WorldWideScience

Sample records for single-crystal high-frequency ultrasound

  1. Anomalous effect of high-frequency ultrasound on radiation diffraction in deformed single crystals

    International Nuclear Information System (INIS)

    Iolin, E.M.; Rajtman, Eh.A.; Kuvaldin, B.V.; Zolotoyabko, Eh.V.

    1988-01-01

    Results are presented of a theoretical and experimental study of neutron and X-ray diffraction in defromed single crystals on high-frequency ultrasonic excitation. It is demonstrated theoretically that at a frequency exceeding a certain threshold value the ultrasound violates the adiabatic conditions for the excitation point motion on the dispersion surface branches. This leads to an anomalous (compared to diffraction for a perfect crystal) dependence of the diffraction intensity on the ultrasonic wave amplitude. The experimental data for Si crystals are in good agreement with the theoretical predictions

  2. Ferrite Nanoparticles, Films, Single Crystals, and Metamaterials: High Frequency Applications

    International Nuclear Information System (INIS)

    Harris, V.

    2006-01-01

    Ferrite materials have long played an important role in power conditioning, conversion, and generation across a wide spectrum of frequencies (up to ten decades). They remain the preferred magnetic materials, having suitably low losses, for most applications above 1 MHz, and are the only viable materials for nonreciprocal magnetic microwave and millimeter-wave devices (including tunable filters, isolators, phase shifters, and circulators). Recently, novel processing techniques have led to a resurgence of research interest in the design and processing of ferrite materials as nanoparticles, films, single crystals, and metamaterials. These latest developments have set the stage for their use in emerging technologies that include cancer remediation therapies such as magnetohyperthermia, magnetic targeted drug delivery, and magneto-rheological fluids, as well as enhanced magnetic resonance imaging. With reduced dimensionality of nanoparticles and films, and the inherent nonequilibrium nature of many processing schemes, changes in local chemistry and structure have profound effects on the functional properties and performance of ferrites. In this lecture, we will explore these effects upon the fundamental magnetic and electronic properties of ferrites. Density functional theory will be applied to predict the properties of these ferrites, with synchrotron radiation techniques used to elucidate the chemical and structural short-range order. This approach will be extended to study the atomic design of ferrites by alternating target laser-ablation deposition. Recently, this approach has been shown to produce ferrites that offer attractive properties not found in conventionally grown ferrites. We will explore the latest research developments involving ferrites as related to microwave and millimeter-wave applications and the attempt to integrate these materials with semiconductor materials platforms

  3. PMN-PT single crystal, high-frequency ultrasonic needle transducers for pulsed-wave Doppler application.

    Science.gov (United States)

    Zhou, Qifa; Xu, Xiaochen; Gottlieb, Emanuel J; Sun, Lei; Cannata, Jonathan M; Ameri, Hossein; Humayun, Mark S; Han, Pengdi; Shung, K Kirk

    2007-03-01

    High-frequency needle ultrasound transducers with an aperture size of 0.4 mm were fabricated using lead magnesium niobate-lead titanate (PMN-33% PT) as the active piezoelectric material. The active element was bonded to a conductive silver particle matching layer and a conductive epoxy backing through direct contact curing. An outer matching layer of parylene was formed by vapor deposition. The active element was housed within a polyimide tube and a 20-gauge needle housing. The magnitude and phase of the electrical impedance of the transducer were 47 omega and -38 degrees, respectively. The measured center frequency and -6 dB fractional bandwidth of the PMN-PT needle transducer were 44 MHz and 45%, respectively. The two-way insertion loss was approximately 15 dB. In vivo high-frequency, pulsed-wave Doppler patterns of blood flow in the posterior portion and in vitro ultrasonic backscatter microscope (UBM) images of the rabbit eye were obtained with the 44-MHz needle transducer.

  4. High-frequency ultrasound-responsive block copolymer micelle.

    Science.gov (United States)

    Wang, Jie; Pelletier, Maxime; Zhang, Hongji; Xia, Hesheng; Zhao, Yue

    2009-11-17

    Micelles of a diblock copolymer composed of poly(ethylene oxide) and poly(2-tetrahydropyranyl methacrylate) (PEO-b-PTHPMA) in aqueous solution could be disrupted by high-frequency ultrasound (1.1 MHz). It was found that, upon exposure to a high-intensity focused ultrasound (HIFU) beam at room temperature, the pH value of the micellar solution decreased over irradiation time. The infrared spectroscopic analysis of solid block copolymer samples collected from the ultrasound irradiated micellar solution revealed the formation of carboxylic acid dimers and hydroxyl groups. These characterization results suggest that the high-frequency HIFU beam could induce the hydrolysis reaction of THPMA at room temperature resulting in the cleavage of THP groups. The disruption of PEO-b-PTHPMA micelles by ultrasound was investigated by using dynamic light scattering, atomic force microscopy, and fluorescence spectroscopy. On the basis of the pH change, it was found that the disruption process was determined by a number of factors such as the ultrasound power, the micellar solution volume and the location of the focal spot of the ultrasound beam. This study shows the potential to develop ultrasound-sensitive block copolymer micelles by having labile chemical bonds in the polymer structure, and to use the high-frequency HIFU to trigger a chemical reaction for the disruption of micelles.

  5. Surface modification of lignocellulosic fibers using high-frequency ultrasound

    Science.gov (United States)

    Jayant B. Gadhe; Ram B. Gupta; Thomas Elder

    2005-01-01

    Enzymatic and chemical oxidation of fiber surfaces has been reported in the literature as a method for producing medium density fiberboards without using synthetic adhesives. This work focuses on modifying the surface properties of wood fibers by the generation of free radicals using high-frequency ultrasound. A sonochemical reactor operating at 610 kHz is used to...

  6. Low propagation loss in a one-port SAW resonator fabricated on single-crystal diamond for super-high-frequency applications.

    Science.gov (United States)

    Fujii, Satoshi; Odawara, Tatsuya; Yamada, Haruya; Omori, Tatsuya; Hashimoto, Ken-Ya; Torii, Hironori; Umezawa, Hitoshi; Shikata, Shinichi

    2013-05-01

    Diamond has the highest known SAW phase velocity, sufficient for applications in the gigahertz range. However, although numerous studies have demonstrated SAW devices on polycrystalline diamond thin films, all have had much larger propagation loss than single-crystal materials such as LiNbO3. Hence, in this study, we fabricated and characterized one-port SAW resonators on single-crystal diamond substrates synthesized using a high-pressure and high-temperature method to identify and minimize sources of propagation loss. A series of one-port resonators were fabricated with the interdigital transducer/ AlN/diamond structure and their characteristics were measured. The device with the best performance exhibited a resonance frequency f of 5.3 GHz, and the equivalent circuit model gave a quality factor Q of 5509. Thus, a large fQ product of approximately 2.9 × 10(13) was obtained, and the propagation loss was found to be only 0.006 dB/wavelength. These excellent properties are attributed mainly to the reduction of scattering loss in a substrate using a single-crystal diamond, which originated from the grain boundary of diamond and the surface roughness of the AlN thin film and the diamond substrate. These results show that single-crystal diamond SAW resonators have great potential for use in low-noise super-high-frequency oscillators.

  7. High frequency ultrasound imaging in pupillary block glaucoma.

    Science.gov (United States)

    Aslanides, I M; Libre, P E; Silverman, R H; Reinstein, D Z; Lazzaro, D R; Rondeau, M J; Harmon, G K; Coleman, D J

    1995-01-01

    BACKGROUND--The diagnosis of pupillary block glaucoma requires sufficient clarity of the ocular media. This is particularly important for assessment of both the presence and patency of an iridotomy, and the determination of central anterior chamber depth. METHODS--High frequency ultrasonography was used in three patients with suspected pupillary block to determine iris configuration, posterior chamber volume, and ciliary body conformation. RESULTS--All patients demonstrated high frequency ultrasonographic findings consistent with pupillary block: iris bombé, a formed posterior chamber, and a lack of anterior rotation of the ciliary processes. CONCLUSION--High frequency ultrasound imaging appears to be a valuable adjunct in making or corroborating the diagnosis of pupillary block glaucoma. Images PMID:8534666

  8. Evaluation of single crystal LaB6 cathodes for use in a high frequency backward wave oscillator tube

    Science.gov (United States)

    Swanson, L. W.; Davis, P. R.; Schwind, G. A.

    1984-01-01

    The results of thermionic emission and evaporation studies of single crystal LaB6 cathodes are given. A comparison between the (100), (210) and (310) crystal planes shows the (310) and (210) planes to possess a work function approx 0.2 eV lower than (100). This translates into a significant increase in current density, J, at a specified temperature. Comparison with a state-of-the-art impregnated dispenser cathode shows that LaB6 (310) is a superior cathode in nearly all respects except operating temperature at j 10 A/sq cm. The 1600 K thermionic and room temperature retarding potential work functions for LaB6 (310) are 2.42 and 2.50 respectively.

  9. High frequency transducer for vessel imaging based on lead-free Mn-doped (K0.44Na0.56)NbO3 single crystal

    Science.gov (United States)

    Ma, Jinpeng; Xue, Saidong; Zhao, Xiangyong; Wang, Feifei; Tang, Yanxue; Duan, Zhihua; Wang, Tao; Shi, Wangzhou; Yue, Qingwen; Zhou, Huifang; Luo, Haosu; Fang, Bijun

    2017-08-01

    We report a high frequency ultrasonic transducer up to 50 MHz for vessel imaging based on a lead-free (K0.44Na0.56)NbO3-0.5 mol. % Mn (Mn-KNN) single crystal, which has a high electromechanical coupling coefficient kt of 0.64 and a large thickness frequency constant Nt of 3210 kHz . mm. The Krimholtz, Leedom, and Mattaei (KLM) equivalent circuit model was utilized to simulate and optimize the pulse-echo response combined with PiezoCAD software. Theoretically, a high -6 dB bandwidth of 74.94% was obtained at a center frequency of 50.47 MHz and optimized matching conditions. The experimental results showed a center frequency of 51.8 MHz with a -6 dB bandwidth of 70.2%. The excellent global performance makes this lead-free single-crystal transducer quite potential in an environmentally friendly vessel imaging transducer.

  10. Advances in high frequency ultrasound separation of particulates from biomass.

    Science.gov (United States)

    Juliano, Pablo; Augustin, Mary Ann; Xu, Xin-Qing; Mawson, Raymond; Knoerzer, Kai

    2017-03-01

    In recent years the use of high frequency ultrasound standing waves (megasonics) for droplet or cell separation from biomass has emerged beyond the microfluidics scale into the litre to industrial scale applications. The principle for this separation technology relies on the differential positioning of individual droplets or particles across an ultrasonic standing wave field within the reactor and subsequent biomass material predisposition for separation via rapid droplet agglomeration or coalescence into larger entities. Large scale transducers have been characterised with sonochemiluminescence and hydrophones to enable better reactor designs. High frequency enhanced separation technology has been demonstrated at industrial scale for oil recovery in the palm oil industry and at litre scale to assist olive oil, coconut oil and milk fat separation. Other applications include algal cell dewatering and milk fat globule fractionation. Frequency selection depends on the material properties and structure in the biomass mixture. Higher frequencies (1 and 2MHz) have proven preferable for better separation of materials with smaller sized droplets such as milk fat globules. For palm oil and olive oil, separation has been demonstrated within the 400-600kHz region, which has high radical production, without detectable impact on product quality. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  11. Iridoschisis: high frequency ultrasound imaging. Evidence for a genetic defect?

    Science.gov (United States)

    Danias, J; Aslanides, I M; Eichenbaum, J W; Silverman, R H; Reinstein, D Z; Coleman, D J

    1996-01-01

    AIMS: To elucidate changes in the anatomy of the anterior chamber associated with iridoschisis, a rare form of iris atrophy, and their potential contribution to angle closure glaucoma. METHODS: Both eyes of a 71-year-old woman with bilateral iridoschisis and fibrous dysplasia and her asymptomatic 50-year-old daughter were scanned with a very high frequency (50 MHz) ultrasound system. RESULTS: The symptomatic patient exhibited diffuse changes in the iris stoma with an intact posterior iris pigmented layer in both eyes. These changes were clinically compatible with the lack of iris transillumination defects. Additionally, iris bowing with a resultant narrowing of the angle occurred. The asymptomatic daughter showed discrete, but less severe iris stromal changes. CONCLUSION: This is the first detailed study of high frequency ultrasonic imaging of the iris in iridoschisis. The observed structural changes suggest angle narrowing by forward bowing of the anterior iris stroma may be a mechanism of IOP elevation in this condition. The ultrasonic detection of iris changes in the asymptomatic daughter of the symptomatic patient and the association of iridoschisis with fibrous dysplasia suggest a possible genetic component in the pathogenesis of this condition. Images PMID:9059271

  12. Quality improvement of CdZnTe single crystal by ultrasound processing

    Science.gov (United States)

    Lisiansky, M.; Berner, A.; Korchnoy, V.

    2017-06-01

    Intrinsic defects and contaminations removal from the undoped p-type Cd0.96Zn0.04Te single crystals has been achieved by the ultrasound vibration processing at the room temperature. Surface analysis based on Auger Electron Spectroscopy, Energy Dispersive Spectroscopy, and Scanning Electron Spectroscopy shows a significant reconstruction of the crystal surface after processing, namely, the appearance of numerous "volcano craters" and triangle-shaped defects with a typical size of 0.2-5.0 μm. Elemental analysis of these defects shows that they are Te inclusions emerged on the surface. The regular crystal surface outside the defects also displays a considerable enrichment by Te. Distinct presence of copper is found in both the thin surface layer and in the defects emerged on the surface. The surface reconstruction is associated with a remarkable change in the bulk material properties, electrical (an increase in the resistivity by a factor of ∼6) and optical (an IR transmittance increase). A post-polishing following the ultrasound processing makes the CdZnTe material more stable and reliable for a wide range of device applications.

  13. In vivo photoacoustics and high frequency ultrasound imaging of mechanical high intensity focused ultrasound (HIFU) ablation.

    Science.gov (United States)

    Daoudi, Khalid; Hoogenboom, Martijn; den Brok, Martijn; Eikelenboom, Dylan; Adema, Gosse J; Fütterer, Jürgen J; de Korte, Chris L

    2017-04-01

    The thermal effect of high intensity focused ultrasound (HIFU) has been clinically exploited over a decade, while the mechanical HIFU is still largely confined to laboratory investigations. This is in part due to the lack of adequate imaging techniques to better understand the in-vivo pathological and immunological effects caused by the mechanical treatment. In this work, we explore the use of high frequency ultrasound (US) and photoacoustics (PA) as a potential tool to evaluate the effect of mechanical ablation in-vivo , e.g. boiling histotripsy. Two mice bearing a neuroblastoma tumor in the right leg were ablated using an MRI-HIFU system conceived for small animals and monitored using MRI thermometry. High frequency US and PA imaging were performed before and after the HIFU treatment. Afterwards, the tumor was resected for further assessment and evaluation of the ablated region using histopathology. High frequency US imaging revealed the presence of liquefied regions in the treated area together with fragmentized tissue which appeared with different reflecting proprieties compared to the surrounding tissue. Photoacoustic imaging on the other hand revealed the presence of deoxygenated blood within the tumor after the ablation due to the destruction of blood vessel network while color Doppler imaging confirmed the blood vessel network destruction within the tumor. The treated area and the presence of red blood cells detected by photoacoustics were further confirmed by the histopathology. This feasibility study demonstrates the potential of high frequency US and PA approach for assessing in-vivo the effect of mechanical HIFU tumor ablation.

  14. Quality properties of pre- and post-rigor beef muscle after interventions with high frequency ultrasound.

    Science.gov (United States)

    Sikes, Anita L; Mawson, Raymond; Stark, Janet; Warner, Robyn

    2014-11-01

    The delivery of a consistent quality product to the consumer is vitally important for the food industry. The aim of this study was to investigate the potential for using high frequency ultrasound applied to pre- and post-rigor beef muscle on the metabolism and subsequent quality. High frequency ultrasound (600kHz at 48kPa and 65kPa acoustic pressure) applied to post-rigor beef striploin steaks resulted in no significant effect on the texture (peak force value) of cooked steaks as measured by a Tenderometer. There was no added benefit of ultrasound treatment above that of the normal ageing process after ageing of the steaks for 7days at 4°C. Ultrasound treatment of post-rigor beef steaks resulted in a darkening of fresh steaks but after ageing for 7days at 4°C, the ultrasound-treated steaks were similar in colour to that of the aged, untreated steaks. High frequency ultrasound (2MHz at 48kPa acoustic pressure) applied to pre-rigor beef neck muscle had no effect on the pH, but the calculated exhaustion factor suggested that there was some effect on metabolism and actin-myosin interaction. However, the resultant texture of cooked, ultrasound-treated muscle was lower in tenderness compared to the control sample. After ageing for 3weeks at 0°C, the ultrasound-treated samples had the same peak force value as the control. High frequency ultrasound had no significant effect on the colour parameters of pre-rigor beef neck muscle. This proof-of-concept study showed no effect of ultrasound on quality but did indicate that the application of high frequency ultrasound to pre-rigor beef muscle shows potential for modifying ATP turnover and further investigation is warranted. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  15. Ultrasound guided core biopsy of suspicious mammographic calcifications using high frequency and power Doppler ultrasound

    International Nuclear Information System (INIS)

    Teh, W.L.; Wilson, A.R.M; Evans, A.J.; Burrell, H.; Pinder, S.E.; Ellis, I.O.

    2000-01-01

    AIM: The pre-operative diagnosis of suspicious mammographic microcalcifications usually requires stereotactic needle biopsy. The aim of this study was to evaluate if high frequency 13 MHz ultrasound (HFUS) and power Doppler (PD) can aid visualization and biopsy of microcalcifications. MATERIALS AND METHODS: Forty-four consecutive patients presenting with microcalcifications without associated mammographic or palpable masses were examined with HFUS and PD. Ultrasound-guided core biopsy (USCB) was performed where possible. Stereotactic biopsy was carried out when US-guided biopsy was unsuccessful. Surgery was performed if a diagnosis of malignancy was made on core biopsy or if the repeat core biopsy was non-diagnostic. RESULTS: Forty-one patients (93%) had ultrasound abnormalities corresponding to mammographic calcification. USCB was performed on 37 patients. In 29/37, USCB obtained a definitive result (78.4%). USCB was non-diagnostic in 4/9 benign (44.4%) and 4/28 (14.3%) malignant lesions biopsied. The complete and absolute sensitivities for malignancy using USCB were 85.7% (24/28) and 81% (23/28), respectively. USCB correctly identified invasive disease in 12/23 (52.2%) cases. There was no significant difference in the presence of abnormal flow on PD between benign and malignant lesions. However, abnormal PD vascularity was present in 43.5% of invasive cancer and was useful in directing successful biopsy in eight cases. CONCLUSION: The combination of high frequency US with PD is useful in the detection and guidance of successful needle biopsy of microcalcifications particularly where there is an invasive focus within larger areas of DCIS. Teh, W.L. (2000)

  16. Development of microbubble contrast agents for high frequency ultrasound microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Se Jung; Kim, Eun A; Park, Sung Hoon; Lee, Hye Jin; Jun, Hong Young; Byun, Seung Jae; Yoon, Kwon Ha [Wonkwang University School of Medicine, Iksan (Korea, Republic of)

    2007-05-15

    To develop optimal microbubble contrast agents (MBCAs) for performing ultrasound microscopy when examining small animals. We prepared three types of MBCAs. First, a mixture of three parts of 40% dextran and one part of 5% human serum albumin were sonicated with perfluorocarbon (PFC) (MB{sub 1}-D40A5P). Second, three parts of 40% dextran and one part of 1% human serum albumin were sonicated with PFC (MB{sub 2}-D40A1P). Third, all parts of 1% bovine serum albumin were sonicated with PFC (MB{sub 3}-A1P). We measured the microbubbles' sizes and concentrations with using image analysis software. The acoustic properties of the microbubbles were assessed both in vitro and in vivo. The majority of the MB{sub 1}-D40A5Ps had a diameter of 2-5 {mu} m, the mean diameter of the MB{sub 2}-D40A1Ps was 2.5 {mu} m, and the mean diameter of the MB{sub 3}-A1Ps was less than 2.0 {mu} m. Among the microbubbles, the MB{sub 1}-D40A5Ps and MB{sub 2}-D40A1Ps showed increased echogenicity in the abdominal vessels, but the duration of their contrast effect was less than 30 sec. On the contrary, the MB3-A1Ps exhibited strong enhancement in the vessels and their duration was greater than 120 sec. A microbubble contrast agent consisting of all parts of 1% serum albumin sonicated with PFC is an effective contrast agent for ultrasound microscopy.

  17. Backscattering analysis of high frequency ultrasonic imaging for ultrasound-guided breast biopsy

    Science.gov (United States)

    Cummins, Thomas; Akiyama, Takahiro; Lee, Changyang; Martin, Sue E.; Shung, K. Kirk

    2017-03-01

    A new ultrasound-guided breast biopsy technique is proposed. The technique utilizes conventional ultrasound guidance coupled with a high frequency embedded ultrasound array located within the biopsy needle to improve the accuracy in breast cancer diagnosis.1 The array within the needle is intended to be used to detect micro- calcifications indicative of early breast cancers such as ductal carcinoma in situ (DCIS). Backscattering analysis has the potential to characterize tissues to improve localization of lesions. This paper describes initial results of the application of backscattering analysis of breast biopsy tissue specimens and shows the usefulness of high frequency ultrasound for the new biopsy related technique. Ultrasound echoes of ex-vivo breast biopsy tissue specimens were acquired by using a single-element transducer with a bandwidth from 41 MHz to 88 MHz utilizing a UBM methodology, and the backscattering coefficients were calculated. These values as well as B-mode image data were mapped in 2D and matched with each pathology image for the identification of tissue type for the comparison to the pathology images corresponding to each plane. Microcalcifications were significantly distinguished from normal tissue. Adenocarcinoma was also successfully differentiated from adipose tissue. These results indicate that backscattering analysis is able to quantitatively distinguish tissues into normal and abnormal, which should help radiologists locate abnormal areas during the proposed ultrasound-guided breast biopsy with high frequency ultrasound.

  18. New technique for fabrication of high frequency piezoelectric Micromachined Ultrasound Transducers

    DEFF Research Database (Denmark)

    Pedersen, T; Thomsen, Erik Vilain; Zawada, T

    2008-01-01

    A novel technique for fabrication of linear arrays of high frequency piezoelectric Micromachined Ultrasound Transducers (pMUT) on silicon substrates is presented. Piezoelectric elements are formed by deposition of PZT ((PbZrxTi1-x)O3) into etched features of the silicon substrate such that the de......A novel technique for fabrication of linear arrays of high frequency piezoelectric Micromachined Ultrasound Transducers (pMUT) on silicon substrates is presented. Piezoelectric elements are formed by deposition of PZT ((PbZrxTi1-x)O3) into etched features of the silicon substrate...

  19. single crystals

    Indian Academy of Sciences (India)

    2018-05-18

    May 18, 2018 ... Abstract. 4-Nitrobenzoic acid (4-NBA) single crystals were studied for their linear and nonlinear optical ... studies on the proper growth, linear and nonlinear optical ..... between the optic axes and optic sign of the biaxial crystal.

  20. Efficacy of high frequency ultrasound in postoperative evaluation of carpal tunnel syndrome treatment

    Directory of Open Access Journals (Sweden)

    Katarzyna Kapuścińska

    2016-03-01

    Full Text Available Carpal tunnel syndrome (CTS is the most common entrapment neuropathy and a frequent cause of sick leave because of work-related hand overload. The main treatment is operation. Aim: The aim of the study is to assess the usefulness of high frequency ultrasound in the postoperative evaluation of CTS treatment efficacy. Material and methods: Sixty-two patients (50 women and 12 men aged 28–70, mean age 55.2 underwent surgical treatment of CTS. Ultrasound examinations of the wrist in all carpal tunnel sufferers were performed 3 months after the procedure with the use of a high frequency broadband linear array transducer (6–18 MHz, using 18 MHz band of MyLab 70/Esaote. On the basis of the collected data, the author has performed multiple analyses to confirm the usefulness of ultrasound imaging for postoperative evaluation of CTS treatment efficacy. Results: Among all 62 patients, 3 months after surgical median nerve decompression: in 40 patients, CTS symptoms subsided completely, and sonographic evaluation did not show median nerve entrapment signs; in 9 patients, CTS symptoms persisted or exacerbated, and ultrasound proved nerve compression revealing preserved flexor retinaculum fibers; in 13 patients, scar tissue symptoms occurred, and in 5 of them CTS did not subside completely (although ultrasound showed no signs of compression. Conclusions: Ultrasound imaging with the use of a high frequency transducer is a valuable diagnostic tool for postoperative assessment of CTS treatment efficacy.

  1. The Safety of Using High Frequency, Low Intensity Ultrasound to Enhance Thrombolysis

    International Nuclear Information System (INIS)

    Soltani, Azita

    2006-01-01

    The EKOS Ultrasound Infusion Systems (EKOS Corporation, Bothell, WA) use high frequency, low intensity ultrasound to accelerate thrombolysis by enhancing clot permeability and lytic drug penetration into thrombus. These systems are designed to provide efficacious catheter-directed treatment for the management of stroke, peripheral arterial occlusion and deep vein thrombosis. The in vitro and in vivo results of investigating the stability of therapeutic and diagnostic compounds used in combination with EKOS devices, the potential for adverse biological effects and the clot fragmentation confirmed the safety of EKOS ultrasound infusion systems in thrombolysis treatment

  2. Bipolar-power-transistor-based limiter for high frequency ultrasound imaging systems.

    Science.gov (United States)

    Choi, Hojong; Yang, Hao-Chung; Shung, K Kirk

    2014-03-01

    High performance limiters are described in this paper for applications in high frequency ultrasound imaging systems. Limiters protect the ultrasound receiver from the high voltage (HV) spikes produced by the transmitter. We present a new bipolar power transistor (BPT) configuration and compare its design and performance to a diode limiter used in traditional ultrasound research and one commercially available limiter. Limiter performance depends greatly on the insertion loss (IL), total harmonic distortion (THD) and response time (RT), each of which will be evaluated in all the limiters. The results indicated that, compared with commercial limiter, BPT-based limiter had less IL (-7.7 dB), THD (-74.6 dB) and lower RT (43 ns) at 100 MHz. To evaluate the capability of these limiters, they were connected to a 100 MHz single element transducer and a two-way pulse-echo test was performed. It was found that the -6 dB bandwidth and sensitivity of the transducer using BPT-based limiter were better than those of the commercial limiter by 22% and 140%, respectively. Compared to the commercial limiter, BPT-based limiter is shown to be capable of minimizing signal attenuation, RT and THD at high frequencies and is thus suited for high frequency ultrasound applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Laser generated ultrasound sources using polymer nanocomposites for high frequency metrology

    KAUST Repository

    Rajagopal, Srinath

    2017-11-22

    Accurate characterization of ultrasound fields generated by diagnostic and therapeutic transducers is critical for patient safety. This requires hydrophones calibrated to a traceable standard and currently the upper calibration frequency range available to the user community is limited to a frequency of 40 MHz. However, the increasing use of high frequencies for both imaging and therapy necessitates calibrations to frequencies well beyond this range. For this to be possible, a source of high amplitude, broadband, quasi-planar and stable ultrasound fields is required. This is difficult to achieve using conventional piezoelectric sources, but laser generated ultrasound is a promising technique in this regard. In this study, various polymer-carbon nanotube nanocomposites (PNC) were fabricated and tested for their suitability for such an application by varying the polymer type, carbon nanotubes weight content in the polymer, and PNC thickness. A broadband hydrophone was used to measure the peak pressure and bandwidth of the laser generated ultrasound pulse. Peak-positive pressures of up to 8 MPa and −6dB bandwidths of up to 40 MHz were recorded. There is a nonlinear dependence of the peak pressure on the laser fluence and the bandwidth scales inversely proportionally to the peak pressure. The high-pressure plane waves generated from this preliminary investigation has demonstrated that laser generated ultrasound sources are a promising technique for high frequency calibration of hydrophones.

  4. Small arteries can be accurately studied in vivo, using high frequency ultrasound

    DEFF Research Database (Denmark)

    Nielsen, T H; Iversen, Helle Klingenberg; Tfelt-Hansen, P

    1993-01-01

    We have validated measurements of diameters of the superficial temporal artery and other small arteries in man with a newly developed 20 MHz ultrasound scanner with A, B and M-mode imaging. The diameter of a reference object was 1.202 mm vs. 1.205 mm as measured by stereomicroscopy (nonsignifican......-gauge plethysmography (nonsignificant). Pulsations were 4.6% in the radial artery. We conclude that high frequency ultrasound provides an accurate and reproducible measure of the diameter of small and medium sized human arteries in vivo....

  5. Crossed SMPS MOSFET-based protection circuit for high frequency ultrasound transceivers and transducers.

    Science.gov (United States)

    Choi, Hojong; Shung, K Kirk

    2014-06-12

    The ultrasonic transducer is one of the core components of ultrasound systems, and the transducer's sensitivity is significantly related the loss of electronic components such as the transmitter, receiver, and protection circuit. In an ultrasonic device, protection circuits are commonly used to isolate the electrical noise between an ultrasound transmitter and transducer and to minimize unwanted discharged pulses in order to protect the ultrasound receiver. However, the performance of the protection circuit and transceiver obviously degrade as the operating frequency or voltage increases. We therefore developed a crossed SMPS (Switching Mode Power Supply) MOSFET-based protection circuit in order to maximize the sensitivity of high frequency transducers in ultrasound systems.The high frequency pulse signals need to trigger the transducer, and high frequency pulse signals must be received by the transducer. We therefore selected the SMPS MOSFET, which is the main component of the protection circuit, to minimize the loss in high frequency operation. The crossed configuration of the protection circuit can drive balanced bipolar high voltage signals from the pulser and transfer the balanced low voltage echo signals from the transducer. The equivalent circuit models of the SMPS MOSFET-based protection circuit are shown in order to select the proper device components. The schematic diagram and operation mechanism of the protection circuit is provided to show how the protection circuit is constructed. The P-Spice circuit simulation was also performed in order to estimate the performance of the crossed MOSFET-based protection circuit. We compared the performance of our crossed SMPS MOSFET-based protection circuit with a commercial diode-based protection circuit. At 60 MHz, our expander and limiter circuits have lower insertion loss than the commercial diode-based circuits. The pulse-echo test is typical method to evaluate the sensitivity of ultrasonic transducers

  6. High-frequency ultrasound evaluation of cellulite treated with the 1064 nm Nd:YAG laser.

    Science.gov (United States)

    Bousquet-Rouaud, Regine; Bazan, Marie; Chaintreuil, Jean; Echague, Agustina Vila

    2009-03-01

    To investigate non-invasive laser treatment for cellulite using the 1064 nm Nd:YAG laser and to correlate clinical results with high-frequency skin ultrasound images. Twelve individuals of normal weight were treated on either the left or right posterior side of the thigh with the following parameters: fluence 30 J/cm, 18 mm spot size and dynamic cooling device pulse duration of 30 ms. Three treatments were performed at intervals of 3-4 weeks, and followed-up 1 and 3 months after the last session. Photographs and ultrasound imaging were assessed before each session. The 1064 nm Nd:YAG laser resulted in a tightening of the skin and an improvement in cellulite. No side effects were reported. High-resolution ultrasound imaging showed a significant improvement in dermis density and a reduction of dermis thickness. The method is described in detail in Appendix 1. Infra-red lasers may constitute a safe and effective treatment for cellulite and high-frequency ultrasound imaging provides a quantitative and objective measurement of the treatment efficacy.

  7. Laser generated ultrasound sources using polymer nanocomposites for high frequency metrology

    KAUST Repository

    Rajagopal, Srinath

    2017-11-22

    Accurate characterisation of ultrasound fields generated by diagnostic and therapeutic transducers is critical for patient safety. This requires hydrophones calibrated to a traceable standard. The existing implementation of the primary standard at the National Measurement Institutes, e.g., NPL and PTB, can provide accurate calibration to a maximum frequency of 40MHz. However, the increasing use of high frequencies for both imaging and therapy necessitates calibrations to frequencies well beyond this range. For this to be possible, a source of high amplitude, broadband, quasi-planar and stable ultrasound fields is required. This is difficult to achieve using conventional piezoelectric sources, but laser generated ultrasound is a promising technique in this regard. In this study various polymer-carbon nanotube nanocomposites (PNC) were fabricated and tested for their suitability for such an application.

  8. Microbubble Composition and Preparation for High-Frequency Contrast-Enhanced Ultrasound Imaging : In Vitro and in Vivo Evaluation

    NARCIS (Netherlands)

    Daeichin, Verya; van Rooij, Tom; Skachkov, Ilya; Ergin, Bulent; Specht, Patricia A.C.; Lima, Alexandre; Ince, Can; Bosch, Johan G.; van der Steen, A.F.W.; de Jong, N.; Kooiman, Klazina

    2017-01-01

    Although high-frequency ultrasound imaging is gaining attention in various applications, hardly any ultrasound contrast agents (UCAs) dedicated to such frequencies (>15 MHz) are available for contrast-enhanced ultrasound (CEUS) imaging. Moreover, the composition of the limited commercially

  9. Microbubble Composition and Preparation for High-Frequency Contrast-Enhanced Ultrasound Imaging: In Vitro and In Vivo Evaluation

    NARCIS (Netherlands)

    Daeichin, Verya; van Rooij, Tom; Skachkov, Ilya; Ergin, Bulent; Specht, Patricia A. C.; Lima, Alexandre; Ince, Can; Bosch, Johan G.; van der Steen, Antonius F. W.; de Jong, Nico; Kooiman, Klazina

    2017-01-01

    Although high-frequency ultrasound imaging is gaining attention in various applications, hardly any ultrasound contrast agents (UCAs) dedicated to such frequencies (>15 MHz) are available for contrast-enhanced ultrasound (CEUS) imaging. Moreover, the composition of the limited commercially available

  10. Microbubble Composition and Preparation for High-Frequency Contrast-Enhanced Ultrasound Imaging: In Vitro and in Vivo Evaluation

    NARCIS (Netherlands)

    V. Daeichin (Verya); T. van Rooij (Tom); I. Skachkov (Ilya); B. Ergin (Bulent); P. Specht (Patricia); A.A.P. Lima (Alexandre ); C. Ince (Can); J.G. Bosch (Hans); A.F.W. van der Steen (Ton); N. de Jong (Nico); K. Kooiman (Klazina)

    2017-01-01

    textabstractAlthough high-frequency ultrasound imaging is gaining attention in various applications, hardly any ultrasound contrast agents (UCAs) dedicated to such frequencies (>15 MHz) are available for contrast-enhanced ultrasound (CEUS) imaging. Moreover, the composition of the limited

  11. Correspondence of high-frequency ultrasound and histomorphometry of healing rabbit Achilles tendon tissue.

    Science.gov (United States)

    Buschmann, Johanna; Puippe, Gilbert; Bürgisser, Gabriella Meier; Bonavoglia, Eliana; Giovanoli, Pietro; Calcagni, Maurizio

    2014-04-01

    Static and dynamic high-frequency ultrasound of healing rabbit Achilles tendons were set in relationship to histomorphometric analyses at three and six weeks post-surgery. Twelve New Zealand White rabbits received a clean-cut Achilles tendon laceration (the medial and lateral Musculus gastrocnemius) and were repaired with a four-strand Becker suture. Six rabbits got additionally a tight polyester urethane tube at the repair site in order to vary the adhesion extent. Tendons were analysed by static and dynamic ultrasound (control: healthy contralateral legs). The ultrasound outcome was corresponded to the tendon shape, tenocyte and tenoblast density, tenocyte and tenoblast nuclei width, collagen fibre orientation and adhesion extent. The spindle-like morphology of healing tendons (ultrasound) was confirmed by the swollen epitenon (histology). Prediction of adhesion formation by dynamic ultrasound assessment was confirmed by histology (contact region to surrounding tissue). Hyperechogenic areas corresponded to acellular zones with aligned fibres and hypoechogenic zones to not yet oriented fibres and to cell-rich areas. These findings add new in-depth structural knowledge to the established non-invasive analytical tool, ultrasound.

  12. Accuracy assessment of high frequency 3D ultrasound for digital impression-taking of prepared teeth

    Science.gov (United States)

    Heger, Stefan; Vollborn, Thorsten; Tinschert, Joachim; Wolfart, Stefan; Radermacher, Klaus

    2013-03-01

    Silicone based impression-taking of prepared teeth followed by plaster casting is well-established but potentially less reliable, error-prone and inefficient, particularly in combination with emerging techniques like computer aided design and manufacturing (CAD/CAM) of dental prosthesis. Intra-oral optical scanners for digital impression-taking have been introduced but until now some drawbacks still exist. Because optical waves can hardly penetrate liquids or soft-tissues, sub-gingival preparations still need to be uncovered invasively prior to scanning. High frequency ultrasound (HFUS) based micro-scanning has been recently investigated as an alternative to optical intra-oral scanning. Ultrasound is less sensitive against oral fluids and in principal able to penetrate gingiva without invasively exposing of sub-gingival preparations. Nevertheless, spatial resolution as well as digitization accuracy of an ultrasound based micro-scanning system remains a critical parameter because the ultrasound wavelength in water-like media such as gingiva is typically smaller than that of optical waves. In this contribution, the in-vitro accuracy of ultrasound based micro-scanning for tooth geometry reconstruction is being investigated and compared to its extra-oral optical counterpart. In order to increase the spatial resolution of the system, 2nd harmonic frequencies from a mechanically driven focused single element transducer were separated and corresponding 3D surface models were calculated for both fundamentals and 2nd harmonics. Measurements on phantoms, model teeth and human teeth were carried out for evaluation of spatial resolution and surface detection accuracy. Comparison of optical and ultrasound digital impression taking indicate that, in terms of accuracy, ultrasound based tooth digitization can be an alternative for optical impression-taking.

  13. New fabrication of high-frequency (100-MHz) ultrasound PZT film kerfless linear array.

    Science.gov (United States)

    Zhu, Benpeng; Chan, Ngai Yui; Dai, Jiyan; Shung, K Kirk; Takeuchi, Shinichi; Zhou, Qifa

    2013-04-01

    The paper describes the design, fabrication, and measurements of a high-frequency ultrasound kerfless linear array prepared from hydrothermal lead zirconate titanate (PZT) thick film. The 15-μm hydrothermal PZT thick film with an area of 1 × 1 cm, obtained through a self-separation process from Ti substrate, was used to fabricate a 32-element 100-MHz kerfless linear array with photolithography. The bandwidth at -6 dB without matching layer, insertion loss around center frequency, and crosstalk between adjacent elements were measured to be 39%, -30 dB, and -15 dB, respectively.

  14. In-situ identification of marine organisms using high frequency, wideband ultrasound

    DEFF Research Database (Denmark)

    Pham, An Hoai

    methods. Conventional acoustical methods use frequencies in the range of 10 to 500 kHz and give reasonable estimations of size distribution, if the species is known, but can only significantly support the determination of the actual species, if there are only a few known species available. It is expected...... that higher frequencies and broader bandwidths than used until now will give more information useful for fish species identification. The objective of this Ph.D. study has been to develop a method to investigate the possibility of in-situ identification of fish with high-frequency, wideband ultrasound...... and the fish bodies. The frequencies are 2, 3.5, and 6 MHz. The angles are -30°, -15°, 0°, 15°, and 30°. The results show that even though there are variations, a scan of the ultrasound backscatter along a fish of a specific species contains patterns that are characteristic for that species. This is true...

  15. Noninvasive Quantitative Imaging of Collagen Microstructure in Three-Dimensional Hydrogels Using High-Frequency Ultrasound.

    Science.gov (United States)

    Mercado, Karla P; Helguera, María; Hocking, Denise C; Dalecki, Diane

    2015-07-01

    Collagen I is widely used as a natural component of biomaterials for both tissue engineering and regenerative medicine applications. The physical and biological properties of fibrillar collagens are strongly tied to variations in collagen fiber microstructure. The goal of this study was to develop the use of high-frequency quantitative ultrasound to assess collagen microstructure within three-dimensional (3D) hydrogels noninvasively and nondestructively. The integrated backscatter coefficient (IBC) was employed as a quantitative ultrasound parameter to detect, image, and quantify spatial variations in collagen fiber density and diameter. Collagen fiber microstructure was varied by fabricating hydrogels with different collagen concentrations or polymerization temperatures. IBC values were computed from measurements of the backscattered radio-frequency ultrasound signals collected using a single-element transducer (38-MHz center frequency, 13-47 MHz bandwidth). The IBC increased linearly with increasing collagen concentration and decreasing polymerization temperature. Parametric 3D images of the IBC were generated to visualize and quantify regional variations in collagen microstructure throughout the volume of hydrogels fabricated in standard tissue culture plates. IBC parametric images of corresponding cell-embedded collagen gels showed cell accumulation within regions having elevated collagen IBC values. The capability of this ultrasound technique to noninvasively detect and quantify spatial differences in collagen microstructure offers a valuable tool to monitor the structural properties of collagen scaffolds during fabrication, to detect functional differences in collagen microstructure, and to guide fundamental research on the interactions of cells and collagen matrices.

  16. Challenges and regulatory considerations in the acoustic measurement of high-frequency (>20 MHz) ultrasound.

    Science.gov (United States)

    Nagle, Samuel M; Sundar, Guru; Schafer, Mark E; Harris, Gerald R; Vaezy, Shahram; Gessert, James M; Howard, Samuel M; Moore, Mary K; Eaton, Richard M

    2013-11-01

    This article examines the challenges associated with making acoustic output measurements at high ultrasound frequencies (>20 MHz) in the context of regulatory considerations contained in the US Food and Drug Administration industry guidance document for diagnostic ultrasound devices. Error sources in the acoustic measurement, including hydrophone calibration and spatial averaging, nonlinear distortion, and mechanical alignment, are evaluated, and the limitations of currently available acoustic measurement instruments are discussed. An uncertainty analysis of acoustic intensity and power measurements is presented, and an example uncertainty calculation is done on a hypothetical 30-MHz high-frequency ultrasound system. This analysis concludes that the estimated measurement uncertainty of the acoustic intensity is +73%/-86%, and the uncertainty in the mechanical index is +37%/-43%. These values exceed the respective levels in the Food and Drug Administration guidance document of 30% and 15%, respectively, which are more representative of the measurement uncertainty associated with characterizing lower-frequency ultrasound systems. Recommendations made for minimizing the measurement uncertainty include implementing a mechanical positioning system that has sufficient repeatability and precision, reconstructing the time-pressure waveform via deconvolution using the hydrophone frequency response, and correcting for hydrophone spatial averaging.

  17. Registration of human skull computed tomography data to an ultrasound treatment space using a sparse high frequency ultrasound hemispherical array

    Energy Technology Data Exchange (ETDEWEB)

    O’Reilly, Meaghan A., E-mail: moreilly@sri.utoronto.ca; Jones, Ryan M. [Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5 (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7 (Canada); Birman, Gabriel [Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5 (Canada); Hynynen, Kullervo [Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5 (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7 (Canada); Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9 (Canada)

    2016-09-15

    Purpose: Transcranial focused ultrasound (FUS) shows great promise for a range of therapeutic applications in the brain. Current clinical investigations rely on the use of magnetic resonance imaging (MRI) to monitor treatments and for the registration of preoperative computed tomography (CT)-data to the MR images at the time of treatment to correct the sound aberrations caused by the skull. For some applications, MRI is not an appropriate choice for therapy monitoring and its cost may limit the accessibility of these treatments. An alternative approach, using high frequency ultrasound measurements to localize the skull surface and register CT data to the ultrasound treatment space, for the purposes of skull-related phase aberration correction and treatment targeting, has been developed. Methods: A prototype high frequency, hemispherical sparse array was fabricated. Pulse-echo measurements of the surface of five ex vivo human skulls were made, and the CT datasets of each skull were obtained. The acoustic data were used to rigidly register the CT-derived skull surface to the treatment space. The ultrasound-based registrations of the CT datasets were compared to the gold-standard landmark-based registrations. Results: The results show on an average sub-millimeter (0.9 ± 0.2 mm) displacement and subdegree (0.8° ± 0.4°) rotation registration errors. Numerical simulations predict that registration errors on this scale will result in a mean targeting error of 1.0 ± 0.2 mm and reduction in focal pressure of 1.0% ± 0.6% when targeting a midbrain structure (e.g., hippocampus) using a commercially available low-frequency brain prototype device (InSightec, 230 kHz brain system). Conclusions: If combined with ultrasound-based treatment monitoring techniques, this registration method could allow for the development of a low-cost transcranial FUS treatment platform to make this technology more widely available.

  18. Registration of human skull computed tomography data to an ultrasound treatment space using a sparse high frequency ultrasound hemispherical array.

    Science.gov (United States)

    O'Reilly, Meaghan A; Jones, Ryan M; Birman, Gabriel; Hynynen, Kullervo

    2016-09-01

    Transcranial focused ultrasound (FUS) shows great promise for a range of therapeutic applications in the brain. Current clinical investigations rely on the use of magnetic resonance imaging (MRI) to monitor treatments and for the registration of preoperative computed tomography (CT)-data to the MR images at the time of treatment to correct the sound aberrations caused by the skull. For some applications, MRI is not an appropriate choice for therapy monitoring and its cost may limit the accessibility of these treatments. An alternative approach, using high frequency ultrasound measurements to localize the skull surface and register CT data to the ultrasound treatment space, for the purposes of skull-related phase aberration correction and treatment targeting, has been developed. A prototype high frequency, hemispherical sparse array was fabricated. Pulse-echo measurements of the surface of five ex vivo human skulls were made, and the CT datasets of each skull were obtained. The acoustic data were used to rigidly register the CT-derived skull surface to the treatment space. The ultrasound-based registrations of the CT datasets were compared to the gold-standard landmark-based registrations. The results show on an average sub-millimeter (0.9 ± 0.2 mm) displacement and subdegree (0.8° ± 0.4°) rotation registration errors. Numerical simulations predict that registration errors on this scale will result in a mean targeting error of 1.0 ± 0.2 mm and reduction in focal pressure of 1.0% ± 0.6% when targeting a midbrain structure (e.g., hippocampus) using a commercially available low-frequency brain prototype device (InSightec, 230 kHz brain system). If combined with ultrasound-based treatment monitoring techniques, this registration method could allow for the development of a low-cost transcranial FUS treatment platform to make this technology more widely available.

  19. High-frequency ultrasound in carpal tunnel syndrome: assessment of patient eligibility for surgical treatment

    Directory of Open Access Journals (Sweden)

    Katarzyna Kapuścińska

    2015-09-01

    Full Text Available Carpal tunnel syndrome (CTS is the most common entrapment neuropathy and a frequent cause of sick leaves because of work-related hand overload. That is why an early diagnosis and adequate treatment (conservative or surgical are essential for optimal patient management. Aim: The aim of the study is to assess the usefulness of high-frequency ultrasound in CTS for the assessment of patient eligibility for surgical treatment. Material and methods: The study involved 62 patients (50 women and 12 men, aged 28–70, mean age 55.2 with scheduled surgeries of CTS on the basis of clinical symptoms, physical examination performed by a neurosurgeon and a positive result of EMG testing. The ultrasound examinations of the wrist were performed in all these patients. On the basis of the collected data, the author has performed multiple analyses to confi rm the usefulness of ultrasound imaging in assessing patient eligibility for surgical treatment of CTS. Results: US examinations showed evidence of median nerve compression at the level of the carpal tunnel in all of the examined patients. This was further confi rmed during surgical procedures. The mean value of the cross-sectional area at the proximal part of the pisiform bone was 17.45 mm2 (min. 12 mm2 , max. 31 mm2 . Nerve hypoechogenicity proximal to the nerve compression site was visible in all 62 patients (100%. Increased nerve vascularity on the transverse section was present in 50 patients (80.65%. Conclusions: Ultrasonography with the use of high-frequency transducers is a valuable diagnostic tool both for assessing patient eligibility for surgical treatment of CTS, and in postoperative assessment of the treatment efficacy.

  20. The effectiveness of anticellulite treatment using tripolar radiofrequency monitored by classic and high-frequency ultrasound.

    Science.gov (United States)

    Mlosek, R K; Woźniak, W; Malinowska, S; Lewandowski, M; Nowicki, A

    2012-06-01

      Cellulite affects nearly 85% of the female population. Given the size of the phenomenon, we are continuously looking for effective ways to reduce cellulite. Reliable monitoring of anticellulite treatment remains a problem.   The main aim of the study was to evaluate the effectiveness of anticellulite treatment carried out using radiofrequency (RF), which was monitored by classical and high-frequency ultrasound.   Twenty-eight women underwent anticellulite treatment using RF, 17 women were in the placebo group. The therapy was monitored by classical and high-frequency ultrasound. The examinations evaluated the thickness of the epidermal echo, dermis thickness, dermis echogenicity, the length of the subcutaneous tissue bands growing into the dermis, the presence or absence of oedema, the thickness of subcutaneous tissue as well as thigh circumference and the stage of cellulite (according to the Nürnberger-Müller scale).   Cellulite was reduced in 89.286% of the women who underwent RF treatment. After the therapy, the following observations were made: a decrease in the thickness of the dermis and subcutaneous tissue, an increase in echogenicity reflecting on the increase in the number of collagen fibres, decreased subcutaneous tissue growing into bands in the dermis, and the reduction of oedema. In the placebo group, no statistically significant changes of the above parameters were observed.   Radiofrequency enables cellulite reduction. A crucial aspect is proper monitoring of the progress of such therapy, which ultrasound allows. © 2011 The Authors. Journal of the European Academy of Dermatology and Venereology © 2011 European Academy of Dermatology and Venereology.

  1. Ultrasound-mediated microbubble enhancement of radiation therapy studied using three-dimensional high-frequency power Doppler ultrasound.

    Science.gov (United States)

    Kwok, Sheldon J J; El Kaffas, Ahmed; Lai, Priscilla; Al Mahrouki, Azza; Lee, Justin; Iradji, Sara; Tran, William Tyler; Giles, Anoja; Czarnota, Gregory J

    2013-11-01

    Tumor responses to high-dose (>8 Gy) radiation therapy are tightly connected to endothelial cell death. In the study described here, we investigated whether ultrasound-activated microbubbles can locally enhance tumor response to radiation treatments of 2 and 8 Gy by mechanically perturbing the endothelial lining of tumors. We evaluated vascular changes resulting from combined microbubble and radiation treatments using high-frequency 3-D power Doppler ultrasound in a breast cancer xenograft model. We compared treatment effects and monitored vasculature damage 3 hours, 24 hours and 7 days after treatment delivery. Mice treated with 2 Gy radiation and ultrasound-activated microbubbles exhibited a decrease in vascular index to 48 ± 10% at 24 hours, whereas vascular indices of mice treated with 2 Gy radiation alone or microbubbles alone were relatively unchanged at 95 ± 14% and 78 ± 14%, respectively. These results suggest that ultrasound-activated microbubbles enhance the effects of 2 Gy radiation through a synergistic mechanism, resulting in alterations of tumor blood flow. This novel therapy may potentiate lower radiation doses to preferentially target endothelial cells, thus reducing effects on neighboring normal tissue and increasing the efficacy of cancer treatments. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  2. Medium-high frequency ultrasound and ozone based advanced oxidation for amoxicillin removal in water.

    Science.gov (United States)

    Kıdak, Rana; Doğan, Şifa

    2018-01-01

    In this study, treatment of an antibiotic compound amoxicillin by medium-high frequency ultrasonic irradiation and/or ozonation has been studied. Ultrasonic irradiation process was carried out in a batch reactor for aqueous amoxicillin solutions at three different frequencies (575, 861 and 1141kHz). The applied ultrasonic power was 75W and the diffused power was calculated as 14.6W/L. The highest removal was achieved at 575kHz ultrasonic frequency (>99%) with the highest pseudo first order reaction rate constant 0.04min -1 at pH 10 but the mineralization achieved was around 10%. Presence of alkalinity and humic acid species had negative effect on the removal efficiency (50% decrease). To improve the poor outcomes, ozonation had been applied with or without ultrasound. Ozone removed the amoxicillin at a rate 50 times faster than ultrasound. Moreover, due to the synergistic effect, coupling of ozone and ultrasound gave rise to rate constant of 2.5min -1 (625 times higher than ultrasound). In the processes where ozone was used, humic acid did not show any significant effect because the rate constant was so high that ozone has easily overcome the scavenging effects of natural water constituents. Furthermore, the intermediate compounds, after the incomplete oxidation mechanisms, has been analyzed to reveal the possible degradation pathways of amoxicillin through ultrasonic irradiation and ozonation applications. The outcomes of the intermediate compounds experiments and the toxicity was investigated to give a clear explanation about the safety of the resulting solution. The relevance of all the results concluded that hybrid advanced oxidation system was the best option for amoxicillin removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Evaluation of diagnosis of small breast cancer with high frequency and color doppler ultrasound

    International Nuclear Information System (INIS)

    Xia Guobing; Hu Chunhong; Jing Qiulong

    2008-01-01

    Objective: To probe the features of high frequency ultrasonography (HFU) and color Doppler ultrasound (CDU) in the case of small breast cancers in order to evaluate the diagnostic value for small breast cancer with CDU. Methods: The features of HFU and CDU were respective analyzed in 67 small breast masses, the biggest diameter of which was under 2cm identified with pathology. Results Partially characteristic changes of small breast cancers were displayed, and micro-calcification within the mass was an important characteristic, in addition, the Resistant Index (RI) ≥ 0.70 on Pulsed Doppler (PD) and the grade of blood flow on Color Doppler Flow Imaging (CDFI)≥T2 implied much more positive malignancy prediction. Conclusion: HFU integrated with CDU can be used for the early and accurate diagnosis of the small breast cancer. (authors)

  4. The use of high-frequency ultrasound in the study of skin and psoriatic nail

    International Nuclear Information System (INIS)

    Gutierrez, Marwin; Restrepo, Juan Pablo; Filippucci, Emilio; Grassi, Walter

    2009-01-01

    Over the last few years, continuous advances have been made in the field of ultrasonography, developing equipment providing high-quality grey scale imaging with an axial resolution power less than 0.1 mm and very sensitive power Doppler technique. This fact has opened the way to detailed imaging of the superficial tissues, including the skin. This pictorial essay shows the main sonographic findings obtainable with last generation high-frequency transducers and power Doppler technique in patients with psoriatic disease. Sonographic images shown were selected from an image database collected in 20 patients with definite diagnosis of psoriasis and in 10 healthy subjects. The present report provides pictorial evidence that high resolution grey scale ultrasound and power Doppler technique allow for a detailed morpho structural assessment and a sensitive blood flow evaluation at both skin and nail level in patients with psoriatic disease.

  5. Preliminary studies on premature rickets of infants by high-frequency probe ultrasound

    International Nuclear Information System (INIS)

    Yu Ming'an; Xu Zushan; Tang Zhongjuan; Song Jing; Liu Jie; Li Qiang; Gong Huafang; Bi Haijing

    2002-01-01

    Objective: To observe the ultrasound appearance of premature rickets in infants, and to assess the diagnostic value of high-frequency probe in the disease. Methods:Ultrasonography was performed in R-No 4 rib and distal radioulnar metaphysis in 123 rickets infants diagnosed by clinical examination (the diagnosis standard adopted the rickets diagnose standard revised by the rickets research, prevention and cure group of China in 1999)and in 30 normal infants diagnosed by clinical examination as the control group. Results: The high-frequency probe could clearly visualize the modification of every part in ribs and distal radioulnar metaphysis. Compared with that of the normal control group, ultrasound showed individually the signs and symptoms such as separation, bone bark elongation, and bone bark warp in the engagement of periosteum and perichondrium in rickets group. The incidences of bone bark elongation were separately 18.7% (23 cases) in ulna, 10.6% (13 cases) in radius, and 41.5% (51 cases) in rib; The incidences of bone bark warp were separately 4.9% (6 cases) in ulna, 2.4% (3 cases) in radius, and 18.7% (23 cases) in rib. The results of chi-square test showed that both the incidences of bone bark elongation and bone bark warp between the rib and the ulna and radius had significant difference (P < 0.01). The incidences of incomplete calcification in the edge of the provisional calcification zone were 96.75% (119 cases) in ulna and 69.29% (84 cases) in radius, respectively (Ridit test, P < 0.01). The incidences of incomplete calcification inside the provisional calcification zone were 42.28% (52 cases) in ulna and 60.16% (74 cases) in radius, respectively (Radit test, P < 0.01). Conclusion: Study on every modification of premature rickets by high-frequency probe will help to determine the status and degree of calciprivia at earlier stages, and thereby to increase the specificity and sensitivity of ultrasonography

  6. Efficacy of intradermal mesotherapy in cellulite reduction - Conventional and high-frequency ultrasound monitoring results.

    Science.gov (United States)

    Sylwia, Malinowska; Krzysztof, Mlosek Robert

    2017-10-01

    Cellulite affects the majority of women and is an unacceptable cosmetic defect. Therefore, effective methods for cellulite reduction are being sought. Intradermal mesotherapy is one of such methods. The aim of the study was to assess the efficacy of intradermal mesotherapy in cellulite reduction, using conventional and high-frequency ultrasound. Twenty-one women with cellulite underwent a series of intradermal mesotherapy procedures. The following parameters were assessed: thickness of epidermis, dermis and hypodermis, echogenicity of dermis and the surface area of serrated hypodermis-dermis junction. Furthermore, the thigh circumference was measured; body mass index and cellulite severity were assessed based on photographs using Nürnberger-Müller's scale. Intradermal mesotherapy reduced severity of cellulite. The surface area of serrated hypodermis-dermis junction and hypodermis thickness decreased significantly as compared to baseline. Cellulite reduction was also confirmed by palpation, decreased thigh circumference and the Nürnberger-Müller's grade. There were no statistically significant changes in epidermis or dermis thickness, body weight and the BMI. Intradermal mesotherapy offers effective cellulite reduction. It is a simple and safe treatment, which makes it popular. Further research in mesotherapy is essential due to a limited number of published studies. Ultrasound is a useful method to monitor intradermal mesotherapy and assess its efficacy.

  7. Developing high-frequency ultrasound tomography for testicular tumor imaging in rats: An in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chih-Chung, E-mail: cchuang@mail.ncku.edu.tw [Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Chen, Wei-Tsen [Department of Electrical Engineering, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China)

    2014-01-15

    Purpose: This paper describes a feasibility study for developing a 35-MHz high-frequency ultrasound computed-tomography (HFUCT) system for imaging rat testicles. Methods: The performances of two kinds of HFUCT-attenuation and sound-speed UCT-based on transmission and pulse-echo modes were investigated in this study. Experiments were carried out using phantoms and actual rat testiclesin vitro. HFUCT images were reconstructed using a filtered backprojection algorithm. Results: The phantom experimental results indicated that all types of HFUCT can determine the dimensions of a plastic cylinder with a diameter of 500μm. Compared to sound-speed HFUCT, attenuation HFUCT exhibited a better performance in recognizing a tiny sclerosed region in a gelatin phantom. Therefore, the in vitro testicular experiments were performed using attenuation HFUCT based on transmission and pulse-echo modes. The experimentally measured attenuation coefficient and sound speed for healthy rat testicles were 2.92 ± 0.25 dB/mm and 1537 ± 25 m/s, respectively. Conclusions: A homogeneous texture was evident for healthy testicles using both modes. An artificial sclerosed tumor could also be clearly observed using two- and three-dimensional attenuation HFUCT in both modes. However, an object artifact was apparent in pulse-echo mode because of ultrasound beam refraction. All of the obtained experimental results indicate the potential of using HFUCT as a novel tool for monitoring the preclinical responses of testicular tumors in small animals.

  8. Developing high-frequency ultrasound tomography for testicular tumor imaging in rats: An in vitro study

    International Nuclear Information System (INIS)

    Huang, Chih-Chung; Chen, Wei-Tsen

    2014-01-01

    Purpose: This paper describes a feasibility study for developing a 35-MHz high-frequency ultrasound computed-tomography (HFUCT) system for imaging rat testicles. Methods: The performances of two kinds of HFUCT-attenuation and sound-speed UCT-based on transmission and pulse-echo modes were investigated in this study. Experiments were carried out using phantoms and actual rat testiclesin vitro. HFUCT images were reconstructed using a filtered backprojection algorithm. Results: The phantom experimental results indicated that all types of HFUCT can determine the dimensions of a plastic cylinder with a diameter of 500μm. Compared to sound-speed HFUCT, attenuation HFUCT exhibited a better performance in recognizing a tiny sclerosed region in a gelatin phantom. Therefore, the in vitro testicular experiments were performed using attenuation HFUCT based on transmission and pulse-echo modes. The experimentally measured attenuation coefficient and sound speed for healthy rat testicles were 2.92 ± 0.25 dB/mm and 1537 ± 25 m/s, respectively. Conclusions: A homogeneous texture was evident for healthy testicles using both modes. An artificial sclerosed tumor could also be clearly observed using two- and three-dimensional attenuation HFUCT in both modes. However, an object artifact was apparent in pulse-echo mode because of ultrasound beam refraction. All of the obtained experimental results indicate the potential of using HFUCT as a novel tool for monitoring the preclinical responses of testicular tumors in small animals

  9. Altered osmotic swelling behavior of proteoglycan-depleted bovine articular cartilage using high frequency ultrasound

    International Nuclear Information System (INIS)

    Wang, Q; Zheng, Y P; Leung, G; Mak, A F T; Lam, W L; Guo, X; Lu, H B; Qin, L

    2008-01-01

    Swelling behavior is an electrochemical mechanical property of articular cartilage. It plays an important role in weight bearing and joint lubrication. In this study, the altered transient and inhomogeneous swelling behavior of the degenerated articular cartilage was observed and quantified in situ using ultrasound. Three groups of bovine patellar articular cartilage samples (n = 10 x 3) were obtained and digested by trypsin for 10, 20 and 30 min respectively to mimic different levels of degeneration. The osmotic-free shrinkage and swelling behavior induced by changing the concentration of the bathing saline solution from 0.15 M to 2 M and then back to 0.15 M were characterized using high-frequency ultrasound (central frequency = 35 MHz) before and after digestion. It was found that the degenerated cartilage specimens showed a weaker shrinkage-swelling behavior compared with the normal cartilage samples. However, no significant differences in the peak shrinkage or swelling strains were observed between different groups. The absolute values of the peak shrinkage strain significantly (p < 0.05) decreased by 45.4%, 42.1% and 50.6% respectively after the trypsin digestion for 10, 20 and 30 min, but such significance was not demonstrated for the peak swelling strains. Due to the potential alterations in the collagen-PG matrix during trypsin digestion, the correlation between the swelling strain and the shrinkage strain of the degenerated samples changed slightly in comparison with the normal samples. The proposed ultrasound method has been successfully used to measure the transient and inhomogeneous swelling behavior of the degenerated articular cartilage and has the potential for the characterization of osteoarthritis

  10. Evaluation of medial patellofemoral ligament tears after acute lateral patellar dislocation: comparison of high-frequency ultrasound and MR

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guang-Ying; Ding, Hong-Yu [Shandong University, Department of Ultrasonography, Qianfoshan Hospital, Jinan (China); Zheng, Lei; Sun, Bai-Sheng [Chinese People' s Armed Police Force, Department of Radiology, Shandong Provincial Corps Hospital, Jinan (China); Li, En-Miao [Jinan Third People' s Hospital, Department of Ultrasonography, Jinan (China); Shi, Hao [Shandong University, Department of Radiology, Qianfoshan Hospital, Jinan (China)

    2015-01-15

    The purpose of this study was to compare the diagnostic performance of high-frequency ultrasound with MR in the evaluation of medial patellofemoral ligament (MPFL) lesions after acute lateral patellar dislocation (LPD). High-frequency ultrasound and MR images were prospectively obtained in 97 consecutive patients with acute LPD. Images were acquired using standardised protocols and were independently evaluated by two radiologists. The MPFL was assessed at three sites (patellar insertion, femoral attachment, and mid-substance) for signs of injury. Of a total of 291 sites in 97 MPFLs, 127 showed proven MPFL tear at surgery, including 51 sites of complete tear and 76 sites of partial tear. In a site-based analysis, the sensitivity, specificity, and accuracy of high-frequency ultrasound was 90.8 %, 96.3 %, and 94.6 %, respectively, for partial MPFL tear and 86.3 %, 96.3 %, and 94 %, respectively, for complete tear. For MR, the sensitivity, specificity, and accuracy was 81.6 %, 95.7 %, and 91.3 %, respectively, for partial MPFL tear and 80.4 %, 95.7 %, and 92.1 %, respectively, for complete tear. There was no statistical difference between high-frequency ultrasound and MR in the assessment of partial (P = 0.1, 0.777, 0.155) or complete (P = 0.425, 0.777, 0.449) MPFL lesions. Interobserver agreement was very good for high-frequency ultrasound and good for MR. Data suggest that high-frequency ultrasound and MR have similar diagnostic performance in the evaluation of MPFL lesions after acute LPD. (orig.)

  11. Evaluation of medial patellofemoral ligament tears after acute lateral patellar dislocation: comparison of high-frequency ultrasound and MR

    International Nuclear Information System (INIS)

    Zhang, Guang-Ying; Ding, Hong-Yu; Zheng, Lei; Sun, Bai-Sheng; Li, En-Miao; Shi, Hao

    2015-01-01

    The purpose of this study was to compare the diagnostic performance of high-frequency ultrasound with MR in the evaluation of medial patellofemoral ligament (MPFL) lesions after acute lateral patellar dislocation (LPD). High-frequency ultrasound and MR images were prospectively obtained in 97 consecutive patients with acute LPD. Images were acquired using standardised protocols and were independently evaluated by two radiologists. The MPFL was assessed at three sites (patellar insertion, femoral attachment, and mid-substance) for signs of injury. Of a total of 291 sites in 97 MPFLs, 127 showed proven MPFL tear at surgery, including 51 sites of complete tear and 76 sites of partial tear. In a site-based analysis, the sensitivity, specificity, and accuracy of high-frequency ultrasound was 90.8 %, 96.3 %, and 94.6 %, respectively, for partial MPFL tear and 86.3 %, 96.3 %, and 94 %, respectively, for complete tear. For MR, the sensitivity, specificity, and accuracy was 81.6 %, 95.7 %, and 91.3 %, respectively, for partial MPFL tear and 80.4 %, 95.7 %, and 92.1 %, respectively, for complete tear. There was no statistical difference between high-frequency ultrasound and MR in the assessment of partial (P = 0.1, 0.777, 0.155) or complete (P = 0.425, 0.777, 0.449) MPFL lesions. Interobserver agreement was very good for high-frequency ultrasound and good for MR. Data suggest that high-frequency ultrasound and MR have similar diagnostic performance in the evaluation of MPFL lesions after acute LPD. (orig.)

  12. 3D Tendon Strain Estimation Using High-frequency Volumetric Ultrasound Images: A Feasibility Study.

    Science.gov (United States)

    Carvalho, Catarina; Slagmolen, Pieter; Bogaerts, Stijn; Scheys, Lennart; D'hooge, Jan; Peers, Koen; Maes, Frederik; Suetens, Paul

    2018-03-01

    Estimation of strain in tendons for tendinopathy assessment is a hot topic within the sports medicine community. It is believed that, if accurately estimated, existing treatment and rehabilitation protocols can be improved and presymptomatic abnormalities can be detected earlier. State-of-the-art studies present inaccurate and highly variable strain estimates, leaving this problem without solution. Out-of-plane motion, present when acquiring two-dimensional (2D) ultrasound (US) images, is a known problem and may be responsible for such errors. This work investigates the benefit of high-frequency, three-dimensional (3D) US imaging to reduce errors in tendon strain estimation. Volumetric US images were acquired in silico, in vitro, and ex vivo using an innovative acquisition approach that combines the acquisition of 2D high-frequency US images with a mechanical guided system. An affine image registration method was used to estimate global strain. 3D strain estimates were then compared with ground-truth values and with 2D strain estimates. The obtained results for in silico data showed a mean absolute error (MAE) of 0.07%, 0.05%, and 0.27% for 3D estimates along axial, lateral direction, and elevation direction and a respective MAE of 0.21% and 0.29% for 2D strain estimates. Although 3D could outperform 2D, this does not occur in in vitro and ex vivo settings, likely due to 3D acquisition artifacts. Comparison against the state-of-the-art methods showed competitive results. The proposed work shows that 3D strain estimates are more accurate than 2D estimates but acquisition of appropriate 3D US images remains a challenge.

  13. High-frequency ultrasound for intraoperative margin assessments in breast conservation surgery: a feasibility study

    International Nuclear Information System (INIS)

    Doyle, Timothy E; Neumayer, Leigh A; Factor, Rachel E; Ellefson, Christina L; Sorensen, Kristina M; Ambrose, Brady J; Goodrich, Jeffrey B; Hart, Vern P; Jensen, Scott C; Patel, Hemang

    2011-01-01

    In addition to breast imaging, ultrasound offers the potential for characterizing and distinguishing between benign and malignant breast tissues due to their different microstructures and material properties. The aim of this study was to determine if high-frequency ultrasound (20-80 MHz) can provide pathology sensitive measurements for the ex vivo detection of cancer in margins during breast conservation surgery. Ultrasonic tests were performed on resected margins and other tissues obtained from 17 patients, resulting in 34 specimens that were classified into 15 pathology categories. Pulse-echo and through-transmission measurements were acquired from a total of 57 sites on the specimens using two single-element 50-MHz transducers. Ultrasonic attenuation and sound speed were obtained from time-domain waveforms. The waveforms were further processed with fast Fourier transforms to provide ultrasonic spectra and cepstra. The ultrasonic measurements and pathology types were analyzed for correlations. The specimens were additionally re-classified into five pathology types to determine specificity and sensitivity values. The density of peaks in the ultrasonic spectra, a measure of spectral structure, showed significantly higher values for carcinomas and precancerous pathologies such as atypical ductal hyperplasia than for normal tissue. The slopes of the cepstra for non-malignant pathologies displayed significantly greater values that differentiated them from the normal and malignant tissues. The attenuation coefficients were sensitive to fat necrosis, fibroadenoma, and invasive lobular carcinoma. Specificities and sensitivities for differentiating pathologies from normal tissue were 100% and 86% for lobular carcinomas, 100% and 74% for ductal carcinomas, 80% and 82% for benign pathologies, and 80% and 100% for fat necrosis and adenomas. Specificities and sensitivities were also determined for differentiating each pathology type from the other four using a multivariate

  14. High-frequency ultrasound for intraoperative margin assessments in breast conservation surgery: a feasibility study

    Directory of Open Access Journals (Sweden)

    Hart Vern P

    2011-10-01

    Full Text Available Abstract Background In addition to breast imaging, ultrasound offers the potential for characterizing and distinguishing between benign and malignant breast tissues due to their different microstructures and material properties. The aim of this study was to determine if high-frequency ultrasound (20-80 MHz can provide pathology sensitive measurements for the ex vivo detection of cancer in margins during breast conservation surgery. Methods Ultrasonic tests were performed on resected margins and other tissues obtained from 17 patients, resulting in 34 specimens that were classified into 15 pathology categories. Pulse-echo and through-transmission measurements were acquired from a total of 57 sites on the specimens using two single-element 50-MHz transducers. Ultrasonic attenuation and sound speed were obtained from time-domain waveforms. The waveforms were further processed with fast Fourier transforms to provide ultrasonic spectra and cepstra. The ultrasonic measurements and pathology types were analyzed for correlations. The specimens were additionally re-classified into five pathology types to determine specificity and sensitivity values. Results The density of peaks in the ultrasonic spectra, a measure of spectral structure, showed significantly higher values for carcinomas and precancerous pathologies such as atypical ductal hyperplasia than for normal tissue. The slopes of the cepstra for non-malignant pathologies displayed significantly greater values that differentiated them from the normal and malignant tissues. The attenuation coefficients were sensitive to fat necrosis, fibroadenoma, and invasive lobular carcinoma. Specificities and sensitivities for differentiating pathologies from normal tissue were 100% and 86% for lobular carcinomas, 100% and 74% for ductal carcinomas, 80% and 82% for benign pathologies, and 80% and 100% for fat necrosis and adenomas. Specificities and sensitivities were also determined for differentiating each

  15. Study on regeneration effect and mechanism of high-frequency ultrasound on biological activated carbon.

    Science.gov (United States)

    Sun, Zhehao; Liu, Cheng; Cao, Zhen; Chen, Wei

    2018-06-01

    High frequency ultrasonic radiation technology was developed as a novel and efficient means of regenerating spent biological activated carbon (BAC) used in drinking water treatment plants (DWTPs). The results of this study indicated that high frequency ultrasonic treatment could recover the spent BAC, to some extent, with the following optimal conditions: a frequency of 400 kHz, sonication power of 60 W, water temperature of 30 °C, and sonication time of 6 min. Under the above conditions, the iodine value increased from 300 mg/g to 409 mg/g, the volume of total pores and micropores increased from 0.2600 cm 3 /g and 0.1779 cm 3 /g to 0.3560 cm 3 /g and 0.2662 cm 3 /g, respectively; the specific surface area of micropores and the mean pore diameter expanded from 361.15 m 2 /g and 2.0975 nm to 449.92 m 2 /g and 2.1268 nm, respectively. The biological activity increased from 0.0297 mgO 2 /gC·h to 0.0521 mgO 2 /gC·h, while the biomass decreased from 203 nmolP/gC to 180 nmolP/gC. The results of high throughput 16S rRNA gene amplicon sequencing showed that microorganisms such as Clostridia and Nitrospira were markedly decreased due to high frequency ultrasound. The method used in this study caused the inhibition of certain carbon-attached microbials resulting in a negative effect on the removal rate of ammonia-N during the initial stage of the long-term reuse operation. The removal of UV254 and atrazine were restored from 8.1% and 55% to 21% and 76%, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Power MOSFET-diode-based limiter for high-frequency ultrasound systems.

    Science.gov (United States)

    Choi, Hojong; Kim, Min Gon; Cummins, Thomas M; Hwang, Jae Youn; Shung, K Kirk

    2014-10-01

    The purpose of the limiter circuits used in the ultrasound imaging systems is to pass low-voltage echo signals generated by ultrasonic transducers while preventing high-voltage short pulses transmitted by pulsers from damaging front-end circuits. Resistor-diode-based limiters (a 50 Ω resistor with a single cross-coupled diode pair) have been widely used in pulse-echo measurement and imaging system applications due to their low cost and simple architecture. However, resistor-diode-based limiters may not be suited for high-frequency ultrasound transducer applications since they produce large signal conduction losses at higher frequencies. Therefore, we propose a new limiter architecture utilizing power MOSFETs, which we call a power MOSFET-diode-based limiter. The performance of a power MOSFET-diode-based limiter was evaluated with respect to insertion loss (IL), total harmonic distortion (THD), and response time (RT). We compared these results with those of three other conventional limiter designs and showed that the power MOSFET-diode-based limiter offers the lowest IL (-1.33 dB) and fastest RT (0.10 µs) with the lowest suppressed output voltage (3.47 Vp-p) among all the limiters at 70 MHz. A pulse-echo test was performed to determine how the new limiter affected the sensitivity and bandwidth of the transducer. We found that the sensitivity and bandwidth of the transducer were 130% and 129% greater, respectively, when combined with the new power MOSFET-diode-based limiter versus the resistor-diode-based limiter. Therefore, these results demonstrate that the power MOSFET-diode-based limiter is capable of producing lower signal attenuation than the three conventional limiter designs at higher frequency operation. © The Author(s) 2014.

  17. Novel power MOSFET-based expander for high frequency ultrasound systems.

    Science.gov (United States)

    Choi, Hojong; Shung, K Kirk

    2014-01-01

    The function of an expander is to obstruct the noise signal transmitted by the pulser so that it does not pass into the transducer or receive electronics, where it can produce undesirable ring-down in an ultrasound imaging application. The most common type is a diode-based expander, which is essentially a simple diode-pair, is widely used in pulse-echo measurements and imaging applications because of its simple architecture. However, diode-based expanders may degrade the performance of ultrasonic transducers and electronic components on the receiving and transmitting sides of the ultrasound systems, respectively. Since they are non-linear devices, they cause excessive signal attenuation and noise at higher frequencies and voltages. In this paper, a new type of expander that utilizes power MOSFET components, which we call a power MOSFET-based expander, is introduced and evaluated for use in high frequency ultrasound imaging systems. The performance of a power MOSFET-based expander was evaluated relative to a diode-based expander by comparing the noise figure (NF), insertion loss (IL), total harmonic distortion (THD), response time (RT), electrical impedance (EI) and dynamic power consumption (DPC). The results showed that the power MOSFET-based expander provided better NF (0.76 dB), IL (-0.3 dB) and THD (-62.9 dB), and faster RT (82 ns) than did the diode-based expander (NF (2.6 dB), IL (-1.4 dB), THD (-56.0 dB) and RT (119 ns)) at 70 MHz. The -6 dB bandwidth and the peak-to-peak voltage of the echo signal received by the transducer using the power MOSFET-based expander improved by 17.4% and 240% compared to the diode-based expander, respectively. The new power MOSFET-based expander was shown to yield lower NF, IL and THD, faster RT and lower ring down than the diode-based expander at the expense of higher dynamic power consumption. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Segmenting high-frequency intracardiac ultrasound images of myocardium into infarcted, ischemic, and normal regions.

    Science.gov (United States)

    Hao, X; Bruce, C J; Pislaru, C; Greenleaf, J F

    2001-12-01

    Segmenting abnormal from normal myocardium using high-frequency intracardiac echocardiography (ICE) images presents new challenges for image processing. Gray-level intensity and texture features of ICE images of myocardium with the same structural/perfusion properties differ. This significant limitation conflicts with the fundamental assumption on which existing segmentation techniques are based. This paper describes a new seeded region growing method to overcome the limitations of the existing segmentation techniques. Three criteria are used for region growing control: 1) Each pixel is merged into the globally closest region in the multifeature space. 2) "Geographic similarity" is introduced to overcome the problem that myocardial tissue, despite having the same property (i.e., perfusion status), may be segmented into several different regions using existing segmentation methods. 3) "Equal opportunity competence" criterion is employed making results independent of processing order. This novel segmentation method is applied to in vivo intracardiac ultrasound images using pathology as the reference method for the ground truth. The corresponding results demonstrate that this method is reliable and effective.

  19. Volume measurement variability in three-dimensional high-frequency ultrasound images of murine liver metastases

    International Nuclear Information System (INIS)

    Wirtzfeld, L A; Graham, K C; Groom, A C; MacDonald, I C; Chambers, A F; Fenster, A; Lacefield, J C

    2006-01-01

    The identification and quantification of tumour volume measurement variability is imperative for proper study design of longitudinal non-invasive imaging of pre-clinical mouse models of cancer. Measurement variability will dictate the minimum detectable volume change, which in turn influences the scheduling of imaging sessions and the interpretation of observed changes in tumour volume. In this paper, variability is quantified for tumour volume measurements from 3D high-frequency ultrasound images of murine liver metastases. Experimental B16F1 liver metastases were analysed in different size ranges including less than 1 mm 3 , 1-4 mm 3 , 4-8 mm 3 and 8-70 mm 3 . The intra- and inter-observer repeatability was high over a large range of tumour volumes, but the coefficients of variation (COV) varied over the volume ranges. The minimum and maximum intra-observer COV were 4% and 14% for the 1-4 mm 3 and 3 tumours, respectively. For tumour volumes measured by segmenting parallel planes, the maximum inter-slice distance that maintained acceptable measurement variability increased from 100 to 600 μm as tumour volume increased. Comparison of free breathing versus ventilated animals demonstrated that respiratory motion did not significantly change the measured volume. These results enable design of more efficient imaging studies by using the measured variability to estimate the time required to observe a significant change in tumour volume

  20. Direct and sustained intracellular delivery of exogenous molecules using acoustic-transfection with high frequency ultrasound

    Science.gov (United States)

    Yoon, Sangpil; Kim, Min Gon; Chiu, Chi Tat; Hwang, Jae Youn; Kim, Hyung Ham; Wang, Yingxiao; Shung, K. Kirk

    2016-02-01

    Controlling cell functions for research and therapeutic purposes may open new strategies for the treatment of many diseases. An efficient and safe introduction of membrane impermeable molecules into target cells will provide versatile means to modulate cell fate. We introduce a new transfection technique that utilizes high frequency ultrasound without any contrast agents such as microbubbles, bringing a single-cell level targeting and size-dependent intracellular delivery of macromolecules. The transfection apparatus consists of an ultrasonic transducer with the center frequency of over 150 MHz and an epi-fluorescence microscope, entitled acoustic-transfection system. Acoustic pulses, emitted from an ultrasonic transducer, perturb the lipid bilayer of the cell membrane of a targeted single-cell to induce intracellular delivery of exogenous molecules. Simultaneous live cell imaging using HeLa cells to investigate the intracellular concentration of Ca2+ and propidium iodide (PI) and the delivery of 3 kDa dextran labeled with Alexa 488 were demonstrated. Cytosolic delivery of 3 kDa dextran induced via acoustic-transfection was manifested by diffused fluorescence throughout whole cells. Short-term (6 hr) cell viability test and long-term (40 hr) cell tracking confirmed that the proposed approach has low cell cytotoxicity.

  1. Oxidative degradation of phenols in sono-Fenton-like systems upon high-frequency ultrasound irradiation

    Science.gov (United States)

    Aseev, D. G.; Sizykh, M. R.; Batoeva, A. A.

    2017-12-01

    The kinetics of oxidative degradation of phenol and chlorophenols upon acoustic cavitation in the megahertz range (1.7 MHz) is studied experimentally in model systems, and the involvement of in situ generated reactive oxygen species (ROSs) is demonstrated. The phenols subjected to high frequency ultrasound (HFUS) are ranked in terms of their rate of conversion: 2,4,6-trichlorophenol > 2,4-dichlorophenol 2-chlorophenol > 4-chlorophenol phenol. Oxidative degradation upon HFUS irradiation is most efficient at low concentrations of pollutants, due to the low steady-state concentrations of the in situ generated ROSs. A dramatic increase is observed in the efficiency of oxidation in several sonochemical oxidative systems (HFUS in combination with other chemical oxidative factors). The system with added Fe2+ (a sono-Fenton system) derives its efficiency from hydrogen peroxide generated in situ as a result of the recombination of OH radicals. The S2O8 2-/Fe2+/HFUS system has a synergetic effect on substrate oxidation that is attributed to a radical chain mechanism. In terms of the oxidation rates, degrees of conversion, and specific energy efficiencies of 4-chlorophenol oxidation based on the amount of oxidized substance per unit of expended energy the considered sonochemical oxidative systems form the series HFUS < S2O8 2-/HFUS < S2O8 2-/Fe2+/HFUS.

  2. Experimental high-frequency ultrasound can detect graft rejection after small bowel transplantation.

    Science.gov (United States)

    Yang, R; Liu, Q; Wu, E X; Pescovitz, M D; Collins, M H; Kopecky, K K; Grosfeld, J L

    1994-02-01

    Early diagnosis of graft rejection after small bowel transplantation (SBT) can allow prompt institution of vigorous immunosuppressive therapy, with resultant reversal of the rejection process. The current method for graft monitoring is random mucosal biopsy from a stomal site or through an endoscope. However, because early rejection often has a patchy distribution, it could be missed by random biopsy. We hypothesized that the pathological process of rejection would alter acoustic impedance of the tissue and thus change the ultrasonic patterns of the graft intestinal wall. If this hypothesis is correct, then high-frequency endoscopic ultrasound (US) could be used to monitor the entire transplanted bowel and guide the biopsy, with improved yields. This hypothesis was tested in a rat orthotopic SBT model. Sixty-two intestinal specimens (9 isografts, 12 allografts treated with cyclosporine A [CsA], 22 untreated allografts, and 19 intestines from normal rats) were collected for in vitro transluminal US imaging (30 MHz) and histopathologic study. The echo pattern of normal rat intestinal wall consisted of five echo layers that correlated spatially with the histological layers: the innermost hyperechoic layer 1, plus hypoechoic layer 2, corresponded to the mucosa; hyperechoic layer 3, the submucosa; anechoic layer 4, the muscularis propria; and hyperechoic layer 5, the serosa. The isografts and CsA-treated allografts were identical histologically and ultrasonically to normal intestine. However, the echo patterns of the untreated allografts had progressive loss of architectural stratification, with worsening rejection. The change began with patchy indistinctness and disruption of hyperechoic layers 1, 3 and 5, and progressed to total obliteration of the layers, with the intestinal wall becoming a nonstratified hypoechoic structure.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Laser generated ultrasound sources using polymer nanocomposites for high frequency metrology

    KAUST Repository

    Rajagopal, Srinath; Sainsbury, Toby; Treeby, Bradley E.; Cox, Ben T.

    2017-01-01

    amplitude, broadband, quasi-planar and stable ultrasound fields is required. This is difficult to achieve using conventional piezoelectric sources, but laser generated ultrasound is a promising technique in this regard. In this study, various polymer

  4. Wound healing treatment by high frequency ultrasound, microcurrent, and combined therapy modifies the immune response in rats

    Directory of Open Access Journals (Sweden)

    Raciele I. G. Korelo

    2016-01-01

    Full Text Available BACKGROUND: Therapeutic high-frequency ultrasound, microcurrent, and a combination of the two have been used as potential interventions in the soft tissue healing process, but little is known about their effect on the immune system. OBJECTIVE: To evaluate the effects of therapeutic high frequency ultrasound, microcurrent, and the combined therapy of the two on the size of the wound area, peritoneal macrophage function, CD4+ and CD8+, T lymphocyte populations, and plasma concentration of interleukins (ILs. METHOD: Sixty-five Wistar rats were randomized into five groups, as follows: uninjured control (C, group 1, lesion and no treatment (L, group 2, lesion treated with ultrasound (LU, group 3, lesion treated with microcurrent (LM, group 4, and lesion treated with combined therapy (LUM, group 5. For groups 3, 4 and 5, treatment was initiated 24 hours after surgery under anesthesia and each group was allocated into three different subgroups (n=5 to allow for the use of the different therapy resources at on days 3, 7 and 14 Photoplanimetry was performed daily. After euthanasia, blood was collected for immune analysis. RESULTS: Ultrasound increased the phagocytic capacity and the production of nitric oxide by macrophages and induced the reduction of CD4+ cells, the CD4+/CD8+ ratio, and the plasma concentration of IL-1β. Microcurrent and combined therapy decreased the production of superoxide anion, nitric oxide, CD4+-positive cells, the CD4+/CD8+ ratio, and IL-1β concentration. CONCLUSIONS: Therapeutic high-frequency ultrasound, microcurrent, and combined therapy changed the activity of the innate and adaptive immune system during healing process but did not accelerate the closure of the wound.

  5. Evaluating the extent of cell death in 3D high frequency ultrasound by registration with whole-mount tumor histopathology

    International Nuclear Information System (INIS)

    Vlad, Roxana M.; Kolios, Michael C.; Moseley, Joanne L.; Czarnota, Gregory J.; Brock, Kristy K.

    2010-01-01

    Purpose: High frequency ultrasound imaging, 10-30 MHz, has the capability to assess tumor response to radiotherapy in mouse tumors as early as 24 h after treatment administration. The advantage of this technique is that the image contrast is generated by changes in the physical properties of dying cells. Therefore, a subject can be imaged before and multiple times during the treatment without the requirement of injecting specialized contrast agents. This study is motivated by a need to provide metrics of comparison between the volume and localization of cell death, assessed from histology, with the volume and localization of cell death surrogate, assessed as regions with increased echogeneity from ultrasound images. Methods: The mice were exposed to radiation doses of 2, 4, and 8 Gy. Ultrasound images were collected from each tumor before and 24 h after exposure to radiation using a broadband 25 MHz center frequency transducer. After radiotherapy, tumors exhibited hyperechoic regions in ultrasound images that corresponded to areas of cell death in histology. The ultrasound and histological images were rigidly registered. The tumors and regions of cell death were manually outlined on histological images. Similarly, the tumors and hyperechoic regions were outlined on the ultrasound images. Each set of contours was converted to a volumetric mesh in order to compare the volumes and the localization of cell death in histological and ultrasound images. Results: A shrinkage factor of 17±2% was calculated from the difference in the tumor volumes evaluated from histological and ultrasound images. This was used to correct the tumor and cell death volumes assessed from histology. After this correction, the average absolute difference between the volume of cell death assessed from ultrasound and histological images was 11±14% and the volume overlap was 70±12%. Conclusions: The method provided metrics of comparison between the volume of cell death assessed from histology and

  6. A method to validate quantitative high-frequency power doppler ultrasound with fluorescence in vivo video microscopy.

    Science.gov (United States)

    Pinter, Stephen Z; Kim, Dae-Ro; Hague, M Nicole; Chambers, Ann F; MacDonald, Ian C; Lacefield, James C

    2014-08-01

    Flow quantification with high-frequency (>20 MHz) power Doppler ultrasound can be performed objectively using the wall-filter selection curve (WFSC) method to select the cutoff velocity that yields a best-estimate color pixel density (CPD). An in vivo video microscopy system (IVVM) is combined with high-frequency power Doppler ultrasound to provide a method for validation of CPD measurements based on WFSCs in mouse testicular vessels. The ultrasound and IVVM systems are instrumented so that the mouse remains on the same imaging platform when switching between the two modalities. In vivo video microscopy provides gold-standard measurements of vascular diameter to validate power Doppler CPD estimates. Measurements in four image planes from three mice exhibit wide variation in the optimal cutoff velocity and indicate that a predetermined cutoff velocity setting can introduce significant errors in studies intended to quantify vascularity. Consistent with previously published flow-phantom data, in vivo WFSCs exhibited three characteristic regions and detectable plateaus. Selection of a cutoff velocity at the right end of the plateau yielded a CPD close to the gold-standard vascular volume fraction estimated using IVVM. An investigator can implement the WFSC method to help adapt cutoff velocity to current blood flow conditions and thereby improve the accuracy of power Doppler for quantitative microvascular imaging. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. A high-frequency transimpedance amplifier for CMOS integrated 2D CMUT array towards 3D ultrasound imaging.

    Science.gov (United States)

    Huang, Xiwei; Cheong, Jia Hao; Cha, Hyouk-Kyu; Yu, Hongbin; Je, Minkyu; Yu, Hao

    2013-01-01

    One transimpedance amplifier based CMOS analog front-end (AFE) receiver is integrated with capacitive micromachined ultrasound transducers (CMUTs) towards high frequency 3D ultrasound imaging. Considering device specifications from CMUTs, the TIA is designed to amplify received signals from 17.5MHz to 52.5MHz with center frequency at 35MHz; and is fabricated in Global Foundry 0.18-µm 30-V high-voltage (HV) Bipolar/CMOS/DMOS (BCD) process. The measurement results show that the TIA with power-supply 6V can reach transimpedance gain of 61dBΩ and operating frequency from 17.5MHz to 100MHz. The measured input referred noise is 27.5pA/√Hz. Acoustic pulse-echo testing is conducted to demonstrate the receiving functionality of the designed 3D ultrasound imaging system.

  8. Laser generated ultrasound sources using polymer nanocomposites for high frequency metrology

    KAUST Repository

    Rajagopal, Srinath; Sainsbury, Toby; Treeby, Bradley; Cox, Ben

    2017-01-01

    Accurate characterisation of ultrasound fields generated by diagnostic and therapeutic transducers is critical for patient safety. This requires hydrophones calibrated to a traceable standard. The existing implementation of the primary standard

  9. Species-Independent Modeling of High-Frequency Ultrasound Backscatter in Hyaline Cartilage.

    Science.gov (United States)

    Männicke, Nils; Schöne, Martin; Liukkonen, Jukka; Fachet, Dominik; Inkinen, Satu; Malo, Markus K; Oelze, Michael L; Töyräs, Juha; Jurvelin, Jukka S; Raum, Kay

    2016-06-01

    Apparent integrated backscatter (AIB) is a common ultrasound parameter used to assess cartilage matrix degeneration. However, the specific contributions of chondrocytes, proteoglycan and collagen to AIB remain unknown. To reveal these relationships, this work examined biopsies and cross sections of human, ovine and bovine cartilage with 40-MHz ultrasound biomicroscopy. Site-matched estimates of collagen concentration, proteoglycan concentration, collagen orientation and cell number density were employed in quasi-least-squares linear regression analyses to model AIB. A positive correlation (R(2) = 0.51, p 70°) to the sound beam direction. These findings indicate causal relationships between AIB and cartilage structural parameters and could aid in more sophisticated future interpretations of ultrasound backscatter. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  10. Nonlinear ultrasound propagation through layered liquid and tissue-equivalent media: computational and experimental results at high frequency

    International Nuclear Information System (INIS)

    Williams, Ross; Cherin, Emmanuel; Lam, Toby Y J; Tavakkoli, Jahangir; Zemp, Roger J; Foster, F Stuart

    2006-01-01

    Nonlinear propagation has been demonstrated to have a significant impact on ultrasound imaging. An efficient computational algorithm is presented to simulate nonlinear ultrasound propagation through layered liquid and tissue-equivalent media. Results are compared with hydrophone measurements. This study was undertaken to investigate the role of nonlinear propagation in high frequency ultrasound micro-imaging. The acoustic field of a focused transducer (20 MHz centre frequency, f-number 2.5) was simulated for layered media consisting of water and tissue-mimicking phantom, for several wide-bandwidth source pulses. The simulation model accounted for the effects of diffraction, attenuation and nonlinearity, with transmission and refraction at layer boundaries. The parameter of nonlinearity, B/A, of the water and tissue-mimicking phantom were assumed to be 5.2 and 7.4, respectively. The experimentally measured phantom B/A value found using a finite-amplitude insert-substitution method was shown to be 7.4 ± 0.6. Relative amounts of measured second and third harmonic pressures as a function of the fundamental pressures at the focus were in good agreement with simulations. Agreement within 3% was found between measurements and simulations of the beam widths of the fundamental and second harmonic signals following propagation through the tissue phantom. The results demonstrate significant nonlinear propagation effects for high frequency imaging beams

  11. Use of a high-frequency aspiration-biopsy transducer for direct ultrasound-guided amniocentesis.

    Science.gov (United States)

    Bree, R L

    1979-04-01

    The techniques and applications of amniocentesis performed with a new high-frequency aspiration-biopsy transducer are described in detail. The advantages of this technique are greatest in third-trimester patients where active fetal motion and diminished amniotic fluid volumes make unguided punctures difficult or impossible. The ability to visualize small-caliber needles within the fluid space further enhances the effectiveness of this technique.

  12. Electropolymerization of pyrrole on oxidizable metal under high frequency ultrasound irradiation. Application of focused beam to a selective masking technique

    Energy Technology Data Exchange (ETDEWEB)

    Et Taouil, A. [Institut UTINAM, UMR 6213 CNRS, Universite de Franche-Comte, 30 Avenue de l' observatoire, 25009 Besancon Cedex (France); Lallemand, F., E-mail: fabrice.lallemand@univ-fcomte.f [Institut UTINAM, UMR 6213 CNRS, Universite de Franche-Comte, 30 Avenue de l' observatoire, 25009 Besancon Cedex (France); Hallez, L.; Hihn, J-Y. [Institut UTINAM, UMR 6213 CNRS, Universite de Franche-Comte, 30 Avenue de l' observatoire, 25009 Besancon Cedex (France)

    2010-12-01

    A novel masking technique against polymer deposition based on High Intensity Focused Ultrasound (HIFU) irradiation was developed for the first time. With this in mind, a variety of background salts were tested. Sodium salicylate was found to be the most effective electrolytic medium for pyrrole sonoelectropolymerization on copper as it leads to a very efficient passivating oxide layer preventing copper dissolution while enabling polymer formation independently from sonication. In such a medium, high frequency ultrasound greatly refines surface structure, and a slight increase in doping level is observed. Finally, it was proved that focused ultrasound increases copper dissolution in sodium oxalate electrolyte while preventing polypyrrole deposition. A selected zone on the copper substrate was thus irradiated by the focused ultrasound beam to protect it from polymerization. In a second stage, a self-assembled monolayer was deposited on this polymer-free area to create a surface biphased substrate. This type of masking technique can be proposed as an interesting alternative to lithography as it is easier to carry out and allows chemical waste reduction.

  13. High-frequency Doppler ultrasound transducer for the peripheral circulatory system

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Youngmin; Yang, Jeongwon; Kang, Uk; Kim, Guanghoon [Korea Electrotechnology Research Institute, Ansan (Korea, Republic of)

    2011-12-15

    A Doppler ultrasound transducer was designed and implemented to measure the blood flow velocity in tiny vessels near the skin of hands or feet. The geometric parameters of the transducer for defining the observation volume were derived and implemented with an acoustic window made of polystyrene. The observation volume designed in this study was located 6.5 mm from the transducer, which was comparable to the value predicted geometrically. The two-way insertion loss of the transducer was -11.3 dB on ultrasound frequency of 20 MHz, and the 3-dB bandwidth was approximately 2 MHz. In addition, the Doppler shift in the frequency measured by using a Doppler device composed of the transducer and a Doppler signal processing unit was proportional to the flow velocity generated by a homemade flowing system. Finally, we concluded that the transducer could be applied to measure the blood flow velocity in hands or feet.

  14. High-frequency Doppler ultrasound transducer for the peripheral circulatory system

    International Nuclear Information System (INIS)

    Bae, Youngmin; Yang, Jeongwon; Kang, Uk; Kim, Guanghoon

    2011-01-01

    A Doppler ultrasound transducer was designed and implemented to measure the blood flow velocity in tiny vessels near the skin of hands or feet. The geometric parameters of the transducer for defining the observation volume were derived and implemented with an acoustic window made of polystyrene. The observation volume designed in this study was located 6.5 mm from the transducer, which was comparable to the value predicted geometrically. The two-way insertion loss of the transducer was -11.3 dB on ultrasound frequency of 20 MHz, and the 3-dB bandwidth was approximately 2 MHz. In addition, the Doppler shift in the frequency measured by using a Doppler device composed of the transducer and a Doppler signal processing unit was proportional to the flow velocity generated by a homemade flowing system. Finally, we concluded that the transducer could be applied to measure the blood flow velocity in hands or feet.

  15. Determination of the luminal diameter of the radial artery in man by high frequency ultrasound

    DEFF Research Database (Denmark)

    Nielsen, T H; Iversen, Helle Klingenberg; Tfelt-Hansen, P

    1990-01-01

    measurements. By comparing the diameter of the reference object either filled with water or blood at 37 degrees C, the ultrasound velocity in human blood at 37 degrees C was calculated to be 1605 m/s. The intraobserver repeatability coefficients of in-vivo measurements of the radial artery in man were...... in the same range, whether measurements were repeated after 30 min (14%) or from day to day (12%). The interobserver repeatability coefficient was acceptable (15%) when the site of measurements was marked, whereas measurements without a mark resulted in a repeatability coefficient of 24%. The intravenous...

  16. Evaluation of high frequency ultrasound methods and contrast agents for characterising tumor response to anti-angiogenic treatment

    Energy Technology Data Exchange (ETDEWEB)

    Rix, Anne, E-mail: arix@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Lederle, Wiltrud, E-mail: wlederle@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Siepmann, Monica, E-mail: monica.siepmann@rub.de [Department of Medical Engineering, Universitätstraße 150, 44780 Bochum, Ruhr-University Bochum, Bochum (Germany); Fokong, Stanley, E-mail: sfokong@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Behrendt, Florian F., E-mail: fbehrendt@ukaachen.de [Department of Nuclear Medicine, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Bzyl, Jessica, E-mail: jbzyl@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Grouls, Christoph, E-mail: cgrouls@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Kiessling, Fabian, E-mail: fkiessling@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Palmowski, Moritz, E-mail: mpalmowski@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Department of Nuclear Medicine, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany)

    2012-10-15

    Purpose: To compare non-enhanced and contrast-enhanced high-frequency 3D Doppler ultrasound with contrast-enhanced 2D and 3D B-mode imaging for assessing tumor vascularity during antiangiogenic treatment using soft-shell and hard-shell microbubbles. Materials and methods: Antiangiogenic therapy effects (SU11248) on vascularity of subcutaneous epidermoid-carcinoma xenografts (A431) in female CD1 nude mice were investigated longitudinally using non-enhanced and contrast-enhanced 3D Doppler at 25 MHz. Additionally, contrast-enhanced 2D and 3D B-mode scans were performed by injecting hard-shell (poly-butyl-cyanoacrylate-based) and soft-shell (phospholipid-based) microbubbles. Suitability of both contrast agents for high frequency imaging and the sensitivity of the different ultrasound methods to assess early antiangiogenic therapy effects were investigated. Ultrasound data were validated by immunohistology. Results: Hard-shell microbubbles induced higher signal intensity changes in tumors than soft-shell microbubbles in 2D B-mode measurements (424 ± 7 vs. 169 ± 8 A.U.; p < 0.01). In 3D measurements, signals of soft-shell microbubbles were hardly above the background (5.48 ± 4.57 vs. 3.86 ± 2.92 A.U.), while signals from hard-shell microbubbles were sufficiently high (30.5 ± 8.06 A.U). Using hard-shell microbubbles 2D and 3D B-mode imaging depicted a significant decrease in tumor vascularity during antiangiogenic therapy from day 1 on. Using soft-shell microbubbles significant therapy effects were observed at day 4 after therapy in 2D B-mode imaging but could not be detected in the 3D mode. With non-enhanced and contrast-enhanced Doppler imaging significant differences between treated and untreated tumors were found from day 2 on. Conclusion: Hard-shell microbubble-enhanced 2D and 3D B-mode ultrasound achieved highest sensitivity for assessing therapy effects on tumor vascularisation and were superior to B-mode ultrasound with soft-shell microbubbles and to Doppler

  17. Can high frequency ultrasound and MRI diagnose malignant atheromatous plaque in vitro?

    International Nuclear Information System (INIS)

    Yoshida, Shigeo; Nieminen, M.S.; Paananen, T.; Kahri, A.

    1995-01-01

    It remains a vital clinical issue how to diagnose malignant atheromatous plaques consisting of ulcerative plaque and hemorrhagic plaque, which are potential risks for thrombosis and the arterial spasm. This study proposes further investigations to develop methods in order to detect this type of lesions by echocardiography. In this study, we tested high frequency (7.5 MHz) US and 1.0 T MRI (Tl weighted SE, STIR; short time inversion recovery sequence, and Tl weighted fat suppression technique) for their precision in the diagnosis of atheromatous plaque as malignant or benign in postmortem human aorta. Ten hemorrhagic plaques were imaged as heterogeneous echo-pattern in the shoulder of plaques covered with high-echo capsule with US; however, these findings were also obtained from 2 of 16 non-hemorrhagic plaques. With TlSE, hemorrhagic plaques were revealed as mixed areas of reduced intensity and high intensity which were differentiated from fatty deposition with Tl weighted fat suppression technique. Ulcerative plaques were revealed as concave shaped plaques and diagnosed correctly with both methods. US was superior to MRI from the viewpoints of examination time and measuring wall thickness. US indicated intimal plus medial thickness of hemorrhagic plaque and non-hemorrhagic plaque at 4.3+1.1 mm and 3.0+1.0 mm (p<0.05) respectively. MRI was vulnerable to artifacts and its image was poorer in quality due to its lower resolution: however, probably because of its superior ability to distinguish fatty deposition from hemorrhage, MRI ultimately enabled more accurate diagnosis than US, as long as its image was fairly clear. The overall accuracies were 80% with US and 85.7% with MRI as confirmed by histological tests. From these results, the careful analysis of the two images obtained from US and MRI enables clinical diagnosis of malignant atheromatous plaques. (author)

  18. Development of a high frequency single-element ultrasound needle transducer for anesthesia delivery

    Science.gov (United States)

    Ameri, Golafsoun; Son, Jungik; Liang, Jingwei; Foster, F. Stuart; Ganapathy, Sugantha; Peters, Terry M.

    2017-03-01

    Epidural anesthesia is one of the most commonly used and yet challenging techniques employed for pain management and anesthesia delivery. The major complications of this procedure are due to accidental dural puncture, with an incidence of 1-3%, which could lead to both temporary and irreversible permanent neurological complications. Needle placement under ultrasound (US) guidance has received increasing interest for improving needle placement accuracy. However, poor needle visibility in US, difficulties in displaying relevant anatomical structure such as dura mater due to attenuation and bone shadowing, and image interpretation variability among users pose significant hurdles for any US guidance system. As a result, US guidance for epidural injections has not been widely adopted for everyday use for the performance of neuraxial blocks. The difficulties in localizing the ligamentum flavum and dura with respect to the needle tip can be addressed by integrating A-mode US, provided by a single-element transducer at the needle tip, into the B-mode US guidance system. We have taken the first steps towards providing such a guidance system. Our goal is to improve the safety of this procedure with minimal changes to the clinical workflow. This work presents the design and development of a 20 MHz single-element US transducer housed at the tip of a 19 G needle hypodermic tube, which can fit inside an epidural introducer needle. In addition, the results from initial transducer characterization tests and performance evaluation of the transducer in a euthanized porcine model are provided.

  19. 3-D high-frequency endovaginal ultrasound of female urethral complex and assessment of inter-observer reliability

    International Nuclear Information System (INIS)

    Wieczorek, A.P.; Wozniak, M.M.; Stankiewicz, A.; Santoro, G.A.; Bogusiewicz, M.; Rechberger, T.

    2012-01-01

    Objectives: Assessment of the urethral complex and defining its morphological characteristics with 3-dimensional endovaginal ultrasonography with the use of high frequency rotational 360° transducer. Defining inter-observer reliability of the performed measurements. Materials and methods: Twenty-four asymptomatic, nulliparous females (aged 18–55, mean 32 years) underwent high-frequency (12 MHz) endovaginal ultrasound with rotational 360° and automated 3D data acquisition (type 2050, B-K Medical, Herlev, Denmark). Measurements of the urethral thickness, width and length, bladder neck-symphysis distance, intramural part of the urethra as well as rhabdosphincter thickness, width and length were taken by three investigators. Descriptive statistics for continuous data was performed. The results were given as mean values with standard deviation. The relationships among different variables were assessed with ANOVA for repeated measures factors, as well as T-test for dependent samples. Intraclass correlation (ICC) was calculated for each parameter. Intra- and interobserver reliability was assessed. Statistical significance was assigned to a P value of 0.8) and good reliability for rhabdosphincter measurements (ICC > 0.6) between all three investigators. Conclusions: Advanced EVUS provides detailed information on anatomy and morphology of the female urethral complex. Our results show that 360° rotational transducer with automated 3D acquisition, currently routinely used for proctological scanning is suitable for the reliable assessment of the urethral complex and can be applied in a routine diagnostics of pelvic floor disturbances in females.

  20. Catheter-based high-frequency intraluminal ultrasound imaging is a powerful tool to study esophageal dysmotility patients.

    Science.gov (United States)

    Santander, Cecilio; Perea, Elena; Caldas, María; Clave, Pere

    2017-05-01

    High-resolution manometry (HRM) is currently the most important diagnostic test for esophageal motility disorders, providing information on the contraction pattern of the circular muscle layer, which helps classify these esophageal motor diseases. However, with the increasing development of ultrasound, other techniques, such as high-frequency intraluminal ultrasound (HFIUS), have gained importance. This technique uses a flexible shaft with a central wire integrated into a standard endoscope, which facilitates real-time sonography. Its main utility is to provide anatomical information on the structure of the esophageal wall, including both the circular and longitudinal layers that constitute the esophageal muscularis propria. Increasing knowledge about these motility disorders has led to the hypothesis that, in addition to an abnormal contraction pattern of the circular muscle, an overall increased muscle thickness and an abnormal longitudinal muscle contraction could be added as pathophysiological factors. The increase in muscle thickness could be an important indicator of the severity of diseases, such as achalasia, distal esophageal spasm, or hypercontractile esophagus. More studies are required before definitive conclusions can be reached, but HFIUS employed simultaneously with HRM could provide a more complete and precise evaluation of these esophageal motor disorders. © 2017 New York Academy of Sciences.

  1. Comparison of high-resolution Scheimpflug and high-frequency ultrasound biomicroscopy to anterior-segment OCT corneal thickness measurements

    Directory of Open Access Journals (Sweden)

    Kanellopoulos AJ

    2013-11-01

    Full Text Available Anastasios John Kanellopoulos,1,2 George Asimellis1 1Laservision.gr Eye Institute, Athens, Greece; 2New York University Medical School, New York, NY, USA Background: The purpose of this study was to compare and correlate central corneal thickness in healthy, nonoperated eyes with three advanced anterior-segment imaging systems: a high-resolution Scheimpflug tomography camera (Oculyzer II, a spectral-domain anterior-segment optical coherence tomography (AS-OCT system, and a high-frequency ultrasound biomicroscopy (HF-UBM system. Methods: Fifty eyes randomly selected from 50 patients were included in the study. Inclusion criteria were healthy, nonoperated eyes examined consecutively by the same examiner. Corneal imaging was performed by three different methods, ie, Oculyzer II, spectral-domain AS-OCT, and FH-UBM. Central corneal thickness measurements were compared using scatter diagrams, Bland-Altman plots (with bias and 95% confidence intervals, and two-paired analysis. Results: The coefficient of determination (r2 between the Oculyzer II and AS-OCT measurements was 0.895. Likewise, the coefficient was 0.893 between the Oculyzer II and HF-UBM and 0.830 between the AS-OCT and HF-UBM. The trend line coefficients of linearity were 0.925 between the Oculyzer II and the AS-OCT, 1.006 between the Oculyzer II and HF-UBM, and 0.841 between the AS-OCT and HF-UBM. The differences in average corneal thickness between the three pairs of CCT measurements were –6.86 µm between the Oculyzer II and HF-UBM, –12.20 µm between the AS-OCT and Oculyzer II, and +19.06 µm between the HF-UBM and AS-OCT. Conclusion: The three methods used for corneal thickness measurement are highly correlated. Compared with the Scheimplug and ultrasound devices, the AS-OCT appears to report a more accurate, but overally thinner corneal pachymetry. Keywords: anterior eye segment, high-frequency ultrasound biomicroscopy, optical coherence tomography, high-resolution Pentacam

  2. Head and Neck Veins of the Mouse. A Magnetic Resonance, Micro Computed Tomography and High Frequency Color Doppler Ultrasound Study.

    Directory of Open Access Journals (Sweden)

    Marcello Mancini

    Full Text Available To characterize the anatomy of the venous outflow of the mouse brain using different imaging techniques. Ten C57/black male mice (age range: 7-8 weeks were imaged with high-frequency Ultrasound, Magnetic Resonance Angiography and ex-vivo Microcomputed tomography of the head and neck. Under general anesthesia, Ultrasound of neck veins was performed with a 20 MHz transducer; head and neck Magnetic Resonance Angiography data were collected on 9.4 T or 7 T scanners, and ex-vivo Microcomputed tomography angiography was obtained by filling the vessels with a radiopaque inert silicone rubber compound. All procedures were approved by the local ethical committee. The dorsal intracranial venous system is quite similar in mice and humans. Instead, the mouse Internal Jugular Veins are tiny vessels receiving the sigmoid sinuses and tributaries from cerebellum, occipital lobe and midbrain, while the majority of the cerebral blood, i.e. from the olfactory bulbs and fronto-parietal lobes, is apparently drained through skull base connections into the External Jugular Vein. Three main intra-extracranial anastomoses, absent in humans, are: 1 the petrosquamous sinus, draining into the posterior facial vein, 2 the veins of the olfactory bulb, draining into the superficial temporal vein through a foramen of the frontal bone 3 the cavernous sinus, draining in the External Jugular Vein through a foramen of the sphenoid bone. The anatomical structure of the mouse cranial venous outflow as depicted by Ultrasound, Microcomputed tomography and Magnetic Resonance Angiography is different from humans, with multiple connections between intra- and extra-cranial veins.

  3. Hyaluronic acid filler injections for tear-trough deformity: injection technique and high-frequency ultrasound follow-up evaluation.

    Science.gov (United States)

    De Pasquale, Antonino; Russa, Giuseppina; Pulvirenti, Manuela; Di Rosa, Luigi

    2013-06-01

    This study aimed to describe the technique used by the authors in treating tear-trough deformity and to illustrate the effectiveness of high-frequency diagnostic ultrasound in the assessment of dermal filler longevity. In this consecutive interventional nonrandomized case series, 22 patients (18 women and 4 men) were evaluated. They ranged in age from 29 to 65 years (mean, 46.59 years ± 10.0 years). The patients were given multiple hyaluronic acid injections in the tear-trough area between 2009 and 2011. The injected areas then were evaluated with sonographic scans during the follow-up period. All the patients were examined preoperatively, 7 days after injection, then after 1, 6, and 12 months, and finally once a year. Pre- and postoperative photographs using standard positioning and lighting were taken as well as high-frequency ultrasound scans using a 15-MHz scanner with an axial resolution of 15 mm. The injection technique consisted of three to five injections perpendicular to the skin. These were administered just under the orbital rim, creating three column-shaped hyaluronic acid deposits deep in the orbicularis oculi muscle, from 0.2 mm to 0.5 mm below the orbital rim. Approximately 0.1 ml-0.3 ml was injected at a time. This technique creates a deep scaffolding that can fill the orbital hollow. The amount of filler used in each area ranged from 0.1 ml to 0.3 ml (mean, 0.267 ml ± 0.128 ml), whereas the mean filler quantity in each eyelid was 0.45 ml ± 0.14 ml. During the follow-up visit 1 week after the treatment, 21 patients (90 %) required a second series of injections either in the exact same areas or right next to the injected area to obtain a smoother appearance of the skin surface. During the sonographer examination, it was always possible to identify and measure the filler at the site of the injection. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please

  4. High frequency P(VDF-TrFE) copolymer broadband annular array ultrasound transducers using high density flexible circuit interconnect

    Science.gov (United States)

    Gottlieb, Emanuel J.; Cannata, Jonathan M.; Hu, Chang Hong; Shung, K. K.

    2005-04-01

    A kerfless eight element high frequency ultrasound annular array transducer using 9 μm P(VDF-TrFE) bonded to a high density flexible interconnect was fabricated. The flexible circuit composed of Kapton polyimide film with gold electrode pattern of equal area annuli apertures on the top side of a 50 μm thick Kapton polyimide film. Each element had several 30 μm diameter electroplated vias that connected to electrode traces on the bottom side of the Kapton polyimide film. There was a 30 μm spacing between elements. The total aperture of the array was 3.12 mm. The transducer's performance has been modeled by implementing the Redwood version of the Mason model into PSpice and using the Krimholtz, Leedom and Matthaei (KLM) model utilized in the commercial software PiezoCAD. The transducer"s performance was evaluated by measuring the electrical impedance with a HP 4194 impedance analyzer, pulse echo response using a Panametrics 5900 pulser/receiver and crosstalk measurement for each element in the array. The measured electrical impedance for each element was 540 Ω and -84° phase. In order to improve device sensitivity an inductor was attached in series with each element to reduce the insertion loss to 33 dB. The measured average center frequency and bandwidth of each element was 55 MHz and 50% respectively. The measured crosstalk at the center frequency was -45 dB in water.

  5. Repeatability and interobserver reproducibility of Artemis-2 high-frequency ultrasound in determination of human corneal thickness

    Directory of Open Access Journals (Sweden)

    Ogbuehi KC

    2012-05-01

    Full Text Available Kelechi C Ogbuehi, Uchechukwu L OsuagwuOutpatient Clinic, Department of Optometry, King Saud University, Riyadh, Kingdom of Saudi ArabiaBackground: The purpose of this study was to assess the repeatability and limits of agreement of corneal thickness values measured by a high-frequency ultrasound (Artemis-2, hand-held ultrasound pachymeter (DGH-500 and a specular microscope (SP-3000P.Methods: Central corneal thickness (CCT was analyzed in this prospective randomized study that included 32 patients (18 men and 14 women aged 21–24 years. Measurements were obtained in two sessions, one week apart, by two examiners with three devices in a randomized order. Nine measurements were taken (three with each device on one randomly selected eye of each patient in each measurement session. The coefficient of repeatability and interobserver reproducibility for the values of each method were calculated. The limits of agreement between techniques were also evaluated.Results: There were no significant differences in CCT values between sessions for each of the three devices (P > 0.05. The repeatability coefficients for the Artemis-2 (±8 µm/±9 µm were superior to those of the SP-3000P (±9 µm/±11 µm and DGH 500 (±12 µm/±12 µm in session 1/session 2 respectively, while the interobserver reproducibility index (differences between session 1 and session 2 was superior for the SP-3000P (±17 µm with respect to DHG-500 (±29 µm and the Artemis-2 (±31 µm. In session 1 and session 2, the limits of agreement between the techniques were 35 µm to -31 µm and 34 to -20 µm, respectively, for DGH-500 versus Artemis-2, 73 µm to 3 µm and 60 µm to 9 µm for Artemis-2 versus SP-3000P, and 58 µm to 22 µm and 72 µm to 10 µm for DGH-500 versus SP-3000P comparisons. The DGH-500 and Artemis-2 gave similar values (P > 0.05 in both sessions, but both (Artemis-2 and DGH-500 values were significantly greater than that of the SP-3000P (P < 0.05 in both sessions

  6. Exergy-based sustainability analysis of a low power, high frequency piezo-based ultrasound reactor for rapid biodiesel production

    International Nuclear Information System (INIS)

    Aghbashlo, Mortaza; Tabatabaei, Meisam; Hosseinpour, Soleiman; Khounani, Zahra; Hosseini, Seyed Sina

    2017-01-01

    Highlights: • Piezoultrasonic-assisted biodiesel production was exergetically analyzed. • Alcohol content, sonication time, and temperature affected exergetic parameters. • 6:1 methanol/oil, 10 min sonication, and 60 °C temperature were the best conditions. • The exergetic sustainability index at the favorable conditions was found to be 11. - Abstract: In this work a thermodynamic model was developed to attain enhanced process comprehension of waste cooking oil (WCO) transesterification process in a low power, high frequency piezo-based ultrasound reactor. The reactor performance was assessed using the exergy concept to distinguish the effects of various operational variables, i.e., methanol to oil molar ratio (4:1–8:1), ultrasonic irradiation time (6–10 min), and temperature (40–60 °C) on the efficiency and sustainability factors. The exergetic efficiency of the developed reactor was found to be ranging from 98% to 99% and from 9% to 91% using the universal and functional definitions, respectively. The maximum functional exergetic efficiency as a decision making parameter, was found at 91% for methanol to oil molar ratio of 6:1, ultrasonic irradiation time of 10 min, and temperature of 60 °C. The exergetic sustainability index of the transesterification process at the selected conditions was determined at about 11. Under these conditions, the reactor efficiently converted triglycerides to methyl esters with an acceptable conversion efficiency of 97%, satisfying the ASTM standard. Overall, the outcomes of the current survey manifested that exergy analysis can be a preferred basis for decision making on the efficiency and sustainability of various biodiesel synthesizing systems.

  7. High-frequency ultrasound probe sonography staging for colorectal neoplasia with superficial morphology: its utility and impact on patient management.

    Science.gov (United States)

    Urban, Ondrej; Kliment, Martin; Fojtik, Petr; Falt, Premysl; Orhalmi, Julius; Vitek, Petr; Holeczy, Pavol

    2011-10-01

    This prospective study aimed to evaluate the impact of high-frequency ultrasound probe sonography (HFUPS) staging on the management of patients with superficial colorectal neoplasia (SCN) as determined by the endoscopic characteristics of lesions. Consecutive patients referred for endoscopic treatment of nonpedunculated SCN were enrolled in this study. A lesion was considered high risk if a depressed area or invasive pit pattern was present. The gold standard for final staging included histology from endoscopic or surgical resection. The impact on treatment was defined as any modification of the therapeutic algorithm based on the result of the HFUPS examination compared with that based on endoscopy alone. In this study, 48 lesions in 48 patients were evaluated. Of these, 28 (58%) were considered high risk, and the remaining 20 (42%) were regarded as low risk. A total of seven lesions (15%) that could not be examined with HFUPS and another non-neoplastic lesion were excluded from final analysis. For the remaining 40 lesions, the overall accuracy of the HFUPS examination to predict the correct T-stage was 90% (95% confidence interval [CI], 77-96%). The HFUPS examination had a positive impact on the treatment of 0 low-risk and 11 high-risk (42%) lesions. The impact of HFUPS on the treatment of SCN depends on their endoscopic characteristics. It is negligible for low-risk SCNs, and these lesions can be treated on the basis of their endoscopic appearance alone. Nevertheless, compared with endoscopy alone, HFUPS changed the subsequent therapeutic approach in a positive way for up to 42% of high-risk lesions, including those with a depressed component and an invasive pit pattern. These endoscopic features can therefore be recommended as the entry criteria for an HFUPS examination.

  8. Assessment of the Nucleus-to-Cytoplasmic Ratio in MCF-7 Cells Using Ultra-high Frequency Ultrasound and Photoacoustics

    Science.gov (United States)

    Moore, M. J.; Strohm, E. M.; Kolios, M. C.

    2016-12-01

    The nucleus-to-cytoplasmic (N:C) ratio of a cell is often used when assessing histology for the presence of malignant disease. In this proof of concept study, we present a new, non-optical method for determination of the N:C ratio using ultra-high Frequency ultrasound (US) and photoacoustics (PA). When using transducers in the 100 MHz-500 MHz range, backscattered US pulses and emitted PA waves are encoded with information pertaining to the dimension and morphology of micron-sized objects. If biological cells are interrogated, the diameter of the scattering or absorbing structure can be assessed by fitting the power spectra of the measured US or PA signals to theoretical models for US backscatter and PA emission from a fluid sphere. In this study, the cell and nucleus diameters of 9 MCF-7 breast cancer cells were determined using a new simplified model that calculates the theoretical values of the location of the power spectra minima for both US and PA signals. These diameters were then used to calculate the N:C ratio of the measured cells. The average cell diameter determined by US pulses from a transducer with a central frequency of 375 MHz was found to be 15.5 μ m± 1.8 μ m. The PA waves emitted by the cell nuclei were used to determine an average nuclear diameter of 12.0 μ m± 1.3 μ m. The N:C ratio for these cells was calculated to be 1.9± 1.0, which agrees well with previously reported N:C values for this cell type.

  9. Usefulness of High-Frequency Ultrasound in the Classification of Histologic Subtypes of Primary Basal Cell Carcinoma.

    Science.gov (United States)

    Hernández-Ibáñez, C; Blazquez-Sánchez, N; Aguilar-Bernier, M; Fúnez-Liébana, R; Rivas-Ruiz, F; de Troya-Martín, M

    Incisional biopsy may not always provide a correct classification of histologic subtypes of basal cell carcinoma (BCC). High-frequency ultrasound (HFUS) imaging of the skin is useful for the diagnosis and management of this tumor. The main aim of this study was to compare the diagnostic value of HFUS compared with punch biopsy for the correct classification of histologic subtypes of primary BCC. We also analyzed the influence of tumor size and histologic subtype (single subtype vs. mixed) on the diagnostic yield of HFUS and punch biopsy. Retrospective observational study of primary BCCs treated by the Dermatology Department of Hospital Costa del Sol in Marbella, Spain, between october 2013 and may 2014. Surgical excision was preceded by HFUS imaging (Dermascan C © , 20-MHz linear probe) and a punch biopsy in all cases. We compared the overall diagnostic yield and accuracy (sensitivity, specificity, positive predictive value [PPV], and negative predictive value [NPV]) of HFUS and punch biopsy against the gold standard (excisional biopsy with serial sections) for overall and subgroup results. We studied 156 cases. The overall diagnostic yield was 73.7% for HFUS (sensitivity, 74.5%; specificity, 73%) and 79.9% for punch biopsy (sensitivity, 76%; specificity, 82%). In the subgroup analyses, HFUS had a PPV of 93.3% for superficial BCC (vs. 92% for punch biopsy). In the analysis by tumor size, HFUS achieved an overall diagnostic yield of 70.4% for tumors measuring 40mm 2 or less and 77.3% for larger tumors; the NPV was 82% in both size groups. Punch biopsy performed better in the diagnosis of small lesions (overall diagnostic yield of 86.4% for lesions ≤40mm 2 vs. 72.6% for lesions >40mm 2 ). HFUS imaging was particularly useful for ruling out infiltrating BCCs, diagnosing simple, superficial BCCs, and correctly classifying BCCs larger than 40mm 2 . Copyright © 2016 AEDV. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Mesotherapy with an Intradermal Hyaluronic Acid Formulation for Skin Rejuvenation: An Intrapatient, Placebo-Controlled, Long-Term Trial Using High-Frequency Ultrasound.

    Science.gov (United States)

    Tedeschi, Aurora; Lacarrubba, Francesco; Micali, Giuseppe

    2015-02-01

    Mesotherapy with hyaluronic acid (HA) is a treatment approach currently used for skin rejuvenation. High-frequency ultrasound (20-100 MHz) is a non-invasive technique that has been used to evaluate age-related dermal changes. The presence and the degree of a typical subepidermal low-echogenic band (SLEB) are photoaging related: the lower the SLEB echogenicity, the higher the photoaging. The aim of this trial was to evaluate, through ultrasound imaging, the long-term effects of microinjections of HA on SLEB echogenicity. Twenty-two women with clinical and ultrasound signs of moderate photoaging were enrolled in the study. Treatment consisted of multiple microinjections of HA salts of biotechnological origin on the dorsum of one hand, once weekly for 4 weeks and, successively, once monthly for 4 months (group A) or 9 months (group B). The dorsum of the other hand of each subject was injected with saline solution and used as a control. In all subjects, high-frequency ultrasound (22 MHz) was performed to evaluate SLEB echogenicity changes during treatment. Eighteen out of 22 patients completed the study. At the end of 4 weeks, an ultrasound increase of dermal echogenicity was observed in 13 subjects (seven of group A and six of group B), which we considered as "responders". In these patients, the Student's t-test showed a significant increase from baseline of SLEB pixel numbers of +24 % (P mesotherapy with HA may effectively improve skin aging and photoaging, as supported by quantifiable ultrasound data showing significant changes in SLEB density over time.

  11. Investigation and identification of etiologies involved in the development of acquired hydronephrosis in aged laboratory mice with the use of high-frequency ultrasound imaging

    Science.gov (United States)

    Springer, Danielle A.; Allen, Michele; Hoffman, Victoria; Brinster, Lauren; Starost, Matthew F.; Bryant, Mark; Eckhaus, Michael

    2014-01-01

    Laboratory mice develop naturally occurring lesions that affect biomedical research. Hydronephrosis is a recognized pathologic abnormality of the mouse kidney. Acquired hydronephrosis can affect any mouse, as it is caused by any naturally occurring disease that impairs free urine flow. Many etiologies leading to this condition are of particular significance to aging mice. Non-invasive ultrasound imaging detects renal pelvic dilation, renal enlargement, and parenchymal loss for pre-mortem identification of this condition. High-frequency ultrasound transducers produce high-resolution images of small structures, ideal for detecting organ pathology in mice. Using a 40 MHz linear array transducer, we obtained high-resolution images of a diversity of pathologic lesions occurring within the abdomen of seven geriatric mice with acquired hydronephrosis that enabled a determination of the underlying etiology. Etiologies diagnosed from the imaging results include pyelonephritis, neoplasia, urolithiasis, mouse urologic syndrome, and spontaneous hydronephrosis, and were confirmed at necropsy. A retrospective review of abdominal scans from an additional 149 aging mice shows that the most common etiologies associated with acquired hydronephrosis are mouse urologic syndrome and abdominal neoplasia. This report highlights the utility of high-frequency ultrasound for surveying research mice for age-related pathology, and is the first comprehensive report of multiple cases of acquired hydronephrosis in mice. PMID:25143818

  12. Segmentation of 3-D High-Frequency Ultrasound Images of Human Lymph Nodes Using Graph Cut With Energy Functional Adapted to Local Intensity Distribution.

    Science.gov (United States)

    Kuo, Jen-Wei; Mamou, Jonathan; Wang, Yao; Saegusa-Beecroft, Emi; Machi, Junji; Feleppa, Ernest J

    2017-10-01

    Previous studies by our group have shown that 3-D high-frequency quantitative ultrasound (QUS) methods have the potential to differentiate metastatic lymph nodes (LNs) from cancer-free LNs dissected from human cancer patients. To successfully perform these methods inside the LN parenchyma (LNP), an automatic segmentation method is highly desired to exclude the surrounding thin layer of fat from QUS processing and accurately correct for ultrasound attenuation. In high-frequency ultrasound images of LNs, the intensity distribution of LNP and fat varies spatially because of acoustic attenuation and focusing effects. Thus, the intensity contrast between two object regions (e.g., LNP and fat) is also spatially varying. In our previous work, nested graph cut (GC) demonstrated its ability to simultaneously segment LNP, fat, and the outer phosphate-buffered saline bath even when some boundaries are lost because of acoustic attenuation and focusing effects. This paper describes a novel approach called GC with locally adaptive energy to further deal with spatially varying distributions of LNP and fat caused by inhomogeneous acoustic attenuation. The proposed method achieved Dice similarity coefficients of 0.937±0.035 when compared with expert manual segmentation on a representative data set consisting of 115 3-D LN images obtained from colorectal cancer patients.

  13. Ultra-high frequency ultrasound biomicroscopy and high throughput cardiovascular phenotyping in a large scale mouse mutagenesis screen

    Science.gov (United States)

    Liu, Xiaoqin; Francis, Richard; Tobita, Kimimasa; Kim, Andy; Leatherbury, Linda; Lo, Cecilia W.

    2013-02-01

    Ultrasound biomicroscopy (UBM) is ideally suited for phenotyping fetal mice for congenital heart disease (CHD), as imaging can be carried out noninvasively to provide both hemodynamic and structural information essential for CHD diagnosis. Using the UBM (Vevo 2100; 40Hz) in conjunction with the clinical ultrasound system (Acuson Sequioa C512; 15Hz), we developed a two-step screening protocol to scan thousands fetuses derived from ENU mutagenized pedigrees. A wide spectrum of CHD was detected by the UBM, which were subsequently confirmed with follow-up necropsy and histopathology examination with episcopic fluorescence image capture. CHD observed included outflow anomalies, left/right heart obstructive lesions, septal/valvular defects and cardiac situs anomalies. Meanwhile, various extracardiac defects were found, such as polydactyly, craniofacial defects, exencephaly, omphalocele-cleft palate, most of which were associated with cardiac defects. Our analyses showed the UBM was better at assessing cardiac structure and blood flow profiles, while conventional ultrasound allowed higher throughput low-resolution screening. Our study showed the integration of conventional clinical ultrasound imaging with the UBM for fetal mouse cardiovascular phenotyping can maximize the detection and recovery of CHD mutants.

  14. High-Frequency, Low-Intensity Pulsed Ultrasound Enhances Alveolar Bone Healing of Extraction Sockets in Rats: A Pilot Study.

    Science.gov (United States)

    Kang, Kyung Lhi; Kim, Eun-Cheol; Park, Joon Bong; Heo, Jung Sun; Choi, Yumi

    2016-02-01

    Most studies of the beneficial effects of low-intensity pulsed ultrasound (LIPUS) on bone healing have used frequencies between 1.0 and 1.5 MHz. However, after consideration of ultrasound wave characteristics and depth of target tissue, higher-frequency LIPUS may have been more effective on superficially positioned alveolar bone. We investigated this hypothesis by applying LIPUS (frequency, 3.0 MHz; intensity, 30 mW/cm(2)) on shaved right cheeks over alveolar bones of tooth extraction sockets in rats for 10 min/d for 2 wk after tooth extraction; the control group (left cheek of the same rats) did not receive LIPUS treatment. Compared with the control group, the LIPUS group manifested more new bone growth inside the sockets on histomorphometric analysis (maximal difference = 2.5-fold on the seventh day after extraction) and higher expressions of osteogenesis-related mRNAs and proteins than the control group did. These findings indicate that 3.0-MHz LIPUS could enhance alveolar bone formation and calcification in rats. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  15. Test characteristics of high frequency ultrasound in the pre-operative assessment of margins of basal cell and squamous cell carcinoma in patients undergoing Mohs micrographic surgery

    Science.gov (United States)

    Jambusaria-Pahlajani, Anokhi; Schmults, Chrysalyne D.; Miller, Christopher J.; Shin, Daniel; Williams, Jennifer; Kurd, Shanu K; Gelfand, Joel M.

    2015-01-01

    Background Non-invasive techniques to assess subclinical spread of non-melanoma skin cancer (NMSC) may improve surgical precision. High frequency ultrasound (HIFU) has shown promise to evaluate the extent of NMSC. Objective To determine the accuracy of HIFU to assess the margins of basal cell (BCC) and squamous cell carcinomas (SCC) prior to Mohs micrographic surgery (MMS). Methods We enrolled 100 patients with invasive SCC or BCC. Prior to the first stage of MMS, a Mohs surgeon delineated the intended surgical margin. Subsequently, a trained ultrasound technologist independently evaluated disease extent using the EPISCAN I-200 to evaluate tumor extent beyond this margin. The accuracy of HIFU was subsequently tested by comparison to pathology from frozen sections. Results The test characteristics of the ultrasound were sensitivity= 32%, specificity= 88%, positive predictive value= 47%, and negative predictive value=79%. Subgroup analyses demonstrated improved test characteristics for tumors larger than the median (area >1.74 cm2). Qualitative analyses showed that HIFU was less likely to identify extension from tumors with subtle areas of extension, such as small foci of dermal invasion from infiltrative SCC and micronodular BCC. Conclusions HIFU requires additional refinements to improve the preoperative determination of tumor extent prior to surgical treatment of NMSC. PMID:19018815

  16. High-frequency spectral ultrasound imaging (SUSI) visualizes early post-traumatic heterotopic ossification (HO) in a mouse model.

    Science.gov (United States)

    Ranganathan, Kavitha; Hong, Xiaowei; Cholok, David; Habbouche, Joe; Priest, Caitlin; Breuler, Christopher; Chung, Michael; Li, John; Kaura, Arminder; Hsieh, Hsiao Hsin Sung; Butts, Jonathan; Ucer, Serra; Schwartz, Ean; Buchman, Steven R; Stegemann, Jan P; Deng, Cheri X; Levi, Benjamin

    2018-04-01

    Early treatment of heterotopic ossification (HO) is currently limited by delayed diagnosis due to limited visualization at early time points. In this study, we validate the use of spectral ultrasound imaging (SUSI) in an animal model to detect HO as early as one week after burn tenotomy. Concurrent SUSI, micro CT, and histology at 1, 2, 4, and 9weeks post-injury were used to follow the progression of HO after an Achilles tenotomy and 30% total body surface area burn (n=3-5 limbs per time point). To compare the use of SUSI in different types of injury models, mice (n=5 per group) underwent either burn/tenotomy or skin incision injury and were imaged using a 55MHz probe on VisualSonics VEVO 770 system at one week post injury to evaluate the ability of SUSI to distinguish between edema and HO. Average acoustic concentration (AAC) and average scatterer diameter (ASD) were calculated for each ultrasound image frame. Micro CT was used to calculate the total volume of HO. Histology was used to confirm bone formation. Using SUSI, HO was visualized as early as 1week after injury. HO was visualized earliest by 4weeks after injury by micro CT. The average acoustic concentration of HO was 33% more than that of the control limb (n=5). Spectroscopic foci of HO present at 1week that persisted throughout all time points correlated with the HO present at 9weeks on micro CT imaging. SUSI visualizes HO as early as one week after injury in an animal model. SUSI represents a new imaging modality with promise for early diagnosis of HO. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Signal-Characteristic analysis with respect to backing material of PVDF-based high-frequency ultrasound for photoacoustic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun Su; Chang, Jin Ho [Dept. of Electronic Engineering, Sogang University, Seoul (Korea, Republic of)

    2015-04-15

    Photoacoustic microscopy is capable of providing high-resolution molecular images, and its spatial resolution is typically determined by ultrasonic transducers used to receive the photoacoustic signals. Therefore, ultrasonic transducers for photoacoustic microscopy (PAM) should have a high operating frequency, broad bandwidth, and high signal-reception efficiency. Polyvinylidene fluoride (PVDF) is a suitable material. To take full advantage of this material, the selection of the backing material is crucial, as it influences the center frequency and bandwidth of the transducer. Therefore, we experimentally determined the most suitable backing material among EPO-TEK 301, E-Solder 3022, and RTV. For this, three PVDF high-frequency single-element transducers were fabricated with each backing material. The center frequency and -6 dB bandwidth of each transducer were ascertained by a pulse-echo test. The spatial resolution of each transducer was examined using wire-target images. The experimental results indicated that EPO-TEK 301 is the most suitable backing material for a PAM transducer. This material provides the highest signal magnitude and a reasonable bandwidth because a large portion of the energy propagates toward the front medium, and the PVDF resonates in the half-wave mode.

  18. A multistep single-crystal-to-single-crystal bromodiacetylene dimerization

    Science.gov (United States)

    Hoheisel, Tobias N.; Schrettl, Stephen; Marty, Roman; Todorova, Tanya K.; Corminboeuf, Clémence; Sienkiewicz, Andrzej; Scopelliti, Rosario; Schweizer, W. Bernd; Frauenrath, Holger

    2013-04-01

    Packing constraints and precise placement of functional groups are the reason that organic molecules in the crystalline state often display unusual physical or chemical properties not observed in solution. Here we report a single-crystal-to-single-crystal dimerization of a bromodiacetylene that involves unusually large atom displacements as well as the cleavage and formation of several bonds. Density functional theory computations support a mechanism in which the dimerization is initiated by a [2 + 1] photocycloaddition favoured by the nature of carbon-carbon short contacts in the crystal structure. The reaction proceeded up to the theoretical degree of conversion without loss of crystallinity, and it was also performed on a preparative scale with good yield. Moreover, it represents the first synthetic pathway to (E)-1,2-dibromo-1,2-diethynylethenes, which could serve as synthetic intermediates for the preparation of molecular carbon scaffolds. Our findings both extend the scope of single-crystal-to-single-crystal reactions and highlight their potential as a synthetic tool for complex transformations.

  19. Coupling between high-frequency ultrasound and solar photo-Fenton at pilot scale for the treatment of organic contaminants: an initial approach.

    Science.gov (United States)

    Papoutsakis, Stefanos; Miralles-Cuevas, Sara; Gondrexon, Nicolas; Baup, Stéphane; Malato, Sixto; Pulgarin, César

    2015-01-01

    This study aims to evaluate the performance of a novel pilot-scale coupled system consisting of a high frequency ultrasonic reactor (400kHz) and a compound parabolic collector (CPC). The benefits of the concurrent application of ultrasound and the photo-Fenton process were studied in regard to the degradation behavior of a series of organic pollutants. Three compounds (phenol, bisphenol A and diuron) with different physicochemical properties have been chosen in order to identify possible synergistic effects and to obtain a better estimate of the general feasibility of such a system at field scale (10L). Bisphenol A and diuron were specifically chosen due to their high hydrophobicity, and thus their assumed higher affinity towards the cavitation bubble. Experiments were conducted under ultrasonic, photo-Fenton and combined treatments. Enhanced degradation kinetics were observed during the coupled treatment and synergy factors clearly in excess of 1 have been calculated for phenol as well as for saturated solutions of bisphenol A and diuron. Although the relatively high cost of ultrasound compared to photo-Fenton still presents a significant challenge towards mainstream industrial application, the observed behavior suggests that its prudent use has the potential to significantly benefit the photo-Fenton process, via the decrease of both treatment time and H2O2 consumption. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. High-frequency ultrasound imaging of tattoo reactions with histopathology as a comparative method. Introduction of preoperative ultrasound diagnostics as a guide to therapeutic intervention.

    Science.gov (United States)

    Carlsen, K Hutton; Tolstrup, J; Serup, J

    2014-08-01

    Tattoo adverse reactions requiring diagnostic evaluation and treatment are becoming more common. The aim of this study was to assess tattoo reactions by 20-MHz ultrasonography referenced to histopathology as a comparative method. A total of 73 individuals with clinical adverse reactions in their tattoos were studied. Punch biopsies for reference histology were available from 58 patients. The Dermascan C(®) of Cortex Technology, Denmark, was employed. Total skin thickness and echo density of the echolucent band in the outer dermis were measured. Biopsy served for diagnosis and for determination of the level of cellular infiltration in the dermis. In every tattoo reaction studied, the skin affected was found thicker compared with regional control of the same individual (mean difference 0.73 mm). A prominent echolucent band of mean thickness 0.89 mm was demonstrated, primarily located in the very outer dermis but propagating to deeper dermal layers parallel to increasing severity of reactions. The thickness of the echolucent band correlated with the thickness of cellular infiltration determined by microscopic examination, R = 0.6412 (P tattoo reactions showed no distinct characteristics by ultrasound, but mainly displayed themselves by their advanced inflammatory component. It is demonstrated for the first time that ultrasound, with histopathology as the comparative method, can quantify the severity of tattoo reactions and non-invasively diagnose the depth of the inflammatory process in the dermis elicited by the microparticulate tattoo pigment, which itself is too minute to be imaged by ultrasound. Preoperative 20-MHz ultrasound scanning is introduced as a potentially useful method to guide therapeutic interventions by surgery and lasers. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Pulsed cavitational therapy using high-frequency ultrasound for the treatment of deep vein thrombosis in an in vitro model of human blood clot

    Science.gov (United States)

    Goudot, G.; Mirault, T.; Arnal, B.; Boisson-Vidal, C.; Le Bonniec, B.; Gaussem, P.; Galloula, A.; Tanter, M.; Messas, E.; Pernot, M.

    2017-12-01

    Post-thrombotic syndrome, a frequent complication of deep venous thrombosis, can be reduced with early vein recanalization. Pulsed cavitational therapy (PCT) using ultrasound is a recent non-invasive approach. We propose to test the efficacy and safety of high-frequency focused PCT for drug-free thrombolysis (thrombotripsy) in a realistic in vitro model of venous thrombosis. To reproduce venous thrombosis conditions, human whole blood was allowed to clot by stasis in silicone tubes (6 mm internal diameter) at a 30 cm H2O pressure, maintained during the whole experiment. We engineered an ultrasound device composed of dual 2.25 MHz transducers centered around a 6 MHz imaging probe. A therapeutic focus was generated at a 3.2 cm depth from the probe. Thrombotripsy was performed by longitudinally scanning the thrombus at three different speeds: 1 mm s-1 (n  =  6) 2 mm s-1 (n  =  6) 3 mm s-1 (n  =  12). Restored outflow was measured every three passages. Filters were placed to evaluate the debris size. Twenty-four occlusive thrombi, of 2.5 cm mean length and 4.4 kPa mean stiffness, were studied. Flow restoration was systematically obtained by nine subsequent passages (4.5 min maximum). By varying the device’s speed, we found an optimal speed of 1 mm s-1 to be efficient for effective recanalization with 90 s (three passages). Within 90 s, flow restoration was of 80, 62 and 74% at respectively 1, 2 and 3 mm s-1. For all groups, cavitation cloud drilled a 1.7 mm mean diameter channel throughout the clot. Debris analysis showed 92% of debris    200 µm.

  2. Increased carotid intima thickness and decreased media thickness in premenopausal women with systemic lupus erythematosus: an investigation by non-invasive high-frequency ultrasound.

    Science.gov (United States)

    Leonard, D; Akhter, T; Nordmark, G; Rönnblom, L; Naessen, T

    2011-01-01

    To determine whether high-frequency ultrasound (US) yielding separate assessments of intima and media thickness gives additional information about the vascular morphology compared with the total common carotid artery intima-media thickness (CCA-IMT). Using a 22 MHz US instrument, we determined the near-wall CCA-IMT, the intima and media layers, and the intima/media (I/M) ratio in 47 premenopausal women with systemic lupus erythematosus (SLE), 20 healthy women, and 17 postmenopausal women (mean ages 37, 40, and 69 years, respectively). In SLE, the carotid intima was thicker (0.19 ± 0.04 vs. 0.12 ± 0.02 mm), the media thinner (0.45 ± 0.12 vs. 0.68 ± 0.24 mm), the I/M ratio higher (0.45 ± 0.17 vs. 0.20 ± 0.07) (all p women (0.19 ± 0.04 vs. 0.14 ± 0.03 mm, p media, and a higher I/M ratio in women with SLE compared to healthy controls and indicated an artery wall status in SLE comparable to 30-years-older healthy women. Separate estimates of carotid intima and media layers may be preferable to CCA-IMT in SLE patients.

  3. Corneal ablation depth readout of the MEL 80 excimer laser compared to Artemis three-dimensional very high-frequency digital ultrasound stromal measurements.

    Science.gov (United States)

    Reinstein, Dan Z; Archer, Timothy J; Gobbe, Marine

    2010-12-01

    To evaluate the accuracy of the ablation depth readout for the MEL 80 excimer laser (Carl Zeiss Meditec). Artemis 1 very high-frequency digital ultrasound measurements were obtained before and at least 3 months after LASIK in 121 eyes (65 patients). The Artemis-measured ablation depth was calculated as the maximum difference in stromal thickness before and after treatment. Laser in situ keratomileusis was performed using the MEL 80 excimer laser and the Hansatome microkeratome (Bausch & Lomb). The Aberration Smart Ablation profile was used in 56 eyes and the Tissue Saving Ablation profile was used in 65 eyes. All ablations were centered on the corneal vertex. Comparative statistics and linear regression analysis were performed between the laser readout ablation depth and Artemis-measured ablation depth. The mean maximum myopic meridian was -6.66±2.40 diopters (D) (range: -1.50 to -10.00 D) for Aberration Smart Ablation-treated eyes and -6.50±2.56 D (range: -1.34 to -11.50 D) for Tissue Saving Ablation-treated eyes. The MEL 80 readout was found to overestimate the Artemis-measured ablation depth by 20±12 μm for Aberration Smart Ablation and by 21±12 μm for Tissue Saving Ablation profiles. The accuracy of ablation depth measurement was improved by using the Artemis stromal thickness profile measurements before and after surgery to exclude epithelial changes. The MEL 80 readout was found to overestimate the achieved ablation depth. The linear regression equations could be used by MEL 80 users to adjust the ablation depth for predicted residual stromal thickness calculations without increasing the risk of ectasia due to excessive keratectomy depth as long as a suitable flap thickness bias is included. Copyright 2010, SLACK Incorporated.

  4. Patterning of Perovskite Single Crystals

    KAUST Repository

    Corzo, Daniel

    2017-06-12

    As the internet-of-things hardware integration continues to develop and the requirements for electronics keep diversifying and expanding, the necessity for specialized properties other than the classical semiconductor performance becomes apparent. The success of emerging semiconductor materials depends on the manufacturability and cost as much as on the properties and performance they offer. Solution-based semiconductors are an emerging concept that offers the advantage of being compatible with large-scale manufacturing techniques and have the potential to yield high-quality electronic devices at a lower cost than currently available solutions. In this work, patterns of high-quality MAPbBr3 perovskite single crystals in specific locations are achieved through the modification of the substrate properties and solvent engineering. The fabrication of the substrates involved modifying the surface adhesion forces through functionalization with self-assembled monolayers and patterning them by photolithography processes. Spin coating and blade coating were used to deposit the perovskite solution on the modified silicon substrates. While single crystal perovskites were obtained with the modification of substrates alone, solvent engineering helped with improving the Marangoni flows in the deposited droplets by increasing the contact angle and lowering the evaporation rate, therefore controlling and improving the shape of the grown perovskite crystals. The methodology is extended to other types of perovskites such as the transparent MAPbCl3 and the lead-free MABi2I9, demonstrating the adaptability of the process. Adapting the process to electrode arrays opened up the path towards the fabrication of optoelectronic devices including photodetectors and field-effect transistors, for which the first iterations are demonstrated. Overall, manufacturing and integration techniques permitting the fabrication of single crystalline devices, such as the method in this thesis work, are

  5. Electrically Anisotropic Layered Perovskite Single Crystal

    KAUST Repository

    Li, Ting-You

    2016-01-01

    -23). However, the difficulty in growing large-sized LOIHPs single crystal with superior electrical properties limits their practical applications. Here, we report a method to grow the centimeter-scaled LOIHP single crystal of [(HOC2H4NH3)2PbI4], demonstrating

  6. Confinement stabilises single crystal vaterite rods.

    OpenAIRE

    Schenk, AS; Albarracin, EJ; Kim, YY; Ihli, J; Meldrum, FC

    2014-01-01

    Single-crystals of vaterite, the least-stable anhydrous polymorph of CaCO3, are rare in biogenic and synthetic systems. We here describe the synthesis of high aspect ratio single crystal vaterite rods under additive-free conditions by precipitating CaCO3 within the cylindrical pores of track-etch membranes.

  7. Relaxor-PT Single Crystal Piezoelectric Sensors

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2014-07-01

    Full Text Available Relaxor-PbTiO3 piezoelectric single crystals have been widely used in a broad range of electromechanical devices, including piezoelectric sensors, actuators, and transducers. This paper reviews the unique properties of these single crystals for piezoelectric sensors. Design, fabrication and characterization of various relaxor-PT single crystal piezoelectric sensors and their applications are presented and compared with their piezoelectric ceramic counterparts. Newly applicable fields and future trends of relaxor-PT sensors are also suggested in this review paper.

  8. Defect free single crystal thin layer

    KAUST Repository

    Elafandy, Rami Tarek Mahmoud

    2016-01-28

    A gallium nitride film can be a dislocation free single crystal, which can be prepared by irradiating a surface of a substrate and contacting the surface with an etching solution that can selectively etch at dislocations.

  9. Defect free single crystal thin layer

    KAUST Repository

    Elafandy, Rami Tarek Mahmoud; Ooi, Boon S.

    2016-01-01

    A gallium nitride film can be a dislocation free single crystal, which can be prepared by irradiating a surface of a substrate and contacting the surface with an etching solution that can selectively etch at dislocations.

  10. Preparation of TiC single crystals

    International Nuclear Information System (INIS)

    Scheerer, B.; Fink, J.; Reichardt, W.

    1975-07-01

    TiC single crystals were prepared by vertical zone melting for measurements of the phonon dispersion by inelastic neutron scattering. The influence of the starting material and of the growing conditions on the growth of the crystal were studied. The crystals were characterized by chemical methods, EMX and neutron diffraction. It was possible to grow single crystals with a volume of up to 0.6 cm 3 and mosaic spread of less then 0.4 0 . (orig.) [de

  11. Electrically Anisotropic Layered Perovskite Single Crystal

    KAUST Repository

    Li, Ting-You

    2016-04-01

    Organic-inorganic hybrid perovskites (OIHPs), which are promising materials for electronic and optoelectronic applications (1-10), have made into layered organic-inorganic hybrid perovskites (LOIHPs). These LOIHPs have been applied to thin-film transistors, solar cells and tunable wavelength phosphors (11-18). It is known that devices fabricated with single crystal exhibit the superior performance, which makes the growth of large-sized single crystals critical for future device applications (19-23). However, the difficulty in growing large-sized LOIHPs single crystal with superior electrical properties limits their practical applications. Here, we report a method to grow the centimeter-scaled LOIHP single crystal of [(HOC2H4NH3)2PbI4], demonstrating the potentials in mass production. After that, we reveal anisotropic electrical and optoelectronic properties which proved the carrier propagating along inorganic framework. The carrier mobility of in-inorganic-plane (in-plane) devices shows the average value of 45 cm2 V–1 s–1 which is about 100 times greater than the record of LOIHP devices (15), showing the importance of single crystal in device application. Moreover, the LOIHP single crystals show its ultra-short carrier lifetime of 42.7 ps and photoluminescence quantum efficiency (PLQE) of 25.4 %. We expect this report to be a start of LOIHPs for advanced applications in which the anisotropic properties are needed (24-25), and meets the demand of high-speed applications and fast-response applications.

  12. The thickness of the A1 pulleys reflects the disability of hand mobility in scleroderma. A pilot study using high-frequency ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Tagliafico, Alberto, E-mail: atagliafico@sirm.org [Department of Radiology, National Institute for Cancer Research, Genova (Italy); Panico, Nicoletta [Division of Immunology, Department of Internal Medicine, University of Genova, Genova (Italy); Serafini, Giovanni [Department of Radiology, Santa Corona Hospital, Pietra Ligure (Italy); Ghio, Massimo [Division of Immunology, Department of Internal Medicine, University of Genova, Genova (Italy); Martinoli, Carlo [Department of Radiology, University of Genova, Genova (Italy)

    2011-02-15

    Background: Hand involvement in scleroderma is a serious concern. Clinical tests to asses hand dysfunction are based on the experience of the clinician. Objective: To asses if utrasonographic (US) measurement of A1 pulley thickness may be used as an indicator of hand mobility in scleroderma. Materials and methods: Institutional review board approval and patient informed consent was obtained. Twenty-eight patients affected suffering from scleroderma and 40 healthy controls were prospectively evaluated by two blinded radiologists with US, with a transducer operating at 17 MHz. A1 pulley thickness was measured and correlated with the Hand Mobility in Scleroderma Test (HAMIS) and disease duration. Results: The thickness of the A1 pulley was greater in sclerodermic patients than in controls (p < 0.05). Intra and inter-observer agreement were better for ultrasound (0.94;0.88) than for HAMIS tests (0.71;0.70). A good correlation between pulley thickness, hand mobility and disease duration was found (r = 0.78, p < 0.018; r = 0.54, p < 0.05). Conclusion: A1 pulley thickness measured on ultrasound correlates with hand mobility and disease duration. Ultrasound is an useful tool to evaluate hand disability in scleroderma.

  13. The thickness of the A1 pulleys reflects the disability of hand mobility in scleroderma. A pilot study using high-frequency ultrasound

    International Nuclear Information System (INIS)

    Tagliafico, Alberto; Panico, Nicoletta; Serafini, Giovanni; Ghio, Massimo; Martinoli, Carlo

    2011-01-01

    Background: Hand involvement in scleroderma is a serious concern. Clinical tests to asses hand dysfunction are based on the experience of the clinician. Objective: To asses if utrasonographic (US) measurement of A1 pulley thickness may be used as an indicator of hand mobility in scleroderma. Materials and methods: Institutional review board approval and patient informed consent was obtained. Twenty-eight patients affected suffering from scleroderma and 40 healthy controls were prospectively evaluated by two blinded radiologists with US, with a transducer operating at 17 MHz. A1 pulley thickness was measured and correlated with the Hand Mobility in Scleroderma Test (HAMIS) and disease duration. Results: The thickness of the A1 pulley was greater in sclerodermic patients than in controls (p < 0.05). Intra and inter-observer agreement were better for ultrasound (0.94;0.88) than for HAMIS tests (0.71;0.70). A good correlation between pulley thickness, hand mobility and disease duration was found (r = 0.78, p < 0.018; r = 0.54, p < 0.05). Conclusion: A1 pulley thickness measured on ultrasound correlates with hand mobility and disease duration. Ultrasound is an useful tool to evaluate hand disability in scleroderma.

  14. The value of high frequency ultrasound combined with X in diagnosis of digestive tract malformation in children%高频超声联合X片在儿童消化道畸形中的诊断价值

    Institute of Scientific and Technical Information of China (English)

    陈志勇; 周小渔; 何静波; 金科

    2014-01-01

    Objetive To investigate the value of high frequency ultrasound combined with X-ray exami-nation in the diagnosis of digestive tract malformation in children. Methods 60 cases of gastrointestinal mal-formation operation confirmed by ultrasonography and X-ray images of the retrospective analysis. Results 1 9 cases of application of ultrasound alone diagnosis of 60 cases,including 8 cases of hypertrophic pyloric obstruc-tion,intestinal malrotation in 5 cases,6 cases were intestinal duplication,1 1 cases of application of X-ray sin-gle diagnosis,including 4 cases of esophageal atresia,atresia of anus with rectal perineal fistula in 7 cases,the other 30 cases of application of high frequency ultrasound combined with X the diagnosis,the pyloric edema with gastroesophageal reflux in 4 cases,7 cases of annular pancreas,6 cases of congenital megacolon. Con-clusion High frequency ultrasound combined with X-ray can improve children's digestive tract malformation di-agnosis rate,the two complement each other.%目的:探讨高频超声联合X线检查在儿童消化道畸形中的诊断价值。方法对60例经手术证实的消化道畸形患儿进行超声及X线片图像的回顾性分析。结果60例患儿中,单纯经超声诊断为肥厚性幽门梗阻8例,肠旋转不良5例,肠重复畸形6例。单纯经X线检查诊断为食管闭锁4例,肛门闭锁伴直肠会阴瘘7例;经高频超声联合X线检查诊断为消化道重复畸形13例,幽门水肿伴胃食管反流4例,环形胰腺7例,先天性巨结肠6例。结论高频超声联合X线检查可提高儿童消化道畸形的诊断率,二者互为补充。

  15. Variation of low temperature internal friction of microplastic deformation of high purity molybdenum single crystals

    International Nuclear Information System (INIS)

    Pal-Val, P.P.; Kaufmann, H.J.

    1984-01-01

    Amplitude and temperature spectra of ultrasound absorption in weakly deformed high purity molybdenum single crystals of different orientations were measured. The results were discussed in terms of parameter changes related to quasiparticle or dislocation oscillations, respectively, dislocation point defect interactions as well as defect generation at microplastic deformation. (author)

  16. Variation of low temperature internal friction of microplastic deformation of high purity molybdenum single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Pal-Val, P.P. (AN Ukrainskoj SSR, Kharkov. Fiziko-Tekhnicheskij Inst. Nizkikh Temperatur); Kaufmann, H.J. (Akademie der Wissenschaften der DDR, Berlin)

    1984-08-01

    Amplitude and temperature spectra of ultrasound absorption in weakly deformed high purity molybdenum single crystals of different orientations were measured. The results were discussed in terms of parameter changes related to quasiparticle or dislocation oscillations, respectively, dislocation point defect interactions as well as defect generation at microplastic deformation.

  17. Friction stir welding of single crystal aluminium

    DEFF Research Database (Denmark)

    Fonda, Richard Warren; Wert, John A.; Reynolds, A.P.

    2007-01-01

    Friction stir welds were prepared in different orientations in an aluminium single crystal. The welds were quenched to preserve the microstructure surrounding the tool and then electron backscattered diffraction was used to reveal the generation of grain boundaries and the evolution...... of crystallographic texture around the tool in each weld. The extent of both dynamic recrystallisation and conventional recrystallisation varied considerably as a function of weld orientation. As the base plate begins to interact with the deformation field surrounding the tool, regions of the single crystal rotate...

  18. Optical properties of Sulfur doped InP single crystals

    Science.gov (United States)

    El-Nahass, M. M.; Youssef, S. B.; Ali, H. A. M.

    2014-05-01

    Optical properties of InP:S single crystals were investigated using spectrophotometric measurements in the spectral range of 200-2500 nm. The absorption coefficient and refractive index were calculated. It was found that InP:S crystals exhibit allowed and forbidden direct transitions with energy gaps of 1.578 and 1.528 eV, respectively. Analysis of the refractive index in the normal dispersion region was discussed in terms of the single oscillator model. Some optical dispersion parameters namely: the dispersion energy (Ed), single oscillator energy (Eo), high frequency dielectric constant (ɛ∞), and lattice dielectric constant (ɛL) were determined. The volume and the surface energy loss functions (VELF & SELF) were estimated. Also, the real and imaginary parts of the complex conductivity were calculated.

  19. Lattice effects in YVO3 single crystal

    NARCIS (Netherlands)

    Marquina, C; Sikora, M; Ibarra, MR; Nugroho, AA; Palstra, TTM

    In this paper we report on the lattice effects in the Mott insulator yttrium orthovanadate (YVO3). Linear thermal expansion and magnetostriction experiments have been performed on a single crystal, in the temperature range from 5 K to room temperature. The YVO3 orders antiferromagnetically at T-N =

  20. Antiferromagnetism in chromium alloy single crystals

    DEFF Research Database (Denmark)

    Bjerrum Møller, Hans; Trego, A.L.; Mackintosh, A.R.

    1965-01-01

    The antiferromagnetism of single crystals of dilute alloys of V, Mn and Re in Cr has been studied at 95°K and 300°K by neutron diffraction. The addition of V causes the diffraction peaks to decrease in intensity and move away from (100), while Mn and Re cause them to increase and approach (100) s...

  1. Neutron forward diffraction by single crystal prisms

    Indian Academy of Sciences (India)

    We have derived analytic expressions for the deflection as well as transmitted fraction of monochromatic neutrons forward diffracted by a single crystal prism. In the vicinity of a Bragg reflection, the neutron deflection deviates sharply from that for an amorphous prism, exhibiting three orders of magnitude greater sensitivity to ...

  2. Properties of single crystal beta''-aluminas

    International Nuclear Information System (INIS)

    Bates, J.B.; Brown, G.M.; Kaneda, T.; Brundage, W.E.; Wang, J.C.; Engstrom, H.

    1979-01-01

    Large single crystals of sodium beta''-alumina were grown by slow evaporation of Na 2 O at 1690 0 C from a mixture of Na 2 CO 3 , MgO, and Al 2 O 3 . Polarized Raman measurements were made on the Na β'' single crystals and on single crystals of Li, K, Rb, and Ag β'' prepared by ion exchange of Na β''. The low frequency Raman spectra of Na, K, Rb, and Ag β'' contained four or more bands due to vibrations of the mobile cations. These results were analyzed by assuming the spectra to be due to the normal modes of a defect cluster consisting of a cation vacancy surrounded by three cations. From model calculations, the Raman band of Na β'' at 33 cm -1 is assigned to the attempt mode for diffusion of Na + ions. The structure of a Ag β'' single crystal was investigated by neutron diffraction, and 20% of the Ag + ion sites were found to be vacant

  3. Method for manufacturing a single crystal nanowire

    NARCIS (Netherlands)

    van den Berg, Albert; Bomer, Johan G.; Carlen, Edwin; Chen, S.; Kraaijenhagen, Roderik Adriaan; Pinedo, Herbert Michael

    2013-01-01

    A method for manufacturing a single crystal nano-structure is provided comprising the steps of providing a device layer with a 100 structure on a substrate; providing a stress layer onto the device layer; patterning the stress layer along the 110 direction of the device layer; selectively removing

  4. Method for manufacturing a single crystal nanowire

    NARCIS (Netherlands)

    van den Berg, Albert; Bomer, Johan G.; Carlen, Edwin; Chen, S.; Kraaijenhagen, R.A.; Pinedo, Herbert Michael

    2010-01-01

    A method for manufacturing a single crystal nano-structure is provided comprising the steps of providing a device layer with a 100 structure on a substrate; providing a stress layer onto the device layer; patterning the stress layer along the 110 direction of the device layer; selectively removing

  5. Inkjet printing of single-crystal films.

    Science.gov (United States)

    Minemawari, Hiromi; Yamada, Toshikazu; Matsui, Hiroyuki; Tsutsumi, Jun'ya; Haas, Simon; Chiba, Ryosuke; Kumai, Reiji; Hasegawa, Tatsuo

    2011-07-13

    The use of single crystals has been fundamental to the development of semiconductor microelectronics and solid-state science. Whether based on inorganic or organic materials, the devices that show the highest performance rely on single-crystal interfaces, with their nearly perfect translational symmetry and exceptionally high chemical purity. Attention has recently been focused on developing simple ways of producing electronic devices by means of printing technologies. 'Printed electronics' is being explored for the manufacture of large-area and flexible electronic devices by the patterned application of functional inks containing soluble or dispersed semiconducting materials. However, because of the strong self-organizing tendency of the deposited materials, the production of semiconducting thin films of high crystallinity (indispensable for realizing high carrier mobility) may be incompatible with conventional printing processes. Here we develop a method that combines the technique of antisolvent crystallization with inkjet printing to produce organic semiconducting thin films of high crystallinity. Specifically, we show that mixing fine droplets of an antisolvent and a solution of an active semiconducting component within a confined area on an amorphous substrate can trigger the controlled formation of exceptionally uniform single-crystal or polycrystalline thin films that grow at the liquid-air interfaces. Using this approach, we have printed single crystals of the organic semiconductor 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C(8)-BTBT) (ref. 15), yielding thin-film transistors with average carrier mobilities as high as 16.4 cm(2) V(-1) s(-1). This printing technique constitutes a major step towards the use of high-performance single-crystal semiconductor devices for large-area and flexible electronics applications.

  6. High Performance Relaxor-Based Ferroelectric Single Crystals for Ultrasonic Transducer Applications

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2014-07-01

    Full Text Available Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3O3-PbTiO3 (PMN-PT have drawn much attention in the ferroelectric field because of their excellent piezoelectric properties and high electromechanical coupling coefficients (d33~2000 pC/N, kt~60% near the morphotropic phase boundary (MPB. Ternary Pb(In1/2Nb1/2O3-Pb(Mg1/3Nb2/3O3-PbTiO3 (PIN-PMN-PT single crystals also possess outstanding performance comparable with PMN-PT single crystals, but have higher phase transition temperatures (rhombohedral to tetragonal Trt, and tetragonal to cubic Tc and larger coercive field Ec. Therefore, these relaxor-based single crystals have been extensively employed for ultrasonic transducer applications. In this paper, an overview of our work and perspectives on using PMN-PT and PIN-PMN-PT single crystals for ultrasonic transducer applications is presented. Various types of single-element ultrasonic transducers, including endoscopic transducers, intravascular transducers, high-frequency and high-temperature transducers fabricated using the PMN-PT and PIN-PMN-PT crystals and their 2-2 and 1-3 composites are reported. Besides, the fabrication and characterization of the array transducers, such as phased array, cylindrical shaped linear array, high-temperature linear array, radial endoscopic array, and annular array, are also addressed.

  7. Non-invasive characterization of polyurethane-based tissue constructs in a rat abdominal repair model using high frequency ultrasound elasticity imaging.

    Science.gov (United States)

    Yu, Jiao; Takanari, Keisuke; Hong, Yi; Lee, Kee-Won; Amoroso, Nicholas J; Wang, Yadong; Wagner, William R; Kim, Kang

    2013-04-01

    The evaluation of candidate materials and designs for soft tissue scaffolds would benefit from the ability to monitor the mechanical remodeling of the implant site without the need for periodic animal sacrifice and explant analysis. Toward this end, the ability of non-invasive ultrasound elasticity imaging (UEI) to assess temporal mechanical property changes in three different types of porous, biodegradable polyurethane scaffolds was evaluated in a rat abdominal wall repair model. The polymers utilized were salt-leached scaffolds of poly(carbonate urethane) urea, poly(ester urethane) urea and poly(ether ester urethane) urea at 85% porosity. A total of 60 scaffolds (20 each type) were implanted in a full thickness muscle wall replacement in the abdomens of 30 rats. The constructs were ultrasonically scanned every 2 weeks and harvested at weeks 4, 8 and 12 for compression testing or histological analysis. UEI demonstrated different temporal stiffness trends among the different scaffold types, while the stiffness of the surrounding native tissue remained unchanged. The changes in average normalized strains developed in the constructs from UEI compared well with the changes of mean compliance from compression tests and histology. The average normalized strains and the compliance for the same sample exhibited a strong linear relationship. The ability of UEI to identify herniation and to characterize the distribution of local tissue in-growth with high resolution was also investigated. In summary, the reported data indicate that UEI may allow tissue engineers to sequentially evaluate the progress of tissue construct mechanical behavior in vivo and in some cases may reduce the need for interim time point animal sacrifice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Individual common carotid artery wall layer dimensions, but not carotid intima-media thickness, indicate increased cardiovascular risk in women with preeclampsia: an investigation using noninvasive high-frequency ultrasound.

    Science.gov (United States)

    Akhter, Tansim; Wikström, Anna-Karin; Larsson, Marita; Naessen, Tord

    2013-09-01

    Preeclampsia (PE) is associated with increased risk of cardiovascular disease later in life. Ultrasound assessment of the common carotid artery intima-media thickness (IMT) during or after PE has not indicated any increased cardiovascular risk. We used high-frequency ultrasound (22 MHz) to estimate the individual common carotid artery IMTs in 55 women at PE diagnosis and in 64 women with normal pregnancies at a similar stage. All were re-examined about 1 year postpartum. A thick intima, thin media, and high intima/media (I/M) ratio are signs of a less healthy artery wall. PE was associated with a significantly thicker mean common carotid artery intima, thinner media, and higher I/M ratio than in normal pregnancy (mean I/M difference, 0.21; 95% confidence interval, 0.17-0.25; Pwomen with PE were negatively affected during pregnancy and 1 year postpartum compared with women with normal pregnancies, indicating increased cardiovascular risk. Estimation of intima thickness and I/M ratio seem preferable to estimation of common carotid artery IMT in imaging cardiovascular risk in PE. Results from this pilot study warrant further confirmation.

  9. Single-Crystal Diamond Nanobeam Waveguide Optomechanics

    Science.gov (United States)

    Khanaliloo, Behzad; Jayakumar, Harishankar; Hryciw, Aaron C.; Lake, David P.; Kaviani, Hamidreza; Barclay, Paul E.

    2015-10-01

    Single-crystal diamond optomechanical devices have the potential to enable fundamental studies and technologies coupling mechanical vibrations to both light and electronic quantum systems. Here, we demonstrate a single-crystal diamond optomechanical system and show that it allows excitation of diamond mechanical resonances into self-oscillations with amplitude >200 nm . The resulting internal stress field is predicted to allow driving of electron spin transitions of diamond nitrogen-vacancy centers. The mechanical resonances have a quality factor >7 ×105 and can be tuned via nonlinear frequency renormalization, while the optomechanical interface has a 150 nm bandwidth and 9.5 fm /√{Hz } sensitivity. In combination, these features make this system a promising platform for interfacing light, nanomechanics, and electron spins.

  10. Single-Crystal Diamond Nanobeam Waveguide Optomechanics

    Directory of Open Access Journals (Sweden)

    Behzad Khanaliloo

    2015-12-01

    Full Text Available Single-crystal diamond optomechanical devices have the potential to enable fundamental studies and technologies coupling mechanical vibrations to both light and electronic quantum systems. Here, we demonstrate a single-crystal diamond optomechanical system and show that it allows excitation of diamond mechanical resonances into self-oscillations with amplitude >200  nm. The resulting internal stress field is predicted to allow driving of electron spin transitions of diamond nitrogen-vacancy centers. The mechanical resonances have a quality factor >7×10^{5} and can be tuned via nonlinear frequency renormalization, while the optomechanical interface has a 150 nm bandwidth and 9.5  fm/sqrt[Hz] sensitivity. In combination, these features make this system a promising platform for interfacing light, nanomechanics, and electron spins.

  11. Single Crystals Grown Under Unconstrained Conditions

    Science.gov (United States)

    Sunagawa, Ichiro

    Based on detailed investigations on morphology (evolution and variation in external forms), surface microtopography of crystal faces (spirals and etch figures), internal morphology (growth sectors, growth banding and associated impurity partitioning) and perfection (dislocations and other lattice defects) in single crystals, we can deduce how and by what mechanism the crystal grew and experienced fluctuation in growth parameters through its growth and post-growth history under unconstrained condition. The information is useful not only in finding appropriate way to growing highly perfect and homogeneous single crystals, but also in deciphering letters sent from the depth of the Earth and the Space. It is also useful in discriminating synthetic from natural gemstones. In this chapter, available methods to obtain molecular information are briefly summarized, and actual examples to demonstrate the importance of this type of investigations are selected from both natural minerals (diamond, quartz, hematite, corundum, beryl, phlogopite) and synthetic crystals (SiC, diamond, corundum, beryl).

  12. Bloch walls in a nickel single crystal

    International Nuclear Information System (INIS)

    Peters, J.; Treimer, W.

    2001-01-01

    We present a consistent theory for the dependence of the magnetic structure in bulk samples on external static magnetic fields and corresponding experimental results. We applied the theory of micromagnetism to this crystal and calculated the Bloch wall thickness as a function of external magnetic fields. The theoretical results agree well with the experimental data, so that the Bloch wall thickness of a 71 deg. nickel single crystal was definitely determined with some hundred of nanometer

  13. Single crystal spectrometer FOX at KENS

    International Nuclear Information System (INIS)

    Takahashi, M.

    2001-01-01

    Single crystal spectrometer FOX installed at H1 thermal neutron line on KENS has been renewed recently for the measurement of very weak scattering. We have installed a multidetector system of 36 linearly placed 3 He detectors with collimators instead of former four-circle diffractometer and scintillator detectors. Though the system is quite simple, a large two-dimensional reciprocal space is observed effectively with high S/N rate on new FOX. (author)

  14. High frequency electromagnetic dosimetry

    CERN Document Server

    Sánchez-Hernández, David A

    2009-01-01

    Along with the growth of RF and microwave technology applications, there is a mounting concern about the possible adverse effects over human health from electromagnetic radiation. Addressing this issue and putting it into perspective, this groundbreaking resource provides critical details on the latest advances in high frequency electromagnetic dosimetry.

  15. Isotopically pure single crystal epitaxial diamond films and their preparation

    International Nuclear Information System (INIS)

    Banholzer, W.F.; Anthony, T.R.; Williams, D.M.

    1992-01-01

    The present invention is directed to the production of single crystal diamond consisting of isotopically pure carbon-12 or carbon-13. In the present invention, isotopically pure single crystal diamond is grown on a single crystal substrate directly from isotopically pure carbon-12 or carbon-13. One method for forming isotopically pure single crystal diamond comprises the steps of placing in a reaction chamber a single substrate heated to an elevated diamond forming temperature. Another method for forming isotopically pure single crystal diamond comprises diffusing isotopically pure carbon-12 or carbon-13 through a metallic catalyst under high pressure to a region containing a single crystal substrate to form an isotopically pure single crystal diamond layer on said single crystal substrate

  16. Radiation effects in corundum single crystals

    International Nuclear Information System (INIS)

    Gevorkyan, V.A.; Harutunyan, V.V.; Hakhverdyan, E.A.

    2005-01-01

    On the basis of new experimental results and analysis of publications it is shown that in the lattice of corundum crystals the high-energy particles create stable structural defects due to knocking out of atoms from normal sites of the anionic sublattice; this leads to the formation of F and F '+ centers as well as to other complex [Al i '+ F] type color centers. The essence of 'radiation memory' effect in corundum single crystals is that the high-energy particles irradiation, annealing at high temperatures and additional irradiation by X-rays result in the restoration of some spectral bands of the optical absorption in the range 200-650 nm

  17. Single Crystal Filters for Neutron Spectrometry

    International Nuclear Information System (INIS)

    Habib, N.

    2008-01-01

    A study of neutron transmission properties trough a large single crystals specimens of Si, Ge, Pb, Bi and sapphire at 300 K and 80 K have been made for a wide range of neutron energies. The effectiveness of such filters is given by the ratio of the total cross-section of unwanted epithermal neutrons to that the desired thermal neutron beam and by the optimum choice of the crystal orientation, its mosaic spread, thickness and temperature.Our study indicates that sapphire is significantly more effective than the others for a wide range of neutron energies

  18. High frequency asymptotic methods

    International Nuclear Information System (INIS)

    Bouche, D.; Dessarce, R.; Gay, J.; Vermersch, S.

    1991-01-01

    The asymptotic methods allow us to compute the interaction of high frequency electromagnetic waves with structures. After an outline of their foundations with emphasis on the geometrical theory of diffraction, it is shown how to use these methods to evaluate the radar cross section (RCS) of complex tri-dimensional objects of great size compared to the wave-length. The different stages in simulating phenomena which contribute to the RCS are reviewed: physical theory of diffraction, multiple interactions computed by shooting rays, research for creeping rays. (author). 7 refs., 6 figs., 3 insets

  19. The new single crystal diffractometer SC3

    International Nuclear Information System (INIS)

    Schefer, J.; Koch, M.; Keller, P.; Fischer, S.; Thut, R.

    1996-01-01

    Single crystal diffraction is a powerful method for the determination of precise structure parameters, superlattices, stress. Neutron single crystal diffraction gives additionally to X-rays information on magnetic structures, both commensurate and incommensurate, hydrogen positions, hydrogen bonding behavior and accurate bondlengths, e.g. important in cuprates. The method is therefore especially powerful if combined with X-ray diffraction results. The new instrument at SINQ has been designed for inorganic materials and is positioned at a thermal beam tube, pointing on a water scatterer. This scatterer is presently operating with H 2 O at ambient temperature, but a change to another medium at different temperature is possible. The instrument will be equipped with three area detectors, moving at fixed difference in 2Θ. each detector may be individually moved around a vertical circle (tilting angle γ), allowing to use not only 4-circle geometry in the temperature range from 1.5 to 380 K, but also any equipment from a dilution refrigerator (7 mK) to a heavy magnet. A high temperature furnace for 4-circle geometry is foreseen as a future option. (author) 6 figs., 1 tab., 7 refs

  20. The new single crystal diffractometer SC3

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, J; Koch, M; Keller, P; Fischer, S; Thut, R [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    Single crystal diffraction is a powerful method for the determination of precise structure parameters, superlattices, stress. Neutron single crystal diffraction gives additionally to X-rays information on magnetic structures, both commensurate and incommensurate, hydrogen positions, hydrogen bonding behavior and accurate bondlengths, e.g. important in cuprates. The method is therefore especially powerful if combined with X-ray diffraction results. The new instrument at SINQ has been designed for inorganic materials and is positioned at a thermal beam tube, pointing on a water scatterer. This scatterer is presently operating with H{sub 2}O at ambient temperature, but a change to another medium at different temperature is possible. The instrument will be equipped with three area detectors, moving at fixed difference in 2{Theta}. each detector may be individually moved around a vertical circle (tilting angle {gamma}), allowing to use not only 4-circle geometry in the temperature range from 1.5 to 380 K, but also any equipment from a dilution refrigerator (7 mK) to a heavy magnet. A high temperature furnace for 4-circle geometry is foreseen as a future option. (author) 6 figs., 1 tab., 7 refs.

  1. Thermal shock cracking of GSO single crystal

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki; Yamamoto, Kazunari; Tamura, Takaharu; Kurashige, Kazuhisa; Ishibashi, Hiroyuki; Susa, Kenzo

    1998-01-01

    The quantitative estimation of the failure stress of a gadolinium orthosilicate (Gd 2 SiO 5 , hereafter abbreviated as GSO) single crystal due to thermal shock was investigated. A cylindrical test specimen was heated in a silicone oil bath, then subjected to thermal shock by pouring room temperature silicone oil. Cracking occurred during cooling. The heat conduction analysis was performed to obtain temperature distribution in a GSO single crystal at cracking, using the surface temperatures measured in the thermal shock cracking test. Then the thermal stress was calculated using temperature profile of the test specimen obtained from the heat conduction analysis. It is found from the results of the thermal stress analysis and the observation of the cracking in test specimens that the thermal shock cracking occurs in a cleavage plane due to the stress normal to the plane. Three-point bending tests were also performed to examine the relationship between the critical stress for thermal shock cracking and the three-point bending strength obtained from small-sized test specimens. (author)

  2. ALMA High Frequency Techniques

    Science.gov (United States)

    Meyer, J. D.; Mason, B.; Impellizzeri, V.; Kameno, S.; Fomalont, E.; Chibueze, J.; Takahashi, S.; Remijan, A.; Wilson, C.; ALMA Science Team

    2015-12-01

    The purpose of the ALMA High Frequency Campaign is to improve the quality and efficiency of science observing in Bands 8, 9, and 10 (385-950 GHz), the highest frequencies available to the ALMA project. To this end, we outline observing modes which we have demonstrated to improve high frequency calibration for the 12m array and the ACA, and we present the calibration of the total power antennas at these frequencies. Band-to-band (B2B) transfer and bandwidth switching (BWSW), techniques which improve the speed and accuracy of calibration at the highest frequencies, are most necessary in Bands 8, 9, and 10 due to the rarity of strong calibrators. These techniques successfully enable increased signal-to-noise on the calibrator sources (and better calibration solutions) by measuring the calibrators at lower frequencies (B2B) or in wider bandwidths (BWSW) compared to the science target. We have also demonstrated the stability of the bandpass shape to better than 2.4% for 1 hour, hidden behind random noise, in Band 9. Finally, total power observing using the dual sideband receivers in Bands 9 and 10 requires the separation of the two sidebands; this procedure has been demonstrated in Band 9 and is undergoing further testing in Band 10.

  3. High Frequency Oscillatory Ventilation

    Directory of Open Access Journals (Sweden)

    AC Bryan

    1996-01-01

    Full Text Available High frequency oscillatory (HFO ventilation using low tidal volume and peak airway pressures is extremely efficient at eliminating carbon dioxide and raising pH in the newborn infant with acute respiratory failure. Improvement in oxygenation requires a strategy of sustained or repetitive inflations to 25 to 30 cm H2O in order to place the lung on the deflation limb of the pressure-volume curve. This strategy has also been shown to decrease the amount of secondary lung injury in animal models. Experience of the use of HFO ventilation as a rescue therapy as well as several published controlled trials have shown improved outcomes and a decrease in the use of extracorporeal membrane oxygenation when it has been used in newborns.

  4. High frequency energy measurements

    International Nuclear Information System (INIS)

    Stotlar, S.C.

    1981-01-01

    High-frequency (> 100 MHz) energy measurements present special problems to the experimenter. Environment or available electronics often limit the applicability of a given detector type. The physical properties of many detectors are frequency dependent and in some cases, the physical effect employed can be frequency dependent. State-of-the-art measurements generally involve a detection scheme in association with high-speed electronics and a method of data recording. Events can be single or repetitive shot requiring real time, sampling, or digitizing data recording. Potential modification of the pulse by the detector and the associated electronics should not be overlooked. This presentation will review typical applications, methods of choosing a detector, and high-speed detectors. Special considerations and limitations of some applications and devices will be described

  5. Press forging of single crystal calcium fluoride

    International Nuclear Information System (INIS)

    Turk, R.R.

    1975-01-01

    Single crystals of high-purity calcium fluoride have been deformed uniaxially in an attempt to improve strength and resistance to cleavage, without impairing infrared transmission. Order of magnitude increases in strength, such as those found in forged KCl, have not been attained, but fine-grained polycrystalling material has been produced which is resistant to crystalline cleavage. Deformation rates of 10 -2 min -1 , reductions of 10 to 73 percent in height, and deformation temperatures of 550 to 1000 0 C have been used. Flexural strengths over 13,000 psi and grain sizes down to 5 μm have been obtained. Reduction of residual stress through heat treatment has been studied, and resultant techniques applied before, during, and after deformation. No increase in infrared absorption has been noted at the CO laser wavelength of 5.3 μm

  6. Colour centre-free perovskite single crystals

    International Nuclear Information System (INIS)

    Petit, Pierre-Olivier; Petit, Johan; Goldner, Philippe; Viana, Bruno

    2009-01-01

    Yb 3+ :YAlO 3 (YAP) and Yb 3+ :GdAlO 3 (GAP) are interesting 1 μm high-power laser media thanks to their very good thermo-mechanical properties. However, as-grown perovskite single crystals exhibit colour centres. Parasitic thermal load generated by these centres is deleterious for high-power laser action and can lead to crystal damages. Moreover these defects decrease Yb 3+ lifetime. They are related to trapped holes on the oxygen network. In the present work, several schemes to remove colour centres are presented. Attention is focused on cerium codoping, thermal annealing under reducing atmosphere and growth of non-stoechiometric compounds.

  7. Electronic structure of single crystal C60

    International Nuclear Information System (INIS)

    Wu, J.; Shen, Z.X.; Dessau, D.S.; Cao, R.; Marshall, D.S.; Pianetta, P.; Lindau, I.; Yang, X.; Terry, J.; King, D.M.; Wells, B.O.; Elloway, D.; Wendt, H.R.; Brown, C.A.; Hunziker, H.; Vries, M.S. de

    1992-01-01

    We report angle-resolved photoemission data from single crystals of C 60 cleaved in UHV. Unlike the other forms of pure carbon, the valence band spectrum of C 60 consists of many sharp features that can be essentially accounted for by the quantum chemical calculations describing individual molecules. This suggests that the electronic structure of solid C 60 is mainly determined by the bonding interactions within the individual molecules. We also observe remarkable intensity modulations of the photoemission features as a function of photon energy, suggesting strong final state effects. Finally, we address the issue of the band width of the HOMO state of C 60 . We assert that the width of the photoemission peak of C 60 does not reflect the intrinsic band width because it is broadened by the non 0-0 transitions via the Franck-Condon principle. Our view point provides a possible reconciliation between these photoemission data and those measured by other techniques. (orig.)

  8. Photoluminescent properties of single crystal diamond microneedles

    Science.gov (United States)

    Malykhin, Sergey A.; Ismagilov, Rinat R.; Tuyakova, Feruza T.; Obraztsova, Ekaterina A.; Fedotov, Pavel V.; Ermakova, Anna; Siyushev, Petr; Katamadze, Konstantin G.; Jelezko, Fedor; Rakovich, Yury P.; Obraztsov, Alexander N.

    2018-01-01

    Single crystal needle-like diamonds shaped as rectangular pyramids were produced by combination of chemical vapor deposition and selective oxidation with dimensions and geometrical characteristics depending on the deposition process parameters. Photoluminescence spectra and their dependencies on wavelength of excitation radiation reveal presence of nitrogen- and silicon-vacancy color centers in the diamond crystallites. Photoluminescence spectra, intensity mapping, and fluorescence lifetime imaging microscopy indicate that silicon-vacancy centers are concentrated at the crystallites apex while nitrogen-vacancy centers are distributed over the whole crystallite. Dependence of the photoluminescence on excitation radiation intensity demonstrates saturation and allows estimation of the color centers density. The combination of structural parameters, geometry and photoluminescent characteristics are prospective for advantageous applications of these diamond crystallites in quantum information processing and optical sensing.

  9. Hydrogen Annealing Of Single-Crystal Superalloys

    Science.gov (United States)

    Smialek, James L.; Schaeffer, John C.; Murphy, Wendy

    1995-01-01

    Annealing at temperature equal to or greater than 2,200 degrees F in atmosphere of hydrogen found to increase ability of single-crystal superalloys to resist oxidation when subsequently exposed to oxidizing atmospheres at temperatures almost as high. Supperalloys in question are principal constituents of hot-stage airfoils (blades) in aircraft and ground-based turbine engines; also used in other high-temperature applications like chemical-processing plants, coal-gasification plants, petrochemical refineries, and boilers. Hydrogen anneal provides resistance to oxidation without decreasing fatigue strength and without need for coating or reactive sulfur-gettering constituents. In comparison with coating, hydrogen annealing costs less. Benefits extend to stainless steels, nickel/chromium, and nickel-base alloys, subject to same scale-adhesion and oxidation-resistance considerations, except that scale is chromia instead of alumina.

  10. Chlorination of irradiated polyethylene single crystals

    International Nuclear Information System (INIS)

    Grimm, H.J.

    1978-01-01

    The chlorination of electron beam-irradiation polyethylene (PE) single crystals was studied for a range of irradiation doses, temperatures, and chlorine interaction times. The results presented show that PE chlorination was quite extensive, even in unirradiated PE single crystals at 25 0 C in the dark. Electron Spin Resonance (ESR, EPR) was used in this study in order to determine the alkyl radical concentration, decay constant, and diffusivity for (unchlorinated) specimens. An alkyl radical diffusivity D/sub a/ = 1.6 x 10 -17 cm 2 /sec at 25 0 C was estimated from ESR data and alkyl radical migration as one-dimensional unsteady-state diffusion process. In irradiated PE, chlorination occurred mainly via chain reactions which were initiated by the irradiation-produced free radicals. Chlorine content values were determined by X-ray Energy Spectroscopy (XES). It was found that the magnitude of the chlorine uptake increased with increasing dose, and decreased with decreasing temperature at constant dose. Otherwise the observed PE chlorination phenomena was quite similar for all of the doses and temperatures studied here, consisting of a two step mechanism: a fast uptake which occurred between time tCl 2 = 0 - 5 minutes and a slower, approximately first-order rate of uptake which occurred between times tCl 2 = 5 - 120 minutes. Chlorination was essentially complete by time tCl 2 = 120 minutes. The rapid uptake probably occurred in the amorphous surface zones where Cl 2 is relatively high and the second, slower step was probably attributable to Cl 2 diffusion into the crystalline regions and subsequent chlorination there. Inasmuch as the PE density decreases with increasing dose (for 1-600 Mrad), Cl 2 diffusivity was enhanced, resulting in higher chlorine uptake values at higher doses

  11. Solar cell structure incorporating a novel single crystal silicon material

    Science.gov (United States)

    Pankove, Jacques I.; Wu, Chung P.

    1983-01-01

    A novel hydrogen rich single crystal silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystal silicon without out-gassing the hydrogen. The new material can be used to fabricate semiconductor devices such as single crystal silicon solar cells with surface window regions having a greater band gap energy than that of single crystal silicon without hydrogen.

  12. RNi2B2C (R = Ho, Dy, Tb and Pr) single crystals grown by the cold copper crucible method

    Science.gov (United States)

    Durán, A.; Munoz, E.; Bernès, S.; Escudero, R.

    2000-08-01

    Single crystals of RNi2B2C (R = Ho, Dy, Tb, Pr) have been grown on cold copper crucibles in a high-frequency induction furnace. As a result, shiny metallic and brittle platelike single crystals were obtained. They were examined by x-ray and scanning electron microscopy with WDX/EDX for local composition analysis and show a very good crystallographic structure and compositions. Resistivity and dc magnetic measurements were performed to study superconducting and magnetic properties. Besides known electronic properties of the RNi2B2C family, we report for the first time results for PrNi2B2C single crystals successfully obtained by this technique.

  13. Production and several properties of single crystal austenitic stainless steels

    International Nuclear Information System (INIS)

    Okamoto, Kazutaka; Yoshinari, Akira; Kaneda, Junya; Aono, Yasuhisa; Kato, Takahiko

    1998-01-01

    The single crystal austenitic stainless steels Type 316L and 304L were grown in order to improve the resistance to stress corrosion cracking (SCC) using a unidirectional solidification method which can provide the large size single crystals. The mechanical properties and the chemical properties were examined. The orientation and temperature dependence of tensile properties of the single crystals were measured. The yield stress of the single crystal steels are lower than those of the conventional polycrystal steels because of the grain boundary strength cannot be expected in the single crystal steels. The tensile properties of the single crystal austenitic stainless steel Type 316L depend strongly on the orientation. The tensile strength in orientation are about 200 MPa higher than those in the and orientations. The microstructure of the single crystal consists of a mixture of the continuous γ-austenitic single crystal matrix and the δ-ferrite phase so that the effects of the γ/δ boundaries on the chemical properties were studied. The effects of the δ-ferrite phases and the γ/δ boundaries on the resistance to SCC were examined by the creviced bent beam test (CBB test). No crack is observed in all the CBB test specimens of the single crystals, even at the γ/δ boundaries. The behavior of the radiation induced segregation (RIS) at the γ/δ boundaries in the single crystal austenitic stainless steel Type 316L was evaluated by the electron irradiation test in the high voltage electron microscope (HVEM). The depletion of oversized solute chromium at the γ/δ boundary in the single crystal austenitic stainless steel Type 316L is remarkably lower than that at the grain boundary in the polycrystalline-type 316L. (author)

  14. Thermomechanical fatigue in single crystal superalloys

    Directory of Open Access Journals (Sweden)

    Moverare Johan J.

    2014-01-01

    Full Text Available Thermomechanical fatigue (TMF is a mechanism of deformation which is growing in importance due to the efficiency of modern cooling systems and the manner in which turbines and associated turbomachinery are now being operated. Unfortunately, at the present time, relatively little research has been carried out particularly on TMF of single crystal (SX superalloys, probably because the testing is significantly more challenging than the more standard creep and low cycle fatigue (LCF cases; the scarcity and relative expense of the material are additional factors. In this paper, the authors summarise their experiences on the TMF testing of SX superalloys, built up over several years. Emphasis is placed upon describing: (i the nature of the testing method, the challenges involved in ensuring that an given testing methodology is representative of engine conditions (ii the behaviour of a typical Re-containing second generation alloy such as CMSX-4, and its differing performance in out-of-phase/in-phase loading and crystallographic orientation and (iii the differences in behaviour displayed by the Re-containing alloys and new Re-free variants such as STAL15. It is demonstrated that the Re-containing superalloys are prone to different degradation mechanisms involving for example microtwinning, TCP precipitation and recrystallisation. The performance of STAL15 is not too inferior to alloys such as CMSX-4, suggesting that creep resistance itself does not correlate strongly with resistance to TMF. The implications for alloy design efforts are discussed.

  15. Cyclic deformation of Nb single crystals

    International Nuclear Information System (INIS)

    Guiu, F.; Anglada, M.

    1982-01-01

    The temperature and strain-rate dependence of the cyclic flow stress of Nb single crystals with two different axial orientations has been studied at temperatures between 175 and 350 K. This dependence is found to be independent of the crystal orientation when the internal stresses are taken into account, and the results are discussed in terms of the theory of thermally activated dislocation glide. A transition temperature can be identified at about 250 K which separates two regions with different thermally activated deformation behaviour. Above this transition temperature the strain rate can be described by a stress power law, and the activation energy can be represented by a logarithmic function of the stress, as in Escaig's model of screw dislocation mobility. In the temperature range 170 to 250 K the results are also in agreement with the more recent model proposed by Seeger. The large experimental errors inherent in the values of activation enthalpy at low stresses are emphasized and taken into account in the discussion of the results. It is suggested that either impurity-kink interactions or the flexibility of the screw dislocations are responsible for the trend towards the high values of activation enthalpy measured at the low stresses. (author)

  16. Irradiation creep in zirconium single crystals

    International Nuclear Information System (INIS)

    MacEwen, S.R.; Fidleris, V.

    1976-07-01

    Two identical single crystals of crystal bar zirconium have been creep tested in reactor. Both specimens were preirradiated at low stress to a dose of about 4 x 10 23 n/m 2 (E > 1 MeV), and were then loaded to 25 MPa. The first specimen was loaded with reactor at full power, the second during a shutdown. The loading strain for both crystals was more than an order of magnitude smaller than that observed when an identical unirradiated crystal was loaded to the same stress. Both crystals exhibited periods of primary creep, after which their creep rates reached nearly constant values when the reactor was at power. During shutdowns the creep rates decreased rapidly with time. Electron microscopy revealed that the irradiation damage consisted of prismatic dislocation loops, approximately 13.5 nm in diameter. Cleared channels, identified as lying on (1010) planes, were also observed. The results are discussed in terms of the current theories for flux enhanced creep in the light of the microstructures observed. (author)

  17. Spall response of single-crystal copper

    Science.gov (United States)

    Turley, W. D.; Fensin, S. J.; Hixson, R. S.; Jones, D. R.; La Lone, B. M.; Stevens, G. D.; Thomas, S. A.; Veeser, L. R.

    2018-02-01

    We performed a series of systematic spall experiments on single-crystal copper in an effort to determine and isolate the effects of crystal orientation, peak stress, and unloading strain rate on the tensile spall strength. Strain rates ranging from 0.62 to 2.2 × 106 s-1 and peak shock stresses in the 5-14 GPa range, with one additional experiment near 50 GPa, were explored as part of this work. Gun-driven impactors, called flyer plates, generated flat top shocks followed by spall. This work highlights the effect of crystal anisotropy on the spall strength by showing that the spall strength decreases in the following order: [100], [110], and [111]. Over the range of stresses and strain rates explored, the spall strength of [100] copper depends strongly on both the strain rate and shock stress. Except at the very highest shock stress, the results for the [100] orientation show linear relationships between the spall strength and both the applied compressive stress and the strain rate. In addition, hydrodynamic computer code simulations of the spall experiments were performed to calculate the relationship between the strain rate near the spall plane in the target and the rate of free surface velocity release during the pullback. As expected, strain rates at the spall plane are much higher than the strain rates estimated from the free surface velocity release rate. We have begun soft recovery experiments and molecular dynamics calculations to understand the unusual recompression observed in the spall signature for [100] crystals.

  18. Magnetoresistance in terbium and holmium single crystals

    International Nuclear Information System (INIS)

    Singh, R.L.; Jericho, M.H.; Geldart, D.J.W.

    1976-01-01

    The longitudinal magnetoresistance of single crystals of terbium and holmium metals in their low-temperature ferromagnetic phase has been investigated in magnetic fields up to 80 kOe. Typical magnetoresistance isotherms exhibit a minimum which increases in depth and moves to higher fields as the temperature increases. The magnetoresistance around 1 0 K, where inelastic scattering is negligible, has been interpreted as the sum of a negative contribution due to changes in the domain structure and a positive contribution due to normal magnetoresistance. At higher temperatures, a phenomenological approach has been developed to extract the inelastic phonon and spin-wave components from the total measured magnetoresistance. In the temperature range 4--20 0 K (approximately), the phonon resistivity varies as T 3 . 7 for all samples. Approximate upper and lower bounds have been placed on the spin-wave resistivity which is also found to be described by a simple power law in this temperature range. The implications of this result for theoretical treatments of spin-wave resistivity due to s-f exchange interactions are considered. It is concluded that the role played by the magnon energy gap is far less transparent than previously suggested

  19. Photoacoustic wave propagating from normal into superconductive phases in Pb single crystals

    OpenAIRE

    Iwanaga, Masanobu

    2005-01-01

    Photoacoustic (PA) wave has been examined in a superconductor of the first kind, Pb single crystal. The PA wave is induced by optical excitation of electronic state and propagates from normal into superconductive phases below T$_{\\rm C}$. It is clearly shown by wavelet analysis that the measured PA wave includes two different components. The high-frequency component is MHz-ultrasonic and the relative low-frequency one is induced by thermal wave. The latter is observed in a similar manner irre...

  20. Azeotropic binary solvent mixtures for preparation of organic single crystals

    NARCIS (Netherlands)

    Li, X.; Kjellander, B.K.C.; Anthony, J.E.; Bastiaansen, C.W.M.; Broer, D.J.; Gelinck, G.H.

    2009-01-01

    Here, a new approach is introduced to prepare large single crystals of π-conjugated organic molecules from solution. Utilizing the concept of azeotropism, single crystals of tri-isopropylsilylethynyl pentacene (TIPS-PEN) with dimensions up to millimeters are facilely self-assembled from homogeneous

  1. Azeotropic binary solvent mixtures for preparation of organic single crystals

    NARCIS (Netherlands)

    Li, X.; Kjellander, B.K.C.; Anthony, J.E.; Bastiaansen, C.W.M.; Broer, D.J.; Gelinck, G.H.

    2009-01-01

    Here, a new approach is introduced to prepare large single crystals of p-conjugated organic molecules from solution. Utilizing the concept of azeotropism, single crystals of tri-isopropylsilylethynyl pentacene (TIPS-PEN) with dimensions up to millimeters are facilely self-assembled from homogeneous

  2. Excitonic polaritons of zinc diarsenide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Syrbu, N.N., E-mail: sirbunn@yahoo.com [Technical University of Moldova, Chisinau, Republic of Moldova (Moldova, Republic of); Stamov, I.G. [T.G. Shevchenko State University of Pridnestrovie, Tiraspol, Republic of Moldova (Moldova, Republic of); Zalamai, V.V. [Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau, Republic of Moldova (Moldova, Republic of); Dorogan, A. [Technical University of Moldova, Chisinau, Republic of Moldova (Moldova, Republic of)

    2017-02-01

    Excitonic polaritons of ZnAs{sub 2} single crystals had been investigated. Parameters of singlet excitons with Г{sub 2}¯(z) symmetry and orthoexcitons 2Г{sub 1}¯(y)+Г{sub 2}¯(x) had been determined. Spectral dependencies of ordinary and extraordinary dispersion of refractive index had been calculated using interferential reflection and transmittance spectra. It was shown, that A excitonic series were due to hole (V{sub 1}) and electron (C{sub 1}) bands. The values of effective masses of electrons (m{sub c}{sup *}=0.10 m{sub 0}) and holes (m{sub v1}{sup *}=0.89 m{sub 0}) had been estimated. It was revealed that the hole mass m{sub v1}{sup *} changes from 1.03 m{sub 0} to 0.55 m{sub 0} at temperature increasing from 10 K up to 230 K and that the electron mass m{sub c}{sup *} does not depend on temperature. The integral absorption A (eV cm{sup −1}) of the states n=1, 2 and 3 of Г{sub 2}¯(z) excitons depends on the A{sub n}≈n{sup −3} equality, which it is characteristic for S-type excitonic functions. Temperature dependences of the integral absorption of ground states for Г{sub 2}¯(z) and Г{sub 2}¯(Ñ…) excitons differ. The ground states of B and C excitons formed by V{sub 3} – C{sub 1} and V{sub 4} – C{sub 1} bands and its parameters had been determined.

  3. Reshock and release response of aluminum single crystal

    International Nuclear Information System (INIS)

    Huang, H.; Asay, J. R.

    2007-01-01

    Reshock and release experiments were performed on single crystal aluminum along three orientations and on polycrystalline 1050 aluminum with 50 μm grain size at shock stresses of 13 and 21 GPa to investigate the mechanisms for previously observed quasielastic recompression behavior. Particle velocity profiles obtained during reshocking both single crystals and polycrystalline aluminum from initial shock stresses of 13-21 GPa show similar quasielastic recompression behavior. Quasielastic release response is also observed in all single crystals, but the magnitude of the effect is crystal orientation dependent, with [111] and [110] exhibiting more ideal elastic-plastic release for unloading from the shocked state than for the [100] orientation and polycrystalline aluminum. The quasielastic response of 1050 aluminum is intermediate to that of the [100] and [111] orientations. Comparison of the wave profiles obtained for both unloading and reloading of single crystals and polycrystalline 1050 aluminum from shocked states suggests that the observed quasielastic response of polycrystalline aluminum results from the averaging response of single crystals for shock propagation along different orientations, and that the response of 1050 aluminum with large grain boundaries is not significantly different from the results obtained on single crystal aluminum. The yield strength of the single crystals and 1050 aluminum is found to increase with shock stress, which is consistent with previous results [H. Huang and I. R. Asay, J. Appl. Phys. 98, 033524 (2005)

  4. Ultra-large single crystals by abnormal grain growth.

    Science.gov (United States)

    Kusama, Tomoe; Omori, Toshihiro; Saito, Takashi; Kise, Sumio; Tanaka, Toyonobu; Araki, Yoshikazu; Kainuma, Ryosuke

    2017-08-25

    Producing a single crystal is expensive because of low mass productivity. Therefore, many metallic materials are being used in polycrystalline form, even though material properties are superior in a single crystal. Here we show that an extraordinarily large Cu-Al-Mn single crystal can be obtained by abnormal grain growth (AGG) induced by simple heat treatment with high mass productivity. In AGG, the sub-boundary energy introduced by cyclic heat treatment (CHT) is dominant in the driving pressure, and the grain boundary migration rate is accelerated by repeating the low-temperature CHT due to the increase of the sub-boundary energy. With such treatment, fabrication of single crystal bars 70 cm in length is achieved. This result ensures that the range of applications of shape memory alloys will spread beyond small-sized devices to large-scale components and may enable new applications of single crystals in other metallic and ceramics materials having similar microstructural features.Growing large single crystals cheaply and reliably for structural applications remains challenging. Here, the authors combine accelerated abnormal grain growth and cyclic heat treatments to grow a superelastic shape memory alloy single crystal to 70 cm.

  5. Single-crystal growth of ceria-based materials

    International Nuclear Information System (INIS)

    Ulbrich, Gregor

    2015-01-01

    In this work it could be shown that Skull-Melting is a suitable method for growing ceria single crystals. Twenty different ceria-based single crystals could be manufactured. It was possible to dope ceria single crystals with Gd, Sm, Y, Zr, Ti, Ta, and Pr in different concentrations. Also co-doping with the named metals was realized. However, there remain some problems for growing ceria-based single crystals by Skull-Melting. As ignition metal zirconium was used because no ceria-based material works well. For that reason all single crystals show small zirconium contamination. Another problem is the formation of oxygen by the heat-induced reduction of ceria during the melting process. Because of that the skull of sintered material is often destroyed by gas pressure. This problem had to be solved individually for every single crystal. The obtained single crystals were characterized using different methods. To ensure the single crystal character the y were examined by Laue diffraction. All manufactured crystals are single crystals. Also powder diffraction patterns of the milled and oxidized samples were measured. For the determination of symmetry and metric the structural parameters were analyzed by the Rietveld method. All synthesized materials crystallize in space group Fm-3m known from calcium fluoride. The cubic lattice parameter a was determined for all crystals. In the case of series with different cerium and zirconium concentrations a linear correlation between cerium content and cubic lattice parameter was detected. The elemental composition was determined by WDX. All crystals show a homogeneous elemental distribution. The oxygen content was calculated because the WDX method isn't useful for determination.

  6. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... transducer sends out high-frequency sound waves (that the human ear cannot hear) into the body and then ... ultrasound , there are no known harmful effects on humans. top of page What are the limitations of Pelvic Ultrasound Imaging? Ultrasound waves are ...

  7. Spherical Nb single crystals containerlessly grown by electrostatic levitation

    International Nuclear Information System (INIS)

    Sung, Y.S.; Takeya, H.; Hirata, K.; Togano, K.

    2003-01-01

    Spherical Nb (T m =2750 K) single crystals were grown via containerless electrostatic levitation (ESL). Samples became spherical at melting in levitation and undercooled typically 300-450 K prior to nucleation. As-processed samples were still spherical without any macroscopic shape change by solidification showing a uniform dendritic surface morphology. Crystallographic {111} planes exposed in equilateral triangular shapes on the surface by preferential macroetching and spotty back-reflection Laue patterns confirm the single crystal nature of the ESL-processed Nb samples. No hysteresis in magnetization between zero field and field cooling also implies a clean defect-free condition of the spherical Nb single crystals

  8. Electroerosion impulse effect on W single crystal structure

    International Nuclear Information System (INIS)

    Aleshina, S.A.; Khvostikova, V.D.; Zolotykh, B.N.; Marchuk, A.I.

    1977-01-01

    The mechanism has been studied of brittle failure of single crystal tungsten on planes of crystallographic orientations [100], [110]; [111] in the process of electro-erosion machining by pulses of energies ranging from 1200 to 5000 μJ and of duration of 1 μs. It is shown that the electro-erosion machining of single crystal tungsten is characterized by the formation of a defect layer with a grid of microcracks which lie at a depth of approximately 80 μm. The appearance and the distribution of cracks on the surface of single crystals depends on the crystallogrpahic orientation

  9. Dielectric and baric characteristics of TlS single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Mustafaeva, S.N., E-mail: solmust@gmail.com [Institute of Physics, ANAS, G. Javid prosp. 33, Az 1143 Baku (Azerbaijan); Asadov, M.M. [Institute of Chemical Problems, ANAS, G. Javid prosp. 29, Az 1143 Baku (Azerbaijan); Ismailov, A.A. [Institute of Physics, ANAS, G. Javid prosp. 33, Az 1143 Baku (Azerbaijan)

    2014-11-15

    The investigation of the frequency dependences of the dielectric coefficients and ac-conductivity of the TlS single crystals made it possible to elucidate the nature of dielectric loss and the charge transfer mechanism. Moreover, we evaluated the density and energy spread of localized states near the Fermi level, the average hopping time and the average hopping length. It was shown that the dc-conductivity of the TlS single crystals can be controlled by varying the hydrostatic pressure. This has opened up possibilities for using TlS single crystals as active elements of pressure detectors.

  10. Growth of Ga2O3 single crystal

    OpenAIRE

    龍見, 雅美; 小池, 裕之; 市木, 伸明; Tatsumi, Masami; Koike, Hiroyuki; Ichiki, Nobuaki

    2010-01-01

    Single crystals of β-Ga2O3 for substrates of GaN LED were grown by Floating Zone(FZ) method. The transparent single crystals of 5-6 mm in diameter were reproducibly obtained by applying necking procedure and the preferential growth direction was . Many cracks were induced along the cleavage plane of (100) in slicing process, which is related to thermal stress and the growth direction. However, this preliminary growth experiments suggested that β-Ga2O3 single crystal is promising as a substrat...

  11. Ultrasound

    Science.gov (United States)

    Ultrasound is a useful procedure for monitoring the baby's development in the uterus. Ultrasound uses inaudible sound waves to produce a two-dimensional image of the baby while inside the mother's ...

  12. Investigations of morphological changes during annealing of polyethylene single crystals

    NARCIS (Netherlands)

    Tian, M.; Loos, J.

    2001-01-01

    The morphological evolution of isolated individual single crystals deposited on solid substrates was investigated during annealing experiments using in situ and ex situ atomic force microscopy techniques. The crystal morphology changed during annealing at temperatures slightly above the original

  13. Single Crystals of Organolead Halide Perovskites: Growth, Characterization, and Applications

    KAUST Repository

    Peng, Wei

    2017-01-01

    Despite their outstanding charge transport characteristics, organolead halide perovskite single crystals grown by hitherto reported crystallization methods are not suitable for most optoelectronic devices due to their small aspect ratios

  14. High-quality single crystals for neutron experiments

    Indian Academy of Sciences (India)

    studies and our collaborative research projects with other UK and international groups will be discussed. Keywords. Crystal growth; floating zone method; neutron scattering. ... of single crystals of new materials is a highly competitive business.

  15. Single crystal magnetisation of UFe10Mo2

    International Nuclear Information System (INIS)

    Estrela, P.; Godinho, M.; Spirlet, J.C.

    1997-01-01

    Magnetisation measurements have been performed for different directions on aligned UFe 10 Mo 2 single crystals. The results confirm a basal plane anisotropy and suggest an important magnetic contribution from the uranium sublattice. (orig.)

  16. Distributed Feedback Laser Based on Single Crystal Perovskite

    Science.gov (United States)

    Sun, Shang; Xiao, Shumin; Song, Qinghai

    2017-06-01

    We demonstrate a single crystal perovskite based, with grating-structured photoresist on top, highly polarized distributed feedback laser. A lower laser threshold than the Fabry-Perot mode lasers from the same single crystal CH3NH3PbBr3 microplate was obtained. Single crystal CH3NH3PbBr3 microplates was synthesized with one-step solution processed precipitation method. Once the photoresist on top of the microplate was patterned with electron beam, the device was realized. This one-step fabrication process utilized the advantage of single crystal to the greatest extend. The ultra-low defect density in single crystalline microplate offer an opportunity for lower threshold lasing action compare with poly-crystal perovskite films. In the experiment, the lasing action based on the distributed feedback grating design was found with lower threshold and higher intensity than the Fabry-Perot mode lasers supported by the flat facets of the same microplate.

  17. Growth and characterization of nonlinear optical single crystals: bis ...

    Indian Academy of Sciences (India)

    Administrator

    molecules have received great attention for NLO applica- tions. However ... Figure 3. Single crystals of bis(cyclohexylammonium) terephthalate (crystal a) and cyclohexylammo- .... from ground state to higher energy states.17 Optical window ...

  18. Prospects for the synthesis of large single-crystal diamonds

    International Nuclear Information System (INIS)

    Khmelnitskiy, R A

    2015-01-01

    The unique properties of diamond have stimulated the study of and search for its applications in many fields, including optics, optoelectronics, electronics, biology, and electrochemistry. Whereas chemical vapor deposition allows the growth of polycrystalline diamond plates more than 200 mm in diameter, most current diamond application technologies require large-size (25 mm and more) single-crystal diamond substrates or films suitable for the photolithography process. This is quite a challenge, because the largest diamond crystals currently available are 10 mm or less in size. This review examines three promising approaches to fabricating large-size diamond single crystals: growing large-size single crystals, the deposition of heteroepitaxial diamond films on single-crystal substrates, and the preparation of composite diamond substrates. (reviews of topical problems)

  19. How far could energy transport within a single crystal

    Science.gov (United States)

    Zhang, Yifan; Che, Yanke; Zhao, Jincai; Steve, Granick

    Efficient transport of excitation energy over long distance is a vital process in light-harvesting systems and molecular electronics. The energy transfer distance is largely restricted by the probability decay of the exciton when hopping within a single crystal. Here, we fabricated an organic single crystal within which the energy could transfer more than 100 μm, a distance only limited by its crystal size. Our system could be regarded as a ``Sprint relay game'' performing on different surface of tracks. Photoinduced ``athletes'' (excitons) triggered intermolecular ``domino'' reaction to propagate energy for a long distance. In addition, athletes with the same ability runs much farther on smooth ideal track (single crystal assembled from merely van der Waals interaction) than bumpy mud track (crystal assembled from combination of pi-stacking, hydrogen bond and van der Waals interactions). Our finding presents new physics on enhancing energy transfer length within a single crystal. Current Affiliation: Institute for Basic Science, South Korea.

  20. Nanomechanical resonant structures in single-crystal diamond

    OpenAIRE

    Burek, Michael J.; Ramos, Daniel; Patel, Parth; Frank, Ian W.; Lončar, Marko

    2013-01-01

    With its host of outstanding material properties, single-crystal diamond is an attractive material for nanomechanical systems. Here, the mechanical resonance characteristics of freestanding, single-crystal diamond nanobeams fabricated by an angled-etching methodology are reported. Resonance frequencies displayed evidence of significant compressive stress in doubly clamped diamond nanobeams, while cantilever resonance modes followed the expected inverse-length-squared trend. Q-factors on the o...

  1. Czochralski method of growing single crystals. State-of-art

    International Nuclear Information System (INIS)

    Bukowski, A.; Zabierowski, P.

    1999-01-01

    Modern Czochralski method of single crystal growing has been described. The example of Czochralski process is given. The advantages that caused the rapid progress of the method have been presented. The method limitations that motivated the further research and new solutions are also presented. As the example two different ways of the technique development has been described: silicon single crystals growth in the magnetic field; continuous liquid feed of silicon crystals growth. (author)

  2. LASER PROCESSING ON SINGLE CRYSTALS BY UV PULSE LASER

    OpenAIRE

    龍見, 雅美; 佐々木, 徹; 高山, 恭宜

    2009-01-01

    Laser processing by using UV pulsed laser was carried out on single crystal such as sapphire and diamond in order to understand the fundamental laser processing on single crystal. The absorption edges of diamond and sapphire are longer and shorter than the wave length of UV laser, respectively. The processed regions by laser with near threshold power of processing show quite different state in each crystal.

  3. Geographies of High Frequency Trading

    DEFF Research Database (Denmark)

    Grindsted, Thomas Skou

    2016-01-01

    This paper investigates the geographies of high frequency trading. Today shares shift hands within micro seconds, giving rise to a form of financial geographies termed algorithmic capitalism. This notion refers to the different spatio-temporalities produced by high frequency trading, under...... the valuation of time. As high frequency trading accelerates financial markets, the paper examines the spatio-temporalities of automated trading by the ways in which the speed of knowledge exploitation in financial markets is not only of interest, but also the expansion between different temporalities....... The paper demonstrates how the intensification of time-space compression produces radical new dynamics in the financial market and develops information rent in HFT as convertible to a time rent and a spatio-temporal rent. The final section discusses whether high frequency trading only responds to crises...

  4. Development of n- and p-type Doped Perovskite Single Crystals Using Solid-State Single Crystal Growth (SSCG) Technique

    Science.gov (United States)

    2017-10-09

    for AGG should be minimal. For this purpose, the seeds for AGG may also be provided externally. This process is called the solid-state single...bonding process . Figure 31 shows (a) the growth of one large single crystal from one small single crystal seed as well as (b) the growth of one...one bi-crystal seed : One large bi-crystal can be grown from one small bi-crystal by SSCG process . Fig. 32. Diffusion bonding process for

  5. Prostate Ultrasound

    Medline Plus

    Full Text Available ... probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ... the transducer (the device placed on the patient's skin to send and receive the returning sound waves), ...

  6. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ... the transducer (the device placed on the patient's skin to send and receive the returning sound waves), ...

  7. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... use different transducers (with different capabilities) during a single exam. The transducer sends out high-frequency sound ... modality for the diagnosis and monitoring of pregnant women and their unborn babies. Ultrasound provides real-time ...

  8. Prostate Ultrasound

    Medline Plus

    Full Text Available ... sends out high-frequency sound waves (that the human ear cannot hear) into the body and then ... ultrasound , there are no known harmful effects on humans. top of page What are the limitations of ...

  9. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... sends out high-frequency sound waves (that the human ear cannot hear) into the body and then ... ultrasound , there are no known harmful effects on humans. top of page What are the limitations of ...

  10. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... insertion. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... the transducer is pressed against the skin, it directs small pulses of inaudible, high-frequency sound waves ...

  11. Prostate Ultrasound

    Medline Plus

    Full Text Available ... gel. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... the transducer is pressed against the skin, it directs small pulses of inaudible, high-frequency sound waves ...

  12. High-frequency Trader Subjectivity

    DEFF Research Database (Denmark)

    Borch, Christian; Lange, Ann-Christina

    2017-01-01

    In this article, we examine the recent shift in financial markets toward high-frequency trading (HFT). This turn is being legitimized with reference to how algorithms are allegedly more rational and efficient than human traders, and less prone to emotionally motivated decisions. We argue......-techniques of the ideal high-frequency trader. We demonstrate that these traders face the challenge of avoiding emotional interference in their algorithms and that they deploy a set of disciplinary self-techniques to curb the importance of emotional attachment....

  13. Binaural beats at high frequencies.

    Science.gov (United States)

    McFadden, D; Pasanen, E G

    1975-10-24

    Binaural beats have long been believed to be audible only at low frequencies, but an interaction reminiscent of a binaural beat can sometimes be heard when different two-tone complexes of high frequency are presented to the two ears. The primary requirement is that the frequency separation in the complex at one ear be slightly different from that in the other--that is, that there be a small interaural difference in the envelope periodicities. This finding is in accord with other recent demonstrations that the auditory system is not deaf to interaural time differences at high frequencies.

  14. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the probe through ... a single exam. The transducer sends out high-frequency sound waves (that the human ear cannot hear) ...

  15. Single Crystal Synthesis and STM Studies of High Temperature Superconductors

    Science.gov (United States)

    Barrientos, Alfonso

    1997-01-01

    This is a final report for the work initiated in September of 1994 under the grant NAG8-1085 - NASA/OMU, on the fabrication of bulk and single crystal synthesis, specific heat measuring and STM studies of high temperature superconductors. Efforts were made to fabricate bulk and single crystals of mercury based superconducting material. A systematic thermal analysis on the precursors for the corresponding oxides and carbonates were carried out to synthesized bulk samples. Bulk material was used as seed in an attempt to grow single crystals by a two-step self flux process. On the other hand bulk samples were characterized by x-ray diffraction, electrical resistivity and magnetic susceptibility, We studied the specific heat behavior in the range from 80 to 300 K. Some preliminary attempts were made to study the atomic morphology of our samples. As part of our efforts we built an ac susceptibility apparatus for measuring the transition temperature of our sintered samples.

  16. Mesoporous Zeolite Single Crystals for Catalytic Hydrocarbon Conversion

    DEFF Research Database (Denmark)

    Schmidt, I.; Christensen, Claus H.; Kustova, Marina

    2005-01-01

    Recently, mesoporous zeolite single crystals were discovered. They constitute a novel family of materials that features a combined micropore and mesopore architecture within each individual crystal. Here, we briefly summarize recent catalytic results from cracking and isomerization of alkalies......, alkylation of aromatics and present new results on isomerization of aromatics. Specifically, the shape-selective isomerization of meta-xylenc into para-xylene and ortho-xylene is studied. In all these reactions, rnesoporous zeolite single crystals prove to be unique catalysts since they provide easy...... transport to and from active sites and at the same time maintain the shape-selectivity required. Thus, all these results support the idea that the beneficial effect of the mesopores system in the mesoporous zeolite single crystals call be solely attributed to enhanced mass transport....

  17. Mechanical properties of hydroxyapatite single crystals from nanoindentation data

    Science.gov (United States)

    Zamiri, A.; De, S.

    2011-01-01

    In this paper we compute elasto-plastic properties of hydroxyapatite single crystals from nanindentation data using a two-step algorithm. In the first step the yield stress is obtained using hardness and Young’s modulus data, followed by the computation of the flow parameters. The computational approach is first validated with data from existing literature. It is observed that hydroxyapatite single crystals exhibit anisotropic mechanical response with a lower yield stress along the [1010] crystallographic direction compared to the [0001] direction. Both work hardening rate and work hardening exponent are found to be higher for indentation along the [0001] crystallographic direction. The stress-strain curves extracted here could be used for developing constitutive models for hydroxyapatite single crystals. PMID:21262492

  18. Light emission from organic single crystals operated by electrolyte doping

    Science.gov (United States)

    Matsuki, Keiichiro; Sakanoue, Tomo; Yomogida, Yohei; Hotta, Shu; Takenobu, Taishi

    2018-03-01

    Light-emitting devices based on electrolytes, such as light-emitting electrochemical cells (LECs) and electric double-layer transistors (EDLTs), are solution-processable devices with a very simple structure. Therefore, it is necessary to apply this device structure into highly fluorescent organic materials for future printed applications. However, owing to compatibility problems between electrolytes and organic crystals, electrolyte-based single-crystal light-emitting devices have not yet been demonstrated. Here, we report on light-emitting devices based on organic single crystals and electrolytes. As the fluorescent materials, α,ω-bis(biphenylyl)terthiophene (BP3T) and 5,6,11,12-tetraphenylnaphthacene (rubrene) single crystals were selected. Using ionic liquids as electrolytes, we observed clear light emission from BP3T LECs and rubrene EDLTs.

  19. Metal Halide Perovskite Single Crystals: From Growth Process to Application

    Directory of Open Access Journals (Sweden)

    Shuigen Li

    2018-05-01

    Full Text Available As a strong competitor in the field of optoelectronic applications, organic-inorganic metal hybrid perovskites have been paid much attention because of their superior characteristics, which include broad absorption from visible to near-infrared region, tunable optical and electronic properties, high charge mobility, long exciton diffusion length and carrier recombination lifetime, etc. It is noted that perovskite single crystals show remarkably low trap-state densities and long carrier diffusion lengths, which are even comparable with the best photovoltaic-quality silicon, and thus are expected to provide better optoelectronic performance. This paper reviews the recent development of crystal growth in single-, mixed-organic-cation and fully inorganic halide perovskite single crystals, in particular the solution approach. Furthermore, the application of metal hybrid perovskite single crystals and future perspectives are also highlighted.

  20. Principles of crystallization, and methods of single crystal growth

    International Nuclear Information System (INIS)

    Chacra, T.

    2010-01-01

    Most of single crystals (monocrystals), have distinguished optical, electrical, or magnetic properties, which make from single crystals, key elements in most of technical modern devices, as they may be used as lenses, Prisms, or grating sin optical devises, or Filters in X-Ray and spectrographic devices, or conductors and semiconductors in electronic, and computer industries. Furthermore, Single crystals are used in transducer devices. Moreover, they are indispensable elements in Laser and Maser emission technology.Crystal Growth Technology (CGT), has started, and developed in the international Universities and scientific institutions, aiming at some of single crystals, which may have significant properties and industrial applications, that can attract the attention of international crystal growth centers, to adopt the industrial production and marketing of such crystals. Unfortunately, Arab universities generally, and Syrian universities specifically, do not give even the minimum interest, to this field of Science.The purpose of this work is to attract the attention of Crystallographers, Physicists and Chemists in the Arab universities and research centers to the importance of crystal growth, and to work on, in the first stage to establish simple, uncomplicated laboratories for the growth of single crystal. Such laboratories can be supplied with equipment, which are partly available or can be manufactured in the local market. Many references (Articles, Papers, Diagrams, etc..) has been studied, to conclude the most important theoretical principles of Phase transitions,especially of crystallization. The conclusions of this study, are summarized in three Principles; Thermodynamic-, Morphologic-, and Kinetic-Principles. The study is completed by a brief description of the main single crystal growth methods with sketches, of equipment used in each method, which can be considered as primary designs for the equipment, of a new crystal growth laboratory. (author)

  1. Photoluminescence properties of boron doped InSe single crystals

    International Nuclear Information System (INIS)

    Ertap, H.; Bacıoğlu, A.; Karabulut, M.

    2015-01-01

    Undoped and boron doped InSe single crystals were grown by Bridgman–Stockbarger technique. The PL properties of undoped, 0.1% and 0.5% boron doped InSe single crystals have been investigated at different temperatures. PL measurements revealed four emission bands labeled as A, B, C and D in all the single crystals studied. These emission bands were associated with the radiative recombination of direct free excitons (n=1), impurity-band transitions, donor–acceptor recombinations and structural defect related band (impurity atoms, defects, defect complexes, impurity-vacancy complex etc.), respectively. The direct free exciton (A) bands of undoped, 0.1% and 0.5% boron doped InSe single crystals were observed at 1.337 eV, 1.335 eV and 1.330 eV in the PL spectra measured at 12 K, respectively. Energy positions and PL intensities of the emission bands varied with boron addition. The FWHM of direct free exciton band increases while the FWHM of the D emission band decreases with boron doping. Band gap energies of undoped and boron doped InSe single crystals were calculated from the PL measurements. It was found that the band gap energies of InSe single crystals decreased with increasing boron content. - Highlights: • PL spectra of InSe crystals have been studied as a function of temperature. • Four emission bands were observed in the PL spectra at low temperatures. • PL intensity and position of free exciton band vary with doping and temperature. • Temperature dependences of the bands observed in the PL spectra were analyzed

  2. Hydrothermal growth of PbSO4 (Anglesite) single crystal

    International Nuclear Information System (INIS)

    Kikuta, Ko-ichi; Yoneta, Yasuhito; Yogo, Toshinobu; Hirano, Shin-ichi

    1994-01-01

    Hydrothermal growth of single crystals of PbSO 4 , which is known as a natural mineral called anglesite, was investigated. Lead nitrate and nitric acid solutions were found to be useful for the growth of angle-site on the basis of the experimental results on the dissolution behavior. Relatively large euhedral single crystals bound by {210} and {101} planes were successfully grown in 1.5 mol/kg Pb(NO 3 ) 2 at 400degC and 100 MPa. Optical characterization revealed that the grown anglesite crystals can be useful for scintillators material. (author)

  3. Observation of plastic deformation in freestanding single crystal Au nanowires

    International Nuclear Information System (INIS)

    Lee, Dongyun; Zhao Manhong; Wei Xiaoding; Chen Xi; Jun, Seong C.; Hone, James; Herbert, Erik G.; Oliver, Warren C.; Kysar, Jeffrey W.

    2006-01-01

    Freestanding single crystal nanowires of gold were fabricated from a single grain of pure gold leaf by standard lithographic techniques, with center section of 7 μm in length, 250 nm in width, and 100 nm in thickness. The ends remained anchored to a silicon substrate. The specimens were deflected via nanoindenter until plastic deformation was achieved. Nonlocalized and localized plastic deformations were observed. The resulting force-displacement curves were simulated using continuum single crystal plasticity. A set of material parameters which closely reproduce the experimental results suggests that the initial critical resolved shear stress was as high as 135 MPa

  4. Welding and joining of single crystals of BCC refractory metals

    International Nuclear Information System (INIS)

    Hiraoka, Yutaka; Fujii, Tadayuki

    1989-01-01

    Welding and joining is one of key technologies for the wider utilizations of a material. In the present work, the applicability of welding and joining for a single crystal of BCC refractory metal was investigated. Electron-beam welding and tungsten-inert-gas welding by a melt-run technique, and high-temperature brazing by using brazing metals such as Mo-40%Ru alloy, vanadium or platinum were conducted for molybdenum single crystal which had been prepared by means of secondary recrystallization. 12 refs.,12 figs., 2 tabs. (Author)

  5. Cryogenic motion performances of a piezoelectric single crystal micromotor

    Science.gov (United States)

    Li, Xiaotian; Wu, Yuting; Chen, Zhijiang; Wei, Xiaoyong; Luo, Haosu; Dong, Shuxiang

    2014-04-01

    This study investigates the cryogenic performances of a millimeter-size piezoelectric ultrasonic linear micromotor. The piezoelectric vibrator of the micromotor is made of Pb(In1/2Nb1/2)O3 -Pb(Mg1/3Nb2/3)-PbTiO3 single crystal and operated in first-bending wobbling mode. Experiments show that the piezoelectric single crystal micromotor works effectively even at extremely low temperature of -175 °C, although its resonance peaks vary with temperature significantly. This work confirms the feasibility of cryogenic operation of the piezo-micromotor, which is meaningful for aerospace or superconducting microwave application.

  6. Iron single crystal growth from a lithium-rich melt

    Science.gov (United States)

    Fix, M.; Schumann, H.; Jantz, S. G.; Breitner, F. A.; Leineweber, A.; Jesche, A.

    2018-03-01

    α -Fe single crystals of rhombic dodecahedral habit were grown from a Li84N12Fe∼3 melt. Crystals of several millimeter along a side form at temperatures around T ≈ 800 ° C. Upon further cooling the growth competes with the formation of Fe-doped Li3N. The b.c.c. structure and good sample quality of α -Fe single crystals were confirmed by X-ray and electron diffraction as well as magnetization measurements and chemical analysis. A nitrogen concentration of 90 ppm was detected by means of carrier gas hot extraction. Scanning electron microscopy did not reveal any sign of iron nitride precipitates.

  7. Regularities of recrystallization in rolled Zr single crystals

    International Nuclear Information System (INIS)

    Isaenkova, M; Perlovich, Yu; Fesenko, V; Krymskaya, O; Krapivka, N; Thu, S S

    2015-01-01

    Experiments by rolled single crystals give a more visible conception of the operating mechanisms of plastic deformation and the following recrystallization, than experiments by polycrystals. Studies by usage of X-ray diffraction methods were conducted by Zr single crystals. It was revealed, that regions of the α-Zr matrix, deformed mainly by twinning, are characterized with decreased tendency to recrystallization. Orientations of recrystallized α-Zr grains correspond to “slopes” of maxima in the rolling texture, where the level of crystalline lattice distortion is maximal and the number of recrystallization nuclei is most of all. (paper)

  8. Growth and surface topography of WSe_2 single crystal

    International Nuclear Information System (INIS)

    Dixit, Vijay; Vyas, Chirag; Pataniya, Pratik; Jani, Mihir; Pathak, Vishal; Patel, Abhishek; Pathak, V. M.; Patel, K. D.; Solanki, G. K.

    2016-01-01

    Tungsten Di-Selenide belongs to the family of TMDCs showing their potential applications in the fields of Optoelectronics and PEC solar cells. Here in the present investigation single crystals of WSe_2 were grown by Direct Vapour Transport Technique in a dual zone furnace having temperature difference of 50 K between the two zones. These single crystals were characterized by EDAX which confirms the stiochiometry of the grown crystals. Surface topography of the crystal was studied by optical micrograph showing the left handed spirals on the surface of WSe_2 crystals. Single crystalline nature of the crystals was confirmed by SAED.

  9. Preparation of single-crystal copper ferrite nanorods and nanodisks

    International Nuclear Information System (INIS)

    Du Jimin; Liu Zhimin; Wu Weize; Li Zhonghao; Han Buxing; Huang Ying

    2005-01-01

    This article, for the first time, reports the preparation of single-crystal copper ferrite nanorods and nanodisks. Using amorphous copper ferrite nanoparticles synthesized by reverse micelle as reaction precursor, single-crystal copper ferrite nanorods were synthesized via hydrothermal method in the presence of surfactant polyethylene glycol (PEG), however, copper ferrite nanodisks were prepared through the same procedures except the surfactant PEG. The resulting nanomaterials have been characterized by powder X-ray diffraction (XRD), selected electron area diffraction (SEAD), and transmission electron microscopy (TEM). The bulk composition of the samples was determined by means of X-ray photoelectron spectroscopy (XPS)

  10. Epitaxial growth of AlN on single crystal Mo substrates

    International Nuclear Information System (INIS)

    Okamoto, Koichiro; Inoue, Shigeru; Nakano, Takayuki; Kim, Tae-Won; Oshima, Masaharu; Fujioka, Hiroshi

    2008-01-01

    We have grown AlN films on single-crystalline Mo(110), (100), and (111) substrates using a low temperature pulsed laser deposition (PLD) growth technique and investigated their structural properties. Although c-axis oriented AlN films grow on Mo(100), the films contain 30 o rotated domains due to the difference in the rotational symmetry between AlN(0001) and Mo(100). AlN films with only poor crystalline quality grow on Mo(111) substrates, probably due to the poor surface morphology and high reactivity of the substrates. On the other hand, single crystal AlN films grow epitaxially on Mo(110) substrates with an in-plane relationship of AlN[11-20] // Mo[001]. Reflection high-energy electron diffraction or electron backscattered diffraction analysis has revealed that neither in-plane 30 deg. rotated domains nor cubic phase domains exist in the AlN films. X-ray reflectivity measurements have revealed that the heterointerface between AlN and Mo prepared by PLD at 450 deg. C is quite abrupt. These results indicate that PLD epitaxial growth of AlN on single crystal Mo substrates is quite promising for the fabrication of future high frequency filter devices

  11. Epitaxial growth of AlN on single crystal Mo substrates

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Koichiro; Inoue, Shigeru [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 (Japan); Nakano, Takayuki; Kim, Tae-Won [Kanagawa Academy of Science and Technology (KAST) KSP east 301, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012 (Japan); Oshima, Masaharu [Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan); Fujioka, Hiroshi [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 (Japan); Kanagawa Academy of Science and Technology (KAST) KSP east 301, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012 (Japan)], E-mail: hfujioka@iis.u-tokyo.ac.jp

    2008-06-02

    We have grown AlN films on single-crystalline Mo(110), (100), and (111) substrates using a low temperature pulsed laser deposition (PLD) growth technique and investigated their structural properties. Although c-axis oriented AlN films grow on Mo(100), the films contain 30{sup o} rotated domains due to the difference in the rotational symmetry between AlN(0001) and Mo(100). AlN films with only poor crystalline quality grow on Mo(111) substrates, probably due to the poor surface morphology and high reactivity of the substrates. On the other hand, single crystal AlN films grow epitaxially on Mo(110) substrates with an in-plane relationship of AlN[11-20] // Mo[001]. Reflection high-energy electron diffraction or electron backscattered diffraction analysis has revealed that neither in-plane 30 deg. rotated domains nor cubic phase domains exist in the AlN films. X-ray reflectivity measurements have revealed that the heterointerface between AlN and Mo prepared by PLD at 450 deg. C is quite abrupt. These results indicate that PLD epitaxial growth of AlN on single crystal Mo substrates is quite promising for the fabrication of future high frequency filter devices.

  12. Effect of manganese doping on PIN-PMN-PT single crystals for high power applications

    Science.gov (United States)

    Sahul, Raffi

    multitude of properties that are useful for various specified applications. The unique properties and configurations arise from the large anisotropy of the single crystalline materials and various polarization rotation mechanisms that are associated with these multi-domain configurations. This dissertation is focused on the properties of manganese doped PIN-PMN-PT ternary single crystals in the rhombohedral phase. By poling them in either [001]c, [011]c, or [111]c, 4R, 2R or 1R domain configuration can be achieved respectively. Longitudinal vibration mode, d 33, or k33 is the most useful mode from 4R configuration. The "2R" domain state is obtained by poling the rhombohedral phase crystal along [011]c crystallographic direction. Investigation of "2R" Mn:PIN-PMN-PT single crystals and their properties lead to unique resonance modes (d32, "2R d15", and d36') that are very useful and relevant to practical applications. Considering the large anisotropy and various symmetries exhibited by these crystals, full set of dielectric, piezoelectric, and elastic properties are extremely critical to understand different modes and their overall behavior in devices. Inconsistencies in full set of properties may be caused by complex methods involved in performing characterization measurements and also inhomogeneity among samples used for the measurements. Due to the large number of coefficients that need to be determined for full property material data, a methodology combining resonance and ultrasound methods is the most widely used technique for consistent measurement of full set properties for these materials. Full property measurements (elastic, dielectric, and piezoelectric) for the "2R" Mn:PIN-PMN-PT single crystal poled into orthorhombic mm2 macroscopic symmetry ([011]c poled crystals) and for "4R" configuration ([001]c poled crystals) were conducted and the data was analyzed based on their macroscopic crystallographic symmetry. Full property data was measured for the 1R configuration

  13. Ultrasound

    Science.gov (United States)

    ... completed. Young children may need additional preparation. When scheduling an ultrasound for yourself or your child, ask ... of Privacy Practices Notice of Nondiscrimination Manage Cookies Advertising Mayo Clinic is a not-for-profit organization ...

  14. Ultrasound

    Science.gov (United States)

    ... reflect off body structures. A computer receives the waves and uses them to create a picture. Unlike with an x-ray or CT scan, this test does not use ionizing radiation. The test is done in the ultrasound ...

  15. Deformation twinning in zinc-aluminium single crystals after slip

    International Nuclear Information System (INIS)

    Lukac, P.; Kral, F.; Trojanova, Z.; Kral, R.

    1993-01-01

    Deformation twinning in Zn-Al single crystals deformed by slip in the basal system is examined. The influence of temperature and the content of aluminium in zinc on the twinning stress is investigated in the temperature range from 198 to 373 K. It is shown that the twinning stress rises with increasing temperature and increases with the concentration of Al atoms. (orig.)

  16. Structural science using single crystal and pulse neutron scattering

    International Nuclear Information System (INIS)

    Noda, Yukio; Kimura, Hiroyuki; Watanabe, Masashi; Ishikawa, Yoshihisa; Tamura, Itaru; Arai, Masatoshi; Takahashi, Miwako; Ohshima, Ken-ichi; Abe, Hiroshi; Kamiyama, Takashi

    2008-01-01

    The application to single crystal neutron structural analysis is overviewed. Special attention is paid to the pulse neutron method, which will be available soon under J-PARC project in Japan. New proposal and preliminary experiment using Sirius at KENS are described. (author)

  17. Annealing behavior of solution grown polyethylene single crystals

    NARCIS (Netherlands)

    Loos, J.; Tian, M.

    2006-01-01

    The morphology evolution of solution grown polyethylene single crystals has been studied upon annealing below their melting temperature by using atomic force microscopy (AFM). AFM investigations have been performed ex situ, which means AFM investigations at room temperature after the annealing

  18. Corelli: Efficient single crystal diffraction with elastic discrimination

    Indian Academy of Sciences (India)

    Here, we discuss the potential of the cross-correlation technique for efficient measurement of single crystal diffuse scattering with energy discrimination, as will be implemented in a novel instrument, Corelli. Utilizing full experiment simulations, we show that this technique readily leads up to a fifty-fold gain in efficiency, ...

  19. Magnetic structure of URhSi single crystal

    Czech Academy of Sciences Publication Activity Database

    Prokeš, K.; Andreev, Alexander V.; Honda, F.; Sechovský, V.

    2003-01-01

    Roč. 261, - (2003), s. 131-138 ISSN 0304-8853 R&D Projects: GA ČR GA202/02/0739 Institutional research plan: CEZ:AV0Z1010914 Keywords : URhSi single crystal * magnetization * neutron diffraction * magnetic structure determination Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.910, year: 2003

  20. Bulk study of a DyNiAl single crystal

    Czech Academy of Sciences Publication Activity Database

    Prchal, J.; Andreev, Alexander V.; Javorský, P.; Honda, F.; Jurek, Karel

    272-276, - (2004), e419-e420 ISSN 0304-8853 R&D Projects: GA ČR GA106/02/0943 Keywords : rare-earth * DyNiAl * magnetic anisotropy * single crystal Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.031, year: 2004

  1. Lattice effects in HoVo(3) single crystal

    NARCIS (Netherlands)

    Sikora, M.; Marquina, C.; Ibarra, M. R.; Nugroho, A. A.; Palstra, T. T. M.

    We report the study of lattice effects in the Mott insulator HoVO3 performed by means of linear thermal expansion on a single crystal in the temperature range 10-290 K. The holmium orthovanadate HoVO3 reveals gradual orbital ordering (OO) below T-OO = 200K and orders antiferromagnetically at T-N =

  2. Synthesis and room temperature single crystal EPR studies of a ...

    Indian Academy of Sciences (India)

    Unknown

    Hamiltonian parameters calculated from single crystal rotations are: g ... studies on two nickel complexes with SalX ligands (X = NH, NCH3) have shown the ..... here the positive sign is required for a shell that is less than half-filled and the ...

  3. Growth features of ammonium hydrogen d-tartrate single crystals

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Ammonium hydrogen d-tartrate (d-AHT) single crystals were grown in silica gel. The growth fea- ... solution (specific gravity, 1⋅04 g/cc) with d-tartaric acid solution having ... resulting in the production of crystal nuclei. The interface.

  4. Attenuation of thermal neutrons by an imperfect single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Naguib, K.; Adib, M. [National Research Centre, Cairo (Egypt). Reactor and Neutron Physics Dept.

    1996-06-14

    A semi-empirical formula is given which allows one to calculate the total thermal cross section of an imperfect single crystal as a function of crystal constants, temperature and neutron energy E, in the energy range between 3 meV and 10 eV. The formula also includes the contribution of the parasitic Bragg scattering to the total cross section that takes into account the crystal mosaic spread value and its orientation with respect to the neutron beam direction. A computer program (ISCANF) was developed to calculate the total attenuation of neutrons using the proposed formula. The ISCANF program was applied to investigate the neutron attenuation through a copper single crystal. The calculated values of the neutron transmission through the imperfect copper single crystal were fitted to the measured ones in the energy range 3-40 meV at different crystal orientations. The result of fitting shows that use of the computer program ISCANF allows one to predict the behaviour of the total cross section of an imperfect copper single crystal for the whole energy range. (author).

  5. Attenuation of thermal neutrons by an imperfect single crystal

    Science.gov (United States)

    Naguib, K.; Adib, M.

    1996-06-01

    A semi-empirical formula is given which allows one to calculate the total thermal cross section of an imperfect single crystal as a function of crystal constants, temperature and neutron energy E, in the energy range between 3 meV and 10 eV. The formula also includes the contribution of the parasitic Bragg scattering to the total cross section that takes into account the crystal mosaic spread value and its orientation with respect to the neutron beam direction. A computer program (ISCANF) was developed to calculate the total attenuation of neutrons using the proposed formula. The ISCANF program was applied to investigate the neutron attenuation through a copper single crystal. The calculated values of the neutron transmission through the imperfect copper single crystal were fitted to the measured ones in the energy range 3 - 40 meV at different crystal orientations. The result of fitting shows that use of the computer program ISCANF allows one to predict the behaviour of the total cross section of an imperfect copper single crystal for the whole energy range.

  6. Chromium and molybdenum diffusion in tungsten single crystals

    International Nuclear Information System (INIS)

    Klotsman, S.M.; Koloskov, V.M.; Osetrov, S.V.; Polikarpova, I.P.; Tatarinova, G.N.; Timofeev, A.N.

    1989-01-01

    Consideration is given to results of measuring temperature dependences of diffusion coefficients of homovalent impurities of chromium and molybdenum in tungsten single crystals. It is concluded that the difference of activation energies of selfdiffusion and impurity diffusion in the system 'tungsten-homovalent impurity' is conditioned by interaction of screened potentials of impurity and vacancy with Lazarus-Le Claire model

  7. Dynamic Actuation of Single-Crystal Diamond Nanobeams

    OpenAIRE

    Sohn, Young-Ik; Burek, Michael J.; Kara, Vural; Kearns, Ryan; Lončar, Marko

    2014-01-01

    We show the dielectrophoretic actuation of single-crystal diamond nanomechanical devices. Gradient radio-frequency electromagnetic forces are used to achieve actuation of both cantilever and doubly clamped beam structures, with operation frequencies ranging from a few MHz to ~50MHz. Frequency tuning and parametric actuation are also studied.

  8. High definition TV projection via single crystal faceplate technology

    Science.gov (United States)

    Kindl, H. J.; St. John, Thomas

    1993-03-01

    Single crystal phosphor faceplates are epitaxial phosphors grown on crystalline substrates with the advantages of high light output, resolution, and extended operational life. Single crystal phosphor faceplate industrial technology in the United States is capable of providing a faceplate appropriate to the projection industry of up to four (4) inches in diameter. Projection systems incorporating cathode ray tubes utilizing single crystal phosphor faceplates will produce 1500 lumens of white light with 1000 lines of resolution, non-interlaced. This 1500 lumen projection system will meet all of the currently specified luminance and resolution requirements of Visual Display systems for flight simulators. Significant logistic advantages accrue from the introduction of single crystal phosphor faceplate CRT's. Specifically, the full performance life of a CRT is expected to increase by a factor of five (5); ie, from 2000 to 10,000 hours of operation. There will be attendant reductions in maintenance time, spare CRT requirements, system down time, etc. The increased brightness of the projection system will allow use of lower gain, lower cost simulator screen material. Further, picture performance characteristics will be more balanced across the full simulator.

  9. Organic field-effect transistors using single crystals

    International Nuclear Information System (INIS)

    Hasegawa, Tatsuo; Takeya, Jun

    2009-01-01

    Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs), the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20-40 cm 2 Vs -1 , achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR) measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps. (topical review)

  10. On the growth of calcium tartrate tetrahydrate single crystals

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Calcium tartrate single crystals were grown using silica gel as the growth medium. Calcium for- mate mixed with formic acid was taken as the supernatant solution. It was observed that the nucleation den- sity was reduced and the size of the crystals was improved to a large extent compared to the conventional way.

  11. Lattice location of helium in uranium dioxide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Garrido, F.; Nowicki, L. E-mail: lech.nowicki@fuw.edu.pl; Sattonnay, G.; Sauvage, T.; Thome, L

    2004-06-01

    Lattice location of {sup 3}He atoms implanted into UO{sub 2} single crystals was performed by means of the channeling technique combined with nuclear reaction analysis (NRA) and Rutherford backscattering spectrometry (RBS). The {sup 3}He(d,p){sup 4}He reaction was used. The experimental angular scans show that helium atoms occupy octahedral interstitial positions.

  12. Multiscale modelling of single crystal superalloys for gas turbine blades

    NARCIS (Netherlands)

    Tinga, T.

    2009-01-01

    Gas turbines are extensively used for power generation and for the propulsion of aircraft and vessels. Their most severely loaded parts, the turbine rotor blades, are manufactured from single crystal nickel-base superalloys. The superior high temperature behaviour of these materials is attributed to

  13. Discrete dislocation plasticity modeling of short cracks in single crystals

    NARCIS (Netherlands)

    Deshpande, VS; Needleman, A; Van der Giessen, E

    2003-01-01

    The mode-I crack growth behavior of geometrically similar edge-cracked single crystal specimens of varying size subject to both monotonic and cyclic axial loading is analyzed using discrete dislocation dynamics. Plastic deformation is modeled through the motion of edge dislocations in an elastic

  14. Double minimum creep of single crystal Ni-base superalloys

    Czech Academy of Sciences Publication Activity Database

    WU, X.; Wollgramm, P.; Somsen, C.; Dlouhý, Antonín; Kostka, A.; Eggeler, G.

    2016-01-01

    Roč. 112, JUN (2016), s. 242-260 ISSN 1359-6454 R&D Projects: GA ČR(CZ) GA14-22834S Institutional support: RVO:68081723 Keywords : Single crystal Ni-base superalloys * Primary creep * Transmission electron microscopy * Dislocations * Stacking faults Subject RIV: JG - Metallurgy Impact factor: 5.301, year: 2016

  15. Detection of anomalies in NLO sulphamic acid single crystals by ...

    Indian Academy of Sciences (India)

    The ultrasonic pulse echo overlap technique (PEO) has been used to measure the ... acid single crystals in the range of 300–400 K. This study evaluated all the elastic stiff- .... tic constants C11, C22, C33, C44, C55 and C66 have direct rela-.

  16. Organic field-effect transistors using single crystals

    Directory of Open Access Journals (Sweden)

    Tatsuo Hasegawa and Jun Takeya

    2009-01-01

    Full Text Available Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs, the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20–40 cm2 Vs−1, achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps.

  17. METHOD FOR MANUFACTURING A SINGLE CRYSTAL NANO-WIRE

    NARCIS (Netherlands)

    Van Den Berg, Albert; Bomer, Johan; Carlen Edwin, Thomas; Chen, Songyue; Kraaijenhagen Roderik, Adriaan; Pinedo Herbert, Michael

    2012-01-01

    A method for manufacturing a single crystal nano-structure includes providing a device layer with a 100 structure on a substrate; providing a stress layer onto the device layer; patterning the stress layer along the 110 direction of the device layer; selectively removing parts of the stress layer to

  18. METHOD FOR MANUFACTURING A SINGLE CRYSTAL NANO-WIRE.

    NARCIS (Netherlands)

    Van Den Berg, Albert; Bomer, Johan; Carlen Edwin, Thomas; Chen, Songyue; Kraaijenhagen Roderik, Adriaan; Pinedo Herbert, Michael

    2011-01-01

    A method for manufacturing a single crystal nano-structure is provided comprising the steps of providing a device layer with a 100 structure on a substrate; providing a stress layer onto the device layer; patterning the stress layer along the 110 direction of the device layer; selectively removing

  19. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... the transducer is pressed against the skin, it directs small pulses of inaudible, high-frequency sound waves ...

  20. High-Frequency Seafloor Acoustics

    CERN Document Server

    Jackson, Darrell R

    2007-01-01

    High-Frequency Seafloor Acoustics is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. This exciting new title provides ready access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics. The physical characteristics of the seafloor affecting acoustic propagation and scattering are covered, including physical and geoacoustic properties and surface roughness. Current theories for acoustic propagation in sediments are presented along with corresponding models for reflection, scattering, and seafloor penetration. The main text is backed up by an extensive bibliography and technical appendices.

  1. Electronic transport properties of single crystal thallium-2201 superconductors

    International Nuclear Information System (INIS)

    Yandrofski, R.M.

    1992-01-01

    Four-probe resistance measurements on single crystals of the calcium-free thallium-based superconducting Tl 2 Ba 2 CuO 6+σ phase (Tl-2201) were performed in magnetic fields up to 12 Telsa. Single crystals of sizes were grown by a self-flux technique and were characterized by single crystal X-ray diffraction and X-ray Dispersive Analysis. Field measurements were taken at dc and at low frequencies using a lock-in technique. Techniques were developed to oxygen-anneal the as-grown single crystals to generate single crystal samples of the same Tl-2201 phase with varying transition interaction effect against appropriate composite general alternatives are developed for the standard two-way layout with a single observation per cell. Nonparametric aligned-rank test procedures are introduced. One of the new procedures is shown to be equivalent to a slight modification of the previously studied Latin square procedures when the factors have the same number of levels. The equal in distribution technique is used to show that any statistic based on the joint ranks should not be used to test the hypotheses of interest. The tests based on aligning with the averages do not depend on the nuisance main effects, while those based on aligning with the median do depend on the nuisance main effects. The relative power performance of the competing tests are examined via Monte Carlo simulation. Power studies conducted on the 5 x 5, 5 x 6, and 5 x 9 two-way layouts with one observation per cell show that the new procedures based on a comparison of all possible pairs of rank-profiles perform quite well for two types of product interaction, a general class of interaction effects proposed by Martin, and several sets of specific interaction effects. Approximate critical values for some of the proposed procedures are explored in the special case when the main effect parameters for one factor are known

  2. Twinning processes in Cu-Al-Ni martensite single crystals investigated by neutron single crystal diffraction method

    International Nuclear Information System (INIS)

    Molnar, P.; Sittner, P.; Novak, V.; Lukas, P.

    2008-01-01

    A neutron single crystal diffraction method for inspecting the quality of martensite single crystals is introduced. True interface-free martensite single crystals are indispensable for, e.g. measurement of elastic constants of phases by ultrasonic techniques. The neutron diffraction method was used to detect and distinguish the presence of individual lattice correspondence variants of the 2H orthorhombic martensite phase in Cu-Al-Ni as well as to follow the activity of twinning processes during the deformation test on the martensite variant single crystals. When preparing the martensite single variant prism-shaped crystals by compression deformation method, typically a small fraction of second unwanted martensitic variant (compound twin) remains in the prism samples. Due to the very low stress (∼1 MPa) for the compound twinning in many shape memory alloys, it is quite difficult not only to deplete the martensite prisms of all internal interfaces but mainly to keep them in the martensite single variant state for a long time needed for further investigations

  3. Twinning processes in Cu-Al-Ni martensite single crystals investigated by neutron single crystal diffraction method

    Czech Academy of Sciences Publication Activity Database

    Molnar, P.; Šittner, P.; Novák, V.; Lukáš, Petr

    2008-01-01

    Roč. 481, Sp.Iss.SI (2008), s. 513-517 ISSN 0921-5093 R&D Projects: GA AV ČR IAA100480704 Institutional research plan: CEZ:AV0Z10480505 Keywords : Cu-Al-Ni * single crystals * neutron diffraction Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.806, year: 2008

  4. Detailed single crystal EPR lineshape measurements for the single molecule magnets Fe8Br and Mn12-ac

    OpenAIRE

    Hill, S.; Maccagnano, S.; Park, K.; Achey, R. M.; North, J. M.; Dalal, N. S.

    2001-01-01

    It is shown that our multi-high-frequency (40-200 GHz) resonant cavity technique yields distortion-free high field EPR spectra for single crystal samples of the uniaxial and biaxial spin S = 10 single molecule magnets (SMMs) [Mn12O12(CH3COO)16(H2O)4].2CH3COOH.4H2O and [Fe8O2(OH)12(tacn)6]Br8.9H2O. The observed lineshapes exhibit a pronounced dependence on temperature, magnetic field, and the spin quantum numbers (Ms values) associated with the levels involved in the transitions. Measurements ...

  5. Single Crystals of Organolead Halide Perovskites: Growth, Characterization, and Applications

    KAUST Repository

    Peng, Wei

    2017-04-01

    With the soaring advancement of organolead halide perovskite solar cells rising from a power conversion efficiency of merely 3% to more than 22% shortly in five years, researchers’ interests on this big material family have been greatly spurred. So far, both in-depth studies on the fundamental properties of organolead halide perovskites and their extended applications such as photodetectors, light emitting diodes, and lasing have been intensively reported. The great successes have been ascribed to various superior properties of organolead halide hybrid perovskites such as long carrier lifetimes, high carrier mobility, and solution-processable high quality thin films, as will be discussed in Chapter 1. Notably, most of these studies have been limited to their polycrystalline thin films. Single crystals, as a counter form of polycrystals, have no grain boundaries and higher crystallinity, and thus less defects. These characteristics gift single crystals with superior optical, electrical, and mechanical properties, which will be discussed in Chapter 2. For example, organolead halide perovskite single crystals have been reported with much longer carrier lifetimes and higher carrier mobilities, which are especially intriguing for optoelectronic applications. Besides their superior optoelectronic properties, organolead halide perovskites have shown large composition versatility, especially their organic components, which can be controlled to effectively adjust their crystal structures and further fundamental properties. Single crystals are an ideal platform for such composition-structure-property study since a uniform structure with homogeneous compositions and without distraction from grain boundaries as well as excess defects can provide unambiguously information of material properties. As a major part of work of this dissertation, explorative work on the composition-structure-property study of organic-cation-alloyed organolead halide perovskites using their single

  6. High-frequency magnetic components

    CERN Document Server

    Kazimierczuk, Marian K

    2013-01-01

    A unique text on the theory and design fundaments of inductors and transformers, updated with more coverage on the optimization of magnetic devices and many new design examples The first edition is popular among a very broad audience of readers in different areas of engineering and science. This book covers the theory and design techniques of the major types of high-frequency power inductors and transformers for a variety of applications, including switching-mode power supplies (SMPS) and resonant dc-to-ac power inverters and dc-to-dc power converters. It describes eddy-current phenomena (su

  7. Aluminum-rich mesoporous MFI - type zeolite single crystals

    DEFF Research Database (Denmark)

    Kustova, Marina; Kustov, Arkadii; Christensen, Christina Hviid

    2005-01-01

    Zeolitcs are crystalline materials, which are widely used as solid acid catalysts and supports in many industrial processes. Recently, mesoporous MFI-type zeolite single crystals were synthesized by use of carbon particles as a mesopore template and sodium aluminate as the aluminum Source....... With this technique, only zeolites with relatively low Al contents were reported (Si/Al ratio about 100). In this work, the preparation of aluminum-rich mesoporous MFI-type zeolite single crystals (Si/Al similar to 16-50) using aluminum isopropoxide as the aluminum Source is reported for the first time. All samples...... are characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), ammonia temperature programmed desorption (NH3-TPD), and N-2 adsorption measurements. The obtained zeolites combine the high crystallinity and the characteristic micropores of zeolites with an intracrystalline mesopore system...

  8. Resistivity distribution of silicon single crystals using codoping

    Science.gov (United States)

    Wang, Jong Hoe

    2005-07-01

    Numerous studies including continuous Czochralski method and double crucible technique have been reported on the control of macroscopic axial resistivity distribution in bulk crystal growth. The simple codoping method for improving the productivity of silicon single-crystal growth by controlling axial specific resistivity distribution was proposed by Wang [Jpn. J. Appl. Phys. 43 (2004) 4079]. Wang [J. Crystal Growth 275 (2005) e73] demonstrated using numerical analysis and by experimental results that the axial specific resistivity distribution can be modified in melt growth of silicon crystals and relatively uniform profile is possible by B-P codoping method. In this work, the basic characteristic of 8 in silicon single crystal grown using codoping method is studied and whether proposed method has advantage for the silicon crystal growth is discussed.

  9. Young's Modulus of Single-Crystal Fullerene C Nanotubes

    Directory of Open Access Journals (Sweden)

    Tokushi Kizuka

    2012-01-01

    Full Text Available We performed bending tests on single-crystal nanotubes composed of fullerene C70 molecules by in situ transmission electron microscopy with measurements of loading forces by an optical deflection method. The nanotubes with the outer diameters of 270–470 nm were bent using simple-beam and cantilever-beam loading by the piezomanipulation of silicon nanotips. Young's modulus of the nanotubes increased from 61 GPa to 110 GPa as the outer diameter decreased from 470 nm to 270 nm. Young's modulus was estimated to be 66% of that of single-crystal C60 nanotubes of the same outer diameter.

  10. Ordered macro-microporous metal-organic framework single crystals

    Science.gov (United States)

    Shen, Kui; Zhang, Lei; Chen, Xiaodong; Liu, Lingmei; Zhang, Daliang; Han, Yu; Chen, Junying; Long, Jilan; Luque, Rafael; Li, Yingwei; Chen, Banglin

    2018-01-01

    We constructed highly oriented and ordered macropores within metal-organic framework (MOF) single crystals, opening up the area of three-dimensional–ordered macro-microporous materials (that is, materials containing both macro- and micropores) in single-crystalline form. Our methodology relies on the strong shaping effects of a polystyrene nanosphere monolith template and a double-solvent–induced heterogeneous nucleation approach. This process synergistically enabled the in situ growth of MOFs within ordered voids, rendering a single crystal with oriented and ordered macro-microporous structure. The improved mass diffusion properties of such hierarchical frameworks, together with their robust single-crystalline nature, endow them with superior catalytic activity and recyclability for bulky-molecule reactions, as compared with conventional, polycrystalline hollow, and disordered macroporous ZIF-8.

  11. Oriented hydroxyapatite single crystals produced by the electrodeposition method

    Energy Technology Data Exchange (ETDEWEB)

    Santos, E.A. dos, E-mail: euler@ufs.br [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France); IPCMS - Departement de Surfaces et Interfaces, 23, rue du Loess, BP 43, 67034 Strasbourg (France); Moldovan, M.S. [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France); IPCMS - Departement de Surfaces et Interfaces, 23, rue du Loess, BP 43, 67034 Strasbourg (France); Jacomine, L. [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France); Mateescu, M. [IS2M - Equipe Interaction Surface-Matiere Vivant, 15, rue Jean Starcky, BP 2488, 68057 Mulhouse (France); Werckmann, J. [IPCMS - Departement de Surfaces et Interfaces, 23, rue du Loess, BP 43, 67034 Strasbourg (France); Anselme, K. [IS2M - Equipe Interaction Surface-Matiere Vivant, 15, rue Jean Starcky, BP 2488, 68057 Mulhouse (France); Mille, P.; Pelletier, H. [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France)

    2010-05-25

    We propose here the use of cathodic electrodeposition as tool to fabricate implant coatings consisting in nano/micro single crystals of hydroxyapatite (HA), preferentially orientated along the c-axis. Coating characterization is the base of this work, where we discuss the mechanisms related to the deposition of oriented hydroxyapatite thin films. It is shown that when deposited on titanium alloys, the HA coating is constituted by two distinct regions with different morphologies: at a distance of few microns from the substrate, large HA single crystals are oriented along the c-axis and appear to grow up from a base material, consisting in an amorphous HA. This organized system has a great importance for cell investigation once the variables involved in the cell/surface interaction are reduced. The use of such systems could give a new insight on the effect of particular HA orientation on the osteoblast cells.

  12. Heterogeneous Monolithic Integration of Single-Crystal Organic Materials.

    Science.gov (United States)

    Park, Kyung Sun; Baek, Jangmi; Park, Yoonkyung; Lee, Lynn; Hyon, Jinho; Koo Lee, Yong-Eun; Shrestha, Nabeen K; Kang, Youngjong; Sung, Myung Mo

    2017-02-01

    Manufacturing high-performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement. In particular, the development of high-performance organic electronic and optoelectronic devices relies on high-quality single crystals that show optimal intrinsic charge-transport properties and electrical performance. Moreover, the heterogeneous integration of organic materials on a single substrate in a monolithic way is highly demanded for the production of fundamental organic electronic components as well as complex integrated circuits. Many of the various methods that have been designed to pattern multiple heterogeneous organic materials on a substrate and the heterogeneous integration of organic single crystals with their crystal growth are described here. Critical issues that have been encountered in the development of high-performance organic integrated electronics are also addressed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Raman analysis of gold on WSe2 single crystal film

    International Nuclear Information System (INIS)

    Mukherjee, Bablu; Sun Leong, Wei; Li, Yida; Thong, John T L; Gong, Hao; Sun, Linfeng; Xiang Shen, Ze; Simsek, Ergun

    2015-01-01

    Synthesis and characterization of high-quality single-crystal tungsten diselenide (WSe 2 ) films on a highly insulating substrate is presented. We demonstrate for the first time that the presence of gold (Au) nanoparticles in the basal plane of a WSe 2 film can enhance its Raman scattering intensity. The experimentally observed enhancement ratio in the Raman signal correlates well with the simulated electric field intensity using both three-dimensional electromagnetic software and theoretical calculation considering layered medium coupled-dipole approximation (LM-CDA). This work serves as a guideline for the use of Au nanoparticles on WSe 2 single-crystal thin films for surface enhanced Raman scattering (SERS) applications in the future. (paper)

  14. Ordered macro-microporous metal-organic framework single crystals

    KAUST Repository

    Shen, Kui

    2018-01-16

    We constructed highly oriented and ordered macropores within metal-organic framework (MOF) single crystals, opening up the area of three-dimensional-ordered macro-microporous materials (that is, materials containing both macro- and micropores) in single-crystalline form. Our methodology relies on the strong shaping effects of a polystyrene nanosphere monolith template and a double-solvent-induced heterogeneous nucleation approach. This process synergistically enabled the in situ growth of MOFs within ordered voids, rendering a single crystal with oriented and ordered macro-microporous structure. The improved mass diffusion properties of such hierarchical frameworks, together with their robust single-crystalline nature, endow them with superior catalytic activity and recyclability for bulky-molecule reactions, as compared with conventional, polycrystalline hollow, and disordered macroporous ZIF-8.

  15. Scintillation activity in an unirradiated single crystal of 3-hydroxyxanthine

    International Nuclear Information System (INIS)

    Cooke, D.W.; Jahan, M.S.; Alexander, C. Jr.

    1976-01-01

    A method of growing single crystals (approximately 4mm long) of 3-hydroxyxanthine is described. Observed scintillations occurring in an unirradiated single crystal of this potent oncogen as the temperature is lowered from 300 to 90 K are shown. It was found that these scintillations occur upon heating or cooling and do not diminish in activity as the number of heating and cooling cycles increase. It was found that a short duration u.v. exposure would terminate the scintillation activity and various attempts (such as annealing and pressure changes) to rejuvenate them were unsuccessful. With these observations in mind speculation is made concerning the mechanisms associated with the production of purine N-oxide derivatives. (U.K.)

  16. Ordered macro-microporous metal-organic framework single crystals

    KAUST Repository

    Shen, Kui; Zhang, Lei; Chen, Xiaodong; Liu, Lingmei; Zhang, Daliang; Han, Yu; Chen, Junying; Long, Jilan; Luque, Rafael; Li, Yingwei; Chen, Banglin

    2018-01-01

    We constructed highly oriented and ordered macropores within metal-organic framework (MOF) single crystals, opening up the area of three-dimensional-ordered macro-microporous materials (that is, materials containing both macro- and micropores) in single-crystalline form. Our methodology relies on the strong shaping effects of a polystyrene nanosphere monolith template and a double-solvent-induced heterogeneous nucleation approach. This process synergistically enabled the in situ growth of MOFs within ordered voids, rendering a single crystal with oriented and ordered macro-microporous structure. The improved mass diffusion properties of such hierarchical frameworks, together with their robust single-crystalline nature, endow them with superior catalytic activity and recyclability for bulky-molecule reactions, as compared with conventional, polycrystalline hollow, and disordered macroporous ZIF-8.

  17. Spall behaviour of single crystal aluminium at three principal orientations

    Science.gov (United States)

    Owen, G. D.; Chapman, D. J.; Whiteman, G.; Stirk, S. M.; Millett, J. C. F.; Johnson, S.

    2017-10-01

    A series of plate impact experiments have been conducted to study the spall strength of the three principal crystallographic orientations of single crystal aluminium ([100], [110] and, [111]) and ultra-pure polycrystalline aluminium. The samples have been shock loaded at two impact stresses (4 GPa and 10 GPa). Significant differences have been observed in the elastic behaviour, the pullback velocities, and the general shape of the wave profiles, which can be accounted for by considerations of the microscale homogeneity, the dislocation density, and the absence of grain boundaries in the single crystal materials. The data have shown that there is a consistent order of spall strength measured for the four sample materials. The [111] orientation has the largest spall strength and elastic limit, followed closely by [110], [100], and then the polycrystalline material. This order is consistent with both quasi-static data and geometrical consideration of Schmid factors.

  18. Low temperature deformation mechanisms in LiF single crystals

    International Nuclear Information System (INIS)

    Fotedar, H.L.; Stroebe, T.G.

    1976-01-01

    An analysis of the deformation behavior of high purity LiF single crystals is given using yielding and work hardening data and thermally activated deformation parameters obtained in the temperature range 77-423 0 K. It is found that while the Fleischer mechanism is apparently valid experimentally over the thermally activated temperature range, vacancies produced in large numbers at 77 0 K could also play a role in determining the critical resolved shear stress at that temperature

  19. Trapezoidal diffraction grating beam splitters in single crystal diamond

    Science.gov (United States)

    Kiss, Marcell; Graziosi, Teodoro; Quack, Niels

    2018-02-01

    Single Crystal Diamond has been recognized as a prime material for optical components in high power applications due to low absorption and high thermal conductivity. However, diamond microstructuring remains challenging. Here, we report on the fabrication and characterization of optical diffraction gratings exhibiting a symmetric trapezoidal profile etched into a single crystal diamond substrate. The optimized grating geometry diffracts the transmitted optical power into precisely defined proportions, performing as an effective beam splitter. We fabricate our gratings in commercially available single crystal CVD diamond plates (2.6mm x 2.6mm x 0.3mm). Using a sputter deposited hard mask and patterning by contact lithography, the diamond is etched in an inductively coupled oxygen plasma with zero platen power. The etch process effectively reveals the characteristic {111} diamond crystal planes, creating a precisely defined angled (54.7°) profile. SEM and AFM measurements of the fabricated gratings evidence the trapezoidal shape with a pitch of 3.82μm, depth of 170 nm and duty cycle of 35.5%. Optical characterization is performed in transmission using a 650nm laser source perpendicular to the sample. The recorded transmitted optical power as function of detector rotation angle shows a distribution of 21.1% in the 0th order and 23.6% in each +/-1st order (16.1% reflected, 16.6% in higher orders). To our knowledge, this is the first demonstration of diffraction gratings with trapezoidal profile in single crystal diamond. The fabrication process will enable beam splitter gratings of custom defined optical power distribution profiles, while antireflection coatings can increase the efficiency.

  20. Ion implantation induced blistering of rutile single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Bing-Xi [School of Physics, Shandong University, Jinan, Shandong 250100 (China); Jiao, Yang [College of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250100 (China); Guan, Jing [School of Physics, Shandong University, Jinan, Shandong 250100 (China); Wang, Lei [School of Physics, Shandong University, Jinan, Shandong 250100 (China); Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (China)

    2015-07-01

    The rutile single crystals were implanted by 200 keV He{sup +} ions with a series fluence and annealed at different temperatures to investigate the blistering behavior. The Rutherford backscattering spectrometry, optical microscope and X-ray diffraction were employed to characterize the implantation induced lattice damage and blistering. It was found that the blistering on rutile surface region can be realized by He{sup +} ion implantation with appropriate fluence and the following thermal annealing.

  1. Photon emission by electrons and positrons traversing thin single crystal

    International Nuclear Information System (INIS)

    Ol'chak, A.S.

    1984-01-01

    Radiation emission by planar channeled particles (electrons, positrons) in a thin single crystal of thickness L is considered. It is shown that for L approximately πb/THETAsub(L) (b is the lattice constant, THETA sub(L) the Lindhard angle) besides the main spontaneous channeling maxima there exist auxiliary interference maxima, the positions of all the maxima depending on L. The dependence of the radiation spectral intensity on crystal thickness is discussed

  2. Single-crystal diffraction instrument TriCS at SINQ

    Science.gov (United States)

    Schefer, J.; Könnecke, M.; Murasik, A.; Czopnik, A.; Strässle, Th; Keller, P.; Schlumpf, N.

    2000-03-01

    The single-crystal diffractometer TriCS at the Swiss Continuous Spallation Source (SINQ) is presently in the commissioning phase. A two-dimensional wire detector produced by EMBL was delivered in March 1999. The instrument is presently tested with a single detector. First measurements on magnetic structures have been performed. The instrument is remotely controlled using JAVA-based software and a UNIX DEC-α host computer.

  3. The Taylor relation in compression deformed Ge single crystals

    International Nuclear Information System (INIS)

    Nyilas, K; Ungar, T; Dupas, C; Martin, J L; Kruml, T

    2010-01-01

    Ge single crystals are deformed in compression at 850K and the same strain rate to various extents of strains. In each sample, the internal stress is measured through stress reduction tests and the dislocation densities by X-ray measurements. Data about these two parameters follow fairly well the Taylor-Saada relation, provided a correction term is added. It probably corresponds to dislocations which are seen by X-rays, though they do not contribute to crystal hardening.

  4. Three-dimensional charge transport in organic semiconductor single crystals.

    Science.gov (United States)

    He, Tao; Zhang, Xiying; Jia, Jiong; Li, Yexin; Tao, Xutang

    2012-04-24

    Three-dimensional charge transport anisotropy in organic semiconductor single crystals - both plates and rods (above and below, respectively, in the figure) - is measured in well-performing organic field-effect transistors for the first time. The results provide an excellent model for molecular design and device preparation that leads to good performance. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A macroscopic model for magnetic shape-memory single crystals

    Czech Academy of Sciences Publication Activity Database

    Bessoud, A. L.; Kružík, Martin; Stefanelli, U.

    2013-01-01

    Roč. 64, č. 2 (2013), s. 343-359 ISSN 0044-2275 R&D Projects: GA AV ČR IAA100750802; GA ČR GAP201/10/0357 Institutional support: RVO:67985556 Keywords : magnetostriction * evolution Subject RIV: BA - General Mathematics Impact factor: 1.214, year: 2013 http://library.utia.cas.cz/separaty/2012/MTR/kruzik-a macroscopic model for magnetic shape- memory single crystals.pdf

  6. The early stages of oxidation of magnesium single crystal surfaces

    International Nuclear Information System (INIS)

    Hayden, B.E.; Schweizer, E.; Koetz, R.; Bradshaw, A.M.

    1981-01-01

    The early stages of oxidation of Mg(001) and Mg(100) single crystal surfaces at 300 K have been investigated by LEED, ELS, work function and ellipsometric measurements. A sharp decrease in work function on both surfaces during the first 12 L exposure indicates the incorporation of oxygen in the earliest stages of the interaction. The incorporated oxygen on Mg(001) gives rise to a broadening of the integral order LEED spots for an exposure 3 L. (orig.)

  7. Application of GRID to Foreign Atom Localization in Single Crystals.

    Science.gov (United States)

    Karmann, A; Wesch, W; Weber, B; Börner, H G; Jentschel, M

    2000-01-01

    The application of GRID (Gamma Ray Induced Doppler broadening) spectroscopy to the localization of foreign atoms in single crystals is demonstrated on erbium in YAP. By the investigation of the Doppler broadened secondary γ line for two crystalline directions, the Er was determined to be localized on the Y site. Conditions for the nuclear parameters of the impurity atoms used for the application of GRID spectroscopy are discussed.

  8. Preparation and characterization of single-crystal multiferroic nanofiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhaohui; Xiao, Zhen; Yin, Simin; Mai, Jiangquan; Liu, Zhenya; Xu, Gang; Li, Xiang; Shen, Ge [State Key Lab of Silicon Materials, Department of Material Science and Engineering, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027 (China); Han, Gaorong, E-mail: hgr@zju.edu.cn [State Key Lab of Silicon Materials, Department of Material Science and Engineering, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027 (China)

    2013-03-05

    Graphical abstract: One-dimensional single-crystal multiferroic composites composed of PbTiO{sub 3} nanofiber-CoFe{sub 2}O{sub 4} nanodot have been prepared for the first time by a facile in situ solid state sintering method. The composites demonstrate ferroelectricity and ferromagnetism as well as strong coupling between them. Highlights: ► 1D single-crystal multiferroic PTO-CFO was prepared via in situ solid state sintering method. ► A simple epitaxial growth relation has been found between the PTO–CFO composites. ► The composites reveal ferroelectricity and ferromagnetism as well as coupling between them. -- Abstract: One-dimensional single-crystal multiferroic composites consisting of PbTiO{sub 3} (PTO) nanofiber-CoFe{sub 2}O{sub 4} (CFO) nanodot were prepared using an in situ solid state sintering method, where pre-perovskite PTO nanofibers and CFO nanodots were used as precursors. Structural analyses by using transmission electron microscopy, scanning electron microscopy and X-ray diffraction determined a epitaxial growth relation between the PTO nanofiber and the CFO nanodot. Ferromagnetism and ferroelectricity of the nanofiber composites were investigated by using vibarting sample magnetometer (VSM) and piezoresponse force microscopy (PFM)

  9. AFM studies on heavy ion irradiated YBCO single crystals

    International Nuclear Information System (INIS)

    Lakhani, Archana; Marhas, M.K.; Saravanan, P.; Ganesan, V.; Srinivasan, R.; Kanjilal, D.; Mehta, G.K.; Elizabeth, Suja; Bhat, H.L.

    2000-01-01

    Atomic Force Microscopy (AFM) is extensively used to characterise the surface morphology of high energy ion irradiated single crystals of high temperature superconductor - YBCO. Our earlier systematic studies on thin films of YBCO under high energy and heavy ion irradiation shows clear evidence of ion induced sputtering or erosion, even though the effect is more on the grain boundaries. These earlier results were supported by electrical resistance measurements. In order to understand more clearly, the nature of surface modification at these high energies, AFM studies were carried out on single crystals of YBCO. Single crystals were chosen in order to see the effect on crystallites alone without interference from grain boundaries. 200 MeV gold ions were used for investigation using the facilities available at Nuclear Science Centre, New Delhi. The type of ion and the range of energies were chosen to meet the threshold for electronically mediated defect production. The results are in conformity with our earlier studies and will be described in detail in the context of electronic energy loss mediated sputtering or erosion. (author)

  10. Parasitic neutron bragg reflections from large imperfect single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Naguib, K.; Adib, M

    1998-12-01

    A formula is given which allows to calculate the contribution of the total Bragg scattering from different (hkl) planes to the neutron transmission through a large imperfect single crystals. The formula takes into account the crystal structure type, its mosaic spread value, the plane along which the crystal surface is cut along and its orientation with respect to the neutron beam direction. A computer program ISCANF-1 was developed to calculate the total parasitic scattering cross-section from different (hkl) planes as well as the nuclear and diffuse scattering cross-sections. The ISCANF-1 program was applied to calculate the neutron attenuation through Cu and Zn single crystals, each of them cut along (002) planes. The calculated values of the neutron transmission through Cu and Zn crystals were compared with the measured ones in the wavelength range 0.21-0.47 nm and 0.04-0.52 nm respectively. The measured and calculated values were found to be in reasonable agreement within the statistical accuracy. The computer program ISCANF-1 was also applied to investigate the effect of parasitic Bragg scattering on the neutron filtering characteristics of both Zn and Cu single crystals as a function of their physical parameters.

  11. Parasitic neutron bragg reflections from large imperfect single crystals

    International Nuclear Information System (INIS)

    Naguib, K.; Adib, M.

    1998-01-01

    A formula is given which allows to calculate the contribution of the total Bragg scattering from different (hkl) planes to the neutron transmission through a large imperfect single crystals. The formula takes into account the crystal structure type, its mosaic spread value, the plane along which the crystal surface is cut along and its orientation with respect to the neutron beam direction. A computer program ISCANF-1 was developed to calculate the total parasitic scattering cross-section from different (hkl) planes as well as the nuclear and diffuse scattering cross-sections. The ISCANF-1 program was applied to calculate the neutron attenuation through Cu and Zn single crystals, each of them cut along (002) planes. The calculated values of the neutron transmission through Cu and Zn crystals were compared with the measured ones in the wavelength range 0.21-0.47 nm and 0.04-0.52 nm respectively. The measured and calculated values were found to be in reasonable agreement within the statistical accuracy. The computer program ISCANF-1 was also applied to investigate the effect of parasitic Bragg scattering on the neutron filtering characteristics of both Zn and Cu single crystals as a function of their physical parameters

  12. Neutron transmission measurements of zinc and lead single crystals

    International Nuclear Information System (INIS)

    Adib, M.; Abdel-Kawy, A.

    1988-01-01

    Neutron transmission measurements of zinc and lead single crystals have been carried out in a neutron wavelength band from 0.03 to 0.55 nm at different orientations of the crystal with regard to the beam direction. The measurements were performed using both time-of-flight and fixed-angle scattering spectrometers installed in front of the ET-RR-1 reactor horizontal channels. It was found that the position of the observed dips in the neutron transmission measurements corresponded to the reflections from the (h k l) planes of the hexagonal zinc single crystal which was cut along the (0 0 2) plane, while in the case of lead, the single crystal was cut perpendicular to the (3 1 1) plane. The reflectivity from the (0 0 2) plane of zinc was determined using both transmission and reflection methods. The maximum reflectivity was found to be 55% when the zinc crystal was orientated at 45 0 to the beam direction. The wavelength spread of the observed reflectivity curve was found to be in agreement with the calculated one, taking into consideration the spectrometer's resolution and the crystal mosaic spread. (author)

  13. High-frequency plasma oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Akhiezer, A I; Fainberg, Y B; Sitenko, A G; Stepanov, K; Kurilko, V; Gorbatenko, M; Kirochkin, U [Academy of Sciences of the Ukrainian SSR (USSR)

    1958-07-01

    It is well known that the electrical conductivity of a plasma, the ion-electron equilibration time, and the time required to heat the electron component of the plasma all increase greatly with increasing temperature. Consequently, the usual method of Joule heating a plasma may be difficult to apply in the region of high temperatures (> 10{sup 6}K), especially if the plasma current alone, without any additional measures, is used to generate magnetic fields for the confinement of the plasma. Therefore, it is of interest to study methods of plasma heating that do not directly use Joule heat, especially methods by which energy is directly supplied to the ion component during the time between collisions. Some of these methods make use of ionic resonance as well as other resonance phenomena which can occur in plasma in an external magnetic field. This paper deals with certain aspects of the theory of high-frequency plasma oscillations.

  14. The effect of athermal and isothermal omega phase particles on elasticity of beta-Ti single crystals

    Czech Academy of Sciences Publication Activity Database

    Nejezchlebová, J.; Janovská, Michaela; Seiner, Hanuš; Sedlák, Petr; Landa, Michal; Šmilauerová, J.; Stráský, J.; Harcuba, P.; Janeček, M.

    2016-01-01

    Roč. 110, May (2016), s. 185-191 ISSN 1359-6454 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61388998 Keywords : titanium alloys * omega phase * elastic constants * single crystals * resonant ultrasound spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.301, year: 2016 http://ac.els-cdn.com/S1359645416301860/1-s2.0-S1359645416301860-main.pdf?_tid=dca8c8e6-017d-11e6-8121-00000aab0f27&acdnat=1460555256_4439abe9d4826c07f29d02804351d7be

  15. Evaluation of single crystal coefficients from mechanical and x-ray elastic constants of the polycrystal

    International Nuclear Information System (INIS)

    Hauk, V.; Kockelmann, H.

    1979-01-01

    Methods of calculation are developed for determination of single crystal elastic compliance or stiffness constants of cubic and hexagonal materials from mechanical and X-ray elastic constants of polycrystals. The calculations are applied to pure, cubic iron and hexagonal WC. There are no single crystal constants in the literature for WC, because no single crystals suitable for measurement are available. (orig.) [de

  16. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the probe through ... a single exam. The transducer sends out high-frequency sound waves (that the human ear cannot hear) ...

  17. Magnetic order of Nd5Pb3 single crystals

    Science.gov (United States)

    Yan, J.-Q.; Ochi, M.; Cao, H. B.; Saparov, B.; Cheng, J.-G.; Uwatoko, Y.; Arita, R.; Sales, B. C.; Mandrus, D. G.

    2018-04-01

    We report millimeter-sized Nd5Pb3 single crystals grown out of a Nd-Co flux. We experimentally study the magnetic order of Nd5Pb3 single crystals by measuring the anisotropic magnetic properties, electrical resistivity under high pressure up to 8 GPa, specific heat, and neutron single crystal diffraction. Two successive magnetic orders are observed at T N1  =  44 K and T N2  =  8 K. The magnetic cells can be described with a propagation vector k=(0.5, 0, 0) . Cooling below T N1, Nd1 and Nd3 order forming ferromagnetic stripes along the b-axis, and the ferromagnetic stripes are coupled antiferromagnetically along the a-axis for the k=(0.5, 0, 0) magnetic domain. Cooling below T N2, Nd2 orders antiferromagnetically to nearby Nd3 ions. All ordered moments align along the crystallographic c-axis. The magnetic order at T N1 is accompanied by a quick drop of electrical resistivity upon cooling and a lambda-type anomaly in the temperature dependence of specific heat. At T N2, no anomaly was observed in electrical resistivity but there is a weak feature in specific heat. The resistivity measurements under hydrostatic pressures up to 8 GPa suggest a possible phase transition around 6 GPa. Our first-principles band structure calculations show that Nd5Pb3 has the same electronic structure as does Y5Si3 which has been reported to be a one-dimensional electride with anionic electrons that do not belong to any atom. Our study suggests that R 5Pb3 (R  =  rare earth) can be a materials playground for the study of magnetic electrides. This deserves further study after experimental confirmation of the presence of anionic electrons.

  18. Econometrics of financial high-frequency data

    CERN Document Server

    Hautsch, Nikolaus

    2011-01-01

    This book covers major approaches in high-frequency econometrics. It discusses implementation details, provides insights into properties of high-frequency data as well as institutional settings and presents applications.

  19. Infrared absorption in PbTe single crystals

    International Nuclear Information System (INIS)

    Kudykina, T.A.

    1982-01-01

    A group-theoretical analysis is conducted to select rules for optical transitions between bands in PbTe single crystals. It is shown that transitions between valence bands which are near a forbidden band are also forbidden. The extra absorption observed in p-PbTe and p-Pbsub(1-x)Snsub(x)Te in the region between the self-absorption edge and the free-carrier absorption edge is probably connected with transitions between one of valence bands and the p-state of the impurity

  20. Characteristics of trapped electrons and electron traps in single crystals

    International Nuclear Information System (INIS)

    Budzinski, E.E.; Potter, W.R.; Potienko, G.; Box, H.C.

    1979-01-01

    Two additional carbohydrates are reported whose crystal structures trap electrons intermolecularly in single crystals x irradiated at low temperature, namely sucrose and rhamnose. Five carbohydrate and polyhydroxy compounds are now known which exhibit this phenomenon. The following characteristics of the phenomenon were investigated: (1) the hyperfine couplings of the electron with protons of the polarized hydroxy groups forming the trap; (2) the distances between these protons and the trapped electron; (3) the spin density of the electron at the protons and (4) the relative stabilities of the electron trapped in various crystal structures

  1. Pyroelectric effect in tryglicyne sulphate single crystals - Differential measurement method

    Science.gov (United States)

    Trybus, M.

    2018-06-01

    A simple mathematical model of the pyroelectric phenomenon was used to explain the electric response of the TGS (triglycine sulphate) samples in the linear heating process in ferroelectric and paraelectric phases. Experimental verification of mathematical model was realized. TGS single crystals were grown and four electrode samples were fabricated. Differential measurements of the pyroelectric response of two different regions of the samples were performed and the results were compared with data obtained from the model. Experimental results are in good agreement with model calculations.

  2. The sublimation kinetics of GeSe single crystals

    Science.gov (United States)

    Irene, E. A.; Wiedemeier, H.

    1975-01-01

    The sublimation kinetics of (001) oriented GeSe single crystal platelets was studied by high-temperature mass spectroscopy, quantitative vacuum microbalance techniques, and hot stage optical microscopy. For a mean experimental temperature of 563 K, the activation enthalpy and entropy are found to equal 32.3 kcal/mole and 19.1 eu, respectively. The vaporization coefficient is less than unity for the range of test temperatures, and decreases with increasing temperature. The combined experimental data are correlated by means of a multistep surface adsorption mechanism.

  3. EPR studies of gamma-irradiated taurine single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Bulut, A. E-mail: abulut@samsun.omu.edu.tr; Karabulut, B.; Tapramaz, R.; Koeksal, F

    2000-04-01

    An EPR study of gamma-irradiated taurine [C{sub 2}H{sub 7}NO{sub 3}S] single crystal was carried out at room temperature. The EPR spectra were recorded in the three at mutually perpendicular planes. There are two magnetically distinct sites in monoclinic lattice. The principle values of g and hyperfine constants for both sites were calculated. The results have indicated the presence of {sup 32}SO{sup -}{sub 2} and {sup 33}SO{sup -}{sub 2} radicals. The hyperfine values of {sup 33}SO{sup -}{sub 2} radical were used to obtain O-S-O bond angle for both sites.

  4. Acquisition of Single Crystal Growth and Characterization Equipment. Final report

    International Nuclear Information System (INIS)

    Maple, M. Brian; Zocco, Diego A.

    2008-01-01

    Final Report for DOE Grant No. DE-FG02-04ER46178 'Acquisition of Single Crystal Growth and Characterization Equipment'. There is growing concern in the condensed matter community that the need for quality crystal growth and materials preparation laboratories is not being met in the United States. It has been suggested that there are too many researchers performing measurements on too few materials. As a result, many user facilities are not being used optimally. The number of proficient crystal growers is too small. In addition, insufficient attention is being paid to the enterprise of finding new and interesting materials, which is the driving force behind much of condensed matter research and, ultimately, technology. While a detailed assessment of this situation is clearly needed, enough evidence of a problem already exists to compel a general consensus that the situation must be addressed promptly. This final report describes the work carried out during the last four years in our group, in which a state-of-the-art single crystal growth and characterization facility was established for the study of novel oxides and intermetallic compounds of rare earth, actinide and transition metal elements. Research emphasis is on the physics of superconducting (SC), magnetic, heavy fermion (HF), non-Fermi liquid (NFL) and other types of strongly correlated electron phenomena in bulk single crystals. Properties of these materials are being studied as a function of concentration of chemical constituents, temperature, pressure, and magnetic field, which provide information about the electronic, lattice, and magnetic excitations at the root of various strongly correlated electron phenomena. Most importantly, the facility makes possible the investigation of material properties that can only be achieved in high quality bulk single crystals, including magnetic and transport phenomena, studies of the effects of disorder, properties in the clean limit, and spectroscopic and scattering

  5. EPR studies of gamma-irradiated taurine single crystals

    International Nuclear Information System (INIS)

    Bulut, A.; Karabulut, B.; Tapramaz, R.; Koeksal, F.

    2000-01-01

    An EPR study of gamma-irradiated taurine [C 2 H 7 NO 3 S] single crystal was carried out at room temperature. The EPR spectra were recorded in the three at mutually perpendicular planes. There are two magnetically distinct sites in monoclinic lattice. The principle values of g and hyperfine constants for both sites were calculated. The results have indicated the presence of 32 SO - 2 and 33 SO - 2 radicals. The hyperfine values of 33 SO - 2 radical were used to obtain O-S-O bond angle for both sites

  6. Lattice effects in HoVo3 single crystal

    International Nuclear Information System (INIS)

    Sikora, M.; Marquina, C.; Ibarra, M.R.; Nugroho, A.A.; Palstra, T.T.M.

    2007-01-01

    We report the study of lattice effects in the Mott insulator HoVO 3 performed by means of linear thermal expansion on a single crystal in the temperature range 10-290 K. The holmium orthovanadate HoVO 3 reveals gradual orbital ordering (OO) below T OO =200 K and orders antiferromagnetically at T N =113 K. A first-order structural phase transition takes place at T S ∼38 K, which is probably accompanied by change of the OO type and hence the type of antiferromagnetic spin ordering

  7. Radiation defects produced by neutron irradiation in germanium single crystals

    International Nuclear Information System (INIS)

    Fukuoka, Noboru; Honda, Makoto; Atobe, Kozo; Yamaji, Hiromichi; Ide, Mutsutoshi; Okada, Moritami.

    1992-01-01

    The nature of defects produced in germanium single crystals by neutron irradiation at 25 K was studied by measuring the electrical resistivity. It was found that two levels located at E c -0.06 eV and E c -0.13 eV were introduced in an arsenic-doped sample. Electron traps at E c -0.10eV were observed in an indium-doped sample. The change in electrical resistivity during irradiation was also studied. (author)

  8. Single crystal NMR studies of high temperature superconductors

    International Nuclear Information System (INIS)

    Pennington, C.H.; Durand, D.J.; Zax, D.B.; Slichter, C.P.; Rice, J.P.; Bukowski, E.D.; Ginsberg, D.M.

    1989-01-01

    The authors report Cu NMR studies in the normal state of a single crystal of the T/sub c/ = 90 K superconductor YBa 2 Cu 3 O/sub 7/minus/δ/. The authors have measured the magnetic shift tensor, the electric field gradient tensor, the nuclear spin-lattice relaxation rate tensor, and the time dependence and functional form of the transverse decay. From these data they obtain information about the charge state and magnetic state of the Cu atoms, and the existence and size of the electronic exchange coupling between spins of adjacent Cu atoms. 18 refs., 3 figs., 2 tabs

  9. Mechanical and optical nanodevices in single-crystal quartz

    Science.gov (United States)

    Sohn, Young-Ik; Miller, Rachel; Venkataraman, Vivek; Lončar, Marko

    2017-12-01

    Single-crystal α-quartz, one of the most widely used piezoelectric materials, has enabled a wide range of timing applications. Owing to the fact that an integrated thin-film based quartz platform is not available, most of these applications rely on macroscopic, bulk crystal-based devices. Here, we show that the Faraday cage angled-etching technique can be used to realize nanoscale electromechanical and photonic devices in quartz. Using this approach, we demonstrate quartz nanomechanical cantilevers and ring resonators featuring Qs of 4900 and 8900, respectively.

  10. Crystal structure and magnetic susceptibility of UOSe single crystals

    International Nuclear Information System (INIS)

    Kaczorowski, D.; Muenster Univ.; Poettgen, R.; Jeitschko, W.; Gajek, Z.; Zygmunt, A.

    1993-01-01

    The crystal structure and magnetic susceptibility behaviour of UOSe single crystals have been studied. UOSe crystalizes in the tetragonal PbFC1-type structure (space group P4/nmm) with the lattice parameters: a = 390.38(5) pm and c = 698.05(9) pm. It orders antiferromagnetically at T N =100±2 K and exhibits a very strong anisotropy in the susceptibility vs temperature variation. The magnetic and thermodynamic properties of UOSe are successfully interpreted in the framework of a perturbative ab initio crystal field approach. (Author)

  11. Crystal structure and magnetic susceptibility of UOSe single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kaczorowski, D. (Polish Academy of Sciences, Wroclaw (Poland). Inst. for Low Temperature and Structure Research Muenster Univ. (Germany). Anorganisch-Chemisches Inst.); Poettgen, R.; Jeitschko, W. (Muenster Univ. (Germany). Anorganisch-Chemisches Inst.); Gajek, Z.; Zygmunt, A. (Polish Academy of Sciences, Wroclaw (Poland). Inst. for Low Temperature and Structure Research)

    1993-01-01

    The crystal structure and magnetic susceptibility behaviour of UOSe single crystals have been studied. UOSe crystalizes in the tetragonal PbFC1-type structure (space group P4/nmm) with the lattice parameters: a = 390.38(5) pm and c = 698.05(9) pm. It orders antiferromagnetically at T[sub N]=100[+-]2 K and exhibits a very strong anisotropy in the susceptibility vs temperature variation. The magnetic and thermodynamic properties of UOSe are successfully interpreted in the framework of a perturbative ab initio crystal field approach. (Author).

  12. Nonstoichiometry and conductivity anisotropy of lead germanate single crystals

    International Nuclear Information System (INIS)

    Jermakov, O.S.; Duda, V.M.

    2010-01-01

    The conductivity of lead germanate single crystals with the stoichiometric composition, PbO deficiency, and PbO excess has been measured. A reduction of the PbO fraction in the initial blend leads to a considerable increase of the conductivity, because the fraction of lead ions which change their valency from Pb 2+ to Pb 3+ grows. The relative arrangement of lead ions, which are able to change their valency and trap holes, can be responsible for a significant anisotropy of conductivity.

  13. Laser induced single-crystal transition in polycrystalline silicon

    International Nuclear Information System (INIS)

    Vitali, G.; Bertolotti, M.; Foti, G.; Rimini, E.

    1978-01-01

    Transition to single crystal of polycrystalline Si material underlying a Si crystal substrate of 100 orientation was obtained via laser irradiation. The changes in the structure were analyzed by reflection high energy electron diffraction and by channeling effect technique using 2.0 MeV He Rutherford scattering. The power density required to induce the transition in a 4500 A thick polycrystalline layer is about 70 MW/cm 2 (50ns). The corresponding amorphous to single transition has a threshold of about 45 MW/cm 2 . (orig.) 891 HPOE [de

  14. Magnetic anisotropy of YNi2B2C single crystals

    International Nuclear Information System (INIS)

    Baran, M.; Gladczuk, L.; Gorecka, J.; Szymczak, H.; Szymczak, R.; Drzazga, Z.; Winiarska, H.

    1994-01-01

    Reversible and irreversible magnetization processes in YNi 2 B 2 C single crystal have been measured and analysed in terms of existing theories. Performed measurements suggest that anisotropy of the effective mass in YNi 2 B 2 C superconductor is rather small and similar to that observed in conventional superconductors. Effect of hydrostatic pressure on T c is shown to be typical of low-temperature superconductors. It is suggested that the layered structure of YNi 2 B 2 C has some effect on the irreversible magnetization processes observed in this superconductor. ((orig.))

  15. Stacking fault tetrahedron induced plasticity in copper single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liang, E-mail: lz592@uowmail.edu.au [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Lu, Cheng, E-mail: chenglu@uow.edu.au [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Tieu, Kiet; Su, Lihong; Zhao, Xing [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Pei, Linqing [Department of Mechanical Engineering, Chongqing University, Chongqing 400044 (China)

    2017-01-05

    Stacking fault tetrahedron (SFT) is the most common type of vacancy clustered defects in fcc metals and alloys, and can play an important role in the mechanical properties of metallic materials. In this study, molecular dynamics (MD) simulations were carried out to investigate the incipience of plasticity and the underlying atomic mechanisms in copper single crystals with SFT. Different deformation mechanisms of SFT were reported due to the crystal orientations and loading directions (compression and tension). The results showed that the incipient plasticity in crystals with SFT resulted from the heterogeneous dislocation nucleation from SFT, so the stress required for plastic deformation was less than that needed for perfect single crystals. Three crystal orientations ([1 0 0], [1 1 0] and [1 1 1]) were specified in this study because they can represent most of the typical deformation mechanisms of SFT. MD simulations revealed that the structural transformation of SFT was frequent under the applied loading; a metastable SFT structure and the collapse of SFT were usually observed. The structural transformation resulted in a different reduction of yield stress in compression and tension, and also caused a decreased or reversed compression/tension asymmetry. Compressive stress can result in the unfaulting of Frank loop in some crystal orientations. According to the elastic theory of dislocation, the process of unfaulting was closely related to the size of the dislocation loop and the stacking fault energy.

  16. Mesoscale martensitic transformation in single crystals of topological defects

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao; Martínez-González, José A.; Hernández-Ortiz, Juan P.; Ramírez-Hernández, Abelardo; Zhou, Ye; Sadati, Monirosadat; Zhang, Rui; Nealey, Paul F.; de Pablo, Juan J.

    2017-09-05

    Liquid crystal blue phases (BPs) are highly ordered at two levels. Molecules exhibit orientational order at nanometer length scales, while chirality leads to ordered arrays of doubletwisted cylinders over micrometer scales. Past studies of polycrystalline BPs were challenged by grain boundaries between randomly oriented crystalline nanodomains. Here, the nucleation of BPs is controlled with considerable precision by relying on chemically nano-patterned surfaces, leading to macroscopic single-crystal BP specimens where the dynamics of meso-crystal formation can be directly observed. Theory and experiments show that transitions between two BPs having a different network structure proceed through local re-organization of the crystalline array, without diffusion of the double twisted cylinders. In solid crystals, martensitic transformations between crystal structures involve the concerted motion of a few atoms, without diffusion. The transformation between BPs, where crystal features arise in the sub-micron regime, is found to be martensitic in nature, with the diffusion-less feature associated to the collective behavior of the double twist cylinders. Single-crystal BPs are shown to offer fertile grounds for the study of directed crystal-nucleation and the controlled growth of soft matter.

  17. Large single-crystal diamond substrates for ionizing radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Girolami, Marco; Bellucci, Alessandro; Calvani, Paolo; Trucchi, Daniele M. [Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Sede Secondaria di Montelibretti, Monterotondo Stazione, Roma (Italy)

    2016-10-15

    The need for large active volume detectors for ionizing radiations and particles, with both large area and thickness, is becoming more and more compelling in a wide range of applications, spanning from X-ray dosimetry to neutron spectroscopy. Recently, 8.0 x 8.0 mm{sup 2} wide and 1.2 mm thick single-crystal diamond plates have been put on the market, representing a first step to the fabrication of large area monolithic diamond detectors with optimized charge transport properties, obtainable up to now only with smaller samples. The more-than-double thickness, if compared to standard plates (typically 500 μm thick), demonstrated to be effective in improving the detector response to highly penetrating ionizing radiations, such as γ-rays. Here we report on the first measurements performed on large active volume single-crystal diamond plates, both in the dark and under irradiation with optical wavelengths (190-1100 nm), X-rays, and radioactive γ-emitting sources ({sup 57}Co and {sup 22}Na). (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Chiral multichromic single crystals for optical devices (LDRD 99406).

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Richard Alan; Felix, Ana M. (University of New Mexico, Albuquerque, NM)

    2006-12-01

    This report summarizes our findings during the study of a novel system that yields multi-colored materials as products. This system is quite unusual as it leads to multi-chromic behavior in single crystals, where one would expect that only a single color would exist. We have speculated that these novel solids might play a role in materials applications such as non-linear optics, liquid crystal displays, piezoelectric devices, and other similar applications. The system examined consisted of a main-group alkyl compound (a p block element such as gallium or aluminum) complexed with various organic di-imines. The di-imines had substituents of two types--either alkyl or aromatic groups attached to the nitrogen atoms. We observed that single crystals, characterized by X-ray crystallography, were obtained in most cases. Our research during January-July, 2006, was geared towards understanding the factors leading to the multi-chromic nature of the complexes. The main possibilities put forth initially considered (a) the chiral nature of the main group metal, (b) possible reduction of the metal to a lower-valent, radical state, (c) the nature of the ligand(s) attached to the main group metal, and (d) possible degradation products of the ligand leading to highly-colored products. The work carried out indicates that the most likely explanation considered involves degradation of the aromatic ligands (a combination of (c) and (d)), as the experiments performed can clearly rule out (a) and (b).

  19. Plastic deformation of Ni3Nb single crystals

    International Nuclear Information System (INIS)

    Hagihara, Kouji; Nakano, Takayoshi; Umakoshi, Yukichi

    1999-01-01

    Temperature dependence of yield stress and operative slip system in Ni 3 Nb single crystals with the D0 a structure was investigated in comparison with that in an analogous L1 2 structure. Compression tests were performed at temperatures between 20 C and 1,200 C for specimens with loading axes perpendicular to (110), (331) and (270). (010)[100] slip was operative for three orientations, while (010)[001] slip for (331) and [211] twin for (270) orientations were observed, depending on deformation temperature. The critical resolved shear stress (CRSS) for the (010)[100] slip anomaly increased with increasing temperature showing a maximum peak between 400 C and 800 C depending on crystal orientation. The CRSS showed orientation dependence and no significant strain rate dependence in the temperature range for anomalous strengthening. The [100] dislocations with a screw character were aligned on the straight when the anomalous strengthening occurred. The anomalous strengthening mechanism for (010)[100] slip in Ni 3 Nb single crystals is discussed on the basis of a cross slip model which has been widely accepted for some L1 2 -type compounds

  20. Strength anomaly in B2 FeAl single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimi, K.; Hanada, S.; Yoo, M.H. [Oak Ridge National Lab., TN (United States); Matsumoto, N. [Tohoku Univ. (Japan). Graduate School

    1994-12-31

    Strength and deformation microstructure of B2 Fe-39 and 48%Al single crystals (composition given in atomic percent), which were fully annealed to remove frozen-in vacancies, have been investigated at temperatures between room temperature and 1073K. The hardness of as-homogenized Fe-48Al is higher than that of as-homogenized Fe-39Al while after additional annealing at 698K the hardness of Fe-48Al becomes lower than that of Fe-39Al. Fe-39Al single crystals slowly cooled after homogenizing at a high temperature were deformed in compression as a function of temperature and crystal orientation. A peak of yield strength appears around 0.5T{sub m} (T{sub m} = melting temperature). The orientation dependence of the critical resolved shear stress does not obey Schmid`s law even at room temperature and is quite different from that of b.c.c. metals and B2 intermetallics at low temperatures. At the peak temperature slip transition from <111>-type to <001>-type is found to occur macroscopically and microscopically, while it is observed in TEM that some of the [111] dislocations decompose into [101] and [010] on the (1096I) plane below the peak temperature. The physical sources for the positive temperature dependence of yield stress of B2 FeAl are discussed based on the obtained results.

  1. Anisotropy of Single-Crystal Silicon in Nanometric Cutting.

    Science.gov (United States)

    Wang, Zhiguo; Chen, Jiaxuan; Wang, Guilian; Bai, Qingshun; Liang, Yingchun

    2017-12-01

    The anisotropy exhibited by single-crystal silicon in nanometric cutting is very significant. In order to profoundly understand the effect of crystal anisotropy on cutting behaviors, a large-scale molecular dynamics model was conducted to simulate the nanometric cutting of single-crystal silicon in the (100)[0-10], (100)[0-1-1], (110)[-110], (110)[00-1], (111)[-101], and (111)[-12-1] crystal directions in this study. The simulation results show the variations of different degrees in chip, subsurface damage, cutting force, and friction coefficient with changes in crystal plane and crystal direction. Shear deformation is the formation mechanism of subsurface damage, and the direction and complexity it forms are the primary causes that result in the anisotropy of subsurface damage. Structurally, chips could be classified into completely amorphous ones and incompletely amorphous ones containing a few crystallites. The formation mechanism of the former is high-pressure phase transformation, while the latter is obtained under the combined action of high-pressure phase transformation and cleavage. Based on an analysis of the material removal mode, it can be found that compared with the other crystal direction on the same crystal plane, the (100)[0-10], (110)[-110], and (111)[-101] directions are more suitable for ductile cutting.

  2. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... the transducer is pressed against the skin, it directs small pulses of inaudible, high-frequency sound waves ...

  3. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... transducer sends out high-frequency sound waves (that the human ear cannot hear) into the body and then ... ultrasound , there are no known harmful effects on humans. top of page What are the limitations of General Ultrasound Imaging? Ultrasound waves are ...

  4. Strength and deformation of shocked diamond single crystals: Orientation dependence

    Science.gov (United States)

    Lang, J. M.; Winey, J. M.; Gupta, Y. M.

    2018-03-01

    Understanding and quantifying the strength or elastic limit of diamond single crystals is of considerable scientific and technological importance, and has been a subject of long standing theoretical and experimental interest. To examine the effect of crystalline anisotropy on strength and deformation of shocked diamond single crystals, plate impact experiments were conducted to measure wave profiles at various elastic impact stresses up to ˜120 GPa along [110] and [111] crystal orientations. Using laser interferometry, particle velocity histories and shock velocities in the diamond samples were measured and were compared with similar measurements published previously for shock compression along the [100] direction. Wave profiles for all three orientations showed large elastic wave amplitudes followed by time-dependent inelastic deformation. From the measured wave profiles, the elastic limits were determined under well characterized uniaxial strain loading conditions. The measured elastic wave amplitudes for the [110] and [111] orientations were lower for higher elastic impact stress (stress attained for an elastic diamond response), consistent with the result reported previously for [100] diamond. The maximum resolved shear stress (MRSS) on the {111}⟨110⟩ slip systems was determined for each orientation, revealing significant orientation dependence. The MRSS values for the [100] and [110] orientations (˜33 GPa) are 25%-30% of theoretical estimates; the MRSS value for the [111] orientation is significantly lower (˜23 GPa). Our results demonstrate that the MRSS depends strongly on the stress component normal to the {111} planes or the resolved normal stress (RNS), suggesting that the RNS plays a key role in inhibiting the onset of inelastic deformation. Lower elastic wave amplitudes at higher peak stress and the effect of the RNS are inconsistent with typical dislocation slip mechanisms of inelastic deformation, suggesting instead an inelastic response

  5. Polarised IR-microscope spectra of guanidinium hydrogensulphate single crystal.

    Science.gov (United States)

    Drozd, M; Baran, J

    2006-07-01

    Polarised IR-microscope spectra of C(NH(2))(3)*HSO(4) small single crystal samples were measured at room temperature. The spectra are discussed on the basis of oriented gas model approximation and group theory. The stretching nuOH vibration of the hydrogen bond with the Ocdots, three dots, centeredO distance of 2.603A gives characteristic broad AB-type absorption in the IR spectra. The changes of intensity of the AB bands in function of polariser angle are described. Detailed assignments for bands derived from stretching and bending modes of sulphate anions and guanidinium cations were performed. The observed intensities of these bands in polarised infrared spectra were correlated with theoretical calculation of directional cosines of selected transition dipole moments for investigated crystal. The vibrational studies seem to be helpful in understanding of physical and chemical properties of described compound and also in design of new complexes with exactly defined behaviors.

  6. Polarized IR-microscope spectra of guanidinium hydrogenselenate single crystal.

    Science.gov (United States)

    Drozd, M; Baran, J

    2005-10-01

    The polarized IR-microscope spectra of C(NH2)3.HSeO4 small single crystal samples were measured at room temperature. The spectra are discussed with the framework of oriented gas model approximation and group theory. The stretching nuOH vibration of the hydrogen bond with the O...O distance of 2.616 A gives characteristic broad AB-type absorption in the IR spectra. The changes of intensity of the AB bands in function of polarizer angle are described. Detailed assignment for bands derived from stretching and bending modes of selenate anions and guanidinium cations were performed. The observed intensities of these bands in polarized infrared spectra were correlated with theoretical calculation of directional cosines of selected transition dipole moments for investigated crystal. The vibrational studies seem to be helpful in understanding of physical and chemical properties of described compound and also in design of new complexes with exactly defined behaviors.

  7. Mesoporous zeolite and zeotype single crystals synthesized in fluoride media

    DEFF Research Database (Denmark)

    Egeblad, Kresten; Kustova, Marina; Klitgaard, Søren Kegnæs

    2007-01-01

    We report the synthesis and characterization of a series of new mesoporous zeolite and zeotype materials made available by combining new and improved procedures for directly introducing carbon into reaction mixtures with the fluoride route for conventional zeolite synthesis. The mesoporous...... materials were all prepared by hydrothermal crystallization of gels adsorbed on carbon matrices which were subsequently removed by combustion. The procedures presented here resulted in mesoporous zeolite and zeotypes materials with MFI, MEL, BEA, AFI and CHA framework structures. All samples were...... characterized by XRPD, SEM, TEM and N-2 physisorption measurements. For the zeolite materials it A as found that mesoporous MFI and MEL structured single crystals could indeed be crystallized from fluoride media using an improved carbon-templating approach. More importantly, it was found that mesoporous BEA...

  8. Twinning structures in near-stoichiometric lithium niobate single crystals

    International Nuclear Information System (INIS)

    Yao, Shuhua; Chen, Yanfeng

    2010-01-01

    A near-stoichiometric lithium niobate single crystal has been grown by the Czochralski method in a hanging double crucible with a continuous powder supply system. Twins were found at one of the three characteristic growth ridges of the as-grown crystal. The twin structure was observed and analyzed by transmission synchrotron topography. The image shifts ΔX and ΔY in the transmission synchrotron topograph were calculated for the 3 anti 2 anti 12 and 0 anti 222 reflections based on results from high-resolution X-ray diffractometry. It is confirmed that one of the {01 anti 1 anti 2} m planes is the composition face of the twin and matrix crystals. The formation mechanism of these twins is discussed. (orig.)

  9. Giant negative photoresistance of ZnO single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Barzola-Quiquia, Jose; Esquinazi, Pablo [Division of Superconductivity and Magnetism, University of Leipzig (Germany); Heluani, Silvia [Laboratorio de Fisica del Solido, FCEyT, Universidad Nacional de Tucuman, 4000 S. M. de Tucuman (Argentina); Villafuerte, Manuel [Dept. de Fisica, FCEyT, Universidad Nacional de Tucuman (Argentina); CONICET, Tucuman (Argentina); Poeppl, Andreas [Division of Magnetic Resonance of Complex Quantum Solids, University of Leipzig, D-04103 Leipzig (Germany)

    2011-07-01

    ZnO is a wide band gap semiconductor exhibiting the largest charge-carrier mobility among oxides. ZnO is a material with potential applications for short-wavelength optoelectronic devices, as a blue light emitting diodes and in spintronics. In this contribution we have measured the temperature dependence (30 K < T < 300 K) of the electrical resistance of ZnO single crystals prepared by hydrothermal method in darkness and under the influence of light in the ultraviolet range. The resistance decreases several orders of magnitude at temperatures T < 200 K after illumination. Electron paramagnetic resonance studies under illumination reveal that the excitation of Li acceptor impurities is the origin for the giant negative photoresistance effect. Permanent photoresistance effect is also observed, which remains many hours after leaving the crystal in darkness.

  10. Neutron transmission and reflection at a copper single crystal

    International Nuclear Information System (INIS)

    Adib, M.; Maayouf, R.M.A.; Abdel-Kawy, A.; Fayek, M.; Habib, N.; Wahba, M.

    1991-01-01

    Neutron transmission and reflection at a copper single crystal cut along the (111) plane were studied with the fixed-scattering-angle spectrometer installed at the ET-RR-1 reactor. The transmission was measured for neutron wavelengths between 0.15 and 0.46 nm and various orientations of the (111) plane with respect to the incident beam. When used as a neutron band pass filter, the crystal is optimally oriented when the neutron beam is incident parallel to the [111] direction. The reflectivity was measured for the (111) plane at 45deg with respect to the incident beam. The results were found to be in reasonable agreement with a value predicted for the reflected intensity at an imperfect crystal with finite absorption. (orig.) [de

  11. IPNS time-of-flight single crystal diffractometer

    International Nuclear Information System (INIS)

    Schultz, A.J.; Teller, R.G.; Williams, J.M.

    1983-01-01

    The single crystal diffractometer (SCD) at the Argonne Intense Pulsed Neutron Source (IPNS) utilizes the time-of-flight (TOF) Laue technique to provide a three-dimensional sampling of reciprocal space during each pulse. The instrument contains a unique neutron position-sensitive 6 Li-glass scintillation detector with an active area of 30 x 30 cm. The three-dimensional nature of the data is very useful for fast, efficient measurement of Bragg intensities and for the studies of superlattice and diffuse scattering. The instrument was designed to achieve a resolution of 2% or better (R = δQ/Q) with 2 THETA > 60 0 and lambda > 0.7A

  12. Thermal conductivity of niobium single crystals in a magnetic field

    International Nuclear Information System (INIS)

    Gladun, C.; Vinzelberg, H.

    1980-01-01

    The thermal conductivity in longitudinal magnetic fields up to 5 T and in the temperature range 3.5 to 15 K is measured in two high purity niobium single crystals having residual resistivity ratios of 22700 and 19200 and orientations of the rod axis [110] and [100]. The investigations show that by means of the longitudinal magnetic field the thermal conductivity may decrease only to a limiting value. In the crystal directions [110] and [100] for the ratio of the thermal conductivity in zero field and the thermal conductivity in the saturation field the temperature-independent factors 1.92 and 1.27, respectively, are determined. With the aid of these factors the thermal conductivity in the normal state is evaluated from the measured values of thermal conductivity below Tsub(c) in the magnetic field. The different conduction and scattering mechanisms are discussed. (author)

  13. Superconductivity in SrNi2P2 single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ronning, Filip [Los Alamos National Laboratory; Bauer, Eric D [Los Alamos National Laboratory; Park, Tuscon [Los Alamos National Laboratory; Thompson, Joe D [Los Alamos National Laboratory

    2009-01-01

    Heat capacity, magnetic susceptibility, and resistivity of SrNi{sub 2}P{sub 2} single crystals are presented, illustrating the structural transition at 325 K, and bulk superconductivity at 1.4 K. The magnitude of {Tc}, fits to the heat capacity data, the small upper critical field H{sub c2} = 390 Oe, and {kappa} = 2.1 suggests a conventional fully gapped superconductor. With applied pressure we find that superconductivity persists into the so-called 'collapsed tetragonal' phase, although the transition temperature is monotonically suppressed with increasing pressure. This argues that reduced dimensionality can be a mechanism for increasing the transition temperatures of layered NiP, as well as layered FeAs and NiAs, superconductors.

  14. Preparation of high purity yttrium single crystals by electrotransport

    International Nuclear Information System (INIS)

    Volkov, V.T.; Nikiforova, T.V.; Ionov, A.M.; Pustovit, A.N.; Sikharulidse, G.G.

    1981-01-01

    The possibility of obtaining yttrium crystals of high purity by the method of solid state electrotransport (SSE) was investigated in the present work. The behaviour of low contents of iron, aluminium, silicon, tantalum, copper, silver and vanadium as metallic impurities was studied using mass spectrometry. It is shown that all the impurities investigated, except copper, migrate to the anode. During electrotransfer a purification with respect to these impurities by a factor of 4 - 6 is obtained. It is proposed that the diffusion coefficients of the metallic impurities investigated are anomalously high and that the behaviour of the impurities during SSE in adapters necessitates further investigation. By using a three-stage process with intermediate removal of the anode end yttrium single crystals with a resistance ratio rho 293 /rhosub(4.2)=570 were produced. (Auth.)

  15. Microscopic single-crystal refractometry as a function of wavelength

    International Nuclear Information System (INIS)

    DeLoach, L.D.

    1994-01-01

    The refractive indices of crystal fragments 50--200 μm in size can be measured for light wavelengths between 365 and 1100 nm with a spindle-stage refractometer. Established methods from optical crystallograpy are used to orient a crystal on the microscope spindle stage and then to match its refractive index to an immersion fluid. The refractive index of the fluid for the wavelength of light and matching temperature is determined by comparison of a reference crystal on a second spindle axis with the fluid under the match conditions. Investigations of new nonlinear-optical crystals admirably demonstrate the advantages of measuring the refractive index to ± 0.0004 in small single crystals

  16. Induced defects in neutron irradiated GaN single crystals

    International Nuclear Information System (INIS)

    Park, I. W.; Koh, E. K.; Kim, Y. M.; Choh, S. H.; Park, S. S.; Kim, B. G.; Sohn, J. M.

    2005-01-01

    The local structure of defects in undoped, Si-doped, and neutron irradiated free standing GaN bulk crystals, grown by hydride vapor phase epitaxy, has been investigated by employing Raman scattering and cathodoluminescence. The GaN samples were irradiated to a dose of 2 x 10 17 neutrons in an atomic reactor at Korea Atomic Energy Research Institute. There was no appreciable change in the Raman spectra for undoped GaN samples before and after neutron irradiation. However, a forbidden transition, A 1 (TO) mode, appeared for a neutron irradiated Si-doped GaN crystal. Cathodoluminescence spectrum for the neutron irradiated Si-doped GaN crystal became much more broadened than that for the unirradiated one. The experimental results reveal the generation of defects with locally deformed structure in the wurtzite Si-doped GaN single crystal

  17. Quantum nernst effect in a bismuth single crystal

    International Nuclear Information System (INIS)

    Matsuo, M.; Endo, A.; Hatano, N.; Nakamura, H.; Shirasaki, R.; Sugihara, K.

    2009-07-01

    We calculate the phonon-drag contribution to the transverse (Nernst) thermoelectric power S yx in a bismuth single crystal subjected to a quantizing magnetic field. The calculated heights of the Nernst peaks originating from the hole Landau levels and their temperature dependence reproduce the right order of magnitude for those of the pronounced magneto-oscillations recently reported by Behnia et al. A striking experimental finding that S yx is much larger than the longitudinal (Seebeck) thermoelectric power S xx can be naturally explained as the effect of the phonon drag, combined with the well-known relation between the longitudinal and the Hall resistivity ρ xx >> |ρ yx | in a semi-metal bismuth. The calculation that includes the contribution of both holes and electrons suggests that some of the hitherto unexplained minor peaks located roughly at the fractional filling of the hole Landau levels are attributable to the electron Landau levels. (author)

  18. Shock compression experiments on Lithium Deuteride single crystals.

    Energy Technology Data Exchange (ETDEWEB)

    Knudson, Marcus D.; Desjarlais, Michael Paul; Lemke, Raymond W.

    2014-10-01

    S hock compression exper iments in the few hundred GPa (multi - Mabr) regime were performed on Lithium Deuteride (LiD) single crystals . This study utilized the high velocity flyer plate capability of the Sandia Z Machine to perform impact experiments at flyer plate velocities in the range of 17 - 32 km/s. Measurements included pressure, density, and temperature between %7E200 - 600 GPa along the Principal Hugoniot - the locus of end states achievable through compression by large amplitude shock waves - as well as pressure and density of re - shock states up to %7E900 GPa . The experimental measurements are compared with recent density functional theory calculations as well as a new tabular equation of state developed at Los Alamos National Labs.

  19. White beam synchrotron fractography of molybdenum and niobium single crystals

    International Nuclear Information System (INIS)

    Bilello, J.C.; Hmelo, A.B.

    1983-01-01

    It has been demonstrated that a White Beam Synchrotron reflection technique can be used to characterize the fracture surface of Mo and Nb single crystals. This technique when used in conjunction with Berg-Barrett (or in the future monochromatic synchrotron topography) gives detailed information which correlates the internal defect structure to the cleavage surface morphology. In particular, synchrotron fractography has revealed the full extent of the plastic zone associated with a precursor crack, has clearly identified the nature of the initial crack where more than one precursor could have existed, and give detailed information on the extent of twinning and microtwinning. In comparison with other fractography methods for such semi-brittle metals the White Beam Synchrotron method not only achieves rapid data collection, but also provides internal defect structure correlation non-destructively. (author)

  20. Trapped electrons in irradiated single crystals of polyhydroxy compounds

    International Nuclear Information System (INIS)

    Box, H.C.; Budzinski, E.E.; Freund, H.G.; Potter, W.R.

    1979-01-01

    The intermolecular trapping of electrons has been observed in single crystals of dulcitol and L(+) arabinose x-irradiated at 4.2 0 K. Attribution of a major component of the ESR absorption to trapped electrons is based upon the character of the hyperfine pattern, which arises from multiple anisotropic hyperfine interactions with exchangeable protons, and on the g value of the absorption, which is always less than the free spin value. The removal of the trapped electron absorption upon irradiation with visible light has also been demonstrated. In these experiments all of the electrons are trapped in identical sites. This circumstance provides some important advantages in the study of the factors affecting the stabilization of charge in an environment of polarizable molecules

  1. Growth of single-crystal YAG fiber optics.

    Science.gov (United States)

    Nie, Craig D; Bera, Subhabrata; Harrington, James A

    2016-07-11

    Single-crystal YAG (Y3Al5O12) fibers have been grown by the laser heated pedestal growth technique with losses as low as 0.3 dB/m at 1.06 μm. These YAG fibers are as long as about 60 cm with diameters around 330 μm. The early fibers were grown from unoriented YAG seed fibers and these fibers exhibited facet steps or ridges on the surface of the fiber. However, recently we have grown fibers using an oriented seed to grow step-free fibers. Scattering losses made on the fibers indicate that the scattering losses are equal to about 30% of the total loss.

  2. Platinum single crystal electrodes for the electrocatalysis of methane oxidation

    Directory of Open Access Journals (Sweden)

    Mayara Munaretto

    2011-03-01

    Full Text Available The main objective of this paper is to characterize the voltammetric profiles of platinum single crystals of low Miller indexes Pt(100 and Pt(110 and study their catalytic activities on the oxidation of methane. In this way, it was developed a metallic surface modified by presence of other metal oxide, which presents catalytic activity for this reaction. It is well known that the electrooxidation of methane (CH4 leads mainly to the formation of CO2 and H2O, however, the oxidation can also lead to the formation of CO, a reaction intermediate that has strong interaction with metal surfaces, such as platinum. This molecule tends to accumulate on the platinum surface and to passive it, due to the self-poisoning, decreasing its catalytic activity. Therefore, the main aim of this work was the development of a platinum electrode modified by deposition of titanium oxide, which presented electrocatalytic properties for the oxidation of methane.

  3. Phonon interactions with methyl radicals in single crystals

    Directory of Open Access Journals (Sweden)

    James W. Wells

    2017-04-01

    Full Text Available The high temperature ESR spectra’s anomalous appearance at very low temperatures for the methyl radical created in single crystals is explained by magnetic dipole interactions with neighboring protons. These protons acting via phonon vibrations induce resonant oscillations with the methyl group to establish a very temperature sensitive ‘‘relaxation’’ mode that allows the higher energy ‘‘E’’ state electrons with spin 12 to ‘‘decay’’ into ‘‘A’’ spin 12 states. Because of the amplitude amplification with temperature, the ‘‘E’’ state population is depleted and the ‘‘A’’ state population augmented to produce the high temperature ESR spectrum. This phenomenon is found to be valid for all but the very highest barriers to methyl group tunneling. In support, a time dependent spin population study shows this temperature evolution in the state populations under this perturbation.

  4. Neutron transmission and reflection at a copper single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M.; Maayouf, R.M.A.; Abdel-Kawy, A.; Fayek, M.; Habib, N. (Atomic Energy Establishment, Cairo (Egypt). Reactor and Neutron Physics Dept.); Wahba, M. (Ain Shams Univ., Cairo (Egypt). Dept. of Engineering Physics and Mathematics)

    1991-06-01

    Neutron transmission and reflection at a copper single crystal cut along the (111) plane were studied with the fixed-scattering-angle spectrometer installed at the ET-RR-1 reactor. The transmission was measured for neutron wavelengths between 0.15 and 0.46 nm and various orientations of the (111) plane with respect to the incident beam. When used as a neutron band pass filter, the crystal is optimally oriented when the neutron beam is incident parallel to the (111) direction. The reflectivity was measured for the (111) plane at 45deg with respect to the incident beam. The results were found to be in reasonable agreement with a value predicted for the reflected intensity at an imperfect crystal with finite absorption. (orig.).

  5. Neutron transmission of single-crystal sapphire filters

    International Nuclear Information System (INIS)

    Adib, M.; Kilany, M.; Habib, N.; Fathallah, M.

    2005-01-01

    An additive formula is given that permits the calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-sections as a function of sapphire temperature and crystal parameters. We have developed a computer program that allows calculations of the thermal neutron transmission for the sapphire rhombohedral structure and its equivalent trigonal structure. The calculated total cross-section values and effective attenuation coefficient for single-crystalline sapphire at different temperatures are compared with measured values. Overall agreement is indicated between the formula fits and experimental data. We discuss the use of sapphire single crystal as a thermal neutron filter in terms of the optimum crystal thickness, mosaic spread, temperature, cutting plane and tuning for efficient transmission of thermal-reactor neutrons. (author)

  6. Neutron Transmission of Single-crystal Sapphire Filters

    Science.gov (United States)

    Adib, M.; Kilany, M.; Habib, N.; Fathallah, M.

    2005-05-01

    An additive formula is given that permits the calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-sections as a function of sapphire temperature and crystal parameters. We have developed a computer program that allows calculations of the thermal neutron transmission for the sapphire rhombohedral structure and its equivalent trigonal structure. The calculated total cross-section values and effective attenuation coefficient for single-crystalline sapphire at different temperatures are compared with measured values. Overall agreement is indicated between the formula and experimental data. We discuss the use of sapphire single crystal as a thermal neutron filter in terms of the optimum cystal thickness, mosaic spread, temperature, cutting plane and tuning for efficient transmission of thermal-reactor neutrons.

  7. Neutron transmission of single-crystal sapphire filters

    International Nuclear Information System (INIS)

    Adib, M.; Kilany, M.; Habib, N.; Fathallah, M.

    2004-01-01

    A simple additive formula is given that permits the calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-sections as a function of sapphire temperature and crystal parameters. We have developed a computer program that allows calculations of the thermal neutron transmission for the sapphire rhombohedral structure and its equivalent trigonal structure. The calculated total cross-section values and effective attenuation coefficient for mono-crystalline sapphire at different temperatures are compared with measured values. Overall agreement is indicated between the formula fits and experimental data. We discuss the use of sapphire single-crystal as a thermal neutron filter in terms of the optimum crystal thickness, mosaic spread, temperature, cutting plane and tuning for efficient transmission of thermal-reactor neutrons

  8. Angular correlation of annihilation photons in ice single crystals

    DEFF Research Database (Denmark)

    Mogensen, O. E.; Kvajic, G.; Eldrup, Morten Mostgaard

    1971-01-01

    -lattice vectors g⃗ on the direction perpendicular to the slits and the sample surface. The relative area of the central plus the side peaks was (15.2 ± 0.4)% for all curves. All the peaks are interpreted as due to parapositronium annihilation. The side peaks are explained as evidence for the positronium center......Linear-slit angular-correlation curves were obtained at - 148 °C for the [0001], [10¯10], and [11¯20] directions in single crystals of ice. Besides the narrow central peak, pronounced narrow side peaks were also observed. They occurred at angles θ=2πℏgz/mc, where gz is the projection of reciprocal...

  9. Effect of neutron irradiation on single crystal V3Si

    International Nuclear Information System (INIS)

    Viswanathan, R.; Caton, R.; Cox, D.E.; Guha, A.; Sarachik, M.P.; Smith, F.W.; Testardi, L.R.

    1977-01-01

    We We have investigated the effect of successive neutron irradiation up to a fluence of approximately 2 x 10 19 n/cm 2 , by measurements of heat capacity, susceptibility, resistivity, acoustic velocity and neutron diffraction in a single crystal V 3 Si. We find that for low level doses (phi t greater than or equal to 3.5 x 10 18 n/cm 2 ) (a) the structural transformation is very sensitive, whereas the suerconducting transition temperature, T/sub c/, is hardly affected, and (b) except for low temperature heat capacity, most of the other measurements show very little change. For the highest fluence of 2 x 10 19 n/cm 2 used to date, the T/sub c/ dropped to 7.5 K with large changes in the linear heat capacity coefficient, magnetic susceptibility and sound velocity. These results are discussed briefly in this paper

  10. Neutron radiation damage in NbO single crystals

    International Nuclear Information System (INIS)

    Onozuka, T.; Koiwa, M.; Ishikawa, Y.; Yamaguchi, S.; Hirabayashi, M.

    1977-01-01

    The effect of neutron irradiation and subsequent recovery has been studied for Nb0 single crystals of a defective NaCl structure containing 25% vacancies of niobium and oxygen. A very large increase (about 1%) in the lattice constant is observed after irradiation of 1.5 x 10 19 and 1 x 10 20 nvt (> 1 MeV). From the intensity measurements of x-ray and neutron diffraction, it is revealed that the knock-on atoms fill preferentially their respective vacant sites; Nb atoms occupy Nb-vacancies, and 0 atoms occupy 0-vacancies with nearly the same probabilities; 0.53 for 1.5 x 10 19 nvt. The mean threshold energy for displacement is estimated to be about 3 eV. (author)

  11. Diffusion of Ti in α-Zr single crystals

    International Nuclear Information System (INIS)

    Hood, G.M.; Zou, H.; Schultz, R.J.; Jackman, J.A.

    1994-11-01

    Ti diffusion coefficients (D) have been measured in nominally pure αZr single crystals (773-1124 K) in directions both parallel (D pa ) and perpendicular (D pe , few data) to the c-axis: tracer techniques and secondary ion mass spectrometry were used to determine the diffusion profiles. The results show a temperature dependence which suggests two regions of diffusion behaviour. Above 1035 K, region I, diffusion conforms to the expectations of intrinsic behaviour with normal Arrhenius law constants: D pa = 1.7 x 10 -3 exp(-2.93 ± 0.08 eV/kΤ) m 2 /s. Below 1035 K, region II, D's are enhanced with respect to an extrapolation of region I behaviour. The region II data are associated with extrinsic effects. (author). 13 refs., 1 tab., 3 figs

  12. Fishtail effect in twinned and detwinned YBCO single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Boudissa, M. [Universite Ferhat Abbas, Faculte des Sciences de l' Ingenieur, Setif (Algeria); Halimi, R. [Universite Mentouri, Unite de Recherche de Physique des Materiaux, Constantine (Algeria); Frikach, K.; Senoussi, S. [Universite Paris-Sud, Laboratoire de Physique des Solides, Orsay (France)

    2006-09-15

    We have studied the magnetization hysteresis loops of a twinned and detwinned single crystals in a temperature range between 4.2 and 100 K and a magnetic field (H) range between 0 and 6 T. We carried out relaxation measurements on the samples at different temperatures and magnetic fields. We investigated the twin pinning as a function of temperature (T) and the fishtail anomaly in the critical current density of the two samples. We tried in this study to confirm or infirm the different models which explain the fishtail effect by confronting them to our experimental results We found that the collective creep theory is consistent with the results of our experiment in the field region where the magnetization is at its minimum. This field marks a crossover between the small and large bundle pinning regimes. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Fishtail effect in twinned and detwinned YBCO single crystals

    International Nuclear Information System (INIS)

    Boudissa, M.; Halimi, R.; Frikach, K.; Senoussi, S.

    2006-01-01

    We have studied the magnetization hysteresis loops of a twinned and detwinned single crystals in a temperature range between 4.2 and 100 K and a magnetic field (H) range between 0 and 6 T. We carried out relaxation measurements on the samples at different temperatures and magnetic fields. We investigated the twin pinning as a function of temperature (T) and the fishtail anomaly in the critical current density of the two samples. We tried in this study to confirm or infirm the different models which explain the fishtail effect by confronting them to our experimental results We found that the collective creep theory is consistent with the results of our experiment in the field region where the magnetization is at its minimum. This field marks a crossover between the small and large bundle pinning regimes. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Optical absorption in gel grown cadmium tartrate single crystals

    International Nuclear Information System (INIS)

    Arora, S K; Kothari, A J; Patel, R G; Chauha, K M; Chudasama, B N

    2006-01-01

    Single crystals of cadmium tartrate pentahydrate (CTP) have been grown by the famous gel technique. The slow and controlled reaction between Cd 2+ and (C 4 H 4 O 6 ) 2- ions in silica hydrogel results in formation of the insoluble product, CdC 4 H 4 O 6 .5H 2 O. Optical absorption spectra have been recorded in the range 200 to 2500 nm. Fundamental absorption edge for electronic transition has been analyzed. The direct allowed transition is found to be present in the region of relatively higher photon energy. Analysis of the segments of α 1/2 versus hν graph has been made to separate individual contribution of phonons. The phonons involved in the indirect transition are found to correspond to 335 and 420 cm -1 . Scattering of charge carriers in the lattice is found due to acoustic phonons

  15. Radiation damage mechanisms in single crystals of creatine monohydrate

    International Nuclear Information System (INIS)

    Wells, J.W.; Ko, C.

    1978-01-01

    ENDOR spectroscopy is utilized to define the temperature dependent sequence of molecular fragmentation processes occuring in x-irradiated single crystals of creatine monohydrate. Two conformations of the primary reduction product =OOC--C(H 2 ) --N(CH) 3 --C(NH 2 ) 2 + are found to undergo a series of subtle changes before deamination. The resultant radical -OOC--CH 2 then induces hydrogen abstraction to form a final room temperature product - OOC--CH--N(CH 3 ) --C(NH 2 ) + . An unknown initial oxidation species is found to decarboxylate forming the radical H 2 C--N(CH 3 ) --C(NH 2 ) 2 + which, although similar to the deamination product, exists at room temperature. The stability of this species is attributed to a delocalization of spin indicated by calculation and measurement

  16. Temperature and fluence effects in lead implanted cobalt single crystals

    International Nuclear Information System (INIS)

    Johansen, A.; Sarholt-Kristensen, L.; Johnson, E.; Steenstrup, S.; Chernysh, V.S.

    1988-01-01

    The channeled sputtering yields of the hcp and fcc phases of cobalt depend on the crystal structure and the radiation induced damage. Earlier irradiations of cobalt with argon ions channeled in the hcp direction give sputtering yields higher than expected in the temperature range 100-350deg C. This effect was attributed to a combination of radiation induced damage and a possible implantation induced hcp --> fcc phase transition. Sputtering yields for cobalt single crystals irradiated with 150 keV Pb + ions along the direction of the hcp phase and the direction of the fcc phase have been measured using the weightloss method. The radiation damage and the amount of lead retained in the implanted surface has been investigated by 'in situ' RBS/channeling analysis. Measured partial sputtering yields of lead ≅ 1 atom/ion indicate preferential sputtering of lead atoms. (orig.)

  17. X-ray conductivity of ZnSe single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Degoda, V. Ya., E-mail: degoda@univ.kiev.ua; Podust, G. P. [Taras Shevchenko Kyiv National University, Physics Department (Ukraine)

    2016-05-15

    The experimental I–V and current–illuminance characteristics of the X-ray conductivity and X-ray luminescence of zinc-selenide single crystals feature a nonlinear shape. The performed theoretical analysis of the kinetics of the X-ray conductivity shows that even with the presence of shallow and deep traps for free charge carriers in a semiconductor sample, the integral characteristics of the X-ray conductivity (the current–illuminance and I–V dependences) should be linear. It is possible to assume that the nonlinearity experimentally obtained in the I–V and current–illuminance characteristics can be caused by features of the generation of free charge carriers upon X-ray irradiation, i.e., the generation of hundreds of thousands of free charge carriers of opposite sign in a local region with a diameter of <1 μm and Coulomb interaction between the free charge carriers of opposite signs.

  18. Temperature dependence of magnetoresistance in copper single crystals

    Science.gov (United States)

    Bian, Q.; Niewczas, M.

    2018-03-01

    Transverse magnetoresistance of copper single crystals has been measured in the orientation of open-orbit from 2 K to 20 K for fields up to 9 T. The experimental Kohler's plots display deviation between individual curves below 16 K and overlap in the range of 16 K-20 K. The violation of the Kohler's rule below 16 K indicates that the magnetotransport can not be described by the classical theory of electron transport on spherical Fermi surface with a single relaxation time. A theoretical model incorporating two energy bands, spherical and cylindrical, with different relaxation times has been developed to describe the magnetoresistance data. The calculations show that the electron-phonon scattering rates at belly and neck regions of the Fermi surface have different temperature dependencies, and in general, they do not follow T3 law. The ratio of the relaxation times in belly and neck regions decreases parabolically with temperature as A - CT2 , with A and C being constants.

  19. The characterization of tungsten disulfide single crystals doped with gold

    International Nuclear Information System (INIS)

    Dumcenco, D.O.; Huang, Y.S.; Tiong, K.K.; Liang, C.H.; Chen, C.H.

    2007-01-01

    Single crystals of WS 2 doped with gold (WS 2 :Au) have been grown by the chemical vapour transport method using iodine as a transporting agent. Hall measurements indicate that the samples are p-type in nature. The doping effect of the materials are characterized by conductivity, surface photovoltage and piezo reflectance measurements. The higher conductivity respect to that of the undoped one suggests that more charge carriers are available for conduction in the doped compound. The surface photovoltage spectrum reveals an impurity level located below the A exciton. The direct band-edge excitonic transition energies for WS 2 :Au show redshifts and the broadening parameters of the excitonic transition features increase due to impurity scattering. (authors)

  20. Comprehensive studies on irradiated single-crystal diamond sensors

    Energy Technology Data Exchange (ETDEWEB)

    Stegler, Martin [DESY, Zeuthen (Germany)

    2015-07-01

    Single-crystal diamond sensors are used as part of the Beam and Radiation Instrumentation and Luminosity (BRIL) projects of the CMS experiment. Due to an upgrade of the Fast Beam Conditions Monitor (BCM1F) these diamond sensors are exchanged and the irradiated ones are now used for comprehensive studies. Current over voltage (IV), current over time (CT) and charge collection efficiency (CCE) measurements were performed for a better understanding of the radiation damage incurred during operation and to compensate in the future. The effect of illumination with various light sources on the charge collection efficiency was investigated and led to interesting results. Intensity and wavelength of the light were varied for deeper insight of polarization effects.

  1. Photoinduced surface voltage mapping study for large perovskite single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaojing; Liu, Yucheng; Gao, Fei; Yang, Zhou [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi' an 710062 (China); Liu, Shengzhong, E-mail: liusz@snnu.edu.cn [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi' an 710062 (China); Dalian Institute of Chemical Physics, iChEM, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023 (China)

    2016-05-02

    Using a series of illumination sources, including white light (tungsten-halogen lamp), 445-nm, 532-nm, 635-nm, and 730-nm lasers, the surface photovoltage (SPV) images were mapped for centimeter-sized CH{sub 3}NH{sub 3}PbX{sub 3} (X = Cl, Br, I) perovskite single crystals using Kelvin probe force microscopy. The significant SPV signals were observed to be wavelength-dependent. We attribute the appreciable SPV to the built-in electric field in the space charge region. This study shines light into the understanding of photoinduced charge generation and separation processes at nanoscale to help advance the development of perovskite solar cells, optoelectronics, laser, photodetector, and light-emitting diode (LED).

  2. Isothermal equation of state of a lithium fluoride single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.Y.

    1975-01-01

    An isothermal equation of state of a LiF single crystal was determined from length change measurements of the specimen as a function of hydrostatic pressure up to approximately 7 kbars at 28 to 41/sup 0/C. The length change was measured with an accuracy of approximately 500 A by using a Fabry Perot type He--Ne laser interferometer for a 1-m long specimen at temperatures constant to less than 0.002/sup 0/C. Several two- and three-parameter equations of state were used in analyzing the measured pressure-volume data. The computer fit for each equation of state determines not only the value of its parameters but also the standard deviations associated with them and one dependent variable, either pressure or volume. With the parameters determined, the equations of state are extrapolated to approximately 5 megabars in order to see discrepancies. Using the Born model of ionic solids, two equations of state were derived both from a power law potential and from an exponential form for the repulsive energy of alkali metal halides and used to fit the pressure-volume data of a LiF single crystal. They are also extrapolated to approximately 5 megabars. The Birch's two-parameter equation and the Grover, Getting, and Kennedy equation are indistinguishable from the two equations of state derived from the Born model for pressures approximately equal to or less than 800 kbars within +-20 kbars. The above four equations of state also fit closely the Pagannone and Drickamer static compression data, the Christian shock wave data, and the Kormer et al. shock wave data. The isothermal bulk modulus and its first pressure derivative at atmospheric pressure and 28.83/sup 0/C are 664.5 +- 0.5 kbars and 5.40 +- 0.18, respectively, in close agreement with those values ultrasonically measured by R. A. Miller and C. S. Smith. (auth)

  3. A discrete dislocation–transformation model for austenitic single crystals

    International Nuclear Information System (INIS)

    Shi, J; Turteltaub, S; Remmers, J J C; Van der Giessen, E

    2008-01-01

    A discrete model for analyzing the interaction between plastic flow and martensitic phase transformations is developed. The model is intended for simulating the microstructure evolution in a single crystal of austenite that transforms non-homogeneously into martensite. The plastic flow in the untransformed austenite is simulated using a plane-strain discrete dislocation model. The phase transformation is modeled via the nucleation and growth of discrete martensitic regions embedded in the austenitic single crystal. At each instant during loading, the coupled elasto-plasto-transformation problem is solved using the superposition of analytical solutions for the discrete dislocations and discrete transformation regions embedded in an infinite homogeneous medium and the numerical solution of a complementary problem used to enforce the actual boundary conditions and the heterogeneities in the medium. In order to describe the nucleation and growth of martensitic regions, a nucleation criterion and a kinetic law suitable for discrete regions are specified. The constitutive rules used in discrete dislocation simulations are supplemented with additional evolution rules to account for the phase transformation. To illustrate the basic features of the model, simulations of specimens under plane-strain uniaxial extension and contraction are analyzed. The simulations indicate that plastic flow reduces the average stress at which transformation begins, but it also reduces the transformation rate when compared with benchmark simulations without plasticity. Furthermore, due to local stress fluctuations caused by dislocations, martensitic systems can be activated even though transformation would not appear to be favorable based on the average stress. Conversely, the simulations indicate that the plastic hardening behavior is influenced by the reduction in the effective austenitic grain size due to the evolution of transformation. During cyclic simulations, the coupled plasticity

  4. Third order nonlinear optical properties of a paratellurite single crystal

    Science.gov (United States)

    Duclère, J.-R.; Hayakawa, T.; Roginskii, E. M.; Smirnov, M. B.; Mirgorodsky, A.; Couderc, V.; Masson, O.; Colas, M.; Noguera, O.; Rodriguez, V.; Thomas, P.

    2018-05-01

    The (a,b) plane angular dependence of the third-order nonlinear optical susceptibility, χ(3) , of a c-cut paratellurite (α-TeO2) single crystal was quantitatively evaluated here by the Z-scan technique, using a Ti:sapphire femtosecond laser operated at 800 nm. In particular, the mean value Re( ⟨χ(3)⟩a,b )(α-TeO2) of the optical tensor has been extracted from such experiments via a direct comparison with the data collected for a fused silica reference glass plate. A R e (⟨χ(3)⟩(a,b )(α-TeO2)):R e (χ(3))(SiO2 glass) ratio roughly equal to 49.1 is found, and our result compares thus very favourably with the unique experimental value (a ratio of ˜50) reported by Kim et al. [J. Am. Ceram. Soc. 76, 2486 (1993)] for a pure TeO2 glass. In addition, it is shown that the angular dependence of the phase modulation within the (a,b) plane can be fully understood in the light of the strong dextro-rotatory power known for TeO2 materials. Taking into account the optical activity, some analytical model serving to estimate the diagonal and non-diagonal components of the third order nonlinear susceptibility tensor has been thus developed. Finally, Re( χxxxx(3) ) and Re( χxxyy(3) ) values of 95.1 ×10-22 m 2/V2 and 42.0 ×10-22 m2/V2 , respectively, are then deduced for a paratellurite single crystal, considering fused silica as a reference.

  5. Single crystal diamond detectors grown by chemical vapor deposition

    International Nuclear Information System (INIS)

    Tuve, C.; Angelone, M.; Bellini, V.; Balducci, A.; Donato, M.G.; Faggio, G.; Marinelli, M.; Messina, G.; Milani, E.; Morgada, M.E.; Pillon, M.; Potenza, R.; Pucella, G.; Russo, G.; Santangelo, S.; Scoccia, M.; Sutera, C.; Tucciarone, A.; Verona-Rinati, G.

    2007-01-01

    The detection properties of heteropitaxial (polycrystalline, pCVD) and homoepitaxial (single crystal, scCVD) diamond films grown by microwave chemical vapor deposition (CVD) in the Laboratories of Roma 'Tor Vergata' University are reported. The pCVD diamond detectors were tested with α-particles from different sources and 12 C ions produced by 15MV Tandem accelerator at Southern National Laboratories (LNS) in Catania (Italy). pCVDs were also used to monitor 14MeV neutrons produced by the D-T plasma at Joint European Torus (JET), Culham, U.K. The limit of pCVDs is the poor energy resolution. To overcome this problem, we developed scCVD diamonds using the same reactor parameters that optimized pCVD diamonds. scCVD were grown on a low cost (100) HPHT single crystal substrate. A detector 110μm thick was tested under α-particles and under 14MeV neutron irradiation. The charge collection efficiency spectrum measured under irradiation with a triple α-particle source shows three clearly resolved peaks, with an energy resolution of about 1.1%. The measured spectra under neutron irradiation show a well separated C(n,α 0 ) 9 Be12 reaction peak with an energy spread of 0.5MeV for 14.8MeV neutrons and 0.3MeV for 14.1MeV neutrons, which are fully compatible with the energy spread of the incident neutron beams

  6. High Frequency Components Recovery in Music Signals

    Directory of Open Access Journals (Sweden)

    V. Sebesta

    1999-04-01

    Full Text Available A new technique is presented which improves the subjective quality of band-limited music by recovery of high frequency components. Sequences of harmonics are found in the band-limited signal and these sequences are expanded to the high frequency band to estimate the lost part of spectrum. High frequency signal is generated to match this estimation and is added to the band-limited signal.

  7. Wideband Single Crystal Transducer for Bone Characterization, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS proposes to develop a simple-to-use, launch capable, ultrasound transducer that is capable of producing the necessary bandwidth to accurately determine in vivo...

  8. Solid-state molecular organometallic chemistry. Single-crystal to single-crystal reactivity and catalysis with light hydrocarbon substrates.

    Science.gov (United States)

    Chadwick, F Mark; McKay, Alasdair I; Martinez-Martinez, Antonio J; Rees, Nicholas H; Krämer, Tobias; Macgregor, Stuart A; Weller, Andrew S

    2017-08-01

    Single-crystal to single-crystal solid/gas reactivity and catalysis starting from the precursor sigma-alkane complex [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(η 2 η 2 -NBA)][BAr F 4 ] (NBA = norbornane; Ar F = 3,5-(CF 3 ) 2 C 6 H 3 ) is reported. By adding ethene, propene and 1-butene to this precursor in solid/gas reactions the resulting alkene complexes [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(alkene) x ][BAr F 4 ] are formed. The ethene ( x = 2) complex, [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(ethene) 2 ][BAr F 4 ]-Oct , has been characterized in the solid-state (single-crystal X-ray diffraction) and by solution and solid-state NMR spectroscopy. Rapid, low temperature recrystallization using solution methods results in a different crystalline modification, [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(ethene) 2 ][BAr F 4 ]-Hex , that has a hexagonal microporous structure ( P 6 3 22). The propene complex ( x = 1) [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(propene)][BAr F 4 ] is characterized as having a π-bound alkene with a supporting γ-agostic Rh···H 3 C interaction at low temperature by single-crystal X-ray diffraction, variable temperature solution and solid-state NMR spectroscopy, as well as periodic density functional theory (DFT) calculations. A fluxional process occurs in both the solid-state and solution that is proposed to proceed via a tautomeric allyl-hydride. Gas/solid catalytic isomerization of d 3 -propene, H 2 C 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111

  9. Sample Size Induced Brittle-to-Ductile Transition of Single-Crystal Aluminum Nitride

    Science.gov (United States)

    2015-08-01

    ARL-RP-0528 ● AUG 2015 US Army Research Laboratory Sample Size Induced Brittle-to- Ductile Transition of Single-Crystal Aluminum...originator. ARL-RP-0528 ● AUG 2015 US Army Research Laboratory Sample Size Induced Brittle-to- Ductile Transition of Single-Crystal...Sample Size Induced Brittle-to- Ductile Transition of Single-Crystal Aluminum Nitride 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  10. Cryogenic Fluid Transfer Components Using Single Crystal Piezoelectric Actuators, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic fluid transfer components using single crystal piezoelectric actuators are proposed to enable low thermal mass, minimal heat leak, low power consumption...

  11. Advanced Electroactive Single Crystal and Polymer Actuator Concepts for Passive Optics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes large stroke and high precision piezoelectric single crystal and electroactive polymer actuator concepts?HYBrid Actuation System (HYBAS)...

  12. Cryogenic Fluid Transfer Components Using Single Crystal Piezoelectric Actuators, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic fluid transfer components using single crystal piezoelectric actuators are proposed to enable low thermal mass, minimal heat leak, low power consumption...

  13. Growth of single crystals of BaFe12O19 by solid state crystal growth

    International Nuclear Information System (INIS)

    Fisher, John G.; Sun, Hengyang; Kook, Young-Geun; Kim, Joon-Seong; Le, Phan Gia

    2016-01-01

    Single crystals of BaFe 12 O 19 are grown for the first time by solid state crystal growth. Seed crystals of BaFe 12 O 19 are buried in BaFe 12 O 19 +1 wt% BaCO 3 powder, which are then pressed into pellets containing the seed crystals. During sintering, single crystals of BaFe 12 O 19 up to ∼130 μm thick in the c-axis direction grow on the seed crystals by consuming grains from the surrounding polycrystalline matrix. Scanning electron microscopy-energy dispersive spectroscopy analysis shows that the single crystal and the surrounding polycrystalline matrix have the same chemical composition. Micro-Raman scattering shows the single crystal to have the BaFe 12 O 19 structure. The optimum growth temperature is found to be 1200 °C. The single crystal growth behavior is explained using the mixed control theory of grain growth. - Highlights: • Single crystals of BaFe 12 O 19 are grown by solid state crystal growth. • A single crystal up to ∼130 μm thick (c-axis direction) grows on the seed crystal. • The single crystal and surrounding ceramic matrix have similar composition. • Micro-Raman scattering shows the single crystal has the BaFe 12 O 19 structure.

  14. Growth of GaN single crystals by a Ca- and Ba-added Na flux method

    Science.gov (United States)

    Ukegawa, H.; Konishi, Y.; Fujimori, T.; Miyoshi, N.; Imade, M.; Yoshimura, M.; Kitaoka, Y.; Sasaki, T.; Mori, Y.

    2011-02-01

    GaN substrates are desirable for fabricating ultra-violet LEDs and LDs, and high-power and high-frequency transistors. High-quality GaN single crystals can be obtained by using Na flux method, but the growth habit of bulk crystals must be controlled. In this study, we investigated the effects of additives (Ca, Ba) on the growth habit and impurity concentration in the crystals. The aspect ratio (c/a) of the crystals was increased by increasing the amount of additives, showing that the growth habit could be changed from the pyramidal shape to the prism shape. Ba concentration was below the detection limit (1x1015 atoms/cm3).

  15. Optical characteristics of Tl0.995Cu0.005InS2 single crystals

    Science.gov (United States)

    El-Nahass, M. M.; Ali, H. A. M.; Abu-Samaha, F. S. H.

    2013-04-01

    Optical properties of Tl0.995Cu0.005InS2 single crystals were studied using transmittance and reflectance measurements in the spectral wavelength range of 300-2500 nm. The optical constants (n and k) were calculated at room temperature. The analysis of the spectral behavior of the absorption coefficient in the absorption region revealed indirect transition. The refractive index dispersion data were analyzed in terms of the single oscillator model. Dispersion parameters such as the single oscillator energy (Eo), the dispersion energy (Ed), the high frequency dielectric constant (ε∞), the lattice dielectric constant (εL) and the ratio of free charge carrier concentration to the effective mass (N/m*) were estimated. The third order nonlinear susceptibility (χ(3)) was calculated according to the generalized Miller's rule. Also, the real and imaginary parts of the complex dielectric constant were determined.

  16. Structure of cleaved (001) USb2 single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shao-ping [Los Alamos National Laboratory; Hawley, Marilyn [Los Alamos National Laboratory; Bauer, Eric D [Los Alamos National Laboratory; Stockum, Phil B [STANFORD UNIV.; Manoharan, Hari C [STANFORD UNIV

    2009-01-01

    We have achieved what we believe to be the first atomic resolution STM images for a uranium compound taken at room temperature. The a, b, and c lattice parameters in the images confirm that the USb{sub 2} crystals cleave on the (001) basal plane as expected. The a and b dimensions were equal, with the atoms arranged in a cubic pattern. Our calculations indicate a symmetric cut between Sb planes to be the most favorable cleavage plane and U atoms to be responsible for most of the DOS measured by STM. Some strange features observed in the STM will be discussed in conjunction with ab initio calculations. The purpose of this work is to demonstrate the power of scanning tunneling microscopy (STM) techniques combined with a theoretical underpinning to determine the surface atomic structure and properties of actinide materials, such as the quasi 2-dimensional uranium dipnictide USb{sub 2} single crystal, thereby contributing to the understanding of their surface structural and electronic properties. The members of this interesting UX{sub 2} (X=P, As, Sb, Bi) series of compounds display dual localized and itinerant 5f electron behavior within the same compound due to the hybridization of the 5f orbitals with the conduction band. With the exception of UO{sub 2}, which has to be studied at elevated temperature to generate enough carriers for STM imaging, STM techniques have not been applied successfully to the characterization of the surface atomic structure of any other single crystal actinide compound, to the best of our knowledge. However, STM has been used to a limited extent for the study of some cerium compounds. STM probes electronic properties at the atomic level and can directly provide information about the local density of filled and empty states (LDOS) states simultaneously. A STM topograph provides the local atomic arrangement and spacing of the atoms on the surface, local defect structures (e.g. steps, vacancies, and kink sites) and the presence of contaminants

  17. Growth and characterisation of lead iodide single crystals

    International Nuclear Information System (INIS)

    Tonn, Justus

    2012-01-01

    The work in hand deals with the growth and characterisation of lead iodide (PbI 2 ) single crystals. PbI 2 is regarded as a promising candidate for low-noise X- and gamma ray detection at room temperature. Its benefits if compared to conventional materials like HgI 2 , CdTe, Si, or GaAs lie in a band gap energy of 2.32 eV, an excellent ability to absorb radiation, and a high electrical resistivity. For an application of PbI 2 as detector material the growth and characterisation of crystals with high chemical and structural quality is extremely challenging. In light of this, the effectiveness of zone purification of the PbI 2 used for crystal growth was confirmed by spectroscopic analysis. Furthermore, technological aspects during processing of purified PbI 2 were investigated. With the help of thermal analysis, a correlation was found between the degree of exposing the source material to oxygen from the air and the structural quality of the resulting crystals. A hydrogen treatment was applied to PbI 2 as an effective method for the removal of oxidic pollutions, which resulted in a significant reduction of structural defects like polytypic growth and stress-induced cracking. The growth of PbI 2 single crystals was, among others, carried out by the Bridgman-Stockbarger method. In this context, much effort was put on the investigation of influences resulting from the design and preparation of ampoules. For the first time, crystal growth of PbI 2 was also carried out by the Czochralski method. If compared to the Bridgman-Stockbarger method, the Czochralski technique allowed a significantly faster growth of nearly crack-free crystals with a reproducible predetermination of crystallographic orientation. By an optimised sample preparation of PbI 2 , surface orientations perpendicular to the usually cleaved (0001) plane were realised. It is now possible to determine the material properties along directions which were so far not accessible. Thus, for example, the ratio of

  18. Comparison of low and high frequency transducers in the detection of liver metastases.

    Science.gov (United States)

    Schacherer, D; Wrede, C; Obermeier, F; Schölmerich, J; Schlottmann, K; Klebl, F

    2006-09-01

    To evaluate the benefit of the additional use of a high frequency ultrasound probe (7.5 MHz) in finding suspicious liver lesions compared to the examination using a 3.5-MHz transducer only. One hundred and fifty-seven patients with underlying malignant disease were examined with both transducers using one of three ultrasound machines (Siemens Sonoline Elegra, GE Healthcare Logic 9, or Hitachi EUB-8500). Findings on hepatic lesions were collected on a standardised documentation sheet and evaluated by descriptive statistics. Ninety-three patients (59.2% of all patients) showed no evident liver lesion on conventional ultrasound with the 3.5 MHz probe. In 29 patients (18.5%) new suspicious liver lesions were found by using the high frequency transducer. Thirteen of these 29 patients (44.8%) were suspected to suffer from diffuse infiltration of the liver with malignant lesions or at least 10 additional visible lesions. In 14 patients, no liver lesion had been known before high frequency ultrasound examination. The size of newly described liver lesions ranged from 2 mm to 1.5 cm. Time needed for the additional examination with the high frequency transducer ranged between 1 and 15 min with an average of 4.0 min. The additional use of a high frequency transducer in patients with underlying malignant disease slightly extends the examination time, but reveals new, potentially malignant hepatic lesions in almost every fifth patient.

  19. Frictional properties of single crystals HMX, RDX and PETN explosives

    International Nuclear Information System (INIS)

    Wu, Y.Q.; Huang, F.L.

    2010-01-01

    The frictional properties of single crystals of cyclotetramethylene tetranitramine (HMX), cyclotrimethylene trinitramine (RDX) and pentaerythritol tetranitrate (PETN) secondary explosives are examined using a sensitive friction machine. The explosive crystals used for the measurements are at least 3.5 mm wide. The friction coefficients between crystals of the same explosive (i.e., HMX on HMX, etc.), crystals of different explosives (i.e., HMX on RDX, etc.), and each explosive and a well-polished gauge steel surface are determined. The frictional surfaces are also studied under an environmental scanning electron microscope (ESEM) to analyze surface microstructural changes under increasing loading forces. The friction coefficients vary considerably with increasing normal loading forces and are particularly sensitive to slider shapes, crystal roughness and the mechanical properties of both the slider and the sample. With increasing loading forces, most friction experiments show surface damage, consisting of grooves, debris, and nano-particles, on both the slider and sample. In some cases, a strong evidence of a localized molten state is found in the central region of the friction track. Possible mechanisms that affect the friction coefficient are discussed based on microscopic observations.

  20. Buckling of Single-Crystal Silicon Nanolines under Indentation

    Directory of Open Access Journals (Sweden)

    Min K. Kang

    2008-01-01

    Full Text Available Atomic force microscope-(AFM- based indentation tests were performed to examine mechanical properties of parallel single-crystal silicon nanolines (SiNLs of sub-100-nm line width, fabricated by a process combining electron-beam lithography and anisotropic wet etching. The SiNLs have straight and nearly atomically flat sidewalls, and the cross section is almost perfectly rectangular with uniform width and height along the longitudinal direction. The measured load-displacement curves from the indentation tests show an instability with large displacement bursts at a critical load ranging from 480 μN to 700 μN. This phenomenon is attributed to a transition of the buckling mode of the SiNLs under indentation. Using a set of finite element models with postbuckling analyses, we analyze the indentation-induced buckling modes and investigate the effects of tip location, contact friction, and substrate deformation on the critical load of mode transition. The results demonstrate a unique approach for the study of nanomaterials and patterned nanostructures via a combination of experiments and modeling.

  1. Plastic deformation of cubic zirconia single crystals at 1400 C

    International Nuclear Information System (INIS)

    Baufeld, B.; Baither, D.; Bartsch, M.; Messerschmidt, U.

    1998-01-01

    Cubic zirconia single crystals stabilized with 11 mol% yttria were deformed in air at 1400 C and around 1200 C at different strain rates along [1 anti 12] and [100] compression directions. The strain rate sensitivity of the flow stress was determined by strain rate cycling and stress relaxation tests. The microstructure of the deformed specimens was investigated by transmission high-voltage electron microscopy, including contrast extinction analysis for determining the Burgers vectors as well as stereo pairs and wide-angle tilting experiments to find the active slip planes. At deformation along [1 anti 12], the primary and secondary slip planes are of {100} type. Previous experiments had shown that the dislocations move easily on these planes in an athermal way. During deformation along [100], mainly dislocations on {100} planes are activated, which move in a viscous way by the aid of thermal activation. The discussion of the different deformation behaviours during deformation along [1 anti 12] and [100] is based on the different dynamic properties of dislocations and the fact that recovery is an essential feature of the deformation of cubic zirconia at 1400 C. The results on the shape of the deformation curve and the strain rate sensitivity of the flow stress are partly at variance with those of previous authors. (orig.)

  2. Thermal neutron scattering kernels for sapphire and silicon single crystals

    International Nuclear Information System (INIS)

    Cantargi, F.; Granada, J.R.; Mayer, R.E.

    2015-01-01

    Highlights: • Thermal cross section libraries for sapphire and silicon single crystals were generated. • Debye model was used to represent the vibrational frequency spectra to feed the NJOY code. • Sapphire total cross section was measured at Centro Atómico Bariloche. • Cross section libraries were validated with experimental data available. - Abstract: Sapphire and silicon are materials usually employed as filters in facilities with thermal neutron beams. Due to the lack of the corresponding thermal cross section libraries for those materials, necessary in calculations performed in order to optimize beams for specific applications, here we present the generation of new thermal neutron scattering kernels for those materials. The Debye model was used in both cases to represent the vibrational frequency spectra required to feed the NJOY nuclear data processing system in order to produce the corresponding libraries in ENDF and ACE format. These libraries were validated with available experimental data, some from the literature and others obtained at the pulsed neutron source at Centro Atómico Bariloche

  3. The neutron transmission of single crystal MgO filters

    International Nuclear Information System (INIS)

    Carpenter, J.M.; Hilleke, R.O.

    1989-01-01

    We have measured and analyzed the wavelength dependence of the transmission probability of a beam of neutrons passing through a single crystal MgO filter at 77 K. The 12.7 cm filter transmits 70% or more of the incident beam at wavelengths greater than about 1.8 A. At shorter wavelengths the transmission probability drops sharply, with 50% transmission occurring at about 1.2 A, and 1% transmission for the range 0.1-0.4 A. We have determined that cooling the filter to 77 K improves the transmission of >1 A neutrons, while further cooling to 25 K shows little additional improvement, and no improvement for short wavelengths. We have identified the wavelengths of the sharp dips in the transmission found in this region caused by Bragg scattering in MgO. We also show how these peaks may be used to calibrate the wavelength scale of time-of-flight measurements taken on instruments using similar filters. (orig.)

  4. Polymorphic transitions in single crystals: A new molecular dynamics method

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, M.; Rahman, A.

    1981-12-01

    A new Lagrangian formulation is introduced. It can be used to make molecular dynamics (MD) calculations on systems under the most general, externally applied, conditions of stress. In this formulation the MD cell shape and size can change according to dynamical equations given by this Lagrangian. This new MD technique is well suited to the study of structural transformations in solids under external stress and at finite temperature. As an example of the use of this technique we show how a single crystal of Ni behaves under uniform uniaxial compressive and tensile loads. This work confirms some of the results of static (i.e., zero temperature) calculations reported in the literature. We also show that some results regarding the stress-strain relation obtained by static calculations are invalid at finite temperature. We find that, under compressive loading, our model of Ni shows a bifurcation in its stress-strain relation; this bifurcation provides a link in configuration space between cubic and hexagonal close packing. It is suggested that such a transformation could perhaps be observed experimentally under extreme conditions of shock.

  5. The CCP14 for single crystal and powder diffraction

    International Nuclear Information System (INIS)

    Cranswick, L.M.D.

    1999-01-01

    Full text: The Collaborative Computation Project Number 14 for Single Crystal and Powder Diffraction (CCP14) is continuing in its objective to provide freely available software and resources for the powder diffraction and crystallographic community. Using the Internet and World Wide Web, we are presently compiling software and web resources, creating tutorials and help files. It also endeavours to encourage and provide resources to assist program authors with developing their software. The CCP14 presently has its web-site at and a mirror at (at CSIRO, Melbourne, Australia). Auto web-mirroring is being implemented to allow users to obtain software and access to resources in a more time effective manner. For people in countries isolated from the Internet, the CCP14 on CD-ROM can be snail mailed on request. This is in the form of a Virtual World Wide Web/Virtual Internet; in the same vein as the existing Crystallographic Nexus CD-ROM. Copyright (1999) Australian X-ray Analytical Association Inc

  6. Analysis of ripple formation in single crystal spot welds

    Energy Technology Data Exchange (ETDEWEB)

    Rappaz, M. [Ecole Polytechnique Federale de Lausanne (Switzerland). Lab de Metallurgie Physique; Corrigan, D.; Boatner, L.A. [Oak Ridge National Lab., TN (United States). Solid State Div.

    1997-10-01

    Stationary spot welds have been made at the (001) surface of Fe-l5%Ni-15%Cr single crystals using a Gas Tungsten Arc (GTA). On the top surface of the spot welds, very regular and concentric ripples were observed after solidification by differential interference color microscopy. Their height (typically 1--5 {micro}m) and spacing (typically {approximately} 60 {micro}m) decreased with the radius of the pool. These ripples were successfully accounted for in terms of capillary-wave theory using the fundamental mode frequency f{sub 0} given by the first zero of the zero-order Bessel function. The spacing d between the ripples was then equated to v{sub s}/f{sub 0}, where v{sub s} is the solidification rate. From the measured ripple spacing, the velocity of the pool was deduced as a function of the radius, and this velocity was in good agreement with the results of a heat-flow simulation.

  7. High temperature microhardness of ZrB2 single crystals

    International Nuclear Information System (INIS)

    Yi Xuan; Chen Chunhua; Otani, Shigeki

    2002-01-01

    Vickers microhardness of (0001), (101-bar 0) and (112-bar 0) planes of ZrB 2 single crystal prepared by the floating zone method has been investigated at various temperatures and loading times. As the temperature increases from 25 deg. C to 1000 deg. C, hardness drops from ∼20.9 GN m -2 of all planes to ∼7.85 GN m -2 for (0001) plane and ∼4.91 GN m -2 for (101-bar 0) and (112-bar 0) planes. The hardness of (101-bar 0) and (112-bar 0) planes exhibits almost same tendency and is always lower than that of (0001) plane by about 35%. The thermal softening coefficients of all three planes strongly depends on the temperature range with clear inflections at 400 deg. C and 700 deg. C. The loading time dependence of hardness is used to calculate the activation energy for creep. In addition, a relationship was found that shows the variation of hardness with temperature to be proportional to the variation with the loading time in a specific temperature range. (rapid communication)

  8. Ge-Au eutectic bonding of Ge (100) single crystals

    International Nuclear Information System (INIS)

    Knowlton, W.B.; Beeman, J.W.; Emes, J.H.; Loretto, D.; Itoh, K.M.; Haller, E.E.

    1993-01-01

    The author present preliminary results on the eutectic bonding between two (100) Ge single crystal surfaces using thin films of Au ranging from 900 angstrom/surface to 300 angstrom/surface and Pd (10% the thickness of Au). Following bonding, plan view optical microscopy (OM) of the cleaved interface of samples with Au thicknesses ≤ 500 angstrom/surface show a eutectic morphology more conducive to phonon transmission through the bond interface. High resolution transmission electron microscopy (HRTEM) cross sectional interface studies of a 300 angstrom/surface Au sample show epitaxial growth of Ge. In sections of the bond, lattice continuity of the Ge is apparent through the interface. TEM studies also reveal heteroepitaxial growth of Au with a Au-Ge lattice mismatch of less than 2%. Eutectic bonds with 200 angstrom/surface Au have been attained with characterization pending. An optical polishing technique for Ge has been optimized to insure intimate contact between the Ge surfaces prior to bonding. Interferometry analysis of the optically polished Ge surface shows that surface height fluctuations lie within ±150 angstrom across an interval of lmm. Characterization of phonon transmission through the interface is discussed with respect to low temperature detection of ballistic phonons

  9. DEVELOPMENT OF PROTECTIVE COATINGS FOR SINGLE CRYSTAL TURBINE BLADES

    Energy Technology Data Exchange (ETDEWEB)

    Amarendra K. Rai

    2006-12-04

    Turbine blades in coal derived syngas systems are subject to oxidation and corrosion due to high steam temperature and pressure. Thermal barrier coatings (TBCs) are developed to address these problems. The emphasis is on prime-reliant design and a better coating architecture, having high temperature and corrosion resistance properties for turbine blades. In Phase I, UES Inc. proposed to develop, characterize and optimize a prime reliant TBC system, having smooth and defect-free NiCoCrAlY bond layer and a defect free oxide sublayer, using a filtered arc technology. Phase I work demonstrated the deposition of highly dense, smooth and defect free NiCoCrAlY bond coat on a single crystal CMSX-4 substrate and the deposition of alpha-alumina and yttrium aluminum garnet (YAG) sublayer on top of the bond coat. Isothermal and cyclic oxidation test and pre- and post-characterization of these layers, in Phase I work, (with and without top TBC layer of commercial EB PVD YSZ) revealed significant performance enhancement.

  10. Defect sensitive etching of hexagonal boron nitride single crystals

    Science.gov (United States)

    Edgar, J. H.; Liu, S.; Hoffman, T.; Zhang, Yichao; Twigg, M. E.; Bassim, Nabil D.; Liang, Shenglong; Khan, Neelam

    2017-12-01

    Defect sensitive etching (DSE) was developed to estimate the density of non-basal plane dislocations in hexagonal boron nitride (hBN) single crystals. The crystals employed in this study were precipitated by slowly cooling (2-4 °C/h) a nickel-chromium flux saturated with hBN from 1500 °C under 1 bar of flowing nitrogen. On the (0001) planes, hexagonal-shaped etch pits were formed by etching the crystals in a eutectic mixture of NaOH and KOH between 450 °C and 525 °C for 1-2 min. There were three types of pits: pointed bottom, flat bottom, and mixed shape pits. Cross-sectional transmission electron microscopy revealed that the pointed bottom etch pits examined were associated with threading dislocations. All of these dislocations had an a-type burgers vector (i.e., they were edge dislocations, since the line direction is perpendicular to the [ 2 11 ¯ 0 ]-type direction). The pit widths were much wider than the pit depths as measured by atomic force microscopy, indicating the lateral etch rate was much faster than the vertical etch rate. From an Arrhenius plot of the log of the etch rate versus the inverse temperature, the activation energy was approximately 60 kJ/mol. This work demonstrates that DSE is an effective method for locating threading dislocations in hBN and estimating their densities.

  11. Pyroelectric properties of phosphoric acid-doped TGS single crystals

    International Nuclear Information System (INIS)

    Saxena, Aparna; Fahim, M; Gupta, Vinay; Sreenivas, K

    2003-01-01

    Pyroelectric properties of phosphoric acid (H 3 PO 4 )-doped triglycine sulfate (TGSP) single crystals grown from solutions containing 0.1-0.5 mol of H 3 PO 4 have been studied. Incorporation of H 3 PO 4 into the crystal lattice is found to induce an internal bias field (E b ) and is observed through the presence of a sustained polarization and pyroelectricity beyond the transition temperature. The internal bias field has been estimated theoretically by fitting the experimentally measured data on temperature dependence of the pyroelectric coefficient (λ), dielectric constant (ε') and polarization (P). A high E b value in the range 9 x 10 3 -15.5 x 10 4 V m -1 is obtained for crystals grown with 0.1-0.5 mol of H 3 PO 4 in the solution, and a specific concentration of 0.2-0.25 mol of H 3 PO 4 in the solution during crystal growth is found to be optimum for a high figure of merit for detectivity, F d = 428 μC m -2 K -1

  12. Pyroelectric properties of phosphoric acid-doped TGS single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Aparna; Fahim, M; Gupta, Vinay; Sreenivas, K [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2003-12-21

    Pyroelectric properties of phosphoric acid (H{sub 3}PO{sub 4})-doped triglycine sulfate (TGSP) single crystals grown from solutions containing 0.1-0.5 mol of H{sub 3}PO{sub 4} have been studied. Incorporation of H{sub 3}PO{sub 4} into the crystal lattice is found to induce an internal bias field (E{sub b}) and is observed through the presence of a sustained polarization and pyroelectricity beyond the transition temperature. The internal bias field has been estimated theoretically by fitting the experimentally measured data on temperature dependence of the pyroelectric coefficient ({lambda}), dielectric constant ({epsilon}') and polarization (P). A high E{sub b} value in the range 9 x 10{sup 3}-15.5 x 10{sup 4} V m{sup -1} is obtained for crystals grown with 0.1-0.5 mol of H{sub 3}PO{sub 4} in the solution, and a specific concentration of 0.2-0.25 mol of H{sub 3}PO{sub 4} in the solution during crystal growth is found to be optimum for a high figure of merit for detectivity, F{sub d} = 428 {mu}C m{sup -2} K{sup -1}.

  13. Understanding surface structure and chemistry of single crystal lanthanum aluminate

    KAUST Repository

    Pramana, Stevin S.

    2017-03-02

    The surface crystallography and chemistry of a LaAlO3 single crystal, a material mainly used as a substrate to deposit technologically important thin films (e.g. for superconducting and magnetic devices), was analysed using surface X-ray diffraction and low energy ion scattering spectroscopy. The surface was determined to be terminated by Al-O species, and was significantly different from the idealised bulk structure. Termination reversal was not observed at higher temperature (600 °C) and chamber pressure of 10−10 Torr, but rather an increased Al-O occupancy occurred, which was accompanied by a larger outwards relaxation of Al from the bulk positions. Changing the oxygen pressure to 10−6 Torr enriched the Al site occupancy fraction at the outermost surface from 0.245(10) to 0.325(9). In contrast the LaO, which is located at the next sub-surface atomic layer, showed no chemical enrichment and the structural relaxation was lower than for the top AlO2 layer. Knowledge of the surface structure will aid the understanding of how and which type of interface will be formed when LaAlO3 is used as a substrate as a function of temperature and pressure, and so lead to improved design of device structures.

  14. Thermal diffusion boron doping of single-crystal natural diamond

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jung-Hun; Mikael, Solomon; Mi, Hongyi; Venkataramanan, Giri; Ma, Zhenqiang, E-mail: mazq@engr.wisc.edu [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Wu, Henry; Morgan, Dane [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Blanchard, James P. [Department of Nuclear Engineering and Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Zhou, Weidong [Department of Electrical Engineering, NanoFAB Center, University of Texas at Arlington, Arlington, Texas 76019 (United States); Gong, Shaoqin [Department of Biomedical Engineering and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2016-05-28

    With the best overall electronic and thermal properties, single crystal diamond (SCD) is the extreme wide bandgap material that is expected to revolutionize power electronics and radio-frequency electronics in the future. However, turning SCD into useful semiconductors requires overcoming doping challenges, as conventional substitutional doping techniques, such as thermal diffusion and ion implantation, are not easily applicable to SCD. Here we report a simple and easily accessible doping strategy demonstrating that electrically activated, substitutional doping in SCD without inducing graphitization transition or lattice damage can be readily realized with thermal diffusion at relatively low temperatures by using heavily doped Si nanomembranes as a unique dopant carrying medium. Atomistic simulations elucidate a vacancy exchange boron doping mechanism that occurs at the bonded interface between Si and diamond. We further demonstrate selectively doped high voltage diodes and half-wave rectifier circuits using such doped SCD. Our new doping strategy has established a reachable path toward using SCDs for future high voltage power conversion systems and for other novel diamond based electronic devices. The novel doping mechanism may find its critical use in other wide bandgap semiconductors.

  15. Electron irradiation effect on single crystal of niobium

    International Nuclear Information System (INIS)

    Otero, M.P.; Lucki, G.

    1984-01-01

    The effect of electron irradiation (900 KeV) on gliding dislocations of single crystal Nb with its tensile axe in the [941] orientation was observed for the in-situ deformation in a high voltage electron microscope (HVEM) at Argonne National Laboratory. The experimental was carried out by the 1 hour-electron irradiation with no stress applied. Straight dislocations actuating as sinks for the electron produced defects became helicoidal as the irradiation proceeded. Frenkel pairs were created in Nb for electron energies > = 650 KeV and, as the single vacancies do not undergo long-range migration in Nb at temperatures much below 620 K, the defects that are entrapped by the dislocations are self-interstitials produced by electron displacement. Applying the stress it was possible to observe that modified dislocations did not glide while the dislocations not affected by the irradiation are visibly in movement. This important result explains the neutron and electron-irradiation induced work-hardening effect for Nb that was previously observed. (Author) [pt

  16. Thermal diffusion boron doping of single-crystal natural diamond

    International Nuclear Information System (INIS)

    Seo, Jung-Hun; Mikael, Solomon; Mi, Hongyi; Venkataramanan, Giri; Ma, Zhenqiang; Wu, Henry; Morgan, Dane; Blanchard, James P.; Zhou, Weidong; Gong, Shaoqin

    2016-01-01

    With the best overall electronic and thermal properties, single crystal diamond (SCD) is the extreme wide bandgap material that is expected to revolutionize power electronics and radio-frequency electronics in the future. However, turning SCD into useful semiconductors requires overcoming doping challenges, as conventional substitutional doping techniques, such as thermal diffusion and ion implantation, are not easily applicable to SCD. Here we report a simple and easily accessible doping strategy demonstrating that electrically activated, substitutional doping in SCD without inducing graphitization transition or lattice damage can be readily realized with thermal diffusion at relatively low temperatures by using heavily doped Si nanomembranes as a unique dopant carrying medium. Atomistic simulations elucidate a vacancy exchange boron doping mechanism that occurs at the bonded interface between Si and diamond. We further demonstrate selectively doped high voltage diodes and half-wave rectifier circuits using such doped SCD. Our new doping strategy has established a reachable path toward using SCDs for future high voltage power conversion systems and for other novel diamond based electronic devices. The novel doping mechanism may find its critical use in other wide bandgap semiconductors.

  17. Ion implantation of CdTe single crystals

    International Nuclear Information System (INIS)

    Wiecek, Tomasz; Popovich, Volodymir; Bester, Mariusz; Kuzma, Marian

    2017-01-01

    Ion implantation is a technique which is widely used in industry for unique modification of metal surface for medical applications. In semiconductor silicon technology ion implantation is also widely used for thin layer electronic or optoelectronic devices production. For other semiconductor materials this technique is still at an early stage. In this paper based on literature data we present the main features of the implantation of CdTe single crystals as well as some of the major problems which are likely to occur when dealing with them. The most unexpected feature is the high resistance of these crystals against the amorphization caused by ion implantation even at high doses (10"1"7 1/cm"2). The second property is the disposal of defects much deeper in the sample then it follows from the modeling calculations. The outline of principles of the ion implantation is included in the paper. The data based on RBS measurements and modeling results obtained by using SRIM software were taken into account.

  18. Reduction of precursor decay anomaly in single crystal lithium fluoride

    Science.gov (United States)

    Sano, Yukio

    2000-08-01

    The purpose of this study is to reveal that the precursor decay anomaly in single crystal lithium fluoride is reduced by Sano's decay curve [Y. Sano, J. Appl. Phys. 85, 7616 (1999)], which is much smaller in slope than Asay's decay curve [J. R. Asay, G. R. Fowles, G. E. Duvall, M. H. Miles, and R. F. Tinder, J. Appl. Phys. 43, 2132 (1972)]. To this end, strain, particle, velocity, and stress in a precursor and near the leading edge of the follower changing with time along Sano's decay curve are first analyzed quantitatively. The analysis verified the existence of degenerate contraction waves I and II and a subrarefaction wave R', and the decay process [Y. Sano, J. Appl. Phys. 77, 3746 (1995)] caused in sequence by evolving followers C, I, II, R', Rb. Next, inequalities relating decay rates qualitatively to plastic strain rates at the leading edge of the follower, which are derived using the properties of the followers, are incorporated into the analysis. Calculation results showed that the plastic strain rates were reduced by low decay rates. This indicates that the precursor decay anomaly might be greatly reduced by Sano's decay curve.

  19. Simulations of surface stress effects in nanoscale single crystals

    Science.gov (United States)

    Zadin, V.; Veske, M.; Vigonski, S.; Jansson, V.; Muszinsky, J.; Parviainen, S.; Aabloo, A.; Djurabekova, F.

    2018-04-01

    Onset of vacuum arcing near a metal surface is often associated with nanoscale asperities, which may dynamically appear due to different processes ongoing in the surface and subsurface layers in the presence of high electric fields. Thermally activated processes, as well as plastic deformation caused by tensile stress due to an applied electric field, are usually not accessible by atomistic simulations because of the long time needed for these processes to occur. On the other hand, finite element methods, able to describe the process of plastic deformations in materials at realistic stresses, do not include surface properties. The latter are particularly important for the problems where the surface plays crucial role in the studied process, as for instance, in the case of plastic deformations at a nanovoid. In the current study by means of molecular dynamics (MD) and finite element simulations we analyse the stress distribution in single crystal copper containing a nanovoid buried deep under the surface. We have developed a methodology to incorporate the surface effects into the solid mechanics framework by utilizing elastic properties of crystals, pre-calculated using MD simulations. The method leads to computationally efficient stress calculations and can be easily implemented in commercially available finite element software, making it an attractive analysis tool.

  20. Implanted strontium titanate single crystals for energy storage applications

    Energy Technology Data Exchange (ETDEWEB)

    Stoeber, Max; Cherkouk, Charaf; Walter, Juliane; Strohmeyer, Ralph; Leisegang, Tilmann; Meyer, Dirk Carl [TU Bergakademie, Freiberg (Germany); Schelter, Matthias; Zosel, Jens [Kurt Schwabe Institute, Meinsberg (Germany); Prucnal, Slawomir [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (Germany)

    2016-07-01

    A rapid increase of the demand on efficient energy storage solutions requires new approaches beyond the Li-ion technology. In particular, metal-air batteries as well as solid-state fuel cells offer a great potential for high-energy-density storage devices. Since the efficiency of such devices is significantly limited by the activation of both the oxygen reduction reaction (ORR) and the ionic and electronic conductivities, an adequate porosity as well as a controlled doping are required. The ion implantation is a key technology to achieve this goal. In this work, p- and n-doped strontium titanate (SrTiO{sub 3}) single crystals were used as oxidic materials. The oxygen exchange kinetics as well as the structural changes of the SrTiO{sub 3} crystal surface induced by the ion implantation were investigated. On one hand, the depth profile of dopant concentration and dopant valence state were determined using sputtered X-ray photoelectron spectroscopy (XPS). On the other hand, the overall oxygen exchange kinetic of the implanted SrTiO{sub 3} crystal was quantitatively described by means of coulometric titration using Zirox system (ZIROX GmbH, Germany). Furthermore, the surface morphology of the samples was investigated using atomic force microscopy (AFM).

  1. A discrete dislocation dynamics model of creeping single crystals

    Science.gov (United States)

    Rajaguru, M.; Keralavarma, S. M.

    2018-04-01

    Failure by creep is a design limiting issue for metallic materials used in several high temperature applications. Current theoretical models of creep are phenomenological with little connection to the underlying microscopic mechanisms. In this paper, a bottom-up simulation framework based on the discrete dislocation dynamics method is presented for dislocation creep aided by the diffusion of vacancies, known to be the rate controlling mechanism at high temperature and stress levels. The time evolution of the creep strain and the dislocation microstructure in a periodic unit cell of a nominally infinite single crystal is simulated using the kinetic Monte Carlo method, together with approximate constitutive laws formulated for the rates of thermal activation of dislocations over local pinning obstacles. The deformation of the crystal due to dislocation glide between individual thermal activation events is simulated using a standard dislocation dynamics algorithm, extended to account for constant stress periodic boundary conditions. Steady state creep conditions are obtained in the simulations with the predicted creep rates as a function of stress and temperature in good agreement with experimentally reported values. Arrhenius scaling of the creep rates as a function of temperature and power-law scaling with the applied stress are also reproduced, with the values of the power-law exponents in the high stress regime in good agreement with experiments.

  2. Optical properties of tungsten disulfide single crystals doped with gold

    International Nuclear Information System (INIS)

    Dumcenco, D.O.; Hsu, H.P.; Huang, Y.S.; Liang, C.H.; Tiong, K.K.; Du, C.H.

    2008-01-01

    Single crystals of WS 2 doped with gold have been grown by the chemical vapour transport method using iodine as a transporting agent. X-ray diffraction (XRD) pattern analysis revealed presence of mixed three-layer rhombohedral (3R) and two-layer hexagonal (2H) polytypes for the doped crystals while the undoped one shows only 2H form. Hall measurements indicate that the samples are p-type in nature. The doping effects of the materials are characterized by surface photovoltage (SPV), photoconductivity (PC) and piezoreflectance (PzR) measurements. Room temperature SPV and PC spectra reveal a feature located at ∼60 meV below the A exciton and has been tentatively assigned to be an impurity level caused by Au dopant. Excitonic transition energies of the A, B, d and C excitons detected in PzR spectra show red shift due to the presence of a small amount of Au and the broadening parameters of the excitonic transition features increase due to impurity scattering. The values of the parameters that describe the electron (exciton)-phonon interaction of excitonic transitions of A-B are about two times larger than that of d-C excitonic pairs. The possible assignments of the different origins of A-B and d-C excitonic pairs have been discussed

  3. Ion beam synthesis of buried single crystal erbium silicide

    International Nuclear Information System (INIS)

    Golanski, A.; Feenstra, R.; Galloway, M.D.; Park, J.L.; Pennycook, S.J.; Harmon, H.E.; White, C.W.

    1990-01-01

    High doses (10 16 --10 17 /cm 2 ) of 170 keV Er + were implanted into single-crystal left-angle 111 right-angle Si at implantation temperatures between 350 degree C and 520 degree C. Annealing at 800 degree C in vacuum following the implant, the growth and coalescence of ErSi 2 precipitates leads to a buried single crystalline ErSi 2 layer. This has been studied using Rutherford backscattering/channeling, X-ray diffraction, cross-sectional TEM and resistance versus temperature measurements. Samples implanted at 520 degree C using an Er dose of 7 x 10 16 /cm 2 and thermally annealed were subsequently used as seeds for the mesoepitaxial growth of the buried layer during a second implantation and annealing process. Growth occurs meso-epitaxially along both interfaces through beam induced, defect mediated mobility of Er atoms. The crystalline quality of the ErSi 2 layer strongly depends on the temperature during the second implantation. 12 refs., 4 figs

  4. Polymorphic transitions in single crystals: A new molecular dynamics method

    International Nuclear Information System (INIS)

    Parrinello, M.; Rahman, A.

    1981-01-01

    A new Lagrangian formulation is introduced. It can be used to make molecular dynamics (MD) calculations on systems under the most general, externally applied, conditions of stress. In this formulation the MD cell shape and size can change according to dynamical equations given by this Lagrangian. This new MD technique is well suited to the study of structural transformations in solids under external stress and at finite temperature. As an example of the use of this technique we show how a single crystal of Ni behaves under uniform uniaxial compressive and tensile loads. This work confirms some of the results of static (i.e., zero temperature) calculations reported in the literature. We also show that some results regarding the stress-strain relation obtained by static calculations are invalid at finite temperature. We find that, under compressive loading, our model of Ni shows a bifurcation in its stress-strain relation; this bifurcation provides a link in configuration space between cubic and hexagonal close packing. It is suggested that such a transformation could perhaps be observed experimentally under extreme conditions of shock

  5. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ... the transducer (the device placed on the patient's skin to send and receive the returning sound waves), ...

  6. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... use different transducers (with different capabilities) during a single exam. The transducer sends out high-frequency sound ... modality for the diagnosis and monitoring of pregnant women and their unborn babies. Ultrasound provides real-time ...

  7. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... sends out high-frequency sound waves (that the human ear cannot hear) into the body and then ... ultrasound , there are no known harmful effects on humans. top of page What are the limitations of ...

  8. Abdominal ultrasound (image)

    Science.gov (United States)

    Abdominal ultrasound is a scanning technique used to image the interior of the abdomen. Like the X- ... use high frequency sound waves to produce an image and do not expose the individual to radiation. ...

  9. Growth of single crystals from solutions using semi-permeable membranes

    Science.gov (United States)

    Varkey, A. J.; Okeke, C. E.

    1983-05-01

    A technique suitable for growth of single crystals from solutions using semi-preamble membranes is described. Using this technique single crystals of copper sulphate, potassium bromide and ammonium dihydrogen phosphate have been successfully grown. Advantages of this technique over other methods are discussed.

  10. Probing the crossover in CO desorption from single crystal to nanoparticulate Ru model catalysts

    DEFF Research Database (Denmark)

    Murphy, Shane; Strebel, Christian Ejersbo; Vendelbo, Søren Bastholm

    2011-01-01

    Crossover in CO desorption behavior and nanoscale structure probed with STM from ruthenium single crystals to PVD and mass-selected nanoparticles.......Crossover in CO desorption behavior and nanoscale structure probed with STM from ruthenium single crystals to PVD and mass-selected nanoparticles....

  11. Effect of grain boundary on the field-effect mobility of microrod single crystal organic transistors.

    Science.gov (United States)

    Kim, Jaekyun; Kang, Jingu; Cho, Sangho; Yoo, Byungwook; Kim, Yong-Hoon; Park, Sung Kyu

    2014-11-01

    High-performance microrod single crystal organic transistors based on a p-type 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) semiconductor are fabricated and the effects of grain boundaries on the carrier transport have been investigated. The spin-coating of C8-BTBT and subsequent solvent vapor annealing process enabled the formation of organic single crystals with high aspect ratio in the range of 10 - 20. It was found that the organic field-effect transistors (OFETs) based on these single crystals yield a field-effect mobility and an on/off current ratio of 8.04 cm2/Vs and > 10(5), respectively. However, single crystal OFETs with a kink, in which two single crystals are fused together, exhibited a noticeable drop of field-effect mobility, and we claim that this phenomenon results from the carrier scattering at the grain boundary.

  12. Growth of single crystals of BaFe12O19 by solid state crystal growth

    Science.gov (United States)

    Fisher, John G.; Sun, Hengyang; Kook, Young-Geun; Kim, Joon-Seong; Le, Phan Gia

    2016-10-01

    Single crystals of BaFe12O19 are grown for the first time by solid state crystal growth. Seed crystals of BaFe12O19 are buried in BaFe12O19+1 wt% BaCO3 powder, which are then pressed into pellets containing the seed crystals. During sintering, single crystals of BaFe12O19 up to ∼130 μm thick in the c-axis direction grow on the seed crystals by consuming grains from the surrounding polycrystalline matrix. Scanning electron microscopy-energy dispersive spectroscopy analysis shows that the single crystal and the surrounding polycrystalline matrix have the same chemical composition. Micro-Raman scattering shows the single crystal to have the BaFe12O19 structure. The optimum growth temperature is found to be 1200 °C. The single crystal growth behavior is explained using the mixed control theory of grain growth.

  13. Tensile properties of electron-beam-welded single crystals of molybdenum

    International Nuclear Information System (INIS)

    Hiraoka, Yutaka; Okada, Masatoshi; Irie, Hirosada; Fujii, Tadayuki.

    1987-01-01

    The purpose of this study is to investigate the macro- and microstructures and the tensile properties of electron-beam-welded single crystals of molybdenum. The single-crystal sheets were prepared by means of secondary recrystallization. The welding was carried out by a melt-run technique. The weld metal had the same crystallographic orientation as the base metal, and no grain boundary was observed. However, many large weld pores were formed mostly along the weld bond. The strength and ductility of the welded joints of single crystals were almost the same as those of the base metal (''annealed'' single crystals). It is concluded that the joint efficiency of molybdenum single crystals at room temperature or above was excellent and nearly 100 %. (author)

  14. Overview of the Advanced High Frequency Branch

    Science.gov (United States)

    Miranda, Felix A.

    2015-01-01

    This presentation provides an overview of the competencies, selected areas of research and technology development activities, and current external collaborative efforts of the NASA Glenn Research Center's Advanced High Frequency Branch.

  15. Nanostructures for Very High Frequency Electronics

    National Research Council Canada - National Science Library

    Gelmont, Boris

    2002-01-01

    The study of a new class of mesoscopic high frequency semi-conductor devices based on resonant tunneling in staggered-bandgap heterostructures with III-V semi-conductor ternary alloys such as AlGaSb...

  16. High-frequency conductivity of photoionized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Anakhov, M. V.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [National Research Nuclear University “MEPhI,” (Russian Federation)

    2016-08-15

    The tensor of the high-frequency conductivity of a plasma created via tunnel ionization of atoms in the field of linearly or circularly polarized radiation is derived. It is shown that the real part of the conductivity tensor is highly anisotropic. In the case of a toroidal velocity distribution of photoelectrons, the possibility of amplification of a weak high-frequency field polarized at a sufficiently large angle to the anisotropy axis of the initial nonequilibrium distribution is revealed.

  17. High frequency system project implementation plan

    International Nuclear Information System (INIS)

    Moon, L.L.

    1976-01-01

    The High Frequency System is a new mobile, digital diagnostic recording system for use at the Nevada Test Site. Many different kinds of event data will be digitized in real-time by this system, and these data will be recorded and stored for later read-out and transmission to NADCEN. The hardware and software requirements of the High Frequency System are examined, and the parameters of the system are proposed

  18. Cooking Appliances Using High-Frequency Heating

    OpenAIRE

    木村, 秀行; Hideyuki, KIMURA; (株)日立製作所機械研究所

    2007-01-01

    We have produced a guide suitable for people with no technical knowledge of cooking appliances that use high-frequency heating. In general, cooking appliances that use an electric heat source are popular since, they are simple to use because the offer easy heat control, are safe because they do not have naked flames, and do not make kitchens dirty because there is no exhaust. In recent years, high-efficiency cooking appliances using high-frequency heating technology have surged in popularity....

  19. Influence of Nd dopants on lattice parameters and thermal and elastic properties in YVO4 single crystals

    International Nuclear Information System (INIS)

    Kucytowski, J.; Wokulska, K.; Kazmierczak-Balata, A.; Bodzenta, J.; Lukasiewicz, T.; Hofman, B.; Pyka, M.

    2008-01-01

    The influence of neodymium doping on YVO 4 single crystals has been studied. The crystals were grown by the Czochralski method. One of them was pure YVO 4 and the others were doped with neodymium (YVO 4 :Nd) at various concentrations of Nd = 0.3-3.0 at.%. The changes of the lattice parameters were determined by the Bond's method [W.L. Bond, Acta Cryst. 13 (1960) 814]. The thermal diffusivity and the velocity of ultrasound using the photothermal method with mirage effect and the pulse echo method [J. Bodzenta, M. Pyka, J. Phys. IV France 137 (2006) 259] were measured. In the examined crystals, it was found that the lattice parameters increase while the thermal diffusivity decreases with increasing concentration of Nd atoms

  20. Single-Crystal Sapphire Optical Fiber Sensor Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, Gary [Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States); Scott, Brian [Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States); Wang, Anbo [Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States); Yu, Zhihao [Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States)

    2013-12-31

    This report summarizes technical progress on the program “Single-Crystal Sapphire Optical Fiber Sensor Instrumentation,” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. This project was completed in three phases, each with a separate focus. Phase I of the program, from October 1999 to April 2002, was devoted to development of sensing schema for use in high temperature, harsh environments. Different sensing designs were proposed and tested in the laboratory. Phase II of the program, from April 2002 to April 2009, focused on bringing the sensor technologies, which had already been successfully demonstrated in the laboratory, to a level where the sensors could be deployed in harsh industrial environments and eventually become commercially viable through a series of field tests. Also, a new sensing scheme was developed and tested with numerous advantages over all previous ones in Phase II. Phase III of the program, September 2009 to December 2013, focused on development of the new sensing scheme for field testing in conjunction with materials engineering of the improved sensor packaging lifetimes. In Phase I, three different sensing principles were studied: sapphire air-gap extrinsic Fabry-Perot sensors; intensity-based polarimetric sensors; and broadband polarimetric sensors. Black body radiation tests and corrosion tests were also performed in this phase. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. At the beginning of Phase II, in June 2004, the BPDI sensor was tested at the Wabash River coal gasifier

  1. Radiation-electromagnetic effect in germanium single crystals

    International Nuclear Information System (INIS)

    Kikoin, I.K.; Kikoin, L.I.; Lazarev, S.D.

    1980-01-01

    An experimental study was made of the radiation-electromagnetic effect in germanium single crystals when excess carriers were generated by bombardment with α particles, protons, or x rays in magnetic fields up to 8 kOe. The source of α particles and protons was a cyclotron and x rays were provided by a tube with a copper anode. The radiation-electromagnetic emf increased linearly on increase in the magnetic field and was directly proportional to the flux of charged particles at low values of the flux, reaching saturation at high values of the flux (approx.5 x 10 11 particles .cm -2 .sec -1 ). In the energy range 4--40 MeV the emf was practically independent of the α-particle energy. The sign of the emf was reversed when samples with a ground front surface were irradiated. Measurements of the photoelectromagnetic and Hall effects in the α-particle-irradiated samples showed that a p-n junction was produced by these particles and its presence should be allowed for in investigations of the radiation-electromagnetic effect. The measured even radiation-electromagnetic emf increased quadratically on increase in the magnetic field. An investigation was made of the barrier radiation-voltaic effect (when the emf was measured between the irradiated and unirradiated surfaces). Special masks were used to produce a set of consecutive p-n junctions in germanium crystals irradiated with α particles. A study of the photovoltaic and photoelectromagnetic effects in such samples showed that the method could be used to increase the efficiency of devices utilizing the photoelectromagnetic effect

  2. Crystal plasticity study of single crystal tungsten by indentation tests

    International Nuclear Information System (INIS)

    Yao, Weizhi

    2012-01-01

    Owing to its favorable material properties, tungsten (W) has been studied as a plasma-facing material in fusion reactors. Experiments on W heating in plasma sources and electron beam facilities have shown an intense micro-crack formation at the heated surface and sub-surface. The cracks go deep inside the irradiated sample, and often large distorted areas caused by local plastic deformation are present around the cracks. To interpret the crack-induced microscopic damage evolution process in W, one needs firstly to understand its plasticity on a single grain level, which is referred to as crystal plasticity. In this thesis, the crystal plasticity of single crystal tungsten (SCW) has been studied by spherical and Berkovich indentation tests and the finite element method with a crystal plasticity model. Appropriate values of the material parameters included in the crystal plasticity model are determined by fitting measured load-displacement curves and pile-up profiles with simulated counterparts for spherical indentation. The numerical simulations reveal excellent agreement with experiment. While the load-displacement curves and the deduced indentation hardness exhibit little sensitivity to the indented plane at small indentation depths, the orientation of slip directions within the crystals governs the development of deformation hillocks at the surface. It is found that several factors like friction, indentation depth, active slip systems, misoriented crystal orientation, misoriented sample surface and azimuthal orientation of the indenter can affect the indentation behavior of SCW. The Berkovich indentation test was also used to study the crystal plasticity of SCW after deuterium irradiation. The critical load (pop-in load) for triggering plastic deformation under the indenter is found to depend on the crystallographic orientation. The pop-in loads decrease dramatically after deuterium plasma irradiation for all three investigated crystallographic planes.

  3. Single-crystal elastic constants of natural ettringite

    KAUST Repository

    Speziale, Sergio

    2008-07-01

    The single-crystal elastic constants of natural ettringite were determined by Brillouin spectroscopy at ambient conditions. The six non-zero elastic constants of this trigonal mineral are: C11 = 35.1 ± 0.1 GPa, C12 = 21.9 ±0.1 GPa, C13 = 20.0 ± 0.5 GPa, C14 = 0.6 ± 0.2 GPa, C33 = 55 ± 1 GPa, C44 = 11.0 ± 0.2 GPa. The Hill average of the aggregate bulk, shear modulus and the polycrystal Young\\'s modulus and Poisson\\'s ratio are 27.3 ± 0.9 GPa, 9.5 ± 0.8 GPa, 25 ± 2 GPa and 0.34 ± 0.02 respectively. The longitudinal and shear elastic anisotropy are C33/C11 = 0.64 ± 0.01 and C66/C44 =0.60 ± 0.01. The elastic anisotropy in ettringite is connected to its crystallographic structure. Stiff chains of [Al(OH)6]3- octahedra alternating with triplets of Ca2+ in eight-fold coordination run parallel to the c-axis leading to higher stiffness along this direction. The determination of the elastic stiffness tensor can help in the prediction of the early age properties of cement paste when ettringite crystals precipitate and in the modeling of both internal and external sulfate attack when secondary ettringite formation leads to expansion of concrete. © 2008 Elsevier Ltd. All rights reserved.

  4. Single-crystal elastic constants of natural ettringite

    KAUST Repository

    Speziale, Sergio; Jiang, Fuming; Mao, Zhu; Monteiro, Paulo J.M.; Wenk, Hans-Rudolf; Duffy, Thomas S.; Schilling, Frank R.

    2008-01-01

    The single-crystal elastic constants of natural ettringite were determined by Brillouin spectroscopy at ambient conditions. The six non-zero elastic constants of this trigonal mineral are: C11 = 35.1 ± 0.1 GPa, C12 = 21.9 ±0.1 GPa, C13 = 20.0 ± 0.5 GPa, C14 = 0.6 ± 0.2 GPa, C33 = 55 ± 1 GPa, C44 = 11.0 ± 0.2 GPa. The Hill average of the aggregate bulk, shear modulus and the polycrystal Young's modulus and Poisson's ratio are 27.3 ± 0.9 GPa, 9.5 ± 0.8 GPa, 25 ± 2 GPa and 0.34 ± 0.02 respectively. The longitudinal and shear elastic anisotropy are C33/C11 = 0.64 ± 0.01 and C66/C44 =0.60 ± 0.01. The elastic anisotropy in ettringite is connected to its crystallographic structure. Stiff chains of [Al(OH)6]3- octahedra alternating with triplets of Ca2+ in eight-fold coordination run parallel to the c-axis leading to higher stiffness along this direction. The determination of the elastic stiffness tensor can help in the prediction of the early age properties of cement paste when ettringite crystals precipitate and in the modeling of both internal and external sulfate attack when secondary ettringite formation leads to expansion of concrete. © 2008 Elsevier Ltd. All rights reserved.

  5. Charged-particle spectroscopy in organic semiconducting single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ciavatti, A.; Basiricò, L.; Fraboni, B. [Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna (Italy); Sellin, P. J. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Fraleoni-Morgera, A. [ELETTRA-Sincrotrone Trieste, Strada Statale 14, Km 163.5, Basovizza, Trieste (Italy); Department of Engineering and Architecture, University of Trieste, V. Valerio 10, 34100 Trieste (Italy); CNR-Nano S3 Institute, Via Campi 213/A, 41125 Modena (Italy)

    2016-04-11

    The use of organic materials as radiation detectors has grown, due to the easy processability in liquid phase at room temperature and the possibility to cover large areas by means of low cost deposition techniques. Direct charged-particle detectors based on solution-grown Organic Semiconducting Single Crystals (OSSCs) are shown to be capable to detect charged particles in pulse mode, with very good peak discrimination. The direct charged-particle detection in OSSCs has been assessed both in the planar and in the vertical axes, and a digital pulse processing algorithm has been used to perform pulse height spectroscopy and to study the charge collection efficiency as a function of the applied bias voltage. Taking advantage of the charge spectroscopy and the good peak discrimination of pulse height spectra, an Hecht-like behavior of OSSCs radiation detectors is demonstrated. It has been possible to estimate the mobility-lifetime value in organic materials, a fundamental parameter for the characterization of radiation detectors, whose results are equal to μτ{sub coplanar} = (5 .5 ± 0.6 ) × 10{sup −6} cm{sup 2}/V and μτ{sub sandwich} = (1 .9 ± 0.2 ) × 10{sup −6} cm{sup 2}/V, values comparable to those of polycrystalline inorganic detectors. Moreover, alpha particles Time-of-Flight experiments have been carried out to estimate the drift mobility value. The results reported here indicate how charged-particle detectors based on OSSCs possess a great potential as low-cost, large area, solid-state direct detectors operating at room temperature. More interestingly, the good detection efficiency and peak discrimination observed for charged-particle detection in organic materials (hydrogen-rich molecules) are encouraging for their further exploitation in the detection of thermal and high-energy neutrons.

  6. Mechanical properties of low temperature proton irradiated single crystal copper

    International Nuclear Information System (INIS)

    Schildcrout, M.

    1975-01-01

    Single crystal copper samples, of varying degrees of cold work, were irradiated near either liquid helium or liquid nitrogen temperature by 10.1-MeV protons. The internal friction and dynamic Young's modulus were observed as a function of either temperature or integrated proton flux. The primary effect of irradiation was to produce dislocation pinning. The initial pinning rate was found to be very sensitive to cold work. During irradiation it was found that heavily cold worked samples (25 percent compression) exhibited, almost exclusively, exponential pinning given by Y = e/sup --lambda phi/. This is attributed to the immobilization, rather than shortening, of loop lengths and is characterized by the pinning constant lambda. Exponential pinning was also found, to a smaller degree, in less heavily cold worked samples. Cold work appears to reduce the ''effective volume'' within which the defect clusters produced by irradiation, can immobilize dislocation segments. The bulk effect was observed after dislocation pinning was completed. Expressed in terms of the fractional change in Young's modulus per unit concentration of irradiation induced defects, it was measured at liquid helium temperature to be --18.5 +- 3. An anelastic process occurring near 10 0 K for low kHz frequencies and due to stress-induced ordering of point defects produced by irradiation has also been studied. The peak height per unit fluence was found to decrease with increasing cold work. The peak was not observed in samples compressed 25 percent. For the most carefully handled sample the activation energy was (1.28 +- 0.05) x 10 -2 eV, the attempt frequency was 10/sup 11.6 +- .8/ s -1 , the shape factor was 0.20, and the half width of the peak was 11 percent larger than the theoretical value calculated from the Debye equation for a single relaxation process

  7. Magneto-acoustic properties of UCuGe single crystal

    Czech Academy of Sciences Publication Activity Database

    Yasin, S.; Andreev, Alexander V.; Sytcheva, A.; Wosnitza, J.; Zherlitsyn, S.

    2010-01-01

    Roč. 159, 1-2 (2010), 105-108 ISSN 0022-2291 R&D Projects: GA ČR GA202/09/0339 Grant - others:EuroMagNET(XE) 228043 Institutional research plan: CEZ:AV0Z10100520 Keywords : ultrasound * UTX compounds * pulse fields * field-induced transition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.403, year: 2010

  8. Crystal growth and scintillation properties of Pr-doped SrI2 single crystals

    Science.gov (United States)

    Yokota, Yuui; Ito, Tomoki; Yoshino, Masao; Yamaji, Akihiro; Ohashi, Yuji; Kurosawa, Shunsuke; Kamada, Kei; Yoshikawa, Akira

    2018-04-01

    Pr-doped SrI2 (Pr:SrI2) single crystals with various Pr concentrations were grown by the halide-micro-pulling-down (H-μ-PD) method, and the scintillation properties were investigated. Pr1%:SrI2 single crystal with high transparency could be grown by the H-μ-PD method while Pr2, 3 and 5%:SrI2 single crystals included some cracks and opaque parts. In the photoluminescence spectrum of the Pr1%:SrI2 single crystal, an emission peak originated from the Pr3+ ion was observed around 435 nm while the radioluminescence spectra showed an emission peak around 535 nm for the undoped SrI2 and Pr:SrI2 single crystals. Light yields of Pr1, 2, 3 and 5%:SrI2 single crystals under γ-ray irradiation were 7700, 8700, 7200 and 6700 photons/MeV, respectively. Decay times of Pr1 and 2%:SrI2 single crystals under γ-ray irradiation were 55.9 and 35.0 ns of the fast decay component, and 435 and 408 ns of the slow decay component, respectively.

  9. Thermopower, electrical and Hall conductivity of undoped and doped iron disilicide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, A; Behr, G; Griessmann, H; Teichert, S; Lange, H

    1997-07-01

    The electrical transport properties of {beta}-FeSi{sub 2} single crystals have been investigated in dependence on the purity of the source material and on doping with 3d transition metals. The transport properties included are electrical conductivity, Hall conductivity and thermopower mainly in the temperature range from 4K to 300K. The single crystals have been prepared by chemical transport reaction in a closed system with iodine as transport agent. In undoped single crystals prepared with 5N Fe both electrical conductivity and thermopower depend on the composition within the homogeneity range of {beta}-FeSi{sub 2} which is explained by different intrinsic defects at the Si-rich and Fe-rich phase boundaries. In both undoped and doped single crystals impurity band conduction is observed at low temperatures but above 100K extrinsic behavior determined by shallow impurity states. The thermopower shows between 100K and 200K a significant phonon drag contribution which depends on intrinsic defects and additional doping. The Hall resistivity is considered mainly with respect to an anomalous contribution found in p-type and n-type single crystals and thin films. In addition doped single crystals show at temperatures below about 130K an hysteresis of the Hall voltage. These results make former mobility data uncertain. Comparison will be made between the transport properties of single crystals and polycrystalline material.

  10. Ultrasound pregnancy

    Science.gov (United States)

    Pregnancy sonogram; Obstetric ultrasonography; Obstetric sonogram; Ultrasound - pregnancy; IUGR - ultrasound; Intrauterine growth - ultrasound; Polyhydramnios - ultrasound; Oligohydramnios - ultrasound; ...

  11. Photoelectron diffraction studies of small adsorbates on single crystal surfaces

    International Nuclear Information System (INIS)

    Pascal, Mathieu

    2002-01-01

    The structural determination of small molecules adsorbed on single crystal surfaces has been investigated using scanned energy mode photoelectron diffraction (PhD). The experimental PhD data were compared to theoretical models using a simulation program based on multiple scattering calculations. Three adsorption systems have been examined on Ag(110), Cu(110) and Cu(111) crystals. The structure of the (2x1)-O adsorption phase on Ag(110) revealed that the O atoms occupied the long bridge site and are almost co-planar with the top layer of Ag atoms. The best agreement between multiple scattering theory and experiment has been obtained for a missing-row (or equivalently an 'added- row') reconstruction. Alternative buckled-row and unreconstructed surface models can be excluded. The adsorption of the benzoate species on Cu(110) has been found to occur via the carboxylate group. The molecules occupy short bridge sites with the O atoms being slightly displaced from atop sites and are aligned along the close-packed azimuth. The tilt of the molecule with respect to the surface and the degree to which the surface is relaxed have also been investigated. The adsorption of methyl on Cu(111) was studied using either azomethane or methyl iodide to prepare the surface layers. At saturation coverage the preferred adsorption site is the fcc threefold hollow site, whereas at half saturation coverage ∼ 30 % of the methyl species occupy the hop threefold hollow sites. Best agreement between theory and experiment corresponded to a methyl group adsorbed with C 3v symmetry. The height of the C above the surface in a pure methyl layer was 1.66 ± 0.02 A, but was reduced to 1.62 ± 0.02 A in the presence of co-adsorbed iodine, suggesting that iodine increases the strength of adsorption. Iodine was also found to occupy the fee threefold hollow sites with a Cu-l bondlength of 2.61 ± 0.02 A. (author)

  12. Compression of Single-Crystal Orthopyroxene to 60GPa

    Science.gov (United States)

    Finkelstein, G. J.; Dera, P. K.; Holl, C. M.; Dorfman, S. M.; Duffy, T. S.

    2010-12-01

    Orthopyroxene ((Mg,Fe)SiO3) is one of the dominant phases in Earth’s upper mantle - it makes up ~20% of the upper mantle by volume. At high pressures and temperatures, this phase undergoes several well-characterized phase transitions. However, when compressed at low temperature and high-pressure, orthopyroxene is predicted to exhibit metastable behavior(1). Previous researchers have found orthoenstatite (Mg endmember of orthopyroxene) persists up to ~10 GPa, and diffraction(2-3), Raman(4), and elasticity(5) experiments suggest a phase transition above this pressure to an as-yet unidentified structure. While earlier diffraction data has surprisingly only been evaluated for structural information to ~9 GPa(2), changes in high-pressure Raman spectra to ~70 GPa indicate that several more high-pressure phase transitions in orthopyroxene are likely, including at least one change in Si-coordination(6). We have recently conducted exploratory experiments to further elucidate the high-pressure behavior of orthopyroxene. Compressing a single crystal of Fe-rich orthopyroxene (Fe0.66Mg0.24Ca0.05SiO3) using a diamond anvil cell, we observe phase transitions at ~10, 14, and 30 GPa, with the new phases having monoclinic, orthorhombic, and orthorhombic symmetries, respectively. While the first two transitions do not show a significant change in volume, the phase transition at ~30 GPa shows a large decrease in volume, which is consistent with a change in Si coordination number to mixed 4- and 6-fold coordination. References: [1] S. Jahn, American Mineralogist 93, 528-532 (2008). [2] R. J. Angel, J. M. Jackson, American Mineralogist 87, 558-561 (2002). [3] R. J. Angel, D. A. Hugh-Jones, Journal of Geophysical Research-Solid Earth 99, 19,777-19,783 (1994). [4] G. Serghiou, Journal of Raman Spectroscopy 34, 587-590 (2003). [5] J. Kung et al., Physics of the Earth and Planetary Interiors 147, 27-44 (2004). [6] G. Serghiou, A. Chopelas, R. Boehler, Journal of Physics: Condensed Matter

  13. Study of dopamine reactivity on platinum single crystal electrode surfaces

    International Nuclear Information System (INIS)

    Chumillas, Sara; Figueiredo, Marta C.; Climent, Víctor; Feliu, Juan M.

    2013-01-01

    Dopamine is the biological molecule responsible, among other functions, of the heart beat and blood pressure regulation. Its loss, in the human body, can result in serious diseases such as Parkinson's, schizophrenia or depression. Structurally, this molecule belongs to the group of catecholamines, together with epinephrine (adrenaline) and norepinephrine (noradrenaline). The hydroquinone moiety of the molecule can be easily oxidized to quinone, rendering the electrochemical methods a convenient approach for the development of dopamine biosensors. The reactivity of similar aromatic molecules, such as catechol and hydroquinone, at well-ordered platinum surfaces, has recently been investigated in our group. In this paper, we extend these studies to the structurally related molecule dopamine. The study has been performed in neutral pH, since this is closer to the natural conditions for these molecules in biological media. Cyclic voltammetry and in situ infra-red spectroscopy have been combined to extract information about the behavior of this molecule on well-defined platinum surfaces. Dopamine appears to be electrochemically active and reveals interesting adsorption phenomena at low potentials (0.15–0.25 V vs RHE), sensitive to the single crystal orientation. The adsorption of dopamine on these surfaces is very strong, taking place at much lower potentials than the electron transfer from solution species. Specifically, the voltammetry of Pt(1 1 1) and Pt(1 0 0) in dopamine solutions shows an oxidation peak at potentials close to the onset of hydrogen evolution, which is related to the desorption of hydrogen and the adsorption of dopamine. On the other hand, adsorption on Pt(1 1 0) is irreversible and the surface appears totally blocked. Spectroscopic results indicate that dopamine is adsorbed flat on the surface. At potentials higher than 0.6 V vs RHE the three basal planes show a common redox process. The initial formation of the quinone moiety is followed by a

  14. Fabrication of High-Frequency pMUT Arrays on Silicon Substrates

    DEFF Research Database (Denmark)

    Pedersen, Thomas; Zawada, Tomasz; Hansen, Karsten

    2010-01-01

    A novel technique based on silicon micromachining for fabrication of linear arrays of high-frequency piezoelectric micromachined ultrasound transducers (pMUT) is presented. Piezoelectric elements are formed by deposition of lead zirconia titanate into etched features of a silicon substrate...

  15. High frequency oscillations in brain hemodynamic response

    Science.gov (United States)

    Akin, Ata; Bolay, Hayrunnisa

    2007-07-01

    Tight autoregulation of vessel tone guarantees proper delivery of nutrients to the tissues. This regulation is maintained at a more delicate level in the brain since any decrease in the supply of glucose and oxygen to neuronal tissues might lead to unrecoverable injury. Functional near infrared spectroscopy has been proposed as a new tool to monitor the cerebrovascular response during cognitive activity. We have observed that during a Stroop task three distinct oscillatory patterns govern the control of the cerebrovascular reactivity: very low frequency (0.02-0.05 Hz), low frequency (0.08-0.12 Hz) and high frequency (0.12-0.18 Hz). High frequency oscillations have been shown to be related to stress level of the subjects. Our findings indicate that as the stress level is increased so does the energy of the high frequency component indicating a higher stimulation from the autonomic nervous system.

  16. Capillarity creates single-crystal calcite nanowires from amorphous calcium carbonate.

    Science.gov (United States)

    Kim, Yi-Yeoun; Hetherington, Nicola B J; Noel, Elizabeth H; Kröger, Roland; Charnock, John M; Christenson, Hugo K; Meldrum, Fiona C

    2011-12-23

    Single-crystal calcite nanowires are formed by crystallization of morphologically equivalent amorphous calcium carbonate (ACC) particles within the pores of track etch membranes. The polyaspartic acid stabilized ACC is drawn into the membrane pores by capillary action, and the single-crystal nature of the nanowires is attributed to the limited contact of the intramembrane ACC particle with the bulk solution. The reaction environment then supports transformation to a single-crystal product. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Annealing effect on superconductivity of La2CuO4 single crystals

    International Nuclear Information System (INIS)

    Tanaka, I.; Takahashi, H.; Kojima, H.

    1992-01-01

    This paper reports that La 2 CuO 4 single crystals grown at an oxygen pressure of 0.2 MPa by TSFZ method are superconducting below 32 K, and show a semiconducting behavior in nonsuperconducting state. The single crystals of La 2 CuO 4 are changed from superconductors to semiconductors by annealing in argon, and are returned to superconductors by annealing at ambient pressure of oxygen. Therefore, superconductivity of the La 2 CuO 4 single crystals is due to excess oxygen

  18. Annealing effect on superconductivity of La2CuO4 single crystals

    International Nuclear Information System (INIS)

    Tanaka, L.; Takahashi, H.; Kojima, H.

    1992-01-01

    La 2 CuO 4 single crystals grown at an oxygen pressure of 0.2 MPa by TSFZ method are superconducting below 32 K, and show a semiconducting behavior in nonsuperconducting state. The single crystals of La 2 CuO 4 are changed from superconductors to semiconductors by annealing in argon, and are returned to superconductors by annealing at ambient pressure of oxygen. Therefore, superconductivity of the La 2 CuO 4 single crystals is due to excess oxygen. (orig.)

  19. Experimental study and numerical simulation of the plastic deformation of zirconium single crystals

    International Nuclear Information System (INIS)

    Lebon, C.

    2011-01-01

    There is only few experimental data in the literature on the zirconium single crystals and no constitutive laws for this single crystal material are provided. The goal of this work is then to create an experimental database like the Critical Resolved Shear Stress (CRSS) for the prismatic slip, the strain-hardening, the activation of the prismatic glide system and the activation volumes. We determine theses parameters from image correlation method. Then, we develop a new multi-scale approach using dislocations dynamics concept and finite element computations. Finally, a first single crystal constitutive law for the zirconium is proposed and a good agreement with the experimental data is obtained. (author) [fr

  20. Growth and microtopographic study of CuInSe{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Sanjaysinh M.; Chaki, Sunil, E-mail: sunilchaki@yahoo.co.in; Deshpande, M. P. [Department of Physics, Sardar Patel University, Vallabh Vidyanagar, Gujarat - 388120 (India); Tailor, J. P. [Applied Physics Department, S.V.N.I.T., Surat, Gujarat - 395007 (India)

    2016-05-23

    The CuInSe{sub 2} single crystals were grown by chemical vapour transport (CVT) technique using iodine as transporting agent. The elemental composition of the as-grown CuInSe{sub 2} single crystals was determined by energy dispersive analysis of X-ray (EDAX). The unit cell crystal structure and lattice parameters were determined by X-ray diffraction (XRD) technique. The surface microtopographic study of the as-grown CuInSe{sub 2} single crystals surfaces were done to study the defects, growth mechanism, etc. of the CVT grown crystals.

  1. Regio-Regular Oligo and Poly(3-hexyl thiophene): Precise Structural Markers from the Vibrational Spectra of Oligomer Single Crystals.

    KAUST Repository

    Brambilla, Luigi; Tommasini, Matteo; Botiz, Ioan; Rahimi, Khosrow; Agumba, John O.; Stingelin, Natalie; Zerbi, Giuseppe

    2014-01-01

    , namely, amorphous, semicrystalline, polycrystalline and single crystal. We have based our analysis on the spectra of the (3HT)8 single crystal (whose structure has been determined by selected area electron diffraction) taken as reference

  2. High-frequency and microwave circuit design

    CERN Document Server

    Nelson, Charles

    2007-01-01

    An integral part of any communications system, high-frequency and microwave design stimulates major progress in the wireless world and continues to serve as a foundation for the commercial wireless products we use every day. The exceptional pace of advancement in developing these systems stipulates that engineers be well versed in multiple areas of electronics engineering. With more illustrations, examples, and worked problems, High-Frequency and Microwave Circuit Design, Second Edition provides engineers with a diverse body of knowledge they can use to meet the needs of this rapidly progressi

  3. High frequency and pulse scattering physical acoustics

    CERN Document Server

    Pierce, Allan D

    1992-01-01

    High Frequency and Pulse Scattering investigates high frequency and pulse scattering, with emphasis on the phenomenon of echoes from objects. Geometrical and catastrophe optics methods in scattering are discussed, along with the scattering of sound pulses and the ringing of target resonances. Caustics and associated diffraction catastrophes are also examined.Comprised of two chapters, this volume begins with a detailed account of geometrically based approximation methods in scattering theory, focusing on waves transmitted through fluid and elastic scatterers and glory scattering; surface ray r

  4. Manganese-55 NMR and relaxation in single crystals of manganese(12)-Ac and analogs

    Science.gov (United States)

    Harter, Andrew

    This dissertation presents the first single crystal 55Mn NMR characterization of three compounds related to Mn12-acetate [Mn12O12(O2CCH3)16(H 2O)4]·2CH3COOH·4H2O (henceforth Mn12-Ac) that have come to be known as Single-Molecule Magnets (SMMs). This study was undertaken because they exhibit novel phenomena such as quantum mechanical tunneling of their magnetization (QTM), the origin of which is still not fully understood, and also because they have the potential to form elements of magnetic memory storage at the molecular dimensions. The investigations herein involve studies related to both the bonding as well as spin-dynamics in these compounds to much higher precision than in earlier work. These experiments were made possible by the design of a high frequency goniometer probe and a 3He temperature facility. The first single crystal NMR of any Mn12-based molecule was conducted on [Mn12O12(O2CCH2Br) 16(H2O)4]·4CH2Cl2 (Mn12-BrAc). Its 55Mn NMR spectrum, field dependence, angular dependence, and spin-lattice relaxation time (T 1) measurements were conducted. Most importantly, data are presented that (a) confirm the alteration of the magnetic core of these molecules when the samples are crushed into powder (a practice used in earlier studies), (b) show the presence of transverse hyperfine fields at the nuclear site, and (c) do not yield any evidence of temperature independent relaxation below 1 K, suggesting that QTM is not the dominant relaxation mechanism at these temperatures, in contrast to earlier studies. Data from single crystals of Mn12-Ac, the most studied SMM, concur with previous x-ray findings in that isomers are present. Such detailed information was not obtainable with powder samples. T 1-1 measurements over 400 mK--1 K indicate the existence of an energy barrier, in this case ˜1.65 K, which does not fit the current understanding of the electronic energy diagram. This value supports an earlier, yet unexplained observation of such a level by inelastic

  5. Dry friction damping couple at high frequencies

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk; Košina, Jan; Radolfová, Alena

    2014-01-01

    Roč. 8, č. 1 (2014), s. 91-100 ISSN 1802-680X Institutional support: RVO:61388998 Keywords : dry friction * damping * high frequencies Subject RIV: BI - Acoustics http://www.kme.zcu.cz/acm/acm/article/view/239/265

  6. High Frequency Trading, Information, and Takeovers

    NARCIS (Netherlands)

    Humphery-Jenner, M.

    2011-01-01

    This paper (1) proposes new variables to detect informed high-frequency trading (HFT), (2) shows that HFT can help to predict takeover targets, and (3) shows that HFT in uences target announcement announcement returns. Prior literature suggests that informed trade may occur before takeovers, but has

  7. High Frequency Traders and Market Structure

    NARCIS (Netherlands)

    Menkveld, A.J.

    2014-01-01

    The arrival of high-frequency traders (HFTs) coincided with the entry of new markets and, subsequently, strong fragmentation of the order flow. These trends might be related as new markets serve HFTs who seek low fees and high speed. New markets only thrive on competitive price quotes that

  8. Essays on high frequency financial econometrics

    NARCIS (Netherlands)

    Yang, X.

    2015-01-01

    It has long been demonstrated that continuous-time methods are powerful tools in financial modeling. Yet only in recent years, their counterparts in empirical analysis—high frequency econometrics—began to emerge with the availability of intra-day data and relevant statistical tools. This

  9. High frequency dynamics in centrifugal compressors

    NARCIS (Netherlands)

    Twerda, A.; Meulendijks, D.; Smeulers, J.P.M.; Handel, R. van den; Lier, L.J. van

    2008-01-01

    Problems with centrifugal compressors relating to high frequency, i.e. Blade passing frequency (BPF) are increasing. Pulsations and vibrations generated in centrifugal compressors can lead to nuisance, due to strong tonal noise, and even breakdown. In several cases the root cause of a failure or a

  10. Single Crystal Piezomotor for Large Stroke, High Precision and Cryogenic Actuations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes a novel single crystal piezomotor for large stroke, high precision, and cryogenic actuations with capability of position set-hold with...

  11. The tensile effect on crack formation in single crystal silicon irradiated by intense pulsed ion beam

    Science.gov (United States)

    Liang, Guoying; Shen, Jie; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Yan, Sha; Zhang, Xiaofu; Yu, Xiao; Le, Xiaoyun

    2017-10-01

    Improving antifatigue performance of silicon substrate is very important for the development of semiconductor industry. The cracking behavior of silicon under intense pulsed ion beam irradiation was studied by numerical simulation in order to understand the mechanism of induced surface peeling observed by experimental means. Using molecular dynamics simulation based on Stillinger Weber potential, tensile effect on crack growth and propagation in single crystal silicon was investigated. Simulation results reveal that stress-strain curves of single crystal silicon at a constant strain rate can be divided into three stages, which are not similar to metal stress-strain curves; different tensile load velocities induce difference of single silicon crack formation speed; the layered stress results in crack formation in single crystal silicon. It is concluded that the crack growth and propagation is more sensitive to strain rate, tensile load velocity, stress distribution in single crystal silicon.

  12. Mechanism of the superior mechanical strength of nanometer-sized metal single crystals revealed

    KAUST Repository

    Afify, N. D.; Salem, H. G.; Yavari, A.; El Sayed, Tamer S.

    2013-01-01

    Clear understanding of the superior mechanical strength of nanometer-sized metal single crystals is required to derive advanced mechanical components retaining such superiority. Although high quality studies have been reported on nano

  13. Electrolytic coloration and spectral properties of hydroxyl-doped potassium chloride single crystals

    International Nuclear Information System (INIS)

    Gu Hongen; Wu Yanru

    2011-01-01

    Hydroxyl-doped potassium chloride single crystals are colored electrolytically at various temperatures and voltages using a pointed cathode and a flat anode. Characteristic OH - spectral band is observed in the absorption spectrum of uncolored single crystal. Characteristic O - , OH - , U, V 2 , V 3 , O 2- -V a + , F, R 2 and M spectral bands are observed simultaneously in absorption spectra of colored single crystals. Current-time curve for electrolytic coloration of hydroxyl-doped potassium chloride single crystal and its relationship with electrolytic coloration process are given. Production and conversion of color centers are explained. - Highlights: → Expanded the traditional electrolysis method. → Hydroxyl-doped potassium chloride crystals were colored electrolytically for the first time. → Useful V, F and F-aggregate color centers were produced in colored crystals. → V color centers were produced directly and F and F-aggregate color centers indirectly.

  14. Spiro-OMeTAD single crystals: Remarkably enhanced charge-carrier transport via mesoscale ordering

    KAUST Repository

    Shi, Dong; Qin, X.; Li, Yuan; He, Yao; Zhong, Cheng; Pan, Jun; Dong, H.; Xu, Wei; Li, T.; Hu, W.; Bredas, Jean-Luc; Bakr, Osman

    2016-01-01

    bottleneck for advancing cell efficiencies. We devised an antisolvent crystallization strategy to grow single crystals of spiro-OMeTAD, which allowed us to experimentally elucidate its molecular packing and transport properties. Electronic structure

  15. Mechanism of the superior mechanical strength of nanometer-sized metal single crystals revealed

    KAUST Repository

    Afify, N. D.

    2013-10-01

    Clear understanding of the superior mechanical strength of nanometer-sized metal single crystals is required to derive advanced mechanical components retaining such superiority. Although high quality studies have been reported on nano-crystalline metals, the superiority of small single crystals has neither been fundamentally explained nor quantified to this date. Here we present a molecular dynamics study of aluminum single crystals in the size range from 4.1 nm to 40.5 nm. We show that the ultimate mechanical strength deteriorates exponentially as the single crystal size increases. The small crystals superiority is explained by their ability to continuously form vacancies and to recover them. © 2013 Published by Elsevier B.V.

  16. Twinning behavior in the Ti-5at.% Al single crystals during cyclic loading along [0001

    International Nuclear Information System (INIS)

    Xiao Lin

    2005-01-01

    Cyclic deformation behavior of Ti-5at.% Al single crystals subjected to pull-push cyclic load along [0001] crystallographic orientation was studied. A higher cyclic stress response was displayed in the Ti-5Al single crystal oriented for [0001] than that oriented for single prism slip. Optical microscopy and transmission electron microscopy examinations show that twinning is a dominant plastic deformation mode in the single crystals during cycling. Trace analysis of prepolished surfaces was used to identify the twin systems primarily responsible for deformation. The major twin type observed was {101-bar 2}, {112-bar 2}, {101-bar 1} and {112-bar 1}. slip was observed in the neighboring region of twins in the fatigued specimens. The activation of multiple twinning systems contributed to the higher cyclic saturation stress in Ti-5Al single crystals oriented for [0001

  17. Ultrafast carrier dynamics in pentacene, functionalized pentacene, tetracene, and rubrene single crystals

    NARCIS (Netherlands)

    Ostroverkhova, O; Cooke, DG; Hegmann, FA; Anthony, JE; Podzorov, [No Value; Gershenson, ME; Jurchescu, OD; Palstra, TTM

    2006-01-01

    We measure the transient photoconductivity in pentacene, functionalized pentacene, tetracene, and rubrene single crystals using optical pump-terahertz probe techniques. In all of the samples studied, we observe subpicosecond charge photogeneration and a peak photoconductive response that increases

  18. Growth, structural, optical and surface analysis of piperazinium tartrate: A NLO single crystal

    Science.gov (United States)

    Gupta, Apurva; Raseel Rahman M., K.; Nair, Lekha

    2018-05-01

    Single crystal of piperazinium tartrate (PPZT) was grown by the slow evaporation solution growth technique at room temperature. Crystallinity of grown crystal was examined by powder X-ray diffraction. High transparency and wide band gap were observed in the UV-Visible spectroscopic studies. Intense and broad emissions were observed in the blue region, as that is indicated by photoluminescence spectroscopy. The quality of the grown PPZT single crystals were analyzed by the etching studies using the water as the etchant.

  19. Modeling Nonlinear Elastic-plastic Behavior of RDX Single Crystals During Indentation

    Science.gov (United States)

    2012-01-01

    single crystals has also been probed using shock experiments (6, 12) and molecular dynamics simulations (12–14). RDX undergoes a polymorphic phase...Patterson, J.; Dreger, Z.; Gupta, Y. Shock-wave Induced Phase Transition in RDX Single Crystals. J. Phys. Chem. B 2007, 111, 10897–10904. 17. Bedrov, D...and Volume Compression of β - HMX and RDX . In Proc. Int. Symp. High Dynamic Pressures; Commissariat a l’Energie Atomique: Paris, 1978; pp 3–8. 24

  20. Welding and Weldability of Directionally Solidified Single Crystal Nickel-Base Superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Vitek, J M; David, S A; Reed, R W; Burke, M A; Fitzgerald, T J

    1997-09-01

    Nickel-base superalloys are used extensively in high-temperature service applications, and in particular, in components of turbine engines. To improve high-temperature creep properties, these alloys are often used in the directionally-solidified or single-crystal form. The objective of this CRADA project was to investigate the weldability of both experimental and commercial nickel-base superalloys in polycrystalline, directionally-solidified, and single-crystal forms.

  1. 75 FR 81284 - Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology; Draft...

    Science.gov (United States)

    2010-12-27

    ... Frequency and Ultra High Frequency Active SONAR Technology; Draft Programmatic Environmental Assessment and... Programmatic Environmental Assessment (PEA) for the Nationwide Use of High Frequency (HF) and Ultra High... potential impacts of each alternative on the human and natural environments. DATES: Comments and related...

  2. [High frequency electrocoagulation for treating noninvoluting congenital hemangioma].

    Science.gov (United States)

    Zhongqiang, Wang; Yafei, Wang; Jiashuang, Zhou; Quan, Zhou; Lijuan, Yang; Li, Wang

    2015-11-01

    To investigate the clinical efficiency of electrocoagulation for the treatment of noninvoluting congenital hemangioma. Sixteen infants with noninvoluting congenital hemangioma who were admitted to our hospital from January 2011 to June 2013 were included in this study. Color Doppler ultrasound was used to determine the hemangioma location, as well as its size and depth. High frequency electrocoagulation was adopted for the treatment. The output power was set at 10-20 W. The probes were inserted around the tumor or at the surface of the tumor. After switching on for 1-2 seconds, the direction and position of the probe was modulated until covering the whole tumor. After the treatment, the absorption of tumor was about 3-6 months. The efficiency was evaluated during the follow-up. Tumor atrophy was obvious after treatment in all patients. The temperature around the tumor mass was decreased, and the aberrant blood signals were decreased under the ultrasonic examination. Complete or partial atrophy were observed. The efficiency was graded as level I, II, III, IV in 0, 2, 9 and 5 patients, respectively. One patient showed local infection due to improper nursing, which was completely relieved after corresponding treatment. No severe adverse events were observed. High-frequency electrocoagulation is effective for treating noninvoluting congenital hemangioma through coagulating the aberrant blood vessels in the tumor, interrupting the vascular endothelial cell, blocking the aberrant blood flow, as well as leading to atrophy and absorption of tumor mass. Besides, no obvious scar is observed after the surgery.

  3. Reversible Single-Crystal-to-Single-Crystal Structural Transformation in a Mixed-Ligand 2D Layered Metal-Organic Framework: Structural Characterization and Sorption Study

    Directory of Open Access Journals (Sweden)

    Chih-Chieh Wang

    2017-12-01

    Full Text Available A 3D supramolecular network, [Cd(bipy(C4O4(H2O2]·3H2O (1 (bipy = 4,4′-bipyridine and C4O42− = dianion of H2C4O4, constructed by mixed-ligand two-dimensional (2D metal-organic frameworks (MOFs has been reported and structurally determined by the single-crystal X-ray diffraction method and characterized by other physicochemical methods. In 1, the C4O42− and bipy both act as bridging ligands connecting the Cd(II ions to form a 2D layered MOF, which are then extended to a 3D supramolecular network via the mutually parallel and interpenetrating arrangements among the 2D-layered MOFs. Compound 1 shows a two-step dehydration process with weight losses of 11.0% and 7.3%, corresponding to the weight-loss of three guest and two coordinated water molecules, respectively, and exhibits an interesting reversible single-crystal-to-single-crystal (SCSC structural transformation upon de-hydration and re-hydration for guest water molecules. The SCSC structural transformation have been demonstrated and monitored by single-crystal and X-ray powder diffraction, and thermogravimetic analysis studies.

  4. Effect of indium and antimony doping in SnS single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chaki, Sunil H., E-mail: sunilchaki@yahoo.co.in; Chaudhary, Mahesh D.; Deshpande, M.P.

    2015-03-15

    Highlights: • Single crystals growth of pure SnS, indium doped SnS and antimony doped SnS by direct vapour transport (DVT) technique. • Doping of In and Sb occurred in SnS single crystals by cation replacement. • The replacement mechanism ascertained by EDAX, XRD and substantiated by Raman spectra analysis. • Dopants concentration affects the optical energy bandgap. • Doping influences electrical transport properties. - Abstract: Single crystals of pure SnS, indium (In) doped SnS and antimony (Sb) doped SnS were grown by direct vapour transport (DVT) technique. Two doping concentrations of 5% and 15% each were employed for both In and Sb dopants. Thus in total five samples were studied viz., pure SnS (S1), 5% In doped SnS (S2), 15% In doped SnS (S3), 5% Sb doped SnS (S4) and 15% Sb doped SnS (S5). The grown single crystal samples were characterized by evaluating their surface microstructure, stoichiometric composition, crystal structure, Raman spectroscopy, optical and electrical transport properties using appropriate techniques. The d.c. electrical resistivity and thermoelectric power variations with temperature showed semiconducting and p-type nature of the as-grown single crystal samples. The room temperature Hall Effect measurements further substantiated the semiconducting and p-type nature of the as-grown single crystal samples. The obtained results are deliberated in detail.

  5. Gallium arsenide single crystal solar cell structure and method of making

    Science.gov (United States)

    Stirn, Richard J. (Inventor)

    1983-01-01

    A production method and structure for a thin-film GaAs crystal for a solar cell on a single-crystal silicon substrate (10) comprising the steps of growing a single-crystal interlayer (12) of material having a closer match in lattice and thermal expansion with single-crystal GaAs than the single-crystal silicon of the substrate, and epitaxially growing a single-crystal film (14) on the interlayer. The material of the interlayer may be germanium or graded germanium-silicon alloy, with low germanium content at the silicon substrate interface, and high germanium content at the upper surface. The surface of the interface layer (12) is annealed for recrystallization by a pulsed beam of energy (laser or electron) prior to growing the interlayer. The solar cell structure may be grown as a single-crystal n.sup.+ /p shallow homojunction film or as a p/n or n/p junction film. A Ga(Al)AS heteroface film may be grown over the GaAs film.

  6. Unidirectional growth and characterization of L-arginine monohydrochloride monohydrate single crystals

    International Nuclear Information System (INIS)

    Sangeetha, K.; Babu, R. Ramesh; Bhagavannarayana, G.; Ramamurthi, K.

    2011-01-01

    Highlights: → L-Arginine monohydrochloride monohydrate (LAHCl) single crystal was grown successfully by unidirectional solution growth method for the first time. → High crystalline perfection was observed for UDS grown crystal compared to CS grown crystal. → The optical transparency and mechanical stability are high for UDS grown LAHCl single crystal. → Optical birefringence measurement on this material. → The piezoelectric resonance frequencies observation - first time observation on this material. - Abstract: L-Arginine monohydrochloride monohydrate (LAHCl) single crystals were grown successfully by conventional and unidirectional solution growth methods. The crystalline perfection of grown crystals was analyzed by high-resolution X-ray diffraction. The linear optical transmittance, mechanical stability of conventional and unidirectional grown LAHCl single crystals were analyzed and compared along (0 0 1) plane. The refractive index and birefringence of LAHCl single crystals were also measured using He-Ne laser source. From the dielectric studies, piezoelectric resonance frequencies were observed in kHz frequency range for both conventional and unidirectional grown LAHCl single crystals along (0 0 1) plane.

  7. Growth and characterization of air annealing Mn-doped YAG:Ce single crystal for LED

    International Nuclear Information System (INIS)

    Xiang, Weidong; Zhong, Jiasong; Zhao, Yinsheng; Zhao, Binyu; Liang, Xiaojuan; Dong, Yongjun; Zhang, Zhimin; Chen, Zhaoping; Liu, Bingfeng

    2012-01-01

    Highlights: ► The YAG:Ce,Mn single crystal was well synthesized by the Czochralski (CZ) method. ► The emission intensity of the sample has been influenced after annealing. ► Annealed in the air at 1200 °C was the most optimal annealing condition. ► The single crystal could be used in the white light LED which emitted by blue light. - Abstract: The growth of Mn-doped YAG:Ce (yttrium aluminum garnet doped cerium) single crystal by the Czochralski (CZ) method and the characterization of its spectroscopy and color-electric parameters are presented. The absorption spectra indicate that the crystal absorbed highly in the 300–500 nm wavelength range. The emission spectrum of the crystal consists of a peak around 538 nm when excited by 460 nm blue light, which prove the YAG:Ce,Mn single crystal could be used in the white light emitting doides (LED). The different charges of Mn ions have different luminescence properties, and the air annealing process for the single crystal would change the concentration of Mn ions with different charges, which could influence the emission intensity of the single crystal.

  8. Types of defect ordering in undoped and lanthanum-doped Bi2201 single crystals

    International Nuclear Information System (INIS)

    Martovitsky, V. P.

    2006-01-01

    Undoped and lanthanum-doped Bi2201 single crystals having a perfect average structure have been comparatively studied by x-ray diffraction. The undoped Bi2201 single crystals exhibit very narrow satellite reflections; their half-width is five to six times smaller than that of Bi2212 single crystals grown by the same technique. This narrowness indicates three-dimensional defect ordering in the former crystals. The lanthanumdoped Bi2201 single crystals with x = 0.7 and T c = 8-10 K exhibit very broad satellite reflections consisting of two systems (modulations) misoriented with respect to each other. The modulation-vector components of these two modulations are found to be q 1 = 0.237b* + 0.277c* and q 2 = 0.238b* + 0.037c*. The single crystals having a perfect average structure and a homogeneous average distribution of doping lanthanum consist of 70-to 80-A-thick layers that alternate along the c axis and have two different types of modulated superlattice. The crystals having a less perfect average structure also consist of alternating layers, but they have different lanthanum concentrations. The low value of T c in the undoped Bi2201 single crystals (9.5 K) correlates with three-dimensional defect ordering in them, and an increase in T c to 33 K upon lanthanum doping can be related to a thin-layer structure of these crystals and to partial substitution of lanthanum for the bismuth positions

  9. Effect of amaranth dye on the growth and properties of conventional and SR method grown KAP single crystals

    Science.gov (United States)

    Babu Rao, G.; P., Rajesh; Ramasamy, P.

    2018-04-01

    The 0.1 mol% amaranth added KAP single crystals were grown from aqueous solutions by both slow evaporation solution technique and Sankaranarayanan-Ramasamy method. The single crystal having dimension of 45 mm length and 12 mm diameter was grown with growth rate of 1.5 mm/day using SR method. 87 % transmittance is obtained for SR method grown amaranth added KAP single crystal. The high intense luminescence at 661 nm is obtained from amaranth added conventional and SR method grown KAP single crystal. The amaranth added KAP single crystal possesses good mechanical and laser damage threshold stability.

  10. UV detectors based on epitaxial diamond films grown on single-crystal diamond substrates by vapor-phase synthesis

    International Nuclear Information System (INIS)

    Sharonov, G.V.; Petrov, S.A.; Bol'shakov, A.P.; Ral'chenko, V.G.; Kazyuchits, N.M.

    2010-01-01

    The prospects for use of CVD-technology for epitaxial growth of single-crystal diamond films of instrumental quality in UHF plasma for the production of optoelectronic devices are discussed. A technology for processing diamond single crystals that provides a perfect surface crystal structure with roughness less than 0,5 nm was developed. It was demonstrated that selective UV detectors based on synthetic single-crystal diamond substrates coated with single-crystal films can be produced. A criterion for selecting clean and structurally perfect single crystals of synthetic diamond was developed for the epitaxial growth technology. (authors)

  11. Exploiting NiTi shape memory alloy films in design of tunable high frequency microcantilever resonators

    Science.gov (United States)

    Stachiv, I.; Sittner, P.; Olejnicek, J.; Landa, M.; Heller, L.

    2017-11-01

    Shape memory alloy (SMA) films are very attractive materials for microactuators because of their high energy density. However, all currently developed SMA actuators utilize martensitic transformation activated by periodically generated heating and cooling; therefore, they have a slow actuation speed, just a few Hz, which restricts their use in most of the nanotechnology applications such as high frequency microcantilever based physical and chemical sensors, atomic force microscopes, or RF filters. Here, we design tunable high frequency SMA microcantilevers for nanotechnology applications. They consist of a phase transforming NiTi SMA film sputtered on the common elastic substrate material; in our case, it is a single-crystal silicon. The reversible tuning of microcantilever resonant frequencies is then realized by intentionally changing the Young's modulus and the interlayer stress of the NiTi film by temperature, while the elastic substrate guarantees the high frequency actuation (up to hundreds of kHz) of the microcantilever. The experimental results qualitatively agree with predictions obtained from the dedicated model based on the continuum mechanics theory and a phase characteristic of NiTi. The present design of SMA microcantilevers expands the capability of current micro-/nanomechanical resonators by enabling tunability of several consecutive resonant frequencies.

  12. High-frequency, high-intensity photoionization

    Science.gov (United States)

    Reiss, H. R.

    1996-02-01

    Two analytical methods for computing ionization by high-frequency fields are compared. Predicted ionization rates compare well, but energy predictions for the onset of ionization differ radically. The difference is shown to arise from the use of a transformation in one of the methods that alters the zero from which energy is measured. This alteration leads to an apparent energy threshold for ionization that can, especially in the stabilization regime, differ strongly from the laboratory measurement. It is concluded that channel closings in intense-field ionization can occur at high as well as low frequencies. It is also found that the stabilization phenomenon at high frequencies, very prominent for hydrogen, is absent in a short-range potential.

  13. High frequency conductivity in carbon nanotubes

    Directory of Open Access Journals (Sweden)

    S. S. Abukari

    2012-12-01

    Full Text Available We report on theoretical analysis of high frequency conductivity in carbon nanotubes. Using the kinetic equation with constant relaxation time, an analytical expression for the complex conductivity is obtained. The real part of the complex conductivity is initially negative at zero frequency and become more negative with increasing frequency, until it reaches a resonance minimum at ω ∼ ωB for metallic zigzag CNs and ω < ωB for armchair CNs. This resonance enhancement is indicative for terahertz gain without the formation of current instabilities induced by negative dc conductivity. We noted that due to the high density of states of conduction electrons in metallic zigzag carbon nanotubes and the specific dispersion law inherent in hexagonal crystalline structure result in a uniquely high frequency conductivity than the corresponding values for metallic armchair carbon nanotubes. We suggest that this phenomenon can be used to suppress current instabilities that are normally associated with a negative dc differential conductivity.

  14. Hopping conduction in gamma-irradiated InSe and InSe:Sn single crystals

    International Nuclear Information System (INIS)

    MUSTAFAEVA, S.N.; ISMAILOV, A.A.; ASADOV, M.M.

    2010-01-01

    Full text : The semiconductive InSe layer compound is characterized by a strong covalent bond inside the layers and a weak Van der Waals bonding between them. It was shown that across the layers of InSe single crystals at low temperatures (T ≤ 200 K) at direct current (dc) hopping conduction through localized states near the Fermi level takes place. The results of dc-conductivity of gamma-irradiated p-InSe and n-InSe : Sn layer single crystals have been presented in this work. ρ-InSe single crystal specimens grown by the Bridgman method were used in the experiments. Plates of the crystals under study were obtained by cleaving along the layers of single crystal ingots. The single-crystal InSe samples for electric measurements had the form of planar capacitors normal to the C axis of the crystals, with silver-paste electrodes. The thickness of the InSe samples was 300 mkm. Co 60 serves as the source of irradiation with energy of gamma-quantum equal to 1.3 MeV. The electric properties of non-irradiated and gamma-irradiated InSe crystals were measured under the same conditions. It is revealed that InSe and InSe : Sn (0.2 and 0.4 mole percent Sn) single crystals exhibit a variable range hopping conduction along a normal to their natural layers at temperatures T≤200 K in a dc electric field. From experimental data the parameters of localized states of p-InSe and n-InSe : Sn were calculated before and after gamma-irradiation. It is revealed that gamma-irradiation of p-InSe and n-InSe : Sn (0.2 and 0.4 mole percent Sn) single crystals leads to significant change of localized states parameters. After gamma-irradiation the density of states near the Fermi level increased, but their energy spread and the average jump distance decreased. The concentrations of radiated defects were estimated in p-InSe (5.18*10 1 7 sm - 3) and n-InSe : Sn (2.5*10 1 7 - 2.7*10 1 8 sm - 3) single crystals. The present results demonstrate that gamma-irradiation offers the possibility of tuning

  15. Single crystal and optical ceramic multicomponent garnet scintillators: A comparative study

    International Nuclear Information System (INIS)

    Wu, Yuntao; Luo, Zhaohua; Jiang, Haochuan; Meng, Fang; Koschan, Merry; Melcher, Charles L.

    2015-01-01

    Multicomponent garnet materials can be made in optical ceramic as well as single crystal form due to their cubic crystal structure. In this work, high-quality Gd 3 Ga 3 Al 2 O 12 :0.2 at% Ce (GGAG:Ce) single crystal and (Gd,Lu) 3 Ga 3 Al 2 O 12 :1 at% Ce (GLuGAG:Ce) optical ceramics were fabricated by the Czochralski method and a combination of hot isostatic pressing (HIPing) and annealing treatment, respectively. Under optical and X-ray excitation, the GLuGAG:Ce optical ceramic exhibits a broad Ce 3+ transition emission centered at 550 nm, while the emission peak of the GGAG:Ce single crystal is centered at 540 nm. A self-absorption effect in GLuGAG:Ce optical ceramic results in this red-shift of the Ce 3+ emission peak compared to that in the GGAG:Ce single crystal. The light yield under 662 keV γ-ray excitation was 45,000±2500 photons/MeV and 48,200±2410 photons/MeV for the GGAG:Ce single crystal and GLuGAG:Ce optical ceramic, respectively. An energy resolution of 7.1% for 662 keV γ-rays was achieved in the GLuGAG:Ce optical ceramic with a Hamamatsu R6231 PMT, which is superior to the value of 7.6% for a GGAG:Ce single crystal. Scintillation decay time measurements under 137 Cs irradiation show two exponential decay components of 58 ns (47%) and 504 ns (53%) for the GGAG:Ce single crystal, and 84 ns (76%) and 148 ns (24%) for the GLuGAG:Ce optical ceramic. The afterglow level after X-ray cutoff in the GLuGAG:Ce optical ceramic is at least one order of magnitude lower than in the GGAG:Ce single crystal. - Highlights: • GGAG:Ce single crystal and GLuGAG:Ce optical ceramics were fabricated. • The light yield of both ceramic and crystal G(Lu)GAG:Ce reached the level of 45,000 photons/MeV. • GLuGAG:Ce optical ceramic showed a better energy resolution of 7.1% for 662 keV. • GLuGAG:Ce ceramics exhibited lower afterglow level than that of GGAG:Ce single crystals. • The possible optimization strategies for multicomponent aluminate garnets are discussed

  16. High-Frequency Percussive Ventilation Revisited

    Science.gov (United States)

    2010-01-01

    be implemented. ‡ Follow the reverse of the ventilation sequence if respiratory alkalosis develops—however, start at ventilation goal sequence 1 not at...High-frequency percussive ventilation (HFPV) has demonstrated a potential role as a rescue option for refractory acute respiratory distress syndrome...frequency percussive ventilation (HFPV) has demon- strated a potential role as a salvage option for refrac- tory acute respiratory distress syndrome

  17. Extremely high frequency RF effects on electronics.

    Energy Technology Data Exchange (ETDEWEB)

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

    2012-01-01

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

  18. Anisotropic surface hole-transport property of triphenylamine-derivative single crystal prepared by solution method

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, Minoru, E-mail: mumeda@vos.nagaokaut.ac.jp [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Katagiri, Mitsuhiko; Shironita, Sayoko [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Nagayama, Norio [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Ricoh Company, Ltd., Nishisawada, Numazu, Shizuoka 410-0007 (Japan)

    2016-12-01

    Highlights: • A hole transport molecule was investigated based on its electrochemical redox characteristics. • The solubility and supersolubility curves of the molecule were measured in order to prepare a large crystal. • The polarization micrograph and XRD results revealed that a single crystal was obtained. • An anisotropic surface conduction, in which the long-axis direction exceeds that of the amorphous layer, was observed. • The anisotropic surface conduction was well explained by the molecular stacked structure. - Abstract: This paper reports the anisotropic hole transport at the triphenylamine-derivative single crystal surface prepared by a solution method. Triphenylamine derivatives are commonly used in a hole-transport material for organic photoconductors of laser-beam printers, in which the materials are used as an amorphous form. For developing organic photovoltaics using the photoconductor’s technology, preparation of a single crystal seems to be a specific way by realizing the high mobility of an organic semiconductor. In this study, a single crystal of 4-(2,2-diphenylethenyl)-N,N-bis(4-methylphenyl)-benzenamine (TPA) was prepared and its anisotropic hole-transport property measured. First, the hole-transport property of the TPA was investigated based on its chemical structure and electrochemical redox characteristics. Next, a large-scale single crystal formation at a high rate was developed by employing a solution method based on its solubility and supersolubility curves. The grown TPA was found to be a single crystal based on the polarization micrograph observation and crystallographic analysis. For the TPA single crystal, an anisotropic surface conduction was found, which was well explained by its molecular stack structure. The measured current in the long-axis direction is one order of magnitude greater than that of amorphous TPA.

  19. Synthesis and photocatalytic activity of mesoporous – (001) facets TiO_2 single crystals

    International Nuclear Information System (INIS)

    Dong, Yeshuo; Fei, Xuening; Zhou, Yongzhu

    2017-01-01

    Highlights: • The (001) facets of TiO_2 single crystals with mesoporous structure. • The (010) and (100) facets of TiO_2 single crystals were covered by the flower – shaped TiO_2 crystals. • This special structure could promote charge separation and provide more active sites, which will lead to a substantial increase in photocatalytic activity. - Abstract: In this work, the mesoporous – (001) facets TiO_2 single crystals have been successfully synthesized through a two-step solvothermal route without any template. Their structure and morphology were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV–vis) diffuse reflectance spectroscopy and energy dispersive X-ray spectrometer (EDX). Based on the different characteristics and atomic arrangements on each facet of anatase TiO_2 single crystals, we synthesized these mesoporous – (001) facets TiO_2 single crystals by controlling the interaction characteristics of hydrofluoric acid (HF) and isopropanol (i-PrOH) on the crystal facets. It can been seen that the (001) facets of these as-synthesized TiO_2 single crystals have a clear mesoporous structure through the SEM images and BET methods. Moreover, the other four facets were covered by the flower – shaped TiO_2 crystals with the generation of the mesoporous – (001) facets. This special and interesting morphology could promote charge separation and provide more active sites, which will lead to a substantial increase in photocatalytic activity. Moreover, it is more intuitive to reflect that the different crystal facets possess the different properties due to their atomic arrangement. Besides, according to the different synthetic routes, we proposed and discussed a plausible synthesis mechanism of these mesoporous – (001) facets TiO_2 single crystals.

  20. Synthesis and ultrastructure of plate-like apatite single crystals as a model for tooth enamel

    International Nuclear Information System (INIS)

    Zhuang, Zhi; Yoshimura, Hideyuki; Aizawa, Mamoru

    2013-01-01

    Hydroxyapatite (HAp) is an inorganic constituent compound of human bones and teeth, with superior biocompatibility and bioactivity characteristics. Its crystal structure is hexagonal, characterized by a(b)- and c-planes. In vertebrate long bones, HAp crystals have a c-axis orientation, while in tooth enamel, they have an a(b)-axis orientation. Many methods can be used to synthesize c-axis oriented HAp single crystals; however, to the best of our knowledge, there have been no reports on a synthesis method for a(b)-axis oriented HAp single crystals. In this study, we successfully synthesized plate-like HAp crystals at the air–liquid interface of a starting solution via an enzyme reaction of urea with urease. Crystal phase analysis and ultrastructure observations were carried out, and the results indicated that the particles were single crystals, with almost the same a(b)-axis orientation as tooth enamel. It is hoped that by utilizing their unique surface charge and atomic arrangement, the resulting particles can be used as a high-performance biomaterial, capable of adsorbing bio-related substances and a model for tooth enamel. - Highlights: ► Synthesis of plate-like hydroxyapatite crystals at air–liquid interface ► Ultrastructural analysis of plate-like hydroxyapatite crystals ► Plate-like hydroxyapatite single crystals with a high a(b)-axis orientation ► Plate-like hydroxyapatite single crystals as a model for tooth enamel

  1. BiI{sub 3} single crystal for room-temperature gamma ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T., E-mail: saito.tatsuya125@canon.co.jp [Frontier Research Center, Canon Inc., 3-30-2, Shimomaruko, Ohta-ku, Tokyo 146-8501 (Japan); Iwasaki, T. [Frontier Research Center, Canon Inc., 3-30-2, Shimomaruko, Ohta-ku, Tokyo 146-8501 (Japan); Kurosawa, S.; Yoshikawa, A. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Den, T. [Frontier Research Center, Canon Inc., 3-30-2, Shimomaruko, Ohta-ku, Tokyo 146-8501 (Japan)

    2016-01-11

    BiI{sub 3} single crystals were grown by the physical vapor transport method. The repeated sublimation of the starting material reduced impurities in the BiI{sub 3} single crystal to sub-ppm levels. The detector was fabricated by depositing Au electrodes on both surfaces of the 100-μm-thick BiI{sub 3} single crystal platelet. The resistivity of the BiI{sub 3} single crystal was increased by post-annealing in an iodine atmosphere (ρ=1.6×10{sup 11} Ω cm). Pulse height spectroscopy measurements showed clear peaks in the energy spectrum of alpha particles or gamma rays. It was estimated that the mobility-lifetime product was μ{sub e}τ{sub e}=3.4–8.5×10{sup −6} cm{sup 2}/V and the electron–hole pair creation energy was 5.8 eV. Our results show that BiI{sub 3} single crystals are promising candidates for detectors used in radiographic imaging or gamma ray spectroscopy.

  2. Atomic structures and mechanical properties of single-crystal GaN nanotubes

    International Nuclear Information System (INIS)

    Xu, B.; Lu, A.J.; Pan, B.C.; Yu, Q.X.

    2005-01-01

    An approach is proposed to theoretically construct a realistic single-crystal GaN nanotube at atomic scale. The generated atomic structures of the single-crystal GaN nanotubes match the structural aspects from experiment very well. Our energetic calculations show that a single-crystal GaN nanotube with [100]-oriented lateral facets is more stable than that with [110]-oriented lateral facets, when they have around the same wall thickness. For a specified orientation of the lateral facets on the single-crystal GaN nanotubes, the energetic stabilities of the tubes obey a P rule, in which P is the ratio of the number of four-coordinated atoms to the number of three-coordinated atoms. Furthermore, the Young's modulus of the considered GaN nanotubes decrease with increasing the ratio of the number of bulk atoms to the number of surface atoms in each type of tube. Our calculations and analysis demonstrate that the surface effect of a single-crystal nanotube enhances its Young's modulus significantly

  3. Synthesis and ultrastructure of plate-like apatite single crystals as a model for tooth enamel

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Zhi, E-mail: zhuang@meiji.ac.jp [Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Yoshimura, Hideyuki, E-mail: hyoshi@isc.meiji.ac.jp [Department of Physics, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Aizawa, Mamoru, E-mail: mamorua@isc.meiji.ac.jp [Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan)

    2013-07-01

    Hydroxyapatite (HAp) is an inorganic constituent compound of human bones and teeth, with superior biocompatibility and bioactivity characteristics. Its crystal structure is hexagonal, characterized by a(b)- and c-planes. In vertebrate long bones, HAp crystals have a c-axis orientation, while in tooth enamel, they have an a(b)-axis orientation. Many methods can be used to synthesize c-axis oriented HAp single crystals; however, to the best of our knowledge, there have been no reports on a synthesis method for a(b)-axis oriented HAp single crystals. In this study, we successfully synthesized plate-like HAp crystals at the air–liquid interface of a starting solution via an enzyme reaction of urea with urease. Crystal phase analysis and ultrastructure observations were carried out, and the results indicated that the particles were single crystals, with almost the same a(b)-axis orientation as tooth enamel. It is hoped that by utilizing their unique surface charge and atomic arrangement, the resulting particles can be used as a high-performance biomaterial, capable of adsorbing bio-related substances and a model for tooth enamel. - Highlights: ► Synthesis of plate-like hydroxyapatite crystals at air–liquid interface ► Ultrastructural analysis of plate-like hydroxyapatite crystals ► Plate-like hydroxyapatite single crystals with a high a(b)-axis orientation ► Plate-like hydroxyapatite single crystals as a model for tooth enamel.

  4. Structure of single-chain single crystals of isotactic polystyrene and their radiation resistance

    International Nuclear Information System (INIS)

    Bu Haishan; Cao Jie; Xu Shengyong; Zhang Ze

    1997-01-01

    The structure of the single-chain single crystals of isotactic polystyrene (i-PS) was investigated by electron diffraction (ED) and high resolution electron microscopy (HREM). The nano-scale single-chain single crystals were found to be very stable to electron irradiation. According to the unit cell of i-PS crystals, the reflection rings in ED pattern and the lattice fringes in HREM images could be indexed, but the lower-index diffractions were not found. It is proposed that the single-chain single crystals are very small, thus secondary electrons may be allowed to escape and radiation damage is highly reduced, and that there are less lower-index lattice planes in the single-chain single crystals to provide sufficient diffraction intensity for recording. HREM images can be achieved at room temperature in the case of single-chain single crystals because of its stability to electron irradiation, therefore, this might be a novel experimental approach to the study of crystal structure of macromolecules

  5. Optical properties of GaS:Ho3+ and GaS:Tm3+ single crystals

    International Nuclear Information System (INIS)

    Jin, Moon-Seog; Kim, Chang-Dae; Kim, Wha-Tek

    2004-01-01

    GaS:Ho 3+ and GaS:Tm 3+ single crystals were grown by using the chemical transport reaction method. We measured the optical absorption, the infra-red absorption, and the photoluminescence spectra of the single crystals. The direct and the indirect energy band gaps of the single crystals at 13 K were identified. Infra-red absorption peaks at 6 K appeared in the single crystals. Broad emission bands at 6 K were observed at 464 nm and 580 nm for GaS:Ho 3+ and 462 nm and 581 nm for GaS:Tm 3+ . These broad emission bands were identified as originating from donor-acceptor pair recombinations. Sharp emission peak groups were observed near 435 nm, 495 nm, and 660 nm for GaS:Ho 3+ and near 672 nm for GaS:Tm 3+ . These sharp emission peak groups were identified as being due to the electron transitions between the energy levels of Ho 3+ and Tm 3+ . Especially, white photoluminescence was obtained in the GaS:Ho 3+ single crystal.

  6. Angular and magnetic field dependences of critical current in irradiated YBaCuO single crystals

    International Nuclear Information System (INIS)

    Petrusenko, Yu.

    2010-01-01

    The investigation of mechanisms responsible for the current-carrying capability of irradiated high-temperature superconductors (HTSC) was realized. For the purpose, experiments were made to investigate the effect of point defects generated by high-energy electron irradiation on the critical temperature and the critical current in high-Tc superconducting single crystals YBa 2 Cu 3 O 7-x . The transport current density measured in HTSC single crystals YBa 2 Cu 3 O 7-x by the dc-method was found to exceed 80000 A/cm 2 . The experiments have demonstrated a more than 30-fold increase in the critical current density in single crystals irradiated with 2.5 MeV electrons to a dose of 3·10 18 el/cm 2 . Detailed studies were made into the anisotropy of critical current and the dependence of critical current on the external magnetic field strength in irradiated single crystals. A high efficiency of point defects as centers of magnetic vortex pinning in HTSC single crystals was first demonstrated.

  7. Strengthening mechanisms of Fe nanoparticles for single crystal Cu–Fe alloy

    International Nuclear Information System (INIS)

    Shi, Guodong; Chen, Xiaohua; Jiang, Han; Wang, Zidong; Tang, Hao; Fan, Yongquan

    2015-01-01

    A single crystal Cu–Fe alloy with finely dispersed precipitate Fe nanoparticles was fabricated in this study. The interface relationship of iron nanoparticle and copper matrix was analyzed with a high-resolution transmission electron microscope (HRTEM), and the effect of Fe nanoparticles on mechanical properties of single crystal Cu–Fe alloy was discussed. Results show that, the finely dispersed Fe nanoparticles can be obtained under the directional solidification condition, with the size of 5–50 nm and the coherent interface between the iron nanoparticle and the copper matrix. Single crystal Cu–Fe alloy possesses improved tensile strength of 194.64 MPa, and total elongation of 44.72%, respectively, at room temperature, in contrast to pure Cu sample. Nanoparticles which have coherent interface with matrix can improve the dislocation motion state. Some dislocations can slip through the nanoparticle along the coherent interface and some dislocations can enter into the nanoparticles. Thus to improve the tensile strength of single crystal Cu–Fe alloy without sacrificing the ductility simultaneously. Based on the above analyses, strengthening mechanisms of Fe nanoparticles for single crystal Cu–Fe alloy was described

  8. High-frequency Rayleigh-wave method

    Science.gov (United States)

    Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.

    2009-01-01

    High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  9. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ... the transducer (the device placed on the patient's skin to send and receive the returning sound waves), ...

  10. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... sends out high-frequency sound waves (that the human ear cannot hear) into the body and then ... ultrasound , there are no known harmful effects on humans. top of page What are the limitations of ...

  11. Cultures of High-frequency Trading

    DEFF Research Database (Denmark)

    Lange, Ann-Christina; Lenglet, Marc; Seyfert, Robert

    2016-01-01

    As part of ongoing work to lay a foundation for social studies of high-frequency trading (HFT), this paper introduces the culture(s) of HFT as a sociological problem relating to knowledge and practice. HFT is often discussed as a purely technological development, where all that matters is the speed...... of allocating, processing and transmitting data. Indeed, the speed at which trades are executed and data transmitted is accelerating, and it is fair to say that algorithms are now the primary interacting agents operating in the financial markets. However, we contend that HFT is first and foremost a cultural...

  12. Inverter design for high frequency power distribution

    Science.gov (United States)

    King, R. J.

    1985-01-01

    A class of simple resonantly commutated inverters are investigated for use in a high power (100 KW - 1000 KW) high frequency (10 KHz - 20 KHz) AC power distribution system. The Mapham inverter is found to provide a unique combination of large thyristor turn-off angle and good utilization factor, much better than an alternate 'current-fed' inverter. The effects of loading the Mapham inverter entirely with rectifier loads are investigated by simulation and with an experimental 3 KW 20 KHz inverter. This inverter is found to be well suited to a power system with heavy rectifier loading.

  13. Growth and characterization of isotopically enriched 70Ge and 74Ge single crystals

    International Nuclear Information System (INIS)

    Itoh, K.

    1992-10-01

    Isotopically enriched 70 Ge and 74 Ge single crystals were successfully gown by a newly developed vertical Bridgman method. The system allows us to reliably grow high purity Ge single crystals of approximately 1 cm 3 volume. To our knowledge, we have grown the first 70 Ge single crystal. The electrically active chemical impurity concentration for both crystals was found to be ∼2 x cm -3 which is two order of magnitude better that of 74 Ge crystals previously grown by two different groups. Isotopic enrichment of the 70 Ge and the 74 Ge crystals is 96.3% and 96.8%, respectively. The residual chemical impurities present in both crystals were identified as phosphorus, copper, aluminum, and indium. A wide variety of experiments which take advantage of the isotopic purity of our crystals are discussed

  14. Investigations on the nucleation kinetics of γ-glycine single crystal

    International Nuclear Information System (INIS)

    Yogambal, C.; Rajan Babu, D.; Ezhil Vizhi, R.

    2014-01-01

    Single crystals of γ-glycine were grown by slow evaporation technique. The crystalline system was confirmed by single crystal X-ray diffraction analysis. The optical absorption study has shown that the grown crystal possesses lower cut-off wavelength. Solubility and metastable zone width were estimated for different temperatures. The induction period of title compound was determined by varying the temperature and concentration. Nucleation parameters such as Gibbs volume free energy change (ΔG v ), interfacial tension (γ), critical free energy change of the nucleus (ΔG ⁎ ), nucleation rate (J), number of molecules in the critical nucleus (i ⁎ ) have been calculated for the aqueous solution grown γ-glycine single crystals. The second harmonic generation (SHG) of γ-glycine was confirmed by Q-switched Nd:YAG laser technique

  15. Dielectric Losses and Charge Transfer in Antimony-Doped TlGaS2 Single Crystal

    Science.gov (United States)

    Asadov, S. M.; Mustafaeva, S. N.

    2018-03-01

    Effect of semimetallic antimony (0.5 mol % Sb) on the dielectric properties and ac-conductivity of TlGaS2-based single crystals grown by the Bridgman-Stockbarger method has been studied. The experimental results on the frequency dispersion of dielectric coefficients and the conductivity of TlGa0.995Sb0.005S2 single crystals allowed the revealing of the dielectric loss nature, the charge transfer mechanism, and the estimation of the parameters of the states localized in the energy gap. The antimony-doping of the TlGaS2 single crystal leads to an increase in the density of states near the Fermi level and a decrease in the average time and average distance of hopes.

  16. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals

    KAUST Repository

    Shi, Dong

    2015-01-29

    The fundamental properties and ultimate performance limits of organolead trihalide MAPbX3(MA = CH3NH3 +; X = Br- or I- ) perovskites remain obscured by extensive disorder in polycrystalline MAPbX3 films. We report an antisolvent vapor-assisted crystallization approach that enables us to create sizable crack-free MAPbX3 single crystals with volumes exceeding 100 cubic millimeters. These large single crystals enabled a detailed characterization of their optical and charge transport characteristics.We observed exceptionally low trap-state densities on the order of 109 to 1010 per cubic centimeter in MAPbX3 single crystals (comparable to the best photovoltaic-quality silicon) and charge carrier diffusion lengths exceeding 10 micrometers. These results were validated with density functional theory calculations.

  17. Extension of an anisotropic creep model to general high temperature deformation of a single crystal superalloy

    International Nuclear Information System (INIS)

    Pan, L.M.; Ghosh, R.N.; McLean, M.

    1993-01-01

    A physics based model has been developed that accounts for the principal features of anisotropic creep deformation of single crystal superalloys. The present paper extends this model to simulate other types of high temperature deformation under strain controlled test conditions, such as stress relaxation and tension tests at constant strain rate in single crystals subject to axial loading along an arbitrary crystal direction. The approach is applied to the SRR99 single crystal superalloy where a model parameter database is available, determined via analysis of a database of constant stress creep curves. A software package has been generated to simulate the deformation behaviour under complex stress-strain conditions taking into account anisotropic elasticity. (orig.)

  18. High-quality single crystal growth and magnetic property of Mn4Ta2O9

    Science.gov (United States)

    Cao, Yiming; Xu, Kun; Yang, Ya; Yang, Wangfan; Zhang, Yuanlei; Kang, Yanru; He, Xijia; Zheng, Anmin; Liu, Mian; Wei, Shengxian; Li, Zhe; Cao, Shixun

    2018-06-01

    A large-size single crystal of Mn4Ta2O9 with ∼3.5 mm in diameter and ∼65 mm in length was successfully grown for the first time by a newly designed one-step method based on the optical floating zone technique. Both the clear Laue spots and sharp XRD Bragg reflections suggest the high quality of the single crystal. In Mn4Ta2O9 single crystal, an antiferromagnetic phase transition was observed below Néel temperature 102 K along c axis, which is similar to the isostructural compound Mn4Nb2O9, but differs from the isostructural Co4Nb2O9. Relative dielectric constant at 30 kOe suggests that no magnetoelectric coupling exists in Mn4Ta2O9.

  19. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals

    KAUST Repository

    Shi, Dong; Adinolfi, Valerio; Comin, Riccardo; Yuan, Mingjian; Alarousu, Erkki; Buin, Andrei K.; Chen, Yin; Hoogland, Sjoerd H.; Rothenberger, Alexander; Katsiev, Khabiboulakh; Losovyj, Yaroslav B.; Zhang, Xin; Dowben, Peter A.; Mohammed, Omar F.; Sargent, E. H.; Bakr, Osman

    2015-01-01

    The fundamental properties and ultimate performance limits of organolead trihalide MAPbX3(MA = CH3NH3 +; X = Br- or I- ) perovskites remain obscured by extensive disorder in polycrystalline MAPbX3 films. We report an antisolvent vapor-assisted crystallization approach that enables us to create sizable crack-free MAPbX3 single crystals with volumes exceeding 100 cubic millimeters. These large single crystals enabled a detailed characterization of their optical and charge transport characteristics.We observed exceptionally low trap-state densities on the order of 109 to 1010 per cubic centimeter in MAPbX3 single crystals (comparable to the best photovoltaic-quality silicon) and charge carrier diffusion lengths exceeding 10 micrometers. These results were validated with density functional theory calculations.

  20. Measurements on very small single crystals of NdFeB using a vibrating reed magnetometer

    International Nuclear Information System (INIS)

    Richter, H.J.; Hempel, K.A.; Verhoef, R.

    1988-01-01

    Nd 2 Fe 14 B single crystals with magnetic moments ranging from 1.6 x 10 -8 Acm 2 to 9.5 x 10 -7 Acm 2 are measured using the ultra high sensitivity vibrating reed magnetometer. The hysteresis loops are compared to those of BaFe 12 O 19 single crystals. It turns out that the magnetization reversal of the Nd 2 Fe 14 B samples is similar to that of BaFe 12 O 19 single crystals if the ferrite samples are considerably bigger in size. This does not hold for bigger Nd 2 Fe 14 B particles where stronger domain wall pinning is observed. For very small grains of Nd 2 Fe 14 B there is still evidence of domain wall processes while for BaFe 12 O 19 grains of the same size true single domain behaviour can be observed

  1. Luminescence and scintillation properties of YAG:Ce single crystal and optical ceramics

    CERN Document Server

    Mihóková, E; Mareš, J A; Beitlerová, A; Vedda, A; Nejezchleb, K; Blažek, K; D’Ambrosio, C

    2007-01-01

    We use various techniques to study optical and scintillation properties of Ce-doped yttrium aluminum garnet, Y3Al5O12 (YAG:Ce), in the form of a high-quality industrial single crystal. This was compared to optical ceramics prepared from YAG:Ce nanopowders. We present experimental data in the areas of optical absorption, radioluminescence, scintillation decay, photoelectron yield, thermally stimulated luminescence and radiation-induced absorption. The results point to an interesting feature—the absence of antisite (YAl, i.e. Y at the Al site) defects in optical ceramics. The scintillation decay of the ceramics is faster than that of the single crystal, but its photoelectron yield (measured with 1 μs integration time) is about 30–40% lower. Apart from the photoelectron yield value the YAG:Ce optical ceramic is fully comparable to a high quality industrial YAG:Ce single crystal and can become a competitive scintillator material.

  2. Non-destructive local determination of doping additions and main components in single crystals

    International Nuclear Information System (INIS)

    Ehksperiandova, L.P.; Blank, A.B.; Kukhtina, N.N.; Afanasiadi, L.I.

    1994-01-01

    Procedures for local non-destructive determination of elements in optical and scintillation single crystals are developed. They are applied for determination of the main components (in cadmium tungstate) and doping additions (tellurium in zinc selenide, europium in gadolinium silicate). The metrological characteristics of the developed micro-analysis methods are estimated. Segregation of the main components and doping additions in the objects under consideration are investigated. Tellurium is found to be distributed uniformly on the cross-sections of bulk zinc selenide single crystals. The segregation of europium along gadolinium silicate ingots is almost absent. On the cross-section surface of cadmium tungstate single crystals the microregions are found characterized by the prevailing contents of cadmium or tungsten

  3. Alloying effects of refractory elements in the dislocation of Ni-based single crystal superalloys

    Directory of Open Access Journals (Sweden)

    Shiyu Ma

    2016-12-01

    Full Text Available The alloying effects of W, Cr and Re in the [100] (010 edge dislocation cores (EDC of Ni-based single crystal superalloys are investigated using first-principles based on the density functional theory (DFT. The binding energy, Mulliken orbital population, density of states, charge density and radial distribution functions are discussed, respectively. It is clearly demonstrated that the addition of refractory elements improves the stability of the EDC systems. In addition, they can form tougher bonds with their nearest neighbour (NN Ni atoms, which enhance the mechanical properties of the Ni-based single crystal superalloys. Through comparative analysis, Cr-doped system has lower binding energy, and Cr atom has evident effect to improve the systemic stability. However, Re atom has the stronger alloying effect in Ni-based single crystal superalloys, much more effectively hindering dislocation motion than W and Cr atoms.

  4. Blue luminescence in Tm3+-doped KGd(WO4)2 single crystals

    International Nuclear Information System (INIS)

    Gueell, F.; Mateos, X.; Gavalda, Jna.; Sole, R.; Aguilo, M.; Diaz, F.; Massons, J.

    2004-01-01

    Up-conversion blue emissions of trivalent thulium ions in monoclinic KGd(WO 4 ) 2 single crystals at 454 and 479 nm are reported for a single pump laser source at 688 nm. We grew thulium-doped KGd(WO 4 ) 2 single crystals at several concentrations from 0.1% to 10%. We recorded a polarized optical absorption spectrum for the 3 F 2 + 3 F 3 energy levels of thulium at room temperature and low temperature (6 K). From the low temperature emission spectra we determined the splitting of the 3 H 6 ground state. The blue emissions are characterized as a function of the dopant concentration and temperature from 10 K to room temperature. To our knowledge, this is the first time that sequential two-photon excitation process (STEP) generated blue emissions in thulium-doped single crystals with a single excitation wavelength

  5. Oriented growing and anisotropy of emission properties of lanthanum hexaboride single crystals

    International Nuclear Information System (INIS)

    Lazorenko, V.I.; Lotsko, D.V.; Platonov, V.F.; Kovalev, A.V.; Galasun, A.P.; Matvienko, A.A.; Klinkov, A.E.

    1987-01-01

    Single crystals of lanthanum hexaboride with preset crystallographic orientation are grown by the method of crucible-free zone melting. It is shown that oriented growing of single crystals of the given compound is possible only when using seed crystals of the required orientation because no predominant orientation of the LaB 6 growth is found in case of spontaneous crystallization. Orientation of spontaneously growing LaB 6 crystals does not depend on their growth rate, degree of the melt diffusion annealing, purity of the inital powder. Anisotropy of the electronic work function for single crystal lanthanum hexaboride is confirmed. Its value grows as (100)<(110)<(111). Conditions of the preliminary thermovacuum purification of the surface are shown to affect the measured work function

  6. Investigations of Residual Stresses and Mechanical Properties of Single Crystal Niobium for SRF Cavities

    Science.gov (United States)

    Gnäupel-Herold, Thomas; Myneni, Ganapati Rao; Ricker, Richard E.

    2007-08-01

    This work investigates properties of large grained, high purity niobium with respect to the forming of superconducting radio frequency (SRF) cavities from such large grained sheets. The yield stresses were examined using tensile specimens that were essentially single crystals in orientations evenly distributed in the standard projection triangle. No distinct yield anisotropy was found, however, vacuum annealing increased the yield strength by a factor 2…3. The deep drawing forming operation of the half cells raises the issues of elastic shape changes after the release of the forming tool (springback) and residual stresses, both of which are indicated to be negligible. This is a consequence of the low yield stress (sheet metal forming). However, the significant anisotropy of the transversal plastic strains after uniaxial deformation points to potentially critical thickness variations for large grained / single crystal half cells, thus raising the issue of controlling grain orientation or using single crystal sheet material.

  7. Controlled growth of filamentary crystals and fabrication of single-crystal whisker probes

    International Nuclear Information System (INIS)

    Givargizov, E. I.

    2006-01-01

    The growth of filamentary crystals (whiskers) on a single-crystal substrate through the vapour-liquid-solid mechanism is described. The possibility of fabricating oriented systems of whiskers on the basis of this mechanism of crystal growth is noted. A phenomenon that is important for nanotechnology is noted: the existence of a critical diameter of whiskers, below which they are not formed. The phenomenon of radial periodic instability, which is characteristic of nanowhiskers, is described and the ways of its elimination are shown. The possibility of transforming whiskers into single-crystal tips and the growth of crystalline diamond particles at their apices are noted as important for practice. Possible applications of systems of whiskers and tips are described briefly. Particular attention is paid to the latest direction in whisker technology-fabrication of single-crystal whisker probes for atomic force microscopy

  8. The relationship between elastic constants and structure of shock waves in a zinc single crystal

    Science.gov (United States)

    Krivosheina, M. N.; Kobenko, S. V.; Tuch, E. V.

    2017-12-01

    The paper provides a 3D finite element simulation of shock-loaded anisotropic single crystals on the example of a Zn plate under impact using a mathematical model, which allows for anisotropy in hydrostatic stress and wave velocities in elastic and plastic ranges. The simulation results agree with experimental data, showing the absence of shock wave splitting into an elastic precursor and a plastic wave in Zn single crystals impacted in the [0001] direction. It is assumed that the absence of an elastic precursor under impact loading of a zinc single crystal along the [0001] direction is determined by the anomalously large ratio of the c/a-axes and close values of the propagation velocities of longitudinal and bulk elastic waves. It is shown that an increase in only one elastic constant along the [0001] direction results in shock wave splitting into an elastic precursor and a shock wave of "plastic" compression.

  9. Elastic neutron diffraction study of transforming and non-transforming single crystal ZrV2

    International Nuclear Information System (INIS)

    Bostock, J.; Wong, M.; MacVicar, M.L.A.; Levinson, M.

    1980-01-01

    The mosaic spread of single crystal ZrV 2 is unusually narrow, approx. 1' from room temperature to 130K. For non-transforming perfect single crystal the mosaic gradually increases to approx. 1.86' at 4.2K; for transforming, twinned single crystal the room temperature mosaic is maintained to 110K, then increases to 2.76' at 94K when the crystal transforms to a mixed cubic (30%) and rhombohedral state (70%). The onset of the electronic instability (approx. 100K) is accompanied by an increase in diffuse scattering background which, for the twinned crystal, peaks at the structural transformation. The electronic instability coupled to the localized lattice stress appears to be the driving mechanism for the transformation

  10. Ferroelectric lead magnesium niobate-lead titanate single crystals for ultrasonic hydrophone applications

    International Nuclear Information System (INIS)

    Lau, S.T.; Lam, K.H.; Chan, H.L.W.; Choy, C.L.; Luo, H.S.; Yin, Q.R.; Yin, Z.W.

    2004-01-01

    Ferroelectric lead magnesium niobate-lead titanate (PMN-PT) single crystals with a composition around the rhombohedral-tetragonal morphotropic phase boundary (65 mol% of PMN) were used to fabricate single-element needle-type hydrophones for measuring the spatial and temporal characteristics of medical ultrasonic transducers. PMN-PT single crystal was grown by a modified Bridgman method. Discs (0.5 mm thick) with normal along the direction were cut and then poled by a dc field in the thickness direction. The single crystal has a high relative permittivity (ε r ∼4000) making it appropriate for small area hydrophone applications. Single-element needle-type hydrophones with this material as the sensing element have been fabricated and characterized. The hydrophones have flat frequency response and good receiving sensitivity over certain frequency range in the megahertz region

  11. The use of single-crystal iron frames in transient field measurements

    International Nuclear Information System (INIS)

    Zalm, P.C.; Laan, J. van der; Middelkoop, G. van

    1979-01-01

    Single-crystal Fe frames have been investigated for use as a ferromagnetic backing in transient magnetic field experiments. For this purpose the surface magnetization as a function of applied magnetic field has been determined with the magneto-optical Kerr effect. The frames, which have two sides parallel to the crystal axis, can be fully magnetized at low external fields such that fringing fields are negligibly small. These single-crystal Fe backings have been used in several transient magnetic field experiments. Comparison of the measured precession angles with previous results, obtained in polycrystalline Fe foils at high external magnetic fields, shows that the single-crystal backings are satisfactory. After extended periods of heavy-ion bombardment the crystals exhibited no radiation damage effects. The absence of fringing fields leads to a reduction of a factor of four in the measuring time for transient field experiments. (Auth.)

  12. Perovskite single crystals and thin films for optoelectronic devices (Conference Presentation)

    Science.gov (United States)

    Li, Gang; Han, Qifeng; Yang, Yang; Bae, Sang-Hoon; Sun, Pengyu

    2016-09-01

    Hybrid organolead trihalide perovskite (OTP) solar cells have developed as a promising candidate in photovoltaics due to their excellent properties including a direct bandgap, strong absorption coefficient, long carrier lifetime, and high mobility. Most recently, formamidinium (NH2CH=NH2+ or FA) lead iodide (FAPbI3) has attracted significant attention due to several advantages: (1) the larger organic FA cation can replace the MA cation and form a more symmetric crystal structure, (2) the smaller bandgap of FAPbI3 allows for near infrared (NIR) absorption, and (3) FAPbI3 has an elevated decomposition temperature and thus potential to improve stability. Single crystals provide an excellent model system to study the intrinsic electrical and optical properties of these materials due to their high purity, which is particularly important to understand the limits of these materials. In this work, we report the growth of large ( 5 millimeter size) single crystal FAPbI3 using a novel liquid based crystallization method. The single crystal FAPbI3 demonstrated a δ-phase to α-phase transition with a color change from yellow to black when heated to 185°C within approximately two minutes. The crystal structures of the two phases were identified and the PL emission peak of the α-phase FAPbI3 (820 nm) shows clear red-shift compared to the FAPbI3 thin film (805 nm). The FAPbI3 single crystal shows a long carrier lifetime of 484 ns, a high carrier mobility of 4.4 cm2·V-1·s-1, and even more interestingly a conductivity of 1.1 × 10-7(ohm·cm)-1, which is approximately one order of magnitude higher than that of the MAPbI3 single crystal. Finally, high performance photoconductivity type photodetectors were successfully demonstrated using the single crystal FAPbI3.

  13. Study of structural and optical properties of YAG and Nd:YAG single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kostić, S. [Institute of Physics, University of Belgrade, P.O. Box 68, Pregrevica 118, Zemun, Belgrade (Serbia); Lazarević, Z.Ž., E-mail: lzorica@yahoo.com [Institute of Physics, University of Belgrade, P.O. Box 68, Pregrevica 118, Zemun, Belgrade (Serbia); Radojević, V. [Faculty of Technology and Metallurgy, University of Belgrade, Belgrade (Serbia); Milutinović, A.; Romčević, M.; Romčević, N.Ž. [Institute of Physics, University of Belgrade, P.O. Box 68, Pregrevica 118, Zemun, Belgrade (Serbia); Valčić, A. [Faculty of Technology and Metallurgy, University of Belgrade, Belgrade (Serbia)

    2015-03-15

    Highlights: • Transparent YAG and pale pink Nd:YAG single crystals were produced by the Czochralski technique. • Growth mechanisms and shape of the liquid/solid interface and incorporation of Nd{sup 3+} were studied. • The structure of the crystals was investigated by X-ray diffraction, Raman and IR spectroscopy. • The 15 Raman and 17 IR modes were observed. • The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. - Abstract: Yttrium aluminum garnet (YAG, Y{sub 3}Al{sub 5}O{sub 12}) and yttrium aluminum garnet doped with neodymium (Nd:YAG) single crystals were grown by the Czochralski technique. The critical diameter and the critical rate of rotation were calculated. Suitable polishing and etching solutions were determined. As a result of our experiments, the transparent YAG and pale pink Nd:YAG single crystals were produced. The obtained crystals were studied by X-ray diffraction, Raman and IR spectroscopy. The crystal structure was confirmed by XRD. The 15 Raman and 17 IR modes were observed. The Raman and IR spectroscopy results are in accordance with X-ray diffraction analysis. The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. The absence of a core was confirmed by viewing polished crystal slices. Also, it is important to emphasize that the obtained Nd:YAG single crystal has a concentration of 0.8 wt.% Nd{sup 3+} that is characteristic for laser materials.

  14. Ultraviolet laser-induced voltages in LaSrAlO4 single crystal

    International Nuclear Information System (INIS)

    Zhi-Qing, Lü; Kun, Zhao; Song-Qing, Zhao; Hui, Zhao; Qing-Li, Zhou

    2009-01-01

    Laser-induced ultrafast photovoltaic effect is observed in LaSrAlO 4 single crystal at ambient temperature without any applied bias. An open-circuit photovoltage is obtained when the wafer is irradiated by a 248-nm-KrF laser pulse of 20 ns duration. The response time and full width at half maximum of the photovoltage pulse are 6 ns and 19 ns, respectively, indicating that LaSrAlO 4 single crystal has potential application in ultraviolet detector. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  15. Hierarchical zeolites: progress on synthesis and characterization of mesoporous zeolite single crystal catalysts

    DEFF Research Database (Denmark)

    Kustova, Marina; Egeblad, Kresten; Christensen, Claus H.

    2007-01-01

    Recently, a new family of crystalline zeolitic materials was reported, the so-called mesoporous zeolite single crystals featuring individual zeolite single crystals with an additional noncrystalline mesopore system interconnected with the usual micropore system of the zeolite, resulting...... measurements. Additionally, the results of diffusion of n-hexadecane in conventional and mesoporous zeolites are presented. Isomerization and cracking of n-hexadecane was chosen as model test reaction for these materials. All results support that mesoporous zeolites are superior catalysts due to improved mass...... transport. Importantly, the mesoporous zeolites show significant improved resistance to poisoning by carbon formation....

  16. Influence of submelting on formation of single crystals of nickel alloy with cellular-dendritic structure

    International Nuclear Information System (INIS)

    Pankin, G.N.; Esin, V.O.; Ponomarev, V.V.

    1996-01-01

    A study was made into specific features of cellular - dendritic structure formation in single crystals of nickel base alloy ZhS26 which had been crystallized following the pattern of solid solution. The single crystals in growing were subjected to periodic partial remelting to suppress the transition of cellular structure into a cellular - dendritic one during directional solidification. The results obtained showed the possibility to stabilize cellular growth of solid solution by way of inversion of interphase surface motion in the process of directional crystallization. 4 refs.; 5 figs

  17. Method for single crystal growth of photovoltaic perovskite material and devices

    Science.gov (United States)

    Huang, Jinsong; Dong, Qingfeng

    2017-11-07

    Systems and methods for perovskite single crystal growth include using a low temperature solution process that employs a temperature gradient in a perovskite solution in a container, also including at least one small perovskite single crystal, and a substrate in the solution upon which substrate a perovskite crystal nucleates and grows, in part due to the temperature gradient in the solution and in part due to a temperature gradient in the substrate. For example, a top portion of the substrate external to the solution may be cooled.

  18. Optical power limiting and transmitting properties of cadmium iodide single crystals: Temperature dependence

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.a [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)] [Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)] [Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2009-09-14

    Optical limiting properties of the single crystals of cadmium iodide are investigated using ns laser pulses. It is found that the transmissions in the crystals increase with increasing temperature. However, they limit the transmissions at high input powers. The limiting power is found to be higher at higher temperature. From the measured transmission data, the photon absorption coefficients are estimated. The temperature dependence of the coefficients shows a decrease in magnitude with increasing temperature. This might be due to the temperature-dependent bandgap shift of the material. The results demonstrate that the cadmium iodide single crystals are promising materials for applications in optical power limiting devices.

  19. Optical power limiting and transmitting properties of cadmium iodide single crystals: Temperature dependence

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2009-01-01

    Optical limiting properties of the single crystals of cadmium iodide are investigated using ns laser pulses. It is found that the transmissions in the crystals increase with increasing temperature. However, they limit the transmissions at high input powers. The limiting power is found to be higher at higher temperature. From the measured transmission data, the photon absorption coefficients are estimated. The temperature dependence of the coefficients shows a decrease in magnitude with increasing temperature. This might be due to the temperature-dependent bandgap shift of the material. The results demonstrate that the cadmium iodide single crystals are promising materials for applications in optical power limiting devices.

  20. Anisotropy effect of crater formation on single crystal silicon surface under intense pulsed ion beam irradiation

    Science.gov (United States)

    Shen, Jie; Yu, Xiao; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Liang, Guoying; Yu, Xiang; Huang, Wanying; Shahid, Ijaz; Zhang, Xiaofu; Yan, Sha; Le, Xiaoyun

    2018-04-01

    Due to the induced extremely fast thermal and dynamic process, Intense Pulsed Ion Beam (IPIB) is widely applied in material processing, which can bring enhanced material performance and surface craters as well. To investigate the craters' formation mechanism, a specific model was built with Finite Element Methods (FEM) to simulate the thermal field on irradiated single crystal silicon. The direct evidence for the existence of the simulated 6-fold rotational symmetric thermal distribution was provided by electron microscope images obtained on single crystal silicon. The correlation of the experiment and simulation is of great importance to understand the interaction between IPIB and materials.