectral optoacoustic (OA imaging enables spatially-resolved measurement of blood oxygenation levels, based on the distinct optical absorption spectra of oxygenated and de-oxygenated blood. Wavelength-dependent optical attenuation in the bulk tissue, however, distorts the acquired OA spectrum and thus makes quantitative oxygenation measurements challenging. We demonstrate a correction for this spectral distortion without requiring a priori knowledge of the tissue optical properties, using the concept of multiple irradiation sensing: recording the OA signal amplitude of an absorbing structure (e.g. blood vessel, which serves as an intrinsic fluence detector, as function of irradiation position. This permits the reconstruction of the bulk effective optical attenuation coefficient μeff,λ. If performed at various irradiation wavelengths, a correction for the wavelength-dependent fluence attenuation is achieved, revealing accurate spectral information on the absorbing structures. Phantom studies were performed to show the potential of this technique for handheld clinical combined OA and ultrasound imaging.

  13. White light spectral interferometer for measuring dispersion in the visible-near infrared

    Science.gov (United States)

    Arosa, Yago; Rodríguez Fernández, Carlos Damian; Algnamat, Bilal S.; López-Lago, Elena; de la Fuente, Raul

    2017-08-01

    We have designed a spectrally resolved interferometer to measure the refractive index of transparent samples over a wide spectral band from 400 to 1550 nm. The measuring device consists of a Michelson interferometer whose output is analyzed by means of three fiber spectrometers. The first one is a homemade prism spectrometer, which obtains the interferogram produced by the sample over 400 to 1050 nm; the second one is a homemade transmission grating spectrometer thought to measure the interferogram in the near infrared spectral band from 950 to 1550 nm; the last one is a commercial Czerny-Turner spectrometer used to make high precision measurements of the displacement between the Michelson mirrors also using white light interferometry. The whole system is illuminated by a white light source with an emission spectrum similar to black body. We have tested the instrument with solid and liquids samples achieving accuracy to the fourth decimal on the refractive index after fitting it to a Cauchy formula

  14. Semiclassical Theory of Spectral Rigidity

    Science.gov (United States)

    Berry, M. V.

    1985-08-01

    The spectral rigidity Δ(L) of a set of quantal energy levels is the mean square deviation of the spectral staircase from the straight line that best fits it over a range of L mean level spacings. In the semiclassical limit (hslash-> 0), formulae are obtained giving Δ(L) as a sum over classical periodic orbits. When L ~= Lmax, where Lmax ~ hslash-(N-1) for a system of N freedoms, Δ(L) is shown to display the following universal behaviour as a result of properties of very long classical orbits: if the system is classically integrable (all periodic orbits filling tori), Δ(L) = 1/15L (as in an uncorrelated (Poisson) eigenvalue sequence); if the system is classically chaotic (all periodic orbits isolated and unstable) and has no symmetry, Δ(L) = ln L/2π^2 + D if 1 ~= L ~= Lmax (as in the gaussian unitary ensemble of random-matrix theory); if the system is chaotic and has time-reversal symmetry, Δ(L) = ln L/π^2 + E if 1 ~= L ~= Lmax (as in the gaussian orthogonal ensemble). When L >> Lmax, Δ(L) saturates non-universally at a value, determined by short classical orbits, of order hslash-(N-1) for integrable systems and ln (hslash-1) for chaotic systems. These results are obtained by using the periodic-orbit expansion for the spectral density, together with classical sum rules for the intensities of long orbits and a semiclassical sum rule restricting the manner in which their contributions interfere. For two examples Δ(L) is studied in detail: the rectangular billiard (integrable), and the Riemann zeta function (assuming its zeros to be the eigenvalues of an unknown quantum system whose unknown classical limit is chaotic).

  15. Planck 2013 results. IX. HFI spectral response

    CERN Document Server

    Ade, P A R; Armitage-Caplan, C; Arnaud, M; Ashdown, M; Atrio-Barandela, F; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bobin, J; Bock, J J; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bridges, M; Bucher, M; Burigana, C; Cardoso, J -F; Catalano, A; Challinor, A; Chamballu, A; Chary, R -R; Chen, X; Chiang, L -Y; Chiang, H C; Christensen, P R; Church, S; Clements, D L; Colombi, S; Colombo, L P L; Combet, C; Comis, B; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Delouis, J -M; Désert, F -X; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Dupac, X; Efstathiou, G; Enßlin, T A; Eriksen, H K; Falgarone, E; Finelli, F; Forni, O; Frailis, M; Franceschi, E; Galeotta, S; Ganga, K; Giard, M; Giraud-Héraud, Y; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Hansen, F K; Hanson, D; Harrison, D; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Hurier, G; Jaffe, T R; Jaffe, A H; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Knox, L; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Lasenby, A; Laureijs, R J; Lawrence, C R; Leahy, J P; Leonardi, R; Leroy, C; Lesgourgues, J; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maffei, B; Mandolesi, N; Maris, M; Marshall, D J; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Matthai, F; Mazzotta, P; McGehee, P; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; North, C; Noviello, F; Novikov, D; Novikov, I; Osborne, S; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paoletti, D; Pasian, F; Patanchon, G; Perdereau, O; Perotto, L; Perrotta, F; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Popa, L; Poutanen, T; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Reinecke, M; Remazeilles, M; Renault, C; Ricciardi, S; Riller, T; Ristorcelli, I; Rocha, G; Rosset, C; Roudier, G; Rusholme, B; Santos, D; Savini, G; Shellard, E P S; Spencer, L D; Starck, J -L; Stolyarov, V; Stompor, R; Sudiwala, R; Sureau, F; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Tavagnacco, D; Terenzi, L; Tomasi, M; Tristram, M; Tucci, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Vittorio, N; Wade, L A; Wandelt, B D; Yvon, D; Zacchei, A; Zonca, A

    2014-01-01

    The Planck High Frequency Instrument (HFI) spectral response was determined through a series of ground based tests conducted with the HFI focal plane in a cryogenic environment prior to launch. The main goal of the spectral transmission tests was to measure the relative spectral response (including out-of-band signal rejection) of all HFI detectors. This was determined by measuring the output of a continuously scanned Fourier transform spectrometer coupled with all HFI detectors. As there is no on-board spectrometer within HFI, the ground-based spectral response experiments provide the definitive data set for the relative spectral calibration of the HFI. The spectral response of the HFI is used in Planck data analysis and component separation, this includes extraction of CO emission observed within Planck bands, dust emission, Sunyaev-Zeldovich sources, and intensity to polarization leakage. The HFI spectral response data have also been used to provide unit conversion and colour correction analysis tools. Ver...

  16. Spectral fluctuations and zeta functions

    International Nuclear Information System (INIS)

    Balazs, N.L.; Schmit, C.; Voros, A.

    1987-01-01

    The study theoretically and numerically the role of the fluctuations of eigenvalue spectra {μ/sub n} in a particular analytical continuation process applied to the (generalized) zeta function Z(s) = Σ/sub n/μ/sub n//sup -s/ for s large and positive. A particularly interesting example is the spectrum of the Laplacian on a triangular domain which tessellates a compact surface of constant negative curvature (of genus two). The authors indeed find that the fluctuations restrict the abscissa of convergence, and also affect the rate of convergence. This then initiates a new approach to the exploration of spectral fluctuations through the convergence of analytical continuation processes

  17. Double-gated spectral snapshots for biomolecular fluorescence

    International Nuclear Information System (INIS)

    Nakamura, Ryosuke; Hamada, Norio; Ichida, Hideki; Tokunaga, Fumio; Kanematsu, Yasuo

    2007-01-01

    A versatile method to take femtosecond spectral snapshots of fluorescence has been developed based on a double gating technique in the combination of an optical Kerr gate and an image intensifier as an electrically driven gate set in front of a charge-coupled device detector. The application of a conventional optical-Kerr-gate method is limited to molecules with the short fluorescence lifetime up to a few hundred picoseconds, because long-lifetime fluorescence itself behaves as a source of the background signal due to insufficiency of the extinction ratio of polarizers employed for the Kerr gate. By using the image intensifier with the gate time of 200 ps, we have successfully suppressed the background signal and overcome the application limit of optical-Kerr-gate method. The system performance has been demonstrated by measuring time-resolved fluorescence spectra for laser dye solution and the riboflavin solution as a typical sample of biomolecule

  18. Achieving patient satisfaction: resolving patient complaints.

    Science.gov (United States)

    Oxler, K F

    1997-07-01

    Patients demand to be active participants on and partners with the health care team to design their care regimen. Patients bring unique perceptions and expectations and use these to evaluate service quality and satisfaction. If customer satisfaction is not achieved and a patient complaint results, staff must have the skills to respond and launch a service recovery program. Service recovery, when done with style and panache, can retain loyal customers. Achieving patient satisfaction and resolving patient complaints require commitment from top leadership and commitment from providers to dedicate the time to understand their patients' needs.

  19. Daylight time-resolved photographs of lightning.

    Science.gov (United States)

    Qrville, R E; Lala, G G; Idone, V P

    1978-07-07

    Lightning dart leaders and return strokes have been recorded in daylight with both good spatial resolution and good time resolution as part of the Thunder-storm Research International Program. The resulting time-resolved photographs are apparently equivalent to the best data obtained earlier only at night. Average two-dimensional return stroke velocities in four subsequent strokes between the ground and a height of 1400 meters were approximately 1.3 x 10(8) meters per second. The estimated systematic error is 10 to 15 percent.

  20. Time-resolved x-ray diagnostics

    International Nuclear Information System (INIS)

    Lyons, P.B.

    1981-01-01

    Techniques for time-resolved x-ray diagnostics will be reviewed with emphasis on systems utilizing x-ray diodes or scintillators. System design concerns for high-bandwidth (> 1 GHz) diagnostics will be emphasized. The limitations of a coaxial cable system and a technique for equalizing to improve bandwidth of such a system will be reviewed. Characteristics of new multi-GHz amplifiers will be presented. An example of a complete operational system on the Los Alamos Helios laser will be presented which has a bandwidth near 3 GHz over 38 m of coax. The system includes the cable, an amplifier, an oscilloscope, and a digital camera readout