WorldWideScience

Sample records for single-nucleotide-polymorphism snp genotyping

  1. Development and Applications of a High Throughput Genotyping Tool for Polyploid Crops: Single Nucleotide Polymorphism (SNP Array

    Directory of Open Access Journals (Sweden)

    Qian You

    2018-02-01

    Full Text Available Polypoid species play significant roles in agriculture and food production. Many crop species are polyploid, such as potato, wheat, strawberry, and sugarcane. Genotyping has been a daunting task for genetic studies of polyploid crops, which lags far behind the diploid crop species. Single nucleotide polymorphism (SNP array is considered to be one of, high-throughput, relatively cost-efficient and automated genotyping approaches. However, there are significant challenges for SNP identification in complex, polyploid genomes, which has seriously slowed SNP discovery and array development in polyploid species. Ploidy is a significant factor impacting SNP qualities and validation rates of SNP markers in SNP arrays, which has been proven to be a very important tool for genetic studies and molecular breeding. In this review, we (1 discussed the pros and cons of SNP array in general for high throughput genotyping, (2 presented the challenges of and solutions to SNP calling in polyploid species, (3 summarized the SNP selection criteria and considerations of SNP array design for polyploid species, (4 illustrated SNP array applications in several different polyploid crop species, then (5 discussed challenges, available software, and their accuracy comparisons for genotype calling based on SNP array data in polyploids, and finally (6 provided a series of SNP array design and genotype calling recommendations. This review presents a complete overview of SNP array development and applications in polypoid crops, which will benefit the research in molecular breeding and genetics of crops with complex genomes.

  2. A single nucleotide polymorphism (SNP) assay for population ...

    African Journals Online (AJOL)

    A single nucleotide polymorphism (SNP) assay for population stratification test ... phenotypes and unlinked candidate loci in case-control and cohort studies of ... Key words: Chinese, Japanese, population stratification, ancestry informative ...

  3. Single nucleotide polymorphism (SNP) detection on a magnetoresistive sensor

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Østerberg, Frederik Westergaard; Dufva, Martin

    2013-01-01

    We present a magnetoresistive sensor platform for hybridization assays and demonstrate its applicability on single nucleotide polymorphism (SNP) genotyping. The sensor relies on anisotropic magnetoresistance in a new geometry with a local negative reference and uses the magnetic field from...... the sensor bias current to magnetize magnetic beads in the vicinity of the sensor. The method allows for real-time measurements of the specific bead binding to the sensor surface during DNA hybridization and washing. Compared to other magnetic biosensing platforms, our approach eliminates the need...... for external electromagnets and thus allows for miniaturization of the sensor platform....

  4. Development of a single nucleotide polymorphism (SNP) marker for ...

    African Journals Online (AJOL)

    The nature of the single nucleotide polymorphism (SNP) marker was validated by DNA sequencing of the parental PCR products. Using high resolution melt (HRM) profiles and normalised difference plots, we successfully differentiated the homozygous dominant (wild type), homozygous recessive (LPA) and heterozygous ...

  5. In-silico single nucleotide polymorphisms (SNP) mining of Sorghum ...

    African Journals Online (AJOL)

    Single nucleotide polymorphisms (SNPs) may be considered the ultimate genetic markers as they represent the finest resolution of a DNA sequence (a single nucleotide), and are generally abundant in populations with a low mutation rate. SNPs are important tools in studying complex genetic traits and genome evolution.

  6. Finding the right coverage : The impact of coverage and sequence quality on single nucleotide polymorphism genotyping error rates

    NARCIS (Netherlands)

    Fountain, Emily D.; Pauli, Jonathan N.; Reid, Brendan N.; Palsboll, Per J.; Peery, M. Zachariah

    Restriction-enzyme-based sequencing methods enable the genotyping of thousands of single nucleotide polymorphism (SNP) loci in nonmodel organisms. However, in contrast to traditional genetic markers, genotyping error rates in SNPs derived from restriction-enzyme-based methods remain largely unknown.

  7. High-throughput genotyping of single nucleotide polymorphisms with rolling circle amplification

    Directory of Open Access Journals (Sweden)

    Sun Zhenyu

    2001-08-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are the foundation of powerful complex trait and pharmacogenomic analyses. The availability of large SNP databases, however, has emphasized a need for inexpensive SNP genotyping methods of commensurate simplicity, robustness, and scalability. We describe a solution-based, microtiter plate method for SNP genotyping of human genomic DNA. The method is based upon allele discrimination by ligation of open circle probes followed by rolling circle amplification of the signal using fluorescent primers. Only the probe with a 3' base complementary to the SNP is circularized by ligation. Results SNP scoring by ligation was optimized to a 100,000 fold discrimination against probe mismatched to the SNP. The assay was used to genotype 10 SNPs from a set of 192 genomic DNA samples in a high-throughput format. Assay directly from genomic DNA eliminates the need to preamplify the target as done for many other genotyping methods. The sensitivity of the assay was demonstrated by genotyping from 1 ng of genomic DNA. We demonstrate that the assay can detect a single molecule of the circularized probe. Conclusions Compatibility with homogeneous formats and the ability to assay small amounts of genomic DNA meets the exacting requirements of automated, high-throughput SNP scoring.

  8. Development and validation of a 20K single nucleotide polymorphism (SNP) whole genome genotyping array for apple (Malus × domestica Borkh).

    Science.gov (United States)

    Bianco, Luca; Cestaro, Alessandro; Sargent, Daniel James; Banchi, Elisa; Derdak, Sophia; Di Guardo, Mario; Salvi, Silvio; Jansen, Johannes; Viola, Roberto; Gut, Ivo; Laurens, Francois; Chagné, David; Velasco, Riccardo; van de Weg, Eric; Troggio, Michela

    2014-01-01

    High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus). A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs). Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ∼3.7K validated SNPs from the IRSC 8K array. The array has already been used in other studies where ∼15.8K SNP markers were mapped with an average of ∼6.8K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs.

  9. Development and validation of a 20K single nucleotide polymorphism (SNP whole genome genotyping array for apple (Malus × domestica Borkh.

    Directory of Open Access Journals (Sweden)

    Luca Bianco

    Full Text Available High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus. A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs. Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ∼3.7K validated SNPs from the IRSC 8K array. The array has already been used in other studies where ∼15.8K SNP markers were mapped with an average of ∼6.8K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs.

  10. Development and Validation of a 20K Single Nucleotide Polymorphism (SNP) Whole Genome Genotyping Array for Apple (Malus × domestica Borkh)

    Science.gov (United States)

    Bianco, Luca; Cestaro, Alessandro; Sargent, Daniel James; Banchi, Elisa; Derdak, Sophia; Di Guardo, Mario; Salvi, Silvio; Jansen, Johannes; Viola, Roberto; Gut, Ivo; Laurens, Francois; Chagné, David; Velasco, Riccardo; van de Weg, Eric; Troggio, Michela

    2014-01-01

    High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus). A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs). Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ∼3.7K validated SNPs from the IRSC 8K array. The array has already been used in other studies where ∼15.8K SNP markers were mapped with an average of ∼6.8K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs. PMID:25303088

  11. Short communication: relationship of call rate and accuracy of single nucleotide polymorphism genotypes in dairy cattle.

    Science.gov (United States)

    Cooper, T A; Wiggans, G R; VanRaden, P M

    2013-05-01

    Call rates on both a single nucleotide polymorphism (SNP) basis and an animal basis are used as measures of data quality and as screening tools for genomic studies and evaluations of dairy cattle. To investigate the relationship of SNP call rate and genotype accuracy for individual SNP, the correlation between percentages of missing genotypes and parent-progeny conflicts for each SNP was calculated for 103,313 Holsteins. Correlations ranged from 0.14 to 0.38 for the BovineSNP50 and BovineLD (Illumina Inc., San Diego, CA) and GeneSeek Genomic Profiler (Neogen Corp., Lincoln, NE) chips, with lower correlations for newer chips. For US genomic evaluations, genotypes are excluded for animals with a call rate of call rate for 220,175 Holstein, Jersey, and Brown Swiss genotypes was 99.6%. Animal genotypes with a call rate of ≤99% were examined from the US Department of Agriculture genotype database to determine how genotype call rate is related to accuracy of calls on an animal basis. Animal call rate was determined from SNP used in genomic evaluation and is the number of called autosomal and X-specific SNP genotypes divided by the number of SNP from that type of chip. To investigate the relationship of animal call rate and parentage validation, conflicts between a genotyped animal and its sire or dam were determined through a duo test (opposite homozygous SNP genotypes between sire and progeny; 1,374 animal genotypes) and a trio test (also including conflicts with dam and heterozygous SNP genotype for the animal when both parents are the same homozygote; 482 animal genotypes). When animal call rate was ≤ 80%, parentage validation was no longer reliable with the duo test. With the trio test, parentage validation was no longer reliable when animal call rate was ≤ 90%. To investigate how animal call rate was related to genotyping accuracy for animals with multiple genotypes, concordance between genotypes for 1,216 animals that had a genotype with a call rate of ≤ 99

  12. Single Nucleotide Polymorphisms in Common Bean: Their Discovery and Genotyping Using a Multiplex Detection System

    Directory of Open Access Journals (Sweden)

    E. Gaitán-Solís

    2008-11-01

    Full Text Available Single nucleotide polymorphism (SNP markers are by far the most common form of DNA polymorphism in a genome. The objectives of this study were to discover SNPs in common bean ( L. by comparing sequences from coding and noncoding regions obtained from the GenBank and genomic DNA and to compare sequencing results with those obtained using single base extension (SBE assays on the Luminex-100 system for use in high-throughput germplasm evaluation. We assessed the frequency of SNPs in 47 fragments of common bean DNA, using SBE as the evaluation methodology. We conducted a sequence analysis of 10 genotypes of cultivated and wild beans belonging to the Mesoamerican and Andean genetic pools of . For the 10 genotypes evaluated, a total of 20,964 bp of sequence were analyzed in each genotype and compared, resulting in the discovery of 239 SNPs and 133 InDels, giving an average SNP frequency of one per 88 bp and an InDel frequency of one per 157 bp. This is the equivalent of a nucleotide diversity (θ of 6.27 × 10. Comparisons with the SNP genotypes previously obtained by direct sequencing showed that the SBE assays on the Luminex-100 were accurate, with 2.5% being miscalled and 1% showing no signal. These results indicate that the Luminex-100 provides a high-throughput system that can be used to analyze SNPs in large samples of genotypes both for purposes of assessing diversity and also for mapping studies.

  13. Genotyping of Single Nucleotide Polymorphisms in DNA Isolated from Serum Using Sequenom MassARRAY Technology.

    Directory of Open Access Journals (Sweden)

    Tess V Clendenen

    Full Text Available Large epidemiologic studies have the potential to make valuable contributions to the assessment of gene-environment interactions because they prospectively collected detailed exposure data. Some of these studies, however, have only serum or plasma samples as a low quantity source of DNA.We examined whether DNA isolated from serum can be used to reliably and accurately genotype single nucleotide polymorphisms (SNPs using Sequenom multiplex SNP genotyping technology. We genotyped 81 SNPs using samples from 158 participants in the NYU Women's Health Study. Each participant had DNA from serum and at least one paired DNA sample isolated from a high quality source of DNA, i.e. clots and/or cell precipitates, for comparison.We observed that 60 of the 81 SNPs (74% had high call frequencies (≥95% using DNA from serum, only slightly lower than the 85% of SNPs with high call frequencies in DNA from clots or cell precipitates. Of the 57 SNPs with high call frequencies for serum, clot, and cell precipitate DNA, 54 (95% had highly concordant (>98% genotype calls across all three sample types. High purity was not a critical factor to successful genotyping.Our results suggest that this multiplex SNP genotyping method can be used reliably on DNA from serum in large-scale epidemiologic studies.

  14. Method: a single nucleotide polymorphism genotyping method for Wheat streak mosaic virus

    Science.gov (United States)

    2012-01-01

    Background The September 11, 2001 attacks on the World Trade Center and the Pentagon increased the concern about the potential for terrorist attacks on many vulnerable sectors of the US, including agriculture. The concentrated nature of crops, easily obtainable biological agents, and highly detrimental impacts make agroterrorism a potential threat. Although procedures for an effective criminal investigation and attribution following such an attack are available, important enhancements are still needed, one of which is the capability for fine discrimination among pathogen strains. The purpose of this study was to develop a molecular typing assay for use in a forensic investigation, using Wheat streak mosaic virus (WSMV) as a model plant virus. Method This genotyping technique utilizes single base primer extension to generate a genetic fingerprint. Fifteen single nucleotide polymorphisms (SNPs) within the coat protein and helper component-protease genes were selected as the genetic markers for this assay. Assay optimization and sensitivity testing was conducted using synthetic targets. WSMV strains and field isolates were collected from regions around the world and used to evaluate the assay for discrimination. The assay specificity was tested against a panel of near-neighbors consisting of genetic and environmental near-neighbors. Result Each WSMV strain or field isolate tested produced a unique SNP fingerprint, with the exception of three isolates collected within the same geographic location that produced indistinguishable fingerprints. The results were consistent among replicates, demonstrating the reproducibility of the assay. No SNP fingerprints were generated from organisms included in the near-neighbor panel, suggesting the assay is specific for WSMV. Using synthetic targets, a complete profile could be generated from as low as 7.15 fmoles of cDNA. Conclusion The molecular typing method presented is one tool that could be incorporated into the forensic

  15. Method: a single nucleotide polymorphism genotyping method for Wheat streak mosaic virus.

    Science.gov (United States)

    Rogers, Stephanie M; Payton, Mark; Allen, Robert W; Melcher, Ulrich; Carver, Jesse; Fletcher, Jacqueline

    2012-05-17

    The September 11, 2001 attacks on the World Trade Center and the Pentagon increased the concern about the potential for terrorist attacks on many vulnerable sectors of the US, including agriculture. The concentrated nature of crops, easily obtainable biological agents, and highly detrimental impacts make agroterrorism a potential threat. Although procedures for an effective criminal investigation and attribution following such an attack are available, important enhancements are still needed, one of which is the capability for fine discrimination among pathogen strains. The purpose of this study was to develop a molecular typing assay for use in a forensic investigation, using Wheat streak mosaic virus (WSMV) as a model plant virus. This genotyping technique utilizes single base primer extension to generate a genetic fingerprint. Fifteen single nucleotide polymorphisms (SNPs) within the coat protein and helper component-protease genes were selected as the genetic markers for this assay. Assay optimization and sensitivity testing was conducted using synthetic targets. WSMV strains and field isolates were collected from regions around the world and used to evaluate the assay for discrimination. The assay specificity was tested against a panel of near-neighbors consisting of genetic and environmental near-neighbors. Each WSMV strain or field isolate tested produced a unique SNP fingerprint, with the exception of three isolates collected within the same geographic location that produced indistinguishable fingerprints. The results were consistent among replicates, demonstrating the reproducibility of the assay. No SNP fingerprints were generated from organisms included in the near-neighbor panel, suggesting the assay is specific for WSMV. Using synthetic targets, a complete profile could be generated from as low as 7.15 fmoles of cDNA. The molecular typing method presented is one tool that could be incorporated into the forensic science tool box after a thorough

  16. Development of a single nucleotide polymorphism barcode to genotype Plasmodium vivax infections.

    Directory of Open Access Journals (Sweden)

    Mary Lynn Baniecki

    2015-03-01

    Full Text Available Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25-40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs. Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM, we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding. From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana, Africa (Ethiopia and Asia (Sri Lanka. We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1. Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections.

  17. Development of a Single Nucleotide Polymorphism Barcode to Genotype Plasmodium vivax Infections

    Science.gov (United States)

    Baniecki, Mary Lynn; Faust, Aubrey L.; Schaffner, Stephen F.; Park, Daniel J.; Galinsky, Kevin; Daniels, Rachel F.; Hamilton, Elizabeth; Ferreira, Marcelo U.; Karunaweera, Nadira D.; Serre, David; Zimmerman, Peter A.; Sá, Juliana M.; Wellems, Thomas E.; Musset, Lise; Legrand, Eric; Melnikov, Alexandre; Neafsey, Daniel E.; Volkman, Sarah K.; Wirth, Dyann F.; Sabeti, Pardis C.

    2015-01-01

    Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25–40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections. PMID:25781890

  18. Multi-generational imputation of single nucleotide polymorphism marker genotypes and accuracy of genomic selection.

    Science.gov (United States)

    Toghiani, S; Aggrey, S E; Rekaya, R

    2016-07-01

    Availability of high-density single nucleotide polymorphism (SNP) genotyping platforms provided unprecedented opportunities to enhance breeding programmes in livestock, poultry and plant species, and to better understand the genetic basis of complex traits. Using this genomic information, genomic breeding values (GEBVs), which are more accurate than conventional breeding values. The superiority of genomic selection is possible only when high-density SNP panels are used to track genes and QTLs affecting the trait. Unfortunately, even with the continuous decrease in genotyping costs, only a small fraction of the population has been genotyped with these high-density panels. It is often the case that a larger portion of the population is genotyped with low-density and low-cost SNP panels and then imputed to a higher density. Accuracy of SNP genotype imputation tends to be high when minimum requirements are met. Nevertheless, a certain rate of genotype imputation errors is unavoidable. Thus, it is reasonable to assume that the accuracy of GEBVs will be affected by imputation errors; especially, their cumulative effects over time. To evaluate the impact of multi-generational selection on the accuracy of SNP genotypes imputation and the reliability of resulting GEBVs, a simulation was carried out under varying updating of the reference population, distance between the reference and testing sets, and the approach used for the estimation of GEBVs. Using fixed reference populations, imputation accuracy decayed by about 0.5% per generation. In fact, after 25 generations, the accuracy was only 7% lower than the first generation. When the reference population was updated by either 1% or 5% of the top animals in the previous generations, decay of imputation accuracy was substantially reduced. These results indicate that low-density panels are useful, especially when the generational interval between reference and testing population is small. As the generational interval

  19. High-throughput single nucleotide polymorphism genotyping using nanofluidic Dynamic Arrays

    Directory of Open Access Journals (Sweden)

    Crenshaw Andrew

    2009-01-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs have emerged as the genetic marker of choice for mapping disease loci and candidate gene association studies, because of their high density and relatively even distribution in the human genomes. There is a need for systems allowing medium multiplexing (ten to hundreds of SNPs with high throughput, which can efficiently and cost-effectively generate genotypes for a very large sample set (thousands of individuals. Methods that are flexible, fast, accurate and cost-effective are urgently needed. This is also important for those who work on high throughput genotyping in non-model systems where off-the-shelf assays are not available and a flexible platform is needed. Results We demonstrate the use of a nanofluidic Integrated Fluidic Circuit (IFC - based genotyping system for medium-throughput multiplexing known as the Dynamic Array, by genotyping 994 individual human DNA samples on 47 different SNP assays, using nanoliter volumes of reagents. Call rates of greater than 99.5% and call accuracies of greater than 99.8% were achieved from our study, which demonstrates that this is a formidable genotyping platform. The experimental set up is very simple, with a time-to-result for each sample of about 3 hours. Conclusion Our results demonstrate that the Dynamic Array is an excellent genotyping system for medium-throughput multiplexing (30-300 SNPs, which is simple to use and combines rapid throughput with excellent call rates, high concordance and low cost. The exceptional call rates and call accuracy obtained may be of particular interest to those working on validation and replication of genome- wide- association (GWA studies.

  20. Prevalence of single nucleotide polymorphism among 27 diverse alfalfa genotypes as assessed by transcriptome sequencing

    Directory of Open Access Journals (Sweden)

    Li Xuehui

    2012-10-01

    Full Text Available Abstract Background Alfalfa, a perennial, outcrossing species, is a widely planted forage legume producing highly nutritious biomass. Currently, improvement of cultivated alfalfa mainly relies on recurrent phenotypic selection. Marker assisted breeding strategies can enhance alfalfa improvement efforts, particularly if many genome-wide markers are available. Transcriptome sequencing enables efficient high-throughput discovery of single nucleotide polymorphism (SNP markers for a complex polyploid species. Result The transcriptomes of 27 alfalfa genotypes, including elite breeding genotypes, parents of mapping populations, and unimproved wild genotypes, were sequenced using an Illumina Genome Analyzer IIx. De novo assembly of quality-filtered 72-bp reads generated 25,183 contigs with a total length of 26.8 Mbp and an average length of 1,065 bp, with an average read depth of 55.9-fold for each genotype. Overall, 21,954 (87.2% of the 25,183 contigs represented 14,878 unique protein accessions. Gene ontology (GO analysis suggested that a broad diversity of genes was represented in the resulting sequences. The realignment of individual reads to the contigs enabled the detection of 872,384 SNPs and 31,760 InDels. High resolution melting (HRM analysis was used to validate 91% of 192 putative SNPs identified by sequencing. Both allelic variants at about 95% of SNP sites identified among five wild, unimproved genotypes are still present in cultivated alfalfa, and all four US breeding programs also contain a high proportion of these SNPs. Thus, little evidence exists among this dataset for loss of significant DNA sequence diversity from either domestication or breeding of alfalfa. Structure analysis indicated that individuals from the subspecies falcata, the diploid subspecies caerulea, and the tetraploid subspecies sativa (cultivated tetraploid alfalfa were clearly separated. Conclusion We used transcriptome sequencing to discover large numbers of SNPs

  1. Candidate gene analysis using imputed genotypes: cell cycle single-nucleotide polymorphisms and ovarian cancer risk

    DEFF Research Database (Denmark)

    Goode, Ellen L; Fridley, Brooke L; Vierkant, Robert A

    2009-01-01

    Polymorphisms in genes critical to cell cycle control are outstanding candidates for association with ovarian cancer risk; numerous genes have been interrogated by multiple research groups using differing tagging single-nucleotide polymorphism (SNP) sets. To maximize information gleaned from......, and rs3212891; CDK2 rs2069391, rs2069414, and rs17528736; and CCNE1 rs3218036. These results exemplify the utility of imputation in candidate gene studies and lend evidence to a role of cell cycle genes in ovarian cancer etiology, suggest a reduced set of SNPs to target in additional cases and controls....

  2. Differentiation of drug and non-drug Cannabis using a single nucleotide polymorphism (SNP) assay.

    Science.gov (United States)

    Rotherham, D; Harbison, S A

    2011-04-15

    Cannabis sativa is both an illegal drug and a legitimate crop. The differentiation of illegal drug Cannabis from non-drug forms of Cannabis is relevant in the context of the growth of fibre and seed oil varieties of Cannabis for commercial purposes. This differentiation is currently determined based on the levels of tetrahydrocannabinol (THC) in adult plants. DNA based methods have the potential to assay Cannabis material unsuitable for analysis using conventional means including seeds, pollen and severely degraded material. The purpose of this research was to develop a single nucleotide polymorphism (SNP) assay for the differentiation of "drug" and "non-drug"Cannabis plants. An assay was developed based on four polymorphisms within a 399 bp fragment of the tetrahydrocannabinolic acid (THCA) synthase gene, utilising the snapshot multiplex kit. This SNP assay was tested on 94 Cannabis plants, which included 10 blind samples, and was able to differentiate between "drug" and "non-drug"Cannabis in all cases, while also differentiating between Cannabis and other species. Non-drug plants were found to be homozygous at the four sites assayed while drug Cannabis plants were either homozygous or heterozygous. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Influence of the MDM2 single nucleotide polymorphism SNP309 on tumour development in BRCA1 mutation carriers

    Directory of Open Access Journals (Sweden)

    Johnson Peter W

    2006-03-01

    Full Text Available Abstract Background The MDM2 gene encodes a negative regulator of the p53 tumour suppressor protein. A single nucleotide polymorphism (SNP in the MDM2 promoter (a T to G exchange at nucleotide 309 has been reported to produce accelerated tumour formation in individuals with inherited p53 mutations. We have investigated the effect of the MDM2 SNP309 on clinical outcome in a cohort of patients with germline mutations of BRCA1. Methods Genomic DNA was obtained for 102 healthy controls and 116 patients with established pathogenic mutations of BRCA1 and Pyrosequencing technology™ was used to determine the genotype at the MDM2 SNP309 locus. Results The polymorphism was present in 52.9% of the controls (G/T in 37.3% and G/G in 15.6% and 58.6% of the BRCA1 mutation carriers (47.4% G/T and 11.2% G/G. Incidence of malignancy in female BRCA1 carriers was not significantly higher in SNP309 carriers than in wildtype (T/T individuals (72.7% vs. 75.6%, p = 1.00. Mean age of diagnosis of first breast cancer was 41.2 years in the SNP309 G/G genotype carriers, 38.6 years in those with the SNP309 G/T genotype and 39.0 years in wildtype subjects (p = 0.80. Conclusion We found no evidence that the MDM2 SNP309 accelerates tumour development in carriers of known pathogenic germline mutations of BRCA1.

  4. Identification of novel single nucleotide polymorphisms (SNPs in deer (Odocoileus spp. using the BovineSNP50 BeadChip.

    Directory of Open Access Journals (Sweden)

    Gwilym D Haynes

    Full Text Available Single nucleotide polymorphisms (SNPs are growing in popularity as a genetic marker for investigating evolutionary processes. A panel of SNPs is often developed by comparing large quantities of DNA sequence data across multiple individuals to identify polymorphic sites. For non-model species, this is particularly difficult, as performing the necessary large-scale genomic sequencing often exceeds the resources available for the project. In this study, we trial the Bovine SNP50 BeadChip developed in cattle (Bos taurus for identifying polymorphic SNPs in cervids Odocoileus hemionus (mule deer and black-tailed deer and O. virginianus (white-tailed deer in the Pacific Northwest. We found that 38.7% of loci could be genotyped, of which 5% (n = 1068 were polymorphic. Of these 1068 polymorphic SNPs, a mixture of putatively neutral loci (n = 878 and loci under selection (n = 190 were identified with the F(ST-outlier method. A range of population genetic analyses were implemented using these SNPs and a panel of 10 microsatellite loci. The three types of deer could readily be distinguished with both the SNP and microsatellite datasets. This study demonstrates that commercially developed SNP chips are a viable means of SNP discovery for non-model organisms, even when used between very distantly related species (the Bovidae and Cervidae families diverged some 25.1-30.1 million years before present.

  5. Mouse SNP Miner: an annotated database of mouse functional single nucleotide polymorphisms

    Directory of Open Access Journals (Sweden)

    Ramensky Vasily E

    2007-01-01

    Full Text Available Abstract Background The mapping of quantitative trait loci in rat and mouse has been extremely successful in identifying chromosomal regions associated with human disease-related phenotypes. However, identifying the specific phenotype-causing DNA sequence variations within a quantitative trait locus has been much more difficult. The recent availability of genomic sequence from several mouse inbred strains (including C57BL/6J, 129X1/SvJ, 129S1/SvImJ, A/J, and DBA/2J has made it possible to catalog DNA sequence differences within a quantitative trait locus derived from crosses between these strains. However, even for well-defined quantitative trait loci ( Description To help identify functional DNA sequence variations within quantitative trait loci we have used the Ensembl annotated genome sequence to compile a database of mouse single nucleotide polymorphisms (SNPs that are predicted to cause missense, nonsense, frameshift, or splice site mutations (available at http://bioinfo.embl.it/SnpApplet/. For missense mutations we have used the PolyPhen and PANTHER algorithms to predict whether amino acid changes are likely to disrupt protein function. Conclusion We have developed a database of mouse SNPs predicted to cause missense, nonsense, frameshift, and splice-site mutations. Our analysis revealed that 20% and 14% of missense SNPs are likely to be deleterious according to PolyPhen and PANTHER, respectively, and 6% are considered deleterious by both algorithms. The database also provides gene expression and functional annotations from the Symatlas, Gene Ontology, and OMIM databases to further assess candidate phenotype-causing mutations. To demonstrate its utility, we show that Mouse SNP Miner successfully finds a previously identified candidate SNP in the taste receptor, Tas1r3, that underlies sucrose preference in the C57BL/6J strain. We also use Mouse SNP Miner to derive a list of candidate phenotype-causing mutations within a previously

  6. Analysis of multiple single nucleotide polymorphisms (SNP) on DNA traces from plasma and dried blood samples

    NARCIS (Netherlands)

    Catsburg, Arnold; van der Zwet, Wil C.; Morre, Servaas A.; Ouburg, Sander; Vandenbroucke-Grauls, Christina M. J. E.; Savelkoul, Paul H. M.

    2007-01-01

    Reliable analysis of single nucleotide polymorphisms (SNPs) in DNA derived from samples containing low numbers of cells or from suboptimal sources can be difficult. A new procedure to characterize multiple SNPs in traces of DNA from plasma and old dried blood samples was developed. Six SNPs in the

  7. Identification of field caught Anopheles gambiae s.s. and Anopheles arabiensis by TaqMan single nucleotide polymorphism genotyping

    Directory of Open Access Journals (Sweden)

    Bayoh Nabie M

    2007-02-01

    Full Text Available Abstract Background Identification of Anopheles gambiae s.s. and Anopheles arabiensis from field-collected Anopheles gambiae s.l. is often necessary in basic and applied research, and in operational control programmes. The currently accepted method involves use of standard polymerase chain reaction amplification of ribosomal DNA (rDNA from the 3' 28S to 5' intergenic spacer region of the genome, and visual confirmation of amplicons of predicted size on agarose gels, after electrophoresis. This report describes development and evaluation of an automated, quantitative PCR method based upon TaqMan™ single nucleotide polymorphism (SNP genotyping. Methods Standard PCR, and TaqMan SNP genotyping with newly designed primers and fluorophore-labeled probes hybridizing to sequences of complementary rDNA specific for either An. gambiae s.s. or An. arabiensis, were conducted in three experiments involving field-collected An. gambiae s.l. from western Kenya, and defined laboratory strains. DNA extraction was from a single leg, sonicated for five minutes in buffer in wells of 96-well PCR plates. Results TaqMan SNP genotyping showed a reaction success rate, sensitivity, and species specificity comparable to that of standard PCR. In an extensive field study, only 29 of 3,041 (0.95% were determined to be hybrids by TaqMan (i.e., having rDNA sequences from both species, however, all but one were An. arabiensis by standard PCR, suggesting an acceptably low (ca. 1% error rate for TaqMan genotyping in mistakenly identifying species hybrids. Conclusion TaqMan SNP genotyping proved to be a sensitive and rapid method for identification of An. gambiae s.l. and An. arabiensis, with a high success rate, specific results, and congruence with the standard PCR method.

  8. Identification and genotyping of feline infectious peritonitis-associated single nucleotide polymorphisms in the feline interferon-γ gene.

    Science.gov (United States)

    Hsieh, Li-En; Chueh, Ling-Ling

    2014-05-21

    Feline infectious peritonitis (FIP) is an immune-mediated, highly lethal disease caused by feline coronavirus (FCoV) infection. Currently, no protective vaccine or effective treatment for the disease is available. Studies have found that some cats survive the challenge of virulent FCoV isolates. Since cellular immunity is thought to be critical in preventing FIP and because diseased cats often show a significant decrease in interferon-γ (IFN-γ) production, we investigated whether single nucleotide polymorphisms (SNP) in the feline IFN-γ gene (fIFNG) are associated with the outcome of infection. A total of 82 asymptomatic and 63 FIP cats were analyzed, and 16 SNP were identified in intron 1 of fIFNG. Among these SNP, the fFING + 428 T allele was shown to be a FIP-resistant allele (p = 0.03), and the heterozygous genotypes 01C/T and +408C/T were found to be FIP-susceptible factors (p = 0.004). Furthermore, an fIFNG + 428 resistant allele also showed a clear correlation with the plasma level of IFN-γ in FIP cats. For the identification of these three FIP-related SNP, genotyping methods were established using amplification refractory mutation system PCR (ARMS-PCR) and restriction fragment length polymorphisms (RFLP), and the different genotypes could easily be identified without sequencing. The identification of additional FIP-related SNP will allow the selection of resistant cats and decrease the morbidity of the cat population to FIP.

  9. Cell Line Controls for the Genotyping of a Spectrum of Human Single Nucleotide Polymorphisms in the Clinical Laboratory.

    Science.gov (United States)

    Kimbacher, Christine; Paar, Christian; Freystetter, Andrea; Berg, Joerg

    2018-05-01

    Genotyping for clinically important single nucleotide polymorphisms (SNPs) is performed by many clinical routine laboratories. To support testing, quality controls and reference materials are needed. Those may be derived from residual patient samples, left over samples of external quality assurance schemes, plasmid DNA or DNA from cell lines. DNAs from cell lines are commutable and available in large amounts. DNA from 38 cell lines were examined for suitability as controls in 11 SNP assays that are frequently used in a clinical routine laboratory: FV (1691G>A), FII (20210G>A), PAI-1 4G/5G polymorphism, MTHFR (677C>T, 1298A>C), HFE (H63D, S65C, C282Y), APOE (E2, E3, E4), LPH (-13910C>T), UGT1A1 (*28, *36, *37), TPMT (*2, *3A, *3B, *3C), VKORC1 (-1639G>A, 1173C>T), CYP2C9 (*2, *3, *5). Genotyping was performed by real-time PCR with melting curve analysis and confirmed by bi-directional sequencing. We find an almost complete spectrum of genotypic constellations within these 38 cell lines. About 12 cell lines appear sufficient as genotypic controls for the 11 SNP assays by covering almost all of the genotypes. However, hetero- and homozygous genotypes for FII and the alleles TPMT*2, UGT1A1*37 and CYP2C9*5 were not detected in any of the cell lines. DNA from most of the examined cell lines appear suitable as quality controls for these SNP assays in the laboratory routine, as to the implementation of those assays or to prepare samples for quality assurance schemes. Our study may serve as a pilot to further characterize these cell lines to arrive at the status of reference materials.

  10. Multi-locus genotyping of bottom fermenting yeasts by single nucleotide polymorphisms indicative of brewing characteristics.

    Science.gov (United States)

    Ikushima, Shigehito; Tateishi, Yoshiyuki; Kanai, Keiko; Shimada, Emiko; Tanaka, Misa; Ishiguro, Tatsuji; Mizutani, Satoru; Kobayashi, Osamu

    2012-04-01

    Yeast plays a capital role in brewing fermentation and has a direct impact on flavor and aroma. For the evaluation of competent brewing strains during quality control or development of novel strains it is standard practice to perform fermentation tests, which are costly and time-consuming. Here, we have categorized DNA markers which enable to distinguish and to screen brewing strains more efficiently than ever before. Sequence analysis at 289 loci in the genomes of six bottom fermenting Saccharomyces pastorianus strains revealed that 30 loci contained single nucleotide polymorphisms (SNPs). By determining the nucleotide sequences at the SNP-loci in 26 other S. pastorianus strains and 20 strains of the top fermenting yeast Saccharomyces cerevisiae, almost all these strains could be discriminated solely on the basis of the SNPs. By comparing the fermentative phenotypes of these strains we found that some DNA markers showed a strong association with brewing characteristics, such as the production of ethyl acetate and hydrogen sulphide (H2S). Therefore, the DNA markers we identified will facilitate quality control and the efficient development of brewing yeast strains. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. High-resolution melting genotyping of Enterococcus faecium based on multilocus sequence typing derived single nucleotide polymorphisms.

    Directory of Open Access Journals (Sweden)

    Steven Y C Tong

    Full Text Available We have developed a single nucleotide polymorphism (SNP nucleated high-resolution melting (HRM technique to genotype Enterococcus faecium. Eight SNPs were derived from the E. faecium multilocus sequence typing (MLST database and amplified fragments containing these SNPs were interrogated by HRM. We tested the HRM genotyping scheme on 85 E. faecium bloodstream isolates and compared the results with MLST, pulsed-field gel electrophoresis (PFGE and an allele specific real-time PCR (AS kinetic PCR SNP typing method. In silico analysis based on predicted HRM curves according to the G+C content of each fragment for all 567 sequence types (STs in the MLST database together with empiric data from the 85 isolates demonstrated that HRM analysis resolves E. faecium into 231 "melting types" (MelTs and provides a Simpson's Index of Diversity (D of 0.991 with respect to MLST. This is a significant improvement on the AS kinetic PCR SNP typing scheme that resolves 61 SNP types with D of 0.95. The MelTs were concordant with the known ST of the isolates. For the 85 isolates, there were 13 PFGE patterns, 17 STs, 14 MelTs and eight SNP types. There was excellent concordance between PFGE, MLST and MelTs with Adjusted Rand Indices of PFGE to MelT 0.936 and ST to MelT 0.973. In conclusion, this HRM based method appears rapid and reproducible. The results are concordant with MLST and the MLST based population structure.

  12. Microsatellite genotyping and genome-wide single nucleotide polymorphism-based indices of Plasmodium falciparum diversity within clinical infections.

    Science.gov (United States)

    Murray, Lee; Mobegi, Victor A; Duffy, Craig W; Assefa, Samuel A; Kwiatkowski, Dominic P; Laman, Eugene; Loua, Kovana M; Conway, David J

    2016-05-12

    In regions where malaria is endemic, individuals are often infected with multiple distinct parasite genotypes, a situation that may impact on evolution of parasite virulence and drug resistance. Most approaches to studying genotypic diversity have involved analysis of a modest number of polymorphic loci, although whole genome sequencing enables a broader characterisation of samples. PCR-based microsatellite typing of a panel of ten loci was performed on Plasmodium falciparum in 95 clinical isolates from a highly endemic area in the Republic of Guinea, to characterize within-isolate genetic diversity. Separately, single nucleotide polymorphism (SNP) data from genome-wide short-read sequences of the same samples were used to derive within-isolate fixation indices (F ws), an inverse measure of diversity within each isolate compared to overall local genetic diversity. The latter indices were compared with the microsatellite results, and also with indices derived by randomly sampling modest numbers of SNPs. As expected, the number of microsatellite loci with more than one allele in each isolate was highly significantly inversely correlated with the genome-wide F ws fixation index (r = -0.88, P 10 % had high correlation (r > 0.90) with the index derived using all SNPs. Different types of data give highly correlated indices of within-infection diversity, although PCR-based analysis detects low-level minority genotypes not apparent in bulk sequence analysis. When whole-genome data are not obtainable, quantitative assay of ten or more SNPs can yield a reasonably accurate estimate of the within-infection fixation index (F ws).

  13. Single nucleotide polymorphism discovery via genotyping by sequencing to assess population genetic structure and recurrent polyploidization in Andropogon gerardii.

    Science.gov (United States)

    McAllister, Christine A; Miller, Allison J

    2016-07-01

    Autopolyploidy, genome duplication within a single lineage, can result in multiple cytotypes within a species. Geographic distributions of cytotypes may reflect the evolutionary history of autopolyploid formation and subsequent population dynamics including stochastic (drift) and deterministic (differential selection among cytotypes) processes. Here, we used a population genomic approach to investigate whether autopolyploidy occurred once or multiple times in Andropogon gerardii, a widespread, North American grass with two predominant cytotypes. Genotyping by sequencing was used to identify single nucleotide polymorphisms (SNPs) in individuals collected from across the geographic range of A. gerardii. Two independent approaches to SNP calling were used: the reference-free UNEAK pipeline and a reference-guided approach based on the sequenced Sorghum bicolor genome. SNPs generated using these pipelines were analyzed independently with genetic distance and clustering. Analyses of the two SNP data sets showed very similar patterns of population-level clustering of A. gerardii individuals: a cluster of A. gerardii individuals from the southern Plains, a northern Plains cluster, and a western cluster. Groupings of individuals corresponded to geographic localities regardless of cytotype: 6x and 9x individuals from the same geographic area clustered together. SNPs generated using reference-guided and reference-free pipelines in A. gerardii yielded unique subsets of genomic data. Both data sets suggest that the 9x cytotype in A. gerardii likely evolved multiple times from 6x progenitors across the range of the species. Genomic approaches like GBS and diverse bioinformatics pipelines used here facilitate evolutionary analyses of complex systems with multiple ploidy levels. © 2016 Botanical Society of America.

  14. Whole-genome single-nucleotide polymorphism (SNP marker discovery and association analysis with the eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA content in Larimichthys crocea

    Directory of Open Access Journals (Sweden)

    Shijun Xiao

    2016-12-01

    Full Text Available Whole-genome single-nucleotide polymorphism (SNP markers are valuable genetic resources for the association and conservation studies. Genome-wide SNP development in many teleost species are still challenging because of the genome complexity and the cost of re-sequencing. Genotyping-By-Sequencing (GBS provided an efficient reduced representative method to squeeze cost for SNP detection; however, most of recent GBS applications were reported on plant organisms. In this work, we used an EcoRI-NlaIII based GBS protocol to teleost large yellow croaker, an important commercial fish in China and East-Asia, and reported the first whole-genome SNP development for the species. 69,845 high quality SNP markers that evenly distributed along genome were detected in at least 80% of 500 individuals. Nearly 95% randomly selected genotypes were successfully validated by Sequenom MassARRAY assay. The association studies with the muscle eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA content discovered 39 significant SNP markers, contributing as high up to ∼63% genetic variance that explained by all markers. Functional genes that involved in fat digestion and absorption pathway were identified, such as APOB, CRAT and OSBPL10. Notably, PPT2 Gene, previously identified in the association study of the plasma n-3 and n-6 polyunsaturated fatty acid level in human, was re-discovered in large yellow croaker. Our study verified that EcoRI-NlaIII based GBS could produce quality SNP markers in a cost-efficient manner in teleost genome. The developed SNP markers and the EPA and DHA associated SNP loci provided invaluable resources for the population structure, conservation genetics and genomic selection of large yellow croaker and other fish organisms.

  15. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff

    Science.gov (United States)

    Cingolani, Pablo; Platts, Adrian; Wang, Le Lily; Coon, Melissa; Nguyen, Tung; Wang, Luan; Land, Susan J.; Lu, Xiangyi; Ruden, Douglas M.

    2012-01-01

    We describe a new computer program, SnpEff, for rapidly categorizing the effects of variants in genome sequences. Once a genome is sequenced, SnpEff annotates variants based on their genomic locations and predicts coding effects. Annotated genomic locations include intronic, untranslated region, upstream, downstream, splice site, or intergenic regions. Coding effects such as synonymous or non-synonymous amino acid replacement, start codon gains or losses, stop codon gains or losses, or frame shifts can be predicted. Here the use of SnpEff is illustrated by annotating ~356,660 candidate SNPs in ~117 Mb unique sequences, representing a substitution rate of ~1/305 nucleotides, between the Drosophila melanogaster w1118; iso-2; iso-3 strain and the reference y1; cn1 bw1 sp1 strain. We show that ~15,842 SNPs are synonymous and ~4,467 SNPs are non-synonymous (N/S ~0.28). The remaining SNPs are in other categories, such as stop codon gains (38 SNPs), stop codon losses (8 SNPs), and start codon gains (297 SNPs) in the 5′UTR. We found, as expected, that the SNP frequency is proportional to the recombination frequency (i.e., highest in the middle of chromosome arms). We also found that start-gain or stop-lost SNPs in Drosophila melanogaster often result in additions of N-terminal or C-terminal amino acids that are conserved in other Drosophila species. It appears that the 5′ and 3′ UTRs are reservoirs for genetic variations that changes the termini of proteins during evolution of the Drosophila genus. As genome sequencing is becoming inexpensive and routine, SnpEff enables rapid analyses of whole-genome sequencing data to be performed by an individual laboratory. PMID:22728672

  16. Single nucleotide polymorphism (SNP) panels for rapid positional cloning in zebrafish

    NARCIS (Netherlands)

    Clark, M.D.; Guryev, V.; de Bruijn, E.; Nijman, I.J.; Tada, M.; Wilson, C.; Deloukas, P.; Postlethwait, J.H.; Cuppen, E.; Stemple, D.L.

    2011-01-01

    Despite considerable genetic and genomic resources the positional cloning of forward mutations remains a slow and manually intensive task, typically using gel based genotyping and sequential rounds of mapping. We have used the latest genetic resources and genotyping technologies to develop two

  17. Species trees from consensus single nucleotide polymorphism (SNP) data: Testing phylogenetic approaches with simulated and empirical data.

    Science.gov (United States)

    Schmidt-Lebuhn, Alexander N; Aitken, Nicola C; Chuah, Aaron

    2017-11-01

    Datasets of hundreds or thousands of SNPs (Single Nucleotide Polymorphisms) from multiple individuals per species are increasingly used to study population structure, species delimitation and shallow phylogenetics. The principal software tool to infer species or population trees from SNP data is currently the BEAST template SNAPP which uses a Bayesian coalescent analysis. However, it is computationally extremely demanding and tolerates only small amounts of missing data. We used simulated and empirical SNPs from plants (Australian Craspedia, Asteraceae, and Pelargonium, Geraniaceae) to compare species trees produced (1) by SNAPP, (2) using SVD quartets, and (3) using Bayesian and parsimony analysis with several different approaches to summarising data from multiple samples into one set of traits per species. Our aims were to explore the impact of tree topology and missing data on the results, and to test which data summarising and analyses approaches would best approximate the results obtained from SNAPP for empirical data. SVD quartets retrieved the correct topology from simulated data, as did SNAPP except in the case of a very unbalanced phylogeny. Both methods failed to retrieve the correct topology when large amounts of data were missing. Bayesian analysis of species level summary data scoring the two alleles of each SNP as independent characters and parsimony analysis of data scoring each SNP as one character produced trees with branch length distributions closest to the true trees on which SNPs were simulated. For empirical data, Bayesian inference and Dollo parsimony analysis of data scored allele-wise produced phylogenies most congruent with the results of SNAPP. In the case of study groups divergent enough for missing data to be phylogenetically informative (because of additional mutations preventing amplification of genomic fragments or bioinformatic establishment of homology), scoring of SNP data as a presence/absence matrix irrespective of allele

  18. QualitySNP: a pipeline for detecting single nucleotide polymorphisms and insertions/deletions in EST data from diploid and polyploid species

    Directory of Open Access Journals (Sweden)

    Voorrips Roeland E

    2006-10-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are important tools in studying complex genetic traits and genome evolution. Computational strategies for SNP discovery make use of the large number of sequences present in public databases (in most cases as expressed sequence tags (ESTs and are considered to be faster and more cost-effective than experimental procedures. A major challenge in computational SNP discovery is distinguishing allelic variation from sequence variation between paralogous sequences, in addition to recognizing sequencing errors. For the majority of the public EST sequences, trace or quality files are lacking which makes detection of reliable SNPs even more difficult because it has to rely on sequence comparisons only. Results We have developed a new algorithm to detect reliable SNPs and insertions/deletions (indels in EST data, both with and without quality files. Implemented in a pipeline called QualitySNP, it uses three filters for the identification of reliable SNPs. Filter 1 screens for all potential SNPs and identifies variation between or within genotypes. Filter 2 is the core filter that uses a haplotype-based strategy to detect reliable SNPs. Clusters with potential paralogs as well as false SNPs caused by sequencing errors are identified. Filter 3 screens SNPs by calculating a confidence score, based upon sequence redundancy and quality. Non-synonymous SNPs are subsequently identified by detecting open reading frames of consensus sequences (contigs with SNPs. The pipeline includes a data storage and retrieval system for haplotypes, SNPs and alignments. QualitySNP's versatility is demonstrated by the identification of SNPs in EST datasets from potato, chicken and humans. Conclusion QualitySNP is an efficient tool for SNP detection, storage and retrieval in diploid as well as polyploid species. It is available for running on Linux or UNIX systems. The program, test data, and user manual are available at

  19. Genotypic distribution of single nucleotide polymorphisms in oral cancer: global scene.

    Science.gov (United States)

    Multani, Shaleen; Saranath, Dhananjaya

    2016-11-01

    Globocan 2012 reports the global oral cancer incidence of 300,373 new oral cancer cases annually, contributing to 2.1 % of the world cancer burden. The major well-established risk factors for oral cancer include tobacco, betel/areca nut, alcohol and high-risk oncogenic human papilloma virus (HPV) 16/18. However, only 5-10 % of individuals with high-risk lifestyle develop oral cancer. Thus, genomic variants in individuals represented as single nucleotide polymorphisms (SNPs) influence susceptibility to oral cancer. With a view to understanding the role of genomic variants in oral cancer, we reviewed SNPs in case-control studies with a minimum of 100 cases and 100 controls. PubMed and HuGE navigator search engines were used to obtain data published from 1990 to 2015, which identified 67 articles investigating the role of SNPs in oral cancer. Single publications reported 93 SNPs in 55 genes, with 34 SNPs associated with a risk of oral cancer. Meta-analysis of data in multiple studies defined nine SNPs associated with a risk of oral cancer. The genes were associated with critical functions deregulated in cancers, including cell proliferation, immune function, inflammation, transcription, DNA repair and xenobiotic metabolism.

  20. Detection of new single nucleotide polymorphisms by means of real ...

    Indian Academy of Sciences (India)

    Unknown

    amplified millions to billions of times by means of a PCR before the PCR product ... Keywords. Single nucleotide polymorphism; real time PCR; DNA melting curve analysis. ... VAL158MET SNP and alcoholism and to test for interac- tions between the .... indicate a heterozygote sample (VAL/MET genotype). The curve with ...

  1. Analysis of single nucleotide polymorphisms in case-control studies.

    Science.gov (United States)

    Li, Yonghong; Shiffman, Dov; Oberbauer, Rainer

    2011-01-01

    Single nucleotide polymorphisms (SNPs) are the most common type of genetic variants in the human genome. SNPs are known to modify susceptibility to complex diseases. We describe and discuss methods used to identify SNPs associated with disease in case-control studies. An outline on study population selection, sample collection and genotyping platforms is presented, complemented by SNP selection, data preprocessing and analysis.

  2. Resolving incomplete single nucleotide polymorphism tagging of HLA-DQ2.2 for coeliac disease genotyping using digital droplet PCR.

    Science.gov (United States)

    Hardy, M Y; Ontiveros, N; Varney, M D; Tye-Din, J A

    2018-04-01

    A hallmark of coeliac disease (CD) is the exceptionally strong genetic association with HLA-DQ2.5, DQ8, and DQ2.2. HLA typing provides information on CD risk important to both clinicians and researchers. A method that enables simple and fast detection of all CD risk genotypes is particularly desirable for the study of large populations. Single nucleotide polymorphism (SNP)-based HLA typing can detect the CD risk genotypes by detecting a combination of six SNPs but this approach can struggle to resolve HLA-DQ2.2, seen in 4% of European CD patients, because of the low resolution of one negatively predicting SNP. We sought to optimise SNP-based HLA typing by harnessing the additional resolution of digital droplet PCR to resolve HLA-DQ2.2. Here we test this two-step approach in an unselected sample of Mexican DNA and compare its accuracy to DNA typed using traditional exon detection. The addition of digital droplet PCR for samples requiring negative prediction of HLA-DQ2.2 enabled HLA-DQ2.2 to be accurately typed. This technique is a simple addition to a SNP-based typing strategy and enables comprehensive definition of all at-risk HLA genotypes in CD in a timely and cost-effective manner. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Impact of IL28B-Related Single Nucleotide Polymorphisms on Liver Histopathology in Chronic Hepatitis C Genotype 2 and 3

    DEFF Research Database (Denmark)

    Rembeck, Karolina; Alsiö, Asa; Christensen, Peer Brehm

    2012-01-01

    Recently, several genome-wide association studies have revealed that single nucleotide polymorphisms (SNPs) in proximity to IL28B predict spontaneous clearance of HCV infection as well as outcome following peginterferon and ribavirin therapy among HCV genotype 1 infected patients. The present stu...

  4. Transcriptome-Wide Single Nucleotide Polymorphisms (SNPs for Abalone (Haliotis midae: Validation and Application Using GoldenGate Medium-Throughput Genotyping Assays

    Directory of Open Access Journals (Sweden)

    Rouvay Roodt-Wilding

    2013-09-01

    Full Text Available Haliotis midae is one of the most valuable commercial abalone species in the world, but is highly vulnerable, due to exploitation, habitat destruction and predation. In order to preserve wild and cultured stocks, genetic management and improvement of the species has become crucial. Fundamental to this is the availability and employment of molecular markers, such as microsatellites and Single Nucleotide Polymorphisms (SNPs . Transcriptome sequences generated through sequencing-by-synthesis technology were utilized for the in vitro and in silico identification of 505 putative SNPs from a total of 316 selected contigs. A subset of 234 SNPs were further validated and characterized in wild and cultured abalone using two Illumina GoldenGate genotyping assays. Combined with VeraCode technology, this genotyping platform yielded a 65%−69% conversion rate (percentage polymorphic markers with a global genotyping success rate of 76%−85% and provided a viable means for validating SNP markers in a non-model species. The utility of 31 of the validated SNPs in population structure analysis was confirmed, while a large number of SNPs (174 were shown to be informative and are, thus, good candidates for linkage map construction. The non-synonymous SNPs (50 located in coding regions of genes that showed similarities with known proteins will also be useful for genetic applications, such as the marker-assisted selection of genes of relevance to abalone aquaculture.

  5. Multiple single nucleotide polymorphism analysis and association of specific genotypes in FHIT, SAMD4A, and ANKRD17 in Indian patients with oral cancer.

    Science.gov (United States)

    D'Souza, Wendy; Pradhan, Sultan; Saranath, Dhananjaya

    2017-08-01

    Oral cancer has a high incidence primarily because of tobacco chewing habits. However, a small proportion of habitués develop oral cancer, implying a role for genomic variants in its susceptibility. Thirteen single nucleotide polymorphisms (SNPs) in an Indian cohort comprising patients with oral cancer (n = 500) and healthy controls (n = 500) were genotyped using allelic discrimination real-time polymerase chain reaction (PCR). Prevalence of SNPs rs11130760, rs1957358, rs2306058, rs4883543, rs12637722, rs1457115, rs2353292, rs709821, rs2194861, rs4789378, rs3827538, rs2667552, and rs2886093 was determined in the Indian cohort. A significant association of rs11130760 GG (odds ratio [OR] 1.41; 95% confidence interval [CI] 1.08-1.84) and rs1957358 TT (OR 1.44; 95% CI 1.10-1.90) indicated increased risk; whereas rs1957358 TC (OR 0.67; 95% CI 0.53-0.87) and rs2306058 CT (OR 0.72; 95% CI 0.56-0.93) reflected decreased risk. The SNP rs11130760 wild-type (WT) allele G indicated an increased risk for oral cancer (OR 1.38; 95% CI 1.09-1.73), whereas SNP allele T indicated a decreased risk (OR 0.73; 95% CI 0.58-0.92) for oral cancer. Our study identified SNPs with susceptibility to oral cancer in high-risk populations. © 2017 Wiley Periodicals, Inc.

  6. Analysis of Single Nucleotide Polymorphism (SNP rs22114085 Associated with Canine Atopic Dermatitis by PCR-RFLP Method

    Directory of Open Access Journals (Sweden)

    Martina Miluchová

    2012-05-01

    Full Text Available Canine atopic dermatitis (cAD is a common inflammatory skin disease that is considered to be a naturally occurring, spontaneous model of human atopic dermatitis (eczema. The aim of the paper was to identify of the SNP rs22114085 in different dog breeds. The material involved 52 dogs from 5 different breeds. Canine genomic DNA was isolated from saliva by modified method with using DNAzol® and linear polyacrylamide (LPA carrier and from blood by using commercial kit NucleospinBlood and used in order to estimate rs22114085 SNP genotypes by PCR-RFLP method. The PCR products were digested with DdeI restriction enzyme. The C allele was distributed in Czech Pointer, Chihuahua, German Wirehaired Pointer with an allele frequency ranging from 0.4545 to 1.00. In the population of Czech Pointer we detected all genotypes CC, CT and TT with frequency in male 0.25, 0.5833 and 0.1667, and in female 0.2728, 0.3636 and 0.3636, subsequently. In German Wirehaired Pointer was detected homozygote genotype CC in male and heterozygote genotype CT in female with frequency 1 and 1. In Chihuahua was observed homozygote genotype CC and heterozygote genotype CT with frequency 0.3333 and 0.6667, subsequently. In Golden retriever and Pincher we detected genotype TT with frequency 1.

  7. Single Nucleotide Polymorphism

    DEFF Research Database (Denmark)

    Børsting, Claus; Pereira, Vania; Andersen, Jeppe Dyrberg

    2014-01-01

    Single nucleotide polymorphisms (SNPs) are the most frequent DNA sequence variations in the genome. They have been studied extensively in the last decade with various purposes in mind. In this chapter, we will discuss the advantages and disadvantages of using SNPs for human identification...... of SNPs. This will allow acquisition of more information from the sample materials and open up for new possibilities as well as new challenges....

  8. Analysis of single nucleotide polymorphism (SNP RS23472497 associated with canine atopic dermatitis by ACRS-PCR method

    Directory of Open Access Journals (Sweden)

    Martina Miluchová

    2014-05-01

    Full Text Available The aim of the paper was to identify of the SNP rs23472497 associated with canine atopic dermatitis (cAD. cAD is a common inflammatory skin disease that is considered to be a naturally occurring, spontaneous model of human atopic dermatitis (eczema. The material involved 60 dogs from 6 different breeds. Canine genomic DNA was isolated from saliva by modified method with using DNAzol® and linear polyacrylamide (LPA carrier and from blood by using commercial kit NucleospinBlood and used in order to estimate rs23472497 SNP genotypes by ACRS-PCR method. The PCR products were digested with NlaIII restriction enzyme. In the population of Czech Pointer and Slovak Wirehaired Pointer we detected all genotypes AA, AG and GG with frequency 0.0732, 0.5122 and 0.4146 for Czech Pointer and 0.1818, 0.5455 and 0.2727 for Slovak Wirehaired Pointer. In Border Collie was observed heterozygote genotype AG and homozygote genotype GG with frequency 0.6667 and 0.3333, subsequently. In German Wirehaired Pointer, Australian Shepherd dog and American Staffordshire terrier we detected only genotype AG with frequency 1. The A allele was distributed with an allele frequency ranging from 0.3293 to 0.5. The G allele was distributed with an allele frequency ranging from 0.5 to 0.6707.

  9. A selective genotyping approach identifies single nucleotide polymorphisms in porcine chromosome 2 genes associated with production and carcass traits in Italian heavy pigs

    Directory of Open Access Journals (Sweden)

    Vincenzo Russo

    2011-04-01

    Full Text Available Several studies have shown that porcine chromosome 2 (SSC2 harbors important quantitative trait loci (QTL for production traits. In particular, an imprinted QTL for muscle mass production is determined by a mutation in the IGF2 gene (intron3-g.3072G>A. We recently identified and analysed single nucleotide polymorphisms (SNPs in genes (cathepsin D, CTSD g.70G>A; cathepsin F, CTSF g.22G>C; lactate dehydrogenase A, LDHA g.46G>T localized on SSC2 (including the IGF2 intron3-g.3072G>A SNP showing association with production traits in Italian Large White pigs and/or localizing them on QTL regions. Here we analysed these markers applying a selective genotyping approach based on estimated breeding values (EBVs. Three groups of Italian Large White pigs each made by animals with the most positive (n. 50 and most negative (n. 50 EBVs for average daily gain (ADG, backfat thickness (BFT or weight of lean cuts (LC and one group of Italian Duroc pigs made by 50 animals with most positive and 50 animals with most negative EBV for visible intermuscular fat (VIF were genotyped. In Italian Large White pigs, allele frequency differences for the IGF2 intron3-g.3072G>A SNP between the two extreme tails for all groups were highly significant (considering all analysed animals: P=9.53E-20 for LC; P=3.16E-15 for BFT; P=4.41E-6 for ADG. Significant allele frequency differences were also observed for the CTSD g.70G>A (P=0.0002 for ADG; P=0.00068 and LDHA g.46G>T (P=2.32E-5 for ADG polymorphisms. These results provide further support on the effects of these polymorphisms or genes whose application on marker assisted selection programs could be envisaged.

  10. Validation of a single nucleotide polymorphism (SNP) typing assay with 49 SNPs for forensic genetic testing in a laboratory accredited according to the ISO 17025 standard

    DEFF Research Database (Denmark)

    Børsting, Claus; Rockenbauer, Eszter; Morling, Niels

    2009-01-01

    cases and 33 twin cases were typed at least twice for the 49 SNPs. All electropherograms were analysed independently by two expert analysts prior to approval. Based on these results, detailed guidelines for analysis of the SBE products were developed. With these guidelines, the peak height ratio...... of a heterozygous allele call or the signal to noise ratio of a homozygous allele call is compared with previously obtained ratios. A laboratory protocol for analysis of SBE products was developed where allele calls with unusual ratios were highlighted to facilitate the analysis of difficult allele calls......A multiplex assay with 49 autosomal single nucleotide polymorphisms (SNPs) developed for human identification was validated for forensic genetic casework and accredited according to the ISO 17025 standard. The multiplex assay was based on the SNPforID 52plex SNP assay [J.J. Sanchez, C. Phillips, C...

  11. Preliminary Study on the Single Nucleotide Polymorphism (SNP of XRCC1 Gene Identificationto Improve the Outcomes of Radiotherapy for Cervical Cancer

    Directory of Open Access Journals (Sweden)

    Devita Tetriana

    2015-09-01

    Full Text Available Cervical cancer is the most fatal disease among Indonesian women. In recognition of the substantial variation in the intrinsic response of individuals to radiation, an effort had been done to identify the genetic markers, primarily Single Nucleotide polymorphisms (SNPs, which are associated with responsiveness of cancer cells to radiation therapy. One of these SNPs is X-ray repair cross-complementing protein 1 (XRCC1 that is one of the most important genes in deoxyribonucleic acid (DNA repair pathways. Meta-analysis in the determination of the association of XRCC1 polymorphisms with cervical cancer revealed the potential role of XRCC1 polymorphisms in predicting cell response to radiotherapy.Our preliminary study with real-time polymerase chain reaction (RT-PCR showed that radiotherapy affected the XRCC1 gene analyzed in blood of cervical cancer patient. Other published study found three SNPs of XRCC1 (Arg194Trp, Arg280His, and Arg399Gln that cause amino acid substitutions. Arg194Trp is only SNPs that associated with high risk of cervical cancer but not others. Additionally, structure and function of this protein can be altered by functional SNPs, which may lead to the susceptibility of individuals to cancers. Anotherstudy found G399A polymorphisms. We concluded that SNP of this DNA repair genes have been found to be good predictors of efficacy of radiotherapy.Kanker serviks adalah penyakit yang paling fatal pada perempuan di Indonesia. Untuk memahami variasi substansial respon intrinsik individual terhadap radiasi, suatu usaha telah dilakukan untuk mengidentifikasi petanda genetik, terutama Single Nucleotide polymorphism (SNP, yang berkaitan dengan responsel kanker terhadap terapi radiasi. Satu dari SNP tersebut adalah X-ray repair cross-complementing protein 1 (XRCC1 yang merupakan satu dari gen paling penting dalam lajur perbaikan asam deoksiribonukleat (DNA. Meta-analysis dalam penentuan hubungan polimorfisme XRCC1 dengan kanker serviks

  12. Characterization of the Gray Whale Eschrichtius robustus Genome and a Genotyping Array Based on Single-Nucleotide Polymorphisms in Candidate Genes.

    Science.gov (United States)

    DeWoody, J Andrew; Fernandez, Nadia B; Brüniche-Olsen, Anna; Antonides, Jennifer D; Doyle, Jacqueline M; San Miguel, Phillip; Westerman, Rick; Vertyankin, Vladimir V; Godard-Codding, Céline A J; Bickham, John W

    2017-06-01

    Genetic and genomic approaches have much to offer in terms of ecology, evolution, and conservation. To better understand the biology of the gray whale Eschrichtius robustus (Lilljeborg, 1861), we sequenced the genome and produced an assembly that contains ∼95% of the genes known to be highly conserved among eukaryotes. From this assembly, we annotated 22,711 genes and identified 2,057,254 single-nucleotide polymorphisms (SNPs). Using this assembly, we generated a curated list of candidate genes potentially subject to strong natural selection, including genes associated with osmoregulation, oxygen binding and delivery, and other aspects of marine life. From these candidate genes, we queried 92 autosomal protein-coding markers with a panel of 96 SNPs that also included 2 sexing and 2 mitochondrial markers. Genotyping error rates, calculated across loci and across 69 intentional replicate samples, were low (0.021%), and observed heterozygosity was 0.33 averaged over all autosomal markers. This level of variability provides substantial discriminatory power across loci (mean probability of identity of 1.6 × 10 -25 and mean probability of exclusion >0.999 with neither parent known), indicating that these markers provide a powerful means to assess parentage and relatedness in gray whales. We found 29 unique multilocus genotypes represented among our 36 biopsies (indicating that we inadvertently sampled 7 whales twice). In total, we compiled an individual data set of 28 western gray whales (WGSs) and 1 presumptive eastern gray whale (EGW). The lone EGW we sampled was no more or less related to the WGWs than expected by chance alone. The gray whale genomes reported here will enable comparative studies of natural selection in cetaceans, and the SNP markers should be highly informative for future studies of gray whale evolution, population structure, demography, and relatedness.

  13. Single nucleotide polymorphisms and genotypes of transient receptor potential ion channel and acetylcholine receptor genes from isolated B lymphocytes in myalgic encephalomyelitis/chronic fatigue syndrome patients.

    Science.gov (United States)

    Marshall-Gradisnik, Sonya; Johnston, Samantha; Chacko, Anu; Nguyen, Thao; Smith, Peter; Staines, Donald

    2016-12-01

    Objective The pathomechanism of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is unknown; however, a small subgroup of patients has shown muscarinic antibody positivity and reduced symptom presentation following anti-CD20 intervention. Given the important roles of calcium (Ca 2+ ) and acetylcholine (ACh) signalling in B cell activation and potential antibody development, we aimed to identify relevant single nucleotide polymorphisms (SNPs) and genotypes in isolated B cells from CFS/ME patients. Methods A total of 11 CFS/ME patients (aged 31.82 ± 5.50 years) and 11 non-fatigued controls (aged 33.91 ± 5.06 years) were included. Flow cytometric protocols were used to determine B cell purity, followed by SNP and genotype analysis for 21 mammalian TRP ion channel genes and nine mammalian ACh receptor genes. SNP association and genotyping analysis were performed using ANOVA and PLINK analysis software. Results Seventy-eight SNPs were identified in nicotinic and muscarinic acetylcholine receptor genes in the CFS/ME group, of which 35 were in mAChM3. The remaining SNPs were identified in nAChR delta (n = 12), nAChR alpha 9 (n = 5), TRPV2 (n = 7), TRPM3 (n = 4), TRPM4 (n = 1) mAChRM3 2 (n = 2), and mAChRM5 (n = 3) genes. Nine genotypes were identified from SNPs in TRPM3 (n = 1), TRPC6 (n = 1), mAChRM3 (n = 2), nAChR alpha 4 (n = 1), and nAChR beta 1 (n = 4) genes, and were located in introns and 3' untranslated regions. Odds ratios for these specific genotypes ranged between 7.11 and 26.67 for CFS/ME compared with the non-fatigued control group. Conclusion This preliminary investigation identified a number of SNPs and genotypes in genes encoding TRP ion channels and AChRs from B cells in patients with CFS/ME. These may be involved in B cell functional changes, and suggest a role for Ca 2+ dysregulation in AChR and TRP ion channel signalling in the pathomechanism of CFS/ME.

  14. Results based on 124 cases of breast cancer and 97 controls from Taiwan suggest that the single nucleotide polymorphism (SNP309) in the MDM2 gene promoter is associated with earlier onset and increased risk of breast cancer

    International Nuclear Information System (INIS)

    Sun, Ying-Fang; Leu, Jyh-Der; Chen, Su-Mei; Lin, I-Feng; Lee, Yi-Jang

    2009-01-01

    It has been suggested that the single nucleotide polymorphism 309 (SNP309, T -> G) in the promoter region of the MDM2 gene is important for tumor development; however, with regards to breast cancer, inconsistent associations have been reported worldwide. It is speculated that these conflicting results may have arisen due to different patient subgroups and ethnicities studied. For the first time, this study explores the effect of the MDM2 SNP309 genotype on Taiwanese breast cancer patients. Genomic DNA was obtained from the whole blood of 124 breast cancer patients and 97 cancer-free healthy women living in Taiwan. MDM2 SNP309 genotyping was carried out by restriction fragment length polymorphism (RFLP) assay. The multivariate logistic regression and the Kaplan-Meier method were used for analyzing the risk association and significance of age at diagnosis among different MDM2 SNP309 genotypes, respectively. Compared to the TT genotype, an increased risk association with breast cancer was apparent for the GG genotype (OR = 3.05, 95% CI = 1.04 to 8.95), and for the TG genotype (OR = 2.12, 95% CI = 0.90 to 5.00) after adjusting for age, cardiovascular disease/diabetes, oral contraceptive usage, and body mass index, which exhibits significant difference between cases and controls. Furthermore, the average ages at diagnosis for breast cancer patients were 53.6, 52 and 47 years for those harboring TT, TG and GG genotypes, respectively. A significant difference in median age of onset for breast cancer between GG and TT+TG genotypes was obtained by the log-rank test (p = 0.0067). Findings based on the current sample size suggest that the MDM2 SNP309 GG genotype may be associated with both the risk of breast cancer and an earlier age of onset in Taiwanese women

  15. Accuracy of Assignment of Atlantic Salmon (Salmo salar L.) to Rivers and Regions in Scotland and Northeast England Based on Single Nucleotide Polymorphism (SNP) Markers

    Science.gov (United States)

    Gilbey, John; Cauwelier, Eef; Coulson, Mark W.; Stradmeyer, Lee; Sampayo, James N.; Armstrong, Anja; Verspoor, Eric; Corrigan, Laura; Shelley, Jonathan; Middlemas, Stuart

    2016-01-01

    Understanding the habitat use patterns of migratory fish, such as Atlantic salmon (Salmo salar L.), and the natural and anthropogenic impacts on them, is aided by the ability to identify individuals to their stock of origin. Presented here are the results of an analysis of informative single nucleotide polymorphic (SNP) markers for detecting genetic structuring in Atlantic salmon in Scotland and NE England and their ability to allow accurate genetic stock identification. 3,787 fish from 147 sites covering 27 rivers were screened at 5,568 SNP markers. In order to identify a cost-effective subset of SNPs, they were ranked according to their ability to differentiate between fish from different rivers. A panel of 288 SNPs was used to examine both individual assignments and mixed stock fisheries and eighteen assignment units were defined. The results improved greatly on previously available methods and, for the first time, fish caught in the marine environment can be confidently assigned to geographically coherent units within Scotland and NE England, including individual rivers. As such, this SNP panel has the potential to aid understanding of the various influences acting upon Atlantic salmon on their marine migrations, be they natural environmental variations and/or anthropogenic impacts, such as mixed stock fisheries and interactions with marine power generation installations. PMID:27723810

  16. High-density single nucleotide polymorphism (SNP) array mapping in Brassica oleracea: identification of QTL associated with carotenoid variation in broccoli florets.

    Science.gov (United States)

    Brown, Allan F; Yousef, Gad G; Chebrolu, Kranthi K; Byrd, Robert W; Everhart, Koyt W; Thomas, Aswathy; Reid, Robert W; Parkin, Isobel A P; Sharpe, Andrew G; Oliver, Rebekah; Guzman, Ivette; Jackson, Eric W

    2014-09-01

    A high-resolution genetic linkage map of B. oleracea was developed from a B. napus SNP array. The work will facilitate genetic and evolutionary studies in Brassicaceae. A broccoli population, VI-158 × BNC, consisting of 150 F2:3 families was used to create a saturated Brassica oleracea (diploid: CC) linkage map using a recently developed rapeseed (Brassica napus) (tetraploid: AACC) Illumina Infinium single nucleotide polymorphism (SNP) array. The map consisted of 547 non-redundant SNP markers spanning 948.1 cM across nine chromosomes with an average interval size of 1.7 cM. As the SNPs are anchored to the genomic reference sequence of the rapid cycling B. oleracea TO1000, we were able to estimate that the map provides 96 % coverage of the diploid genome. Carotenoid analysis of 2 years data identified 3 QTLs on two chromosomes that are associated with up to half of the phenotypic variation associated with the accumulation of total or individual compounds. By searching the genome sequences of the two related diploid species (B. oleracea and B. rapa), we further identified putative carotenoid candidate genes in the region of these QTLs. This is the first description of the use of a B. napus SNP array to rapidly construct high-density genetic linkage maps of one of the constituent diploid species. The unambiguous nature of these markers with regard to genomic sequences provides evidence to the nature of genes underlying the QTL, and demonstrates the value and impact this resource will have on Brassica research.

  17. Microarray Beads for Identifying Blood Group Single Nucleotide Polymorphisms

    OpenAIRE

    Drago, Francesca; Karpasitou, Katerina; Poli, Francesca

    2009-01-01

    We have developed a high-throughput system for single nucleotide polymorphism (SNP) genotyping of alleles of diverse blood group systems exploiting Luminex technology. The method uses specific oligonucleotide probes coupled to a specific array of fluorescent microspheres and is designed for typing Jka/Jkb, Fya/Fyb, S/s, K/k, Kpa/Kpb, Jsa/Jsb, Coa/Cob and Lua/Lub alleles. Briefly, two multiplex PCR reactions (PCR I and PCR II) according to the laboratory specific needs are set up. PCR I amplif...

  18. Identification of Single Nucleotide Polymorphism (SNP in Mono Amine Oxidase A (MAO-A Gene as a genetic marker for aggressiveness in sheep

    Directory of Open Access Journals (Sweden)

    Eko Handiwirawan

    2012-12-01

    Full Text Available In the population, there are aggressive sheep in a small number which requires special management those specific animal house and routine management. The purpose of this study was to identify the variation of DNA marker SNP (single nucleotide polymorphism as a genetic marker for the aggressive trait in several of sheep breed. The identification of point mutations in exon 8 of MAO-A gene associated with aggressive behavior in sheep may be further useful to become of DNA markers for the aggressive trait in sheep. Five of sheep breed were used, i.e.: Barbados Black belly Cross sheep (BC, Composite Garut (KG, Local Garut (LG, Composite Sumatra (KS and St. Cross Croix (SC. Duration of ten behavior traits, blood serotonin concentrations and DNA sequence of exon 8 of MAO-A gene from the sheep aggressive and nonaggressive were observed. PROC GLM of SAS Ver. 9.0 program was used to analyze variable behavior and blood serotonin concentrations. DNA polymorphism in exon 8 of MAO-A gene was analyzed using the MEGA software Ver. 4.0. The results show that the percentage of the aggressive rams of each breed was less than 10 percent; except for the KS sheep is higher (23%. Based on the duration of behavior, aggressive sheep group was not significantly different with non aggressive sheep group, except duration of care giving and drinking behavior. It is known that concentration of blood serotonin in aggressive and non aggressive rams was not significantly different. The aggressive trait in sheep has a mechanism or a different cause like that occurs in mice and humans. In this study, aggressive behavior in sheep was not associated with a mutation in exon 8 of MAO-A gene.

  19. Correcting estimators of theta and Tajima's D for ascertainment biases caused by the single-nucleotide polymorphism discovery process

    DEFF Research Database (Denmark)

    Ramírez-Soriano, Anna; Nielsen, Rasmus

    2009-01-01

    Most single-nucleotide polymorphism (SNP) data suffer from an ascertainment bias caused by the process of SNP discovery followed by SNP genotyping. The final genotyped data are biased toward an excess of common alleles compared to directly sequenced data, making standard genetic methods of analysis...... the variances and covariances of these estimators and provide a corrected version of Tajima's D statistic. We reanalyze a human genomewide SNP data set and find substantial differences in the results with or without ascertainment bias correction....

  20. Genotype-Phenotype Associations of the CD-Associated Single Nucleotide Polymorphism within the Gene Locus Encoding Protein Tyrosine Phosphatase Non-Receptor Type 22 in Patients of the Swiss IBD Cohort.

    Directory of Open Access Journals (Sweden)

    Marianne R Spalinger

    Full Text Available Protein tyrosine phosphatase non-receptor type 22 (PTPN22 plays an important role in immune cell function and intestinal homeostasis. The single nucleotide polymorphism (SNP rs2476601 within the PTPN22 gene locus results in aberrant function of PTPN22 protein and protects from Crohn's disease (CD. Here, we investigated associations of PTPN22 SNP rs2476601 in inflammatory bowel disease (IBD patients in the Swiss IBD Cohort Study (SIBDCS.2'028 SIBDCS patients (1173 CD and 855 ulcerative colitis (UC patients were included. The clinical characteristics were analysed for an association with the presence of the PTPN22 SNP rs2476601 genotypes 'homozygous variant' (AA, 'heterozygous' (GA and 'homozygous wild-type' (GG.13 patients (0.6% were homozygous variant (AA for the PTPN22 polymorphism, 269 (13.3% heterozygous variant (GA and 1'746 (86.1% homozygous wild-type (GG. In CD, AA and GA genotypes were associated with less use of steroids and antibiotics, and reduced prevalence of vitamin D and calcium deficiency. In UC the AA and GA genotype was associated with increased use of azathioprine and anti-TNF antibodies, but significantly less patients with the PTPN22 variant featured malabsorption syndrome (p = 0.026.Our study for the first time addressed how presence of SNP rs2476601 within the PTPN22 gene affects clinical characteristics in IBD-patients. Several factors that correlate with more severe disease were found to be less common in CD patients carrying the A-allele, pointing towards a protective role for this variant in affected CD patients. In UC patients however, we found the opposite trend, suggesting a disease-promoting effect of the A-allele.

  1. Multiple-strand displacement and identification of single nucleotide polymorphisms as markers of genotypic variation of Pasteuria penetrans biotypes infecting root-knot nematodes.

    Science.gov (United States)

    Nong, Guang; Chow, Virginia; Schmidt, Liesbeth M; Dickson, Don W; Preston, James F

    2007-08-01

    Pasteuria species are endospore-forming obligate bacterial parasites of soil-inhabiting nematodes and water-inhabiting cladocerans, e.g. water fleas, and are closely related to Bacillus spp. by 16S rRNA gene sequence. As naturally occurring bacteria, biotypes of Pasteuria penetrans are attractive candidates for the biocontrol of various Meloidogyne spp. (root-knot nematodes). Failure to culture these bacteria outside their hosts has prevented isolation of genomic DNA in quantities sufficient for identification of genes associated with host recognition and virulence. We have applied multiple-strand displacement amplification (MDA) to generate DNA for comparative genomics of biotypes exhibiting different host preferences. Using the genome of Bacillus subtilis as a paradigm, MDA allowed quantitative detection and sequencing of 12 marker genes from 2000 cells. Meloidogyne spp. infected with P. penetrans P20 or B4 contained single nucleotide polymorphisms (SNPs) in the spoIIAB gene that did not change the amino acid sequence, or that substituted amino acids with similar chemical properties. Individual nematodes infected with P. penetrans P20 or B4 contained SNPs in the spoIIAB gene sequenced in MDA-generated products. Detection of SNPs in the spoIIAB gene in a nematode indicates infection by more than one genotype, supporting the need to sequence genomes of Pasteuria spp. derived from single spore isolates.

  2. Development of a cost-efficient novel method for rapid, concurrent genotyping of five common single nucleotide polymorphisms of the brain derived neurotrophic factor (BDNF) gene by tetra-primer amplification refractory mutation system.

    Science.gov (United States)

    Wang, Cathy K; Xu, Michael S; Ross, Colin J; Lo, Ryan; Procyshyn, Ric M; Vila-Rodriguez, Fidel; White, Randall F; Honer, William G; Barr, Alasdair M

    2015-09-01

    Brain derived neurotrophic factor (BDNF) is a molecular trophic factor that plays a key role in neuronal survival and plasticity. Single nucleotide polymorphisms (SNPs) of the BDNF gene have been associated with specific phenotypic traits in a large number of neuropsychiatric disorders and the response to psychotherapeutic medications in patient populations. Nevertheless, due to study differences and occasionally contrasting findings, substantial further research is required to understand in better detail the association between specific BDNF SNPs and these psychiatric disorders. While considerable progress has been made recently in developing advanced genotyping platforms of SNPs, many high-throughput probe- or array-based detection methods currently available are limited by high costs, slow processing times or access to advanced instrumentation. The polymerase chain reaction (PCR)-based, tetra-primer amplification refractory mutation system (T-ARMS) method is a potential alternative technique for detecting SNP genotypes efficiently, quickly, easily, and cheaply. As a tool in psychopathology research, T-ARMS was shown to be capable of detecting five common SNPs in the BDNF gene (rs6265, rs988748, rs11030104, 11757G/C and rs7103411), which are all SNPs with previously demonstrated clinical relevance to schizophrenia and depression. The present technique therefore represents a suitable protocol for many research laboratories to study the genetic correlates of BDNF in psychiatric disorders. Copyright Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Characterization of single nucleotide polymorphism markers for eelgrass (Zostera marina)

    NARCIS (Netherlands)

    Ferber, Steven; Reusch, Thorsten B. H.; Stam, Wytze T.; Olsen, Jeanine L.

    We characterized 37 single nucleotide polymorphism (SNP) makers for eelgrass Zostera marina. SNP markers were developed using existing EST (expressed sequence tag)-libraries to locate polymorphic loci and develop primers from the functional expressed genes that are deposited in The ZOSTERA database

  4. Single Nucleotide Polymorphisms in Selected Apoptotic Genes and BPDE-Induced Apoptotic Capacity in Apparently Normal Primary Lymphocytes: A Genotype-Phenotype Correlation Analysis

    International Nuclear Information System (INIS)

    Hu, Z.; Li, Ch.; Chen, K.; Wang, L.E.; Sturgis, E.M.; Spitz, M.R.; Wei, Q.; Sturgis, E.M.

    2008-01-01

    Apoptotic capacity (AC) in primary lymphocytes may be a marker for cancer susceptibility, and functional single nucleotide polymorphisms (SNPs) in genes involved in apoptotic pathways may modulate cellular AC in response to DNA damage. To further examine the correlation between apoptotic genotypes and phenotype, we geno typed 14 published SNPs in 11 apoptosis-related genes (i.e., p53, Bcl-2, BAX, CASP9, DR4, Fas, FasL, CASP8, CASP10, CASP3, and CASP7) and assessed the AC in response to benzo[a]pyrene-7,8-9,10-diol epoxide (BPDE) in cultured primary lymphocytes from 172 cancer-free subjects. We found that among these 14 SNPs, R72P, intron 3 16-bp del/ins, and intron 6 G>A in , −938C>A in Bcl-2, and I522L in CASP10 were significant predictors of the BPDE-induced lymphocytic AC in single-locus analysis. In the combined analysis of the three variants, we found that the individuals with the diplotypes carrying 0-1 copy of the common R-del-G haplotype had higher AC values compared to other genotypes. Although the study size may not have the statistical power to detect the role of other SNPs in AC, our findings suggest that some SNPs in genes involved in the intrinsic apoptotic pathway may modulate lymphocytic AC in response to BPDE exposure in the general population. Larger studies are needed to validate these findings for further studying individual susceptibility to cancer and other apoptosis-related diseases

  5. SNP genotyping technologies

    DEFF Research Database (Denmark)

    Studer, Bruno; Kölliker, Roland

    2013-01-01

    In the recent years, single nucleotide polymorphism (SNP) markers have emerged as the marker technology of choice for plant genetics and breeding applications. Besides the efficient technologies available for SNP discovery even in complex genomes, one of the main reasons for this is the availabil...

  6. Definition of novel GP6 polymorphisms and major difference in haplotype frequencies between populations by a combination of in-depth exon resequencing and genotyping with tag single nucleotide polymorphisms.

    Science.gov (United States)

    Watkins, N A; O'Connor, M N; Rankin, A; Jennings, N; Wilson, E; Harmer, I J; Davies, L; Smethurst, P A; Dudbridge, F; Farndale, R W; Ouwehand, W H

    2006-06-01

    Common genetic variants of cell surface receptors contribute to differences in functional responses and disease susceptibility. We have previously shown that single nucleotide polymorphisms (SNPs) in platelet glycoprotein VI (GP6) determine the extent of response to agonist. In addition, SNPs in the GP6 gene have been proposed as risk factors for coronary artery disease. To completely characterize genetic variation in the GP6 gene we generated a high-resolution SNP map by sequencing the promoter, exons and consensus splice sequences in 94 non-related Caucasoids. In addition, we sequenced DNA encoding the ligand-binding domains of GP6 from non-human primates to determine the level of evolutionary conservation. Eighteen SNPs were identified, six of which encoded amino acid substitutions in the mature form of the protein. The single non-synonymous SNP identified in the exons encoding the ligand-binding domains, encoding for a 103Leu > Val substitution, resulted in reduced ligand binding. Two common protein isoforms were confirmed in Caucasoid with frequencies of 0.82 and 0.15. Variation at the GP6 locus was characterized further by determining SNP frequency in over 2000 individuals from different ethnic backgrounds. The SNPs were polymorphic in all populations studied although significant differences in allele frequencies were observed. Twelve additional GP6 protein isoforms were identified from the genotyping results and, despite extensive variation in GP6, the sequence of the ligand-binding domains is conserved. Sequences from non-human primates confirmed this observation. These data provide valuable information for the optimal selection of genetic variants for use in future association studies.

  7. Four new single nucleotide polymorphisms (SNPs) of toll-like ...

    African Journals Online (AJOL)

    In order to reveal the single nucleotide polymorphisms (SNPs), genotypes and allelic frequencies of each mutation site of TLR7 gene in Chinese native duck breeds, SNPs of duck TLR7 gene were detected by DNA sequencing. The genotypes of 465 native ducks from eight key protected duck breeds were determined by ...

  8. Approach to analysis of single nucleotide polymorphisms by automated constant denaturant capillary electrophoresis

    International Nuclear Information System (INIS)

    Bjoerheim, Jens; Abrahamsen, Torveig Weum; Kristensen, Annette Torgunrud; Gaudernack, Gustav; Ekstroem, Per O.

    2003-01-01

    Melting gel techniques have proven to be amenable and powerful tools in point mutation and single nucleotide polymorphism (SNP) analysis. With the introduction of commercially available capillary electrophoresis instruments, a partly automated platform for denaturant capillary electrophoresis with potential for routine screening of selected target sequences has been established. The aim of this article is to demonstrate the use of automated constant denaturant capillary electrophoresis (ACDCE) in single nucleotide polymorphism analysis of various target sequences. Optimal analysis conditions for different single nucleotide polymorphisms on ACDCE are evaluated with the Poland algorithm. Laboratory procedures include only PCR and electrophoresis. For direct genotyping of individual SNPs, the samples are analyzed with an internal standard and the alleles are identified by co-migration of sample and standard peaks. In conclusion, SNPs suitable for melting gel analysis based on theoretical thermodynamics were separated by ACDCE under appropriate conditions. With this instrumentation (ABI 310 Genetic Analyzer), 48 samples could be analyzed without any intervention. Several institutions have capillary instrumentation in-house, thus making this SNP analysis method accessible to large groups of researchers without any need for instrument modification

  9. LNA-enhanced detection of single nucleotide polymorphisms in the apolipoprotein E

    DEFF Research Database (Denmark)

    Jacobsen, Nana; Bentzen, Joan; Meldgaard, Michael

    2002-01-01

    Genotyping of single nucleotide polymorphisms (SNPs) in large populations presents a great challenge, especially if the SNPs are embedded in GC-rich regions, such as the codon 112 SNP in the human apolipoprotein E (apoE). In the present study, we have used immobilized locked nucleic acid (LNA...... was applied to a panel of patient samples with simultaneous genotyping of the patients by DNA sequencing. The apoE genotyping assays for the codons 112 and 158 SNPs resulted in unambiguous results for all patient samples, concurring with those obtained by DNA sequencing....

  10. Large SNP arrays for genotyping in crop plants

    Indian Academy of Sciences (India)

    Genotyping with large numbers of molecular markers is now an indispensable tool within plant genetics and breeding. Especially through the identification of large numbers of single nucleotide polymorphism (SNP) markers using the novel high-throughput sequencing technologies, it is now possible to reliably identify many ...

  11. Single Nucleotide Polymorphism Identification, Characterization, and Linkage Mapping in Quinoa

    Directory of Open Access Journals (Sweden)

    P. J. Maughan

    2012-11-01

    Full Text Available Quinoa ( Willd. is an important seed crop throughout the Andean region of South America. It is important as a regional food security crop for millions of impoverished rural inhabitants of the Andean Altiplano (high plains. Efforts to improve the crop have led to an increased focus on genetic research. We report the identification of 14,178 putative single nucleotide polymorphisms (SNPs using a genomic reduction protocol as well as the development of 511 functional SNP assays. The SNP assays are based on KASPar genotyping chemistry and were detected using the Fluidigm dynamic array platform. A diversity screen of 113 quinoa accessions showed that the minor allele frequency (MAF of the SNPs ranged from 0.02 to 0.50, with an average MAF of 0.28. Structure analysis of the quinoa diversity panel uncovered the two major subgroups corresponding to the Andean and coastal quinoa ecotypes. Linkage mapping of the SNPs in two recombinant inbred line populations produced an integrated linkage map consisting of 29 linkage groups with 20 large linkage groups, spanning 1404 cM with a marker density of 3.1 cM per SNP marker. The SNPs identified here represent important genomic tools needed in emerging plant breeding programs for advanced genetic analysis of agronomic traits in quinoa.

  12. Heated oligonucleotide ligation assay (HOLA): an affordable single nucleotide polymorphism assay.

    Science.gov (United States)

    Black, W C; Gorrochotegui-Escalante, N; Duteau, N M

    2006-03-01

    Most single nucleotide polymorphism (SNP) detection requires expensive equipment and reagents. The oligonucleotide ligation assay (OLA) is an inexpensive SNP assay that detects ligation between a biotinylated "allele-specific detector" and a 3' fluorescein-labeled "reporter" oligonucleotide. No ligation occurs unless the 3' detector nucleotide is complementary to the SNP nucleotide. The original OLA used chemical denaturation and neutralization. Heated OLA (HOLA) instead uses a thermal stable ligase and cycles of denaturing and hybridization for ligation and SNP detection. The cost per genotype is approximately US$1.25 with two-allele SNPs or approximately US$1.75 with three-allele SNPs. We illustrate the development of HOLA for SNP detection in the Early Trypsin and Abundant Trypsin loci in the mosquito Aedes aegypti (L.) and at the a-glycerophosphate dehydrogenase locus in the mosquito Anopheles gambiae s.s.

  13. Microarray Beads for Identifying Blood Group Single Nucleotide Polymorphisms.

    Science.gov (United States)

    Drago, Francesca; Karpasitou, Katerina; Poli, Francesca

    2009-01-01

    We have developed a high-throughput system for single nucleotide polymorphism (SNP) genotyping of alleles of diverse blood group systems exploiting Luminex technology. The method uses specific oligonucleotide probes coupled to a specific array of fluorescent microspheres and is designed for typing Jk(a)/Jk(b), Fy(a)/Fy(b), S/s, K/k, Kp(a)/Kp(b), Js(a)/Js(b), Co(a)/Co(b) and Lu(a)/Lu(b) alleles. Briefly, two multiplex PCR reactions (PCR I and PCR II) according to the laboratory specific needs are set up. PCR I amplifies the alleles tested routinely, namely Jk(a)/Jk(b), Fy(a)/Fy(b), S/s, and K/k. PCR II amplifies those alleles that are typed less frequently. Biotinylated PCR products are hybridized in a single multiplex assay with the corresponding probe mixture. After incubation with R-phycoerythrin-conjugated streptavidin, the emitted fluorescence is analyzed with Luminex 100. So far, we have typed more than 2,000 subjects, 493 of whom with multiplex assay, and there have been no discrepancies with the serology results other than null and/or weak phenotypes. The cost of consumables and reagents for typing a single biallelic pair per sample is less than EUR 3.-, not including DNA extraction costs. The capability to perform multiplexed reactions makes the method markedly suitable for mass screening of red blood cell alleles. This genotyping approach represents an important tool in transfusion medicine.

  14. Identification of the SNP (Single Nucleotide Polymorphism for Fatty Acid Composition Associated with Beef Flavor-related FABP4 (Fatty Acid Binding Protein 4 in Korean Cattle

    Directory of Open Access Journals (Sweden)

    Dong-yep Oh

    2012-07-01

    Full Text Available In this study, we investigated the relationship between unsaturated fatty acids influencing beef flavor and four types of SNPs (c.280A>G, c.388G>A, c.408G>C and c.456A>G located at exon 2, 3 and 4 of the FABP4 gene, which is a fatty acid binding protein 4 in Korean cattle (n = 513. When analyzing the relationship between single genotype, fatty acids and carcass trait, individuals of GG, GG, CC and GG genotypes that are homozygotes, had a higher content of unsaturated fatty acids and marbling scores than other genotypes (p<0.05. Then, haplotype block showed strong significant relationships not only with unsaturated fatty acids (54.73%, but also with marbling scores (5.82 in ht1×ht1 group (p<0.05. This ht1×ht1 group showed significant differences with unsaturated fatty acids and marbling scores that affected beef flavor in Korean cattle. Therefore, it can be inferred that the ht1×ht1 types might be valuable new markers for use in the improvement of Korean cattle.

  15. Identification and association analysis of several hundred single nucleotide polymorphisms within candidate genes for back fat thickness in Italian Large White pigs using a selective genotyping approach.

    Science.gov (United States)

    Fontanesi, L; Galimberti, G; Calò, D G; Fronza, R; Martelli, P L; Scotti, E; Colombo, M; Schiavo, G; Casadio, R; Buttazzoni, L; Russo, V

    2012-08-01

    Combining different approaches (resequencing of portions of 54 obesity candidate genes, literature mining for pig markers associated with fat deposition or related traits in 77 genes, and in silico mining of porcine expressed sequence tags and other sequences available in databases), we identified and analyzed 736 SNP within candidate genes to identify markers associated with back fat thickness (BFT) in Italian Large White sows. Animals were chosen using a selective genotyping approach according to their EBV for BFT (276 with most negative and 279 with most positive EBV) within a population of ≈ 12,000 pigs. Association analysis between the SNP and BFT has been carried out using the MAX test proposed for case-control studies. The designed assays were successful for 656 SNP: 370 were excluded (low call rate or minor allele frequency A polymorphism (P(nominal) G polymorphism (P(nominal) = 8.0E-05). The third top SNP (P(nominal) = 6.2E-04) was the intronic TBC1D1 g.219G>A polymorphic site, in agreement with our previous results obtained in an independent study. The list of significant markers also included SNP in additional genes (ABHD16A, ABHD5, ACP2, ALMS1, APOA2, ATP1A2, CALR, COL14A1, CTSF, DARS, DECR1, ENPP1, ESR1, GH1, GHRL, GNMT, IKBKB, JAK3, MTTP, NFKBIA, NT5E, PLAT, PPARG, PPP2R5D, PRLR, RRAGD, RFC2, SDHD, SERPINF1, UBE2H, VCAM1, and WAT). Functional relationships between genes were obtained using the Ingenuity Pathway Analysis (IPA) Knowledge Base. The top scoring pathway included 19 genes with a P(nominal) < 0.1, 2 of which (IKBKB and NFKBIA) are involved in the hypothalamic IKKβ/NFκB program that could represent a key axis to affect fat deposition traits in pigs. These results represent a starting point to plan marker-assisted selection in Italian Large White nuclei for BFT. Because of similarities between humans and pigs, this study might also provide useful clues to investigate genetic factors affecting human obesity.

  16. Modeling single nucleotide polymorphisms in the human AKR1C1 and AKR1C2 genes: implications for functional and genotyping analyses.

    Directory of Open Access Journals (Sweden)

    Jonathan W Arthur

    2010-12-01

    Full Text Available Enzymes encoded by the AKR1C1 and AKR1C2 genes are responsible for the metabolism of progesterone and 5α-dihydrotestosterone (DHT, respectively. The effect of amino acid substitutions, resulting from single nucleotide polymorphisms (SNPs in the AKR1C2 gene, on the enzyme kinetics of the AKR1C2 gene product were determined experimentally by Takashi et al. In this paper, we used homology modeling to predict and analyze the structure of AKR1C1 and AKR1C2 genetic variants. The experimental reduction in enzyme activity in the AKR1C2 variants F46Y and L172Q, as determined by Takahashi et al., is predicted to be due to increased instability in cofactor binding, caused by disruptions to the hydrogen bonds between NADP and AKR1C2, resulting from the insertion of polar residues into largely non-polar environments near the site of cofactor binding. Other AKR1C2 variants were shown to involve either conservative substitutions or changes taking place on the surface of the molecule and distant from the active site, confirming the experimental finding of Takahashi et al. that these variants do not result in any statistically significant reduction in enzyme activity. The AKR1C1 R258C variant is predicted to have no effect on enzyme activity for similar reasons. Thus, we provide further insight into the molecular mechanism of the enzyme kinetics of these proteins. Our data also highlight previously reported difficulties with online databases.

  17. Transcriptome-wide single nucleotide polymorphisms (SNPs) for abalone (Haliotis midae): validation and application using GoldenGate medium-throughput genotyping assays.

    Science.gov (United States)

    Bester-Van Der Merwe, Aletta; Blaauw, Sonja; Du Plessis, Jana; Roodt-Wilding, Rouvay

    2013-09-23

    Haliotis midae is one of the most valuable commercial abalone species in the world, but is highly vulnerable, due to exploitation, habitat destruction and predation. In order to preserve wild and cultured stocks, genetic management and improvement of the species has become crucial. Fundamental to this is the availability and employment of molecular markers, such as microsatellites and single nucleotide (SNPs). Transcriptome sequences generated through sequencing-by-synthesis technology were utilized for the in vitro and in silico identification of 505 putative SNPs from a total of 316 selected contigs. A subset of 234 SNPs were further validated and characterized in wild and cultured abalone using two Illumina GoldenGate genotyping assays. Combined with VeraCode technology, this genotyping platform yielded a 65%-69% conversion rate (percentage polymorphic markers) with a global genotyping success rate of 76%-85% and provided a viable means for validating SNP markers in a non-model species. The utility of 31 of the validated SNPs in population structure analysis was confirmed, while a large number of SNPs (174) were shown to be informative and are, thus, good candidates for linkage map construction. The non-synonymous SNPs (50) located in coding regions of genes that showed similarities with known proteins will also be useful for genetic applications, such as the marker-assisted selection of genes of relevance to abalone aquaculture.

  18. Sequencing genes in silico using single nucleotide polymorphisms

    Directory of Open Access Journals (Sweden)

    Zhang Xinyi

    2012-01-01

    Full Text Available Abstract Background The advent of high throughput sequencing technology has enabled the 1000 Genomes Project Pilot 3 to generate complete sequence data for more than 906 genes and 8,140 exons representing 697 subjects. The 1000 Genomes database provides a critical opportunity for further interpreting disease associations with single nucleotide polymorphisms (SNPs discovered from genetic association studies. Currently, direct sequencing of candidate genes or regions on a large number of subjects remains both cost- and time-prohibitive. Results To accelerate the translation from discovery to functional studies, we propose an in silico gene sequencing method (ISS, which predicts phased sequences of intragenic regions, using SNPs. The key underlying idea of our method is to infer diploid sequences (a pair of phased sequences/alleles at every functional locus utilizing the deep sequencing data from the 1000 Genomes Project and SNP data from the HapMap Project, and to build prediction models using flanking SNPs. Using this method, we have developed a database of prediction models for 611 known genes. Sequence prediction accuracy for these genes is 96.26% on average (ranges 79%-100%. This database of prediction models can be enhanced and scaled up to include new genes as the 1000 Genomes Project sequences additional genes on additional individuals. Applying our predictive model for the KCNJ11 gene to the Wellcome Trust Case Control Consortium (WTCCC Type 2 diabetes cohort, we demonstrate how the prediction of phased sequences inferred from GWAS SNP genotype data can be used to facilitate interpretation and identify a probable functional mechanism such as protein changes. Conclusions Prior to the general availability of routine sequencing of all subjects, the ISS method proposed here provides a time- and cost-effective approach to broadening the characterization of disease associated SNPs and regions, and facilitating the prioritization of candidate

  19. [A population genetic study of 22 autosomal loci of single nucleotide polymorphisms].

    Science.gov (United States)

    Tang, Jian-pin; Jiang, Feng-hui; Shi, Mei-sen; Xu, Chuan-chao; Chen, Rui; Lai, Xiao-pin

    2012-12-01

    To evaluate polymorphisms and forensic efficiency of 22 non-binary single nucleotide polymorphism (SNP) loci. One hundred ethnic Han Chinese individuals were recruited from Dongguan, Guangdong. The 22 loci were genotyped with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). Nine loci were found with a single allele, 4 loci were found to be biallelic, whilst 9 loci were found to have 3 alleles. For 13 polymorphic loci, the combined discrimination power and power of exclusion were 0.999 98 and 0.9330, respectively. For the 9 non-biallelic loci, the combined discrimination power and power of exclusion were 0.9998 and 0.8956, respectively. For motherless cases, the combined power of exclusion was 0.6405 for 13 polymorphic SNPs and 0.6405 for 9 non-binary SNPs. Non-binary loci have a greater discrimination power and exclusion power per SNP.

  20. Forensic SNP genotyping with SNaPshot

    DEFF Research Database (Denmark)

    Fondevila, M; Børsting, C; Phillips, C

    2017-01-01

    to routine STR profiling, use of SNaPshot is an important part of the development of SNP sets for a wide range of forensic applications with these markers, from genotyping highly degraded DNA with very short amplicons to the introduction of SNPs to ascertain the ancestry and physical characteristics......This review explores the key factors that influence the optimization, routine use, and profile interpretation of the SNaPshot single-base extension (SBE) system applied to forensic single-nucleotide polymorphism (SNP) genotyping. Despite being a mainly complimentary DNA genotyping technique...... of an unidentified contact trace donor. However, this technology, as resourceful as it is, displays several features that depart from the usual STR genotyping far enough to demand a certain degree of expertise from the forensic analyst before tackling the complex casework on which SNaPshot application provides...

  1. Association of single nucleotide polymorphisms with radiation-induced esophagitis

    International Nuclear Information System (INIS)

    Zhang Li; Wang Lvhua; Yang Ming; Ji Wei; Zhao Lujun; Yang Weizhi; Zhou Zongmei; Ou Guangfei; Lin Dongxin

    2008-01-01

    Objective: To evaluate the relationship between single nucleotide polymorphism(SNP) of candidate genes and radiation-induced esophagitis (RIE) in patients with lung cancer. Methods: Between Jan. 2004 and Aug. 2006, 170 patients with pathologically diagnosed lung cancer were enrolled in this study. The total target dose was 45-70 Gy (median 60 Gy). One hundred and thirty-two patients were treated with three-dimensional conformal radiotherapy(3DCRT) and 38 with two-dimensional radiotherapy(2DRT). Forty-one patients received radiotherapy alone, 78 received sequential chemoradiotherapy and 51 received concurrent chemoradiotherapy. Thirty-seven SNPs in 20 DNA repair genes were analyzed by using PCR- based restricted fragment length polymorphism (RFLP). These genes were apoptosis and inflammatory cytokine genes including ATM, ERCC1, XRCC3, XRCCI, XPD, XPC, XPG, NBS1, STK15, ZNF350, ADPRT, TP53, FAS, FASL, CYP2D6*4, CASPASE8, COX2,TGF-β, CD14 and ACE. The endpoint was grade ≥2 R I E. Results: Forty of the 170 patients developed grade ≥2 R I E, including 36 in grade 2 and 4 in grade 3. Univariate analysis revealed that radiation technique and concurrent chemoradiotherapy were statistically significant relatives to the incidence of R I E (P=0.032, 0.049), and both of them had the trend associating with the esophagitis (P=0.072, 0.094). An increased incidence of esophagitis was observed associating with the TGF-β 1 -509T and XPD 751Lys/Lys genotypes (χ 2 =5.65, P=0.017; χ 2 =3.84, P=0.048) in multivariate analysis. Conclusions: Genetic polymorphisms in TGF-β 1 gene and XPD gene have a significant association with radiation-induced esophagitis. (authors)

  2. A resource of genome-wide single-nucleotide polymorphisms generated by RAD tag sequencing in the critically endangered European eel

    DEFF Research Database (Denmark)

    Pujolar, J.M.; Jacobsen, M.W.; Frydenberg, J.

    2013-01-01

    Reduced representation genome sequencing such as restriction-site-associated DNA (RAD) sequencing is finding increased use to identify and genotype large numbers of single-nucleotide polymorphisms (SNPs) in model and nonmodel species. We generated a unique resource of novel SNP markers for the Eu...... 425 loci and 376 918 associated SNPs provides a valuable tool for future population genetics and genomics studies and allows for targeting specific genes and particularly interesting regions of the eel genome...

  3. Assignment of Streptococcus agalactiae isolates to clonal complexes using a small set of single nucleotide polymorphisms.

    Science.gov (United States)

    Honsa, Erin; Fricke, Thomas; Stephens, Alex J; Ko, Danny; Kong, Fanrong; Gilbert, Gwendolyn L; Huygens, Flavia; Giffard, Philip M

    2008-08-19

    Streptococcus agalactiae (Group B Streptococcus (GBS)) is an important human pathogen, particularly of newborns. Emerging evidence for a relationship between genotype and virulence has accentuated the need for efficient and well-defined typing methods. The objective of this study was to develop a single nucleotide polymorphism (SNP) based method for assigning GBS isolates to multilocus sequence typing (MLST)-defined clonal complexes. It was found that a SNP set derived from the MLST database on the basis of maximization of Simpsons Index of Diversity provided poor resolution and did not define groups concordant with the population structure as defined by eBURST analysis of the MLST database. This was interpreted as being a consequence of low diversity and high frequency horizontal gene transfer. Accordingly, a different approach to SNP identification was developed. This entailed use of the "Not-N" bioinformatic algorithm that identifies SNPs diagnostic for groups of known sequence variants, together with an empirical process of SNP testing. This yielded a four member SNP set that divides GBS into 10 groups that are concordant with the population structure. A fifth SNP was identified that increased the sensitivity for the clinically significant clonal complex 17 to 100%. Kinetic PCR methods for the interrogation of these SNPs were developed, and used to genotype 116 well characterized isolates. A five SNP method for dividing GBS into biologically valid groups has been developed. These SNPs are ideal for high throughput surveillance activities, and combining with more rapidly evolving loci when additional resolution is required.

  4. Direct detection of single-nucleotide polymorphisms in bacterial DNA by SNPtrap

    DEFF Research Database (Denmark)

    Grønlund, Hugo Ahlm; Moen, Birgitte; Hoorfar, Jeffrey

    2011-01-01

    A major challenge with single-nucleotide polymorphism (SNP) fingerprinting of bacteria and higher organisms is the combination of genome-wide screenings with the potential of multiplexing and accurate SNP detection. Single-nucleotide extension by the minisequencing principle represents a technolo...

  5. Development and characterization of 35 single nucleotide polymorphism markers for the brown alga Fucus vesiculosus

    NARCIS (Netherlands)

    Canovas, Fernando; Mota, Catarina; Ferreira-Costa, Joana; Serrao, Ester; Coyer, Jim; Olsen, Jeanine; Pearson, Gareth

    2011-01-01

    We characterized 35 single nucleotide polymorphism (SNP) markers for the brown alga Fucus vesiculosus. Based on existing Fucus Expressed Sequence Tag libraries for heat and desiccation-stressed tissue, SNPs were developed and confirmed by re-sequencing cDNA from a diverse panel of individuals. SNP

  6. High-resolution melting analysis for detection of a single-nucleotide polymorphism and the genotype of the myostatin gene in warmblood horses.

    Science.gov (United States)

    Serpa, Priscila B S; Garbade, Petra; Natalini, Cláudio C; Pires, Ananda R; Tisotti, Tainor M

    2017-01-01

    OBJECTIVE To develop a high-resolution melting (HRM) assay to detect the g.66493737C>T polymorphism in the myostatin gene (MSTN) and determine the frequency of 3 previously defined g.66493737 genotypes (T/T, T/C, and C/C) in warmblood horses. SAMPLES Blood samples from 23 horses. PROCEDURES From each blood sample, DNA was extracted and analyzed by standard PCR methods and an HRM assay to determine the MSTN genotype. Three protocols (standard protocol, protocol in which a high-salt solution was added to the reaction mixture before the first melting cycle, and protocol in which an unlabeled probe was added to the reaction mixture before analysis) for the HRM assay were designed and compared. Genotype results determined by the HRM protocol that generated the most consistent melting curves were compared with those determined by sequencing. RESULTS The HRM protocol in which an unlabeled probe was added to the reaction mixture generated the most consistent melting curves. The genotypes of the g.66493737C>T polymorphism were determined for 22 horses (16 by HRM analysis and 20 by sequencing); 14, 7, and 1 had the T/T, T/C, and C/C genotypes, respectively. The genotype determined by HRM analysis agreed with that determined by sequencing for 14 of 16 horses. The frequency of alleles T and C was 79.5% and 20.5%, respectively. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that HRM analysis may be a faster and more economical alternative than PCR methods for genotyping. Genotyping results might be useful as predictors of athletic performance for horses.

  7. Combination of Single Nucleotide Polymorphism and Variable-Number Tandem Repeats for Genotyping a Homogenous Population of Mycobacterium tuberculosis Beijing Strains in China

    OpenAIRE

    Luo, Tao; Yang, Chongguang; Gagneux, Sebastien; Gicquel, Brigitte; Mei, Jian; Gao, Qian

    2012-01-01

    The standard 15- and 24-locus variable-number tandem repeat (VNTR) genotyping methods have demonstrated adequate discriminatory power and a small homoplasy effect for tracing tuberculosis (TB) transmission and predicting Mycobacterium tuberculosis lineages in European and North American countries. However, its validity for the definition of transmission in homogenous M. tuberculosis populations in settings with high TB burdens has been questioned. Here, we genotyped a population-based collect...

  8. Thoroughbred Horse Single Nucleotide Polymorphism and Expression Database: HSDB

    Directory of Open Access Journals (Sweden)

    Joon-Ho Lee

    2014-09-01

    Full Text Available Genetics is important for breeding and selection of horses but there is a lack of well-established horse-related browsers or databases. In order to better understand horses, more variants and other integrated information are needed. Thus, we construct a horse genomic variants database including expression and other information. Horse Single Nucleotide Polymorphism and Expression Database (HSDB (http://snugenome2.snu.ac.kr/HSDB provides the number of unexplored genomic variants still remaining to be identified in the horse genome including rare variants by using population genome sequences of eighteen horses and RNA-seq of four horses. The identified single nucleotide polymorphisms (SNPs were confirmed by comparing them with SNP chip data and variants of RNA-seq, which showed a concordance level of 99.02% and 96.6%, respectively. Moreover, the database provides the genomic variants with their corresponding transcriptional profiles from the same individuals to help understand the functional aspects of these variants. The database will contribute to genetic improvement and breeding strategies of Thoroughbreds.

  9. [Correlation analysis between single nucleotide polymorphism of FGF5 gene and wool yield in rabbits].

    Science.gov (United States)

    Li, Chun-Xiao; Jiang, Mei-Shan; Chen, Shi-Yi; Lai, Song-Jia

    2008-07-01

    Single nucleotide polymorphism (SNP) in exon 1 and 3 of fibroblast growth factor (FGF5) gene was studied by DNA sequencing in Yingjing angora rabbit, Tianfu black rabbit and California rabbit. A frameshift mutation (TCT insert) at base position 217 (site A) of exon 1 and a T/C missense mutation at base position 59 (site B) of exon 3 were found in Yingjing angora rabbit with a high frequency; a T/C same-sense mutation at base position 3 (site C) of exon 3 was found with similar frequency in three rabbit breeds. Least square analysis showed that different genotypes had no significant association with wool yield in site A, and had high significant association with wool yield in site B (Plink with the major gene, and polymorphic loci B and C may be used as molecular markers for im-proving wool yield in angora rabbits.

  10. CARD15 single nucleotide polymorphisms 8, 12 and 13 are not increased in ethnic Danes with sarcoidosis

    DEFF Research Database (Denmark)

    Milman, Nils; Nielsen, Ole Haagen; Hviid, Thomas Vauvert F

    2007-01-01

    and SNP13, respectively, were performed by capillary electrophoresis single-strand confirmation polymorphism in 53 patients with histologically verified sarcoidosis and in 103 healthy controls. RESULTS: The frequencies of CARD15 mutations in sarcoidosis patients were: SNP8, 4/106 chromosomes (3.8%); SNP12...... with Crohn's disease. OBJECTIVES: To evaluate whether ethnic Danes with sarcoidosis have an increased frequency of CARD15 mutations compared to healthy control subjects. METHODS: Genotyping for CARD15 mutations R702W, G908R, and L1007fsinsC, also designated single nucleotide polymorphism (SNP) SNP8, SNP12......, 2/106 chromosomes (1.9%); SNP13, 2/106 chromosomes (1.9%); SNP8+SNP12+SNP13, 8/106 chromosomes (7.6%). All 8 patients were heterozygous. The frequencies in controls were: SNP8, 9/206 chromosomes (4.4%); SNP12, 2/206 chromosomes (1.0%); SNP13, 4/206 chromosomes (1.9%); SNP8+SNP12+SNP13, 15...

  11. Relationship between single nucleotide polymorphism of glycogen synthase gene of Pacific oyster Crassostrea gigas and its glycogen content

    Science.gov (United States)

    Liu, Siwei; Li, Qi; Yu, Hong; Kong, Lingfeng

    2017-02-01

    Glycogen is important not only for the energy supplementary of oysters, but also for human consumption. High glycogen content can improve the stress survival of oyster. A key enzyme in glycogenesis is glycogen synthase that is encoded by glycogen synthase gene GYS. In this study, the relationship between single nucleotide polymorphisms (SNPs) in coding regions of Crassostrea gigas GYS (Cg-GYS) and individual glycogen content was investigated with 321 individuals from five full-sib families. Single-strand conformation polymorphism (SSCP) procedure was combined with sequencing to confirm individual SNP genotypes of Cg-GYS. Least-square analysis of variance was performed to assess the relationship of variation in glycogen content of C. gigas with single SNP genotype and SNP haplotype. As a consequence, six SNPs were found in coding regions to be significantly associated with glycogen content ( P glycogen content ( P glycogen content and provided molecular biological information for the selective breeding of good quality traits of C. gigas.

  12. Single nucleotide polymorphism barcoding to evaluate oral cancer risk using odds ratio-based genetic algorithms

    Directory of Open Access Journals (Sweden)

    Cheng-Hong Yang

    2012-07-01

    Full Text Available Cancers often involve the synergistic effects of gene–gene interactions, but identifying these interactions remains challenging. Here, we present an odds ratio-based genetic algorithm (OR-GA that is able to solve the problems associated with the simultaneous analysis of multiple independent single nucleotide polymorphisms (SNPs that are associated with oral cancer. The SNP interactions between four SNPs—namely rs1799782, rs2040639, rs861539, rs2075685, and belonging to four genes (XRCC1, XRCC2, XRCC3, and XRCC4—were tested in this study, respectively. The GA decomposes the SNPs sets into different SNP combinations with their corresponding genotypes (called SNP barcodes. The GA can effectively identify a specific SNP barcode that has an optimized fitness value and uses this to calculate the difference between the case and control groups. The SNP barcodes with a low fitness value are naturally removed from the population. Using two to four SNPs, the best SNP barcodes with maximum differences in occurrence between the case and control groups were generated by GA algorithm. Subsequently, the OR provides a quantitative measure of the multiple SNP synergies between the oral cancer and control groups by calculating the risk related to the best SNP barcodes and others. When these were compared to their corresponding non-SNP barcodes, the estimated ORs for oral cancer were found to be great than 1 [approx. 1.72–2.23; confidence intervals (CIs: 0.94–5.30, p < 0.03–0.07] for various specific SNP barcodes with two to four SNPs. In conclusion, the proposed OR-GA method successfully generates SNP barcodes, which allow oral cancer risk to be evaluated and in the process the OR-GA method identifies possible SNP–SNP interactions.

  13. Ewing's sarcoma: analysis of single nucleotide polymorphism in the EWS gene.

    Science.gov (United States)

    Silva, Deborah S B S; Sawitzki, Fernanda R; De Toni, Elisa C; Graebin, Pietra; Picanco, Juliane B; Abujamra, Ana Lucia; de Farias, Caroline B; Roesler, Rafael; Brunetto, Algemir L; Alho, Clarice S

    2012-11-10

    We aimed to investigate single nucleotide polymorphisms (SNPs) in the EWS gene breaking region in order to analyze Ewing's sarcoma susceptibility. The SNPs were investigated in a healthy subject population and in Ewing's sarcoma patients from Southern Brazil. Genotyping was performed by TaqMan® assay for allelic discrimination using Real-Time PCR. The analysis of incidence of SNPs or different SNP-arrangements revealed a higher presence of homozygote TT-rs4820804 in Ewing's sarcoma patients (p=0.02; Chi Square Test). About 300 bp from the rs4820804 SNP lies a palindromic hexamer (5'-GCTAGC-3') and three nucleotides (GTC), which were previously identified to be in close vicinity of the breakpoint junction in both EWS and FLI1 genes. This DNA segment surrounding the rs4820804 SNP is likely to indicate a breakpoint region. If the T-rs4820804 allele predisposes a DNA fragment to breakage, homozygotes (TT-rs4820804) would have double the chance of having a chromosome break, increasing the chances for a translocation to occur. In conclusion, the TT-rs4820804 EWS genotype can be associated with Ewing's sarcoma and the SNP rs4820804 can be a candidate marker to understand Ewing's sarcoma susceptibility. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Role of the DGAT gene C79T single-nucleotide polymorphism in French obese subjects.

    Science.gov (United States)

    Coudreau, Sylvie Kipfer; Tounian, Patrick; Bonhomme, Geneviève; Froguel, Philippe; Girardet, Jean-Philippe; Guy-Grand, Bernard; Basdevant, Arnaud; Clément, Karine

    2003-10-01

    Acyl-coenzyme A, diacylglycerol acyltransferase (DGAT), is a key enzyme involved in adipose-cell triglyceride storage. A 79-bp T-to-C single-nucleotide polymorphism (SNP) on the 3' region of the DGAT transcriptional site has been reported to increase promoter activity and is associated with higher BMI in Turkish women. To validate the possible role of this genetic variant in obesity, as well as the variant's possible cellular-functional significance, we performed an association study between the T79C change and several obesity-related phenotypes in 1357 obese French adults and children. The prevalence of the T79C SNP was similar between obese adults and children when each group was compared with the controls. (CC genotype carrier frequencies were 0.25 to 0.29 in the obese groups and 0.21 in controls; p > 0.05.) In each of the obese adult and child groups studied, the T79C variant was not found to be associated with any of the obesity-related phenotypes tested. Although the T79C SNP of the DGAT gene was studied in several groups of white subjects, the association between this SNP and obesity-related phenotypes, previously described, was not confirmed in our population.

  15. Assignment of Streptococcus agalactiae isolates to clonal complexes using a small set of single nucleotide polymorphisms

    Directory of Open Access Journals (Sweden)

    Gilbert Gwendolyn L

    2008-08-01

    Full Text Available Abstract Background Streptococcus agalactiae (Group B Streptococcus (GBS is an important human pathogen, particularly of newborns. Emerging evidence for a relationship between genotype and virulence has accentuated the need for efficient and well-defined typing methods. The objective of this study was to develop a single nucleotide polymorphism (SNP based method for assigning GBS isolates to multilocus sequence typing (MLST-defined clonal complexes. Results It was found that a SNP set derived from the MLST database on the basis of maximisation of Simpsons Index of Diversity provided poor resolution and did not define groups concordant with the population structure as defined by eBURST analysis of the MLST database. This was interpreted as being a consequence of low diversity and high frequency horizontal gene transfer. Accordingly, a different approach to SNP identification was developed. This entailed use of the "Not-N" bioinformatic algorithm that identifies SNPs diagnostic for groups of known sequence variants, together with an empirical process of SNP testing. This yielded a four member SNP set that divides GBS into 10 groups that are concordant with the population structure. A fifth SNP was identified that increased the sensitivity for the clinically significant clonal complex 17 to 100%. Kinetic PCR methods for the interrogation of these SNPs were developed, and used to genotype 116 well characterized isolates. Conclusion A five SNP method for dividing GBS into biologically valid groups has been developed. These SNPs are ideal for high throughput surveillance activities, and combining with more rapidly evolving loci when additional resolution is required.

  16. SNPchiMp v.3: integrating and standardizing single nucleotide polymorphism data for livestock species.

    Science.gov (United States)

    Nicolazzi, Ezequiel L; Caprera, Andrea; Nazzicari, Nelson; Cozzi, Paolo; Strozzi, Francesco; Lawley, Cindy; Pirani, Ali; Soans, Chandrasen; Brew, Fiona; Jorjani, Hossein; Evans, Gary; Simpson, Barry; Tosser-Klopp, Gwenola; Brauning, Rudiger; Williams, John L; Stella, Alessandra

    2015-04-10

    In recent years, the use of genomic information in livestock species for genetic improvement, association studies and many other fields has become routine. In order to accommodate different market requirements in terms of genotyping cost, manufacturers of single nucleotide polymorphism (SNP) arrays, private companies and international consortia have developed a large number of arrays with different content and different SNP density. The number of currently available SNP arrays differs among species: ranging from one for goats to more than ten for cattle, and the number of arrays available is increasing rapidly. However, there is limited or no effort to standardize and integrate array- specific (e.g. SNP IDs, allele coding) and species-specific (i.e. past and current assemblies) SNP information. Here we present SNPchiMp v.3, a solution to these issues for the six major livestock species (cow, pig, horse, sheep, goat and chicken). Original data was collected directly from SNP array producers and specific international genome consortia, and stored in a MySQL database. The database was then linked to an open-access web tool and to public databases. SNPchiMp v.3 ensures fast access to the database (retrieving within/across SNP array data) and the possibility of annotating SNP array data in a user-friendly fashion. This platform allows easy integration and standardization, and it is aimed at both industry and research. It also enables users to easily link the information available from the array producer with data in public databases, without the need of additional bioinformatics tools or pipelines. In recognition of the open-access use of Ensembl resources, SNPchiMp v.3 was officially credited as an Ensembl E!mpowered tool. Availability at http://bioinformatics.tecnoparco.org/SNPchimp.

  17. Single-nucleotide polymorphism discovery by high-throughput sequencing in sorghum

    Directory of Open Access Journals (Sweden)

    White Frank F

    2011-07-01

    Full Text Available Abstract Background Eight diverse sorghum (Sorghum bicolor L. Moench accessions were subjected to short-read genome sequencing to characterize the distribution of single-nucleotide polymorphisms (SNPs. Two strategies were used for DNA library preparation. Missing SNP genotype data were imputed by local haplotype comparison. The effect of library type and genomic diversity on SNP discovery and imputation are evaluated. Results Alignment of eight genome equivalents (6 Gb to the public reference genome revealed 283,000 SNPs at ≥82% confirmation probability. Sequencing from libraries constructed to limit sequencing to start at defined restriction sites led to genotyping 10-fold more SNPs in all 8 accessions, and correctly imputing 11% more missing data, than from semirandom libraries. The SNP yield advantage of the reduced-representation method was less than expected, since up to one fifth of reads started at noncanonical restriction sites and up to one third of restriction sites predicted in silico to yield unique alignments were not sampled at near-saturation. For imputation accuracy, the availability of a genomically similar accession in the germplasm panel was more important than panel size or sequencing coverage. Conclusions A sequence quantity of 3 million 50-base reads per accession using a BsrFI library would conservatively provide satisfactory genotyping of 96,000 sorghum SNPs. For most reliable SNP-genotype imputation in shallowly sequenced genomes, germplasm panels should consist of pairs or groups of genomically similar entries. These results may help in designing strategies for economical genotyping-by-sequencing of large numbers of plant accessions.

  18. Allele specific LAMP- gold nanoparticle for characterization of single nucleotide polymorphisms

    Directory of Open Access Journals (Sweden)

    Fábio Ferreira Carlos

    2017-12-01

    Full Text Available Due to their relevance as disease biomarkers and for diagnostics, screening of single nucleotide polymorphism (SNPs requires simple and straightforward strategies capable to provide results in medium throughput settings. Suitable approaches relying on isothermal amplification techniques have been evolving to substitute the cumbersome and highly specialized PCR amplification detection schemes. Nonetheless, identification of an individual’s genotype still requires sophisticated equipment and laborious methods.Here, we present a low-cost and reliable approach based on the allele specific loop-mediated isothermal amplification (AS-LAMP coupled to ssDNA functionalized gold nanoparticle (Au-nanoprobe colorimetric sequence discrimination. The Au-nanoprobe integration allows for the colorimetric detection of AS-LAMP amplification product that can be easily interpreted in less than 15 min. We targeted a clinical relevant SNP responsible for lactose intolerance (-13910C/T dbSNP rs#: 4988235 to demonstrate its proof of concept and full potential of this novel approach. Keywords: SNP, Isothermal amplification, Gold nanoparticles, Gold nanoprobes, Lactose intolerance

  19. Single nucleotide polymorphism in transcriptional regulatory regions and expression of environmentally responsive genes

    International Nuclear Information System (INIS)

    Wang, Xuting; Tomso, Daniel J.; Liu Xuemei; Bell, Douglas A.

    2005-01-01

    Single nucleotide polymorphisms (SNPs) in the human genome are DNA sequence variations that can alter an individual's response to environmental exposure. SNPs in gene coding regions can lead to changes in the biological properties of the encoded protein. In contrast, SNPs in non-coding gene regulatory regions may affect gene expression levels in an allele-specific manner, and these functional polymorphisms represent an important but relatively unexplored class of genetic variation. The main challenge in analyzing these SNPs is a lack of robust computational and experimental methods. Here, we first outline mechanisms by which genetic variation can impact gene regulation, and review recent findings in this area; then, we describe a methodology for bioinformatic discovery and functional analysis of regulatory SNPs in cis-regulatory regions using the assembled human genome sequence and databases on sequence polymorphism and gene expression. Our method integrates SNP and gene databases and uses a set of computer programs that allow us to: (1) select SNPs, from among the >9 million human SNPs in the NCBI dbSNP database, that are similar to cis-regulatory element (RE) consensus sequences; (2) map the selected dbSNP entries to the human genome assembly in order to identify polymorphic REs near gene start sites; (3) prioritize the candidate polymorphic RE containing genes by searching the existing genotype and gene expression data sets. The applicability of this system has been demonstrated through studies on p53 responsive elements and is being extended to additional pathways and environmentally responsive genes

  20. Lack of Association between STAT4 Single Nucleotide Polymorphisms and Iranian Juvenile Rheumatoid Arthritis Patients.

    Science.gov (United States)

    Aslani, Saeed; Mahmoudi, Mahdi; Salmaninejad, Arash; Poursani, Shiva; Ziaee, Vahid; Rezaei, Nima

    2017-06-01

    Juvenile rheumatoid arthritis (JRA) is a common chronic systemic autoimmune disease in children. Single nucleotide polymorphisms (SNPs) of signal transducer and activator of transcription 4 (STAT4) gene are suspected to have association with the risk of autoimmune diseases. Previous investigations have indicated that the STAT4 rs7574865 T allele was significantly associated with rheumatoid arthritis. In this study, we aimed to evaluate the association of STAT4 SNPs with JRA in Iranian population. T allele of STAT4 rs7574865 SNP was less frequent in patients than in controls, and the difference was not significant (p = 0.19, OR = 0.72, 95% CI: 0.44 -1.17). In addition, G allele of this SNP was frequent but not significant in JRA patients (p = 0.19, OR = 1.38, 95% CI: 0.85-2.25). Neither alleles nor genotypes of rs7601754 SNP of STAT4 gene demonstrated associations with JRA. We recognize that gene variants of STAT4 did not affect JRA susceptibility in Iranian population.

  1. A response to Yu et al. "A forward-backward fragment assembling algorithm for the identification of genomic amplification and deletion breakpoints using high-density single nucleotide polymorphism (SNP) array", BMC Bioinformatics 2007, 8: 145.

    Science.gov (United States)

    Rueda, Oscar M; Diaz-Uriarte, Ramon

    2007-10-16

    Yu et al. (BMC Bioinformatics 2007,8: 145+) have recently compared the performance of several methods for the detection of genomic amplification and deletion breakpoints using data from high-density single nucleotide polymorphism arrays. One of the methods compared is our non-homogenous Hidden Markov Model approach. Our approach uses Markov Chain Monte Carlo for inference, but Yu et al. ran the sampler for a severely insufficient number of iterations for a Markov Chain Monte Carlo-based method. Moreover, they did not use the appropriate reference level for the non-altered state. We rerun the analysis in Yu et al. using appropriate settings for both the Markov Chain Monte Carlo iterations and the reference level. Additionally, to show how easy it is to obtain answers to additional specific questions, we have added a new analysis targeted specifically to the detection of breakpoints. The reanalysis shows that the performance of our method is comparable to that of the other methods analyzed. In addition, we can provide probabilities of a given spot being a breakpoint, something unique among the methods examined. Markov Chain Monte Carlo methods require using a sufficient number of iterations before they can be assumed to yield samples from the distribution of interest. Running our method with too small a number of iterations cannot be representative of its performance. Moreover, our analysis shows how our original approach can be easily adapted to answer specific additional questions (e.g., identify edges).

  2. Association of single nucleotide polymorphisms with carcass traits in Nellore cattle.

    Science.gov (United States)

    Ferraz, J B S; Pinto, L F B; Meirelles, F V; Eler, J P; de Rezende, F M; Oliveira, E C M; Almeida, H B; Woodward, B; Nkrumah, D

    2009-11-17

    The association between two single nucleotide polymorphisms (SNPs), T945M and UCP1SNP1, with hot carcass weight (HCW, kg, N = 618), longissimus dorsi muscle area (REA, cm(2), N = 633), and backfat thickness (BF, mm, N = 625), measured in Nellore cattle in Brazil, was evaluated. Likelihood ratio tests were used to evaluate reduced (fixed effects of general mean, contemporary group, yearling weight, age at slaughter, and random effect of infinitesimal genetic value) and full model (reduced model effects plus quantitative trait locus effects). Additive and dominance effects were tested for each SNP. Genotypic and gene frequencies were also obtained for the SNPs and a descriptive phenotype analysis was made. Mean values for HCW, REA and BF were equal to 288.13 +/- 0.55 kg, 73.14 +/- 0.27 cm(2), and 4.28 +/- 0.07 mm, respectively; the coefficients of variation were 4.74, 9.24, and 42.43%, respectively. Gene frequencies for T945M and UCP1SNP1 were f(C) = 0.89, f(T) = 0.11, f(C) = 0.81, and f(G) = 0.19. The SNP T945M had a genotypic frequency of only three animals for TT genotype. Additive effects were observed for T945M on REA and BF, while UCP1SNP1 affected HCW and BF. Based on the significant additive effects of the SNPs and the gene frequencies that we found, we can expect genetic gains with marker assisted selection.

  3. SINGLE NUCLEOTIDE POLYMORPHISMS OF LIPOPROTEIN LIPASE GENE AND ITS ASSOCIATION WITH MARBLING QUALITY IN LOCAL SHEEPS

    Directory of Open Access Journals (Sweden)

    H. Hidayati

    2015-09-01

    Full Text Available Lipoprotein lipase (LPL is a key enzyme that plays in metabolism and transport lipoprotein andtherefore has an influence on blood triglyceride levels. LPL controls triacylglycerol partitioning betweenadipose tissue and muscle that increases fat storage or provides energy in the form of fatty acids formuscle growth. The research was aimed to explore Single Nucleotide Polymorphisms of LPL gene andto associate SNP with marbling quality. A total of 66 genomic DNAs consisted of sumatera thin-tail edsheep (50 heads and garut sheep (16 heads were used in this study. Polymerase Chain Reaction wasused to amplify genomic DNA and direct sequencing method was to identify polymorphism sequences.The sequences were analyzed with Bio Edit and MEGA 5.2. The BLAST sequence was obtained fromgene bank X.68308.1. The association between the genotype and marbling quality was analyze by oneway ANOVA and further between mean differences were tested using least sgnificant difference. Theresults showed that 3 novel SNPs i.e. insertion g.26>C; insertion g.27> G and c.192T>C on garut sheepand a SNP insertion g.26>C/G on sumatera thin-tail ed sheep. The diversity of LPL gene at c.192T>Cwas associated with heneicosanoic acid, whereas TT genotype (0.04% was higher than CC (0.03% andCT (0.02%.

  4. A high throughput single nucleotide polymorphism multiplex assay for parentage assignment in New Zealand sheep.

    Directory of Open Access Journals (Sweden)

    Shannon M Clarke

    Full Text Available Accurate pedigree information is critical to animal breeding systems to ensure the highest rate of genetic gain and management of inbreeding. The abundance of available genomic data, together with development of high throughput genotyping platforms, means that single nucleotide polymorphisms (SNPs are now the DNA marker of choice for genomic selection studies. Furthermore the superior qualities of SNPs compared to microsatellite markers allows for standardization between laboratories; a property that is crucial for developing an international set of markers for traceability studies. The objective of this study was to develop a high throughput SNP assay for use in the New Zealand sheep industry that gives accurate pedigree assignment and will allow a reduction in breeder input over lambing. This required two phases of development--firstly, a method of extracting quality DNA from ear-punch tissue performed in a high throughput cost efficient manner and secondly a SNP assay that has the ability to assign paternity to progeny resulting from mob mating. A likelihood based approach to infer paternity was used where sires with the highest LOD score (log of the ratio of the likelihood given parentage to likelihood given non-parentage are assigned. An 84 "parentage SNP panel" was developed that assigned, on average, 99% of progeny to a sire in a problem where there were 3,000 progeny from 120 mob mated sires that included numerous half sib sires. In only 6% of those cases was there another sire with at least a 0.02 probability of paternity. Furthermore dam information (either recorded, or by genotyping possible dams was absent, highlighting the SNP test's suitability for paternity testing. Utilization of this parentage SNP assay will allow implementation of progeny testing into large commercial farms where the improved accuracy of sire assignment and genetic evaluations will increase genetic gain in the sheep industry.

  5. Relationships between Single Nucleotide Polymorphism Markers and Meat Quality Traits of Duroc Breeding Stocks in Korea

    Directory of Open Access Journals (Sweden)

    J. S. Choi

    2016-09-01

    Full Text Available This study was conducted to determine the relationships of five intragenic single nucleotide polymorphism (SNP markers (protein kinase adenosine monophosphate-activated γ3 subunit [PRKAG3], fatty acid synthase [FASN], calpastatin [CAST], high mobility group AT-hook 1 [HMGA1], and melanocortin-4 receptor [MC4R] and meat quality traits of Duroc breeding stocks in Korea. A total of 200 purebred Duroc gilts from 8 sires and 40 dams at 4 pig breeding farms from 2010 to 2011 reaching market weight (110 kg were slaughtered and their carcasses were chilled overnight. Longissimus dorsi muscles were removed from the carcass after 24 h of slaughter and used to determine pork properties including carcass weight, backfat thickness, moisture, intramuscular fat, pH24h, shear force, redness, texture, and fatty acid composition. The PRKAG3, FASN, CAST, and MC4R gene SNPs were significantly associated with the meat quality traits (p<0.003. The meats of PRKAG3 (A 0.024/G 0.976 AA genotype had higher pH, redness and texture than those from PRKAG3 GG genotype. Meats of FASN (C 0.301/A 0.699 AA genotype had higher backfat thickness, texture, stearic acid, oleic acid and polyunsaturated fatty acid than FASN CC genotype. While the carcasses of CAST (A 0.373/G 0.627 AA genotype had thicker backfat, and lower shear force, palmitoleic acid and oleic acid content, they had higher stearic acid content than those from the CAST GG genotype. The MC4R (G 0.208/A 0.792 AA genotype were involved in increasing backfat thickness, carcass weight, moisture and saturated fatty acid content, and decreasing unsaturated fatty acid content in Duroc meat. These results indicated that the five SNP markers tested can be a help to select Duroc breed to improve carcass and meat quality properties in crossbred pigs.

  6. Study on Association between Single Nucleotide Polymorphisms in Murine Double Minute 2 and Susceptibility of Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Xia Wang

    2014-03-01

    Full Text Available Objective: To investigate the relationship between single nucleotide polymorphisms (SNP in murine double minute 2 (MDM2 and susceptibility and biological behavior of hepatocellularcarcinoma (HCC. Methods: MDM2 (rs2279744 site polymorphism in peripheral blood from 166 patients with HCC and 157 healthy controls were detected by SYBR GREEN PCR method and the relationship between MDM2 polymorphism and susceptibility and biological behavior of HCC was analyzed by comparing the differences of genotypes in two populations. Results: There was no statistical significance between two groups in terms of MDM2 allele distribution in research population (P = 0.753. The risk of HCC onset in individuals with GG+ TG genotype was 1.698 times of those with TT genotype in case group (95%CI = 1.027 -2.808. MDM2 SNP was associated with HBV infection and the degree of tumor differentiation (P< 0.05. The incidence of alleles in experimental group (T, 0.49; G, 0.51 was very different from that in control group (T, 0.59; G, 0.41 (P = 0.015. The incidence of GG genotype in patients with HCC (22.29% was significantly higher than those without HCC (13.38%. Compared with TT genotype, G allele or GG genotype had more correlation with HCC onset. Conclusion: Compared with TT genotype, MDM2 promoter SNP309 G allele or GG genotype is more associated with HCC onset in Chinese population.

  7. Effect of secondary structure on single nucleotide polymorphism detection with a porous microarray matrix; implications for probe selection

    NARCIS (Netherlands)

    Anthony, R. M.; Schuitema, A. R. J.; Chan, A. B.; Boender, P. J.; Klatser, P. R.; Oskam, L.

    2003-01-01

    Oligonucleotide arrays capable of detecting single nucleotide polymorphisms (SNPs) from amplified nucleic acid have many applications. The expected SNP is usually placed approximately in the center of the probe to ensure the maximum shift in Tm between complementary and SNP sequences. Unfortunately,

  8. A single-nucleotide polymorphism of human neuropeptide s gene originated from Europe shows decreased bioactivity.

    Directory of Open Access Journals (Sweden)

    Cheng Deng

    Full Text Available Using accumulating SNP (Single-Nucleotide Polymorphism data, we performed a genome-wide search for polypeptide hormone ligands showing changes in the mature regions to elucidate genotype/phenotype diversity among various human populations. Neuropeptide S (NPS, a brain peptide hormone highly conserved in vertebrates, has diverse physiological effects on anxiety, fear, hyperactivity, food intake, and sleeping time through its cognate receptor-NPSR. Here, we report a SNP rs4751440 (L(6-NPS causing non-synonymous substitution on the 6(th position (V to L of the NPS mature peptide region. L(6-NPS has a higher allele frequency in Europeans than other populations and probably originated from European ancestors ~25,000 yrs ago based on haplotype analysis and Approximate Bayesian Computation. Functional analyses indicate that L(6-NPS exhibits a significant lower bioactivity than the wild type NPS, with ~20-fold higher EC50 values in the stimulation of NPSR. Additional evolutionary and mutagenesis studies further demonstrate the importance of the valine residue in the 6(th position for NPS functions. Given the known physiological roles of NPS receptor in inflammatory bowel diseases, asthma pathogenesis, macrophage immune responses, and brain functions, our study provides the basis to elucidate NPS evolution and signaling diversity among human populations.

  9. Makeup of the genetic correlation between milk production traits using genome-wide single nucleotide polymorphism information.

    Science.gov (United States)

    van Binsbergen, R; Veerkamp, R F; Calus, M P L

    2012-04-01

    The correlated responses between traits may differ depending on the makeup of genetic covariances, and may differ from the predictions of polygenic covariances. Therefore, the objective of the present study was to investigate the makeup of the genetic covariances between the well-studied traits: milk yield, fat yield, protein yield, and their percentages in more detail. Phenotypic records of 1,737 heifers of research farms in 4 different countries were used after homogenizing and adjusting for management effects. All cows had a genotype for 37,590 single nucleotide polymorphisms (SNP). A bayesian stochastic search variable selection model was used to estimate the SNP effects for each trait. About 0.5 to 1.0% of the SNP had a significant effect on 1 or more traits; however, the SNP without a significant effect explained most of the genetic variances and covariances of the traits. Single nucleotide polymorphism correlations differed from the polygenic correlations, but only 10 regions were found with an effect on multiple traits; in 1 of these regions the DGAT1 gene was previously reported with an effect on multiple traits. This region explained up to 41% of the variances of 4 traits and explained a major part of the correlation between fat yield and fat percentage and contributes to asymmetry in correlated response between fat yield and fat percentage. Overall, for the traits in this study, the infinitesimal model is expected to be sufficient for the estimation of the variances and covariances. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Infectious mononucleosis-linked HLA class I single nucleotide polymorphism is associated with multiple sclerosis.

    Science.gov (United States)

    Jafari, Naghmeh; Broer, Linda; Hoppenbrouwers, Ilse A; van Duijn, Cornelia M; Hintzen, Rogier Q

    2010-11-01

    Multiple sclerosis is a presumed autoimmune disease associated with genetic and environmental risk factors such as infectious mononucleosis. Recent research has shown infectious mononucleosis to be associated with a specific HLA class I polymorphism. Our aim was to test if the infectious mononucleosis-linked HLA class I single nucleotide polymorphism (rs6457110) is also associated with multiple sclerosis. Genotyping of the HLA-A single nucleotide polymorphism rs6457110 using TaqMan was performed in 591 multiple sclerosis cases and 600 controls. The association of multiple sclerosis with the HLA-A single nucleotide polymorphism was tested using logistic regression adjusted for age, sex and HLA-DRB1*1501. HLA-A minor allele (A) is associated with multiple sclerosis (OR = 0.68; p = 4.08 × 10( -5)). After stratification for HLA-DRB1*1501 risk allele (T) carrier we showed a significant OR of 0.70 (p = 0.003) for HLA-A. HLA class I single nucleotide polymorphism rs6457110 is associated with infectious mononucleosis and multiple sclerosis, independent of the major class II allele, supporting the hypothesis that shared genetics may contribute to the association between infectious mononucleosis and multiple sclerosis.

  11. Screening of a Brassica napus bacterial artificial chromosome library using highly parallel single nucleotide polymorphism assays

    Science.gov (United States)

    2013-01-01

    Background Efficient screening of bacterial artificial chromosome (BAC) libraries with polymerase chain reaction (PCR)-based markers is feasible provided that a multidimensional pooling strategy is implemented. Single nucleotide polymorphisms (SNPs) can be screened in multiplexed format, therefore this marker type lends itself particularly well for medium- to high-throughput applications. Combining the power of multiplex-PCR assays with a multidimensional pooling system may prove to be especially challenging in a polyploid genome. In polyploid genomes two classes of SNPs need to be distinguished, polymorphisms between accessions (intragenomic SNPs) and those differentiating between homoeologous genomes (intergenomic SNPs). We have assessed whether the highly parallel Illumina GoldenGate® Genotyping Assay is suitable for the screening of a BAC library of the polyploid Brassica napus genome. Results A multidimensional screening platform was developed for a Brassica napus BAC library which is composed of almost 83,000 clones. Intragenomic and intergenomic SNPs were included in Illumina’s GoldenGate® Genotyping Assay and both SNP classes were used successfully for screening of the multidimensional BAC pools of the Brassica napus library. An optimized scoring method is proposed which is especially valuable for SNP calling of intergenomic SNPs. Validation of the genotyping results by independent methods revealed a success of approximately 80% for the multiplex PCR-based screening regardless of whether intra- or intergenomic SNPs were evaluated. Conclusions Illumina’s GoldenGate® Genotyping Assay can be efficiently used for screening of multidimensional Brassica napus BAC pools. SNP calling was specifically tailored for the evaluation of BAC pool screening data. The developed scoring method can be implemented independently of plant reference samples. It is demonstrated that intergenomic SNPs represent a powerful tool for BAC library screening of a polyploid genome

  12. Endothelial nitric oxide synthase single nucleotide polymorphism and left ventricular function in early chronic kidney disease.

    Directory of Open Access Journals (Sweden)

    Sourabh Chand

    Full Text Available Chronic kidney disease (CKD is associated with accelerated cardiovascular disease and heart failure. Endothelial nitric oxide synthase (eNOS Glu298Asp single nucleotide polymorphism (SNP genotype has been associated with a worse phenotype amongst patients with established heart failure and in patients with progression of their renal disease. The association of a cardiac functional difference in non-dialysis CKD patients with no known previous heart failure, and eNOS gene variant is investigated.140 non-dialysis CKD patients, who had cardiac magnetic resonance (CMR imaging and tissue doppler echocardiography as part of two clinical trials, were genotyped for eNOS Glu298Asp SNP retrospectively.The median estimated glomerular filtration rate (eGFR was 50 mls/min and left ventricular ejection fraction (LVEF was 74% with no overt diastolic dysfunction in this cohort. There were significant differences in LVEF across eNOS genotypes with GG genotype being associated with a worse LVEF compared to other genotypes (LVEF: GG 71%, TG 76%, TT 73%, p = 0.006. After multivariate analysis, (adjusting for age, eGFR, baseline mean arterial pressure, contemporary CMR heart rate, total cholesterol, high sensitive C-reactive protein, body mass index and gender GG genotype was associated with a worse LVEF, and increased LV end-diastolic and systolic index (p = 0.004, 0.049 and 0.009 respectively.eNOS Glu298Asp rs1799983 polymorphism in CKD patients is associated with relevant sub-clinical cardiac remodelling as detected by CMR. This gene variant may therefore represent an important genetic biomarker, and possibly highlight pathways for intervention, in these patients who are at particular risk of worsening cardiac disease as their renal dysfunction progresses.

  13. Single Nucleotide Polymorphism Analysis of Protamine Genes in Infertile Men

    Directory of Open Access Journals (Sweden)

    Ahamad Salamian

    2008-01-01

    Full Text Available Background: Single nucleotide polymorphism (SNPs are considered as one of the underlyingcauses of male infertility. Proper sperm chromatin packaging which involves replacement ofhistones with protamines has profound effect on male fertility. Over 20 SNPs have been reportedfor the protamine 1 and 2.Materials and Methods: The aim of this study was to evaluate the frequency of two previouslyreported SNPs using polymerase chain reaction (PCR-restriction fragment length polymorphism(RFLP approach in 35, 96 and 177 normal, oligozoospermic and azoospermic individuals. TheseSNPs are: 1. A base pair substitution (G at position 197 instead of T in protamine type 1 Openreading frame (ORF including untranslated region, which causes an Arg residue change to Serresidue in a highly conserved region. 2. cytidine nucleotide change to thymidine in position of 248of protamine type 2 ORF which caused a nonsense point mutation.Results: The two mentioned SNPs were not present in the studied population, thus concluding thatthese SNPs can not serves as molecular markers for male infertility diagnosis.Conclusion: The results of our study reveal that in a selected Iranian population, the SNP G197Tand C248T are completely absent and are not associated with male infertility and therefore theseSNPs may not represent a molecular marker for genetic diagnosis of male infertility.

  14. Association of STAT4 gene single nucleotide polymorphisms with Iranian juvenile-onset systemic lupus erythematosus patients.

    Science.gov (United States)

    Salmaninejad, Arash; Mahmoudi, Mahdi; Aslani, Saeed; Poursani, Shiva; Ziaee, Vahid; Rezaei, Nima

    2017-01-01

    Salmaninejad A, Mahmoudi M, Aslani S, Poursani S, Ziaee V, Rezaei N. Association of STAT4 gene single nucleotide polymorphisms with Iranian juvenile-onset systemic lupus erythematosus patients. Turk J Pediatr 2017; 59: 144-149. Juvenile-onset systemic lupus erythematosus (JSLE) is a complex autoimmune disease, characterized by multi-organ involvement. Single nucleotide polymorphisms (SNPs) of signal transducer and activator of transcription 4 (STAT4) gene have been reported to have relationship with the risk of several autoimmune diseases. Studies have provided evidence that STAT4 may participate in the pathogenesis of JSLE. Therefore, we aimed to evaluate the association of STAT4 SNPs with JSLE in Iranian population. In this case-control study, two SNPs of STAT4 gene, including rs7574865 and rs7601754 were genotyped in 50 Iranian JSLE patients and 281 matched healthy individuals using real-time PCR allelic discrimination approach. Our experiments demonstrated that G and T alleles of rs7574865 SNP had similar distribution between patients and controls (P = 0.16). Additionally, differences in frequency of GG, GT, and TT genotypes (P = 0.14, 0.29, and 0.54, respectively) were not significant. Likewise, A and G alleles, as well as genotypes of rs7601754 SNP did not show significant differences between JSLE patients and healthy individuals. Lack of association of rs7574865 and rs7601754 SNPs in STAT4 gene with susceptibility to JSLE in Iranian population, despite their association with the risk of adult SLE in the same population, implicates on difference of genetic background of JSLE and SLE.

  15. A New Single Nucleotide Polymorphism Database for Rainbow Trout Generated Through Whole Genome Resequencing

    Directory of Open Access Journals (Sweden)

    Guangtu Gao

    2018-04-01

    Full Text Available Single-nucleotide polymorphisms (SNPs are highly abundant markers, which are broadly distributed in animal genomes. For rainbow trout (Oncorhynchus mykiss, SNP discovery has been previously done through sequencing of restriction-site associated DNA (RAD libraries, reduced representation libraries (RRL and RNA sequencing. Recently we have performed high coverage whole genome resequencing with 61 unrelated samples, representing a wide range of rainbow trout and steelhead populations, with 49 new samples added to 12 aquaculture samples from AquaGen (Norway that we previously used for SNP discovery. Of the 49 new samples, 11 were double-haploid lines from Washington State University (WSU and 38 represented wild and hatchery populations from a wide range of geographic distribution and with divergent migratory phenotypes. We then mapped the sequences to the new rainbow trout reference genome assembly (GCA_002163495.1 which is based on the Swanson YY doubled haploid line. Variant calling was conducted with FreeBayes and SAMtools mpileup, followed by filtering of SNPs based on quality score, sequence complexity, read depth on the locus, and number of genotyped samples. Results from the two variant calling programs were compared and genotypes of the double haploid samples were used for detecting and filtering putative paralogous sequence variants (PSVs and multi-sequence variants (MSVs. Overall, 30,302,087 SNPs were identified on the rainbow trout genome 29 chromosomes and 1,139,018 on unplaced scaffolds, with 4,042,723 SNPs having high minor allele frequency (MAF > 0.25. The average SNP density on the chromosomes was one SNP per 64 bp, or 15.6 SNPs per 1 kb. Results from the phylogenetic analysis that we conducted indicate that the SNP markers contain enough population-specific polymorphisms for recovering population relationships despite the small sample size used. Intra-Population polymorphism assessment revealed high level of polymorphism and

  16. Reinvestigations of six unusual paternity cases by typing of autosomal single-nucleotide polymorphisms

    DEFF Research Database (Denmark)

    Børsting, Claus; Morling, Niels

    2012-01-01

    and published as case work examples in forensic journals. Here, the cases were reinvestigated by typing the samples for 49 autosomal single-nucleotide polymorphisms (SNPs) using the SNPforID multiplex assay. RESULTS: Three cases were solved by the SNP investigation without the need for any additional testing....... In two cases, the SNP results supported the conclusions based on STRs. In the last case, the SNP results spoke in favor of paternity, and the combined paternity index based on autosomal STRs and SNPs was 12.3 billion. Nevertheless, the alleged father was excluded by X-chromosome typing. CONCLUSION...

  17. Cancer protection elicited by a single nucleotide polymorphism close to the adrenomedullin gene.

    Science.gov (United States)

    Martínez-Herrero, Sonia; Martínez, Alfredo

    2013-04-01

    The risk of developing cancer is regulated by genetic variants, including polymorphisms. Characterizing such variants may help in developing protocols for personalized medicine. Adrenomedullin is a regulatory peptide involved in cancer promotion and progression. Carriers of a single nucleotide polymorphism (SNP) in the proximity of the adrenomedullin gene have lower levels of circulating peptide. The aim of the present work was to investigate whether carriers of this SNP (rs4910118) are protected against cancer. This was a retrospective study. DNA samples were obtained from the Carlos III DNA National Bank (University of Salamanca, Salamanca, Spain). Samples represent a variety of donors and patients from Spain. DNA from patients with breast cancer (n = 238), patients with lung cancer (n = 348), patients with cardiac insufficiency (n = 474), and healthy donors of advanced age (n = 500) was used. All samples were genotyped using double-mismatch PCR, and confirmation was achieved by direct sequencing. The minor allele frequency was calculated in all groups. The Pearson χ(2) was used to compare SNP frequencies. Of 1560 samples, 14 had the minor allele, with a minor allele frequency in healthy donors of 0.90%. Patients with cancer had a statistically significantly lower frequency than healthy donors (odds ratio = 0.216, 95% confidence interval = 0.048-0.967, P = .028). Carriers of the minor allele have a 4.6-fold lower risk of developing cancer than homozygotes for the major allele. Knowledge of the rs4910118 genotype may be useful for stratifying patients in clinical trials and for designing prevention strategies.

  18. Developing single nucleotide polymorphism markers for the identification of pineapple (Ananas comosus) germplasm.

    Science.gov (United States)

    Zhou, Lin; Matsumoto, Tracie; Tan, Hua-Wei; Meinhardt, Lyndel W; Mischke, Sue; Wang, Boyi; Zhang, Dapeng

    2015-01-01

    Pineapple (Ananas comosus [L.] Merr.) is the third most important tropical fruit in the world after banana and mango. As a crop with vegetative propagation, genetic redundancy is a major challenge for efficient genebank management and in breeding. Using expressed sequence tag and nucleotide sequences from public databases, we developed 213 single nucleotide polymorphism (SNP) markers and validated 96 SNPs by genotyping the United States Department of Agriculture - Agricultural Research Service pineapple germplasm collection, maintained in Hilo, Hawaii. The validation resulted in designation of a set of 57 polymorphic SNP markers that revealed a high rate of duplicates in this pineapple collection. Twenty-four groups of duplicates were detected, encompassing 130 of the total 170 A cosmos accessions. The results show that somatic mutation has been the main source of intra-cultivar variations in pineapple. Multivariate clustering and a model-based population stratification suggest that the modern pineapple cultivars are comprised of progenies that are derived from different wild Ananas botanical varieties. Parentage analysis further revealed that both A. comosus var. bracteatus and A. comosus var. ananassoides are likely progenitors of pineapple cultivars. However, the traditional classification of cultivated pineapple into horticultural groups (e.g. 'Cayenne', 'Spanish', 'Queen') was not well supported by the present study. These SNP markers provide robust and universally comparable DNA fingerprints; thus, they can serve as an efficient genotyping tool to assist pineapple germplasm management, propagation of planting material, and pineapple cultivar protection. The high rate of genetic redundancy detected in this pineapple collection suggests the potential impact of applying this technology on other clonally propagated perennial crops.

  19. Assessment of Genetic Diversity in Faba Bean Based on Single Nucleotide Polymorphism

    Directory of Open Access Journals (Sweden)

    Sukhjiwan Kaur

    2014-01-01

    Full Text Available Detection of genetic diversity is important for characterisation of crop plant collections in order to detect the presence of valuable trait variation for use in breeding programs. A collection of faba bean (Vicia faba L. genotypes was evaluated for intra- and inter-population diversity using a set of 768 genome-wide distributed single nucleotide polymorphism (SNP markers, of which 657 obtained successful amplification and detected polymorphisms. Gene diversity and polymorphism information content (PIC values varied between 0.022–0.500 and 0.023–1.00, with averages of 0.363 and 0.287, respectively. The genetic structure of the germplasm collection was analysed and a neighbour-joining (NJ dendrogram was constructed. The faba bean accessions grouped into two major groups, with several additional smaller sub-groups, predominantly on the basis of geographical origin. These results were further supported by principal co-ordinate analysis (PCoA, deriving two major groupings which were differentiated on the basis of site of origin and pedigree relationships. In general, high levels of heterozygosity were observed, presumably due to the partially allogamous nature of the species. The results will facilitate targeted crossing strategies in future faba bean breeding programs in order to achieve genetic gain.

  20. Single nucleotide polymorphism discrimination with and without an ethidium bromide intercalator.

    Science.gov (United States)

    Fenati, Renzo A; Connolly, Ashley R; Ellis, Amanda V

    2017-02-15

    Single nucleotide polymorphism (SNP) genotyping is an important aspect in understanding genetic variations. Here, we discriminate SNPs using toe-hold mediated displacement reactions. The biological target is an 80 nucleotide long double-stranded-DNA from the mtDNA HV1 region, associated with maternal ancestry. This target has been specially designed with a pendant toehold and a cationic fluorophore, ATTO 647N, as a reporter, produced in a polymerase chain reaction. Rates of reaction for the toehold-polymerase chain reaction products (TPPs) with their corresponding complementary displacing sequences, labelled with a Black Hole Quencher 1, followed the order TPP-Cytosine > TPP-Thymine > TPP-Adenine ≥ TPP-Guanine. Non-complementary rates were the slowest with mismatches involving cytosine. These reactions, operating in a static/or contact mode, gave averaged readouts between SNPs within 15 min (with 80-90% quenching), compared to 25-30 min in previous studies involving fluorescence resonance energy transfer. Addition of an intercalating agent, ethidium bromide, retarded the rate of reaction in which cytosine was involved, presumably through stabilization of the base pairing, which resulted in markedly improved discrimination of cytosine containing SNPs. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Correlating single nucleotide polymorphisms in the myostatin gene with performance traits in rabbit

    Directory of Open Access Journals (Sweden)

    E.M. Abdel-Kafy

    2016-09-01

    Full Text Available The Myostatin (MSTN, or Growth and Differentiation Factor 8 (GDF8, gene has been implicated in the double muscling phenomenon, in which a series of mutations render the gene inactive and unable to properly regulate muscle fibre deposition. Single nucleotide polymorphisms (SNPs in the MSTN gene have been correlated to production traits, making it a candidate target gene to enhance livestock and fowl productivity. This study aimed to assess any association of three SNPs in the rabbit MSTN gene (c.713T>A in exon 2, c.747+34C>T in intron 2, and c.*194A>G in 3’-untranslated region and their combinations, with carcass, production and reproductive traits. The investigated traits included individual body weight, daily body weight gain, carcass traits and reproductive traits. The 3 SNPs were screened using PCR-restriction fragment length polymorphism (RFLP-based analysis and the effects of the different SNP genotypes and their combinations were estimated in a rabbit population. Additionally, additive and dominance effects were estimated for significant traits. The results found no significant association between the c.713 T>A SNP and all the examined traits. Allele T at the c.747+34C>T SNP was only significantly associated (PG, allele G was significantly associated (PG SNP also had positive effects on most carcass traits. The estimated additive genetic effect for the c.*194A>G SNP was significant (PA and c.747+34C>T, GG at the c.*194A>G SNP correlated with highest values in body weight and daily weight gain. In conclusion, the ‘G’ allele at the c.*194A>G SNP had positive effects on growth and carcass traits and so could be used as a favourable allele in planning rabbit selection. Further population-wide studies are necessary to test the association of the c.*194A>G SNP with carcass traits. We also recommend evaluation of the potential effects of the c.*194A>G SNP on MSTN gene expression.

  2. Risk of estrogen receptor-positive and -negative breast cancer and single-nucleotide polymorphism 2q35-rs13387042

    DEFF Research Database (Denmark)

    Milne, Roger L; Benítez, Javier; Nevanlinna, Heli

    2009-01-01

    BACKGROUND: A recent genome-wide association study identified single-nucleotide polymorphism (SNP) 2q35-rs13387042 as a marker of susceptibility to estrogen receptor (ER)-positive breast cancer. We attempted to confirm this association using the Breast Cancer Association Consortium. METHODS: 2q35...

  3. A Comprehensive Experiment for Molecular Biology: Determination of Single Nucleotide Polymorphism in Human REV3 Gene Using PCR-RFLP

    Science.gov (United States)

    Zhang, Xu; Shao, Meng; Gao, Lu; Zhao, Yuanyuan; Sun, Zixuan; Zhou, Liping; Yan, Yongmin; Shao, Qixiang; Xu, Wenrong; Qian, Hui

    2017-01-01

    Laboratory exercise is helpful for medical students to understand the basic principles of molecular biology and to learn about the practical applications of molecular biology. We have designed a lab course on molecular biology about the determination of single nucleotide polymorphism (SNP) in human REV3 gene, the product of which is a subunit of…

  4. Whole Genome Association Study to Detect Single Nucleotide Polymorphisms for Behavior in Sapsaree Dog (

    Directory of Open Access Journals (Sweden)

    J. H. Ha

    2015-07-01

    Full Text Available The purpose of this study was to characterize genetic architecture of behavior patterns in Sapsaree dogs. The breed population (n = 8,256 has been constructed since 1990 over 12 generations and managed at the Sapsaree Breeding Research Institute, Gyeongsan, Korea. Seven behavioral traits were investigated for 882 individuals. The traits were classified as a quantitative or a categorical group, and heritabilities (h2 and variance components were estimated under the Animal model using ASREML 2.0 software program. In general, the h2 estimates of the traits ranged between 0.00 and 0.16. Strong genetic (rG and phenotypic (rP correlations were observed between nerve stability, affability and adaptability, i.e. 0.9 to 0.94 and 0.46 to 0.68, respectively. To detect significant single nucleotide polymorphism (SNP for the behavioral traits, a total of 134 and 60 samples were genotyped using the Illumina 22K CanineSNP20 and 170K CanineHD bead chips, respectively. Two datasets comprising 60 (Sap60 and 183 (Sap183 samples were analyzed, respectively, of which the latter was based on the SNPs that were embedded on both the 22K and 170K chips. To perform genome-wide association analysis, each SNP was considered with the residuals of each phenotype that were adjusted for sex and year of birth as fixed effects. A least squares based single marker regression analysis was followed by a stepwise regression procedure for the significant SNPs (p<0.01, to determine a best set of SNPs for each trait. A total of 41 SNPs were detected with the Sap183 samples for the behavior traits. The significant SNPs need to be verified using other samples, so as to be utilized to improve behavior traits via marker-assisted selection in the Sapsaree population.

  5. Single nucleotide polymorphisms typing of Mycobacterium leprae reveals focal transmission of leprosy in high endemic regions of India.

    Science.gov (United States)

    Lavania, M; Jadhav, R S; Turankar, R P; Chaitanya, V S; Singh, M; Sengupta, U

    2013-11-01

    Earlier studies indicate that genotyping of Mycobaterium leprae based on single-nucleotide polymorphisms (SNPs) is useful for analysis of the global spread of leprosy. In the present study, we investigated the diversity of M. leprae at eight SNP loci using 180 clinical isolates obtained from patients with leprosy residing mainly in Delhi and Purulia (West Bengal) regions. It was observed that the frequency of SNP type 1 and subtype D was most predominant in the Indian population. Further, the SNP type 2 subtype E was noted only from East Delhi region and SNP type 2 subtype G was noted only from the nearby areas of Hoogly district of West Bengal. These results indicate the occurrence of focal transmission of M. leprae infection and demonstrate that analysis by SNP typing has great potential to help researchers in understanding the transmission of M. leprae infection in the community. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  6. Genome-Wide Association Mapping for Intelligence in Military Working Dogs: Canine Cohort, Canine Intelligence Assessment Regimen, Genome-Wide Single Nucleotide Polymorphism (SNP) Typing, and Unsupervised Classification Algorithm for Genome-Wide Association Data Analysis

    Science.gov (United States)

    2011-09-01

    SNP Array v2. A ‘proof-of-concept’ advanced data mining algorithm for unsupervised analysis of genome-wide association study (GWAS) dataset was... Opal F AUS Yes U141 Peggs F AUS Yes U142 Taxi F AUS Yes U143 Riso MI MAL Yes U144 Szarik MI GSD Yes U145 Astor MI MAL Yes U146 Roy MC MAL Yes... mining of genetic studies in general, and especially GWAS. As a proof-of-concept, a classification analysis of the WG SNP typing dataset of a

  7. Association of prediabetes-associated single nucleotide polymorphisms with microalbuminuria.

    Science.gov (United States)

    Choi, Jong Wook; Moon, Shinje; Jang, Eun Jung; Lee, Chang Hwa; Park, Joon-Sung

    2017-01-01

    Increased glycemic exposure, even below the diagnostic criteria for diabetes mellitus, is crucial in the pathogenesis of diabetic microvascular complications represented by microalbuminuria. Nonetheless, there is limited evidence regarding which single nucleotide polymorphisms (SNPs) are associated with prediabetes and whether genetic predisposition to prediabetes is related to microalbuminuria, especially in the general population. Our objective was to answer these questions. We conducted a genomewide association study (GWAS) separately on two population-based cohorts, Ansung and Ansan, in the Korean Genome and Epidemiology Study (KoGES). The initial GWAS was carried out on the Ansung cohort, followed by a replication study on the Ansan cohort. A total of 5682 native Korean participants without a significant medical illness were classified into either control group (n = 3153) or prediabetic group (n = 2529). In the GWAS, we identified two susceptibility loci associated with prediabetes, one at 17p15.3-p15.1 in the GCK gene and another at 7p15.1 in YKT6. When variations in GCK and YKT6 were used as a model of prediabetes, this genetically determined prediabetes increased microalbuminuria. Multiple logistic regression analyses revealed that fasting glucose concentration in plasma and SNP rs2908289 in GCK were associated with microalbuminuria, and adjustment for age, gender, smoking history, systolic blood pressure, waist circumference, and serum triglyceride levels did not attenuate this association. Our results suggest that prediabetes and the associated SNPs may predispose to microalbuminuria before the diagnosis of diabetes mellitus. Further studies are needed to explore the details of the physiological and molecular mechanisms underlying this genetic association.

  8. Association of prediabetes-associated single nucleotide polymorphisms with microalbuminuria

    Science.gov (United States)

    Choi, Jong Wook; Moon, Shinje; Jang, Eun Jung; Lee, Chang Hwa; Park, Joon-Sung

    2017-01-01

    Increased glycemic exposure, even below the diagnostic criteria for diabetes mellitus, is crucial in the pathogenesis of diabetic microvascular complications represented by microalbuminuria. Nonetheless, there is limited evidence regarding which single nucleotide polymorphisms (SNPs) are associated with prediabetes and whether genetic predisposition to prediabetes is related to microalbuminuria, especially in the general population. Our objective was to answer these questions. We conducted a genomewide association study (GWAS) separately on two population-based cohorts, Ansung and Ansan, in the Korean Genome and Epidemiology Study (KoGES). The initial GWAS was carried out on the Ansung cohort, followed by a replication study on the Ansan cohort. A total of 5682 native Korean participants without a significant medical illness were classified into either control group (n = 3153) or prediabetic group (n = 2529). In the GWAS, we identified two susceptibility loci associated with prediabetes, one at 17p15.3-p15.1 in the GCK gene and another at 7p15.1 in YKT6. When variations in GCK and YKT6 were used as a model of prediabetes, this genetically determined prediabetes increased microalbuminuria. Multiple logistic regression analyses revealed that fasting glucose concentration in plasma and SNP rs2908289 in GCK were associated with microalbuminuria, and adjustment for age, gender, smoking history, systolic blood pressure, waist circumference, and serum triglyceride levels did not attenuate this association. Our results suggest that prediabetes and the associated SNPs may predispose to microalbuminuria before the diagnosis of diabetes mellitus. Further studies are needed to explore the details of the physiological and molecular mechanisms underlying this genetic association. PMID:28158221

  9. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3.

    Science.gov (United States)

    Cingolani, Pablo; Platts, Adrian; Wang, Le Lily; Coon, Melissa; Nguyen, Tung; Wang, Luan; Land, Susan J; Lu, Xiangyi; Ruden, Douglas M

    2012-01-01

    We describe a new computer program, SnpEff, for rapidly categorizing the effects of variants in genome sequences. Once a genome is sequenced, SnpEff annotates variants based on their genomic locations and predicts coding effects. Annotated genomic locations include intronic, untranslated region, upstream, downstream, splice site, or intergenic regions. Coding effects such as synonymous or non-synonymous amino acid replacement, start codon gains or losses, stop codon gains or losses, or frame shifts can be predicted. Here the use of SnpEff is illustrated by annotating ~356,660 candidate SNPs in ~117 Mb unique sequences, representing a substitution rate of ~1/305 nucleotides, between the Drosophila melanogaster w(1118); iso-2; iso-3 strain and the reference y(1); cn(1) bw(1) sp(1) strain. We show that ~15,842 SNPs are synonymous and ~4,467 SNPs are non-synonymous (N/S ~0.28). The remaining SNPs are in other categories, such as stop codon gains (38 SNPs), stop codon losses (8 SNPs), and start codon gains (297 SNPs) in the 5'UTR. We found, as expected, that the SNP frequency is proportional to the recombination frequency (i.e., highest in the middle of chromosome arms). We also found that start-gain or stop-lost SNPs in Drosophila melanogaster often result in additions of N-terminal or C-terminal amino acids that are conserved in other Drosophila species. It appears that the 5' and 3' UTRs are reservoirs for genetic variations that changes the termini of proteins during evolution of the Drosophila genus. As genome sequencing is becoming inexpensive and routine, SnpEff enables rapid analyses of whole-genome sequencing data to be performed by an individual laboratory.

  10. A SNP Genotyping Array for Hexaploid Oat

    Directory of Open Access Journals (Sweden)

    Nicholas A. Tinker

    2014-11-01

    Full Text Available Recognizing a need in cultivated hexaploid oat ( L. for a reliable set of reference single nucleotide polymorphisms (SNPs, we have developed a 6000 (6K BeadChip design containing 257 Infinium I and 5486 Infinium II designs corresponding to 5743 SNPs. Of those, 4975 SNPs yielded successful assays after array manufacturing. These SNPs were discovered based on a variety of bioinformatics pipelines in complementary DNA (cDNA and genomic DNA originating from 20 or more diverse oat cultivars. The array was validated in 1100 samples from six recombinant inbred line (RIL mapping populations and sets of diverse oat cultivars and breeding lines, and provided approximately 3500 discernible Mendelian polymorphisms. Here, we present an annotation of these SNPs, including methods of discovery, gene identification and orthology, population-genetic characteristics, and tentative positions on an oat consensus map. We also evaluate a new cluster-based method of calling SNPs. The SNP design sequences are made publicly available, and the full SNP genotyping platform is available for commercial purchase from an independent third party.

  11. Association between Single Nucleotide Polymorphism rs1044925 and the Risk of Coronary Artery Disease and Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Dong-Feng Wu

    2014-02-01

    Full Text Available The present study was performed to clarify the association between the acyl-CoA:cholesterol acyltransferase-1 (ACAT-1 single nucleotide polymorphism (SNP rs1044925 and the risk of coronary artery disease (CAD and ischemic stroke (IS in the Guangxi Han population. Polymerase chain reaction and restriction fragment length polymorphism was performed to determine the genotypes of the ACAT-1 SNP rs1044925 in 1730 unrelated subjects (CAD, 587; IS, 555; and healthy controls; 588. The genotypic and allelic frequencies of rs1044925 were significantly different between the CAD patients and controls (p = 0.015 and borderline different between the IS patients and controls (p = 0.05. The AC/CC genotypes and C allele were associated with a decreased risk of CAD and IS (CAD: p = 0.014 for AC/CC vs. AA, p = 0.022 for C vs. A; IS: p = 0.014 for AC/CC vs. AA; p = 0.017 for C vs. A. The AC/CC genotypes in the healthy controls, but not in CAD or IS patients, were associated with an increased serum high-density lipoprotein cholesterol (HDL-C concentration. The present study shows that the C allele carriers of ACAT-1 rs1044925 were associated with an increased serum HDL-C level in the healthy controls and decreased risk in CAD and IS patients.

  12. Adiponectin Single Nucleotide Polymorphism (+276G/T) and Its ...

    African Journals Online (AJOL)

    The present study was investigating the association between the single nucleotide polymorphism +276 G/T of the adiponectin gene with serum adiponectin level in patients with coronary artery disease (CAD). In this study 100 healthy controls and 100 Egyptian patients with coronary artery disease of both genders ...

  13. Single nucleotide polymorphisms in the 5'-flanking region of the ...

    African Journals Online (AJOL)

    Prolactin (PRL), a polypeptide hormone synthesized and secreted by the animal's anterior pituitary gland, plays an important role in the regulation of mammalian lactation and avian reproduction. Considering the significant association between single nucleotide polymorphisms (SNPs) in the 5'-flanking region of PRL and ...

  14. Polycystic ovary syndrome: association of a C/T single nucleotide polymorphism at tyrosine kinase domain of insulin receptor gene with pathogenesis among lean Japanese women.

    Science.gov (United States)

    Kashima, Katsunori; Yahata, Tetsuro; Fujita, Kazuyuki; Tanaka, Kenichi

    2013-01-01

    To assess whether the insulin receptor (INSR) gene contributes to genetic susceptibility to polycystic ovary syndrome (PCOS) in a Japanese population. We ex-amined the frequency of the His 1058 C/T single nucleotide polymorphism (SNP) found in exon 17 of the INSR gene in 61 Japanese PCOS patients and 99 Japanese healthy controls. In addition, we analyzed the association between the genotype of this SNP and the clinical phenotypes. The frequency of the C/C genotype was not significantly different between all PCOS patients (47.5%) and controls (35.4%). However, among the lean cases (body mass index PCOS patients (65.0%) as compared with controls (36.6%). We concluded that the His 1058 C/T polymorphism at the tyrosine kinase domain of the INSR gene had a relationship to the pathogenesis of lean PCOS patients in a Japanese population.

  15. Single nucleotide polymorphism markers for low-dose aspirin-associated peptic ulcer and ulcer bleeding.

    Science.gov (United States)

    Shiotani, Akiko; Murao, Takahisa; Fujita, Yoshihiko; Fujimura, Yoshinori; Sakakibara, Takashi; Nishio, Kazuto; Haruma, Ken

    2014-12-01

    In our previous study, the SLCO1B1 521TT genotype and the SLCO1B1*1b haplotype were significantly associated with the risk of peptic ulcer in patients taking low-dose aspirin (LDA). The aim of the present study was to investigate pharmacogenomic profile of LDA-induced peptic ulcer and ulcer bleeding. Patients taking 100 mg of enteric-coated aspirin for cardiovascular diseases and with a peptic ulcer or ulcer bleeding and patients who also participated in endoscopic surveillance were studied. Genome-wide analysis of single nucleotide polymorphisms (SNPs) was performed using the Affymetrix DME Plus Premier Pack. SLCO1B1*1b haplotype and candidate genotypes of genes associated with ulcer bleeding or small bowel bleeding identified by genome-wide analysis were determined using TaqMan SNP Genotyping Assay kits, polymerase chain reaction-restriction fragment length polymorphism, and direct sequencing. Of 593 patients enrolled, 111 patients had a peptic ulcer and 45 had ulcer bleeding. The frequencies of the SLCO1B1*1b haplotype and CHST2 2082 T allele were significantly greater in patients with peptic ulcer and ulcer bleeding compared to the controls. After adjustment for significant factors, the SLCO1B1*1b haplotype was associated with peptic ulcer (OR 2.20, 95% CI 1.24-3.89) and CHST2 2082 T allele with ulcer bleeding (2.57, 1.07-6.17). The CHST2 2082 T allele as well as SLCO1B1*1b haplotype may identify patients at increased risk for aspirin-induced peptic ulcer or ulcer bleeding. © 2014 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  16. Evaluation of single-nucleotide polymorphisms as internal controls in prenatal diagnosis of fetal blood groups.

    Science.gov (United States)

    Doescher, Andrea; Petershofen, Eduard K; Wagner, Franz F; Schunter, Markus; Müller, Thomas H

    2013-02-01

    Determination of fetal blood groups in maternal plasma samples critically depends on adequate amplification of fetal DNA. We evaluated the routine inclusion of 52 single-nucleotide polymorphisms (SNPs) as internal reference in our polymerase chain reaction (PCR) settings to obtain a positive internal control for fetal DNA. DNA from 223 plasma samples of pregnant women was screened for RHD Exons 3, 4, 5, and 7 in a multiplex PCR including 52 SNPs divided into four primer pools. Amplicons were analyzed by single-base extension and the GeneScan method in a genetic analyzer. Results of D screening were compared to standard RHD genotyping of amniotic fluid or real-time PCR of fetal DNA from maternal plasma. The vast majority of all samples (97.8%) demonstrated differences in maternal and fetal SNP patterns when tested with four primer pools. These differences were not observed in less than 2.2% of the samples most probably due to an extraction failure for adequate amounts of fetal DNA. Comparison of the fetal genotypes with independent results did not reveal a single false-negative case among samples (n = 42) with positive internal control and negative fetal RHD typing. Coamplification of 52 SNPs with RHD-specific sequences for fetal blood group determination introduces a valid positive control for the amplification of fetal DNA to avoid false-negative results. This new approach does not require a paternal blood sample. It may also be applicable to other assays for fetal genotyping in maternal blood samples. © 2012 American Association of Blood Banks.

  17. An Improved Consensus Linkage Map of Barley Based on Flow-Sorted Chromosomes and Single Nucleotide Polymorphism Markers

    Directory of Open Access Journals (Sweden)

    María Muñoz-Amatriaín

    2011-11-01

    Full Text Available Recent advances in high-throughput genotyping have made it easier to combine information from different mapping populations into consensus genetic maps, which provide increased marker density and genome coverage compared to individual maps. Previously, a single nucleotide polymorphism (SNP-based genotyping platform was developed and used to genotype 373 individuals in four barley ( L. mapping populations. This led to a 2943 SNP consensus genetic map with 975 unique positions. In this work, we add data from six additional populations and more individuals from one of the original populations to develop an improved consensus map from 1133 individuals. A stringent and systematic analysis of each of the 10 populations was performed to achieve uniformity. This involved reexamination of the four populations included in the previous map. As a consequence, we present a robust consensus genetic map that contains 2994 SNP loci mapped to 1163 unique positions. The map spans 1137.3 cM with an average density of one marker bin per 0.99 cM. A novel application of the genotyping platform for gene detection allowed the assignment of 2930 genes to flow-sorted chromosomes or arms, confirmed the position of 2545 SNP-mapped loci, added chromosome or arm allocations to an additional 370 SNP loci, and delineated pericentromeric regions for chromosomes 2H to 7H. Marker order has been improved and map resolution has been increased by almost 20%. These increased precision outcomes enable more optimized SNP selection for marker-assisted breeding and support association genetic analysis and map-based cloning. It will also improve the anchoring of DNA sequence scaffolds and the barley physical map to the genetic map.

  18. Single Nucleotide Polymorphism Detection Using Au-Decorated Single-Walled Carbon Nanotube Field Effect Transistors

    Directory of Open Access Journals (Sweden)

    Keum-Ju Lee

    2011-01-01

    Full Text Available We demonstrate that Au-cluster-decorated single-walled carbon nanotubes (SWNTs may be used to discriminate single nucleotide polymorphism (SNP. Nanoscale Au clusters were formed on the side walls of carbon nanotubes in a transistor geometry using electrochemical deposition. The effect of Au cluster decoration appeared as hole doping when electrical transport characteristics were examined. Thiolated single-stranded probe peptide nucleic acid (PNA was successfully immobilized on Au clusters decorating single-walled carbon nanotube field-effect transistors (SWNT-FETs, resulting in a conductance decrease that could be explained by a decrease in Au work function upon adsorption of thiolated PNA. Although a target single-stranded DNA (ssDNA with a single mismatch did not cause any change in electrical conductance, a clear decrease in conductance was observed with matched ssDNA, thereby showing the possibility of SNP (single nucleotide polymorphism detection using Au-cluster-decorated SWNT-FETs. However, a power to discriminate SNP target is lost in high ionic environment. We can conclude that observed SNP discrimination in low ionic environment is due to the hampered binding of SNP target on nanoscale surfaces in low ionic conditions.

  19. Single nucleotide polymorphism discrimination with and without an ethidium bromide intercalator

    International Nuclear Information System (INIS)

    Fenati, Renzo A.; Connolly, Ashley R.; Ellis, Amanda V.

    2017-01-01

    Single nucleotide polymorphism (SNP) genotyping is an important aspect in understanding genetic variations. Here, we discriminate SNPs using toe-hold mediated displacement reactions. The biological target is an 80 nucleotide long double-stranded–DNA from the mtDNA HV1 region, associated with maternal ancestry. This target has been specially designed with a pendant toehold and a cationic fluorophore, ATTO 647N, as a reporter, produced in a polymerase chain reaction. Rates of reaction for the toehold-polymerase chain reaction products (TPPs) with their corresponding complementary displacing sequences, labelled with a Black Hole Quencher 1, followed the order TPP–Cytosine > TPP–Thymine > TPP–Adenine ≥ TPP–Guanine. Non-complementary rates were the slowest with mismatches involving cytosine. These reactions, operating in a static/or contact mode, gave averaged readouts between SNPs within 15 min (with 80–90% quenching), compared to 25–30 min in previous studies involving fluorescence resonance energy transfer. Addition of an intercalating agent, ethidium bromide, retarded the rate of reaction in which cytosine was involved, presumably through stabilization of the base pairing, which resulted in markedly improved discrimination of cytosine containing SNPs. - Highlights: • Fluorophores and DNA intercalators effect the rate of toehold-mediated strand displacement. • Ethidium bromide had a destabilizing effect on mismatches that contained cytosine. • A cationic fluorophore and Black Hole Quencher 1 strand displacement system was 2–3 times faster than a FRET system. • This enabled SNP detection using toehold-mediated strand displacement in 15 min.

  20. Single nucleotide polymorphism discrimination with and without an ethidium bromide intercalator

    Energy Technology Data Exchange (ETDEWEB)

    Fenati, Renzo A.; Connolly, Ashley R. [Flinders Centre for Nanoscale Science and Technology, Flinders University, Sturt Road, Bedford Park, Adelaide, South Australia 5042 (Australia); Ellis, Amanda V., E-mail: amanda.ellis@flinders.edu.au [Flinders Centre for Nanoscale Science and Technology, Flinders University, Sturt Road, Bedford Park, Adelaide, South Australia 5042 (Australia); Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, VIC 3010 (Australia)

    2017-02-15

    Single nucleotide polymorphism (SNP) genotyping is an important aspect in understanding genetic variations. Here, we discriminate SNPs using toe-hold mediated displacement reactions. The biological target is an 80 nucleotide long double-stranded–DNA from the mtDNA HV1 region, associated with maternal ancestry. This target has been specially designed with a pendant toehold and a cationic fluorophore, ATTO 647N, as a reporter, produced in a polymerase chain reaction. Rates of reaction for the toehold-polymerase chain reaction products (TPPs) with their corresponding complementary displacing sequences, labelled with a Black Hole Quencher 1, followed the order TPP–Cytosine > TPP–Thymine > TPP–Adenine ≥ TPP–Guanine. Non-complementary rates were the slowest with mismatches involving cytosine. These reactions, operating in a static/or contact mode, gave averaged readouts between SNPs within 15 min (with 80–90% quenching), compared to 25–30 min in previous studies involving fluorescence resonance energy transfer. Addition of an intercalating agent, ethidium bromide, retarded the rate of reaction in which cytosine was involved, presumably through stabilization of the base pairing, which resulted in markedly improved discrimination of cytosine containing SNPs. - Highlights: • Fluorophores and DNA intercalators effect the rate of toehold-mediated strand displacement. • Ethidium bromide had a destabilizing effect on mismatches that contained cytosine. • A cationic fluorophore and Black Hole Quencher 1 strand displacement system was 2–3 times faster than a FRET system. • This enabled SNP detection using toehold-mediated strand displacement in 15 min.

  1. Identification and analysis of Single Nucleotide Polymorphisms (SNPs in the mosquito Anopheles funestus, malaria vector

    Directory of Open Access Journals (Sweden)

    Hemingway Janet

    2007-01-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are the most common source of genetic variation in eukaryotic species and have become an important marker for genetic studies. The mosquito Anopheles funestus is one of the major malaria vectors in Africa and yet, prior to this study, no SNPs have been described for this species. Here we report a genome-wide set of SNP markers for use in genetic studies on this important human disease vector. Results DNA fragments from 50 genes were amplified and sequenced from 21 specimens of An. funestus. A third of specimens were field collected in Malawi, a third from a colony of Mozambican origin and a third form a colony of Angolan origin. A total of 494 SNPs including 303 within the coding regions of genes and 5 indels were identified. The physical positions of these SNPs in the genome are known. There were on average 7 SNPs per kilobase similar to that observed in An. gambiae and Drosophila melanogaster. Transitions outnumbered transversions, at a ratio of 2:1. The increased frequency of transition substitutions in coding regions is likely due to the structure of the genetic code and selective constraints. Synonymous sites within coding regions showed a higher polymorphism rate than non-coding introns or 3' and 5'flanking DNA with most of the substitutions in coding regions being observed at the 3rd codon position. A positive correlation in the level of polymorphism was observed between coding and non-coding regions within a gene. By genotyping a subset of 30 SNPs, we confirmed the validity of the SNPs identified during this study. Conclusion This set of SNP markers represents a useful tool for genetic studies in An. funestus, and will be useful in identifying candidate genes that affect diverse ranges of phenotypes that impact on vector control, such as resistance insecticide, mosquito behavior and vector competence.

  2. Pro-inflammatory cytokine single nucleotide polymorphisms in Kawasaki disease.

    Science.gov (United States)

    Assari, Raheleh; Aghighi, Yahya; Ziaee, Vahid; Sadr, Maryam; Rahmani, Farzaneh; Rezaei, Arezou; Sadr, Zeinab; Moradinejad, Mohammad Hassan; Raeeskarami, Seyed Reza; Rezaei, Nima

    2016-07-25

    Kawasaki disease (KD) is a systemic vasculitis of children associated with cardiovascular sequelae. Proinflammatory cytokines play a major role in KD pathogenesis. However, their role is both influenced and modified by regulatory T-cells. IL-1 gene cluster, IL-6 and TNF-α polymorphisms have shown significant associations with some vasculitides. Herein we investigated their role in KD. Fifty-five patients with KD who were randomly selected from referrals to the main pediatric hospital were enrolled in this case-control study. Single nucleotide polymorphisms (SNPs) of the following genes were assessed in patients and 140 healthy subjects as control group: IL-1α at -889 (rs1800587), IL-1β at -511 (rs16944), IL-1β at +3962 (rs1143634), IL-1R at Pst-I 1970 (rs2234650), IL-1RN/A at Mspa-I 11100 (rs315952), TNF-α at -308 (rs1800629), TNF-α at -238, IL-6 at -174 (rs1800795) and IL-6 at +565. Twenty-one percent of the control group had A allele at TNF-α -238 while only 8% of KD patients had A allele at this position (P = 0.003, OR [95%CI] = 0.32 [0.14-0.71]). Consistently, TNF-α genotype GG at -238 had significant association with KD (OR [95% CI] = 4.31 [1.79-10.73]). Most controls carried the CG genotype at IL-6 -174 (n = 93 [66.9%]) while GG genotype was the most common genotype (n = 27 [49%]) among patients. Carriers of the GG haplotype at TNF-α (-308, -238) were significantly more prevalent among the KD group. No association was found between IL-1 gene cluster, allelic or haplotypic variants and KD. TNF-α GG genotype at -238 and GG haplotype at positions -308 and -238 were associated with KD in an Iranian population. © 2016 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.

  3. The cardiovascular implication of single nucleotide polymorphisms of chromosome 9p21 locus among Arab population

    Directory of Open Access Journals (Sweden)

    Ayman A El-Menyar

    2015-01-01

    Full Text Available Background: Based on several reports including genome-wide association studies, genetic variability has been linked with higher (nearly half susceptibility toward coronary artery disease (CAD. We aimed to evaluate the association of chromosome 9p21 single nucleotide polymorphisms (SNPs: rs2383207, rs10757278, and rs10757274 with the risk and severity of CAD among Arab population. Materials and Methods: A prospective observational case-control study was conducted between 2011 and 2012, in which 236 patients with CAD were recruited from the Heart Hospital in Qatar. Patients were categorized according to their coronary angiographic findings. Also, 152 healthy volunteers were studied to determine if SNPs are associated with risk of CAD. All subjects were genotyped for SNPs (rs2383207, rs2383206, rs10757274 and rs10757278 using allele-specific real-time polymerase chain reaction. Results: Patients with CAD had a mean age of 57 ± 10; of them 77% were males, 54% diabetics, and 25% had family history of CAD. All SNPs were in Hardy-Weinberg equilibrium except rs2383206, with call rate >97%. After adjusting for age, sex and body mass index, the carriers of GG genotype for rs2383207 have increased the risk of having CAD with odds ratio (OR of 1.52 (95% confidence interval [CI] = 1.01-2.961, P = 0.046. Also, rs2383207 contributed to CAD severity with adjusted OR 1.80 (95% CI = 1.04-3.12, P = 0.035 based on the dominant genetic model. The other SNPs (rs10757274 and rs10757278 showed no significant association with the risk of CAD or its severity. Conclusion: Among Arab population in Qatar, only G allele of rs2483207 SNP is significantly associated with risk of CAD and its severity.

  4. Association of the Single Nucleotide Polymorphisms in , , and with Blood Related Traits in Pigs

    Directory of Open Access Journals (Sweden)

    Jae-Bong Lee

    2016-12-01

    Full Text Available The aim of this study was to detect positional candidate genes located within the support interval (SI regions based on the results of red blood cell, mean corpuscular volume (MCV, and mean corpuscular hemoglobin quantitative trait locus (QTL in Sus scrofa chromosome 13, and to verify the correlation between specific single-nucleotide polymorphisms (SNPs located in the exonic region of the positional candidate gene and the three genetic traits. The flanking markers of the three QTL SI regions are SW38 and S0215. Within the QTL SI regions, 44 genes were located, and runt-related transcription factor 1, dual-specificity tyrosine-(Y-phosphorylation regulated kinase 1A (DYRK1A, and potassium inwardly-rectifying channel, subfamily J, member 15 KCNJ15–which are reported to be related to the hematological traits and clinical features of Down syndrome–were selected as positional candidate genes. The ten SNPs located in the exonic region of the three genes were detected by next generation sequencing. A total of 1,232 pigs of an F2 resource population between Landrace and Korean native pigs were genotyped. To investigate the effects of the three genes on each genotype, a mixed-effect model which is the considering family structure model was used to evaluate the associations between the SNPs and three genetic traits in the F2 intercross population. Among them, the MCV level was highly significant (nominal p = 9.8×10−9 in association with the DYRK1A-SNP1 (c.2989 G

  5. Single nucleotide polymorphism discovery in bovine liver using RNA-seq technology.

    Science.gov (United States)

    Pareek, Chandra Shekhar; Błaszczyk, Paweł; Dziuba, Piotr; Czarnik, Urszula; Fraser, Leyland; Sobiech, Przemysław; Pierzchała, Mariusz; Feng, Yaping; Kadarmideen, Haja N; Kumar, Dibyendu

    2017-01-01

    RNA-seq is a useful next-generation sequencing (NGS) technology that has been widely used to understand mammalian transcriptome architecture and function. In this study, a breed-specific RNA-seq experiment was utilized to detect putative single nucleotide polymorphisms (SNPs) in liver tissue of young bulls of the Polish Red, Polish Holstein-Friesian (HF) and Hereford breeds, and to understand the genomic variation in the three cattle breeds that may reflect differences in production traits. The RNA-seq experiment on bovine liver produced 107,114,4072 raw paired-end reads, with an average of approximately 60 million paired-end reads per library. Breed-wise, a total of 345.06, 290.04 and 436.03 million paired-end reads were obtained from the Polish Red, Polish HF, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA) read alignments showed that 81.35%, 82.81% and 84.21% of the mapped sequencing reads were properly paired to the Polish Red, Polish HF, and Hereford breeds, respectively. This study identified 5,641,401 SNPs and insertion and deletion (indel) positions expressed in the bovine liver with an average of 313,411 SNPs and indel per young bull. Following the removal of the indel mutations, a total of 195,3804, 152,7120 and 205,3184 raw SNPs expressed in bovine liver were identified for the Polish Red, Polish HF, and Hereford breeds, respectively. Breed-wise, three highly reliable breed-specific SNP-databases (SNP-dbs) with 31,562, 24,945 and 28,194 SNP records were constructed for the Polish Red, Polish HF, and Hereford breeds, respectively. Using a combination of stringent parameters of a minimum depth of ≥10 mapping reads that support the polymorphic nucleotide base and 100% SNP ratio, 4,368, 3,780 and 3,800 SNP records were detected in the Polish Red, Polish HF, and Hereford breeds, respectively. The SNP detections using RNA-seq data were successfully validated by kompetitive allele-specific PCR (KASPTM) SNP genotyping assay. The comprehensive

  6. Single nucleotide polymorphism discovery in bovine liver using RNA-seq technology.

    Directory of Open Access Journals (Sweden)

    Chandra Shekhar Pareek

    Full Text Available RNA-seq is a useful next-generation sequencing (NGS technology that has been widely used to understand mammalian transcriptome architecture and function. In this study, a breed-specific RNA-seq experiment was utilized to detect putative single nucleotide polymorphisms (SNPs in liver tissue of young bulls of the Polish Red, Polish Holstein-Friesian (HF and Hereford breeds, and to understand the genomic variation in the three cattle breeds that may reflect differences in production traits.The RNA-seq experiment on bovine liver produced 107,114,4072 raw paired-end reads, with an average of approximately 60 million paired-end reads per library. Breed-wise, a total of 345.06, 290.04 and 436.03 million paired-end reads were obtained from the Polish Red, Polish HF, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA read alignments showed that 81.35%, 82.81% and 84.21% of the mapped sequencing reads were properly paired to the Polish Red, Polish HF, and Hereford breeds, respectively. This study identified 5,641,401 SNPs and insertion and deletion (indel positions expressed in the bovine liver with an average of 313,411 SNPs and indel per young bull. Following the removal of the indel mutations, a total of 195,3804, 152,7120 and 205,3184 raw SNPs expressed in bovine liver were identified for the Polish Red, Polish HF, and Hereford breeds, respectively. Breed-wise, three highly reliable breed-specific SNP-databases (SNP-dbs with 31,562, 24,945 and 28,194 SNP records were constructed for the Polish Red, Polish HF, and Hereford breeds, respectively. Using a combination of stringent parameters of a minimum depth of ≥10 mapping reads that support the polymorphic nucleotide base and 100% SNP ratio, 4,368, 3,780 and 3,800 SNP records were detected in the Polish Red, Polish HF, and Hereford breeds, respectively. The SNP detections using RNA-seq data were successfully validated by kompetitive allele-specific PCR (KASPTM SNP genotyping assay. The

  7. Single nucleotide polymorphism discovery in rainbow trout by deep sequencing of a reduced representation library

    Directory of Open Access Journals (Sweden)

    Salem Mohamed

    2009-11-01

    Full Text Available Abstract Background To enhance capabilities for genomic analyses in rainbow trout, such as genomic selection, a large suite of polymorphic markers that are amenable to high-throughput genotyping protocols must be identified. Expressed Sequence Tags (ESTs have been used for single nucleotide polymorphism (SNP discovery in salmonids. In those strategies, the salmonid semi-tetraploid genomes often led to assemblies of paralogous sequences and therefore resulted in a high rate of false positive SNP identification. Sequencing genomic DNA using primers identified from ESTs proved to be an effective but time consuming methodology of SNP identification in rainbow trout, therefore not suitable for high throughput SNP discovery. In this study, we employed a high-throughput strategy that used pyrosequencing technology to generate data from a reduced representation library constructed with genomic DNA pooled from 96 unrelated rainbow trout that represent the National Center for Cool and Cold Water Aquaculture (NCCCWA broodstock population. Results The reduced representation library consisted of 440 bp fragments resulting from complete digestion with the restriction enzyme HaeIII; sequencing produced 2,000,000 reads providing an average 6 fold coverage of the estimated 150,000 unique genomic restriction fragments (300,000 fragment ends. Three independent data analyses identified 22,022 to 47,128 putative SNPs on 13,140 to 24,627 independent contigs. A set of 384 putative SNPs, randomly selected from the sets produced by the three analyses were genotyped on individual fish to determine the validation rate of putative SNPs among analyses, distinguish apparent SNPs that actually represent paralogous loci in the tetraploid genome, examine Mendelian segregation, and place the validated SNPs on the rainbow trout linkage map. Approximately 48% (183 of the putative SNPs were validated; 167 markers were successfully incorporated into the rainbow trout linkage map. In

  8. Single nucleotide polymorphism discovery in rainbow trout by deep sequencing of a reduced representation library.

    Science.gov (United States)

    Sánchez, Cecilia Castaño; Smith, Timothy P L; Wiedmann, Ralph T; Vallejo, Roger L; Salem, Mohamed; Yao, Jianbo; Rexroad, Caird E

    2009-11-25

    To enhance capabilities for genomic analyses in rainbow trout, such as genomic selection, a large suite of polymorphic markers that are amenable to high-throughput genotyping protocols must be identified. Expressed Sequence Tags (ESTs) have been used for single nucleotide polymorphism (SNP) discovery in salmonids. In those strategies, the salmonid semi-tetraploid genomes often led to assemblies of paralogous sequences and therefore resulted in a high rate of false positive SNP identification. Sequencing genomic DNA using primers identified from ESTs proved to be an effective but time consuming methodology of SNP identification in rainbow trout, therefore not suitable for high throughput SNP discovery. In this study, we employed a high-throughput strategy that used pyrosequencing technology to generate data from a reduced representation library constructed with genomic DNA pooled from 96 unrelated rainbow trout that represent the National Center for Cool and Cold Water Aquaculture (NCCCWA) broodstock population. The reduced representation library consisted of 440 bp fragments resulting from complete digestion with the restriction enzyme HaeIII; sequencing produced 2,000,000 reads providing an average 6 fold coverage of the estimated 150,000 unique genomic restriction fragments (300,000 fragment ends). Three independent data analyses identified 22,022 to 47,128 putative SNPs on 13,140 to 24,627 independent contigs. A set of 384 putative SNPs, randomly selected from the sets produced by the three analyses were genotyped on individual fish to determine the validation rate of putative SNPs among analyses, distinguish apparent SNPs that actually represent paralogous loci in the tetraploid genome, examine Mendelian segregation, and place the validated SNPs on the rainbow trout linkage map. Approximately 48% (183) of the putative SNPs were validated; 167 markers were successfully incorporated into the rainbow trout linkage map. In addition, 2% of the sequences from the

  9. A comprehensive experiment for molecular biology: Determination of single nucleotide polymorphism in human REV3 gene using PCR-RFLP.

    Science.gov (United States)

    Zhang, Xu; Shao, Meng; Gao, Lu; Zhao, Yuanyuan; Sun, Zixuan; Zhou, Liping; Yan, Yongmin; Shao, Qixiang; Xu, Wenrong; Qian, Hui

    2017-07-08

    Laboratory exercise is helpful for medical students to understand the basic principles of molecular biology and to learn about the practical applications of molecular biology. We have designed a lab course on molecular biology about the determination of single nucleotide polymorphism (SNP) in human REV3 gene, the product of which is a subunit of DNA polymerase ζ and SNPs in this gene are associated with altered susceptibility to cancer. This newly designed experiment is composed of three parts, including genomic DNA extraction, gene amplification by PCR, and genotyping by RFLP. By combining these activities, the students are not only able to learn a series of biotechniques in molecular biology, but also acquire the ability to link the learned knowledge with practical applications. This comprehensive experiment will help the medical students improve the conceptual understanding of SNP and the technical understanding of SNP detection. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):299-304, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  10. The importance of -460 C/T and +405 G/C single nucleotide polymorphisms to the function of vascular endothelial growth factor A in colorectal cancer

    DEFF Research Database (Denmark)

    Hansen, Torben F; Spindler, Karen-Lise G; Lorentzen, Karen A

    2010-01-01

    collected from 113 patients surgically resected for colorectal cancer. SNPs were analysed from genomic DNA by PCR, the VEGF-A gene expression analysis was performed by RT-PCR and protein analysis by ELISA. RESULTS: The T-allele in the -460 C/T SNP and the C-allele in the +405 G/C SNP were associated...... with significantly lower VEGF-A protein levels in normal colorectal tissue. There were no differences in protein levels in the malignant tissue according to genotypes. No differences were observed at the gene expression levels either. CONCLUSION: The results indicate that the two SNPs have a functional influence......PURPOSE: The present study investigated the functional influence of the single nucleotide polymorphisms (SNPs) -460 C/T and +405 G/C at vascular endothelial growth factor A (VEGF-A), mRNA and protein levels in colorectal cancer (CRC) and normal colorectal tissue. METHODS: Blood and tissue were...

  11. Wheat in the Mediterranean revisited--tetraploid wheat landraces assessed with elite bread wheat Single Nucleotide Polymorphism markers.

    Science.gov (United States)

    Oliveira, Hugo R; Hagenblad, Jenny; Leino, Matti W; Leigh, Fiona J; Lister, Diane L; Penã-Chocarro, Leonor; Jones, Martin K

    2014-05-08

    Single Nucleotide Polymorphism (SNP) panels recently developed for the assessment of genetic diversity in wheat are primarily based on elite varieties, mostly those of bread wheat. The usefulness of such SNP panels for studying wheat evolution and domestication has not yet been fully explored and ascertainment bias issues can potentially affect their applicability when studying landraces and tetraploid ancestors of bread wheat. We here evaluate whether population structure and evolutionary history can be assessed in tetraploid landrace wheats using SNP markers previously developed for the analysis of elite cultivars of hexaploid wheat. We genotyped more than 100 tetraploid wheat landraces and wild emmer wheat accessions, some of which had previously been screened with SSR markers, for an existing SNP panel and obtained publically available genotypes for the same SNPs for hexaploid wheat varieties and landraces. Results showed that quantification of genetic diversity can be affected by ascertainment bias but that the effects of ascertainment bias can at least partly be alleviated by merging SNPs to haplotypes. Analyses of population structure and genetic differentiation show strong subdivision between the tetraploid wheat subspecies, except for durum and rivet that are not separable. A more detailed population structure of durum landraces could be obtained than with SSR markers. The results also suggest an emmer, rather than durum, ancestry of bread wheat and with gene flow from wild emmer. SNP markers developed for elite cultivars show great potential for inferring population structure and can address evolutionary questions in landrace wheat. Issues of marker genome specificity and mapping need, however, to be addressed. Ascertainment bias does not seem to interfere with the ability of a SNP marker system developed for elite bread wheat accessions to detect population structure in other types of wheat.

  12. Association of the multidrug resistance-1 gene single-nucleotide polymorphisms with the tacrolimus dose requirements in renal transplant recipients.

    Science.gov (United States)

    Anglicheau, Dany; Verstuyft, Céline; Laurent-Puig, Pierre; Becquemont, Laurent; Schlageter, Marie-Hélène; Cassinat, Bruno; Beaune, Philippe; Legendre, Christophe; Thervet, Eric

    2003-07-01

    The immunosuppressive drug tacrolimus, whose pharmacokinetic characteristics display large interindividual variations, is a substrate for P-glycoprotein (P-gp), the product of the multidrug resistance-1 (MDR1) gene. Some of the single nucleotide polymorphisms (SNP) of MDR1 reported correlated with the in vivo activity of P-gp. Because P-gp is known to control tacrolimus intestinal absorption, it was postulated that these polymorphisms are associated with tacrolimus pharmacokinetic variations in renal transplant recipients. The objective of this study was to evaluate in a retrospective study of 81 renal transplant recipients the effect on tacrolimus dosages and concentration/dose ratio of four frequent MDR1 SNP possibly associated with P-gp function (T-129C in exon 1b, 1236C>T in exon 12, 2677G>T,A in exon 21, and 3435C>T in exon 26). As in the general population, the SNP in exons 12, 21, and 26 were frequent (16, 17.3, and 22.2% for the variant homozygous genotype, respectively) and exhibited incomplete linkage disequilibrium. One month after tacrolimus introduction, exon 21 SNP correlated significantly with the daily tacrolimus dose (P < or = 0.05) and the concentration/dose ratio (P < or = 0.02). Tacrolimus dose requirements were 40% higher in homozygous than wild-type patients for this SNP. The concentration/dose ratio was 36% lower in the wild-type patients, suggesting that, for a given dose, their tacrolimus blood concentration is lower. Haplotype analysis substantiated these results and suggested that exons 26 and 21 SNP may be associated with tacrolimus dose requirements. Genotype monitoring of the MDR1 gene reliably predicts the optimal dose of tacrolimus in renal transplant recipients and may predict the initial daily dose needed by individual patients to obtain adequate immunosuppression.

  13. Association analysis of two single-nucleotide polymorphisms of the RELN gene with autism in the South African population

    KAUST Repository

    Sharma, Jyoti Rajan

    2013-02-01

    Background: Autism (MIM209850) is a neurodevelopmental disorder characterized by a triad of impairments, namely impairment in social interaction, impaired communication skills, and restrictive and repetitive behavior. A number of family and twin studies have demonstrated that genetic factors play a pivotal role in the etiology of autistic disorder. Various reports of reduced levels of reelin protein in the brain and plasma in autistic patients highlighted the role of the reelin gene (RELN) in autism. There is no such published study on the South African (SA) population. Aims: The aim of the present study was to find the genetic association of intronic rs736707 and exonic rs362691 (single-nucleotide polymorphisms [SNPs] of the RELN gene) with autism in a SA population. Methods: Genomic DNA was isolated from cheek cell swabs from autistic (136) as well as control (208) subjects. The TaqMan ® Real-Time polymerase chain reaction and genotyping assay was utilized to determine the genotypes. Results: A significant association of SNP rs736707, but not for SNP rs362691, with autism in the SA population is observed. Conclusion: There might be a possible role of RELN in autism, especially for SA populations. The present study represents the first report on genetic association studies on the RELN gene in the SA population. © 2013, Mary Ann Liebert, Inc.

  14. Single nucleotide polymorphism isolated from a novel EST dataset in garden asparagus (Asparagus officinalis L.).

    Science.gov (United States)

    Mercati, Francesco; Riccardi, Paolo; Leebens-Mack, Jim; Abenavoli, Maria Rosa; Falavigna, Agostino; Sunseri, Francesco

    2013-04-01

    Single nucleotide polymorphisms (SNPs) and simple sequence repeats (SSR) are abundant and evenly distributed co-dominant molecular markers in plant genomes. SSRs are valuable for marker assisted breeding and positional cloning of genes associated traits of interest. Although several high throughput platforms have been developed to identify SNP and SSR markers for analysis of segregant plant populations, breeding in garden asparagus (Asparagus officinalis L.) has been limited by a low content of such markers. In this study massively parallel GS-FLX pyro-sequencing technology (454 Life Sciences) has been used to sequence and compare transcriptome from two genotypes: a rust tolerant male (1770) and a susceptible female (G190). A total of 122,963 and 99,368 sequence reads, with an average length of 245.7bp, have been recovered from accessions 1770 and 190 respectively. A computational pipeline has been used to predict and visually inspect putative SNPs and SSR sequences. Analysis of Gene Ontology (GO) slim annotation assignments for all assembled uniscripts indicated that the 24,403 assemblies represent genes from a broad array of functions. Further, over 1800 putative SNPs and 1000 SSRs were detected. One hundred forty-four SNPs together with 60 selected SSRs were validated and used to develop a preliminary genetic map by using a large BC(1) population, derived from 1770 and G190. The abundance of SNPs and SSRs provides a foundation for the development of saturated genetic maps and their utilization in assisted asparagus breeding programs. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Assembling a dual purpose TaqMan-based panel of single-nucleotide polymorphism markers in rainbow trout and steelhead (Oncorhynchus mykiss) for association mapping and population genetics analysis

    DEFF Research Database (Denmark)

    Hansen, Mette H H; Young, Sewall; Jørgensen, Hanne Birgitte Hede

    2011-01-01

    We establish a TaqMan-based assay panel for genotyping single-nucleotide polymorphisms in rainbow trout and steelhead (Oncorhynchus mykiss). We develop 22 novel single-nucleotide polymorphism markers based on new steelhead sequence data and on assays from sister taxa. Additionally, we adapt 154 p...

  16. Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Allen, Alexandra M; Barker, Gary L A; Berry, Simon T; Coghill, Jane A; Gwilliam, Rhian; Kirby, Susan; Robinson, Phil; Brenchley, Rachel C; D'Amore, Rosalinda; McKenzie, Neil; Waite, Darren; Hall, Anthony; Bevan, Michael; Hall, Neil; Edwards, Keith J

    2011-12-01

    Food security is a global concern and substantial yield increases in cereal crops are required to feed the growing world population. Wheat is one of the three most important crops for human and livestock feed. However, the complexity of the genome coupled with a decline in genetic diversity within modern elite cultivars has hindered the application of marker-assisted selection (MAS) in breeding programmes. A crucial step in the successful application of MAS in breeding programmes is the development of cheap and easy to use molecular markers, such as single-nucleotide polymorphisms. To mine selected elite wheat germplasm for intervarietal single-nucleotide polymorphisms, we have used expressed sequence tags derived from public sequencing programmes and next-generation sequencing of normalized wheat complementary DNA libraries, in combination with a novel sequence alignment and assembly approach. Here, we describe the development and validation of a panel of 1114 single-nucleotide polymorphisms in hexaploid bread wheat using competitive allele-specific polymerase chain reaction genotyping technology. We report the genotyping results of these markers on 23 wheat varieties, selected to represent a broad cross-section of wheat germplasm including a number of elite UK varieties. Finally, we show that, using relatively simple technology, it is possible to rapidly generate a linkage map containing several hundred single-nucleotide polymorphism markers in the doubled haploid mapping population of Avalon × Cadenza. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  17. A Genome Wide Association Study on Age at First Calving Using High Density Single Nucleotide Polymorphism Chips in Hanwoo (

    Directory of Open Access Journals (Sweden)

    K.-E. Hyeong

    2014-10-01

    Full Text Available Age at first calving is an important trait for achieving earlier reproductive performance. To detect quantitative trait loci (QTL for reproductive traits, a genome wide association study was conducted on the 96 Hanwoo cows that were born between 2008 and 2010 from 13 sires in a local farm (Juk-Am Hanwoo farm, Suncheon, Korea and genotyped with the Illumina 50K bovine single nucleotide polymorphism (SNP chips. Phenotypes were regressed on additive and dominance effects for each SNP using a simple linear regression model after the effects of birth-year-month and polygenes were considered. A forward regression procedure was applied to determine the best set of SNPs for age at first calving. A total of 15 QTL were detected at the comparison-wise 0.001 level. Two QTL with strong statistical evidence were found at 128.9 Mb and 111.1 Mb on bovine chromosomes (BTA 2 and 7, respectively, each of which accounted for 22% of the phenotypic variance. Also, five significant SNPs were detected on BTAs 10, 16, 20, 26, and 29. Multiple QTL were found on BTAs 1, 2, 7, and 14. The significant QTLs may be applied via marker assisted selection to increase rate of genetic gain for the trait, after validation tests in other Hanwoo cow populations.

  18. Association of the IL4R single-nucleotide polymorphism I50V with recurrent spontaneous abortion (RSA).

    Science.gov (United States)

    Tavasolian, Fataneh; Abdollahi, Elham; Samadi, Morteza

    2014-07-01

    Recurrent spontaneous abortion (RSA) is defined as three or more consecutive abortions before the 20th week of gestation. There is increasing evidence to support an immunological mechanism for the occurrence of RSA. The purpose of our study was to examine whether single-nucleotide polymorphisms (SNPs) of the interleukin-4 receptor gene IL4R influence susceptibility to, recurrent spontaneous abortion. This is a case-control study. We recruited 200 patients with RSA (case group) using established diagnostic criteria and 200, normal individuals (control group) at the fertility and infertility center in Yazd city and Isfahan city during 2012 to 2013. We screened the I50V variant in IL-4R in patients and controls by PCR-RFLF method, and we performed an association analysis between I50V variant and RSA.the data was analyzed by spss 16 software using Chi-square test. No differences in the genotype and allele frequencies of the I50V SNPs were identified between patients with RSA and healthy controls. The frequency of SNP in IL-4 receptor (I50V) in patients with recurrent spontaneous abortion did not differ significantly compared with the control group. Analysis of IL4R SNP haplotypes or complex alleles suggested no dominant protection in patients with RSA.

  19. Single Nucleotide Polymorphism Discovery in Bovine Pituitary Gland Using RNA-Seq Technology.

    Science.gov (United States)

    Pareek, Chandra Shekhar; Smoczyński, Rafał; Kadarmideen, Haja N; Dziuba, Piotr; Błaszczyk, Paweł; Sikora, Marcin; Walendzik, Paulina; Grzybowski, Tomasz; Pierzchała, Mariusz; Horbańczuk, Jarosław; Szostak, Agnieszka; Ogluszka, Magdalena; Zwierzchowski, Lech; Czarnik, Urszula; Fraser, Leyland; Sobiech, Przemysław; Wąsowicz, Krzysztof; Gelfand, Brian; Feng, Yaping; Kumar, Dibyendu

    2016-01-01

    Examination of bovine pituitary gland transcriptome by strand-specific RNA-seq allows detection of putative single nucleotide polymorphisms (SNPs) within potential candidate genes (CGs) or QTLs regions as well as to understand the genomics variations that contribute to economic trait. Here we report a breed-specific model to successfully perform the detection of SNPs in the pituitary gland of young growing bulls representing Polish Holstein-Friesian (HF), Polish Red, and Hereford breeds at three developmental ages viz., six months, nine months, and twelve months. A total of 18 bovine pituitary gland polyA transcriptome libraries were prepared and sequenced using the Illumina NextSeq 500 platform. Sequenced FastQ databases of all 18 young bulls were submitted to NCBI-SRA database with NCBI-SRA accession numbers SRS1296732. For the investigated young bulls, a total of 113,882,3098 raw paired-end reads with a length of 156 bases were obtained, resulting in an approximately 63 million paired-end reads per library. Breed-wise, a total of 515.38, 215.39, and 408.04 million paired-end reads were obtained for Polish HF, Polish Red, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA) read alignments showed 93.04%, 94.39%, and 83.46% of the mapped sequencing reads were properly paired to the Polish HF, Polish Red, and Hereford breeds, respectively. Constructed breed-specific SNP-db of three cattle breeds yielded at 13,775,885 SNPs. On an average 765,326 breed-specific SNPs per young bull were identified. Using two stringent filtering parameters, i.e., a minimum 10 SNP reads per base with an accuracy ≥ 90% and a minimum 10 SNP reads per base with an accuracy = 100%, SNP-db records were trimmed to construct a highly reliable SNP-db. This resulted in a reduction of 95,7% and 96,4% cut-off mark of constructed raw SNP-db. Finally, SNP discoveries using RNA-Seq data were validated by KASP™ SNP genotyping assay. The comprehensive QTLs/CGs analysis of 76 QTLs

  20. Single Nucleotide Polymorphism Discovery in Bovine Pituitary Gland Using RNA-Seq Technology.

    Directory of Open Access Journals (Sweden)

    Chandra Shekhar Pareek

    Full Text Available Examination of bovine pituitary gland transcriptome by strand-specific RNA-seq allows detection of putative single nucleotide polymorphisms (SNPs within potential candidate genes (CGs or QTLs regions as well as to understand the genomics variations that contribute to economic trait. Here we report a breed-specific model to successfully perform the detection of SNPs in the pituitary gland of young growing bulls representing Polish Holstein-Friesian (HF, Polish Red, and Hereford breeds at three developmental ages viz., six months, nine months, and twelve months. A total of 18 bovine pituitary gland polyA transcriptome libraries were prepared and sequenced using the Illumina NextSeq 500 platform. Sequenced FastQ databases of all 18 young bulls were submitted to NCBI-SRA database with NCBI-SRA accession numbers SRS1296732. For the investigated young bulls, a total of 113,882,3098 raw paired-end reads with a length of 156 bases were obtained, resulting in an approximately 63 million paired-end reads per library. Breed-wise, a total of 515.38, 215.39, and 408.04 million paired-end reads were obtained for Polish HF, Polish Red, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA read alignments showed 93.04%, 94.39%, and 83.46% of the mapped sequencing reads were properly paired to the Polish HF, Polish Red, and Hereford breeds, respectively. Constructed breed-specific SNP-db of three cattle breeds yielded at 13,775,885 SNPs. On an average 765,326 breed-specific SNPs per young bull were identified. Using two stringent filtering parameters, i.e., a minimum 10 SNP reads per base with an accuracy ≥ 90% and a minimum 10 SNP reads per base with an accuracy = 100%, SNP-db records were trimmed to construct a highly reliable SNP-db. This resulted in a reduction of 95,7% and 96,4% cut-off mark of constructed raw SNP-db. Finally, SNP discoveries using RNA-Seq data were validated by KASP™ SNP genotyping assay. The comprehensive QTLs/CGs analysis

  1. Relationship between single-nucleotide polymorphisms in un ...

    African Journals Online (AJOL)

    Furthermore, frequencies of the compatible genotype AA/AA (mothers/newborns) in HLA-G 3-UTR 3172 gene in the ... 3127 gene of mothers/newborns, preeclampsia risk may decrease, but it may increase if the compatible genotype is AA/AA. Thus, SNP in ... pregnancy, a multiple organ dysfunction of pregnant women ...

  2. Single Nucleotide Polymorphisms in Taste Receptor Genes Are Associated with Snacking Patterns of Preschool-Aged Children in the Guelph Family Health Study: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Elie Chamoun

    2018-01-01

    Full Text Available Snacking is an integral component of eating habits in young children that is often overlooked in nutrition research. While snacking is a substantial source of calories in preschoolers’ diets, there is limited knowledge about the factors that drive snacking patterns. The genetics of taste may help to better understand the snacking patterns of children. The rs1761667 single nucleotide polymorphism (SNP in the CD36 gene has been linked to fat taste sensitivity, the rs35874116 SNP in the TAS1R2 gene has been related to sweet taste preference, and the rs713598 SNP in the TAS2R38 gene has been associated with aversion to bitter, green leafy vegetables. This study seeks to determine the cross-sectional associations between three taste receptor SNPs and snacking patterns among preschoolers in the Guelph Family Health Study. Preschoolers’ snack quality, quantity, and frequency were assessed using three-day food records and saliva was collected for SNP genotyping (n = 47. Children with the TT genotype in TAS1R2 consumed snacks with significantly more calories from sugar, and these snacks were consumed mostly in the evening. Total energy density of snacks was highest in the CC and CG genotypes compared to the GG genotype in TAS2R38, and also greater in the AA genotype in CD36 compared to G allele carriers, however this difference was not individually attributable to energy from fat, carbohydrates, sugar, or protein. Genetic variation in taste receptors may influence snacking patterns of preschoolers.

  3. Genomic expression and single-nucleotide polymorphism profiling discriminates chromophobe renal cell carcinoma and oncocytoma

    International Nuclear Information System (INIS)

    Tan, Min-Han; Furge, Kyle A; Kort, Eric; Giraud, Sophie; Ferlicot, Sophie; Vielh, Philippe; Amsellem-Ouazana, Delphine; Debré, Bernard; Flam, Thierry; Thiounn, Nicolas; Zerbib, Marc; Wong, Chin Fong; Benoît, Gérard; Droupy, Stéphane; Molinié, Vincent; Vieillefond, Annick; Tan, Puay Hoon; Richard, Stéphane; Teh, Bin Tean; Tan, Hwei Ling; Yang, Ximing J; Ditlev, Jonathon; Matsuda, Daisuke; Khoo, Sok Kean; Sugimura, Jun; Fujioka, Tomoaki

    2010-01-01

    Chromophobe renal cell carcinoma (chRCC) and renal oncocytoma are two distinct but closely related entities with strong morphologic and genetic similarities. While chRCC is a malignant tumor, oncocytoma is usually regarded as a benign entity. The overlapping characteristics are best explained by a common cellular origin, and the biologic differences between chRCC and oncocytoma are therefore of considerable interest in terms of carcinogenesis, diagnosis and clinical management. Previous studies have been relatively limited in terms of examining the differences between oncocytoma and chromophobe RCC. Gene expression profiling using the Affymetrix HGU133Plus2 platform was applied on chRCC (n = 15) and oncocytoma specimens (n = 15). Supervised analysis was applied to identify a discriminatory gene signature, as well as differentially expressed genes. High throughput single-nucleotide polymorphism (SNP) genotyping was performed on independent samples (n = 14) using Affymetrix GeneChip Mapping 100 K arrays to assess correlation between expression and gene copy number. Immunohistochemical validation was performed in an independent set of tumors. A novel 14 probe-set signature was developed to classify the tumors internally with 93% accuracy, and this was successfully validated on an external data-set with 94% accuracy. Pathway analysis highlighted clinically relevant dysregulated pathways of c-erbB2 and mammalian target of rapamycin (mTOR) signaling in chRCC, but no significant differences in p-AKT or extracellular HER2 expression was identified on immunohistochemistry. Loss of chromosome 1p, reflected in both cytogenetic and expression analysis, is common to both entities, implying this may be an early event in histogenesis. Multiple regional areas of cytogenetic alterations and corresponding expression biases differentiating the two entities were identified. Parafibromin, aquaporin 6, and synaptogyrin 3 were novel immunohistochemical markers effectively discriminating

  4. Genomic expression and single-nucleotide polymorphism profiling discriminates chromophobe renal cell carcinoma and oncocytoma

    Directory of Open Access Journals (Sweden)

    Thiounn Nicolas

    2010-05-01

    Full Text Available Abstract Background Chromophobe renal cell carcinoma (chRCC and renal oncocytoma are two distinct but closely related entities with strong morphologic and genetic similarities. While chRCC is a malignant tumor, oncocytoma is usually regarded as a benign entity. The overlapping characteristics are best explained by a common cellular origin, and the biologic differences between chRCC and oncocytoma are therefore of considerable interest in terms of carcinogenesis, diagnosis and clinical management. Previous studies have been relatively limited in terms of examining the differences between oncocytoma and chromophobe RCC. Methods Gene expression profiling using the Affymetrix HGU133Plus2 platform was applied on chRCC (n = 15 and oncocytoma specimens (n = 15. Supervised analysis was applied to identify a discriminatory gene signature, as well as differentially expressed genes. High throughput single-nucleotide polymorphism (SNP genotyping was performed on independent samples (n = 14 using Affymetrix GeneChip Mapping 100 K arrays to assess correlation between expression and gene copy number. Immunohistochemical validation was performed in an independent set of tumors. Results A novel 14 probe-set signature was developed to classify the tumors internally with 93% accuracy, and this was successfully validated on an external data-set with 94% accuracy. Pathway analysis highlighted clinically relevant dysregulated pathways of c-erbB2 and mammalian target of rapamycin (mTOR signaling in chRCC, but no significant differences in p-AKT or extracellular HER2 expression was identified on immunohistochemistry. Loss of chromosome 1p, reflected in both cytogenetic and expression analysis, is common to both entities, implying this may be an early event in histogenesis. Multiple regional areas of cytogenetic alterations and corresponding expression biases differentiating the two entities were identified. Parafibromin, aquaporin 6, and synaptogyrin 3 were novel

  5. Analysis of the relationship between single nucleotide polymorphism of the CD209, IL-10, IL-28 and CCR5 D32 genes with the human predisposition to developing tick-borne encephalitis

    Directory of Open Access Journals (Sweden)

    Piotr Czupryna

    2017-01-01

    Full Text Available Introduction: It is known that in the pathogenesis of tick-borne encephalitis (TBE various molecules play a significant role. The most prominent factors include IL-10, IL-28B, CD-209 and CCR5. It is reasonable to search for genetic predispositions to the development of various clinical forms of TBE related to the genetic variation of IL-10, IL-28B, CD-209 and CCR5. In this study we aimed to search for the relationship between single nucleotide polymorphism in the promoter region of the CD209, IL-10, IL-28 and 32 base pair deletion in CCR5 coding region (Δ 32 with the human predisposition to development of various clinical presentations of TBE. We tried to assess the relation between the presence of particular alleles and genotypes with laboratory and clinical parameters. Material/Methods 59 patients with TBE and 57 people, bitten by a tick who never developed TBE (Polish cohort, were included in the study. To assess the distribution of single nucleotide polymorphisms, TaqMan SNP genotyping assays were used for IL10: rs1800872 and rs1800896, for CD 209 rs4804803 and rs2287886, rs12979860 for IL 28B SNPs according to the manufacturer’s protocol using real-time PCR technology on the StepOne thermal cycler. Results Comparison between TBE patients and CG showed that in SNP rs2287886 CD 209 AG heterozygotes were more frequent in the TBE group, while homozygotes GG were more frequent in the CG group. Conclusions SNP rs2287886 CD 209 AG heterozygotes predispose humans to develop TBE. Single nucleotide polymorphism in the promoter region of the CD209, IL-10, IL-28 and CCR5 D32 genes does not correlate with the severity of TBE.

  6. Single nucleotide polymorphism barcoding of cytochrome c oxidase I sequences for discriminating 17 species of Columbidae by decision tree algorithm.

    Science.gov (United States)

    Yang, Cheng-Hong; Wu, Kuo-Chuan; Dahms, Hans-Uwe; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2017-07-01

    DNA barcodes are widely used in taxonomy, systematics, species identification, food safety, and forensic science. Most of the conventional DNA barcode sequences contain the whole information of a given barcoding gene. Most of the sequence information does not vary and is uninformative for a given group of taxa within a monophylum. We suggest here a method that reduces the amount of noninformative nucleotides in a given barcoding sequence of a major taxon, like the prokaryotes, or eukaryotic animals, plants, or fungi. The actual differences in genetic sequences, called single nucleotide polymorphism (SNP) genotyping, provide a tool for developing a rapid, reliable, and high-throughput assay for the discrimination between known species. Here, we investigated SNPs as robust markers of genetic variation for identifying different pigeon species based on available cytochrome c oxidase I (COI) data. We propose here a decision tree-based SNP barcoding (DTSB) algorithm where SNP patterns are selected from the DNA barcoding sequence of several evolutionarily related species in order to identify a single species with pigeons as an example. This approach can make use of any established barcoding system. We here firstly used as an example the mitochondrial gene COI information of 17 pigeon species (Columbidae, Aves) using DTSB after sequence trimming and alignment. SNPs were chosen which followed the rule of decision tree and species-specific SNP barcodes. The shortest barcode of about 11 bp was then generated for discriminating 17 pigeon species using the DTSB method. This method provides a sequence alignment and tree decision approach to parsimoniously assign a unique and shortest SNP barcode for any known species of a chosen monophyletic taxon where a barcoding sequence is available.

  7. TET2, ASXL1, IDH1, and IDH2 Single Nucleotide Polymorphisms in Turkish Patients with Chronic Myeloproliferative Neoplasms

    Directory of Open Access Journals (Sweden)

    Nur Soyer

    2017-06-01

    Full Text Available We aimed to determine the genotype distribution, allele frequency, and prognostic impact of IDH1/2, TET2, and ASXL1 single nucleotide polymorphisms (SNPs in myeloproliferative neoplasms (MPNs. TET2 (rs763480, ASXL1 (rs2208131, and IDH1 (rs11554137 variant homozygous genotype frequencies were found at rates of 1.5%, 9.2%, and 2.3%, respectively. No IDH2 SNP was identified. IDH1 and TET2 frequencies were 5% in essential thrombocythemia (ET and 1.7% in ET and 5% in primary myelofibrosis (PMF, respectively. ASXL1 frequencies were 8.3%-10% in MPN subgroups. The TET2 mutant allele T and ASXL1 mutant allele G had the highest frequencies with 0.272 in the PMF and 0.322 in the polycythemia vera (PV group, respectively. There was no impact of the SNPs on prognosis. IDH1 frequency in MPNs was found similar to the literature. ASXL1 frequencies were similar between ET, PV, and PMF patients. The ASXL1 and TET2 allele frequencies of the Turkish population are similar to those of the European population. The role of SNPs in MPNs might be further evaluated in larger multicenter studies.

  8. The association between single nucleotide polymorphism in interleukin-27 gene and recurrent pregnancy loss in Iranian women

    Directory of Open Access Journals (Sweden)

    Zeinab Nematollahi

    2015-03-01

    Full Text Available Background: Recurrent pregnancy loss (RPL has been defined as two or more miscarriages before 20th week of gestation. It seems that IL-27 may reduce inflammatory responses and affect the survival of the embryo during human pregnancy. IL-27 polymorphisms may influence RPL by altering the levels or the activity of gene product. Objective: We studied for the first time the association of IL-27 -964 A>G single nucleotide polymorphism (SNP with RPL in Iranian women. Materials and Methods: A case-controlled study was performed on two groups consisting of 150 healthy women with at least one delivery (control group and 150 women with two or more primary RPLs history (RPL group. The -964 A>G SNP in IL-27 gene was determined by PCR-RFLP technique. Genotype and allele frequencies were compared using 2 tests between two groups. Results: There was no difference between the two groups regarding age of women (29±4.4 [control] vs. 30.84±5.2 years [case]. In the RPL group, the genotype frequencies of -964 A>G polymorphism were AG (49.3%, AA (40%, and GG (10.7%, and in the control group, they were AG (43.3%, AA (48.7%, and GG (8%. There was no significant difference between the genotypes of AA, AG, and GG in two groups (p=0.23. As the frequency of allele A was 64.7% in the RPL group and 70.3% in the control group, the difference in frequency of allele A in -964 A>G between two groups was not significant (p=0.19. Conclusion: Our findings indicate that SNP of -964 A>G in IL-27 gene is not a risk factor for RPL in Iranian women.

  9. Correlation of Fetuin-A gene rs1071592 and rs2593813 single nucleotide polymorphisms with polycystic ovary syndrome

    Directory of Open Access Journals (Sweden)

    Juan YI

    2016-10-01

    Full Text Available Objective  To investigate the relations of Fetuin-A gene rs1071592 and rs2593813 single nucleotide polymorphisms (SNPs with the affect ability to polycystic ovary syndrome (PCOS and its endocrine and metabolic characteristics in Chongqing Han population. Methods  A case-control study was performed in Chinese Han subjects. The clinical data of 156 cases of normal control and 147 cases of PCOS patients were collected, and their blood glucose, lipids, sex hormone and other biochemical indexes were determined, the SNPs of rs1071592 and rs2593813 were genotyped by TaqMan SNP Genotyping Assay. Hyperinsulinemic-euglycemic clamp was performed in 147 PCOS women and 20 controls. The relative risk of developing PCOS in women with rs1071592 genotype was assessed using a binary logistic regression analysis. Results  The distribution frequency of Fetuin-A gene homozygous rs1071592 AA genotype and A allele was significantly increased in PCOS patients than in controls (Pc0.05. Binary logistic regression analysis showed that the risk of developing PCOS was 4.93 times high in women with AA genotype of rs1071592 (OR=4.933, 95%CI 1.593-15.278, P0.05. Conclusion  People with SNPs variants of rs1071592 in Fetuin-A gene may have an increased genetic susceptibility to PCOS. However, there won't be significant relationship between SNP of rs2593813 at Fetuin-A gene and PCOS. DOI: 10.11855/j.issn.0577-7402.2016.09.07

  10. IRF6 rs2235375 single nucleotide polymorphism is associated with isolated non-syndromic cleft palate but not with cleft lip with or without palate in south Indian population.

    Science.gov (United States)

    Gurramkonda, Venkatesh Babu; Syed, Altaf Hussain; Murthy, Jyotsna; Lakkakula, Bhaskar V K S

    2017-06-26

    Transcription factors are very diverse family of proteins involved in activating or repressing the transcription of a gene at a given time. Several studies using animal models demonstrated the role of transcription factor genes in craniofacial development. We aimed to investigate the association of IRF6 intron-6 polymorphism in the non-syndromic cleft lip with or without Palate in a south Indian population. 173 unrelated nonsyndromic cleft lip with or without Palate patients and 176 controls without clefts patients were genotyped for IRF6 rs2235375 variant by allele-specific amplification using the KASPar single nucleotide polymorphism genotyping system. The association between interferon regulatory factor-6 gene intron-6 dbSNP208032210:g.G>C (rs2235375) single nucleotide polymorphism and non-syndromic cleft lip with or without palate risk was investigated by chi-square test. There were significant differences in genotype or allele frequencies of rs2235375 single nucleotide polymorphism between controls and cases with non-syndromic cleft lip with or without palate. IRF6 rs2235375 variant was significantly associated with increased risk of non-syndromic cleft lip with or without palate in co-dominant, dominant (OR: 1.19; 95% CI 1.03-2.51; p=0.034) and allelic models (OR: 1.40; 95% CI 1.04-1.90; p=0.028). When subset analysis was applied significantly increased risk was observed in cleft palate only group (OR dominant: 4.33; 95% CI 1.44-12.97; p=0.005). These results suggest that IRF6 rs2235375 SNP play a major role in the pathogenesis and risk of developing non-syndromic cleft lip with or without palate. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  11. A Lateral Flow Biosensor for the Detection of Single Nucleotide Polymorphisms.

    Science.gov (United States)

    Zeng, Lingwen; Xiao, Zhuo

    2017-01-01

    A lateral flow biosensor (LFB) is introduced for the detection of single nucleotide polymorphisms (SNPs). The assay is composed of two steps: circular strand displacement reaction and lateral flow biosensor detection. In step 1, the nucleotide at SNP site is recognized by T4 DNA ligase and the signal is amplified by strand displacement DNA polymerase, which can be accomplished at a constant temperature. In step 2, the reaction product of step 1 is detected by a lateral flow biosensor, which is a rapid and cost effective tool for nuclei acid detection. Comparing with conventional methods, it requires no complicated machines. It is suitable for the use of point of care diagnostics. Therefore, this simple, cost effective, robust, and promising LFB detection method of SNP has great potential for the detection of genetic diseases, personalized medicine, cancer related mutations, and drug-resistant mutations of infectious agents.

  12. A at single nucleotide polymorphism-358 is required for G at -420 to confer the highest plasma resistin in the general Japanese population.

    Directory of Open Access Journals (Sweden)

    Hiroshi Onuma

    Full Text Available Insulin resistance is a feature of type 2 diabetes. Resistin, secreted from adipocytes, causes insulin resistance in mice. We previously reported that the G/G genotype of single nucleotide polymorphism (SNP at -420 (rs1862513 in the human resistin gene (RETN increased susceptibility to type 2 diabetes by enhancing its promoter activity. Plasma resistin was highest in Japanese subjects with G/G genotype, followed by C/G, and C/C. In this study, we cross-sectionally analyzed plasma resistin and SNPs in the RETN region in 2,019 community-dwelling Japanese subjects. Plasma resistin was associated with SNP-638 (rs34861192, SNP-537 (rs34124816, SNP-420, SNP-358 (rs3219175, SNP+299 (rs3745367, and SNP+1263 (rs3745369 (P<10(-13 in all cases. SNP-638, SNP -420, SNP-358, and SNP+157 were in the same linkage disequilibrium (LD block. SNP-358 and SNP-638 were nearly in complete LD (r(2 = 0.98, and were tightly correlated with SNP-420 (r(2 = 0.50, and 0.51, respectively. The correlation between either SNP-358 (or SNP-638 or SNP-420 and plasma resistin appeared to be strong (risk alleles for high plasma resistin; A at SNP-358, r(2 = 0.5224, P = 4.94x10(-324; G at SNP-420, r(2 = 0.2616, P = 1.71x10(-133. In haplotypes determined by SNP-420 and SNP-358, the estimated frequencies for C-G, G-A, and G-G were 0.6700, 0.2005, and 0.1284, respectively, and C-A was rare (0.0011, suggesting that subjects with A at -358, generally had G at -420. This G-A haplotype conferred the highest plasma resistin (8.24 ng/ml difference/allele compared to C-G, P<0.0001. In THP-1 cells, the RETN promoter with the G-A haplotype showed the highest activity. Nuclear proteins specifically recognized one base difference at SNP-358, but not at SNP-638. Therefore, A at -358 is required for G at -420 to confer the highest plasma resistin in the general Japanese population. In Caucasians, the association between SNP-420 and plasma resistin is not strong, and A at -358 may not exist

  13. [Restriction endonuclease digest - melting curve analysis: a new SNP genotyping and its application in traditional Chinese medicine authentication].

    Science.gov (United States)

    Jiang, Chao; Huang, Lu-Qi; Yuan, Yuan; Chen, Min; Hou, Jing-Yi; Wu, Zhi-Gang; Lin, Shu-Fang

    2014-04-01

    Single nucleotide polymorphisms (SNP) is an important molecular marker in traditional Chinese medicine research, and it is widely used in TCM authentication. The present study created a new genotyping method by combining restriction endonuclease digesting with melting curve analysis, which is a stable, rapid and easy doing SNP genotyping method. The new method analyzed SNP genotyping of two chloroplast SNP which was located in or out of the endonuclease recognition site, the results showed that when attaching a 14 bp GC-clamp (cggcgggagggcgg) to 5' end of the primer and selecting suited endonuclease to digest the amplification products, the melting curve of Lonicera japonica and Atractylodes macrocephala were all of double peaks and the adulterants Shan-yin-hua and A. lancea were of single peaks. The results indicated that the method had good stability and reproducibility for identifying authentic medicines from its adulterants. It is a potential SNP genotyping method and named restriction endonuclease digest - melting curve analysis.

  14. Gene-based single nucleotide polymorphism markers for genetic and association mapping in common bean.

    Science.gov (United States)

    Galeano, Carlos H; Cortés, Andrés J; Fernández, Andrea C; Soler, Álvaro; Franco-Herrera, Natalia; Makunde, Godwill; Vanderleyden, Jos; Blair, Matthew W

    2012-06-26

    In common bean, expressed sequence tags (ESTs) are an underestimated source of gene-based markers such as insertion-deletions (Indels) or single-nucleotide polymorphisms (SNPs). However, due to the nature of these conserved sequences, detection of markers is difficult and portrays low levels of polymorphism. Therefore, development of intron-spanning EST-SNP markers can be a valuable resource for genetic experiments such as genetic mapping and association studies. In this study, a total of 313 new gene-based markers were developed at target genes. Intronic variation was deeply explored in order to capture more polymorphism. Introns were putatively identified after comparing the common bean ESTs with the soybean genome, and the primers were designed over intron-flanking regions. The intronic regions were evaluated for parental polymorphisms using the single strand conformational polymorphism (SSCP) technique and Sequenom MassARRAY system. A total of 53 new marker loci were placed on an integrated molecular map in the DOR364 × G19833 recombinant inbred line (RIL) population. The new linkage map was used to build a consensus map, merging the linkage maps of the BAT93 × JALO EEP558 and DOR364 × BAT477 populations. A total of 1,060 markers were mapped, with a total map length of 2,041 cM across 11 linkage groups. As a second application of the generated resource, a diversity panel with 93 genotypes was evaluated with 173 SNP markers using the MassARRAY-platform and KASPar technology. These results were coupled with previous SSR evaluations and drought tolerance assays carried out on the same individuals. This agglomerative dataset was examined, in order to discover marker-trait associations, using general linear model (GLM) and mixed linear model (MLM). Some significant associations with yield components were identified, and were consistent with previous findings. In short, this study illustrates the power of intron-based markers for linkage and association mapping in

  15. SNP genotyping by DNA photoligation: application to SNP detection of genes from food crops

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Yoshinaga; Ohtake, Tomoko; Okada, Hajime; Fujimoto, Kenzo [School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Ami, Takehiro [Innovation Plaza Ishikawa, Japan Science and Technology Agency, 2-13 Asahidai, Nomi, Ishikawa 923-1211 (Japan); Tsukaguchi, Tadashi, E-mail: kenzo@jaist.ac.j [Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836 (Japan)

    2009-06-15

    We describe a simple and inexpensive single-nucleotide polymorphism (SNP) typing method, using DNA photoligation with 5-carboxyvinyl-2'-deoxyuridine and two fluorophores. This SNP-typing method facilitates qualitative determination of genes from indica and japonica rice, and showed a high degree of single nucleotide specificity up to 10 000. This method can be used in the SNP typing of actual genomic DNA samples from food crops.

  16. SNP genotyping by DNA photoligation: application to SNP detection of genes from food crops

    Directory of Open Access Journals (Sweden)

    Yoshinaga Yoshimura, Tomoko Ohtake, Hajime Okada, Takehiro Ami, Tadashi Tsukaguchi and Kenzo Fujimoto

    2009-01-01

    Full Text Available We describe a simple and inexpensive single-nucleotide polymorphism (SNP typing method, using DNA photoligation with 5-carboxyvinyl-2'-deoxyuridine and two fluorophores. This SNP-typing method facilitates qualitative determination of genes from indica and japonica rice, and showed a high degree of single nucleotide specificity up to 10 000. This method can be used in the SNP typing of actual genomic DNA samples from food crops.

  17. Associations between Single-Nucleotide Polymorphisms in Corticotropin-Releasing Hormone-Related Genes and Irritable Bowel Syndrome.

    Directory of Open Access Journals (Sweden)

    Ayaka Sasaki

    Full Text Available Irritable bowel syndrome (IBS is a common functional disorder with distinct features of stress-related pathophysiology. A key mediator of the stress response is corticotropin-releasing hormone (CRH. Although some candidate genes have been identified in stress-related disorders, few studies have examined CRH-related gene polymorphisms. Therefore, we tested our hypothesis that single-nucleotide polymorphisms (SNPs in CRH-related genes influence the features of IBS.In total, 253 individuals (123 men and 130 women participated in this study. They comprised 111 IBS individuals and 142 healthy controls. The SNP genotypes in CRH (rs28364015 and rs6472258 and CRH-binding protein (CRH-BP (rs10474485 were determined by direct sequencing and real-time polymerase chain reaction. The emotional states of the subjects were evaluated using the State-Trait Anxiety Inventory, Perceived Stress Scale, and the Self-rating Depression Scale.Direct sequencing of the rs28364015 SNP of CRH revealed no genetic variation among the study subjects. There was no difference in the genotype distributions and allele frequencies of rs6472258 and rs10474485 between IBS individuals and controls. However, IBS subjects with diarrhea symptoms without the rs10474485 A allele showed a significantly higher emotional state score than carriers.These results suggest that the CRH and CRH-BP genes have no direct effect on IBS status. However, the CRH-BP SNP rs10474485 has some effect on IBS-related emotional abnormalities and resistance to psychosocial stress.

  18. Single nucleotide polymorphisms associated with thermoregulation in lactating dairy cows exposed to heat stress.

    Science.gov (United States)

    Dikmen, S; Wang, X-z; Ortega, M S; Cole, J B; Null, D J; Hansen, P J

    2015-12-01

    Dairy cows with increased rectal temperature experience lower milk yield and fertility. Rectal temperature during heat stress is heritable, so genetic selection for body temperature regulation could reduce effects of heat stress on production. One aim of the study was to validate the relationship between genotype and heat tolerance for single nucleotide polymorphisms (SNPs) previously associated with resistance to heat stress. A second aim was to identify new SNPs associated with heat stress resistance. Thermotolerance was assessed in lactating Holsteins during the summer by measuring rectal temperature (a direct measurement of body temperature regulation; n = 435), respiration rate (an indirect measurement of body temperature regulation, n = 450) and sweating rate (the major evaporative cooling mechanism in cattle, n = 455). The association between genotype and thermotolerance was evaluated for 19 SNPs previously associated with rectal temperature from a genomewide analysis study (GWAS), four SNPs previously associated with change in milk yield during heat stress from GWAS, 2 candidate gene SNPs previously associated with rectal temperature and respiration rate during heat stress (ATPA1A and HSP70A) and 66 SNPs in genes previously shown to be associated with reproduction, production or health traits in Holsteins. For SNPs previously associated with heat tolerance, regions of BTA4, BTA6 and BTA24 were associated with rectal temperature; regions of BTA6 and BTA24 were associated with respiration rate; and regions of BTA5, BTA26 and BTA29 were associated with sweating rate. New SNPs were identified for rectal temperature (n = 12), respiration rate (n = 8) and sweating rate (n = 3) from among those previously associated with production, reproduction or health traits. The SNP that explained the most variation were PGR and ASL for rectal temperature, ACAT2 and HSD17B7 for respiration rate, and ARL6IP1 and SERPINE2 for sweating rate. ARL6IP1 was associated with all three

  19. Determination of single-nucleotide polymorphism in the proximal promoter region of apolipoprotein M gene in coronary artery diseases

    Directory of Open Access Journals (Sweden)

    Lu Zheng

    2009-09-01

    Full Text Available Lu Zheng1, Guanghua Luo1, Xiaoying Zhang1, Jun Zhang1, Jiang Zhu1, Jiang Wei1, Qinfeng Mu1, Lujun Chen1, Peter Nilsson-Ehle2, Ning Xu21Comprehensive Laboratory, The Third Affiliated Hospital, Suzhou University, Changzhou China; 2Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Lund, SwedenObjective: It has been reported that single-nucleotide polymorphism (SNP in the proximal promoter region of apolipoprotein M (apoM gene may confer the risk in the development of type 2 diabetes (T2D and coronary artery disease (CAD in the Han Chinese. However, in a recent study demonstrated that plasma apoM level did not correlated to the coronary heart disease. In the present studies, we investigated the SNP T-778C of apoM gene in CAD patients and controls in the Han Chinese population. Moreover we examined whether serum apoM levels could be influenced by this promoter mutation.Material and methods: One hundred twenty-six CAD patients and 118 non-CAD patients were subjected in the present study. All patients were confirmed by the angiography. The genotyping of polymorphisms T-778C in apoM promoter was determined by real-time polymerase chain reaction. Serum apoM levels were semi-quantitatively determined by the dot-blotting analysis. Results: Distribution of apoM T-778C genotype in non-CAD patients was as following: 84.7% were T/T, 15.3% were T/C and 0.0% was C/C. T allele frequencies were 92.4% and C allele, 7.6%. In the CAD patients, 99 patients (78.6% had the T/T genotype, 25 patients (19.8% with T/C genotype and 2 patients (1.6% with C/C genotype. The allele frequency was 88.5% for the T allele and 11.5% for the C allele. There was no statistical significant difference of serum apoM levels found in these three genotypes.Conclusions: There was no significant difference in allele or genotype frequencies between CAD patients and non-CAD patients. Binary logistic regression analysis with adjustments for age

  20. Whole Blood PCR Amplification with Pfu DNA Polymerase and Its Application in Single-Nucleotide Polymorphism Analysis.

    Science.gov (United States)

    Liu, Er-Ping; Wang, Yan; He, Xiao-Hui; Guan, Jun-Jie; Wang, Jin; Qin, Zheng-Hong; Sun, Wan-Ping

    2015-11-01

    Point-of-care genetic analysis may require polymerase chain reaction (PCR) to be carried out on whole blood. However, human blood contains natural inhibitors of PCR such as hemoglobin, immunoglobulin G, lactoferrin, and proteases, as well as anticoagulant agents, including EDTA and heparin that can reduce whole blood PCR efficiency. Our purpose was to develop a highly specific, direct whole blood single-nucleotide polymorphism (SNP) analysis method based on allele-specific (AS) PCR that is mediated by Pfu DNA polymerase and phosphorothioate-modified AS primers. At high Mg(2+) concentrations, Pfu DNA polymerase efficiently amplified genomic DNA in a reaction solution containing up to 14% whole blood. Among the three anticoagulants tested, Pfu DNA polymerase showed the highest activity with sodium citrate. Meanwhile, Triton X-100 and betaine inhibited Pfu DNA polymerase activity in whole blood PCR, whereas trehalose had virtually no effect. These findings provided for the development of a low-cost, simple, and fast direct whole blood genotyping method that uses Pfu DNA polymerase combined with phosphorothioate AS primers for CYP2C9*3 and VKORC1(-1639) loci. With its high DNA amplification efficiency and tolerance of various blood conditions, Pfu DNA polymerase can be used in clinical laboratories to analyze SNPs in whole blood samples.

  1. Landscape genomics and biased FST approaches reveal single nucleotide polymorphisms under selection in goat breeds of North-East Mediterranean

    Directory of Open Access Journals (Sweden)

    Joost Stephane

    2009-02-01

    Full Text Available Abstract Background In this study we compare outlier loci detected using a FST based method with those identified by a recently described method based on spatial analysis (SAM. We tested a panel of single nucleotide polymorphisms (SNPs previously genotyped in individuals of goat breeds of southern areas of the Mediterranean basin (Italy, Greece and Albania. We evaluate how the SAM method performs with SNPs, which are increasingly employed due to their high number, low cost and easy of scoring. Results The combined use of the two outlier detection approaches, never tested before using SNP polymorphisms, resulted in the identification of the same three loci involved in milk and meat quality data by using the two methods, while the FST based method identified 3 more loci as under selection sweep in the breeds examined. Conclusion Data appear congruent by using the two methods for FST values exceeding the 99% confidence limits. The methods of FST and SAM can independently detect signatures of selection and therefore can reduce the probability of finding false positives if employed together. The outlier loci identified in this study could indicate adaptive variation in the analysed species, characterized by a large range of climatic conditions in the rearing areas and by a history of intense trade, that implies plasticity in adapting to new environments.

  2. Single nucleotide polymorphism in IL1B is associated with infection risk in paediatric acute myeloid leukaemia.

    Science.gov (United States)

    Sung, L; Dix, D; Cellot, S; Gillmeister, B; Ethier, M C; Roslin, N M; Johnston, D L; Feusner, J; Mitchell, D; Lewis, V; Aplenc, R; Yanofsky, R; Portwine, C; Price, V; Zelcer, S; Silva, M; Bowes, L; Michon, B; Stobart, K; Traubici, J; Allen, U; Beyene, J; den Hollander, N; Paterson, A D

    2016-06-01

    We evaluated single nucleotide polymorphisms (SNPs) associated with infection risk in children with newly diagnosed acute myeloid leukaemia (AML). We conducted a multicentre, prospective cohort study that included children aged ≤18 years with de novo AML. DNA was isolated from blood lymphocytes or buccal swabs, and candidate gene SNP analysis was conducted. Primary outcome was the occurrence of microbiologically documented sterile site infection during chemotherapy. Secondary outcomes were Gram-positive and -negative infections, viridans group streptococcal infection and proven/probable invasive fungal infection. Interpretation was guided by consistency in risk alleles and microbiologic agent with previous literature. Over the study period 254 children and adolescents with AML were enrolled. Overall, 190 (74.8%) had at least one sterile site microbiologically documented infection. Among the 172 with inferred European ancestry and DNA available, nine significant associations were observed; two were consistent with previous literature. Allele A at IL1B (rs16944) was associated with decreased microbiologically documented infection, and allele G at IL10 (rs1800896) was associated with increased risk of Gram-positive infection. We identified SNPs associated with infection risk in paediatric AML. Genotype may provide insight into mechanisms of infection risk that could be used for supportive-care novel treatments. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  3. Single nucleotide polymorphisms of cathepsin S and the risks of asthma attack induced by acaroid mites.

    Science.gov (United States)

    Li, Chaopin; Chen, Qi; Jiang, Yuxin; Liu, Zhiming

    2015-01-01

    To investigate association between the three single nucleotide polymorphisms (SNPs, rs146456111, rs143154304 and rs147260142) in cathepsin S (Cat S) and the risks of allergic asthma attack induced by the acaroid mites in the Chinese population. A case-control study was performed in 412 cases and 454 volunteers/controls to evaluate the effects of three SNPs in Cat S on the risks of asthma attack. The genotypes were determined using polymerase chain reaction (PCR) and cleaved amplification polymorphism sequence-tagged sites (PCR-RFLP). The frequencies of genotypes and alleles in these SNPs in the asthmatic group were also analyzed between the two groups. The locus of rs146456111 in Cat S gene, the allele frequency of A and C in asthmatic group were significantly different from the control group (χ(2) = 184.425, P = 0.000), and the difference was significant regarding the distribution of the genotypes (AA, AC, and CC) between asthmatic subjects and normal controls (χ(2) = 177.915, P = 0.000). Logistic regression analysis revealed that the AC, CC, and AC + CC genotypes were significantly increased with the risk of asthma (AC vs. AA, OR = 4.013, 95% CI = 2.989-4.751, P = 0.000; CC vs. AA, OR = 3.167, 95% CI = 2.483-3.785, P = 0.000; AC + CC vs. AA, OR = 3.418, 95% CI = 2.381-4.214, P = 0.000, respectively), compared with AA genotype. Moreover, by comparison with allele A, allele C (OR = 2.187, 95% CI = 1.743-2.281, P asthma; For the locus of rs143154304, compared with the allele frequency G with A in control group, there was no difference (χ(2) = 1.434, P = 0.231) in that of asthmatic group, as well as the distributions of the genotypes (AA, AG, and GG) between asthmatic subjects and normal controls (χ(2) = 1.997, P = 0.369); Logistic regression analysis showed that the AG, GG, and AG + GG genotypes were no risk to asthma (AG vs. AA, OR = 0.991, 95% CI = 0.625-1.507, P = 0.968; GG vs. AA, OR = 0.812, 95% CI = 0.525-1.258, P = 0.352; AG + GG vs. AA, OR = 0.914, 95

  4. Imputation Accuracy from Low to Moderate Density Single Nucleotide Polymorphism Chips in a Thai Multibreed Dairy Cattle Population

    Directory of Open Access Journals (Sweden)

    Danai Jattawa

    2016-04-01

    Full Text Available The objective of this study was to investigate the accuracy of imputation from low density (LDC to moderate density SNP chips (MDC in a Thai Holstein-Other multibreed dairy cattle population. Dairy cattle with complete pedigree information (n = 1,244 from 145 dairy farms were genotyped with GeneSeek GGP20K (n = 570, GGP26K (n = 540 and GGP80K (n = 134 chips. After checking for single nucleotide polymorphism (SNP quality, 17,779 SNP markers in common between the GGP20K, GGP26K, and GGP80K were used to represent MDC. Animals were divided into two groups, a reference group (n = 912 and a test group (n = 332. The SNP markers chosen for the test group were those located in positions corresponding to GeneSeek GGP9K (n = 7,652. The LDC to MDC genotype imputation was carried out using three different software packages, namely Beagle 3.3 (population-based algorithm, FImpute 2.2 (combined family- and population-based algorithms and Findhap 4 (combined family- and population-based algorithms. Imputation accuracies within and across chromosomes were calculated as ratios of correctly imputed SNP markers to overall imputed SNP markers. Imputation accuracy for the three software packages ranged from 76.79% to 93.94%. FImpute had higher imputation accuracy (93.94% than Findhap (84.64% and Beagle (76.79%. Imputation accuracies were similar and consistent across chromosomes for FImpute, but not for Findhap and Beagle. Most chromosomes that showed either high (73% or low (80% imputation accuracies were the same chromosomes that had above and below average linkage disequilibrium (LD; defined here as the correlation between pairs of adjacent SNP within chromosomes less than or equal to 1 Mb apart. Results indicated that FImpute was more suitable than Findhap and Beagle for genotype imputation in this Thai multibreed population. Perhaps additional increments in imputation accuracy could be achieved by increasing the completeness of pedigree information.

  5. Single nucleotide polymorphisms (SNPs in coding regions of canine dopamine- and serotonin-related genes

    Directory of Open Access Journals (Sweden)

    Lingaas Frode

    2008-01-01

    Full Text Available Abstract Background Polymorphism in genes of regulating enzymes, transporters and receptors of the neurotransmitters of the central nervous system have been associated with altered behaviour, and single nucleotide polymorphisms (SNPs represent the most frequent type of genetic variation. The serotonin and dopamine signalling systems have a central influence on different behavioural phenotypes, both of invertebrates and vertebrates, and this study was undertaken in order to explore genetic variation that may be associated with variation in behaviour. Results Single nucleotide polymorphisms in canine genes related to behaviour were identified by individually sequencing eight dogs (Canis familiaris of different breeds. Eighteen genes from the dopamine and the serotonin systems were screened, revealing 34 SNPs distributed in 14 of the 18 selected genes. A total of 24,895 bp coding sequence was sequenced yielding an average frequency of one SNP per 732 bp (1/732. A total of 11 non-synonymous SNPs (nsSNPs, which may be involved in alteration of protein function, were detected. Of these 11 nsSNPs, six resulted in a substitution of amino acid residue with concomitant change in structural parameters. Conclusion We have identified a number of coding SNPs in behaviour-related genes, several of which change the amino acids of the proteins. Some of the canine SNPs exist in codons that are evolutionary conserved between five compared species, and predictions indicate that they may have a functional effect on the protein. The reported coding SNP frequency of the studied genes falls within the range of SNP frequencies reported earlier in the dog and other mammalian species. Novel SNPs are presented and the results show a significant genetic variation in expressed sequences in this group of genes. The results can contribute to an improved understanding of the genetics of behaviour.

  6. FUNCTIONAL IMPLICATIONS OF THE CLOCK 3111T/C SINGLE-NUCLEOTIDE POLYMORPHISM

    Directory of Open Access Journals (Sweden)

    Angela Renee Ozburn

    2016-04-01

    Full Text Available Circadian rhythm disruptions are prominently associated with Bipolar Disorder (BD. Circadian rhythms are regulated by the molecular clock, a family of proteins that function together in a transcriptional-translational feedback loop. The CLOCK protein is a key transcription factor of this feedback loop, and previous studies have found that manipulations of the Clock gene are sufficient to produce manic-like behavior in mice (Roybal et al., 2007. The Clock 3111T/C single-nucleotide polymorphism (SNP; rs1801260 is a genetic variation of the human Clock gene that is significantly associated with increased frequency of manic episodes in BD patients (Benedetti et al., 2003. The 3111T/C SNP is located in the 3’ untranslated region of the Clock gene. In this study, we sought to examine the functional implications of the human Clock 3111T/C SNP by transfecting a mammalian cell line (mouse embryonic fibroblasts isolated from Clock -/- knockout mice with pcDNA plasmids containing the human Clock gene with either the T or C SNP at position 3111. We then measured circadian gene expression over a 24 hour time period. We found that the Clock3111C SNP resulted in higher mRNA levels than the Clock 3111T SNP. Further, we found that Per2, a transcriptional target of CLOCK, was also more highly expressed with Clock 3111C expression, indicating the 3’UTR SNP affects the expression, function and stability of Clock mRNA.

  7. The single-nucleotide polymorphism 309 in the MDM2 gene contributes to the Li-Fraumeni syndrome and related phenotypes

    NARCIS (Netherlands)

    Ruijs, Mariëlle W. G.; Schmidt, Marjanka K.; Nevanlinna, Heli; Tommiska, Johanna; Aittomäki, Kristiina; Pruntel, Roelof; Verhoef, Senno; van 't Veer, L. J.

    2007-01-01

    Li-Fraumeni syndrome (LFS) is an autosomal-dominant cancer predisposition syndrome of which the majority is caused by TP53 germline mutations and is characterised by different tumour types occurring at relatively young age. Recently, it was shown that a single-nucleotide polymorphism (SNP) in the

  8. Exploration of pathomechanisms triggered by a single-nucleotide polymorphism in titin's I-band: the cardiomyopathy-linked mutation T2580I

    NARCIS (Netherlands)

    Bogomolovas, J.; Fleming, J.R.; Anderson, B.R.; Williams, R.; Lange, S.; Simon, B.; Khan, M.M.; Rudolf, R.; Franke, B.; Bullard, B.; Rigden, D.J.; Granzier, H.; Labeit, S.; Mayans, O.

    2016-01-01

    Missense single-nucleotide polymorphisms (mSNPs) in titin are emerging as a main causative factor of heart failure. However, distinguishing between benign and disease-causing mSNPs is a substantial challenge. Here, we research the question of whether a single mSNP in a generic domain of titin can

  9. A Long-Read Transcriptome Assembly of Cotton (Gossypium hirsutum L. and Intraspecific Single Nucleotide Polymorphism Discovery

    Directory of Open Access Journals (Sweden)

    Hamid Ashrafi

    2015-07-01

    Full Text Available Upland cotton ( L. has a narrow germplasm base, which constrains marker development and hampers intraspecific breeding. A pressing need exists for high-throughput single nucleotide polymorphism (SNP markers that can be readily applied to germplasm in breeding and breeding-related research programs. Despite progress made in developing new sequencing technologies during the past decade, the cost of sequencing remains substantial when one is dealing with numerous samples and large genomes. Several strategies have been proposed to lower the cost of sequencing for multiple genotypes of large-genome species like cotton, such as transcriptome sequencing and reduced-representation DNA sequencing. This paper reports the development of a transcriptome assembly of the inbred line Texas Marker-1 (TM-1, a genetic standard for cotton, its usefulness as a reference for RNA sequencing (RNA-seq-based SNP identification, and the availability of transcriptome sequences of four other cotton cultivars. An assembly of TM-1 was made using Roche 454 transcriptome reads combined with an assembly of all available public expressed sequence tag (EST sequences of TM-1. The TM-1 assembly consists of 72,450 contigs with a total of 70 million bp. Functional predictions of the transcripts were estimated by alignment to selected protein databases. Transcriptome sequences of the five lines, including TM-1, were obtained using an Illumina Genome Analyzer-II, and the short reads were mapped to the TM-1 assembly to discover SNPs among the five lines. We identified >14,000 unfiltered allelic SNPs, of which ∼3,700 SNPs were retained for assay development after applying several rigorous filters. This paper reports availability of the reference transcriptome assembly and shows its utility in developing intraspecific SNP markers in upland cotton.

  10. Single nucleotide polymorphism array analysis of bone marrow failure patients reveals characteristic patterns of genetic changes.

    Science.gov (United States)

    Babushok, Daria V; Xie, Hongbo M; Roth, Jacquelyn J; Perdigones, Nieves; Olson, Timothy S; Cockroft, Joshua D; Gai, Xiaowu; Perin, Juan C; Li, Yimei; Paessler, Michele E; Hakonarson, Hakon; Podsakoff, Gregory M; Mason, Philip J; Biegel, Jaclyn A; Bessler, Monica

    2014-01-01

    The bone marrow failure syndromes (BMFS) are a heterogeneous group of rare blood disorders characterized by inadequate haematopoiesis, clonal evolution, and increased risk of leukaemia. Single nucleotide polymorphism arrays (SNP-A) have been proposed as a tool for surveillance of clonal evolution in BMFS. To better understand the natural history of BMFS and to assess the clinical utility of SNP-A in these disorders, we analysed 124 SNP-A from a comprehensively characterized cohort of 91 patients at our BMFS centre. SNP-A were correlated with medical histories, haematopathology, cytogenetic and molecular data. To assess clonal evolution, longitudinal analysis of SNP-A was performed in 25 patients. We found that acquired copy number-neutral loss of heterozygosity (CN-LOH) was significantly more frequent in acquired aplastic anaemia (aAA) than in other BMFS (odds ratio 12·2, P < 0·01). Homozygosity by descent was most common in congenital BMFS, frequently unmasking autosomal recessive mutations. Copy number variants (CNVs) were frequently polymorphic, and we identified CNVs enriched in neutropenia and aAA. Our results suggest that acquired CN-LOH is a general phenomenon in aAA that is probably mechanistically and prognostically distinct from typical CN-LOH of myeloid malignancies. Our analysis of clinical utility of SNP-A shows the highest yield of detecting new clonal haematopoiesis at diagnosis and at relapse. © 2013 John Wiley & Sons Ltd.

  11. Association of single nucleotide polymorphism in CD28(C/T-I3 + 17) and CD40 (C/T-1) genes with the Graves' disease.

    Science.gov (United States)

    Mustafa, Saima; Fatima, Hira; Fatima, Sadia; Khosa, Tafheem; Akbar, Atif; Shaikh, Rehan Sadiq; Iqbal, Furhan

    2018-01-01

    To find out a correlation between the single nucleotide polymorphisms in cluster of differentiation 28 and cluster of differentiation 40 genes with Graves' disease, if any. This case-control study was conducted at the Multan Institute of Nuclear Medicine and Radiotherapy, Multan, Pakistan, and comprised blood samples of Graves' disease patients and controls. Various risk factors were also correlated either with the genotype at each single-nucleotide polymorphism or with various combinations of genotypes studied during present investigation. Of the 160 samples, there were 80(50%) each from patients and controls. Risk factor analysis revealed that gender (p=0.008), marital status (pGraves' disease. Both single-nucleotide polymorphisms in both genes were not associated with Graves' disease, either individually or in any combined form.

  12. A Whole Genome Association Study to Detect Single Nucleotide Polymorphisms for Blood Components (Immunity in a Cross between Korean Native Pig and Yorkshire

    Directory of Open Access Journals (Sweden)

    Y.-M. Lee

    2012-12-01

    Full Text Available The purpose of this study was to detect significant SNPs for blood components that were related to immunity using high single nucleotide polymorphism (SNP density panels in a Korean native pig (KNP×Yorkshire (YK cross population. A reciprocal design of KNP×YK produced 249 F2 individuals that were genotyped for a total of 46,865 available SNPs in the Illumina porcine 60K beadchip. To perform whole genome association analysis (WGA, phenotypes were regressed on each SNP under a simple linear regression model after adjustment for sex and slaughter age. To set up a significance threshold, 0.1% point-wise p value from F distribution was used for each SNP test. Among the significant SNPs for a trait, the best set of SNP markers were determined using a stepwise regression procedure with the rates of inclusion and exclusion of each SNP out of the model at 0.001 level. A total of 54 SNPs were detected; 10, 6, 4, 4, 5, 4, 5, 10, and 6 SNPs for neutrophil, lymphocyte, monocyte, eosinophil, basophil, atypical lymph, immunoglobulin, insulin, and insulin-like growth factor-I, respectively. Each set of significant SNPs per trait explained 24 to 42% of phenotypic variance. Several pleiotropic SNPs were detected on SSCs 4, 13, 14 and 15.

  13. Single-nucleotide polymorphisms in the SEPTIN12 gene may be a genetic risk factor for Japanese patients with Sertoli cell-only syndrome.

    Science.gov (United States)

    Miyakawa, Hiroe; Miyamoto, Toshinobu; Koh, Eitetsu; Tsujimura, Akira; Miyagawa, Yasushi; Saijo, Yasuaki; Namiki, Mikio; Sengoku, Kazuo

    2012-01-01

    Genetic mechanisms have been implicated as a cause of some cases of male infertility. Recently, 10 novel genes involved in human spermatogenesis, including human SEPTIN12, were identified by expression microarray analysis of human testicular tissue. Septin12 is a member of the septin family of conserved cytoskeletal GTPases that form heteropolymeric filamentous structures in interphase cells. It is expressed specifically in the testis. Therefore, we hypothesized that mutation or polymorphisms of SEPTIN12 participate in male infertility, especially Sertoli cell-only syndrome (SCOS). To investigate whether SEPTIN12 gene defects are associated with azoospermia caused by SCOS, mutational analysis was performed in 100 Japanese patients by direct sequencing of coding regions. Statistical analysis was performed in patients with SCOS and in 140 healthy control men. No mutations were found in SEPTIN12 ; however, 8 coding single-nucleotide polymorphisms (SNP1-SNP8) could be detected in the patients with SCOS. The genotype and allele frequencies in SNP3, SNP4, and SNP6 were notably higher in the SCOS group than in the control group (P < .001). These results suggest that SEPTIN12 might play a critical role in human spermatogenesis.

  14. Homozygosity of single nucleotide polymorphisms in the 3' region of the canine estrogen receptor 1 gene is greater in Toy Poodles than in Miniature Dachshunds and Chihuahuas.

    Science.gov (United States)

    Pathirana, Indunil N; Tanaka, Kakeru; Kawate, Noritoshi; Tsuji, Makoto; Hatoya, Shingo; Inaba, Toshio; Tamada, Hiromichi

    2011-06-01

    Differences in the distribution of single nucleotide polymorphisms (SNPs) and haplotypes in the estrogen receptor α gene (ESR1) were examined in Miniature Dachshunds (n = 48), Chihuahuas (n = 20) and Toy Poodles (n = 18). Five DNA fragments located in the 40-kb region at the 3' end of ESR1 were amplified by polymerase chain reaction and were directly sequenced. We compared allele, genotype and estimated haplotype frequencies at each SNP in the 3' end of ESR1 for these three breeds of small dog. The frequency of the major allele and the genotype frequency of the major allele homozygotes, were significantly higher in Toy Poodles for five SNPs (SNP #5, #14-17) than in Miniature Dachshunds, and significantly higher in Toy Poodles than Chihuahuas for three SNPs (SNP #15-17). A common haplotype block was identified in an approximately 20-kb region encompassing four SNPs (SNPs # 14-17). The frequencies of the most abundant estimated haplotype (GTTG) and GTTG homozygotes were significantly higher in Toy Poodles than in the other two breeds. These results imply that homozygosity for the allele, genotype and haplotype distribution within the block at the 3' end of ESR1 is greater in Toy Poodles than in Miniature Dachshunds and Chihuahuas. © 2011 The Authors; Animal Science Journal © 2011 Japanese Society of Animal Science.

  15. Rapid Identification of Echinococcus granulosus and E. canadensis Using High-Resolution Melting (HRM) Analysis by Focusing on a Single Nucleotide Polymorphism.

    Science.gov (United States)

    Safa, Ahmad Hosseini; Harandi, Majid Fasihi; Tajaddini, Mohammadhasan; Rostami-Nejad, Mohammad; Mohtashami-Pour, Mehdi; Pestehchian, Nader

    2016-07-22

    High-resolution melting (HRM) is a reliable and sensitive scanning method to detect variation in DNA sequences. We used this method to better understand the epidemiology and transmission of Echinococcus granulosus. We tested the use of HRM to discriminate the genotypes of E. granulosus and E. canadensis. One hundred forty-one hydatid cysts were collected from slaughtered animals in different parts of Isfahan-Iran in 2013. After DNA extraction, the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene was amplified using PCR coupled with the HRM curve. The result of HRM analysis using partial the sequences of cox1 gene revealed that 93, 35, and 2 isolates were identified as G1, G3, and G6 genotypes, respectively. A single nucleotide polymorphism (SNP) was found in locus 9867 of the cox1 gene. This is a critical locus for the differentiation between the G6 and G7 genotypes. In the phylogenic tree, the sample with a SNP was located between the G6 and G7 genotypes, which suggest that this isolate has a G6/G7 genotype. The HRM analysis developed in the present study provides a powerful technique for molecular and epidemiological studies on echinococcosis in humans and animals.

  16. Multicenter cohort association study of SLC2A1 single nucleotide polymorphisms and age-related macular degeneration

    Science.gov (United States)

    Baas, Dominique C.; Ho, Lintje; Tanck, Michael W.T.; Fritsche, Lars G.; Merriam, Joanna E.; van het Slot, Ruben; Koeleman, Bobby P.C.; Gorgels, Theo G.M.F.; van Duijn, Cornelia M.; Uitterlinden, André G.; de Jong, Paulus T.V.M.; Hofman, Albert; ten Brink, Jacoline B.; Vingerling, Johannes R.; Klaver, Caroline C.W.; Dean, Michael; Weber, Bernhard H. F.; Allikmets, Rando; Hageman, Gregory S.

    2012-01-01

    Purpose Age-related macular degeneration (AMD) is a major cause of blindness in older adults and has a genetically complex background. This study examines the potential association between single nucleotide polymorphisms (SNPs) in the glucose transporter 1 (SLC2A1) gene and AMD. SLC2A1 regulates the bioavailability of glucose in the retinal pigment epithelium (RPE), which might influence oxidative stress–mediated AMD pathology. Methods Twenty-two SNPs spanning the SLC2A1 gene were genotyped in 375 cases and 199 controls from an initial discovery cohort (the Amsterdam-Rotterdam-Netherlands study). Replication testing was performed in The Rotterdam Study (the Netherlands) and study populations from Würzburg (Germany), the Age Related Eye Disease Study (AREDS; United States), Columbia University (United States), and Iowa University (United States). Subsequently, a meta-analysis of SNP association was performed. Results In the discovery cohort, significant genotypic association between three SNPs (rs3754219, rs4660687, and rs841853) and AMD was found. Replication in five large independent (Caucasian) cohorts (4,860 cases and 4,004 controls) did not yield consistent association results. The genotype frequencies for these SNPs were significantly different for the controls and/or cases among the six individual populations. Meta-analysis revealed significant heterogeneity of effect between the studies. Conclusions No overall association between SLC2A1 SNPs and AMD was demonstrated. Since the genotype frequencies for the three SLC2A1 SNPs were significantly different for the controls and/or cases between the six cohorts, this study corroborates previous evidence that population dependent genetic risk heterogeneity in AMD exists. PMID:22509097

  17. Association of single nucleotide polymorphism at position 45 in adiponectin gene with plasma adiponectin level and insulin resistance in obesity

    International Nuclear Information System (INIS)

    Chen Xiaoyu; Li Xisheng; Lin Xiahong; Gao Hongzhi; Li Qiulan; Zha Jinshun

    2012-01-01

    Objective: To explore the association of single nucleotide polymorphism at position 45 (SNP45) in adiponectin gene with plasma adiponectin level and insulin resistance in obesity in Quanzhou area of Fujian province. Methods: Two hundred and forty-eight patients with obesity and 225 normal control subjects were enrolled in this study.Fasting insulin (FINS) were measured by radioimmunoassay and fasting plasma glucose (FPG), total cholesterol (TC), triglyceride (TG), high density lipoprotein-cholesterol (HDL-C), low density lipoprotein-cholesterol (LDL-C) were measured by BECKMAN DXC800 biochemistry analyzer. Body mass index (BMI), waist to hip ratio,homeostasis model assessment of insulin resistance (HOMA-IR) were calculated. Plasma adiponectin levels were examined by means of enzyme-linked immunosorbentassy. The adiponectin gene SNP45 was identified by PCR-restriction fragment length polymorphism. Results: (1) Frequencies of GG+GT genotype in obesity group and normal control group were 61% and 44% respectively (χ 2 =14.182, P<0.01), and G allele frequencies were 35% and 25% (χ 2 =10.708, P<0.01). (2) In obesity group,the subjects with SNP45 GG+GT genotype had higher TG and LDL-C levels than those with TT genotype (t=2.604, P<0.01; t=5.507, P<0.01), and had lower adiponectin level than those with TT genotype (t=2.275, P<0.05), and had significantly lower HDL-L level than those with TT genotype (t=10.100, P< 0.01). (3) In normal control group,the subjects with SNP45 GG +GT genotype had significantly lower adiponectin,TG,TC levels than those with TT genotype (t=2.510, P<0.05; t=2.922, P<0.01; t=3.272, P< 0.01). (4) Logistic analysis proved that the SNP45 GG+GT genotype in obesity group was associated with decreased risk of plasma adiponectin level (OR=0.810, 95% CI : 0.673-0.975, P<0.05), and with increased risk of HOMA-IR (OR=1.746, 95% CI : 1.060-2.875, P<0.05). The SNP45 GG+GT genotype in normal control group was associated with increased risk of HOMA-IR (OR=3

  18. SNP calling using genotype model selection on high-throughput sequencing data

    KAUST Repository

    You, Na

    2012-01-16

    Motivation: A review of the available single nucleotide polymorphism (SNP) calling procedures for Illumina high-throughput sequencing (HTS) platform data reveals that most rely mainly on base-calling and mapping qualities as sources of error when calling SNPs. Thus, errors not involved in base-calling or alignment, such as those in genomic sample preparation, are not accounted for.Results: A novel method of consensus and SNP calling, Genotype Model Selection (GeMS), is given which accounts for the errors that occur during the preparation of the genomic sample. Simulations and real data analyses indicate that GeMS has the best performance balance of sensitivity and positive predictive value among the tested SNP callers. © The Author 2012. Published by Oxford University Press. All rights reserved.

  19. Association study of genetic variants at single nucleotide polymorphism rs109231409 of mannose-binding lectins 1 gene with mastitis susceptibility in Vrindavani crossbred cattle

    Directory of Open Access Journals (Sweden)

    V. N. Muhasin Asaf

    2014-10-01

    Full Text Available Aim: The present study was undertaken to identify whether single nucleotide polymorphism (SNP rs109231409 located on mannose-binding lectins 1 (MBL1 gene was associated with mastitis tolerance/susceptibility. Materials and Methods: After grouping 100 Vrindavani crossbred cattle as mastitis positive and negative animals, they were genotyped using polymerase chain reaction (PCR-restriction fragment length polymorphisms method. Gene and genotype frequencies of different patterns were estimated by standard procedure (POPGENE version 1.32, (University of Alberta, Canada and statistical analysis was carried out by logistic regression methods using STATA 12 software (StataCorp LP, USA. Results: The 588 bp fragment of MBL1 gene was amplified using PCR. PCR product was digested with ApaI restriction enzyme showed two distinct genotypes viz., GG (311 bp and 272 bp fragments and GA (588 bp, 311 bp and 277 bp fragments. The gene, genotype frequencies, average heterozygosity, polymorphic information content and χ2 values for the locus rs109231409 was ascertained. Conclusions: No significant association between SNP “rs109231409” with mastitis tolerance was found. Although there is a lack of association, further studies have to be undertaken in a large population in order to validate the impact of rs109231409 (g.855G >A on mastitis tolerance.

  20. Multiple Locus Variable-Number Tandem-Repeat and Single-Nucleotide Polymorphism-Based Brucella Typing Reveals Multiple Lineages in Brucella melitensis Currently Endemic in China

    Directory of Open Access Journals (Sweden)

    Mingjun Sun

    2017-12-01

    Full Text Available Brucellosis is a worldwide zoonotic disease caused by Brucella spp. In China, brucellosis is recognized as a reemerging disease mainly caused by Brucella melitensis specie. To better understand the currently endemic B. melitensis strains in China, three Brucella genotyping methods were applied to 110 B. melitensis strains obtained in past several years. By MLVA genotyping, five MLVA-8 genotypes were identified, among which genotypes 42 (1-5-3-13-2-2-3-2 was recognized as the predominant genotype, while genotype 63 (1-5-3-13-2-3-3-2 and a novel genotype of 1-5-3-13-2-4-3-2 were second frequently observed. MLVA-16 discerned a total of 57 MLVA-16 genotypes among these Brucella strains, with 41 genotypes being firstly detected and the other 16 genotypes being previously reported. By BruMLSA21 typing, six sequence types (STs were identified, among them ST8 is the most frequently seen in China while the other five STs were firstly detected and designated as ST137, ST138, ST139, ST140, and ST141 by international multilocus sequence typing database. Whole-genome sequence (WGS-single-nucleotide polymorphism (SNP-based typing and phylogenetic analysis resolved Chinese B. melitensis strains into five clusters, reflecting the existence of multiple lineages among these Chinese B. melitensis strains. In phylogeny, Chinese lineages are more closely related to strains collected from East Mediterranean and Middle East countries, such as Turkey, Kuwait, and Iraq. In the next few years, MLVA typing will certainly remain an important epidemiological tool for Brucella infection analysis, as it displays a high discriminatory ability and achieves result largely in agreement with WGS-SNP-based typing. However, WGS-SNP-based typing is found to be the most powerful and reliable method in discerning Brucella strains and will be popular used in the future.

  1. Single Nucleotide Polymorphism in Gene Encoding Transcription Factor Prep1 Is Associated with HIV-1-Associated Dementia

    Science.gov (United States)

    van Manen, Daniëlle; Bunnik, Evelien M.; van Sighem, Ard I.; Sieberer, Margit; Boeser-Nunnink, Brigitte; de Wolf, Frank; Schuitemaker, Hanneke; Portegies, Peter; Kootstra, Neeltje A.; van 't Wout, Angélique B.

    2012-01-01

    Background Infection with HIV-1 may result in severe cognitive and motor impairment, referred to as HIV-1-associated dementia (HAD). While its prevalence has dropped significantly in the era of combination antiretroviral therapy, milder neurocognitive disorders persist with a high prevalence. To identify additional therapeutic targets for treating HIV-associated neurocognitive disorders, several candidate gene polymorphisms have been evaluated, but few have been replicated across multiple studies. Methods We here tested 7 candidate gene polymorphisms for association with HAD in a case-control study consisting of 86 HAD cases and 246 non-HAD AIDS patients as controls. Since infected monocytes and macrophages are thought to play an important role in the infection of the brain, 5 recently identified single nucleotide polymorphisms (SNPs) affecting HIV-1 replication in macrophages in vitro were also tested. Results The CCR5 wt/Δ32 genotype was only associated with HAD in individuals who developed AIDS prior to 1991, in agreement with the observed fading effect of this genotype on viral load set point. A significant difference in genotype distribution among all cases and controls irrespective of year of AIDS diagnosis was found only for a SNP in candidate gene PREP1 (p = 1.2×10−5). Prep1 has recently been identified as a transcription factor preferentially binding the −2,518 G allele in the promoter of the gene encoding MCP-1, a protein with a well established role in the etiology of HAD. Conclusion These results support previous findings suggesting an important role for MCP-1 in the onset of HIV-1-associated neurocognitive disorders. PMID:22347417

  2. Single nucleotide polymorphism in gene encoding transcription factor Prep1 is associated with HIV-1-associated dementia.

    Directory of Open Access Journals (Sweden)

    Sebastiaan M Bol

    Full Text Available BACKGROUND: Infection with HIV-1 may result in severe cognitive and motor impairment, referred to as HIV-1-associated dementia (HAD. While its prevalence has dropped significantly in the era of combination antiretroviral therapy, milder neurocognitive disorders persist with a high prevalence. To identify additional therapeutic targets for treating HIV-associated neurocognitive disorders, several candidate gene polymorphisms have been evaluated, but few have been replicated across multiple studies. METHODS: We here tested 7 candidate gene polymorphisms for association with HAD in a case-control study consisting of 86 HAD cases and 246 non-HAD AIDS patients as controls. Since infected monocytes and macrophages are thought to play an important role in the infection of the brain, 5 recently identified single nucleotide polymorphisms (SNPs affecting HIV-1 replication in macrophages in vitro were also tested. RESULTS: The CCR5 wt/Δ32 genotype was only associated with HAD in individuals who developed AIDS prior to 1991, in agreement with the observed fading effect of this genotype on viral load set point. A significant difference in genotype distribution among all cases and controls irrespective of year of AIDS diagnosis was found only for a SNP in candidate gene PREP1 (p = 1.2 × 10(-5. Prep1 has recently been identified as a transcription factor preferentially binding the -2,518 G allele in the promoter of the gene encoding MCP-1, a protein with a well established role in the etiology of HAD. CONCLUSION: These results support previous findings suggesting an important role for MCP-1 in the onset of HIV-1-associated neurocognitive disorders.

  3. Association of single nucleotide polymorphisms in the MVP gene with platinum resistance and survival in patients with epithelial ovarian cancer.

    Science.gov (United States)

    Zhao, Ya-Nan; He, Dong-Ning; Wang, Ya-DI; Li, Jun-Jie; Ha, Min-Wen

    2016-04-01

    The human major vault protein (MVP) has been linked to the development of multidrug resistance in cancer cells, and overexpression of MVP has been observed in ovarian cancer tissues. The aim of the present study was to investigate the association between single nucleotide polymorphisms (SNPs) in the MVP gene and the tumor response to platinum-based chemotherapy and survival of patients affected by epithelial ovarian cancer (EOC), in addition to confirm whether tetra-primer amplification-refractory mutation system (ARMS)-polymerase chain reaction (PCR) is an accurate genotyping method. For this purpose, two polymorphisms in the MVP gene, namely reference SNP (rs)1057451 and rs4788186, were selected from the data obtained by the International haplotype map (HapMap) Project regarding Chinese Han population, and were evaluated by tetra-primer ARMS-PCR. Upon validation by DNA sequencing, the association of these polymorphisms with platinum resistance, progression-free survival (PFS) and overall survival (OS) in patients with EOC was assessed. The results of tetra-primer ARMS-PCR were in agreement with those derived from DNA sequencing. No significant differences were observed between platinum-sensitive and platinum-resistant cohorts in terms of allele and genotype distribution of these two polymorphisms in the MVP gene, which were not associated with PFS or OS. However, a trend toward prolonged PFS was observed in patients carrying the heterozygous AG allele at the rs4788186 locus. These results suggest that rs1057451 and rs4788186 variants in the MVP gene are not associated with favorable therapeutic response to platinum or longer survival in Chinese Han patients affected by EOC. In addition, the data of the present study confirm that tetra-primer ARMS-PCR is a trustworthy and economical genotyping method.

  4. Caveolin-1 single nucleotide polymorphism in antineutrophil cytoplasmic antibody associated vasculitis.

    Directory of Open Access Journals (Sweden)

    Sourabh Chand

    Full Text Available Immunosuppression is cornerstone treatment of antineutrophil cytoplasmic antibody associated vasculitis (AAV but is later complicated by infection, cancer, cardiovascular and chronic kidney disease. Caveolin-1 is an essential structural protein for small cell membrane invaginations known as caveolae. Its functional role has been associated with these complications. For the first time, caveolin-1 (CAV1 gene variation is studied in AAV.CAV1 single nucleotide polymorphism rs4730751 was analysed in genomic DNA from 187 white patients with AAV from Birmingham, United Kingdom. The primary outcome measure was the composite endpoint of time to all-cause mortality or renal replacement therapy. Secondary endpoints included time to all-cause mortality, death from sepsis or vascular disease, cancer and renal replacement therapy. Validation of results was sought from 589 white AAV patients, from two European cohorts.The primary outcome occurred in 41.7% of Birmingham patients. In a multivariate model, non-CC genotype variation at the studied single nucleotide polymorphism was associated with increased risk from: the primary outcome measure [HR 1.86; 95% CI: 1.14-3.04; p=0.013], all-cause mortality [HR:1.83; 95% CI: 1.02-3.27; p=0.042], death from infection [HR:3.71; 95% CI: 1.28-10.77; p=0.016], death from vascular disease [HR:3.13; 95% CI: 1.07-9.10; p=0.037], and cancer [HR:5.55; 95% CI: 1.59-19.31; p=0.007]. In the validation cohort, the primary outcome rate was far lower (10.4%; no association between genotype and the studied endpoints was evident.The presence of a CC genotype in Birmingham is associated with protection from adverse outcomes of immunosuppression treated AAV. Lack of replication in the European cohort may have resulted from low clinical event rates. These findings are worthy of further study in larger cohorts.

  5. Single-nucleotide polymorphisms in the LRWD1 gene may be a genetic risk factor for Japanese patients with Sertoli cell-only syndrome.

    Science.gov (United States)

    Miyamoto, T; Koh, E; Tsujimura, A; Miyagawa, Y; Saijo, Y; Namiki, M; Sengoku, K

    2014-04-01

    Genetic mechanisms have been implicated as a cause of some cases of male infertility. Recently, ten novel genes involved in human spermatogenesis, including human LRWD1, have been identified by expression microarray analysis of human testictissue. The human LRWD1 protein mediates the origin recognition complex in chromatin, which is critical for the initiation of pre-replication complex assembly in G1 and chromatin organization in post-G1 cells. The Lrwd1 gene expression is specific to the testis in mice. Therefore, we hypothesized that mutation or polymorphisms of LRWD1 participate in male infertility, especially azoospermia. To investigate whether LRWD1 gene defects are associated with azoospermia caused by SCOS and meiotic arrest (MA), mutational analysis was performed in 100 and 30 Japanese patients by direct sequencing of the coding regions, respectively. Statistical analysis was performed for patients with SCOS and MA and in 100 healthy control men. No mutations were found in LRWD1; however, three coding single-nucleotide polymorphisms (SNP1-SNP3) could be detected in the patients. The genotype and allele frequencies in SNP1 and SNP2 were notably higher in the SCOS group than in the control group (P < 0.05). These results suggest the critical role of LRWD1 in human spermatogenesis. © 2013 Blackwell Verlag GmbH.

  6. Magnetoresistive sensor for real-time single nucleotide polymorphism genotyping

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Østerberg, Frederik Westergaard; Dufva, Martin

    2014-01-01

    We demonstrate a magnetoresistive sensor platform that allows for the real-time detection of point mutations in DNA targets. Specifically, we detect point mutations at two sites in the human beta globin gene. For DNA detection, the present sensor technology has a detection limit of about 160p...... of magnetic beads, which enables real-time quantification of the specific binding of magnetic beads to the sensor surface under varying experimental conditions....

  7. A study of possible associations between single nucleotide polymorphisms in the estrogen receptor 2 gene and female sexual desire.

    Science.gov (United States)

    Gunst, Annika; Jern, Patrick; Westberg, Lars; Johansson, Ada; Salo, Benny; Burri, Andrea; Spector, Tim; Eriksson, Elias; Sandnabba, N Kenneth; Santtila, Pekka

    2015-03-01

    Female sexual desire and arousal problems have been shown to have a heritable component of moderate size. Previous molecular genetic studies on sexual desire have mainly focused on genes associated with neurotransmitters such as dopamine and serotonin. Nevertheless, there is reason to believe that hormones with more specific functions concerning sexuality could have an impact on sexual desire and arousal. The aim of the present study was to investigate the possible effects of 17 single nucleotide polymorphisms (SNPs) located in estrogen receptor genes on female sexual desire and subjective and genital arousal (lubrication). Based on previous research, we hypothesized that ESR1 and ESR2 are relevant genes that contribute to female sexual desire and arousal. The desire, arousal, and lubrication subdomains of the Female Sexual Function Index self-report questionnaire were used. The present study involved 2,448 female twins and their sisters aged 18-49 who had submitted saliva samples for genotyping. The participants were a subset from a large-scale, population-based sample. We found nominally significant main effects on sexual desire for three ESR2 -linked SNPs when controlled for anxiety, suggesting that individuals homozygous for the G allele of the rs1271572 SNP, and the A allele of the rs4986938 and rs928554 SNPs had lower levels of sexual desire. The rs4986938 SNP also had a nominally significant effect on lubrication. No effects for any of the SNPs on subjective arousal could be detected. The number of nominally significant results for SNPs in the ESR2 gene before correcting for multiple testing suggests that further studies on the possible influence of this gene on interindividual variation in female sexual functioning are warranted. In contrast, no support for an involvement of ESR1 was obtained. Our results should be interpreted with caution until replicated in independent, large samples. © 2014 International Society for Sexual Medicine.

  8. Generation of Transcript Assemblies and Identification of Single Nucleotide Polymorphisms from Seven Lowland and Upland Cultivars of Switchgrass

    Directory of Open Access Journals (Sweden)

    Kevin L. Childs

    2014-07-01

    Full Text Available Switchgrass is a North American perennial prairie species that has been used as a rangeland and forage crop and has recently been targeted as a potential biofuel feedstock species. Switchgrass, which occurs as tetraploid and octoploid forms, is classified into lowland or upland ecotypes that differ in growth phenotypes and adaptation to distinct habitats. Using RNA-sequencing (RNA-seq reads derived from crown, young shoot, and leaf tissues, we generated sequence data from seven switchgrass cultivars, three lowland and four upland, to enable comparative analyses between switchgrass cultivars and to identify single nucleotide polymorphisms (SNPs for use in breeding and genetic analysis. We also generated individual transcript assemblies for each of the cultivars. Transcript data indicate that subgenomes of octoploid switchgrass are not substantially different from subgenomes of tetraploids as expected for an autopolyploid origin of switchgrass octoploids. Using RNA-seq reads aligned to the switchgrass Release 0 AP13 reference genome, we identified 1,305,976 high-confidence SNPs. Of these SNPs, 438,464 were unique to lowland cultivars, but only 12,002 were found in all lowlands. Conversely, 723,678 SNPs were unique to upland cultivars, with only 34,665 observed in all uplands. Comparison of our high-confidence transcriptome-derived SNPs with SNPs previously identified in a genotyping-by-sequencing (GBS study of an association panel revealed limited overlap between the two methods, highlighting the utility of transcriptome-based SNP discovery in augmenting genome diversity polymorphism datasets. The transcript and SNP data described here provide a useful resource for switchgrass gene annotation and marker-based analyses of the switchgrass genome.

  9. Computational Analysis of Single Nucleotide Polymorphisms Associated with Altered Drug Responsiveness in Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Valerio Costa

    2016-06-01

    Full Text Available Type 2 diabetes (T2D is one of the most frequent mortality causes in western countries, with rapidly increasing prevalence. Anti-diabetic drugs are the first therapeutic approach, although many patients develop drug resistance. Most drug responsiveness variability can be explained by genetic causes. Inter-individual variability is principally due to single nucleotide polymorphisms, and differential drug responsiveness has been correlated to alteration in genes involved in drug metabolism (CYP2C9 or insulin signaling (IRS1, ABCC8, KCNJ11 and PPARG. However, most genome-wide association studies did not provide clues about the contribution of DNA variations to impaired drug responsiveness. Thus, characterizing T2D drug responsiveness variants is needed to guide clinicians toward tailored therapeutic approaches. Here, we extensively investigated polymorphisms associated with altered drug response in T2D, predicting their effects in silico. Combining different computational approaches, we focused on the expression pattern of genes correlated to drug resistance and inferred evolutionary conservation of polymorphic residues, computationally predicting the biochemical properties of polymorphic proteins. Using RNA-Sequencing followed by targeted validation, we identified and experimentally confirmed that two nucleotide variations in the CAPN10 gene—currently annotated as intronic—fall within two new transcripts in this locus. Additionally, we found that a Single Nucleotide Polymorphism (SNP, currently reported as intergenic, maps to the intron of a new transcript, harboring CAPN10 and GPR35 genes, which undergoes non-sense mediated decay. Finally, we analyzed variants that fall into non-coding regulatory regions of yet underestimated functional significance, predicting that some of them can potentially affect gene expression and/or post-transcriptional regulation of mRNAs affecting the splicing.

  10. Sirtuin1 single nucleotide polymorphism (A2191G is a diagnostic marker for vibration-induced white finger disease

    Directory of Open Access Journals (Sweden)

    Voelter-Mahlknecht Susanne

    2012-10-01

    Full Text Available Abstract Background Vibration-induced white finger disease (VWF, also known as hand-arm vibration syndrome, is a secondary form of Raynaud’s disease, affecting the blood vessels and nerves. So far, little is known about the pathogenesisof the disease. VWF is associated with an episodic reduction in peripheral blood flow. Sirtuin 1, a class III histone deacetylase, has been described to regulate the endothelium dependent vasodilation by targeting endothelial nitric oxide synthase. We assessed Sirt1single nucleotide polymorphisms in patients with VWF to further elucidate the role of sirtuin 1 in the pathogenesis of VWF. Methods Peripheral blood samples were obtained from 74 patients with VWF (male 93.2%, female 6.8%, median age 53 years and from 317 healthy volunteers (gender equally distributed, below 30 years of age. Genomic DNA was extracted from peripheral blood mononuclear cells and screened for potential Sirt1single nucleotide polymorphisms. Four putative genetic polymorphisms out of 113 within the Sirt1 genomic region (NCBI Gene Reference: NM_012238.3 were assessed. Allelic discrimination was performed by TaqMan-polymerasechainreaction-based allele-specific genotyping single nucleotide polymorphism assays. Results Sirt1single nucleotide polymorphism A2191G (Assay C_25611590_10, rs35224060 was identified within Sirt1 exon 9 (amino acid position 731, Ile → Val, with differing allelic frequencies in the VWF population (A/A: 70.5%, A/G: 29.5%, G/G: 0% and the control population (A/A: 99.7%, A/G: 0.3%, G/G: 0.5%, with significance levels of P U test (two-tailed P t-test and Chi-square test with Yates correction (all two-tailed: P Conclusion We identified theSirt1A2191Gsingle nucleotide polymorphism as a diagnostic marker for VWF.

  11. Assessing patterns of hybridization between North Atlantic eels using diagnostic single-nucleotide polymorphisms

    DEFF Research Database (Denmark)

    Pujolar, José Martin; Jacobsen, M.W.; Als, Thomas Damm

    2014-01-01

    The two North Atlantic eel species, the European eel (Anguilla anguilla) and the American eel (Anguilla rostrata), spawn in partial sympatry in the Sargasso Sea, providing ample opportunity to interbreed. In this study, we used a RAD (Restriction site Associated DNA) sequencing approach to identify...... species-specific diagnostic single-nucleotide polymorphisms (SNPs) and design a low-density array that combined with screening of a diagnostic mitochondrial DNA marker. Eels from Iceland (N=159) and from the neighboring Faroe Islands (N=29) were genotyped, along with 94 larvae (49 European and 45 American...... eel male crosses, backcrosses were also detected, including a first-generation backcross (F1 hybrid × pure European eel) and three individuals identified as second-generation backcrosses originating from American eel × F1 hybrid backcrosses interbreeding with pure European eels. In comparison...

  12. Cohort analysis of a single nucleotide polymorphism on DNA chips.

    Science.gov (United States)

    Schwonbeck, Susanne; Krause-Griep, Andrea; Gajovic-Eichelmann, Nenad; Ehrentreich-Förster, Eva; Meinl, Walter; Glatt, Hansrüdi; Bier, Frank F

    2004-11-15

    A method has been developed to determine SNPs on DNA chips by applying a flow-through bioscanner. As a practical application we demonstrated the fast and simple SNP analysis of 24 genotypes in an array of 96 spots with a single hybridisation and dissociation experiment. The main advantage of this methodical concept is the parallel and fast analysis without any need of enzymatic digestion. Additionally, the DNA chip format used is appropriate for parallel analysis up to 400 spots. The polymorphism in the gene of the human phenol sulfotransferase SULT1A1 was studied as a model SNP. Biotinylated PCR products containing the SNP (The SNP summary web site: ) (mutant) and those containing no mutation (wild-type) were brought onto the chips coated with NeutrAvidin using non-contact spotting. This was followed by an analysis which was carried out in a flow-through biochip scanner while constantly rinsing with buffer. After removing the non-biotinylated strand a fluorescent probe was hybridised, which is complementary to the wild-type sequence. If this probe binds to a mutant sequence, then one single base is not fully matching. Thereby, the mismatched hybrid (mutant) is less stable than the full-matched hybrid (wild-type). The final step after hybridisation on the chip involves rinsing with a buffer to start dissociation of the fluorescent probe from the immobilised DNA strand. The online measurement of the fluorescence intensity by the biochip scanner provides the possibility to follow the kinetics of the hybridisation and dissociation processes. According to the different stability of the full-match and the mismatch, either visual discrimination or kinetic analysis is possible to distinguish SNP-containing sequence from the wild-type sequence.

  13. Development and application of a 20K SNP array in potato

    NARCIS (Netherlands)

    Vos, Peter

    2016-01-01

    In this thesis the results are described of investigations of various application of genome wide SNP (single nucleotide polymorphism) markers. The set of SNP markers was identified by GBS (genotyping by sequencing) strategy. The resulting dataset of 129,156 SNPs across 83 tetraploid varieties was

  14. A single nucleotide polymorphism within the acetyl-coenzyme A carboxylase beta gene is associated with proteinuria in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Maeda, Shiro; Kobayashi, Masa-aki; Araki, Shin-ichi

    2010-01-01

    It has been suggested that genetic susceptibility plays an important role in the pathogenesis of diabetic nephropathy. A large-scale genotyping analysis of gene-based single nucleotide polymorphisms (SNPs) in Japanese patients with type 2 diabetes identified the gene encoding acetyl-coenzyme A ca...

  15. Overlapping genomic sequences: a treasure trove of single-nucleotide polymorphisms.

    Science.gov (United States)

    Taillon-Miller, P; Gu, Z; Li, Q; Hillier, L; Kwok, P Y

    1998-07-01

    An efficient strategy to develop a dense set of single-nucleotide polymorphism (SNP) markers is to take advantage of the human genome sequencing effort currently under way. Our approach is based on the fact that bacterial artificial chromosomes (BACs) and P1-based artificial chromosomes (PACs) used in long-range sequencing projects come from diploid libraries. If the overlapping clones sequenced are from different lineages, one is comparing the sequences from 2 homologous chromosomes in the overlapping region. We have analyzed in detail every SNP identified while sequencing three sets of overlapping clones found on chromosome 5p15.2, 7q21-7q22, and 13q12-13q13. In the 200.6 kb of DNA sequence analyzed in these overlaps, 153 SNPs were identified. Computer analysis for repetitive elements and suitability for STS development yielded 44 STSs containing 68 SNPs for further study. All 68 SNPs were confirmed to be present in at least one of the three (Caucasian, African-American, Hispanic) populations studied. Furthermore, 42 of the SNPs tested (62%) were informative in at least one population, 32 (47%) were informative in two or more populations, and 23 (34%) were informative in all three populations. These results clearly indicate that developing SNP markers from overlapping genomic sequence is highly efficient and cost effective, requiring only the two simple steps of developing STSs around the known SNPs and characterizing them in the appropriate populations.

  16. Identification of mitochondrial DNA sequence variation and development of single nucleotide polymorphic markers for CMS-D8 in cotton.

    Science.gov (United States)

    Suzuki, Hideaki; Yu, Jiwen; Wang, Fei; Zhang, Jinfa

    2013-06-01

    Cytoplasmic male sterility (CMS), which is a maternally inherited trait and controlled by novel chimeric genes in the mitochondrial genome, plays a pivotal role in the production of hybrid seed. In cotton, no PCR-based marker has been developed to discriminate CMS-D8 (from Gossypium trilobum) from its normal Upland cotton (AD1, Gossypium hirsutum) cytoplasm. The objective of the current study was to develop PCR-based single nucleotide polymorphic (SNP) markers from mitochondrial genes for the CMS-D8 cytoplasm. DNA sequence variation in mitochondrial genes involved in the oxidative phosphorylation chain including ATP synthase subunit 1, 4, 6, 8 and 9, and cytochrome c oxidase 1, 2 and 3 subunits were identified by comparing CMS-D8, its isogenic maintainer and restorer lines on the same nuclear genetic background. An allelic specific PCR (AS-PCR) was utilized for SNP typing by incorporating artificial mismatched nucleotides into the third or fourth base from the 3' terminus in both the specific and nonspecific primers. The result indicated that the method modifying allele-specific primers was successful in obtaining eight SNP markers out of eight SNPs using eight primer pairs to discriminate two alleles between AD1 and CMS-D8 cytoplasms. Two of the SNPs for atp1 and cox1 could also be used in combination to discriminate between CMS-D8 and CMS-D2 cytoplasms. Additionally, a PCR-based marker from a nine nucleotide insertion-deletion (InDel) sequence (AATTGTTTT) at the 59-67 bp positions from the start codon of atp6, which is present in the CMS and restorer lines with the D8 cytoplasm but absent in the maintainer line with the AD1 cytoplasm, was also developed. A SNP marker for two nucleotide substitutions (AA in AD1 cytoplasm to CT in CMS-D8 cytoplasm) in the intron (1,506 bp) of cox2 gene was also developed. These PCR-based SNP markers should be useful in discriminating CMS-D8 and AD1 cytoplasms, or those with CMS-D2 cytoplasm as a rapid, simple, inexpensive, and

  17. Compilation of a panel of informative single nucleotide polymorphisms for bovine identification in the Northern Irish cattle population

    Directory of Open Access Journals (Sweden)

    Hartshorne David

    2010-01-01

    Full Text Available Abstract Background Animal identification is pivotal in governmental agricultural policy, enabling the management of subsidy payments, movement of livestock, test scheduling and control of disease. Advances in bovine genomics have made it possible to utilise inherent genetic variability to uniquely identify individual animals by DNA profiling, much as has been achieved with humans over the past 20 years. A DNA profiling test based on bi-allelic single nucleotide polymorphism (SNP markers would offer considerable advantages over current short tandem repeat (STR based industry standard tests, in that it would be easier to analyse and interpret. In this study, a panel of 51 genome-wide SNPs were genotyped across panels of semen DNA from 6 common breeds for the purposes of ascertaining allelic frequency. For SNPs on the same chromosome, the extent of linkage disequilbrium was determined from genotype data by Expectation Maximization (EM algorithm. Minimum probabilities of unique identification were determined for each breed panel. The usefulness of this SNP panel was ascertained by comparison to the current bovine STR Stockmarks II assay. A statistically representative random sampling of bovine animals from across Northern Ireland was assembled for the purposes of determining the population allele frequency for these STR loci and subsequently, the minimal probability of unique identification they conferred in sampled bovine animals from Northern Ireland. Results 6 SNPs exhibiting a minor allele frequency of less than 0.2 in more than 3 of the breed panels were excluded. 2 Further SNPs were found to reside in coding areas of the cattle genome and were excluded from the final panel. The remaining 43 SNPs exhibited genotype frequencies which were in Hardy Weinberg Equilibrium. SNPs on the same chromosome were observed to have no significant linkage disequilibrium/allelic association. Minimal probabilities of uniquely identifying individual animals from

  18. Bovine Exome Sequence Analysis and Targeted SNP Genotyping of Recessive Fertility Defects BH1, HH2, and HH3 Reveal a Putative Causative Mutation in SMC2 for HH3

    OpenAIRE

    McClure, Matthew C.; Bickhart, Derek; Null, Dan; VanRaden, Paul; Xu, Lingyang; Wiggans, George; Liu, George; Schroeder, Steve; Glasscock, Jarret; Armstrong, Jon; Cole, John B.; Van Tassell, Curtis P.; Sonstegard, Tad S.

    2014-01-01

    The recent discovery of bovine haplotypes with negative effects on fertility in the Brown Swiss, Holstein, and Jersey breeds has allowed producers to identify carrier animals using commercial single nucleotide polymorphism (SNP) genotyping assays. This study was devised to identify the causative mutations underlying defective bovine embryo development contained within three of these haplotypes (Brown Swiss haplotype 1 and Holstein haplotypes 2 and 3) by combining exome capture with next gener...

  19. Analyzing a single nucleotide polymorphism in schizophrenia: a meta-analysis approach

    Directory of Open Access Journals (Sweden)

    Falola O

    2017-08-01

    Full Text Available Oluwadamilare Falola,1 Victor Chukwudi Osamor,1,2 Marion Adebiyi,1,2 Ezekiel Adebiyi1,2 1Covenant University Bioinformatics Research (CUBRe, 2Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria Background: Schizophrenia is a severe mental disorder affecting >21 million people worldwide. Some genetic studies reported that single nucleotide polymorphism (SNP involving variant rs1344706 from the ZNF804A gene in human beings is associated with the risk of schizophrenia in several populations. Similar results tend to conflict with other reports in literature, indicating that no true significant association exists between rs1344706 and schizophrenia. We seek to determine the level of association of this SNP with schizophrenia in the Asian population using more recent genome-wide association study (GWAS datasets. Methods: Applying a computational approach with inclusion of more recent GWAS datasets, we conducted a meta-analysis to examine the level of association of SNP rs1344706 and the risk of schizophrenia disorder among the Asian population constituting Chinese, Indonesians, Japanese, Kazakhs and Singaporeans. For a total of 21 genetic studies, including a total of 28,842 cases and 35,630 controls, regression analysis, publication bias, Cochran’s Q and I2 tests were performed. The DerSimonian and Laird random-effects model was used to assess the association of the genetic variant to schizophrenia. Leave-one-out sensitivity analysis was also conducted to determine the influence of each study on the final outcome of the association study. Results: Our summarized analysis for Asian population revealed a pooled odds ratio of 1.06, 95% confidence interval of 1.01–1.11 and two-tailed P-value of 0.0228. Our test for heterogeneity showed the presence of large heterogeneity (I2=53.44%, P =0.00207 and Egger’s regression test (P =0.8763 and Begg’s test (P =0

  20. Novel Single Nucleotide Polymorphisms of the Insulin-Like Growth Factor-I Gene and Their Associations with Growth Traits in Common Carp (Cyprinus carpio L.

    Directory of Open Access Journals (Sweden)

    Xiu Feng

    2014-12-01

    Full Text Available Insulin-like growth factor-I (IGF-I plays an important role in the growth and development of vertebrates. To study polymorphisms of IGF-I, we screened a total of 4555 bp of genomic sequences in four exons and partial introns for the discovery of single nucleotide polymorphism (SNP in common carp (Cyprinus carpio. Three SNPs (g.3759T>G, g.7627T>A and g.7722T>C in intron 2 and a nonsynonymous SNP (g.7892C>T in exon 3 were identified in a pilot population including random parents and their progenies. 289 progenies were further genotyped for studying possible associations between genotypes or combined genotypes and growth traits. The results showed that the locus g.7627T>A was significantly associated with body weight and body length, and fish with genotype AA had a mean body weight 5.9% higher than those with genotype TT. No significant associations were observed between genotypes of other loci and growth traits. However, when both g.7627T>A and g.7722T>C were considered, the combined genotype TT/TT was extremely associated with the lowest values of body length and body weight and the highest K value in comparison with other diplotypes (p < 0.01. These results suggest that genotype AA at g.7627T>A and its combined genotypes with alleles from another locus have positive effects on growth traits, which would be a candidate molecular marker for further studies in marker-assisted selection in common carp.

  1. Analysis of single nucleotide polymorphisms of CRYGA and CRYGB genes in control population of western Indian origin

    Directory of Open Access Journals (Sweden)

    Kapur Suman

    2009-01-01

    Full Text Available Aim: Polymorphisms in γ-crystallins ( CRYG can serve as markers for lens differentiation and eye disorders leading to cataract. Several investigators have reported the presence of sequence variations within crystallin genes, with or without apparent effects on the function of the proteins both in mice and humans. Delineation of these polymorphic sites may explain the differences observed in the susceptibility to cataract observed among various ethnic groups. An easier Restriction Fragment Length Polymorphism (RFLP-based method has been used to detect the frequency of four single nucleotide polymorphisms (SNPs in CRYGA / CRYGB genes in control subjects of western Indian origin. Materials and Methods: A total of 137 healthy volunteers from western India were studied. Examination was performed to exclude volunteers with any ocular defects. Polymerase chain reaction (PCR-RFLP based method was developed for genotyping of G198A (Intron A, T196C (Exon 3 of CRYGA and T47C (Promoter, G449T (Exon 2 of CRYGB genes. Results: The exonic SNPs in CRYGA and CRYGB were found to have an allele frequency 0.03 and 1.00 for ancestral allele respectively, while frequency of non-coding SNP in CRYGA was 0.72. Allele frequency of T90C of CRYGB varied significantly ( P = 0.02 among different age groups. An in-silico analysis reveals that this sequence variation in CRYGB promoter impacts the binding of two transcription factors, ACE2 (Member of CLB2 cluster and Progesterone Receptor (PR which may impact the expression of CRYGB gene. Conclusions: This study establishes baseline frequency data for four SNPs in CRYGA and CRYGB genes for future case control studies on the role of these SNPs in the genetic basis of cataract.

  2. Assessment of single nucleotide polymorphisms in screening 52 DNA repair and cell cycle control genes in Fanconi anemia patients

    Directory of Open Access Journals (Sweden)

    Petrović Sandra

    2015-01-01

    Full Text Available Fanconi anemia (FA is a rare genetically heterogeneous disorder associated with bone marrow failure, birth defects and cancer susceptibility. Apart from the disease- causing mutations in FANC genes, the identification of specific DNA variations, such as single nucleotide polymorphisms (SNPs, in other candidate genes may lead to a better clinical description of this condition enabling individualized treatment with improvement of the prognosis. In this study, we have assessed 95 SNPs located in 52 key genes involved in base excision repair (BER, nucleotide excision repair (NER, mismatch repair (MMR, double strand break (DSB repair and cell cycle control using a DNA repair chip (Asper Biotech, Estonia which includes most of the common variants for the candidate genes. The SNP genotyping was performed in five FA-D2 patients and in one FA-A patient. The polymorphisms studied were synonymous (n=10, nonsynonymous (missense (n=52 and in non-coding regions of the genome (introns and 5 ‘and 3’ untranslated regions (UTR (n=33. Polymorphisms found at the homozygous state are selected for further analysis. Our results have shown a significant inter-individual variability among patients in the type and the frequency of SNPs and also elucidate the need for further studies of polymorphisms located in ATM, APEX APE 1, XRCC1, ERCC2, MSH3, PARP4, NBS1, BARD1, CDKN1B, TP53 and TP53BP1 which may be of great importance for better clinical description of FA. In addition, the present report recommends the use of SNPs as predictive and prognostic genetic markers to individualize therapy of FA patients. [Projekat Ministarstva nauke Republike Srbije, br. 173046

  3. Associations between single nucleotide polymorphisms in iron-related genes and iron status in multiethnic populations.

    Directory of Open Access Journals (Sweden)

    Christine E McLaren

    Full Text Available The existence of multiple inherited disorders of iron metabolism suggests genetic contributions to iron deficiency. We previously performed a genome-wide association study of iron-related single nucleotide polymorphisms (SNPs using DNA from white men aged ≥ 25 y and women ≥ 50 y in the Hemochromatosis and Iron Overload Screening (HEIRS Study with serum ferritin (SF ≤ 12 µg/L (cases and controls (SF >100 µg/L in men, SF >50 µg/L in women. We report a follow-up study of white, African-American, Hispanic, and Asian HEIRS participants, analyzed for association between SNPs and eight iron-related outcomes. Three chromosomal regions showed association across multiple populations, including SNPs in the TF and TMPRSS6 genes, and on chromosome 18q21. A novel SNP rs1421312 in TMPRSS6 was associated with serum iron in whites (p = 3.7 × 10(-6 and replicated in African Americans (p = 0.0012.Twenty SNPs in the TF gene region were associated with total iron-binding capacity in whites (p<4.4 × 10(-5; six SNPs replicated in other ethnicities (p<0.01. SNP rs10904850 in the CUBN gene on 10p13 was associated with serum iron in African Americans (P = 1.0 × 10(-5. These results confirm known associations with iron measures and give unique evidence of their role in different ethnicities, suggesting origins in a common founder.

  4. SNP high-throughput screening in grapevine using the SNPlex™ genotyping system

    Directory of Open Access Journals (Sweden)

    Velasco Riccardo

    2008-01-01

    Full Text Available Abstract Background Until recently, only a small number of low- and mid-throughput methods have been used for single nucleotide polymorphism (SNP discovery and genotyping in grapevine (Vitis vinifera L.. However, following completion of the sequence of the highly heterozygous genome of Pinot Noir, it has been possible to identify millions of electronic SNPs (eSNPs thus providing a valuable source for high-throughput genotyping methods. Results Herein we report the first application of the SNPlex™ genotyping system in grapevine aiming at the anchoring of an eukaryotic genome. This approach combines robust SNP detection with automated assay readout and data analysis. 813 candidate eSNPs were developed from non-repetitive contigs of the assembled genome of Pinot Noir and tested in 90 progeny of Syrah × Pinot Noir cross. 563 new SNP-based markers were obtained and mapped. The efficiency rate of 69% was enhanced to 80% when multiple displacement amplification (MDA methods were used for preparation of genomic DNA for the SNPlex assay. Conclusion Unlike other SNP genotyping methods used to investigate thousands of SNPs in a few genotypes, or a few SNPs in around a thousand genotypes, the SNPlex genotyping system represents a good compromise to investigate several hundred SNPs in a hundred or more samples simultaneously. Therefore, the use of the SNPlex assay, coupled with whole genome amplification (WGA, is a good solution for future applications in well-equipped laboratories.

  5. The low single nucleotide polymorphism heritability of plasma and saliva cortisol levels.

    Science.gov (United States)

    Neumann, Alexander; Direk, Nese; Crawford, Andrew A; Mirza, Saira; Adams, Hieab; Bolton, Jennifer; Hayward, Caroline; Strachan, David P; Payne, Erin K; Smith, Jennifer A; Milaneschi, Yuri; Penninx, Brenda; Hottenga, Jouke J; de Geus, Eco; Oldehinkel, Albertine J; van der Most, Peter J; de Rijke, Yolanda; Walker, Brian R; Tiemeier, Henning

    2017-11-01

    Cortisol is an important stress hormone affected by a variety of biological and environmental factors, such as the circadian rhythm, exercise and psychological stress. Cortisol is mostly measured using blood or saliva samples. A number of genetic variants have been found to contribute to cortisol levels with these methods. While the effects of several specific single genetic variants is known, the joint genome-wide contribution to cortisol levels is unclear. Our aim was to estimate the amount of cortisol variance explained by common single nucleotide polymorphisms, i.e. the SNP heritability, using a variety of cortisol measures, cohorts and analysis approaches. We analyzed morning plasma (n=5705) and saliva levels (n=1717), as well as diurnal saliva levels (n=1541), in the Rotterdam Study using genomic restricted maximum likelihood estimation. Additionally, linkage disequilibrium score regression was fitted on the results of genome-wide association studies (GWAS) performed by the CORNET consortium on morning plasma cortisol (n=12,597) and saliva cortisol (n=7703). No significant SNP heritability was detected for any cortisol measure, sample or analysis approach. Point estimates ranged from 0% to 9%. Morning plasma cortisol in the CORNET cohorts, the sample with the most power, had a 6% [95%CI: 0-13%] SNP heritability. The results consistently suggest a low SNP heritability of these acute and short-term measures of cortisol. The low SNP heritability may reflect the substantial environmental and, in particular, situational component of these cortisol measures. Future GWAS will require very large sample sizes. Alternatively, more long-term cortisol measures such as hair cortisol samples are needed to discover further genetic pathways regulating cortisol concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Polymorphisms of Tumor Necrosis Factor Alpha in Moroccan Patients with Gastric Pathology: New Single-Nucleotide Polymorphisms in TNF-α−193 (G/A

    Directory of Open Access Journals (Sweden)

    A. Essadik

    2015-01-01

    Full Text Available Polymorphisms in tumor necrosis factor alpha (TNF-α gene are emerging as key determinants of gastric diseases. The TNF-α−308 (G/A and TNF-α−238 (G/A single-nucleotide polymorphisms SNPs are the most extensively studied. However, all these studies are conducted in Caucasian and Asian populations. Thus, for the first time in Africa, we sought to investigate whether polymorphisms in TNF-α gene were associated with the development of gastric pathology in Morocco. Two SNPs located in the promoter region (positions −308 and −238 in TNF-α gene were genotyped in 244 individuals (170 patients and 74 healthy controls. Odds ratios (ORs and 95% confidence intervals (CI were estimated using logistic regression analysis. The TNF-α−238 (G/A genotype was significantly associated with a high risk of gastritis and gastric cancer (GC (P=0.001 and P=0.002, resp.. Furthermore, a new polymorphism located in the promoter region at position −193 in TNF-α gene was identified. The distribution of this SNP was markedly different in patients suffering from ulcers. The association between TNF-α−193 (G/A genotype and high risk of ulcer was significant (P=0.03. These results suggest that the TNF-α−193 (G/A allele has a protective function against gastric cancer by developing ulcer.

  7. Biomek®-3000 and GenPlex SNP Genotyping in Forensic Genetics

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Tomas, Carmen; Hansen, Anders J.

    2008-01-01

    Single nucleotide polymorphism genotyping provides a supplement for conventional short tandem repeats-based kits currently used for human identification. GenPlex (Applied Biosystems (AB), Foster City, CA) is an SNP-genotyping kit based on a multiplex of 48 informative, autosomal SNPs from...... the SNPforID Consortium. Our objective was to setup, implement, and validate a small and affordable automated liquid-handling robot for forensic casework samples (buccal swaps on FTA-paper and Qiagen purified blood). The reaction scheme consisted of numerous steps and was cumbersome to perform consistently...... manually. Automation was accomplished with a Biomek-3000 (Beckmann Coulter) laboratory-automated workstation using five in-house-developed methods. All methods allowed the user to select the number of subsequent injections to the capillary electrophoresis instrument (ABI 3130xl, AB) enabling processing...

  8. Development of 101 Gene-based Single Nucleotide Polymorphism Markers in Sea Cucumber, Apostichopus japonicus

    Directory of Open Access Journals (Sweden)

    Wei Lu

    2012-06-01

    Full Text Available Single nucleotide polymorphisms (SNPs are currently the marker of choice in a variety of genetic studies. Using the high resolution melting (HRM genotyping approach, 101 gene-based SNP markers were developed for Apostichopus japonicus, a sea cucumber species with economic significance for the aquaculture industry in East Asian countries. HRM analysis revealed that all the loci showed polymorphisms when evaluated using 40 A. japonicus individuals collected from a natural population. The minor allele frequency ranged from 0.035 to 0.489. The observed and expected heterozygosities ranged from 0.050 to 0.833 and 0.073 to 0.907, respectively. Thirteen loci were found to depart significantly from Hardy–Weinberg equilibrium (HWE after Bonferroni corrections. Significant linkage disequilibrium (LD was detected in one pair of markers. These SNP markers are expected to be useful for future quantitative trait loci (QTL analysis, and to facilitate marker-assisted selection (MAS in A. japonicus.

  9. The allele frequency of two single nucleotide polymorphisms in the von Hippel-Lindau (VHL) tumor suppressor gene in the Taiwanese population.

    Science.gov (United States)

    Wang, Wen-Chung; Chen, Hui-Ju; Shu, Wei-Pang; Tsai, Yi-Chang; Lai, Yen-Chein

    2011-10-01

    The von Hippel-Lindau (VHL) tumor suppressor gene located on chromosome 3p25-26 is implicated in VHL disease. Two informative single nucleotide polymorphisms are at positions 19 and 1149 on the nucleotide sequence from Gene Bank NM_000551. In this study we examined the allele frequencies at these two loci in the Taiwanese population and compared the results to those from European ethnic populations. The allele frequency was examined in 616 healthy individuals including 301 university students and 315 neonates. Both A/G polymorphisms were investigated using restriction fragment length polymorphism analysis created by restriction enzymes, BsaJ I and Acc I. Among these subjects, the allele frequencies at 19 SNP and 1149 SNP for variant G were 0.130 and 0.133, respectively. And these results were significant differences from those of the Caucasian populations. In addition, 90% of the tested subjects had identical genotypes at these two loci suggesting the existence of nonrandom association of alleles. We found that the G allele frequency at these two loci in the Taiwanese population is much lower than that in people from Western countries. This phenomenon may be attributed to ethnic effects. Copyright © 2011. Published by Elsevier B.V.

  10. Single nucleotide polymorphism in toll-like receptor 6 is associated with a decreased risk for ureaplasma respiratory tract colonization and bronchopulmonary dysplasia in preterm infants.

    Science.gov (United States)

    Winters, Alexandra H; Levan, Tricia D; Vogel, Stefanie N; Chesko, Kirsty L; Pollin, Toni I; Viscardi, Rose M

    2013-08-01

    Ureaplasma spp. respiratory tract colonization is a risk factor for bronchopulmonary dysplasia (BPD) in preterm infants, but differences in host susceptibility have not been elucidated. We hypothesized that variants in genes regulating the innate immune response are associated with altered risk for Ureaplasma spp. respiratory colonization and BPD in preterm infants. Twenty-four tag single nucleotide polymorphisms (SNPs) from Toll-like receptor (TLR)1, TLR2, TLR4 and TLR6 were assayed in 298 infants Ureaplasma spp. and were evaluated for BPD. The majority of subjects (N = 205 [70%]) were African-American. One hundred ten (37%) were Ureaplasma positive. Four SNPs in TLR2 and TLR6 were significantly associated with Ureaplasma respiratory tract colonization. Single SNPs in TLR2, TLR4 and TLR6 were associated with BPD. TLR6 SNP rs5743827 was associated with both a decreased risk for Ureaplasma respiratory tract colonization and decreased risk for BPD (odds ratio: 0.54 [0.34-0.86] and odds ratio: 0.54 [0.31-0.95], respectively). There was a significant additive interaction between Ureaplasma colonization and genotype at TLR6 SNP rs5743827 (Padditive = 0.023), with an attributable proportion due to interaction of 0.542. Polymorphisms in host defense genes may alter susceptibility to Ureaplasma infection and severity of the inflammatory response contributing to BPD. These observations implicate host genetic susceptibility as a major factor in BPD pathogenesis in Ureaplasma-infected preterms.

  11. A study of single nucleotide polymorphism in the ystB gene of Yersinia enterocolitica strains isolated from various wild animal species.

    Science.gov (United States)

    Bancerz-Kisiel, Agata; Szczerba-Turek, Anna; Platt-Samoraj, Aleksandra; Michalczyk, Maria; Szweda, Wojciech

    2017-03-01

    Y. enterocolitica is the causative agent of yersiniosis. The objective of the article was a study of single nucleotide polymorphism in the ystB gene of Y. enterocolitica strains isolated from various wild animal species. High-resolution melting (HRM) analysis was applied to identify single nucleotide polymorphism (SNP) of ystB gene fragments of 88 Y. enterocolitica biotype 1A strains isolated from wild boar, roe deer, red deer and wild ducks. HRM analysis revealed 14 different melting profiles - 4 of them were defined as regular genotypes (G1, G2, G3, G4), whereas 10 as variations. 24 of the examined Y. enterocolitica strains were classified as G1, 18 strains as a G2, 21 strains as a G3, and 15 strains as a G4. Nucleotide sequences classified as G1 revealed 100% similarity with the Y. enterocolitica D88145.1 sequence (NCBI). Analysis of G2 revealed one point mutation - transition T111A. One mutation was also found in G3, but SNP was placed in a different gene region - transition G193A. Two SNPs - transitions G92C and T111A - were identified in G4. Direct sequencing of 10 variations revealed 5 new variants of the ystB nucleotide sequence: V1 - transition G129A (3 strains); V2 - transitions T111A and G193A (2 strains); V3 - transitions C118T and G193A (1 strain); V4 - transitions C141A and G193A (2 strains); and V5 characterized by 19 SNPs: G83A, T93A, A109G, G114T, C116T, A123G, T134C, T142G, T144C, A150C, G162A, T165G, T170G, T174A, T177G, G178A, A179G, A184G and G193A (2 strains). The predominant genotype in isolates from wild ducks was G1; in red deer G2; in wild boar G3; in roe deer G1 and G4. The proposed HRM method could be used to analyze Y. enterocolitica biotype 1A strains isolated from different sources, including humans.

  12. A single nucleotide polymorphism in the promoter of the LOXL1 gene and its relationship to pelvic organ prolapse and preterm premature rupture of membranes.

    Science.gov (United States)

    Ferrell, Georgia; Lu, Minyan; Stoddard, Paul; Sammel, Mary D; Romero, Roberto; Strauss, Jerome F; Matthews, Catherine A

    2009-05-01

    Pelvic organ prolapse and preterm premature rupture of membranes, the 2 conditions which have in common weakening of the tensile strength of tissues, are thought to be caused, in part, by abnormal extracellular matrix synthesis and/or catabolism. We identified a new single nucleotide polymorphism (NT_010194(LOXL1):g.45008784A>C) in the promoter of the LOXL1 gene, which is essential for elastin synthesis. Promoter studies showed that the minor "C'' allele had significantly greater activity than the major "A'' allele. Case-control studies examined the association of the alleles of this single nucleotide polymorphism with pelvic organ prolapse and preterm premature rupture of membranes. When comparing allele frequencies and genotypes in pelvic organ prolapse cases versus controls, no significant associations were found. A case-control study conducted in African American neonates also found no significant associations between the promoter alleles and preterm premature rupture of membranes. We conclude that a functional single nucleotide polymorphism exists in the promoter region of the LOXL1 gene. Association studies suggest that the promoter single nucleotide polymorphism does not contribute significantly to risk of pelvic organ prolapse or preterm premature rupture of membranes.

  13. Effects of Single Nucleotide Polymorphism Marker Density on Haplotype Block Partition

    Directory of Open Access Journals (Sweden)

    Sun Ah Kim

    2016-12-01

    Full Text Available Many researchers have found that one of the most important characteristics of the structure of linkage disequilibrium is that the human genome can be divided into non-overlapping block partitions in which only a small number of haplotypes are observed. The location and distribution of haplotype blocks can be seen as a population property influenced by population genetic events such as selection, mutation, recombination and population structure. In this study, we investigate the effects of the density of markers relative to the full set of all polymorphisms in the region on the results of haplotype partitioning for five popular haplotype block partition methods: three methods in Haploview (confidence interval, four gamete test, and solid spine, MIG++ implemented in PLINK 1.9 and S-MIG++. We used several experimental datasets obtained by sampling subsets of single nucleotide polymorphism (SNP markers of chromosome 22 region in the 1000 Genomes Project data and also the HapMap phase 3 data to compare the results of haplotype block partitions by five methods. With decreasing sampling ratio down to 20% of the original SNP markers, the total number of haplotype blocks decreases and the length of haplotype blocks increases for all algorithms. When we examined the marker-independence of the haplotype block locations constructed from the datasets of different density, the results using below 50% of the entire SNP markers were very different from the results using the entire SNP markers. We conclude that the haplotype block construction results should be used and interpreted carefully depending on the selection of markers and the purpose of the study.

  14. Non-invasive prenatal detection of trisomy 21 using tandem single nucleotide polymorphisms.

    Directory of Open Access Journals (Sweden)

    Sujana Ghanta

    Full Text Available BACKGROUND: Screening tests for Trisomy 21 (T21, also known as Down syndrome, are routinely performed for the majority of pregnant women. However, current tests rely on either evaluating non-specific markers, which lead to false negative and false positive results, or on invasive tests, which while highly accurate, are expensive and carry a risk of fetal loss. We outline a novel, rapid, highly sensitive, and targeted approach to non-invasively detect fetal T21 using maternal plasma DNA. METHODS AND FINDINGS: Highly heterozygous tandem Single Nucleotide Polymorphism (SNP sequences on chromosome 21 were analyzed using High-Fidelity PCR and Cycling Temperature Capillary Electrophoresis (CTCE. This approach was used to blindly analyze plasma DNA obtained from peripheral blood from 40 high risk pregnant women, in adherence to a Medical College of Wisconsin Institutional Review Board approved protocol. Tandem SNP sequences were informative when the mother was heterozygous and a third paternal haplotype was present, permitting a quantitative comparison between the maternally inherited haplotype and the paternally inherited haplotype to infer fetal chromosomal dosage by calculating a Haplotype Ratio (HR. 27 subjects were assessable; 13 subjects were not informative due to either low DNA yield or were not informative at the tandem SNP sequences examined. All results were confirmed by a procedure (amniocentesis/CVS or at postnatal follow-up. Twenty subjects were identified as carrying a disomy 21 fetus (with two copies of chromosome 21 and seven subjects were identified as carrying a T21 fetus. The sensitivity and the specificity of the assay was 100% when HR values lying between 3/5 and 5/3 were used as a threshold for normal subjects. CONCLUSIONS: In summary, a targeted approach, based on calculation of Haplotype Ratios from tandem SNP sequences combined with a sensitive and quantitative DNA measurement technology can be used to accurately detect fetal

  15. A STAT6 Intronic Single-Nucleotide Polymorphism is Associated with Clinical Malaria in Ghanaian Children

    Directory of Open Access Journals (Sweden)

    Daniel Amoako-Sakyi

    2016-01-01

    Full Text Available Malaria pathogenesis may be influenced by IgE responses and cytokine cross-regulation. Several mutations in the IL-4/STAT6 signaling pathway can alter cytokine cross-regulation and IgE responses during a Plasmodium falciparum malarial infection. This study investigated the relationship between a STAT6 intronic single-nucleotide polymorphism (rs3024974, total IgE, cytokines, and malaria severity in 238 Ghanaian children aged between 0.5 and 13 years. Total IgE and cytokine levels were measured by ELISA, while genotyping was done by polymerase chain reaction-restriction fragment length polymorphism (RFLP. Compared with healthy controls, heterozygosity protected against clinical malaria: uncomplicated malaria (odds ratios [OR] = 0.13, P < 0.001, severe malarial anemia (OR = 0.18, P < 0.001, and cerebral malaria (OR = 0.39, P = 0.022. Levels of total IgE significantly differed among malaria phenotypes (P = 0.044 and rs3024974 genotypes (P = 0.037. Neither cytokine levels nor IL-6/IL-10 ratios were associated with malaria phenotypes or rs3024974 genotypes. This study suggests a role for rs3024974 in malaria pathogenesis and offers further insights into an IL-4/STAT6 pathway mutation in malaria pathogenesis.

  16. The Role of Vitamin D Level and Related Single Nucleotide Polymorphisms in Crohn’s Disease

    Directory of Open Access Journals (Sweden)

    Wen J. Lam

    2013-09-01

    Full Text Available New Zealand has one of the highest rates of Crohn’s Disease (CD in the world, and there is much speculation as to why this might be. A high risk of CD has been associated with deficient or insufficient levels of Vitamin D (Vit D, lifestyle as well as various genetic polymorphisms. In this study we sought to analyse the relevance of serum Vit D levels, lifestyle and genotype to CD status. Serum samples were analysed for 25-OH-Vitamin D levels. DNA was isolated from blood and cheek-swabs, and Sequenom and ImmunoChip techniques were used for genotyping. Serum Vit D levels were significantly lower in CD patients (mean = 49.5 mg/L than those found in controls (mean = 58.9 mg/L, p = 4.74 × 10−6. A total of seven single nucleotide polymorphisms were examined for effects on serum Vit D levels, with adjustment for confounding variables. Two variants: rs731236[A] (VDR and rs732594[A] (SCUBE3 showed a significant association with serum Vit D levels in CD patients. Four variants: rs7975232[A] (VDR, rs732594[A] (SCUBE3, and rs2980[T] and rs2981[A] (PHF-11 showed a significant association with serum Vit D levels in the control group. This study demonstrates a significant interaction between Vit D levels and CD susceptibility, as well as a significant association between Vit D levels and genotype.

  17. Diagnostic single nucleotide polymorphisms for identifying westslope cutthroat trout (Oncorhynchus clarki lewisi), Yellowstone cutthroat trout (Oncorhynchus clarkii bouvieri) and rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Kalinowski, S T; Novak, B J; Drinan, D P; Jennings, R deM; Vu, N V

    2011-03-01

    We describe 12 diagnostic single nucleotide polymorphism (SNP) assays for use in species identification among rainbow and cutthroat trout: five of these loci have alleles unique to rainbow trout (Oncorhynchus mykiss), three unique to westslope cutthroat trout (O. clarkii lewisi) and four unique to Yellowstone cutthroat trout (O. clarkii bouvieri). These diagnostic assays were identified using a total of 489 individuals from 26 populations and five fish hatchery strains. © 2010 Blackwell Publishing Ltd.

  18. The regulated secretory pathway and human disease: insights from gene variants and single nucleotide polymorphisms

    Directory of Open Access Journals (Sweden)

    Stephen eSalton

    2013-08-01

    Full Text Available The regulated secretory pathway provides critical control of peptide, growth factor, and hormone release from neuroendocrine and endocrine cells, and neurons, maintaining physiological homeostasis. Propeptides and prohormones are packaged into dense core granules (DCGs, where they frequently undergo tissue-specific processing as the DCG matures. Proteins of the granin family are DCG components, and although their function is not fully understood, data suggest they are involved in DCG formation and regulated protein/peptide secretion, in addition to their role as precursors of bioactive peptides. Association of gene variation, including single nucleotide polymorphisms (SNPs, with neuropsychiatric, endocrine and metabolic diseases, has implicated specific secreted proteins and peptides in disease pathogenesis. For example, a SNP at position 196 (G/A of the human brain-derived neurotrophic factor (BDNF gene dysregulates protein processing and secretion and leads to cognitive impairment. This suggests more generally that variants identified in genes encoding secreted growth factors, peptides, hormones, and proteins involved in DCG biogenesis, protein processing, and the secretory apparatus, could provide insight into the process of regulated secretion as well as disorders that result when it is impaired.

  19. The Influence of Single Nucleotide Polymorphism Microarray-Based Molecular Karyotype on Preimplantation Embryonic Development Potential.

    Directory of Open Access Journals (Sweden)

    Gang Li

    Full Text Available In order to investigate the influence of the molecular karyotype based on single nucleotide polymorphism (SNP microarray on embryonic development potential in preimplantation genetic diagnosis (PGD, we retrospectively analyzed the clinical data generated by PGD using embryos retrieved from parents with chromosome rearrangements in our center. In total, 929 embryos from 119 couples had exact diagnosis and development status. The blastocyst formation rate of balanced molecular karyotype embryos was 56.6% (276/488, which was significantly higher than that of genetic imbalanced embryos 24.5% (108/441 (P35 respectively. Blastocyst formation rates of male and female embryos were 44.5% (183/411 and 38.8% (201/518 respectively, with no significant difference between them (P>0.05. The rates of balanced molecular karyotype embryos vary from groups of embryos with different cell numbers at 68 hours after insemination. The blastocyst formation rate of embryos with 6-8 cells (48.1% was significantly higher than that of embryos with 8 cells (42.9% (P8 cells, embryos with 6-8 blastomeres have higher rate of balanced molecular karyotype and blastocyst formation.

  20. SNPer: an R library for quantitative variant analysis on single nucleotide polymorphisms among influenza virus populations.

    Directory of Open Access Journals (Sweden)

    Unitsa Sangket

    Full Text Available Influenza virus (IFV can evolve rapidly leading to genetic drifts and shifts resulting in human and animal influenza epidemics and pandemics. The genetic shift that gave rise to the 2009 influenza A/H1N1 pandemic originated from a triple gene reassortment of avian, swine and human IFVs. More minor genetic alterations in genetic drift can lead to influenza drug resistance such as the H274Y mutation associated with oseltamivir resistance. Hence, a rapid tool to detect IFV mutations and the potential emergence of new virulent strains can better prepare us for seasonal influenza outbreaks as well as potential pandemics. Furthermore, identification of specific mutations by closely examining single nucleotide polymorphisms (SNPs in IFV sequences is essential to classify potential genetic markers associated with potentially dangerous IFV phenotypes. In this study, we developed a novel R library called "SNPer" to analyze quantitative variants in SNPs among IFV subpopulations. The computational SNPer program was applied to three different subpopulations of published IFV genomic information. SNPer queried SNPs data and grouped the SNPs into (1 universal SNPs, (2 likely common SNPs, and (3 unique SNPs. SNPer outperformed manual visualization in terms of time and labor. SNPer took only three seconds with no errors in SNP comparison events compared with 40 hours with errors using manual visualization. The SNPer tool can accelerate the capacity to capture new and potentially dangerous IFV strains to mitigate future influenza outbreaks.

  1. A Single Nucleotide Polymorphism in Human APOBEC3C Enhances Restriction of Lentiviruses.

    Directory of Open Access Journals (Sweden)

    Cristina J Wittkopp

    2016-10-01

    Full Text Available Humans express seven human APOBEC3 proteins, which can inhibit viruses and endogenous retroelements through cytidine deaminase activity. The seven paralogs differ in the potency of their antiviral effects, as well as in their antiviral targets. One APOBEC3, APOBEC3C, is exceptional as it has been found to only weakly block viruses and endogenous retroelements compared to other APOBEC3s. However, our positive selection analyses suggest that APOBEC3C has played a role in pathogen defense during primate evolution. Here, we describe a single nucleotide polymorphism in human APOBEC3C, a change from serine to isoleucine at position 188 (I188 that confers potent antiviral activity against HIV-1. The gain-of-function APOBEC3C SNP results in increased enzymatic activity and hypermutation of target sequences when tested in vitro, and correlates with increased dimerization of the protein. The I188 is widely distributed in human African populations, and is the ancestral primate allele, but is not found in chimpanzees or gorillas. Thus, while other hominids have lost activity of this antiviral gene, it has been maintained, or re-acquired, as a more active antiviral gene in a subset of humans. Taken together, our results suggest that APOBEC3C is in fact involved in protecting hosts from lentiviruses.

  2. HIV-1 Promoter Single Nucleotide Polymorphisms Are Associated with Clinical Disease Severity.

    Directory of Open Access Journals (Sweden)

    Michael R Nonnemacher

    Full Text Available The large majority of human immunodeficiency virus type 1 (HIV-1 markers of disease progression/severity previously identified have been associated with alterations in host genetic and immune responses, with few studies focused on viral genetic markers correlate with changes in disease severity. This study presents a cross-sectional/longitudinal study of HIV-1 single nucleotide polymorphisms (SNPs contained within the viral promoter or long terminal repeat (LTR in patients within the Drexel Medicine CNS AIDS Research and Eradication Study (CARES Cohort. HIV-1 LTR SNPs were found to associate with the classical clinical disease parameters CD4+ T-cell count and log viral load. They were found in both defined and undefined transcription factor binding sites of the LTR. A novel SNP identified at position 108 in a known COUP (chicken ovalbumin upstream promoter/AP1 transcription factor binding site was significantly correlated with binding phenotypes that are potentially the underlying cause of the associated clinical outcome (increase in viral load and decrease in CD4+ T-cell count.

  3. Single-Nucleotide Polymorphism-Microarray Ploidy Analysis of Paraffin-Embedded Products of Conception in Recurrent Pregnancy Loss Evaluations.

    Science.gov (United States)

    Maslow, Bat-Sheva L; Budinetz, Tara; Sueldo, Carolina; Anspach, Erica; Engmann, Lawrence; Benadiva, Claudio; Nulsen, John C

    2015-07-01

    To compare the analysis of chromosome number from paraffin-embedded products of conception using single-nucleotide polymorphism (SNP) microarray with the recommended screening for the evaluation of couples presenting with recurrent pregnancy loss who do not have previous fetal cytogenetic data. We performed a retrospective cohort study including all women who presented for a new evaluation of recurrent pregnancy loss over a 2-year period (January 1, 2012, to December 31, 2013). All participants had at least two documented first-trimester losses and both the recommended screening tests and SNP microarray performed on at least one paraffin-embedded products of conception sample. Single-nucleotide polymorphism microarray identifies all 24 chromosomes (22 autosomes, X, and Y). Forty-two women with a total of 178 losses were included in the study. Paraffin-embedded products of conception from 62 losses were sent for SNP microarray. Single-nucleotide polymorphism microarray successfully diagnosed fetal chromosome number in 71% (44/62) of samples, of which 43% (19/44) were euploid and 57% (25/44) were noneuploid. Seven of 42 (17%) participants had abnormalities on recurrent pregnancy loss screening. The per-person detection rate for a cause of pregnancy loss was significantly higher in the SNP microarray (0.50; 95% confidence interval [CI] 0.36-0.64) compared with recurrent pregnancy loss evaluation (0.17; 95% CI 0.08-0.31) (P=.002). Participants with one or more euploid loss identified on paraffin-embedded products of conception were significantly more likely to have an abnormality on recurrent pregnancy loss screening than those with only noneuploid results (P=.028). The significance remained when controlling for age, number of losses, number of samples, and total pregnancies. These results suggest that SNP microarray testing of paraffin-embedded products of conception is a valuable tool for the evaluation of recurrent pregnancy loss in patients without prior fetal

  4. Rapid Genome-wide Single Nucleotide Polymorphism Discovery in Soybean and Rice via Deep Resequencing of Reduced Representation Libraries with the Illumina Genome Analyzer

    Directory of Open Access Journals (Sweden)

    Stéphane Deschamps

    2010-07-01

    Full Text Available Massively parallel sequencing platforms have allowed for the rapid discovery of single nucleotide polymorphisms (SNPs among related genotypes within a species. We describe the creation of reduced representation libraries (RRLs using an initial digestion of nuclear genomic DNA with a methylation-sensitive restriction endonuclease followed by a secondary digestion with the 4bp-restriction endonuclease This strategy allows for the enrichment of hypomethylated genomic DNA, which has been shown to be rich in genic sequences, and the digestion with serves to increase the number of common loci resequenced between individuals. Deep resequencing of these RRLs performed with the Illumina Genome Analyzer led to the identification of 2618 SNPs in rice and 1682 SNPs in soybean for two representative genotypes in each of the species. A subset of these SNPs was validated via Sanger sequencing, exhibiting validation rates of 96.4 and 97.0%, in rice ( and soybean (, respectively. Comparative analysis of the read distribution relative to annotated genes in the reference genome assemblies indicated that the RRL strategy was primarily sampling within genic regions for both species. The massively parallel sequencing of methylation-sensitive RRLs for genome-wide SNP discovery can be applied across a wide range of plant species having sufficient reference genomic sequence.

  5. Associations of the single-nucleotide polymorphisms of the Mina gene with the development of asthma in Chinese Han children: a case-control study.

    Science.gov (United States)

    Chen, Yun; Yang, Xiqiang; Huang, Ying; Liu, Enmei; Wang, Lijia

    2011-01-01

    The single-nucleotide polymorphisms (SNPs) of the Mina gene in animals are associated with the development of Th2-mediated diseases. However, there is no information whether the association occurs in humans. This case-control study aimed at examining the potential association of the SNP of the Mina gene with the development of asthma in Chinese Han children. The DNA genotypes and serum immunoglobulin E and interleukin-4 levels of 202 asthmatic patients and 191 nonasthmatic subjects were determined by matrix-assisted laser desorption ionization-time of flight mass spectrometry method and enzyme-linked immunosorbent assay, respectively. We found that the frequency of the T allele of rs4857304, but not rs832081, rs832078, rs9879532, and rs17374916, in the Mina gene in asthmatic patients was significantly higher than that of controls (p = 0.0199). Using a recessive model, we found that the percentage of patients with TT homozygous rs4857304 was significantly higher than that of controls (p = 0.0282, odds ratio=1.568, 95% confidence interval=1.048-2.346). Further, the mean levels of serum immunoglobulin E and interleukin-4 in the patients with TT genotype of rs4857304 were significantly higher than that of patients with the G allele (p = 0.000 and p = 0.03, respectively). Apparently, the T allele of rs4857304 of the Mina gene may be associated with increased risk for the development of asthma in Chinese Han children.

  6. Single Nucleotide Polymorphisms in STAT3 and STAT4 and Risk of Hepatocellular Carcinoma in Thai Patients with Chronic Hepatitis B.

    Science.gov (United States)

    Chanthra, Nawin; Payungporn, Sunchai; Chuaypen, Natthaya; Piratanantatavorn, Kesmanee; Pinjaroen, Nutcha; Poovorawan, Yong; Tangkijvanich, Pisit

    2015-01-01

    Hepatitis B virus (HBV) infection is the leading cause of hepatocellular carcinoma (HCC) development. Recent studies demonstrated that single nucleotide polymorphisms (SNPs) rs2293152 in signal transducer and activator of transcription 3 (STAT3) and rs7574865 in signal transducer and activator of transcription 4 (STAT4) are associated with chronic hepatitis B (CHB)-related HCC in the Chinese population. We hypothesized that these polymorphisms might be related to HCC susceptibility in Thai population as well. Study subjects were divided into 3 groups consisting of CHB-related HCC (n=192), CHB without HCC (n=200) and healthy controls (n=190). The studied SNPs were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The results showed that the distribution of different genotypes for both polymorphisms were in Hardy-Weinberg equilibrium (P>0.05). Our data demonstrated positive association of rs7574865 with HCC risk when compared to healthy controls under an additive model (GG versus TT: odds ratio (OR) =2.07, 95% confidence interval (CI)=1.06-4.03, P=0.033). This correlation remained significant under allelic and recessive models (OR=1.46, 95% CI=1.09-1.96, P=0.012 and OR=1.71, 95% CI=1.13-2.59, P=0.011, respectively). However, no significant association between rs2293152 and HCC development was observed. These data suggest that SNP rs7574865 in STAT4 might contribute to progression to HCC in the Thai population.

  7. Imputation of microsatellite alleles from dense SNP genotypes for parental verification

    Directory of Open Access Journals (Sweden)

    Matthew eMcclure

    2012-08-01

    Full Text Available Microsatellite (MS markers have recently been used for parental verification and are still the international standard despite higher cost, error rate, and turnaround time compared with Single Nucleotide Polymorphisms (SNP-based assays. Despite domestic and international interest from producers and research communities, no viable means currently exist to verify parentage for an individual unless all familial connections were analyzed using the same DNA marker type (MS or SNP. A simple and cost-effective method was devised to impute MS alleles from SNP haplotypes within breeds. For some MS, imputation results may allow inference across breeds. A total of 347 dairy cattle representing 4 dairy breeds (Brown Swiss, Guernsey, Holstein, and Jersey were used to generate reference haplotypes. This approach has been verified (>98% accurate for imputing the International Society of Animal Genetics (ISAG recommended panel of 12 MS for cattle parentage verification across a validation set of 1,307 dairy animals.. Implementation of this method will allow producers and breed associations to transition to SNP-based parentage verification utilizing MS genotypes from historical data on parents where SNP genotypes are missing. This approach may be applicable to additional cattle breeds and other species that wish to migrate from MS- to SNP- based parental verification.

  8. Mitochondrial DNA single nucleotide polymorphism associated with weight estimated breeding values in Nelore cattle (Bos indicus

    Directory of Open Access Journals (Sweden)

    Fernando Henrique Biase

    2007-01-01

    Full Text Available We sampled 119 Nelore cattle (Bos indicus, 69 harboring B. indicus mtDNA plus 50 carrying Bos taurus mtDNA, to estimate the frequencies of putative mtDNA single nucleotide polymorphisms (SNPs and investigate their association with Nelore weight and scrotal circumference estimated breeding values (EBVs. The PCR restriction fragment length polymorphism (PCR-RFLP method was used to detect polymorphisms in the mitochondrial asparagine, cysteine, glycine, leucine and proline transporter RNA (tRNA genes (tRNAasn, tRNAcys, tRNAgly, tRNAleu and tRNApro. The 50 cattle carrying B. taurus mtDNA were monomorphic for all the tRNA gene SNPs analyzed, suggesting that they are specific to mtDNA from B. indicus cattle. No tRNAcys or tRNAgly polymorphisms were detected in any of the cattle but we did detect polymorphic SNPs in the tRNAasn, tRNAleu and tRNApro genes in the cattle harboring B. indicus mtDNA, with the same allele observed in the B. taurus sequence being present in the following percentage of cattle harboring B. indicus mtDNA: 72.46% for tRNAasn, 95.23% for tRNAleu and 90.62% for tRNApro. Analyses of variance using the tRNAasn SNP as the independent variable and EBVs as the dependent variable showed that the G -> T SNP was significantly associated (p < 0.05 with maternal EBVs for weight at 120 and 210 days (p < 0.05 and animal's EBVs for weight at 210, 365 and 455 days. There was no association of the tRNAasn SNP with the scrotal circumference EBVs. These results confirm that mtDNA can affect weight and that mtDNA polymorphisms can be a source of genetic variation for quantitative traits.

  9. Population structure of pigs determined by single nucleotide polymorphisms observed in assembled expressed sequence tags.

    Science.gov (United States)

    Matsumoto, Toshimi; Okumura, Naohiko; Uenishi, Hirohide; Hayashi, Takeshi; Hamasima, Noriyuki; Awata, Takashi

    2012-01-01

    We have collected more than 190000 porcine expressed sequence tags (ESTs) from full-length complementary DNA (cDNA) libraries and identified more than 2800 single nucleotide polymorphisms (SNPs). In this study, we tentatively chose 222 SNPs observed in assembled ESTs to study pigs of different breeds; 104 were selected by comparing the cDNA sequences of a Meishan pig and samples of three-way cross pigs (Landrace, Large White, and Duroc: LWD), and 118 were selected from LWD samples. To evaluate the genetic variation between the chosen SNPs from pig breeds, we determined the genotypes for 192 pig samples (11 pig groups) from our DNA reference panel with matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Of the 222 reference SNPs, 186 were successfully genotyped. A neighbor-joining tree showed that the pig groups were classified into two large clusters, namely, Euro-American and East Asian pig populations. F-statistics and the analysis of molecular variance of Euro-American pig groups revealed that approximately 25% of the genetic variations occurred because of intergroup differences. As the F(IS) values were less than the F(ST) values(,) the clustering, based on the Bayesian inference, implied that there was strong genetic differentiation among pig groups and less divergence within the groups in our samples. © 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  10. A molecular beacon microarray based on a quantum dot label for detecting single nucleotide polymorphisms.

    Science.gov (United States)

    Guo, Qingsheng; Bai, Zhixiong; Liu, Yuqian; Sun, Qingjiang

    2016-03-15

    In this work, we report the application of streptavidin-coated quantum dot (strAV-QD) in molecular beacon (MB) microarray assays by using the strAV-QD to label the immobilized MB, avoiding target labeling and meanwhile obviating the use of amplification. The MBs are stem-loop structured oligodeoxynucleotides, modified with a thiol and a biotin at two terminals of the stem. With the strAV-QD labeling an "opened" MB rather than a "closed" MB via streptavidin-biotin reaction, a sensitive and specific detection of label-free target DNA sequence is demonstrated by the MB microarray, with a signal-to-background ratio of 8. The immobilized MBs can be perfectly regenerated, allowing the reuse of the microarray. The MB microarray also is able to detect single nucleotide polymorphisms, exhibiting genotype-dependent fluorescence signals. It is demonstrated that the MB microarray can perform as a 4-to-2 encoder, compressing the genotype information into two outputs. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Analysis of healthy cohorts for single nucleotide polymorphisms in C1q gene cluster

    Directory of Open Access Journals (Sweden)

    MARIA A. RADANOVA

    2015-12-01

    Full Text Available C1q is the first component of the classical pathway of complement activation. The coding region for C1q is localized on chromosome 1p34.1–36.3. Mutations or single nucleotide polymorphisms (SNPs in C1q gene cluster can cause developing of Systemic lupus erythematosus (SLE because of C1q deficiency or other unknown reason. We selected five SNPs located in 7.121 kbp region on chromosome 1, which were previously associated with SLE and/or low C1q level, but not causing C1q deficiency and analyzed them in terms of allele frequencies and genotype distribution in comparison with Hispanic, Asian, African and other Caucasian cohorts. These SNPs were: rs587585, rs292001, rs172378, rs294179 and rs631090. One hundred eighty five healthy Bulgarian volunteers were genotyped for the selected five C1q SNPs by quantative real-time PCR methods. International HapMap Project has been used for information about genotype distribution and allele frequencies of the five SNPs in, Hispanics, Asians, Africans and others Caucasian cohorts. Bulgarian healthy volunteers and another pooled Caucasian cohort had similar frequencies of genotypes and alleles of rs587585, rs292001, rs294179 and rs631090 SNPs. Nevertheless, genotype AA of rs172378 was significantly overrepresented in Bulgarians when compared to other healthy Caucasians from USA and UK (60% vs 31%. Genotype distribution of rs172378 in Bulgarians was similar to Greek-Cyriot Caucasians. For all Caucasians the major allele of rs172378 was A. This is the first study analyzing the allele frequencies and genotype distribution of C1q gene cluster SNPs in Bulgarian healthy population.

  12. SNP_tools: A compact tool package for analysis and conversion of genotype data for MS-Excel.

    Science.gov (United States)

    Chen, Bowang; Wilkening, Stefan; Drechsel, Marion; Hemminki, Kari

    2009-10-23

    Single nucleotide polymorphism (SNP) genotyping is a major activity in biomedical research. Scientists prefer to have a facile access to the results which may require conversions between data formats. First hand SNP data is often entered in or saved in the MS-Excel format, but this software lacks genetic and epidemiological related functions. A general tool to do basic genetic and epidemiological analysis and data conversion for MS-Excel is needed. The SNP_tools package is prepared as an add-in for MS-Excel. The code is written in Visual Basic for Application, embedded in the Microsoft Office package. This add-in is an easy to use tool for users with basic computer knowledge (and requirements for basic statistical analysis). Our implementation for Microsoft Excel 2000-2007 in Microsoft Windows 2000, XP, Vista and Windows 7 beta can handle files in different formats and converts them into other formats. It is a free software.

  13. Olive oil DNA fingerprinting by multiplex SNP genotyping on fluorescent microspheres.

    Science.gov (United States)

    Kalogianni, Despina P; Bazakos, Christos; Boutsika, Lemonia M; Targem, Mehdi Ben; Christopoulos, Theodore K; Kalaitzis, Panagiotis; Ioannou, Penelope C

    2015-04-01

    Olive oil cultivar verification is of primary importance for the competitiveness of the product and the protection of consumers and producers from fraudulence. Single-nucleotide polymorphisms (SNPs) have emerged as excellent DNA markers for authenticity testing. This paper reports the first multiplex SNP genotyping assay for olive oil cultivar identification that is performed on a suspension of fluorescence-encoded microspheres. Up to 100 sets of microspheres, with unique "fluorescence signatures", are available. Allele discrimination was accomplished by primer extension reaction. The reaction products were captured via hybridization on the microspheres and analyzed, within seconds, by a flow cytometer. The "fluorescence signature" of each microsphere is assigned to a specific allele, whereas the signal from a reporter fluorophore denotes the presence of the allele. As a model, a panel of three SNPs was chosen that enabled identification of five common Greek olive cultivars (Adramytini, Chondrolia Chalkidikis, Kalamon, Koroneiki, and Valanolia).

  14. Dissecting tocopherols content in maize (Zea mays L.), using two segregating populations and high-density single nucleotide polymorphism markers

    Science.gov (United States)

    2012-01-01

    Background Tocopherols, which are vitamin E compounds, play an important role in maintaining human health. Compared with other staple foods, maize grains contain high level of tocopherols. Results Two F2 populations (K22/CI7 and K22/Dan340, referred to as POP-1 and POP-2, respectively), which share a common parent (K22), were developed and genotyped using a GoldenGate assay containing 1,536 single nucleotide polymorphism (SNP) markers. An integrated genetic linkage map was constructed using 619 SNP markers, spanning a total of 1649.03 cM of the maize genome with an average interval of 2.67 cM. Seventeen quantitative trait loci (QTLs) for all the traits were detected in the first map and 13 in the second. In these two maps, QTLs for different traits were localized to the same genomic regions and some were co-located with candidate genes in the tocopherol biosynthesis pathway. Single QTL was responsible for 3.03% to 52.75% of the phenotypic variation and the QTLs in sum explained23.4% to 66.52% of the total phenotypic variation. A major QTL (qc5-1/qd5-1) affecting α-tocopherol (αT) was identified on chromosome 5 between the PZA03161.1 and PZA02068.1 in the POP-2. The QTL region was narrowed down from 18.7 Mb to 5.4 Mb by estimating the recombination using high-density markers of the QTL region. This allowed the identification of the candidate gene VTE4 which encodes γ-tocopherol methyltransferase, an enzyme that transforms γ-tocopherol (γT)to αT. Conclusions These results demonstrate that a few QTLs with major effects and several QTLs with medium to minor effects might contribute to the natural variation of tocopherols in maize grain. The high-density markers will help to fine map and identify the QTLs with major effects even in the preliminary segregating populations. Furthermore, this study provides a simple guide line for the breeders to improve traits that minimize the risk of malnutrition, especially in developing countries. PMID:23122295

  15. Single nucleotide polymorphism of the growth hormone (GH encoding gene in inbred and outbred domestic rabbits

    Directory of Open Access Journals (Sweden)

    Deyana Gencheva Hristova

    2018-03-01

    Full Text Available Taking into consideration that the growth hormone (GH gene in rabbits is a candidate for meat production, understanding the genetic diversity and variation in this locus is of particular relevance. The present study comprised 86 rabbits (Oryctolagus cuniculus divided into 3 groups: New Zealand White (NZW outbred rabbits; first-generation inbred rabbits (F1 and second-generation inbred rabbits (F2. They were analysed by polymerase chain reaction-based restriction fragment length polymorphism method. A 231 bp fragment of the polymorphic site of the GH gene was digested with Bsh1236 restriction enzyme. Single nucleotide polymorphisms for the studied GH locus corresponding to 3 genotypes were detected in the studied rabbit populations: CC, CT and TT. In the synthetic inbred F1 and F2 populations, the frequency of the heterozygous genotype CT was 0.696 and 0.609, respectively, while for the homozygous CC genotype the frequency was lower (0.043 and 0.000, and respective values for the homozygous TT genotype were 0.261 and 0.391. This presumed a preponderance of the T allele (0.609 and 0.696 over the C allele (0.391 and 0.304 in these groups. In outbred rabbits, the allele frequencies were 0.613 (allele C and 0.387 (allele Т; consequently, the frequency of the homozygous CC genotype was higher than that of the homozygous TT genotype (0.300 vs. 0.075. Observed heterozygosity for the GH gene was higher than expected, and the result was therefore a negative inbreeding coefficient (Fis=–0.317 for outbred NZW rabbits; –0.460 for inbred F1 and –0.438 for inbred F2, indicating a sufficient number of heterozygous forms in all studied groups of rabbits. The application of narrow inbreeding by breeding full sibs in the synthetic population did not cause a rapid increase in homozygosity.

  16. A single nucleotide polymorphism within the acetyl-coenzyme A carboxylase beta gene is associated with proteinuria in patients with type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Shiro Maeda

    2010-02-01

    Full Text Available It has been suggested that genetic susceptibility plays an important role in the pathogenesis of diabetic nephropathy. A large-scale genotyping analysis of gene-based single nucleotide polymorphisms (SNPs in Japanese patients with type 2 diabetes identified the gene encoding acetyl-coenzyme A carboxylase beta (ACACB as a candidate for a susceptibility to diabetic nephropathy; the landmark SNP was found in the intron 18 of ACACB (rs2268388: intron 18 +4139 C > T, p = 1.4x10(-6, odds ratio = 1.61, 95% confidence interval [CI]: 1.33-1.96. The association of this SNP with diabetic nephropathy was examined in 9 independent studies (4 from Japan including the original study, one Singaporean, one Korean, and two European with type 2 diabetes. One case-control study involving European patients with type 1 diabetes was included. The frequency of the T allele for SNP rs2268388 was consistently higher among patients with type 2 diabetes and proteinuria. A meta-analysis revealed that rs2268388 was significantly associated with proteinuria in Japanese patients with type 2 diabetes (p = 5.35 x 10(-8, odds ratio = 1.61, 95% Cl: 1.35-1.91. Rs2268388 was also associated with type 2 diabetes-associated end-stage renal disease (ESRD in European Americans (p = 6 x 10(-4, odds ratio = 1.61, 95% Cl: 1.22-2.13. Significant association was not detected between this SNP and nephropathy in those with type 1 diabetes. A subsequent in vitro functional analysis revealed that a 29-bp DNA fragment, including rs2268388, had significant enhancer activity in cultured human renal proximal tubular epithelial cells. Fragments corresponding to the disease susceptibility allele (T had higher enhancer activity than those of the major allele. These results suggest that ACACB is a strong candidate for conferring susceptibility for proteinuria in patients with type 2 diabetes.

  17. Identification and Evaluation of Single-Nucleotide Polymorphisms in Allotetraploid Peanut (Arachis hypogaea L.) Based on Amplicon Sequencing Combined with High Resolution Melting (HRM) Analysis.

    Science.gov (United States)

    Hong, Yanbin; Pandey, Manish K; Liu, Ying; Chen, Xiaoping; Liu, Hong; Varshney, Rajeev K; Liang, Xuanqiang; Huang, Shangzhi

    2015-01-01

    The cultivated peanut (Arachis hypogaea L.) is an allotetraploid (AABB) species derived from the A-genome (Arachis duranensis) and B-genome (Arachis ipaensis) progenitors. Presence of two versions of a DNA sequence based on the two progenitor genomes poses a serious technical and analytical problem during single nucleotide polymorphism (SNP) marker identification and analysis. In this context, we have analyzed 200 amplicons derived from expressed sequence tags (ESTs) and genome survey sequences (GSS) to identify SNPs in a panel of genotypes consisting of 12 cultivated peanut varieties and two diploid progenitors representing the ancestral genomes. A total of 18 EST-SNPs and 44 genomic-SNPs were identified in 12 peanut varieties by aligning the sequence of A. hypogaea with diploid progenitors. The average frequency of sequence polymorphism was higher for genomic-SNPs than the EST-SNPs with one genomic-SNP every 1011 bp as compared to one EST-SNP every 2557 bp. In order to estimate the potential and further applicability of these identified SNPs, 96 peanut varieties were genotyped using high resolution melting (HRM) method. Polymorphism information content (PIC) values for EST-SNPs ranged between 0.021 and 0.413 with a mean of 0.172 in the set of peanut varieties, while genomic-SNPs ranged between 0.080 and 0.478 with a mean of 0.249. Total 33 SNPs were used for polymorphism detection among the parents and 10 selected lines from mapping population Y13Zh (Zhenzhuhei × Yueyou13). Of the total 33 SNPs, nine SNPs showed polymorphism in the mapping population Y13Zh, and seven SNPs were successfully mapped into five linkage groups. Our results showed that SNPs can be identified in allotetraploid peanut with high accuracy through amplicon sequencing and HRM assay. The identified SNPs were very informative and can be used for different genetic and breeding applications in peanut.

  18. Identification of novel single nucleotide polymorphisms associated with acute respiratory distress syndrome by exome-seq.

    Directory of Open Access Journals (Sweden)

    Katherine Shortt

    Full Text Available Acute respiratory distress syndrome (ARDS is a lung condition characterized by impaired gas exchange with systemic release of inflammatory mediators, causing pulmonary inflammation, vascular leak and hypoxemia. Existing biomarkers have limited effectiveness as diagnostic and therapeutic targets. To identify disease-associating variants in ARDS patients, whole-exome sequencing was performed on 96 ARDS patients, detecting 1,382,399 SNPs. By comparing these exome data to those of the 1000 Genomes Project, we identified a number of single nucleotide polymorphisms (SNP which are potentially associated with ARDS. 50,190SNPs were found in all case subgroups and controls, of which89 SNPs were associated with susceptibility. We validated three SNPs (rs78142040, rs9605146 and rs3848719 in additional ARDS patients to substantiate their associations with susceptibility, severity and outcome of ARDS. rs78142040 (C>T occurs within a histone mark (intron 6 of the Arylsulfatase D gene. rs9605146 (G>A causes a deleterious coding change (proline to leucine in the XK, Kell blood group complex subunit-related family, member 3 gene. rs3848719 (G>A is a synonymous SNP in the Zinc-Finger/Leucine-Zipper Co-Transducer NIF1 gene. rs78142040, rs9605146, and rs3848719 are associated significantly with susceptibility to ARDS. rs3848719 is associated with APACHE II score quartile. rs78142040 is associated with 60-day mortality in the overall ARDS patient population. Exome-seq is a powerful tool to identify potential new biomarkers for ARDS. We selectively validated three SNPs which have not been previously associated with ARDS and represent potential new genetic biomarkers for ARDS. Additional validation in larger patient populations and further exploration of underlying molecular mechanisms are warranted.

  19. Single nucleotide polymorphism analysis of Korean native chickens using next generation sequencing data.

    Science.gov (United States)

    Seo, Dong-Won; Oh, Jae-Don; Jin, Shil; Song, Ki-Duk; Park, Hee-Bok; Heo, Kang-Nyeong; Shin, Younhee; Jung, Myunghee; Park, Junhyung; Jo, Cheorun; Lee, Hak-Kyo; Lee, Jun-Heon

    2015-02-01

    There are five native chicken lines in Korea, which are mainly classified by plumage colors (black, white, red, yellow, gray). These five lines are very important genetic resources in the Korean poultry industry. Based on a next generation sequencing technology, whole genome sequence and reference assemblies were performed using Gallus_gallus_4.0 (NCBI) with whole genome sequences from these lines to identify common and novel single nucleotide polymorphisms (SNPs). We obtained 36,660,731,136 ± 1,257,159,120 bp of raw sequence and average 26.6-fold of 25-29 billion reference assembly sequences representing 97.288 % coverage. Also, 4,006,068 ± 97,534 SNPs were observed from 29 autosomes and the Z chromosome and, of these, 752,309 SNPs are the common SNPs across lines. Among the identified SNPs, the number of novel- and known-location assigned SNPs was 1,047,951 ± 14,956 and 2,948,648 ± 81,414, respectively. The number of unassigned known SNPs was 1,181 ± 150 and unassigned novel SNPs was 8,238 ± 1,019. Synonymous SNPs, non-synonymous SNPs, and SNPs having character changes were 26,266 ± 1,456, 11,467 ± 604, 8,180 ± 458, respectively. Overall, 443,048 ± 26,389 SNPs in each bird were identified by comparing with dbSNP in NCBI. The presently obtained genome sequence and SNP information in Korean native chickens have wide applications for further genome studies such as genetic diversity studies to detect causative mutations for economic and disease related traits.

  20. Identification of Functional Single-Nucleotide Polymorphisms Affecting Leaf Hair Number in Brassica rapa.

    Science.gov (United States)

    Zhang, Wenting; Mirlohi, Shirin; Li, Xiaorong; He, Yuke

    2018-06-01

    Leaf traits affect plant agronomic performance; for example, leaf hair number provides a morphological indicator of drought and insect resistance. Brassica rapa crops have diverse phenotypes, and many B. rapa single-nucleotide polymorphisms (SNPs) have been identified and used as molecular markers for plant breeding. However, which SNPs are functional for leaf hair traits and, therefore, effective for breeding purposes remains unknown. Here, we identify a set of SNPs in the B. rapa ssp. pekinenesis candidate gene BrpHAIRY LEAVES1 ( BrpHL1 ) and a number of SNPs of BrpHL1 in a natural population of 210 B. rapa accessions that have hairy, margin-only hairy, and hairless leaves. BrpHL1 genes and their orthologs and paralogs have many SNPs. By intensive mutagenesis and genetic transformation, we selected the functional SNPs for leaf hairs by the exclusion of nonfunctional SNPs and the orthologous and paralogous genes. The residue tryptophan-92 of BrpHL1a was essential for direct interaction with GLABROUS3 and, thus, necessary for the formation of leaf hairs. The accessions with the functional SNP leading to substitution of the tryptophan-92 residue had hairless leaves. The orthologous BrcHL1b from B. rapa ssp. chinensis regulates hair formation on leaf margins rather than leaf surfaces. The selected SNP for the hairy phenotype could be adopted as a molecular marker for insect resistance in Brassica spp. crops. Moreover, the procedures optimized here can be used to explain the molecular mechanisms of natural variation and to facilitate the molecular breeding of many crops. © 2018 American Society of Plant Biologists. All rights reserved.

  1. Single nucleotide polymorphism discovery from expressed sequence tags in the waterflea Daphnia magna

    Directory of Open Access Journals (Sweden)

    Souche Erika L

    2011-06-01

    Full Text Available Abstract Background Daphnia (Crustacea: Cladocera plays a central role in standing aquatic ecosystems, has a well known ecology and is widely used in population studies and environmental risk assessments. Daphnia magna is, especially in Europe, intensively used to study stress responses of natural populations to pollutants, climate change, and antagonistic interactions with predators and parasites, which have all been demonstrated to induce micro-evolutionary and adaptive responses. Although its ecology and evolutionary biology is intensively studied, little is known on the functional genomics underpinning of phenotypic responses to environmental stressors. The aim of the present study was to find genes expressed in presence of environmental stressors, and target such genes for single nucleotide polymorphic (SNP marker development. Results We developed three expressed sequence tag (EST libraries using clonal lineages of D. magna exposed to ecological stressors, namely fish predation, parasite infection and pesticide exposure. We used these newly developed ESTs and other Daphnia ESTs retrieved from NCBI GeneBank to mine for SNP markers targeting synonymous as well as non synonymous genetic variation. We validate the developed SNPs in six natural populations of D. magna distributed at regional scale. Conclusions A large proportion (47% of the produced ESTs are Daphnia lineage specific genes, which are potentially involved in responses to environmental stress rather than to general cellular functions and metabolic activities, or reflect the arthropod's aquatic lifestyle. The characterization of genes expressed under stress and the validation of their SNPs for population genetic study is important for identifying ecologically responsive genes in D. magna.

  2. Single nucleotide polymorphisms in obesity-related genes and the risk of esophageal cancers.

    Science.gov (United States)

    Doecke, James D; Zhao, Zhen Zhen; Stark, Mitchell S; Green, Adèle C; Hayward, Nicholas K; Montgomery, Grant W; Webb, Penelope M; Whiteman, David C

    2008-04-01

    Rates of adenocarcinoma of the esophagus (EAC) and esophagogastric junction (EGJAC) have been rising rapidly in recent decades, in contrast to the declining rates of esophageal squamous cell carcinomas (ESCC). Obesity is a major risk factor for both EAC and EGJAC, but not ESCC, and there is speculation that obesity promotes adenocarcinoma development through endocrine and related pathways. We therefore compared the prevalence of 12 single nucleotide polymorphisms (SNPs) in nine candidate genes previously implicated in obesity pathways (LEP, LEPR, ADIPOQ, POMC, PPARalpha, PPARgamma, RXRgamma, GHRL, and INSIG2) in a large Australian case-control study comprising DNA samples from 260 EAC cases, 301 EGJAC cases, 213 ESCC cases, and 1,352 population controls. No SNPs were associated with EGJAC or ESCC. Although several SNPs seemed to be associated with EAC on crude analysis [ADIPOQ (rs1501299), LEP (5'-untranslated region), PPARgamma (H447H), and GHRL (M72L)], effect sizes were modest and none of the associations was significant after correcting for multiple comparisons. Further, we found no consistent evidence that any of the genotypes were associated with risk of EAC or EGJAC within strata of body mass index (30 kg/m(2)). In conclusion, our data suggest that these SNPs do not play a major role in esophageal carcinogenesis.

  3. Bayesian pedigree inference with small numbers of single nucleotide polymorphisms via a factor-graph representation.

    Science.gov (United States)

    Anderson, Eric C; Ng, Thomas C

    2016-02-01

    We develop a computational framework for addressing pedigree inference problems using small numbers (80-400) of single nucleotide polymorphisms (SNPs). Our approach relaxes the assumptions, which are commonly made, that sampling is complete with respect to the pedigree and that there is no genotyping error. It relies on representing the inferred pedigree as a factor graph and invoking the Sum-Product algorithm to compute and store quantities that allow the joint probability of the data to be rapidly computed under a large class of rearrangements of the pedigree structure. This allows efficient MCMC sampling over the space of pedigrees, and, hence, Bayesian inference of pedigree structure. In this paper we restrict ourselves to inference of pedigrees without loops using SNPs assumed to be unlinked. We present the methodology in general for multigenerational inference, and we illustrate the method by applying it to the inference of full sibling groups in a large sample (n=1157) of Chinook salmon typed at 95 SNPs. The results show that our method provides a better point estimate and estimate of uncertainty than the currently best-available maximum-likelihood sibling reconstruction method. Extensions of this work to more complex scenarios are briefly discussed. Published by Elsevier Inc.

  4. The single-nucleotide polymorphisms in CHD5 affect the prognosis of patients with hepatocellular carcinoma

    Science.gov (United States)

    Zhu, Xiao; Kong, Qingming; Xie, Liwei; Chen, Zhihong; Li, Hongmei; Zhu, Zhu; Huang, Yongmei; Lan, Feifei; Luo, Haiqing; Zhan, Jingting; Ding, Hongrong; Lei, Jinli; Xiao, Qin; Fu, Weiming; Fan, Wenguo; Zhang, Jinfang; Luo, Hui

    2018-01-01

    Previous studies showed that the low expressions of chromodomain-helicase-DNA-binding protein 5 (CHD5) were intensively associated with deteriorative biologic and clinical characteristics as well as outcomes in many tumors. The aim of this study is to determine whether CHD5 single nucleotide polymorphisms (SNPs) contribute to the prognosis of hepatocellular carcima (HCC). The SNPs were selected according to their linkage disequilibrium (LD) in the targeted next-generation sequencing (NGS) and then genotyped with TaqMan probers. We revealed a rare haplotype AG in CHD5 (SNPs: rs12564469-rs9434711) was markedly associated with HCC prognosis. The univariate and multivariate regression analyses revealed the patients with worse overall survival time were those with tumor metastasis and haplotype AG, as well as cirrhosis, poor differentiation and IV-TNM stage. Based on the available public databases, we discovered the significant association between haplotype AG and CHD5 mRNA expressions only existed in Chinese. These data proposed that the potentially genetic haplotype might functionally contribute to HCC prognosis and CHD5 mRNA expressions. PMID:29568352

  5. Single-nucleotide polymorphisms of TNFA and IL1 in allergic rhinitis.

    Science.gov (United States)

    Nasiri, R; Amirzargar, A Akbar; Movahedi, M; Hirbod-Mobarakeh, A; Farhadi, E; Behniafard, N; Tavakkol, M; Ansaripour, B; Moradi, B; Zare, A; Rezaei, N

    2013-01-01

    Allergic rhinitis is a complex polygenic disorder of the upper respiratory tract. Given that proinflammatory cytokines such as tumor necrosis factor (TNF) and interleukin (IL) 1 seem to play a role in the development of allergic rhinitis, we evaluated the associations between various single-nucleotide polymorphisms (SNPs) of the TNF and IL1 genes in a case-control study. The study population comprised 98 patients with allergic rhinitis. Genotyping was performed using polymerase chain reaction with sequence-specific primers for 2 TNFA promoter variants (rs1800629 and rs361525), 1 variant in the promoter region of IL1A (rs1800587), 2 SNPs in the IL1B gene (rs16944 and rs1 143634), 1 variant in the IL1 receptor (rs2234650), and 1 in IL1RA (rs315952). Patients who were homozygous for the T allele of rs16944 in IL1B had an 8.1-fold greater risk of allergic rhinitis than those with the C allele. In TNFA, a significant relationship was also detected between rs1800629 and rs361525 and allergic rhinitis. Except for rs1800587 in IL1A and rs315952 in IL1RA, significant differences were found between the patient and control groups for all other SNPs. We found that allelic variants in the TNFA and IL1 genes were not only associated with the risk of developing allergic rhinitis, but also affected disease course and severity.

  6. Two Single-Nucleotide Polymorphisms in ADAM12 Gene Are Associated with Early and Late Radiographic Knee Osteoarthritis in Estonian Population

    Directory of Open Access Journals (Sweden)

    Irina Kerna

    2013-01-01

    Full Text Available Objectives. To investigate associations of selected single-nucleotide polymorphisms (SNPs in ADAM12 gene with radiographic knee osteoarthritis (rKOA in Estonian population. Methods. The rs3740199, rs1871054, rs1278279, and rs1044122 SNPs in ADAM12 gene were genotyped in 438 subjects (303 women from population-based cohort, aged 32 to 57 (mean 45.4. The rKOA features were evaluated in the tibiofemoral joint (TFJ and patellofemoral joint. Results. The early rKOA was found in 51.4% of investigated subjects (72% women and 12.3% of participants (63% women had advanced stage of diseases. The A allele of synonymous SNP rs1044122 was associated with early rKOA in TFJ, predominantly with the presence of osteophytes in females (OR 1.57; 95% CI 1.08–2.29, . The C allele of intron polymorphism rs1871054 carried risk for advanced rKOA, mostly to osteophyte formation in TFJ in males (OR 3.03; 95% CI 1.11–7.53, . Also the CCAA haplotype of ADAM12 was associated with osteophytosis, again mostly in TFJ in males (. For rs3740199 and rs1278279, no statistically significant associations were observed. Conclusion.  ADAM12 gene variants are related to rKOA risk during the early and late stages of diseases. The genetic risk seems to be predominantly associated with the appearance of osteophytes—a marker of bone remodelling and neochondrogenesis.

  7. Single nucleotide polymorphisms at erythropoietin, superoxide dismutase 1, splicing factor, arginine/serin-rich 15 and plasmacytoma variant translocation genes association with diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Maisaa Alwohhaib

    2014-01-01

    Full Text Available A number of genes have been identified in diabetic nephropathy. Association between diabetes-associated nephropathy and polymorphisms in the erythropoietin (EPO gene, variants in the superoxide dismutase 1 (SOD1 gene and plasmacytoma variant translocation 1 (PVT1 gene have been identified. The EPO, SOD1:SFRS15 and PVT1 genes were genotyped using the single nucleotide polymorphism (SNP technique in 38 diabetic nephropathy patients (Group 1 compared with 64 diabetic type 2 subjects without nephropathy (Group 2 at the Mubarak Alkabeer Hospital, Kuwait. The frequency of the risk allele T of the EPO (rs1617640 gene was high in both groups (0.96 in Group 1 and 0.92 in Group 2. Similarly, SNPs of the PVT1 (rs2720709 gene showed a higher frequency of the risk allele G in both groups (0.70 in the Group 1 and 0.68 in Group 2. Although the frequency of the risk allele A was higher than the frequency of the non-risk allele C of the SOD1:SFRS15 gene in both groups, the lowest probability value was observed in those gene SNPs (P = 0.05. We observed that the A allele of the SOD1:SFRS15 gene (rs17880135 was more frequently present in Group 1 (0.75 compared with Group 2 (0.62. Susceptibility to diabetes-associated nephropathy is partially mediated by genetic predisposition, and screening tests may open the gate for new therapeutic approaches.

  8. G16R single nucleotide polymorphism but not haplotypes of the ß2-adrenergic receptor gene alters cardiac output in humans

    DEFF Research Database (Denmark)

    Rokamp, Kim Z; Staalsø, Jonatan M; Gartmann, Martin

    2013-01-01

    Variation in genes encoding the ß2-adrenergic receptor (ADRB2) and angiotensin-converting enzyme (ACE) may influence Q¿ (cardiac output). The 46G>A (G16R) SNP (single nucleotide polymorphism) has been associated with ß2-mediated vasodilation, but the effect of ADRB2 haplotypes on Q¿ has not been...... studied. Five SNPs within ADRB2 (46G>A, 79C>G, 491C>T, 523C>A and 1053G>C by a pairwise tagging principle) and the I/D (insertion/deletion) polymorphism in ACE were genotyped in 143 subjects. Cardiovascular variables were evaluated by the Model flow method at rest and during incremental cycling exercise...... V¿O2 (oxygen uptake) in G16G subjects, but the increase was 0.5 (0.0-0.9) l/min lower in Arg16 carriers (P=0.035). A similar effect size was observed for the Arg16 haplotypes ACCCG and ACCCC. No interaction was found between ADRB2 and ACE polymorphisms. During exercise, the increase in Q¿ was 0...

  9. Single-nucleotide polymorphisms in Toll-like receptor (TLR)-2, TLR4 and heat shock protein 70 genes and susceptibility to scrub typhus.

    Science.gov (United States)

    Janardhanan, Jeshina; Joseph Martin, Sherry; Astrup, Elisabeth; Veeramanikandan, R; Aukrust, Pål; Abraham, Ooriapadickal C; Varghese, George M

    2013-11-01

    Scrub typhus is a highly prevalent bacterial infection in India and South Asia that is caused by Orientia tsutsugamushi. The innate immune response to infections is modulated by Toll-like receptors (TLRs) and heat shock proteins (HSPs). This study was done to assess the prevalence and possible association of TLR and HSP polymorphisms in scrub typhus. TLR4 Asp299Gly, TLR4 Thr399Ile, TLR2 Arg753Gln and HSP70-2 A1267G are single-nucleotide polymorphisms (SNPs) that may modulate their activities, and these SNPs were assessed in 137 scrub typhus patients and 134 controls by PCR restriction fragment length polymorphism. We found that the two TLR4 mutations, TLR4 D299G and TLR4T399I, were present in 19.5% and 22% of the study population, respectively, and was in significant linkage disequilibrium with a D' of 0.8. The TLR2 mutation was found to be rare, whereas the HSP A>G mutation was very common (77.5%). Compared with the controls, the prevalence of heterozygous genotype of the TLR4D299G SNP, but not any of the other SNPs, was significantly higher among scrub typhus patients. Further studies using a larger sample size and more candidate genes may better enable in determining the role of these associations in susceptibility and severity of scrub typhus.

  10. Genome-Wide Single-Nucleotide Polymorphisms Discovery and High-Density Genetic Map Construction in Cauliflower Using Specific-Locus Amplified Fragment Sequencing

    Science.gov (United States)

    Zhao, Zhenqing; Gu, Honghui; Sheng, Xiaoguang; Yu, Huifang; Wang, Jiansheng; Huang, Long; Wang, Dan

    2016-01-01

    Molecular markers and genetic maps play an important role in plant genomics and breeding studies. Cauliflower is an important and distinctive vegetable; however, very few molecular resources have been reported for this species. In this study, a novel, specific-locus amplified fragment (SLAF) sequencing strategy was employed for large-scale single nucleotide polymorphism (SNP) discovery and high-density genetic map construction in a double-haploid, segregating population of cauliflower. A total of 12.47 Gb raw data containing 77.92 M pair-end reads were obtained after processing and 6815 polymorphic SLAFs between the two parents were detected. The average sequencing depths reached 52.66-fold for the female parent and 49.35-fold for the male parent. Subsequently, these polymorphic SLAFs were used to genotype the population and further filtered based on several criteria to construct a genetic linkage map of cauliflower. Finally, 1776 high-quality SLAF markers, including 2741 SNPs, constituted the linkage map with average data integrity of 95.68%. The final map spanned a total genetic length of 890.01 cM with an average marker interval of 0.50 cM, and covered 364.9 Mb of the reference genome. The markers and genetic map developed in this study could provide an important foundation not only for comparative genomics studies within Brassica oleracea species but also for quantitative trait loci identification and molecular breeding of cauliflower. PMID:27047515

  11. Resistin in serum and gingival crevicular fluid as a marker of periodontal inflammation and its correlation with single-nucleotide polymorphism in human resistin gene at −420

    Directory of Open Access Journals (Sweden)

    Swati Pradeep Patel

    2013-01-01

    Full Text Available Aims: Resistin is an adipocytokine, which have been studied for its role in insulin resistance and recently in inflammation. The aim of the present study is to assess the concentration of resistin in serum and gingival crevicular fluid (GCF and to compare the levels between subjects with and without periodontitis and type 2 diabetes mellitus (T2DM and to further correlate the resistin levels with the single-nucleotide polymorphism (SNP at −420. Setting and Designs: A total of 96 subjects (48 males and 48 females were divided on the basis of gingival index (GI, probing pocket depth (PD, clinical attachment level (CAL and hemoglobin A 1c levels into healthy (group 1, n = 24, uncontrolled-diabetes related periodontitis (group 2, n = 24, controlled-diabetes related periodontitis (group 3, n = 24 and chronic periodontitis without T2DM (group 4, n = 24. Materials and Methods: The GCF and serum levels of resistin were quantified using the enzyme-linked immunosorbent assay and compared among the study groups. Further, the association of the resistin levels with periodontal inflammation and SNP at −420 was studied. Results and Conclusion: The resistin levels in GCF and serum from patients with periodontitis or diabetes mellitus related periodontitis (controlled or uncontrolled were higher than that of healthy subjects and correlated positively with GI. Further, subjects with GG genotype at −420 showed significantly higher GI, PD, CAL as compared with genotype group CC. Resistin was detected in all serum and GCF samples and was significantly higher in periodontitis. Further, GG genotype at −420 was associated significantly with periodontal inflammation and resistin levels.

  12. [Single nucleotide polymorphism of STAT4 rs7574865 is associated with the susceptibility of primary biliary cirrhosis in Han population of partial regions of Jiangsu province].

    Science.gov (United States)

    Zheng, Liming; Zhou, Hong

    2017-04-01

    Objective To investigate the correlation of single nucleotide polymorphism (SNP) of signal transducer and activator of transcription 4 (STAT4) rs7574865 gene with primary biliary cirrhosis (PBC) in Han population of Jiangsu province. Methods The peripheral blood samples were collected from 138 inpatients with PBC and 116 unrelated healthy donors in the Third People's Hospital of Changzhou City in Jiangsu province. The STAT4 rs7574865 SNP was determined by polymerase chain reaction-sequence specific primer (PCR-SSP) assay. The distributions of genotype and allele frequencies in the two groups were analyzed by the Chi-squared test in order to identify whether rs7574865 was the susceptible locus of PBC. Then, the associations between rs7574865 and the serum levels of anti-mitochondrial antibody M2 (AMA-M2), anti-nuclear antibody (ANA), anti-Cenp B antibody, anti-GP210 antibody, anti-SP100 antibody in PBC were investigated. Results Three genotypes, GG, GT and TT, were found at position rs7574865 of STAT4. The TT genotype frequency in the PBC group (20.3%) was significantly higher than that in healthy controls (6.9%) and the odds rations (OR) value was 3.436. The T allele frequencies were 42.4% and 31.9% in the PBC group and healthy controls, respectively, and OR value was 1.571. There were no statistically differences between rs7574865 and the levels of serum autoantibodies in the patients with PBC. Conclusion STAT4 rs7574865 gene polymorphism is associated with the susceptibility of PBC in the Han population of Jiangsu province.

  13. SNP Discovery and Development of a High-Density Genotyping Array for Sunflower

    Science.gov (United States)

    Bachlava, Eleni; Taylor, Christopher A.; Tang, Shunxue; Bowers, John E.; Mandel, Jennifer R.; Burke, John M.; Knapp, Steven J.

    2012-01-01

    Recent advances in next-generation DNA sequencing technologies have made possible the development of high-throughput SNP genotyping platforms that allow for the simultaneous interrogation of thousands of single-nucleotide polymorphisms (SNPs). Such resources have the potential to facilitate the rapid development of high-density genetic maps, and to enable genome-wide association studies as well as molecular breeding approaches in a variety of taxa. Herein, we describe the development of a SNP genotyping resource for use in sunflower (Helianthus annuus L.). This work involved the development of a reference transcriptome assembly for sunflower, the discovery of thousands of high quality SNPs based on the generation and analysis of ca. 6 Gb of transcriptome re-sequencing data derived from multiple genotypes, the selection of 10,640 SNPs for inclusion in the genotyping array, and the use of the resulting array to screen a diverse panel of sunflower accessions as well as related wild species. The results of this work revealed a high frequency of polymorphic SNPs and relatively high level of cross-species transferability. Indeed, greater than 95% of successful SNP assays revealed polymorphism, and more than 90% of these assays could be successfully transferred to related wild species. Analysis of the polymorphism data revealed patterns of genetic differentiation that were largely congruent with the evolutionary history of sunflower, though the large number of markers allowed for finer resolution than has previously been possible. PMID:22238659

  14. Risk of radiation-induced subcutaneous fibrosis in relation to single nucleotide polymorphisms in TGFB1, SOD2, XRCC1, XRCC3, APEX and ATM - a study based on DNA from formalin fixed paraffin embedded tissue samples

    DEFF Research Database (Denmark)

    Andreassen, Christian Nicolaj; Alsner, Jan; Overgaard, Marie

    2006-01-01

    Purpose: In two previously published studies, associations with risk of radiation-induced subcutaneous fibrosis were found for single nucleotide polymorphisms (SNP) in TGFB1 (transforming growth factor beta 1 gene), XRCC1 (X-ray repair cross-complementing 1 gene), XRCC3 (X-ray repair cross...... the influence of genetic variation upon normal tissue radiosensitivity...

  15. Gender and single nucleotide polymorphisms in MTHFR, BHMT, SPTLC1, CRBP2R, and SCARB1 are significant predictors of plasma homocysteine normalized by RBC folate in healthy adults.

    Science.gov (United States)

    Using linear regression models, we studied the main and two-way interaction effects of the predictor variables gender, age, BMI, and 64 folate/vitamin B-12/homocysteine/lipid/cholesterol-related single nucleotide polymorphisms (SNP) on log-transformed plasma homocysteine normalized by red blood cell...

  16. Single nucleotide polymorphisms at interleukin (IL-1β + 3954 and vitamin D receptor (VDR TaqI in chronic periodontitis patients: A pilot study in North Indian population

    Directory of Open Access Journals (Sweden)

    Anika Daing

    2015-01-01

    Full Text Available Background: Increasing evidences support the role of genetic factors in susceptibility to chronic periodontitis. The aim of the present pilot study was to explore the association of two potential single nucleotide polymorphisms (SNPs: Interleukin (IL-1β + 3954 (rs1143634, C > T and vitamin D receptor (VDR TaqI (rs731236, T > C with chronic periodontitis in a North Indian population. Materials and Methods: Twenty-eight chronic periodontitis subjects and 47 periodontally healthy controls were recruited. Individual samples of venous blood were obtained from each subject. Genotyping was done by polymerase chain reaction, followed by restriction fragment length polymorphism (PCR-RFLP. Logistic regression and chi square test were used for genetic association analysis and a P value less than 0.05 taken as statistical significance. Statistical Analysis Used: Chi square test and odds ratio (OR was used. Results: Genotypes and alleles of SNP IL-1β + 3954 did not show a significant association (P > 0.05 with chronic periodontitis. Genotype CC and allele C of VDR TaqI were significantly associated with a higher risk for chronic periodontitis as compared to subjects with TT genotype (CC/TT OR = 4.615; 95% confidence interval [CI]: 1.17 to 18.078 P = 0.028 and allele T (C/T OR = 2.423; 95% CI: 1.179 to 4.980. Conclusion: In North Indian population, genotype CC and allele C of VDR TaqI were associated with risk of chronic periodontitis. No significant correlation was found for IL-1β + 3954 polymorphism and chronic periodontitis.

  17. Correlation of matrix metalloproteinase-2 single nucleotide polymorphisms with the risk of small vessel disease (SVD).

    Science.gov (United States)

    Zhang, Min; Zhu, Wusheng; Yun, Wenwei; Wang, Qizhang; Cheng, Maogang; Zhang, Zhizhong; Liu, Xinfeng; Zhou, Xianju; Xu, Gelin

    2015-09-15

    Maladjustment of matrix metalloproteinases (MMPs) results in cerebral vasculature and blood-brain barrier dysfunction, which is associated with small vessel disease (SVD). This study was to aim at evaluating correlations between matrix metalloproteinase-2 and 9 single nucleotide polymorphisms and the risk of SVD. A total of 178 patients with SVD were enrolled into this study via Nanjing Stroke Registry Program (NSRP) from January 2010 to November 2011. SVD patients were further subtyped as isolated lacunar infarction (ILI, absent or with mild leukoaraiosis) and ischemic leukoaraiosis (ILA, with moderate or severe leukoaraiosis) according to the Fazekas scale. 100 age- and gender-matched individuals from outpatient medical examination were recruited as the control group. The genotypes of MMP-2-1306 T/C and MMP-9-1562 C/T were determined by the TaqMan method. Of 178 SVD patients, 86 and 92 patients were classified as ILI and ILA, respectively. Comparison analysis between SVD patients and controls revealed a significant correlation between SVD and hypertension, as well as a prevalence of hypertension in ILA. Further genotype analysis showed that the frequency of MMP-2-1306 CC genotype was higher in ILA patients than in controls (P=0.009, χ(2) test; P=0.027, the multiple test with Bonferroni correction). Finally, logistic regression analysis with adjustment of age, sex and vascular risk factors showed that the MMP-2-1306 T/C polymorphism was an independent predictor for ILA (OR: 2.605; 95% confidence interval [CI], 1.067-6.364; P=0.036). Our findings suggest that the MMP-2-1306 T/C polymorphism is a direct risk factor for ILA. Copyright © 2015. Published by Elsevier B.V.

  18. UPD detection using homozygosity profiling with a SNP genotyping microarray.

    Science.gov (United States)

    Papenhausen, Peter; Schwartz, Stuart; Risheg, Hiba; Keitges, Elisabeth; Gadi, Inder; Burnside, Rachel D; Jaswaney, Vikram; Pappas, John; Pasion, Romela; Friedman, Kenneth; Tepperberg, James

    2011-04-01

    Single nucleotide polymorphism (SNP) based chromosome microarrays provide both a high-density whole genome analysis of copy number and genotype. In the past 21 months we have analyzed over 13,000 samples primarily referred for developmental delay using the Affymetrix SNP/CN 6.0 version array platform. In addition to copy number, we have focused on the relative distribution of allele homozygosity (HZ) throughout the genome to confirm a strong association of uniparental disomy (UPD) with regions of isoallelism found in most confirmed cases of UPD. We sought to determine whether a long contiguous stretch of HZ (LCSH) greater than a threshold value found only in a single chromosome would correlate with UPD of that chromosome. Nine confirmed UPD cases were retrospectively analyzed with the array in the study, each showing the anticipated LCSH with the smallest 13.5 Mb in length. This length is well above the average longest run of HZ in a set of control patients and was then set as the prospective threshold for reporting possible UPD correlation. Ninety-two cases qualified at that threshold, 46 of those had molecular UPD testing and 29 were positive. Including retrospective cases, 16 showed complete HZ across the chromosome, consistent with total isoUPD. The average size LCSH in the 19 cases that were not completely HZ was 46.3 Mb with a range of 13.5-127.8 Mb. Three patients showed only segmental UPD. Both the size and location of the LCSH are relevant to correlation with UPD. Further studies will continue to delineate an optimal threshold for LCSH/UPD correlation. Copyright © 2011 Wiley-Liss, Inc.

  19. Lack of replication of thirteen single-nucleotide polymorphisms implicated in Parkinson’s disease: a large-scale international study

    Science.gov (United States)

    Elbaz, Alexis; Nelson, Lorene M; Payami, Haydeh; Ioannidis, John P A; Fiske, Brian K; Annesi, Grazia; Belin, Andrea Carmine; Factor, Stewart A; Ferrarese, Carlo; Hadjigeorgiou, Georgios M; Higgins, Donald S; Kawakami, Hideshi; Krüger, Rejko; Marder, Karen S; Mayeux, Richard P; Mellick, George D; Nutt, John G; Ritz, Beate; Samii, Ali; Tanner, Caroline M; Van Broeckhoven, Christine; Van Den Eeden, Stephen K; Wirdefeldt, Karin; Zabetian, Cyrus P; Dehem, Marie; Montimurro, Jennifer S; Southwick, Audrey; Myers, Richard M; Trikalinos, Thomas A

    2013-01-01

    Summary Background A genome-wide association study identified 13 single-nucleotide polymorphisms (SNPs) significantly associated with Parkinson’s disease. Small-scale replication studies were largely non-confirmatory, but a meta-analysis that included data from the original study could not exclude all SNP associations, leaving relevance of several markers uncertain. Methods Investigators from three Michael J Fox Foundation for Parkinson’s Research-funded genetics consortia—comprising 14 teams—contributed DNA samples from 5526 patients with Parkinson’s disease and 6682 controls, which were genotyped for the 13 SNPs. Most (88%) participants were of white, non-Hispanic descent. We assessed log-additive genetic effects using fixed and random effects models stratified by team and ethnic origin, and tested for heterogeneity across strata. A meta-analysis was undertaken that incorporated data from the original genome-wide study as well as subsequent replication studies. Findings In fixed and random-effects models no associations with any of the 13 SNPs were identified (odds ratios 0·89 to 1·09). Heterogeneity between studies and between ethnic groups was low for all SNPs. Subgroup analyses by age at study entry, ethnic origin, sex, and family history did not show any consistent associations. In our meta-analysis, no SNP showed significant association (summary odds ratios 0·95 to 1.08); there was little heterogeneity except for SNP rs7520966. Interpretation Our results do not lend support to the finding that the 13 SNPs reported in the original genome-wide association study are genetic susceptibility factors for Parkinson’s disease. PMID:17052658

  20. Single nucleotide polymorphism-based molecular typing of M. leprae from multicase families of leprosy patients and their surroundings to understand the transmission of leprosy.

    Science.gov (United States)

    Turankar, R P; Lavania, M; Chaitanya, V S; Sengupta, U; Darlong, J; Darlong, F; Siva Sai, K S R; Jadhav, R S

    2014-03-01

    The exact mode of transmission of leprosy is not clearly understood; however, many studies have demonstrated active transmission of leprosy around a source case. Families of five active leprosy cases and their household contacts were chosen from a high endemic area in Purulia. Fifty-two soil samples were also collected from different areas of their houses. DNA was extracted from slit-skin smears (SSS) and soil samples and the Mycobacterium leprae-specific RLEP (129 bp) region was amplified using PCR. Molecular typing of M. leprae was performed for all RLEP PCR-positive samples by single nucleotide polymorphism (SNP) typing and confirmation by DNA sequencing. SSS of these five patients and six out of the total 28 contacts were PCR positive for RLEP whereas 17 soil samples out of 52 showed the presence of M. leprae DNA. SNP typing of M. leprae from all RLEP PCR-positive subjects (patients and smear-positive contacts) and 10 soil samples showed the SNP type 1 genotype. M. leprae DNA from the five leprosy patients and the six contacts was further subtyped and the D subtype was noted in all patients and contacts, except for one contact where the C subtype was identified. Typing followed by subtyping of M. leprae clearly revealed that either the contacts were infected by the patients or both patients and contacts had the same source of infection. It also revealed that the type of M. leprae in the soil in the inhabited areas where patients resided was also of the same type as that found in patients. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  1. Identification of single nucleotide polymorphisms in the bovine Toll-like receptor 1 gene and association with health traits in cattle

    Directory of Open Access Journals (Sweden)

    Russell Christopher D

    2012-03-01

    Full Text Available Abstract Bovine mastitis remains the most common and costly disease of dairy cattle worldwide. A complementary control measure to herd hygiene and vaccine development would be to selectively breed cattle with greater resistance to mammary infection. Toll-like receptor 1 (TLR1 has an integral role for the initiation and regulation of the immune response to microbial pathogens, and has been linked to numerous inflammatory diseases. The objective of this study was to investigate whether single nucleotide polymorphisms (SNPs within the bovine TLR1 gene (boTLR1 are associated with clinical mastitis (CM. Selected boTLR1 SNPs were analysed within a Holstein Friesian herd. Significant associations were found for the tagging SNP -79 T > G and the 3'UTR SNP +2463 C > T. We observed favourable linkage of reduced CM with increased milk fat and protein, indicating selection for these markers would not be detrimental to milk quality. Furthermore, we present evidence that some of these boTLR1 SNPs underpin functional variation in bovine TLR1. Animals with the GG genotype (from the tag SNP -79 T > G had significantly lower boTLR1 expression in milk somatic cells when compared with TT or TG animals. In addition, stimulation of leucocytes from GG animals with the TLR1-ligand Pam3csk4 resulted in significantly lower levels of CXCL8 mRNA and protein. SNPs in boTLR1 were significantly associated with CM. In addition we have identified a bovine population with impaired boTLR1 expression and function. This may have additional implications for animal health and warrants further investigation to determine the suitability of identified SNPs as markers for disease susceptibility.

  2. A whole genome association study to detect additive and dominant single nucleotide polymorphisms for growth and carcass traits in Korean native cattle, Hanwoo

    Directory of Open Access Journals (Sweden)

    Yi Li

    2017-01-01

    Full Text Available Objective A whole genome association study was conducted to identify single nucleotide polymorphisms (SNPs with additive and dominant effects for growth and carcass traits in Korean native cattle, Hanwoo. Methods The data set comprised 61 sires and their 486 Hanwoo steers that were born between spring of 2005 and fall of 2007. The steers were genotyped with the 35,968 SNPs that were embedded in the Illumina bovine SNP 50K beadchip and six growth and carcass quality traits were measured for the steers. A series of lack-of-fit tests between the models was applied to classify gene expression pattern as additive or dominant. Results A total of 18 (0, 15 (3, 12 (8, 15 (18, 11 (7, and 21 (1 SNPs were detected at the 5% chromosome (genome - wise level for weaning weight (WWT, yearling weight (YWT, carcass weight (CWT, backfat thickness (BFT, longissimus dorsi muscle area (LMA and marbling score, respectively. Among the significant 129 SNPs, 56 SNPs had additive effects, 20 SNPs dominance effects, and 53 SNPs both additive and dominance effects, suggesting that dominance inheritance mode be considered in genetic improvement for growth and carcass quality in Hanwoo. The significant SNPs were located at 33 quantitative trait locus (QTL regions on 18 Bos Taurus chromosomes (i.e. BTA 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 17, 18, 20, 23, 26, 28, and 29 were detected. There is strong evidence that BTA14 is the key chromosome affecting CWT. Also, BTA20 is the key chromosome for almost all traits measured (WWT, YWT, LMA. Conclusion The application of various additive and dominance SNP models enabled better characterization of SNP inheritance mode for growth and carcass quality traits in Hanwoo, and many of the detected SNPs or QTL had dominance effects, suggesting that dominance be considered for the whole-genome SNPs data and implementation of successive molecular breeding schemes in Hanwoo.

  3. Comparison of three PCR-based assays for SNP genotyping in sugar beet

    Science.gov (United States)

    Background: PCR allelic discrimination technologies have broad applications in the detection of single nucleotide polymorphisms (SNPs) in genetics and genomics. The use of fluorescence-tagged probes is the leading method for targeted SNP detection, but assay costs and error rates could be improved t...

  4. Identification of rheumatoid arthritis biomarkers based on single nucleotide polymorphisms and haplotype blocks: A systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Mohamed N. Saad

    2016-01-01

    Full Text Available Genetics of autoimmune diseases represent a growing domain with surpassing biomarker results with rapid progress. The exact cause of Rheumatoid Arthritis (RA is unknown, but it is thought to have both a genetic and an environmental bases. Genetic biomarkers are capable of changing the supervision of RA by allowing not only the detection of susceptible individuals, but also early diagnosis, evaluation of disease severity, selection of therapy, and monitoring of response to therapy. This review is concerned with not only the genetic biomarkers of RA but also the methods of identifying them. Many of the identified genetic biomarkers of RA were identified in populations of European and Asian ancestries. The study of additional human populations may yield novel results. Most of the researchers in the field of identifying RA biomarkers use single nucleotide polymorphism (SNP approaches to express the significance of their results. Although, haplotype block methods are expected to play a complementary role in the future of that field.

  5. The effect of metallothionein 2A core promoter region single-nucleotide polymorphism on accumulation of toxic metals in sinonasal inverted papilloma tissues

    Energy Technology Data Exchange (ETDEWEB)

    Starska, Katarzyna, E-mail: katarzyna.starska@umed.lodz.pl [I Department of Otolaryngology and Laryngological Oncology, Medical University of Łódź, Kopcinskiego 22, 90-153 Łódź (Poland); Bryś, Magdalena; Forma, Ewa [Department of Cytobiochemistry, University of Łódź, Pomorska 142/143, 90-236 Łódź (Poland); Olszewski, Jurek; Pietkiewicz, Piotr [II Department of Otolaryngology and Laryngological Oncology, Medical University of Łódź, Żeromskiego 113, 90-549 Łódź (Poland); Lewy-Trenda, Iwona; Danilewicz, Marian [Department of Pathology, Medical University of Łódź, Pomorska 251, 92-213 Łódź (Poland); Krześlak, Anna [Department of Cytobiochemistry, University of Łódź, Pomorska 142/143, 90-236 Łódź (Poland)

    2015-06-15

    Metallothioneins (MTs) are intracellular thiol-rich heavy metal-binding proteins which join trace metal ions protecting cells against heavy metal toxicity and regulate metal distribution and donation to various enzymes and transcription factors. The goal of this study was to identify the − 5 A/G (rs28366003) single-nucleotide polymorphism (SNP) in the core promoter region of the MT2A gene, and to investigate its effect on allele-specific gene expression and Cd, Zn, Cu and Ni content in sinonasal inverted papilloma tissue (IP), with non-cancerous sinonasal mucosa (NCM) as a control. The MT2A promoter region − 5 A/G SNP was identified by restriction fragment length polymorphism using 117 IP and 132 NCM. MT2A gene analysis was performed by quantitative real-time PCR. Metal levels were analyzed by flame atomic absorption spectrometry. The frequency of A allele carriage was 99.2% and 100% in IP and NCM, respectively. The G allele carriage was detected in 23.9% of IP and in 12.1% of the NCM samples. As a result, a significant association of − 5 A/G SNP in MT2A gene with mRNA expression in both groups was determined. A significant association was identified between the − 5 A/G SNP in the MT2A gene with mRNA expression in both groups. A highly significant association was detected between the rs28366003 genotype and Cd and Zn content in IP. Furthermore, significant differences were identified between A/A and A/G genotype with regard to the type of metal contaminant. The Spearman rank correlation results showed the MT2A gene expression and both Cd and Cu levels were negatively correlated. The results obtained in this study suggest that the − 5 A/G SNP in the MT2A gene may have an effect on allele-specific gene expression and toxic metal accumulation in sinonasal inverted papilloma. - Highlights: • MT2A gene expression and metal content in sinonasal inverted papilloma tissues • Association between SNP (rs28366003) and expression of MT2A • Significant

  6. Spatial distribution of single-nucleotide polymorphisms related to fungicide resistance and implications for sampling.

    Science.gov (United States)

    Van der Heyden, H; Dutilleul, P; Brodeur, L; Carisse, O

    2014-06-01

    Spatial distribution of single-nucleotide polymorphisms (SNPs) related to fungicide resistance was studied for Botrytis cinerea populations in vineyards and for B. squamosa populations in onion fields. Heterogeneity in this distribution was characterized by performing geostatistical analyses based on semivariograms and through the fitting of discrete probability distributions. Two SNPs known to be responsible for boscalid resistance (H272R and H272Y), both located on the B subunit of the succinate dehydrogenase gene, and one SNP known to be responsible for dicarboximide resistance (I365S) were chosen for B. cinerea in grape. For B. squamosa in onion, one SNP responsible for dicarboximide resistance (I365S homologous) was chosen. One onion field was sampled in 2009 and another one was sampled in 2010 for B. squamosa, and two vineyards were sampled in 2011 for B. cinerea, for a total of four sampled sites. Cluster sampling was carried on a 10-by-10 grid, each of the 100 nodes being the center of a 10-by-10-m quadrat. In each quadrat, 10 samples were collected and analyzed by restriction fragment length polymorphism polymerase chain reaction (PCR) or allele specific PCR. Mean SNP incidence varied from 16 to 68%, with an overall mean incidence of 43%. In the geostatistical analyses, omnidirectional variograms showed spatial autocorrelation characterized by ranges of 21 to 1 m. Various levels of anisotropy were detected, however, with variograms computed in four directions (at 0°, 45°, 90°, and 135° from the within-row direction used as reference), indicating that spatial autocorrelation was prevalent or characterized by a longer range in one direction. For all eight data sets, the β-binomial distribution was found to fit the data better than the binomial distribution. This indicates local aggregation of fungicide resistance among sampling units, as supported by estimates of the parameter θ of the β-binomial distribution of 0.09 to 0.23 (overall median value = 0

  7. Single nucleotide polymorphisms unravel hierarchical divergence and signatures of selection among Alaskan sockeye salmon (Oncorhynchus nerka populations

    Directory of Open Access Journals (Sweden)

    Habicht Christopher

    2011-02-01

    Full Text Available Abstract Background Disentangling the roles of geography and ecology driving population divergence and distinguishing adaptive from neutral evolution at the molecular level have been common goals among evolutionary and conservation biologists. Using single nucleotide polymorphism (SNP multilocus genotypes for 31 sockeye salmon (Oncorhynchus nerka populations from the Kvichak River, Alaska, we assessed the relative roles of geography (discrete boundaries or continuous distance and ecology (spawning habitat and timing driving genetic divergence in this species at varying spatial scales within the drainage. We also evaluated two outlier detection methods to characterize candidate SNPs responding to environmental selection, emphasizing which mechanism(s may maintain the genetic variation of outlier loci. Results For the entire drainage, Mantel tests suggested a greater role of geographic distance on population divergence than differences in spawn timing when each variable was correlated with pairwise genetic distances. Clustering and hierarchical analyses of molecular variance indicated that the largest genetic differentiation occurred between populations from distinct lakes or subdrainages. Within one population-rich lake, however, Mantel tests suggested a greater role of spawn timing than geographic distance on population divergence when each variable was correlated with pairwise genetic distances. Variable spawn timing among populations was linked to specific spawning habitats as revealed by principal coordinate analyses. We additionally identified two outlier SNPs located in the major histocompatibility complex (MHC class II that appeared robust to violations of demographic assumptions from an initial pool of eight candidates for selection. Conclusions First, our results suggest that geography and ecology have influenced genetic divergence between Alaskan sockeye salmon populations in a hierarchical manner depending on the spatial scale. Second

  8. Real time hybridization studies by resonant waveguide gratings using nanopattern imaging for Single Nucleotide Polymorphism detection

    KAUST Repository

    Bougot-Robin, Kristelle

    2013-12-20

    2D imaging of biochips is particularly interesting for multiplex biosensing. Resonant properties allow label-free detection using the change of refractive index at the chip surface. We demonstrate a new principle of Scanning Of Resonance on Chip by Imaging (SORCI) based on spatial profiles of nanopatterns of resonant waveguide gratings (RWGs) and its embodiment in a fluidic chip for real-time biological studies. This scheme allows multiplexing of the resonance itself by providing nanopattern sensing areas in a bioarray format. Through several chip designs we discuss resonance spatial profiles, dispersion and electric field distribution for optimal light-matter interaction with biological species of different sizes. Fluidic integration is carried out with a black anodized aluminum chamber, advantageous in term of mechanical stability, multiple uses of the chip, temperature control and low optical background. Real-time hybridization experiments are illustrated by SNP (Single Nucleotide Polymorphism) detection in gyrase A of E. coli K12, observed in evolution studies of resistance to the antibiotic ciprofloxacin. We choose a 100 base pairs (bp) DNA target (∼30 kDa) including the codon of interest and demonstrate the high specificity of our technique for probes and targets with close affinity constants. This work validates the safe applicability of our unique combination of RWGs and simple instrumentation for real-time biosensing with sensitivity in buffer solution of ∼10 pg/mm2. Paralleling the success of RWGs sensing for cells sensing, our work opens new avenues for a large number of biological studies. © 2013 Springer Science+Business Media.

  9. Genetic analysis of glucosinolate variability in broccoli florets using genome-anchored single nucleotide polymorphisms.

    Science.gov (United States)

    Brown, Allan F; Yousef, Gad G; Reid, Robert W; Chebrolu, Kranthi K; Thomas, Aswathy; Krueger, Christopher; Jeffery, Elizabeth; Jackson, Eric; Juvik, John A

    2015-07-01

    The identification of genetic factors influencing the accumulation of individual glucosinolates in broccoli florets provides novel insight into the regulation of glucosinolate levels in Brassica vegetables and will accelerate the development of vegetables with glucosinolate profiles tailored to promote human health. Quantitative trait loci analysis of glucosinolate (GSL) variability was conducted with a B. oleracea (broccoli) mapping population, saturated with single nucleotide polymorphism markers from a high-density array designed for rapeseed (Brassica napus). In 4 years of analysis, 14 QTLs were associated with the accumulation of aliphatic, indolic, or aromatic GSLs in floret tissue. The accumulation of 3-carbon aliphatic GSLs (2-propenyl and 3-methylsulfinylpropyl) was primarily associated with a single QTL on C05, but common regulation of 4-carbon aliphatic GSLs was not observed. A single locus on C09, associated with up to 40 % of the phenotypic variability of 2-hydroxy-3-butenyl GSL over multiple years, was not associated with the variability of precursor compounds. Similarly, QTLs on C02, C04, and C09 were associated with 4-methylsulfinylbutyl GSL concentration over multiple years but were not significantly associated with downstream compounds. Genome-specific SNP markers were used to identify candidate genes that co-localized to marker intervals and previously sequenced Brassica oleracea BAC clones containing known GSL genes (GSL-ALK, GSL-PRO, and GSL-ELONG) were aligned to the genomic sequence, providing support that at least three of our 14 QTLs likely correspond to previously identified GSL loci. The results demonstrate that previously identified loci do not fully explain GSL variation in broccoli. The identification of additional genetic factors influencing the accumulation of GSL in broccoli florets provides novel insight into the regulation of GSL levels in Brassicaceae and will accelerate development of vegetables with modified or enhanced GSL

  10. An Integrated Pipeline of Open Source Software Adapted for Multi-CPU Architectures: Use in the Large-Scale Identification of Single Nucleotide Polymorphisms

    Directory of Open Access Journals (Sweden)

    B. Jayashree

    2007-01-01

    Full Text Available The large amounts of EST sequence data available from a single species of an organism as well as for several species within a genus provide an easy source of identification of intra- and interspecies single nucleotide polymorphisms (SNPs. In the case of model organisms, the data available are numerous, given the degree of redundancy in the deposited EST data. There are several available bioinformatics tools that can be used to mine this data; however, using them requires a certain level of expertise: the tools have to be used sequentially with accompanying format conversion and steps like clustering and assembly of sequences become time-intensive jobs even for moderately sized datasets. We report here a pipeline of open source software extended to run on multiple CPU architectures that can be used to mine large EST datasets for SNPs and identify restriction sites for assaying the SNPs so that cost-effective CAPS assays can be developed for SNP genotyping in genetics and breeding applications. At the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT, the pipeline has been implemented to run on a Paracel high-performance system consisting of four dual AMD Opteron processors running Linux with MPICH. The pipeline can be accessed through user-friendly web interfaces at http://hpc.icrisat.cgiar.org/PBSWeb and is available on request for academic use. We have validated the developed pipeline by mining chickpea ESTs for interspecies SNPs, development of CAPS assays for SNP genotyping, and confirmation of restriction digestion pattern at the sequence level.

  11. A single nucleotide polymorphism in the zona pellucida 3 gene is associated with the first parity litter size in Hu sheep.

    Science.gov (United States)

    Chong, Yuqing; Huang, Huarong; Liu, Guiqiong; Jiang, Xunping; Rong, Weiheng

    2018-03-31

    Zona pellucida 3 (ZP3) is a primary sperm receptor and acrosome reaction inducer. As a candidate gene, the ZP3 gene has been widely studied since it has great influence on reproductive traits in farm animals. However, little is known about the association between polymorphisms of the coding region of the ZP3 gene and the first parity litter size in Hu sheep. Therefore, the objective of this study was to identify single nucleotide polymorphisms (SNPs) of the ZP3 gene associated with the first parity litter size in Hu sheep. A total of 462 female Hu sheep were sampled to detect SNPs in the coding region of the ZP3 gene. Six SNPs were identified and the reliability of all estimated allele frequencies reached 0.9545 except for one locus (g.2293C > T). SNP (rs401271989) was identified as that involved in amino acid change (Ile → Leu). This amino acid was located at the beginning of a β-strand and outside of the ZP3 protein membrane, and it was most likely to be a ligand-binding site (the possibility was 0.917). At this locus, individuals with AC genotype had a larger litter size than those with CC genotype in the first parity (2.050 vs 1.727, p size in Hu sheep, and it may affect the function of ZP3 protein by impacting the secondary and tertiary protein structures. The present study demonstrates that SNP (rs401271989) could be used in marker-assisted selection of the first parity litter size in Hu sheep. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Single nucleotide polymorphisms in i-type lysozyme gene and their correlation with vibrio-resistance and growth of clam Meretrix meretrix based on the selected resistance stocks.

    Science.gov (United States)

    Yue, Xin; Wang, Hongxia; Huang, Xiaohong; Wang, Chao; Chai, Xueliang; Wang, Chunde; Liu, Baozhong

    2012-09-01

    I-type lysozyme is considered to play crucial roles in both anti-bacteria and digestion function of the bivalve, which signifies that it is related to both immunity and growth. In this study, based on the principle of case-control association analysis, using the stock materials with different vibrio-resistance profile obtained by selective breeding, single nucleotide polymorphisms (SNPs) in the DNA partial sequence of an i-type lysozyme of Meretrix meretrix (MmeLys) were discovered and examined for their association with vibrio-resistance and growth. Twenty-seven SNPs were detected and fifteen of them were genotyped in clam stocks with different resistance to Vibrio harveyi (09-C and 09-R) and to Vibrio parahaemolyticus (11-S and 11-R). Allele frequency distribution among different stocks was compared. And wet weight of clams with different genotype at each SNP locus was compared. The results indicated that SNP locus 9 was associated with V. harveyi and V. parahaemolyticus resistance and growth of M. meretrix. Loci 12 and 14 were associated with both V. parahaemolyticus-resistance and growth, and also have the potential to be related with V. harveyi-resistance of M. meretrix. Therefore these three SNPs especially locus 9 were the potential markers which may be involved in assisting resistance selective breeding. In addition, this study showed evidence that improvements in clam resistance to vibriosis could be achieved through selective breeding. All results provided encouragement for the continuation of the selective breeding program for vibrio-resistance gain in clam M. meretrix and the application of polymorphisms in MmeLys to the future marker assisted selection. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Identification of T1D susceptibility genes within the MHC region by combining protein interaction networks and SNP genotyping data

    DEFF Research Database (Denmark)

    Brorsson, C.; Hansen, Niclas Tue; Hansen, Kasper Lage

    2009-01-01

    genes. We have developed a novel method that combines single nucleotide polymorphism (SNP) genotyping data with protein-protein interaction (ppi) networks to identify disease-associated network modules enriched for proteins encoded from the MHC region. Approximately 2500 SNPs located in the 4 Mb MHC......To develop novel methods for identifying new genes that contribute to the risk of developing type 1 diabetes within the Major Histocompatibility Complex (MHC) region on chromosome 6, independently of the known linkage disequilibrium (LD) between human leucocyte antigen (HLA)-DRB1, -DQA1, -DQB1...... region were analysed in 1000 affected offspring trios generated by the Type 1 Diabetes Genetics Consortium (T1DGC). The most associated SNP in each gene was chosen and genes were mapped to ppi networks for identification of interaction partners. The association testing and resulting interacting protein...

  14. Both COMT Val158Met single nucleotide polymorphism and sex-dependent differences influence response inhibition

    Directory of Open Access Journals (Sweden)

    Valentina eMione

    2015-05-01

    Full Text Available Reactive and proactive control of actions are cognitive abilities that allow to deal with a continuously changing environment by adjusting already programmed actions. They also set forthcoming acts by evaluating the outcome of the previous ones. Earlier studies highlighted sex related differences in the strategies and in the pattern of brain activation during cognitive tasks involving reactive and proactive control. To further identify sex-dependent characteristics in the cognitive control of actions, in this study we have assessed whether/how differences in reactive and proactive control were modulated by the COMT Val158Met single nucleotide polymorphism, a genetic factor known to influence the functionality of the dopaminergic system, in particular at the level of prefrontal cortex. Two groups of male and female participants were further sorted according to their genotype (Val/Met, Val/Val and Met/Met and tested in a stop signal task, a consolidated tool to measure reactive and proactive control in experimental and clinical settings. In each group of participants we estimated both a measure of the capacity to react to unexpected events and the ability of monitoring their performance. The between groups comparison of these measures indicated a poorer ability of male individuals carrying the Val/Val genotype in error-monitoring, suggesting that differences between sexes could be influenced by the efficiency of COMT and that other sex-specific factors have to be considered. The comprehension of inter-groups behavioral and physiological correlates of cognitive control will provide more accurate diagnostic tools for predicting the incidence and the development of pathologies like ADHD or deviant behaviors as drug or alcohol abuse.

  15. Detecting high-order interactions of single nucleotide polymorphisms using genetic programming.

    Science.gov (United States)

    Nunkesser, Robin; Bernholt, Thorsten; Schwender, Holger; Ickstadt, Katja; Wegener, Ingo

    2007-12-15

    Not individual single nucleotide polymorphisms (SNPs), but high-order interactions of SNPs are assumed to be responsible for complex diseases such as cancer. Therefore, one of the major goals of genetic association studies concerned with such genotype data is the identification of these high-order interactions. This search is additionally impeded by the fact that these interactions often are only explanatory for a relatively small subgroup of patients. Most of the feature selection methods proposed in the literature, unfortunately, fail at this task, since they can either only identify individual variables or interactions of a low order, or try to find rules that are explanatory for a high percentage of the observations. In this article, we present a procedure based on genetic programming and multi-valued logic that enables the identification of high-order interactions of categorical variables such as SNPs. This method called GPAS cannot only be used for feature selection, but can also be employed for discrimination. In an application to the genotype data from the GENICA study, an association study concerned with sporadic breast cancer, GPAS is able to identify high-order interactions of SNPs leading to a considerably increased breast cancer risk for different subsets of patients that are not found by other feature selection methods. As an application to a subset of the HapMap data shows, GPAS is not restricted to association studies comprising several 10 SNPs, but can also be employed to analyze whole-genome data. Software can be downloaded from http://ls2-www.cs.uni-dortmund.de/~nunkesser/#Software

  16. Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis

    Directory of Open Access Journals (Sweden)

    Rabinowicz Pablo D

    2010-01-01

    Full Text Available Abstract Background Castor bean (Ricinus communis is an agricultural crop and garden ornamental that is widely cultivated and has been introduced worldwide. Understanding population structure and the distribution of castor bean cultivars has been challenging because of limited genetic variability. We analyzed the population genetics of R. communis in a worldwide collection of plants from germplasm and from naturalized populations in Florida, U.S. To assess genetic diversity we conducted survey sequencing of the genomes of seven diverse cultivars and compared the data to a reference genome assembly of a widespread cultivar (Hale. We determined the population genetic structure of 676 samples using single nucleotide polymorphisms (SNPs at 48 loci. Results Bayesian clustering indicated five main groups worldwide and a repeated pattern of mixed genotypes in most countries. High levels of population differentiation occurred between most populations but this structure was not geographically based. Most molecular variance occurred within populations (74% followed by 22% among populations, and 4% among continents. Samples from naturalized populations in Florida indicated significant population structuring consistent with local demes. There was significant population differentiation for 56 of 78 comparisons in Florida (pairwise population ϕPT values, p Conclusion Low levels of genetic diversity and mixing of genotypes have led to minimal geographic structuring of castor bean populations worldwide. Relatively few lineages occur and these are widely distributed. Our approach of determining population genetic structure using SNPs from genome-wide comparisons constitutes a framework for high-throughput analyses of genetic diversity in plants, particularly in species with limited genetic diversity.

  17. Bioinformatic Analysis of Deleterious Non-Synonymous Single Nucleotide Polymorphisms (nsSNPs in the Coding Regions of Human Prion Protein Gene (PRNP

    Directory of Open Access Journals (Sweden)

    Kourosh Bamdad

    2016-12-01

    Full Text Available Background & Objective: Single nucleotide polymorphisms are the cause of genetic variation to living organisms. Single nucleotide polymorphisms alter residues in the protein sequence. In this investigation, the relationship between prion protein gene polymorphisms and its relevance to pathogenicity was studied. Material & Method: Amino acid sequence of the main isoform from the human prion protein gene (PRNP was extracted from UniProt database and evaluated by FoldAmyloid and AmylPred servers. All non-synonymous single nucleotide polymorphisms (nsSNPs from SNP database (dbSNP were further analyzed by bioinformatics servers including SIFT, PolyPhen-2, I-Mutant-3.0, PANTHER, SNPs & GO, PHD-SNP, Meta-SNP, and MutPred to determine the most damaging nsSNPs. Results: The results of the first structure analyses by FoldAmyloid and AmylPerd servers implied that regions including 5-15, 174-178, 180-184, 211-217, and 240-252 were the most sensitive parts of the protein sequence to amyloidosis. Screening all nsSNPs of the main protein isoform using bioinformatic servers revealed that substitution of Aspartic acid with Valine at position 178 (ID code: rs11538766 was the most deleterious nsSNP in the protein structure. Conclusion:  Substitution of the Aspartic acid with Valine at position 178 (D178V was the most pathogenic mutation in the human prion protein gene. Analyses from the MutPred server also showed that beta-sheets’ increment in the secondary structure was the main reason behind the molecular mechanism of the prion protein aggregation.

  18. HRM and SNaPshot as alternative forensic SNP genotyping methods.

    Science.gov (United States)

    Mehta, Bhavik; Daniel, Runa; McNevin, Dennis

    2017-09-01

    Single nucleotide polymorphisms (SNPs) have been widely used in forensics for prediction of identity, biogeographical ancestry (BGA) and externally visible characteristics (EVCs). Single base extension (SBE) assays, most notably SNaPshot® (Thermo Fisher Scientific), are commonly used for forensic SNP genotyping as they can be employed on standard instrumentation in forensic laboratories (e.g. capillary electrophoresis). High resolution melt (HRM) analysis is an alternative method and is a simple, fast, single tube assay for low throughput SNP typing. This study compares HRM and SNaPshot®. HRM produced reproducible and concordant genotypes at 500 pg, however, difficulties were encountered when genotyping SNPs with high GC content in flanking regions and differentiating variants of symmetrical SNPs. SNaPshot® was reproducible at 100 pg and is less dependent on SNP choice. HRM has a shorter processing time in comparison to SNaPshot®, avoids post PCR contamination risk and has potential as a screening tool for many forensic applications.

  19. Single nucleotide polymorphism array karyotyping: a diagnostic and prognostic tool in myelodysplastic syndromes with unsuccessful conventional cytogenetic testing.

    Science.gov (United States)

    Arenillas, Leonor; Mallo, Mar; Ramos, Fernando; Guinta, Kathryn; Barragán, Eva; Lumbreras, Eva; Larráyoz, María-José; De Paz, Raquel; Tormo, Mar; Abáigar, María; Pedro, Carme; Cervera, José; Such, Esperanza; José Calasanz, María; Díez-Campelo, María; Sanz, Guillermo F; Hernández, Jesús María; Luño, Elisa; Saumell, Sílvia; Maciejewski, Jaroslaw; Florensa, Lourdes; Solé, Francesc

    2013-12-01

    Cytogenetic aberrations identified by metaphase cytogenetics (MC) have diagnostic, prognostic, and therapeutic implications in myelodysplastic syndromes (MDS). However, in some MDS patients MC study is unsuccesful. Single nucleotide polymorphism array (SNP-A) based karyotyping could be helpful in these cases. We performed SNP-A in 62 samples from bone marrow or peripheral blood of primary MDS with an unsuccessful MC study. SNP-A analysis enabled the detection of aberrations in 31 (50%) patients. We used the copy number alteration information to apply the International Prognostic Scoring System (IPSS) and we observed differences in survival between the low/intermediate-1 and intermediate-2/high risk patients. We also saw differences in survival between very low/low/intermediate and the high/very high patients when we applied the revised IPSS (IPSS-R). In conclusion, SNP-A can be used successfully in PB samples and the identification of CNA by SNP-A improve the diagnostic and prognostic evaluation of this group of MDS patients. Copyright © 2013 Wiley Periodicals, Inc.

  20. Decision Tree Algorithm-Generated Single-Nucleotide Polymorphism Barcodes of rbcL Genes for 38 Brassicaceae Species Tagging.

    Science.gov (United States)

    Yang, Cheng-Hong; Wu, Kuo-Chuan; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2018-01-01

    DNA barcode sequences are accumulating in large data sets. A barcode is generally a sequence larger than 1000 base pairs and generates a computational burden. Although the DNA barcode was originally envisioned as straightforward species tags, the identification usage of barcode sequences is rarely emphasized currently. Single-nucleotide polymorphism (SNP) association studies provide us an idea that the SNPs may be the ideal target of feature selection to discriminate between different species. We hypothesize that SNP-based barcodes may be more effective than the full length of DNA barcode sequences for species discrimination. To address this issue, we tested a r ibulose diphosphate carboxylase ( rbcL ) S NP b arcoding (RSB) strategy using a decision tree algorithm. After alignment and trimming, 31 SNPs were discovered in the rbcL sequences from 38 Brassicaceae plant species. In the decision tree construction, these SNPs were computed to set up the decision rule to assign the sequences into 2 groups level by level. After algorithm processing, 37 nodes and 31 loci were required for discriminating 38 species. Finally, the sequence tags consisting of 31 rbcL SNP barcodes were identified for discriminating 38 Brassicaceae species based on the decision tree-selected SNP pattern using RSB method. Taken together, this study provides the rational that the SNP aspect of DNA barcode for rbcL gene is a useful and effective sequence for tagging 38 Brassicaceae species.

  1. Real-Time PCR Typing of Escherichia coli Based on Multiple Single Nucleotide Polymorphisms--a Convenient and Rapid Method.

    Science.gov (United States)

    Lager, Malin; Mernelius, Sara; Löfgren, Sture; Söderman, Jan

    2016-01-01

    Healthcare-associated infections caused by Escherichia coli and antibiotic resistance due to extended-spectrum beta-lactamase (ESBL) production constitute a threat against patient safety. To identify, track, and control outbreaks and to detect emerging virulent clones, typing tools of sufficient discriminatory power that generate reproducible and unambiguous data are needed. A probe based real-time PCR method targeting multiple single nucleotide polymorphisms (SNP) was developed. The method was based on the multi locus sequence typing scheme of Institute Pasteur and by adaptation of previously described typing assays. An 8 SNP-panel that reached a Simpson's diversity index of 0.95 was established, based on analysis of sporadic E. coli cases (ESBL n = 27 and non-ESBL n = 53). This multi-SNP assay was used to identify the sequence type 131 (ST131) complex according to the Achtman's multi locus sequence typing scheme. However, it did not fully discriminate within the complex but provided a diagnostic signature that outperformed a previously described detection assay. Pulsed-field gel electrophoresis typing of isolates from a presumed outbreak (n = 22) identified two outbreaks (ST127 and ST131) and three different non-outbreak-related isolates. Multi-SNP typing generated congruent data except for one non-outbreak-related ST131 isolate. We consider multi-SNP real-time PCR typing an accessible primary generic E. coli typing tool for rapid and uniform type identification.

  2. Analysis of two single-nucleotide polymorphisms (SNPs) located in ...

    African Journals Online (AJOL)

    Martina Franca donkey was derived from the Catalan donkey brought to Apulia at the time of the Spanish rule. This donkey is tall and well built and has good temperament. Both considered loci were found to be monomorphic in the considered population. At CSN3/PstI locus, all the animals were genotyped as AA since no ...

  3. Sirtuin 1 gene rs2273773 C >T single nucleotide polymorphism and ...

    African Journals Online (AJOL)

    Background: Sirtuin-1 (SIRT-1), a protein has been found to protect the cells against oxidative stress due to its deacetylase activity. In this investigation, we aimed to study SIRT-1 gene rs2273773 C >T single nucleotide polymorphism and markers of serum protein oxidation (protein carbonyl and sulfhydryl groups) in ...

  4. Twelve single nucleotide polymorphisms on chromosome 19q13.2-13.3

    DEFF Research Database (Denmark)

    Yin, Jiaoyang; Vogel, Ulla; Gerdes, Lars Ulrik

    2003-01-01

    The genetic susceptibility to basal cell carcinoma (BCC) among Danish psoriatic patients was investigated in association studies with 12 single nucleotide polymorphisms on chromosome 19q13.2-3. The results show a significant association between BCC and the A-allele of a polymorphism in ERCCI exon4...

  5. Single nucleotide polymorphism discovery in bovine liver using RNA-seq technology

    DEFF Research Database (Denmark)

    Pareek, Chandra Shekhar; Błaszczyk, Paweł; Dziuba, Piotr

    2017-01-01

    Background RNA-seq is a useful next-generation sequencing (NGS) technology that has been widely used to understand mammalian transcriptome architecture and function. In this study, a breed-specific RNA-seq experiment was utilized to detect putative single nucleotide polymorphisms (SNPs) in liver...

  6. A lateral flow biosensor for detection of single nucleotide polymorphism by circular strand displacement reaction.

    Science.gov (United States)

    Xiao, Zhuo; Lie, Puchang; Fang, Zhiyuan; Yu, Luxin; Chen, Junhua; Liu, Jie; Ge, Chenchen; Zhou, Xuemeng; Zeng, Lingwen

    2012-09-04

    A lateral flow biosensor for detection of single nucleotide polymorphism based on circular strand displacement reaction (CSDPR) has been developed. Taking advantage of high fidelity of T4 DNA ligase, signal amplification by CSDPR, and the optical properties of gold nanoparticles, this assay has reached a detection limit of 0.01 fM.

  7. Lupus-related single nucleotide polymorphisms and risk of diffuse large B-cell lymphoma

    NARCIS (Netherlands)

    Bernatsky, Sasha; Velásquez García, Héctor A; Spinelli, John; Gaffney, Patrick; Smedby, Karin E; Ramsey-Goldman, Rosalind; Wang, Sophia S.; Adami, Hans-Olov; Albanes, Demetrius; Angelucci, Emanuele; Ansell, Stephen M.; Asmann, Yan W.; Becker, Nikolaus; Benavente, Yolanda; Berndt, Sonja I.; Bertrand, Kimberly A.; Birmann, Brenda M.; Boeing, Heiner; Boffetta, Paolo; Bracci, Paige M.; Brennan, Paul; Brooks-Wilson, Angela R.; Cerhan, James R.; Chanock, Stephen J.; Clavel, Jacqueline; Conde, Lucia; Cotenbader, Karen H; Cox, David G; Cozen, Wendy; Crouch, Simon; De Roos, Anneclaire J.; De Sanjose, Silvia; Di Lollo, Simonetta; Diver, W. Ryan; Dogan, Ahmet; Foretova, Lenka; Ghesquières, Hervé; Giles, Graham G.; Glimelius, Bengt; Habermann, Thomas M.; Haioun, Corinne; Hartge, Patricia; Hjalgrim, Henrik; Holford, Theodore R.; Holly, Elizabeth A.; Jackson, Rebecca D.; Kaaks, Rudolph; Kane, Eleanor; Kelly, Rachel S.; Klein, Robert J.; Kraft, Peter; Kricker, Anne; Lan, Qing; Lawrence, Charles; Liebow, Mark; Lightfoot, Tracy; Link, Brian K.; Maynadie, Marc; McKay, James; Melbye, Mads; Molina, Thierry Jo; Monnereau, Alain; Morton, Lindsay M.; Nieters, Alexandra; North, Kari E.; Novak, Anne J.; Offit, Kenneth; Purdue, Mark P.; Rais, Marco; Riby, Jacques; Roman, Eve; Rothman, Nathaniel; Salles, Gilles; Severi, Gianluca; Severson, Richard K.; Skibola, Christine F.; Slager, Susan L.; Smith, Alex; Smith, Martyn T.; Southey, Melissa C.; Staines, Anthony; Teras, Lauren R.; Thompson, Carrie A.; Tilly, Hervé; Tinker, Lesley F.; Tjonneland, Anne; Turner, Jenny; Vajdic, Claire M.; Vermeulen, Roel C H; Vijai, Joseph; Vineis, Paolo; Virtamo, Jarmo; Wang, Zhaoming; Weinstein, Stephanie; Witzig, Thomas E.; Zelenetz, Andrew; Zeleniuch-Jacquotte, Anne; Zhang, Yawei; Zheng, Tongzhang; Zucca, Mariagrazia; Clarke, Ann E

    2017-01-01

    Objective: Determinants of the increased risk of diffuse large B-cell lymphoma (DLBCL) in SLE are unclear. Using data from a recent lymphoma genome-wide association study (GWAS), we assessed whether certain lupus-related single nucleotide polymorphisms (SNPs) were also associated with DLBCL.

  8. Transmembrane Domain Single-Nucleotide Polymorphisms Impair Expression and Transport Activity of ABC Transporter ABCG2

    NARCIS (Netherlands)

    Sjostedt, N.; Heuvel, J.J.M.W. van den; Koenderink, J.B.; Kidron, H.

    2017-01-01

    PURPOSE: To study the function and expression of nine naturally occurring single-nucleotide polymorphisms (G406R, F431L, S441N, P480L, F489L, M515R, L525R, A528T and T542A) that are predicted to reside in the transmembrane regions of the ABC transporter ABCG2. METHODS: The transport activity of the

  9. Single-nucleotide polymorphism of INS, INSR, IRS1, IRS2, PPAR-G ...

    Indian Academy of Sciences (India)

    2017-03-02

    Mar 2, 2017 ... Abstract. Polycystic ovary syndrome (PCOS) is the most common and a complex female endocrine disorder, and is one of the leading cause of female infertility. Here, we aimed to investigate the association of single-nucleotide polymorphism of INS, INSR,. IRS1, IRS2, PPAR-G and CAPN10 gene in the ...

  10. The potential effect of metallothionein 2A - 5 A/G single nucleotide polymorphism on blood cadmium, lead, zinc and copper levels

    International Nuclear Information System (INIS)

    Kayaalti, Zeliha; Aliyev, Vugar; Soeylemezoglu, Tuelin

    2011-01-01

    Metallothioneins (MTs) are low molecular weight, cysteine-rich, metal-binding proteins. Because of their rich thiol groups, MTs bind to the biologically essential metals and perform these metals' homeostatic regulations; absorb the heavy metals and assist with their transportation and extraction. The aim of this study was to investigate the association between the metallothionein 2A (MT2A) core promoter region - 5 A/G single nucleotide polymorphism (SNP) and Cd, Pb, Zn and Cu levels in the blood samples. MT2A polymorphism was determined by the standard polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique using the 616 blood samples and the genotype frequencies were found as 86.6% homozygote typical (AA), 12.8% heterozygote (AG) and 0.6% homozygote atypical (GG). Metal levels were analyzed by dual atomic absorption spectrophotometer system and the average levels of Cd, Pb, Zn and Cu in the blood samples were 1.69 ± 1.57 ppb, 30.62 ± 14.13 ppb, 0.98 ± 0.49 ppm and 1.04 ± 0.45 ppm, respectively. As a result; highly statistically significant associations were detected between the - 5 A/G core promoter region SNP in the MT2A gene and Cd, Pb and Zn levels (p = 0.004, p = 0.012 and p = 0.002, respectively), but no association was found with Cu level (p = 0.595). Individuals with the GG genotype had statistically lower Zn level and higher Cd and Pb levels in the blood samples than individuals with AA and AG genotypes. This study suggests that having the GG genotype individuals may be more sensitive for the metal toxicity and they should be more careful about protecting their health against the toxic effects of the heavy metals. - Highlights: → MT2A -5A/G SNP has strong effect on the Cd, Pb and Zn levels in the blood. → MT2A GG individuals should be more careful for their health against metal toxicity. → This SNP might be considered as a biomarker for risk of disease related to metals.

  11. [A study on relationship between single nucleotide polymorphisms of vascular endothelial growth factor gene and susceptibility to systemic lupus erythematosus in China north Han population].

    Science.gov (United States)

    Lv, Hao-Zhe; Lin, Tao; Zhu, Xiang-Yang; Zhang, Jin-Tao; Lu, Jing

    2010-12-01

    To investigate relationship between single nucleotide polymorphism(SNP) of VEGF gene and susceptibility to systemic lupus erythematosus(SLE) in China north population. Six VEGF SNPs (rs2010963, rs3024994, rs3025000, rs3025010, rs3025035 and rs833070) of forty-four patients with SLE and one hundred healthy controls were examined by Sequenom chip-based MALDI-TOF mass spectomery platform. Different genotypes were analyzed statistically by SPSS 11.5. There was no significant difference between SLE patients and controls in frequency of rs2010963, rs3024994, rs3025000, rs3025010, rs3025035 genotype and allele (P>0.05). The frequency of rs833070 A allele was significantly higher in SLE than that in controls. (31.2% vs 20%, x(2);=4.547, P=0.033, OR=1.818 , 95% CI 1.045-3.162). In the patient with SLE, rs833070 G decreased the susceptibility of arthritis(56% vs 80.4%, x(2);=5.613, P=0.018, OR=0.336, 95% CI 0.134-0.843), while the genotype of rs833070 GG significantly decreased the susceptibility to arthritis(GGvsAG+AA: 28% vs 65.2%, x(2);=6.684, P=0.010, OR=0.207, 95% CI 0.061-0.705). VEGF rs833070 A may represent an inreased susceptibility to SLE in China north Han population. VEGF rs833070 G and rs833070 GG may play protective roles in the case of lupus arthritis.

  12. A Single Nucleotide Polymorphism in the Stromal Cell-Derived Factor 1 Gene Is Associated with Coronary Heart Disease in Chinese Patients

    Directory of Open Access Journals (Sweden)

    Lei Feng

    2014-06-01

    Full Text Available Coronary heart disease (CHD is highly prevalent globally and a major cause of mortality. Genetic predisposition is a non-modifiable risk factor associated with CHD. Eighty-four Chinese patients with CHD and 253 healthy Chinese controls without CHD were recruited. Major clinical data were collected, and a single nucleotide polymorphism (SNP in the stromal cell-derived factor 1 (SDF-1 gene at position 801 (G to A, rs1801157 in the 3'-untranslated region was identified. The correlation between rs1801157 genotypes and CHD was evaluated by a multivariate logistic regression analysis. The allele frequency in the CHD and control groups was in Hardy-Weinberg equilibrium (HWE (p > 0.05. The frequency of the GG genotype in the CHD group (59.5% was significantly higher than that in the control group (49.8% (p = 0.036. A number of variables, including male sex, age, presence of hypertension, and the levels of low-density lipoprotein cholesterol (LDL-C, high-density lipoprotein cholesterol (HDL-C, triglycerides (TG, uric acid, and total bilirubin, were associated with CHD in a primary univariate analysis. In a multivariable logistic regression analysis, the GG genotype (GG:AA, odds ratio (OR = 2.31, 95% confidence interval (CI = 1.21–5.23, male sex, advanced age (≥60 years, presence of hypertension, LDL-C level ≥ 3.33 mg/dL, HDL-C level < 1.03 mg/dL, and TG level ≥ 1.7 mg/dL were independent risk factors for CHD.

  13. Single-Nucleotide-Polymorphism-Based Association Mapping of Dog Stereotypes

    Science.gov (United States)

    Jones, Paul; Chase, Kevin; Martin, Alan; Davern, Pluis; Ostrander, Elaine A.; Lark, Karl G.

    2008-01-01

    Phenotypic stereotypes are traits, often polygenic, that have been stringently selected to conform to specific criteria. In dogs, Canis familiaris, stereotypes result from breed standards set for conformation, performance (behaviors), etc. As a consequence, phenotypic values measured on a few individuals are representative of the breed stereotype. We used DNA samples isolated from 148 dog breeds to associate SNP markers with breed stereotypes. Using size as a trait to test the method, we identified six significant quantitative trait loci (QTL) on five chromosomes that include candidate genes appropriate to regulation of size (e.g., IGF1, IGF2BP2 SMAD2, etc.). Analysis of other morphological stereotypes, also under extreme selection, identified many additional significant loci. Less well-documented data for behavioral stereotypes tentatively identified loci for herding, pointing, boldness, and trainability. Four significant loci were identified for longevity, a breed characteristic not under direct selection, but inversely correlated with breed size. The strengths and limitations of the approach are discussed as well as its potential to identify loci regulating the within-breed incidence of specific polygenic diseases. PMID:18505865

  14. Single nucleotide polymorphisms in CRTC1 and BARX1 are associated with esophageal adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Anna M. J. van Nistelrooij

    2015-01-01

    Full Text Available Objective: Recently, single nucleotide polymorphisms (SNPs associated with esophageal adenocarcinoma (EAC and Barrett′s esophagus (BE were identified; rs10419226 (CRTC10, rs11789015 (BARX1, rs2687201 (FOXP10, rs2178146 (FOXF1, rs3111601 (FOXF10, and rs9936833 (FOXF1. These findings indicate that genetic susceptibility could play a role in the initiation of EAC in BE patients. The aim of this study was to validate the association between these previously identified SNPs and the risk of EAC in an independent and large case-control study. Design: Six SNPs found to be associated with EAC and BE were genotyped by a multiplex SNaPshot analysis in 1071 EAC patients diagnosed and treated in the Netherlands. Allele frequencies were compared to a control group derived from the Rotterdam Study, a population-based prospective cohort study (n = 6206. Logistic regression analysis and meta-analysis were performed to calculate odds ratios (OR. Results: Rs10419226 (CRTC1 showed a significantly increased EAC risk for the minor allele (OR = 1.17, P = 0.001, and rs11789015 (BARX1 showed a significantly decreased risk for the minor allele (OR = 0.85, P = 0.004 in the logistic regression analysis. The meta-analysis of the original GWAS and the current study revealed an improved level of significance for rs10419226 (CRTC1 (OR = 1.18, P = 6.66 × 10–10 and rs11789015 (BARX1 (OR = 0.83, P = 1.13 × 10–8 . Conclusions: This independent and large Dutch case-control study confirms the association of rs10419226 (CRTC1 and rs11789015 (BARX1 with the risk of EAC. These findings suggest a contribution of the patient genetic make-up to the development of EAC and might contribute to gain more insight in the etiology of this cancer.

  15. Identification of single nucleotide polymorphisms associated with hyperproduction of alpha-toxin in Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Xudong Liang

    2011-04-01

    Full Text Available The virulence factor α-toxin (hla is needed by Staphylococcus aureus in order to cause infections in both animals and humans. Although the complicated regulation of hla expression has been well studied in human S. aureus isolates, the mechanisms of of hla regulation in bovine S. aureus isolates remain undefined. In this study, we found that many bovine S. aureus isolates, including the RF122 strain, generate dramatic amounts of α-toxin in vitro compared with human clinical S. aureus isolates, including MRSA WCUH29 and MRSA USA300. To elucidate potential regulatory mechanisms, we analyzed the hla promoter regions and identified predominant single nucleotide polymorphisms (SNPs at positions -376, -483, and -484 from the start codon in α-toxin hyper-producing isolates. Using site-directed mutagenesis and hla promoter-gfp-luxABCDE dual reporter approaches, we demonstrated that the SNPs contribute to the differential control of hla expression among bovine and human S. aureus isolates. Using a DNA affinity assay, gel-shift assays and a null mutant, we identified and revealed that an hla positive regulator, SarZ, contributes to the involvement of the SNPs in mediating hla expression. In addition, we found that the bovine S. aureus isolate RF122 exhibits higher transcription levels of hla positive regulators, including agrA, saeR, arlR and sarZ, but a lower expression level of hla repressor rot compared to the human S. aureus isolate WCUH29. Our results indicate α-toxin hyperproduction in bovine S. aureus is a multifactorial process, influenced at both the genomic and transcriptional levels. Moreover, the identification of predominant SNPs in the hla promoter region may provide a novel method for genotyping the S. aureus isolates.

  16. Incorporating Single-nucleotide Polymorphisms Into the Lyman Model to Improve Prediction of Radiation Pneumonitis

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Susan L., E-mail: sltucker@mdanderson.org [Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Li Minghuan [Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong (China); Xu Ting; Gomez, Daniel [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Yuan Xianglin [Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Yu Jinming [Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong (China); Liu Zhensheng; Yin Ming; Guan Xiaoxiang; Wang Lie; Wei Qingyi [Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mohan, Radhe [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Vinogradskiy, Yevgeniy [University of Colorado School of Medicine, Aurora, Colorado (United States); Martel, Mary [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liao Zhongxing [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2013-01-01

    Purpose: To determine whether single-nucleotide polymorphisms (SNPs) in genes associated with DNA repair, cell cycle, transforming growth factor-{beta}, tumor necrosis factor and receptor, folic acid metabolism, and angiogenesis can significantly improve the fit of the Lyman-Kutcher-Burman (LKB) normal-tissue complication probability (NTCP) model of radiation pneumonitis (RP) risk among patients with non-small cell lung cancer (NSCLC). Methods and Materials: Sixteen SNPs from 10 different genes (XRCC1, XRCC3, APEX1, MDM2, TGF{beta}, TNF{alpha}, TNFR, MTHFR, MTRR, and VEGF) were genotyped in 141 NSCLC patients treated with definitive radiation therapy, with or without chemotherapy. The LKB model was used to estimate the risk of severe (grade {>=}3) RP as a function of mean lung dose (MLD), with SNPs and patient smoking status incorporated into the model as dose-modifying factors. Multivariate analyses were performed by adding significant factors to the MLD model in a forward stepwise procedure, with significance assessed using the likelihood-ratio test. Bootstrap analyses were used to assess the reproducibility of results under variations in the data. Results: Five SNPs were selected for inclusion in the multivariate NTCP model based on MLD alone. SNPs associated with an increased risk of severe RP were in genes for TGF{beta}, VEGF, TNF{alpha}, XRCC1 and APEX1. With smoking status included in the multivariate model, the SNPs significantly associated with increased risk of RP were in genes for TGF{beta}, VEGF, and XRCC3. Bootstrap analyses selected a median of 4 SNPs per model fit, with the 6 genes listed above selected most often. Conclusions: This study provides evidence that SNPs can significantly improve the predictive ability of the Lyman MLD model. With a small number of SNPs, it was possible to distinguish cohorts with >50% risk vs <10% risk of RP when they were exposed to high MLDs.

  17. Association Study between Folate Pathway Gene Single Nucleotide Polymorphisms and Gastric Cancer in Koreans

    Directory of Open Access Journals (Sweden)

    Jae-Young Yoo

    2012-09-01

    Full Text Available Gastric cancer is ranked as the most common cancer in Koreans. A recent molecular biological study about the folate pathway gene revealed the correlation with a couple of cancer types. In the folate pathway, several genes are involved, including methylenetetrahydrofolate reductase (MTHFR, methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR, and methyltetrahydrofolate-homocysteine methyltransferase (MTR. The MTHFR gene has been reported several times for the correlation with gastric cancer risk. However, the association of the MTRR or MTR gene has not been reported to date. In this study, we investigated the association between the single nucleotide polymorphisms (SNPs of the MTHFR, MTRR, and MTR genes and the risk of gastric cancer in Koreans. To identify the genetic association with gastric cancer, we selected 17 SNPs sites in folate pathway-associated genes of MTHFR, MTR, and MTRR and tested in 1,261 gastric cancer patients and 375 healthy controls. By genotype analysis, estimating odds ratios and 95% confidence intervals (CI, rs1801394 in the MTRR gene showed increased risk for gastric cacner, with statistical significance both in the codominant model (odds ratio [OR], 1.39; 95% CI, 1.04 to 1.85 and dominant model (OR, 1.34; 95% CI, 1.02 to 1.75. Especially, in the obese group (body mass index ≥ 25 kg/m2, the codominant (OR, 9.08; 95% CI, 1.01 to 94.59 and recessive model (OR, 3.72; 95% CI, 0.92 to 16.59 showed dramatically increased risk (p < 0.05. In conclusion, rs1801394 in the MTRR gene is associated with gastric cancer risk, and its functional significance need to be validated.

  18. Detection of the Single Nucleotide Polymorphism at Position rs2735940 in the Human Telomerase Reverse Transcriptase Gene by the Introduction of a New Restriction Enzyme Site for the PCR-RFLP Assay.

    Science.gov (United States)

    Wang, Sihua; Ding, Mingcui; Duan, Xiaoran; Wang, Tuanwei; Feng, Xiaolei; Wang, Pengpeng; Yao, Wu; Wu, Yongjun; Yan, Zhen; Feng, Feifei; Yu, Songcheng; Wang, Wei

    2017-09-01

    It has been shown that the single nucleotide polymorphism (SNP) of the rs2735940 site in the human telomerase reverse transcriptase ( hTERT ) gene is associated with increased cancer risk. The traditional method to detect SNP genotypes is polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). However, there is a limitation to utilizing PCR-RFLP due to a lack of proper restriction enzyme sites at many polymorphic loci. This study used an improved PCR-RFLP method with a mismatched base for detection of the SNP rs2735940. A new restriction enzyme cutting site was created by created restriction site PCR (CRS-PCR), and in addition, the restriction enzyme Msp I for CRS-PCR was cheaper than other enzymes. We used this novel assay to determine the allele frequencies in 552 healthy Chinese Han individuals, and found the allele frequencies to be 63% for allele C and 37% for allele T In summary, the modified PCR-RFLP can be used to detect the SNP of rs2735940 with low cost and high efficiency. © 2017 by the Association of Clinical Scientists, Inc.

  19. Synthesis and evaluation of translocator 18 kDa protein (TSPO) positron emission tomography (PET) radioligands with low binding sensitivity to human single nucleotide polymorphism rs6971.

    Science.gov (United States)

    Zanotti-Fregonara, Paolo; Zhang, Yi; Jenko, Kimberly J; Gladding, Robert L; Zoghbi, Sami S; Fujita, Masahiro; Sbardella, Gianluca; Castellano, Sabrina; Taliani, Sabrina; Martini, Claudia; Innis, Robert B; Da Settimo, Federico; Pike, Victor W

    2014-10-15

    The imaging of translocator 18 kDa protein (TSPO) in living human brain with radioligands by positron emission tomography (PET) has become an important means for the study of neuroinflammatory conditions occurring in several neuropsychiatric disorders. The widely used prototypical PET radioligand [(11)C](R)-PK 11195 ([(11)C](R)-1; [N-methyl-(11)C](R)-N-sec-butyl-1-(2-chlorophenyl)-N-methylisoquinoline-3-carboxamide) gives a low PET signal and is difficult to quantify, whereas later generation radioligands have binding sensitivity to a human single nucleotide polymorphism (SNP) rs6971, which imposes limitations on their utility for comparative quantitative PET studies of normal and diseased subjects. Recently, azaisosteres of 1 have been developed with improved drug-like properties, including enhanced TSPO affinity accompanied by moderated lipophilicity. Here we selected three of these new ligands (7-9) for labeling with carbon-11 and for evaluation in monkey as candidate PET radioligands for imaging brain TSPO. Each radioligand was readily prepared by (11)C-methylation of an N-desmethyl precursor and was found to give a high proportion of TSPO-specific binding in monkey brain. One of these radioligands, [(11)C]7, the direct 4-azaisostere of 1, presents many radioligand properties that are superior to those reported for [(11)C]1, including higher affinity, lower lipophilicity, and stable quantifiable PET signal. Importantly, 7 was also found to show very low sensitivity to the human SNP rs6971 in vitro. Therefore, [(11)C]7 now warrants evaluation in human subjects with PET to assess its utility for imaging TSPO in human brain, irrespective of subject genotype.

  20. Novel single-nucleotide polymorphisms in the calsequestrin-1 gene are associated with Graves’ ophthalmopathy and Hashimoto’s thyroiditis

    Directory of Open Access Journals (Sweden)

    Lahooti H

    2015-09-01

    Full Text Available Hooshang Lahooti,1,2 Daniele Cultrone,1,2 Senarath Edirimanne,1,2 John P Walsh,3,4 Leigh Delbridge,5,6 Patrick Cregan,1,2 Bernard Champion,1,2 Jack R Wall1,21Thyroid Research Laboratory, Sydney Medical School – Nepean Clinical School, The University of Sydney, 2Nepean Blue Mountains Local Health District, Nepean Hospital, Kingswood, NSW, 3Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, 4School of Medicine and Pharmacology, The University of Western Australia, Crawley, WA, 5Department of Surgery, Royal North Shore Hospital, 6Sydney Medical School – Northern Clinical School, The University of Sydney, St Leonards, NSW, AustraliaBackground: The eye disorder associated with Graves’ disease, called Graves’ ophthalmopathy (GO, greatly reduces the quality of life in affected patients. Expression of the calsequestrin (CASQ1 protein in thyroid tissue may be the trigger for the development of eye muscle damage in patients with GO. We determined the prevalence of rs74123279, rs3747673, and rs2275703 single-nucleotide polymorphism (SNPs in patients with autoimmune thyroid disorders, GO, Graves’ hyperthyroidism (GH, or Hashimoto’s thyroiditis (HT and control subjects with no personal or family history of autoimmune thyroid disorders. Furthermore, we measured the concentration of the CASQ1 protein in normal and Graves’ thyroid tissue, correlating levels with parameters of the eye signs, CASQ1 antibody levels, and the CASQ1 gene polymorphism rs74123279 and rs2275703.Methods: High-quality genomic DNA was isolated from fresh blood samples, assayed for identification of rs74123279, rs3747673, and rs2275703 SNPs in CASQ1 gene by MassARRAY SNP analysis using iPLEX technology of SEQUENOM.Results: DNA samples from 300 patients and 106 control subjects (100 males, 306 females with GO (n=74, GH (n=130, HT (n=96 and control subjects (n=106 were genotyped for the SNPs rs74123279, rs3747673 (n=405, and rs2275703 (n=407. The

  1. Vitis phylogenomics: hybridization intensities from a SNP array outperform genotype calls.

    Directory of Open Access Journals (Sweden)

    Allison J Miller

    Full Text Available Understanding relationships among species is a fundamental goal of evolutionary biology. Single nucleotide polymorphisms (SNPs identified through next generation sequencing and related technologies enable phylogeny reconstruction by providing unprecedented numbers of characters for analysis. One approach to SNP-based phylogeny reconstruction is to identify SNPs in a subset of individuals, and then to compile SNPs on an array that can be used to genotype additional samples at hundreds or thousands of sites simultaneously. Although powerful and efficient, this method is subject to ascertainment bias because applying variation discovered in a representative subset to a larger sample favors identification of SNPs with high minor allele frequencies and introduces bias against rare alleles. Here, we demonstrate that the use of hybridization intensity data, rather than genotype calls, reduces the effects of ascertainment bias. Whereas traditional SNP calls assess known variants based on diversity housed in the discovery panel, hybridization intensity data survey variation in the broader sample pool, regardless of whether those variants are present in the initial SNP discovery process. We apply SNP genotype and hybridization intensity data derived from the Vitis9kSNP array developed for grape to show the effects of ascertainment bias and to reconstruct evolutionary relationships among Vitis species. We demonstrate that phylogenies constructed using hybridization intensities suffer less from the distorting effects of ascertainment bias, and are thus more accurate than phylogenies based on genotype calls. Moreover, we reconstruct the phylogeny of the genus Vitis using hybridization data, show that North American subgenus Vitis species are monophyletic, and resolve several previously poorly known relationships among North American species. This study builds on earlier work that applied the Vitis9kSNP array to evolutionary questions within Vitis vinifera

  2. Glu504Lys Single Nucleotide Polymorphism of Aldehyde Dehydrogenase 2 Gene and the Risk of Human Diseases

    Directory of Open Access Journals (Sweden)

    Yan Zhao

    2015-01-01

    Full Text Available Aldehyde dehydrogenase (ALDH 2 is a mitochondrial enzyme that is known for its important role in oxidation and detoxification of ethanol metabolite acetaldehyde. ALDH2 also metabolizes other reactive aldehydes such as 4-hydroxy-2-nonenal and acrolein. The Glu504Lys single nucleotide polymorphism (SNP of ALDH2 gene, which is found in approximately 40% of the East Asian populations, causes defect in the enzyme activity of ALDH2, leading to alterations in acetaldehyde metabolism and alcohol-induced “flushing” syndrome. Evidence suggests that ALDH2 Glu504Lys SNP is a potential candidate genetic risk factor for a variety of chronic diseases such as cardiovascular disease, cancer, and late-onset Alzheimer’s disease. In addition, the association between ALDH2 Glu504Lys SNP and the development of these chronic diseases appears to be affected by the interaction between the SNP and lifestyle factors such as alcohol consumption as well as by the presence of other genetic variations.

  3. A gold nanoparticles-based colorimetric test to detect single nucleotide polymorphisms for improvement of personalized therapy of psoriasis

    Science.gov (United States)

    Marsella, Alessandra; Valentini, Paola; Tarantino, Paolo; Congedo, Maurizio; Pompa, Pier Paolo

    2016-04-01

    We report a simple, rapid and low-cost test, based on gold nanoparticles, for the naked-eye colorimetric detection of a signature of single nucleotide polymorphisms (SNPs) relevant for the personalized medicine of psoriasis patients. We validated the colorimetric assay on real-world DNA samples from a cohort of 30 psoriasis patients and we compared the results, in double-blind, with those obtained with two state-of-the-art instrumental techniques, namely reverse dot blotting and direct sequencing, finding 100% agreement. We demonstrated high accuracy, sensitivity and specificity of the colorimetric test that can be easily adapted for the genotypization of different SNPs, important for the pharmacogenomics of various diseases, and in other fields, such as food traceability and population structure analysis.

  4. Impact of a Panel of 88 Single Nucleotide Polymorphisms on the Risk of Breast Cancer in High-Risk Women: Results From Two Randomized Tamoxifen Prevention Trials.

    Science.gov (United States)

    Cuzick, Jack; Brentnall, Adam R; Segal, Corrinne; Byers, Helen; Reuter, Caroline; Detre, Simone; Lopez-Knowles, Elena; Sestak, Ivana; Howell, Anthony; Powles, Trevor J; Newman, William G; Dowsett, Mitchell

    2017-03-01

    Purpose At least 94 common single nucleotide polymorphisms (SNPs) are associated with breast cancer. The extent to which an SNP panel can refine risk in women who receive preventive therapy has not been directly assessed previously. Materials and Methods A risk score on the basis of 88 SNPs (SNP88) was investigated in a nested case-control study of women enrolled in the International Breast Intervention Study (IBIS-I) or the Royal Marsden study. A total of 359 women who developed cancer were matched to 636 controls by age, trial, follow-up time, and treatment arm. Genotyping was done using the OncoArray. Conditional logistic regression and matched concordance indices (mC) were used to measure the performance of SNP88 alone and with other breast cancer risk factors assessed using the Tyrer-Cuzick (TC) model. Results SNP88 was predictive of breast cancer risk overall (interquartile range odds ratio [IQ-OR], 1.37; 95% CI, 1.14 to 1.66; mC, 0.55), but mainly for estrogen receptor-positive disease (IQ-OR, 1.44; 95% CI, 1.16 to 1.79; P for heterogeneity = .10) versus estrogen receptor-negative disease. However, the observed risk of SNP88 was only 46% (95% CI, 19% to 74%) of expected. No significant interaction was observed with treatment arm (placebo IQ-OR, 1.46; 95% CI, 1.13 to 1.87; tamoxifen IQ-OR, 1.25; 95% CI, 0.96 to 1.64; P for heterogeneity = .5). The predictive power was similar to the TC model (IQ-OR, 1.45; 95% CI, 1.21 to 1.73; mC, 0.55), but SNP88 was independent of TC (Spearman rank-order correlation, 0.012; P = .7), and when combined multiplicatively, a substantial improvement was seen (IQ-OR, 1.64; 95% CI, 1.36 to 1.97; mC, 0.60). Conclusion A polygenic risk score may be used to refine risk from the TC or similar models in women who are at an elevated risk of breast cancer and considering preventive therapy. Recalibration may be necessary for accurate risk assessment.

  5. IL10 single nucleotide polymorphisms are related to upregulation of constitutive IL-10 production and susceptibility to Helicobacter pylori infection.

    Science.gov (United States)

    Assis, Shirleide; Marques, Cintia Rodrigues; Silva, Thiago Magalhães; Costa, Ryan Santos; Alcantara-Neves, Neuza Maria; Barreto, Mauricio Lima; Barnes, Kathleen Carole; Figueiredo, Camila Alexandrina

    2014-06-01

    Helicobacter pylori infection is a strong risk factor for gastric cancer, likely due to the extensive inflammation in the stomach mucosa caused by these bacteria. Many studies have reported an association between IL10 polymorphisms, the risk of gastric cancer, and IL-10 production. The aim of the study was to evaluate the association between IL10 genetic variants, Helicobacter pylori infection, and IL-10 production by peripheral blood leukocytes in children. We genotyped a total of 12 single nucleotide polymorphisms in IL10 in 1259 children aged 4-11 years living in a poor urban area in Salvador, Brazil, using TaqMan probe based, 5' nuclease assay minor groove binder chemistry. Association tests were performed by logistic regression for Helicobacter pylori infection and linear regression for IL-10 spontaneous production (whole-blood cultures) including sex, age, and principal components for informative ancestry markers as covariates, using PLINK. Our results shown that IL10 single nucleotide polymorphisms rs1800896 (OR = 1.63; 95% CI = 1.11-2.39), rs3024491 (OR = 1.71; 95% CI = 1.14-2.57), rs1878672 (OR = 1.79; 95% CI = 1.19-2.68), and rs3024496 (OR = 1.48; 95% CI = 1.05-2.08) were positively associated with Helicobacter pylori infection. Eight single nucleotide polymorphisms were associated with spontaneous production of IL-10 in culture, of which three (rs1800896 and rs1878672, p = .04; rs3024491, p = .01) were strongly associated with infection by Helicobacter pylori. Our results indicate that IL10 variants rs1800896, rs3024491, rs1878672, and rs3024496 are more consistently associated with the presence of anti-H. pylori IgG by inducing increased production of IL-10. Further studies are underway to elucidate the role of additional genetic variants and to investigate their impact on the occurrence of gastric cancer. © 2014 John Wiley & Sons Ltd.

  6. Comparative Analysis of Disease-Linked Single Nucleotide Polymorphic Markers from Brassica rapa for Their Applicability to Brassica oleracea

    Science.gov (United States)

    Cho, Young-Il; Ahn, Yul-Kyun; Tripathi, Swati; Kim, Jeong-Ho; Lee, Hye-Eun; Kim, Do-Sun

    2015-01-01

    Numerous studies using single nucleotide polymorphisms (SNPs) have been conducted in humans, and other animals, and in major crops, including rice, soybean, and Chinese cabbage. However, the number of SNP studies in cabbage is limited. In this present study, we evaluated whether 7,645 SNPs previously identified as molecular markers linked to disease resistance in the Brassica rapa genome could be applied to B. oleracea. In a BLAST analysis using the SNP sequences of B. rapa and B. oleracea genomic sequence data registered in the NCBI database, 256 genes for which SNPs had been identified in B. rapa were found in B. oleracea. These genes were classified into three functional groups: molecular function (64 genes), biological process (96 genes), and cellular component (96 genes). A total of 693 SNP markers, including 145 SNP markers [BRH—developed from the B. rapa genome for high-resolution melt (HRM) analysis], 425 SNP markers (BRP—based on the B. rapa genome that could be applied to B. oleracea), and 123 new SNP markers (BRS—derived from BRP and designed for HRM analysis), were investigated for their ability to amplify sequences from cabbage genomic DNA. In total, 425 of the SNP markers (BRP-based on B. rapa genome), selected from 7,645 SNPs, were successfully applied to B. oleracea. Using PCR, 108 of 145 BRH (74.5%), 415 of 425 BRP (97.6%), and 118 of 123 BRS (95.9%) showed amplification, suggesting that it is possible to apply SNP markers developed based on the B. rapa genome to B. oleracea. These results provide valuable information that can be utilized in cabbage genetics and breeding programs using molecular markers derived from other Brassica species. PMID:25790283

  7. A study on single nucleotide polymorphism of exon 7 T/C (locus 593 of platelet-activating factor acetylhydrolase gene in healthy Han population in the Shanghai region

    Directory of Open Access Journals (Sweden)

    Tian-bao XIA

    2012-08-01

    Full Text Available Objective To investigate the distribution of single nucleotide polymorphism (SNP in platelet-activating factor acetylhydrolase (PAF-AH gene exon 7 T/C (locus 593 in healthy Han population in Shanghai region and the features different from other races. Methods The SNP in PAF-AH gene exon 7 T/C (locus 593 was detected and analyzed by PCR and sequencing in 110 healthy Han people from Shanghai areas. The genotype and allele frequency were then calculated and compared with that in other races in combination with review of relevant literature. Results The amplified product of the SNP in PAF-AH gene exon 7 T/C (locus 593 was 240 bp in 110 healthy Han people, of whom 97 were with TT genotype and 13 with TC genotype, but no CC genotype was found. As to the allele frequency distribution, T type allele took the highest position, and C type followed. The genotype frequency of TT and TC was 88.2% and 11.8%, respectively, and they were markedly different from that in German population (0.95%, while not statistically significant different from that in British population (7.67%. Conclusions There exists SNP in PAF-AH gene exon 7 T/C (position 593 in healthy Han people in Shanghai region, with a higher frequency of T→C mutation. The mutational genotype frequency is found to be located at the locus 593 is 11.81%, and it is markedly different from that in German population, but not significantly different from that in British population.

  8. Reducing Bias of Allele Frequency Estimates by Modeling SNP Genotype Data with Informative Missingness

    Directory of Open Access Journals (Sweden)

    Wan-Yu eLin

    2012-06-01

    Full Text Available The presence of missing single-nucleotide polymorphism (SNP genotypes is common in genetic data. For studies with low-density SNPs, the most commonly used approach to deal with genotype missingness is to simply remove the observations with missing genotypes from the analyses. This naïve method is straightforward but is appropriate only when the missingness is random. However, a given assay often has a different capability in genotyping heterozygotes and homozygotes, causing the phenomenon of ‘differential dropout’ in the sense that the missing rates of heterozygotes and homozygotes are different. In practice, differential dropout among genotypes exists in even carefully designed studies, such as the data from the HapMap project and the Wellcome Trust Case Control Consortium. In this study, we propose a statistical method to model the differential dropout among different genotypes. Compared with the naïve method, our method provides more accurate allele frequency estimates when the differential dropout is present. To demonstrate its practical use, we further apply our method to the HapMap data and a scleroderma data set.

  9. Analysis of single nucleotide polymorphisms in the 3' region of the estrogen receptor 1 gene in normal and cryptorchid Miniature Dachshunds and Chihuahuas.

    Science.gov (United States)

    Pathirana, Indunil Nishantha; Tanaka, Kakeru; Kawate, Noritoshi; Tsuji, Makoto; Kida, Kayoko; Hatoya, Shingo; Inaba, Toshio; Tamada, Hiromichi

    2010-08-01

    This study was performed to examine the distribution of single nucleotide polymorphisms (SNPs) and estimated haplotypes in the canine estrogen receptor (ER) alpha gene (ESR1) and the association of them with different phenotypes of cryptorchidism (CO) in Miniature Dachshunds and Chihuahuas. Forty CO and 68 normal dogs were used, and CO was classified into unilateral (UCO; n=33) and bilateral CO (BCO; n=5) or into abdominal (ACO; n=16) and inguinal CO (ICO; n=22). Thirteen DNA fragments located in the 70-kb region at the 3' end of ESR1 were amplified by PCR and sequenced to examine 13 SNPs (#1-#13) reported in a canine SNP database. Ten SNPs (#1-#4, #7, #8, #10-#13) were not polymorphic, and 5 new SNPs (#14-#18) were discovered. A common haplotype block in normal, CO and CO phenotypes was identified for an approximately 20-kb region encompassing 4 SNPs (#14-#17). Allele, genotype and haplotype frequencies in CO without classification by phenotype and also in UCO, ACO and ICO phenotypes were not statistically different from the normal group. Significant differences in genotype frequencies and homozygosity for the estimated GTTG haplotype within the block were observed in BCO compared with the normal group, although the number of BCO animals was small. Our results demonstrate that the examined SNPs and haplotypes in the 3' end of canine ESR1 are not associated with unilateral, abdominal and inguinal CO phenotypes and CO per se in Miniature Dachshunds and Chihuahuas. Further studies are necessary to suggest a clear association between the ESR1 SNPs and bilateral CO in dogs.

  10. Association between single nucleotide polymorphisms of the interleukin-4 gene and atopic dermatitis.

    Science.gov (United States)

    Gharagozlou, Mohammad; Behniafard, Nasrin; Amirzargar, Ali Akbar; Hosseinverdi, Sima; Sotoudeh, Soheila; Farhadi, Elham; Khaledi, Mojdeh; Aryan, Zahra; Moghaddam, Zahra Gholizadeh; Mahmoudi, Maryam; Aghamohammadi, Asghar; Rezaei, Nima

    2015-01-01

    Atopic dermatitis (AD) is an inflammatory skin disease in which both genetic and environmental factors seem to be involved. Several studies investigated the association of certain genetic factors with AD in different ethnic groups, but conflicting data were obtained. This study was performed to check the possible association between single nucleotide polymorphisms (SNPs) of interleukin 4 (IL-4) and the IL-4 receptor α chain (IL-4Rα) and AD in a group of Iranian patients. The allele and genotype frequencies of genes encoding for IL-4 and IL-4Rα were investigated in 89 patients with AD in comparison with 139 healthy controls, using methods based on polymerase chain reaction sequence-specific primers. The most frequent alleles of IL-4 in patients were T at -1098 (P<0.001, odds ratio (OR)=2.35), C at -590 (P<0.001, OR=4.84) and C at -33 (P=0.002, OR=2.08). The most frequent genotypes of IL-4 in patients were TT, CC, and CC at positions -1098 (P<0.001, OR=3.59), -590 (P<0.001, OR=31.25) and -33 (P<0.001, OR=3.46), respectively. We found a significant lower frequency of GT at -1098 GT, TC at -590, and TC at -33 in patients. There were no statistically significant differences in the frequency of alleles and genotypes of IL-4Rα gene at position +1902. A strong positive association was seen between TCC haplotype and AD (68% in patients vs. 23.4% in controls, P<0.001, OR=8.91). We detected a significantly lower frequency of TTC, GCC, and TTT haplotypes (P<0.001, OR=0.02, P<0.001, OR=0.40, P<0.001, OR=0.39, respectively) in patients compared to controls. A significant association between the polymorphisms of the IL-4 gene promoter at positions -1098, -590, and -33 and AD was detected in the Iranian population.

  11. Single nucleotide polymorphism array lesions, TET2, DNMT3A, ASXL1 and CBL mutations are present in systemic mastocytosis.

    Directory of Open Access Journals (Sweden)

    Fabiola Traina

    Full Text Available We hypothesized that analysis of single nucleotide polymorphism arrays (SNP-A and new molecular defects may provide new insight in the pathogenesis of systemic mastocytosis (SM. SNP-A karyotyping was applied to identify recurrent areas of loss of heterozygosity and bidirectional sequencing was performed to evaluate the mutational status of TET2, DNMT3A, ASXL1, EZH2, IDH1/IDH2 and the CBL gene family. Overall survival (OS was analyzed using the Kaplan-Meier method. We studied a total of 26 patients with SM. In 67% of SM patients, SNP-A karyotyping showed new chromosomal abnormalities including uniparental disomy of 4q and 2p spanning TET2/KIT and DNMT3A. Mutations in TET2, DNMT3A, ASXL1 and CBL were found in 23%, 12%, 12%, and 4% of SM patients, respectively. No mutations were observed in EZH2 and IDH1/IDH2. Significant differences in OS were observed for SM mutated patients grouped based on the presence of combined TET2/DNMT3A/ASXL1 mutations independent of KIT (P = 0.04 and sole TET2 mutations (P<0.001. In conclusion, TET2, DNMT3A and ASXL1 mutations are also present in mastocytosis and these mutations may affect prognosis, as demonstrated by worse OS in mutated patients.

  12. Larva-mediated chalkbrood resistance-associated single nucleotide polymorphism markers in the honey bee Apis mellifera.

    Science.gov (United States)

    Liu, Y; Yan, L; Li, Z; Huang, W-F; Pokhrel, S; Liu, X; Su, S

    2016-06-01

    Chalkbrood is a disease affecting honey bees that seriously impairs brood growth and productivity of diseased colonies. Although honey bees can develop chalkbrood resistance naturally, the details underlying the mechanisms of resistance are not fully understood, and no easy method is currently available for selecting and breeding resistant bees. Finding the genes involved in the development of resistance and identifying single nucleotide polymorphisms (SNPs) that can be used as molecular markers of resistance is therefore a high priority. We conducted genome resequencing to compare resistant (Res) and susceptible (Sus) larvae that were selected following in vitro chalkbrood inoculation. Twelve genomic libraries, including 14.4 Gb of sequence data, were analysed using SNP-finding algorithms. Unique SNPs derived from chromosomes 2 and 11 were analysed in this study. SNPs from resistant individuals were confirmed by PCR and Sanger sequencing using in vitro reared larvae and resistant colonies. We found strong support for an association between the C allele at SNP C2587245T and chalkbrood resistance. SNP C2587245T may be useful as a genetic marker for the selection of chalkbrood resistance and high royal jelly production honey bee lines, thereby helping to minimize the negative effects of chalkbrood on managed honey bees. © 2016 The Royal Entomological Society.

  13. High performance computing enabling exhaustive analysis of higher order single nucleotide polymorphism interaction in Genome Wide Association Studies.

    Science.gov (United States)

    Goudey, Benjamin; Abedini, Mani; Hopper, John L; Inouye, Michael; Makalic, Enes; Schmidt, Daniel F; Wagner, John; Zhou, Zeyu; Zobel, Justin; Reumann, Matthias

    2015-01-01

    Genome-wide association studies (GWAS) are a common approach for systematic discovery of single nucleotide polymorphisms (SNPs) which are associated with a given disease. Univariate analysis approaches commonly employed may miss important SNP associations that only appear through multivariate analysis in complex diseases. However, multivariate SNP analysis is currently limited by its inherent computational complexity. In this work, we present a computational framework that harnesses supercomputers. Based on our results, we estimate a three-way interaction analysis on 1.1 million SNP GWAS data requiring over 5.8 years on the full "Avoca" IBM Blue Gene/Q installation at the Victorian Life Sciences Computation Initiative. This is hundreds of times faster than estimates for other CPU based methods and four times faster than runtimes estimated for GPU methods, indicating how the improvement in the level of hardware applied to interaction analysis may alter the types of analysis that can be performed. Furthermore, the same analysis would take under 3 months on the currently largest IBM Blue Gene/Q supercomputer "Sequoia" at the Lawrence Livermore National Laboratory assuming linear scaling is maintained as our results suggest. Given that the implementation used in this study can be further optimised, this runtime means it is becoming feasible to carry out exhaustive analysis of higher order interaction studies on large modern GWAS.

  14. Unraveling the genetic architecture of environmental variance of somatic cell score using high-density single nucleotide polymorphism and cow data from experimental farms.

    Science.gov (United States)

    Mulder, H A; Crump, R E; Calus, M P L; Veerkamp, R F

    2013-01-01

    In recent years, it has been shown that not only is the phenotype under genetic control, but also the environmental variance. Very little, however, is known about the genetic architecture of environmental variance. The main objective of this study was to unravel the genetic architecture of the mean and environmental variance of somatic cell score (SCS) by identifying genome-wide associations for mean and environmental variance of SCS in dairy cows and by quantifying the accuracy of genome-wide breeding values. Somatic cell score was used because previous research has shown that the environmental variance of SCS is partly under genetic control and reduction of the variance of SCS by selection is desirable. In this study, we used 37,590 single nucleotide polymorphism (SNP) genotypes and 46,353 test-day records of 1,642 cows at experimental research farms in 4 countries in Europe. We used a genomic relationship matrix in a double hierarchical generalized linear model to estimate genome-wide breeding values and genetic parameters. The estimated mean and environmental variance per cow was used in a Bayesian multi-locus model to identify SNP associated with either the mean or the environmental variance of SCS. Based on the obtained accuracy of genome-wide breeding values, 985 and 541 independent chromosome segments affecting the mean and environmental variance of SCS, respectively, were identified. Using a genomic relationship matrix increased the accuracy of breeding values relative to using a pedigree relationship matrix. In total, 43 SNP were significantly associated with either the mean (22) or the environmental variance of SCS (21). The SNP with the highest Bayes factor was on chromosome 9 (Hapmap31053-BTA-111664) explaining approximately 3% of the genetic variance of the environmental variance of SCS. Other significant SNP explained less than 1% of the genetic variance. It can be concluded that fewer genomic regions affect the environmental variance of SCS than the

  15. [Application of single nucleotide polymorphism-microarray and target gene sequencing in the study of genetic etiology of children with unexplained intellectual disability or developmental delay].

    Science.gov (United States)

    Gao, Z J; Jiang, Q; Cheng, D Z; Yan, X X; Chen, Q; Xu, K M

    2016-10-02

    Objective: To evaluate the application of single nucleotide polymorphism (SNP)-microarray and target gene sequencing technology in the clinical molecular genetic diagnosis of unexplained intellectual disability(ID) or developmental delay (DD). Method: Patients with ID or DD were recruited in the Department of Neurology, Affiliated Children's Hospital of Capital Institute of Pediatrics between September 2015 and February 2016. The intellectual assessment of the patients was performed using 0-6-year-old pediatric examination table of neuropsychological development or Wechsler intelligence scale (>6 years). Patients with a DQ less than 49 or IQ less than 51 were included in this study. The patients were scanned by SNP-array for detection of genomic copy number variations (CNV), and the revealed genomic imbalance was confirmed by quantitative real time-PCR. Candidate gene mutation screening was carried out by target gene sequencing technology.Causal mutations or likely pathogenic variants were verified by polymerase chain reaction and direct sequencing. Result: There were 15 children with ID or DD enrolled, 9 males and 6 females. The age of these patients was 7 months-16 years and 9 months. SNP-array revealed that two of the 15 patients had genomic CNV. Both CNV were de novo micro deletions, one involved 11q24.1q25 and the other micro deletion located on 21q22.2q22.3. Both micro deletions were proved to have a clinical significance due to their association with ID, brain DD, unusual faces etc. by querying Decipher database. Thirteen patients with negative findings in SNP-array were consequently examined with target gene sequencing technology, genotype-phenotype correlation analysis and genetic analysis. Five patients were diagnosed with monogenic disorder, two were diagnosed with suspected genetic disorder and six were still negative. Conclusion: Sequential use of SNP-array and target gene sequencing technology can significantly increase the molecular genetic etiologic

  16. Mango (Mangifera indica L.) germplasm diversity based on single nucleotide polymorphisms derived from the transcriptome.

    Science.gov (United States)

    Sherman, Amir; Rubinstein, Mor; Eshed, Ravit; Benita, Miri; Ish-Shalom, Mazal; Sharabi-Schwager, Michal; Rozen, Ada; Saada, David; Cohen, Yuval; Ophir, Ron

    2015-11-14

    Germplasm collections are an important source for plant breeding, especially in fruit trees which have a long duration of juvenile period. Thus, efforts have been made to study the diversity of fruit tree collections. Even though mango is an economically important crop, most of the studies on diversity in mango collections have been conducted with a small number of genetic markers. We describe a de novo transcriptome assembly from mango cultivar 'Keitt'. Variation discovery was performed using Illumina resequencing of 'Keitt' and 'Tommy Atkins' cultivars identified 332,016 single-nucleotide polymorphisms (SNPs) and 1903 simple-sequence repeats (SSRs). Most of the SSRs (70.1%) were of trinucleotide with the preponderance of motif (GGA/AAG)n and only 23.5% were di-nucleotide SSRs with the mostly of (AT/AT)n motif. Further investigation of the diversity in the Israeli mango collection was performed based on a subset of 293 SNPs. Those markers have divided the Israeli mango collection into two major groups: one group included mostly mango accessions from Southeast Asia (Malaysia, Thailand, Indonesia) and India and the other with mainly of Floridian and Israeli mango cultivars. The latter group was more polymorphic (FS=-0.1 on the average) and was more of an admixture than the former group. A slight population differentiation was detected (FST=0.03), suggesting that if the mango accessions of the western world apparently was originated from Southeast Asia, as has been previously suggested, the duration of cultivation was not long enough to develop a distinct genetic background. Whole-transcriptome reconstruction was used to significantly broaden the mango's genetic variation resources, i.e., SNPs and SSRs. The set of SNP markers described in this study is novel. A subset of SNPs was sampled to explore the Israeli mango collection and most of them were polymorphic in many mango accessions. Therefore, we believe that these SNPs will be valuable as they recapitulate and

  17. VCS: Tool for Visualizing Copy Number Variation and Single Nucleotide Polymorphism

    Directory of Open Access Journals (Sweden)

    HyoYoung Kim

    2014-12-01

    Full Text Available Copy number variation (CNV or single nucleotide phlyorphism (SNP is useful genetic resource to aid in understanding complex phenotypes or deseases susceptibility. Although thousands of CNVs and SNPs are currently avaliable in the public databases, they are somewhat difficult to use for analyses without visualization tools. We developed a web-based tool called the VCS (visualization of CNV or SNP to visualize the CNV or SNP detected. The VCS tool can assist to easily interpret a biological meaning from the numerical value of CNV and SNP. The VCS provides six visualization tools: i the enrichment of genome contents in CNV; ii the physical distribution of CNV or SNP on chromosomes; iii the distribution of log2 ratio of CNVs with criteria of interested; iv the number of CNV or SNP per binning unit; v the distribution of homozygosity of SNP genotype; and vi cytomap of genes within CNV or SNP region.

  18. Geography and genography: prediction of continental origin using randomly selected single nucleotide polymorphisms

    Directory of Open Access Journals (Sweden)

    Ramoni Marco F

    2007-03-01

    Full Text Available Abstract Background Recent studies have shown that when individuals are grouped on the basis of genetic similarity, group membership corresponds closely to continental origin. There has been considerable debate about the implications of these findings in the context of larger debates about race and the extent of genetic variation between groups. Some have argued that clustering according to continental origin demonstrates the existence of significant genetic differences between groups and that these differences may have important implications for differences in health and disease. Others argue that clustering according to continental origin requires the use of large amounts of genetic data or specifically chosen markers and is indicative only of very subtle genetic differences that are unlikely to have biomedical significance. Results We used small numbers of randomly selected single nucleotide polymorphisms (SNPs from the International HapMap Project to train naïve Bayes classifiers for prediction of ancestral continent of origin. Predictive accuracy was tested on two independent data sets. Genetically similar groups should be difficult to distinguish, especially if only a small number of genetic markers are used. The genetic differences between continentally defined groups are sufficiently large that one can accurately predict ancestral continent of origin using only a minute, randomly selected fraction of the genetic variation present in the human genome. Genotype data from only 50 random SNPs was sufficient to predict ancestral continent of origin in our primary test data set with an average accuracy of 95%. Genetic variations informative about ancestry were common and widely distributed throughout the genome. Conclusion Accurate characterization of ancestry is possible using small numbers of randomly selected SNPs. The results presented here show how investigators conducting genetic association studies can use small numbers of arbitrarily

  19. Association of Interleukin-1 Gene Single Nucleotide Polymorphisms with Keratoconus in Chinese Han Population.

    Science.gov (United States)

    Wang, Yani; Wei, Wei; Zhang, Changning; Zhang, XueHui; Liu, Ming; Zhu, Xiuping; Xu, Kun

    2016-05-01

    To investigate whether interleukin-1 alpha (IL1A) and interleukin-1 beta (IL1B) polymorphisms are associated with keratoconus (KC) in unrelated Chinese Han patients. The IL1A (rs2071376) and IL1B (rs1143627, rs16944) polymorphisms were genotyped in 115 unrelated Chinese Han KC patients and 101 healthy Chinese Han volunteers with the Sequenom MassARRAY RS1000. Sequenom Typer 4.0 software, PLINK 1.07, Haploview 4.0 software platform were used to analyze the allelic variants of IL1A and IL1B genes, and their association with KC risk factors were assessed. Among the variants, the three SNPs (rs2071376 in IL1A, rs1143627 and rs16944 in the promoter region of IL1B) were different between the two groups. The A allele of rs2071376 (A > C, p = 0.017, OR = 1.968, 95% C.I. 1.313-3.425), the C allele of rs1143627 (C > T, p rs16944 (A > G, p = 0.002, OR = 2.401, 95% C.I. 1.396-4.161) were associated with a increased risk of KC in Chinese Han patients. This study showed that rs2071376, rs1143627 and rs16944 had significant differences in associations between KC patients and the control group when different genotypes were analyzed in three models (dominant, recessive, and additive). In the haplotype analysis, the two single nucleotide polymorphisms (SNPs), rs1143627 and rs16944 showed strong linkage disequilibrium. In addition, Haplotype "ACA" was found to be associated with a higher risk of developing KC (OR = 12.91, p < 0.001). Keratocyte apoptosis is an initiating event in the pathogenesis of KC which could be induced by the altered levels of IL1 gene. These findings confirmed that polymorphisms in IL1 genes were associated with risk of KC in the Chinese Han population, which help us to gain insight into the pathogenesis of KC.

  20. The Brachyury Gly177Asp SNP Is not Associated with a Risk of Skull Base Chordoma in the Chinese Population

    Directory of Open Access Journals (Sweden)

    Zhen Wu

    2013-10-01

    Full Text Available A recent chordoma cancer genotyping study reveals that the rs2305089, a single nucleotide polymorphism (SNP located in brachyury gene and a key gene in the development of notochord, is significantly associated with chordoma risk. The brachyury gene is believed to be one of the key genes involved in the pathogenesis of chordoma, a rare primary bone tumor originating along the spinal column or at the base of the skull. The association between the brachyury Gly177Asp single nucleotide polymorphism (SNP and the risk of skull base chordoma in Chinese populations is currently unknown. We investigated the genotype distribution of this SNP in 65 skull-base chordoma cases and 120 healthy subjects. Comparisons of the genotype distributions and allele frequencies did not reveal any significant difference between the groups. Our data suggest that the brachyury Gly177Asp SNP is not involved in the risks of skull-base chordoma, at least in the Chinese population.

  1. Prioritizing single-nucleotide polymorphisms and variants associated with clinical mastitis

    Directory of Open Access Journals (Sweden)

    Suravajhala P

    2017-06-01

    Full Text Available Prashanth Suravajhala,1 Alfredo Benso2 1Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark; 2Department of Control and Computer Engineering, Politecnico di Torino, Torino, Italy Abstract: Next-generation sequencing technology has provided resources to easily explore and identify candidate single-nucleotide polymorphisms (SNPs and variants. However, there remains a challenge in identifying and inferring the causal SNPs from sequence data. A problem with different methods that predict the effect of mutations is that they produce false positives. In this hypothesis, we provide an overview of methods known for identifying causal variants and discuss the challenges, fallacies, and prospects in discerning candidate SNPs. We then propose a three-point classification strategy, which could be an additional annotation method in identifying causalities. Keywords: clinical mastitis, single-nucleotide polymorphisms, variants, associations, diseases, linkage disequilibrium, GWAS

  2. Robust embryo identification using first polar body single nucleotide polymorphism microarray-based DNA fingerprinting.

    Science.gov (United States)

    Treff, Nathan R; Su, Jing; Kasabwala, Natasha; Tao, Xin; Miller, Kathleen A; Scott, Richard T

    2010-05-01

    This study sought to validate a novel, minimally invasive system for embryo tracking by single nucleotide polymorphism microarray-based DNA fingerprinting of the first polar body. First polar body-based assignments of which embryos implanted and were delivered after multiple ET were 100% consistent with previously validated embryo DNA fingerprinting-based assignments. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  3. Development and characterization of a high density SNP genotyping assay for cattle.

    Directory of Open Access Journals (Sweden)

    Lakshmi K Matukumalli

    Full Text Available The success of genome-wide association (GWA studies for the detection of sequence variation affecting complex traits in human has spurred interest in the use of large-scale high-density single nucleotide polymorphism (SNP genotyping for the identification of quantitative trait loci (QTL and for marker-assisted selection in model and agricultural species. A cost-effective and efficient approach for the development of a custom genotyping assay interrogating 54,001 SNP loci to support GWA applications in cattle is described. A novel algorithm for achieving a compressed inter-marker interval distribution proved remarkably successful, with median interval of 37 kb and maximum predicted gap of <350 kb. The assay was tested on a panel of 576 animals from 21 cattle breeds and six outgroup species and revealed that from 39,765 to 46,492 SNP are polymorphic within individual breeds (average minor allele frequency (MAF ranging from 0.24 to 0.27. The assay also identified 79 putative copy number variants in cattle. Utility for GWA was demonstrated by localizing known variation for coat color and the presence/absence of horns to their correct genomic locations. The combination of SNP selection and the novel spacing algorithm allows an efficient approach for the development of high-density genotyping platforms in species having full or even moderate quality draft sequence. Aspects of the approach can be exploited in species which lack an available genome sequence. The BovineSNP50 assay described here is commercially available from Illumina and provides a robust platform for mapping disease genes and QTL in cattle.

  4. Genomic diversity and affinities in population groups of North West India: an analysis of Alu insertion and a single nucleotide polymorphism.

    Science.gov (United States)

    Saini, J S; Kumar, A; Matharoo, K; Sokhi, J; Badaruddoza; Bhanwer, A J S

    2012-12-15

    The North West region of India is extremely important to understand the peopling of India, as it acted as a corridor to the foreign invaders from Eurasia and Central Asia. A series of these invasions along with multiple migrations led to intermixture of variable populations, strongly contributing to genetic variations. The present investigation was designed to explore the genetic diversities and affinities among the five major ethnic groups from North West India; Brahmin, Jat Sikh, Bania, Rajput and Gujjar. A total of 327 individuals of the abovementioned ethnic groups were analyzed for 4 Alu insertion marker loci (ACE, PV92, APO and D1) and a Single Nucleotide Polymorphism (SNP) rs2234693 in the intronic region of the ESR1 gene. Statistical analysis was performed to interpret the genetic structure and diversity of the population groups. Genotypes for ACE, APO, ESR1 and PV92 loci were found to be in Hardy-Weinberg equilibrium in all the ethnic groups, while significant departures were observed at the D1 locus in every investigated population after Bonferroni's correction. The average heterozygosity for all the loci in these ethnic groups was fairly substantial ranging from 0.3927 ± 0.1877 to 0.4333 ± 0.1416. Inbreeding coefficient indicated an overall 10% decrease in heterozygosity in these North West Indian populations. The gene differentiation among the populations was observed to be of the order of 0.013. Genetic distance estimates revealed that Gujjars were close to Banias and Jat Sikhs were close to Rajputs. Overall the study favored the recent division of the populations of North West India into largely endogamous groups. It was observed that the populations of North West India represent a more or less homogenous genetic entity, owing to their common ancestral history as well as geographical proximity. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. The influence of a single nucleotide polymorphism within CNDP1 on susceptibility to diabetic nephropathy in Japanese women with type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Mahiro Kurashige

    Full Text Available BACKGROUND: Several linkage analyses have mapped a susceptibility locus for diabetic nephropathy to chromosome 18q22-23, and polymorphisms within the carnosine dipeptidase 1 gene (CNDP1, located on 18q22.3, have been shown to be associated with diabetic nephropathy in European subjects with type 2 diabetes. However, the association of this locus with diabetic nephropathy has not been evaluated in the Japanese population. In this study, we examined the association of polymorphisms within the CNDP1/CNDP 2 locus with diabetic nephropathy in Japanese subjects with type 2 diabetes. METHODOLOGY/PRINCIPAL FINDINGS: We genotyped a leucine repeat polymorphism (D18S880 that is within CNDP1 along with 29 single nucleotide polymorphisms (SNPs in the CNDP1/CNDP2 locus for 2,740 Japanese subjects with type 2 diabetes (1,205 nephropathy cases with overt nephropathy or with end-stage renal disease [ESRD], and 1,535 controls with normoalbuminuria. The association of each polymorphism with diabetic nephropathy was analysed by performing logistic regression analysis. We did not observe any association between D18S880 and diabetic nephropathy in Japanese subjects with type 2 diabetes. None of the 29 SNPs within the CNDP1/CNDP2 locus were associated with diabetic nephropathy, but a subsequent sex-stratified analysis revealed that 1 SNP in CNDP1 was nominally associated with diabetic nephropathy in women (rs12604675-A; p = 0.005, odds ratio [OR] = 1.76, 95% confidence interval [CI], 1.19-2.61. Rs12604675 was associated with overt proteinuria (p = 0.002, OR = 2.18, 95% CI, 1.32-3.60, but not with ESRD in Japanese women with type 2 diabetes. CONCLUSIONS/SIGNIFICANCE: Rs12604675-A in CNDP1 may confer susceptibility to overt proteinuria in Japanese women with type 2 diabetes.

  6. A Study of Single Nucleotide Polymorphisms of the SLC19A1/RFC1 Gene in Subjects with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Naila Al Mahmuda

    2016-05-01

    Full Text Available Autism Spectrum Disorder (ASD is a group of neurodevelopmental disorders with complex genetic etiology. Recent studies have indicated that children with ASD may have altered folate or methionine metabolism, suggesting that the folate–methionine cycle may play a key role in the etiology of ASD. SLC19A1, also referred to as reduced folate carrier 1 (RFC1, is a member of the solute carrier group of transporters and is one of the key enzymes in the folate metabolism pathway. Findings from multiple genomic screens suggest the presence of an autism susceptibility locus on chromosome 21q22.3, which includes SLC19A1. Therefore, we performed a case-control study in a Japanese population. In this study, DNA samples obtained from 147 ASD patients at the Kanazawa University Hospital in Japan and 150 unrelated healthy Japanese volunteers were examined by the sequence-specific primer-polymerase chain reaction method pooled with fluorescence correlation spectroscopy. p < 0.05 was considered to represent a statistically significant outcome. Of 13 single nucleotide polymorphisms (SNPs examined, a significant p-value was obtained for AA genotype of one SNP (rs1023159, OR = 0.39, 95% CI = 0.16–0.91, p = 0.0394; Fisher’s exact test. Despite some conflicting results, our findings supported a role for the polymorphism rs1023159 of the SLC19A1 gene, alone or in combination, as a risk factor for ASD. However, the findings were not consistent after multiple testing corrections. In conclusion, although our results supported a role of the SLC19A1 gene in the etiology of ASD, it was not a significant risk factor for the ASD samples analyzed in this study.

  7. Association Between the Estrogen Receptor Beta (ESR2) Rs1256120 Single Nucleotide Polymorphism and Adolescent Idiopathic Scoliosis: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Zhao, Linlu; Roffey, Darren M; Chen, Suzan

    2017-06-01

    A systematic review and meta-analysis. The aim of this study was to assess and synthesize the current evidence on the association between the rs1256120 single nucleotide polymorphism (SNP) of the estrogen receptor beta gene (ESR2) and adolescent idiopathic scoliosis (AIS). Hormonal disturbance has been postulated as a potential etiological factor in the development of AIS. As estrogen receptors are important mediators of estrogen response, mutations in these genes, including rs1256120 of ESR2, have been chosen as susceptibility candidates for AIS predisposition. The association of rs1256120 with AIS has been investigated in several recent studies, but showed conflicting evidence. We conducted a systematic review to evaluate the strength of this body of evidence and quantitative synthesis to examine sources of heterogeneity. This study conformed to PRISMA guidelines. Using a sensitive search strategy, PubMed (MEDLINE), EMBASE, and HuGE Literature Finder databases were searched to identify relevant studies for inclusion in the systematic review and meta-analysis. Risk of bias was assessed using a modified Newcastle-Ottawa Scale. The inverse variance model was used to calculate summary odds ratios (ORs) and corresponding 95% confidence intervals (CIs) for the allelic (C vs. T) and genotypic comparisons. Planned subgroup and sensitivity analyses were performed. Three studies were included for systematic review and meta-analysis (n = 1264 AIS cases and n=1020 controls). A null relationship was found between rs1256120 and AIS (allelic OR = 1.20, 95% CI: 0.81-1.78, P = 0.36, I = 84.9%), with the first reported association likely to be false-positive and contributing substantially to heterogeneity. Findings from the systematic review and meta-analysis suggest that rs1256120 of ESR2 is unlikely to be a predisposing or disease-modifying genetic risk factor for AIS. 2.

  8. Association of the Single Nucleotide Polymorphisms in microRNAs 130b, 200b, and 495 with Ischemic Stroke Susceptibility and Post-Stroke Mortality.

    Directory of Open Access Journals (Sweden)

    Jinkwon Kim

    Full Text Available The microRNA (miRNA is a small non-coding RNA molecule that modulates gene expression at the posttranscriptional level. Platelets have a crucial role in both hemostasis and thrombosis, a condition that can occlude a cerebral artery and cause ischemic stroke. miR-130b, miR-200b, and miR-495 are potential genetic modulators involving platelet production and activation. We hypothesized that single nucleotide polymorphisms (SNPs in these miRNAs might potentially contribute to the susceptibility to ischemic stroke and post-stroke mortality. This study included 523 ischemic stroke patients and 400 control subjects. We investigated the association of three miRNA SNPs (miR-130bT>C, miR-200bT>C, and miR-495A>C with ischemic stroke prevalence and post-stroke mortality. In the multivariate logistic regression, there was no statistically significant difference in the distribution of miR-130bT>C, miR-200bT>C, or miR-495A>C between the ischemic stroke and control groups. In the subgroup analysis based on ischemic stroke subtype, the miR-200b CC genotype was less frequently found in the large-artery atherosclerosis stroke subtype compared with controls (TT+CT vs CC; adjusted odds ratio for CC, 0.506; 95% confidence interval, 0.265-0.965. During a mean follow-up period of 4.80 ± 2.11 years after stroke onset, there were 106 all-cause deaths among the 523 stroke patients. Multivariate Cox regression analysis did not find a significant association between post-stroke mortality and three miRNA SNPs. Our findings suggest that the functional SNP of miR-200b might be responsible for the susceptibility to large-artery atherosclerotic stroke.

  9. Single nucleotide polymorphisms in the insulin-like growth factor 1 (IGF-1 gene are associated with performance in Holstein-Friesian dairy cattle

    Directory of Open Access Journals (Sweden)

    Michael Paul Mullen

    2011-02-01

    Full Text Available Insulin-like growth factor 1 (IGF-1 has been shown to be associated with fertility, growth and development in cattle. The aim of this study was to 1 identify novel single nucleotide polymorphisms (SNPs in the bovine IGF-1 gene and alongside previously identified SNPs 2 determine their association with traits of economic importance in Holstein-Friesian dairy cattle. Nine novel SNPs were identified across a panel of 22 beef and dairy cattle by sequence analysis of the 5’ promoter, intronic and 3’ regulatory regions, encompassing ~ 5 kb of the IGF-1 gene. Genotyping and associations with daughter performance for milk production, fertility, survival and measures of body size were undertaken on 848 Holstein-Friesian AI sires. Using multiple regression analysis nominal associations (P<0.05 were identified between 6 SNPs (four novel and two previously identified and milk composition, survival, body condition score and body size. The C allele of AF017143 a previously published SNP (C-512T in the promoter region of IGF-1 predicted to introduce binding sites for transcription factors HSF1 and ZNF217 was associated (P<0.05 with increased cow carcass weight (i.e. an indicator of mature cow size. Novel SNPs were identified in the 3’ region of IGF-1 were associated (P<0.05 with functional survival and chest width. The remaining 4 SNPs, all located within introns of IGF-1 were associated (P<0.05 with milk protein yield, milk fat yield, milk fat concentration, somatic cell score, carcass conformation and carcass fat. Results of this study further demonstrate the multifaceted influences of IGF-1 on milk production and growth related traits in cattle.

  10. Single nucleotide polymorphism typing of Mycobacterium ulcerans reveals focal transmission of buruli ulcer in a highly endemic region of Ghana.

    Directory of Open Access Journals (Sweden)

    Katharina Röltgen

    Full Text Available Buruli ulcer (BU is an emerging necrotizing disease of the skin and subcutaneous tissue caused by Mycobacterium ulcerans. While proximity to stagnant or slow flowing water bodies is a risk factor for acquiring BU, the epidemiology and mode of M. ulcerans transmission is poorly understood. Here we have used high-throughput DNA sequencing and comparisons of the genomes of seven M. ulcerans isolates that appeared monomorphic by existing typing methods. We identified a limited number of single nucleotide polymorphisms (SNPs and developed a real-time PCR SNP typing method based on these differences. We then investigated clinical isolates of M. ulcerans on which we had detailed information concerning patient location and time of diagnosis. Within the Densu river basin of Ghana we observed dominance of one clonal complex and local clustering of some of the variants belonging to this complex. These results reveal focal transmission and demonstrate, that micro-epidemiological analyses by SNP typing has great potential to help us understand how M. ulcerans is transmitted.

  11. Gut metagenomes of type 2 diabetic patients have characteristic single-nucleotide polymorphism distribution in Bacteroides coprocola.

    Science.gov (United States)

    Chen, Yaowen; Li, Zongcheng; Hu, Shuofeng; Zhang, Jian; Wu, Jiaqi; Shao, Ningsheng; Bo, Xiaochen; Ni, Ming; Ying, Xiaomin

    2017-02-01

    Gut microbes play a critical role in human health and disease, and researchers have begun to characterize their genomes, the so-called gut metagenome. Thus far, metagenomics studies have focused on genus- or species-level composition and microbial gene sets, while strain-level composition and single-nucleotide polymorphism (SNP) have been overlooked. The gut metagenomes of type 2 diabetes (T2D) patients have been found to be enriched with butyrate-producing bacteria and sulfate reduction functions. However, it is not known whether the gut metagenomes of T2D patients have characteristic strain patterns or SNP distributions. We downloaded public gut metagenome datasets from 170 T2D patients and 174 healthy controls and performed a systematic comparative analysis of their metagenome SNPs. We found that Bacteroides coprocola, whose relative abundance did not differ between the groups, had a characteristic distribution of SNPs in the T2D patient group. We identified 65 genes, all in B. coprocola, that had remarkably different enrichment of SNPs. The first and sixth ranked genes encode glycosyl hydrolases (GenBank accession EDU99824.1 and EDV02301.1). Interestingly, alpha-glucosidase, which is also a glycosyl hydrolase located in the intestine, is an important drug target of T2D. These results suggest that different strains of B. coprocola may have different roles in human gut and a specific set of B. coprocola strains are correlated with T2D.

  12. A single nucleotide polymorphism in the dimethylarginine dimethylaminohydrolase gene is associated with lower risk of pulmonary hypertension in bronchopulmonary dysplasia

    Science.gov (United States)

    Trittmann, JK; Gastier-Foster, JM; Zmuda, EJ; Frick, J; Rogers, LK; Vieland, VJ; Chicoine, LG; Nelin, LD

    2016-01-01

    Aim Pulmonary hypertension (PH) develops in 25–40% of bronchopulmonary dysplasia (BPD) patients, substantially increasing mortality. We have previously found that asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide (NO) production, is elevated in patients with BPD-associated PH. ADMA is metabolized by NG,NG- dimethylarginine dimethylaminohydrolase (DDAH). Presently, we test the hypothesis that there are single nucleotide polymorphisms (SNPs) in DDAH1 and/or DDAH2 associated with the development of PH in BPD patients. Methods BPD patients were enrolled (n=98) at Nationwide Children’s Hospital. Clinical characteristics and 36 SNPs in DDAH1 and DDAH2 were compared between BPD-associated PH patients (cases) and BPD-alone patients (controls). Results In BPD patients, 25 (26%) had echocardiographic evidence of PH (cases). In this cohort, DDAH1 wildtype rs480414 was 92% sensitive and 53% specific for PH in BPD, and the DDAH1 SNP rs480414 decreased the risk of PH in an additive model of inheritance (OR=0.39; 95% CI [0.18–0.88], p=0.01). Conclusion The rs480414 SNP in DDAH1 may be protective against the development of PH in patients with BPD. Furthermore, the DDAH1 rs480414 may be a useful biomarker in developing predictive models for PH in patients with BPD. PMID:26663142

  13. Imputation of single nucleotide polymorhpism genotypes of Hereford cattle: reference panel size, family relationship and population structure

    Science.gov (United States)

    The objective of this study is to investigate single nucleotide polymorphism (SNP) genotypes imputation of Hereford cattle. Purebred Herefords were from two sources, Line 1 Hereford (N=240) and representatives of Industry Herefords (N=311). Using different reference panels of 62 and 494 males with 1...

  14. A retrospective observational study of the relationship between single nucleotide polymorphisms associated with the risk of developing colorectal cancer and survival.

    Directory of Open Access Journals (Sweden)

    Eva J A Morris

    Full Text Available There is variability in clinical outcome for patients with apparently the same stage colorectal cancer (CRC. Single nucleotide polymorphisms (SNPs mapping to chromosomes 1q41, 3q26.2, 6p21, 8q23.3, 8q24.21, 10p14, 11q13, 11q23.1, 12q13.13, 14q22, 14q22.2, 15q13.3, 16q22.1, 18q21.1, 19q13.11, 20p12, 20p12.3, 20q13.33 and Xp22 have robustly been shown to be associated with the risk of developing CRC. Since germline variation can also influence patient outcome the relationship between these SNPs and patient survivorship from CRC was examined.All enrolled into the National Study of Colorectal Cancer Genetics (NSCCG were genotyped for 1q41, 3q26.2, 6p21, 8q23.3, 8q24.21, 10p14, 11q13, 11q23.1, 12q13.13, 14q22, 14q22.2, 15q13.3, 16q22.1, 18q21.1, 19q13.11, 20p12, 20p12.3, 20q13.33 and xp22 SNPs. Linking this information to the National Cancer Data Repository allowed patient genotype to be related to survival.The linked dataset consisted of 4,327 individuals. 14q22.22 genotype defined by the SNP rs4444235 showed a significant association with overall survival. Specifically, the C allele was associated with poorer observed survival (per allele hazard ratio 1.13, 95% confidence interval 1.05-1.22, P = 0.0015.The CRC susceptibility SNP rs4444235 also appears to exert an influence in modulating patient survival and warrants further evaluation as a potential prognostic marker.

  15. Transcriptomic SNP discovery for custom genotyping arrays: impacts of sequence data, SNP calling method and genotyping technology on the probability of validation success.

    Science.gov (United States)

    Humble, Emily; Thorne, Michael A S; Forcada, Jaume; Hoffman, Joseph I

    2016-08-26

    Single nucleotide polymorphism (SNP) discovery is an important goal of many studies. However, the number of 'putative' SNPs discovered from a sequence resource may not provide a reliable indication of the number that will successfully validate with a given genotyping technology. For this it may be necessary to account for factors such as the method used for SNP discovery and the type of sequence data from which it originates, suitability of the SNP flanking sequences for probe design, and genomic context. To explore the relative importance of these and other factors, we used Illumina sequencing to augment an existing Roche 454 transcriptome assembly for the Antarctic fur seal (Arctocephalus gazella). We then mapped the raw Illumina reads to the new hybrid transcriptome using BWA and BOWTIE2 before calling SNPs with GATK. The resulting markers were pooled with two existing sets of SNPs called from the original 454 assembly using NEWBLER and SWAP454. Finally, we explored the extent to which SNPs discovered using these four methods overlapped and predicted the corresponding validation outcomes for both Illumina Infinium iSelect HD and Affymetrix Axiom arrays. Collating markers across all discovery methods resulted in a global list of 34,718 SNPs. However, concordance between the methods was surprisingly poor, with only 51.0 % of SNPs being discovered by more than one method and 13.5 % being called from both the 454 and Illumina datasets. Using a predictive modeling approach, we could also show that SNPs called from the Illumina data were on average more likely to successfully validate, as were SNPs called by more than one method. Above and beyond this pattern, predicted validation outcomes were also consistently better for Affymetrix Axiom arrays. Our results suggest that focusing on SNPs called by more than one method could potentially improve validation outcomes. They also highlight possible differences between alternative genotyping technologies that could be

  16. AFLP fragment isolation technique as a method to produce random sequences for single nucleotide polymorphism discovery in the green turtle, Chelonia mydas.

    Science.gov (United States)

    Roden, Suzanne E; Dutton, Peter H; Morin, Phillip A

    2009-01-01

    The green sea turtle, Chelonia mydas, was used as a case study for single nucleotide polymorphism (SNP) discovery in a species that has little genetic sequence information available. As green turtles have a complex population structure, additional nuclear markers other than microsatellites could add to our understanding of their complex life history. Amplified fragment length polymorphism technique was used to generate sets of random fragments of genomic DNA, which were then electrophoretically separated with precast gels, stained with SYBR green, excised, and directly sequenced. It was possible to perform this method without the use of polyacrylamide gels, radioactive or fluorescent labeled primers, or hybridization methods, reducing the time, expense, and safety hazards of SNP discovery. Within 13 loci, 2547 base pairs were screened, resulting in the discovery of 35 SNPs. Using this method, it was possible to yield a sufficient number of loci to screen for SNP markers without the availability of prior sequence information.

  17. CD36 AA single nucleotide polymorphism (SNP) is associated with decreased lipid taste perception in Tunisian obese woman: association with pro-inflammatory TNF-a GA and IL-6 GC genotypes

    Czech Academy of Sciences Publication Activity Database

    Plesník, J.; Mřížák, I.; Šerý, Omar; Arfa, A.; Fekih, M.; Bouslema, A.; Zaouali, M.; Tabka, Z.; Khan, N. A.

    2014-01-01

    Roč. 28, Supplement 1 (2014), s. 7-7 ISSN 0767-3981. [Annual Meeting of French Society of Pharmacology and Therapeutics /18./. 22.04.2014-24.04.2014, Poitiers] Institutional support: RVO:67985904 Keywords : CD36 Subject RIV: FH - Neurology

  18. AHSG tag single nucleotide polymorphisms associate with type 2 diabetes and dyslipidemia: studies of metabolic traits in 7,683 white Danish subjects

    DEFF Research Database (Denmark)

    Andersen, Gitte; Burgdorf, Kristoffer Sølvsten; Sparsø, Thomas

    2008-01-01

    been largely successful. We related seven frequent AHSG tag single nucleotide polymorphisms to a range of metabolic traits, including type 2 diabetes, obesity, and dyslipidemia. RESEARCH DESIGN AND METHODS: The polymorphisms were genotyped in 7,683 white Danish subjects using Taqman allelic...... with dyslipidemia (P = 0.003 and P(corr) = 0.009). Thr248Met (rs4917) tended to associate with lower fasting and post-oral glucose tolerance test serum insulin release (P = 0.02, P(corr) = 0.1 for fasting and P = 0.04, P(corr) = 0.2 for area under the insulin curve) and improved insulin sensitivity estimated...

  19. dbSNP

    Data.gov (United States)

    U.S. Department of Health & Human Services — dbSNP is a database of single nucleotide polymorphisms (SNPs) and multiple small-scale variations that include insertions/deletions, microsatellites, and...

  20. Comparison of semi-automated commercial rep-PCR fingerprinting, spoligotyping, 12-locus MIRU-VNTR typing and single nucleotide polymorphism analysis of the embB gene as molecular typing tools for Mycobacterium bovis.

    Science.gov (United States)

    Armas, Federica; Camperio, Cristina; Coltella, Luana; Selvaggini, Serena; Boniotti, Maria Beatrice; Pacciarini, Maria Lodovica; Di Marco Lo Presti, Vincenzo; Marianelli, Cinzia

    2017-08-04

    Highly discriminatory genotyping strategies are essential in molecular epidemiological studies of tuberculosis. In this study we evaluated, for the first time, the efficacy of the repetitive sequence-based PCR (rep-PCR) DiversiLab Mycobacterium typing kit over spoligotyping, 12-locus mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing and embB single nucleotide polymorphism (SNP) analysis for Mycobacterium bovis typing. A total of 49 M. bovis animal isolates were used. DNA was extracted and genomic DNA was amplified using the DiversiLab Mycobacterium typing kit. The amplified fragments were separated and detected using a microfluidics chip with Agilent 2100. The resulting rep-PCR-based DNA fingerprints were uploaded to and analysed using web-based DiversiLab software through Pearson's correlation coefficient. Rep-PCR DiversiLab grouped M. bovis isolates into ten different clusters. Most isolates sharing identical spoligotype, MIRU-VNTR profile or embB gene polymorphism were grouped into different rep-PCR clusters. Rep-PCR DiversiLab displayed greater discriminatory power than spoligotyping and embB SNP analysis but a lower resolution power than the 12-locus MIRU-VNTR analysis. MIRU-VNTR confirmed that it is superior to the other PCR-based methods tested here. In combination with spoligotyping and 12-locus MIRU-VNTR analysis, rep-PCR improved the discriminatory power for M. bovis typing.

  1. Integrative analysis of single nucleotide polymorphisms and gene expression efficiently distinguishes samples from closely related ethnic populations

    Directory of Open Access Journals (Sweden)

    Yang Hsin-Chou

    2012-07-01

    Full Text Available Abstract Background Ancestry informative markers (AIMs are a type of genetic marker that is informative for tracing the ancestral ethnicity of individuals. Application of AIMs has gained substantial attention in population genetics, forensic sciences, and medical genetics. Single nucleotide polymorphisms (SNPs, the materials of AIMs, are useful for classifying individuals from distinct continental origins but cannot discriminate individuals with subtle genetic differences from closely related ancestral lineages. Proof-of-principle studies have shown that gene expression (GE also is a heritable human variation that exhibits differential intensity distributions among ethnic groups. GE supplies ethnic information supplemental to SNPs; this motivated us to integrate SNP and GE markers to construct AIM panels with a reduced number of required markers and provide high accuracy in ancestry inference. Few studies in the literature have considered GE in this aspect, and none have integrated SNP and GE markers to aid classification of samples from closely related ethnic populations. Results We integrated a forward variable selection procedure into flexible discriminant analysis to identify key SNP and/or GE markers with the highest cross-validation prediction accuracy. By analyzing genome-wide SNP and/or GE markers in 210 independent samples from four ethnic groups in the HapMap II Project, we found that average testing accuracies for a majority of classification analyses were quite high, except for SNP-only analyses that were performed to discern study samples containing individuals from two close Asian populations. The average testing accuracies ranged from 0.53 to 0.79 for SNP-only analyses and increased to around 0.90 when GE markers were integrated together with SNP markers for the classification of samples from closely related Asian populations. Compared to GE-only analyses, integrative analyses of SNP and GE markers showed comparable testing

  2. Novel Single-Nucleotide Polymorphism Markers Predictive of Pathologic Response to Preoperative Chemoradiation Therapy in Rectal Cancer Patients

    International Nuclear Information System (INIS)

    Kim, Jin C.; Ha, Ye J.; Roh, Seon A.; Cho, Dong H.; Choi, Eun Y.; Kim, Tae W.; Kim, Jong H.; Kang, Tae W.; Kim, Seon Y.; Kim, Yong S.

    2013-01-01

    Purpose: Studies aimed at predicting individual responsiveness to preoperative chemoradiation therapy (CRT) are urgently needed, especially considering the risks associated with poorly responsive patients. Methods and Materials: A 3-step strategy for the determination of CRT sensitivity is proposed based on (1) the screening of a human genome-wide single-nucleotide polymorphism (SNP) array in correlation with histopathologic tumor regression grade (TRG); (2) clinical association analysis of 113 patients treated with preoperative CRT; and (3) a cell-based functional assay for biological validation. Results: Genome-wide screening identified 9 SNPs associated with preoperative CRT responses. Positive responses (TRG 1-3) were obtained more frequently in patients carrying the reference allele (C) of the SNP CORO2A rs1985859 than in those with the substitution allele (T) (P=.01). Downregulation of CORO2A was significantly associated with reduced early apoptosis by 27% (P=.048) and 39% (P=.023) in RKO and COLO320DM colorectal cancer cells, respectively, as determined by flow cytometry. Reduced radiosensitivity was confirmed by colony-forming assays in the 2 colorectal cancer cells (P=.034 and .015, respectively). The SNP FAM101A rs7955740 was not associated with radiosensitivity in the clinical association analysis. However, downregulation of FAM101A significantly reduced early apoptosis by 29% in RKO cells (P=.047), and it enhanced colony formation in RKO cells (P=.001) and COLO320DM cells (P=.002). Conclusion: CRT-sensitive SNP markers were identified using a novel 3-step process. The candidate marker CORO2A rs1985859 and the putative marker FAM101A rs7955740 may be of value for the prediction of radiosensitivity to preoperative CRT, although further validation is needed in large cohorts

  3. Fine definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide discovery of single-nucleotide polymorphisms.

    Science.gov (United States)

    Yamamoto, Toshio; Nagasaki, Hideki; Yonemaru, Jun-ichi; Ebana, Kaworu; Nakajima, Maiko; Shibaya, Taeko; Yano, Masahiro

    2010-04-27

    To create useful gene combinations in crop breeding, it is necessary to clarify the dynamics of the genome composition created by breeding practices. A large quantity of single-nucleotide polymorphism (SNP) data is required to permit discrimination of chromosome segments among modern cultivars, which are genetically related. Here, we used a high-throughput sequencer to conduct whole-genome sequencing of an elite Japanese rice cultivar, Koshihikari, which is closely related to Nipponbare, whose genome sequencing has been completed. Then we designed a high-throughput typing array based on the SNP information by comparison of the two sequences. Finally, we applied this array to analyze historical representative rice cultivars to understand the dynamics of their genome composition. The total 5.89-Gb sequence for Koshihikari, equivalent to 15.7 x the entire rice genome, was mapped using the Pseudomolecules 4.0 database for Nipponbare. The resultant Koshihikari genome sequence corresponded to 80.1% of the Nipponbare sequence and led to the identification of 67,051 SNPs. A high-throughput typing array consisting of 1917 SNP sites distributed throughout the genome was designed to genotype 151 representative Japanese cultivars that have been grown during the past 150 years. We could identify the ancestral origin of the pedigree haplotypes in 60.9% of the Koshihikari genome and 18 consensus haplotype blocks which are inherited from traditional landraces to current improved varieties. Moreover, it was predicted that modern breeding practices have generally decreased genetic diversity Detection of genome-wide SNPs by both high-throughput sequencer and typing array made it possible to evaluate genomic composition of genetically related rice varieties. With the aid of their pedigree information, we clarified the dynamics of chromosome recombination during the historical rice breeding process. We also found several genomic regions decreasing genetic diversity which might be

  4. Chosen single nucleotide polymorphisms (SNPs) of enamel formation genes and dental caries in a population of Polish children.

    Science.gov (United States)

    Gerreth, Karolina; Zaorska, Katarzyna; Zabel, Maciej; Borysewicz-Lewicka, Maria; Nowicki, Michał

    2017-09-01

    It is increasingly emphasized that the influence of a host's factors in the etiology of dental caries are of most interest, particularly those concerned with genetic aspect. The aim of the study was to analyze the genotype and allele frequencies of single nucleotide polymorphisms (SNPs) in AMELX, AMBN, TUFT1, TFIP11, MMP20 and KLK4 genes and to prove their association with dental caries occurrence in a population of Polish children. The study was performed in 96 children (48 individuals with caries - "cases" and 48 free of this disease - "controls"), aged 20-42 months, chosen out of 262 individuals who had dental examination performed and attended 4 day nurseries located in Poznań (Poland). From both groups oral swab was collected for molecular evaluation. Eleven selected SNPs markers were genotyped by Sanger sequencing. Genotype and allele frequencies were calculated and a standard χ2 analysis was used to test for deviation from Hardy-Weinberg equilibrium. The association of genetic variations with caries susceptibility or resistance was assessed by the Fisher's exact test and p ≤ 0.05 was considered statistically significant. Five markers were significantly associated with caries incidence in children in the study: rs17878486 in AMELX (p caries occurrence in Polish children.

  5. The role of single nucleotide polymorphism of IL-6 and IL-10 cytokine on pain severity and pain relief after radiotherapy in multiple myeloma patients with painful bone destructions

    OpenAIRE

    Rudzianskiene Milda; Inciura Arturas; Juozaityte Elona; Gerbutavicius Rolandas; Simoliuniene Renata; Ugenskiene Rasa; Raulinaityte Danguole; Rudzianskas Viktoras; Kiavialaitis Greta Emilia

    2014-01-01

    Multiple myeloma (MM) cells interact with bone marrow stromal cells stimulating transcription and secretion of cytokines like IL-6 and IL-10, which are implicated in the progression and dissemination of MM. Regulation of cytokines secretion is under genetic control through genetic polymorphisms in their coding and promoter sequences. It seems that single nucleotide polymorphism (SNP) in the promoter region of various genes may regulate the plasma concentrat...

  6. Dynamic variable selection in SNP genotype autocalling from APEX microarray data

    Directory of Open Access Journals (Sweden)

    Zamar Ruben H

    2006-11-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are DNA sequence variations, occurring when a single nucleotide – adenine (A, thymine (T, cytosine (C or guanine (G – is altered. Arguably, SNPs account for more than 90% of human genetic variation. Our laboratory has developed a highly redundant SNP genotyping assay consisting of multiple probes with signals from multiple channels for a single SNP, based on arrayed primer extension (APEX. This mini-sequencing method is a powerful combination of a highly parallel microarray with distinctive Sanger-based dideoxy terminator sequencing chemistry. Using this microarray platform, our current genotype calling system (known as SNP Chart is capable of calling single SNP genotypes by manual inspection of the APEX data, which is time-consuming and exposed to user subjectivity bias. Results Using a set of 32 Coriell DNA samples plus three negative PCR controls as a training data set, we have developed a fully-automated genotyping algorithm based on simple linear discriminant analysis (LDA using dynamic variable selection. The algorithm combines separate analyses based on the multiple probe sets to give a final posterior probability for each candidate genotype. We have tested our algorithm on a completely independent data set of 270 DNA samples, with validated genotypes, from patients admitted to the intensive care unit (ICU of St. Paul's Hospital (plus one negative PCR control sample. Our method achieves a concordance rate of 98.9% with a 99.6% call rate for a set of 96 SNPs. By adjusting the threshold value for the final posterior probability of the called genotype, the call rate reduces to 94.9% with a higher concordance rate of 99.6%. We also reversed the two independent data sets in their training and testing roles, achieving a concordance rate up to 99.8%. Conclusion The strength of this APEX chemistry-based platform is its unique redundancy having multiple probes for a single SNP. Our

  7. Single Nucleotide Polymorphisms in Cellular Drug Transporters Are Associated with Intolerance to Antiretroviral Therapy in Brazilian HIV-1 Positive Individuals.

    Directory of Open Access Journals (Sweden)

    Mônica Barcellos Arruda

    Full Text Available Adverse reactions are the main cause of treatment discontinuation among HIV+ individuals. Genes related to drug absorption, distribution, metabolism and excretion (ADME influence drug bioavailability and treatment response. We have investigated the association between single nucleotide polymorphisms (SNPs in 29 ADME genes and intolerance to therapy in a case-control study including 764 individuals. Results showed that 15 SNPs were associated with intolerance to nucleoside and 11 to non-nucleoside reverse transcriptase inhibitors (NRTIs and NNRTIs, and 8 to protease inhibitors (PIs containing regimens under alpha = 0.05. After Bonferroni adjustment, two associations remained statistically significant. SNP rs2712816, at SLCO2B1 was associated to intolerance to NRTIs (ORGA/AA = 2.37; p = 0.0001, while rs4148396, at ABCC2, conferred risk of intolerance to PIs containing regimens (ORCT/TT = 2.64; p = 0.00009. Accordingly, haplotypes carrying rs2712816A and rs4148396T alleles were also associated to risk of intolerance to NRTIs and PIs, respectively. Our data reinforce the role of drug transporters in response to HIV therapy and may contribute to a future development of personalized therapies.

  8. ERCC1 and XRCC1 but not XPA single nucleotide polymorphisms correlate with response to chemotherapy in endometrial carcinoma

    Directory of Open Access Journals (Sweden)

    Chen L

    2016-11-01

    Full Text Available Liang Chen,1 Mei-Mei Liu,1 Hui Liu,1 Dan Lu,2 Xiao-Dan Zhao,3 Xue-Jing Yang4 1Department of Gynecology and Obstetrics, 2Department of Oncology, 3Department of Clinical Laboratory, The 2nd Affiliated Hospital, Harbin Medical University, 4Nursing Department, Harbin Chest Hospital, Harbin, People’s Republic of China Abstract: Our study aimed to investigate the correlation between single nucleotide polymorphisms of ERCC1/XRCC1/XPA genes and postoperative chemotherapy efficacy and prognosis of endometrial carcinoma. Our study included 108 patients with endometrial carcinoma and 100 healthy participants. ERCC1 rs11615/XRCC1 rs25487/XPA rs1800975 gene polymorphisms were detected by polymerase chain reaction–restriction fragment length polymorphism. Then the chemotherapy efficacy and toxic effects of the patients were assessed. The genotype and allele frequency of ERCC1 rs11615/XRCC1 rs25487 in the case group were significantly different from that in the control group (all P<0.05. The patients with AA + GA in ERCC1 rs11615 had an increased risk of endometrial carcinoma than those with GG, and the risk of endometrial carcinoma for patients with AA + GA was also higher in comparison with patients with GG genotype in XRCC1 rs25487 (all P<0.05. GG on both ERCC1 rs11615/XRCC1 rs25487 had a higher effective rate of chemotherapy than GA + AA (all P<0.05. ERCC1 rs11615/XRCC1 rs25487 gene polymorphisms were linked with toxic effects in liver, kidney, and nervous system. ERCC1 rs11615/XRCC1 rs25487, muscular invasion, and tumor stage were independent risk factors for the prognosis of endometrial carcinoma (all P<0.05. However, no significant associations were observed between XPA rs1800975 polymorphism and chemotherapy efficacy and prognosis of endometrial carcinoma (all P>0.05. These results indicated that ERCC1 and XRCC1 but not XPA polymorphisms correlate with response to chemotherapy in endometrial carcinoma. Keywords: ERCC1, XRCC1, XPA, single nucleotide

  9. TGFB1 Single Nucleotide Polymorphisms Are Associated With Adverse Quality of Life in Prostate Cancer Patients Treated With Radiotherapy

    International Nuclear Information System (INIS)

    Peters, Christopher A.; Stock, Richard G.; Cesaretti, Jamie A.; Atencio, David P.; Peters, Sheila B.A.; Burri, Ryan J.; Stone, Nelson N.; Ostrer, Harry; Rosenstein, Barry S.

    2008-01-01

    Purpose: To investigate whether the presence of single nucleotide polymorphisms (SNPs) located within TGFB1 might be predictive for the development of adverse quality-of-life outcomes in prostate cancer patients treated with radiotherapy. Methods and Materials: A total of 141 prostate cancer patients treated with radiotherapy were screened for SNPs in TGFB1 using DNA sequencing. Three quality-of-life outcomes were investigated: (1) prospective decline in erectile function, (2) urinary quality of life, and (3) rectal bleeding. Median follow-up was 51.3 months (range, 12-138 months; SD, 24.4 months). Results: Those patients who possessed either the T/T genotype at position -509, the C/C genotype at position 869 (pro/pro, codon 10) or the G/C genotype at position 915 (arg/pro, codon 25) were significantly associated with the development of a decline in erectile function compared with those who did not have these genotypes: 56% (9 of 16) vs. 24% (11 of 45) (p = 0.02). In addition, patients with the -509 T/T genotype had a significantly increased risk of developing late rectal bleeding compared with those who had either the C/T or C/C genotype at this position: 55% (6 of 11) vs. 26% (34 of 130) (p = 0.05). Conclusions: Possession of certain TGFB1 genotypes is associated with the development of both erectile dysfunction and late rectal bleeding in patients treated with radiotherapy for prostate cancer. Therefore, identification of patients harboring these genotypes may represent a means to predict which men are most likely to suffer from poor quality-of-life outcomes after radiotherapy for prostate cancer

  10. Single nucleotide polymorphisms as susceptibility, prognostic, and therapeutic markers of nonsmall cell lung cancer

    Directory of Open Access Journals (Sweden)

    Zienolddiny S

    2011-12-01

    Full Text Available Shanbeh Zienolddiny, Vidar SkaugSection for Toxicology and Biological Work Environment, National Institute of Occupational Health, Oslo, NorwayAbstract: Lung cancer is a major public health problem throughout the world. Among the most frequent cancer types (prostate, breast, colorectal, stomach, lung, lung cancer is the leading cause of cancer-related deaths worldwide. Among the two major subtypes of small cell lung cancer and nonsmall cell lung cancer (NSCLC, 85% of tumors belong to the NSCLC histological types. Small cell lung cancer is associated with the shortest survival time. Although tobacco smoking has been recognized as the major risk factor for lung cancer, there is a great interindividual and interethnic difference in risk of developing lung cancer given exposure to similar environmental and lifestyle factors. This may indicate that in addition to chemical and environmental factors, genetic variations in the genome may contribute to risk modification. A common type of genetic variation in the genome, known as single nucleotide polymorphism, has been found to be associated with susceptibility to lung cancer. Interestingly, many of these polymorphisms are found in the genes that regulate major pathways of carcinogen metabolism (cytochrome P450 genes, detoxification (glutathione S-transferases, adduct removal (DNA repair genes, cell growth/apoptosis (TP53/MDM2, the immune system (cytokines/chemokines, and membrane receptors (nicotinic acetylcholine and dopaminergic receptors. Some of these polymorphisms have been shown to alter the level of mRNA, and protein structure and function. In addition to being susceptibility markers, several of these polymorphisms are emerging to be important for response to chemotherapy/radiotherapy and survival of patients. Therefore, it is hypothesized that single nucleotide polymorphisms will be valuable genetic markers in individual-based prognosis and therapy in future. Here we will review some of the most

  11. Analyses of single nucleotide polymorphisms in selected nutrient-sensitive genes in weight-regain prevention: the DIOGENES study.

    Science.gov (United States)

    Larsen, Lesli H; Angquist, Lars; Vimaleswaran, Karani S; Hager, Jörg; Viguerie, Nathalie; Loos, Ruth J F; Handjieva-Darlenska, Teodora; Jebb, Susan A; Kunesova, Marie; Larsen, Thomas M; Martinez, J Alfredo; Papadaki, Angeliki; Pfeiffer, Andreas F H; van Baak, Marleen A; Sørensen, Thorkild Ia; Holst, Claus; Langin, Dominique; Astrup, Arne; Saris, Wim H M

    2012-05-01

    Differences in the interindividual response to dietary intervention could be modified by genetic variation in nutrient-sensitive genes. This study examined single nucleotide polymorphisms (SNPs) in presumed nutrient-sensitive candidate genes for obesity and obesity-related diseases for main and dietary interaction effects on weight, waist circumference, and fat mass regain over 6 mo. In total, 742 participants who had lost ≥ 8% of their initial body weight were randomly assigned to follow 1 of 5 different ad libitum diets with different glycemic indexes and contents of dietary protein. The SNP main and SNP-diet interaction effects were analyzed by using linear regression models, corrected for multiple testing by using Bonferroni correction and evaluated by using quantile-quantile (Q-Q) plots. After correction for multiple testing, none of the SNPs were significantly associated with weight, waist circumference, or fat mass regain. Q-Q plots showed that ALOX5AP rs4769873 showed a higher observed than predicted P value for the association with less waist circumference regain over 6 mo (-3.1 cm/allele; 95% CI: -4.6, -1.6; P/Bonferroni-corrected P = 0.000039/0.076), independently of diet. Additional associations were identified by using Q-Q plots for SNPs in ALOX5AP, TNF, and KCNJ11 for main effects; in LPL and TUB for glycemic index interaction effects on waist circumference regain; in GHRL, CCK, MLXIPL, and LEPR on weight; in PPARC1A, PCK2, ALOX5AP, PYY, and ADRB3 on waist circumference; and in PPARD, FABP1, PLAUR, and LPIN1 on fat mass regain for dietary protein interaction. The observed effects of SNP-diet interactions on weight, waist, and fat mass regain suggest that genetic variation in nutrient-sensitive genes can modify the response to diet. This trial was registered at clinicaltrials.gov as NCT00390637.

  12. Impacts of Nonsynonymous Single Nucleotide Polymorphisms of Adiponectin Receptor 1 Gene on Corresponding Protein Stability: A Computational Approach

    Directory of Open Access Journals (Sweden)

    Md. Abu Saleh

    2016-01-01

    Full Text Available Despite the reported association of adiponectin receptor 1 (ADIPOR1 gene mutations with vulnerability to several human metabolic diseases, there is lack of computational analysis on the functional and structural impacts of single nucleotide polymorphisms (SNPs of the human ADIPOR1 at protein level. Therefore, sequence- and structure-based computational tools were employed in this study to functionally and structurally characterize the coding nsSNPs of ADIPOR1 gene listed in the dbSNP database. Our in silico analysis by SIFT, nsSNPAnalyzer, PolyPhen-2, Fathmm, I-Mutant 2.0, SNPs&GO, PhD-SNP, PANTHER, and SNPeffect tools identified the nsSNPs with distorting functional impacts, namely, rs765425383 (A348G, rs752071352 (H341Y, rs759555652 (R324L, rs200326086 (L224F, and rs766267373 (L143P from 74 nsSNPs of ADIPOR1 gene. Finally the aforementioned five deleterious nsSNPs were introduced using Swiss-PDB Viewer package within the X-ray crystal structure of ADIPOR1 protein, and changes in free energy for these mutations were computed. Although increased free energy was observed for all the mutants, the nsSNP H341Y caused the highest energy increase amongst all. RMSD and TM scores predicted that mutants were structurally similar to wild type protein. Our analyses suggested that the aforementioned variants especially H341Y could directly or indirectly destabilize the amino acid interactions and hydrogen bonding networks of ADIPOR1.

  13. Highlights from the Functional Single Nucleotide Polymorphisms Associated with Human Muscle Size and Strength or FAMuSS Study

    Directory of Open Access Journals (Sweden)

    Linda S. Pescatello

    2013-01-01

    Full Text Available The purpose of the Functional Single Nucleotide Polymorphisms Associated with Human Muscle Size and Strength study or FAMuSS was to identify genetic factors that dictated the response of health-related fitness phenotypes to resistance exercise training (RT. The phenotypes examined were baseline muscle strength and muscle, fat, and bone volume and their response to RT. FAMuSS participants were 1300 young (24 years, healthy men (42% and women (58% that were primarily of European-American descent. They were genotyped for ~500 polymorphisms and completed the Paffenbarger Physical Activity Questionnaire to assess energy expenditure and time spent in light, moderate, and vigorous intensity habitual physical activity and sitting. Subjects then performed a 12-week progressive, unilateral RT program of the nondominant arm with the dominant arm used as a comparison. Before and after RT, muscle strength was measured with the maximum voluntary contraction and one repetition maximum, while MRI measured muscle, fat, and bone volume. We will discuss the history of how FAMuSS originated, provide a brief overview of the FAMuSS methods, and summarize our major findings regarding genotype associations with muscle strength and size, body composition, cardiometabolic biomarkers, and physical activity.

  14. Genome-Wide Association Study to Identify Single Nucleotide Polymorphisms (SNPs) Associated With the Development of Erectile Dysfunction in African-American Men After Radiotherapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Kerns, Sarah L.; Ostrer, Harry; Stock, Richard; Li, William; Moore, Julian; Pearlman, Alexander; Campbell, Christopher; Shao Yongzhao; Stone, Nelson; Kusnetz, Lynda; Rosenstein, Barry S.

    2010-01-01

    Purpose: To identify single nucleotide polymorphisms (SNPs) associated with erectile dysfunction (ED) among African-American prostate cancer patients treated with external beam radiation therapy. Methods and Materials: A cohort of African-American prostate cancer patients treated with external beam radiation therapy was observed for the development of ED by use of the five-item Sexual Health Inventory for Men (SHIM) questionnaire. Final analysis included 27 cases (post-treatment SHIM score ≤7) and 52 control subjects (post-treatment SHIM score ≥16). A genome-wide association study was performed using approximately 909,000 SNPs genotyped on Affymetrix 6.0 arrays (Affymetrix, Santa Clara, CA). Results: We identified SNP rs2268363, located in the follicle-stimulating hormone receptor (FSHR) gene, as significantly associated with ED after correcting for multiple comparisons (unadjusted p = 5.46 x 10 -8 , Bonferroni p = 0.028). We identified four additional SNPs that tended toward a significant association with an unadjusted p value -6 . Inference of population substructure showed that cases had a higher proportion of African ancestry than control subjects (77% vs. 60%, p = 0.005). A multivariate logistic regression model that incorporated estimated ancestry and four of the top-ranked SNPs was a more accurate classifier of ED than a model that included only clinical variables. Conclusions: To our knowledge, this is the first genome-wide association study to identify SNPs associated with adverse effects resulting from radiotherapy. It is important to note that the SNP that proved to be significantly associated with ED is located within a gene whose encoded product plays a role in male gonad development and function. Another key finding of this project is that the four SNPs most strongly associated with ED were specific to persons of African ancestry and would therefore not have been identified had a cohort of European ancestry been screened. This study demonstrates

  15. Potential relationship between single nucleotide polymorphisms used in forensic genetics and diseases or other traits in European population.

    Science.gov (United States)

    Pombar-Gomez, Maria; Lopez-Lopez, Elixabet; Martin-Guerrero, Idoia; Garcia-Orad Carles, Africa; de Pancorbo, Marian M

    2015-05-01

    Single nucleotide polymorphisms (SNPs) are an interesting option to facilitate the analysis of highly degraded DNA by allowing the reduction of the size of the DNA amplicons. The SNPforID 52-plex panel is a clear example of the use of non-coding SNPs in forensic genetics. However, nonstop advances in studies of genetic polymorphisms are leading to the discovery of new associations between SNPs and diseases. The aim of this study was to perform a comprehensive review of the state of association between the 52 SNPs in the 52-plex panel and diseases or other traits related to their treatment, such as drug response characters. In order to achieve this goal, we have conducted a bioinformatic search for each SNP included in the panel and the SNPs in linkage disequilibrium (LD) with them in the European population (r (2)  > 0.8). A total of 424 SNPs (52 in the panel and 372 in LD) were investigated in PubMed, Scopus, and dbSNP databases. Our results show that three SNPs in the SNPforID 52-plex panel (rs2107612, rs1979255, rs1463729) have been associated with diseases such as hypertension or macular degeneration, as well as drug response. Similarly, three out of the 372 SNPs in LD (rs2107614, r (2)  = 0.859; rs765250, r (2)  = 0.858; rs11064560, r (2)  = 0,887) are also associated with various pathologies. In view of these results, we propose the need for a periodic review of the SNPs used in forensic genetics in order to keep their associations with diseases or related phenotypes updated and to evaluate their continuity in forensic panels for avoiding legal and ethical conflicts.

  16. High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping.

    Science.gov (United States)

    Esteras, Cristina; Gómez, Pedro; Monforte, Antonio J; Blanca, José; Vicente-Dólera, Nelly; Roig, Cristina; Nuez, Fernando; Picó, Belén

    2012-02-22

    Cucurbita pepo is a member of the Cucurbitaceae family, the second- most important horticultural family in terms of economic importance after Solanaceae. The "summer squash" types, including Zucchini and Scallop, rank among the highest-valued vegetables worldwide. There are few genomic tools available for this species.The first Cucurbita transcriptome, along with a large collection of Single Nucleotide Polymorphisms (SNP), was recently generated using massive sequencing. A set of 384 SNP was selected to generate an Illumina GoldenGate assay in order to construct the first SNP-based genetic map of Cucurbita and map quantitative trait loci (QTL). We herein present the construction of the first SNP-based genetic map of Cucurbita pepo using a population derived from the cross of two varieties with contrasting phenotypes, representing the main cultivar groups of the species' two subspecies: Zucchini (subsp. pepo) × Scallop (subsp. ovifera). The mapping population was genotyped with 384 SNP, a set of selected EST-SNP identified in silico after massive sequencing of the transcriptomes of both parents, using the Illumina GoldenGate platform. The global success rate of the assay was higher than 85%. In total, 304 SNP were mapped, along with 11 SSR from a previous map, giving a map density of 5.56 cM/marker. This map was used to infer syntenic relationships between C. pepo and cucumber and to successfully map QTL that control plant, flowering and fruit traits that are of benefit to squash breeding. The QTL effects were validated in backcross populations. Our results show that massive sequencing in different genotypes is an excellent tool for SNP discovery, and that the Illumina GoldenGate platform can be successfully applied to constructing genetic maps and performing QTL analysis in Cucurbita. This is the first SNP-based genetic map in the Cucurbita genus and is an invaluable new tool for biological research, especially considering that most of these markers are located in

  17. Report on ISFG SNP Panel Discussion

    DEFF Research Database (Denmark)

    Butler, John M.; Budowle, B.; Gill, P.

    2008-01-01

    Six scientists presented their views and experience with single nucleotide polymorphism (SNP) markers, multiplexes, and methods regarding their potential application in forensic identity and relationship testing. Benefits and limitations of SNPs were reviewed, as were different SNP marker...

  18. Single Nucleotide Polymorphisms of the GJB2 and GJB6 Genes Are Associated with Autosomal Recessive Nonsyndromic Hearing Loss

    Directory of Open Access Journals (Sweden)

    Ana Paula Grillo

    2015-01-01

    Full Text Available Single nucleotide polymorphisms (SNPs are important markers in many studies that link DNA sequence variations to phenotypic changes; such studies are expected to advance the understanding of human physiology and elucidate the molecular basis of diseases. The DFNB1 locus, which contains the GJB2 and GJB6 genes, plays a key role in nonsyndromic hearing loss. Previous studies have identified important mutations in this locus, but the contribution of SNPs in the genes has not yet been much investigated. The aim of this study was to investigate the association of nine polymorphisms located within the DFNB1 locus with the occurrence of autosomal recessive nonsyndromic hearing loss (ARNSHL. The SNPs rs3751385 (C/T, rs7994748 (C/T, rs7329857 (C/T, rs7987302 (G/A, rs7322538 (G/A, rs9315400 (C/T, rs877098 (C/T, rs945369 (A/C, and rs7333214 (T/G were genotyped in 122 deaf patients and 132 healthy controls using allele-specific PCR. There were statistically significant differences between patients and controls, in terms of allelic frequencies in the SNPs rs3751385, rs7994748, rs7329857, rs7987302, rs945369, and rs7333214 (P<0.05. No significant differences between the two groups were observed for rs7322538, rs9315400, and rs877098. Our results suggest that SNPs present in the GJB2 and GJB6 genes may have an influence on ARNSHL in humans.

  19. Genetic homogeneity of the invasive lionfish across the Northwestern Atlantic and the Gulf of Mexico based on Single Nucleotide Polymorphisms.

    Science.gov (United States)

    Pérez-Portela, R; Bumford, A; Coffman, B; Wedelich, S; Davenport, M; Fogg, A; Swenarton, M K; Coleman, F; Johnston, M A; Crawford, D L; Oleksiak, M F

    2018-03-22

    Despite the devastating impact of the lionfish (Pterois volitans) invasion on NW Atlantic ecosystems, little genetic information about the invasion process is available. We applied Genotyping by Sequencing techniques to identify 1,220 single nucleotide polymorphic sites (SNPs) from 162 lionfish samples collected between 2013 and 2015 from two areas chronologically identified as the first and last invaded areas in US waters: the east coast of Florida and the Gulf of Mexico. We used population genomic analyses, including phylogenetic reconstruction, Bayesian clustering, genetic distances, Discriminant Analyses of Principal Components, and coalescence simulations for detection of outlier SNPs, to understand genetic trends relevant to the lionfish's long-term persistence. We found no significant differences in genetic structure or diversity between the two areas (F ST p-values > 0.01, and t-test p-values > 0.05). In fact, our genomic analyses showed genetic homogeneity, with enough gene flow between the east coast of Florida and Gulf of Mexico to erase previous signals of genetic divergence detected between these areas, secondary spreading, and bottlenecks in the Gulf of Mexico. These findings suggest rapid genetic changes over space and time during the invasion, resulting in one panmictic population with no signs of divergence between areas due to local adaptation.

  20. Frequency of single nucleotide polymorphisms of some immune response genes in a population sample from São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Léa Campos de Oliveira

    2011-09-01

    Full Text Available Objective: To present the frequency of single nucleotide polymorphismsof a few immune response genes in a population sample from SãoPaulo City (SP, Brazil. Methods: Data on allele frequencies ofknown polymorphisms of innate and acquired immunity genes werepresented, the majority with proven impact on gene function. Datawere gathered from a sample of healthy individuals, non-HLA identicalsiblings of bone marrow transplant recipients from the Hospital dasClínicas da Faculdade de Medicina da Universidade de São Paulo,obtained between 1998 and 2005. The number of samples variedfor each single nucleotide polymorphism analyzed by polymerasechain reaction followed by restriction enzyme cleavage. Results:Allele and genotype distribution of 41 different gene polymorphisms,mostly cytokines, but also including other immune response genes,were presented. Conclusion: We believe that the data presentedhere can be of great value for case-control studies, to define whichpolymorphisms are present in biologically relevant frequencies and toassess targets for therapeutic intervention in polygenic diseases witha component of immune and inflammatory responses.

  1. Genetic study of two single nucleotide polymorphisms within corresponding microRNAs and susceptibility to tuberculosis in a Chinese Tibetan and Han population.

    Science.gov (United States)

    Li, Dongdong; Li, Dingdong; Wang, Tingting; Song, Xingbo; Qucuo, MeiLang; Yang, Bin; Zhang, Junlong; Wang, Jun; Ying, Binwu; Tao, Chuanmin; Wang, Lanlan

    2011-07-01

    MicroRNAs (miRNA) are thought to play important roles in the pathogenesis of diseases. Single nucleotide polymorphisms (SNPs) within miRNAs can change their characteristics via altering their target selection and/or expression, resulting in functional and/or phenotypic changes. We decided to investigate the genetic association with pulmonary tuberculosis with 2 nucleotide variations within corresponding microRNAs regulating the Toll-like receptor (TLR)-mediating signal pathway. MiRNAs potentially regulating the TLR-mediating signal pathway were predicted via bioinformatics. Finally, 2 SNPs, rs2910164 G>C and rs3746444 T>C within miR-146a and miR-499, were selected as candidates in accordance with some criteria. SNPs were genotyped by polymerase chain reaction-restriction fragment length polymorphism and validated by sequencing to demonstrate their association with susceptibility to pulmonary tuberculosis (PTB) in 337 PTB cases and 738 healthy controls, including 318 Tibetan and 757 Han individuals. Bioinformatics databases were searched to support the association between miRNAs and PTB. There was no association between rs3746444 and PTB risk (p = 0.118) in the Han population, but subjects carrying the C allele exhibited decreased PTB risk (odds ratio [OR] = 0.403 [95% confidence interval (95% CI) 0.278-0.583]). However, there was an association between rs3746444 and PTB in the Tibetan population, and individuals carrying the C allele exhibited increased PTB risk (OR = 1.870 [95% CI 1.218-2.871]). A polymorphism (rs2910164 G>C) indicated an association with PTB risk in both Tibetan (p = 0.031) and Han (p = 0.000) populations. However, the role of the G allele of rs2910164, like the C allele in rs3746444, differed in the Tibetan (OR = 1.509, p tuberculosis with SNPs within the corresponding miRNAs potentially regulates the TLR signal pathway. It is interesting that both the G allele (rs2910164) and the C allele (rs3746444) play different roles in 2 populations

  2. Evaluation of a Panel of Single-Nucleotide Polymorphisms in miR-146a and miR-196a2 Genomic Regions in Patients with Chronic Periodontitis.

    Science.gov (United States)

    Venugopal, Priyanka; Lavu, Vamsi; RangaRao, Suresh; Venkatesan, Vettriselvi

    2017-04-01

    Periodontitis is an inflammatory disease caused by bacterial triggering of the host immune-inflammatory response, which in turn is regulated by microRNAs (miRNA). Polymorphisms in the miRNA pathways affect the expression of several target genes such as tumor necrosis factor-α and interleukins, which are associated with progression of disease. The objective of this study was to identify the association between the MiR-146a single nucleotide polymorphisms (SNPs) (rs2910164, rs57095329, and rs73318382), the MiR-196a2 (rs11614913) SNP and chronic periodontitis. Genotyping was performed for the MiR-146a (rs2910164, rs57095329, and rs73318382) and the MiR-196a2 (rs11614913) polymorphisms in 180 healthy controls and 190 cases of chronic periodontitis by the direct Sanger sequencing technique. The strength of the association between the polymorphisms and chronic periodontitis was evaluated using logistic regression analysis. Haplotype and linkage analyses among the polymorphisms was performed. Multifactorial dimensionality reduction was performed to determine epistatic interaction among the polymorphisms. The MiR-196a2 polymorphism revealed a significant inverse association with chronic periodontitis. Haplotype analysis of MiR-146a and MiR-196a2 polymorphisms revealed 13 different combinations, of which 5 were found to have an inverse association with chronic periodontitis. The present study has demonstrated a significant inverse association of MiR-196a2 polymorphism with chronic periodontitis.

  3. Developing Single Nucleotide Polymorphism (SNP) markers for the identification of pineapple (Ananas comosus) germplasm

    Science.gov (United States)

    Pineapple (Ananas comosus [L.] Merr.) is the third most important tropical fruit in the world after banana and mango and a major agricultural commodity in Hawaii. As a crop with vegetative propagation, genetic redundancy is a major challenge for efficient genebank management and in breeding. Using E...

  4. T-786C single-nucleotide polymorphism (SNP) of endothelial nitric ...

    African Journals Online (AJOL)

    The study was designed to investigate the frequency of T-786C polymorphism of the gene in patients suffering from coronary artery disease (CAD) in North West of Iran. One hundred and twenty (120) subjects including 60 patients with angiographically diagnosed CAD and 60 age and sex matched CAD-free subjects as ...

  5. Association of single nucleotide polymorphisms in candidate genes previously related to genetic variation in fertility with phenotypic measurements of reproductive function in Holstein cows.

    Science.gov (United States)

    Ortega, M Sofia; Denicol, Anna C; Cole, John B; Null, Daniel J; Taylor, Jeremy F; Schnabel, Robert D; Hansen, Peter J

    2017-05-01

    Many genetic markers related to health or production traits are not evaluated in populations independent of the discovery population or related to phenotype. Here we evaluated 68 single nucleotide polymorphisms (SNP) in candidate genes previously associated with genetic merit for fertility and production traits for association with phenotypic measurements of fertility in a population of Holstein cows that was selected based on predicted transmitting ability (PTA) for daughter pregnancy rate (DPR; high, ≥1, n = 989; low, ≤ -1.0, n = 1,285). Cows with a high PTA for DPR had higher pregnancy rate at first service, fewer services per conception, and fewer days open than cows with a low PTA for DPR. Of the 68 SNP, 11 were associated with pregnancy rate at first service, 16 with services per conception, and 19 with days open. Single nucleotide polymorphisms in 12 genes (BDH2, BSP3, CAST, CD2, CD14, FUT1, FYB, GCNT3, HSD17B7, IBSP, OCLN, and PCCB) had significant associations with 2 fertility traits, and SNP in 4 genes (CSPP1, FCER1G, PMM2, and TBC1D24) had significant associations with each of the 3 traits. Results from this experiment were compared with results from 2 earlier studies in which the SNP were associated with genetic estimates of fertility. One study involved the same animals as used here, and the other study was of an independent population of bulls. A total of 13 SNP associated with 1 or more phenotypic estimates of fertility were directionally associated with genetic estimates of fertility in the same cow population. Moreover, 14 SNP associated with reproductive phenotype were directionally associated with genetic estimates of fertility in the bull population. Nine SNP (located in BCAS, BSP3, CAST, FUT1, HSD17B7, OCLN, PCCB, PMM2, and TBC1D24) had a directional association with fertility in all 3 studies. Examination of the function of the genes with SNP associated with reproduction in more than one study indicates the importance of steroid hormones

  6. The NOD2 Single Nucleotide Polymorphism rs72796353 (IVS4+10 A>C) Is a Predictor for Perianal Fistulas in Patients with Crohn's Disease in the Absence of Other NOD2 Mutations.

    Science.gov (United States)

    Schnitzler, Fabian; Friedrich, Matthias; Wolf, Christiane; Stallhofer, Johannes; Angelberger, Marianne; Diegelmann, Julia; Olszak, Torsten; Tillack, Cornelia; Beigel, Florian; Göke, Burkhard; Glas, Jürgen; Lohse, Peter; Brand, Stephan

    2015-01-01

    A previous study suggested an association of the single nucleotide polymorphism (SNP) rs72796353 (IVS4+10 A>C) in the NOD2 gene with susceptibility to Crohn's disease (CD). However, this finding has not been confirmed. Given that NOD2 variants still represent the most important predictors for CD susceptibility and phenotype, we evaluated the association of rs72796353 with inflammatory bowel disease (IBD) susceptibility and the IBD phenotype. Genomic DNA from 2256 Caucasians, including 1073 CD patients, 464 patients with ulcerative colitis (UC), and 719 healthy controls, was genotyped for the NOD2 SNP rs72796353 and the three main CD-associated NOD2 mutations rs2066844, rs2066845, and rs2066847. Subsequently, IBD association and genotype-phenotype analyses were conducted. In contrast to the strong associations of the NOD2 SNPs rs2066844 (p=3.51 x 10(-3)), rs2066845 (p=1.54 x 10(-2)), and rs2066847 (p=1.61 x 10(-20)) with CD susceptibility, no significant association of rs72796353 with CD or UC susceptibility was found. However, in CD patients without the three main CD-associated NOD2 mutations, rs72796353 was significantly associated with the development of perianal fistulas (p=2.78 x 10(-7), OR 5.27, [95% CI 2.75-10.12] vs. NOD2 wild-type carriers). Currently, this study represents the largest genotype-phenotype analysis of the impact of the NOD2 variant rs72796353 on the disease phenotype in IBD. Our data demonstrate that in CD patients the IVS4+10 A>C variant is strongly associated with the development of perianal fistulas. This association is particularly pronounced in patients who are not carriers of the three main CD-associated NOD2 mutations, suggesting rs72796353 as additional genetic marker for the CD disease behaviour.

  7. Should we use the single nucleotide polymorphism linked to in genomic evaluation of French trotter?

    Science.gov (United States)

    Brard, S; Ricard, A

    2015-10-01

    An A/C mutation responsible for the ability to pace in horses was recently discovered in the gene. It has also been proven that allele C has a negative effect on trotters' performances. However, in French trotters (FT), the frequency of allele A is only 77% due to an unexpected positive effect of allele C in late-career FT performances. Here we set out to ascertain whether the genotype at SNP (linked to ) should be used to compute EBV for FT. We used the genotypes of 630 horses, with 41,711 SNP retained. The pedigree comprised 5,699 horses. Qualification status (trotters need to complete a 2,000-m race within a limited time to begin their career) and earnings at different ages were precorrected for fixed effects and evaluated with a multitrait model. Estimated breeding values were computed with and without the genotype at SNP as a fixed effect in the model. The analyses were performed using pedigree only via BLUP and using the genotypes via genomic BLUP (GBLUP). The genotype at SNP was removed from the file of genotypes when already taken into account as a fixed effect. Alternatively, 3 groups of 100 candidates were used for validation. Validations were also performed on 50 random-clustered groups of 126 candidates and compared against the results of the 3 disjoint sets. For performances on which has a minor effect, the coefficients of correlation were not improved when the genotype at SNP was a fixed effect in the model (earnings at 3 and 4 yr). However, for traits proven strongly related to , the accuracy of evaluation was improved, increasing +0.17 for earnings at 2 yr, +0.04 for earnings at 5 yr and older, and +0.09 for qualification status (with the GBLUP method). For all traits, the bias was reduced when the SNP linked to was a fixed effect in the model. This work finds a clear rationale for using the genotype at for this multitrait evaluation. Genomic selection seemed to achieve better results than classic selection.

  8. Single nucleotide polymorphisms of DNA mismatch repair genes MSH2 and MLH1 confer susceptibility to esophageal cancer.

    Science.gov (United States)

    Sun, Ming-Zhong; Ju, Hui-Xiang; Zhou, Zhong-Wei; Jin, Hao; Zhu, Rong

    2014-01-01

    Defects in DNA mismatch repair genes like MSH2 and MLH1 confer increased risk of cancers. Here, single nucleotide polymorphisms (SNPs) in MSH2 and MLH1 were investigated for their potential contribution to the risk of esophageal cancer. This study recruited 614 participants from Affiliated Yancheng Hospital, School of Medicine, Southeast University, of which 289 were patients with esophageal cancer, and the remainder was healthy individuals who served as a control group. Two SNPs, MSH2 c.2063T>G and MLH1 IVS14-19A>G, were genotyped using PCR-RFLP. Statistical analysis was performed using chi-square test and logistic regression analysis. Carriers of the MSH2 c.2063G allele were at significantly higher risk for esophageal cancer compared to individuals with the TT genotype [OR = 3.36, 95% confidence interval (CI): 1.18-11.03]. The MLH1 IVS14-19A>G allele also conferred significantly increased (1.70-fold) for esophageal cancer compared to the AA genotype (OR = 1.70, 95% CI: 1.13-5.06). Further, the variant alleles interacted such that individuals with the susceptible genotypes at both MSH2 and MLH1 had a significantly exacerbated risk for esophageal cancer (OR = 12.38, 95% CI: 3.09-63.11). In brief, SNPs in the DNA mismatch repair genes MSH2 and MLH1 increase the risk of esophageal cancer. Molecular investigations are needed to uncover the mechanism behind their interaction effect.

  9. Impact of donor and recipient single nucleotide polymorphisms of IL28B rs8099917 in living donor liver transplantation for hepatitis C.

    Directory of Open Access Journals (Sweden)

    Nobuhiro Harada

    Full Text Available Single nucleotide polymorphisms of interleukin-28B (IL28B rs8099917 are reported to be associated with virologic clearance in interferon-and ribavirin -based treatment for hepatitis C virus (HCV-infected patients. We examined virologic response in accordance with IL28B polymorphisms in our living donor liver transplantation series under a preemptive interferon and RBV treatment approach. Adequate DNA samples from both the recipient and donor for the study of single nucleotide polymorphisms of IL28B were available from 96 cases and were the subjects of the present study. Various clinical factors related with virologic response including early virologic response (EVR and sustained virologic response (SVR were examined. Totally 51% presented with EVR and 44% achieved SVR. Presence of the major allele (TT in either the recipient or the donor corresponded to SVR of 53% and 48%. Presence of the minor allele (TG or GG corresponded to SVR of 26% and 32%. Multivariate analysis revealed that genotype of HCV or EVR, but not IL28B polymorphisms in either the recipient or donor, was an independent factor for achieving SVR. When virologic response to treatment was incorporated into analysis, the impact of IL28B polymorphism on virological clearance remained relative to other factors and was not significantly independent.

  10. [Single nucleotide polymorphisms of HIV coreceptor CCR5 gene in Chinese Yi ethnic group and its association with HIV infection].

    Science.gov (United States)

    Ma, Li-ying; Hong, Kun-xue; Lu, Xiao-zhi; Qin, Guang-ming; Chen, Jian-ping; Chen, Kang-lin; Ruan, Yu-hua; Xing, Hui; Zhu, Jia-hong; Shao, Yi-ming

    2005-11-30

    To investigate the single nucleotide polymorphism (SNP) of HIV-1 coreceptor CCR5 gene in Chinese Yi ethnic group and the association between these SNPs and HIV/AIDS. Peripheral blood samples of 102 HIV negative persons of Chinese Yi nationality, 87 males amd 15 females, aged 23 (12-37), and 68 HIV carriers, 61 males and 7 females, aged 27 (17-51). The regulatory and structural regions of the HIV coreceptor CCR5 gene were amplified from the genomic DNA by nested PCR, each of the two regions was divided into three gene fragments which were overlapped. High throughput DHPLC was used for screening of unknown mutations in each gene fragment. The PCR products showing different peak traces from wild types in DHPLC were sequenced by forward and reverse primers respectively. The sequences were analyzed with the help of Sequence Navigator software to search for SNP loci. Statistical analysis by SPSS and PPAP softwares were made to study the association between these SNPs and HIV infection. Five SNPs (A77G, G316A, T532C, C921T, and G668A) and a AGA deletion of the 686-688 nucleotides were discovered in the coding region of this gene in Chinese Yi ethnic group. C921T mutation was a nonsense mutation, and the other SNPs (A77G, G316A, T532C, and G668A) are sense mutation, with the amino acid changes of K26R, G106R, C178R, and R223Q. Only the frequency of R223Q allelic gene was high (0.08) but those of the others were low (less than 0.01). There was no significant difference in the allele frequency between the HIV negative and HIV positive groups (all P > 0.05). Five SNP loci (T58934G, G59029A, T59353C, G59402A, and C59653T) were found in the regulatory region of CCR5 gene with high allelic frequencies of 0.1912-0.2941. Between the HIV negative and HIV positive groups, there were no differences in the SNP loc (all P > 0.05). Statistical analysis of the association between the linkage of mutation loci with HIV infection suggested a significant difference in the haplotype frequency

  11. A Locked Nucleic Acid Probe Based on Selective Salt-Induced Effect Detects Single Nucleotide Polymorphisms

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2015-01-01

    Full Text Available Detection of single based genetic mutation by using oligonucleotide probes is one of the common methods of detecting single nucleotide polymorphisms at known loci. In this paper, we demonstrated a hybridization system which included a buffer solution that produced selective salt-induced effect and a locked nucleic acid modified 12 nt oligonucleotide probe. The hybridization system is suitable for hybridization under room temperature. By using magnetic nanoparticles as carriers for PCR products, the SNPs (MDR1 C3435T/A from 45 volunteers were analyzed, and the results were consistent with the results from pyrophosphoric acid sequencing. The method presented in this paper differs from the traditional method of using molecular beacons to detect SNPs in that it is suitable for research institutions lacking real-time quantitative PCR detecting systems, to detect PCR products at room temperature.

  12. Effect of BCHE single nucleotide polymorphisms on lipid metabolism markers in women

    Directory of Open Access Journals (Sweden)

    Jéssica de Oliveira

    2017-05-01

    Full Text Available Abstract Butyrylcholinesterase (BChE activity and polymorphisms in its encoding gene had previously been associated with metabolic traits of obesity. This study investigated the association of three single nucleotide polymorphisms (SNPs in the BCHE gene: -116G > A (rs1126680, 1615GA (rs1803274, 1914A 0.05. The dominant and recessive models were tested, and different effects were found. The -116A allele showed a dominant effect in BChE activity reduction in both non-obese and obese women (p = 0.045 and p G and 1615GA SNPs influenced the TG levels only in obese women. The 1914G and the 1615A alleles were associated with decreased plasma levels of TG. Thus, our results suggest that the obesity condition, characterized by loss of energy homeostasis, is modulated by BCHE polymorphisms.

  13. DivStat: a user-friendly tool for single nucleotide polymorphism analysis of genomic diversity.

    Directory of Open Access Journals (Sweden)

    Inês Soares

    Full Text Available Recent developments have led to an enormous increase of publicly available large genomic data, including complete genomes. The 1000 Genomes Project was a major contributor, releasing the results of sequencing a large number of individual genomes, and allowing for a myriad of large scale studies on human genetic variation. However, the tools currently available are insufficient when the goal concerns some analyses of data sets encompassing more than hundreds of base pairs and when considering haplotype sequences of single nucleotide polymorphisms (SNPs. Here, we present a new and potent tool to deal with large data sets allowing the computation of a variety of summary statistics of population genetic data, increasing the speed of data analysis.

  14. Development of a multiplex polymerase chain reaction-sequence-specific primer method for NKG2D and NKG2F single-nucleotide polymorphism typing using isothermal multiple displacement amplification products.

    Science.gov (United States)

    Kaewmanee, M; Phoksawat, W; Romphruk, A; Romphruk, A V; Jumnainsong, A; Leelayuwat, C

    2013-06-01

    Natural killer group 2 member D (NKG2D) on immune effector cells recognizes multiple stress-inducible ligands. NKG2D single-nucleotide polymorphism (SNP) haplotypes were related to the levels of cytotoxic activity of peripheral blood mononuclear cells. Indeed, these polymorphisms were also located in NKG2F. Isothermal multiple displacement amplification (IMDA) is used for whole genome amplification (WGA) that can amplify very small genomic DNA templates into microgram with whole genome coverage. This is particularly useful in the cases of limited amount of valuable DNA samples requiring multi-locus genotyping. In this study, we evaluated the quality and applicability of IMDA to genetic studies in terms of sensitivity, efficiency of IMDA re-amplification and stability of IMDA products. The smallest amount of DNA to be effectively amplified by IMDA was 200 pg yielding final DNA of approximately 16 µg within 1.5 h. IMDA could be re-amplified only once (second round of amplification), and could be kept for 5 months at 4°C and more than a year at -20°C without loosing genome coverage. The amplified products were used successfully to setup a multiplex polymerase chain reaction-sequence-specific primer for SNP typing of the NKG2D/F genes. The NKG2D/F multiplex polymerase chain reaction (PCR) contained six PCR mixtures for detecting 10 selected SNPs, including 8 NKG2D/F SNP haplotypes and 2 additional NKG2D coding SNPs. This typing procedure will be applicable in both clinical and research laboratories. Thus, our data provide useful information and limitations for utilization of genome-wide amplification using IMDA and its application for multiplex NKG2D/F typing. © 2013 John Wiley & Sons Ltd.

  15. Selected single-nucleotide polymorphisms in FOXE1, SERPINA5, FTO, EVPL, TICAM1 and SCARB1 are associated with papillary and follicular thyroid cancer risk: replication study in a German population.

    Science.gov (United States)

    Sigurdson, Alice J; Brenner, Alina V; Roach, James A; Goudeva, Lilia; Müller, Jörg A; Nerlich, Kai; Reiners, Christoph; Schwab, Robert; Pfeiffer, Liliane; Waldenberger, Melanie; Braganza, Melissa; Xu, Li; Sturgis, Erich M; Yeager, Meredith; Chanock, Stephen J; Pfeiffer, Ruth M; Abend, Michael; Port, Matthias

    2016-07-01

    Several single-nucleotide polymorphisms (SNPs) have been associated with papillary and follicular thyroid cancer (PTC and FTC, respectively) risk, but few have replicated. After analyzing 17525 tag SNPs in 1129 candidate genes, we found associations with PTC risk in SERPINA5, FTO, HEMGN (near FOXE1) and other genes. Here, we report results from a replication effort in a large independent PTC/FTC case-control study conducted in Germany. We evaluated the best tagging SNPs from our previous PTC study and additionally included SNPs in or near FOXE1 and NKX2-1 genes, known susceptibility loci for thyroid cancer. We genotyped 422 PTC and 130 FTC cases and 752 controls recruited from three German clinical centers. We used polytomous logistic regression to simultaneously estimate PTC and FTC associations for 79 SNPs based on log-additive models. We assessed effect modification by body mass index (BMI), gender and age for all SNPs, and selected SNP by SNP interactions. We confirmed associations with PTC and SNPs in FOXE1/HEMGN, SERPINA5 (rs2069974), FTO (rs8047395), EVPL (rs2071194), TICAM1 (rs8120) and SCARB1 (rs11057820) genes. We found associations with SNPs in FOXE1, SERPINA5, FTO, TICAM1 and HSPA6 and FTC. We found two significant interactions between FTO (rs8047395) and BMI (P = 0.0321) and between TICAM1 (rs8120) and FOXE1 (rs10984377) (P = 0.0006). Besides the known associations with FOXE1 SNPs, we confirmed additional PTC SNP associations reported previously. We also found several new associations with FTC risk and noteworthy interactions. We conclude that multiple variants and host factors might interact in complex ways to increase risk of PTC and FTC. Published by Oxford University Press 2016.

  16. A 34K SNP genotyping array for Populus trichocarpa: design, application to the study of natural populations and transferability to other Populus species.

    Science.gov (United States)

    Geraldes, A; Difazio, S P; Slavov, G T; Ranjan, P; Muchero, W; Hannemann, J; Gunter, L E; Wymore, A M; Grassa, C J; Farzaneh, N; Porth, I; McKown, A D; Skyba, O; Li, E; Fujita, M; Klápště, J; Martin, J; Schackwitz, W; Pennacchio, C; Rokhsar, D; Friedmann, M C; Wasteneys, G O; Guy, R D; El-Kassaby, Y A; Mansfield, S D; Cronk, Q C B; Ehlting, J; Douglas, C J; Tuskan, G A

    2013-03-01

    Genetic mapping of quantitative traits requires genotypic data for large numbers of markers in many individuals. For such studies, the use of large single nucleotide polymorphism (SNP) genotyping arrays still offers the most cost-effective solution. Herein we report on the design and performance of a SNP genotyping array for Populus trichocarpa (black cottonwood). This genotyping array was designed with SNPs pre-ascertained in 34 wild accessions covering most of the species latitudinal range. We adopted a candidate gene approach to the array design that resulted in the selection of 34 131 SNPs, the majority of which are located in, or within 2 kb of, 3543 candidate genes. A subset of the SNPs on the array (539) was selected based on patterns of variation among the SNP discovery accessions. We show that more than 95% of the loci produce high quality genotypes and that the genotyping error rate for these is likely below 2%. We demonstrate that even among small numbers of samples (n = 10) from local populations over 84% of loci are polymorphic. We also tested the applicability of the array to other species in the genus and found that the number of polymorphic loci decreases rapidly with genetic distance, with the largest numbers detected in other species in section Tacamahaca. Finally, we provide evidence for the utility of the array to address evolutionary questions such as intraspecific studies of genetic differentiation, species assignment and the detection of natural hybrids. © 2013 Blackwell Publishing Ltd.

  17. Comprehensive identification of single nucleotide polymorphisms associated with beta-lactam resistance within pneumococcal mosaic genes.

    Directory of Open Access Journals (Sweden)

    Claire Chewapreecha

    2014-08-01

    Full Text Available Traditional genetic association studies are very difficult in bacteria, as the generally limited recombination leads to large linked haplotype blocks, confounding the identification of causative variants. Beta-lactam antibiotic resistance in Streptococcus pneumoniae arises readily as the bacteria can quickly incorporate DNA fragments encompassing variants that make the transformed strains resistant. However, the causative mutations themselves are embedded within larger recombined blocks, and previous studies have only analysed a limited number of isolates, leading to the description of "mosaic genes" as being responsible for resistance. By comparing a large number of genomes of beta-lactam susceptible and non-susceptible strains, the high frequency of recombination should break up these haplotype blocks and allow the use of genetic association approaches to identify individual causative variants. Here, we performed a genome-wide association study to identify single nucleotide polymorphisms (SNPs and indels that could confer beta-lactam non-susceptibility using 3,085 Thai and 616 USA pneumococcal isolates as independent datasets for the variant discovery. The large sample sizes allowed us to narrow the source of beta-lactam non-susceptibility from long recombinant fragments down to much smaller loci comprised of discrete or linked SNPs. While some loci appear to be universal resistance determinants, contributing equally to non-susceptibility for at least two classes of beta-lactam antibiotics, some play a larger role in resistance to particular antibiotics. All of the identified loci have a highly non-uniform distribution in the populations. They are enriched not only in vaccine-targeted, but also non-vaccine-targeted lineages, which may raise clinical concerns. Identification of single nucleotide polymorphisms underlying resistance will be essential for future use of genome sequencing to predict antibiotic sensitivity in clinical microbiology.

  18. Maternal single nucleotide polymorphisms in the fatty acid desaturase 1 and 2 coding regions modify the impact of prenatal supplementation with DHA on birth weight.

    Science.gov (United States)

    Gonzalez-Casanova, Ines; Rzehak, Peter; Stein, Aryeh D; Garcia Feregrino, Raquel; Rivera Dommarco, Juan A; Barraza-Villarreal, Albino; Demmelmair, Hans; Romieu, Isabelle; Villalpando, Salvador; Martorell, Reynaldo; Koletzko, Berthold; Ramakrishnan, Usha

    2016-04-01

    Specific single nucleotide polymorphisms (SNPs) in the fatty acid desaturase (FADS) gene affect the activity and efficiency of enzymes that are responsible for the conversion of polyunsaturated fatty acids (PUFAs) into their long-chain active form. A high prevalence of SNPs that are associated with slow PUFA conversion has been described in Hispanic populations. We assessed the heterogeneity of the effect of prenatal supplementation with docosahexaenoic acid (DHA) on birth weight across selected FADS SNPs in a sample of Mexican women and their offspring. We obtained information on the maternal genotype from stored blood samples of 654 women who received supplementation with 400 mg DHA/d or a placebo from weeks 18 to 22 of gestation through delivery as part of a randomized controlled trial conducted in Cuernavaca, Mexico. We selected 4 tag SNPs (rs174455, rs174556, rs174602, and rs498793) in the FADS region for analysis. We used an ANOVA to test for the heterogeneity of the effect on birth weight across each of the 4 SNPs. The mean ± SD birth weight was 3210 ± 470 g, and the weight-for-age z score (WAZ) was -0.24 ± 1.00. There were no intention-to-treat differences in birth weights. We showed significant heterogeneity by SNP rs174602 (P= 0.02); offspring of carriers of alleles TT and TC in the intervention group were heavier than those in the placebo group (WAZ: -0.13 ± 0.14 and -0.20 ± 0.08 compared with -0.55 ± 0.15 and -0.39 ± 0.09, respectively); there were no significant differences in offspring of rs174602 CC homozygotes (WAZ: -0.26 ± 0.09 in the intervention group compared with -0.04 ± 0.09 in the placebo group). We showed no significant heterogeneity across the other 3 FADS SNPs. Differential responses to prenatal DHA supplementation on the basis of the genetic makeup of target populations could explain the mixed evidence of the impact of DHA supplementation on birth weight. This trial was registered at clinicaltrials.gov as NCT00646360. © 2016

  19. Single nucleotide polymorphisms in the PRDX3 and RPS19 and risk of HPV persistence and cervical precancer/cancer.

    Directory of Open Access Journals (Sweden)

    Mahboobeh Safaeian

    Full Text Available Host genetic factors might affect the risk of progression from infection with carcinogenic human papillomavirus (HPV, the etiologic agent for cervical cancer, to persistent HPV infection, and hence to cervical precancer and cancer.We assessed 18,310 tag single nucleotide polymorphisms (SNPs from 1113 genes in 416 cervical intraepithelial neoplasia 3 (CIN3/cancer cases, 356 women with persistent carcinogenic HPV infection (median persistence of 25 months and 425 randomly selected women (non-cases and non-HPV persistent from the 10,049 women from the Guanacaste, Costa Rica HPV natural history cohort. For gene and SNP associations, we computed age-adjusted odds ratio and p-trend. Three comparisons were made: 1 association with CIN3/cancer (compared CIN3/cancer cases to random controls, 2 association with persistence (compared HPV persistence to random controls, and 3 progression (compared CIN3/cancers with HPV-persistent group. Regions statistically significantly associated with CIN3/cancer included genes for peroxiredoxin 3 PRDX3, and ribosomal protein S19 RPS19. The single most significant SNPs from each gene associated with CIN3/cancer were PRDX3 rs7082598 (P(trend<0.0001, and RPS19 rs2305809 (P(trend=0.0007, respectively. Both SNPs were also associated with progression.These data suggest involvement of two genes, RSP19 and PRDX3, or other SNPs in linkage disequilibrium, with cervical cancer risk. Further investigation showed that they may be involved in both the persistence and progression transition stages. Our results require replication but, if true, suggest a role for ribosomal dysfunction, mitochondrial processes, and/or oxidative stress, or other unknown function of these genes in cervical carcinogenesis.

  20. Association of Single Nucleotide Polymorphisms in the ST3GAL4 Gene with VWF Antigen and Factor VIII Activity.

    Directory of Open Access Journals (Sweden)

    Jaewoo Song

    Full Text Available VWF is extensively glycosylated with biantennary core fucosylated glycans. Most N-linked and O-linked glycans on VWF are sialylated. FVIII is also glycosylated, with a glycan structure similar to that of VWF. ST3GAL sialyltransferases catalyze the transfer of sialic acids in the α2,3 linkage to termini of N- and O-glycans. This sialic acid modification is critical for VWF synthesis and activity. We analyzed genetic and phenotypic data from the Atherosclerosis Risk in Communities (ARIC study for the association of single nucleotide polymorphisms (SNPs in the ST3GAL4 gene with plasma VWF levels and FVIII activity in 12,117 subjects. We also analyzed ST3GAL4 SNPs found in 2,535 subjects of 26 ethnicities from the 1000 Genomes (1000G project for ethnic diversity, SNP imputation, and ST3GAL4 haplotypes. We identified 14 and 1,714 ST3GAL4 variants in the ARIC GWAS and 1000G databases respectively, with 46% being ethnically diverse in their allele frequencies. Among the 14 ST3GAL4 SNPs found in ARIC GWAS, the intronic rs2186717, rs7928391, and rs11220465 were associated with VWF levels and with FVIII activity after adjustment for age, BMI, hypertension, diabetes, ever-smoking status, and ABO. This study illustrates the power of next-generation sequencing in the discovery of new genetic variants and a significant ethnic diversity in the ST3GAL4 gene. We discuss potential mechanisms through which these intronic SNPs regulate ST3GAL4 biosynthesis and the activity that affects VWF and FVIII.

  1. Association of Single Nucleotide Polymorphisms in the ST3GAL4 Gene with VWF Antigen and Factor VIII Activity.

    Science.gov (United States)

    Song, Jaewoo; Xue, Cheng; Preisser, John S; Cramer, Drake W; Houck, Katie L; Liu, Guo; Folsom, Aaron R; Couper, David; Yu, Fuli; Dong, Jing-Fei

    2016-01-01

    VWF is extensively glycosylated with biantennary core fucosylated glycans. Most N-linked and O-linked glycans on VWF are sialylated. FVIII is also glycosylated, with a glycan structure similar to that of VWF. ST3GAL sialyltransferases catalyze the transfer of sialic acids in the α2,3 linkage to termini of N- and O-glycans. This sialic acid modification is critical for VWF synthesis and activity. We analyzed genetic and phenotypic data from the Atherosclerosis Risk in Communities (ARIC) study for the association of single nucleotide polymorphisms (SNPs) in the ST3GAL4 gene with plasma VWF levels and FVIII activity in 12,117 subjects. We also analyzed ST3GAL4 SNPs found in 2,535 subjects of 26 ethnicities from the 1000 Genomes (1000G) project for ethnic diversity, SNP imputation, and ST3GAL4 haplotypes. We identified 14 and 1,714 ST3GAL4 variants in the ARIC GWAS and 1000G databases respectively, with 46% being ethnically diverse in their allele frequencies. Among the 14 ST3GAL4 SNPs found in ARIC GWAS, the intronic rs2186717, rs7928391, and rs11220465 were associated with VWF levels and with FVIII activity after adjustment for age, BMI, hypertension, diabetes, ever-smoking status, and ABO. This study illustrates the power of next-generation sequencing in the discovery of new genetic variants and a significant ethnic diversity in the ST3GAL4 gene. We discuss potential mechanisms through which these intronic SNPs regulate ST3GAL4 biosynthesis and the activity that affects VWF and FVIII.

  2. A survey of endogenous retrovirus (ERV) sequences in the vicinity of multiple sclerosis (MS)-associated single nucleotide polymorphisms (SNPs).

    Science.gov (United States)

    Brütting, Christine; Emmer, Alexander; Kornhuber, Malte; Staege, Martin S

    2016-08-01

    Although multiple sclerosis (MS) is one of the most common central nervous system diseases in young adults, little is known about its etiology. Several human endogenous retroviruses (ERVs) are considered to play a role in MS. We are interested in which ERVs can be identified in the vicinity of MS associated genetic marker to find potential initiators of MS. We analysed the chromosomal regions surrounding 58 single nucleotide polymorphisms (SNPs) that are associated with MS identified in one of the last major genome wide association studies. We scanned these regions for putative endogenous retrovirus sequences with large open reading frames (ORFs). We observed that more retrovirus-related putative ORFs exist in the relatively close vicinity of SNP marker indices in multiple sclerosis compared to control SNPs. We found very high homologies to HERV-K, HCML-ARV, XMRV, Galidia ERV, HERV-H/env62 and XMRV-like mouse endogenous retrovirus mERV-XL. The associated genes (CYP27B1, CD6, CD58, MPV17L2, IL12RB1, CXCR5, PTGER4, TAGAP, TYK2, ICAM3, CD86, GALC, GPR65 as well as the HLA DRB1*1501) are mainly involved in the immune system, but also in vitamin D regulation. The most frequently detected ERV sequences are related to the multiple sclerosis-associated retrovirus, the human immunodeficiency virus 1, HERV-K, and the Simian foamy virus. Our data shows that there is a relation between MS associated SNPs and the number of retroviral elements compared to control. Our data identifies new ERV sequences that have not been associated with MS, so far.

  3. Alternative transcription of sodium/bicarbonate transporter SLC4A7 gene enhanced by single nucleotide polymorphisms.

    Science.gov (United States)

    Park, Hae Jeong; Lee, Soojung; Ju, Eunji; Jones, Jayre A; Choi, Inyeong

    2017-03-01

    Genome-wide association studies have identified the single nucleotide polymorphism (SNP) rs3278 in the human SLC4A7 gene as one of the marker loci for addiction vulnerability. This marker is located in an intron of the gene, and its genomic role has been unknown. In this study, we examined rs3278 and three adjacent SNPs prevalent in alcoholics for their effects on an alternative promoter that would lead to the production of the NH 2 -terminally truncated protein NBCn1ΔN450, missing the first 450 amino acids. Analysis of the transcription start site database and a promoter prediction algorithm identified a cluster of three promoters in intron 7 and two short CpG-rich sites in intron 6. The promoter closest to rs3278 showed strong transcription activity in luciferase reporter gene assays. Major-to-minor allele substitution at rs3278 resulted in increased transcription activity. Equivalent substitutions at adjacent rs3772723 (intron 7) and rs13077400 (exon 8) had negligible effect; however, the substitution at nonsynonymous rs3755652 (exon 8) increased the activity by more than twofold. The concomitant substitution at rs3278/rs3755652 produced an additive effect. The rs3755652 had more profound effects on the promoter than the upstream regulatory CpG sites. The amino acid change E326K caused by rs3755652 had negligible effect on transporter function. In HEK 293 cells, NBCn1ΔN450 was expressed in plasma membranes, but at significantly lower levels than the nontruncated NBCn1-E. The pH change mediated by NBCn1ΔN450 was also low. We conclude that rs3278 and rs3755652 stimulate an alternative transcription of the SLC4A7 gene, increasing the production of a defective transporter. Copyright © 2017 the American Physiological Society.

  4. Exploring single nucleotide polymorphisms previously related to obesity and metabolic traits in pediatric-onset type 2 diabetes.

    Science.gov (United States)

    Miranda-Lora, América Liliana; Cruz, Miguel; Aguirre-Hernández, Jesús; Molina-Díaz, Mario; Gutiérrez, Jorge; Flores-Huerta, Samuel; Klünder-Klünder, Miguel

    2017-07-01

    To evaluate the association of 64 obesity-related polymorphisms with pediatric-onset type 2 diabetes and other glucose- and insulin-related traits in Mexican children. Case-control and case-sibling designs were followed. We studied 99 patients with pediatric-onset type 2 diabetes, their siblings (n = 101) without diabetes, 83 unrelated pediatric controls and 137 adult controls. Genotypes were determined for 64 single nucleotide polymorphisms, and a possible association was examined between those genotypes and type 2 diabetes and other quantitative traits, after adjusting for age, sex and body mass index. In the case-pediatric control and case-adult control analyses, five polymorphisms were associated with increased likelihood of pediatric-onset type 2 diabetes; only one of these polymorphisms (CADM2/rs1307880) also showed a consistent effect in the case-sibling analysis. The associations in the combined analysis were as follows: ADORA1/rs903361 (OR 1.9, 95% CI 1.2; 3.0); CADM2/rs13078807 (OR 2.2, 95% CI 1.2; 4.0); GNPDA2/rs10938397 (OR 2.2, 95% CI 1.4; 3.7); VEGFA/rs6905288 (OR 1.4, 95% CI 1.1; 2.1) and FTO/rs9939609 (OR 1.8, 95% CI 1.0; 3.2). We also identified 16 polymorphisms nominally associated with quantitative traits in participants without diabetes. ADORA/rs903361, CADM2/rs13078807, GNPDA2/rs10938397, VEGFA/rs6905288 and FTO/rs9939609 are associated with an increased risk of pediatric-onset type 2 diabetes in the Mexican population.

  5. Association of single nucleotide polymorphisms in pro-inflammatory cytokine and toll-like receptor genes with pediatric hematogenous osteomyelitis.

    Science.gov (United States)

    Osman, A E; Mubasher, M; ElSheikh, N E; AlHarthi, H; AlZahrani, M S; Ahmed, N; ElGhazali, G; Bradley, B A; Fadil, A-S A

    2016-05-23

    Hematogenous osteomyelitis (HO) is a bone infection wherein bacteria penetrate to the bone through the blood stream. Several single nucleotide polymorphisms (SNPs) have been associated with susceptibility to infectious diseases. In this study, we investigated the contribution of SNPs in interleukin (IL)-1B1 (rs16944), IL1A (rs1800587), IL1B (rs1143634), toll-like receptor (TLR)-2 (rs3804099), TLR4 (rs4986790), TLR4 (rs4986791), IL1R (rs2234650), tumor necrosis factor (TNF)-α (rs1800629), TNF (rs361525), and IL1RN (rs315952) towards the development of HO in Saudi patients and compared to healthy controls. Fifty-two patients diagnosed with HO and 103 healthy individuals were genotyped. The frequencies of genotypes GG (rs16944) and AA (rs16944) were lower and higher in patients [odds ratio (OR) = 0.34, Pc = 0.05] and controls (OR = 1.33, Pc = 0.05), respectively, suggesting that SNPs at this locus could alter HO susceptibility. In addition, the patients and controls exhibited lower and higher frequencies of the alleles G (rs16944) (OR = 0.43, Pc = 0.007) and A (rs16944) (OR = 2.32, Pc = 0.007), respectively. The expression of alleles C (rs3804099) and T (rs3804099) were higher in patients (OR = 2.05, Pc = 0.04) and controls (OR = 0.49, Pc = 0.04), respectively. In conclusion, SNPs at rs16944 and rs3804099 were found to be associated with HO in the Saudi population.

  6. The single nucleotide polymorphism Gly482Ser in the PGC-1α gene impairs exercise-induced slow-twitch muscle fibre transformation in humans.

    Directory of Open Access Journals (Sweden)

    Peter Steinbacher

    Full Text Available PGC-1α (peroxisome proliferator-activated receptor γ co-activator 1α is an important regulator of mitochondrial biogenesis and a master regulator of enzymes involved in oxidative phosphorylation. Recent evidence demonstrated that the Gly482Ser single nucleotide polymorphism (SNP in the PGC-1α gene affects insulin sensitivity, blood lipid metabolism and binding to myocyte enhancer factor 2 (MEF2. Individuals carrying this SNP were shown to have a reduced cardiorespiratory fitness and a higher risk to develop type 2 diabetes. Here, we investigated the responses of untrained men with the Gly482Ser SNP to a 10 week programme of endurance training (cycling, 3 x 60 min/week, heart rate at 70-90% VO2peak. Quantitative data from analysis of biopsies from vastus lateralis muscle revealed that the SNP group, in contrast to the control group, lacked a training-induced increase in content of slow contracting oxidative fibres. Capillary supply, mitochondrial density, mitochondrial enzyme activities and intramyocellular lipid content increased similarly in both groups. These results indicate that the impaired binding of MEF2 to PGC-1α in humans with this SNP impedes exercise-induced fast-to-slow muscle fibre transformation.

  7. The single nucleotide polymorphism Gly482Ser in the PGC-1α gene impairs exercise-induced slow-twitch muscle fibre transformation in humans.

    Science.gov (United States)

    Steinbacher, Peter; Feichtinger, René G; Kedenko, Lyudmyla; Kedenko, Igor; Reinhardt, Sandra; Schönauer, Anna-Lena; Leitner, Isabella; Sänger, Alexandra M; Stoiber, Walter; Kofler, Barbara; Förster, Holger; Paulweber, Bernhard; Ring-Dimitriou, Susanne

    2015-01-01

    PGC-1α (peroxisome proliferator-activated receptor γ co-activator 1α) is an important regulator of mitochondrial biogenesis and a master regulator of enzymes involved in oxidative phosphorylation. Recent evidence demonstrated that the Gly482Ser single nucleotide polymorphism (SNP) in the PGC-1α gene affects insulin sensitivity, blood lipid metabolism and binding to myocyte enhancer factor 2 (MEF2). Individuals carrying this SNP were shown to have a reduced cardiorespiratory fitness and a higher risk to develop type 2 diabetes. Here, we investigated the responses of untrained men with the Gly482Ser SNP to a 10 week programme of endurance training (cycling, 3 x 60 min/week, heart rate at 70-90% VO2peak). Quantitative data from analysis of biopsies from vastus lateralis muscle revealed that the SNP group, in contrast to the control group, lacked a training-induced increase in content of slow contracting oxidative fibres. Capillary supply, mitochondrial density, mitochondrial enzyme activities and intramyocellular lipid content increased similarly in both groups. These results indicate that the impaired binding of MEF2 to PGC-1α in humans with this SNP impedes exercise-induced fast-to-slow muscle fibre transformation.

  8. Relationship between single nucleotide polymorphism of chemokine CXCL10 G-210A and the chronicity and severity of HBV infection

    Directory of Open Access Journals (Sweden)

    Li-ming LIU

    2011-01-01

    Full Text Available Objective To investigate the single nucleotide polymorphism(SNP in the promoter of chemokine CXCL10 G-201A,and explore the relationship between the SNP and the chronicity and severity of hepatitis B virus(HBV infection.Methods Blood samples were collected from 792 patients with HBV infection,including 200 with acute hepatitis B(AHB,200 with mild/moderate chronic hepatitis B(CHB-M,192 with severe chronic hepatitis B(CHB-S and 200 with acute liver failure of chronic hepatitis(ACLF,and 300 healthy people were enrolled as normal control(NC.DNA were extracted and subjected to PCR amplification of fragment containing C-1596 site that links with G-201 variation,followed by restriction fragment length polymerase(RFLP analysis.Simultaneously,400 samples were randomly extracted from various groups for direct sequencing of G-201 variation.The consistency of SNP typing results of the two methods was analyzed.Results Variation rates of G-201A were 17.77% for AHB group,25.26% for CHB-M group,26.59% for CHB-S group,21.28% for ACLF group,and 13.82% for NC group.The overall P value obtained from the general χ2 test among the 5 groups was 0.0037.The correlation test(P=0.0015 demonstrated that the variation rate was related to different disease status,and the linear trend test(P=0.0029,Z=-2.9748 indicated an increasing trend of variation rate with the disease progression.Paired comparison showed that the differences in variation rate between CHB-M and NC(P=0.0024,CHB-S and NC(P=0.0007,ACLF and NC(P=0.0428,as well as CHB-S and CHB(P=0.0488 were statistically significant.Direct PCR sequencing showed 98.68% identity with the results from PCR-RFLP.Kappa test(U=58.425,P < 0.05 indicated that the consistency of the two assays met the statistical requirements.Conclusion The G-201A variation in CXCL10 promoter is related to chronicity of HBV infection,and the relations between the variation and the severity of HBV infection remains to be further clarified.

  9. Phenotypic, genetic, and single nucleotide polymorphism marker associations between calf diseases and subsequent performance and disease occurrences of first-lactation German Holstein cows.

    Science.gov (United States)

    Mahmoud, M; Yin, T; Brügemann, K; König, S

    2017-03-01

    A total of 31,396 females born from 2010 to 2013 in 43 large-scale Holstein-Friesian herds were phenotyped for calf and cow disease traits using a veterinarian diagnosis key. Calf diseases were general disease status (cGDS), calf diarrhea (cDIA), and calf respiratory disease (cRD) recorded from birth to 2 mo of age. Incidences were 0.48 for cGDS, 0.28 for cRD, and 0.21 for cDIA. Cow disease trait recording focused on the early period directly after calving in first parity, including the interval from 10 d before calving to 200 d in lactation. For cows, at least one entry for the respective disease implied a score = 1 (sick); otherwise, score = 0 (healthy). Corresponding cow diseases were first-lactation general disease status (flGDS), first-lactation diarrhea (flDIA), and first-lactation respiratory disease (flRD). Additional cow disease categories included mastitis (flMAST), claw disorders (flCLAW), female fertility disorders (flFF), and metabolic disorders (flMET). A further cow trait category considered first-lactation test-day production traits from official test-days 1 and 2 after calving. The genotype data set included 41,256 single nucleotide polymorphisms (SNP) from 9,388 females with phenotypes. Linear and generalized linear mixed models with a logit link-function were applied to Gaussian and categorical cow traits, respectively, considering the calf disease as a fixed effect. Most of the calf diseases were not significantly associated with the occurrence of any cow disease. By trend, increasing risks for the occurrence of cow diseases were observed for healthy calves, indicating mechanisms of disease resistance with aging. Also by trend, occurrence of calf diseases was associated with decreasing milk, protein, and fat yields. Univariate linear and threshold animal models were used to estimate heritabilities and breeding values (EBV) for all calf and cow traits. Heritabilities for cGDS and cRD were 0.06 and 0.07 for cDIA. Genetic correlations among all

  10. No association between a common single nucleotide polymorphism, rs4141463, in the MACROD2 gene and autism spectrum disorder.

    NARCIS (Netherlands)

    Curran, S.; Bolton, P.; Rozsnyai, K.; Chiocchetti, A.; Klauck, S.M.; Duketis, E.; Poustka, F.; Schlitt, S.; Freitag, C.M.; Lee, I. van der; Muglia, P.; Poot, M.; Staal, W.G.; Jonge, M.V. de; Ophoff, R.A.; Lewis, C.; Skuse, D.; Mandy, W.; Vassos, E.; Fossdal, R.; Magnusson, P.; Hreidarsson, S.; Saemundsen, E.; Stefansson, H.; Stefansson, K.; Collier, D.

    2011-01-01

    The Autism Genome Project (AGP) Consortium recently reported genome-wide significant association between autism and an intronic single nucleotide polymorphism marker, rs4141463, within the MACROD2 gene. In the present study we attempted to replicate this finding using an independent case-control

  11. Functional single nucleotide polymorphisms within the cyclin-dependent kinase inhibitor 2A/2B region affect pancreatic cancer risk

    Czech Academy of Sciences Publication Activity Database

    Campa, D.; Pastore, M.; Gentiluomo, M.; Talar-Wojnarowska, R.; Kupcinskas, J.; Malecka-Panas, E.; Neoptolemos, J. P.; Niesen, W.; Vodička, Pavel; Delle Fave, G.; Bueno-de-Mesquita, H. B.; Gazouli, M.; Pacetti, P.; Di Leo, M.; Ito, H.; Klüter, H.; Souček, P.; Corbo, V.; Yamao, K.; Hosono, S.; Kaaks, R.; Vashist, Y.; Gioffreda, D.; Strobel, O.; Shimizu, Y.; Dijk, F.; Andriulli, A.; Ivanauskas, A.; Bugert, P.; Tavano, F.; Vodičková, L.; Zambon, C.F.; Lovecek, M.; Landi, S.; Key, T. J.; Boggi, U.; Pezzilli, R.; Jamroziak, K.; Mohelníková-Duchoňová, B.; Mambrini, A.; Bambi, F.; Busch, O.; Pazienza, V.; Valente, R.; Theodoropoulos, G.E.; Hackert, T.; Capurso, G.; Cavestro, G.M.; Pasquali, C.; Basso, D.; Sperti, C.; Matsuo, K.; Büchler, M.; Khaw, K. T.; Izbicki, J.; Costello, E.; Katzke, V.; Michalski, Ch.; Stepien, A.; Rizzato, C.; Canzian, F.

    2016-01-01

    Roč. 7, č. 35 (2016), s. 57011-57020 ISSN 1949-2553 R&D Projects: GA ČR GAP301/12/1734 Institutional support: RVO:68378041 Keywords : pancreatic cancer * CDKN2A * single nucleotide polymorphisms Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.168, year: 2016

  12. Genome-wide divergence and linkage disequilibrium analyses for Capsicum baccatum revealed by genome-anchored single nucleotide polymorphisms

    Science.gov (United States)

    Principal component analysis (PCA) with 36,621 polymorphic genome-anchored single nucleotide polymorphisms (SNPs) identified collectively for Capsicum annuum and Capsicum baccatum was used to show the distribution of these 2 important incompatible cultivated pepper species. Estimated mean nucleotide...

  13. Investigation of single nucleotide polymorphisms and biological pathways associated with response to TNFα inhibitors in patients with rheumatoid arthritis

    DEFF Research Database (Denmark)

    Krintel, Sophine B; Palermo, Giuseppe; Johansen, Julia S

    2012-01-01

    Recently, two genome-wide association studies identified single nucleotide polymorphisms (SNPs) significantly associated with the treatment response to tumor necrosis factor α (TNFα) inhibitors in patients with rheumatoid arthritis (RA). We aimed to replicate these results and identify SNPs and t...

  14. Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar)

    Science.gov (United States)

    2014-01-01

    Background Dense single nucleotide polymorphism (SNP) genotyping arrays provide extensive information on polymorphic variation across the genome of species of interest. Such information can be used in studies of the genetic architecture of quantitative traits and to improve the accuracy of selection in breeding programs. In Atlantic salmon (Salmo salar), these goals are currently hampered by the lack of a high-density SNP genotyping platform. Therefore, the aim of the study was to develop and test a dense Atlantic salmon SNP array. Results SNP discovery was performed using extensive deep sequencing of Reduced Representation (RR-Seq), Restriction site-Associated DNA (RAD-Seq) and mRNA (RNA-Seq) libraries derived from farmed and wild Atlantic salmon samples (n = 283) resulting in the discovery of > 400 K putative SNPs. An Affymetrix Axiom® myDesign Custom Array was created and tested on samples of animals of wild and farmed origin (n = 96) revealing a total of 132,033 polymorphic SNPs with high call rate, good cluster separation on the array and stable Mendelian inheritance in our sample. At least 38% of these SNPs are from transcribed genomic regions and therefore more likely to include functional variants. Linkage analysis utilising the lack of male recombination in salmonids allowed the mapping of 40,214 SNPs distributed across all 29 pairs of chromosomes, highlighting the extensive genome-wide coverage of the SNPs. An identity-by-state clustering analysis revealed that the array can clearly distinguish between fish of different origins, within and between farmed and wild populations. Finally, Y-chromosome-specific probes included on the array provide an accurate molecular genetic test for sex. Conclusions This manuscript describes the first high-density SNP genotyping array for Atlantic salmon. This array will be publicly available and is likely to be used as a platform for high-resolution genetics research into traits of evolutionary and economic importance in

  15. An Investigation of Modifying Effects of Metallothionein Single-Nucleotide Polymorphisms on the Association between Mercury Exposure and Biomarker Levels

    Science.gov (United States)

    Wang, Yi; Goodrich, Jaclyn M.; Gillespie, Brenda; Werner, Robert; Basu, Niladri

    2012-01-01

    Background: Recent studies have suggested that several genes that mediate mercury metabolism are polymorphic in humans. Objective: We hypothesized that single-nucleotide polymorphisms (SNPs) in metallothionein (MT) genes may underlie interindividual differences in mercury biomarker levels. We studied the potential modifying effects of MT SNPs on mercury exposure–biomarker relationships. Methods: We measured total mercury in urine and hair samples of 515 dental professionals. We also surveyed occupational and personal exposures to dental amalgam and dietary fish consumption, from which daily methylmercury (MeHg) intake was estimated. Log-transformed urine and hair levels were modeled in multivariable linear regression separately against respective exposure surrogates, and the effect modification of 13 MT SNPs on exposure was investigated. Results: The mean mercury levels in urine (1.06 μg/L) and hair (0.51 μg/g) were not significantly different from the U.S. general population (0.95 μg/L and 0.47 μg/g, respectively). The mean estimated daily MeHg intake was 0.084 μg/kg/day (range, 0–0.98 μg/kg/day), with 25% of study population intakes exceeding the current U.S. Environmental Protection Agency reference dose of 0.1 μg/kg/day. Multivariate regression analysis showed that subjects with the MT1M (rs2270837) AA genotype (n = 10) or the MT2A (rs10636) CC genotype (n = 42) had lower urinary mercury levels than did those with the MT1M or MT2A GG genotype (n = 329 and 251, respectively) after controlling for exposure and potential confounders. After controlling for MeHg intake, subjects with MT1A (rs8052394) GA and GG genotypes (n = 24) or the MT1M (rs9936741) TT genotype (n = 459) had lower hair mercury levels than did subjects with MT1A AA (n = 113) or MT1M TC and CC genotypes (n = 15), respectively. Conclusion: Our findings suggest that some MT genetic polymorphisms may influence mercury biomarker concentrations at levels of exposure relevant to the general

  16. Replication of endometriosis-associated single-nucleotide polymorphisms from genome-wide association studies in a Caucasian population.

    Science.gov (United States)

    Sundqvist, J; Xu, H; Vodolazkaia, A; Fassbender, A; Kyama, C; Bokor, A; Gemzell-Danielsson, K; D'Hooghe, T M; Falconer, H

    2013-03-01

    Is it possible to replicate the previously identified genetic association of four single-nucleotide polymorphisms (SNPs), rs12700667, rs7798431, rs1250248 and rs7521902, with endometriosis in a Caucasian population? A borderline association was observed for rs1250248 and endometriosis (P = 0.049). However, we could not replicate the other previously identified endometriosis-associated SNPs (rs12700667, rs7798431 and rs7521902) in the same population. Endometriosis is considered a complex disease, influenced by several genetic and environmental factors, as well as interactions between them. Previous studies have found genetic associations with endometriosis for SNPs at the 7p15 and 2q35 loci in a Caucasian population. Allele frequencies of SNPs were investigated in patients with endometriosis and controls. Blood samples and peritoneal biopsies were taken from a Caucasian female population consisting of 1129 patients with endometriosis and 831 controls. DNA was extracted for genotyping. The study was performed at a University hospital and research laboratories. A weak association with endometriosis (all stages) was observed for rs1250248 (P = 0.049). No significant associations were observed for the SNPs rs12700667, rs7798431 and rs7521902. A non-significant trend towards the association of rs1250248 with moderate/severe endometriosis was observed (odds ratio 1.18, 95% confidence interval 0.97-1.44). The inability to confirm all previous findings may result from differences between populations and type II errors. Our result demonstrates the difficulty of identifying common genetic variants in complex diseases. This study was supported by grants from the Karolinska Institutet and Stockholm City County/Karolinska Institutet (ALF), Stockholm, Sweden, Swedish Medical Research Council (K2007-54X-14212-06-3, K2010-54X-14212-09-3), Stockholm, Sweden, Leuven University Research Council (Onderzoeksraad KU Leuven), the Leuven University Hospitals Clinical Research Foundation

  17. Highly significant association between two common single nucleotide polymorphisms in CORIN gene and preeclampsia in Caucasian women.

    Directory of Open Access Journals (Sweden)

    Alain Stepanian

    Full Text Available Preeclampsia is a frequent medical complication during pregnancy. Corin, a serine protease which activates pro-atrial natriuretic peptide, has recently been shown to be involved in the pathophysiology of preeclampsia. The aim of this study was to search for CORIN gene variations and their association to preeclampsia in Caucasian and African women. Our study population was composed of 571 pregnant women (295 with preeclampsia and 276 normotensive controls matched for maternal and gestational age, and ethnic origin. The 22 exons of the CORIN gene were sequenced in a discovery sample (n = 260, where 31 single nucleotide polymorphisms were identified. In a replication sample (n = 311, 4 single nucleotide polymorphisms were tested. Two minor alleles (C for rs2271036 and G for rs2271037 were significantly associated to preeclampsia. Adjusted odds ratios [95% confidence interval] were 2.5 [1.2-3.8] (p = 0.007 and 2.3 [1.5-3.5] (p = 1.3 × 10(-4, respectively. These associations were ethnic-specific, as only found in the Caucasian of subjects (odds ratio = 3.5 [1.8-6.6], p = 1.1 × 10(-4; odds ratio = 3.1 [1.7-5.8], p = 2.1 × 10(-4, for each single nucleotide polymorphism, respectively. The two single nucleotide polymorphisms are in almost perfect linkage disequilibrium (r(2 = 0.93. No specific association was found with severe preeclampsia, early-onset preeclampsia nor fetal growth retardation. In conclusion, this is the first report of a highly significant association between these two single nucleotide polymorphisms in CORIN gene and preeclampsia. Our findings further support the probability of a critical role of corin in preeclamspia pathophysiology at the uteroplacental interface.

  18. Single Nucleotide Polymorphism TGFβ1 R25P Correlates with Acute Toxicity during Neoadjuvant Chemoradiotherapy in Rectal Cancer Patients

    International Nuclear Information System (INIS)

    Smith, J. Joshua; Wasserman, Isaac; Milgrom, Sarah A.; Chow, Oliver S.; Chen, Chin-Tung; Patil, Sujata; Goodman, Karyn A.; Garcia-Aguilar, Julio

    2017-01-01

    Purpose: To validate the finding of an association between single nucleotide polymorphisms (SNPs) and toxicity during chemoradiotherapy (CRT) in rectal cancer patients, in an independent population. Methods and Materials: The cohort consisted of 165 patients who received CRT for rectal cancer from 2006 to 2012. Prospectively recorded toxicity information, graded according to the Common Terminology Criteria for Adverse Events version 3.0, was retrieved from the medical record. Additionally, a subset of 52 patients recorded their gastrointestinal symptoms weekly during CRT, using the 7-item Bowel Problems Scale. Deoxyribonucleic acid was extracted from normal tissue in the proctectomy specimens and screened for 3 SNPs: XRCC1 R399Q, XPD K751Q, and TGFβ1 R25P. Univariable and multivariable logistic regression models were constructed. Results: The median radiation dose was 50.4 Gy, and all patients received concurrent chemotherapy. Toxicities measured by the Common Terminology Criteria for Adverse Events were closely associated with patient-reported outcomes for the patients who completed the 7-item Bowel Problems Scale. Grade ≥3 toxicity occurred during CRT in 14 patients (8%). All 14 patients had either XRCC1 R399Q or TGFβ1 R25P polymorphisms. The TGFβ1 R25P polymorphism was significantly associated with grade ≥3 toxicity (odds ratio [OR] 3.47, P=.04) and, in patients who completed the Bowel Problems Scale, with grade ≥4 toxicity (OR 5.61, P=.02). The latter finding persisted in a multivariable logistic regression model controlling for ethnicity, age, and sex (adjusted OR 1.83, P=.02). Conclusions: We have validated the correlation between the TGFβ1 R25P SNP and acute toxicity during CRT in an independent cohort using both clinician- and patient-reported toxicity. The information from our study could be used as a basis to formulate a prospective trial testing the utility of this SNP as a biomarker of acute toxicity during neoadjuvant treatment in locally

  19. Single Nucleotide Polymorphism TGFβ1 R25P Correlates with Acute Toxicity during Neoadjuvant Chemoradiotherapy in Rectal Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J. Joshua [Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Wasserman, Isaac [Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Icahn School of Medicine at Mount Sinai, New York, New York (United States); Milgrom, Sarah A. [Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Chow, Oliver S.; Chen, Chin-Tung [Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Patil, Sujata [Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Goodman, Karyn A. [Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Garcia-Aguilar, Julio, E-mail: garciaaj@mskcc.org [Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York (United States)

    2017-04-01

    Purpose: To validate the finding of an association between single nucleotide polymorphisms (SNPs) and toxicity during chemoradiotherapy (CRT) in rectal cancer patients, in an independent population. Methods and Materials: The cohort consisted of 165 patients who received CRT for rectal cancer from 2006 to 2012. Prospectively recorded toxicity information, graded according to the Common Terminology Criteria for Adverse Events version 3.0, was retrieved from the medical record. Additionally, a subset of 52 patients recorded their gastrointestinal symptoms weekly during CRT, using the 7-item Bowel Problems Scale. Deoxyribonucleic acid was extracted from normal tissue in the proctectomy specimens and screened for 3 SNPs: XRCC1 R399Q, XPD K751Q, and TGFβ1 R25P. Univariable and multivariable logistic regression models were constructed. Results: The median radiation dose was 50.4 Gy, and all patients received concurrent chemotherapy. Toxicities measured by the Common Terminology Criteria for Adverse Events were closely associated with patient-reported outcomes for the patients who completed the 7-item Bowel Problems Scale. Grade ≥3 toxicity occurred during CRT in 14 patients (8%). All 14 patients had either XRCC1 R399Q or TGFβ1 R25P polymorphisms. The TGFβ1 R25P polymorphism was significantly associated with grade ≥3 toxicity (odds ratio [OR] 3.47, P=.04) and, in patients who completed the Bowel Problems Scale, with grade ≥4 toxicity (OR 5.61, P=.02). The latter finding persisted in a multivariable logistic regression model controlling for ethnicity, age, and sex (adjusted OR 1.83, P=.02). Conclusions: We have validated the correlation between the TGFβ1 R25P SNP and acute toxicity during CRT in an independent cohort using both clinician- and patient-reported toxicity. The information from our study could be used as a basis to formulate a prospective trial testing the utility of this SNP as a biomarker of acute toxicity during neoadjuvant treatment in locally

  20. The Gly16 allele of the G16R single nucleotide polymorphism in the β2-adrenergic receptor gene augments the glycemic response to adrenaline in humans

    DEFF Research Database (Denmark)

    Rokamp, Kim Z.; Staalsø, Jonatan M.; Zaar, Morten

    2017-01-01

    Cerebral non-oxidative carbohydrate consumption may be driven by a ß2-adrenergic mechanism. This study tested whether the 46G > A (G16R) single nucleotide polymorphism of the ß2-adrenergic receptor gene (ADRB2) influences the metabolic and cerebrovascular responses to administration of adrenaline....... Forty healthy Caucasian men were included from a group of genotyped individuals. Cardio- and cerebrovascular variables at baseline and during a 60-min adrenaline infusion (0.06 μg kg-1 min-1) were measured by Model flow, near-infrared spectroscopy and transcranial Doppler sonography. Blood samples were...... obtained from an artery and a retrograde catheter in the right internal jugular vein. The ADRB2 G16R variation had no effect on baseline arterial glucose, but during adrenaline infusion plasma glucose was up to 1.2 mM (CI95: 0.36-2.1, P

  1. Effects of four single nucleotide polymorphisms of EZH2 on cancer risk: a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Ling Z

    2018-02-01

    Full Text Available Zhixin Ling,1,2,* Zonghao You,1,2,* Ling Hu,3 Lei Zhang,1,2 Yiduo Wang,1,2 Minhao Zhang,1,2 Guangyuan Zhang,1,2 Shuqiu Chen,1,2 Bin Xu,1,2 Ming Chen1,2 1Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China; 2Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China; 3Department of Nephrology, People’s Hospital of Wuxi City, Wuxi, China *These authors contributed equally to this work Background: Although the relationship between several single nucleotide polymorphisms (SNPs of the oncogene EZH2 and cancer risk has been assessed by some case–control studies, results of subsequent studies are controversial. Sample sizes from single-center studies are also limited, thereby providing unreliable findings. Hence, we conducted a comprehensive search and meta-analysis to evaluate the associations between EZH2 SNPs and cancer risk.Materials and methods: A comprehensive literature search for studies focusing on EZH2 SNPs and cancer risk was conducted on PubMed, Web of Science, Embase, and China National Knowledge Infrastructure online databases. Genotype data were extracted and examined through a meta-analysis, and pooled odds ratios (ORs with 95% CIs were used to assess the corresponding associations. Sensitivity analysis, publication bias assessment, and heterogeneity test were performed using STATA 12.0.Results: Twelve eligible studies were included in this meta-analysis. The association of 4 SNPs, namely, rs887569, rs2302427, rs3757441, and rs41277434, in the EZH2 locus with cancer risk was evaluated. Five studies (1,794 cases and 1,878 controls indicated that rs887569 was related to a decreased cancer risk (CTTT/CC: OR =0.849, 95% CI: [0.740 to 0.973], P=0.019; TT/CCCT: OR =0.793, 95% CI: [0.654 to 0.962], P=0.019. Seven studies (2,408 cases and 2,910 controls showed that rs2302427 was linked to a decreased cancer risk (GG/CC: OR =0.562, 95% CI: [0.400 to 0.792], P

  2. Assay for identification of heterozygous single-nucleotide polymorphism (Ala67Thr in human poliovirus receptor gene

    Directory of Open Access Journals (Sweden)

    Shyam Sundar Nandi

    2016-01-01

    Results: A new SNP assay for detection of heterozygous Ala67Thr genotype was developed and validated by testing 150 DNA samples. Heterozygous CD155 was detected in 27.33 per cent (41/150 of DNA samples tested by both SNP detection assay and sequencing. Interpretation & conclusions: The SNP detection assay was successfully developed for identification of Ala67Thr polymorphism in human PVR/CD155 gene. The SNP assay will be useful for large scale screening of DNA samples.

  3. The − 5 A/G single-nucleotide polymorphism in the core promoter region of MT2A and its effect on allele-specific gene expression and Cd, Zn and Cu levels in laryngeal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Starska, Katarzyna, E-mail: katarzyna.starska@umed.lodz.pl [I Department of Otolaryngology and Laryngological Oncology, Medical University of Łódź, Kopcinskiego 22, 90-153 Łódź (Poland); Krześlak, Anna; Forma, Ewa [Department of Cytobiochemistry, University of Łódź, Pomorska 142/143, 90-236 Łódź (Poland); Olszewski, Jurek [II Department of Otolaryngology and Laryngological Oncology, Medical University of Łódź, Żeromskiego 113, 90-549 Łódź (Poland); Morawiec-Sztandera, Alina [Department of Head and Neck Surgery, Medical University of Łódź, Paderewskiego 4, 93-509 Łódź (Poland); Aleksandrowicz, Paweł [Department of Otolaryngology and Laryngological Oncology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin (Poland); Lewy-Trenda, Iwona [Department of Pathology, Medical University of Łódź, Pomorska 251, 92-213 Łódź (Poland); and others

    2014-10-15

    Metallothioneins (MTs) are low molecular weight, cysteine-rich heavy metal-binding proteins which participate in the mechanisms of Zn homeostasis, and protect against toxic metals. MTs contain metal-thiolate cluster groups and suppress metal toxicity by binding to them. The aim of this study was to determine the − 5 A/G (rs28366003) single-nucleotide polymorphism (SNP) in the core promoter region of the MT2A gene and to investigate its effect on allele-specific gene expression and Cd, Zn and Cu content in squamous cell laryngeal cancer (SCC) and non-cancerous laryngeal mucosa (NCM) as a control. The MT2A promoter region − 5 A/G SNP was determined by restriction fragment length polymorphism using 323 SCC and 116 NCM. MT2A gene analysis was performed by quantitative real-time PCR. The frequency of A allele carriage was 94.2% and 91.8% in SCC and NCM, respectively, while G allele carriage was detected in 5.8% and 8.2% of SCC and NCM samples, respectively. As a result, a significant association was identified between the − 5 A/G SNP in the MT2A gene with mRNA expression in both groups. Metal levels were analyzed by flame atomic absorption spectrometry. The significant differences were identified between A/A and both the A/G and G/G genotypes, with regard to the concentration of the contaminating metal. The Spearman rank correlation results showed that the MT2A expression and Cd, Zn, Cu levels were negatively correlated. Results obtained in this study suggest that − 5 A/G SNP in MT2A gene may have an effect on allele-specific gene expression and accumulation of metal levels in laryngeal cancer. - Highlights: • MT2A gene expression and metal content in laryngeal cancer tissues • Association between SNP (rs28366003) and expression of MT2A • Significant associations between the SNP and Cd, Zn and Cu levels • Negative correlation between MT2A gene expression and Cd, Zn and Cu levels.

  4. The − 5 A/G single-nucleotide polymorphism in the core promoter region of MT2A and its effect on allele-specific gene expression and Cd, Zn and Cu levels in laryngeal cancer

    International Nuclear Information System (INIS)

    Starska, Katarzyna; Krześlak, Anna; Forma, Ewa; Olszewski, Jurek; Morawiec-Sztandera, Alina; Aleksandrowicz, Paweł; Lewy-Trenda, Iwona

    2014-01-01

    Metallothioneins (MTs) are low molecular weight, cysteine-rich heavy metal-binding proteins which participate in the mechanisms of Zn homeostasis, and protect against toxic metals. MTs contain metal-thiolate cluster groups and suppress metal toxicity by binding to them. The aim of this study was to determine the − 5 A/G (rs28366003) single-nucleotide polymorphism (SNP) in the core promoter region of the MT2A gene and to investigate its effect on allele-specific gene expression and Cd, Zn and Cu content in squamous cell laryngeal cancer (SCC) and non-cancerous laryngeal mucosa (NCM) as a control. The MT2A promoter region − 5 A/G SNP was determined by restriction fragment length polymorphism using 323 SCC and 116 NCM. MT2A gene analysis was performed by quantitative real-time PCR. The frequency of A allele carriage was 94.2% and 91.8% in SCC and NCM, respectively, while G allele carriage was detected in 5.8% and 8.2% of SCC and NCM samples, respectively. As a result, a significant association was identified between the − 5 A/G SNP in the MT2A gene with mRNA expression in both groups. Metal levels were analyzed by flame atomic absorption spectrometry. The significant differences were identified between A/A and both the A/G and G/G genotypes, with regard to the concentration of the contaminating metal. The Spearman rank correlation results showed that the MT2A expression and Cd, Zn, Cu levels were negatively correlated. Results obtained in this study suggest that − 5 A/G SNP in MT2A gene may have an effect on allele-specific gene expression and accumulation of metal levels in laryngeal cancer. - Highlights: • MT2A gene expression and metal content in laryngeal cancer tissues • Association between SNP (rs28366003) and expression of MT2A • Significant associations between the SNP and Cd, Zn and Cu levels • Negative correlation between MT2A gene expression and Cd, Zn and Cu levels

  5. Genotyping of single spore isolates of a Pasteuria penetrans population occurring in Florida using SNP-based markers.

    Science.gov (United States)

    Joseph, S; Schmidt, L M; Danquah, W B; Timper, P; Mekete, T

    2017-02-01

    To generate single spore lines of a population of bacterial parasite of root-knot nematode (RKN), Pasteuria penetrans, isolated from Florida and examine genotypic variation and virulence characteristics exist within the population. Six single spore lines (SSP), 16SSP, 17SSP, 18SSP, 25SSP, 26SSP and 30SSP were generated. Genetic variability was evaluated by comparing single-nucleotide polymorphisms (SNPs) in six protein-coding genes and the 16S rRNA gene. An average of one SNP was observed for every 69 bp in the 16S rRNA, whereas no SNPs were observed in the protein-coding sequences. Hierarchical cluster analysis of 16S rRNA sequences placed the clones into three distinct clades. Bio-efficacy analysis revealed significant heterogeneity in the level virulence and host specificity between the individual clones. The SNP markers developed to the 5' hypervariable region of the 16S rRNA gene may be useful in biotype differentiation within a population of P. penetrans. This study demonstrates an efficient method for generating single spore lines of P. penetrans and gives a deep insight into genetic heterogeneity and varying level of virulence exists within a population parasitizing a specific Meloidogyne sp. host. The results also suggest that the application of generalist spore lines in nematode management may achieve broad RKN control. © 2016 The Society for Applied Microbiology.

  6. Association of rs1801157 single nucleotide polymorphism of CXCL12 gene in breast cancer in Pakistan and in-silico expression analysis of CXCL12–CXCR4 associated biological regulatory network

    Directory of Open Access Journals (Sweden)

    Samra Khalid

    2017-09-01

    Full Text Available Background C-X-C chemokine ligand 12 (CXCL12 has important implications in breast cancer (BC pathogenesis. It is selectively expressed on B and T lymphocytes and is involved in hematopoiesis, thymocyte trafficking, stem cell motility, neovascularization, and tumorigenesis. The single nucleotide polymorphism (SNP rs1801157 of CXCL12 gene has been found to be associated with higher risk of BC. Methods Our study focuses on the genotypic and allelic distribution of SNP (rs1801157; G/A in Pakistani population as well as its association with the clinico-pathological features. The association between rs1801157 genotypes (G/A and BC risks was assessed by a multivariate logistic regression (MLR analysis. Genotyping was performed in both healthy individuals and patients of BC using PCR-restriction fragment length polymorphism (PCR-RFLP method. Furthermore, in-silico approaches were adapted to investigate the association of CXCL12 and its receptor CXCR4 with genes/proteins involved in BC sign