WorldWideScience

Sample records for single-crystal silicon circuits

  1. Single-crystal silicon trench etching for fabrication of highly integrated circuits

    Science.gov (United States)

    Engelhardt, Manfred

    1991-03-01

    The development of single crystal silicon trench etching for fabrication of memory cells in 4 16 and 64Mbit DRAMs is reviewed in this paper. A variety of both etch tools and process gases used for the process development is discussed since both equipment and etch chemistry had to be improved and changed respectively to meet the increasing requirements for high fidelity pattern transfer with increasing degree of integration. In additon to DRAM cell structures etch results for deep trench isolation in advanced bipolar ICs and ASICs are presented for these applications grooves were etched into silicon through a highly doped buried layer and at the borderline of adjacent p- and n-well areas respectively. Shallow trench etching of large and small exposed areas with identical etch rates is presented as an approach to replace standard LOCOS isolation by an advanced isolation technique. The etch profiles were investigated with SEM TEM and AES to get information on contathination and damage levels and on the mechanism leading to anisotropy in the dry etch process. Thermal wave measurements were performed on processed single crystal silicon substrates for a fast evaluation of the process with respect to plasma-induced substrate degradation. This useful technique allows an optimization ofthe etch process regarding high electrical performance of the fully processed memory chip. The benefits of the use of magnetic fields for the development of innovative single crystal silicon dry

  2. Solar cell structure incorporating a novel single crystal silicon material

    Science.gov (United States)

    Pankove, Jacques I.; Wu, Chung P.

    1983-01-01

    A novel hydrogen rich single crystal silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystal silicon without out-gassing the hydrogen. The new material can be used to fabricate semiconductor devices such as single crystal silicon solar cells with surface window regions having a greater band gap energy than that of single crystal silicon without hydrogen.

  3. Resistivity distribution of silicon single crystals using codoping

    Science.gov (United States)

    Wang, Jong Hoe

    2005-07-01

    Numerous studies including continuous Czochralski method and double crucible technique have been reported on the control of macroscopic axial resistivity distribution in bulk crystal growth. The simple codoping method for improving the productivity of silicon single-crystal growth by controlling axial specific resistivity distribution was proposed by Wang [Jpn. J. Appl. Phys. 43 (2004) 4079]. Wang [J. Crystal Growth 275 (2005) e73] demonstrated using numerical analysis and by experimental results that the axial specific resistivity distribution can be modified in melt growth of silicon crystals and relatively uniform profile is possible by B-P codoping method. In this work, the basic characteristic of 8 in silicon single crystal grown using codoping method is studied and whether proposed method has advantage for the silicon crystal growth is discussed.

  4. Anisotropy of Single-Crystal Silicon in Nanometric Cutting.

    Science.gov (United States)

    Wang, Zhiguo; Chen, Jiaxuan; Wang, Guilian; Bai, Qingshun; Liang, Yingchun

    2017-12-01

    The anisotropy exhibited by single-crystal silicon in nanometric cutting is very significant. In order to profoundly understand the effect of crystal anisotropy on cutting behaviors, a large-scale molecular dynamics model was conducted to simulate the nanometric cutting of single-crystal silicon in the (100)[0-10], (100)[0-1-1], (110)[-110], (110)[00-1], (111)[-101], and (111)[-12-1] crystal directions in this study. The simulation results show the variations of different degrees in chip, subsurface damage, cutting force, and friction coefficient with changes in crystal plane and crystal direction. Shear deformation is the formation mechanism of subsurface damage, and the direction and complexity it forms are the primary causes that result in the anisotropy of subsurface damage. Structurally, chips could be classified into completely amorphous ones and incompletely amorphous ones containing a few crystallites. The formation mechanism of the former is high-pressure phase transformation, while the latter is obtained under the combined action of high-pressure phase transformation and cleavage. Based on an analysis of the material removal mode, it can be found that compared with the other crystal direction on the same crystal plane, the (100)[0-10], (110)[-110], and (111)[-101] directions are more suitable for ductile cutting.

  5. Thermal neutron scattering kernels for sapphire and silicon single crystals

    International Nuclear Information System (INIS)

    Cantargi, F.; Granada, J.R.; Mayer, R.E.

    2015-01-01

    Highlights: • Thermal cross section libraries for sapphire and silicon single crystals were generated. • Debye model was used to represent the vibrational frequency spectra to feed the NJOY code. • Sapphire total cross section was measured at Centro Atómico Bariloche. • Cross section libraries were validated with experimental data available. - Abstract: Sapphire and silicon are materials usually employed as filters in facilities with thermal neutron beams. Due to the lack of the corresponding thermal cross section libraries for those materials, necessary in calculations performed in order to optimize beams for specific applications, here we present the generation of new thermal neutron scattering kernels for those materials. The Debye model was used in both cases to represent the vibrational frequency spectra required to feed the NJOY nuclear data processing system in order to produce the corresponding libraries in ENDF and ACE format. These libraries were validated with available experimental data, some from the literature and others obtained at the pulsed neutron source at Centro Atómico Bariloche

  6. The tensile effect on crack formation in single crystal silicon irradiated by intense pulsed ion beam

    Science.gov (United States)

    Liang, Guoying; Shen, Jie; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Yan, Sha; Zhang, Xiaofu; Yu, Xiao; Le, Xiaoyun

    2017-10-01

    Improving antifatigue performance of silicon substrate is very important for the development of semiconductor industry. The cracking behavior of silicon under intense pulsed ion beam irradiation was studied by numerical simulation in order to understand the mechanism of induced surface peeling observed by experimental means. Using molecular dynamics simulation based on Stillinger Weber potential, tensile effect on crack growth and propagation in single crystal silicon was investigated. Simulation results reveal that stress-strain curves of single crystal silicon at a constant strain rate can be divided into three stages, which are not similar to metal stress-strain curves; different tensile load velocities induce difference of single silicon crack formation speed; the layered stress results in crack formation in single crystal silicon. It is concluded that the crack growth and propagation is more sensitive to strain rate, tensile load velocity, stress distribution in single crystal silicon.

  7. Buckling of Single-Crystal Silicon Nanolines under Indentation

    Directory of Open Access Journals (Sweden)

    Min K. Kang

    2008-01-01

    Full Text Available Atomic force microscope-(AFM- based indentation tests were performed to examine mechanical properties of parallel single-crystal silicon nanolines (SiNLs of sub-100-nm line width, fabricated by a process combining electron-beam lithography and anisotropic wet etching. The SiNLs have straight and nearly atomically flat sidewalls, and the cross section is almost perfectly rectangular with uniform width and height along the longitudinal direction. The measured load-displacement curves from the indentation tests show an instability with large displacement bursts at a critical load ranging from 480 μN to 700 μN. This phenomenon is attributed to a transition of the buckling mode of the SiNLs under indentation. Using a set of finite element models with postbuckling analyses, we analyze the indentation-induced buckling modes and investigate the effects of tip location, contact friction, and substrate deformation on the critical load of mode transition. The results demonstrate a unique approach for the study of nanomaterials and patterned nanostructures via a combination of experiments and modeling.

  8. Laser induced single-crystal transition in polycrystalline silicon

    International Nuclear Information System (INIS)

    Vitali, G.; Bertolotti, M.; Foti, G.; Rimini, E.

    1978-01-01

    Transition to single crystal of polycrystalline Si material underlying a Si crystal substrate of 100 orientation was obtained via laser irradiation. The changes in the structure were analyzed by reflection high energy electron diffraction and by channeling effect technique using 2.0 MeV He Rutherford scattering. The power density required to induce the transition in a 4500 A thick polycrystalline layer is about 70 MW/cm 2 (50ns). The corresponding amorphous to single transition has a threshold of about 45 MW/cm 2 . (orig.) 891 HPOE [de

  9. Assembly of Nanoscale Organic Single-Crystal Cross-Wire Circuits

    DEFF Research Database (Denmark)

    Bjørnholm, Thomas

    2009-01-01

    Organic single-crystal transistors and circuits can be assembled by nanomechanical manipulation of nanowires of CuPc, F(16)CuPc, and SnO(2):Sb. The crossed bar devices have low operational voltage, high mobility and are stable in air. They can be combined into circuits, providing varied functions...... including inverters and NOR and NAND logic gates, opening new opportunities for organic nanoelectronics and highly sophisticated integrated logic devices....

  10. Anisotropy effect of crater formation on single crystal silicon surface under intense pulsed ion beam irradiation

    Science.gov (United States)

    Shen, Jie; Yu, Xiao; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Liang, Guoying; Yu, Xiang; Huang, Wanying; Shahid, Ijaz; Zhang, Xiaofu; Yan, Sha; Le, Xiaoyun

    2018-04-01

    Due to the induced extremely fast thermal and dynamic process, Intense Pulsed Ion Beam (IPIB) is widely applied in material processing, which can bring enhanced material performance and surface craters as well. To investigate the craters' formation mechanism, a specific model was built with Finite Element Methods (FEM) to simulate the thermal field on irradiated single crystal silicon. The direct evidence for the existence of the simulated 6-fold rotational symmetric thermal distribution was provided by electron microscope images obtained on single crystal silicon. The correlation of the experiment and simulation is of great importance to understand the interaction between IPIB and materials.

  11. Thin Single Crystal Silicon Solar Cells on Ceramic Substrates: November 2009 - November 2010

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.; Ravi, K. V.

    2011-06-01

    In this program we have been developing a technology for fabricating thin (< 50 micrometres) single crystal silicon wafers on foreign substrates. We reverse the conventional approach of depositing or forming silicon on foreign substrates by depositing or forming thick (200 to 400 micrometres) ceramic materials on high quality single crystal silicon films ~ 50 micrometres thick. Our key innovation is the fabrication of thin, refractory, and self-adhering 'handling layers or substrates' on thin epitaxial silicon films in-situ, from powder precursors obtained from low cost raw materials. This 'handling layer' has sufficient strength for device and module processing and fabrication. Successful production of full sized (125 mm X 125 mm) silicon on ceramic wafers with 50 micrometre thick single crystal silicon has been achieved and device process flow developed for solar cell fabrication. Impurity transfer from the ceramic to the silicon during the elevated temperature consolidation process has resulted in very low minority carrier lifetimes and resulting low cell efficiencies. Detailed analysis of minority carrier lifetime, metals analysis and device characterization have been done. A full sized solar cell efficiency of 8% has been demonstrated.

  12. Annihilation of unthermalized positrons in a silicon single crystal at 770K

    International Nuclear Information System (INIS)

    Zaitsev, Yu.E.; Mungir, L.; Ue'pe, L.R.

    1984-01-01

    A model is considered for the annihilation of nonrelativistic positrons from quantized states in lattice channels. Annihilation gamma rays of energy over 511 keV have been observed when the positrons from an Na 22 source strike a silicon single crystal at 77 0 K. The experimental results agree well with the proposed model

  13. Silicon integrated circuit process

    International Nuclear Information System (INIS)

    Lee, Jong Duck

    1985-12-01

    This book introduces the process of silicon integrated circuit. It is composed of seven parts, which are oxidation process, diffusion process, ion implantation process such as ion implantation equipment, damage, annealing and influence on manufacture of integrated circuit and device, chemical vapor deposition process like silicon Epitaxy LPCVD and PECVD, photolithography process, including a sensitizer, spin, harden bake, reflection of light and problems related process, infrared light bake, wet-etch, dry etch, special etch and problems of etching, metal process like metal process like metal-silicon connection, aluminum process, credibility of aluminum and test process.

  14. Silicon integrated circuit process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Duck

    1985-12-15

    This book introduces the process of silicon integrated circuit. It is composed of seven parts, which are oxidation process, diffusion process, ion implantation process such as ion implantation equipment, damage, annealing and influence on manufacture of integrated circuit and device, chemical vapor deposition process like silicon Epitaxy LPCVD and PECVD, photolithography process, including a sensitizer, spin, harden bake, reflection of light and problems related process, infrared light bake, wet-etch, dry etch, special etch and problems of etching, metal process like metal process like metal-silicon connection, aluminum process, credibility of aluminum and test process.

  15. Fabrication of triangular nanobeam waveguide networks in bulk diamond using single-crystal silicon hard masks

    International Nuclear Information System (INIS)

    Bayn, I.; Mouradian, S.; Li, L.; Goldstein, J. A.; Schröder, T.; Zheng, J.; Chen, E. H.; Gaathon, O.; Englund, Dirk; Lu, M.; Stein, A.; Ruggiero, C. A.; Salzman, J.; Kalish, R.

    2014-01-01

    A scalable approach for integrated photonic networks in single-crystal diamond using triangular etching of bulk samples is presented. We describe designs of high quality factor (Q = 2.51 × 10 6 ) photonic crystal cavities with low mode volume (V m  = 1.062 × (λ/n) 3 ), which are connected via waveguides supported by suspension structures with predicted transmission loss of only 0.05 dB. We demonstrate the fabrication of these structures using transferred single-crystal silicon hard masks and angular dry etching, yielding photonic crystal cavities in the visible spectrum with measured quality factors in excess of Q = 3 × 10 3

  16. Modelling of thermal field and point defect dynamics during silicon single crystal growth using CZ technique

    Science.gov (United States)

    Sabanskis, A.; Virbulis, J.

    2018-05-01

    Mathematical modelling is employed to numerically analyse the dynamics of the Czochralski (CZ) silicon single crystal growth. The model is axisymmetric, its thermal part describes heat transfer by conduction and thermal radiation, and allows to predict the time-dependent shape of the crystal-melt interface. Besides the thermal field, the point defect dynamics is modelled using the finite element method. The considered process consists of cone growth and cylindrical phases, including a short period of a reduced crystal pull rate, and a power jump to avoid large diameter changes. The influence of the thermal stresses on the point defects is also investigated.

  17. Deflection of high energy channeled charged particles by elastically bent silicon single crystals

    International Nuclear Information System (INIS)

    Gibson, W.M.; Kim, I.J.; Pisharodoy, M.; Salman, S.M.; Sun, C.R.; Wang, G.H.; Wijayawardana, R.; Forster, J.S.; Mitchell, I.V.; Baker, S.I.; Carrigan, R.A. Jr.; Toohig, T.E.; Avdeichikov, V.V.; Ellison, J.A.; Siffert, P.

    1984-01-01

    An experiment has been carried out to observe the deflection of charged particles by planar channeling in bent single crystals of silicon for protons with energy up to 180 GeV. Anomolous loss of particles from the center point of a three point bending apparatus was observed at high incident particle energy. This effect has been exploited to fashion a 'dechanneling spectrometer' to study dechanneling effects due to centripital displacement of channeled particle trajectories in a bent crystal. The bending losses generally conform to the predictions of calculations based on a classical model. (orig.)

  18. Scalable Fabrication of Integrated Nanophotonic Circuits on Arrays of Thin Single Crystal Diamond Membrane Windows.

    Science.gov (United States)

    Piracha, Afaq H; Rath, Patrik; Ganesan, Kumaravelu; Kühn, Stefan; Pernice, Wolfram H P; Prawer, Steven

    2016-05-11

    Diamond has emerged as a promising platform for nanophotonic, optical, and quantum technologies. High-quality, single crystalline substrates of acceptable size are a prerequisite to meet the demanding requirements on low-level impurities and low absorption loss when targeting large photonic circuits. Here, we describe a scalable fabrication method for single crystal diamond membrane windows that achieves three major goals with one fabrication method: providing high quality diamond, as confirmed by Raman spectroscopy; achieving homogeneously thin membranes, enabled by ion implantation; and providing compatibility with established planar fabrication via lithography and vertical etching. On such suspended diamond membranes we demonstrate a suite of photonic components as building blocks for nanophotonic circuits. Monolithic grating couplers are used to efficiently couple light between photonic circuits and optical fibers. In waveguide coupled optical ring resonators, we find loaded quality factors up to 66 000 at a wavelength of 1560 nm, corresponding to propagation loss below 7.2 dB/cm. Our approach holds promise for the scalable implementation of future diamond quantum photonic technologies and all-diamond photonic metrology tools.

  19. Temperature dependent evolution of wrinkled single-crystal silicon ribbons on shape memory polymers.

    Science.gov (United States)

    Wang, Yu; Yu, Kai; Qi, H Jerry; Xiao, Jianliang

    2017-10-25

    Shape memory polymers (SMPs) can remember two or more distinct shapes, and thus can have a lot of potential applications. This paper presents combined experimental and theoretical studies on the wrinkling of single-crystal Si ribbons on SMPs and the temperature dependent evolution. Using the shape memory effect of heat responsive SMPs, this study provides a method to build wavy forms of single-crystal silicon thin films on top of SMP substrates. Silicon ribbons obtained from a Si-on-insulator (SOI) wafer are released and transferred onto the surface of programmed SMPs. Then such bilayer systems are recovered at different temperatures, yielding well-defined, wavy profiles of Si ribbons. The wavy profiles are shown to evolve with time, and the evolution behavior strongly depends on the recovery temperature. At relatively low recovery temperatures, both wrinkle wavelength and amplitude increase with time as evolution progresses. Finite element analysis (FEA) accounting for the thermomechanical behavior of SMPs is conducted to study the wrinkling of Si ribbons on SMPs, which shows good agreement with experiment. Merging of wrinkles is observed in FEA, which could explain the increase of wrinkle wavelength observed in the experiment. This study can have important implications for smart stretchable electronics, wrinkling mechanics, stimuli-responsive surface engineering, and advanced manufacturing.

  20. Transverse wave propagation in [ab0] direction of silicon single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Sang Jin; Kim, Hye Jeong; Kwon, Se Ho; Kim, Young H. [Applied Acoustics Lab, Korea Science Academy of KAIST, Busan(Korea, Republic of)

    2015-12-15

    The speed and oscillation directions of elastic waves propagating in the [ab0] direction of a silicon single crystal were obtained by solving Christoffel's equation. It was found that the quasi waves propagate in the off-principal axis, and hence, the directions of the phase and group velocities are not the same. The maximum deviation of the two directions was 7.2 degree angle. Two modes of the pure transverse waves propagate in the [110] direction with different speeds, and hence, two peaks were observed in the pulse echo signal. The amplitude ratio of the two peaks was dependent on the initial oscillating direction of the incident wave. The pure and quasi-transverse waves propagate in the [210] direction, and the oscillation directions of these waves are perpendicular to each other. The skewing angle of the quasi wave was calculated as 7.14 degree angle, and it was measured as 9.76 degree angle. The amplitude decomposition in the [210] direction was similar to that in the [110] direction, since the oscillation directions of these waves are perpendicular to each other. These results offer useful information in measuring the crystal orientation of the silicon single crystal.

  1. CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss

    OpenAIRE

    Healy, Noel; Fokine, Michael; Franz, Yohann; Hawkins, Thomas; Jones, Maxwell; Ballato, John; Peacock, Anna C.; Gibson, Ursula J.

    2016-01-01

    Reduced losses in silicon-core fibers are obtained using CO2 laser directional recrystallization of the core. Single crystals with aspect ratios up to 1500:1 are reported, limited by the scan range of the equipment. This processing technique holds promise for bringing crystalline silicon-core fibers to a central role in nonlinear optics and signal processing applications.

  2. Neuromorphic Silicon Neuron Circuits

    Science.gov (United States)

    Indiveri, Giacomo; Linares-Barranco, Bernabé; Hamilton, Tara Julia; van Schaik, André; Etienne-Cummings, Ralph; Delbruck, Tobi; Liu, Shih-Chii; Dudek, Piotr; Häfliger, Philipp; Renaud, Sylvie; Schemmel, Johannes; Cauwenberghs, Gert; Arthur, John; Hynna, Kai; Folowosele, Fopefolu; Saighi, Sylvain; Serrano-Gotarredona, Teresa; Wijekoon, Jayawan; Wang, Yingxue; Boahen, Kwabena

    2011-01-01

    Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain–machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin–Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips. PMID:21747754

  3. Neuromorphic silicon neuron circuits

    Directory of Open Access Journals (Sweden)

    Giacomo eIndiveri

    2011-05-01

    Full Text Available Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance based Hodgkin-Huxley models to bi-dimensional generalized adaptive Integrate and Fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.

  4. Large-scale membrane transfer process: its application to single-crystal-silicon continuous membrane deformable mirror

    International Nuclear Information System (INIS)

    Wu, Tong; Sasaki, Takashi; Hane, Kazuhiro; Akiyama, Masayuki

    2013-01-01

    This paper describes a large-scale membrane transfer process developed for the construction of large-scale membrane devices via the transfer of continuous single-crystal-silicon membranes from one substrate to another. This technique is applied for fabricating a large stroke deformable mirror. A bimorph spring array is used to generate a large air gap between the mirror membrane and the electrode. A 1.9 mm × 1.9 mm × 2 µm single-crystal-silicon membrane is successfully transferred to the electrode substrate by Au–Si eutectic bonding and the subsequent all-dry release process. This process provides an effective approach for transferring a free-standing large continuous single-crystal-silicon to a flexible suspension spring array with a large air gap. (paper)

  5. Ultra-thin distributed Bragg reflectors via stacked single-crystal silicon nanomembranes

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Minkyu; Seo, Jung-Hun; Lee, Jaeseong; Mi, Hongyi; Kim, Munho; Ma, Zhenqiang, E-mail: mazq@engr.wisc.edu [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Zhao, Deyin; Zhou, Weidong [Nanophotonics Lab, Department of Electrical Engineering, University of Texas at Arlington, Arlington, Texas 76019 (United States); Yin, Xin; Wang, Xudong [Department of Material Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2015-05-04

    In this paper, we report ultra-thin distributed Bragg reflectors (DBRs) via stacked single-crystal silicon (Si) nanomembranes (NMs). Mesh hole-free single-crystal Si NMs were released from a Si-on-insulator substrate and transferred to quartz and Si substrates. Thermal oxidation was applied to the transferred Si NM to form high-quality SiO{sub 2} and thus a Si/SiO{sub 2} pair with uniform and precisely controlled thicknesses. The Si/SiO{sub 2} layers, as smooth as epitaxial grown layers, minimize scattering loss at the interface and in between the layers. As a result, a reflection of 99.8% at the wavelength range from 1350 nm to 1650 nm can be measured from a 2.5-pair DBR on a quartz substrate and 3-pair DBR on a Si substrate with thickness of 0.87 μm and 1.14 μm, respectively. The high reflection, ultra-thin DBRs developed here, which can be applied to almost any devices and materials, holds potential for application in high performance optoelectronic devices and photonics applications.

  6. Channeling experiments at planar diamond and silicon single crystals with electrons from the Mainz Microtron MAMI

    Science.gov (United States)

    Backe, H.; Lauth, W.; Tran Thi, T. N.

    2018-04-01

    Line structures were observed for (110) planar channeling of electrons in a diamond single crystal even at a beam energy of 180 MeV . This observation motivated us to initiate dechanneling length measurements as function of the beam energy since the occupation of quantum states in the channeling potential is expected to enhance the dechanneling length. High energy loss signals, generated as a result of emission of a bremsstrahlung photon with about half the beam energy at channeling of 450 and 855 MeV electrons, were measured as function of the crystal thickness. The analysis required additional assumptions which were extracted from the numerical solution of the Fokker-Planck equation. Preliminary results for diamond are presented. In addition, we reanalyzed dechanneling length measurements at silicon single crystals performed previously at the Mainz Microtron MAMI at beam energies between 195 and 855 MeV from which we conclude that the quality of our experimental data set is not sufficient to derive definite conclusions on the dechanneling length. Our experimental results are below the predictions of the Fokker-Planck equation and somewhat above the results of simulation calculations of A. V. Korol and A. V. Solov'yov et al. on the basis of the MBN Explorer simulation package. We somehow conservatively conclude that the prediction of the asymptotic dechanneling length on the basis of the Fokker-Planck equation represents an upper limit.

  7. Temperature effect on phase states of quartz nano-crystals in silicon single crystal

    International Nuclear Information System (INIS)

    Kalanov, M.U.; Ibragimova, E.M.; Khamraeva, R.N.; Rustamova, V.M.; Ummatov, Kh.D.

    2006-01-01

    Full text: Oxygen penetrates into the silicon lattice up to the concentration of 2·10 18 cm -3 in the course of growing [1]. By the author's opinion at a low oxygen content the formation of solid solution is possible in the local defect places of the silicon single crystal lattice due to the difference in effective ion radius of oxygen and silicon (r O 0.176 and r Si = 0.065 nm). Upon reaching some critical content (∼ 10 17 cm -3 ), it becomes favorable energetically for oxygen ions to form precipitates (SiO x ) and finally a dielectric layer (stoichiometric inclusions of SiO 2 ). It was shown later that depending on the growth conditions, indeed the quartz crystal inclusions are formed in the silicon single crystals at an amount of 0.3 /0.5 wt. % [2]. However the authors did not study a phase state of the quartz inclusions. Therefore the aim of this work was to study a phase state of the quartz inclusions in silicon crystal at various temperatures. We examined the silicon single crystals grown by Czochralski technique, which were cut in (111) plane in the form of disk of 20 mm diameter and 1.5 thickness and had hole conductivity with the specific resistance ρ o ≅ 1/10 Ohm cm. The dislocation density was N D ≅ 10 1 /10 3 cm -2 , the concentrations of oxygen and boron were N 0 ≅ 2/ 4·10 17 cm -3 and N B ≅ 3*10 15 cm -3 . Structure was analyzed at the set-up DRON-UM1 with high temperature supply UVD-2000 ( CuK = 0.1542 nm) at the temperatures of 300, 1173 and 1573 K measured with platinum-platinum-rhodium thermocouple. The high temperature diffraction spectrum measured at 1573 K in the angle range (2Θ≅10/70 d egree ) there is only one main structure reflection (111) with a high intensity and d/n ≅ 0.3136 nm (2 Θ≅ 28.5 d egree ) from the matrix lattice of silicon single crystal. The weak line at 2 Θ≅ 25.5 d egree ( d/n≅0.3136 nm) is β component of the main reflection (111), and the weak structure peak at 2Θ≅59 d egree ( d/n≅ 0.1568 nm

  8. Lightweight and High-Resolution Single Crystal Silicon Optics for X-ray Astronomy

    Science.gov (United States)

    Zhang, William W.; Biskach, Michael P.; Chan, Kai-Wing; Mazzarella, James R.; McClelland, Ryan S.; Riveros, Raul E.; Saha, Timo T.; Solly, Peter M.

    2016-01-01

    We describe an approach to building mirror assemblies for next generation X-ray telescopes. It incorporates knowledge and lessons learned from building existing telescopes, including Chandra, XMM-Newton, Suzaku, and NuSTAR, as well as from our direct experience of the last 15 years developing mirror technology for the Constellation-X and International X-ray Observatory mission concepts. This approach combines single crystal silicon and precision polishing, thus has the potential of achieving the highest possible angular resolution with the least possible mass. Moreover, it is simple, consisting of several technical elements that can be developed independently in parallel. Lastly, it is highly amenable to mass production, therefore enabling the making of telescopes of very large photon collecting areas.

  9. Electronic properties of dislocations introduced mechanically at room temperature on a single crystal silicon surface

    International Nuclear Information System (INIS)

    Ogawa, Masatoshi; Kamiya, Shoji; Izumi, Hayato; Tokuda, Yutaka

    2012-01-01

    This paper focuses on the effects of temperature and environment on the electronic properties of dislocations in n-type single crystal silicon near the surface. Deep level transient spectroscopy (DLTS) analyses were carried out with Schottky electrodes and p + -n junctions. The trap level, originally found at E C -0.50 eV (as commonly reported), shifted to a shallower level at E C -0.23 eV after a heat treatment at 350 K in an inert environment. The same heat treatment in lab air, however, did not cause any shift. The trap level shifted by the heat treatment in an inert environment was found to revert back to the original level when the specimens were exposed to lab air again. Therefore, the intrinsic trap level is expected to occur at E C -0.23 eV and shift sensitively with gas adsorption in air.

  10. RBS/channeling analysis of hydrogen-implanted single crystals of FZ silicon and 6H silicon

    International Nuclear Information System (INIS)

    Irwin, R.B.

    1984-01-01

    Single crystals of FZ silicon and 6H silicon carbide were implanted with hydrogen ions (50 and 80 keV, respectively) to fluences from 2 x 10 16 H + /cm 2 to 2 x 10 18 H+/cm 2 . The implantations were carried out at three temperatures: approx.95K, 300 K, and approx.800 K. Swelling of the samples was measured by surface profilometry. RBS/channeling was used to obtain the damage profiles and to determine the amount of hydrogen retained in the lattice. The damage profiles are centered around X/sub m/ for the implants into silicon and around R/sub p/ for silicon carbide. For silicon carbide implanted at 95 K and 300 K and for silicon implanted at 95 K, the peak damage region is amorphous for fluences above 8 x 10 16 H + /cm 2 , 4 x 10 17 H + /cm 2 , and 2 x 10 17 H + /cm 2 , respectively. Silicon implanted at 300 and 800 K and silicon carbide implanted at 800 K remain crystalline up to fluences of 1 x 10 18 H + /cm 2 . The channeling damage results agree with previously reported TEM and electron diffraction data. The predictions of a simple disorder-accumulation model with a linear annealing term explains qualitatively the observed damage profiles in silicon carbide. Quantitatively, however, the model predicts faster development of the damage profiles than is observed at low fluences in both silicon and silicon carbide. For samples implanted at 300 and 800 K, the model also predicts substantially less peak disorder than is observed. The effect of the surface, the retained hydrogen, the shape of S/sub D/(X), and the need for a nonlinear annealing term may be responsible for the discrepancy

  11. Tailoring the optical constants in single-crystal silicon with embedded silver nanostructures for advanced silicon photonics applications

    International Nuclear Information System (INIS)

    Akhter, Perveen; Huang, Mengbing; Spratt, William; Kadakia, Nirag; Amir, Faisal

    2015-01-01

    Plasmonic effects associated with metal nanostructures are expected to hold the key to tailoring light emission/propagation and harvesting solar energy in materials including single crystal silicon which remains the backbone in the microelectronics and photovoltaics industries but unfortunately, lacks many functionalities needed for construction of advanced photonic and optoelectronics devices. Currently, silicon plasmonic structures are practically possible only in the configuration with metal nanoparticles or thin film arrays on a silicon surface. This does not enable one to exploit the full potential of plasmonics for optical engineering in silicon, because the plasmonic effects are dominant over a length of ∼50 nm, and the active device region typically lies below the surface much beyond this range. Here, we report on a novel method for the formation of silver nanoparticles embedded within a silicon crystal through metal gettering from a silver thin film deposited at the surface to nanocavities within the Si created by hydrogen ion implantation. The refractive index of the Ag-nanostructured layer is found to be 3–10% lower or higher than that of silicon for wavelengths below or beyond ∼815–900 nm, respectively. Around this wavelength range, the optical extinction values increase by a factor of 10–100 as opposed to the pure silicon case. Increasing the amount of gettered silver leads to an increased extinction as well as a redshift in wavelength position for the resonance. This resonance is attributed to the surface plasmon excitation of the resultant silver nanoparticles in silicon. Additionally, we show that the profiles for optical constants in silicon can be tailored by varying the position and number of nanocavity layers. Such silicon crystals with embedded metal nanostructures would offer novel functional base structures for applications in silicon photonics, optoelectronics, photovoltaics, and plasmonics

  12. Subsurface damage mechanism of high speed grinding process in single crystal silicon revealed by atomistic simulations

    International Nuclear Information System (INIS)

    Li, Jia; Fang, Qihong; Zhang, Liangchi; Liu, Youwen

    2015-01-01

    Highlights: • Molecular dynamic model of nanoscale high speed grinding of silicon workpiece has been established. • The effect of grinding speed on subsurface damage and grinding surface integrity by analyzing the chip, dislocation movement, and phase transformation during high speed grinding process are thoroughly investigated. • Subsurface damage is studied by the evolution of surface area at first time for more obvious observation on transition from ductile to brittle. • The hydrostatic stress and von Mises stress by the established analytical model are studied subsurface damage mechanism during nanoscale grinding. - Abstract: Three-dimensional molecular dynamics (MD) simulations are performed to investigate the nanoscale grinding process of single crystal silicon using diamond tool. The effect of grinding speed on subsurface damage and grinding surface integrity by analyzing the chip, dislocation movement, and phase transformation are studied. We also establish an analytical model to calculate several important stress fields including hydrostatic stress and von Mises stress for studying subsurface damage mechanism, and obtain the dislocation density on the grinding subsurface. The results show that a higher grinding velocity in machining brittle material silicon causes a larger chip and a higher temperature, and reduces subsurface damage. However, when grinding velocity is above 180 m s −1 , subsurface damage thickness slightly increases because a higher grinding speed leads to the increase in grinding force and temperature, which accelerate dislocation nucleation and motion. Subsurface damage is studied by the evolution of surface area at first time for more obvious observation on transition from ductile to brittle, that provides valuable reference for machining nanometer devices. The von Mises stress and the hydrostatic stress play an important role in the grinding process, and explain the subsurface damage though dislocation mechanism under high

  13. Helium interaction with vacancy-type defects created in silicon carbide single crystal

    Science.gov (United States)

    Linez, F.; Gilabert, E.; Debelle, A.; Desgardin, P.; Barthe, M.-F.

    2013-05-01

    Generation of He bubbles or cavities in silicon carbide is an important issue for the use of this material in nuclear and electronic applications. To understand the mechanisms prior to the growth of these structures, an atomic-scale study has been conducted. 6H-SiC single crystals have been implanted with 50 keV-He ions at 2 × 1014 and 1015 cm-2 and successively annealed at various temperatures from 150 to 1400 °C. After each annealing, the defect distributions in the samples have been probed by positron annihilation spectroscopy. Four main evolution stages have been evidenced for the two investigated implantation fluences: at (1) 400 °C for both fluences, (2) at 850 °C for the low fluence and 950 °C for the high one, (3) at 950 °C for the low fluence and 1050 °C for the high one and (4) at 1300 °C for both fluences. The perfect correlation between the positron annihilation spectroscopy and the thermodesorption measurements has highlighted the He involvement in the first two stages corresponding respectively to its trapping by irradiation-induced divacancies and the detrapping from various vacancy-type defects generated by agglomeration processes.

  14. Helium interaction with vacancy-type defects created in silicon carbide single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Linez, F., E-mail: florence.linez@aalto.fi [CEMHTI CNRS, 3A rue de la Férollerie, 45071 Orléans (France); Gilabert, E. [CENBG, U.R.A. 451 CNRS, Université de Bordeaux I, BP120, Le Haut Vigneau, 33175 Gradignan Cedex (France); Debelle, A. [CSNSM, Univ. Paris-Sud, CNRS-IN2P3, 91405 Orsay Campus (France); Desgardin, P.; Barthe, M.-F. [CEMHTI CNRS, 3A rue de la Férollerie, 45071 Orléans (France)

    2013-05-15

    Generation of He bubbles or cavities in silicon carbide is an important issue for the use of this material in nuclear and electronic applications. To understand the mechanisms prior to the growth of these structures, an atomic-scale study has been conducted. 6H–SiC single crystals have been implanted with 50 keV-He ions at 2 × 10{sup 14} and 10{sup 15} cm{sup −2} and successively annealed at various temperatures from 150 to 1400 °C. After each annealing, the defect distributions in the samples have been probed by positron annihilation spectroscopy. Four main evolution stages have been evidenced for the two investigated implantation fluences: at (1) 400 °C for both fluences, (2) at 850 °C for the low fluence and 950 °C for the high one, (3) at 950 °C for the low fluence and 1050 °C for the high one and (4) at 1300 °C for both fluences. The perfect correlation between the positron annihilation spectroscopy and the thermodesorption measurements has highlighted the He involvement in the first two stages corresponding respectively to its trapping by irradiation-induced divacancies and the detrapping from various vacancy-type defects generated by agglomeration processes.

  15. Single-crystal-silicon-based microinstrument to study friction and wear at MEMS sidewall interfaces

    International Nuclear Information System (INIS)

    Ansari, N; Ashurst, W R

    2012-01-01

    Since the advent of microelectromechanical systems (MEMS) technology, friction and wear are considered as key factors that determine the lifetime and reliability of MEMS devices that contain contacting interfaces. However, to date, our knowledge of the mechanisms that govern friction and wear in MEMS is insufficient. Therefore, systematically investigating friction and wear at MEMS scale is critical for the commercial success of many potential MEMS devices. Specifically, since many emerging MEMS devices contain more sidewall interfaces, which are topographically and chemically different from in-plane interfaces, studying the friction and wear characteristics of MEMS sidewall surfaces is important. The microinstruments that have been used to date to investigate the friction and wear characteristics of MEMS sidewall surfaces possess several limitations induced either by their design or the structural film used to fabricate them. Therefore, in this paper, we report on a single-crystal-silicon-based microinstrument to study the frictional and wear behavior of MEMS sidewalls, which not only addresses some of the limitations of other microinstruments but is also easy to fabricate. The design, modeling and fabrication of the microinstrument are described in this paper. Additionally, the coefficients of static and dynamic friction of octadecyltrichlorosilane-coated sidewall surfaces as well as sidewall surfaces with only native oxide on them are also reported in this paper. (paper)

  16. Friction and metal transfer for single-crystal silicon carbide in contact with various metals in vacuum

    International Nuclear Information System (INIS)

    Miyoshi, K.; Buckley, D.H.

    1978-04-01

    Sliding friction experiments were conducted with single-crystal silicon carbide in contact with transition metals (tungsten, iron, rhodium, nickel, titanium, and cobalt), copper, and aluminum. Results indicate the coefficient of friction for a silicon carbide-metal system is related to the d bond character and relative chemical activity of the metal. The more active the metal, the higher the coefficient of friction. All the metals examined transferred to the surface of silicon carbide in sliding. The chemical activity of metal to silicon and carbon and shear modulus of the metal may play important roles in metal transfer and the form of the wear debris. The less active metal is, and the greater resistance to shear it has, with the exception of rhodium and tungsten, the less transfer to silicon carbide

  17. Surface texture of single-crystal silicon oxidized under a thin V{sub 2}O{sub 5} layer

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, S. E., E-mail: nikitin@mail.ioffe.ru; Verbitskiy, V. N.; Nashchekin, A. V.; Trapeznikova, I. N.; Bobyl, A. V.; Terukova, E. E. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2017-01-15

    The process of surface texturing of single-crystal silicon oxidized under a V{sub 2}O{sub 5} layer is studied. Intense silicon oxidation at the Si–V{sub 2}O{sub 5} interface begins at a temperature of 903 K which is 200 K below than upon silicon thermal oxidation in an oxygen atmosphere. A silicon dioxide layer 30–50 nm thick with SiO{sub 2} inclusions in silicon depth up to 400 nm is formed at the V{sub 2}O{sub 5}–Si interface. The diffusion coefficient of atomic oxygen through the silicon-dioxide layer at 903 K is determined (D ≥ 2 × 10{sup –15} cm{sup 2} s{sup –1}). A model of low-temperature silicon oxidation, based on atomic oxygen diffusion from V{sub 2}O{sub 5} through the SiO{sub 2} layer to silicon, and SiO{sub x} precipitate formation in silicon is proposed. After removing the V{sub 2}O{sub 5} and silicon-dioxide layers, texture is formed on the silicon surface, which intensely scatters light in the wavelength range of 300–550 nm and is important in the texturing of the front and rear surfaces of solar cells.

  18. Increasing the radiation resistance of single-crystal silicon epitaxial layers

    Directory of Open Access Journals (Sweden)

    Kurmashev Sh. D.

    2014-12-01

    Full Text Available The authors investigate the possibility of increasing the radiation resistance of silicon epitaxial layers by creating radiation defects sinks in the form of dislocation networks of the density of 109—1012 m–2. Such networks are created before the epitaxial layer is applied on the front surface of the silicon substrate by its preliminary oxidation and subsequent etching of the oxide layer. The substrates were silicon wafers KEF-4.5 and KDB-10 with a diameter of about 40 mm, grown by the Czochralski method. Irradiation of the samples was carried out using electron linear accelerator "Electronics" (ЭЛУ-4. Energy of the particles was 2,3—3,0 MeV, radiation dose 1015—1020 m–2, electron beam current 2 mA/m2. It is shown that in structures containing dislocation networks, irradiation results in reduction of the reverse currents by 5—8 times and of the density of defects by 5—10 times, while the mobility of the charge carriers is increased by 1,2 times. Wafer yield for operation under radiation exposure, when the semiconductor structures are formed in the optimal mode, is increased by 7—10% compared to the structures without dislocation networks. The results obtained can be used in manufacturing technology for radiation-resistant integrated circuits (bipolar, CMOS, BiCMOS, etc..

  19. Friction and Wear of Metals With a Single-Crystal Abrasive Grit of Silicon Carbide - Effect of Shear Strength of Metal

    National Research Council Canada - National Science Library

    Miyoshi, Kazuhisa

    1978-01-01

    An investigation was conducted to examine the removal and plastic deformation of metal as a function of the metal properties when the metal is in sliding contact with a single-crystal abrasive grit of silicon carbide...

  20. Study of a macrodefect in a silicon carbid single crystal by means of X-ray phase contrast

    Energy Technology Data Exchange (ETDEWEB)

    Argunova, T. S., E-mail: argunova2002@mail.ru [Russian Academy of Sciences, Ioffe Institute (Russian Federation); Kohn, V. G. [National Research Centre “Kurchatov Institute” (Russian Federation); Lim, J. H. [Pohang Accelerator Laboratory (Korea, Republic of); Je, J. H. [Pohang University of Science and Technology, Department of Materials Science and Engineering (Korea, Republic of)

    2016-11-15

    The morphology of a macrodefect in a single-crystal silicon carbide wafer has been investigated by the computer simulation of an experimental X-ray phase-contrast image. A micropipe, i.e., a long cavity with a small (elliptical in the general case) cross section, in a single crystal has been considered as a macrodefect. A far-field image of micropipe has been measured with the aid of synchrotron radiation without a monochromator. The parameters of micropipe elliptical cross section are determined based on one projection in two directions: parallel and perpendicular to the X-ray beam propagation direction, when scanning along the pipe axis. The results demonstrate the efficiency of the phase contrast method supplemented with computer simulation for studying such macrodefects when the defect position in the sample volume is unknown beforehand.

  1. Process design and simulation for optimizing the oxygen concentration in Czochralski-grown single-crystal silicon

    International Nuclear Information System (INIS)

    Jung, Y. J.; Kim, W. K.; Jung, J. H.

    2014-01-01

    The highest-concentration impurity in a single-crystal silicon ingot is oxygen, which infiltrates the ingot during growth stage. This oxygen adversely affects the wafer is quality. This study was aimed at finding an optimal design for the Czochralski (Cz) process to enable high-quality and low cost (by reducing power consumption) wafer production by controlling the oxygen concentration in the silicon ingots. In the Cz process, the characteristics of silicon ingots during crystallization are greatly influenced by the design and the configuration of the hot zone, and by crystallization rate. In order to identify process conditions for obtaining an optimal oxygen concentration of 11 - 13 ppma (required for industrial-grade ingots), designed two shield shapes for the hot zone. Furthermore, oxygen concentrations corresponding to these two shapes were compared by evaluating each shape at five different production speeds. In addition, simulations were performed to identify the optimal shield design for industrial applications.

  2. Process design and simulation for optimizing the oxygen concentration in Czochralski-grown single-crystal silicon

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Y. J.; Kim, W. K.; Jung, J. H. [Yeungnam University, Gyeongsan (Korea, Republic of)

    2014-08-15

    The highest-concentration impurity in a single-crystal silicon ingot is oxygen, which infiltrates the ingot during growth stage. This oxygen adversely affects the wafer is quality. This study was aimed at finding an optimal design for the Czochralski (Cz) process to enable high-quality and low cost (by reducing power consumption) wafer production by controlling the oxygen concentration in the silicon ingots. In the Cz process, the characteristics of silicon ingots during crystallization are greatly influenced by the design and the configuration of the hot zone, and by crystallization rate. In order to identify process conditions for obtaining an optimal oxygen concentration of 11 - 13 ppma (required for industrial-grade ingots), designed two shield shapes for the hot zone. Furthermore, oxygen concentrations corresponding to these two shapes were compared by evaluating each shape at five different production speeds. In addition, simulations were performed to identify the optimal shield design for industrial applications.

  3. High-Performance Flexible Thin-Film Transistors Based on Single-Crystal-like Silicon Epitaxially Grown on Metal Tape by Roll-to-Roll Continuous Deposition Process.

    Science.gov (United States)

    Gao, Ying; Asadirad, Mojtaba; Yao, Yao; Dutta, Pavel; Galstyan, Eduard; Shervin, Shahab; Lee, Keon-Hwa; Pouladi, Sara; Sun, Sicong; Li, Yongkuan; Rathi, Monika; Ryou, Jae-Hyun; Selvamanickam, Venkat

    2016-11-02

    Single-crystal-like silicon (Si) thin films on bendable and scalable substrates via direct deposition are a promising material platform for high-performance and cost-effective devices of flexible electronics. However, due to the thick and unintentionally highly doped semiconductor layer, the operation of transistors has been hampered. We report the first demonstration of high-performance flexible thin-film transistors (TFTs) using single-crystal-like Si thin films with a field-effect mobility of ∼200 cm 2 /V·s and saturation current, I/l W > 50 μA/μm, which are orders-of-magnitude higher than the device characteristics of conventional flexible TFTs. The Si thin films with a (001) plane grown on a metal tape by a "seed and epitaxy" technique show nearly single-crystalline properties characterized by X-ray diffraction, Raman spectroscopy, reflection high-energy electron diffraction, and transmission electron microscopy. The realization of flexible and high-performance Si TFTs can establish a new pathway for extended applications of flexible electronics such as amplification and digital circuits, more than currently dominant display switches.

  4. Self-supporting film method of silicon single crystal by ion implantation and it`s application

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Kazuo; Nakao, Setsuo; Niwa, Hiroaki; Miyagawa, Soji [National Industrial Research Inst. of Nagoya (Japan)

    1996-12-01

    A few {mu}m of thickness of self-supporting film of silicon single crystal was produced by the ion implantation and the selective etching. This materials are distinguished by a uniform film thickness, good controllability, crystallization and the mechanical strength. For applying it to device, the detailed process has to be established, because there are some improved problems such as pinhole and morphology on the surface. This materials are very useful to the basic experiment of the base for epitaxial growth under irradiation of ion beams and the ion beam analysis in the atmosphere. (S.Y.)

  5. A new computationally-efficient two-dimensional model for boron implantation into single-crystal silicon

    International Nuclear Information System (INIS)

    Klein, K.M.; Park, C.; Yang, S.; Morris, S.; Do, V.; Tasch, F.

    1992-01-01

    We have developed a new computationally-efficient two-dimensional model for boron implantation into single-crystal silicon. This paper reports that this new model is based on the dual Pearson semi-empirical implant depth profile model and the UT-MARLOWE Monte Carlo boron ion implantation model. This new model can predict with very high computational efficiency two-dimensional as-implanted boron profiles as a function of energy, dose, tilt angle, rotation angle, masking edge orientation, and masking edge thickness

  6. Numerical and experimental study of a solid pellet feed continuous Czochralski growth process for silicon single crystals

    Science.gov (United States)

    Anselmo, A.; Prasad, V.; Koziol, J.; Gupta, K. P.

    1993-07-01

    A polysilicon pellets (≅1 mm diameter) feed continuous Czochralski (CCZ) growth process for silicon single crystals is proposed and investigated. Experiments in an industrial puller (14-18 inch diameter crucible) successfully demonstrate the feasibility of this process. The advantages of the proposed scheme are: a steady state growth process, a low aspect ratio melt, uniformity of heat addition and a growth apparatus with single crucible and no baffle(s). The addition of dopant with the solid charge will allow a better control of oxygen concentration leading to crystals of uniform properties and better quality. This paper presents theoretical results on melting of fully and partially immersed silicon spheres and numerical solutions on temperature and flow fields in low aspect ration melts with and without the addition of solid pellets. The theoretical and experimental results obtained thus far show a great promise for the proposed scheme.

  7. single crystals

    Indian Academy of Sciences (India)

    2018-05-18

    May 18, 2018 ... Abstract. 4-Nitrobenzoic acid (4-NBA) single crystals were studied for their linear and nonlinear optical ... studies on the proper growth, linear and nonlinear optical ..... between the optic axes and optic sign of the biaxial crystal.

  8. Analysis about diamond tool wear in nano-metric cutting of single crystal silicon using molecular dynamics method

    Science.gov (United States)

    Wang, Zhiguo; Liang, Yingchun; Chen, Mingjun; Tong, Zhen; Chen, Jiaxuan

    2010-10-01

    Tool wear not only changes its geometry accuracy and integrity, but also decrease machining precision and surface integrity of workpiece that affect using performance and service life of workpiece in ultra-precision machining. Scholars made a lot of experimental researches and stimulant analyses, but there is a great difference on the wear mechanism, especially on the nano-scale wear mechanism. In this paper, the three-dimensional simulation model is built to simulate nano-metric cutting of a single crystal silicon with a non-rigid right-angle diamond tool with 0 rake angle and 0 clearance angle by the molecular dynamics (MD) simulation approach, which is used to investigate the diamond tool wear during the nano-metric cutting process. A Tersoff potential is employed for the interaction between carbon-carbon atoms, silicon-silicon atoms and carbon-silicon atoms. The tool gets the high alternating shear stress, the tool wear firstly presents at the cutting edge where intension is low. At the corner the tool is splitted along the {1 1 1} crystal plane, which forms the tipping. The wear at the flank face is the structure transformation of diamond that the diamond structure transforms into the sheet graphite structure. Owing to the tool wear the cutting force increases.

  9. Annealing effect of H+ -implanted single crystal silicon on strain and crystal structure

    International Nuclear Information System (INIS)

    Duo Xinzhong; Liu Weili; Zhang Miao; Gao Jianxia; Fu Xiaorong; Lin Chenglu

    2000-01-01

    The work focuses on the rocking curves of H + -implanted single silicon crystal detected by Four-Crystal X-ray diffractometer. The samples were annealed under different temperatures. Lattice defect in H + -implanted silicon crystals was detected by Rutherford Backscattering Spectrometry. It appeared that H-related complex did not crush until annealing temperature reached about 400 degree C. At that temperature H 2 was formed, deflated in silicon lattice and strained the lattice. But defects did not come into being in large quantity. The lattice was undamaged. When annealing temperature reached 500 degree C, strain induced by H 2 deflation crashed the silicon lattice. A large number of defects were formed. At the same time bubbles in the crystal and blister/flaking on the surface could be observed

  10. Electrodeposition of cadmium on n-type silicon single crystals of ...

    African Journals Online (AJOL)

    sea

    type silicon have been studied as a function of different potential steps. Within appropriate potential ... including progressive nucleation on active sites and diffusion controlled cluster growth. ..... al CdSe nanocrystals on {111} gold. Surf. Sci.

  11. Synchrotron Topographic and Diffractometer Studies of Buried Layered Structures Obtained by Implantation with Swift Heavy Ions in Silicon Single Crystals

    International Nuclear Information System (INIS)

    Wierzchowski, W.; Wieteska, K.; Zymierska, D.; Graeff, W.; Czosnyka, T.; Choinski, J.

    2006-01-01

    A distribution of crystallographic defects and deformation in silicon crystals subjected to deep implantation (20-50 μm) with ions of the energy of a few MeV/amu is studied. Three different buried layered structures (single layer, binary buried structure and triple buried structure) were obtained by implantation of silicon single crystals with 184 MeV argon ions, 29.7 MeV boron ions, and 140 MeV argon ions, each implantation at a fluency of 1x10 14 ions cm -2 . The implanted samples were examined by means of white beam X-ray section and projection topography, monochromatic beam topography and by recording local rocking curves with the beam restricted to 50 x 50 μm 2 . The experiment pointed to a very low level of implantation-induced strain (below 10 -5 ). The white beam Bragg case section experiment revealed a layer producing district black contrast located at a depth of the expected mean ion range. The presence of these buried layered structures in studied silicon crystals strongly affected the fringe pattern caused by curvature of the samples. In case of white beam projection and monochromatic beam topographs the implanted areas were revealed as darker regions with a very tiny grain like structure. One may interpret these results as the effect of considerable heating causing annihilation of point defects and formation of dislocation loops connected with point defect clusters. (author)

  12. MICROSTRUCTURING OF SILICON SINGLE CRYSTALS BY FIBER LASER IN HIGH-SPEED SCANNING MODE

    Directory of Open Access Journals (Sweden)

    T. A. Trifonova

    2015-11-01

    Full Text Available Subject of Study. The surface structure of the silicon wafers (substrate with a thermally grown silicon dioxide on the surface (of SiO2/Si is studied after irradiation by pulse fiber laser of ILI-1-20 type. The main requirements for exposure modes of the system are: the preservation of the integrity of the film of silicon dioxide in the process of microstructuring and the absence of interference of surrounding irradiated areas of the substrate. Method. Studies were carried out on silicon wafers KEF-4,5 oriented in the crystallographic plane (111 with the source (natural silicon dioxide (SiO2 with thickness of about 4 nm, and SiO2 with 40 nm and 150 nm thickness, grown by thermal oxidation in moist oxygen. Also, wafers KHB-10 oriented in the plane (100 with 500 nm thickness of thermal oxide were investigated. Irradiation of SiO2/Si system was produced by laser complex based on ytterbium fiber pulse laser ILI-1-20. Nominal output power of the laser was 20 W, and the laser wavelength was λ = 1062 nm. Irradiation was carried out by a focused beam spot with a diameter of 25 microns and a pulse repetition rate of 99 kHz. The samples with 150 nm and 40 nm thickness of SiO2 were irradiated at a power density equal to 1,2·102 W/cm2, and the samples of SiO2 with 500 nm thickness were irradiated at a power density equal to 2,0·102 W/cm2. Scanning was performed using a two-axis Coordinate Scanning Device based on VM2500+ drives with control via a PC with the software package "SinMarkTM." Only one scan line was used at the maximum speed of the beam equal to 8750 mm/s. Morphology control of the irradiated samples was conducted by an optical microscope ZeissA1M with high-resolution CCD array. A scanning probe microscope Nanoedicator of the NT-MDT company was used for structural measurements. Main Results. It has been shown that at a single exposure of high-frequency pulsed laser radiation on SiO2/Si system, with maintaining the integrity of the SiO2 film

  13. Investigations of structural, dielectric and optical properties on silicon ion irradiated glycine monophosphate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kanagasekaran, T. [Department of Physics, Anna University, Chennai 600 025 (India); Department of Physics and Astrophysics, University of Delhi, New Delhi 110 007 (India); Mythili, P. [Department of Physics, Anna University, Chennai 600 025 (India); Bhagavannarayana, G. [Materials Characterization Division, National Physical Laboratory, New Delhi 110012 (India); Kanjilal, D. [Inter University Accelerator Centre, New Delhi 110 067 (India); Gopalakrishnan, R. [Department of Physics, Anna University, Chennai 600 025 (India)], E-mail: krgkrishnan@annauniv.edu

    2009-08-01

    The 50 MeV silicon ion irradiation induced modifications on structural, optical and dielectric properties of solution grown glycine monophosphate (GMP) crystals were studied. The high-resolution X-ray diffraction study shows the unaltered value of integrated intensity on irradiation. The dielectric constant as a function of frequency and temperature was studied. UV-visible studies reveal the decrease in bandgap values on irradiation and presence of F-centers. The fluorescence spectrum shows the existence of some energy levels, which remains unaffected after irradiation. The scanning electron micrographs reveal the defects formed on irradiation.

  14. 14 MeV neutron activation analysis for oxygen determination in silicon single-crystals

    International Nuclear Information System (INIS)

    Timus, D.M.; Galatanu, V.; Catana, D.

    1985-01-01

    The nondestructive fast neutron activation method has been applied for the total oxygen content determination with regards to the correlation of this content with the material properties of the silicon. The nuclear reaction used is: 16 O (n,p) 16 N, (Tsub(1/2)=7,4 s). The equipment and experimental set-up of the analytical system contained fast neutron generator GENEDAC, gamma scintillation detector (NaI crystal), a photomultiplier, a preamplifier, a linear amplifier with variable energy discrimination thresholds and a pneumatic conveyor system. The method proposed is rapid (total analysis time is less than 60 s), specific (allows a good energetic discrimination in relation to other elements) and precise, being able to characterize nondestructively the whole volume of the analysed sample

  15. Local structure of the silicon implanted in a graphite single crystal

    International Nuclear Information System (INIS)

    Baba, Yuji; Shimoyama, Iwao; Sekiguchi, Tetsuhiro

    2002-01-01

    Solid carbon forms two kinds of local structures, i.e., diamond-like and two-dimensional graphite structures. In contrast, silicon carbide tends to prefer only diamond structure that is composed of sp 3 bonds. In order to clarify weather or not two-dimensional graphitic Si x C layer exists, we investigate the local structures of Si x C layer produced by Si + -ion implantation into highly oriented pyrolytic graphite (HOPG) by means of near-edge X-ray absorption fine structure (NEXAFS). The energy of the resonance peak in the Si K-edge NEXAFS spectra for Si + -implanted HOPG is lower than those for any other Si-containing materials. The intensity of the resonance peak showed a strong polarization dependence. These results suggests that the final state orbitals around Si atoms have π*-like character and the direction of this orbital is perpendicular to the graphite plane. It is elucidated that the Si-C bonds produced by the Si + -ion implantation are nearly parallel to the graphite plane, and Si x C phase forms a two-dimensionally spread graphite-like layer with sp 2 bonds. (author)

  16. Two-dimensionally grown single-crystal silicon nanosheets with tunable visible-light emissions.

    Science.gov (United States)

    Kim, Sung Wook; Lee, Jaejun; Sung, Ji Ho; Seo, Dong-jae; Kim, Ilsoo; Jo, Moon-Ho; Kwon, Byoung Wook; Choi, Won Kook; Choi, Heon-Jin

    2014-07-22

    Since the discovery of graphene, growth of two-dimensional (2D) nanomaterials has greatly attracted attention. However, spontaneous growth of atomic two-dimensional (2D) materials is limitedly permitted for several layered-structure crystals, such as graphene, MoS2, and h-BN, and otherwise it is notoriously difficult. Here we report the gas-phase 2D growth of silicon (Si), that is cubic in symmetry, via dendritic growth and an interdendritic filling mechanism and to form Si nanosheets (SiNSs) of 1 to 13 nm in thickness. Thin SiNSs show strong thickness-dependent photoluminescence in visible range including red, green, and blue (RGB) emissions with the associated band gap energies ranging from 1.6 to 3.2 eV; these emission energies were greater than those from Si quantum dots (SiQDs) of the similar sizes. We also demonstrated that electrically driven white, as well as blue, emission in a conventional organic light-emitting diode (OLED) geometry with the SiNS assembly as the active emitting layers. Tunable light emissions in visible range in our observations suggest practical implications for novel 2D Si nanophotonics.

  17. Full characterization of laser-accelerated ion beams using Faraday cup, silicon carbide, and single-crystal diamond detectors

    Science.gov (United States)

    Margarone, D.; Krása, J.; Giuffrida, L.; Picciotto, A.; Torrisi, L.; Nowak, T.; Musumeci, P.; Velyhan, A.; Prokůpek, J.; Láska, L.; Mocek, T.; Ullschmied, J.; Rus, B.

    2011-05-01

    Multi-MeV beams of light ions have been produced using the 300 picosecond, kJ-class iodine laser, operating at the Prague Asterix Laser System facility in Prague. Real-time ion diagnostics have been performed by the use of various time-of-flight (TOF) detectors: ion collectors (ICs) with and without absorber thin films, new prototypes of single-crystal diamond and silicon carbide detectors, and an electrostatic ion mass spectrometer (IEA). In order to suppress the long photopeak induced by soft X-rays and to avoid the overlap with the signal from ultrafast particles, the ICs have been shielded with Al foil filters. The application of large-bandgap semiconductor detectors (>3 eV) ensured cutting of the plasma-emitted visible and soft-UV radiation and enhancing the sensitivity to the very fast proton/ion beams. Employing the IEA spectrometer, various ion species and charge states in the expanding laser-plasma have been determined. Processing of the experimental data based on the TOF technique, including estimation of the plasma fast proton maximum and peak energy, ion beam currents and total charge, total number of fast protons, as well as deconvolution processes, ion stopping power, and ion/photon transmission calculations for the different metallic filters used, are reported.

  18. Anomalous decrease of resistance at 250 K in ultrathin Au-Nb film on single-crystal silicon

    International Nuclear Information System (INIS)

    Yamamoto, H.; Kawashima, T.; Tanaka, M.

    1986-01-01

    Ultrathin Au-Nb films as thin as 0.2 about 10 nm were deposited on clean surfaces of single-crystal silicon in order to investigate interfacial excitonic superconductivity. The samples were classified into two types, Nb-Au/Si and Au-Nb-Au/Si. In the latter case, the secondary Au film was deposited on the former sample cooled by liquid nitrogen. In the Nb-Au/ Si type of sample, a sheet resistance, R /SUB s/ at room temperature abruptly increased from 10 3 Ωsq -1 order to about 10 5 Ωsq -1 in several days a few months after the sample preparation. Then the sample showed an anomalous decrease of R /SUB s/ at about 250 K and an approximately null resistance at lower temperatures. This phenomenon was not so stable and was observed only for a few days. The Au-Nb-Au/Si type of sample showed low R /SUB s/ (10 2 about 10 3 Ωsq -1 ) at room temperature. A decrease and disappearance of R /SUB s/ were also observed at about 240 K in the sample with comparatively good reproducibility. These phenomena are discussed qualitatively, based on the excitonic superconductive model for an interface of metal/semiconductor by Allender, Bray, and Bardeen

  19. Silicon wafers for integrated circuit process

    OpenAIRE

    Leroy , B.

    1986-01-01

    Silicon as a substrate material will continue to dominate the market of integrated circuits for many years. We first review how crystal pulling procedures impact the quality of silicon. We then investigate how thermal treatments affect the behaviour of oxygen and carbon, and how, as a result, the quality of silicon wafers evolves. Gettering techniques are then presented. We conclude by detailing the requirements that wafers must satisfy at the incoming inspection.

  20. Silicon integrated circuits part A : supplement 2

    CERN Document Server

    Kahng, Dawon

    1981-01-01

    Applied Solid State Science, Supplement 2: Silicon Integrated Circuits, Part A focuses on MOS device physics. This book is divided into three chapters-physics of the MOS transistor; nonvolatile memories; and properties of silicon-on-sapphire substrates devices, and integrated circuits. The topics covered include the short channel effects, MOSFET structures, floating gate devices, technology for nonvolatile semiconductor memories, sapphire substrates, and SOS integrated circuits and systems. The MOS capacitor, MIOS devices, and SOS process and device technology are also deliberated. This public

  1. Modelling of heating and photoexcitation of single-crystal silicon under multipulse irradiation by a nanosecond laser at 1.06 μm

    Science.gov (United States)

    Polyakov, D. S.; Yakovlev, E. B.

    2018-03-01

    We report a theoretical study of heating and photoexcitation of single-crystal silicon by nanosecond laser radiation at a wavelength of 1.06 μm. The proposed physicomathematical model of heating takes into account the complex nonlinear dynamics of the interband absorption coefficient of silicon and the contribution of the radial heat removal to the cooling of silicon between pulses under multipulse irradiation, which allows one to obtain a satisfactory agreement between theoretical predictions of silicon melting thresholds at different nanosecond pulse durations and experimental data (both under single-pulse and multipulse irradiation). It is found that under irradiation by nanosecond pulses at a wavelength of 1.06 μm, the dynamic Burshtein–Moss effect can play an important role in processes of photoexcitation and heating. It is shown that with the regimes typical for laser multipulse microprocessing of silicon (the laser spot diameter is less than 100 μm, and the repetition rate of pulses is about 100 kHz), the radial heat removal cannot be neglected in the analysis of heat accumulation processes.

  2. High-Q energy trapping of temperature-stable shear waves with Lamé cross-sectional polarization in a single crystal silicon waveguide

    Science.gov (United States)

    Tabrizian, R.; Daruwalla, A.; Ayazi, F.

    2016-03-01

    A multi-port electrostatically driven silicon acoustic cavity is implemented that efficiently traps the energy of a temperature-stable eigen-mode with Lamé cross-sectional polarization. Dispersive behavior of propagating and evanescent guided waves in a ⟨100⟩-aligned single crystal silicon waveguide is used to engineer the acoustic energy distribution of a specific shear eigen-mode that is well known for its low temperature sensitivity when implemented in doped single crystal silicon. Such an acoustic energy trapping in the central region of the acoustic cavity geometry and far from substrate obviates the need for narrow tethers that are conventionally used for non-destructive and high quality factor (Q) energy suspension in MEMS resonators; therefore, the acoustically engineered waveguide can simultaneously serve as in-situ self-oven by passing large uniformly distributed DC currents through its body and without any concern about perturbing the mode shape or deforming narrow supports. Such a stable thermo-structural performance besides large turnover temperatures than can be realized in Lamé eigen-modes make this device suitable for implementation of ultra-stable oven-controlled oscillators. 78 MHz prototypes implemented in arsenic-doped single crystal silicon substrates with different resistivity are transduced by in- and out-of-plane narrow-gap capacitive ports, showing high Q of ˜43k. The low resistivity device shows an overall temperature-induced frequency drift of 200 ppm over the range of -20 °C to 80 °C, which is ˜15× smaller compared to overall frequency drift measured for the similar yet high resistivity device in the same temperature range. Furthermore, a frequency tuning of ˜2100 ppm is achieved in high resistivity device by passing 45 mA DC current through its body. Continuous operation of the device under such a self-ovenizing current over 10 days did not induce frequency instability or degradation in Q.

  3. Silicon Photonic Integrated Circuit Mode Multiplexer

    DEFF Research Database (Denmark)

    Ding, Yunhong; Ou, Haiyan; Xu, Jing

    2013-01-01

    We propose and demonstrate a novel silicon photonic integrated circuit enabling multiplexing of orthogonal modes in a few-mode fiber (FMF). By selectively launching light to four vertical grating couplers, all six orthogonal spatial and polarization modes supported by the FMF are successfully...

  4. Materials issues in silicon integrated circuit processing

    International Nuclear Information System (INIS)

    Wittmer, M.; Stimmell, J.; Strathman, M.

    1986-01-01

    The symposium on ''Materials Issues in Integrated Circuit Processing'' sought to bring together all of the materials issued pertinent to modern integrated circuit processing. The inherent properties of the materials are becoming an important concern in integrated circuit manufacturing and accordingly research in materials science is vital for the successful implementation of modern integrated circuit technology. The session on Silicon Materials Science revealed the advanced stage of knowledge which topics such as point defects, intrinsic and extrinsic gettering and diffusion kinetics have achieved. Adaption of this knowledge to specific integrated circuit processing technologies is beginning to be addressed. The session on Epitaxy included invited papers on epitaxial insulators and IR detectors. Heteroepitaxy on silicon is receiving great attention and the results presented in this session suggest that 3-d integrated structures are an increasingly realistic possibility. Progress in low temperature silicon epitaxy and epitaxy of thin films with abrupt interfaces was also reported. Diffusion and Ion Implantation were well presented. Regrowth of implant-damaged layers and the nature of the defects which remain after regrowth were discussed in no less than seven papers. Substantial progress was also reported in the understanding of amorphising boron implants and the use of gallium implants for the formation of shallow p/sup +/ -layers

  5. Single-crystal-like GdNdO{sub x} thin films on silicon substrates by magnetron sputtering and high-temperature annealing for crystal seed layer application

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ziwei; Xiao, Lei; Liang, Renrong, E-mail: wang-j@tsinghua.edu.cn, E-mail: liangrr@tsinghua.edu.cn; Shen, Shanshan; Xu, Jun; Wang, Jing, E-mail: wang-j@tsinghua.edu.cn, E-mail: liangrr@tsinghua.edu.cn [Tsinghua National Laboratory for Information Science and Technology, Institute of Microelectronics, Tsinghua University, Beijing 100084 (China)

    2016-06-15

    Single-crystal-like rare earth oxide thin films on silicon (Si) substrates were fabricated by magnetron sputtering and high-temperature annealing processes. A 30-nm-thick high-quality GdNdO{sub x} (GNO) film was deposited using a high-temperature sputtering process at 500°C. A Gd{sub 2}O{sub 3} and Nd{sub 2}O{sub 3} mixture was used as the sputtering target, in which the proportions of Gd{sub 2}O{sub 3} and Nd{sub 2}O{sub 3} were controlled to make the GNO’s lattice parameter match that of the Si substrate. To further improve the quality of the GNO film, a post-deposition annealing process was performed at a temperature of 1000°C. The GNO films exhibited a strong preferred orientation on the Si substrate. In addition, an Al/GNO/Si capacitor was fabricated to evaluate the dielectric constant and leakage current of the GNO films. It was determined that the single-crystal-like GNO films on the Si substrates have potential for use as an insulator layer for semiconductor-on-insulator and semiconductor/insulator multilayer applications.

  6. Single-crystal-like GdNdOx thin films on silicon substrates by magnetron sputtering and high-temperature annealing for crystal seed layer application

    Directory of Open Access Journals (Sweden)

    Ziwei Wang

    2016-06-01

    Full Text Available Single-crystal-like rare earth oxide thin films on silicon (Si substrates were fabricated by magnetron sputtering and high-temperature annealing processes. A 30-nm-thick high-quality GdNdOx (GNO film was deposited using a high-temperature sputtering process at 500°C. A Gd2O3 and Nd2O3 mixture was used as the sputtering target, in which the proportions of Gd2O3 and Nd2O3 were controlled to make the GNO’s lattice parameter match that of the Si substrate. To further improve the quality of the GNO film, a post-deposition annealing process was performed at a temperature of 1000°C. The GNO films exhibited a strong preferred orientation on the Si substrate. In addition, an Al/GNO/Si capacitor was fabricated to evaluate the dielectric constant and leakage current of the GNO films. It was determined that the single-crystal-like GNO films on the Si substrates have potential for use as an insulator layer for semiconductor-on-insulator and semiconductor/insulator multilayer applications.

  7. Analysis of polytype stability in PVT grown silicon carbide single crystal using competitive lattice model Monte Carlo simulations

    Directory of Open Access Journals (Sweden)

    Hui-Jun Guo

    2014-09-01

    Full Text Available Polytype stability is very important for high quality SiC single crystal growth. However, the growth conditions for the 4H, 6H and 15R polytypes are similar, and the mechanism of polytype stability is not clear. The kinetics aspects, such as surface-step nucleation, are important. The kinetic Monte Carlo method is a common tool to study surface kinetics in crystal growth. However, the present lattice models for kinetic Monte Carlo simulations cannot solve the problem of the competitive growth of two or more lattice structures. In this study, a competitive lattice model was developed for kinetic Monte Carlo simulation of the competition growth of the 4H and 6H polytypes of SiC. The site positions are fixed at the perfect crystal lattice positions without any adjustment of the site positions. Surface steps on seeds and large ratios of diffusion/deposition have positive effects on the 4H polytype stability. The 3D polytype distribution in a physical vapor transport method grown SiC ingot showed that the facet preserved the 4H polytype even if the 6H polytype dominated the growth surface. The theoretical and experimental results of polytype growth in SiC suggest that retaining the step growth mode is an important factor to maintain a stable single 4H polytype during SiC growth.

  8. Monte Carlo calculation of energy loss of hydrogen and helium ions transmitted under channelling conditions in silicon single crystal

    International Nuclear Information System (INIS)

    El Bounagui, O.; Erramli, H.

    2010-01-01

    In this work, we report on calculations of the electronic channelling energy loss of hydrogen and helium ions along Si and Si axial directions for the low energy range by using the Monte Carlo simulation code. Simulated and experimental data are compared for protons and He ions in the and axis of silicon. A reasonable agreement was found. Computer simulation was also employed to study the angular dependence of energy loss for 0.5, 0.8, 1, and 2 MeV channelled 4 He ions transmitted through a silicon crystal of 3 μm thickness along the axis.

  9. Long-wavelength III-V/silicon photonic integrated circuits

    NARCIS (Netherlands)

    Roelkens, G.C.; Kuyken, B.; Leo, F.; Hattasan, N.; Ryckeboer, E.M.P.; Muneeb, M.; Hu, C.L.; Malik, A.; Hens, Z.; Baets, R.G.F.; Shimura, Y.; Gencarelli, F.; Vincent, B.; Loo, van de R.; Verheyen, P.A.; Lepage, G.; Campenhout, van J.; Cerutti, L.; Rodriquez, J.B.; Tournie, E.; Chen, X; Nedeljkovic, G.; Mashanovich, G.; Liu, X.; Green, W.S.

    2013-01-01

    We review our work in the field of short-wave infrared and mid-infrared photonic integrated circuits for applications in spectroscopic sensing systems. Passive silicon waveguide circuits, GeSn photodetectors, the integration of III-V and IV-VI semiconductors on these circuits, and silicon nonlinear

  10. Sub-Micrometer Zeolite Films on Gold-Coated Silicon Wafers with Single-Crystal-Like Dielectric Constant and Elastic Modulus

    Energy Technology Data Exchange (ETDEWEB)

    Tiriolo, Raffaele [Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro Italy; Rangnekar, Neel [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA; Zhang, Han [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA; Shete, Meera [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA; Bai, Peng [Department of Chemistry and Chemistry Theory Center, University of Minnesota, 207 Pleasant St SE Minneapolis MN 55455 USA; Nelson, John [Characterization Facility, University of Minnesota, 12 Shepherd Labs, 100 Union St. S.E. Minneapolis MN 55455 USA; Karapetrova, Evguenia [Surface Scattering and Microdiffraction, X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Ave, Building 438-D002 Argonne IL 60439 USA; Macosko, Christopher W. [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA; Siepmann, Joern Ilja [Department of Chemistry and Chemistry Theory Center, University of Minnesota, 207 Pleasant St SE Minneapolis MN 55455 USA; Lamanna, Ernesto [Department of Health Sciences, University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro Italy; Lavano, Angelo [Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro Italy; Tsapatsis, Michael [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA

    2017-05-08

    A low-temperature synthesis coupled with mild activation produces zeolite films exhibiting low dielectric constant (low-k) matching the theoretically predicted and experimentally measured values for single crystals. This synthesis and activation method allows for the fabrication of a device consisting of a b-oriented film of the pure-silica zeolite MFI (silicalite-1) supported on a gold-coated silicon wafer. The zeolite seeds are assembled by a manual assembly process and subjected to optimized secondary growth conditions that do not cause corrosion of the gold underlayer, while strongly promoting in-plane growth. The traditional calcination process is replaced with a non-thermal photochemical activation to ensure preservation of an intact gold layer. The dielectric constant (k), obtained through measurement of electrical capacitance in a metal-insulator-metal configuration, highlights the ultralow k approximate to 1.7 of the synthetized films, which is among the lowest values reported for an MFI film. There is large improvement in elastic modulus of the film (E approximate to 54 GPa) over previous reports, potentially allowing for integration into silicon wafer processing technology.

  11. Large aperture deformable mirror with a transferred single-crystal silicon membrane actuated using large-stroke PZT Unimorph Actuators

    Science.gov (United States)

    Hishinumat, Yoshikazu; Yang, Eui - Hyeok (EH)

    2005-01-01

    We have demonstrated a large aperture (50 mm x 50 mm) continuous membrane deformable mirror (DM) with a large-stroke piezoelectric unimorph actuator array. The DM consists of a continuous, large aperture, silicon membrane 'transferred' in its entirety onto a 20 x 20 piezoelectric unimorph actuator array. A PZT unimorph actuator, 2.5 mm in diameter with optimized PZT/Si thickness and design showed a deflection of 5.7 [m at 20V. An assembled DM showed an operating frequency bandwidth of 30 kHz and influence function of approximately 30%.

  12. Fabrication of three-dimensional MIS nano-capacitor based on nano-imprinted single crystal silicon nanowire arrays

    KAUST Repository

    Zhai, Yujia; Palard, Marylene; Mathew, Leo; Hussain, Muhammad Mustafa; Willson, Grant Grant; Tutuc, Emanuel; Banerjee, Sanjay Kumar

    2012-01-01

    We report fabrication of single crystalline silicon nanowire based-three-dimensional MIS nano-capacitors for potential analog and mixed signal applications. The array of nanowires is patterned by Step and Flash Imprint Lithography (S-FIL). Deep silicon etching (DSE) is used to form the nanowires with high aspect ratio, increase the electrode area and thus significantly enhance the capacitance. High-! dielectric is deposited by highly conformal atomic layer deposition (ALD) Al2O3 over the Si nanowires, and sputtered metal TaN serves as the electrode. Electrical measurements of fabricated capacitors show the expected increase of capacitance with greater nanowire height and decreasing dielectric thickness, consistent with calculations. Leakage current and time-dependent dielectric breakdown (TDDB) are also measured and compared with planar MIS capacitors. In view of greater interest in 3D transistor architectures, such as FinFETs, 3D high density MIS capacitors offer an attractive device technology for analog and mixed signal applications. - See more at: http://www.eurekaselect.com/105099/article#sthash.EzeJxk6j.dpuf

  13. Fabrication of three-dimensional MIS nano-capacitor based on nano-imprinted single crystal silicon nanowire arrays

    KAUST Repository

    Zhai, Yujia

    2012-11-26

    We report fabrication of single crystalline silicon nanowire based-three-dimensional MIS nano-capacitors for potential analog and mixed signal applications. The array of nanowires is patterned by Step and Flash Imprint Lithography (S-FIL). Deep silicon etching (DSE) is used to form the nanowires with high aspect ratio, increase the electrode area and thus significantly enhance the capacitance. High-! dielectric is deposited by highly conformal atomic layer deposition (ALD) Al2O3 over the Si nanowires, and sputtered metal TaN serves as the electrode. Electrical measurements of fabricated capacitors show the expected increase of capacitance with greater nanowire height and decreasing dielectric thickness, consistent with calculations. Leakage current and time-dependent dielectric breakdown (TDDB) are also measured and compared with planar MIS capacitors. In view of greater interest in 3D transistor architectures, such as FinFETs, 3D high density MIS capacitors offer an attractive device technology for analog and mixed signal applications. - See more at: http://www.eurekaselect.com/105099/article#sthash.EzeJxk6j.dpuf

  14. Calibration of the apparent temperature of silicon single crystals as a function of their true temperature and their thickness as determined by infrared measurements

    International Nuclear Information System (INIS)

    Smither, R.K.; Fernandez, P.B.

    1993-09-01

    Viewing the surface of objects subjected to high heat fluxes with an infrared camera or infrared sensor has proved to be a very effective method for monitoring the magnitude and distribution of surface temperature on the object. This approach has been quite useful in studies of cooling silicon crystals in monochromators subject to high heat loads. The main drawback to this method is that single crystals of silicon are partially transparent to the infrared radiation monitored in most infrared cameras. This means that the infrared radiation emitted from the surface contains a component that comes from the interior of the crystal and that the intensity of the emitted radiation and thus the apparent temperature of the surface of the crystal depends on the thickness of the crystal and the kind of coating on the back (and/or the front) of the crystal. The apparent temperature of the crystal increases as the crystal is made thicker. A series of experiments were performed at Argonne National Laboratory to calibrate the apparent surface temperature of the crystal as measured with an infrared camera as a function of the crystal thickness and the type of coating (if any) on the back side of the crystal. A good reflecting surface on the back side of the crystal increases the apparent temperature of the crystal and simulates the response of a crystal twice the thickness. These measurements make it possible to interpret the infrared signals from cooled silicon crystals used in past high heat load experiments. A number of examples are given for data taken in synchrotron experiments with high intensity x-ray beams

  15. Polarization Control for Silicon Photonic Circuits

    Science.gov (United States)

    Caspers, Jan Niklas

    In recent years, the field of silicon photonics has received much interest from researchers and companies across the world. The idea is to use photons to transmit information on a computer chip in order to increase computational speed while decreasing the power required for computation. To allow for communication between the chip and other components, such as the computer memory, these silicon photonics circuits need to be interfaced with optical fiber. Unfortunately, in order to interface an optical fiber with an integrated photonics circuit two major challenges need to be overcome: a mode-size mismatch as well as a polarization mismatch. While the problem of mode-size has been well investigated, the polarization mismatch has yet to be addressed. In order to solve the polarization mismatch one needs to gain control over the polarization of the light in a waveguide. In this thesis, I will present the components required to solve the polarization mismatch. Using a novel wave guiding structure, the hybrid plasmonic waveguide, an ultra-compact polarization rotator is designed, fabricated, and tested. The hybrid plasmonic rotator has a performance similar to purely dielectric rotators while being more than an order of magnitude smaller. Additionally, a broadband hybrid plasmonic coupler is designed and measured. This coupler has a performance similar to dielectric couplers while having a footprint an order of magnitude smaller. Finally, a system solution to the polarization mismatch is provided. The system, a polarization adapter, matches the incoming changing polarization from the fiber actively to the correct one of the silicon photonics circuit. The polarization adapter is demonstrated experimentally to prove its operation. This proof is based on dielectric components, but the aforementioned hybrid plasmonic waveguide components would make the system more compact.

  16. Effect of nanodimensional polyethylenimine layer on surface potential barriers of hybrid structures based on silicon single crystal

    Science.gov (United States)

    Malyar, Ivan V.; Gorin, Dmitry A.; Stetsyura, Svetlana V.

    2013-01-01

    In this report we present the analysis of I-V curves for MIS-structures like silicon substrate / nanodimensional polyelectrolyte layer / metal probe (contact) which is promising for biosensors, microfluidic chips, different devices of molecular electronics, such as OLEDs, solar cells, where polyelectrolyte layers can be used to modify semiconductor surface. The research is directed to investigate the contact phenomena which influence the resulting signal of devices mentioned above. The comparison of I-V characteristics of such structures measured by scanning tunnel microscopy (contactless technique) and using contact areas deposited by thermal evaporation onto the organic layer (the contact one) was carried out. The photoassisted I-V measurements and complex analysis based on Simmons and Schottky models allow one to extract the potential barriers and to observe the changes of charge transport in MIS-structures under illumination and after polyelectrolyte adsorption. The direct correlation between the thickness of the deposited polyelectrolyte layer and both equilibrium tunnel barrier and Schottky barrier height was observed for hybrid structures with polyethylenimine. The possibility of control over the I-V curves of hybrid structure and the height of the potential barriers (for different charge transports) by illumination was confirmed. Based on experimental data and complex analysis the band diagrams were plotted which illustrate the changes of potential barriers for MIS-structures due to the polyelectrolyte adsorption and under the illumination.

  17. A simplified boron diffusion for preparing the silicon single crystal p-n junction as an educational device

    Energy Technology Data Exchange (ETDEWEB)

    Shiota, Koki, E-mail: a14510@sr.kagawa-nct.ac.jp; Kai, Kazuho; Nagaoka, Shiro, E-mail: nagaoka@es.kagawa-nct.ac.jp [National Institute of Technology, Kagawa College, Kagawa, Mitoyo, Takuma, Koda 551 (Japan); Tsuji, Takuto [National Institute of Technology, Suzuka College, Mie, Suzuka, Shiroko (Japan); Wakahara, Akihiro [Toyohashi University of Technology, Aichi, Toyohashi, Tenpaku, Hibarigaoka 1-1 (Japan); Rusop, Mohamad [University Technology Mara, Selangor, Shah Alam, 40450 (Malaysia)

    2016-07-06

    The educational method which is including designing, making, and evaluating actual semiconductor devices with learning the theory is one of the best way to obtain the fundamental understanding of the device physics and to cultivate the ability to make unique ideas using the knowledge in the semiconductor device. In this paper, the simplified Boron thermal diffusion process using Sol-Gel material under normal air environment was proposed based on simple hypothesis and the feasibility of the reproducibility and reliability were investigated to simplify the diffusion process for making the educational devices, such as p-n junction, bipolar and pMOS devices. As the result, this method was successfully achieved making p+ region on the surface of the n-type silicon substrates with good reproducibility. And good rectification property of the p-n junctions was obtained successfully. This result indicates that there is a possibility to apply on the process making pMOS or bipolar transistors. It suggests that there is a variety of the possibility of the applications in the educational field to foster an imagination of new devices.

  18. Effect of substrate bias voltage on tensile properties of single crystal silicon microstructure fully coated with plasma CVD diamond-like carbon film

    Science.gov (United States)

    Zhang, Wenlei; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Tabata, Osamu

    2018-06-01

    Tensile strength and strength distribution in a microstructure of single crystal silicon (SCS) were improved significantly by coating the surface with a diamond-like carbon (DLC) film. To explore the influence of coating parameters and the mechanism of film fracture, SCS microstructure surfaces (120 × 4 × 5 μm3) were fully coated by plasma enhanced chemical vapor deposition (PECVD) of a DLC at five different bias voltages. After the depositions, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermal desorption spectrometry (TDS), surface profilometry, atomic force microscope (AFM) measurement, and nanoindentation methods were used to study the chemical and mechanical properties of the deposited DLC films. Tensile test indicated that the average strength of coated samples was 13.2-29.6% higher than that of the SCS sample, and samples fabricated with a -400 V bias voltage were strongest. The fracture toughness of the DLC film was the dominant factor in the observed tensile strength. Deviations in strength were reduced with increasingly negative bias voltage. The effect of residual stress on the tensile properties is discussed in detail.

  19. Reconfigurable SDM Switching Using Novel Silicon Photonic Integrated Circuit

    DEFF Research Database (Denmark)

    Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld

    2016-01-01

    -division multiplexing switching using silicon photonic integrated circuit, which is fabricated on a novel silicon-oninsulator platform with buried Al mirror. The silicon photonic integrated circuit is composed of a 7x7 switch and low loss grating coupler array based multicore fiber couplers. Thanks to the Al mirror......, grating couplers with ultra-low coupling loss with optical multicore fibers is achieved. The lowest total insertion loss of the silicon integrated circuit is as low as 4.5 dB, with low crosstalk lower than -30 dB. Excellent performances in terms of low insertion loss and low crosstalk are obtained...

  20. Process Research on Polycrystalline Silicon Material (PROPSM)

    Science.gov (United States)

    Culik, J. S.; Wrigley, C. Y.

    1985-01-01

    Results of hydrogen-passivated polycrysalline silicon solar cell research are summarized. The short-circuit current of solar cells fabricated from large-grain cast polycrystalline silicon is nearly equivalent to that of single-crystal cells, which indicates long bulk minority-carrier diffusion length. Treatments with molecular hydrogen showed no effect on large-grain cast polycrystalline silicon solar cells.

  1. Czochralski method of growing single crystals. State-of-art

    International Nuclear Information System (INIS)

    Bukowski, A.; Zabierowski, P.

    1999-01-01

    Modern Czochralski method of single crystal growing has been described. The example of Czochralski process is given. The advantages that caused the rapid progress of the method have been presented. The method limitations that motivated the further research and new solutions are also presented. As the example two different ways of the technique development has been described: silicon single crystals growth in the magnetic field; continuous liquid feed of silicon crystals growth. (author)

  2. Patterning of Perovskite Single Crystals

    KAUST Repository

    Corzo, Daniel

    2017-06-12

    As the internet-of-things hardware integration continues to develop and the requirements for electronics keep diversifying and expanding, the necessity for specialized properties other than the classical semiconductor performance becomes apparent. The success of emerging semiconductor materials depends on the manufacturability and cost as much as on the properties and performance they offer. Solution-based semiconductors are an emerging concept that offers the advantage of being compatible with large-scale manufacturing techniques and have the potential to yield high-quality electronic devices at a lower cost than currently available solutions. In this work, patterns of high-quality MAPbBr3 perovskite single crystals in specific locations are achieved through the modification of the substrate properties and solvent engineering. The fabrication of the substrates involved modifying the surface adhesion forces through functionalization with self-assembled monolayers and patterning them by photolithography processes. Spin coating and blade coating were used to deposit the perovskite solution on the modified silicon substrates. While single crystal perovskites were obtained with the modification of substrates alone, solvent engineering helped with improving the Marangoni flows in the deposited droplets by increasing the contact angle and lowering the evaporation rate, therefore controlling and improving the shape of the grown perovskite crystals. The methodology is extended to other types of perovskites such as the transparent MAPbCl3 and the lead-free MABi2I9, demonstrating the adaptability of the process. Adapting the process to electrode arrays opened up the path towards the fabrication of optoelectronic devices including photodetectors and field-effect transistors, for which the first iterations are demonstrated. Overall, manufacturing and integration techniques permitting the fabrication of single crystalline devices, such as the method in this thesis work, are

  3. Nanophotonic integrated circuits from nanoresonators grown on silicon.

    Science.gov (United States)

    Chen, Roger; Ng, Kar Wei; Ko, Wai Son; Parekh, Devang; Lu, Fanglu; Tran, Thai-Truong D; Li, Kun; Chang-Hasnain, Connie

    2014-07-07

    Harnessing light with photonic circuits promises to catalyse powerful new technologies much like electronic circuits have in the past. Analogous to Moore's law, complexity and functionality of photonic integrated circuits depend on device size and performance scale. Semiconductor nanostructures offer an attractive approach to miniaturize photonics. However, shrinking photonics has come at great cost to performance, and assembling such devices into functional photonic circuits has remained an unfulfilled feat. Here we demonstrate an on-chip optical link constructed from InGaAs nanoresonators grown directly on a silicon substrate. Using nanoresonators, we show a complete toolkit of circuit elements including light emitters, photodetectors and a photovoltaic power supply. Devices operate with gigahertz bandwidths while consuming subpicojoule energy per bit, vastly eclipsing performance of prior nanostructure-based optoelectronics. Additionally, electrically driven stimulated emission from an as-grown nanostructure is presented for the first time. These results reveal a roadmap towards future ultradense nanophotonic integrated circuits.

  4. Silicon integrated circuits advances in materials and device research

    CERN Document Server

    Kahng, Dawon

    1981-01-01

    Silicon Integrated Circuits, Part B covers the special considerations needed to achieve high-power Si-integrated circuits. The book presents articles about the most important operations needed for the high-power circuitry, namely impurity diffusion and oxidation; crystal defects under thermal equilibrium in silicon and the development of high-power device physics; and associated technology. The text also describes the ever-evolving processing technology and the most promising approaches, along with the understanding of processing-related areas of physics and chemistry. Physicists, chemists, an

  5. Silicon-based optical integrated circuits for terabit communication networks

    International Nuclear Information System (INIS)

    Svidzinsky, K K

    2003-01-01

    A brief review is presented of the development of silicon-based optical integrated circuits used as components in modern all-optical communication networks with the terabit-per-second transmission capacity. The designs and technologies for manufacturing these circuits are described and the problems related to their development and application in WDM communication systems are considered. (special issue devoted to the memory of academician a m prokhorov)

  6. Silicon Carbide Power Devices and Integrated Circuits

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan; Samsel, Isaak; LaBel, Ken; Chen, Yuan; Ikpe, Stanley; Wilcox, Ted; Phan, Anthony; Kim, Hak; Topper, Alyson

    2017-01-01

    An overview of the NASA NEPP Program Silicon Carbide Power Device subtask is given, including the current task roadmap, partnerships, and future plans. Included are the Agency-wide efforts to promote development of single-event effect hardened SiC power devices for space applications.

  7. Novel technique for reliability testing of silicon integrated circuits

    NARCIS (Netherlands)

    Le Minh, P.; Wallinga, Hans; Woerlee, P.H.; van den Berg, Albert; Holleman, J.

    2001-01-01

    We propose a simple, inexpensive technique with high resolution to identify the weak spots in integrated circuits by means of a non-destructive photochemical process in which photoresist is used as the photon detection tool. The experiment was done to localize the breakdown link of thin silicon

  8. Effect of the structure and mechanical properties of the near-surface layer of lithium niobate single crystals on the manufacture of integrated optic circuits

    Science.gov (United States)

    Sosunov, A. V.; Ponomarev, R. S.; Yur'ev, V. A.; Volyntsev, A. B.

    2017-01-01

    This paper shows that the near-surface layer of a lithium niobate single layer 15 μm in depth is essentially different from the rest of the volume of the material from the standpoint of composition, structure, and mechanical properties. The pointed out differences are due to the effect of cutting, polishing, and smoothing of the lithium niobate plates, which increase the density of point defects and dislocations. The increasing density of the structural defects leads to uncontrollable changes in the conditions of the formations of waveguides and the drifting of characteristics of integrated optical circuits. The results obtained are very important for the manufacture of lithium niobate based integrated optical circuits.

  9. High quality single crystal Ge nano-membranes for opto-electronic integrated circuitry

    International Nuclear Information System (INIS)

    Shah, V. A.; Gammon, P. M.; Rhead, S. D.; Halpin, J. E.; Trushkevych, O.; Wilson, N. R.; Myronov, M.; Edwards, R. S.; Patchett, D. H.; Allred, P. S.; Prest, M. J.; Whall, T. E.; Parker, E. H. C.; Leadley, D. R.; Chávez-Ángel, E.; Shchepetov, A.; Prunnila, M.; Kachkanov, V.; Dolbnya, I. P.; Reparaz, J. S.

    2014-01-01

    A thin, flat, and single crystal germanium membrane would be an ideal platform on which to mount sensors or integrate photonic and electronic devices, using standard silicon processing technology. We present a fabrication technique compatible with integrated-circuit wafer scale processing to produce membranes of thickness between 60 nm and 800 nm, with large areas of up to 3.5 mm 2 . We show how the optical properties change with thickness, including appearance of Fabry-Pérot type interference in thin membranes. The membranes have low Q-factors, which allow the platforms to counteract distortion during agitation and movement. Finally, we report on the physical characteristics showing sub-nm roughness and a homogenous strain profile throughout the freestanding layer, making the single crystal Ge membrane an excellent platform for further epitaxial growth or deposition of materials

  10. High quality single crystal Ge nano-membranes for opto-electronic integrated circuitry

    Energy Technology Data Exchange (ETDEWEB)

    Shah, V. A., E-mail: vishal.shah@warwick.ac.uk; Gammon, P. M. [Department of Engineering, The University of Warwick, Coventry CV4 7AL (United Kingdom); Department of Physics, The University of Warwick, Coventry CV4 7AL (United Kingdom); Rhead, S. D.; Halpin, J. E.; Trushkevych, O.; Wilson, N. R.; Myronov, M.; Edwards, R. S.; Patchett, D. H.; Allred, P. S.; Prest, M. J.; Whall, T. E.; Parker, E. H. C.; Leadley, D. R. [Department of Physics, The University of Warwick, Coventry CV4 7AL (United Kingdom); Chávez-Ángel, E. [ICN2-Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra (Barcelona) (Spain); Department of Physics, UAB, 08193 Bellaterra (Barcelona) (Spain); Shchepetov, A.; Prunnila, M. [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo (Finland); Kachkanov, V.; Dolbnya, I. P. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Reparaz, J. S. [ICN2-Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra (Barcelona) (Spain); and others

    2014-04-14

    A thin, flat, and single crystal germanium membrane would be an ideal platform on which to mount sensors or integrate photonic and electronic devices, using standard silicon processing technology. We present a fabrication technique compatible with integrated-circuit wafer scale processing to produce membranes of thickness between 60 nm and 800 nm, with large areas of up to 3.5 mm{sup 2}. We show how the optical properties change with thickness, including appearance of Fabry-Pérot type interference in thin membranes. The membranes have low Q-factors, which allow the platforms to counteract distortion during agitation and movement. Finally, we report on the physical characteristics showing sub-nm roughness and a homogenous strain profile throughout the freestanding layer, making the single crystal Ge membrane an excellent platform for further epitaxial growth or deposition of materials.

  11. Silicon carbide MOSFET integrated circuit technology

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.M.; Downey, E.; Ghezzo, M.; Kretchmer, J.; Krishnamurthy, V.; Hennessy, W.; Michon, G. [General Electric Co., Schenectady, NY (United States). Corporate Research and Development Center

    1997-07-16

    The research and development activities carried out to demonstrate the status of MOS planar technology for the manufacture of high temperature SiC ICs will be described. These activities resulted in the design, fabrication and demonstration of the World`s first SiC analog IC - a monolithic MOSFET operational amplifier. Research tasks required for the development of a planar SiC MOSFET IC technology included characterization of the SiC/SiO{sub 2} interface using thermally grown oxides: high temperature (350 C) reliability studies of thermally grown oxides: ion implantation studies of donor (N) and acceptor (B) dopants to form junction diodes: epitaxial layer characterization: N channel inversion and depletion mode MOSFETs; device isolation methods and finally integrated circuit design, fabrication and testing of the World`s first monolithic SiC operational amplifier IC. These studies defined a SiC n-channel depletion mode MOSFET IC technology and outlined tasks required to improve all types of SiC devices. For instance, high temperature circuit drift instabilities at 350 C were discovered and characterized. This type of instability needs to be understood and resolved because it affects the high temperature reliability of other types of SiC devices. Improvements in SiC wafer surface quality and the use of deposited oxides instead of thermally grown SiO{sub 2} gate dielectrics will probably be required for enhanced reliability. The slow reverse recovery time exhibited by n{sup +}-p diodes formed by N ion implantation is a problem that needs to be resolved for all types of planar bipolar devices. The reproducibility of acceptor implants needs to be improved before CMOS ICs and many types of power device structures will be manufacturable. (orig.) 51 refs.

  12. Single Crystal Diffractometry

    Science.gov (United States)

    Arndt, U. W.; Willis, B. T. M.

    2009-06-01

    Preface; Acknowledgements; Part I. Introduction; Part II. Diffraction Geometry; Part III. The Design of Diffractometers; Part IV. Detectors; Part V. Electronic Circuits; Part VI. The Production of the Primary Beam (X-rays); Part VII. The Production of the Primary Beam (Neutrons); Part VIII. The Background; Part IX. Systematic Errors in Measuring Relative Integrated Intensities; Part X. Procedure for Measuring Integrated Intensities; Part XI. Derivation and Accuracy of Structure Factors; Part XII. Computer Programs and On-line Control; Appendix; References; Index.

  13. Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic.

    Science.gov (United States)

    Shahrjerdi, Davood; Bedell, Stephen W

    2013-01-09

    In recent years, flexible devices based on nanoscale materials and structures have begun to emerge, exploiting semiconductor nanowires, graphene, and carbon nanotubes. This is primarily to circumvent the existing shortcomings of the conventional flexible electronics based on organic and amorphous semiconductors. The aim of this new class of flexible nanoelectronics is to attain high-performance devices with increased packing density. However, highly integrated flexible circuits with nanoscale transistors have not yet been demonstrated. Here, we show nanoscale flexible circuits on 60 Å thick silicon, including functional ring oscillators and memory cells. The 100-stage ring oscillators exhibit the stage delay of ~16 ps at a power supply voltage of 0.9 V, the best reported for any flexible circuits to date. The mechanical flexibility is achieved by employing the controlled spalling technology, enabling the large-area transfer of the ultrathin body silicon devices to a plastic substrate at room temperature. These results provide a simple and cost-effective pathway to enable ultralight flexible nanoelectronics with unprecedented level of system complexity based on mainstream silicon technology.

  14. Infrared transparent graphene heater for silicon photonic integrated circuits.

    Science.gov (United States)

    Schall, Daniel; Mohsin, Muhammad; Sagade, Abhay A; Otto, Martin; Chmielak, Bartos; Suckow, Stephan; Giesecke, Anna Lena; Neumaier, Daniel; Kurz, Heinrich

    2016-04-18

    Thermo-optical tuning of the refractive index is one of the pivotal operations performed in integrated silicon photonic circuits for thermal stabilization, compensation of fabrication tolerances, and implementation of photonic operations. Currently, heaters based on metal wires provide the temperature control in the silicon waveguide. The strong interaction of metal and light, however, necessitates a certain gap between the heater and the photonic structure to avoid significant transmission loss. Here we present a graphene heater that overcomes this constraint and enables an energy efficient tuning of the refractive index. We achieve a tuning power as low as 22 mW per free spectral range and fast response time of 3 µs, outperforming metal based waveguide heaters. Simulations support the experimental results and suggest that for graphene heaters the spacing to the silicon can be further reduced yielding the best possible energy efficiency and operation speed.

  15. Advanced dendritic web growth development and development of single-crystal silicon dendritic ribbon and high-efficiency solar cell program

    Science.gov (United States)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.

    1986-01-01

    Efforts to demonstrate that the dendritic web technology is ready for commercial use by the end of 1986 continues. A commercial readiness goal involves improvements to crystal growth furnace throughput to demonstrate an area growth rate of greater than 15 sq cm/min while simultaneously growing 10 meters or more of ribbon under conditions of continuous melt replenishment. Continuous means that the silicon melt is being replenished at the same rate that it is being consumed by ribbon growth so that the melt level remains constant. Efforts continue on computer thermal modeling required to define high speed, low stress, continuous growth configurations; the study of convective effects in the molten silicon and growth furnace cover gas; on furnace component modifications; on web quality assessments; and on experimental growth activities.

  16. Thermal shock cracking of GSO single crystal

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki; Yamamoto, Kazunari; Tamura, Takaharu; Kurashige, Kazuhisa; Ishibashi, Hiroyuki; Susa, Kenzo

    1998-01-01

    The quantitative estimation of the failure stress of a gadolinium orthosilicate (Gd 2 SiO 5 , hereafter abbreviated as GSO) single crystal due to thermal shock was investigated. A cylindrical test specimen was heated in a silicone oil bath, then subjected to thermal shock by pouring room temperature silicone oil. Cracking occurred during cooling. The heat conduction analysis was performed to obtain temperature distribution in a GSO single crystal at cracking, using the surface temperatures measured in the thermal shock cracking test. Then the thermal stress was calculated using temperature profile of the test specimen obtained from the heat conduction analysis. It is found from the results of the thermal stress analysis and the observation of the cracking in test specimens that the thermal shock cracking occurs in a cleavage plane due to the stress normal to the plane. Three-point bending tests were also performed to examine the relationship between the critical stress for thermal shock cracking and the three-point bending strength obtained from small-sized test specimens. (author)

  17. Flexible and tunable silicon photonic circuits on plastic substrates

    Science.gov (United States)

    Chen, Yu; Li, Huan; Li, Mo

    2012-09-01

    Flexible microelectronics has shown tremendous promise in a broad spectrum of applications, especially those that cannot be addressed by conventional microelectronics in rigid materials and constructions. These unconventional yet important applications range from flexible consumer electronics to conformal sensor arrays and biomedical devices. A recent paradigm shift in implementing flexible electronics is to physically transfer highly integrated devices made in high-quality, crystalline semiconductors on to plastic substrates. Here we demonstrate a flexible form of silicon photonics using the transfer-and-bond fabrication method. Photonic circuits including interferometers and resonators have been transferred onto flexible plastic substrates with preserved functionalities and performance. By mechanically deforming, the optical characteristics of the devices can be tuned reversibly over a remarkably large range. The demonstration of the new flexible photonic systems based on the silicon-on-plastic (SOP) platform could open the door to many future applications, including tunable photonics, optomechanical sensors and biomechanical and bio-photonic probes.

  18. Photoluminescent properties of single crystal diamond microneedles

    Science.gov (United States)

    Malykhin, Sergey A.; Ismagilov, Rinat R.; Tuyakova, Feruza T.; Obraztsova, Ekaterina A.; Fedotov, Pavel V.; Ermakova, Anna; Siyushev, Petr; Katamadze, Konstantin G.; Jelezko, Fedor; Rakovich, Yury P.; Obraztsov, Alexander N.

    2018-01-01

    Single crystal needle-like diamonds shaped as rectangular pyramids were produced by combination of chemical vapor deposition and selective oxidation with dimensions and geometrical characteristics depending on the deposition process parameters. Photoluminescence spectra and their dependencies on wavelength of excitation radiation reveal presence of nitrogen- and silicon-vacancy color centers in the diamond crystallites. Photoluminescence spectra, intensity mapping, and fluorescence lifetime imaging microscopy indicate that silicon-vacancy centers are concentrated at the crystallites apex while nitrogen-vacancy centers are distributed over the whole crystallite. Dependence of the photoluminescence on excitation radiation intensity demonstrates saturation and allows estimation of the color centers density. The combination of structural parameters, geometry and photoluminescent characteristics are prospective for advantageous applications of these diamond crystallites in quantum information processing and optical sensing.

  19. Trace-based post-silicon validation for VLSI circuits

    CERN Document Server

    Liu, Xiao

    2014-01-01

    This book first provides a comprehensive coverage of state-of-the-art validation solutions based on real-time signal tracing to guarantee the correctness of VLSI circuits.  The authors discuss several key challenges in post-silicon validation and provide automated solutions that are systematic and cost-effective.  A series of automatic tracing solutions and innovative design for debug (DfD) techniques are described, including techniques for trace signal selection for enhancing visibility of functional errors, a multiplexed signal tracing strategy for improving functional error detection, a tracing solution for debugging electrical errors, an interconnection fabric for increasing data bandwidth and supporting multi-core debug, an interconnection fabric design and optimization technique to increase transfer flexibility and a DfD design and associated tracing solution for improving debug efficiency and expanding tracing window. The solutions presented in this book improve the validation quality of VLSI circuit...

  20. A multistep single-crystal-to-single-crystal bromodiacetylene dimerization

    Science.gov (United States)

    Hoheisel, Tobias N.; Schrettl, Stephen; Marty, Roman; Todorova, Tanya K.; Corminboeuf, Clémence; Sienkiewicz, Andrzej; Scopelliti, Rosario; Schweizer, W. Bernd; Frauenrath, Holger

    2013-04-01

    Packing constraints and precise placement of functional groups are the reason that organic molecules in the crystalline state often display unusual physical or chemical properties not observed in solution. Here we report a single-crystal-to-single-crystal dimerization of a bromodiacetylene that involves unusually large atom displacements as well as the cleavage and formation of several bonds. Density functional theory computations support a mechanism in which the dimerization is initiated by a [2 + 1] photocycloaddition favoured by the nature of carbon-carbon short contacts in the crystal structure. The reaction proceeded up to the theoretical degree of conversion without loss of crystallinity, and it was also performed on a preparative scale with good yield. Moreover, it represents the first synthetic pathway to (E)-1,2-dibromo-1,2-diethynylethenes, which could serve as synthetic intermediates for the preparation of molecular carbon scaffolds. Our findings both extend the scope of single-crystal-to-single-crystal reactions and highlight their potential as a synthetic tool for complex transformations.

  1. Thermally-isolated silicon-based integrated circuits and related methods

    Science.gov (United States)

    Wojciechowski, Kenneth; Olsson, Roy H.; Clews, Peggy J.; Bauer, Todd

    2017-05-09

    Thermally isolated devices may be formed by performing a series of etches on a silicon-based substrate. As a result of the series of etches, silicon material may be removed from underneath a region of an integrated circuit (IC). The removal of the silicon material from underneath the IC forms a gap between remaining substrate and the integrated circuit, though the integrated circuit remains connected to the substrate via a support bar arrangement that suspends the integrated circuit over the substrate. The creation of this gap functions to release the device from the substrate and create a thermally-isolated integrated circuit.

  2. Method of making thermally-isolated silicon-based integrated circuits

    Science.gov (United States)

    Wojciechowski, Kenneth; Olsson, Roy; Clews, Peggy J.; Bauer, Todd

    2017-11-21

    Thermally isolated devices may be formed by performing a series of etches on a silicon-based substrate. As a result of the series of etches, silicon material may be removed from underneath a region of an integrated circuit (IC). The removal of the silicon material from underneath the IC forms a gap between remaining substrate and the integrated circuit, though the integrated circuit remains connected to the substrate via a support bar arrangement that suspends the integrated circuit over the substrate. The creation of this gap functions to release the device from the substrate and create a thermally-isolated integrated circuit.

  3. Growth of Ba-hexaferrite films on single crystal 6-H SiC

    International Nuclear Information System (INIS)

    Chen Zhoahui; Yang, Aria; Yoon, S.D.; Ziemer, Katherine; Vittoria, Carmine; Harris, V.G.

    2006-01-01

    Barium hexaferrite films have been processed by pulsed laser deposition on single crystal 6-H silicon carbide substrates. Atomic force microscopy images show hexagonal crystals (∼0.5μm in diameter) oriented with the c-axis perpendicular to the film plane. X-ray θ-2θ diffraction measurements indicate a strong (0,0,2n) alignment of crystallites. The magnetization for low-pressure deposition (20mTorr) is comparable to bulk values (4πM s ∼4320G). The loop squareness, important for self-bias microwave device applications, increases with oxygen pressure reaching a maximum value of 70%. This marks the first growth of a microwave ferrite on SiC substrates and offers a new approach in the design and development of μ-wave and mm-wave monolithic integrated circuits. c integrated circuits

  4. Observation of plastic deformation in freestanding single crystal Au nanowires

    International Nuclear Information System (INIS)

    Lee, Dongyun; Zhao Manhong; Wei Xiaoding; Chen Xi; Jun, Seong C.; Hone, James; Herbert, Erik G.; Oliver, Warren C.; Kysar, Jeffrey W.

    2006-01-01

    Freestanding single crystal nanowires of gold were fabricated from a single grain of pure gold leaf by standard lithographic techniques, with center section of 7 μm in length, 250 nm in width, and 100 nm in thickness. The ends remained anchored to a silicon substrate. The specimens were deflected via nanoindenter until plastic deformation was achieved. Nonlocalized and localized plastic deformations were observed. The resulting force-displacement curves were simulated using continuum single crystal plasticity. A set of material parameters which closely reproduce the experimental results suggests that the initial critical resolved shear stress was as high as 135 MPa

  5. Mechanisms limiting the performance of large grain polycrystalline silicon solar cells

    Science.gov (United States)

    Culik, J. S.; Alexander, P.; Dumas, K. A.; Wohlgemuth, J. W.

    1984-01-01

    The open-circuit voltage and short-circuit current of large-grain (1 to 10 mm grain diameter) polycrystalline silicon solar cells is determined by the minority-carrier diffusion length within the bulk of the grains. This was demonstrated by irradiating polycrystalline and single-crystal (Czochralski) silicon solar cells with 1 MeV electrons to reduce their bulk lifetime. The variation of short-circuit current with minority-carrier diffusion length for the polycrystalline solar cells is identical to that of the single-crystal solar cells. The open-circuit voltage versus short-circuit current characteristic of the polycrystalline solar cells for reduced diffusion lengths is also identical to that of the single-crystal solar cells. The open-circuit voltage of the polycrystalline solar cells is a strong function of quasi-neutral (bulk) recombination, and is reduced only slightly, if at all, by grain-boundary recombination.

  6. Silicon photonics integrated circuits: a manufacturing platform for high density, low power optical I/O's.

    Science.gov (United States)

    Absil, Philippe P; Verheyen, Peter; De Heyn, Peter; Pantouvaki, Marianna; Lepage, Guy; De Coster, Jeroen; Van Campenhout, Joris

    2015-04-06

    Silicon photonics integrated circuits are considered to enable future computing systems with optical input-outputs co-packaged with CMOS chips to circumvent the limitations of electrical interfaces. In this paper we present the recent progress made to enable dense multiplexing by exploiting the integration advantage of silicon photonics integrated circuits. We also discuss the manufacturability of such circuits, a key factor for a wide adoption of this technology.

  7. Metal Halide Perovskite Single Crystals: From Growth Process to Application

    Directory of Open Access Journals (Sweden)

    Shuigen Li

    2018-05-01

    Full Text Available As a strong competitor in the field of optoelectronic applications, organic-inorganic metal hybrid perovskites have been paid much attention because of their superior characteristics, which include broad absorption from visible to near-infrared region, tunable optical and electronic properties, high charge mobility, long exciton diffusion length and carrier recombination lifetime, etc. It is noted that perovskite single crystals show remarkably low trap-state densities and long carrier diffusion lengths, which are even comparable with the best photovoltaic-quality silicon, and thus are expected to provide better optoelectronic performance. This paper reviews the recent development of crystal growth in single-, mixed-organic-cation and fully inorganic halide perovskite single crystals, in particular the solution approach. Furthermore, the application of metal hybrid perovskite single crystals and future perspectives are also highlighted.

  8. Large-scale quantum photonic circuits in silicon

    Directory of Open Access Journals (Sweden)

    Harris Nicholas C.

    2016-08-01

    Full Text Available Quantum information science offers inherently more powerful methods for communication, computation, and precision measurement that take advantage of quantum superposition and entanglement. In recent years, theoretical and experimental advances in quantum computing and simulation with photons have spurred great interest in developing large photonic entangled states that challenge today’s classical computers. As experiments have increased in complexity, there has been an increasing need to transition bulk optics experiments to integrated photonics platforms to control more spatial modes with higher fidelity and phase stability. The silicon-on-insulator (SOI nanophotonics platform offers new possibilities for quantum optics, including the integration of bright, nonclassical light sources, based on the large third-order nonlinearity (χ(3 of silicon, alongside quantum state manipulation circuits with thousands of optical elements, all on a single phase-stable chip. How large do these photonic systems need to be? Recent theoretical work on Boson Sampling suggests that even the problem of sampling from e30 identical photons, having passed through an interferometer of hundreds of modes, becomes challenging for classical computers. While experiments of this size are still challenging, the SOI platform has the required component density to enable low-loss and programmable interferometers for manipulating hundreds of spatial modes.

  9. Development of a miniaturized watch-type dosimeter using a silicon printed-circuit board

    International Nuclear Information System (INIS)

    Ishikura, Takeshi; Sakamaki, Tsuyoshi; Matsumoto, Iwao; Aoyama, Kei; Nakamura, Takashi

    2008-01-01

    The electrical personal dosimeter using a silicon semiconductor sensor has the advantage of real time response and alarm function, which can prevent unexpected over-exposure. We tried to develop a miniaturized watch-type dosimeter by incorporating the silicon semiconductor sensor on a silicon printed-circuit board. Thin film resistors, capacitors and wiring patterns are formed on a downsized printed-circuit board. Electronic parts including transistors are mounted by soldering on the silicon printed-circuit board. The dosimeter is further miniaturized by downsizing the amplifier circuit, the semiconductor radiation sensor, the power supply circuit, setting parts and alarm part. The performance of the developed dosimeter was evaluated with respect to the gamma-ray spectra, angular dependence and linearity to dose equivalent rate, and it was confirmed that this dosimeter has the performance equivalent to a commercially available electrical personal dosimeter. (author)

  10. Silicon compilation: From the circuit to the system

    Science.gov (United States)

    Obrien, Keven

    The methodology used for the compilation of silicon from a behavioral level to a system level is presented. The aim was to link the heretofore unrelated areas of high level synthesis and system level design. This link will play an important role in the development of future design automation tools as it will allow hardware/software co-designs to be synthesized. A design methodology that alllows, through the use of an intermediate representation, SOLAR, a System level Design Language (SDL), to be combined with a Hardware Description Language (VHDL) is presented. Two main steps are required in order to transform this specification into a synthesizable one. Firstly, a system level synthesis step including partitioning and communication synthesis is required in order to split the model into a set of interconnected subsystems, each of which will be processed by a high level synthesis tool. For this latter step AMICAL is used and this allows powerful scheduling techniques to be used, that accept very abstract descriptions of control flow dominated circuits as input, and interconnected RTL blocks that may feed existing logic-level synthesis tools to be generated.

  11. Graphene-on-silicon hybrid plasmonic-photonic integrated circuits.

    Science.gov (United States)

    Xiao, Ting-Hui; Cheng, Zhenzhou; Goda, Keisuke

    2017-06-16

    Graphene surface plasmons (GSPs) have shown great potential in biochemical sensing, thermal imaging, and optoelectronics. To excite GSPs, several methods based on the near-field optical microscope and graphene nanostructures have been developed in the past few years. However, these methods suffer from their bulky setups and low GSP-excitation efficiency due to the short interaction length between free-space vertical excitation light and the atomic layer of graphene. Here we present a CMOS-compatible design of graphene-on-silicon hybrid plasmonic-photonic integrated circuits that achieve the in-plane excitation of GSP polaritons as well as localized surface plasmon (SP) resonance. By employing a suspended membrane slot waveguide, our design is able to excite GSP polaritons on a chip. Moreover, by utilizing a graphene nanoribbon array, we engineer the transmission spectrum of the waveguide by excitation of localized SP resonance. Our theoretical and computational study paves a new avenue to enable, modulate, and monitor GSPs on a chip, potentially applicable for the development of on-chip electro-optic devices.

  12. Heterogeneous Monolithic Integration of Single-Crystal Organic Materials.

    Science.gov (United States)

    Park, Kyung Sun; Baek, Jangmi; Park, Yoonkyung; Lee, Lynn; Hyon, Jinho; Koo Lee, Yong-Eun; Shrestha, Nabeen K; Kang, Youngjong; Sung, Myung Mo

    2017-02-01

    Manufacturing high-performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement. In particular, the development of high-performance organic electronic and optoelectronic devices relies on high-quality single crystals that show optimal intrinsic charge-transport properties and electrical performance. Moreover, the heterogeneous integration of organic materials on a single substrate in a monolithic way is highly demanded for the production of fundamental organic electronic components as well as complex integrated circuits. Many of the various methods that have been designed to pattern multiple heterogeneous organic materials on a substrate and the heterogeneous integration of organic single crystals with their crystal growth are described here. Critical issues that have been encountered in the development of high-performance organic integrated electronics are also addressed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Experimental Demonstration of 7 Tb/s Switching Using Novel Silicon Photonic Integrated Circuit

    DEFF Research Database (Denmark)

    Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld

    2016-01-01

    We demonstrate BER performance <10^-9 for a 1 Tb/s/core transmission over 7-core fiber and SDM switching using a novel silicon photonic integrated circuit composed of a 7x7 fiber switch and low loss SDM couplers.......We demonstrate BER performance integrated circuit composed of a 7x7 fiber switch and low loss SDM couplers....

  14. Gallium arsenide single crystal solar cell structure and method of making

    Science.gov (United States)

    Stirn, Richard J. (Inventor)

    1983-01-01

    A production method and structure for a thin-film GaAs crystal for a solar cell on a single-crystal silicon substrate (10) comprising the steps of growing a single-crystal interlayer (12) of material having a closer match in lattice and thermal expansion with single-crystal GaAs than the single-crystal silicon of the substrate, and epitaxially growing a single-crystal film (14) on the interlayer. The material of the interlayer may be germanium or graded germanium-silicon alloy, with low germanium content at the silicon substrate interface, and high germanium content at the upper surface. The surface of the interface layer (12) is annealed for recrystallization by a pulsed beam of energy (laser or electron) prior to growing the interlayer. The solar cell structure may be grown as a single-crystal n.sup.+ /p shallow homojunction film or as a p/n or n/p junction film. A Ga(Al)AS heteroface film may be grown over the GaAs film.

  15. Electrically Anisotropic Layered Perovskite Single Crystal

    KAUST Repository

    Li, Ting-You

    2016-01-01

    -23). However, the difficulty in growing large-sized LOIHPs single crystal with superior electrical properties limits their practical applications. Here, we report a method to grow the centimeter-scaled LOIHP single crystal of [(HOC2H4NH3)2PbI4], demonstrating

  16. Confinement stabilises single crystal vaterite rods.

    OpenAIRE

    Schenk, AS; Albarracin, EJ; Kim, YY; Ihli, J; Meldrum, FC

    2014-01-01

    Single-crystals of vaterite, the least-stable anhydrous polymorph of CaCO3, are rare in biogenic and synthetic systems. We here describe the synthesis of high aspect ratio single crystal vaterite rods under additive-free conditions by precipitating CaCO3 within the cylindrical pores of track-etch membranes.

  17. Young's Modulus of Single-Crystal Fullerene C Nanotubes

    Directory of Open Access Journals (Sweden)

    Tokushi Kizuka

    2012-01-01

    Full Text Available We performed bending tests on single-crystal nanotubes composed of fullerene C70 molecules by in situ transmission electron microscopy with measurements of loading forces by an optical deflection method. The nanotubes with the outer diameters of 270–470 nm were bent using simple-beam and cantilever-beam loading by the piezomanipulation of silicon nanotips. Young's modulus of the nanotubes increased from 61 GPa to 110 GPa as the outer diameter decreased from 470 nm to 270 nm. Young's modulus was estimated to be 66% of that of single-crystal C60 nanotubes of the same outer diameter.

  18. Circuit mismatch influence on performance of paralleling silicon carbide MOSFETs

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig; Pham, Cam

    2014-01-01

    This paper focuses on circuit mismatch influence on performance of paralleling SiC MOSFETs. Power circuit mismatch and gate driver mismatch influences are analyzed in detail. Simulation and experiment results show the influence of circuit mismatch and verify the analysis. This paper aims to give...... suggestions on paralleling discrete SiC MOSFETs and designing layout of power modules with paralleled SiC MOSFETs dies....

  19. Relaxor-PT Single Crystal Piezoelectric Sensors

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2014-07-01

    Full Text Available Relaxor-PbTiO3 piezoelectric single crystals have been widely used in a broad range of electromechanical devices, including piezoelectric sensors, actuators, and transducers. This paper reviews the unique properties of these single crystals for piezoelectric sensors. Design, fabrication and characterization of various relaxor-PT single crystal piezoelectric sensors and their applications are presented and compared with their piezoelectric ceramic counterparts. Newly applicable fields and future trends of relaxor-PT sensors are also suggested in this review paper.

  20. Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip.

    Science.gov (United States)

    Schuck, C; Guo, X; Fan, L; Ma, X; Poot, M; Tang, H X

    2016-01-21

    Quantum information processing holds great promise for communicating and computing data efficiently. However, scaling current photonic implementation approaches to larger system size remains an outstanding challenge for realizing disruptive quantum technology. Two main ingredients of quantum information processors are quantum interference and single-photon detectors. Here we develop a hybrid superconducting-photonic circuit system to show how these elements can be combined in a scalable fashion on a silicon chip. We demonstrate the suitability of this approach for integrated quantum optics by interfering and detecting photon pairs directly on the chip with waveguide-coupled single-photon detectors. Using a directional coupler implemented with silicon nitride nanophotonic waveguides, we observe 97% interference visibility when measuring photon statistics with two monolithically integrated superconducting single-photon detectors. The photonic circuit and detector fabrication processes are compatible with standard semiconductor thin-film technology, making it possible to implement more complex and larger scale quantum photonic circuits on silicon chips.

  1. High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits

    DEFF Research Database (Denmark)

    Ding, Yunhong; Bacco, Davide; Dalgaard, Kjeld

    2017-01-01

    is intrinsically limited to 1 bit/photon. Here we propose and experimentally demonstrate, for the first time, a high-dimensional quantum key distribution protocol based on space division multiplexing in multicore fiber using silicon photonic integrated lightwave circuits. We successfully realized three mutually......-dimensional quantum states, and enables breaking the information efficiency limit of traditional quantum key distribution protocols. In addition, the silicon photonic circuits used in our work integrate variable optical attenuators, highly efficient multicore fiber couplers, and Mach-Zehnder interferometers, enabling...

  2. Defect free single crystal thin layer

    KAUST Repository

    Elafandy, Rami Tarek Mahmoud

    2016-01-28

    A gallium nitride film can be a dislocation free single crystal, which can be prepared by irradiating a surface of a substrate and contacting the surface with an etching solution that can selectively etch at dislocations.

  3. Defect free single crystal thin layer

    KAUST Repository

    Elafandy, Rami Tarek Mahmoud; Ooi, Boon S.

    2016-01-01

    A gallium nitride film can be a dislocation free single crystal, which can be prepared by irradiating a surface of a substrate and contacting the surface with an etching solution that can selectively etch at dislocations.

  4. Preparation of TiC single crystals

    International Nuclear Information System (INIS)

    Scheerer, B.; Fink, J.; Reichardt, W.

    1975-07-01

    TiC single crystals were prepared by vertical zone melting for measurements of the phonon dispersion by inelastic neutron scattering. The influence of the starting material and of the growing conditions on the growth of the crystal were studied. The crystals were characterized by chemical methods, EMX and neutron diffraction. It was possible to grow single crystals with a volume of up to 0.6 cm 3 and mosaic spread of less then 0.4 0 . (orig.) [de

  5. Electrically Anisotropic Layered Perovskite Single Crystal

    KAUST Repository

    Li, Ting-You

    2016-04-01

    Organic-inorganic hybrid perovskites (OIHPs), which are promising materials for electronic and optoelectronic applications (1-10), have made into layered organic-inorganic hybrid perovskites (LOIHPs). These LOIHPs have been applied to thin-film transistors, solar cells and tunable wavelength phosphors (11-18). It is known that devices fabricated with single crystal exhibit the superior performance, which makes the growth of large-sized single crystals critical for future device applications (19-23). However, the difficulty in growing large-sized LOIHPs single crystal with superior electrical properties limits their practical applications. Here, we report a method to grow the centimeter-scaled LOIHP single crystal of [(HOC2H4NH3)2PbI4], demonstrating the potentials in mass production. After that, we reveal anisotropic electrical and optoelectronic properties which proved the carrier propagating along inorganic framework. The carrier mobility of in-inorganic-plane (in-plane) devices shows the average value of 45 cm2 V–1 s–1 which is about 100 times greater than the record of LOIHP devices (15), showing the importance of single crystal in device application. Moreover, the LOIHP single crystals show its ultra-short carrier lifetime of 42.7 ps and photoluminescence quantum efficiency (PLQE) of 25.4 %. We expect this report to be a start of LOIHPs for advanced applications in which the anisotropic properties are needed (24-25), and meets the demand of high-speed applications and fast-response applications.

  6. Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon.

    Science.gov (United States)

    Chang, Lin; Pfeiffer, Martin H P; Volet, Nicolas; Zervas, Michael; Peters, Jon D; Manganelli, Costanza L; Stanton, Eric J; Li, Yifei; Kippenberg, Tobias J; Bowers, John E

    2017-02-15

    An ideal photonic integrated circuit for nonlinear photonic applications requires high optical nonlinearities and low loss. This work demonstrates a heterogeneous platform by bonding lithium niobate (LN) thin films onto a silicon nitride (Si3N4) waveguide layer on silicon. It not only provides large second- and third-order nonlinear coefficients, but also shows low propagation loss in both the Si3N4 and the LN-Si3N4 waveguides. The tapers enable low-loss-mode transitions between these two waveguides. This platform is essential for various on-chip applications, e.g., modulators, frequency conversions, and quantum communications.

  7. Physical and electrical characterization of corundum substrates and epitaxial silicon layers in view of fabricating integrated circuits

    International Nuclear Information System (INIS)

    Trilhe, J.; Legal, H.; Rolland, G.

    1975-01-01

    The S.O.S. technology (silicon on insulating substrate) allows compact, radiation hard, fast integrated circuits to be fabricated. It is noticeable that complex integrated circuits on corundum substrates obtained with various fabrication processes have various electrical characteristics. Possible correlations between the macroscopic defects of the substrate and the electrical characteristics of the circuit were investigated [fr

  8. Athermal Photonic Devices and Circuits on a Silicon Platform

    Science.gov (United States)

    Raghunathan, Vivek

    In recent years, silicon based optical interconnects has been pursued as an effective solution that can offer cost, energy, distance and bandwidth density improvements over copper. Monolithic integration of optics and electronics has been enabled by silicon photonic devices that can be fabricated using CMOS technology. However, high levels of device integration result in significant local and global temperature fluctuations that prove problematic for silicon based photonic devices. In particular, high temperature dependence of Si refractive index (thermo-optic (TO) coefficient) shifts the filter response of resonant devices that limit wavelength resolution in various applications. Active thermal compensation using heaters and thermo-electric coolers are the legacy solution for low density integration. However, the required electrical power, device foot print and number of input/output (I/O) lines limit the integration density. We present a passive approach to an athermal design that involves compensation of positive TO effects from a silicon core by negative TO effects of the polymer cladding. In addition, the design rule involves engineering the waveguide core geometry depending on the resonance wavelength under consideration to ensure desired amount of light in the polymer. We develop exact design requirements for a TO peak stability of 0 pm/K and present prototype performance of 0.5 pm/K. We explore the material design space through initiated chemical vapor deposition (iCVD) of 2 polymer cladding choices. We study the effect of cross-linking on the optical properties of a polymer and establish the superior performance of the co-polymer cladding compared to the homo-polymer. Integration of polymer clad devices in an electronic-photonic architecture requires the possibility of multi-layer stacking capability. We use a low temperature, high density plasma chemical vapor deposition of SiO2/SiN x to hermetically seal the athermal. Further, we employ visible light for

  9. Progress in complementary metal–oxide–semiconductor silicon photonics and optoelectronic integrated circuits

    International Nuclear Information System (INIS)

    Chen Hongda; Zhang Zan; Huang Beiju; Mao Luhong; Zhang Zanyun

    2015-01-01

    Silicon photonics is an emerging competitive solution for next-generation scalable data communications in different application areas as high-speed data communication is constrained by electrical interconnects. Optical interconnects based on silicon photonics can be used in intra/inter-chip interconnects, board-to-board interconnects, short-reach communications in datacenters, supercomputers and long-haul optical transmissions. In this paper, we present an overview of recent progress in silicon optoelectronic devices and optoelectronic integrated circuits (OEICs) based on a complementary metal–oxide–semiconductor-compatible process, and focus on our research contributions. The silicon optoelectronic devices and OEICs show good characteristics, which are expected to benefit several application domains, including communication, sensing, computing and nonlinear systems. (review)

  10. Friction stir welding of single crystal aluminium

    DEFF Research Database (Denmark)

    Fonda, Richard Warren; Wert, John A.; Reynolds, A.P.

    2007-01-01

    Friction stir welds were prepared in different orientations in an aluminium single crystal. The welds were quenched to preserve the microstructure surrounding the tool and then electron backscattered diffraction was used to reveal the generation of grain boundaries and the evolution...... of crystallographic texture around the tool in each weld. The extent of both dynamic recrystallisation and conventional recrystallisation varied considerably as a function of weld orientation. As the base plate begins to interact with the deformation field surrounding the tool, regions of the single crystal rotate...

  11. Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits

    International Nuclear Information System (INIS)

    Bonneau, D; Engin, E; O'Brien, J L; Thompson, M G; Ohira, K; Suzuki, N; Yoshida, H; Iizuka, N; Ezaki, M; Natarajan, C M; Tanner, M G; Hadfield, R H; Dorenbos, S N; Zwiller, V

    2012-01-01

    Integrated quantum photonic waveguide circuits are a promising approach to realizing future photonic quantum technologies. Here, we present an integrated photonic quantum technology platform utilizing the silicon-on-insulator material system, where quantum interference and the manipulation of quantum states of light are demonstrated in components orders of magnitude smaller than previous implementations. Two-photon quantum interference is presented in a multi-mode interference coupler, and the manipulation of entanglement is demonstrated in a Mach-Zehnder interferometer, opening the way to an all-silicon photonic quantum technology platform. (paper)

  12. Lattice effects in YVO3 single crystal

    NARCIS (Netherlands)

    Marquina, C; Sikora, M; Ibarra, MR; Nugroho, AA; Palstra, TTM

    In this paper we report on the lattice effects in the Mott insulator yttrium orthovanadate (YVO3). Linear thermal expansion and magnetostriction experiments have been performed on a single crystal, in the temperature range from 5 K to room temperature. The YVO3 orders antiferromagnetically at T-N =

  13. Antiferromagnetism in chromium alloy single crystals

    DEFF Research Database (Denmark)

    Bjerrum Møller, Hans; Trego, A.L.; Mackintosh, A.R.

    1965-01-01

    The antiferromagnetism of single crystals of dilute alloys of V, Mn and Re in Cr has been studied at 95°K and 300°K by neutron diffraction. The addition of V causes the diffraction peaks to decrease in intensity and move away from (100), while Mn and Re cause them to increase and approach (100) s...

  14. Neutron forward diffraction by single crystal prisms

    Indian Academy of Sciences (India)

    We have derived analytic expressions for the deflection as well as transmitted fraction of monochromatic neutrons forward diffracted by a single crystal prism. In the vicinity of a Bragg reflection, the neutron deflection deviates sharply from that for an amorphous prism, exhibiting three orders of magnitude greater sensitivity to ...

  15. Properties of single crystal beta''-aluminas

    International Nuclear Information System (INIS)

    Bates, J.B.; Brown, G.M.; Kaneda, T.; Brundage, W.E.; Wang, J.C.; Engstrom, H.

    1979-01-01

    Large single crystals of sodium beta''-alumina were grown by slow evaporation of Na 2 O at 1690 0 C from a mixture of Na 2 CO 3 , MgO, and Al 2 O 3 . Polarized Raman measurements were made on the Na β'' single crystals and on single crystals of Li, K, Rb, and Ag β'' prepared by ion exchange of Na β''. The low frequency Raman spectra of Na, K, Rb, and Ag β'' contained four or more bands due to vibrations of the mobile cations. These results were analyzed by assuming the spectra to be due to the normal modes of a defect cluster consisting of a cation vacancy surrounded by three cations. From model calculations, the Raman band of Na β'' at 33 cm -1 is assigned to the attempt mode for diffusion of Na + ions. The structure of a Ag β'' single crystal was investigated by neutron diffraction, and 20% of the Ag + ion sites were found to be vacant

  16. Method for manufacturing a single crystal nanowire

    NARCIS (Netherlands)

    van den Berg, Albert; Bomer, Johan G.; Carlen, Edwin; Chen, S.; Kraaijenhagen, Roderik Adriaan; Pinedo, Herbert Michael

    2013-01-01

    A method for manufacturing a single crystal nano-structure is provided comprising the steps of providing a device layer with a 100 structure on a substrate; providing a stress layer onto the device layer; patterning the stress layer along the 110 direction of the device layer; selectively removing

  17. Method for manufacturing a single crystal nanowire

    NARCIS (Netherlands)

    van den Berg, Albert; Bomer, Johan G.; Carlen, Edwin; Chen, S.; Kraaijenhagen, R.A.; Pinedo, Herbert Michael

    2010-01-01

    A method for manufacturing a single crystal nano-structure is provided comprising the steps of providing a device layer with a 100 structure on a substrate; providing a stress layer onto the device layer; patterning the stress layer along the 110 direction of the device layer; selectively removing

  18. Synthesis, electronic transport and optical properties of Si:α-Fe2O3 single crystals

    NARCIS (Netherlands)

    Rettie, A.J.E.; Chemelewski, W.D.; Wygant, B.R.; Lindemuth, J.; Lin, J.F.; Eisenberg, D.; Brauer, C.S.; Johnson, T.J.; Beiswenger, T.N.; Ash, R.D.; Li, X.; Zhou, J.; Mullins, C.B.

    2016-01-01

    We report the synthesis of silicon-doped hematite (Si:alpha-Fe2O3) single crystals via chemical vapor transport, with Si incorporation on the order of 1019 cm(-3). The conductivity, Seebeck and Hall effect were measured in the basal plane between 200 and 400 K. Distinct differences in electron

  19. Formation of multiple levels of porous silicon for buried insulators and conductors in silicon device technologies

    Science.gov (United States)

    Blewer, Robert S.; Gullinger, Terry R.; Kelly, Michael J.; Tsao, Sylvia S.

    1991-01-01

    A method of forming a multiple level porous silicon substrate for semiconductor integrated circuits including anodizing non-porous silicon layers of a multi-layer silicon substrate to form multiple levels of porous silicon. At least one porous silicon layer is then oxidized to form an insulating layer and at least one other layer of porous silicon beneath the insulating layer is metallized to form a buried conductive layer. Preferably the insulating layer and conductive layer are separated by an anodization barrier formed of non-porous silicon. By etching through the anodization barrier and subsequently forming a metallized conductive layer, a fully or partially insulated buried conductor may be fabricated under single crystal silicon.

  20. Silicon photonic transceiver circuit for high-speed polarization-based discrete variable quantum key distribution.

    Science.gov (United States)

    Cai, Hong; Long, Christopher M; DeRose, Christopher T; Boynton, Nicholas; Urayama, Junji; Camacho, Ryan; Pomerene, Andrew; Starbuck, Andrew L; Trotter, Douglas C; Davids, Paul S; Lentine, Anthony L

    2017-05-29

    We demonstrate a silicon photonic transceiver circuit for high-speed discrete variable quantum key distribution that employs a common structure for transmit and receive functions. The device is intended for use in polarization-based quantum cryptographic protocols, such as BB84. Our characterization indicates that the circuit can generate the four BB84 states (TE/TM/45°/135° linear polarizations) with >30 dB polarization extinction ratios and gigabit per second modulation speed, and is capable of decoding any polarization bases differing by 90° with high extinction ratios.

  1. Inkjet printing of single-crystal films.

    Science.gov (United States)

    Minemawari, Hiromi; Yamada, Toshikazu; Matsui, Hiroyuki; Tsutsumi, Jun'ya; Haas, Simon; Chiba, Ryosuke; Kumai, Reiji; Hasegawa, Tatsuo

    2011-07-13

    The use of single crystals has been fundamental to the development of semiconductor microelectronics and solid-state science. Whether based on inorganic or organic materials, the devices that show the highest performance rely on single-crystal interfaces, with their nearly perfect translational symmetry and exceptionally high chemical purity. Attention has recently been focused on developing simple ways of producing electronic devices by means of printing technologies. 'Printed electronics' is being explored for the manufacture of large-area and flexible electronic devices by the patterned application of functional inks containing soluble or dispersed semiconducting materials. However, because of the strong self-organizing tendency of the deposited materials, the production of semiconducting thin films of high crystallinity (indispensable for realizing high carrier mobility) may be incompatible with conventional printing processes. Here we develop a method that combines the technique of antisolvent crystallization with inkjet printing to produce organic semiconducting thin films of high crystallinity. Specifically, we show that mixing fine droplets of an antisolvent and a solution of an active semiconducting component within a confined area on an amorphous substrate can trigger the controlled formation of exceptionally uniform single-crystal or polycrystalline thin films that grow at the liquid-air interfaces. Using this approach, we have printed single crystals of the organic semiconductor 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C(8)-BTBT) (ref. 15), yielding thin-film transistors with average carrier mobilities as high as 16.4 cm(2) V(-1) s(-1). This printing technique constitutes a major step towards the use of high-performance single-crystal semiconductor devices for large-area and flexible electronics applications.

  2. Influence of wavelength on transient short-circuit current in polycrystalline silicon solar cells

    International Nuclear Information System (INIS)

    Ba, B.; Kane, M.

    1993-10-01

    The influence of the wavelength of a monochromatic illumination on transient short-circuit current in an n/p polycrystalline silicon part solar cell junction is investigated. A wavelength dependence in the initial part of the current decay is observed in the case of cells with moderate grain boundary effects. This influence is attenuated in polycrystalline cells with strong grain boundary activity. (author). 10 refs, 6 figs

  3. Integrated Circuit Interconnect Lines on Lossy Silicon Substrate with Finite Element Method

    OpenAIRE

    Sarhan M. Musa,; Matthew N. O. Sadiku

    2014-01-01

    The silicon substrate has a significant effect on the inductance parameter of a lossy interconnect line on integrated circuit. It is essential to take this into account in determining the transmission line electrical parameters. In this paper, a new quasi-TEM capacitance and inductance analysis of multiconductor multilayer interconnects is successfully demonstrated using finite element method (FEM). We specifically illustrate the electrostatic modeling of single and coupled in...

  4. Wavelength conversion of a 128 Gbit/s DP-QPSK signal in a silicon polarization diversity circuit

    DEFF Research Database (Denmark)

    Vukovic, Dragana; Schroeder, Jochen; Ding, Yunhong

    2014-01-01

    Wavelength conversion of a 128 Gbit/s DP-QPSK signal is demonstrated using FWM in a polarization diversity circuit with silicon nanowires as nonlinear elements. Error-free performances are achieved with a negligible power penalty.......Wavelength conversion of a 128 Gbit/s DP-QPSK signal is demonstrated using FWM in a polarization diversity circuit with silicon nanowires as nonlinear elements. Error-free performances are achieved with a negligible power penalty....

  5. Ensembles of indium phosphide nanowires: physical properties and functional devices integrated on non-single crystal platforms

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Nobuhiko P.; Lohn, Andrew; Onishi, Takehiro [University of California, Santa Cruz (United States). Baskin School of Engineering; NASA Ames Research Center, Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, Univ. of California Santa Cruz, Moffett Field, CA (United States); Mathai, Sagi; Li, Xuema; Straznicky, Joseph; Wang, Shih-Yuan; Williams, R.S. [Hewlett-Packard Laboratories, Information and Quantum Systems Laboratory, Palo Alto, CA (United States); Logeeswaran, V.J.; Islam, M.S. [University of California Davis, Electrical and Computer Engineering, Davis, CA (United States)

    2009-06-15

    A new route to grow an ensemble of indium phosphide single-crystal semiconductor nanowires is described. Unlike conventional epitaxial growth of single-crystal semiconductor films, the proposed route for growing semiconductor nanowires does not require a single-crystal semiconductor substrate. In the proposed route, instead of using single-crystal semiconductor substrates that are characterized by their long-range atomic ordering, a template layer that possesses short-range atomic ordering prepared on a non-single-crystal substrate is employed. On the template layer, epitaxial information associated with its short-range atomic ordering is available within an area that is comparable to that of a nanowire root. Thus the template layer locally provides epitaxial information required for the growth of semiconductor nanowires. In the particular demonstration described in this paper, hydrogenated silicon was used as a template layer for epitaxial growth of indium phosphide nanowires. The indium phosphide nanowires grown on the hydrogenerated silicon template layer were found to be single crystal and optically active. Simple photoconductors and pin-diodes were fabricated and tested with the view towards various optoelectronic device applications where group III-V compound semiconductors are functionally integrated onto non-single-crystal platforms. (orig.)

  6. Ensembles of indium phosphide nanowires: physical properties and functional devices integrated on non-single crystal platforms

    International Nuclear Information System (INIS)

    Kobayashi, Nobuhiko P.; Lohn, Andrew; Onishi, Takehiro; Mathai, Sagi; Li, Xuema; Straznicky, Joseph; Wang, Shih-Yuan; Williams, R.S.; Logeeswaran, V.J.; Islam, M.S.

    2009-01-01

    A new route to grow an ensemble of indium phosphide single-crystal semiconductor nanowires is described. Unlike conventional epitaxial growth of single-crystal semiconductor films, the proposed route for growing semiconductor nanowires does not require a single-crystal semiconductor substrate. In the proposed route, instead of using single-crystal semiconductor substrates that are characterized by their long-range atomic ordering, a template layer that possesses short-range atomic ordering prepared on a non-single-crystal substrate is employed. On the template layer, epitaxial information associated with its short-range atomic ordering is available within an area that is comparable to that of a nanowire root. Thus the template layer locally provides epitaxial information required for the growth of semiconductor nanowires. In the particular demonstration described in this paper, hydrogenated silicon was used as a template layer for epitaxial growth of indium phosphide nanowires. The indium phosphide nanowires grown on the hydrogenerated silicon template layer were found to be single crystal and optically active. Simple photoconductors and pin-diodes were fabricated and tested with the view towards various optoelectronic device applications where group III-V compound semiconductors are functionally integrated onto non-single-crystal platforms. (orig.)

  7. Mode converter based on an inverse taper for multimode silicon nanophotonic integrated circuits.

    Science.gov (United States)

    Dai, Daoxin; Mao, Mao

    2015-11-02

    An inverse taper on silicon is proposed and designed to realize an efficient mode converter available for the connection between multimode silicon nanophotonic integrated circuits and few-mode fibers. The present mode converter has a silicon-on-insulator inverse taper buried in a 3 × 3μm(2) SiN strip waveguide to deal with not only for the fundamental mode but also for the higher-order modes. The designed inverse taper enables the conversion between the six modes (i.e., TE(11), TE(21), TE(31), TE(41), TM(11), TM(12)) in a 1.4 × 0.22μm(2) multimode SOI waveguide and the six modes (like the LP(01), LP(11a), LP(11b) modes in a few-mode fiber) in a 3 × 3μm(2) SiN strip waveguide. The conversion efficiency for any desired mode is higher than 95.6% while any undesired mode excitation ratio is lower than 0.5%. This is helpful to make multimode silicon nanophotonic integrated circuits (e.g., the on-chip mode (de)multiplexers developed well) available to work together with few-mode fibers in the future.

  8. Material synthesis for silicon integrated-circuit applications using ion implantation

    Science.gov (United States)

    Lu, Xiang

    As devices scale down into deep sub-microns, the investment cost and complexity to develop more sophisticated device technologies have increased substantially. There are some alternative potential technologies, such as silicon-on-insulator (SOI) and SiGe alloys, that can help sustain this staggering IC technology growth at a lower cost. Surface SiGe and SiGeC alloys with germanium peak composition up to 16 atomic percent are formed using high-dose ion implantation and subsequent solid phase epitaxial growth. RBS channeling spectra and cross-sectional TEM studies show that high quality SiGe and SiGeC crystals with 8 atomic percent germanium concentration are formed at the silicon surface. Extended defects are formed in SiGe and SiGeC with 16 atomic percent germanium concentration. X-ray diffraction experiments confirm that carbon reduces the lattice strain in SiGe alloys but without significant crystal quality improvement as detected by RBS channeling spectra and XTEM observations. Separation by plasma implantation of oxygen (SPIMOX) is an economical method for SOI wafer fabrication. This process employs plasma immersion ion implantation (PIII) for the implantation of oxygen ions. The implantation rate for Pm is considerably higher than that of conventional implantation. The feasibility of SPIMOX has been demonstrated with successful fabrication of SOI structures implementing this process. Secondary ion mass spectrometry (SIMS) analysis and cross-sectional transmission electron microscopy (XTEM) micrographs of the SPIMOX sample show continuous buried oxide under single crystal overlayer with sharp silicon/oxide interfaces. The operational phase space of implantation condition, oxygen dose and annealing requirement has been identified. Physical mechanisms of hydrogen induced silicon surface layer cleavage have been investigated using a combination of microscopy and hydrogen profiling techniques. The evolution of the silicon cleavage phenomenon is recorded by a series

  9. Influences of Device and Circuit Mismatches on Paralleling Silicon Carbide MOSFETs

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig; Wang, Xiongfei

    2016-01-01

    This paper addresses the influences of device and circuit mismatches on paralleling the Silicon Carbide (SiC) MOSFETs. Comprehensive theoretical analysis and experimental validation from paralleled discrete devices to paralleled dies in multichip power modules are first presented. Then, the influ......This paper addresses the influences of device and circuit mismatches on paralleling the Silicon Carbide (SiC) MOSFETs. Comprehensive theoretical analysis and experimental validation from paralleled discrete devices to paralleled dies in multichip power modules are first presented. Then......, the influence of circuit mismatch on paralleling SiC MOSFETs is investigated and experimentally evaluated for the first time. It is found that the mismatch of the switching loop stray inductance can also lead to on-state current unbalance with inductive output current, in addition to the on-state resistance...... of the device. It further reveals that circuit mismatches and a current coupling among the paralleled dies exist in a SiC MOSFET multichip power module, which is critical for the transient current distribution in the power module. Thus, a power module layout with an auxiliary source connection is developed...

  10. Cross-section of single-crystal materials used as thermal neutron filters

    International Nuclear Information System (INIS)

    Adib, M.

    2005-01-01

    Transmission properties of several single crystal materials important for neutron scattering instrumentation are presented. A computer codes are developed which permit the calculation of thermal diffuse and Bragg-scattering cross-sections of silicon., and sapphire as a function of material's constants, temperature and neutron energy, E, in the range 0.1 MeV .A discussion of the use of their single-crystal as a thermal neutron filter in terms of the optimum crystal thickness, mosaic spread, temperature, cutting plane and tuning for efficient transmission of thermal-reactor neutrons is given

  11. Single-Crystal Diamond Nanobeam Waveguide Optomechanics

    Science.gov (United States)

    Khanaliloo, Behzad; Jayakumar, Harishankar; Hryciw, Aaron C.; Lake, David P.; Kaviani, Hamidreza; Barclay, Paul E.

    2015-10-01

    Single-crystal diamond optomechanical devices have the potential to enable fundamental studies and technologies coupling mechanical vibrations to both light and electronic quantum systems. Here, we demonstrate a single-crystal diamond optomechanical system and show that it allows excitation of diamond mechanical resonances into self-oscillations with amplitude >200 nm . The resulting internal stress field is predicted to allow driving of electron spin transitions of diamond nitrogen-vacancy centers. The mechanical resonances have a quality factor >7 ×105 and can be tuned via nonlinear frequency renormalization, while the optomechanical interface has a 150 nm bandwidth and 9.5 fm /√{Hz } sensitivity. In combination, these features make this system a promising platform for interfacing light, nanomechanics, and electron spins.

  12. Single-Crystal Diamond Nanobeam Waveguide Optomechanics

    Directory of Open Access Journals (Sweden)

    Behzad Khanaliloo

    2015-12-01

    Full Text Available Single-crystal diamond optomechanical devices have the potential to enable fundamental studies and technologies coupling mechanical vibrations to both light and electronic quantum systems. Here, we demonstrate a single-crystal diamond optomechanical system and show that it allows excitation of diamond mechanical resonances into self-oscillations with amplitude >200  nm. The resulting internal stress field is predicted to allow driving of electron spin transitions of diamond nitrogen-vacancy centers. The mechanical resonances have a quality factor >7×10^{5} and can be tuned via nonlinear frequency renormalization, while the optomechanical interface has a 150 nm bandwidth and 9.5  fm/sqrt[Hz] sensitivity. In combination, these features make this system a promising platform for interfacing light, nanomechanics, and electron spins.

  13. Single Crystals Grown Under Unconstrained Conditions

    Science.gov (United States)

    Sunagawa, Ichiro

    Based on detailed investigations on morphology (evolution and variation in external forms), surface microtopography of crystal faces (spirals and etch figures), internal morphology (growth sectors, growth banding and associated impurity partitioning) and perfection (dislocations and other lattice defects) in single crystals, we can deduce how and by what mechanism the crystal grew and experienced fluctuation in growth parameters through its growth and post-growth history under unconstrained condition. The information is useful not only in finding appropriate way to growing highly perfect and homogeneous single crystals, but also in deciphering letters sent from the depth of the Earth and the Space. It is also useful in discriminating synthetic from natural gemstones. In this chapter, available methods to obtain molecular information are briefly summarized, and actual examples to demonstrate the importance of this type of investigations are selected from both natural minerals (diamond, quartz, hematite, corundum, beryl, phlogopite) and synthetic crystals (SiC, diamond, corundum, beryl).

  14. Effect of solder flux residue on the performance of silicone conformal coatings on printed circuit board assemblies

    DEFF Research Database (Denmark)

    Rathinavelu, Umadevi; Jellesen, Morten Stendahl; Ambat, Rajan

    2013-01-01

    Conformal coatings are applied on printed circuit board assemblies (PCBAs) in order to protect the assembly from environmental influence and silicone-based coating is commonly used. A systematic study on the performance of silicone conformal coating in connection with process-related contaminants...

  15. Bloch walls in a nickel single crystal

    International Nuclear Information System (INIS)

    Peters, J.; Treimer, W.

    2001-01-01

    We present a consistent theory for the dependence of the magnetic structure in bulk samples on external static magnetic fields and corresponding experimental results. We applied the theory of micromagnetism to this crystal and calculated the Bloch wall thickness as a function of external magnetic fields. The theoretical results agree well with the experimental data, so that the Bloch wall thickness of a 71 deg. nickel single crystal was definitely determined with some hundred of nanometer

  16. Single crystal spectrometer FOX at KENS

    International Nuclear Information System (INIS)

    Takahashi, M.

    2001-01-01

    Single crystal spectrometer FOX installed at H1 thermal neutron line on KENS has been renewed recently for the measurement of very weak scattering. We have installed a multidetector system of 36 linearly placed 3 He detectors with collimators instead of former four-circle diffractometer and scintillator detectors. Though the system is quite simple, a large two-dimensional reciprocal space is observed effectively with high S/N rate on new FOX. (author)

  17. Ultraviolet laser-induced voltages in LaSrAlO4 single crystal

    International Nuclear Information System (INIS)

    Zhi-Qing, Lü; Kun, Zhao; Song-Qing, Zhao; Hui, Zhao; Qing-Li, Zhou

    2009-01-01

    Laser-induced ultrafast photovoltaic effect is observed in LaSrAlO 4 single crystal at ambient temperature without any applied bias. An open-circuit photovoltage is obtained when the wafer is irradiated by a 248-nm-KrF laser pulse of 20 ns duration. The response time and full width at half maximum of the photovoltage pulse are 6 ns and 19 ns, respectively, indicating that LaSrAlO 4 single crystal has potential application in ultraviolet detector. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. Preparation of high purity yttrium single crystals by electrotransport

    International Nuclear Information System (INIS)

    Volkov, V.T.; Nikiforova, T.V.; Ionov, A.M.; Pustovit, A.N.; Sikharulidse, G.G.

    1981-01-01

    The possibility of obtaining yttrium crystals of high purity by the method of solid state electrotransport (SSE) was investigated in the present work. The behaviour of low contents of iron, aluminium, silicon, tantalum, copper, silver and vanadium as metallic impurities was studied using mass spectrometry. It is shown that all the impurities investigated, except copper, migrate to the anode. During electrotransfer a purification with respect to these impurities by a factor of 4 - 6 is obtained. It is proposed that the diffusion coefficients of the metallic impurities investigated are anomalously high and that the behaviour of the impurities during SSE in adapters necessitates further investigation. By using a three-stage process with intermediate removal of the anode end yttrium single crystals with a resistance ratio rho 293 /rhosub(4.2)=570 were produced. (Auth.)

  19. Compact polarization beam splitter for silicon photonic integrated circuits with a 340-nm-thick silicon core layer.

    Science.gov (United States)

    Li, Chenlei; Dai, Daoxin

    2017-11-01

    A polarization beam splitter (PBS) is proposed and realized for silicon photonic integrated circuits with a 340-nm-thick silicon core layer by introducing an asymmetric directional coupler (ADC), which consists of a silicon-on-insulator (SOI) nanowire and a subwavelength grating (SWG) waveguide. The SWG is introduced to provide an optical waveguide which has much higher birefringence than a regular 340-nm-thick SOI nanowire, so that it is possible to make the phase-matching condition satisfied for TE polarization only in the present design when the waveguide dimensions are optimized. Meanwhile, there is a significant phase mismatching for TM polarization automatically. In this way, the present ADC enables strong polarization selectivity to realize a PBS that separates TE and TM polarizations to the cross and through ports, respectively. The realized PBS has a length of ∼2  μm for the coupling region. For the fabricated PBS, the extinction ratio (ER) is 15-30 dB and the excess loss is 0.2-2.6 dB for TE polarization while the ER is 20-27 dB and the excess loss is 0.3-2.8 dB for TM polarization when operating in the wavelength range of 1520-1580 nm.

  20. The open-circuit voltage in microcrystalline silicon solar cells of different degrees of crystallinity

    International Nuclear Information System (INIS)

    Nath, Madhumita; Roca i Cabarrocas, P.; Johnson, E.V.; Abramov, A.; Chatterjee, P.

    2008-01-01

    We have used a detailed electrical-optical computer model (ASDMP) in conjunction with the experimental characterization of microcrystalline silicon thin-film solar cells of different degrees of crystallinity (but having identical P- and N-layers) to understand the observed decrease of the open-circuit voltage with increasing crystalline fraction. In order to model all aspects of the experimental current density-voltage and quantum efficiency characteristics of cells having low (∼ 75%) and high (over 90%) crystalline fraction, we had to assume both a higher mobility gap defect density and a lower band gap for the more crystallized material. The former fact is widely known to bring down the open-circuit voltage. Our calculations also reveal that the proximity of the quasi-Fermi levels to the energy bands in the cell based on highly crystallized (and assumed to have a lower band gap) microcrystalline silicon results in higher free and trapped carrier densities in this device. The trapped hole population is particularly high at and close to the P/I interface on account of the higher inherent defect density in this region and the fact that the hole quasi-Fermi level is close to the valence band edge here. This fact results in a strong interface field, a collapse of the field in the volume, and hence a lower open-circuit voltage. Thus a combination of higher mobility gap defects and a lower band gap is probably the reason for the lower open-circuit voltage in cells based on highly crystallized microcrystalline silicon

  1. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals

    KAUST Repository

    Shi, Dong

    2015-01-29

    The fundamental properties and ultimate performance limits of organolead trihalide MAPbX3(MA = CH3NH3 +; X = Br- or I- ) perovskites remain obscured by extensive disorder in polycrystalline MAPbX3 films. We report an antisolvent vapor-assisted crystallization approach that enables us to create sizable crack-free MAPbX3 single crystals with volumes exceeding 100 cubic millimeters. These large single crystals enabled a detailed characterization of their optical and charge transport characteristics.We observed exceptionally low trap-state densities on the order of 109 to 1010 per cubic centimeter in MAPbX3 single crystals (comparable to the best photovoltaic-quality silicon) and charge carrier diffusion lengths exceeding 10 micrometers. These results were validated with density functional theory calculations.

  2. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals

    KAUST Repository

    Shi, Dong; Adinolfi, Valerio; Comin, Riccardo; Yuan, Mingjian; Alarousu, Erkki; Buin, Andrei K.; Chen, Yin; Hoogland, Sjoerd H.; Rothenberger, Alexander; Katsiev, Khabiboulakh; Losovyj, Yaroslav B.; Zhang, Xin; Dowben, Peter A.; Mohammed, Omar F.; Sargent, E. H.; Bakr, Osman

    2015-01-01

    The fundamental properties and ultimate performance limits of organolead trihalide MAPbX3(MA = CH3NH3 +; X = Br- or I- ) perovskites remain obscured by extensive disorder in polycrystalline MAPbX3 films. We report an antisolvent vapor-assisted crystallization approach that enables us to create sizable crack-free MAPbX3 single crystals with volumes exceeding 100 cubic millimeters. These large single crystals enabled a detailed characterization of their optical and charge transport characteristics.We observed exceptionally low trap-state densities on the order of 109 to 1010 per cubic centimeter in MAPbX3 single crystals (comparable to the best photovoltaic-quality silicon) and charge carrier diffusion lengths exceeding 10 micrometers. These results were validated with density functional theory calculations.

  3. High quality silicon-based substrates for microwave and millimeter wave passive circuits

    Science.gov (United States)

    Belaroussi, Y.; Rack, M.; Saadi, A. A.; Scheen, G.; Belaroussi, M. T.; Trabelsi, M.; Raskin, J.-P.

    2017-09-01

    Porous silicon substrate is very promising for next generation wireless communication requiring the avoidance of high-frequency losses originating from the bulk silicon. In this work, new variants of porous silicon (PSi) substrates have been introduced. Through an experimental RF performance, the proposed PSi substrates have been compared with different silicon-based substrates, namely, standard silicon (Std), trap-rich (TR) and high resistivity (HR). All of the mentioned substrates have been fabricated where identical samples of CPW lines have been integrated on. The new PSi substrates have shown successful reduction in the substrate's effective relative permittivity to values as low as 3.7 and great increase in the substrate's effective resistivity to values higher than 7 kΩ cm. As a concept proof, a mm-wave bandpass filter (MBPF) centred at 27 GHz has been integrated on the investigated substrates. Compared with the conventional MBPF implemented on standard silicon-based substrates, the measured S-parameters of the PSi-based MBPF have shown high filtering performance, such as a reduction in insertion loss and an enhancement of the filter selectivity, with the joy of having the same filter performance by varying the temperature. Therefore, the efficiency of the proposed PSi substrates has been well highlighted. From 1994 to 1995, she was assistant of physics at (USTHB), Algiers . From 1998 to 2011, she was a Researcher at characterization laboratory in ionized media and laser division at the Advanced Technologies Development Center. She has integrated the Analog Radio Frequency Integrated Circuits team as Researcher since 2011 until now in Microelectronic and Nanotechnology Division at Advanced Technologies Development Center (CDTA), Algiers. She has been working towards her Ph.D. degree jointly at CDTA and Ecole Nationale Polytechnique, Algiers, since 2012. Her research interest includes fabrication and characterization of microwave passive devices on porous

  4. Isotopically pure single crystal epitaxial diamond films and their preparation

    International Nuclear Information System (INIS)

    Banholzer, W.F.; Anthony, T.R.; Williams, D.M.

    1992-01-01

    The present invention is directed to the production of single crystal diamond consisting of isotopically pure carbon-12 or carbon-13. In the present invention, isotopically pure single crystal diamond is grown on a single crystal substrate directly from isotopically pure carbon-12 or carbon-13. One method for forming isotopically pure single crystal diamond comprises the steps of placing in a reaction chamber a single substrate heated to an elevated diamond forming temperature. Another method for forming isotopically pure single crystal diamond comprises diffusing isotopically pure carbon-12 or carbon-13 through a metallic catalyst under high pressure to a region containing a single crystal substrate to form an isotopically pure single crystal diamond layer on said single crystal substrate

  5. Materials and fabrication sequences for water soluble silicon integrated circuits at the 90 nm node

    International Nuclear Information System (INIS)

    Yin, Lan; Harburg, Daniel V.; Rogers, John A.; Bozler, Carl; Omenetto, Fiorenzo

    2015-01-01

    Tungsten interconnects in silicon integrated circuits built at the 90 nm node with releasable configurations on silicon on insulator wafers serve as the basis for advanced forms of water-soluble electronics. These physically transient systems have potential uses in applications that range from temporary biomedical implants to zero-waste environmental sensors. Systematic experimental studies and modeling efforts reveal essential aspects of electrical performance in field effect transistors and complementary ring oscillators with as many as 499 stages. Accelerated tests reveal timescales for dissolution of the various constituent materials, including tungsten, silicon, and silicon dioxide. The results demonstrate that silicon complementary metal-oxide-semiconductor circuits formed with tungsten interconnects in foundry-compatible fabrication processes can serve as a path to high performance, mass-produced transient electronic systems

  6. Materials and fabrication sequences for water soluble silicon integrated circuits at the 90 nm node

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Lan; Harburg, Daniel V.; Rogers, John A., E-mail: jrogers@illinois.edu [Department of Materials Science and Engineering, Beckman Institute for Advanced Science and Technology, and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 S Goodwin Ave., Urbana, Illinois 61801 (United States); Bozler, Carl [Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street, Lexington, Massachusetts 02420 (United States); Omenetto, Fiorenzo [Department of Biomedical Engineering, Department of Physics, Tufts University, 4 Colby St., Medford, Massachusetts 02155 (United States)

    2015-01-05

    Tungsten interconnects in silicon integrated circuits built at the 90 nm node with releasable configurations on silicon on insulator wafers serve as the basis for advanced forms of water-soluble electronics. These physically transient systems have potential uses in applications that range from temporary biomedical implants to zero-waste environmental sensors. Systematic experimental studies and modeling efforts reveal essential aspects of electrical performance in field effect transistors and complementary ring oscillators with as many as 499 stages. Accelerated tests reveal timescales for dissolution of the various constituent materials, including tungsten, silicon, and silicon dioxide. The results demonstrate that silicon complementary metal-oxide-semiconductor circuits formed with tungsten interconnects in foundry-compatible fabrication processes can serve as a path to high performance, mass-produced transient electronic systems.

  7. Radiation effects in corundum single crystals

    International Nuclear Information System (INIS)

    Gevorkyan, V.A.; Harutunyan, V.V.; Hakhverdyan, E.A.

    2005-01-01

    On the basis of new experimental results and analysis of publications it is shown that in the lattice of corundum crystals the high-energy particles create stable structural defects due to knocking out of atoms from normal sites of the anionic sublattice; this leads to the formation of F and F '+ centers as well as to other complex [Al i '+ F] type color centers. The essence of 'radiation memory' effect in corundum single crystals is that the high-energy particles irradiation, annealing at high temperatures and additional irradiation by X-rays result in the restoration of some spectral bands of the optical absorption in the range 200-650 nm

  8. Single Crystal Filters for Neutron Spectrometry

    International Nuclear Information System (INIS)

    Habib, N.

    2008-01-01

    A study of neutron transmission properties trough a large single crystals specimens of Si, Ge, Pb, Bi and sapphire at 300 K and 80 K have been made for a wide range of neutron energies. The effectiveness of such filters is given by the ratio of the total cross-section of unwanted epithermal neutrons to that the desired thermal neutron beam and by the optimum choice of the crystal orientation, its mosaic spread, thickness and temperature.Our study indicates that sapphire is significantly more effective than the others for a wide range of neutron energies

  9. Through-silicon-via crosstalk model and optimization design for three-dimensional integrated circuits

    International Nuclear Information System (INIS)

    Qian Li-Bo; Xia Yin-Shui; Zhu Zhang-Ming; Ding Rui-Xue; Yang Yin-Tang

    2014-01-01

    Through-silicon-via (TSV) to TSV crosstalk noise is one of the key factors affecting the signal integrity of three-dimensional integrated circuits (3D ICs). Based on the frequency dependent equivalent electrical parameters for the TSV channel, an analytical crosstalk noise model is established to capture the TSV induced crosstalk noise. The impact of various design parameters including insulation dielectric, via pitch, via height, silicon conductivity, and terminal impedance on the crosstalk noise is analyzed with the proposed model. Two approaches are proposed to alleviate the TSV noise, namely, driver sizing and via shielding, and the SPICE results show 241 mV and 379 mV reductions in the peak noise voltage, respectively

  10. EQUIPMENT FOR NONDESTRUCTIVE TESTING OF SILICON WAFERS SUBMICRON TOPOLOGY DURING THE FABRICATION OF INTEGRATED CIRCUITS

    Directory of Open Access Journals (Sweden)

    S. A. Chizhik

    2013-01-01

    Full Text Available The advantages of using an atomic force microscopy in manufacturing of submicron integrated circuits are described. The possibilities of characterizing the surface morphology and the etching profile for silicon substrate and bus lines, estimation of the periodicity and size of bus lines, geometrical stability for elementary bus line are shown. Methods of optical and atomic force microcopies are combined in one diagnostic unit. Scanning  probe  microscope  (SPM  200  is  designed  and  produced.  Complex  SPM  200  realizes  nondestructive control of microelectronics elements made on silicon wafers up to 200 mm in diameter and it is introduced by JSC «Integral» for the purpose of operational control, metrology and acceptance of the final product.

  11. Properties of CMOS devices and circuits fabricated on high-resistivity, detector-grade silicon

    International Nuclear Information System (INIS)

    Holland, S.

    1991-11-01

    A CMOS process that is compatible with silicon p-i-n radiation detectors has been developed and characterized. A total of twelve mask layers are used in the process. The NMOS device is formed in a retrograde well while the PMOS device is fabricated directly in the high-resistivity silicon. Isolation characteristics are similar to a standard foundary CMOS process. Circuit performance using 3 μm design rules has been evaluated. The measured propagation delay and power-delay product for a 51-stage ring oscillator was 1.5 ns and 43 fJ, respectively. Measurements on a simple cascode amplifier results in a gain-bandwidth product of 200 MHz at a bias current of 15 μA. The input-referred noise of the cascode amplifier is 20 nV/√Hz at 1 MHz

  12. Effects of plasma-deposited silicon nitride passivation on the radiation hardness of CMOS integrated circuits

    International Nuclear Information System (INIS)

    Clement, J.J.

    1980-01-01

    The use of plasma-deposited silicon nitride as a final passivation over metal-gate CMOS integrated circuits degrades the radiation hardness of these devices. The hardness degradation is manifested by increased radiation-induced threshold voltage shifts caused principally by the charging of new interface states and, to a lesser extent, by the trapping of holes created upon exposure to ionizing radiation. The threshold voltage shifts are a strong function of the deposition temperature, and show very little dependence on thickness for films deposited at 300 0 C. There is some correlation between the threshold voltage shifts and the hydrogen content of the PECVD silicon nitride films used as the final passivation layer as a function of deposition temperature. The mechanism by which the hydrogen contained in these films may react with the Si/SiO 2 interface is not clear at this point

  13. A bipolar analog front-end integrated circuit for the SDC silicon tracker

    International Nuclear Information System (INIS)

    Kipnis, I.; Spieler, H.; Collins, T.

    1993-11-01

    A low-noise, low-power, high-bandwidth, radiation hard, silicon bipolar-transistor full-custom integrated circuit (IC) containing 64 channels of analog signal processing has been developed for the SDC silicon tracker. The IC was designed and tested at LBL and was fabricated using AT ampersand T's CBIC-U2, 4 GHz f T complementary bipolar technology. Each channel contains the following functions: low-noise preamplification, pulse shaping and threshold discrimination. This is the first iteration of the production analog IC for the SDC silicon tracker. The IC is laid out to directly match the 50 μm pitch double-sided silicon strip detector. The chip measures 6.8 mm x 3.1 mm and contains 3,600 transistors. Three stages of amplification provide 180 mV/fC of gain with a 35 nsec peaking time at the comparator input. For a 14 pF detector capacitance, the equivalent noise charge is 1300 el. rms at a power consumption of 1 mW/channel from a single 3.5 V supply. With the discriminator threshold set to 4 times the noise level, a 16 nsec time-walk for 1.25 to 10fC signals is achieved using a time-walk compensation network. Irradiation tests at TRIUMF to a Φ=10 14 protons/cm 2 have been performed on the IC, demonstrating the radiation hardness of the complementary bipolar process

  14. A VLSI front-end circuit for microstrip silicon detectors for medical imaging applications

    International Nuclear Information System (INIS)

    Beccherle, R.; Cisternino, A.; Guerra, A. Del; Folli, M.; Marchesini, R.; Bisogni, M.G.; Ceccopieri, A.; Rosso, V.; Stefanini, A.; Tripiccione, R.; Kipnis, I.

    1999-01-01

    An analog CMOS-Integrated Circuit has been developed as Front-End for a double-sided microstrip silicon detector. The IC processes and discriminates signals in the 5-30 keV energy range. Main features are low noise and precise timing information. Low noise is achieved by optimizing the cascoded integrator with the 8 pF detector capacitance and by using an inherently low noise 1.2 μm CMOS technology. Timing information is provided by a double discriminator architecture. The output of the circuit is a digital pulse. The leading edge is determined by a fixed threshold discriminator, while the trailing edge is provided by a zero crossing discriminator. In this paper we first describe the architecture of the Front-End chip. We then present the performance of the chip prototype in terms of noise, minimum discrimination threshold and time resolution

  15. Silicon photonic integrated circuits with electrically programmable non-volatile memory functions.

    Science.gov (United States)

    Song, J-F; Lim, A E-J; Luo, X-S; Fang, Q; Li, C; Jia, L X; Tu, X-G; Huang, Y; Zhou, H-F; Liow, T-Y; Lo, G-Q

    2016-09-19

    Conventional silicon photonic integrated circuits do not normally possess memory functions, which require on-chip power in order to maintain circuit states in tuned or field-configured switching routes. In this context, we present an electrically programmable add/drop microring resonator with a wavelength shift of 426 pm between the ON/OFF states. Electrical pulses are used to control the choice of the state. Our experimental results show a wavelength shift of 2.8 pm/ms and a light intensity variation of ~0.12 dB/ms for a fixed wavelength in the OFF state. Theoretically, our device can accommodate up to 65 states of multi-level memory functions. Such memory functions can be integrated into wavelength division mutiplexing (WDM) filters and applied to optical routers and computing architectures fulfilling large data downloading demands.

  16. Wavelength Conversion of DP-QPSK Signals in a Silicon Polarization Diversity Circuit

    DEFF Research Database (Denmark)

    Vukovic, Dragana; Schroeder, Jochen; Ding, Yunhong

    2015-01-01

    Multichannel wavelength conversion is experimentally demonstrated for high-speed 128 Gb/s dual-polarization quadrature phase-shift keying signals using four-wave mixing in a polarization diversity circuit with silicon nanowires as nonlinear elements. The wavelength conversion performance is inves...... is investigated for both single-and three-channel input signals, showing quality factors well >9.8 dB (corresponding to bit-error-ratios better than 10(-3)) and with a negligible power penalty compared with the back-to-back case....

  17. Development of processing procedures for advanced silicon solar cells. [antireflection coatings and short circuit currents

    Science.gov (United States)

    Scott-Monck, J. A.; Stella, P. M.; Avery, J. E.

    1975-01-01

    Ten ohm-cm silicon solar cells, 0.2 mm thick, were produced with short circuit current efficiencies up to thirteen percent and using a combination of recent technical advances. The cells were fabricated in conventional and wraparound contact configurations. Improvement in cell collection efficiency from both the short and long wavelengths region of the solar spectrum was obtained by coupling a shallow junction and an optically transparent antireflection coating with back surface field technology. Both boron diffusion and aluminum alloying techniques were evaluated for forming back surface field cells. The latter method is less complicated and is compatible with wraparound cell processing.

  18. The new single crystal diffractometer SC3

    International Nuclear Information System (INIS)

    Schefer, J.; Koch, M.; Keller, P.; Fischer, S.; Thut, R.

    1996-01-01

    Single crystal diffraction is a powerful method for the determination of precise structure parameters, superlattices, stress. Neutron single crystal diffraction gives additionally to X-rays information on magnetic structures, both commensurate and incommensurate, hydrogen positions, hydrogen bonding behavior and accurate bondlengths, e.g. important in cuprates. The method is therefore especially powerful if combined with X-ray diffraction results. The new instrument at SINQ has been designed for inorganic materials and is positioned at a thermal beam tube, pointing on a water scatterer. This scatterer is presently operating with H 2 O at ambient temperature, but a change to another medium at different temperature is possible. The instrument will be equipped with three area detectors, moving at fixed difference in 2Θ. each detector may be individually moved around a vertical circle (tilting angle γ), allowing to use not only 4-circle geometry in the temperature range from 1.5 to 380 K, but also any equipment from a dilution refrigerator (7 mK) to a heavy magnet. A high temperature furnace for 4-circle geometry is foreseen as a future option. (author) 6 figs., 1 tab., 7 refs

  19. The new single crystal diffractometer SC3

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, J; Koch, M; Keller, P; Fischer, S; Thut, R [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    Single crystal diffraction is a powerful method for the determination of precise structure parameters, superlattices, stress. Neutron single crystal diffraction gives additionally to X-rays information on magnetic structures, both commensurate and incommensurate, hydrogen positions, hydrogen bonding behavior and accurate bondlengths, e.g. important in cuprates. The method is therefore especially powerful if combined with X-ray diffraction results. The new instrument at SINQ has been designed for inorganic materials and is positioned at a thermal beam tube, pointing on a water scatterer. This scatterer is presently operating with H{sub 2}O at ambient temperature, but a change to another medium at different temperature is possible. The instrument will be equipped with three area detectors, moving at fixed difference in 2{Theta}. each detector may be individually moved around a vertical circle (tilting angle {gamma}), allowing to use not only 4-circle geometry in the temperature range from 1.5 to 380 K, but also any equipment from a dilution refrigerator (7 mK) to a heavy magnet. A high temperature furnace for 4-circle geometry is foreseen as a future option. (author) 6 figs., 1 tab., 7 refs.

  20. Performance of in-pixel circuits for photon counting arrays (PCAs) based on polycrystalline silicon TFTs

    International Nuclear Information System (INIS)

    Liang, Albert K; Koniczek, Martin; Antonuk, Larry E; El-Mohri, Youcef; Zhao, Qihua; Street, Robert A; Lu, Jeng Ping

    2016-01-01

    Photon counting arrays (PCAs), defined as pixelated imagers which measure the absorbed energy of x-ray photons individually and record this information digitally, are of increasing clinical interest. A number of PCA prototypes with a 1 mm pixel-to-pixel pitch have recently been fabricated with polycrystalline silicon (poly-Si)—a thin-film technology capable of creating monolithic imagers of a size commensurate with human anatomy. In this study, analog and digital simulation frameworks were developed to provide insight into the influence of individual poly-Si transistors on pixel circuit performance—information that is not readily available through empirical means. The simulation frameworks were used to characterize the circuit designs employed in the prototypes. The analog framework, which determines the noise produced by individual transistors, was used to estimate energy resolution, as well as to identify which transistors contribute the most noise. The digital framework, which analyzes how well circuits function in the presence of significant variations in transistor properties, was used to estimate how fast a circuit can produce an output (referred to as output count rate). In addition, an algorithm was developed and used to estimate the minimum pixel pitch that could be achieved for the pixel circuits of the current prototypes. The simulation frameworks predict that the analog component of the PCA prototypes could have energy resolution as low as 8.9% full width at half maximum (FWHM) at 70 keV; and the digital components should work well even in the presence of significant thin-film transistor (TFT) variations, with the fastest component having output count rates as high as 3 MHz. Finally, based on conceivable improvements in the underlying fabrication process, the algorithm predicts that the 1 mm pitch of the current PCA prototypes could be reduced significantly, potentially to between ∼240 and 290 μm. (paper)

  1. Press forging of single crystal calcium fluoride

    International Nuclear Information System (INIS)

    Turk, R.R.

    1975-01-01

    Single crystals of high-purity calcium fluoride have been deformed uniaxially in an attempt to improve strength and resistance to cleavage, without impairing infrared transmission. Order of magnitude increases in strength, such as those found in forged KCl, have not been attained, but fine-grained polycrystalling material has been produced which is resistant to crystalline cleavage. Deformation rates of 10 -2 min -1 , reductions of 10 to 73 percent in height, and deformation temperatures of 550 to 1000 0 C have been used. Flexural strengths over 13,000 psi and grain sizes down to 5 μm have been obtained. Reduction of residual stress through heat treatment has been studied, and resultant techniques applied before, during, and after deformation. No increase in infrared absorption has been noted at the CO laser wavelength of 5.3 μm

  2. Colour centre-free perovskite single crystals

    International Nuclear Information System (INIS)

    Petit, Pierre-Olivier; Petit, Johan; Goldner, Philippe; Viana, Bruno

    2009-01-01

    Yb 3+ :YAlO 3 (YAP) and Yb 3+ :GdAlO 3 (GAP) are interesting 1 μm high-power laser media thanks to their very good thermo-mechanical properties. However, as-grown perovskite single crystals exhibit colour centres. Parasitic thermal load generated by these centres is deleterious for high-power laser action and can lead to crystal damages. Moreover these defects decrease Yb 3+ lifetime. They are related to trapped holes on the oxygen network. In the present work, several schemes to remove colour centres are presented. Attention is focused on cerium codoping, thermal annealing under reducing atmosphere and growth of non-stoechiometric compounds.

  3. Electronic structure of single crystal C60

    International Nuclear Information System (INIS)

    Wu, J.; Shen, Z.X.; Dessau, D.S.; Cao, R.; Marshall, D.S.; Pianetta, P.; Lindau, I.; Yang, X.; Terry, J.; King, D.M.; Wells, B.O.; Elloway, D.; Wendt, H.R.; Brown, C.A.; Hunziker, H.; Vries, M.S. de

    1992-01-01

    We report angle-resolved photoemission data from single crystals of C 60 cleaved in UHV. Unlike the other forms of pure carbon, the valence band spectrum of C 60 consists of many sharp features that can be essentially accounted for by the quantum chemical calculations describing individual molecules. This suggests that the electronic structure of solid C 60 is mainly determined by the bonding interactions within the individual molecules. We also observe remarkable intensity modulations of the photoemission features as a function of photon energy, suggesting strong final state effects. Finally, we address the issue of the band width of the HOMO state of C 60 . We assert that the width of the photoemission peak of C 60 does not reflect the intrinsic band width because it is broadened by the non 0-0 transitions via the Franck-Condon principle. Our view point provides a possible reconciliation between these photoemission data and those measured by other techniques. (orig.)

  4. Hydrogen Annealing Of Single-Crystal Superalloys

    Science.gov (United States)

    Smialek, James L.; Schaeffer, John C.; Murphy, Wendy

    1995-01-01

    Annealing at temperature equal to or greater than 2,200 degrees F in atmosphere of hydrogen found to increase ability of single-crystal superalloys to resist oxidation when subsequently exposed to oxidizing atmospheres at temperatures almost as high. Supperalloys in question are principal constituents of hot-stage airfoils (blades) in aircraft and ground-based turbine engines; also used in other high-temperature applications like chemical-processing plants, coal-gasification plants, petrochemical refineries, and boilers. Hydrogen anneal provides resistance to oxidation without decreasing fatigue strength and without need for coating or reactive sulfur-gettering constituents. In comparison with coating, hydrogen annealing costs less. Benefits extend to stainless steels, nickel/chromium, and nickel-base alloys, subject to same scale-adhesion and oxidation-resistance considerations, except that scale is chromia instead of alumina.

  5. The effect of diffusion induced lattice stress on the open-circuit voltage in silicon solar cells

    Science.gov (United States)

    Weizer, V. G.; Godlewski, M. P.

    1984-01-01

    It is demonstrated that diffusion induced stresses in low resistivity silicon solar cells can significantly reduce both the open-circuit voltage and collection efficiency. The degradation mechanism involves stress induced changes in both the minority carrier mobility and the diffusion length. Thermal recovery characteristics indicate that the stresses are relieved at higher temperatures by divacancy flow (silicon self diffusion). The level of residual stress in as-fabricated cells was found to be negligible in the cells tested.

  6. Spatially resolved determination of the short-circuit current density of silicon solar cells via lock-in thermography

    International Nuclear Information System (INIS)

    Fertig, Fabian; Greulich, Johannes; Rein, Stefan

    2014-01-01

    We present a spatially resolved method to determine the short-circuit current density of crystalline silicon solar cells by means of lock-in thermography. The method utilizes the property of crystalline silicon solar cells that the short-circuit current does not differ significantly from the illuminated current under moderate reverse bias. Since lock-in thermography images locally dissipated power density, this information is exploited to extract values of spatially resolved current density under short-circuit conditions. In order to obtain an accurate result, one or two illuminated lock-in thermography images and one dark lock-in thermography image need to be recorded. The method can be simplified in a way that only one image is required to generate a meaningful short-circuit current density map. The proposed method is theoretically motivated, and experimentally validated for monochromatic illumination in comparison to the reference method of light-beam induced current.

  7. Chlorination of irradiated polyethylene single crystals

    International Nuclear Information System (INIS)

    Grimm, H.J.

    1978-01-01

    The chlorination of electron beam-irradiation polyethylene (PE) single crystals was studied for a range of irradiation doses, temperatures, and chlorine interaction times. The results presented show that PE chlorination was quite extensive, even in unirradiated PE single crystals at 25 0 C in the dark. Electron Spin Resonance (ESR, EPR) was used in this study in order to determine the alkyl radical concentration, decay constant, and diffusivity for (unchlorinated) specimens. An alkyl radical diffusivity D/sub a/ = 1.6 x 10 -17 cm 2 /sec at 25 0 C was estimated from ESR data and alkyl radical migration as one-dimensional unsteady-state diffusion process. In irradiated PE, chlorination occurred mainly via chain reactions which were initiated by the irradiation-produced free radicals. Chlorine content values were determined by X-ray Energy Spectroscopy (XES). It was found that the magnitude of the chlorine uptake increased with increasing dose, and decreased with decreasing temperature at constant dose. Otherwise the observed PE chlorination phenomena was quite similar for all of the doses and temperatures studied here, consisting of a two step mechanism: a fast uptake which occurred between time tCl 2 = 0 - 5 minutes and a slower, approximately first-order rate of uptake which occurred between times tCl 2 = 5 - 120 minutes. Chlorination was essentially complete by time tCl 2 = 120 minutes. The rapid uptake probably occurred in the amorphous surface zones where Cl 2 is relatively high and the second, slower step was probably attributable to Cl 2 diffusion into the crystalline regions and subsequent chlorination there. Inasmuch as the PE density decreases with increasing dose (for 1-600 Mrad), Cl 2 diffusivity was enhanced, resulting in higher chlorine uptake values at higher doses

  8. Hydrogenated Amorphous Silicon Sensor Deposited on Integrated Circuit for Radiation Detection

    CERN Document Server

    Despeisse, M; Jarron, P; Kaplon, J; Moraes, D; Nardulli, A; Powolny, F; Wyrsch, N

    2008-01-01

    Radiation detectors based on the deposition of a 10 to 30 mum thick hydrogenated amorphous silicon (a-Si:H) sensor directly on top of integrated circuits have been developed. The performance of this detector technology has been assessed for the first time in the context of particle detectors. Three different circuits were designed in a quarter micron CMOS technology for these studies. The so-called TFA (Thin-Film on ASIC) detectors obtained after deposition of a-Si:H sensors on the developed circuits are presented. High internal electric fields (104 to 105 V/cm) can be built in the a-Si:H sensor and overcome the low mobility of electrons and holes in this amorphous material. However, the deposited sensor's leakage current at such fields turns out to be an important parameter which limits the performance of a TFA detector. Its detailed study is presented as well as the detector's pixel segmentation. Signal induction by generated free carrier motion in the a-Si:H sensor has been characterized using a 660 nm pul...

  9. An analog front-end bipolar-transistor integrated circuit for the SDC silicon tracker

    International Nuclear Information System (INIS)

    Kipnis, I.; Spieler, H.; Collins, T.

    1994-01-01

    Since 1989 the Solenoidal Detector Collaboration (SDC) has been developing a general purpose detector to be operated at the Superconducting Super Collider (SSC). A low-noise, low-power, high-bandwidth, radiation hard, silicon bipolar-transistor full-custom integrated circuit (IC) containing 64 channels of analog signal processing has been developed for the SDS silicon tracker. The IC was designed and tested at LBL and was fabricated using AT and T's CBIC-U2, 4 GHz f T complementary bipolar technology. Each channel contains the following functions: low-noise preamplification, pulse shaping and threshold discrimination. This is the first iteration of the production analog IC for the SDC silicon tracker. The IC is laid out to directly match the 50 μm pitch double-sided silicon strip detector. The chip measures 6.8 mm x 3.1 mm and contains 3,600 transistors. Three stages of amplification provide 180 mV/fC of gain with a 35 nsec peaking time at the comparator input. For a 14 pF detector capacitance, the equivalent noise charge is 1300 el. rms at a power consumption of 1 mW/channel from a single 3.5 V supply. With the discriminator threshold set to 4 times the noise level, a 16nsec time-walk for 1.25 to 10 fC signals is achieved using a time-walk compensation network. Irradiation tests at TRIUMF to a φ = 10 14 protons/cm 2 have been performed on the JC, demonstrating the radiation hardness of the complementary bipolar process

  10. Optical characterization of single-crystal diamond grown by DC arc plasma jet CVD

    Science.gov (United States)

    Hei, Li-fu; Zhao, Yun; Wei, Jun-jun; Liu, Jin-long; Li, Cheng-ming; Lü, Fan-xiu

    2017-12-01

    Optical centers of single-crystal diamond grown by DC arc plasma jet chemical vapor deposition (CVD) were examined using a low-temperature photoluminescence (PL) technique. The results show that most of the nitrogen-vacancy (NV) complexes are present as NV- centers, although some H2 and H3 centers and B-aggregates are also present in the single-crystal diamond because of nitrogen aggregation resulting from high N2 incorporation and the high mobility of vacancies under growth temperatures of 950-1000°C. Furthermore, emissions of radiation-induced defects were also detected at 389, 467.5, 550, and 588.6 nm in the PL spectra. The reason for the formation of these radiation-induced defects is not clear. Although a Ni-based alloy was used during the diamond growth, Ni-related emissions were not detected in the PL spectra. In addition, the silicon-vacancy (Si-V)-related emission line at 737 nm, which has been observed in the spectra of many previously reported microwave plasma chemical vapor deposition (MPCVD) synthetic diamonds, was absent in the PL spectra of the single-crystal diamond prepared in this work. The high density of NV- centers, along with the absence of Ni-related defects and Si-V centers, makes the single-crystal diamond grown by DC arc plasma jet CVD a promising material for applications in quantum computing.

  11. Study of the effect of doping on the temperature stability of the optical properties of germanium single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Podkopaev, O. I. [Joint-Stock Company “Germanium” (Russian Federation); Shimanskiy, A. F., E-mail: shimanaf@mail.ru [Siberian Federal University (Russian Federation); Kopytkova, S. A.; Filatov, R. A. [Joint-Stock Company “Germanium” (Russian Federation); Golubovskaya, N. O. [Siberian Federal University (Russian Federation)

    2016-10-15

    The effect of doping on the optical transmittance of germanium single crystals is studied by infrared Fourier spectroscopy. It is established that the introduction of silicon and tellurium additives into germanium doped with antimony provides a means for improving the temperature stability of the optical properties of the crystals.

  12. Study of the effect of doping on the temperature stability of the optical properties of germanium single crystals

    International Nuclear Information System (INIS)

    Podkopaev, O. I.; Shimanskiy, A. F.; Kopytkova, S. A.; Filatov, R. A.; Golubovskaya, N. O.

    2016-01-01

    The effect of doping on the optical transmittance of germanium single crystals is studied by infrared Fourier spectroscopy. It is established that the introduction of silicon and tellurium additives into germanium doped with antimony provides a means for improving the temperature stability of the optical properties of the crystals.

  13. Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics.

    Science.gov (United States)

    Weigel, Peter O; Savanier, Marc; DeRose, Christopher T; Pomerene, Andrew T; Starbuck, Andrew L; Lentine, Anthony L; Stenger, Vincent; Mookherjea, Shayan

    2016-03-01

    We demonstrate a photonic waveguide technology based on a two-material core, in which light is controllably and repeatedly transferred back and forth between sub-micron thickness crystalline layers of Si and LN bonded to one another, where the former is patterned and the latter is not. In this way, the foundry-based wafer-scale fabrication technology for silicon photonics can be leveraged to form lithium-niobate based integrated optical devices. Using two different guided modes and an adiabatic mode transition between them, we demonstrate a set of building blocks such as waveguides, bends, and couplers which can be used to route light underneath an unpatterned slab of LN, as well as outside the LN-bonded region, thus enabling complex and compact lightwave circuits in LN alongside Si photonics with fabrication ease and low cost.

  14. Impurity engineering of Czochralski silicon used for ultra large-scaled-integrated circuits

    Science.gov (United States)

    Yang, Deren; Chen, Jiahe; Ma, Xiangyang; Que, Duanlin

    2009-01-01

    Impurities in Czochralski silicon (Cz-Si) used for ultra large-scaled-integrated (ULSI) circuits have been believed to deteriorate the performance of devices. In this paper, a review of the recent processes from our investigation on internal gettering in Cz-Si wafers which were doped with nitrogen, germanium and/or high content of carbon is presented. It has been suggested that those impurities enhance oxygen precipitation, and create both denser bulk microdefects and enough denuded zone with the desirable width, which is benefit of the internal gettering of metal contamination. Based on the experimental facts, a potential mechanism of impurity doping on the internal gettering structure is interpreted and, a new concept of 'impurity engineering' for Cz-Si used for ULSI is proposed.

  15. Low-loss compact multilayer silicon nitride platform for 3D photonic integrated circuits.

    Science.gov (United States)

    Shang, Kuanping; Pathak, Shibnath; Guan, Binbin; Liu, Guangyao; Yoo, S J B

    2015-08-10

    We design, fabricate, and demonstrate a silicon nitride (Si(3)N(4)) multilayer platform optimized for low-loss and compact multilayer photonic integrated circuits. The designed platform, with 200 nm thick waveguide core and 700 nm interlayer gap, is compatible for active thermal tuning and applicable to realizing compact photonic devices such as arrayed waveguide gratings (AWGs). We achieve ultra-low loss vertical couplers with 0.01 dB coupling loss, multilayer crossing loss of 0.167 dB at 90° crossing angle, 50 μm bending radius, 100 × 2 μm(2) footprint, lateral misalignment tolerance up to 400 nm, and less than -52 dB interlayer crosstalk at 1550 nm wavelength. Based on the designed platform, we demonstrate a 27 × 32 × 2 multilayer star coupler.

  16. Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics

    Science.gov (United States)

    Weigel, Peter O.; Savanier, Marc; DeRose, Christopher T.; Pomerene, Andrew T.; Starbuck, Andrew L.; Lentine, Anthony L.; Stenger, Vincent; Mookherjea, Shayan

    2016-01-01

    We demonstrate a photonic waveguide technology based on a two-material core, in which light is controllably and repeatedly transferred back and forth between sub-micron thickness crystalline layers of Si and LN bonded to one another, where the former is patterned and the latter is not. In this way, the foundry-based wafer-scale fabrication technology for silicon photonics can be leveraged to form lithium-niobate based integrated optical devices. Using two different guided modes and an adiabatic mode transition between them, we demonstrate a set of building blocks such as waveguides, bends, and couplers which can be used to route light underneath an unpatterned slab of LN, as well as outside the LN-bonded region, thus enabling complex and compact lightwave circuits in LN alongside Si photonics with fabrication ease and low cost. PMID:26927022

  17. Production and several properties of single crystal austenitic stainless steels

    International Nuclear Information System (INIS)

    Okamoto, Kazutaka; Yoshinari, Akira; Kaneda, Junya; Aono, Yasuhisa; Kato, Takahiko

    1998-01-01

    The single crystal austenitic stainless steels Type 316L and 304L were grown in order to improve the resistance to stress corrosion cracking (SCC) using a unidirectional solidification method which can provide the large size single crystals. The mechanical properties and the chemical properties were examined. The orientation and temperature dependence of tensile properties of the single crystals were measured. The yield stress of the single crystal steels are lower than those of the conventional polycrystal steels because of the grain boundary strength cannot be expected in the single crystal steels. The tensile properties of the single crystal austenitic stainless steel Type 316L depend strongly on the orientation. The tensile strength in orientation are about 200 MPa higher than those in the and orientations. The microstructure of the single crystal consists of a mixture of the continuous γ-austenitic single crystal matrix and the δ-ferrite phase so that the effects of the γ/δ boundaries on the chemical properties were studied. The effects of the δ-ferrite phases and the γ/δ boundaries on the resistance to SCC were examined by the creviced bent beam test (CBB test). No crack is observed in all the CBB test specimens of the single crystals, even at the γ/δ boundaries. The behavior of the radiation induced segregation (RIS) at the γ/δ boundaries in the single crystal austenitic stainless steel Type 316L was evaluated by the electron irradiation test in the high voltage electron microscope (HVEM). The depletion of oversized solute chromium at the γ/δ boundary in the single crystal austenitic stainless steel Type 316L is remarkably lower than that at the grain boundary in the polycrystalline-type 316L. (author)

  18. Thermomechanical fatigue in single crystal superalloys

    Directory of Open Access Journals (Sweden)

    Moverare Johan J.

    2014-01-01

    Full Text Available Thermomechanical fatigue (TMF is a mechanism of deformation which is growing in importance due to the efficiency of modern cooling systems and the manner in which turbines and associated turbomachinery are now being operated. Unfortunately, at the present time, relatively little research has been carried out particularly on TMF of single crystal (SX superalloys, probably because the testing is significantly more challenging than the more standard creep and low cycle fatigue (LCF cases; the scarcity and relative expense of the material are additional factors. In this paper, the authors summarise their experiences on the TMF testing of SX superalloys, built up over several years. Emphasis is placed upon describing: (i the nature of the testing method, the challenges involved in ensuring that an given testing methodology is representative of engine conditions (ii the behaviour of a typical Re-containing second generation alloy such as CMSX-4, and its differing performance in out-of-phase/in-phase loading and crystallographic orientation and (iii the differences in behaviour displayed by the Re-containing alloys and new Re-free variants such as STAL15. It is demonstrated that the Re-containing superalloys are prone to different degradation mechanisms involving for example microtwinning, TCP precipitation and recrystallisation. The performance of STAL15 is not too inferior to alloys such as CMSX-4, suggesting that creep resistance itself does not correlate strongly with resistance to TMF. The implications for alloy design efforts are discussed.

  19. Cyclic deformation of Nb single crystals

    International Nuclear Information System (INIS)

    Guiu, F.; Anglada, M.

    1982-01-01

    The temperature and strain-rate dependence of the cyclic flow stress of Nb single crystals with two different axial orientations has been studied at temperatures between 175 and 350 K. This dependence is found to be independent of the crystal orientation when the internal stresses are taken into account, and the results are discussed in terms of the theory of thermally activated dislocation glide. A transition temperature can be identified at about 250 K which separates two regions with different thermally activated deformation behaviour. Above this transition temperature the strain rate can be described by a stress power law, and the activation energy can be represented by a logarithmic function of the stress, as in Escaig's model of screw dislocation mobility. In the temperature range 170 to 250 K the results are also in agreement with the more recent model proposed by Seeger. The large experimental errors inherent in the values of activation enthalpy at low stresses are emphasized and taken into account in the discussion of the results. It is suggested that either impurity-kink interactions or the flexibility of the screw dislocations are responsible for the trend towards the high values of activation enthalpy measured at the low stresses. (author)

  20. Irradiation creep in zirconium single crystals

    International Nuclear Information System (INIS)

    MacEwen, S.R.; Fidleris, V.

    1976-07-01

    Two identical single crystals of crystal bar zirconium have been creep tested in reactor. Both specimens were preirradiated at low stress to a dose of about 4 x 10 23 n/m 2 (E > 1 MeV), and were then loaded to 25 MPa. The first specimen was loaded with reactor at full power, the second during a shutdown. The loading strain for both crystals was more than an order of magnitude smaller than that observed when an identical unirradiated crystal was loaded to the same stress. Both crystals exhibited periods of primary creep, after which their creep rates reached nearly constant values when the reactor was at power. During shutdowns the creep rates decreased rapidly with time. Electron microscopy revealed that the irradiation damage consisted of prismatic dislocation loops, approximately 13.5 nm in diameter. Cleared channels, identified as lying on (1010) planes, were also observed. The results are discussed in terms of the current theories for flux enhanced creep in the light of the microstructures observed. (author)

  1. Spall response of single-crystal copper

    Science.gov (United States)

    Turley, W. D.; Fensin, S. J.; Hixson, R. S.; Jones, D. R.; La Lone, B. M.; Stevens, G. D.; Thomas, S. A.; Veeser, L. R.

    2018-02-01

    We performed a series of systematic spall experiments on single-crystal copper in an effort to determine and isolate the effects of crystal orientation, peak stress, and unloading strain rate on the tensile spall strength. Strain rates ranging from 0.62 to 2.2 × 106 s-1 and peak shock stresses in the 5-14 GPa range, with one additional experiment near 50 GPa, were explored as part of this work. Gun-driven impactors, called flyer plates, generated flat top shocks followed by spall. This work highlights the effect of crystal anisotropy on the spall strength by showing that the spall strength decreases in the following order: [100], [110], and [111]. Over the range of stresses and strain rates explored, the spall strength of [100] copper depends strongly on both the strain rate and shock stress. Except at the very highest shock stress, the results for the [100] orientation show linear relationships between the spall strength and both the applied compressive stress and the strain rate. In addition, hydrodynamic computer code simulations of the spall experiments were performed to calculate the relationship between the strain rate near the spall plane in the target and the rate of free surface velocity release during the pullback. As expected, strain rates at the spall plane are much higher than the strain rates estimated from the free surface velocity release rate. We have begun soft recovery experiments and molecular dynamics calculations to understand the unusual recompression observed in the spall signature for [100] crystals.

  2. Magnetoresistance in terbium and holmium single crystals

    International Nuclear Information System (INIS)

    Singh, R.L.; Jericho, M.H.; Geldart, D.J.W.

    1976-01-01

    The longitudinal magnetoresistance of single crystals of terbium and holmium metals in their low-temperature ferromagnetic phase has been investigated in magnetic fields up to 80 kOe. Typical magnetoresistance isotherms exhibit a minimum which increases in depth and moves to higher fields as the temperature increases. The magnetoresistance around 1 0 K, where inelastic scattering is negligible, has been interpreted as the sum of a negative contribution due to changes in the domain structure and a positive contribution due to normal magnetoresistance. At higher temperatures, a phenomenological approach has been developed to extract the inelastic phonon and spin-wave components from the total measured magnetoresistance. In the temperature range 4--20 0 K (approximately), the phonon resistivity varies as T 3 . 7 for all samples. Approximate upper and lower bounds have been placed on the spin-wave resistivity which is also found to be described by a simple power law in this temperature range. The implications of this result for theoretical treatments of spin-wave resistivity due to s-f exchange interactions are considered. It is concluded that the role played by the magnon energy gap is far less transparent than previously suggested

  3. An eight channel low-noise CMOS readout circuit for silicon detectors with on-chip front-end FET

    International Nuclear Information System (INIS)

    Fiorini, C.; Porro, M.

    2006-01-01

    We propose a CMOS readout circuit for the processing of signals from multi-channel silicon detectors to be used in X-ray spectroscopy and γ-ray imaging applications. The circuit is composed by eight channels, each one featuring a low-noise preamplifier, a 6th-order semigaussian shaping amplifier with four selectable peaking times, from 1.8 up to 6 μs, a peak stretcher and a discriminator. The circuit is conceived to be used with silicon detectors with a front-end FET integrated on the detector chips itself, like silicon drift detectors with JFET and pixel detectors with DEPMOS. The integrated time constants used for the shaping are implemented by means of an RC-cell, based on the technique of demagnification of the current flowing in a resistor R by means of the use of current mirrors. The eight analog channels of the chip are multiplexed to a single analog output. A suitable digital section provides self-resetting of each channel and trigger output and is able to set independent thresholds on the analog channels by means of a programmable serial register and 3-bit DACs. The circuit has been realized in the 0.35 μm CMOS AMS technology. In this work, the main features of the circuit are presented along with the experimental results of its characterization

  4. Ion implantation of CdTe single crystals

    International Nuclear Information System (INIS)

    Wiecek, Tomasz; Popovich, Volodymir; Bester, Mariusz; Kuzma, Marian

    2017-01-01

    Ion implantation is a technique which is widely used in industry for unique modification of metal surface for medical applications. In semiconductor silicon technology ion implantation is also widely used for thin layer electronic or optoelectronic devices production. For other semiconductor materials this technique is still at an early stage. In this paper based on literature data we present the main features of the implantation of CdTe single crystals as well as some of the major problems which are likely to occur when dealing with them. The most unexpected feature is the high resistance of these crystals against the amorphization caused by ion implantation even at high doses (10"1"7 1/cm"2). The second property is the disposal of defects much deeper in the sample then it follows from the modeling calculations. The outline of principles of the ion implantation is included in the paper. The data based on RBS measurements and modeling results obtained by using SRIM software were taken into account.

  5. Three hydrogenated amorphous silicon photodiodes stacked for an above integrated circuit colour sensor

    Energy Technology Data Exchange (ETDEWEB)

    Gidon, Pierre; Giffard, Benoit; Moussy, Norbert; Parrein, Pascale; Poupinet, Ludovic [CEA-LETI, MINATEC, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2010-03-15

    We present theoretical simulation and experimental results of a new colour pixel structure. This pixel catches the light in three stacked amorphous silicon photodiodes encompassed between transparent electrodes. The optical structure has been simulated for signal optimisation. The thickness of each stacked layer is chosen in order to absorb the maximum of light and the three signals allow to linearly calculate the CIE colour coordinates 1 with minimum error and noise. The whole process is compatible with an above integrated circuit (IC) approach. Each photodiode is an n-i-p structure. For optical reason, the upper diode must be controlled down to 25 nm thickness. The first test pixel structure allows a good recovering of colour coordinates. The measured absorption spectrum of each photodiode is in good agreement with our simulations. This specific stack with three photodiodes per pixel totalises two times more signal than an above IC pixel under a standard Bayer pattern 2,3. In each square of this GretagMacbeth chart is the reference colour on the right and the experimentally measured colour on the left with three amorphous silicon photodiodes per pixel. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  6. Azeotropic binary solvent mixtures for preparation of organic single crystals

    NARCIS (Netherlands)

    Li, X.; Kjellander, B.K.C.; Anthony, J.E.; Bastiaansen, C.W.M.; Broer, D.J.; Gelinck, G.H.

    2009-01-01

    Here, a new approach is introduced to prepare large single crystals of π-conjugated organic molecules from solution. Utilizing the concept of azeotropism, single crystals of tri-isopropylsilylethynyl pentacene (TIPS-PEN) with dimensions up to millimeters are facilely self-assembled from homogeneous

  7. Azeotropic binary solvent mixtures for preparation of organic single crystals

    NARCIS (Netherlands)

    Li, X.; Kjellander, B.K.C.; Anthony, J.E.; Bastiaansen, C.W.M.; Broer, D.J.; Gelinck, G.H.

    2009-01-01

    Here, a new approach is introduced to prepare large single crystals of p-conjugated organic molecules from solution. Utilizing the concept of azeotropism, single crystals of tri-isopropylsilylethynyl pentacene (TIPS-PEN) with dimensions up to millimeters are facilely self-assembled from homogeneous

  8. Thermal diffusion boron doping of single-crystal natural diamond

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jung-Hun; Mikael, Solomon; Mi, Hongyi; Venkataramanan, Giri; Ma, Zhenqiang, E-mail: mazq@engr.wisc.edu [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Wu, Henry; Morgan, Dane [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Blanchard, James P. [Department of Nuclear Engineering and Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Zhou, Weidong [Department of Electrical Engineering, NanoFAB Center, University of Texas at Arlington, Arlington, Texas 76019 (United States); Gong, Shaoqin [Department of Biomedical Engineering and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2016-05-28

    With the best overall electronic and thermal properties, single crystal diamond (SCD) is the extreme wide bandgap material that is expected to revolutionize power electronics and radio-frequency electronics in the future. However, turning SCD into useful semiconductors requires overcoming doping challenges, as conventional substitutional doping techniques, such as thermal diffusion and ion implantation, are not easily applicable to SCD. Here we report a simple and easily accessible doping strategy demonstrating that electrically activated, substitutional doping in SCD without inducing graphitization transition or lattice damage can be readily realized with thermal diffusion at relatively low temperatures by using heavily doped Si nanomembranes as a unique dopant carrying medium. Atomistic simulations elucidate a vacancy exchange boron doping mechanism that occurs at the bonded interface between Si and diamond. We further demonstrate selectively doped high voltage diodes and half-wave rectifier circuits using such doped SCD. Our new doping strategy has established a reachable path toward using SCDs for future high voltage power conversion systems and for other novel diamond based electronic devices. The novel doping mechanism may find its critical use in other wide bandgap semiconductors.

  9. Thermal diffusion boron doping of single-crystal natural diamond

    International Nuclear Information System (INIS)

    Seo, Jung-Hun; Mikael, Solomon; Mi, Hongyi; Venkataramanan, Giri; Ma, Zhenqiang; Wu, Henry; Morgan, Dane; Blanchard, James P.; Zhou, Weidong; Gong, Shaoqin

    2016-01-01

    With the best overall electronic and thermal properties, single crystal diamond (SCD) is the extreme wide bandgap material that is expected to revolutionize power electronics and radio-frequency electronics in the future. However, turning SCD into useful semiconductors requires overcoming doping challenges, as conventional substitutional doping techniques, such as thermal diffusion and ion implantation, are not easily applicable to SCD. Here we report a simple and easily accessible doping strategy demonstrating that electrically activated, substitutional doping in SCD without inducing graphitization transition or lattice damage can be readily realized with thermal diffusion at relatively low temperatures by using heavily doped Si nanomembranes as a unique dopant carrying medium. Atomistic simulations elucidate a vacancy exchange boron doping mechanism that occurs at the bonded interface between Si and diamond. We further demonstrate selectively doped high voltage diodes and half-wave rectifier circuits using such doped SCD. Our new doping strategy has established a reachable path toward using SCDs for future high voltage power conversion systems and for other novel diamond based electronic devices. The novel doping mechanism may find its critical use in other wide bandgap semiconductors.

  10. Excitonic polaritons of zinc diarsenide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Syrbu, N.N., E-mail: sirbunn@yahoo.com [Technical University of Moldova, Chisinau, Republic of Moldova (Moldova, Republic of); Stamov, I.G. [T.G. Shevchenko State University of Pridnestrovie, Tiraspol, Republic of Moldova (Moldova, Republic of); Zalamai, V.V. [Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau, Republic of Moldova (Moldova, Republic of); Dorogan, A. [Technical University of Moldova, Chisinau, Republic of Moldova (Moldova, Republic of)

    2017-02-01

    Excitonic polaritons of ZnAs{sub 2} single crystals had been investigated. Parameters of singlet excitons with Г{sub 2}¯(z) symmetry and orthoexcitons 2Г{sub 1}¯(y)+Г{sub 2}¯(x) had been determined. Spectral dependencies of ordinary and extraordinary dispersion of refractive index had been calculated using interferential reflection and transmittance spectra. It was shown, that A excitonic series were due to hole (V{sub 1}) and electron (C{sub 1}) bands. The values of effective masses of electrons (m{sub c}{sup *}=0.10 m{sub 0}) and holes (m{sub v1}{sup *}=0.89 m{sub 0}) had been estimated. It was revealed that the hole mass m{sub v1}{sup *} changes from 1.03 m{sub 0} to 0.55 m{sub 0} at temperature increasing from 10 K up to 230 K and that the electron mass m{sub c}{sup *} does not depend on temperature. The integral absorption A (eV cm{sup −1}) of the states n=1, 2 and 3 of Г{sub 2}¯(z) excitons depends on the A{sub n}≈n{sup −3} equality, which it is characteristic for S-type excitonic functions. Temperature dependences of the integral absorption of ground states for Г{sub 2}¯(z) and Г{sub 2}¯(Ñ…) excitons differ. The ground states of B and C excitons formed by V{sub 3} – C{sub 1} and V{sub 4} – C{sub 1} bands and its parameters had been determined.

  11. Solution-printed organic semiconductor blends exhibiting transport properties on par with single crystals.

    Science.gov (United States)

    Niazi, Muhammad R; Li, Ruipeng; Qiang Li, Er; Kirmani, Ahmad R; Abdelsamie, Maged; Wang, Qingxiao; Pan, Wenyang; Payne, Marcia M; Anthony, John E; Smilgies, Detlef-M; Thoroddsen, Sigurdur T; Giannelis, Emmanuel P; Amassian, Aram

    2015-11-23

    Solution-printed organic semiconductors have emerged in recent years as promising contenders for roll-to-roll manufacturing of electronic and optoelectronic circuits. The stringent performance requirements for organic thin-film transistors (OTFTs) in terms of carrier mobility, switching speed, turn-on voltage and uniformity over large areas require performance currently achieved by organic single-crystal devices, but these suffer from scale-up challenges. Here we present a new method based on blade coating of a blend of conjugated small molecules and amorphous insulating polymers to produce OTFTs with consistently excellent performance characteristics (carrier mobility as high as 6.7 cm(2) V(-1) s(-1), low threshold voltages oforganic semiconductor films with transport properties and other figures of merit on par with their single-crystal counterparts.

  12. Reshock and release response of aluminum single crystal

    International Nuclear Information System (INIS)

    Huang, H.; Asay, J. R.

    2007-01-01

    Reshock and release experiments were performed on single crystal aluminum along three orientations and on polycrystalline 1050 aluminum with 50 μm grain size at shock stresses of 13 and 21 GPa to investigate the mechanisms for previously observed quasielastic recompression behavior. Particle velocity profiles obtained during reshocking both single crystals and polycrystalline aluminum from initial shock stresses of 13-21 GPa show similar quasielastic recompression behavior. Quasielastic release response is also observed in all single crystals, but the magnitude of the effect is crystal orientation dependent, with [111] and [110] exhibiting more ideal elastic-plastic release for unloading from the shocked state than for the [100] orientation and polycrystalline aluminum. The quasielastic response of 1050 aluminum is intermediate to that of the [100] and [111] orientations. Comparison of the wave profiles obtained for both unloading and reloading of single crystals and polycrystalline 1050 aluminum from shocked states suggests that the observed quasielastic response of polycrystalline aluminum results from the averaging response of single crystals for shock propagation along different orientations, and that the response of 1050 aluminum with large grain boundaries is not significantly different from the results obtained on single crystal aluminum. The yield strength of the single crystals and 1050 aluminum is found to increase with shock stress, which is consistent with previous results [H. Huang and I. R. Asay, J. Appl. Phys. 98, 033524 (2005)

  13. Ultra-large single crystals by abnormal grain growth.

    Science.gov (United States)

    Kusama, Tomoe; Omori, Toshihiro; Saito, Takashi; Kise, Sumio; Tanaka, Toyonobu; Araki, Yoshikazu; Kainuma, Ryosuke

    2017-08-25

    Producing a single crystal is expensive because of low mass productivity. Therefore, many metallic materials are being used in polycrystalline form, even though material properties are superior in a single crystal. Here we show that an extraordinarily large Cu-Al-Mn single crystal can be obtained by abnormal grain growth (AGG) induced by simple heat treatment with high mass productivity. In AGG, the sub-boundary energy introduced by cyclic heat treatment (CHT) is dominant in the driving pressure, and the grain boundary migration rate is accelerated by repeating the low-temperature CHT due to the increase of the sub-boundary energy. With such treatment, fabrication of single crystal bars 70 cm in length is achieved. This result ensures that the range of applications of shape memory alloys will spread beyond small-sized devices to large-scale components and may enable new applications of single crystals in other metallic and ceramics materials having similar microstructural features.Growing large single crystals cheaply and reliably for structural applications remains challenging. Here, the authors combine accelerated abnormal grain growth and cyclic heat treatments to grow a superelastic shape memory alloy single crystal to 70 cm.

  14. Single-crystal growth of ceria-based materials

    International Nuclear Information System (INIS)

    Ulbrich, Gregor

    2015-01-01

    In this work it could be shown that Skull-Melting is a suitable method for growing ceria single crystals. Twenty different ceria-based single crystals could be manufactured. It was possible to dope ceria single crystals with Gd, Sm, Y, Zr, Ti, Ta, and Pr in different concentrations. Also co-doping with the named metals was realized. However, there remain some problems for growing ceria-based single crystals by Skull-Melting. As ignition metal zirconium was used because no ceria-based material works well. For that reason all single crystals show small zirconium contamination. Another problem is the formation of oxygen by the heat-induced reduction of ceria during the melting process. Because of that the skull of sintered material is often destroyed by gas pressure. This problem had to be solved individually for every single crystal. The obtained single crystals were characterized using different methods. To ensure the single crystal character the y were examined by Laue diffraction. All manufactured crystals are single crystals. Also powder diffraction patterns of the milled and oxidized samples were measured. For the determination of symmetry and metric the structural parameters were analyzed by the Rietveld method. All synthesized materials crystallize in space group Fm-3m known from calcium fluoride. The cubic lattice parameter a was determined for all crystals. In the case of series with different cerium and zirconium concentrations a linear correlation between cerium content and cubic lattice parameter was detected. The elemental composition was determined by WDX. All crystals show a homogeneous elemental distribution. The oxygen content was calculated because the WDX method isn't useful for determination.

  15. Spherical Nb single crystals containerlessly grown by electrostatic levitation

    International Nuclear Information System (INIS)

    Sung, Y.S.; Takeya, H.; Hirata, K.; Togano, K.

    2003-01-01

    Spherical Nb (T m =2750 K) single crystals were grown via containerless electrostatic levitation (ESL). Samples became spherical at melting in levitation and undercooled typically 300-450 K prior to nucleation. As-processed samples were still spherical without any macroscopic shape change by solidification showing a uniform dendritic surface morphology. Crystallographic {111} planes exposed in equilateral triangular shapes on the surface by preferential macroetching and spotty back-reflection Laue patterns confirm the single crystal nature of the ESL-processed Nb samples. No hysteresis in magnetization between zero field and field cooling also implies a clean defect-free condition of the spherical Nb single crystals

  16. Electroerosion impulse effect on W single crystal structure

    International Nuclear Information System (INIS)

    Aleshina, S.A.; Khvostikova, V.D.; Zolotykh, B.N.; Marchuk, A.I.

    1977-01-01

    The mechanism has been studied of brittle failure of single crystal tungsten on planes of crystallographic orientations [100], [110]; [111] in the process of electro-erosion machining by pulses of energies ranging from 1200 to 5000 μJ and of duration of 1 μs. It is shown that the electro-erosion machining of single crystal tungsten is characterized by the formation of a defect layer with a grid of microcracks which lie at a depth of approximately 80 μm. The appearance and the distribution of cracks on the surface of single crystals depends on the crystallogrpahic orientation

  17. Dielectric and baric characteristics of TlS single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Mustafaeva, S.N., E-mail: solmust@gmail.com [Institute of Physics, ANAS, G. Javid prosp. 33, Az 1143 Baku (Azerbaijan); Asadov, M.M. [Institute of Chemical Problems, ANAS, G. Javid prosp. 29, Az 1143 Baku (Azerbaijan); Ismailov, A.A. [Institute of Physics, ANAS, G. Javid prosp. 33, Az 1143 Baku (Azerbaijan)

    2014-11-15

    The investigation of the frequency dependences of the dielectric coefficients and ac-conductivity of the TlS single crystals made it possible to elucidate the nature of dielectric loss and the charge transfer mechanism. Moreover, we evaluated the density and energy spread of localized states near the Fermi level, the average hopping time and the average hopping length. It was shown that the dc-conductivity of the TlS single crystals can be controlled by varying the hydrostatic pressure. This has opened up possibilities for using TlS single crystals as active elements of pressure detectors.

  18. Growth of Ga2O3 single crystal

    OpenAIRE

    龍見, 雅美; 小池, 裕之; 市木, 伸明; Tatsumi, Masami; Koike, Hiroyuki; Ichiki, Nobuaki

    2010-01-01

    Single crystals of β-Ga2O3 for substrates of GaN LED were grown by Floating Zone(FZ) method. The transparent single crystals of 5-6 mm in diameter were reproducibly obtained by applying necking procedure and the preferential growth direction was . Many cracks were induced along the cleavage plane of (100) in slicing process, which is related to thermal stress and the growth direction. However, this preliminary growth experiments suggested that β-Ga2O3 single crystal is promising as a substrat...

  19. Study and characterization of an integrated circuit-deposited hydrogenated amorphous silicon sensor for the detection of particles and radiations

    International Nuclear Information System (INIS)

    Despeisse, M.

    2006-03-01

    Next generation experiments at the European laboratory of particle physics (CERN) require particle detector alternatives to actual silicon detectors. This thesis presents a novel detector technology, which is based on the deposition of a hydrogenated amorphous silicon sensor on top of an integrated circuit. Performance and limitations of this technology have been assessed for the first time in this thesis in the context of particle detectors. Specific integrated circuits have been designed and the detector segmentation, the interface sensor-chip and the sensor leakage current have been studied in details. The signal induced by the track of an ionizing particle in the sensor has been characterized and results on the signal speed, amplitude and on the sensor resistance to radiation are presented. The results are promising regarding the use of this novel technology for radiation detection, though limitations have been shown for particle physics application. (author)

  20. Investigations of morphological changes during annealing of polyethylene single crystals

    NARCIS (Netherlands)

    Tian, M.; Loos, J.

    2001-01-01

    The morphological evolution of isolated individual single crystals deposited on solid substrates was investigated during annealing experiments using in situ and ex situ atomic force microscopy techniques. The crystal morphology changed during annealing at temperatures slightly above the original

  1. Single Crystals of Organolead Halide Perovskites: Growth, Characterization, and Applications

    KAUST Repository

    Peng, Wei

    2017-01-01

    Despite their outstanding charge transport characteristics, organolead halide perovskite single crystals grown by hitherto reported crystallization methods are not suitable for most optoelectronic devices due to their small aspect ratios

  2. High-quality single crystals for neutron experiments

    Indian Academy of Sciences (India)

    studies and our collaborative research projects with other UK and international groups will be discussed. Keywords. Crystal growth; floating zone method; neutron scattering. ... of single crystals of new materials is a highly competitive business.

  3. Single crystal magnetisation of UFe10Mo2

    International Nuclear Information System (INIS)

    Estrela, P.; Godinho, M.; Spirlet, J.C.

    1997-01-01

    Magnetisation measurements have been performed for different directions on aligned UFe 10 Mo 2 single crystals. The results confirm a basal plane anisotropy and suggest an important magnetic contribution from the uranium sublattice. (orig.)

  4. Distributed Feedback Laser Based on Single Crystal Perovskite

    Science.gov (United States)

    Sun, Shang; Xiao, Shumin; Song, Qinghai

    2017-06-01

    We demonstrate a single crystal perovskite based, with grating-structured photoresist on top, highly polarized distributed feedback laser. A lower laser threshold than the Fabry-Perot mode lasers from the same single crystal CH3NH3PbBr3 microplate was obtained. Single crystal CH3NH3PbBr3 microplates was synthesized with one-step solution processed precipitation method. Once the photoresist on top of the microplate was patterned with electron beam, the device was realized. This one-step fabrication process utilized the advantage of single crystal to the greatest extend. The ultra-low defect density in single crystalline microplate offer an opportunity for lower threshold lasing action compare with poly-crystal perovskite films. In the experiment, the lasing action based on the distributed feedback grating design was found with lower threshold and higher intensity than the Fabry-Perot mode lasers supported by the flat facets of the same microplate.

  5. Growth and characterization of nonlinear optical single crystals: bis ...

    Indian Academy of Sciences (India)

    Administrator

    molecules have received great attention for NLO applica- tions. However ... Figure 3. Single crystals of bis(cyclohexylammonium) terephthalate (crystal a) and cyclohexylammo- .... from ground state to higher energy states.17 Optical window ...

  6. Prospects for the synthesis of large single-crystal diamonds

    International Nuclear Information System (INIS)

    Khmelnitskiy, R A

    2015-01-01

    The unique properties of diamond have stimulated the study of and search for its applications in many fields, including optics, optoelectronics, electronics, biology, and electrochemistry. Whereas chemical vapor deposition allows the growth of polycrystalline diamond plates more than 200 mm in diameter, most current diamond application technologies require large-size (25 mm and more) single-crystal diamond substrates or films suitable for the photolithography process. This is quite a challenge, because the largest diamond crystals currently available are 10 mm or less in size. This review examines three promising approaches to fabricating large-size diamond single crystals: growing large-size single crystals, the deposition of heteroepitaxial diamond films on single-crystal substrates, and the preparation of composite diamond substrates. (reviews of topical problems)

  7. How far could energy transport within a single crystal

    Science.gov (United States)

    Zhang, Yifan; Che, Yanke; Zhao, Jincai; Steve, Granick

    Efficient transport of excitation energy over long distance is a vital process in light-harvesting systems and molecular electronics. The energy transfer distance is largely restricted by the probability decay of the exciton when hopping within a single crystal. Here, we fabricated an organic single crystal within which the energy could transfer more than 100 μm, a distance only limited by its crystal size. Our system could be regarded as a ``Sprint relay game'' performing on different surface of tracks. Photoinduced ``athletes'' (excitons) triggered intermolecular ``domino'' reaction to propagate energy for a long distance. In addition, athletes with the same ability runs much farther on smooth ideal track (single crystal assembled from merely van der Waals interaction) than bumpy mud track (crystal assembled from combination of pi-stacking, hydrogen bond and van der Waals interactions). Our finding presents new physics on enhancing energy transfer length within a single crystal. Current Affiliation: Institute for Basic Science, South Korea.

  8. A readout circuit dedicated for the detection of chemiluminescence using a silicon photomultiplier

    Science.gov (United States)

    Baszczyk, M.; Dorosz, P.; Mik, L.; Kucewicz, W.; Reczynski, W.; Sapor, M.

    2018-05-01

    A readout circuit dedicated for the detection of the chemiluminescence phenomenon using a silicon photomultiplier (SiPM) is presented. During chemiluminescence, light is generated as a result of chemical reaction. Chemiluminescence is used in many applications within medicine, chemistry, biology and biotechnology, and is one of the most important sensing techniques in biomedical science and clinical medicine. The front-end electronics consist of a preamplifier and a fast shaper—this produces pulses, the peaking time which is 3.6 ns for a single photon and the FWHM is 3.8 ns. The system has been optimised to measure chemiluminescence—it is sensitive at the level of single photons, it generates a low number of overlapping pulses and is accurate. Two methods of signal detection are analysed and compared: the counting of events and amplitude detection. The relationship between the chemiluminescence light intensity and the concentration of the chemical compound (luminol) is linear in the range of the tested concentrations and has strong linearity parameters and low prediction intervals.

  9. Prolonged silicon carbide integrated circuit operation in Venus surface atmospheric conditions

    Directory of Open Access Journals (Sweden)

    Philip G. Neudeck

    2016-12-01

    Full Text Available The prolonged operation of semiconductor integrated circuits (ICs needed for long-duration exploration of the surface of Venus has proven insurmountably challenging to date due to the ∼ 460 °C, ∼ 9.4 MPa caustic environment. Past and planned Venus landers have been limited to a few hours of surface operation, even when IC electronics needed for basic lander operation are protected with heavily cumbersome pressure vessels and cooling measures. Here we demonstrate vastly longer (weeks electrical operation of two silicon carbide (4H-SiC junction field effect transistor (JFET ring oscillator ICs tested with chips directly exposed (no cooling and no protective chip packaging to a high-fidelity physical and chemical reproduction of Venus’ surface atmosphere. This represents more than 100-fold extension of demonstrated Venus environment electronics durability. With further technology maturation, such SiC IC electronics could drastically improve Venus lander designs and mission concepts, fundamentally enabling long-duration enhanced missions to the surface of Venus.

  10. Neuron Stimulation Device Integrated with Silicon Nanowire-Based Photodetection Circuit on a Flexible Substrate

    Directory of Open Access Journals (Sweden)

    Suk Won Jung

    2016-12-01

    Full Text Available This paper proposes a neural stimulation device integrated with a silicon nanowire (SiNW-based photodetection circuit for the activation of neurons with light. The proposed device is comprised of a voltage divider and a current driver in which SiNWs are used as photodetector and field-effect transistors; it has the functions of detecting light, generating a stimulation signal in proportion to the light intensity, and transmitting the signal to a micro electrode. To show the applicability of the proposed neural stimulation device as a high-resolution retinal prosthesis system, a high-density neural stimulation device with a unit cell size of 110 × 110 μ m and a resolution of 32 × 32 was fabricated on a flexible film with a thickness of approximately 50 μm. Its effectiveness as a retinal stimulation device was then evaluated using a unit cell in an in vitro animal experiment involving the retinal tissue of retinal Degeneration 1 (rd1 mice. Experiments wherein stimulation pulses were applied to the retinal tissues successfully demonstrate that the number of spikes in neural response signals increases in proportion to light intensity.

  11. A liquid-crystal-on-silicon color sequential display using frame buffer pixel circuits

    Science.gov (United States)

    Lee, Sangrok

    Next generation liquid-crystal-on-silicon (LCOS) high definition (HD) televisions and image projection displays will need to be low-cost and high quality to compete with existing systems based on digital micromirror devices (DMDs), plasma displays, and direct view liquid crystal displays. In this thesis, a novel frame buffer pixel architecture that buffers data for the next image frame while displaying the current frame, offers such a competitive solution is presented. The primary goal of the thesis is to demonstrate the LCOS microdisplay architecture for high quality image projection displays and at potentially low cost. The thesis covers four main research areas: new frame buffer pixel circuits to improve the LCOS performance, backplane architecture design and testing, liquid crystal modes for the LCOS microdisplay, and system integration and demonstration. The design requirements for the LCOS backplane with a 64 x 32 pixel array are addressed and measured electrical characteristics matches to computer simulation results. Various liquid crystal (LC) modes applicable for LCOS microdisplays and their physical properties are discussed. One- and two-dimensional director simulations are performed for the selected LC modes. Test liquid crystal cells with the selected LC modes are made and their electro-optic effects are characterized. The 64 x 32 LCOS microdisplays fabricated with the best LC mode are optically tested with interface circuitry. The characteristics of the LCOS microdisplays are summarized with the successful demonstration.

  12. Effect of preliminary annealing of silicon substrates on the spectral sensitivity of photodetectors in bipolar integrated circuits

    International Nuclear Information System (INIS)

    Blynskij, V.I.; Bozhatkin, O.A.; Golub, E.S.; Lemeshevskaya, A.M.; Shvedov, S.V.

    2010-01-01

    We examine the results of an effect of preliminary annealing on the spectral sensitivity of photodetectors in bipolar integrated circuits, formed in silicon grown by the Czochralski method. We demonstrate the possibility of substantially improving the sensitivity of photodetectors in the infrared region of the spectrum with twostep annealing. The observed effect is explained by participation of oxidation in the gettering process, where oxidation precedes formation of a buried n + layer in the substrate. (authors)

  13. Integrated circuits of silicon on insulator S.O.I. technologies: State of the art and perspectives

    International Nuclear Information System (INIS)

    Leray, J.L.; Dupont-Nivet, E.; Raffaelli, M.; Coic, Y.M.; Musseau, O.; Pere, J.F.; Lalande, P.; Bredy, J.; Auberton-Herve, A.J.; Bruel, M.; Giffard, B.

    1989-01-01

    Silicon On Insulator technologies have been proposed to increase the integrated circuits performances in radiation operation. Active researches are conducted, in France and abroad. This paper reviews briefly radiation effects phenomenology in that particular type of structure S.O.I. New results are presented that show very good radiation behaviour in term of speed, dose (10 to 100 megarad (Si)), dose rate and S.E.U. performances [fr

  14. Nanomechanical resonant structures in single-crystal diamond

    OpenAIRE

    Burek, Michael J.; Ramos, Daniel; Patel, Parth; Frank, Ian W.; Lončar, Marko

    2013-01-01

    With its host of outstanding material properties, single-crystal diamond is an attractive material for nanomechanical systems. Here, the mechanical resonance characteristics of freestanding, single-crystal diamond nanobeams fabricated by an angled-etching methodology are reported. Resonance frequencies displayed evidence of significant compressive stress in doubly clamped diamond nanobeams, while cantilever resonance modes followed the expected inverse-length-squared trend. Q-factors on the o...

  15. LASER PROCESSING ON SINGLE CRYSTALS BY UV PULSE LASER

    OpenAIRE

    龍見, 雅美; 佐々木, 徹; 高山, 恭宜

    2009-01-01

    Laser processing by using UV pulsed laser was carried out on single crystal such as sapphire and diamond in order to understand the fundamental laser processing on single crystal. The absorption edges of diamond and sapphire are longer and shorter than the wave length of UV laser, respectively. The processed regions by laser with near threshold power of processing show quite different state in each crystal.

  16. Radiation hardness of a single crystal CVD diamond detector for MeV energy protons

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Yuki, E-mail: y.sato@riken.jp [The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Shimaoka, Takehiro; Kaneko, Junichi H. [Graduate School of Engineering, Hokkaido University, N13, W8, Sapporo 060-8628 (Japan); Murakami, Hiroyuki [The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Isobe, Mitsutaka; Osakabe, Masaki [National Institute for Fusion Science, 322-6, Oroshi-cho Toki-city, Gifu 509-5292 (Japan); Tsubota, Masakatsu [Graduate School of Engineering, Hokkaido University, N13, W8, Sapporo 060-8628 (Japan); Ochiai, Kentaro [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Chayahara, Akiyoshi; Umezawa, Hitoshi; Shikata, Shinichi [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan)

    2015-06-01

    We have fabricated a particle detector using single crystal diamond grown by chemical vapor deposition. The irradiation dose dependence of the output pulse height from the diamond detector was measured using 3 MeV protons. The pulse height of the output signals from the diamond detector decreases as the amount of irradiation increases at count rates of 1.6–8.9 kcps because of polarization effects inside the diamond crystal. The polarization effect can be cancelled by applying a reverse bias voltage, which restores the pulse heights. Additionally, the radiation hardness performance for MeV energy protons was compared with that of a silicon surface barrier detector.

  17. Cerium-doped single crystal and transparent ceramic lutetium aluminum garnet scintillators

    International Nuclear Information System (INIS)

    Cherepy, Nerine J.; Kuntz, Joshua D.; Tillotson, Thomas M.; Speaks, Derrick T.; Payne, Stephen A.; Chai, B.H.T.; Porter-Chapman, Yetta; Derenzo, Stephen E.

    2007-01-01

    For rapid, unambiguous isotope identification, scintillator detectors providing high-resolution gamma ray spectra are required. We have fabricated Lutetium Aluminum Garnet (LuAG) using transparent ceramic processing, and report a 2-mm thick ceramic exhibiting 75% transmission and light yield comparable to single-crystal LuAG:Ce. The LuAG:Ce luminescence peaks at 550 nm, providing an excellent match for Silicon Photodiode readout. LuAG is dense (6.67 g/cm 3 ) and impervious to water, exhibits good proportionality and a fast decay (∼40 ns), and we measure light yields in excess of 20,000 photons/MeV

  18. Displacement damage analysis and modified electrical equivalent circuit for electron and photon-irradiated silicon solar cells

    Science.gov (United States)

    Arjhangmehr, Afshin; Feghhi, Seyed Amir Hossein

    2014-10-01

    Solar modules and arrays are the conventional energy resources of space satellites. Outside the earth's atmosphere, solar panels experience abnormal radiation environments and because of incident particles, photovoltaic (PV) parameters degrade. This article tries to analyze the electrical performance of electron and photon-irradiated mono-crystalline silicon (mono-Si) solar cells. PV cells are irradiated by mono-energetic electrons and poly-energetic photons and immediately characterized after the irradiation. The mean degradation of the maximum power (Pmax) of silicon solar cells is presented and correlated using the displacement damage dose (Dd) methodology. This method simplifies evaluation of cell performance in space radiation environments and produces a single characteristic curve for Pmax degradation. Furthermore, complete analysis of the results revealed that the open-circuit voltage (Voc) and the filling factor of mono-Si cells did not significantly change during the irradiation and were independent of the radiation type and fluence. Moreover, a new technique is developed that adapts the irradiation-induced effects in a single-cell equivalent electrical circuit and adjusts its elements. The "modified circuit" is capable of modeling the "radiation damage" in the electrical behavior of mono-Si solar cells and simplifies the designing of the compensation circuits.

  19. Development of n- and p-type Doped Perovskite Single Crystals Using Solid-State Single Crystal Growth (SSCG) Technique

    Science.gov (United States)

    2017-10-09

    for AGG should be minimal. For this purpose, the seeds for AGG may also be provided externally. This process is called the solid-state single...bonding process . Figure 31 shows (a) the growth of one large single crystal from one small single crystal seed as well as (b) the growth of one...one bi-crystal seed : One large bi-crystal can be grown from one small bi-crystal by SSCG process . Fig. 32. Diffusion bonding process for

  20. III-V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2-4 μm Wavelength Range.

    Science.gov (United States)

    Wang, Ruijun; Vasiliev, Anton; Muneeb, Muhammad; Malik, Aditya; Sprengel, Stephan; Boehm, Gerhard; Amann, Markus-Christian; Šimonytė, Ieva; Vizbaras, Augustinas; Vizbaras, Kristijonas; Baets, Roel; Roelkens, Gunther

    2017-08-04

    The availability of silicon photonic integrated circuits (ICs) in the 2-4 μm wavelength range enables miniature optical sensors for trace gas and bio-molecule detection. In this paper, we review our recent work on III-V-on-silicon waveguide circuits for spectroscopic sensing in this wavelength range. We first present results on the heterogeneous integration of 2.3 μm wavelength III-V laser sources and photodetectors on silicon photonic ICs for fully integrated optical sensors. Then a compact 2 μm wavelength widely tunable external cavity laser using a silicon photonic IC for the wavelength selective feedback is shown. High-performance silicon arrayed waveguide grating spectrometers are also presented. Further we show an on-chip photothermal transducer using a suspended silicon-on-insulator microring resonator used for mid-infrared photothermal spectroscopy.

  1. III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 μm Wavelength Range

    Science.gov (United States)

    Wang, Ruijun; Vasiliev, Anton; Muneeb, Muhammad; Malik, Aditya; Sprengel, Stephan; Boehm, Gerhard; Amann, Markus-Christian; Šimonytė, Ieva; Vizbaras, Augustinas; Vizbaras, Kristijonas; Baets, Roel; Roelkens, Gunther

    2017-01-01

    The availability of silicon photonic integrated circuits (ICs) in the 2–4 μm wavelength range enables miniature optical sensors for trace gas and bio-molecule detection. In this paper, we review our recent work on III–V-on-silicon waveguide circuits for spectroscopic sensing in this wavelength range. We first present results on the heterogeneous integration of 2.3 μm wavelength III–V laser sources and photodetectors on silicon photonic ICs for fully integrated optical sensors. Then a compact 2 μm wavelength widely tunable external cavity laser using a silicon photonic IC for the wavelength selective feedback is shown. High-performance silicon arrayed waveguide grating spectrometers are also presented. Further we show an on-chip photothermal transducer using a suspended silicon-on-insulator microring resonator used for mid-infrared photothermal spectroscopy. PMID:28777291

  2. Interaction of ultrashort laser pulses and silicon solar cells under short circuit conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mundus, M., E-mail: markus.mundus@ise.fraunhofer.de; Giesecke, J. A.; Fischer, P.; Hohl-Ebinger, J.; Warta, W. [Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstraße 2, 79110 Freiburg (Germany)

    2015-02-28

    Ultrashort pulse lasers are promising tools for numerous measurement purposes. Among other benefits their high peak powers allow for efficient generation of wavelengths in broad spectral ranges and at spectral powers that are orders of magnitude higher than in conventional light sources. Very recently this has been exploited for the establishment of sophisticated measurement facilities for electrical characterization of photovoltaic (PV) devices. As the high peak powers of ultrashort pulses promote nonlinear optical effects they might also give rise to nonlinear interactions with the devices under test that possibly manipulate the measurement outcome. In this paper, we present a comprehensive theoretical and experimental study of the nonlinearities affecting short circuit current (I{sub SC}) measurements of silicon (Si) solar cells. We derive a set of coupled differential equations describing the radiation-device interaction and discuss the nonlinearities incorporated in those. By a semi-analytical approach introducing a quasi-steady-state approximation and integrating a Green's function we solve the system of equations and obtain simulated I{sub SC} values. We validate the theoretical model by I{sub SC} ratios obtained from a double ring resonator setup capable for reproducible generation of various ultrashort pulse trains. Finally, we apply the model to conduct the most prominent comparison of I{sub SC} generated by ultrashort pulses versus continuous illumination. We conclude by the important finding that the nonlinearities induced by ultrashort pulses are negligible for the most common I{sub SC} measurements. However, we also find that more specialized measurements (e.g., of concentrating PV or Si-multijunction devices as well as highly localized electrical characterizations) will be biased by two-photon-absorption distorting the I{sub SC} measurement.

  3. Buried oxide layer in silicon

    Science.gov (United States)

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  4. Full-color OLED on silicon microdisplay

    Science.gov (United States)

    Ghosh, Amalkumar P.

    2002-02-01

    eMagin has developed numerous enhancements to organic light emitting diode (OLED) technology, including a unique, up- emitting structure for OLED-on-silicon microdisplay devices. Recently, eMagin has fabricated full color SVGA+ resolution OLED microdisplays on silicon, with over 1.5 million color elements. The display is based on white light emission from OLED followed by LCD-type red, green and blue color filters. The color filters are patterned directly on OLED devices following suitable thin film encapsulation and the drive circuits are built directly on single crystal silicon. The resultant color OLED technology, with hits high efficiency, high brightness, and low power consumption, is ideally suited for near to the eye applications such as wearable PCS, wireless Internet applications and mobile phone, portable DVD viewers, digital cameras and other emerging applications.

  5. Passivated graphene transistors fabricated on a millimeter-sized single-crystal graphene film prepared with chemical vapor deposition

    International Nuclear Information System (INIS)

    Lin, Meng-Yu; Lee, Si-Chen; Lin, Shih-Yen; Wang, Cheng-Hung; Chang, Shu-Wei

    2015-01-01

    In this work, we first investigate the effects of partial pressures and flow rates of precursors on the single-crystal graphene growth using chemical vapor depositions on copper foils. These factors are shown to be critical to the growth rate, seeding density and size of graphene single crystals. The prepared graphene films in millimeter sizes are then bubbling transferred to silicon-dioxide/silicon substrates for high-mobility graphene transistor fabrications. After high-temperature annealing and hexamethyldisilazane passivation, the water attachment is removed from the graphene channel. The elimination of uncontrolled doping and enhancement of carrier mobility accompanied by these procedures indicate that they are promising for fabrications of graphene transistors. (paper)

  6. Introducing single-crystal scattering and optical potentials into MCNPX: Predicting neutron emission from a convoluted moderator

    Energy Technology Data Exchange (ETDEWEB)

    Gallmeier, F.X., E-mail: gallmeierfz@ornl.gov [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Iverson, E.B.; Lu, W. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Baxter, D.V. [Center for the Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408 (United States); Muhrer, G.; Ansell, S. [European Spallation Source, ESS AB, Lund (Sweden)

    2016-04-01

    Neutron transport simulation codes are indispensable tools for the design and construction of modern neutron scattering facilities and instrumentation. Recently, it has become increasingly clear that some neutron instrumentation has started to exploit physics that is not well-modeled by the existing codes. In particular, the transport of neutrons through single crystals and across interfaces in MCNP(X), Geant4, and other codes ignores scattering from oriented crystals and refractive effects, and yet these are essential phenomena for the performance of monochromators and ultra-cold neutron transport respectively (to mention but two examples). In light of these developments, we have extended the MCNPX code to include a single-crystal neutron scattering model and neutron reflection/refraction physics. We have also generated silicon scattering kernels for single crystals of definable orientation. As a first test of these new tools, we have chosen to model the recently developed convoluted moderator concept, in which a moderating material is interleaved with layers of perfect crystals to provide an exit path for neutrons moderated to energies below the crystal's Bragg cut–off from locations deep within the moderator. Studies of simple cylindrical convoluted moderator systems of 100 mm diameter and composed of polyethylene and single crystal silicon were performed with the upgraded MCNPX code and reproduced the magnitude of effects seen in experiments compared to homogeneous moderator systems. Applying different material properties for refraction and reflection, and by replacing the silicon in the models with voids, we show that the emission enhancements seen in recent experiments are primarily caused by the transparency of the silicon and void layers. Finally we simulated the convoluted moderator experiments described by Iverson et al. and found satisfactory agreement between the measurements and the simulations performed with the tools we have developed.

  7. Splitting of the spectral radiation density maximum for relativistic positrons moving through a single crystal near the crystallographic axis

    International Nuclear Information System (INIS)

    Adejshvili, D.I.; Anufriev, O.V.; Bochek, G.L.; Vit'ko, V.I.; Kovalenko, G.D.; Nikolajchuk, L.I.; Khizhnyak, N.A.; Shramenko, B.I.

    1986-01-01

    The fast particle radiation is studied on the basis of the periodic potential model which takes into account the discrete structure of atomic strings or planes along the channel direction. Results of the experiments on the linear accelerator on radiation of relativistic 1035 and 1050 MeV positrons in the diamond (axis 110) and silicon (axis 111) single crystals, respectively, are in good agreement with calculated data

  8. Comparison of PZN-PT, PMN-PT single crystals and PZT ceramic for vibration energy harvesting

    International Nuclear Information System (INIS)

    Yang, Zhengbao; Zu, Jean

    2016-01-01

    Highlights: • Systematic analysis of PMN-PT and PZN-PT single crystals for energy harvesters. • Performance analysis and comparison under various conditions. • Discussion of the effect of the SSHI technique on single crystal energy harvesters. • Efficiency analysis in both on-resonance and off-resonance conditions. - Abstract: Vibration energy harvesting has a great potential to achieve self-powered operations for wireless sensors, wearable devices and medical electronics, and thus has attracted much attention in academia and industry. The majority of research into this subject has focused on the piezoelectric effect of synthetic materials, especially the perovskite PZT ceramics. Recently the new-generation piezoelectric materials PMN-PT and PZN-PT single crystals have gained significant interest because of their outstanding piezoelectric properties. They can be used to replace the widely-adopted PZT ceramics for improving energy harvesters’ performance substantially. However, there is little research on comparing PMN-PT and PZN-PT energy harvesters against PZT harvesters. In this paper, we present a systematic comparison between vibration energy harvesters using the PMN-PT, PZN-PT single crystals and those using the PZT ceramics. Key properties of the three materials are summarized and compared. The performance of the PMN-PT and PZN-PT energy harvesters is characterized under different conditions (beam length, resistance, frequency, excitation strength, and backward coupling effect), and is quantitatively compared with the PZT counterpart. Furthermore, the effect of the synchronized switch harvesting on inductor (SSHI) circuit on the three harvesters is discussed. The experimental results indicate that energy harvesters using the PMN-PT and PZN-PT single crystals can significantly outperform those using the PZT ceramics. This study provides a strong base for future research on high-performance energy harvesters using the new PMN-PT and PZN-PT single

  9. Single Crystal Synthesis and STM Studies of High Temperature Superconductors

    Science.gov (United States)

    Barrientos, Alfonso

    1997-01-01

    This is a final report for the work initiated in September of 1994 under the grant NAG8-1085 - NASA/OMU, on the fabrication of bulk and single crystal synthesis, specific heat measuring and STM studies of high temperature superconductors. Efforts were made to fabricate bulk and single crystals of mercury based superconducting material. A systematic thermal analysis on the precursors for the corresponding oxides and carbonates were carried out to synthesized bulk samples. Bulk material was used as seed in an attempt to grow single crystals by a two-step self flux process. On the other hand bulk samples were characterized by x-ray diffraction, electrical resistivity and magnetic susceptibility, We studied the specific heat behavior in the range from 80 to 300 K. Some preliminary attempts were made to study the atomic morphology of our samples. As part of our efforts we built an ac susceptibility apparatus for measuring the transition temperature of our sintered samples.

  10. Mesoporous Zeolite Single Crystals for Catalytic Hydrocarbon Conversion

    DEFF Research Database (Denmark)

    Schmidt, I.; Christensen, Claus H.; Kustova, Marina

    2005-01-01

    Recently, mesoporous zeolite single crystals were discovered. They constitute a novel family of materials that features a combined micropore and mesopore architecture within each individual crystal. Here, we briefly summarize recent catalytic results from cracking and isomerization of alkalies......, alkylation of aromatics and present new results on isomerization of aromatics. Specifically, the shape-selective isomerization of meta-xylenc into para-xylene and ortho-xylene is studied. In all these reactions, rnesoporous zeolite single crystals prove to be unique catalysts since they provide easy...... transport to and from active sites and at the same time maintain the shape-selectivity required. Thus, all these results support the idea that the beneficial effect of the mesopores system in the mesoporous zeolite single crystals call be solely attributed to enhanced mass transport....

  11. Mechanical properties of hydroxyapatite single crystals from nanoindentation data

    Science.gov (United States)

    Zamiri, A.; De, S.

    2011-01-01

    In this paper we compute elasto-plastic properties of hydroxyapatite single crystals from nanindentation data using a two-step algorithm. In the first step the yield stress is obtained using hardness and Young’s modulus data, followed by the computation of the flow parameters. The computational approach is first validated with data from existing literature. It is observed that hydroxyapatite single crystals exhibit anisotropic mechanical response with a lower yield stress along the [1010] crystallographic direction compared to the [0001] direction. Both work hardening rate and work hardening exponent are found to be higher for indentation along the [0001] crystallographic direction. The stress-strain curves extracted here could be used for developing constitutive models for hydroxyapatite single crystals. PMID:21262492

  12. Light emission from organic single crystals operated by electrolyte doping

    Science.gov (United States)

    Matsuki, Keiichiro; Sakanoue, Tomo; Yomogida, Yohei; Hotta, Shu; Takenobu, Taishi

    2018-03-01

    Light-emitting devices based on electrolytes, such as light-emitting electrochemical cells (LECs) and electric double-layer transistors (EDLTs), are solution-processable devices with a very simple structure. Therefore, it is necessary to apply this device structure into highly fluorescent organic materials for future printed applications. However, owing to compatibility problems between electrolytes and organic crystals, electrolyte-based single-crystal light-emitting devices have not yet been demonstrated. Here, we report on light-emitting devices based on organic single crystals and electrolytes. As the fluorescent materials, α,ω-bis(biphenylyl)terthiophene (BP3T) and 5,6,11,12-tetraphenylnaphthacene (rubrene) single crystals were selected. Using ionic liquids as electrolytes, we observed clear light emission from BP3T LECs and rubrene EDLTs.

  13. Pulse-height defect in single-crystal CVD diamond detectors

    Energy Technology Data Exchange (ETDEWEB)

    Beliuskina, O.; Imai, N. [The University of Tokyo, Center for Nuclear Study, Wako, Saitama (Japan); Strekalovsky, A.O.; Aleksandrov, A.A.; Aleksandrova, I.A.; Ilich, S.; Kamanin, D.V.; Knyazheva, G.N.; Kuznetsova, E.A.; Mishinsky, G.V.; Pyatkov, Yu.V.; Strekalovsky, O.V.; Zhuchko, V.E. [JINR, Flerov Laboratory of Nuclear Reactions, Dubna, Moscow Region (Russian Federation); Devaraja, H.M. [Manipal University, Manipal Centre for Natural Sciences, Manipal, Karnataka (India); Heinz, C. [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, Giessen (Germany); Heinz, S. [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, Giessen (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Hofmann, S.; Kis, M.; Kozhuharov, C.; Maurer, J.; Traeger, M. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Pomorski, M. [CEA, LIST, Diamond Sensor Laboratory, CEA/Saclay, Gif-sur-Yvette (France)

    2017-02-15

    The pulse-height versus deposited energy response of a single-crystal chemical vapor deposition (scCVD) diamond detector was measured for ions of Ti, Cu, Nb, Ag, Xe, Au, and of fission fragments of {sup 252} Cf at different energies. For the fission fragments, data were also measured at different electric field strengths of the detector. Heavy ions have a significant pulse-height defect in CVD diamond material, which increases with increasing energy of the ions. It also depends on the electrical field strength applied at the detector. The measured pulse-height defects were explained in the framework of recombination models. Calibration methods known from silicon detectors were modified and applied. A comparison with data for the pulse-height defect in silicon detectors was performed. (orig.)

  14. Principles of crystallization, and methods of single crystal growth

    International Nuclear Information System (INIS)

    Chacra, T.

    2010-01-01

    Most of single crystals (monocrystals), have distinguished optical, electrical, or magnetic properties, which make from single crystals, key elements in most of technical modern devices, as they may be used as lenses, Prisms, or grating sin optical devises, or Filters in X-Ray and spectrographic devices, or conductors and semiconductors in electronic, and computer industries. Furthermore, Single crystals are used in transducer devices. Moreover, they are indispensable elements in Laser and Maser emission technology.Crystal Growth Technology (CGT), has started, and developed in the international Universities and scientific institutions, aiming at some of single crystals, which may have significant properties and industrial applications, that can attract the attention of international crystal growth centers, to adopt the industrial production and marketing of such crystals. Unfortunately, Arab universities generally, and Syrian universities specifically, do not give even the minimum interest, to this field of Science.The purpose of this work is to attract the attention of Crystallographers, Physicists and Chemists in the Arab universities and research centers to the importance of crystal growth, and to work on, in the first stage to establish simple, uncomplicated laboratories for the growth of single crystal. Such laboratories can be supplied with equipment, which are partly available or can be manufactured in the local market. Many references (Articles, Papers, Diagrams, etc..) has been studied, to conclude the most important theoretical principles of Phase transitions,especially of crystallization. The conclusions of this study, are summarized in three Principles; Thermodynamic-, Morphologic-, and Kinetic-Principles. The study is completed by a brief description of the main single crystal growth methods with sketches, of equipment used in each method, which can be considered as primary designs for the equipment, of a new crystal growth laboratory. (author)

  15. Photoluminescence properties of boron doped InSe single crystals

    International Nuclear Information System (INIS)

    Ertap, H.; Bacıoğlu, A.; Karabulut, M.

    2015-01-01

    Undoped and boron doped InSe single crystals were grown by Bridgman–Stockbarger technique. The PL properties of undoped, 0.1% and 0.5% boron doped InSe single crystals have been investigated at different temperatures. PL measurements revealed four emission bands labeled as A, B, C and D in all the single crystals studied. These emission bands were associated with the radiative recombination of direct free excitons (n=1), impurity-band transitions, donor–acceptor recombinations and structural defect related band (impurity atoms, defects, defect complexes, impurity-vacancy complex etc.), respectively. The direct free exciton (A) bands of undoped, 0.1% and 0.5% boron doped InSe single crystals were observed at 1.337 eV, 1.335 eV and 1.330 eV in the PL spectra measured at 12 K, respectively. Energy positions and PL intensities of the emission bands varied with boron addition. The FWHM of direct free exciton band increases while the FWHM of the D emission band decreases with boron doping. Band gap energies of undoped and boron doped InSe single crystals were calculated from the PL measurements. It was found that the band gap energies of InSe single crystals decreased with increasing boron content. - Highlights: • PL spectra of InSe crystals have been studied as a function of temperature. • Four emission bands were observed in the PL spectra at low temperatures. • PL intensity and position of free exciton band vary with doping and temperature. • Temperature dependences of the bands observed in the PL spectra were analyzed

  16. Hydrothermal growth of PbSO4 (Anglesite) single crystal

    International Nuclear Information System (INIS)

    Kikuta, Ko-ichi; Yoneta, Yasuhito; Yogo, Toshinobu; Hirano, Shin-ichi

    1994-01-01

    Hydrothermal growth of single crystals of PbSO 4 , which is known as a natural mineral called anglesite, was investigated. Lead nitrate and nitric acid solutions were found to be useful for the growth of angle-site on the basis of the experimental results on the dissolution behavior. Relatively large euhedral single crystals bound by {210} and {101} planes were successfully grown in 1.5 mol/kg Pb(NO 3 ) 2 at 400degC and 100 MPa. Optical characterization revealed that the grown anglesite crystals can be useful for scintillators material. (author)

  17. Welding and joining of single crystals of BCC refractory metals

    International Nuclear Information System (INIS)

    Hiraoka, Yutaka; Fujii, Tadayuki

    1989-01-01

    Welding and joining is one of key technologies for the wider utilizations of a material. In the present work, the applicability of welding and joining for a single crystal of BCC refractory metal was investigated. Electron-beam welding and tungsten-inert-gas welding by a melt-run technique, and high-temperature brazing by using brazing metals such as Mo-40%Ru alloy, vanadium or platinum were conducted for molybdenum single crystal which had been prepared by means of secondary recrystallization. 12 refs.,12 figs., 2 tabs. (Author)

  18. Cryogenic motion performances of a piezoelectric single crystal micromotor

    Science.gov (United States)

    Li, Xiaotian; Wu, Yuting; Chen, Zhijiang; Wei, Xiaoyong; Luo, Haosu; Dong, Shuxiang

    2014-04-01

    This study investigates the cryogenic performances of a millimeter-size piezoelectric ultrasonic linear micromotor. The piezoelectric vibrator of the micromotor is made of Pb(In1/2Nb1/2)O3 -Pb(Mg1/3Nb2/3)-PbTiO3 single crystal and operated in first-bending wobbling mode. Experiments show that the piezoelectric single crystal micromotor works effectively even at extremely low temperature of -175 °C, although its resonance peaks vary with temperature significantly. This work confirms the feasibility of cryogenic operation of the piezo-micromotor, which is meaningful for aerospace or superconducting microwave application.

  19. Iron single crystal growth from a lithium-rich melt

    Science.gov (United States)

    Fix, M.; Schumann, H.; Jantz, S. G.; Breitner, F. A.; Leineweber, A.; Jesche, A.

    2018-03-01

    α -Fe single crystals of rhombic dodecahedral habit were grown from a Li84N12Fe∼3 melt. Crystals of several millimeter along a side form at temperatures around T ≈ 800 ° C. Upon further cooling the growth competes with the formation of Fe-doped Li3N. The b.c.c. structure and good sample quality of α -Fe single crystals were confirmed by X-ray and electron diffraction as well as magnetization measurements and chemical analysis. A nitrogen concentration of 90 ppm was detected by means of carrier gas hot extraction. Scanning electron microscopy did not reveal any sign of iron nitride precipitates.

  20. Regularities of recrystallization in rolled Zr single crystals

    International Nuclear Information System (INIS)

    Isaenkova, M; Perlovich, Yu; Fesenko, V; Krymskaya, O; Krapivka, N; Thu, S S

    2015-01-01

    Experiments by rolled single crystals give a more visible conception of the operating mechanisms of plastic deformation and the following recrystallization, than experiments by polycrystals. Studies by usage of X-ray diffraction methods were conducted by Zr single crystals. It was revealed, that regions of the α-Zr matrix, deformed mainly by twinning, are characterized with decreased tendency to recrystallization. Orientations of recrystallized α-Zr grains correspond to “slopes” of maxima in the rolling texture, where the level of crystalline lattice distortion is maximal and the number of recrystallization nuclei is most of all. (paper)

  1. Growth and surface topography of WSe_2 single crystal

    International Nuclear Information System (INIS)

    Dixit, Vijay; Vyas, Chirag; Pataniya, Pratik; Jani, Mihir; Pathak, Vishal; Patel, Abhishek; Pathak, V. M.; Patel, K. D.; Solanki, G. K.

    2016-01-01

    Tungsten Di-Selenide belongs to the family of TMDCs showing their potential applications in the fields of Optoelectronics and PEC solar cells. Here in the present investigation single crystals of WSe_2 were grown by Direct Vapour Transport Technique in a dual zone furnace having temperature difference of 50 K between the two zones. These single crystals were characterized by EDAX which confirms the stiochiometry of the grown crystals. Surface topography of the crystal was studied by optical micrograph showing the left handed spirals on the surface of WSe_2 crystals. Single crystalline nature of the crystals was confirmed by SAED.

  2. Preparation of single-crystal copper ferrite nanorods and nanodisks

    International Nuclear Information System (INIS)

    Du Jimin; Liu Zhimin; Wu Weize; Li Zhonghao; Han Buxing; Huang Ying

    2005-01-01

    This article, for the first time, reports the preparation of single-crystal copper ferrite nanorods and nanodisks. Using amorphous copper ferrite nanoparticles synthesized by reverse micelle as reaction precursor, single-crystal copper ferrite nanorods were synthesized via hydrothermal method in the presence of surfactant polyethylene glycol (PEG), however, copper ferrite nanodisks were prepared through the same procedures except the surfactant PEG. The resulting nanomaterials have been characterized by powder X-ray diffraction (XRD), selected electron area diffraction (SEAD), and transmission electron microscopy (TEM). The bulk composition of the samples was determined by means of X-ray photoelectron spectroscopy (XPS)

  3. Design of a CMOS readout circuit on ultra-thin flexible silicon chip for printed strain gauges

    Directory of Open Access Journals (Sweden)

    M. Elsobky

    2017-09-01

    Full Text Available Flexible electronics represents an emerging technology with features enabling several new applications such as wearable electronics and bendable displays. Precise and high-performance sensors readout chips are crucial for high quality flexible electronic products. In this work, the design of a CMOS readout circuit for an array of printed strain gauges is presented. The ultra-thin readout chip and the printed sensors are combined on a thin Benzocyclobutene/Polyimide (BCB/PI substrate to form a Hybrid System-in-Foil (HySiF, which is used as an electronic skin for robotic applications. Each strain gauge utilizes a Wheatstone bridge circuit, where four Aerosol Jet® printed meander-shaped resistors form a full-bridge topology. The readout chip amplifies the output voltage difference (about 5 mV full-scale swing of the strain gauge. One challenge during the sensor interface circuit design is to compensate for the relatively large dc offset (about 30 mV at 1 mA in the bridge output voltage so that the amplified signal span matches the input range of an analog-to-digital converter (ADC. The circuit design uses the 0. 5 µm mixed-signal GATEFORESTTM technology. In order to achieve the mechanical flexibility, the chip fabrication is based on either back thinned wafers or the ChipFilmTM technology, which enables the manufacturing of silicon chips with a thickness of about 20 µm. The implemented readout chip uses a supply of 5 V and includes a 5-bit digital-to-analog converter (DAC, a differential difference amplifier (DDA, and a 10-bit successive approximation register (SAR ADC. The circuit is simulated across process, supply and temperature corners and the simulation results indicate excellent performance in terms of circuit stability and linearity.

  4. Short-circuit current density imaging of crystalline silicon solar cells via lock-in thermography: Robustness and simplifications

    International Nuclear Information System (INIS)

    Fertig, Fabian; Greulich, Johannes; Rein, Stefan

    2014-01-01

    Spatially resolved determination of solar cell parameters is beneficial for loss analysis and optimization of conversion efficiency. One key parameter that has been challenging to access by an imaging technique on solar cell level is short-circuit current density. This work discusses the robustness of a recently suggested approach to determine short-circuit current density spatially resolved based on a series of lock-in thermography images and options for a simplified image acquisition procedure. For an accurate result, one or two emissivity-corrected illuminated lock-in thermography images and one dark lock-in thermography image have to be recorded. The dark lock-in thermography image can be omitted if local shunts are negligible. Furthermore, it is shown that omitting the correction of lock-in thermography images for local emissivity variations only leads to minor distortions for standard silicon solar cells. Hence, adequate acquisition of one image only is sufficient to generate a meaningful map of short-circuit current density. Beyond that, this work illustrates the underlying physics of the recently proposed method and demonstrates its robustness concerning varying excitation conditions and locally increased series resistance. Experimentally gained short-circuit current density images are validated for monochromatic illumination in comparison to the reference method of light-beam induced current

  5. Thermo-Optic Characterization of Silicon Nitride Resonators for Cryogenic Photonic Circuits

    NARCIS (Netherlands)

    Elshaari, A.W.A.; Esmaeil Zadeh, I.; Jöns, K.D.; Zwiller, Val

    2016-01-01

    In this paper, we characterize the Thermo-optic properties of silicon nitride ring resonators between 18 and 300 K. The Thermo-optic coefficients of the silicon nitride core and the oxide cladding are measured by studying the temperature dependence of the resonance wavelengths. The resonant modes

  6. Tailoring the optical characteristics of microsized InP nanoneedles directly grown on silicon.

    Science.gov (United States)

    Li, Kun; Sun, Hao; Ren, Fan; Ng, Kar Wei; Tran, Thai-Truong D; Chen, Roger; Chang-Hasnain, Connie J

    2014-01-08

    Nanoscale self-assembly offers a pathway to realize heterogeneous integration of III-V materials on silicon. However, for III-V nanowires directly grown on silicon, dislocation-free single-crystal quality could only be attained below certain critical dimensions. We recently reported a new approach that overcomes this size constraint, demonstrating the growth of single-crystal InGaAs/GaAs and InP nanoneedles with the base diameters exceeding 1 μm. Here, we report distinct optical characteristics of InP nanoneedles which are varied from mostly zincblende, zincblende/wurtzite-mixed, to pure wurtzite crystalline phase. We achieved, for the first time, pure single-crystal wurtzite-phase InP nanoneedles grown on silicon with bandgaps of 80 meV larger than that of zincblende-phase InP. Being able to attain excellent material quality while scaling up in size promises outstanding device performance of these nanoneedles. At room temperature, a high internal quantum efficiency of 25% and optically pumped lasing are demonstrated for single nanoneedle as-grown on silicon substrate. Recombination dynamics proves the excellent surface quality of the InP nanoneedles, which paves the way toward achieving multijunction photovoltaic cells, long-wavelength heterostructure lasers, and advanced photonic integrated circuits.

  7. Deformation twinning in zinc-aluminium single crystals after slip

    International Nuclear Information System (INIS)

    Lukac, P.; Kral, F.; Trojanova, Z.; Kral, R.

    1993-01-01

    Deformation twinning in Zn-Al single crystals deformed by slip in the basal system is examined. The influence of temperature and the content of aluminium in zinc on the twinning stress is investigated in the temperature range from 198 to 373 K. It is shown that the twinning stress rises with increasing temperature and increases with the concentration of Al atoms. (orig.)

  8. Structural science using single crystal and pulse neutron scattering

    International Nuclear Information System (INIS)

    Noda, Yukio; Kimura, Hiroyuki; Watanabe, Masashi; Ishikawa, Yoshihisa; Tamura, Itaru; Arai, Masatoshi; Takahashi, Miwako; Ohshima, Ken-ichi; Abe, Hiroshi; Kamiyama, Takashi

    2008-01-01

    The application to single crystal neutron structural analysis is overviewed. Special attention is paid to the pulse neutron method, which will be available soon under J-PARC project in Japan. New proposal and preliminary experiment using Sirius at KENS are described. (author)

  9. Annealing behavior of solution grown polyethylene single crystals

    NARCIS (Netherlands)

    Loos, J.; Tian, M.

    2006-01-01

    The morphology evolution of solution grown polyethylene single crystals has been studied upon annealing below their melting temperature by using atomic force microscopy (AFM). AFM investigations have been performed ex situ, which means AFM investigations at room temperature after the annealing

  10. Corelli: Efficient single crystal diffraction with elastic discrimination

    Indian Academy of Sciences (India)

    Here, we discuss the potential of the cross-correlation technique for efficient measurement of single crystal diffuse scattering with energy discrimination, as will be implemented in a novel instrument, Corelli. Utilizing full experiment simulations, we show that this technique readily leads up to a fifty-fold gain in efficiency, ...

  11. Magnetic structure of URhSi single crystal

    Czech Academy of Sciences Publication Activity Database

    Prokeš, K.; Andreev, Alexander V.; Honda, F.; Sechovský, V.

    2003-01-01

    Roč. 261, - (2003), s. 131-138 ISSN 0304-8853 R&D Projects: GA ČR GA202/02/0739 Institutional research plan: CEZ:AV0Z1010914 Keywords : URhSi single crystal * magnetization * neutron diffraction * magnetic structure determination Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.910, year: 2003

  12. Bulk study of a DyNiAl single crystal

    Czech Academy of Sciences Publication Activity Database

    Prchal, J.; Andreev, Alexander V.; Javorský, P.; Honda, F.; Jurek, Karel

    272-276, - (2004), e419-e420 ISSN 0304-8853 R&D Projects: GA ČR GA106/02/0943 Keywords : rare-earth * DyNiAl * magnetic anisotropy * single crystal Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.031, year: 2004

  13. Lattice effects in HoVo(3) single crystal

    NARCIS (Netherlands)

    Sikora, M.; Marquina, C.; Ibarra, M. R.; Nugroho, A. A.; Palstra, T. T. M.

    We report the study of lattice effects in the Mott insulator HoVO3 performed by means of linear thermal expansion on a single crystal in the temperature range 10-290 K. The holmium orthovanadate HoVO3 reveals gradual orbital ordering (OO) below T-OO = 200K and orders antiferromagnetically at T-N =

  14. Synthesis and room temperature single crystal EPR studies of a ...

    Indian Academy of Sciences (India)

    Unknown

    Hamiltonian parameters calculated from single crystal rotations are: g ... studies on two nickel complexes with SalX ligands (X = NH, NCH3) have shown the ..... here the positive sign is required for a shell that is less than half-filled and the ...

  15. Growth features of ammonium hydrogen d-tartrate single crystals

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Ammonium hydrogen d-tartrate (d-AHT) single crystals were grown in silica gel. The growth fea- ... solution (specific gravity, 1⋅04 g/cc) with d-tartaric acid solution having ... resulting in the production of crystal nuclei. The interface.

  16. Attenuation of thermal neutrons by an imperfect single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Naguib, K.; Adib, M. [National Research Centre, Cairo (Egypt). Reactor and Neutron Physics Dept.

    1996-06-14

    A semi-empirical formula is given which allows one to calculate the total thermal cross section of an imperfect single crystal as a function of crystal constants, temperature and neutron energy E, in the energy range between 3 meV and 10 eV. The formula also includes the contribution of the parasitic Bragg scattering to the total cross section that takes into account the crystal mosaic spread value and its orientation with respect to the neutron beam direction. A computer program (ISCANF) was developed to calculate the total attenuation of neutrons using the proposed formula. The ISCANF program was applied to investigate the neutron attenuation through a copper single crystal. The calculated values of the neutron transmission through the imperfect copper single crystal were fitted to the measured ones in the energy range 3-40 meV at different crystal orientations. The result of fitting shows that use of the computer program ISCANF allows one to predict the behaviour of the total cross section of an imperfect copper single crystal for the whole energy range. (author).

  17. Attenuation of thermal neutrons by an imperfect single crystal

    Science.gov (United States)

    Naguib, K.; Adib, M.

    1996-06-01

    A semi-empirical formula is given which allows one to calculate the total thermal cross section of an imperfect single crystal as a function of crystal constants, temperature and neutron energy E, in the energy range between 3 meV and 10 eV. The formula also includes the contribution of the parasitic Bragg scattering to the total cross section that takes into account the crystal mosaic spread value and its orientation with respect to the neutron beam direction. A computer program (ISCANF) was developed to calculate the total attenuation of neutrons using the proposed formula. The ISCANF program was applied to investigate the neutron attenuation through a copper single crystal. The calculated values of the neutron transmission through the imperfect copper single crystal were fitted to the measured ones in the energy range 3 - 40 meV at different crystal orientations. The result of fitting shows that use of the computer program ISCANF allows one to predict the behaviour of the total cross section of an imperfect copper single crystal for the whole energy range.

  18. Chromium and molybdenum diffusion in tungsten single crystals

    International Nuclear Information System (INIS)

    Klotsman, S.M.; Koloskov, V.M.; Osetrov, S.V.; Polikarpova, I.P.; Tatarinova, G.N.; Timofeev, A.N.

    1989-01-01

    Consideration is given to results of measuring temperature dependences of diffusion coefficients of homovalent impurities of chromium and molybdenum in tungsten single crystals. It is concluded that the difference of activation energies of selfdiffusion and impurity diffusion in the system 'tungsten-homovalent impurity' is conditioned by interaction of screened potentials of impurity and vacancy with Lazarus-Le Claire model

  19. Dynamic Actuation of Single-Crystal Diamond Nanobeams

    OpenAIRE

    Sohn, Young-Ik; Burek, Michael J.; Kara, Vural; Kearns, Ryan; Lončar, Marko

    2014-01-01

    We show the dielectrophoretic actuation of single-crystal diamond nanomechanical devices. Gradient radio-frequency electromagnetic forces are used to achieve actuation of both cantilever and doubly clamped beam structures, with operation frequencies ranging from a few MHz to ~50MHz. Frequency tuning and parametric actuation are also studied.

  20. High definition TV projection via single crystal faceplate technology

    Science.gov (United States)

    Kindl, H. J.; St. John, Thomas

    1993-03-01

    Single crystal phosphor faceplates are epitaxial phosphors grown on crystalline substrates with the advantages of high light output, resolution, and extended operational life. Single crystal phosphor faceplate industrial technology in the United States is capable of providing a faceplate appropriate to the projection industry of up to four (4) inches in diameter. Projection systems incorporating cathode ray tubes utilizing single crystal phosphor faceplates will produce 1500 lumens of white light with 1000 lines of resolution, non-interlaced. This 1500 lumen projection system will meet all of the currently specified luminance and resolution requirements of Visual Display systems for flight simulators. Significant logistic advantages accrue from the introduction of single crystal phosphor faceplate CRT's. Specifically, the full performance life of a CRT is expected to increase by a factor of five (5); ie, from 2000 to 10,000 hours of operation. There will be attendant reductions in maintenance time, spare CRT requirements, system down time, etc. The increased brightness of the projection system will allow use of lower gain, lower cost simulator screen material. Further, picture performance characteristics will be more balanced across the full simulator.

  1. Organic field-effect transistors using single crystals

    International Nuclear Information System (INIS)

    Hasegawa, Tatsuo; Takeya, Jun

    2009-01-01

    Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs), the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20-40 cm 2 Vs -1 , achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR) measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps. (topical review)

  2. On the growth of calcium tartrate tetrahydrate single crystals

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Calcium tartrate single crystals were grown using silica gel as the growth medium. Calcium for- mate mixed with formic acid was taken as the supernatant solution. It was observed that the nucleation den- sity was reduced and the size of the crystals was improved to a large extent compared to the conventional way.

  3. Lattice location of helium in uranium dioxide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Garrido, F.; Nowicki, L. E-mail: lech.nowicki@fuw.edu.pl; Sattonnay, G.; Sauvage, T.; Thome, L

    2004-06-01

    Lattice location of {sup 3}He atoms implanted into UO{sub 2} single crystals was performed by means of the channeling technique combined with nuclear reaction analysis (NRA) and Rutherford backscattering spectrometry (RBS). The {sup 3}He(d,p){sup 4}He reaction was used. The experimental angular scans show that helium atoms occupy octahedral interstitial positions.

  4. Multiscale modelling of single crystal superalloys for gas turbine blades

    NARCIS (Netherlands)

    Tinga, T.

    2009-01-01

    Gas turbines are extensively used for power generation and for the propulsion of aircraft and vessels. Their most severely loaded parts, the turbine rotor blades, are manufactured from single crystal nickel-base superalloys. The superior high temperature behaviour of these materials is attributed to

  5. Discrete dislocation plasticity modeling of short cracks in single crystals

    NARCIS (Netherlands)

    Deshpande, VS; Needleman, A; Van der Giessen, E

    2003-01-01

    The mode-I crack growth behavior of geometrically similar edge-cracked single crystal specimens of varying size subject to both monotonic and cyclic axial loading is analyzed using discrete dislocation dynamics. Plastic deformation is modeled through the motion of edge dislocations in an elastic

  6. Double minimum creep of single crystal Ni-base superalloys

    Czech Academy of Sciences Publication Activity Database

    WU, X.; Wollgramm, P.; Somsen, C.; Dlouhý, Antonín; Kostka, A.; Eggeler, G.

    2016-01-01

    Roč. 112, JUN (2016), s. 242-260 ISSN 1359-6454 R&D Projects: GA ČR(CZ) GA14-22834S Institutional support: RVO:68081723 Keywords : Single crystal Ni-base superalloys * Primary creep * Transmission electron microscopy * Dislocations * Stacking faults Subject RIV: JG - Metallurgy Impact factor: 5.301, year: 2016

  7. Detection of anomalies in NLO sulphamic acid single crystals by ...

    Indian Academy of Sciences (India)

    The ultrasonic pulse echo overlap technique (PEO) has been used to measure the ... acid single crystals in the range of 300–400 K. This study evaluated all the elastic stiff- .... tic constants C11, C22, C33, C44, C55 and C66 have direct rela-.

  8. Organic field-effect transistors using single crystals

    Directory of Open Access Journals (Sweden)

    Tatsuo Hasegawa and Jun Takeya

    2009-01-01

    Full Text Available Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs, the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20–40 cm2 Vs−1, achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps.

  9. METHOD FOR MANUFACTURING A SINGLE CRYSTAL NANO-WIRE

    NARCIS (Netherlands)

    Van Den Berg, Albert; Bomer, Johan; Carlen Edwin, Thomas; Chen, Songyue; Kraaijenhagen Roderik, Adriaan; Pinedo Herbert, Michael

    2012-01-01

    A method for manufacturing a single crystal nano-structure includes providing a device layer with a 100 structure on a substrate; providing a stress layer onto the device layer; patterning the stress layer along the 110 direction of the device layer; selectively removing parts of the stress layer to

  10. METHOD FOR MANUFACTURING A SINGLE CRYSTAL NANO-WIRE.

    NARCIS (Netherlands)

    Van Den Berg, Albert; Bomer, Johan; Carlen Edwin, Thomas; Chen, Songyue; Kraaijenhagen Roderik, Adriaan; Pinedo Herbert, Michael

    2011-01-01

    A method for manufacturing a single crystal nano-structure is provided comprising the steps of providing a device layer with a 100 structure on a substrate; providing a stress layer onto the device layer; patterning the stress layer along the 110 direction of the device layer; selectively removing

  11. Electronic transport properties of single crystal thallium-2201 superconductors

    International Nuclear Information System (INIS)

    Yandrofski, R.M.

    1992-01-01

    Four-probe resistance measurements on single crystals of the calcium-free thallium-based superconducting Tl 2 Ba 2 CuO 6+σ phase (Tl-2201) were performed in magnetic fields up to 12 Telsa. Single crystals of sizes were grown by a self-flux technique and were characterized by single crystal X-ray diffraction and X-ray Dispersive Analysis. Field measurements were taken at dc and at low frequencies using a lock-in technique. Techniques were developed to oxygen-anneal the as-grown single crystals to generate single crystal samples of the same Tl-2201 phase with varying transition interaction effect against appropriate composite general alternatives are developed for the standard two-way layout with a single observation per cell. Nonparametric aligned-rank test procedures are introduced. One of the new procedures is shown to be equivalent to a slight modification of the previously studied Latin square procedures when the factors have the same number of levels. The equal in distribution technique is used to show that any statistic based on the joint ranks should not be used to test the hypotheses of interest. The tests based on aligning with the averages do not depend on the nuisance main effects, while those based on aligning with the median do depend on the nuisance main effects. The relative power performance of the competing tests are examined via Monte Carlo simulation. Power studies conducted on the 5 x 5, 5 x 6, and 5 x 9 two-way layouts with one observation per cell show that the new procedures based on a comparison of all possible pairs of rank-profiles perform quite well for two types of product interaction, a general class of interaction effects proposed by Martin, and several sets of specific interaction effects. Approximate critical values for some of the proposed procedures are explored in the special case when the main effect parameters for one factor are known

  12. Development of Thin Film Amorphous Silicon Tandem Junction Based Photocathodes Providing High Open-Circuit Voltages for Hydrogen Production

    Directory of Open Access Journals (Sweden)

    F. Urbain

    2014-01-01

    Full Text Available Hydrogenated amorphous silicon thin film tandem solar cells (a-Si:H/a-Si:H have been developed with focus on high open-circuit voltages for the direct application as photocathodes in photoelectrochemical water splitting devices. By temperature variation during deposition of the intrinsic a-Si:H absorber layers the band gap energy of a-Si:H absorber layers, correlating with the hydrogen content of the material, can be adjusted and combined in a way that a-Si:H/a-Si:H tandem solar cells provide open-circuit voltages up to 1.87 V. The applicability of the tandem solar cells as photocathodes was investigated in a photoelectrochemical cell (PEC measurement set-up. With platinum as a catalyst, the a-Si:H/a-Si:H based photocathodes exhibit a high photocurrent onset potential of 1.76 V versus the reversible hydrogen electrode (RHE and a photocurrent of 5.3 mA/cm2 at 0 V versus RHE (under halogen lamp illumination. Our results provide evidence that a direct application of thin film silicon based photocathodes fulfills the main thermodynamic requirements to generate hydrogen. Furthermore, the presented approach may provide an efficient and low-cost route to solar hydrogen production.

  13. Twinning processes in Cu-Al-Ni martensite single crystals investigated by neutron single crystal diffraction method

    International Nuclear Information System (INIS)

    Molnar, P.; Sittner, P.; Novak, V.; Lukas, P.

    2008-01-01

    A neutron single crystal diffraction method for inspecting the quality of martensite single crystals is introduced. True interface-free martensite single crystals are indispensable for, e.g. measurement of elastic constants of phases by ultrasonic techniques. The neutron diffraction method was used to detect and distinguish the presence of individual lattice correspondence variants of the 2H orthorhombic martensite phase in Cu-Al-Ni as well as to follow the activity of twinning processes during the deformation test on the martensite variant single crystals. When preparing the martensite single variant prism-shaped crystals by compression deformation method, typically a small fraction of second unwanted martensitic variant (compound twin) remains in the prism samples. Due to the very low stress (∼1 MPa) for the compound twinning in many shape memory alloys, it is quite difficult not only to deplete the martensite prisms of all internal interfaces but mainly to keep them in the martensite single variant state for a long time needed for further investigations

  14. Twinning processes in Cu-Al-Ni martensite single crystals investigated by neutron single crystal diffraction method

    Czech Academy of Sciences Publication Activity Database

    Molnar, P.; Šittner, P.; Novák, V.; Lukáš, Petr

    2008-01-01

    Roč. 481, Sp.Iss.SI (2008), s. 513-517 ISSN 0921-5093 R&D Projects: GA AV ČR IAA100480704 Institutional research plan: CEZ:AV0Z10480505 Keywords : Cu-Al-Ni * single crystals * neutron diffraction Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.806, year: 2008

  15. Impurity engineering for germanium-doped Czochralski silicon wafer used for ultra large scale integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiahe; Yang, Deren [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou (China)

    2009-07-01

    Internal gettering (IG) technology has been challenged by both the reduction of thermal budget during device fabrication and the enlargement of wafer diameter. Improving the properties of Czochralski (Cz) silicon wafers by intentional impurity doping, the so-called 'impurity engineering (IE)', is defined. Germanium has been found to be one of the important impurities for improving the internal gettering effect in Cz silicon wafer. In this paper, the investigations on IE involved with the conventional furnace anneal based denudation processing for germanium-doped Cz silicon wafer are reviewed. Meanwhile, the potential mechanisms of germanium effects for the IE of Cz silicon wafer are also interpreted based on the experimental facts. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Recent advance in high manufacturing readiness level and high temperature CMOS mixed-signal integrated circuits on silicon carbide

    Science.gov (United States)

    Weng, M. H.; Clark, D. T.; Wright, S. N.; Gordon, D. L.; Duncan, M. A.; Kirkham, S. J.; Idris, M. I.; Chan, H. K.; Young, R. A. R.; Ramsay, E. P.; Wright, N. G.; Horsfall, A. B.

    2017-05-01

    A high manufacturing readiness level silicon carbide (SiC) CMOS technology is presented. The unique process flow enables the monolithic integration of pMOS and nMOS transistors with passive circuit elements capable of operation at temperatures of 300 °C and beyond. Critical to this functionality is the behaviour of the gate dielectric and data for high temperature capacitance-voltage measurements are reported for SiO2/4H-SiC (n and p type) MOS structures. In addition, a summary of the long term reliability for a range of structures including contact chains to both n-type and p-type SiC, as well as simple logic circuits is presented, showing function after 2000 h at 300 °C. Circuit data is also presented for the performance of digital logic devices, a 4 to 1 analogue multiplexer and a configurable timer operating over a wide temperature range. A high temperature micro-oven system has been utilised to enable the high temperature testing and stressing of units assembled in ceramic dual in line packages, including a high temperature small form-factor SiC based bridge leg power module prototype, operated for over 1000 h at 300 °C. The data presented show that SiC CMOS is a key enabling technology in high temperature integrated circuit design. In particular it provides the ability to realise sensor interface circuits capable of operating above 300 °C, accommodate shifts in key parameters enabling deployment in applications including automotive, aerospace and deep well drilling.

  17. Solar cell degradation under open circuit condition in out-doors-in desert region

    Directory of Open Access Journals (Sweden)

    M. Boussaid

    Full Text Available The reliability of solar cells is an important parameter in the design of photovoltaic systems and particularly for cost estimation. Solar cell degradation is the result of various operating conditions; temperature is one of most important factors. Installed PV modules in desert regions are subjected to various temperature changes with significant gradient leading to accelerated degradation. In the present work, we demonstrate the influence of open-circuit condition on the degradation of PV modules. The experiment is carried out in the desert region of ADRAR (southern Algeria using two modules IJISEL of single-crystal silicon. A continuous monitoring allows analysis of both performances of modules for duration of 330 days. The module in open-circuit condition reaches higher temperature means than the module in charging condition; therefore, it undergoes a higher degradation. By simulation, we found that the life of a PV module (whose power output is close to 50% in a condition of an open-circuit in the desert region could be reduced to 4 years, and that has a significant impact on economy. Keywords: WEIBULL, Photovoltaic, Degradation, Open-circuit, Single-crystal, Silicon

  18. Methods and mechanisms of gettering of silicon structures in the production of integrated circuits

    Directory of Open Access Journals (Sweden)

    Pilipenko V. A.

    2013-05-01

    Full Text Available Increasing the degree of integration of hardware components imposes more stringent requirements for the reduction of the concentration of contaminants and oxidation stacking faults in the original silicon wafers with its preservation in the IC manufacturing process cycle. This causes high relevance of the application of gettering in modern microelectronic technology. The existing methods of silicon wafers gettering and the mechanisms of their occurrence are considered.

  19. Integrated GaN photonic circuits on silicon (100) for second harmonic generation

    OpenAIRE

    Xiong, Chi; Pernice, Wolfram; Ryu, Kevin K.; Schuck, Carsten; Fong, King Y.; Palacios, Tomas; Tang, Hong X.

    2014-01-01

    We demonstrate second order optical nonlinearity in a silicon architecture through heterogeneous integration of single-crystalline gallium nitride (GaN) on silicon (100) substrates. By engineering GaN microrings for dual resonance around 1560 nm and 780 nm, we achieve efficient, tunable second harmonic generation at 780 nm. The \\{chi}(2) nonlinear susceptibility is measured to be as high as 16 plus minus 7 pm/V. Because GaN has a wideband transparency window covering ultraviolet, visible and ...

  20. High performance high-κ/metal gate complementary metal oxide semiconductor circuit element on flexible silicon

    KAUST Repository

    Sevilla, Galo T.

    2016-02-29

    Thinned silicon based complementary metal oxide semiconductor(CMOS)electronics can be physically flexible. To overcome challenges of limited thinning and damaging of devices originated from back grinding process, we show sequential reactive ion etching of silicon with the assistance from soft polymeric materials to efficiently achieve thinned (40 μm) and flexible (1.5 cm bending radius) silicon based functional CMOSinverters with high-κ/metal gate transistors. Notable advances through this study shows large area of silicon thinning with pre-fabricated high performance elements with ultra-large-scale-integration density (using 90 nm node technology) and then dicing of such large and thinned (seemingly fragile) pieces into smaller pieces using excimer laser. The impact of various mechanical bending and bending cycles show undeterred high performance of flexible siliconCMOSinverters. Future work will include transfer of diced silicon chips to destination site, interconnects, and packaging to obtain fully flexible electronic systems in CMOS compatible way.

  1. Single Crystals of Organolead Halide Perovskites: Growth, Characterization, and Applications

    KAUST Repository

    Peng, Wei

    2017-04-01

    With the soaring advancement of organolead halide perovskite solar cells rising from a power conversion efficiency of merely 3% to more than 22% shortly in five years, researchers’ interests on this big material family have been greatly spurred. So far, both in-depth studies on the fundamental properties of organolead halide perovskites and their extended applications such as photodetectors, light emitting diodes, and lasing have been intensively reported. The great successes have been ascribed to various superior properties of organolead halide hybrid perovskites such as long carrier lifetimes, high carrier mobility, and solution-processable high quality thin films, as will be discussed in Chapter 1. Notably, most of these studies have been limited to their polycrystalline thin films. Single crystals, as a counter form of polycrystals, have no grain boundaries and higher crystallinity, and thus less defects. These characteristics gift single crystals with superior optical, electrical, and mechanical properties, which will be discussed in Chapter 2. For example, organolead halide perovskite single crystals have been reported with much longer carrier lifetimes and higher carrier mobilities, which are especially intriguing for optoelectronic applications. Besides their superior optoelectronic properties, organolead halide perovskites have shown large composition versatility, especially their organic components, which can be controlled to effectively adjust their crystal structures and further fundamental properties. Single crystals are an ideal platform for such composition-structure-property study since a uniform structure with homogeneous compositions and without distraction from grain boundaries as well as excess defects can provide unambiguously information of material properties. As a major part of work of this dissertation, explorative work on the composition-structure-property study of organic-cation-alloyed organolead halide perovskites using their single

  2. Radiation hardness tests with a demonstrator preamplifier circuit manufactured in silicon on sapphire (SOS) VLSI technology

    International Nuclear Information System (INIS)

    Bingefors, N.; Ekeloef, T.; Eriksson, C.; Paulsson, M.; Moerk, G.; Sjoelund, A.

    1992-01-01

    Samples of the preamplifier circuit, as well as of separate n and p channel transistors of the type contained in the circuit, were irradiated with gammas from a 60 Co source up to an integrated dose of 3 Mrad (30 kGy). The VLSI manufacturing technology used is the SOS4 process of ABB Hafo. A first analysis of the tests shows that the performance of the amplifier remains practically unaffected by the radiation for total doses up to 1 Mrad. At higher doses up to 3 Mrad the circuit amplification factor decreases by a factor between 4 and 5 whereas the output noise level remains unchanged. It is argued that it may be possible to reduce the decrease in amplification factor in future by optimizing the amplifier circuit design further. (orig.)

  3. Tracking performance of a single-crystal and a polycrystalline diamond pixel-detector

    Energy Technology Data Exchange (ETDEWEB)

    Menasce, D.; et al.

    2013-06-01

    We present a comparative characterization of the performance of a single-crystal and a polycrystalline diamond pixel-detector employing the standard CMS pixel readout chips. Measurements were carried out at the Fermilab Test Beam Facility, FTBF, using protons of momentum 120 GeV/c tracked by a high-resolution pixel telescope. Particular attention was directed to the study of the charge-collection, the charge-sharing among adjacent pixels and the achievable position resolution. The performance of the single-crystal detector was excellent and comparable to the best available silicon pixel-detectors. The measured average detection-efficiency was near unity, ε = 0.99860±0.00006, and the position-resolution for shared hits was about 6 μm. On the other hand, the performance of the polycrystalline detector was hampered by its lower charge collection distance and the readout chip threshold. A new readout chip, capable of operating at much lower threshold (around 1 ke$-$), would be required to fully exploit the potential performance of the polycrystalline diamond pixel-detector.

  4. DETERMINATION OF VICKERS MICROHARDNESS IN β-Ga2O3 SINGLE CRYSTALS GROWN FROM THEIR OWN MELT

    Directory of Open Access Journals (Sweden)

    L. I. Guzilova

    2015-05-01

    Full Text Available The results of microhardness measurements of β-Ga2O3 single crystals for (001 crystallographic face are reported. The crystals were grown by the free crystallization with the "Garnet-2M" equipment. Microhardness values ​​ were determined by the Vickers method at varying loads. A four-sided diamond pyramid was used as an indenter. The average value of gallium oxide microhardness was equal to 8.91 GPa. We have carried out comparison of the values ​​obtained with the microhardness for the other wide bandgap semiconductors - epitaxial GaN layers grown on 6H-SiC and GaP layers grown on GaP:S. The findings are usable for machining process development of β-Ga2O3 single crystal substrates. In particular, silicon carbide and electrocorundum may be recommended for β-Ga2O3 machine processing.

  5. Performance prediction for silicon photonics integrated circuits with layout-dependent correlated manufacturing variability.

    Science.gov (United States)

    Lu, Zeqin; Jhoja, Jaspreet; Klein, Jackson; Wang, Xu; Liu, Amy; Flueckiger, Jonas; Pond, James; Chrostowski, Lukas

    2017-05-01

    This work develops an enhanced Monte Carlo (MC) simulation methodology to predict the impacts of layout-dependent correlated manufacturing variations on the performance of photonics integrated circuits (PICs). First, to enable such performance prediction, we demonstrate a simple method with sub-nanometer accuracy to characterize photonics manufacturing variations, where the width and height for a fabricated waveguide can be extracted from the spectral response of a racetrack resonator. By measuring the spectral responses for a large number of identical resonators spread over a wafer, statistical results for the variations of waveguide width and height can be obtained. Second, we develop models for the layout-dependent enhanced MC simulation. Our models use netlist extraction to transfer physical layouts into circuit simulators. Spatially correlated physical variations across the PICs are simulated on a discrete grid and are mapped to each circuit component, so that the performance for each component can be updated according to its obtained variations, and therefore, circuit simulations take the correlated variations between components into account. The simulation flow and theoretical models for our layout-dependent enhanced MC simulation are detailed in this paper. As examples, several ring-resonator filter circuits are studied using the developed enhanced MC simulation, and statistical results from the simulations can predict both common-mode and differential-mode variations of the circuit performance.

  6. Near surface mechanical properties of optical single crystals and surface response to deterministic microgrinding

    Science.gov (United States)

    Randi, Joseph A., III

    2005-12-01

    This thesis makes use of microindentation, nanoindentation and nanoscratching methods to better understand the mechanical properties of single crystalline silicon, calcium fluoride, and magnesium fluoride. These properties are measured and are used to predict the material's response to material removal, specifically by grinding and polishing, which is a combination of elastic, plastic and fracture processes. The hardness anisotropy during Knoop microindentation, hardness from nanoindentation, and scratch morphology from nanoscratching are reported. This information is related to the surface microroughness from grinding. We show that mechanical property relationships that predict the surface roughness from lapping and deterministic microgrinding of optical glasses are applicable to single crystals. We show the range of hardness from some of the more common crystallographic faces. Magnesium fluoride, having a tetragonal structure, has 2-fold hardness anisotropy. Nanoindentation, as expected provides higher hardness than microindentation, but anisotropy is not observed. Nanoscratching provides the scratch profile during loading, after the load has been removed, and the coefficient of friction during the loading. Ductile and brittle mode scratching is present with brittle mode cracking being orientation specific. Subsurface damage (SSD) measurements are made using a novel process known as the MRF technique. Magnetorheological finishing is used to polish spots into the ground surface where SSD can be viewed. SSD is measured using an optical microscope and knowledge of the spot profile. This technique is calibrated with a previous technique and implemented to accurately measure SSD in single crystals. The data collected are compared to the surface microroughness of the ground surface, resulting in an upper bound relationship. The results indicate that SSD is always less than 1.4 times the peak-to-valley surface microroughness for single crystals regardless of the

  7. Solution-printed organic semiconductor blends exhibiting transport properties on par with single crystals

    KAUST Repository

    Niazi, Muhammad Rizwan; Li, Ruipeng; Li, Erqiang; Kirmani, Ahmad R.; Abdelsamie, Maged; Wang, Qingxiao; Pan, Wenyang; Payne, Marcia M.; Anthony, John E.; Smilgies, Detlef-M.; Thoroddsen, Sigurdur T; Giannelis, Emmanuel P.; Amassian, Aram

    2015-01-01

    Solution-printed organic semiconductors have emerged in recent years as promising contenders for roll-to-roll manufacturing of electronic and optoelectronic circuits. The stringent performance requirements for organic thin-film transistors (OTFTs) in terms of carrier mobility, switching speed, turn-on voltage and uniformity over large areas require performance currently achieved by organic single-crystal devices, but these suffer from scale-up challenges. Here we present a new method based on blade coating of a blend of conjugated small molecules and amorphous insulating polymers to produce OTFTs with consistently excellent performance characteristics (carrier mobility as high as 6.7 cm2 V−1 s−1, low threshold voltages of<1 V and low subthreshold swings <0.5 V dec−1). Our findings demonstrate that careful control over phase separation and crystallization can yield solution-printed polycrystalline organic semiconductor films with transport properties and other figures of merit on par with their single-crystal counterparts.

  8. Fabrication of high-quality single-crystal Cu thin films using radio-frequency sputtering.

    Science.gov (United States)

    Lee, Seunghun; Kim, Ji Young; Lee, Tae-Woo; Kim, Won-Kyung; Kim, Bum-Su; Park, Ji Hun; Bae, Jong-Seong; Cho, Yong Chan; Kim, Jungdae; Oh, Min-Wook; Hwang, Cheol Seong; Jeong, Se-Young

    2014-08-29

    Copper (Cu) thin films have been widely used as electrodes and interconnection wires in integrated electronic circuits, and more recently as substrates for the synthesis of graphene. However, the ultra-high vacuum processes required for high-quality Cu film fabrication, such as molecular beam epitaxy (MBE), restricts mass production with low cost. In this work, we demonstrated high-quality Cu thin films using a single-crystal Cu target and radio-frequency (RF) sputtering technique; the resulting film quality was comparable to that produced using MBE, even under unfavorable conditions for pure Cu film growth. The Cu thin film was epitaxially grown on an Al2O3 (sapphire) (0001) substrate, and had high crystalline orientation along the (111) direction. Despite the 10(-3) Pa vacuum conditions, the resulting thin film was oxygen free due to the high chemical stability of the sputtered specimen from a single-crystal target; moreover, the deposited film had >5× higher adhesion force than that produced using a polycrystalline target. This fabrication method enabled Cu films to be obtained using a simple, manufacturing-friendly process on a large-area substrate, making our findings relevant for industrial applications.

  9. Characterization of Bi4Ge3O12 single crystal by impedance spectroscopy

    Directory of Open Access Journals (Sweden)

    Zélia Soares Macedo

    2003-12-01

    Full Text Available Bi4Ge3O12 (bismuth germanate - BGO single crystals were produced by the Czochralski technique and their electrical and dielectric properties were investigated by impedance spectroscopy. The isothermal ac measurements were performed for temperatures from room temperature up to 750 °C, but only the data taken above 500 °C presented a complete semicircle in the complex impedance diagrams. Experimental data were fitted to a parallel RC equivalent circuit, and the electrical conductivity was obtained from the resistivity values. Conductivity values from 5.4 × 10(9 to 4.3 × 10-7 S/cm were found in the temperature range of 500 to 750 °C. This electrical conductivity is thermally activated, following the Arrhenius law with an apparent activation energy of (1.41 ± 0.04 eV. The dielectric properties of BGO single crystal were also studied for the same temperature interval. Permittivity values of 20 ± 2 for frequencies higher than 10³ Hz and a low-frequency dispersion were observed. Both electric and dielectric behavior of BGO are typical of systems in which the conduction mechanism dominates the dielectric response.

  10. Solution-printed organic semiconductor blends exhibiting transport properties on par with single crystals

    KAUST Repository

    Niazi, Muhammad Rizwan

    2015-11-23

    Solution-printed organic semiconductors have emerged in recent years as promising contenders for roll-to-roll manufacturing of electronic and optoelectronic circuits. The stringent performance requirements for organic thin-film transistors (OTFTs) in terms of carrier mobility, switching speed, turn-on voltage and uniformity over large areas require performance currently achieved by organic single-crystal devices, but these suffer from scale-up challenges. Here we present a new method based on blade coating of a blend of conjugated small molecules and amorphous insulating polymers to produce OTFTs with consistently excellent performance characteristics (carrier mobility as high as 6.7 cm2 V−1 s−1, low threshold voltages of<1 V and low subthreshold swings <0.5 V dec−1). Our findings demonstrate that careful control over phase separation and crystallization can yield solution-printed polycrystalline organic semiconductor films with transport properties and other figures of merit on par with their single-crystal counterparts.

  11. Aluminum-rich mesoporous MFI - type zeolite single crystals

    DEFF Research Database (Denmark)

    Kustova, Marina; Kustov, Arkadii; Christensen, Christina Hviid

    2005-01-01

    Zeolitcs are crystalline materials, which are widely used as solid acid catalysts and supports in many industrial processes. Recently, mesoporous MFI-type zeolite single crystals were synthesized by use of carbon particles as a mesopore template and sodium aluminate as the aluminum Source....... With this technique, only zeolites with relatively low Al contents were reported (Si/Al ratio about 100). In this work, the preparation of aluminum-rich mesoporous MFI-type zeolite single crystals (Si/Al similar to 16-50) using aluminum isopropoxide as the aluminum Source is reported for the first time. All samples...... are characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), ammonia temperature programmed desorption (NH3-TPD), and N-2 adsorption measurements. The obtained zeolites combine the high crystallinity and the characteristic micropores of zeolites with an intracrystalline mesopore system...

  12. Ordered macro-microporous metal-organic framework single crystals

    Science.gov (United States)

    Shen, Kui; Zhang, Lei; Chen, Xiaodong; Liu, Lingmei; Zhang, Daliang; Han, Yu; Chen, Junying; Long, Jilan; Luque, Rafael; Li, Yingwei; Chen, Banglin

    2018-01-01

    We constructed highly oriented and ordered macropores within metal-organic framework (MOF) single crystals, opening up the area of three-dimensional–ordered macro-microporous materials (that is, materials containing both macro- and micropores) in single-crystalline form. Our methodology relies on the strong shaping effects of a polystyrene nanosphere monolith template and a double-solvent–induced heterogeneous nucleation approach. This process synergistically enabled the in situ growth of MOFs within ordered voids, rendering a single crystal with oriented and ordered macro-microporous structure. The improved mass diffusion properties of such hierarchical frameworks, together with their robust single-crystalline nature, endow them with superior catalytic activity and recyclability for bulky-molecule reactions, as compared with conventional, polycrystalline hollow, and disordered macroporous ZIF-8.

  13. Oriented hydroxyapatite single crystals produced by the electrodeposition method

    Energy Technology Data Exchange (ETDEWEB)

    Santos, E.A. dos, E-mail: euler@ufs.br [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France); IPCMS - Departement de Surfaces et Interfaces, 23, rue du Loess, BP 43, 67034 Strasbourg (France); Moldovan, M.S. [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France); IPCMS - Departement de Surfaces et Interfaces, 23, rue du Loess, BP 43, 67034 Strasbourg (France); Jacomine, L. [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France); Mateescu, M. [IS2M - Equipe Interaction Surface-Matiere Vivant, 15, rue Jean Starcky, BP 2488, 68057 Mulhouse (France); Werckmann, J. [IPCMS - Departement de Surfaces et Interfaces, 23, rue du Loess, BP 43, 67034 Strasbourg (France); Anselme, K. [IS2M - Equipe Interaction Surface-Matiere Vivant, 15, rue Jean Starcky, BP 2488, 68057 Mulhouse (France); Mille, P.; Pelletier, H. [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France)

    2010-05-25

    We propose here the use of cathodic electrodeposition as tool to fabricate implant coatings consisting in nano/micro single crystals of hydroxyapatite (HA), preferentially orientated along the c-axis. Coating characterization is the base of this work, where we discuss the mechanisms related to the deposition of oriented hydroxyapatite thin films. It is shown that when deposited on titanium alloys, the HA coating is constituted by two distinct regions with different morphologies: at a distance of few microns from the substrate, large HA single crystals are oriented along the c-axis and appear to grow up from a base material, consisting in an amorphous HA. This organized system has a great importance for cell investigation once the variables involved in the cell/surface interaction are reduced. The use of such systems could give a new insight on the effect of particular HA orientation on the osteoblast cells.

  14. Raman analysis of gold on WSe2 single crystal film

    International Nuclear Information System (INIS)

    Mukherjee, Bablu; Sun Leong, Wei; Li, Yida; Thong, John T L; Gong, Hao; Sun, Linfeng; Xiang Shen, Ze; Simsek, Ergun

    2015-01-01

    Synthesis and characterization of high-quality single-crystal tungsten diselenide (WSe 2 ) films on a highly insulating substrate is presented. We demonstrate for the first time that the presence of gold (Au) nanoparticles in the basal plane of a WSe 2 film can enhance its Raman scattering intensity. The experimentally observed enhancement ratio in the Raman signal correlates well with the simulated electric field intensity using both three-dimensional electromagnetic software and theoretical calculation considering layered medium coupled-dipole approximation (LM-CDA). This work serves as a guideline for the use of Au nanoparticles on WSe 2 single-crystal thin films for surface enhanced Raman scattering (SERS) applications in the future. (paper)

  15. Ordered macro-microporous metal-organic framework single crystals

    KAUST Repository

    Shen, Kui

    2018-01-16

    We constructed highly oriented and ordered macropores within metal-organic framework (MOF) single crystals, opening up the area of three-dimensional-ordered macro-microporous materials (that is, materials containing both macro- and micropores) in single-crystalline form. Our methodology relies on the strong shaping effects of a polystyrene nanosphere monolith template and a double-solvent-induced heterogeneous nucleation approach. This process synergistically enabled the in situ growth of MOFs within ordered voids, rendering a single crystal with oriented and ordered macro-microporous structure. The improved mass diffusion properties of such hierarchical frameworks, together with their robust single-crystalline nature, endow them with superior catalytic activity and recyclability for bulky-molecule reactions, as compared with conventional, polycrystalline hollow, and disordered macroporous ZIF-8.

  16. Scintillation activity in an unirradiated single crystal of 3-hydroxyxanthine

    International Nuclear Information System (INIS)

    Cooke, D.W.; Jahan, M.S.; Alexander, C. Jr.

    1976-01-01

    A method of growing single crystals (approximately 4mm long) of 3-hydroxyxanthine is described. Observed scintillations occurring in an unirradiated single crystal of this potent oncogen as the temperature is lowered from 300 to 90 K are shown. It was found that these scintillations occur upon heating or cooling and do not diminish in activity as the number of heating and cooling cycles increase. It was found that a short duration u.v. exposure would terminate the scintillation activity and various attempts (such as annealing and pressure changes) to rejuvenate them were unsuccessful. With these observations in mind speculation is made concerning the mechanisms associated with the production of purine N-oxide derivatives. (U.K.)

  17. Ordered macro-microporous metal-organic framework single crystals

    KAUST Repository

    Shen, Kui; Zhang, Lei; Chen, Xiaodong; Liu, Lingmei; Zhang, Daliang; Han, Yu; Chen, Junying; Long, Jilan; Luque, Rafael; Li, Yingwei; Chen, Banglin

    2018-01-01

    We constructed highly oriented and ordered macropores within metal-organic framework (MOF) single crystals, opening up the area of three-dimensional-ordered macro-microporous materials (that is, materials containing both macro- and micropores) in single-crystalline form. Our methodology relies on the strong shaping effects of a polystyrene nanosphere monolith template and a double-solvent-induced heterogeneous nucleation approach. This process synergistically enabled the in situ growth of MOFs within ordered voids, rendering a single crystal with oriented and ordered macro-microporous structure. The improved mass diffusion properties of such hierarchical frameworks, together with their robust single-crystalline nature, endow them with superior catalytic activity and recyclability for bulky-molecule reactions, as compared with conventional, polycrystalline hollow, and disordered macroporous ZIF-8.

  18. Spall behaviour of single crystal aluminium at three principal orientations

    Science.gov (United States)

    Owen, G. D.; Chapman, D. J.; Whiteman, G.; Stirk, S. M.; Millett, J. C. F.; Johnson, S.

    2017-10-01

    A series of plate impact experiments have been conducted to study the spall strength of the three principal crystallographic orientations of single crystal aluminium ([100], [110] and, [111]) and ultra-pure polycrystalline aluminium. The samples have been shock loaded at two impact stresses (4 GPa and 10 GPa). Significant differences have been observed in the elastic behaviour, the pullback velocities, and the general shape of the wave profiles, which can be accounted for by considerations of the microscale homogeneity, the dislocation density, and the absence of grain boundaries in the single crystal materials. The data have shown that there is a consistent order of spall strength measured for the four sample materials. The [111] orientation has the largest spall strength and elastic limit, followed closely by [110], [100], and then the polycrystalline material. This order is consistent with both quasi-static data and geometrical consideration of Schmid factors.

  19. A new generation of 99.999% enriched 28Si single crystals for the determination of Avogadro’s constant

    Science.gov (United States)

    Abrosimov, N. V.; Aref'ev, D. G.; Becker, P.; Bettin, H.; Bulanov, A. D.; Churbanov, M. F.; Filimonov, S. V.; Gavva, V. A.; Godisov, O. N.; Gusev, A. V.; Kotereva, T. V.; Nietzold, D.; Peters, M.; Potapov, A. M.; Pohl, H.-J.; Pramann, A.; Riemann, H.; Scheel, P.-T.; Stosch, R.; Wundrack, S.; Zakel, S.

    2017-08-01

    A metrological challenge is currently underway to replace the present definition of the kilogram. One prerequisite for this is that the Avogadro constant, N A, which defines the number of atoms in a mole, needs to be determined with a relative uncertainty of better than 2  ×  10-8. The method applied in this case is based on the x-ray crystal density experiment using silicon crystals. The first attempt, in which silicon of natural isotopic composition was used, failed. The solution chosen subsequently was the usage of silicon highly enriched in 28Si from Russia. First, this paper reviews previous efforts from the very first beginnings to an international collaboration with the goal of producing a 28Si single crystal with a mass of 5 kg, an enrichment greater than 0.9999 and of sufficient chemical purity. Then the paper describes the activities of a follow-up project, conducted by PTB, to produce a new generation of highly enriched silicon in order to demonstrate the quasi-industrial and reliable production of more than 12 kg of the 28Si material with enrichments of five nines. The intention of this project is also to show the availability of 28Si single crystals as a guarantee for the future realisation of the redefined kilogram.

  20. Low temperature deformation mechanisms in LiF single crystals

    International Nuclear Information System (INIS)

    Fotedar, H.L.; Stroebe, T.G.

    1976-01-01

    An analysis of the deformation behavior of high purity LiF single crystals is given using yielding and work hardening data and thermally activated deformation parameters obtained in the temperature range 77-423 0 K. It is found that while the Fleischer mechanism is apparently valid experimentally over the thermally activated temperature range, vacancies produced in large numbers at 77 0 K could also play a role in determining the critical resolved shear stress at that temperature

  1. Trapezoidal diffraction grating beam splitters in single crystal diamond

    Science.gov (United States)

    Kiss, Marcell; Graziosi, Teodoro; Quack, Niels

    2018-02-01

    Single Crystal Diamond has been recognized as a prime material for optical components in high power applications due to low absorption and high thermal conductivity. However, diamond microstructuring remains challenging. Here, we report on the fabrication and characterization of optical diffraction gratings exhibiting a symmetric trapezoidal profile etched into a single crystal diamond substrate. The optimized grating geometry diffracts the transmitted optical power into precisely defined proportions, performing as an effective beam splitter. We fabricate our gratings in commercially available single crystal CVD diamond plates (2.6mm x 2.6mm x 0.3mm). Using a sputter deposited hard mask and patterning by contact lithography, the diamond is etched in an inductively coupled oxygen plasma with zero platen power. The etch process effectively reveals the characteristic {111} diamond crystal planes, creating a precisely defined angled (54.7°) profile. SEM and AFM measurements of the fabricated gratings evidence the trapezoidal shape with a pitch of 3.82μm, depth of 170 nm and duty cycle of 35.5%. Optical characterization is performed in transmission using a 650nm laser source perpendicular to the sample. The recorded transmitted optical power as function of detector rotation angle shows a distribution of 21.1% in the 0th order and 23.6% in each +/-1st order (16.1% reflected, 16.6% in higher orders). To our knowledge, this is the first demonstration of diffraction gratings with trapezoidal profile in single crystal diamond. The fabrication process will enable beam splitter gratings of custom defined optical power distribution profiles, while antireflection coatings can increase the efficiency.

  2. Ion implantation induced blistering of rutile single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Bing-Xi [School of Physics, Shandong University, Jinan, Shandong 250100 (China); Jiao, Yang [College of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250100 (China); Guan, Jing [School of Physics, Shandong University, Jinan, Shandong 250100 (China); Wang, Lei [School of Physics, Shandong University, Jinan, Shandong 250100 (China); Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (China)

    2015-07-01

    The rutile single crystals were implanted by 200 keV He{sup +} ions with a series fluence and annealed at different temperatures to investigate the blistering behavior. The Rutherford backscattering spectrometry, optical microscope and X-ray diffraction were employed to characterize the implantation induced lattice damage and blistering. It was found that the blistering on rutile surface region can be realized by He{sup +} ion implantation with appropriate fluence and the following thermal annealing.

  3. Photon emission by electrons and positrons traversing thin single crystal

    International Nuclear Information System (INIS)

    Ol'chak, A.S.

    1984-01-01

    Radiation emission by planar channeled particles (electrons, positrons) in a thin single crystal of thickness L is considered. It is shown that for L approximately πb/THETAsub(L) (b is the lattice constant, THETA sub(L) the Lindhard angle) besides the main spontaneous channeling maxima there exist auxiliary interference maxima, the positions of all the maxima depending on L. The dependence of the radiation spectral intensity on crystal thickness is discussed

  4. Single-crystal diffraction instrument TriCS at SINQ

    Science.gov (United States)

    Schefer, J.; Könnecke, M.; Murasik, A.; Czopnik, A.; Strässle, Th; Keller, P.; Schlumpf, N.

    2000-03-01

    The single-crystal diffractometer TriCS at the Swiss Continuous Spallation Source (SINQ) is presently in the commissioning phase. A two-dimensional wire detector produced by EMBL was delivered in March 1999. The instrument is presently tested with a single detector. First measurements on magnetic structures have been performed. The instrument is remotely controlled using JAVA-based software and a UNIX DEC-α host computer.

  5. The Taylor relation in compression deformed Ge single crystals

    International Nuclear Information System (INIS)

    Nyilas, K; Ungar, T; Dupas, C; Martin, J L; Kruml, T

    2010-01-01

    Ge single crystals are deformed in compression at 850K and the same strain rate to various extents of strains. In each sample, the internal stress is measured through stress reduction tests and the dislocation densities by X-ray measurements. Data about these two parameters follow fairly well the Taylor-Saada relation, provided a correction term is added. It probably corresponds to dislocations which are seen by X-rays, though they do not contribute to crystal hardening.

  6. Three-dimensional charge transport in organic semiconductor single crystals.

    Science.gov (United States)

    He, Tao; Zhang, Xiying; Jia, Jiong; Li, Yexin; Tao, Xutang

    2012-04-24

    Three-dimensional charge transport anisotropy in organic semiconductor single crystals - both plates and rods (above and below, respectively, in the figure) - is measured in well-performing organic field-effect transistors for the first time. The results provide an excellent model for molecular design and device preparation that leads to good performance. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A macroscopic model for magnetic shape-memory single crystals

    Czech Academy of Sciences Publication Activity Database

    Bessoud, A. L.; Kružík, Martin; Stefanelli, U.

    2013-01-01

    Roč. 64, č. 2 (2013), s. 343-359 ISSN 0044-2275 R&D Projects: GA AV ČR IAA100750802; GA ČR GAP201/10/0357 Institutional support: RVO:67985556 Keywords : magnetostriction * evolution Subject RIV: BA - General Mathematics Impact factor: 1.214, year: 2013 http://library.utia.cas.cz/separaty/2012/MTR/kruzik-a macroscopic model for magnetic shape- memory single crystals.pdf

  8. The early stages of oxidation of magnesium single crystal surfaces

    International Nuclear Information System (INIS)

    Hayden, B.E.; Schweizer, E.; Koetz, R.; Bradshaw, A.M.

    1981-01-01

    The early stages of oxidation of Mg(001) and Mg(100) single crystal surfaces at 300 K have been investigated by LEED, ELS, work function and ellipsometric measurements. A sharp decrease in work function on both surfaces during the first 12 L exposure indicates the incorporation of oxygen in the earliest stages of the interaction. The incorporated oxygen on Mg(001) gives rise to a broadening of the integral order LEED spots for an exposure 3 L. (orig.)

  9. Application of GRID to Foreign Atom Localization in Single Crystals.

    Science.gov (United States)

    Karmann, A; Wesch, W; Weber, B; Börner, H G; Jentschel, M

    2000-01-01

    The application of GRID (Gamma Ray Induced Doppler broadening) spectroscopy to the localization of foreign atoms in single crystals is demonstrated on erbium in YAP. By the investigation of the Doppler broadened secondary γ line for two crystalline directions, the Er was determined to be localized on the Y site. Conditions for the nuclear parameters of the impurity atoms used for the application of GRID spectroscopy are discussed.

  10. Preparation and characterization of single-crystal multiferroic nanofiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhaohui; Xiao, Zhen; Yin, Simin; Mai, Jiangquan; Liu, Zhenya; Xu, Gang; Li, Xiang; Shen, Ge [State Key Lab of Silicon Materials, Department of Material Science and Engineering, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027 (China); Han, Gaorong, E-mail: hgr@zju.edu.cn [State Key Lab of Silicon Materials, Department of Material Science and Engineering, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027 (China)

    2013-03-05

    Graphical abstract: One-dimensional single-crystal multiferroic composites composed of PbTiO{sub 3} nanofiber-CoFe{sub 2}O{sub 4} nanodot have been prepared for the first time by a facile in situ solid state sintering method. The composites demonstrate ferroelectricity and ferromagnetism as well as strong coupling between them. Highlights: ► 1D single-crystal multiferroic PTO-CFO was prepared via in situ solid state sintering method. ► A simple epitaxial growth relation has been found between the PTO–CFO composites. ► The composites reveal ferroelectricity and ferromagnetism as well as coupling between them. -- Abstract: One-dimensional single-crystal multiferroic composites consisting of PbTiO{sub 3} (PTO) nanofiber-CoFe{sub 2}O{sub 4} (CFO) nanodot were prepared using an in situ solid state sintering method, where pre-perovskite PTO nanofibers and CFO nanodots were used as precursors. Structural analyses by using transmission electron microscopy, scanning electron microscopy and X-ray diffraction determined a epitaxial growth relation between the PTO nanofiber and the CFO nanodot. Ferromagnetism and ferroelectricity of the nanofiber composites were investigated by using vibarting sample magnetometer (VSM) and piezoresponse force microscopy (PFM)

  11. AFM studies on heavy ion irradiated YBCO single crystals

    International Nuclear Information System (INIS)

    Lakhani, Archana; Marhas, M.K.; Saravanan, P.; Ganesan, V.; Srinivasan, R.; Kanjilal, D.; Mehta, G.K.; Elizabeth, Suja; Bhat, H.L.

    2000-01-01

    Atomic Force Microscopy (AFM) is extensively used to characterise the surface morphology of high energy ion irradiated single crystals of high temperature superconductor - YBCO. Our earlier systematic studies on thin films of YBCO under high energy and heavy ion irradiation shows clear evidence of ion induced sputtering or erosion, even though the effect is more on the grain boundaries. These earlier results were supported by electrical resistance measurements. In order to understand more clearly, the nature of surface modification at these high energies, AFM studies were carried out on single crystals of YBCO. Single crystals were chosen in order to see the effect on crystallites alone without interference from grain boundaries. 200 MeV gold ions were used for investigation using the facilities available at Nuclear Science Centre, New Delhi. The type of ion and the range of energies were chosen to meet the threshold for electronically mediated defect production. The results are in conformity with our earlier studies and will be described in detail in the context of electronic energy loss mediated sputtering or erosion. (author)

  12. Parasitic neutron bragg reflections from large imperfect single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Naguib, K.; Adib, M

    1998-12-01

    A formula is given which allows to calculate the contribution of the total Bragg scattering from different (hkl) planes to the neutron transmission through a large imperfect single crystals. The formula takes into account the crystal structure type, its mosaic spread value, the plane along which the crystal surface is cut along and its orientation with respect to the neutron beam direction. A computer program ISCANF-1 was developed to calculate the total parasitic scattering cross-section from different (hkl) planes as well as the nuclear and diffuse scattering cross-sections. The ISCANF-1 program was applied to calculate the neutron attenuation through Cu and Zn single crystals, each of them cut along (002) planes. The calculated values of the neutron transmission through Cu and Zn crystals were compared with the measured ones in the wavelength range 0.21-0.47 nm and 0.04-0.52 nm respectively. The measured and calculated values were found to be in reasonable agreement within the statistical accuracy. The computer program ISCANF-1 was also applied to investigate the effect of parasitic Bragg scattering on the neutron filtering characteristics of both Zn and Cu single crystals as a function of their physical parameters.

  13. Parasitic neutron bragg reflections from large imperfect single crystals

    International Nuclear Information System (INIS)

    Naguib, K.; Adib, M.

    1998-01-01

    A formula is given which allows to calculate the contribution of the total Bragg scattering from different (hkl) planes to the neutron transmission through a large imperfect single crystals. The formula takes into account the crystal structure type, its mosaic spread value, the plane along which the crystal surface is cut along and its orientation with respect to the neutron beam direction. A computer program ISCANF-1 was developed to calculate the total parasitic scattering cross-section from different (hkl) planes as well as the nuclear and diffuse scattering cross-sections. The ISCANF-1 program was applied to calculate the neutron attenuation through Cu and Zn single crystals, each of them cut along (002) planes. The calculated values of the neutron transmission through Cu and Zn crystals were compared with the measured ones in the wavelength range 0.21-0.47 nm and 0.04-0.52 nm respectively. The measured and calculated values were found to be in reasonable agreement within the statistical accuracy. The computer program ISCANF-1 was also applied to investigate the effect of parasitic Bragg scattering on the neutron filtering characteristics of both Zn and Cu single crystals as a function of their physical parameters

  14. Neutron transmission measurements of zinc and lead single crystals

    International Nuclear Information System (INIS)

    Adib, M.; Abdel-Kawy, A.

    1988-01-01

    Neutron transmission measurements of zinc and lead single crystals have been carried out in a neutron wavelength band from 0.03 to 0.55 nm at different orientations of the crystal with regard to the beam direction. The measurements were performed using both time-of-flight and fixed-angle scattering spectrometers installed in front of the ET-RR-1 reactor horizontal channels. It was found that the position of the observed dips in the neutron transmission measurements corresponded to the reflections from the (h k l) planes of the hexagonal zinc single crystal which was cut along the (0 0 2) plane, while in the case of lead, the single crystal was cut perpendicular to the (3 1 1) plane. The reflectivity from the (0 0 2) plane of zinc was determined using both transmission and reflection methods. The maximum reflectivity was found to be 55% when the zinc crystal was orientated at 45 0 to the beam direction. The wavelength spread of the observed reflectivity curve was found to be in agreement with the calculated one, taking into consideration the spectrometer's resolution and the crystal mosaic spread. (author)

  15. Preparation of rod-like β-Si3N4 single crystal particles

    International Nuclear Information System (INIS)

    Hirao, K.; Tsuge, A.; Brito, M.E.; Kanzaki, S.

    1994-01-01

    The use of β-Si 3 N 4 particles as a seed material has been demonstrated to be effective for development of a self-reinforcing microstructure in sintered silicon nitride ceramics. We have confirmed the seeding effect and arrived at a concept that seed particles should consist of rod-like single crystals free from defects and with a large diameter. The present work describes our attempts to produce such particles with a controlled morphology and in high amount. β-Si 3 N 4 particles with a diameter of 1μm and length of 5μm were obtained by heating a mixture of α-Si 3 N 4 , SiO 2 and Y 2 O 3 , followed by acid rinse treatments to remove residual glassy phase. (orig.)

  16. X-ray diffraction patterns of single crystals implanted with high-energy light ions

    International Nuclear Information System (INIS)

    Wieteska, K.

    1998-01-01

    X-ray diffraction patterns of silicon and gallium arsenide single crystals implanted with high-energy protons and α-particles were studied. A various models of lattice parameter changes were analysed. The agreement between the simulation and experiment proves that the lattice parameter depth-distribution can be assumed to be proportional to vacancy distribution obtained by Monte-Carlo method and from the Biersack-Ziegler theory. Most of the X-ray experiments were performed using synchrotron source of X-ray radiation in particular in the case of back-reflection and transmission section topographic methods. The new method of direct determination of the implanted ion ranges was proposed using synchrotron radiation back-reflection section topography. A number of new interference phenomena was revealed and explained. These interferences are important in the applications of diffraction theory in studying of the real structure of implanted layers. (author)

  17. Prolonged 500 C Operation of 100+ Transistor Silicon Carbide Integrated Circuits

    Science.gov (United States)

    Spry, David J.; Neudeck, Philip G.; Lukco, Dorothy; Chen, Liangyu; Krasowski, Michael J.; Prokop, Norman F.; Chang, Carl W.; Beheim, Glenn M.

    2017-01-01

    This report describes more than 5000 hours of successful 500 C operation of semiconductor integrated circuits (ICs) with more than 100 transistors. Multiple packaged chips with two different 4H-SiC junction field effect transistor (JFET) technology demonstrator circuits have surpassed thousands of hours of oven-testing at 500 C. After 100 hours of 500 C burn-in, the circuits (except for 2 failures) exhibit less than 10 change in output characteristics for the remainder of 500C testing. We also describe the observation of important differences in IC materials durability when subjected to the first nine constituents of Venus-surface atmosphere at 9.4 MPa and 460C in comparison to what is observed for Earth-atmosphere oven testing at 500 C.

  18. A low power bipolar amplifier integrated circuit for the ZEUS silicon strip system

    Energy Technology Data Exchange (ETDEWEB)

    Barberis, E. (Inst. for Particle Physics, Univ. of California, Santa Cruz, CA (United States)); Cartiglia, N. (Inst. for Particle Physics, Univ. of California, Santa Cruz, CA (United States)); Dorfan, D.E. (Inst. for Particle Physics, Univ. of California, Santa Cruz, CA (United States)); Spencer, E. (Inst. for Particle Physics, Univ. of California, Santa Cruz, CA (United States))

    1993-05-01

    A fast low power bipolar chip consisting of 64 amplifier-comparators has been developed for use with silicon strip detectors for systems where high radiation levels and high occupancy considerations are important. The design is described and test results are presented. (orig.)

  19. High performance high-κ/metal gate complementary metal oxide semiconductor circuit element on flexible silicon

    KAUST Repository

    Sevilla, Galo T.; Almuslem, A. S.; Gumus, Abdurrahman; Hussain, Aftab M.; Hussain, Aftab M.; Cruz, Melvin; Hussain, Muhammad Mustafa

    2016-01-01

    shows large area of silicon thinning with pre-fabricated high performance elements with ultra-large-scale-integration density (using 90 nm node technology) and then dicing of such large and thinned (seemingly fragile) pieces into smaller pieces using

  20. Characterization of a synthetic single crystal diamond Schottky diode for radiotherapy electron beam dosimetry.

    Science.gov (United States)

    Di Venanzio, C; Marinelli, Marco; Milani, E; Prestopino, G; Verona, C; Verona-Rinati, G; Falco, M D; Bagalà, P; Santoni, R; Pimpinella, M

    2013-02-01

    To investigate the dosimetric properties of synthetic single crystal diamond based Schottky diodes under irradiation with therapeutic electron beams from linear accelerators. A single crystal diamond detector was fabricated and tested under 6, 8, 10, 12, and 15 MeV electron beams. The detector performances were evaluated using three types of commercial detectors as reference dosimeters: an Advanced Markus plane parallel ionization chamber, a Semiflex cylindrical ionization chamber, and a p-type silicon detector. Preirradiation, linearity with dose, dose rate dependence, output factors, lateral field profiles, and percentage depth dose profiles were investigated and discussed. During preirradiation the diamond detector signal shows a weak decrease within 0.7% with respect to the plateau value and a final signal stability of 0.1% (1σ) is observed after about 5 Gy. A good linear behavior of the detector response as a function of the delivered dose is observed with deviations below ±0.3% in the dose range from 0.02 to 10 Gy. In addition, the detector response is dose rate independent, with deviations below 0.3% in the investigated dose rate range from 0.17 to 5.45 Gy∕min. Percentage depth dose curves obtained from the diamond detector are in good agreement with the ones from the reference dosimeters. Lateral beam profile measurements show an overall good agreement among detectors, taking into account their respective geometrical features. The spatial resolution of solid state detectors is confirmed to be better than that of ionization chambers, being the one from the diamond detector comparable to that of the silicon diode. A good agreement within experimental uncertainties was also found in terms of output factor measurements between the diamond detector and reference dosimeters. The observed dosimetric properties indicate that the tested diamond detector is a suitable candidate for clinical electron beam dosimetry.

  1. Defects influence on short circuit current density in p-i-n silicon solar cell

    International Nuclear Information System (INIS)

    Wagah F Mohamad; Alhan M Mustafa

    2006-01-01

    The admittance analysis method has been used to calculate the collection efficiency and the short circuit current density in a-Si:H p-i-n solar cell, as a function of the thickness of i-layer. Its is evident that the results of the short circuit current can be used to determine the optimal thickness of the i-layer of a cell, and it will be more accurate in comparison with the previous studies using a constant generation rate or an empirical exponential function for the generation of charge carriers throughout the i-layer

  2. 70 nm resolution in subsurface optical imaging of silicon integrated-circuits using pupil-function engineering

    Science.gov (United States)

    Serrels, K. A.; Ramsay, E.; Reid, D. T.

    2009-02-01

    We present experimental evidence for the resolution-enhancing effect of an annular pupil-plane aperture when performing nonlinear imaging in the vectorial-focusing regime through manipulation of the focal spot geometry. By acquiring two-photon optical beam-induced current images of a silicon integrated-circuit using solid-immersion-lens microscopy at 1550 nm we achieved 70 nm resolution. This result demonstrates a reduction in the minimum effective focal spot diameter of 36%. In addition, the annular-aperture-induced extension of the depth-of-focus causes an observable decrease in the depth contrast of the resulting image and we explain the origins of this using a simulation of the imaging process.

  3. Free-standing nanomechanical and nanophotonic structures in single-crystal diamond

    Science.gov (United States)

    Burek, Michael John

    Realizing complex three-dimensional structures in a range of material systems is critical to a variety of emerging nanotechnologies. This is particularly true of nanomechanical and nanophotonic systems, both relying on free-standing small-scale components. In the case of nanomechanics, necessary mechanical degrees of freedom require physically isolated structures, such as suspended beams, cantilevers, and membranes. For nanophotonics, elements like waveguides and photonic crystal cavities rely on light confinement provided by total internal reflection or distributed Bragg reflection, both of which require refractive index contrast between the device and surrounding medium (often air). Such suspended nanostructures are typically fabricated in a heterolayer structure, comprising of device (top) and sacrificial (middle) layers supported by a substrate (bottom), using standard surface nanomachining techniques. A selective, isotropic etch is then used to remove the sacrificial layer, resulting in free-standing devices. While high-quality, crystalline, thin film heterolayer structures are readily available for silicon (as silicon-on-insulator (SOI)) or III-V semiconductors (i.e. GaAs/AlGaAs), there remains an extensive list of materials with attractive electro-optic, piezoelectric, quantum optical, and other properties for which high quality single-crystal thin film heterolayer structures are not available. These include complex metal oxides like lithium niobate (LiNbO3), silicon-based compounds such as silicon carbide (SiC), III-V nitrides including gallium nitride (GaN), and inert single-crystals such as diamond. Diamond is especially attractive for a variety of nanoscale technologies due to its exceptional physical and chemical properties, including high mechanical hardness, stiffness, and thermal conductivity. Optically, it is transparent over a wide wavelength range (from 220 nm to the far infrared), has a high refractive index (n ~ 2.4), and is host to a vast

  4. Silicon Compatible Materials, Processes, and Technologies for Advanced Integrated Circuits and Emerging Applications 6

    NARCIS (Netherlands)

    Roozeboom, F.; Narayanan, V.; Kakushima, K.; Timans, P.J.; Gusev, E.P.; Karim, Z.; Gendt, S. De

    2016-01-01

    The topics of this annual symposium continue to describe the evolution of traditional scaling in CMOS integrated circuit manufacturing (More Moore for short), combined with the opportunities from growing diversification and embedded functionality (More than Moore). Once again, the main objective was

  5. Silicon CMOS optical receiver circuits with integrated thin-film compound semiconductor detectors

    Science.gov (United States)

    Brooke, Martin A.; Lee, Myunghee; Jokerst, Nan Marie; Camperi-Ginestet, C.

    1995-04-01

    While many circuit designers have tackled the problem of CMOS digital communications receiver design, few have considered the problem of circuitry suitable for an all CMOS digital IC fabrication process. Faced with a high speed receiver design the circuit designer will soon conclude that a high speed analog-oriented fabrication process provides superior performance advantages to a digital CMOS process. However, for applications where there are overwhelming reasons to integrate the receivers on the same IC as large amounts of conventional digital circuitry, the low yield and high cost of the exotic analog-oriented fabrication is no longer an option. The issues that result from a requirement to use a digital CMOS IC process cut across all aspects of receiver design, and result in significant differences in circuit design philosophy and topology. Digital ICs are primarily designed to yield small, fast CMOS devices for digital logic gates, thus no effort is put into providing accurate or high speed resistances, or capacitors. This lack of any reliable resistance or capacitance has a significant impact on receiver design. Since resistance optimization is not a prerogative of the digital IC process engineer, the wisest option is thus to not use these elements, opting instead for active circuitry to replace the functions normally ascribed to resistance and capacitance. Depending on the application receiver noise may be a dominant design constraint. The noise performance of CMOS amplifiers is different than bipolar or GaAs MESFET circuits, shot noise is generally insignificant when compared to channel thermal noise. As a result the optimal input stage topology is significantly different for the different technologies. It is found that, at speeds of operation approaching the limits of the digital CMOS process, open loop designs have noise-power-gain-bandwidth tradeoff performance superior to feedback designs. Furthermore, the lack of good resisters and capacitors

  6. Evaluation of single crystal coefficients from mechanical and x-ray elastic constants of the polycrystal

    International Nuclear Information System (INIS)

    Hauk, V.; Kockelmann, H.

    1979-01-01

    Methods of calculation are developed for determination of single crystal elastic compliance or stiffness constants of cubic and hexagonal materials from mechanical and X-ray elastic constants of polycrystals. The calculations are applied to pure, cubic iron and hexagonal WC. There are no single crystal constants in the literature for WC, because no single crystals suitable for measurement are available. (orig.) [de

  7. Three-Dimensional Integrated Circuit (3D IC) Key Technology: Through-Silicon Via (TSV).

    Science.gov (United States)

    Shen, Wen-Wei; Chen, Kuan-Neng

    2017-12-01

    3D integration with through-silicon via (TSV) is a promising candidate to perform system-level integration with smaller package size, higher interconnection density, and better performance. TSV fabrication is the key technology to permit communications between various strata of the 3D integration system. TSV fabrication steps, such as etching, isolation, metallization processes, and related failure modes, as well as other characterizations are discussed in this invited review paper.

  8. The fabrication and characterization of organic light-emitting diodes using transparent single-crystal Si membranes

    International Nuclear Information System (INIS)

    Lee, Su-Hwan; Kim, Dal-Ho; Kim, Ji-Heon; Lee, Gon-Sub; Park, Jea-Gun; Takeo, Katoh

    2009-01-01

    For applications such as solar cells and displays, transparent single-crystal Si membranes were fabricated on a silicon-on-insulator (SOI) wafer. The SOI wafer included a buried layer of SiO 2 and Si 3 N 4 as an etch-stop layer. The etch-stop layer enabled fabrication of transparent single-crystal Si membranes with various thicknesses, and the thinning technology is described. For membranes with thicknesses of 18, 72 and 5000 nm, the respective optical transparent were 96.9%, 93.7% and 9% for R (red, λ = 660 nm), 96.9%, 91.4% and 1% for G (green, λ = 525 nm), and 97.0%, 93.2% and 0% for B (blue, λ = 470 nm). Organic light-emitting diodes (OLEDs) were then fabricated on transparent single-crystal Si membranes with various top Si thicknesses. OLEDs fabricated on 18, 72 and 5000 nm thick membranes and operated at 6 V demonstrated a luminance of 1350, 443 and 27 cd m -2 at the current densities of 148, 131 and 1.5 mA cm -2 , respectively.

  9. Magnetic order of Nd5Pb3 single crystals

    Science.gov (United States)

    Yan, J.-Q.; Ochi, M.; Cao, H. B.; Saparov, B.; Cheng, J.-G.; Uwatoko, Y.; Arita, R.; Sales, B. C.; Mandrus, D. G.

    2018-04-01

    We report millimeter-sized Nd5Pb3 single crystals grown out of a Nd-Co flux. We experimentally study the magnetic order of Nd5Pb3 single crystals by measuring the anisotropic magnetic properties, electrical resistivity under high pressure up to 8 GPa, specific heat, and neutron single crystal diffraction. Two successive magnetic orders are observed at T N1  =  44 K and T N2  =  8 K. The magnetic cells can be described with a propagation vector k=(0.5, 0, 0) . Cooling below T N1, Nd1 and Nd3 order forming ferromagnetic stripes along the b-axis, and the ferromagnetic stripes are coupled antiferromagnetically along the a-axis for the k=(0.5, 0, 0) magnetic domain. Cooling below T N2, Nd2 orders antiferromagnetically to nearby Nd3 ions. All ordered moments align along the crystallographic c-axis. The magnetic order at T N1 is accompanied by a quick drop of electrical resistivity upon cooling and a lambda-type anomaly in the temperature dependence of specific heat. At T N2, no anomaly was observed in electrical resistivity but there is a weak feature in specific heat. The resistivity measurements under hydrostatic pressures up to 8 GPa suggest a possible phase transition around 6 GPa. Our first-principles band structure calculations show that Nd5Pb3 has the same electronic structure as does Y5Si3 which has been reported to be a one-dimensional electride with anionic electrons that do not belong to any atom. Our study suggests that R 5Pb3 (R  =  rare earth) can be a materials playground for the study of magnetic electrides. This deserves further study after experimental confirmation of the presence of anionic electrons.

  10. Technological development for super-high efficiency solar cells. Technological development of solar-high efficiency singlecrystalline silicon solar cells (high quality singlecrystalline silicon substrates); Chokokoritsu taiyo denchi no gijutsu kaihatsu. Chokokoritsu tankessho silicon taiyo denchi no gijutsu kaihatsu (kohinshitsu tankessho silicon kiban no gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on technological development for high quality efficiency singlecrystalline silicon substrates in fiscal 1994. (1) On electromagnetic casting/once FZ bath method, a Si single crystal of 600mm long was successfully obtained by improvement of power source frequency and furnace parts. High carbon content resulted in no single crystal including solids. In undoped electromagnetic casting ingots, resistivities over 1500ohm-cm were obtained because of effective preventive measures from contaminants. (2) On electromagnetic melting CZ method, since vibration and temperature control of melt surface by magnetic shield was insufficient for stable pulling of single crystals, its practical use was hopeless. (3) On electron beam melting CZ method, a Si single crystal of 25mm in diameter was obtained by preventive measures from evaporation of Si and influence of deposits, and improved uniform deposition distribution in a furnace. The oscillation circuit constant of power source, and water-cooling copper crucible structure were also analyzed for the optimum design of electromagnetic melting furnaces. 3 figs., 1 tab.

  11. Infrared absorption in PbTe single crystals

    International Nuclear Information System (INIS)

    Kudykina, T.A.

    1982-01-01

    A group-theoretical analysis is conducted to select rules for optical transitions between bands in PbTe single crystals. It is shown that transitions between valence bands which are near a forbidden band are also forbidden. The extra absorption observed in p-PbTe and p-Pbsub(1-x)Snsub(x)Te in the region between the self-absorption edge and the free-carrier absorption edge is probably connected with transitions between one of valence bands and the p-state of the impurity

  12. Characteristics of trapped electrons and electron traps in single crystals

    International Nuclear Information System (INIS)

    Budzinski, E.E.; Potter, W.R.; Potienko, G.; Box, H.C.

    1979-01-01

    Two additional carbohydrates are reported whose crystal structures trap electrons intermolecularly in single crystals x irradiated at low temperature, namely sucrose and rhamnose. Five carbohydrate and polyhydroxy compounds are now known which exhibit this phenomenon. The following characteristics of the phenomenon were investigated: (1) the hyperfine couplings of the electron with protons of the polarized hydroxy groups forming the trap; (2) the distances between these protons and the trapped electron; (3) the spin density of the electron at the protons and (4) the relative stabilities of the electron trapped in various crystal structures

  13. Pyroelectric effect in tryglicyne sulphate single crystals - Differential measurement method

    Science.gov (United States)

    Trybus, M.

    2018-06-01

    A simple mathematical model of the pyroelectric phenomenon was used to explain the electric response of the TGS (triglycine sulphate) samples in the linear heating process in ferroelectric and paraelectric phases. Experimental verification of mathematical model was realized. TGS single crystals were grown and four electrode samples were fabricated. Differential measurements of the pyroelectric response of two different regions of the samples were performed and the results were compared with data obtained from the model. Experimental results are in good agreement with model calculations.

  14. The sublimation kinetics of GeSe single crystals

    Science.gov (United States)

    Irene, E. A.; Wiedemeier, H.

    1975-01-01

    The sublimation kinetics of (001) oriented GeSe single crystal platelets was studied by high-temperature mass spectroscopy, quantitative vacuum microbalance techniques, and hot stage optical microscopy. For a mean experimental temperature of 563 K, the activation enthalpy and entropy are found to equal 32.3 kcal/mole and 19.1 eu, respectively. The vaporization coefficient is less than unity for the range of test temperatures, and decreases with increasing temperature. The combined experimental data are correlated by means of a multistep surface adsorption mechanism.

  15. EPR studies of gamma-irradiated taurine single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Bulut, A. E-mail: abulut@samsun.omu.edu.tr; Karabulut, B.; Tapramaz, R.; Koeksal, F

    2000-04-01

    An EPR study of gamma-irradiated taurine [C{sub 2}H{sub 7}NO{sub 3}S] single crystal was carried out at room temperature. The EPR spectra were recorded in the three at mutually perpendicular planes. There are two magnetically distinct sites in monoclinic lattice. The principle values of g and hyperfine constants for both sites were calculated. The results have indicated the presence of {sup 32}SO{sup -}{sub 2} and {sup 33}SO{sup -}{sub 2} radicals. The hyperfine values of {sup 33}SO{sup -}{sub 2} radical were used to obtain O-S-O bond angle for both sites.

  16. Acquisition of Single Crystal Growth and Characterization Equipment. Final report

    International Nuclear Information System (INIS)

    Maple, M. Brian; Zocco, Diego A.

    2008-01-01

    Final Report for DOE Grant No. DE-FG02-04ER46178 'Acquisition of Single Crystal Growth and Characterization Equipment'. There is growing concern in the condensed matter community that the need for quality crystal growth and materials preparation laboratories is not being met in the United States. It has been suggested that there are too many researchers performing measurements on too few materials. As a result, many user facilities are not being used optimally. The number of proficient crystal growers is too small. In addition, insufficient attention is being paid to the enterprise of finding new and interesting materials, which is the driving force behind much of condensed matter research and, ultimately, technology. While a detailed assessment of this situation is clearly needed, enough evidence of a problem already exists to compel a general consensus that the situation must be addressed promptly. This final report describes the work carried out during the last four years in our group, in which a state-of-the-art single crystal growth and characterization facility was established for the study of novel oxides and intermetallic compounds of rare earth, actinide and transition metal elements. Research emphasis is on the physics of superconducting (SC), magnetic, heavy fermion (HF), non-Fermi liquid (NFL) and other types of strongly correlated electron phenomena in bulk single crystals. Properties of these materials are being studied as a function of concentration of chemical constituents, temperature, pressure, and magnetic field, which provide information about the electronic, lattice, and magnetic excitations at the root of various strongly correlated electron phenomena. Most importantly, the facility makes possible the investigation of material properties that can only be achieved in high quality bulk single crystals, including magnetic and transport phenomena, studies of the effects of disorder, properties in the clean limit, and spectroscopic and scattering

  17. EPR studies of gamma-irradiated taurine single crystals

    International Nuclear Information System (INIS)

    Bulut, A.; Karabulut, B.; Tapramaz, R.; Koeksal, F.

    2000-01-01

    An EPR study of gamma-irradiated taurine [C 2 H 7 NO 3 S] single crystal was carried out at room temperature. The EPR spectra were recorded in the three at mutually perpendicular planes. There are two magnetically distinct sites in monoclinic lattice. The principle values of g and hyperfine constants for both sites were calculated. The results have indicated the presence of 32 SO - 2 and 33 SO - 2 radicals. The hyperfine values of 33 SO - 2 radical were used to obtain O-S-O bond angle for both sites

  18. Lattice effects in HoVo3 single crystal

    International Nuclear Information System (INIS)

    Sikora, M.; Marquina, C.; Ibarra, M.R.; Nugroho, A.A.; Palstra, T.T.M.

    2007-01-01

    We report the study of lattice effects in the Mott insulator HoVO 3 performed by means of linear thermal expansion on a single crystal in the temperature range 10-290 K. The holmium orthovanadate HoVO 3 reveals gradual orbital ordering (OO) below T OO =200 K and orders antiferromagnetically at T N =113 K. A first-order structural phase transition takes place at T S ∼38 K, which is probably accompanied by change of the OO type and hence the type of antiferromagnetic spin ordering

  19. Radiation defects produced by neutron irradiation in germanium single crystals

    International Nuclear Information System (INIS)

    Fukuoka, Noboru; Honda, Makoto; Atobe, Kozo; Yamaji, Hiromichi; Ide, Mutsutoshi; Okada, Moritami.

    1992-01-01

    The nature of defects produced in germanium single crystals by neutron irradiation at 25 K was studied by measuring the electrical resistivity. It was found that two levels located at E c -0.06 eV and E c -0.13 eV were introduced in an arsenic-doped sample. Electron traps at E c -0.10eV were observed in an indium-doped sample. The change in electrical resistivity during irradiation was also studied. (author)

  20. Single crystal NMR studies of high temperature superconductors

    International Nuclear Information System (INIS)

    Pennington, C.H.; Durand, D.J.; Zax, D.B.; Slichter, C.P.; Rice, J.P.; Bukowski, E.D.; Ginsberg, D.M.

    1989-01-01

    The authors report Cu NMR studies in the normal state of a single crystal of the T/sub c/ = 90 K superconductor YBa 2 Cu 3 O/sub 7/minus/δ/. The authors have measured the magnetic shift tensor, the electric field gradient tensor, the nuclear spin-lattice relaxation rate tensor, and the time dependence and functional form of the transverse decay. From these data they obtain information about the charge state and magnetic state of the Cu atoms, and the existence and size of the electronic exchange coupling between spins of adjacent Cu atoms. 18 refs., 3 figs., 2 tabs

  1. Mechanical and optical nanodevices in single-crystal quartz

    Science.gov (United States)

    Sohn, Young-Ik; Miller, Rachel; Venkataraman, Vivek; Lončar, Marko

    2017-12-01

    Single-crystal α-quartz, one of the most widely used piezoelectric materials, has enabled a wide range of timing applications. Owing to the fact that an integrated thin-film based quartz platform is not available, most of these applications rely on macroscopic, bulk crystal-based devices. Here, we show that the Faraday cage angled-etching technique can be used to realize nanoscale electromechanical and photonic devices in quartz. Using this approach, we demonstrate quartz nanomechanical cantilevers and ring resonators featuring Qs of 4900 and 8900, respectively.

  2. Crystal structure and magnetic susceptibility of UOSe single crystals

    International Nuclear Information System (INIS)

    Kaczorowski, D.; Muenster Univ.; Poettgen, R.; Jeitschko, W.; Gajek, Z.; Zygmunt, A.

    1993-01-01

    The crystal structure and magnetic susceptibility behaviour of UOSe single crystals have been studied. UOSe crystalizes in the tetragonal PbFC1-type structure (space group P4/nmm) with the lattice parameters: a = 390.38(5) pm and c = 698.05(9) pm. It orders antiferromagnetically at T N =100±2 K and exhibits a very strong anisotropy in the susceptibility vs temperature variation. The magnetic and thermodynamic properties of UOSe are successfully interpreted in the framework of a perturbative ab initio crystal field approach. (Author)

  3. Crystal structure and magnetic susceptibility of UOSe single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kaczorowski, D. (Polish Academy of Sciences, Wroclaw (Poland). Inst. for Low Temperature and Structure Research Muenster Univ. (Germany). Anorganisch-Chemisches Inst.); Poettgen, R.; Jeitschko, W. (Muenster Univ. (Germany). Anorganisch-Chemisches Inst.); Gajek, Z.; Zygmunt, A. (Polish Academy of Sciences, Wroclaw (Poland). Inst. for Low Temperature and Structure Research)

    1993-01-01

    The crystal structure and magnetic susceptibility behaviour of UOSe single crystals have been studied. UOSe crystalizes in the tetragonal PbFC1-type structure (space group P4/nmm) with the lattice parameters: a = 390.38(5) pm and c = 698.05(9) pm. It orders antiferromagnetically at T[sub N]=100[+-]2 K and exhibits a very strong anisotropy in the susceptibility vs temperature variation. The magnetic and thermodynamic properties of UOSe are successfully interpreted in the framework of a perturbative ab initio crystal field approach. (Author).

  4. Nonstoichiometry and conductivity anisotropy of lead germanate single crystals

    International Nuclear Information System (INIS)

    Jermakov, O.S.; Duda, V.M.

    2010-01-01

    The conductivity of lead germanate single crystals with the stoichiometric composition, PbO deficiency, and PbO excess has been measured. A reduction of the PbO fraction in the initial blend leads to a considerable increase of the conductivity, because the fraction of lead ions which change their valency from Pb 2+ to Pb 3+ grows. The relative arrangement of lead ions, which are able to change their valency and trap holes, can be responsible for a significant anisotropy of conductivity.

  5. Magnetic anisotropy of YNi2B2C single crystals

    International Nuclear Information System (INIS)

    Baran, M.; Gladczuk, L.; Gorecka, J.; Szymczak, H.; Szymczak, R.; Drzazga, Z.; Winiarska, H.

    1994-01-01

    Reversible and irreversible magnetization processes in YNi 2 B 2 C single crystal have been measured and analysed in terms of existing theories. Performed measurements suggest that anisotropy of the effective mass in YNi 2 B 2 C superconductor is rather small and similar to that observed in conventional superconductors. Effect of hydrostatic pressure on T c is shown to be typical of low-temperature superconductors. It is suggested that the layered structure of YNi 2 B 2 C has some effect on the irreversible magnetization processes observed in this superconductor. ((orig.))

  6. Flexible Semitransparent Energy Harvester with High Pressure Sensitivity and Power Density Based on Laterally Aligned PZT Single-Crystal Nanowires.

    Science.gov (United States)

    Zhao, Quan-Liang; He, Guang-Ping; Di, Jie-Jian; Song, Wei-Li; Hou, Zhi-Ling; Tan, Pei-Pei; Wang, Da-Wei; Cao, Mao-Sheng

    2017-07-26

    A flexible semitransparent energy harvester is assembled based on laterally aligned Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) single-crystal nanowires (NWs). Such a harvester presents the highest open-circuit voltage and a stable area power density of up to 10 V and 0.27 μW/cm 2 , respectively. A high pressure sensitivity of 0.14 V/kPa is obtained in the dynamic pressure sensing, much larger than the values reported in other energy harvesters based on piezoelectric single-crystal NWs. Furthermore, theoretical and finite element analyses also confirm that the piezoelectric voltage constant g 33 of PZT NWs is competitive to the lead-based bulk single crystals and ceramics, and the enhanced pressure sensitivity and power density are substantially linked to the flexible structure with laterally aligned PZT NWs. The energy harvester in this work holds great potential in flexible and transparent sensing and self-powered systems.

  7. The SVX3D integrated circuit for dead-timeless silicon strip readout

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sciveres, M. E-mail: mgs@lbl.gov; Milgrome, O.; Zimmerman, T.; Volobouev, I.; Ely, R.P.; Connolly, A.; Fish, D.; Affolder, T.; Sill, A

    1999-10-01

    The revision D of the SVX3 readout IC has been fabricated in the Honeywell radiation-hard 0.8 {mu}m bulk CMOS process, for instrumenting 712,704 silicon strips in the upgrade to the Collider Detector at Fermilab. This final revision incorporates new features and changes to the original architecture that were added to meet the goal of dead-timeless operation. This paper describes the features central to dead-timeless operation, and presents test data for un-irradiated and irradiated SVX3D chips. (author)

  8. Effect of recombination on the open-circuit voltage of a silicon solar cell

    Science.gov (United States)

    Von Roos, O.; Landsberg, P. T.

    1985-01-01

    A theoretical study of the influence of band-band Auger, band-trap Auger, and the ordinary Shockley-Read-Hall mechanism for carrier recombination on the open-circuit voltage VOC of a solar cell is presented. Under reasonable assumptions for the magnitude of rate constants and realistic values for trap densities, surface recombination velocities and band-gap narrowing, the maximum VOC for typical back surface field solar cells is found to lie in the range between 0.61 and 0.72 V independent of base width.

  9. Stacking fault tetrahedron induced plasticity in copper single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liang, E-mail: lz592@uowmail.edu.au [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Lu, Cheng, E-mail: chenglu@uow.edu.au [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Tieu, Kiet; Su, Lihong; Zhao, Xing [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Pei, Linqing [Department of Mechanical Engineering, Chongqing University, Chongqing 400044 (China)

    2017-01-05

    Stacking fault tetrahedron (SFT) is the most common type of vacancy clustered defects in fcc metals and alloys, and can play an important role in the mechanical properties of metallic materials. In this study, molecular dynamics (MD) simulations were carried out to investigate the incipience of plasticity and the underlying atomic mechanisms in copper single crystals with SFT. Different deformation mechanisms of SFT were reported due to the crystal orientations and loading directions (compression and tension). The results showed that the incipient plasticity in crystals with SFT resulted from the heterogeneous dislocation nucleation from SFT, so the stress required for plastic deformation was less than that needed for perfect single crystals. Three crystal orientations ([1 0 0], [1 1 0] and [1 1 1]) were specified in this study because they can represent most of the typical deformation mechanisms of SFT. MD simulations revealed that the structural transformation of SFT was frequent under the applied loading; a metastable SFT structure and the collapse of SFT were usually observed. The structural transformation resulted in a different reduction of yield stress in compression and tension, and also caused a decreased or reversed compression/tension asymmetry. Compressive stress can result in the unfaulting of Frank loop in some crystal orientations. According to the elastic theory of dislocation, the process of unfaulting was closely related to the size of the dislocation loop and the stacking fault energy.

  10. Mesoscale martensitic transformation in single crystals of topological defects

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao; Martínez-González, José A.; Hernández-Ortiz, Juan P.; Ramírez-Hernández, Abelardo; Zhou, Ye; Sadati, Monirosadat; Zhang, Rui; Nealey, Paul F.; de Pablo, Juan J.

    2017-09-05

    Liquid crystal blue phases (BPs) are highly ordered at two levels. Molecules exhibit orientational order at nanometer length scales, while chirality leads to ordered arrays of doubletwisted cylinders over micrometer scales. Past studies of polycrystalline BPs were challenged by grain boundaries between randomly oriented crystalline nanodomains. Here, the nucleation of BPs is controlled with considerable precision by relying on chemically nano-patterned surfaces, leading to macroscopic single-crystal BP specimens where the dynamics of meso-crystal formation can be directly observed. Theory and experiments show that transitions between two BPs having a different network structure proceed through local re-organization of the crystalline array, without diffusion of the double twisted cylinders. In solid crystals, martensitic transformations between crystal structures involve the concerted motion of a few atoms, without diffusion. The transformation between BPs, where crystal features arise in the sub-micron regime, is found to be martensitic in nature, with the diffusion-less feature associated to the collective behavior of the double twist cylinders. Single-crystal BPs are shown to offer fertile grounds for the study of directed crystal-nucleation and the controlled growth of soft matter.

  11. Large single-crystal diamond substrates for ionizing radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Girolami, Marco; Bellucci, Alessandro; Calvani, Paolo; Trucchi, Daniele M. [Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Sede Secondaria di Montelibretti, Monterotondo Stazione, Roma (Italy)

    2016-10-15

    The need for large active volume detectors for ionizing radiations and particles, with both large area and thickness, is becoming more and more compelling in a wide range of applications, spanning from X-ray dosimetry to neutron spectroscopy. Recently, 8.0 x 8.0 mm{sup 2} wide and 1.2 mm thick single-crystal diamond plates have been put on the market, representing a first step to the fabrication of large area monolithic diamond detectors with optimized charge transport properties, obtainable up to now only with smaller samples. The more-than-double thickness, if compared to standard plates (typically 500 μm thick), demonstrated to be effective in improving the detector response to highly penetrating ionizing radiations, such as γ-rays. Here we report on the first measurements performed on large active volume single-crystal diamond plates, both in the dark and under irradiation with optical wavelengths (190-1100 nm), X-rays, and radioactive γ-emitting sources ({sup 57}Co and {sup 22}Na). (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Chiral multichromic single crystals for optical devices (LDRD 99406).

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Richard Alan; Felix, Ana M. (University of New Mexico, Albuquerque, NM)

    2006-12-01

    This report summarizes our findings during the study of a novel system that yields multi-colored materials as products. This system is quite unusual as it leads to multi-chromic behavior in single crystals, where one would expect that only a single color would exist. We have speculated that these novel solids might play a role in materials applications such as non-linear optics, liquid crystal displays, piezoelectric devices, and other similar applications. The system examined consisted of a main-group alkyl compound (a p block element such as gallium or aluminum) complexed with various organic di-imines. The di-imines had substituents of two types--either alkyl or aromatic groups attached to the nitrogen atoms. We observed that single crystals, characterized by X-ray crystallography, were obtained in most cases. Our research during January-July, 2006, was geared towards understanding the factors leading to the multi-chromic nature of the complexes. The main possibilities put forth initially considered (a) the chiral nature of the main group metal, (b) possible reduction of the metal to a lower-valent, radical state, (c) the nature of the ligand(s) attached to the main group metal, and (d) possible degradation products of the ligand leading to highly-colored products. The work carried out indicates that the most likely explanation considered involves degradation of the aromatic ligands (a combination of (c) and (d)), as the experiments performed can clearly rule out (a) and (b).

  13. Plastic deformation of Ni3Nb single crystals

    International Nuclear Information System (INIS)

    Hagihara, Kouji; Nakano, Takayoshi; Umakoshi, Yukichi

    1999-01-01

    Temperature dependence of yield stress and operative slip system in Ni 3 Nb single crystals with the D0 a structure was investigated in comparison with that in an analogous L1 2 structure. Compression tests were performed at temperatures between 20 C and 1,200 C for specimens with loading axes perpendicular to (110), (331) and (270). (010)[100] slip was operative for three orientations, while (010)[001] slip for (331) and [211] twin for (270) orientations were observed, depending on deformation temperature. The critical resolved shear stress (CRSS) for the (010)[100] slip anomaly increased with increasing temperature showing a maximum peak between 400 C and 800 C depending on crystal orientation. The CRSS showed orientation dependence and no significant strain rate dependence in the temperature range for anomalous strengthening. The [100] dislocations with a screw character were aligned on the straight when the anomalous strengthening occurred. The anomalous strengthening mechanism for (010)[100] slip in Ni 3 Nb single crystals is discussed on the basis of a cross slip model which has been widely accepted for some L1 2 -type compounds

  14. Strength anomaly in B2 FeAl single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimi, K.; Hanada, S.; Yoo, M.H. [Oak Ridge National Lab., TN (United States); Matsumoto, N. [Tohoku Univ. (Japan). Graduate School

    1994-12-31

    Strength and deformation microstructure of B2 Fe-39 and 48%Al single crystals (composition given in atomic percent), which were fully annealed to remove frozen-in vacancies, have been investigated at temperatures between room temperature and 1073K. The hardness of as-homogenized Fe-48Al is higher than that of as-homogenized Fe-39Al while after additional annealing at 698K the hardness of Fe-48Al becomes lower than that of Fe-39Al. Fe-39Al single crystals slowly cooled after homogenizing at a high temperature were deformed in compression as a function of temperature and crystal orientation. A peak of yield strength appears around 0.5T{sub m} (T{sub m} = melting temperature). The orientation dependence of the critical resolved shear stress does not obey Schmid`s law even at room temperature and is quite different from that of b.c.c. metals and B2 intermetallics at low temperatures. At the peak temperature slip transition from <111>-type to <001>-type is found to occur macroscopically and microscopically, while it is observed in TEM that some of the [111] dislocations decompose into [101] and [010] on the (1096I) plane below the peak temperature. The physical sources for the positive temperature dependence of yield stress of B2 FeAl are discussed based on the obtained results.

  15. Fabrication and simulation of single crystal p-type Si nanowire using SOI technology

    International Nuclear Information System (INIS)

    Dehzangi, Arash; Larki, Farhad; Naseri, Mahmud G.; Navasery, Manizheh; Majlis, Burhanuddin Y.; Razip Wee, Mohd F.; Halimah, M.K.; Islam, Md. Shabiul; Md Ali, Sawal H.; Saion, Elias

    2015-01-01

    Highlights: • Single crystal silicon nanowire is fabricated on Si on insulator substrate, using atomic force microscope (AFM) nanolithography and KOH + IPA chemical wet etching. • Some of major parameters in fabrication process, such as writing speed and applied voltage along with KOH etching depth are investigated, and then the I–V characteristic of Si nanowires is measured. • For better understanding of the charge transmission through the nanowire, 3D-TCAD simulation is performed to simulate the Si nanowires with the same size of the fabricated ones, and variation of majority and minority carriers, hole quasi-Fermi level and generation/recombination rate are investigated. - Abstract: Si nanowires (SiNWs) as building blocks for nanostructured materials and nanoelectronics have attracted much attention due to their major role in device fabrication. In the present work a top-down fabrication approach as atomic force microscope (AFM) nanolithography was performed on Si on insulator (SOI) substrate to fabricate a single crystal p-type SiNW. To draw oxide patterns on top of the SOI substrate local anodic oxidation was carried out by AFM in contact mode. After the oxidation procedure, an optimized solution of 30 wt.% KOH with 10 vol.% IPA for wet etching at 63 °C was applied to extract the nanostructure. The fabricated SiNW had 70–85 nm full width at half maximum width, 90 nm thickness and 4 μm length. The SiNW was simulated using Sentaurus 3D software with the exact same size of the fabricated device. I–V characterization of the SiNW was measured and compared with simulation results. Using simulation results variation of carrier's concentrations, valence band edge energy and recombination generation rate for different applied voltage were investigated

  16. Fabrication and simulation of single crystal p-type Si nanowire using SOI technology

    Energy Technology Data Exchange (ETDEWEB)

    Dehzangi, Arash, E-mail: arashd53@hotmail.com [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Larki, Farhad [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Naseri, Mahmud G. [Department of Physics, Faculty of Science, Malayer University, Malayer, Hamedan (Iran, Islamic Republic of); Navasery, Manizheh [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Majlis, Burhanuddin Y.; Razip Wee, Mohd F. [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Halimah, M.K. [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Islam, Md. Shabiul; Md Ali, Sawal H. [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Saion, Elias [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)

    2015-04-15

    Highlights: • Single crystal silicon nanowire is fabricated on Si on insulator substrate, using atomic force microscope (AFM) nanolithography and KOH + IPA chemical wet etching. • Some of major parameters in fabrication process, such as writing speed and applied voltage along with KOH etching depth are investigated, and then the I–V characteristic of Si nanowires is measured. • For better understanding of the charge transmission through the nanowire, 3D-TCAD simulation is performed to simulate the Si nanowires with the same size of the fabricated ones, and variation of majority and minority carriers, hole quasi-Fermi level and generation/recombination rate are investigated. - Abstract: Si nanowires (SiNWs) as building blocks for nanostructured materials and nanoelectronics have attracted much attention due to their major role in device fabrication. In the present work a top-down fabrication approach as atomic force microscope (AFM) nanolithography was performed on Si on insulator (SOI) substrate to fabricate a single crystal p-type SiNW. To draw oxide patterns on top of the SOI substrate local anodic oxidation was carried out by AFM in contact mode. After the oxidation procedure, an optimized solution of 30 wt.% KOH with 10 vol.% IPA for wet etching at 63 °C was applied to extract the nanostructure. The fabricated SiNW had 70–85 nm full width at half maximum width, 90 nm thickness and 4 μm length. The SiNW was simulated using Sentaurus 3D software with the exact same size of the fabricated device. I–V characterization of the SiNW was measured and compared with simulation results. Using simulation results variation of carrier's concentrations, valence band edge energy and recombination generation rate for different applied voltage were investigated.

  17. Towards UV imaging sensors based on single-crystal diamond chips for spectroscopic applications

    Energy Technology Data Exchange (ETDEWEB)

    De Sio, A. [Department of Astronomy and Space Science, University of Firenze, Largo E. Fermi 2, 50125 Florence (Italy)], E-mail: desio@arcetri.astro.it; Bocci, A. [Department of Astronomy and Space Science, University of Firenze, Largo E. Fermi 2, 50125 Florence (Italy); Bruno, P.; Di Benedetto, R.; Greco, V.; Gullotta, G. [INAF-Astrophysical Observatory of Catania (Italy); Marinelli, M. [INFN-Department of Mechanical Engineering, University of Roma ' Tor Vergata' (Italy); Pace, E. [Department of Astronomy and Space Science, University of Firenze, Largo E. Fermi 2, 50125 Florence (Italy); Rubulotta, D.; Scuderi, S. [INAF-Astrophysical Observatory of Catania (Italy); Verona-Rinati, G. [INFN-Department of Mechanical Engineering, University of Roma ' Tor Vergata' (Italy)

    2007-12-11

    The recent improvements achieved in the Homoepitaxial Chemical Vapour Deposition technique have led to the production of high-quality detector-grade single-crystal diamonds. Diamond-based detectors have shown excellent performances in UV and X-ray detection, paving the way for applications of diamond technology to the fields of space astronomy and high-energy photon detection in harsh environments or against strong visible light emission. These applications are possible due to diamond's unique properties such as its chemical inertness and visible blindness, respectively. Actually, the development of linear array detectors represents the main issue for a full exploitation of diamond detectors. Linear arrays are a first step to study bi-dimensional sensors. Such devices allow one to face the problems related to pixel miniaturisation and of signal read-out from many channels. Immediate applications would be in spectroscopy, where such arrays are preferred. This paper reports on the development of imaging detectors made by our groups, starting from the material growth and characterisation, through the design, fabrication and packaging of 2xn pixel arrays, to their electro-optical characterisation in terms of UV sensitivity, uniformity of the response and to the development of an electronic circuit suitable to read-out very low photocurrent signals. The detector and its electronic read-out were then tested using a 2x5 pixel array based on a single-crystal diamond. The results will be discussed in the framework of the development of an imager device for X-UV astronomy applications in space missions.

  18. Strength and deformation of shocked diamond single crystals: Orientation dependence

    Science.gov (United States)

    Lang, J. M.; Winey, J. M.; Gupta, Y. M.

    2018-03-01

    Understanding and quantifying the strength or elastic limit of diamond single crystals is of considerable scientific and technological importance, and has been a subject of long standing theoretical and experimental interest. To examine the effect of crystalline anisotropy on strength and deformation of shocked diamond single crystals, plate impact experiments were conducted to measure wave profiles at various elastic impact stresses up to ˜120 GPa along [110] and [111] crystal orientations. Using laser interferometry, particle velocity histories and shock velocities in the diamond samples were measured and were compared with similar measurements published previously for shock compression along the [100] direction. Wave profiles for all three orientations showed large elastic wave amplitudes followed by time-dependent inelastic deformation. From the measured wave profiles, the elastic limits were determined under well characterized uniaxial strain loading conditions. The measured elastic wave amplitudes for the [110] and [111] orientations were lower for higher elastic impact stress (stress attained for an elastic diamond response), consistent with the result reported previously for [100] diamond. The maximum resolved shear stress (MRSS) on the {111}⟨110⟩ slip systems was determined for each orientation, revealing significant orientation dependence. The MRSS values for the [100] and [110] orientations (˜33 GPa) are 25%-30% of theoretical estimates; the MRSS value for the [111] orientation is significantly lower (˜23 GPa). Our results demonstrate that the MRSS depends strongly on the stress component normal to the {111} planes or the resolved normal stress (RNS), suggesting that the RNS plays a key role in inhibiting the onset of inelastic deformation. Lower elastic wave amplitudes at higher peak stress and the effect of the RNS are inconsistent with typical dislocation slip mechanisms of inelastic deformation, suggesting instead an inelastic response

  19. Inorganic Lead Halide Perovskite Single Crystals: Phase-Selective Low-Temperature Growth, Carrier Transport Properties, and Self-Powered Photodetection

    KAUST Repository

    Saidaminov, Makhsud I.

    2016-12-06

    A rapid, low-temperature, and solution-based route is developed for growing large-sized cesium lead halide perovskite single crystals under ambient conditions. An ultralow minority carrier concentration was measured in CsPbBr3 (≈108 holes per cm3, much lower than in any other lead halide perovskite and crystalline silicon), which enables to realize self-powered photodetectors with a high ON/OFF ratio (105).

  20. Polarised IR-microscope spectra of guanidinium hydrogensulphate single crystal.

    Science.gov (United States)

    Drozd, M; Baran, J

    2006-07-01

    Polarised IR-microscope spectra of C(NH(2))(3)*HSO(4) small single crystal samples were measured at room temperature. The spectra are discussed on the basis of oriented gas model approximation and group theory. The stretching nuOH vibration of the hydrogen bond with the Ocdots, three dots, centeredO distance of 2.603A gives characteristic broad AB-type absorption in the IR spectra. The changes of intensity of the AB bands in function of polariser angle are described. Detailed assignments for bands derived from stretching and bending modes of sulphate anions and guanidinium cations were performed. The observed intensities of these bands in polarised infrared spectra were correlated with theoretical calculation of directional cosines of selected transition dipole moments for investigated crystal. The vibrational studies seem to be helpful in understanding of physical and chemical properties of described compound and also in design of new complexes with exactly defined behaviors.

  1. Polarized IR-microscope spectra of guanidinium hydrogenselenate single crystal.

    Science.gov (United States)

    Drozd, M; Baran, J

    2005-10-01

    The polarized IR-microscope spectra of C(NH2)3.HSeO4 small single crystal samples were measured at room temperature. The spectra are discussed with the framework of oriented gas model approximation and group theory. The stretching nuOH vibration of the hydrogen bond with the O...O distance of 2.616 A gives characteristic broad AB-type absorption in the IR spectra. The changes of intensity of the AB bands in function of polarizer angle are described. Detailed assignment for bands derived from stretching and bending modes of selenate anions and guanidinium cations were performed. The observed intensities of these bands in polarized infrared spectra were correlated with theoretical calculation of directional cosines of selected transition dipole moments for investigated crystal. The vibrational studies seem to be helpful in understanding of physical and chemical properties of described compound and also in design of new complexes with exactly defined behaviors.

  2. Mesoporous zeolite and zeotype single crystals synthesized in fluoride media

    DEFF Research Database (Denmark)

    Egeblad, Kresten; Kustova, Marina; Klitgaard, Søren Kegnæs

    2007-01-01

    We report the synthesis and characterization of a series of new mesoporous zeolite and zeotype materials made available by combining new and improved procedures for directly introducing carbon into reaction mixtures with the fluoride route for conventional zeolite synthesis. The mesoporous...... materials were all prepared by hydrothermal crystallization of gels adsorbed on carbon matrices which were subsequently removed by combustion. The procedures presented here resulted in mesoporous zeolite and zeotypes materials with MFI, MEL, BEA, AFI and CHA framework structures. All samples were...... characterized by XRPD, SEM, TEM and N-2 physisorption measurements. For the zeolite materials it A as found that mesoporous MFI and MEL structured single crystals could indeed be crystallized from fluoride media using an improved carbon-templating approach. More importantly, it was found that mesoporous BEA...

  3. Twinning structures in near-stoichiometric lithium niobate single crystals

    International Nuclear Information System (INIS)

    Yao, Shuhua; Chen, Yanfeng

    2010-01-01

    A near-stoichiometric lithium niobate single crystal has been grown by the Czochralski method in a hanging double crucible with a continuous powder supply system. Twins were found at one of the three characteristic growth ridges of the as-grown crystal. The twin structure was observed and analyzed by transmission synchrotron topography. The image shifts ΔX and ΔY in the transmission synchrotron topograph were calculated for the 3 anti 2 anti 12 and 0 anti 222 reflections based on results from high-resolution X-ray diffractometry. It is confirmed that one of the {01 anti 1 anti 2} m planes is the composition face of the twin and matrix crystals. The formation mechanism of these twins is discussed. (orig.)

  4. Giant negative photoresistance of ZnO single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Barzola-Quiquia, Jose; Esquinazi, Pablo [Division of Superconductivity and Magnetism, University of Leipzig (Germany); Heluani, Silvia [Laboratorio de Fisica del Solido, FCEyT, Universidad Nacional de Tucuman, 4000 S. M. de Tucuman (Argentina); Villafuerte, Manuel [Dept. de Fisica, FCEyT, Universidad Nacional de Tucuman (Argentina); CONICET, Tucuman (Argentina); Poeppl, Andreas [Division of Magnetic Resonance of Complex Quantum Solids, University of Leipzig, D-04103 Leipzig (Germany)

    2011-07-01

    ZnO is a wide band gap semiconductor exhibiting the largest charge-carrier mobility among oxides. ZnO is a material with potential applications for short-wavelength optoelectronic devices, as a blue light emitting diodes and in spintronics. In this contribution we have measured the temperature dependence (30 K < T < 300 K) of the electrical resistance of ZnO single crystals prepared by hydrothermal method in darkness and under the influence of light in the ultraviolet range. The resistance decreases several orders of magnitude at temperatures T < 200 K after illumination. Electron paramagnetic resonance studies under illumination reveal that the excitation of Li acceptor impurities is the origin for the giant negative photoresistance effect. Permanent photoresistance effect is also observed, which remains many hours after leaving the crystal in darkness.

  5. Neutron transmission and reflection at a copper single crystal

    International Nuclear Information System (INIS)

    Adib, M.; Maayouf, R.M.A.; Abdel-Kawy, A.; Fayek, M.; Habib, N.; Wahba, M.

    1991-01-01

    Neutron transmission and reflection at a copper single crystal cut along the (111) plane were studied with the fixed-scattering-angle spectrometer installed at the ET-RR-1 reactor. The transmission was measured for neutron wavelengths between 0.15 and 0.46 nm and various orientations of the (111) plane with respect to the incident beam. When used as a neutron band pass filter, the crystal is optimally oriented when the neutron beam is incident parallel to the [111] direction. The reflectivity was measured for the (111) plane at 45deg with respect to the incident beam. The results were found to be in reasonable agreement with a value predicted for the reflected intensity at an imperfect crystal with finite absorption. (orig.) [de

  6. IPNS time-of-flight single crystal diffractometer

    International Nuclear Information System (INIS)

    Schultz, A.J.; Teller, R.G.; Williams, J.M.

    1983-01-01

    The single crystal diffractometer (SCD) at the Argonne Intense Pulsed Neutron Source (IPNS) utilizes the time-of-flight (TOF) Laue technique to provide a three-dimensional sampling of reciprocal space during each pulse. The instrument contains a unique neutron position-sensitive 6 Li-glass scintillation detector with an active area of 30 x 30 cm. The three-dimensional nature of the data is very useful for fast, efficient measurement of Bragg intensities and for the studies of superlattice and diffuse scattering. The instrument was designed to achieve a resolution of 2% or better (R = δQ/Q) with 2 THETA > 60 0 and lambda > 0.7A

  7. Thermal conductivity of niobium single crystals in a magnetic field

    International Nuclear Information System (INIS)

    Gladun, C.; Vinzelberg, H.

    1980-01-01

    The thermal conductivity in longitudinal magnetic fields up to 5 T and in the temperature range 3.5 to 15 K is measured in two high purity niobium single crystals having residual resistivity ratios of 22700 and 19200 and orientations of the rod axis [110] and [100]. The investigations show that by means of the longitudinal magnetic field the thermal conductivity may decrease only to a limiting value. In the crystal directions [110] and [100] for the ratio of the thermal conductivity in zero field and the thermal conductivity in the saturation field the temperature-independent factors 1.92 and 1.27, respectively, are determined. With the aid of these factors the thermal conductivity in the normal state is evaluated from the measured values of thermal conductivity below Tsub(c) in the magnetic field. The different conduction and scattering mechanisms are discussed. (author)

  8. Superconductivity in SrNi2P2 single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ronning, Filip [Los Alamos National Laboratory; Bauer, Eric D [Los Alamos National Laboratory; Park, Tuscon [Los Alamos National Laboratory; Thompson, Joe D [Los Alamos National Laboratory

    2009-01-01

    Heat capacity, magnetic susceptibility, and resistivity of SrNi{sub 2}P{sub 2} single crystals are presented, illustrating the structural transition at 325 K, and bulk superconductivity at 1.4 K. The magnitude of {Tc}, fits to the heat capacity data, the small upper critical field H{sub c2} = 390 Oe, and {kappa} = 2.1 suggests a conventional fully gapped superconductor. With applied pressure we find that superconductivity persists into the so-called 'collapsed tetragonal' phase, although the transition temperature is monotonically suppressed with increasing pressure. This argues that reduced dimensionality can be a mechanism for increasing the transition temperatures of layered NiP, as well as layered FeAs and NiAs, superconductors.

  9. Microscopic single-crystal refractometry as a function of wavelength

    International Nuclear Information System (INIS)

    DeLoach, L.D.

    1994-01-01

    The refractive indices of crystal fragments 50--200 μm in size can be measured for light wavelengths between 365 and 1100 nm with a spindle-stage refractometer. Established methods from optical crystallograpy are used to orient a crystal on the microscope spindle stage and then to match its refractive index to an immersion fluid. The refractive index of the fluid for the wavelength of light and matching temperature is determined by comparison of a reference crystal on a second spindle axis with the fluid under the match conditions. Investigations of new nonlinear-optical crystals admirably demonstrate the advantages of measuring the refractive index to ± 0.0004 in small single crystals

  10. Induced defects in neutron irradiated GaN single crystals

    International Nuclear Information System (INIS)

    Park, I. W.; Koh, E. K.; Kim, Y. M.; Choh, S. H.; Park, S. S.; Kim, B. G.; Sohn, J. M.

    2005-01-01

    The local structure of defects in undoped, Si-doped, and neutron irradiated free standing GaN bulk crystals, grown by hydride vapor phase epitaxy, has been investigated by employing Raman scattering and cathodoluminescence. The GaN samples were irradiated to a dose of 2 x 10 17 neutrons in an atomic reactor at Korea Atomic Energy Research Institute. There was no appreciable change in the Raman spectra for undoped GaN samples before and after neutron irradiation. However, a forbidden transition, A 1 (TO) mode, appeared for a neutron irradiated Si-doped GaN crystal. Cathodoluminescence spectrum for the neutron irradiated Si-doped GaN crystal became much more broadened than that for the unirradiated one. The experimental results reveal the generation of defects with locally deformed structure in the wurtzite Si-doped GaN single crystal

  11. Quantum nernst effect in a bismuth single crystal

    International Nuclear Information System (INIS)

    Matsuo, M.; Endo, A.; Hatano, N.; Nakamura, H.; Shirasaki, R.; Sugihara, K.

    2009-07-01

    We calculate the phonon-drag contribution to the transverse (Nernst) thermoelectric power S yx in a bismuth single crystal subjected to a quantizing magnetic field. The calculated heights of the Nernst peaks originating from the hole Landau levels and their temperature dependence reproduce the right order of magnitude for those of the pronounced magneto-oscillations recently reported by Behnia et al. A striking experimental finding that S yx is much larger than the longitudinal (Seebeck) thermoelectric power S xx can be naturally explained as the effect of the phonon drag, combined with the well-known relation between the longitudinal and the Hall resistivity ρ xx >> |ρ yx | in a semi-metal bismuth. The calculation that includes the contribution of both holes and electrons suggests that some of the hitherto unexplained minor peaks located roughly at the fractional filling of the hole Landau levels are attributable to the electron Landau levels. (author)

  12. Shock compression experiments on Lithium Deuteride single crystals.

    Energy Technology Data Exchange (ETDEWEB)

    Knudson, Marcus D.; Desjarlais, Michael Paul; Lemke, Raymond W.

    2014-10-01

    S hock compression exper iments in the few hundred GPa (multi - Mabr) regime were performed on Lithium Deuteride (LiD) single crystals . This study utilized the high velocity flyer plate capability of the Sandia Z Machine to perform impact experiments at flyer plate velocities in the range of 17 - 32 km/s. Measurements included pressure, density, and temperature between %7E200 - 600 GPa along the Principal Hugoniot - the locus of end states achievable through compression by large amplitude shock waves - as well as pressure and density of re - shock states up to %7E900 GPa . The experimental measurements are compared with recent density functional theory calculations as well as a new tabular equation of state developed at Los Alamos National Labs.

  13. Optical properties of Sulfur doped InP single crystals

    Science.gov (United States)

    El-Nahass, M. M.; Youssef, S. B.; Ali, H. A. M.

    2014-05-01

    Optical properties of InP:S single crystals were investigated using spectrophotometric measurements in the spectral range of 200-2500 nm. The absorption coefficient and refractive index were calculated. It was found that InP:S crystals exhibit allowed and forbidden direct transitions with energy gaps of 1.578 and 1.528 eV, respectively. Analysis of the refractive index in the normal dispersion region was discussed in terms of the single oscillator model. Some optical dispersion parameters namely: the dispersion energy (Ed), single oscillator energy (Eo), high frequency dielectric constant (ɛ∞), and lattice dielectric constant (ɛL) were determined. The volume and the surface energy loss functions (VELF & SELF) were estimated. Also, the real and imaginary parts of the complex conductivity were calculated.

  14. White beam synchrotron fractography of molybdenum and niobium single crystals

    International Nuclear Information System (INIS)

    Bilello, J.C.; Hmelo, A.B.

    1983-01-01

    It has been demonstrated that a White Beam Synchrotron reflection technique can be used to characterize the fracture surface of Mo and Nb single crystals. This technique when used in conjunction with Berg-Barrett (or in the future monochromatic synchrotron topography) gives detailed information which correlates the internal defect structure to the cleavage surface morphology. In particular, synchrotron fractography has revealed the full extent of the plastic zone associated with a precursor crack, has clearly identified the nature of the initial crack where more than one precursor could have existed, and give detailed information on the extent of twinning and microtwinning. In comparison with other fractography methods for such semi-brittle metals the White Beam Synchrotron method not only achieves rapid data collection, but also provides internal defect structure correlation non-destructively. (author)

  15. Trapped electrons in irradiated single crystals of polyhydroxy compounds

    International Nuclear Information System (INIS)

    Box, H.C.; Budzinski, E.E.; Freund, H.G.; Potter, W.R.

    1979-01-01

    The intermolecular trapping of electrons has been observed in single crystals of dulcitol and L(+) arabinose x-irradiated at 4.2 0 K. Attribution of a major component of the ESR absorption to trapped electrons is based upon the character of the hyperfine pattern, which arises from multiple anisotropic hyperfine interactions with exchangeable protons, and on the g value of the absorption, which is always less than the free spin value. The removal of the trapped electron absorption upon irradiation with visible light has also been demonstrated. In these experiments all of the electrons are trapped in identical sites. This circumstance provides some important advantages in the study of the factors affecting the stabilization of charge in an environment of polarizable molecules

  16. Growth of single-crystal YAG fiber optics.

    Science.gov (United States)

    Nie, Craig D; Bera, Subhabrata; Harrington, James A

    2016-07-11

    Single-crystal YAG (Y3Al5O12) fibers have been grown by the laser heated pedestal growth technique with losses as low as 0.3 dB/m at 1.06 μm. These YAG fibers are as long as about 60 cm with diameters around 330 μm. The early fibers were grown from unoriented YAG seed fibers and these fibers exhibited facet steps or ridges on the surface of the fiber. However, recently we have grown fibers using an oriented seed to grow step-free fibers. Scattering losses made on the fibers indicate that the scattering losses are equal to about 30% of the total loss.

  17. Platinum single crystal electrodes for the electrocatalysis of methane oxidation

    Directory of Open Access Journals (Sweden)

    Mayara Munaretto

    2011-03-01

    Full Text Available The main objective of this paper is to characterize the voltammetric profiles of platinum single crystals of low Miller indexes Pt(100 and Pt(110 and study their catalytic activities on the oxidation of methane. In this way, it was developed a metallic surface modified by presence of other metal oxide, which presents catalytic activity for this reaction. It is well known that the electrooxidation of methane (CH4 leads mainly to the formation of CO2 and H2O, however, the oxidation can also lead to the formation of CO, a reaction intermediate that has strong interaction with metal surfaces, such as platinum. This molecule tends to accumulate on the platinum surface and to passive it, due to the self-poisoning, decreasing its catalytic activity. Therefore, the main aim of this work was the development of a platinum electrode modified by deposition of titanium oxide, which presented electrocatalytic properties for the oxidation of methane.

  18. Phonon interactions with methyl radicals in single crystals

    Directory of Open Access Journals (Sweden)

    James W. Wells

    2017-04-01

    Full Text Available The high temperature ESR spectra’s anomalous appearance at very low temperatures for the methyl radical created in single crystals is explained by magnetic dipole interactions with neighboring protons. These protons acting via phonon vibrations induce resonant oscillations with the methyl group to establish a very temperature sensitive ‘‘relaxation’’ mode that allows the higher energy ‘‘E’’ state electrons with spin 12 to ‘‘decay’’ into ‘‘A’’ spin 12 states. Because of the amplitude amplification with temperature, the ‘‘E’’ state population is depleted and the ‘‘A’’ state population augmented to produce the high temperature ESR spectrum. This phenomenon is found to be valid for all but the very highest barriers to methyl group tunneling. In support, a time dependent spin population study shows this temperature evolution in the state populations under this perturbation.

  19. Neutron transmission and reflection at a copper single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M.; Maayouf, R.M.A.; Abdel-Kawy, A.; Fayek, M.; Habib, N. (Atomic Energy Establishment, Cairo (Egypt). Reactor and Neutron Physics Dept.); Wahba, M. (Ain Shams Univ., Cairo (Egypt). Dept. of Engineering Physics and Mathematics)

    1991-06-01

    Neutron transmission and reflection at a copper single crystal cut along the (111) plane were studied with the fixed-scattering-angle spectrometer installed at the ET-RR-1 reactor. The transmission was measured for neutron wavelengths between 0.15 and 0.46 nm and various orientations of the (111) plane with respect to the incident beam. When used as a neutron band pass filter, the crystal is optimally oriented when the neutron beam is incident parallel to the (111) direction. The reflectivity was measured for the (111) plane at 45deg with respect to the incident beam. The results were found to be in reasonable agreement with a value predicted for the reflected intensity at an imperfect crystal with finite absorption. (orig.).

  20. Neutron transmission of single-crystal sapphire filters

    International Nuclear Information System (INIS)

    Adib, M.; Kilany, M.; Habib, N.; Fathallah, M.

    2005-01-01

    An additive formula is given that permits the calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-sections as a function of sapphire temperature and crystal parameters. We have developed a computer program that allows calculations of the thermal neutron transmission for the sapphire rhombohedral structure and its equivalent trigonal structure. The calculated total cross-section values and effective attenuation coefficient for single-crystalline sapphire at different temperatures are compared with measured values. Overall agreement is indicated between the formula fits and experimental data. We discuss the use of sapphire single crystal as a thermal neutron filter in terms of the optimum crystal thickness, mosaic spread, temperature, cutting plane and tuning for efficient transmission of thermal-reactor neutrons. (author)

  1. Neutron Transmission of Single-crystal Sapphire Filters

    Science.gov (United States)

    Adib, M.; Kilany, M.; Habib, N.; Fathallah, M.

    2005-05-01

    An additive formula is given that permits the calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-sections as a function of sapphire temperature and crystal parameters. We have developed a computer program that allows calculations of the thermal neutron transmission for the sapphire rhombohedral structure and its equivalent trigonal structure. The calculated total cross-section values and effective attenuation coefficient for single-crystalline sapphire at different temperatures are compared with measured values. Overall agreement is indicated between the formula and experimental data. We discuss the use of sapphire single crystal as a thermal neutron filter in terms of the optimum cystal thickness, mosaic spread, temperature, cutting plane and tuning for efficient transmission of thermal-reactor neutrons.

  2. Neutron transmission of single-crystal sapphire filters

    International Nuclear Information System (INIS)

    Adib, M.; Kilany, M.; Habib, N.; Fathallah, M.

    2004-01-01

    A simple additive formula is given that permits the calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-sections as a function of sapphire temperature and crystal parameters. We have developed a computer program that allows calculations of the thermal neutron transmission for the sapphire rhombohedral structure and its equivalent trigonal structure. The calculated total cross-section values and effective attenuation coefficient for mono-crystalline sapphire at different temperatures are compared with measured values. Overall agreement is indicated between the formula fits and experimental data. We discuss the use of sapphire single-crystal as a thermal neutron filter in terms of the optimum crystal thickness, mosaic spread, temperature, cutting plane and tuning for efficient transmission of thermal-reactor neutrons

  3. Angular correlation of annihilation photons in ice single crystals

    DEFF Research Database (Denmark)

    Mogensen, O. E.; Kvajic, G.; Eldrup, Morten Mostgaard

    1971-01-01

    -lattice vectors g⃗ on the direction perpendicular to the slits and the sample surface. The relative area of the central plus the side peaks was (15.2 ± 0.4)% for all curves. All the peaks are interpreted as due to parapositronium annihilation. The side peaks are explained as evidence for the positronium center......Linear-slit angular-correlation curves were obtained at - 148 °C for the [0001], [10¯10], and [11¯20] directions in single crystals of ice. Besides the narrow central peak, pronounced narrow side peaks were also observed. They occurred at angles θ=2πℏgz/mc, where gz is the projection of reciprocal...

  4. Effect of neutron irradiation on single crystal V3Si

    International Nuclear Information System (INIS)

    Viswanathan, R.; Caton, R.; Cox, D.E.; Guha, A.; Sarachik, M.P.; Smith, F.W.; Testardi, L.R.

    1977-01-01

    We We have investigated the effect of successive neutron irradiation up to a fluence of approximately 2 x 10 19 n/cm 2 , by measurements of heat capacity, susceptibility, resistivity, acoustic velocity and neutron diffraction in a single crystal V 3 Si. We find that for low level doses (phi t greater than or equal to 3.5 x 10 18 n/cm 2 ) (a) the structural transformation is very sensitive, whereas the suerconducting transition temperature, T/sub c/, is hardly affected, and (b) except for low temperature heat capacity, most of the other measurements show very little change. For the highest fluence of 2 x 10 19 n/cm 2 used to date, the T/sub c/ dropped to 7.5 K with large changes in the linear heat capacity coefficient, magnetic susceptibility and sound velocity. These results are discussed briefly in this paper

  5. Neutron radiation damage in NbO single crystals

    International Nuclear Information System (INIS)

    Onozuka, T.; Koiwa, M.; Ishikawa, Y.; Yamaguchi, S.; Hirabayashi, M.

    1977-01-01

    The effect of neutron irradiation and subsequent recovery has been studied for Nb0 single crystals of a defective NaCl structure containing 25% vacancies of niobium and oxygen. A very large increase (about 1%) in the lattice constant is observed after irradiation of 1.5 x 10 19 and 1 x 10 20 nvt (> 1 MeV). From the intensity measurements of x-ray and neutron diffraction, it is revealed that the knock-on atoms fill preferentially their respective vacant sites; Nb atoms occupy Nb-vacancies, and 0 atoms occupy 0-vacancies with nearly the same probabilities; 0.53 for 1.5 x 10 19 nvt. The mean threshold energy for displacement is estimated to be about 3 eV. (author)

  6. Diffusion of Ti in α-Zr single crystals

    International Nuclear Information System (INIS)

    Hood, G.M.; Zou, H.; Schultz, R.J.; Jackman, J.A.

    1994-11-01

    Ti diffusion coefficients (D) have been measured in nominally pure αZr single crystals (773-1124 K) in directions both parallel (D pa ) and perpendicular (D pe , few data) to the c-axis: tracer techniques and secondary ion mass spectrometry were used to determine the diffusion profiles. The results show a temperature dependence which suggests two regions of diffusion behaviour. Above 1035 K, region I, diffusion conforms to the expectations of intrinsic behaviour with normal Arrhenius law constants: D pa = 1.7 x 10 -3 exp(-2.93 ± 0.08 eV/kΤ) m 2 /s. Below 1035 K, region II, D's are enhanced with respect to an extrapolation of region I behaviour. The region II data are associated with extrinsic effects. (author). 13 refs., 1 tab., 3 figs

  7. Fishtail effect in twinned and detwinned YBCO single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Boudissa, M. [Universite Ferhat Abbas, Faculte des Sciences de l' Ingenieur, Setif (Algeria); Halimi, R. [Universite Mentouri, Unite de Recherche de Physique des Materiaux, Constantine (Algeria); Frikach, K.; Senoussi, S. [Universite Paris-Sud, Laboratoire de Physique des Solides, Orsay (France)

    2006-09-15

    We have studied the magnetization hysteresis loops of a twinned and detwinned single crystals in a temperature range between 4.2 and 100 K and a magnetic field (H) range between 0 and 6 T. We carried out relaxation measurements on the samples at different temperatures and magnetic fields. We investigated the twin pinning as a function of temperature (T) and the fishtail anomaly in the critical current density of the two samples. We tried in this study to confirm or infirm the different models which explain the fishtail effect by confronting them to our experimental results We found that the collective creep theory is consistent with the results of our experiment in the field region where the magnetization is at its minimum. This field marks a crossover between the small and large bundle pinning regimes. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Fishtail effect in twinned and detwinned YBCO single crystals

    International Nuclear Information System (INIS)

    Boudissa, M.; Halimi, R.; Frikach, K.; Senoussi, S.

    2006-01-01

    We have studied the magnetization hysteresis loops of a twinned and detwinned single crystals in a temperature range between 4.2 and 100 K and a magnetic field (H) range between 0 and 6 T. We carried out relaxation measurements on the samples at different temperatures and magnetic fields. We investigated the twin pinning as a function of temperature (T) and the fishtail anomaly in the critical current density of the two samples. We tried in this study to confirm or infirm the different models which explain the fishtail effect by confronting them to our experimental results We found that the collective creep theory is consistent with the results of our experiment in the field region where the magnetization is at its minimum. This field marks a crossover between the small and large bundle pinning regimes. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Optical absorption in gel grown cadmium tartrate single crystals

    International Nuclear Information System (INIS)

    Arora, S K; Kothari, A J; Patel, R G; Chauha, K M; Chudasama, B N

    2006-01-01

    Single crystals of cadmium tartrate pentahydrate (CTP) have been grown by the famous gel technique. The slow and controlled reaction between Cd 2+ and (C 4 H 4 O 6 ) 2- ions in silica hydrogel results in formation of the insoluble product, CdC 4 H 4 O 6 .5H 2 O. Optical absorption spectra have been recorded in the range 200 to 2500 nm. Fundamental absorption edge for electronic transition has been analyzed. The direct allowed transition is found to be present in the region of relatively higher photon energy. Analysis of the segments of α 1/2 versus hν graph has been made to separate individual contribution of phonons. The phonons involved in the indirect transition are found to correspond to 335 and 420 cm -1 . Scattering of charge carriers in the lattice is found due to acoustic phonons

  10. Radiation damage mechanisms in single crystals of creatine monohydrate

    International Nuclear Information System (INIS)

    Wells, J.W.; Ko, C.

    1978-01-01

    ENDOR spectroscopy is utilized to define the temperature dependent sequence of molecular fragmentation processes occuring in x-irradiated single crystals of creatine monohydrate. Two conformations of the primary reduction product =OOC--C(H 2 ) --N(CH) 3 --C(NH 2 ) 2 + are found to undergo a series of subtle changes before deamination. The resultant radical -OOC--CH 2 then induces hydrogen abstraction to form a final room temperature product - OOC--CH--N(CH 3 ) --C(NH 2 ) + . An unknown initial oxidation species is found to decarboxylate forming the radical H 2 C--N(CH 3 ) --C(NH 2 ) 2 + which, although similar to the deamination product, exists at room temperature. The stability of this species is attributed to a delocalization of spin indicated by calculation and measurement

  11. Temperature and fluence effects in lead implanted cobalt single crystals

    International Nuclear Information System (INIS)

    Johansen, A.; Sarholt-Kristensen, L.; Johnson, E.; Steenstrup, S.; Chernysh, V.S.

    1988-01-01

    The channeled sputtering yields of the hcp and fcc phases of cobalt depend on the crystal structure and the radiation induced damage. Earlier irradiations of cobalt with argon ions channeled in the hcp direction give sputtering yields higher than expected in the temperature range 100-350deg C. This effect was attributed to a combination of radiation induced damage and a possible implantation induced hcp --> fcc phase transition. Sputtering yields for cobalt single crystals irradiated with 150 keV Pb + ions along the direction of the hcp phase and the direction of the fcc phase have been measured using the weightloss method. The radiation damage and the amount of lead retained in the implanted surface has been investigated by 'in situ' RBS/channeling analysis. Measured partial sputtering yields of lead ≅ 1 atom/ion indicate preferential sputtering of lead atoms. (orig.)

  12. X-ray conductivity of ZnSe single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Degoda, V. Ya., E-mail: degoda@univ.kiev.ua; Podust, G. P. [Taras Shevchenko Kyiv National University, Physics Department (Ukraine)

    2016-05-15

    The experimental I–V and current–illuminance characteristics of the X-ray conductivity and X-ray luminescence of zinc-selenide single crystals feature a nonlinear shape. The performed theoretical analysis of the kinetics of the X-ray conductivity shows that even with the presence of shallow and deep traps for free charge carriers in a semiconductor sample, the integral characteristics of the X-ray conductivity (the current–illuminance and I–V dependences) should be linear. It is possible to assume that the nonlinearity experimentally obtained in the I–V and current–illuminance characteristics can be caused by features of the generation of free charge carriers upon X-ray irradiation, i.e., the generation of hundreds of thousands of free charge carriers of opposite sign in a local region with a diameter of <1 μm and Coulomb interaction between the free charge carriers of opposite signs.

  13. Temperature dependence of magnetoresistance in copper single crystals

    Science.gov (United States)

    Bian, Q.; Niewczas, M.

    2018-03-01

    Transverse magnetoresistance of copper single crystals has been measured in the orientation of open-orbit from 2 K to 20 K for fields up to 9 T. The experimental Kohler's plots display deviation between individual curves below 16 K and overlap in the range of 16 K-20 K. The violation of the Kohler's rule below 16 K indicates that the magnetotransport can not be described by the classical theory of electron transport on spherical Fermi surface with a single relaxation time. A theoretical model incorporating two energy bands, spherical and cylindrical, with different relaxation times has been developed to describe the magnetoresistance data. The calculations show that the electron-phonon scattering rates at belly and neck regions of the Fermi surface have different temperature dependencies, and in general, they do not follow T3 law. The ratio of the relaxation times in belly and neck regions decreases parabolically with temperature as A - CT2 , with A and C being constants.

  14. The characterization of tungsten disulfide single crystals doped with gold

    International Nuclear Information System (INIS)

    Dumcenco, D.O.; Huang, Y.S.; Tiong, K.K.; Liang, C.H.; Chen, C.H.

    2007-01-01

    Single crystals of WS 2 doped with gold (WS 2 :Au) have been grown by the chemical vapour transport method using iodine as a transporting agent. Hall measurements indicate that the samples are p-type in nature. The doping effect of the materials are characterized by conductivity, surface photovoltage and piezo reflectance measurements. The higher conductivity respect to that of the undoped one suggests that more charge carriers are available for conduction in the doped compound. The surface photovoltage spectrum reveals an impurity level located below the A exciton. The direct band-edge excitonic transition energies for WS 2 :Au show redshifts and the broadening parameters of the excitonic transition features increase due to impurity scattering. (authors)

  15. Comprehensive studies on irradiated single-crystal diamond sensors

    Energy Technology Data Exchange (ETDEWEB)

    Stegler, Martin [DESY, Zeuthen (Germany)

    2015-07-01

    Single-crystal diamond sensors are used as part of the Beam and Radiation Instrumentation and Luminosity (BRIL) projects of the CMS experiment. Due to an upgrade of the Fast Beam Conditions Monitor (BCM1F) these diamond sensors are exchanged and the irradiated ones are now used for comprehensive studies. Current over voltage (IV), current over time (CT) and charge collection efficiency (CCE) measurements were performed for a better understanding of the radiation damage incurred during operation and to compensate in the future. The effect of illumination with various light sources on the charge collection efficiency was investigated and led to interesting results. Intensity and wavelength of the light were varied for deeper insight of polarization effects.

  16. Photoinduced surface voltage mapping study for large perovskite single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaojing; Liu, Yucheng; Gao, Fei; Yang, Zhou [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi' an 710062 (China); Liu, Shengzhong, E-mail: liusz@snnu.edu.cn [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi' an 710062 (China); Dalian Institute of Chemical Physics, iChEM, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023 (China)

    2016-05-02

    Using a series of illumination sources, including white light (tungsten-halogen lamp), 445-nm, 532-nm, 635-nm, and 730-nm lasers, the surface photovoltage (SPV) images were mapped for centimeter-sized CH{sub 3}NH{sub 3}PbX{sub 3} (X = Cl, Br, I) perovskite single crystals using Kelvin probe force microscopy. The significant SPV signals were observed to be wavelength-dependent. We attribute the appreciable SPV to the built-in electric field in the space charge region. This study shines light into the understanding of photoinduced charge generation and separation processes at nanoscale to help advance the development of perovskite solar cells, optoelectronics, laser, photodetector, and light-emitting diode (LED).

  17. High-Responsivity Graphene-Boron Nitride Photodetector and Autocorrelator in a Silicon Photonic Integrated Circuit.

    Science.gov (United States)

    Shiue, Ren-Jye; Gao, Yuanda; Wang, Yifei; Peng, Cheng; Robertson, Alexander D; Efetov, Dmitri K; Assefa, Solomon; Koppens, Frank H L; Hone, James; Englund, Dirk

    2015-11-11

    Graphene and other two-dimensional (2D) materials have emerged as promising materials for broadband and ultrafast photodetection and optical modulation. These optoelectronic capabilities can augment complementary metal-oxide-semiconductor (CMOS) devices for high-speed and low-power optical interconnects. Here, we demonstrate an on-chip ultrafast photodetector based on a two-dimensional heterostructure consisting of high-quality graphene encapsulated in hexagonal boron nitride. Coupled to the optical mode of a silicon waveguide, this 2D heterostructure-based photodetector exhibits a maximum responsivity of 0.36 A/W and high-speed operation with a 3 dB cutoff at 42 GHz. From photocurrent measurements as a function of the top-gate and source-drain voltages, we conclude that the photoresponse is consistent with hot electron mediated effects. At moderate peak powers above 50 mW, we observe a saturating photocurrent consistent with the mechanisms of electron-phonon supercollision cooling. This nonlinear photoresponse enables optical on-chip autocorrelation measurements with picosecond-scale timing resolution and exceptionally low peak powers.

  18. A silicon avalanche photodiode detector circuit for Nd:YAG laser scattering

    International Nuclear Information System (INIS)

    Hsieh, C.L.; Haskovec, J.; Carlstrom, T.N.; DeBoo, J.C.; Greenfield, C.M.; Snider, R.T.; Trost, P.

    1990-06-01

    A silicon avalanche photodiode with an internal gain of about 50 to 100 is used in a temperature controlled environment to measure the Nd:YAG laser Thomson scattered spectrum in the wavelength range from 700 to 1150 nm. A charge sensitive preamplifier has been developed for minimizing the noise contribution from the detector electronics. Signal levels as low as 20 photoelectrons (S/N = 1) can be detected. Measurements show that both the signal and the variance of the signal vary linearly with the input light level over the range of interest, indicating Poisson statistics. The signal is processed using a 100 ns delay line and a differential amplifier which subtracts the low frequency background light component. The background signal is amplified with a computer controlled variable gain amplifier and is used for an estimate of the measurement error, calibration, and Z eff measurements of the plasma. The signal processing has been analyzed using a theoretical model to aid the system design and establish the procedure for data error analysis. 4 refs., 5 figs

  19. Isothermal equation of state of a lithium fluoride single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.Y.

    1975-01-01

    An isothermal equation of state of a LiF single crystal was determined from length change measurements of the specimen as a function of hydrostatic pressure up to approximately 7 kbars at 28 to 41/sup 0/C. The length change was measured with an accuracy of approximately 500 A by using a Fabry Perot type He--Ne laser interferometer for a 1-m long specimen at temperatures constant to less than 0.002/sup 0/C. Several two- and three-parameter equations of state were used in analyzing the measured pressure-volume data. The computer fit for each equation of state determines not only the value of its parameters but also the standard deviations associated with them and one dependent variable, either pressure or volume. With the parameters determined, the equations of state are extrapolated to approximately 5 megabars in order to see discrepancies. Using the Born model of ionic solids, two equations of state were derived both from a power law potential and from an exponential form for the repulsive energy of alkali metal halides and used to fit the pressure-volume data of a LiF single crystal. They are also extrapolated to approximately 5 megabars. The Birch's two-parameter equation and the Grover, Getting, and Kennedy equation are indistinguishable from the two equations of state derived from the Born model for pressures approximately equal to or less than 800 kbars within +-20 kbars. The above four equations of state also fit closely the Pagannone and Drickamer static compression data, the Christian shock wave data, and the Kormer et al. shock wave data. The isothermal bulk modulus and its first pressure derivative at atmospheric pressure and 28.83/sup 0/C are 664.5 +- 0.5 kbars and 5.40 +- 0.18, respectively, in close agreement with those values ultrasonically measured by R. A. Miller and C. S. Smith. (auth)

  20. A discrete dislocation–transformation model for austenitic single crystals

    International Nuclear Information System (INIS)

    Shi, J; Turteltaub, S; Remmers, J J C; Van der Giessen, E

    2008-01-01

    A discrete model for analyzing the interaction between plastic flow and martensitic phase transformations is developed. The model is intended for simulating the microstructure evolution in a single crystal of austenite that transforms non-homogeneously into martensite. The plastic flow in the untransformed austenite is simulated using a plane-strain discrete dislocation model. The phase transformation is modeled via the nucleation and growth of discrete martensitic regions embedded in the austenitic single crystal. At each instant during loading, the coupled elasto-plasto-transformation problem is solved using the superposition of analytical solutions for the discrete dislocations and discrete transformation regions embedded in an infinite homogeneous medium and the numerical solution of a complementary problem used to enforce the actual boundary conditions and the heterogeneities in the medium. In order to describe the nucleation and growth of martensitic regions, a nucleation criterion and a kinetic law suitable for discrete regions are specified. The constitutive rules used in discrete dislocation simulations are supplemented with additional evolution rules to account for the phase transformation. To illustrate the basic features of the model, simulations of specimens under plane-strain uniaxial extension and contraction are analyzed. The simulations indicate that plastic flow reduces the average stress at which transformation begins, but it also reduces the transformation rate when compared with benchmark simulations without plasticity. Furthermore, due to local stress fluctuations caused by dislocations, martensitic systems can be activated even though transformation would not appear to be favorable based on the average stress. Conversely, the simulations indicate that the plastic hardening behavior is influenced by the reduction in the effective austenitic grain size due to the evolution of transformation. During cyclic simulations, the coupled plasticity

  1. Third order nonlinear optical properties of a paratellurite single crystal

    Science.gov (United States)

    Duclère, J.-R.; Hayakawa, T.; Roginskii, E. M.; Smirnov, M. B.; Mirgorodsky, A.; Couderc, V.; Masson, O.; Colas, M.; Noguera, O.; Rodriguez, V.; Thomas, P.

    2018-05-01

    The (a,b) plane angular dependence of the third-order nonlinear optical susceptibility, χ(3) , of a c-cut paratellurite (α-TeO2) single crystal was quantitatively evaluated here by the Z-scan technique, using a Ti:sapphire femtosecond laser operated at 800 nm. In particular, the mean value Re( ⟨χ(3)⟩a,b )(α-TeO2) of the optical tensor has been extracted from such experiments via a direct comparison with the data collected for a fused silica reference glass plate. A R e (⟨χ(3)⟩(a,b )(α-TeO2)):R e (χ(3))(SiO2 glass) ratio roughly equal to 49.1 is found, and our result compares thus very favourably with the unique experimental value (a ratio of ˜50) reported by Kim et al. [J. Am. Ceram. Soc. 76, 2486 (1993)] for a pure TeO2 glass. In addition, it is shown that the angular dependence of the phase modulation within the (a,b) plane can be fully understood in the light of the strong dextro-rotatory power known for TeO2 materials. Taking into account the optical activity, some analytical model serving to estimate the diagonal and non-diagonal components of the third order nonlinear susceptibility tensor has been thus developed. Finally, Re( χxxxx(3) ) and Re( χxxyy(3) ) values of 95.1 ×10-22 m 2/V2 and 42.0 ×10-22 m2/V2 , respectively, are then deduced for a paratellurite single crystal, considering fused silica as a reference.

  2. Single crystal diamond detectors grown by chemical vapor deposition

    International Nuclear Information System (INIS)

    Tuve, C.; Angelone, M.; Bellini, V.; Balducci, A.; Donato, M.G.; Faggio, G.; Marinelli, M.; Messina, G.; Milani, E.; Morgada, M.E.; Pillon, M.; Potenza, R.; Pucella, G.; Russo, G.; Santangelo, S.; Scoccia, M.; Sutera, C.; Tucciarone, A.; Verona-Rinati, G.

    2007-01-01

    The detection properties of heteropitaxial (polycrystalline, pCVD) and homoepitaxial (single crystal, scCVD) diamond films grown by microwave chemical vapor deposition (CVD) in the Laboratories of Roma 'Tor Vergata' University are reported. The pCVD diamond detectors were tested with α-particles from different sources and 12 C ions produced by 15MV Tandem accelerator at Southern National Laboratories (LNS) in Catania (Italy). pCVDs were also used to monitor 14MeV neutrons produced by the D-T plasma at Joint European Torus (JET), Culham, U.K. The limit of pCVDs is the poor energy resolution. To overcome this problem, we developed scCVD diamonds using the same reactor parameters that optimized pCVD diamonds. scCVD were grown on a low cost (100) HPHT single crystal substrate. A detector 110μm thick was tested under α-particles and under 14MeV neutron irradiation. The charge collection efficiency spectrum measured under irradiation with a triple α-particle source shows three clearly resolved peaks, with an energy resolution of about 1.1%. The measured spectra under neutron irradiation show a well separated C(n,α 0 ) 9 Be12 reaction peak with an energy spread of 0.5MeV for 14.8MeV neutrons and 0.3MeV for 14.1MeV neutrons, which are fully compatible with the energy spread of the incident neutron beams

  3. Design and characterization of low-loss 2D grating couplers for silicon photonics integrated circuits

    Science.gov (United States)

    Lacava, C.; Carrol, L.; Bozzola, A.; Marchetti, R.; Minzioni, P.; Cristiani, I.; Fournier, M.; Bernabe, S.; Gerace, D.; Andreani, L. C.

    2016-03-01

    We present the characterization of Silicon-on-insulator (SOI) photonic-crystal based 2D grating-couplers (2D-GCs) fabricated by CEA-Leti in the frame of the FP7 Fabulous project, which is dedicated to the realization of devices and systems for low-cost and high-performance passives-optical-networks. On the analyzed samples different test structures are present, including 2D-GC connected to another 2D-GC by different waveguides (in a Mach-Zehnder like configuration), and 2D-GC connected to two separate 2D-GCs, so as to allow a complete assessment of different parameters. Measurements were carried out using a tunable laser source operating in the extended telecom bandwidth and a fiber-based polarization controlling system at the input of device-under-test. The measured data yielded an overall fiber-to-fiber loss of 7.5 dB for the structure composed by an input 2D-GC connected to two identical 2D-GCs. This value was obtained at the peak wavelength of the grating, and the 3-dB bandwidth of the 2D-GC was assessed to be 43 nm. Assuming that the waveguide losses are negligible, so as to make a worst-case analysis, the coupling efficiency of the single 2D-GC results to be equal to -3.75 dB, constituting, to the best of our knowledge, the lowest value ever reported for a fully CMOS compatible 2D-GC. It is worth noting that both the obtained values are in good agreement with those expected by the numerical simulations performed using full 3D analysis by Lumerical FDTD-solutions.

  4. Thermally controlled coupling of a rolled-up microtube integrated with a waveguide on a silicon electronic-photonic integrated circuit.

    Science.gov (United States)

    Zhong, Qiuhang; Tian, Zhaobing; Veerasubramanian, Venkat; Dastjerdi, M Hadi Tavakoli; Mi, Zetian; Plant, David V

    2014-05-01

    We report on the first experimental demonstration of the thermal control of coupling strength between a rolled-up microtube and a waveguide on a silicon electronic-photonic integrated circuit. The microtubes are fabricated by selectively releasing a coherently strained GaAs/InGaAs heterostructure bilayer. The fabricated microtubes are then integrated with silicon waveguides using an abruptly tapered fiber probe. By tuning the gap between the microtube and the waveguide using localized heaters, the microtube-waveguide evanescent coupling is effectively controlled. With heating, the extinction ratio of a microtube whispering-gallery mode changes over an 18 dB range, while the resonant wavelength remains approximately unchanged. Utilizing this dynamic thermal tuning effect, we realize coupling modulation of the microtube integrated with the silicon waveguide at 2 kHz with a heater voltage swing of 0-6 V.

  5. Solid-state molecular organometallic chemistry. Single-crystal to single-crystal reactivity and catalysis with light hydrocarbon substrates.

    Science.gov (United States)

    Chadwick, F Mark; McKay, Alasdair I; Martinez-Martinez, Antonio J; Rees, Nicholas H; Krämer, Tobias; Macgregor, Stuart A; Weller, Andrew S

    2017-08-01

    Single-crystal to single-crystal solid/gas reactivity and catalysis starting from the precursor sigma-alkane complex [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(η 2 η 2 -NBA)][BAr F 4 ] (NBA = norbornane; Ar F = 3,5-(CF 3 ) 2 C 6 H 3 ) is reported. By adding ethene, propene and 1-butene to this precursor in solid/gas reactions the resulting alkene complexes [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(alkene) x ][BAr F 4 ] are formed. The ethene ( x = 2) complex, [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(ethene) 2 ][BAr F 4 ]-Oct , has been characterized in the solid-state (single-crystal X-ray diffraction) and by solution and solid-state NMR spectroscopy. Rapid, low temperature recrystallization using solution methods results in a different crystalline modification, [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(ethene) 2 ][BAr F 4 ]-Hex , that has a hexagonal microporous structure ( P 6 3 22). The propene complex ( x = 1) [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(propene)][BAr F 4 ] is characterized as having a π-bound alkene with a supporting γ-agostic Rh···H 3 C interaction at low temperature by single-crystal X-ray diffraction, variable temperature solution and solid-state NMR spectroscopy, as well as periodic density functional theory (DFT) calculations. A fluxional process occurs in both the solid-state and solution that is proposed to proceed via a tautomeric allyl-hydride. Gas/solid catalytic isomerization of d 3 -propene, H 2 C 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111

  6. Sample Size Induced Brittle-to-Ductile Transition of Single-Crystal Aluminum Nitride

    Science.gov (United States)

    2015-08-01

    ARL-RP-0528 ● AUG 2015 US Army Research Laboratory Sample Size Induced Brittle-to- Ductile Transition of Single-Crystal Aluminum...originator. ARL-RP-0528 ● AUG 2015 US Army Research Laboratory Sample Size Induced Brittle-to- Ductile Transition of Single-Crystal...Sample Size Induced Brittle-to- Ductile Transition of Single-Crystal Aluminum Nitride 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  7. Cryogenic Fluid Transfer Components Using Single Crystal Piezoelectric Actuators, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic fluid transfer components using single crystal piezoelectric actuators are proposed to enable low thermal mass, minimal heat leak, low power consumption...

  8. Advanced Electroactive Single Crystal and Polymer Actuator Concepts for Passive Optics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes large stroke and high precision piezoelectric single crystal and electroactive polymer actuator concepts?HYBrid Actuation System (HYBAS)...

  9. Cryogenic Fluid Transfer Components Using Single Crystal Piezoelectric Actuators, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic fluid transfer components using single crystal piezoelectric actuators are proposed to enable low thermal mass, minimal heat leak, low power consumption...

  10. Growth of single crystals of BaFe12O19 by solid state crystal growth

    International Nuclear Information System (INIS)

    Fisher, John G.; Sun, Hengyang; Kook, Young-Geun; Kim, Joon-Seong; Le, Phan Gia

    2016-01-01

    Single crystals of BaFe 12 O 19 are grown for the first time by solid state crystal growth. Seed crystals of BaFe 12 O 19 are buried in BaFe 12 O 19 +1 wt% BaCO 3 powder, which are then pressed into pellets containing the seed crystals. During sintering, single crystals of BaFe 12 O 19 up to ∼130 μm thick in the c-axis direction grow on the seed crystals by consuming grains from the surrounding polycrystalline matrix. Scanning electron microscopy-energy dispersive spectroscopy analysis shows that the single crystal and the surrounding polycrystalline matrix have the same chemical composition. Micro-Raman scattering shows the single crystal to have the BaFe 12 O 19 structure. The optimum growth temperature is found to be 1200 °C. The single crystal growth behavior is explained using the mixed control theory of grain growth. - Highlights: • Single crystals of BaFe 12 O 19 are grown by solid state crystal growth. • A single crystal up to ∼130 μm thick (c-axis direction) grows on the seed crystal. • The single crystal and surrounding ceramic matrix have similar composition. • Micro-Raman scattering shows the single crystal has the BaFe 12 O 19 structure.

  11. Prototype of the front-end circuit for the GOSSIP (Gas On Slimmed Silicon Pixel) chip in the 0.13 μm CMOS technology

    CERN Document Server

    Gromov, V; van der Graaf, H

    2007-01-01

    The new GOSSIP detector, capable to detect single electrons in gas, has certain advantages with respect silicon (pixel) detectors. It does not require a Si sensor; it has a very low detector parasitic capacitance and a zero bias current at the pixel input. These are attractive features to design a compact, low-noise and low-power integrated input circuit. A prototype of the integrated circuit has been developed in 0.13 μm CMOS technology. It includes a few channels equipped with preamplifier, discriminator and the digital circuit to study the feasibility of the TDC-perpixel concept. The design demonstrates very low input referred noise (60e- RMS) in combination with a fast peaking time (40 ns) and an analog power dissipation as low as 2 μW per channel. Switching activity on the clock bus (up to 100 MHz) in the close vicinity of the pixel input pads does not cause noticeable extra noise.

  12. Ka-band to L-band frequency down-conversion based on III-V-on-silicon photonic integrated circuits

    Science.gov (United States)

    Van Gasse, K.; Wang, Z.; Uvin, S.; De Deckere, B.; Mariën, J.; Thomassen, L.; Roelkens, G.

    2017-12-01

    In this work, we present the design, simulation and characterization of a frequency down-converter based on III-V-on-silicon photonic integrated circuit technology. We first demonstrate the concept using commercial discrete components, after which we demonstrate frequency conversion using an integrated mode-locked laser and integrated modulator. In our experiments, five channels in the Ka-band (27.5-30 GHz) with 500 MHz bandwidth are down-converted to the L-band (1.5 GHz). The breadboard demonstration shows a conversion efficiency of - 20 dB and a flat response over the 500 MHz bandwidth. The simulation of a fully integrated circuit indicates that a positive conversion gain can be obtained on a millimeter-sized photonic integrated circuit.

  13. Method of forming buried oxide layers in silicon

    Science.gov (United States)

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2000-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  14. Low propagation loss in a one-port SAW resonator fabricated on single-crystal diamond for super-high-frequency applications.

    Science.gov (United States)

    Fujii, Satoshi; Odawara, Tatsuya; Yamada, Haruya; Omori, Tatsuya; Hashimoto, Ken-Ya; Torii, Hironori; Umezawa, Hitoshi; Shikata, Shinichi

    2013-05-01

    Diamond has the highest known SAW phase velocity, sufficient for applications in the gigahertz range. However, although numerous studies have demonstrated SAW devices on polycrystalline diamond thin films, all have had much larger propagation loss than single-crystal materials such as LiNbO3. Hence, in this study, we fabricated and characterized one-port SAW resonators on single-crystal diamond substrates synthesized using a high-pressure and high-temperature method to identify and minimize sources of propagation loss. A series of one-port resonators were fabricated with the interdigital transducer/ AlN/diamond structure and their characteristics were measured. The device with the best performance exhibited a resonance frequency f of 5.3 GHz, and the equivalent circuit model gave a quality factor Q of 5509. Thus, a large fQ product of approximately 2.9 × 10(13) was obtained, and the propagation loss was found to be only 0.006 dB/wavelength. These excellent properties are attributed mainly to the reduction of scattering loss in a substrate using a single-crystal diamond, which originated from the grain boundary of diamond and the surface roughness of the AlN thin film and the diamond substrate. These results show that single-crystal diamond SAW resonators have great potential for use in low-noise super-high-frequency oscillators.

  15. Structure of cleaved (001) USb2 single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shao-ping [Los Alamos National Laboratory; Hawley, Marilyn [Los Alamos National Laboratory; Bauer, Eric D [Los Alamos National Laboratory; Stockum, Phil B [STANFORD UNIV.; Manoharan, Hari C [STANFORD UNIV

    2009-01-01

    We have achieved what we believe to be the first atomic resolution STM images for a uranium compound taken at room temperature. The a, b, and c lattice parameters in the images confirm that the USb{sub 2} crystals cleave on the (001) basal plane as expected. The a and b dimensions were equal, with the atoms arranged in a cubic pattern. Our calculations indicate a symmetric cut between Sb planes to be the most favorable cleavage plane and U atoms to be responsible for most of the DOS measured by STM. Some strange features observed in the STM will be discussed in conjunction with ab initio calculations. The purpose of this work is to demonstrate the power of scanning tunneling microscopy (STM) techniques combined with a theoretical underpinning to determine the surface atomic structure and properties of actinide materials, such as the quasi 2-dimensional uranium dipnictide USb{sub 2} single crystal, thereby contributing to the understanding of their surface structural and electronic properties. The members of this interesting UX{sub 2} (X=P, As, Sb, Bi) series of compounds display dual localized and itinerant 5f electron behavior within the same compound due to the hybridization of the 5f orbitals with the conduction band. With the exception of UO{sub 2}, which has to be studied at elevated temperature to generate enough carriers for STM imaging, STM techniques have not been applied successfully to the characterization of the surface atomic structure of any other single crystal actinide compound, to the best of our knowledge. However, STM has been used to a limited extent for the study of some cerium compounds. STM probes electronic properties at the atomic level and can directly provide information about the local density of filled and empty states (LDOS) states simultaneously. A STM topograph provides the local atomic arrangement and spacing of the atoms on the surface, local defect structures (e.g. steps, vacancies, and kink sites) and the presence of contaminants

  16. Growth and characterisation of lead iodide single crystals

    International Nuclear Information System (INIS)

    Tonn, Justus

    2012-01-01

    The work in hand deals with the growth and characterisation of lead iodide (PbI 2 ) single crystals. PbI 2 is regarded as a promising candidate for low-noise X- and gamma ray detection at room temperature. Its benefits if compared to conventional materials like HgI 2 , CdTe, Si, or GaAs lie in a band gap energy of 2.32 eV, an excellent ability to absorb radiation, and a high electrical resistivity. For an application of PbI 2 as detector material the growth and characterisation of crystals with high chemical and structural quality is extremely challenging. In light of this, the effectiveness of zone purification of the PbI 2 used for crystal growth was confirmed by spectroscopic analysis. Furthermore, technological aspects during processing of purified PbI 2 were investigated. With the help of thermal analysis, a correlation was found between the degree of exposing the source material to oxygen from the air and the structural quality of the resulting crystals. A hydrogen treatment was applied to PbI 2 as an effective method for the removal of oxidic pollutions, which resulted in a significant reduction of structural defects like polytypic growth and stress-induced cracking. The growth of PbI 2 single crystals was, among others, carried out by the Bridgman-Stockbarger method. In this context, much effort was put on the investigation of influences resulting from the design and preparation of ampoules. For the first time, crystal growth of PbI 2 was also carried out by the Czochralski method. If compared to the Bridgman-Stockbarger method, the Czochralski technique allowed a significantly faster growth of nearly crack-free crystals with a reproducible predetermination of crystallographic orientation. By an optimised sample preparation of PbI 2 , surface orientations perpendicular to the usually cleaved (0001) plane were realised. It is now possible to determine the material properties along directions which were so far not accessible. Thus, for example, the ratio of

  17. Sintering of nano crystalline α silicon carbide by doping with boron ...

    Indian Academy of Sciences (India)

    Unknown

    tions, they concluded that either reaction sintering or liquid phase .... α-6H silicon carbide single crystal by three different laboratories ... silicon carbide particles by the overall reaction .... layer displacement is likely to occur in such a manner as.

  18. The impact of silicon nano-wire technology on the design of single-work-function CMOS transistors and circuits

    International Nuclear Information System (INIS)

    Bindal, Ahmet; Hamedi-Hagh, Sotoudeh

    2006-01-01

    This three-dimensional exploratory study on vertical silicon wire MOS transistors with metal gates and undoped bodies demonstrates that these transistors dissipate less power and occupy less layout area while producing comparable transient response with respect to the state-of-the-art bulk and SOI technologies. The study selects a single metal gate work function for both NMOS and PMOS transistors to alleviate fabrication difficulties and then determines a common device geometry to produce an OFF current smaller than 1 pA for each transistor. Once an optimum wire radius and effective channel length is determined, DC characteristics including threshold voltage roll-off, drain-induced barrier lowering and sub-threshold slope of each transistor are measured. Simple CMOS gates such as an inverter, two- and three-input NAND, NOR and XOR gates and a full adder, composed of the optimum NMOS and PMOS transistors, are built to measure transient performance, power dissipation and layout area. Simulation results indicate that worst-case transient time and worst-case delay are 1.63 and 1.46 ps, respectively, for a two-input NAND gate and 7.51 and 7.43 ps, respectively, for a full adder for a fan-out of six transistor gates (24 aF). Worst-case power dissipation is 62.1 nW for a two-input NAND gate and 118.1 nW for a full adder at 1 GHz for the same output capacitance. The layout areas are 0.0066 μm 2 for the two-input NAND gate and 0.049 μm 2 for the full adder circuits

  19. Frictional properties of single crystals HMX, RDX and PETN explosives

    International Nuclear Information System (INIS)

    Wu, Y.Q.; Huang, F.L.

    2010-01-01

    The frictional properties of single crystals of cyclotetramethylene tetranitramine (HMX), cyclotrimethylene trinitramine (RDX) and pentaerythritol tetranitrate (PETN) secondary explosives are examined using a sensitive friction machine. The explosive crystals used for the measurements are at least 3.5 mm wide. The friction coefficients between crystals of the same explosive (i.e., HMX on HMX, etc.), crystals of different explosives (i.e., HMX on RDX, etc.), and each explosive and a well-polished gauge steel surface are determined. The frictional surfaces are also studied under an environmental scanning electron microscope (ESEM) to analyze surface microstructural changes under increasing loading forces. The friction coefficients vary considerably with increasing normal loading forces and are particularly sensitive to slider shapes, crystal roughness and the mechanical properties of both the slider and the sample. With increasing loading forces, most friction experiments show surface damage, consisting of grooves, debris, and nano-particles, on both the slider and sample. In some cases, a strong evidence of a localized molten state is found in the central region of the friction track. Possible mechanisms that affect the friction coefficient are discussed based on microscopic observations.

  20. Plastic deformation of cubic zirconia single crystals at 1400 C

    International Nuclear Information System (INIS)

    Baufeld, B.; Baither, D.; Bartsch, M.; Messerschmidt, U.

    1998-01-01

    Cubic zirconia single crystals stabilized with 11 mol% yttria were deformed in air at 1400 C and around 1200 C at different strain rates along [1 anti 12] and [100] compression directions. The strain rate sensitivity of the flow stress was determined by strain rate cycling and stress relaxation tests. The microstructure of the deformed specimens was investigated by transmission high-voltage electron microscopy, including contrast extinction analysis for determining the Burgers vectors as well as stereo pairs and wide-angle tilting experiments to find the active slip planes. At deformation along [1 anti 12], the primary and secondary slip planes are of {100} type. Previous experiments had shown that the dislocations move easily on these planes in an athermal way. During deformation along [100], mainly dislocations on {100} planes are activated, which move in a viscous way by the aid of thermal activation. The discussion of the different deformation behaviours during deformation along [1 anti 12] and [100] is based on the different dynamic properties of dislocations and the fact that recovery is an essential feature of the deformation of cubic zirconia at 1400 C. The results on the shape of the deformation curve and the strain rate sensitivity of the flow stress are partly at variance with those of previous authors. (orig.)

  1. The neutron transmission of single crystal MgO filters

    International Nuclear Information System (INIS)

    Carpenter, J.M.; Hilleke, R.O.

    1989-01-01

    We have measured and analyzed the wavelength dependence of the transmission probability of a beam of neutrons passing through a single crystal MgO filter at 77 K. The 12.7 cm filter transmits 70% or more of the incident beam at wavelengths greater than about 1.8 A. At shorter wavelengths the transmission probability drops sharply, with 50% transmission occurring at about 1.2 A, and 1% transmission for the range 0.1-0.4 A. We have determined that cooling the filter to 77 K improves the transmission of >1 A neutrons, while further cooling to 25 K shows little additional improvement, and no improvement for short wavelengths. We have identified the wavelengths of the sharp dips in the transmission found in this region caused by Bragg scattering in MgO. We also show how these peaks may be used to calibrate the wavelength scale of time-of-flight measurements taken on instruments using similar filters. (orig.)

  2. Polymorphic transitions in single crystals: A new molecular dynamics method

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, M.; Rahman, A.

    1981-12-01

    A new Lagrangian formulation is introduced. It can be used to make molecular dynamics (MD) calculations on systems under the most general, externally applied, conditions of stress. In this formulation the MD cell shape and size can change according to dynamical equations given by this Lagrangian. This new MD technique is well suited to the study of structural transformations in solids under external stress and at finite temperature. As an example of the use of this technique we show how a single crystal of Ni behaves under uniform uniaxial compressive and tensile loads. This work confirms some of the results of static (i.e., zero temperature) calculations reported in the literature. We also show that some results regarding the stress-strain relation obtained by static calculations are invalid at finite temperature. We find that, under compressive loading, our model of Ni shows a bifurcation in its stress-strain relation; this bifurcation provides a link in configuration space between cubic and hexagonal close packing. It is suggested that such a transformation could perhaps be observed experimentally under extreme conditions of shock.

  3. The CCP14 for single crystal and powder diffraction

    International Nuclear Information System (INIS)

    Cranswick, L.M.D.

    1999-01-01

    Full text: The Collaborative Computation Project Number 14 for Single Crystal and Powder Diffraction (CCP14) is continuing in its objective to provide freely available software and resources for the powder diffraction and crystallographic community. Using the Internet and World Wide Web, we are presently compiling software and web resources, creating tutorials and help files. It also endeavours to encourage and provide resources to assist program authors with developing their software. The CCP14 presently has its web-site at and a mirror at (at CSIRO, Melbourne, Australia). Auto web-mirroring is being implemented to allow users to obtain software and access to resources in a more time effective manner. For people in countries isolated from the Internet, the CCP14 on CD-ROM can be snail mailed on request. This is in the form of a Virtual World Wide Web/Virtual Internet; in the same vein as the existing Crystallographic Nexus CD-ROM. Copyright (1999) Australian X-ray Analytical Association Inc

  4. Analysis of ripple formation in single crystal spot welds

    Energy Technology Data Exchange (ETDEWEB)

    Rappaz, M. [Ecole Polytechnique Federale de Lausanne (Switzerland). Lab de Metallurgie Physique; Corrigan, D.; Boatner, L.A. [Oak Ridge National Lab., TN (United States). Solid State Div.

    1997-10-01

    Stationary spot welds have been made at the (001) surface of Fe-l5%Ni-15%Cr single crystals using a Gas Tungsten Arc (GTA). On the top surface of the spot welds, very regular and concentric ripples were observed after solidification by differential interference color microscopy. Their height (typically 1--5 {micro}m) and spacing (typically {approximately} 60 {micro}m) decreased with the radius of the pool. These ripples were successfully accounted for in terms of capillary-wave theory using the fundamental mode frequency f{sub 0} given by the first zero of the zero-order Bessel function. The spacing d between the ripples was then equated to v{sub s}/f{sub 0}, where v{sub s} is the solidification rate. From the measured ripple spacing, the velocity of the pool was deduced as a function of the radius, and this velocity was in good agreement with the results of a heat-flow simulation.

  5. High temperature microhardness of ZrB2 single crystals

    International Nuclear Information System (INIS)

    Yi Xuan; Chen Chunhua; Otani, Shigeki

    2002-01-01

    Vickers microhardness of (0001), (101-bar 0) and (112-bar 0) planes of ZrB 2 single crystal prepared by the floating zone method has been investigated at various temperatures and loading times. As the temperature increases from 25 deg. C to 1000 deg. C, hardness drops from ∼20.9 GN m -2 of all planes to ∼7.85 GN m -2 for (0001) plane and ∼4.91 GN m -2 for (101-bar 0) and (112-bar 0) planes. The hardness of (101-bar 0) and (112-bar 0) planes exhibits almost same tendency and is always lower than that of (0001) plane by about 35%. The thermal softening coefficients of all three planes strongly depends on the temperature range with clear inflections at 400 deg. C and 700 deg. C. The loading time dependence of hardness is used to calculate the activation energy for creep. In addition, a relationship was found that shows the variation of hardness with temperature to be proportional to the variation with the loading time in a specific temperature range. (rapid communication)

  6. Ge-Au eutectic bonding of Ge (100) single crystals

    International Nuclear Information System (INIS)

    Knowlton, W.B.; Beeman, J.W.; Emes, J.H.; Loretto, D.; Itoh, K.M.; Haller, E.E.

    1993-01-01

    The author present preliminary results on the eutectic bonding between two (100) Ge single crystal surfaces using thin films of Au ranging from 900 angstrom/surface to 300 angstrom/surface and Pd (10% the thickness of Au). Following bonding, plan view optical microscopy (OM) of the cleaved interface of samples with Au thicknesses ≤ 500 angstrom/surface show a eutectic morphology more conducive to phonon transmission through the bond interface. High resolution transmission electron microscopy (HRTEM) cross sectional interface studies of a 300 angstrom/surface Au sample show epitaxial growth of Ge. In sections of the bond, lattice continuity of the Ge is apparent through the interface. TEM studies also reveal heteroepitaxial growth of Au with a Au-Ge lattice mismatch of less than 2%. Eutectic bonds with 200 angstrom/surface Au have been attained with characterization pending. An optical polishing technique for Ge has been optimized to insure intimate contact between the Ge surfaces prior to bonding. Interferometry analysis of the optically polished Ge surface shows that surface height fluctuations lie within ±150 angstrom across an interval of lmm. Characterization of phonon transmission through the interface is discussed with respect to low temperature detection of ballistic phonons

  7. DEVELOPMENT OF PROTECTIVE COATINGS FOR SINGLE CRYSTAL TURBINE BLADES

    Energy Technology Data Exchange (ETDEWEB)

    Amarendra K. Rai

    2006-12-04

    Turbine blades in coal derived syngas systems are subject to oxidation and corrosion due to high steam temperature and pressure. Thermal barrier coatings (TBCs) are developed to address these problems. The emphasis is on prime-reliant design and a better coating architecture, having high temperature and corrosion resistance properties for turbine blades. In Phase I, UES Inc. proposed to develop, characterize and optimize a prime reliant TBC system, having smooth and defect-free NiCoCrAlY bond layer and a defect free oxide sublayer, using a filtered arc technology. Phase I work demonstrated the deposition of highly dense, smooth and defect free NiCoCrAlY bond coat on a single crystal CMSX-4 substrate and the deposition of alpha-alumina and yttrium aluminum garnet (YAG) sublayer on top of the bond coat. Isothermal and cyclic oxidation test and pre- and post-characterization of these layers, in Phase I work, (with and without top TBC layer of commercial EB PVD YSZ) revealed significant performance enhancement.

  8. Defect sensitive etching of hexagonal boron nitride single crystals

    Science.gov (United States)

    Edgar, J. H.; Liu, S.; Hoffman, T.; Zhang, Yichao; Twigg, M. E.; Bassim, Nabil D.; Liang, Shenglong; Khan, Neelam

    2017-12-01

    Defect sensitive etching (DSE) was developed to estimate the density of non-basal plane dislocations in hexagonal boron nitride (hBN) single crystals. The crystals employed in this study were precipitated by slowly cooling (2-4 °C/h) a nickel-chromium flux saturated with hBN from 1500 °C under 1 bar of flowing nitrogen. On the (0001) planes, hexagonal-shaped etch pits were formed by etching the crystals in a eutectic mixture of NaOH and KOH between 450 °C and 525 °C for 1-2 min. There were three types of pits: pointed bottom, flat bottom, and mixed shape pits. Cross-sectional transmission electron microscopy revealed that the pointed bottom etch pits examined were associated with threading dislocations. All of these dislocations had an a-type burgers vector (i.e., they were edge dislocations, since the line direction is perpendicular to the [ 2 11 ¯ 0 ]-type direction). The pit widths were much wider than the pit depths as measured by atomic force microscopy, indicating the lateral etch rate was much faster than the vertical etch rate. From an Arrhenius plot of the log of the etch rate versus the inverse temperature, the activation energy was approximately 60 kJ/mol. This work demonstrates that DSE is an effective method for locating threading dislocations in hBN and estimating their densities.

  9. Pyroelectric properties of phosphoric acid-doped TGS single crystals

    International Nuclear Information System (INIS)

    Saxena, Aparna; Fahim, M; Gupta, Vinay; Sreenivas, K

    2003-01-01

    Pyroelectric properties of phosphoric acid (H 3 PO 4 )-doped triglycine sulfate (TGSP) single crystals grown from solutions containing 0.1-0.5 mol of H 3 PO 4 have been studied. Incorporation of H 3 PO 4 into the crystal lattice is found to induce an internal bias field (E b ) and is observed through the presence of a sustained polarization and pyroelectricity beyond the transition temperature. The internal bias field has been estimated theoretically by fitting the experimentally measured data on temperature dependence of the pyroelectric coefficient (λ), dielectric constant (ε') and polarization (P). A high E b value in the range 9 x 10 3 -15.5 x 10 4 V m -1 is obtained for crystals grown with 0.1-0.5 mol of H 3 PO 4 in the solution, and a specific concentration of 0.2-0.25 mol of H 3 PO 4 in the solution during crystal growth is found to be optimum for a high figure of merit for detectivity, F d = 428 μC m -2 K -1

  10. Pyroelectric properties of phosphoric acid-doped TGS single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Aparna; Fahim, M; Gupta, Vinay; Sreenivas, K [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2003-12-21

    Pyroelectric properties of phosphoric acid (H{sub 3}PO{sub 4})-doped triglycine sulfate (TGSP) single crystals grown from solutions containing 0.1-0.5 mol of H{sub 3}PO{sub 4} have been studied. Incorporation of H{sub 3}PO{sub 4} into the crystal lattice is found to induce an internal bias field (E{sub b}) and is observed through the presence of a sustained polarization and pyroelectricity beyond the transition temperature. The internal bias field has been estimated theoretically by fitting the experimentally measured data on temperature dependence of the pyroelectric coefficient ({lambda}), dielectric constant ({epsilon}') and polarization (P). A high E{sub b} value in the range 9 x 10{sup 3}-15.5 x 10{sup 4} V m{sup -1} is obtained for crystals grown with 0.1-0.5 mol of H{sub 3}PO{sub 4} in the solution, and a specific concentration of 0.2-0.25 mol of H{sub 3}PO{sub 4} in the solution during crystal growth is found to be optimum for a high figure of merit for detectivity, F{sub d} = 428 {mu}C m{sup -2} K{sup -1}.

  11. Understanding surface structure and chemistry of single crystal lanthanum aluminate

    KAUST Repository

    Pramana, Stevin S.

    2017-03-02

    The surface crystallography and chemistry of a LaAlO3 single crystal, a material mainly used as a substrate to deposit technologically important thin films (e.g. for superconducting and magnetic devices), was analysed using surface X-ray diffraction and low energy ion scattering spectroscopy. The surface was determined to be terminated by Al-O species, and was significantly different from the idealised bulk structure. Termination reversal was not observed at higher temperature (600 °C) and chamber pressure of 10−10 Torr, but rather an increased Al-O occupancy occurred, which was accompanied by a larger outwards relaxation of Al from the bulk positions. Changing the oxygen pressure to 10−6 Torr enriched the Al site occupancy fraction at the outermost surface from 0.245(10) to 0.325(9). In contrast the LaO, which is located at the next sub-surface atomic layer, showed no chemical enrichment and the structural relaxation was lower than for the top AlO2 layer. Knowledge of the surface structure will aid the understanding of how and which type of interface will be formed when LaAlO3 is used as a substrate as a function of temperature and pressure, and so lead to improved design of device structures.

  12. Electron irradiation effect on single crystal of niobium

    International Nuclear Information System (INIS)

    Otero, M.P.; Lucki, G.

    1984-01-01

    The effect of electron irradiation (900 KeV) on gliding dislocations of single crystal Nb with its tensile axe in the [941] orientation was observed for the in-situ deformation in a high voltage electron microscope (HVEM) at Argonne National Laboratory. The experimental was carried out by the 1 hour-electron irradiation with no stress applied. Straight dislocations actuating as sinks for the electron produced defects became helicoidal as the irradiation proceeded. Frenkel pairs were created in Nb for electron energies > = 650 KeV and, as the single vacancies do not undergo long-range migration in Nb at temperatures much below 620 K, the defects that are entrapped by the dislocations are self-interstitials produced by electron displacement. Applying the stress it was possible to observe that modified dislocations did not glide while the dislocations not affected by the irradiation are visibly in movement. This important result explains the neutron and electron-irradiation induced work-hardening effect for Nb that was previously observed. (Author) [pt

  13. Reduction of precursor decay anomaly in single crystal lithium fluoride

    Science.gov (United States)

    Sano, Yukio

    2000-08-01

    The purpose of this study is to reveal that the precursor decay anomaly in single crystal lithium fluoride is reduced by Sano's decay curve [Y. Sano, J. Appl. Phys. 85, 7616 (1999)], which is much smaller in slope than Asay's decay curve [J. R. Asay, G. R. Fowles, G. E. Duvall, M. H. Miles, and R. F. Tinder, J. Appl. Phys. 43, 2132 (1972)]. To this end, strain, particle, velocity, and stress in a precursor and near the leading edge of the follower changing with time along Sano's decay curve are first analyzed quantitatively. The analysis verified the existence of degenerate contraction waves I and II and a subrarefaction wave R', and the decay process [Y. Sano, J. Appl. Phys. 77, 3746 (1995)] caused in sequence by evolving followers C, I, II, R', Rb. Next, inequalities relating decay rates qualitatively to plastic strain rates at the leading edge of the follower, which are derived using the properties of the followers, are incorporated into the analysis. Calculation results showed that the plastic strain rates were reduced by low decay rates. This indicates that the precursor decay anomaly might be greatly reduced by Sano's decay curve.

  14. Simulations of surface stress effects in nanoscale single crystals

    Science.gov (United States)

    Zadin, V.; Veske, M.; Vigonski, S.; Jansson, V.; Muszinsky, J.; Parviainen, S.; Aabloo, A.; Djurabekova, F.

    2018-04-01

    Onset of vacuum arcing near a metal surface is often associated with nanoscale asperities, which may dynamically appear due to different processes ongoing in the surface and subsurface layers in the presence of high electric fields. Thermally activated processes, as well as plastic deformation caused by tensile stress due to an applied electric field, are usually not accessible by atomistic simulations because of the long time needed for these processes to occur. On the other hand, finite element methods, able to describe the process of plastic deformations in materials at realistic stresses, do not include surface properties. The latter are particularly important for the problems where the surface plays crucial role in the studied process, as for instance, in the case of plastic deformations at a nanovoid. In the current study by means of molecular dynamics (MD) and finite element simulations we analyse the stress distribution in single crystal copper containing a nanovoid buried deep under the surface. We have developed a methodology to incorporate the surface effects into the solid mechanics framework by utilizing elastic properties of crystals, pre-calculated using MD simulations. The method leads to computationally efficient stress calculations and can be easily implemented in commercially available finite element software, making it an attractive analysis tool.

  15. Implanted strontium titanate single crystals for energy storage applications

    Energy Technology Data Exchange (ETDEWEB)

    Stoeber, Max; Cherkouk, Charaf; Walter, Juliane; Strohmeyer, Ralph; Leisegang, Tilmann; Meyer, Dirk Carl [TU Bergakademie, Freiberg (Germany); Schelter, Matthias; Zosel, Jens [Kurt Schwabe Institute, Meinsberg (Germany); Prucnal, Slawomir [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (Germany)

    2016-07-01

    A rapid increase of the demand on efficient energy storage solutions requires new approaches beyond the Li-ion technology. In particular, metal-air batteries as well as solid-state fuel cells offer a great potential for high-energy-density storage devices. Since the efficiency of such devices is significantly limited by the activation of both the oxygen reduction reaction (ORR) and the ionic and electronic conductivities, an adequate porosity as well as a controlled doping are required. The ion implantation is a key technology to achieve this goal. In this work, p- and n-doped strontium titanate (SrTiO{sub 3}) single crystals were used as oxidic materials. The oxygen exchange kinetics as well as the structural changes of the SrTiO{sub 3} crystal surface induced by the ion implantation were investigated. On one hand, the depth profile of dopant concentration and dopant valence state were determined using sputtered X-ray photoelectron spectroscopy (XPS). On the other hand, the overall oxygen exchange kinetic of the implanted SrTiO{sub 3} crystal was quantitatively described by means of coulometric titration using Zirox system (ZIROX GmbH, Germany). Furthermore, the surface morphology of the samples was investigated using atomic force microscopy (AFM).

  16. A discrete dislocation dynamics model of creeping single crystals

    Science.gov (United States)

    Rajaguru, M.; Keralavarma, S. M.

    2018-04-01

    Failure by creep is a design limiting issue for metallic materials used in several high temperature applications. Current theoretical models of creep are phenomenological with little connection to the underlying microscopic mechanisms. In this paper, a bottom-up simulation framework based on the discrete dislocation dynamics method is presented for dislocation creep aided by the diffusion of vacancies, known to be the rate controlling mechanism at high temperature and stress levels. The time evolution of the creep strain and the dislocation microstructure in a periodic unit cell of a nominally infinite single crystal is simulated using the kinetic Monte Carlo method, together with approximate constitutive laws formulated for the rates of thermal activation of dislocations over local pinning obstacles. The deformation of the crystal due to dislocation glide between individual thermal activation events is simulated using a standard dislocation dynamics algorithm, extended to account for constant stress periodic boundary conditions. Steady state creep conditions are obtained in the simulations with the predicted creep rates as a function of stress and temperature in good agreement with experimentally reported values. Arrhenius scaling of the creep rates as a function of temperature and power-law scaling with the applied stress are also reproduced, with the values of the power-law exponents in the high stress regime in good agreement with experiments.

  17. Optical properties of tungsten disulfide single crystals doped with gold

    International Nuclear Information System (INIS)

    Dumcenco, D.O.; Hsu, H.P.; Huang, Y.S.; Liang, C.H.; Tiong, K.K.; Du, C.H.

    2008-01-01

    Single crystals of WS 2 doped with gold have been grown by the chemical vapour transport method using iodine as a transporting agent. X-ray diffraction (XRD) pattern analysis revealed presence of mixed three-layer rhombohedral (3R) and two-layer hexagonal (2H) polytypes for the doped crystals while the undoped one shows only 2H form. Hall measurements indicate that the samples are p-type in nature. The doping effects of the materials are characterized by surface photovoltage (SPV), photoconductivity (PC) and piezoreflectance (PzR) measurements. Room temperature SPV and PC spectra reveal a feature located at ∼60 meV below the A exciton and has been tentatively assigned to be an impurity level caused by Au dopant. Excitonic transition energies of the A, B, d and C excitons detected in PzR spectra show red shift due to the presence of a small amount of Au and the broadening parameters of the excitonic transition features increase due to impurity scattering. The values of the parameters that describe the electron (exciton)-phonon interaction of excitonic transitions of A-B are about two times larger than that of d-C excitonic pairs. The possible assignments of the different origins of A-B and d-C excitonic pairs have been discussed

  18. Ion beam synthesis of buried single crystal erbium silicide

    International Nuclear Information System (INIS)

    Golanski, A.; Feenstra, R.; Galloway, M.D.; Park, J.L.; Pennycook, S.J.; Harmon, H.E.; White, C.W.

    1990-01-01

    High doses (10 16 --10 17 /cm 2 ) of 170 keV Er + were implanted into single-crystal left-angle 111 right-angle Si at implantation temperatures between 350 degree C and 520 degree C. Annealing at 800 degree C in vacuum following the implant, the growth and coalescence of ErSi 2 precipitates leads to a buried single crystalline ErSi 2 layer. This has been studied using Rutherford backscattering/channeling, X-ray diffraction, cross-sectional TEM and resistance versus temperature measurements. Samples implanted at 520 degree C using an Er dose of 7 x 10 16 /cm 2 and thermally annealed were subsequently used as seeds for the mesoepitaxial growth of the buried layer during a second implantation and annealing process. Growth occurs meso-epitaxially along both interfaces through beam induced, defect mediated mobility of Er atoms. The crystalline quality of the ErSi 2 layer strongly depends on the temperature during the second implantation. 12 refs., 4 figs

  19. Polymorphic transitions in single crystals: A new molecular dynamics method

    International Nuclear Information System (INIS)

    Parrinello, M.; Rahman, A.

    1981-01-01

    A new Lagrangian formulation is introduced. It can be used to make molecular dynamics (MD) calculations on systems under the most general, externally applied, conditions of stress. In this formulation the MD cell shape and size can change according to dynamical equations given by this Lagrangian. This new MD technique is well suited to the study of structural transformations in solids under external stress and at finite temperature. As an example of the use of this technique we show how a single crystal of Ni behaves under uniform uniaxial compressive and tensile loads. This work confirms some of the results of static (i.e., zero temperature) calculations reported in the literature. We also show that some results regarding the stress-strain relation obtained by static calculations are invalid at finite temperature. We find that, under compressive loading, our model of Ni shows a bifurcation in its stress-strain relation; this bifurcation provides a link in configuration space between cubic and hexagonal close packing. It is suggested that such a transformation could perhaps be observed experimentally under extreme conditions of shock

  20. A new 28Si single crystal: counting the atoms for the new kilogram definition

    Science.gov (United States)

    Bartl, G.; Becker, P.; Beckhoff, B.; Bettin, H.; Beyer, E.; Borys, M.; Busch, I.; Cibik, L.; D'Agostino, G.; Darlatt, E.; Di Luzio, M.; Fujii, K.; Fujimoto, H.; Fujita, K.; Kolbe, M.; Krumrey, M.; Kuramoto, N.; Massa, E.; Mecke, M.; Mizushima, S.; Müller, M.; Narukawa, T.; Nicolaus, A.; Pramann, A.; Rauch, D.; Rienitz, O.; Sasso, C. P.; Stopic, A.; Stosch, R.; Waseda, A.; Wundrack, S.; Zhang, L.; Zhang, X. W.

    2017-10-01

    A new single crystal from isotopically enriched silicon was used to determine the Avogadro constant N A by the x-ray-crystal density method. The new crystal, named Si28-23Pr11, has a higher enrichment than the former ‘AVO28’ crystal allowing a smaller uncertainty of the molar mass determination. Again, two 1 kg spheres were manufactured from this crystal. The crystal and the spheres were measured with improved and new methods. One sphere, Si28kg01a, was measured at NMIJ and PTB with very consistent results. The other sphere, Si28kg01b, was measured only at PTB and yielded nearly the same Avogadro constant value. The mean result for both 1 kg spheres is N A  =  6.022 140 526(70)  ×  1023 mol-1 with a relative standard uncertainty of 1.2  ×  10-8. This value deviates from the Avogadro value published in 2015 for the AVO28 crystal by about 3.9(2.1)  ×  10-8. Possible reasons for this difference are discussed and additional measurements are proposed.

  1. Growth of single crystals from solutions using semi-permeable membranes

    Science.gov (United States)

    Varkey, A. J.; Okeke, C. E.

    1983-05-01

    A technique suitable for growth of single crystals from solutions using semi-preamble membranes is described. Using this technique single crystals of copper sulphate, potassium bromide and ammonium dihydrogen phosphate have been successfully grown. Advantages of this technique over other methods are discussed.

  2. Probing the crossover in CO desorption from single crystal to nanoparticulate Ru model catalysts

    DEFF Research Database (Denmark)

    Murphy, Shane; Strebel, Christian Ejersbo; Vendelbo, Søren Bastholm

    2011-01-01

    Crossover in CO desorption behavior and nanoscale structure probed with STM from ruthenium single crystals to PVD and mass-selected nanoparticles.......Crossover in CO desorption behavior and nanoscale structure probed with STM from ruthenium single crystals to PVD and mass-selected nanoparticles....

  3. Silicon web process development

    Science.gov (United States)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Skutch, M. E.; Driggers, J. M.; Hopkins, R. H.

    1981-01-01

    The silicon web process takes advantage of natural crystallographic stabilizing forces to grow long, thin single crystal ribbons directly from liquid silicon. The ribbon, or web, is formed by the solidification of a liquid film supported by surface tension between two silicon filaments, called dendrites, which border the edges of the growing strip. The ribbon can be propagated indefinitely by replenishing the liquid silicon as it is transformed to crystal. The dendritic web process has several advantages for achieving low cost, high efficiency solar cells. These advantages are discussed.

  4. Dedicated multichannel readout ASIC coupled with single crystal diamond for dosimeter application

    International Nuclear Information System (INIS)

    Fabbri, A; Notaristefani, F De; Galasso, M; Cencelli, V Orsolini; Falco, M D; Marinelli, M; Tortora, L; Verona, C; Rinati, G Verona

    2013-01-01

    This paper reports on the tests of a low-noise, multi-channel readout integrated circuit used as a readout electronic front-end for a diamond multi-pixel dosimeter. The system is developed for dose distribution measurement in radiotherapy applications. The first 10-channel prototype chip was designed and fabricated in a 0.18 um CMOS process. Every channel includes a charge integrator with a 10 pF capacitor and a double slope A/D converter. The diamond multi-pixel detector, based on CVD synthetic single crystal diamond Schottky diodes, is made by a 3 × 3 sensor matrix. The overall device has been tested under irradiation with 6 MeV radio therapeutic photon beams at the Policlinico ''Tor Vergata'' (PTV) hospital. Measurements show a 20 fA RMS leakage current from the front-end input stage and a negligible dark current from the diamond detector, a stable temporal response and a good linear behaviour as a function of both dose and dose rate. These characteristics were common to each tested channel.

  5. Effect of grain boundary on the field-effect mobility of microrod single crystal organic transistors.

    Science.gov (United States)

    Kim, Jaekyun; Kang, Jingu; Cho, Sangho; Yoo, Byungwook; Kim, Yong-Hoon; Park, Sung Kyu

    2014-11-01

    High-performance microrod single crystal organic transistors based on a p-type 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) semiconductor are fabricated and the effects of grain boundaries on the carrier transport have been investigated. The spin-coating of C8-BTBT and subsequent solvent vapor annealing process enabled the formation of organic single crystals with high aspect ratio in the range of 10 - 20. It was found that the organic field-effect transistors (OFETs) based on these single crystals yield a field-effect mobility and an on/off current ratio of 8.04 cm2/Vs and > 10(5), respectively. However, single crystal OFETs with a kink, in which two single crystals are fused together, exhibited a noticeable drop of field-effect mobility, and we claim that this phenomenon results from the carrier scattering at the grain boundary.

  6. Growth of single crystals of BaFe12O19 by solid state crystal growth

    Science.gov (United States)

    Fisher, John G.; Sun, Hengyang; Kook, Young-Geun; Kim, Joon-Seong; Le, Phan Gia

    2016-10-01

    Single crystals of BaFe12O19 are grown for the first time by solid state crystal growth. Seed crystals of BaFe12O19 are buried in BaFe12O19+1 wt% BaCO3 powder, which are then pressed into pellets containing the seed crystals. During sintering, single crystals of BaFe12O19 up to ∼130 μm thick in the c-axis direction grow on the seed crystals by consuming grains from the surrounding polycrystalline matrix. Scanning electron microscopy-energy dispersive spectroscopy analysis shows that the single crystal and the surrounding polycrystalline matrix have the same chemical composition. Micro-Raman scattering shows the single crystal to have the BaFe12O19 structure. The optimum growth temperature is found to be 1200 °C. The single crystal growth behavior is explained using the mixed control theory of grain growth.

  7. Tensile properties of electron-beam-welded single crystals of molybdenum

    International Nuclear Information System (INIS)

    Hiraoka, Yutaka; Okada, Masatoshi; Irie, Hirosada; Fujii, Tadayuki.

    1987-01-01

    The purpose of this study is to investigate the macro- and microstructures and the tensile properties of electron-beam-welded single crystals of molybdenum. The single-crystal sheets were prepared by means of secondary recrystallization. The welding was carried out by a melt-run technique. The weld metal had the same crystallographic orientation as the base metal, and no grain boundary was observed. However, many large weld pores were formed mostly along the weld bond. The strength and ductility of the welded joints of single crystals were almost the same as those of the base metal (''annealed'' single crystals). It is concluded that the joint efficiency of molybdenum single crystals at room temperature or above was excellent and nearly 100 %. (author)

  8. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction

    Directory of Open Access Journals (Sweden)

    Daoxin Dai

    2012-03-01

    Full Text Available Silicon-based large-scale photonic integrated circuits are becoming important, due to the need for higher complexity and lower cost for optical transmitters, receivers and optical buffers. In this paper, passive technologies for large-scale photonic integrated circuits are described, including polarization handling, light non-reciprocity and loss reduction. The design rule for polarization beam splitters based on asymmetrical directional couplers is summarized and several novel designs for ultra-short polarization beam splitters are reviewed. A novel concept for realizing a polarization splitter–rotator is presented with a very simple fabrication process. Realization of silicon-based light non-reciprocity devices (e.g., optical isolator, which is very important for transmitters to avoid sensitivity to reflections, is also demonstrated with the help of magneto-optical material by the bonding technology. Low-loss waveguides are another important technology for large-scale photonic integrated circuits. Ultra-low loss optical waveguides are achieved by designing a Si3N4 core with a very high aspect ratio. The loss is reduced further to <0.1 dB m−1 with an improved fabrication process incorporating a high-quality thermal oxide upper cladding by means of wafer bonding. With the developed ultra-low loss Si3N4 optical waveguides, some devices are also demonstrated, including ultra-high-Q ring resonators, low-loss arrayed-waveguide grating (demultiplexers, and high-extinction-ratio polarizers.

  9. Effect of porous silicon layer on the performance of Si/oxide photovoltaic and photoelectrochemical cells

    International Nuclear Information System (INIS)

    Badawy, Waheed A.

    2008-01-01

    Photovoltaic and photoelectrochemical systems were prepared by the formation of a thin porous film on silicon. The porous silicon layer was formed on the top of a clean oxide free silicon wafer surface by anodic etching in HF/H 2 O/C 2 H 5 OH mixture (2:1:1). The silicon was then covered by an oxide film (tin oxide, ITO or titanium oxide). The oxide films were prepared by the spray/pyrolysis technique which enables doping of the oxide film by different atoms like In, Ru or Sb during the spray process. Doping of SnO 2 or TiO 2 films with Ru atoms improves the surface characteristics of the oxide film which improves the solar conversion efficiency. The prepared solar cells are stable against environmental attack due to the presence of the stable oxide film. It gives relatively high short circuit currents (I sc ), due to the presence of the porous silicon layer, which leads to the recorded high conversion efficiency. Although the open-circuit potential (V oc ) and fill factor (FF) were not affected by the thickness of the porous silicon film, the short circuit current was found to be sensitive to this thickness. An optimum thickness of the porous film and also the oxide layer is required to optimize the solar cell efficiency. The results represent a promising system for the application of porous silicon layers in solar energy converters. The use of porous silicon instead of silicon single crystals in solar cell fabrication and the optimization of the solar conversion efficiency will lead to the reduction of the cost as an important factor and also the increase of the solar cell efficiency making use of the large area of the porous structures

  10. Single-Crystal Sapphire Optical Fiber Sensor Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, Gary [Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States); Scott, Brian [Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States); Wang, Anbo [Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States); Yu, Zhihao [Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States)

    2013-12-31

    This report summarizes technical progress on the program “Single-Crystal Sapphire Optical Fiber Sensor Instrumentation,” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. This project was completed in three phases, each with a separate focus. Phase I of the program, from October 1999 to April 2002, was devoted to development of sensing schema for use in high temperature, harsh environments. Different sensing designs were proposed and tested in the laboratory. Phase II of the program, from April 2002 to April 2009, focused on bringing the sensor technologies, which had already been successfully demonstrated in the laboratory, to a level where the sensors could be deployed in harsh industrial environments and eventually become commercially viable through a series of field tests. Also, a new sensing scheme was developed and tested with numerous advantages over all previous ones in Phase II. Phase III of the program, September 2009 to December 2013, focused on development of the new sensing scheme for field testing in conjunction with materials engineering of the improved sensor packaging lifetimes. In Phase I, three different sensing principles were studied: sapphire air-gap extrinsic Fabry-Perot sensors; intensity-based polarimetric sensors; and broadband polarimetric sensors. Black body radiation tests and corrosion tests were also performed in this phase. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. At the beginning of Phase II, in June 2004, the BPDI sensor was tested at the Wabash River coal gasifier

  11. Radiation-electromagnetic effect in germanium single crystals

    International Nuclear Information System (INIS)

    Kikoin, I.K.; Kikoin, L.I.; Lazarev, S.D.

    1980-01-01

    An experimental study was made of the radiation-electromagnetic effect in germanium single crystals when excess carriers were generated by bombardment with α particles, protons, or x rays in magnetic fields up to 8 kOe. The source of α particles and protons was a cyclotron and x rays were provided by a tube with a copper anode. The radiation-electromagnetic emf increased linearly on increase in the magnetic field and was directly proportional to the flux of charged particles at low values of the flux, reaching saturation at high values of the flux (approx.5 x 10 11 particles .cm -2 .sec -1 ). In the energy range 4--40 MeV the emf was practically independent of the α-particle energy. The sign of the emf was reversed when samples with a ground front surface were irradiated. Measurements of the photoelectromagnetic and Hall effects in the α-particle-irradiated samples showed that a p-n junction was produced by these particles and its presence should be allowed for in investigations of the radiation-electromagnetic effect. The measured even radiation-electromagnetic emf increased quadratically on increase in the magnetic field. An investigation was made of the barrier radiation-voltaic effect (when the emf was measured between the irradiated and unirradiated surfaces). Special masks were used to produce a set of consecutive p-n junctions in germanium crystals irradiated with α particles. A study of the photovoltaic and photoelectromagnetic effects in such samples showed that the method could be used to increase the efficiency of devices utilizing the photoelectromagnetic effect

  12. Crystal plasticity study of single crystal tungsten by indentation tests

    International Nuclear Information System (INIS)

    Yao, Weizhi

    2012-01-01

    Owing to its favorable material properties, tungsten (W) has been studied as a plasma-facing material in fusion reactors. Experiments on W heating in plasma sources and electron beam facilities have shown an intense micro-crack formation at the heated surface and sub-surface. The cracks go deep inside the irradiated sample, and often large distorted areas caused by local plastic deformation are present around the cracks. To interpret the crack-induced microscopic damage evolution process in W, one needs firstly to understand its plasticity on a single grain level, which is referred to as crystal plasticity. In this thesis, the crystal plasticity of single crystal tungsten (SCW) has been studied by spherical and Berkovich indentation tests and the finite element method with a crystal plasticity model. Appropriate values of the material parameters included in the crystal plasticity model are determined by fitting measured load-displacement curves and pile-up profiles with simulated counterparts for spherical indentation. The numerical simulations reveal excellent agreement with experiment. While the load-displacement curves and the deduced indentation hardness exhibit little sensitivity to the indented plane at small indentation depths, the orientation of slip directions within the crystals governs the development of deformation hillocks at the surface. It is found that several factors like friction, indentation depth, active slip systems, misoriented crystal orientation, misoriented sample surface and azimuthal orientation of the indenter can affect the indentation behavior of SCW. The Berkovich indentation test was also used to study the crystal plasticity of SCW after deuterium irradiation. The critical load (pop-in load) for triggering plastic deformation under the indenter is found to depend on the crystallographic orientation. The pop-in loads decrease dramatically after deuterium plasma irradiation for all three investigated crystallographic planes.

  13. Single-crystal elastic constants of natural ettringite

    KAUST Repository

    Speziale, Sergio

    2008-07-01

    The single-crystal elastic constants of natural ettringite were determined by Brillouin spectroscopy at ambient conditions. The six non-zero elastic constants of this trigonal mineral are: C11 = 35.1 ± 0.1 GPa, C12 = 21.9 ±0.1 GPa, C13 = 20.0 ± 0.5 GPa, C14 = 0.6 ± 0.2 GPa, C33 = 55 ± 1 GPa, C44 = 11.0 ± 0.2 GPa. The Hill average of the aggregate bulk, shear modulus and the polycrystal Young\\'s modulus and Poisson\\'s ratio are 27.3 ± 0.9 GPa, 9.5 ± 0.8 GPa, 25 ± 2 GPa and 0.34 ± 0.02 respectively. The longitudinal and shear elastic anisotropy are C33/C11 = 0.64 ± 0.01 and C66/C44 =0.60 ± 0.01. The elastic anisotropy in ettringite is connected to its crystallographic structure. Stiff chains of [Al(OH)6]3- octahedra alternating with triplets of Ca2+ in eight-fold coordination run parallel to the c-axis leading to higher stiffness along this direction. The determination of the elastic stiffness tensor can help in the prediction of the early age properties of cement paste when ettringite crystals precipitate and in the modeling of both internal and external sulfate attack when secondary ettringite formation leads to expansion of concrete. © 2008 Elsevier Ltd. All rights reserved.

  14. Single-crystal elastic constants of natural ettringite

    KAUST Repository

    Speziale, Sergio; Jiang, Fuming; Mao, Zhu; Monteiro, Paulo J.M.; Wenk, Hans-Rudolf; Duffy, Thomas S.; Schilling, Frank R.

    2008-01-01

    The single-crystal elastic constants of natural ettringite were determined by Brillouin spectroscopy at ambient conditions. The six non-zero elastic constants of this trigonal mineral are: C11 = 35.1 ± 0.1 GPa, C12 = 21.9 ±0.1 GPa, C13 = 20.0 ± 0.5 GPa, C14 = 0.6 ± 0.2 GPa, C33 = 55 ± 1 GPa, C44 = 11.0 ± 0.2 GPa. The Hill average of the aggregate bulk, shear modulus and the polycrystal Young's modulus and Poisson's ratio are 27.3 ± 0.9 GPa, 9.5 ± 0.8 GPa, 25 ± 2 GPa and 0.34 ± 0.02 respectively. The longitudinal and shear elastic anisotropy are C33/C11 = 0.64 ± 0.01 and C66/C44 =0.60 ± 0.01. The elastic anisotropy in ettringite is connected to its crystallographic structure. Stiff chains of [Al(OH)6]3- octahedra alternating with triplets of Ca2+ in eight-fold coordination run parallel to the c-axis leading to higher stiffness along this direction. The determination of the elastic stiffness tensor can help in the prediction of the early age properties of cement paste when ettringite crystals precipitate and in the modeling of both internal and external sulfate attack when secondary ettringite formation leads to expansion of concrete. © 2008 Elsevier Ltd. All rights reserved.

  15. Charged-particle spectroscopy in organic semiconducting single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ciavatti, A.; Basiricò, L.; Fraboni, B. [Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna (Italy); Sellin, P. J. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Fraleoni-Morgera, A. [ELETTRA-Sincrotrone Trieste, Strada Statale 14, Km 163.5, Basovizza, Trieste (Italy); Department of Engineering and Architecture, University of Trieste, V. Valerio 10, 34100 Trieste (Italy); CNR-Nano S3 Institute, Via Campi 213/A, 41125 Modena (Italy)

    2016-04-11

    The use of organic materials as radiation detectors has grown, due to the easy processability in liquid phase at room temperature and the possibility to cover large areas by means of low cost deposition techniques. Direct charged-particle detectors based on solution-grown Organic Semiconducting Single Crystals (OSSCs) are shown to be capable to detect charged particles in pulse mode, with very good peak discrimination. The direct charged-particle detection in OSSCs has been assessed both in the planar and in the vertical axes, and a digital pulse processing algorithm has been used to perform pulse height spectroscopy and to study the charge collection efficiency as a function of the applied bias voltage. Taking advantage of the charge spectroscopy and the good peak discrimination of pulse height spectra, an Hecht-like behavior of OSSCs radiation detectors is demonstrated. It has been possible to estimate the mobility-lifetime value in organic materials, a fundamental parameter for the characterization of radiation detectors, whose results are equal to μτ{sub coplanar} = (5 .5 ± 0.6 ) × 10{sup −6} cm{sup 2}/V and μτ{sub sandwich} = (1 .9 ± 0.2 ) × 10{sup −6} cm{sup 2}/V, values comparable to those of polycrystalline inorganic detectors. Moreover, alpha particles Time-of-Flight experiments have been carried out to estimate the drift mobility value. The results reported here indicate how charged-particle detectors based on OSSCs possess a great potential as low-cost, large area, solid-state direct detectors operating at room temperature. More interestingly, the good detection efficiency and peak discrimination observed for charged-particle detection in organic materials (hydrogen-rich molecules) are encouraging for their further exploitation in the detection of thermal and high-energy neutrons.

  16. Mechanical properties of low temperature proton irradiated single crystal copper

    International Nuclear Information System (INIS)

    Schildcrout, M.

    1975-01-01

    Single crystal copper samples, of varying degrees of cold work, were irradiated near either liquid helium or liquid nitrogen temperature by 10.1-MeV protons. The internal friction and dynamic Young's modulus were observed as a function of either temperature or integrated proton flux. The primary effect of irradiation was to produce dislocation pinning. The initial pinning rate was found to be very sensitive to cold work. During irradiation it was found that heavily cold worked samples (25 percent compression) exhibited, almost exclusively, exponential pinning given by Y = e/sup --lambda phi/. This is attributed to the immobilization, rather than shortening, of loop lengths and is characterized by the pinning constant lambda. Exponential pinning was also found, to a smaller degree, in less heavily cold worked samples. Cold work appears to reduce the ''effective volume'' within which the defect clusters produced by irradiation, can immobilize dislocation segments. The bulk effect was observed after dislocation pinning was completed. Expressed in terms of the fractional change in Young's modulus per unit concentration of irradiation induced defects, it was measured at liquid helium temperature to be --18.5 +- 3. An anelastic process occurring near 10 0 K for low kHz frequencies and due to stress-induced ordering of point defects produced by irradiation has also been studied. The peak height per unit fluence was found to decrease with increasing cold work. The peak was not observed in samples compressed 25 percent. For the most carefully handled sample the activation energy was (1.28 +- 0.05) x 10 -2 eV, the attempt frequency was 10/sup 11.6 +- .8/ s -1 , the shape factor was 0.20, and the half width of the peak was 11 percent larger than the theoretical value calculated from the Debye equation for a single relaxation process

  17. Ferrite Nanoparticles, Films, Single Crystals, and Metamaterials: High Frequency Applications

    International Nuclear Information System (INIS)

    Harris, V.

    2006-01-01

    Ferrite materials have long played an important role in power conditioning, conversion, and generation across a wide spectrum of frequencies (up to ten decades). They remain the preferred magnetic materials, having suitably low losses, for most applications above 1 MHz, and are the only viable materials for nonreciprocal magnetic microwave and millimeter-wave devices (including tunable filters, isolators, phase shifters, and circulators). Recently, novel processing techniques have led to a resurgence of research interest in the design and processing of ferrite materials as nanoparticles, films, single crystals, and metamaterials. These latest developments have set the stage for their use in emerging technologies that include cancer remediation therapies such as magnetohyperthermia, magnetic targeted drug delivery, and magneto-rheological fluids, as well as enhanced magnetic resonance imaging. With reduced dimensionality of nanoparticles and films, and the inherent nonequilibrium nature of many processing schemes, changes in local chemistry and structure have profound effects on the functional properties and performance of ferrites. In this lecture, we will explore these effects upon the fundamental magnetic and electronic properties of ferrites. Density functional theory will be applied to predict the properties of these ferrites, with synchrotron radiation techniques used to elucidate the chemical and structural short-range order. This approach will be extended to study the atomic design of ferrites by alternating target laser-ablation deposition. Recently, this approach has been shown to produce ferrites that offer attractive properties not found in conventionally grown ferrites. We will explore the latest research developments involving ferrites as related to microwave and millimeter-wave applications and the attempt to integrate these materials with semiconductor materials platforms

  18. Single-crystal micromachining using multiple fusion-bonded layers

    Science.gov (United States)

    Brown, Alan; O'Neill, Garry; Blackstone, Scott C.

    2000-08-01

    Multi-layer structures have been fabricated using Fusion bonding. The paper shows void free layers of between 2 and 100 microns that have been bonded to form multi-layer structures. Silicon layers have been bonded both with and without interfacial oxide layers.

  19. 2 μm wavelength range InP-based type-II quantum well photodiodes heterogeneously integrated on silicon photonic integrated circuits.

    Science.gov (United States)

    Wang, Ruijun; Sprengel, Stephan; Muneeb, Muhammad; Boehm, Gerhard; Baets, Roel; Amann, Markus-Christian; Roelkens, Gunther

    2015-10-05

    The heterogeneous integration of InP-based type-II quantum well photodiodes on silicon photonic integrated circuits for the 2 µm wavelength range is presented. A responsivity of 1.2 A/W at a wavelength of 2.32 µm and 0.6 A/W at 2.4 µm wavelength is demonstrated. The photodiodes have a dark current of 12 nA at -0.5 V at room temperature. The absorbing active region of the integrated photodiodes consists of six periods of a "W"-shaped quantum well, also allowing for laser integration on the same platform.

  20. Crystal growth and scintillation properties of Pr-doped SrI2 single crystals

    Science.gov (United States)

    Yokota, Yuui; Ito, Tomoki; Yoshino, Masao; Yamaji, Akihiro; Ohashi, Yuji; Kurosawa, Shunsuke; Kamada, Kei; Yoshikawa, Akira

    2018-04-01

    Pr-doped SrI2 (Pr:SrI2) single crystals with various Pr concentrations were grown by the halide-micro-pulling-down (H-μ-PD) method, and the scintillation properties were investigated. Pr1%:SrI2 single crystal with high transparency could be grown by the H-μ-PD method while Pr2, 3 and 5%:SrI2 single crystals included some cracks and opaque parts. In the photoluminescence spectrum of the Pr1%:SrI2 single crystal, an emission peak originated from the Pr3+ ion was observed around 435 nm while the radioluminescence spectra showed an emission peak around 535 nm for the undoped SrI2 and Pr:SrI2 single crystals. Light yields of Pr1, 2, 3 and 5%:SrI2 single crystals under γ-ray irradiation were 7700, 8700, 7200 and 6700 photons/MeV, respectively. Decay times of Pr1 and 2%:SrI2 single crystals under γ-ray irradiation were 55.9 and 35.0 ns of the fast decay component, and 435 and 408 ns of the slow decay component, respectively.

  1. Thermopower, electrical and Hall conductivity of undoped and doped iron disilicide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, A; Behr, G; Griessmann, H; Teichert, S; Lange, H

    1997-07-01

    The electrical transport properties of {beta}-FeSi{sub 2} single crystals have been investigated in dependence on the purity of the source material and on doping with 3d transition metals. The transport properties included are electrical conductivity, Hall conductivity and thermopower mainly in the temperature range from 4K to 300K. The single crystals have been prepared by chemical transport reaction in a closed system with iodine as transport agent. In undoped single crystals prepared with 5N Fe both electrical conductivity and thermopower depend on the composition within the homogeneity range of {beta}-FeSi{sub 2} which is explained by different intrinsic defects at the Si-rich and Fe-rich phase boundaries. In both undoped and doped single crystals impurity band conduction is observed at low temperatures but above 100K extrinsic behavior determined by shallow impurity states. The thermopower shows between 100K and 200K a significant phonon drag contribution which depends on intrinsic defects and additional doping. The Hall resistivity is considered mainly with respect to an anomalous contribution found in p-type and n-type single crystals and thin films. In addition doped single crystals show at temperatures below about 130K an hysteresis of the Hall voltage. These results make former mobility data uncertain. Comparison will be made between the transport properties of single crystals and polycrystalline material.

  2. Photoelectron diffraction studies of small adsorbates on single crystal surfaces

    International Nuclear Information System (INIS)

    Pascal, Mathieu

    2002-01-01

    The structural determination of small molecules adsorbed on single crystal surfaces has been investigated using scanned energy mode photoelectron diffraction (PhD). The experimental PhD data were compared to theoretical models using a simulation program based on multiple scattering calculations. Three adsorption systems have been examined on Ag(110), Cu(110) and Cu(111) crystals. The structure of the (2x1)-O adsorption phase on Ag(110) revealed that the O atoms occupied the long bridge site and are almost co-planar with the top layer of Ag atoms. The best agreement between multiple scattering theory and experiment has been obtained for a missing-row (or equivalently an 'added- row') reconstruction. Alternative buckled-row and unreconstructed surface models can be excluded. The adsorption of the benzoate species on Cu(110) has been found to occur via the carboxylate group. The molecules occupy short bridge sites with the O atoms being slightly displaced from atop sites and are aligned along the close-packed azimuth. The tilt of the molecule with respect to the surface and the degree to which the surface is relaxed have also been investigated. The adsorption of methyl on Cu(111) was studied using either azomethane or methyl iodide to prepare the surface layers. At saturation coverage the preferred adsorption site is the fcc threefold hollow site, whereas at half saturation coverage ∼ 30 % of the methyl species occupy the hop threefold hollow sites. Best agreement between theory and experiment corresponded to a methyl group adsorbed with C 3v symmetry. The height of the C above the surface in a pure methyl layer was 1.66 ± 0.02 A, but was reduced to 1.62 ± 0.02 A in the presence of co-adsorbed iodine, suggesting that iodine increases the strength of adsorption. Iodine was also found to occupy the fee threefold hollow sites with a Cu-l bondlength of 2.61 ± 0.02 A. (author)

  3. Compression of Single-Crystal Orthopyroxene to 60GPa

    Science.gov (United States)

    Finkelstein, G. J.; Dera, P. K.; Holl, C. M.; Dorfman, S. M.; Duffy, T. S.

    2010-12-01

    Orthopyroxene ((Mg,Fe)SiO3) is one of the dominant phases in Earth’s upper mantle - it makes up ~20% of the upper mantle by volume. At high pressures and temperatures, this phase undergoes several well-characterized phase transitions. However, when compressed at low temperature and high-pressure, orthopyroxene is predicted to exhibit metastable behavior(1). Previous researchers have found orthoenstatite (Mg endmember of orthopyroxene) persists up to ~10 GPa, and diffraction(2-3), Raman(4), and elasticity(5) experiments suggest a phase transition above this pressure to an as-yet unidentified structure. While earlier diffraction data has surprisingly only been evaluated for structural information to ~9 GPa(2), changes in high-pressure Raman spectra to ~70 GPa indicate that several more high-pressure phase transitions in orthopyroxene are likely, including at least one change in Si-coordination(6). We have recently conducted exploratory experiments to further elucidate the high-pressure behavior of orthopyroxene. Compressing a single crystal of Fe-rich orthopyroxene (Fe0.66Mg0.24Ca0.05SiO3) using a diamond anvil cell, we observe phase transitions at ~10, 14, and 30 GPa, with the new phases having monoclinic, orthorhombic, and orthorhombic symmetries, respectively. While the first two transitions do not show a significant change in volume, the phase transition at ~30 GPa shows a large decrease in volume, which is consistent with a change in Si coordination number to mixed 4- and 6-fold coordination. References: [1] S. Jahn, American Mineralogist 93, 528-532 (2008). [2] R. J. Angel, J. M. Jackson, American Mineralogist 87, 558-561 (2002). [3] R. J. Angel, D. A. Hugh-Jones, Journal of Geophysical Research-Solid Earth 99, 19,777-19,783 (1994). [4] G. Serghiou, Journal of Raman Spectroscopy 34, 587-590 (2003). [5] J. Kung et al., Physics of the Earth and Planetary Interiors 147, 27-44 (2004). [6] G. Serghiou, A. Chopelas, R. Boehler, Journal of Physics: Condensed Matter

  4. Study of dopamine reactivity on platinum single crystal electrode surfaces

    International Nuclear Information System (INIS)

    Chumillas, Sara; Figueiredo, Marta C.; Climent, Víctor; Feliu, Juan M.

    2013-01-01

    Dopamine is the biological molecule responsible, among other functions, of the heart beat and blood pressure regulation. Its loss, in the human body, can result in serious diseases such as Parkinson's, schizophrenia or depression. Structurally, this molecule belongs to the group of catecholamines, together with epinephrine (adrenaline) and norepinephrine (noradrenaline). The hydroquinone moiety of the molecule can be easily oxidized to quinone, rendering the electrochemical methods a convenient approach for the development of dopamine biosensors. The reactivity of similar aromatic molecules, such as catechol and hydroquinone, at well-ordered platinum surfaces, has recently been investigated in our group. In this paper, we extend these studies to the structurally related molecule dopamine. The study has been performed in neutral pH, since this is closer to the natural conditions for these molecules in biological media. Cyclic voltammetry and in situ infra-red spectroscopy have been combined to extract information about the behavior of this molecule on well-defined platinum surfaces. Dopamine appears to be electrochemically active and reveals interesting adsorption phenomena at low potentials (0.15–0.25 V vs RHE), sensitive to the single crystal orientation. The adsorption of dopamine on these surfaces is very strong, taking place at much lower potentials than the electron transfer from solution species. Specifically, the voltammetry of Pt(1 1 1) and Pt(1 0 0) in dopamine solutions shows an oxidation peak at potentials close to the onset of hydrogen evolution, which is related to the desorption of hydrogen and the adsorption of dopamine. On the other hand, adsorption on Pt(1 1 0) is irreversible and the surface appears totally blocked. Spectroscopic results indicate that dopamine is adsorbed flat on the surface. At potentials higher than 0.6 V vs RHE the three basal planes show a common redox process. The initial formation of the quinone moiety is followed by a

  5. Capillarity creates single-crystal calcite nanowires from amorphous calcium carbonate.

    Science.gov (United States)

    Kim, Yi-Yeoun; Hetherington, Nicola B J; Noel, Elizabeth H; Kröger, Roland; Charnock, John M; Christenson, Hugo K; Meldrum, Fiona C

    2011-12-23

    Single-crystal calcite nanowires are formed by crystallization of morphologically equivalent amorphous calcium carbonate (ACC) particles within the pores of track etch membranes. The polyaspartic acid stabilized ACC is drawn into the membrane pores by capillary action, and the single-crystal nature of the nanowires is attributed to the limited contact of the intramembrane ACC particle with the bulk solution. The reaction environment then supports transformation to a single-crystal product. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Annealing effect on superconductivity of La2CuO4 single crystals

    International Nuclear Information System (INIS)

    Tanaka, I.; Takahashi, H.; Kojima, H.

    1992-01-01

    This paper reports that La 2 CuO 4 single crystals grown at an oxygen pressure of 0.2 MPa by TSFZ method are superconducting below 32 K, and show a semiconducting behavior in nonsuperconducting state. The single crystals of La 2 CuO 4 are changed from superconductors to semiconductors by annealing in argon, and are returned to superconductors by annealing at ambient pressure of oxygen. Therefore, superconductivity of the La 2 CuO 4 single crystals is due to excess oxygen

  7. Annealing effect on superconductivity of La2CuO4 single crystals

    International Nuclear Information System (INIS)

    Tanaka, L.; Takahashi, H.; Kojima, H.

    1992-01-01

    La 2 CuO 4 single crystals grown at an oxygen pressure of 0.2 MPa by TSFZ method are superconducting below 32 K, and show a semiconducting behavior in nonsuperconducting state. The single crystals of La 2 CuO 4 are changed from superconductors to semiconductors by annealing in argon, and are returned to superconductors by annealing at ambient pressure of oxygen. Therefore, superconductivity of the La 2 CuO 4 single crystals is due to excess oxygen. (orig.)

  8. Experimental study and numerical simulation of the plastic deformation of zirconium single crystals

    International Nuclear Information System (INIS)

    Lebon, C.

    2011-01-01

    There is only few experimental data in the literature on the zirconium single crystals and no constitutive laws for this single crystal material are provided. The goal of this work is then to create an experimental database like the Critical Resolved Shear Stress (CRSS) for the prismatic slip, the strain-hardening, the activation of the prismatic glide system and the activation volumes. We determine theses parameters from image correlation method. Then, we develop a new multi-scale approach using dislocations dynamics concept and finite element computations. Finally, a first single crystal constitutive law for the zirconium is proposed and a good agreement with the experimental data is obtained. (author) [fr

  9. Growth and microtopographic study of CuInSe{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Sanjaysinh M.; Chaki, Sunil, E-mail: sunilchaki@yahoo.co.in; Deshpande, M. P. [Department of Physics, Sardar Patel University, Vallabh Vidyanagar, Gujarat - 388120 (India); Tailor, J. P. [Applied Physics Department, S.V.N.I.T., Surat, Gujarat - 395007 (India)

    2016-05-23

    The CuInSe{sub 2} single crystals were grown by chemical vapour transport (CVT) technique using iodine as transporting agent. The elemental composition of the as-grown CuInSe{sub 2} single crystals was determined by energy dispersive analysis of X-ray (EDAX). The unit cell crystal structure and lattice parameters were determined by X-ray diffraction (XRD) technique. The surface microtopographic study of the as-grown CuInSe{sub 2} single crystals surfaces were done to study the defects, growth mechanism, etc. of the CVT grown crystals.

  10. Regio-Regular Oligo and Poly(3-hexyl thiophene): Precise Structural Markers from the Vibrational Spectra of Oligomer Single Crystals.

    KAUST Repository

    Brambilla, Luigi; Tommasini, Matteo; Botiz, Ioan; Rahimi, Khosrow; Agumba, John O.; Stingelin, Natalie; Zerbi, Giuseppe

    2014-01-01

    , namely, amorphous, semicrystalline, polycrystalline and single crystal. We have based our analysis on the spectra of the (3HT)8 single crystal (whose structure has been determined by selected area electron diffraction) taken as reference

  11. Design, development and evaluation of a resistor-based multiplexing circuit for a 20×20 SiPM array

    International Nuclear Information System (INIS)

    Wang, Zhonghai; Sun, Xishan; Lou, Kai; Meier, Joseph; Zhou, Rong; Yang, Chaowen; Zhu, Xiaorong; Shao, Yiping

    2016-01-01

    One technical challenge in developing a large-size scintillator detector with multiple Silicon Photomultiplier (SiPM) arrays is to read out a large number of detector output channels. To achieve this, different signal multiplexing circuits have been studied and applied with different performances and cost-effective tradeoffs. Resistor-based multiplexing circuits exhibit simplicity and signal integrity, but also present the disadvantage of timing shift among different channels. In this study, a resistor-based multiplexing circuit for a large-sized SiPM array readout was developed and evaluated by simulation and experimental studies. Similarly to a multiplexing circuit used for multi-anode PMT, grounding and branching resistors were connected to each SiPM output channel. The grounding resistor was used to simultaneously reduce the signal crosstalk among different channels and to improve timing performance. Both grounding and branching resistor values were optimized to maintain a balanced performance of the event energy, timing, and positioning. A multiplexing circuit was implemented on a compact PCB and applied for a flat-panel detector which consisted of a 32×32 LYSO scintillator crystals optically coupled to 5×5 SiPM arrays for a total 20×20 output channels. Test results showed excellent crystal identification for all 1024 LYSO crystals (each with 2×2×30 mm"3 size) with "2"2Na flood-source irradiation. The measured peak-to-valley ratio from typical crystal map profile is around 3:1 to 6.6:1, an average single crystal energy resolution of about 17.3%, and an average single crystal timing resolution of about 2 ns. Timing shift among different crystals, as reported in some other resistor-based multiplexing circuit designs, was not observed. In summary, we have designed and implemented a practical resistor-based multiplexing circuit that can be readily applied for reading out a large SiPM array with good detector performance.

  12. Design, development and evaluation of a resistor-based multiplexing circuit for a 20×20 SiPM array

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhonghai [College of Physical Science and Technology, Key Laboratory of Radiation Physics and Technology, Ministry of Education, Sichuan University, Chengdu (China); Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Tx (United States); Sun, Xishan [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Tx (United States); Lou, Kai [Department of Electrical and Computer Engineering, Rice University, Houston, Tx (United States); Meier, Joseph [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Tx (United States); Zhou, Rong; Yang, Chaowen [College of Physical Science and Technology, Key Laboratory of Radiation Physics and Technology, Ministry of Education, Sichuan University, Chengdu (China); Zhu, Xiaorong [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Tx (United States); Shao, Yiping [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Tx (United States)

    2016-04-21

    One technical challenge in developing a large-size scintillator detector with multiple Silicon Photomultiplier (SiPM) arrays is to read out a large number of detector output channels. To achieve this, different signal multiplexing circuits have been studied and applied with different performances and cost-effective tradeoffs. Resistor-based multiplexing circuits exhibit simplicity and signal integrity, but also present the disadvantage of timing shift among different channels. In this study, a resistor-based multiplexing circuit for a large-sized SiPM array readout was developed and evaluated by simulation and experimental studies. Similarly to a multiplexing circuit used for multi-anode PMT, grounding and branching resistors were connected to each SiPM output channel. The grounding resistor was used to simultaneously reduce the signal crosstalk among different channels and to improve timing performance. Both grounding and branching resistor values were optimized to maintain a balanced performance of the event energy, timing, and positioning. A multiplexing circuit was implemented on a compact PCB and applied for a flat-panel detector which consisted of a 32×32 LYSO scintillator crystals optically coupled to 5×5 SiPM arrays for a total 20×20 output channels. Test results showed excellent crystal identification for all 1024 LYSO crystals (each with 2×2×30 mm{sup 3} size) with {sup 22}Na flood-source irradiation. The measured peak-to-valley ratio from typical crystal map profile is around 3:1 to 6.6:1, an average single crystal energy resolution of about 17.3%, and an average single crystal timing resolution of about 2 ns. Timing shift among different crystals, as reported in some other resistor-based multiplexing circuit designs, was not observed. In summary, we have designed and implemented a practical resistor-based multiplexing circuit that can be readily applied for reading out a large SiPM array with good detector performance.

  13. Application of hydrogen-plasma technology for property modification of silicon and producing the silicon-based structures

    International Nuclear Information System (INIS)

    Fedotov, A.K.; Mazanik, A.V.; Ul'yashin, A.G.; Dzhob, R; Farner, V.R.

    2000-01-01

    Effects of atomic hydrogen on the properties of Czochralski-grown single crystal silicon as well as polycrystalline shaped silicon have been investigated. It was established that the buried defect layers created by high-energy hydrogen or helium ion implantation act as a good getter centers for hydrogen atoms introduced in silicon in the process of hydrogen plasma hydrogenation. Atomic hydrogen was shown to be active as a catalyzer significantly enhancing the rate of thermal donors formation in p-type single crystal silicon. This effect can be used for n-p- and p-n-p-silicon based device structures producing [ru

  14. Single Crystal Piezomotor for Large Stroke, High Precision and Cryogenic Actuations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes a novel single crystal piezomotor for large stroke, high precision, and cryogenic actuations with capability of position set-hold with...

  15. Mechanism of the superior mechanical strength of nanometer-sized metal single crystals revealed

    KAUST Repository

    Afify, N. D.; Salem, H. G.; Yavari, A.; El Sayed, Tamer S.

    2013-01-01

    Clear understanding of the superior mechanical strength of nanometer-sized metal single crystals is required to derive advanced mechanical components retaining such superiority. Although high quality studies have been reported on nano

  16. Electrolytic coloration and spectral properties of hydroxyl-doped potassium chloride single crystals

    International Nuclear Information System (INIS)

    Gu Hongen; Wu Yanru

    2011-01-01

    Hydroxyl-doped potassium chloride single crystals are colored electrolytically at various temperatures and voltages using a pointed cathode and a flat anode. Characteristic OH - spectral band is observed in the absorption spectrum of uncolored single crystal. Characteristic O - , OH - , U, V 2 , V 3 , O 2- -V a + , F, R 2 and M spectral bands are observed simultaneously in absorption spectra of colored single crystals. Current-time curve for electrolytic coloration of hydroxyl-doped potassium chloride single crystal and its relationship with electrolytic coloration process are given. Production and conversion of color centers are explained. - Highlights: → Expanded the traditional electrolysis method. → Hydroxyl-doped potassium chloride crystals were colored electrolytically for the first time. → Useful V, F and F-aggregate color centers were produced in colored crystals. → V color centers were produced directly and F and F-aggregate color centers indirectly.

  17. Spiro-OMeTAD single crystals: Remarkably enhanced charge-carrier transport via mesoscale ordering

    KAUST Repository

    Shi, Dong; Qin, X.; Li, Yuan; He, Yao; Zhong, Cheng; Pan, Jun; Dong, H.; Xu, Wei; Li, T.; Hu, W.; Bredas, Jean-Luc; Bakr, Osman

    2016-01-01

    bottleneck for advancing cell efficiencies. We devised an antisolvent crystallization strategy to grow single crystals of spiro-OMeTAD, which allowed us to experimentally elucidate its molecular packing and transport properties. Electronic structure

  18. Mechanism of the superior mechanical strength of nanometer-sized metal single crystals revealed

    KAUST Repository

    Afify, N. D.

    2013-10-01

    Clear understanding of the superior mechanical strength of nanometer-sized metal single crystals is required to derive advanced mechanical components retaining such superiority. Although high quality studies have been reported on nano-crystalline metals, the superiority of small single crystals has neither been fundamentally explained nor quantified to this date. Here we present a molecular dynamics study of aluminum single crystals in the size range from 4.1 nm to 40.5 nm. We show that the ultimate mechanical strength deteriorates exponentially as the single crystal size increases. The small crystals superiority is explained by their ability to continuously form vacancies and to recover them. © 2013 Published by Elsevier B.V.

  19. Twinning behavior in the Ti-5at.% Al single crystals during cyclic loading along [0001

    International Nuclear Information System (INIS)

    Xiao Lin

    2005-01-01

    Cyclic deformation behavior of Ti-5at.% Al single crystals subjected to pull-push cyclic load along [0001] crystallographic orientation was studied. A higher cyclic stress response was displayed in the Ti-5Al single crystal oriented for [0001] than that oriented for single prism slip. Optical microscopy and transmission electron microscopy examinations show that twinning is a dominant plastic deformation mode in the single crystals during cycling. Trace analysis of prepolished surfaces was used to identify the twin systems primarily responsible for deformation. The major twin type observed was {101-bar 2}, {112-bar 2}, {101-bar 1} and {112-bar 1}. slip was observed in the neighboring region of twins in the fatigued specimens. The activation of multiple twinning systems contributed to the higher cyclic saturation stress in Ti-5Al single crystals oriented for [0001

  20. Ultrafast carrier dynamics in pentacene, functionalized pentacene, tetracene, and rubrene single crystals

    NARCIS (Netherlands)

    Ostroverkhova, O; Cooke, DG; Hegmann, FA; Anthony, JE; Podzorov, [No Value; Gershenson, ME; Jurchescu, OD; Palstra, TTM

    2006-01-01

    We measure the transient photoconductivity in pentacene, functionalized pentacene, tetracene, and rubrene single crystals using optical pump-terahertz probe techniques. In all of the samples studied, we observe subpicosecond charge photogeneration and a peak photoconductive response that increases