WorldWideScience

Sample records for single-cell genetic analysis

  1. Single Cell Isolation and Analysis

    Directory of Open Access Journals (Sweden)

    Ping Hu

    2016-10-01

    Full Text Available Increasing evidence shows that the heterogeneity of individual cells within a genetically identical population can be critical to their peculiar function and fate. Conventional cell based assays mainly analysis the average responses from a population cells, while the difference within individual cells may often be masked. The cell size, RNA transcripts and protein expression level are quite different within individual cells and these variations are key point to answer the problems in cancer, neurobiology, stem cell biology, immunology and developmental biology. To better understand the cell-to-cell variations, the single cell analysis can provide much more detailed information which may be helpful for therapeutic decisions in an increasingly personalized medicine. In this review, we will focus on the recent development in single cell analysis, including methods used in single cell isolation, analysis and some application examples. The review provides the historical background to single cell analysis, discusses limitations, and current and future possibilities in this exciting field of research.

  2. Methodology for single-cell genetic analysis of planktonic foraminifera for studies of protist diversity and evolution

    Directory of Open Access Journals (Sweden)

    Agnes Katharina Maria Weiner

    2016-12-01

    Full Text Available Single-cell genetic analysis is an essential method to investigate the biodiversity and evolutionary ecology of marine protists. In protist groups that do not reproduce under laboratory conditions, this approach provides the only means to directly associate molecular sequences with cell morphology. The resulting unambiguous taxonomic identification of the DNA sequences is a prerequisite for barcoding and analyses of environmental metagenomic data. Extensive single-cell genetic studies have been carried out on planktonic foraminifera over the past 20 years to elucidate their phylogeny, cryptic diversity, biogeography and the relationship between genetic and morphological variability. In the course of these investigations, it has become evident that genetic analysis at the individual specimen level is confronted by innumerable challenges ranging from the negligible amount of DNA present in the single cell to the substantial amount of DNA contamination introduced by endosymbionts or food particles. Consequently, a range of methods has been developed and applied throughout the years for the genetic analysis of planktonic foraminifera in order to enhance DNA amplification success rates. Yet, the description of these methods in the literature rarely occurred with equivalent levels of detail and the different approaches have never been compared in terms of their efficiency and reproducibility. Here, aiming at a standardization of methods, we provide a comprehensive review of all methods that have been employed for the single-cell genetic analysis of planktonic foraminifera. We compile data on success rates of DNA amplification and use these to evaluate the effects of key parameters associated with the methods of sample collection, storage and extraction of single-cell DNA. We show that the chosen methods influence the success rates of single-cell genetic studies, but the differences between them are not sufficient to hinder comparisons between studies

  3. Microfluidics for single cell analysis

    DEFF Research Database (Denmark)

    Jensen, Marie Pødenphant

    Isolation and manipulation of single cells have gained an increasing interest from researchers because of the heterogeneity of cells from the same cell culture. Single cell analysis can ensure a better understanding of differences between individual cells and potentially solve a variety of clinical...... problems. In this thesis lab on a chip systems for rare single cell analysis are investigated. The focus was to develop a commercial, disposable device for circulating tumour cell (CTC) analysis. Such a device must be able to separate rare cells from blood samples and subsequently capture the specific...... cells, and simultaneously be fabricated and operated at low costs and be user-friendly. These challenges were addressed through development of two microfluidic devices, one for rare cell isolation based on pinched flow fractionation (PFF) and one for single cell capture based on hydrodynamic trapping...

  4. Linking transcriptional and genetic tumor heterogeneity through allele analysis of single-cell RNA-seq data.

    Science.gov (United States)

    Fan, Jean; Lee, Hae-Ock; Lee, Soohyun; Ryu, Da-Eun; Lee, Semin; Xue, Catherine; Kim, Seok Jin; Kim, Kihyun; Barkas, Nikolas; Park, Peter J; Park, Woong-Yang; Kharchenko, Peter V

    2018-06-13

    Characterization of intratumoral heterogeneity is critical to cancer therapy, as presence of phenotypically diverse cell populations commonly fuels relapse and resistance to treatment. Although genetic variation is a well-studied source of intratumoral heterogeneity, the functional impact of most genetic alterations remains unclear. Even less understood is the relative importance of other factors influencing heterogeneity, such as epigenetic state or tumor microenvironment. To investigate the relationship between genetic and transcriptional heterogeneity in a context of cancer progression, we devised a computational approach called HoneyBADGER to identify copy number variation and loss-of-heterozygosity in individual cells from single-cell RNA-sequencing data. By integrating allele and normalized expression information, HoneyBADGER is able to identify and infer the presence of subclone-specific alterations in individual cells and reconstruct underlying subclonal architecture. Examining several tumor types, we show that HoneyBADGER is effective at identifying deletion, amplifications, and copy-neutral loss-of-heterozygosity events, and is capable of robustly identifying subclonal focal alterations as small as 10 megabases. We further apply HoneyBADGER to analyze single cells from a progressive multiple myeloma patient to identify major genetic subclones that exhibit distinct transcriptional signatures relevant to cancer progression. Surprisingly, other prominent transcriptional subpopulations within these tumors did not line up with the genetic subclonal structure, and were likely driven by alternative, non-clonal mechanisms. These results highlight the need for integrative analysis to understand the molecular and phenotypic heterogeneity in cancer. Published by Cold Spring Harbor Laboratory Press.

  5. Dissecting Biological Dark Matter: Single Cell Genetic Analysis of TM7, a Rare and Uncultivated Microbe from the Human Mouth

    Energy Technology Data Exchange (ETDEWEB)

    Fenner, Marsha W; Marcy, Yann; Ouverney, Cleber; Bik, Elisabeth M.; Losekann, Tina; Ivanova, Natalia; Martin, H. Garcia; Szeto, E.; Platt, Darren; Hugenholtz, Philip; Relman, David A.; Quake, Stephen R.

    2007-07-01

    We have developed a microfluidic device that allows the isolation and genome amplification of individual microbial cells, thereby enabling organism-level genomic analysis of complex microbial ecosystems without the need for culture. This device was used to perform a directed survey of the human subgingival crevice and to isolate bacteria having rod-like morphology. Several isolated microbes had a 16S rRNA sequence that placed them in candidate phylum TM7, which has no cultivated or sequenced members. Genome amplification from individual TM7 cells allowed us to sequence and assemble >1,000 genes, providing insight into the physiology of members of this phylum. This approach enables single-cell genetic analysis of any uncultivated minority member of a microbial community.

  6. Preimplantation genetic diagnosis guided by single-cell genomics

    Science.gov (United States)

    2013-01-01

    Preimplantation genetic diagnosis (PGD) aims to help couples with heritable genetic disorders to avoid the birth of diseased offspring or the recurrence of loss of conception. Following in vitro fertilization, one or a few cells are biopsied from each human preimplantation embryo for genetic testing, allowing diagnosis and selection of healthy embryos for uterine transfer. Although classical methods, including single-cell PCR and fluorescent in situ hybridization, enable PGD for many genetic disorders, they have limitations. They often require family-specific designs and can be labor intensive, resulting in long waiting lists. Furthermore, certain types of genetic anomalies are not easy to diagnose using these classical approaches, and healthy offspring carrying the parental mutant allele(s) can result. Recently, state-of-the-art methods for single-cell genomics have flourished, which may overcome the limitations associated with classical PGD, and these underpin the development of generic assays for PGD that enable selection of embryos not only for the familial genetic disorder in question, but also for various other genetic aberrations and traits at once. Here, we discuss the latest single-cell genomics methodologies based on DNA microarrays, single-nucleotide polymorphism arrays or next-generation sequence analysis. We focus on their strengths, their validation status, their weaknesses and the challenges for implementing them in PGD. PMID:23998893

  7. Parallel single-cell analysis microfluidic platform

    NARCIS (Netherlands)

    van den Brink, Floris Teunis Gerardus; Gool, Elmar; Frimat, Jean-Philippe; Bomer, Johan G.; van den Berg, Albert; le Gac, Severine

    2011-01-01

    We report a PDMS microfluidic platform for parallel single-cell analysis (PaSCAl) as a powerful tool to decipher the heterogeneity found in cell populations. Cells are trapped individually in dedicated pockets, and thereafter, a number of invasive or non-invasive analysis schemes are performed.

  8. New frontiers in single-cell analysis

    OpenAIRE

    Templer, Richard H.; Ces, Oscar

    2008-01-01

    For this special issue of J. R. Soc. Interface we present an overview of the driving forces behind technological advances in the field of single-cell analysis. These range from increasing our understanding of cellular heterogeneity through to the study of rare cells, areas of research that cannot be tackled effectively using current high-throughput population-based averaging techniques.

  9. Single cell elemental analysis using nuclear microscopy

    International Nuclear Information System (INIS)

    Ren, M.Q.; Thong, P.S.P.; Kara, U.; Watt, F.

    1999-01-01

    The use of Particle Induced X-ray Emission (PIXE), Rutherford Backscattering Spectrometry (RBS) and Scanning Transmission Ion Microscopy (STIM) to provide quantitative elemental analysis of single cells is an area which has high potential, particularly when the trace elements such as Ca, Fe, Zn and Cu can be monitored. We describe the methodology of sample preparation for two cell types, the procedures of cell imaging using STIM, and the quantitative elemental analysis of single cells using RBS and PIXE. Recent work on single cells at the Nuclear Microscopy Research Centre,National University of Singapore has centred around two research areas: (a) Apoptosis (programmed cell death), which has been recently implicated in a wide range of pathological conditions such as cancer, Parkinson's disease etc, and (b) Malaria (infection of red blood cells by the malaria parasite). Firstly we present results on the elemental analysis of human Chang liver cells (ATTCC CCL 13) where vanadium ions were used to trigger apoptosis, and demonstrate that nuclear microscopy has the capability of monitoring vanadium loading within individual cells. Secondly we present the results of elemental changes taking place in individual mouse red blood cells which have been infected with the malaria parasite and treated with the anti-malaria drug Qinghaosu (QHS)

  10. Oligonucleotide arrays vs. metaphase-comparative genomic hybridisation and BAC arrays for single-cell analysis: first applications to preimplantation genetic diagnosis for Robertsonian translocation carriers.

    Science.gov (United States)

    Ramos, Laia; del Rey, Javier; Daina, Gemma; García-Aragonés, Manel; Armengol, Lluís; Fernandez-Encinas, Alba; Parriego, Mònica; Boada, Montserrat; Martinez-Passarell, Olga; Martorell, Maria Rosa; Casagran, Oriol; Benet, Jordi; Navarro, Joaquima

    2014-01-01

    Comprehensive chromosome analysis techniques such as metaphase-Comparative Genomic Hybridisation (CGH) and array-CGH are available for single-cell analysis. However, while metaphase-CGH and BAC array-CGH have been widely used for Preimplantation Genetic Diagnosis, oligonucleotide array-CGH has not been used in an extensive way. A comparison between oligonucleotide array-CGH and metaphase-CGH has been performed analysing 15 single fibroblasts from aneuploid cell-lines and 18 single blastomeres from human cleavage-stage embryos. Afterwards, oligonucleotide array-CGH and BAC array-CGH were also compared analysing 16 single blastomeres from human cleavage-stage embryos. All three comprehensive analysis techniques provided broadly similar cytogenetic profiles; however, non-identical profiles appeared when extensive aneuploidies were present in a cell. Both array techniques provided an optimised analysis procedure and a higher resolution than metaphase-CGH. Moreover, oligonucleotide array-CGH was able to define extra segmental imbalances in 14.7% of the blastomeres and it better determined the specific unbalanced chromosome regions due to a higher resolution of the technique (≈ 20 kb). Applicability of oligonucleotide array-CGH for Preimplantation Genetic Diagnosis has been demonstrated in two cases of Robertsonian translocation carriers 45,XY,der(13;14)(q10;q10). Transfer of euploid embryos was performed in both cases and pregnancy was achieved by one of the couples. This is the first time that an oligonucleotide array-CGH approach has been successfully applied to Preimplantation Genetic Diagnosis for balanced chromosome rearrangement carriers.

  11. Oligonucleotide arrays vs. metaphase-comparative genomic hybridisation and BAC arrays for single-cell analysis: first applications to preimplantation genetic diagnosis for Robertsonian translocation carriers.

    Directory of Open Access Journals (Sweden)

    Laia Ramos

    Full Text Available Comprehensive chromosome analysis techniques such as metaphase-Comparative Genomic Hybridisation (CGH and array-CGH are available for single-cell analysis. However, while metaphase-CGH and BAC array-CGH have been widely used for Preimplantation Genetic Diagnosis, oligonucleotide array-CGH has not been used in an extensive way. A comparison between oligonucleotide array-CGH and metaphase-CGH has been performed analysing 15 single fibroblasts from aneuploid cell-lines and 18 single blastomeres from human cleavage-stage embryos. Afterwards, oligonucleotide array-CGH and BAC array-CGH were also compared analysing 16 single blastomeres from human cleavage-stage embryos. All three comprehensive analysis techniques provided broadly similar cytogenetic profiles; however, non-identical profiles appeared when extensive aneuploidies were present in a cell. Both array techniques provided an optimised analysis procedure and a higher resolution than metaphase-CGH. Moreover, oligonucleotide array-CGH was able to define extra segmental imbalances in 14.7% of the blastomeres and it better determined the specific unbalanced chromosome regions due to a higher resolution of the technique (≈ 20 kb. Applicability of oligonucleotide array-CGH for Preimplantation Genetic Diagnosis has been demonstrated in two cases of Robertsonian translocation carriers 45,XY,der(13;14(q10;q10. Transfer of euploid embryos was performed in both cases and pregnancy was achieved by one of the couples. This is the first time that an oligonucleotide array-CGH approach has been successfully applied to Preimplantation Genetic Diagnosis for balanced chromosome rearrangement carriers.

  12. Oligonucleotide Arrays vs. Metaphase-Comparative Genomic Hybridisation and BAC Arrays for Single-Cell Analysis: First Applications to Preimplantation Genetic Diagnosis for Robertsonian Translocation Carriers

    Science.gov (United States)

    Ramos, Laia; del Rey, Javier; Daina, Gemma; García-Aragonés, Manel; Armengol, Lluís; Fernandez-Encinas, Alba; Parriego, Mònica; Boada, Montserrat; Martinez-Passarell, Olga; Martorell, Maria Rosa; Casagran, Oriol; Benet, Jordi; Navarro, Joaquima

    2014-01-01

    Comprehensive chromosome analysis techniques such as metaphase-Comparative Genomic Hybridisation (CGH) and array-CGH are available for single-cell analysis. However, while metaphase-CGH and BAC array-CGH have been widely used for Preimplantation Genetic Diagnosis, oligonucleotide array-CGH has not been used in an extensive way. A comparison between oligonucleotide array-CGH and metaphase-CGH has been performed analysing 15 single fibroblasts from aneuploid cell-lines and 18 single blastomeres from human cleavage-stage embryos. Afterwards, oligonucleotide array-CGH and BAC array-CGH were also compared analysing 16 single blastomeres from human cleavage-stage embryos. All three comprehensive analysis techniques provided broadly similar cytogenetic profiles; however, non-identical profiles appeared when extensive aneuploidies were present in a cell. Both array techniques provided an optimised analysis procedure and a higher resolution than metaphase-CGH. Moreover, oligonucleotide array-CGH was able to define extra segmental imbalances in 14.7% of the blastomeres and it better determined the specific unbalanced chromosome regions due to a higher resolution of the technique (≈20 kb). Applicability of oligonucleotide array-CGH for Preimplantation Genetic Diagnosis has been demonstrated in two cases of Robertsonian translocation carriers 45,XY,der(13;14)(q10;q10). Transfer of euploid embryos was performed in both cases and pregnancy was achieved by one of the couples. This is the first time that an oligonucleotide array-CGH approach has been successfully applied to Preimplantation Genetic Diagnosis for balanced chromosome rearrangement carriers. PMID:25415307

  13. Single-cell analysis of targeted transcriptome predicts drug sensitivity of single cells within human myeloma tumors.

    Science.gov (United States)

    Mitra, A K; Mukherjee, U K; Harding, T; Jang, J S; Stessman, H; Li, Y; Abyzov, A; Jen, J; Kumar, S; Rajkumar, V; Van Ness, B

    2016-05-01

    Multiple myeloma (MM) is characterized by significant genetic diversity at subclonal levels that have a defining role in the heterogeneity of tumor progression, clinical aggressiveness and drug sensitivity. Although genome profiling studies have demonstrated heterogeneity in subclonal architecture that may ultimately lead to relapse, a gene expression-based prediction program that can identify, distinguish and quantify drug response in sub-populations within a bulk population of myeloma cells is lacking. In this study, we performed targeted transcriptome analysis on 528 pre-treatment single cells from 11 myeloma cell lines and 418 single cells from 8 drug-naïve MM patients, followed by intensive bioinformatics and statistical analysis for prediction of proteasome inhibitor sensitivity in individual cells. Using our previously reported drug response gene expression profile signature at the single-cell level, we developed an R Statistical analysis package available at https://github.com/bvnlabSCATTome, SCATTome (single-cell analysis of targeted transcriptome), that restructures the data obtained from Fluidigm single-cell quantitative real-time-PCR analysis run, filters missing data, performs scaling of filtered data, builds classification models and predicts drug response of individual cells based on targeted transcriptome using an assortment of machine learning methods. Application of SCATT should contribute to clinically relevant analysis of intratumor heterogeneity, and better inform drug choices based on subclonal cellular responses.

  14. Developmental switching in Physarum polycephalum : Petri net analysis of single cell trajectories of gene expression indicates responsiveness and genetic plasticity of the Waddington quasipotential landscape

    International Nuclear Information System (INIS)

    Werthmann, Britta; Marwan, Wolfgang

    2017-01-01

    The developmental switch to sporulation in Physarum polycephalum is a phytochrome-mediated far-red light-induced cell fate decision that synchronously encompasses the entire multinucleate plasmodial cell and is associated with extensive reprogramming of the transcriptome. By repeatedly taking samples of single cells after delivery of a light stimulus pulse, we analysed differential gene expression in two mutant strains and in a heterokaryon of the two strains all of which display a different propensity for making the cell fate decision. Multidimensional scaling of the gene expression data revealed individually different single cell trajectories eventually leading to sporulation. Characterization of the trajectories as walks through states of gene expression discretized by hierarchical clustering allowed the reconstruction of Petri nets that model and predict the observed behavior. Structural analyses of the Petri nets indicated stimulus- and genotype-dependence of both, single cell trajectories and of the quasipotential landscape through which these trajectories are taken. The Petri net-based approach to the analysis and decomposition of complex cellular responses and of complex mutant phenotypes may provide a scaffold for the data-driven reconstruction of causal molecular mechanisms that shape the topology of the quasipotential landscape. (paper)

  15. Developmental switching in Physarum polycephalum: Petri net analysis of single cell trajectories of gene expression indicates responsiveness and genetic plasticity of the Waddington quasipotential landscape

    Science.gov (United States)

    Werthmann, Britta; Marwan, Wolfgang

    2017-11-01

    The developmental switch to sporulation in Physarum polycephalum is a phytochrome-mediated far-red light-induced cell fate decision that synchronously encompasses the entire multinucleate plasmodial cell and is associated with extensive reprogramming of the transcriptome. By repeatedly taking samples of single cells after delivery of a light stimulus pulse, we analysed differential gene expression in two mutant strains and in a heterokaryon of the two strains all of which display a different propensity for making the cell fate decision. Multidimensional scaling of the gene expression data revealed individually different single cell trajectories eventually leading to sporulation. Characterization of the trajectories as walks through states of gene expression discretized by hierarchical clustering allowed the reconstruction of Petri nets that model and predict the observed behavior. Structural analyses of the Petri nets indicated stimulus- and genotype-dependence of both, single cell trajectories and of the quasipotential landscape through which these trajectories are taken. The Petri net-based approach to the analysis and decomposition of complex cellular responses and of complex mutant phenotypes may provide a scaffold for the data-driven reconstruction of causal molecular mechanisms that shape the topology of the quasipotential landscape.

  16. Micro-PIXE for single cell analysis

    International Nuclear Information System (INIS)

    Ortega, Richard

    2012-01-01

    The knowledge of the intracellular distribution of biological relevant metals is important to understand their mechanisms of action in cells, either for physiological, toxicological or pathological processes. However, the direct detection of trace metals in single cells is a challenging task that requires sophisticated analytical developments. The combination of micro-PIXE with RBS and STIM (Scanning Transmission Ion Microscopy) allows the quantitative determination of trace metal content within sub-cellular compartments. The application of STIM analysis provides high spatial resolution imaging (< 200 nm) and excellent mass sensitivity (< 0.1 ng). Application of the STIM-PIXE-RBS methodology is absolutely needed when organic mass loss appears during PIXE-RBS irradiation. This combination of STIM-PIXE-RBS provides fully quantitative determination of trace element content, expressed in μg/g, which is a quite unique capability for micro-PIXE compared to other micro-analytical methods such as the electron and synchrotron x-ray fluorescence. Examples of micro-PIXE studies for sub-cellular imaging of trace elements in various fields of interest will be presented: in patho-physiology of trace elements involved in neurodegenerative diseases such as Parkinson's disease, and in toxicology of metals such as cobalt. (author)

  17. RT-qPCR work-flow for single-cell data analysis

    Czech Academy of Sciences Publication Activity Database

    Stahlberg, A.; Rusňáková, Vendula; Forootan, A.; Anděrová, Miroslava; Kubista, Mikael

    2013-01-01

    Roč. 59, č. 1 (2013), s. 80-88 ISSN 1046-2023 R&D Projects: GA MŠk(CZ) ME10052; GA ČR GAP303/10/1338 Institutional research plan: CEZ:AV0Z50520701 Institutional support: RVO:68378041 Keywords : RT-qPCR * Single-cell biology * Single-cell data analysis Subject RIV: EB - Genetics ; Molecular Biology; FH - Neurology (UEM-P) Impact factor: 3.221, year: 2013

  18. Single cell analysis of normal and leukemic hematopoiesis.

    Science.gov (United States)

    Povinelli, Benjamin J; Rodriguez-Meira, Alba; Mead, Adam J

    2018-02-01

    The hematopoietic system is well established as a paradigm for the study of cellular hierarchies, their disruption in disease and therapeutic use in regenerative medicine. Traditional approaches to study hematopoiesis involve purification of cell populations based on a small number of surface markers. However, such population-based analysis obscures underlying heterogeneity contained within any phenotypically defined cell population. This heterogeneity can only be resolved through single cell analysis. Recent advances in single cell techniques allow analysis of the genome, transcriptome, epigenome and proteome in single cells at an unprecedented scale. The application of these new single cell methods to investigate the hematopoietic system has led to paradigm shifts in our understanding of cellular heterogeneity in hematopoiesis and how this is disrupted in disease. In this review, we summarize how single cell techniques have been applied to the analysis of hematopoietic stem/progenitor cells in normal and malignant hematopoiesis, with a particular focus on recent advances in single-cell genomics, including how these might be utilized for clinical application. Copyright © 2017. Published by Elsevier Ltd.

  19. Bioinformatics approaches to single-cell analysis in developmental biology.

    Science.gov (United States)

    Yalcin, Dicle; Hakguder, Zeynep M; Otu, Hasan H

    2016-03-01

    Individual cells within the same population show various degrees of heterogeneity, which may be better handled with single-cell analysis to address biological and clinical questions. Single-cell analysis is especially important in developmental biology as subtle spatial and temporal differences in cells have significant associations with cell fate decisions during differentiation and with the description of a particular state of a cell exhibiting an aberrant phenotype. Biotechnological advances, especially in the area of microfluidics, have led to a robust, massively parallel and multi-dimensional capturing, sorting, and lysis of single-cells and amplification of related macromolecules, which have enabled the use of imaging and omics techniques on single cells. There have been improvements in computational single-cell image analysis in developmental biology regarding feature extraction, segmentation, image enhancement and machine learning, handling limitations of optical resolution to gain new perspectives from the raw microscopy images. Omics approaches, such as transcriptomics, genomics and epigenomics, targeting gene and small RNA expression, single nucleotide and structural variations and methylation and histone modifications, rely heavily on high-throughput sequencing technologies. Although there are well-established bioinformatics methods for analysis of sequence data, there are limited bioinformatics approaches which address experimental design, sample size considerations, amplification bias, normalization, differential expression, coverage, clustering and classification issues, specifically applied at the single-cell level. In this review, we summarize biological and technological advancements, discuss challenges faced in the aforementioned data acquisition and analysis issues and present future prospects for application of single-cell analyses to developmental biology. © The Author 2015. Published by Oxford University Press on behalf of the European

  20. Platforms for Single-Cell Collection and Analysis

    Directory of Open Access Journals (Sweden)

    Lukas Valihrach

    2018-03-01

    Full Text Available Single-cell analysis has become an established method to study cell heterogeneity and for rare cell characterization. Despite the high cost and technical constraints, applications are increasing every year in all fields of biology. Following the trend, there is a tremendous development of tools for single-cell analysis, especially in the RNA sequencing field. Every improvement increases sensitivity and throughput. Collecting a large amount of data also stimulates the development of new approaches for bioinformatic analysis and interpretation. However, the essential requirement for any analysis is the collection of single cells of high quality. The single-cell isolation must be fast, effective, and gentle to maintain the native expression profiles. Classical methods for single-cell isolation are micromanipulation, microdissection, and fluorescence-activated cell sorting (FACS. In the last decade several new and highly efficient approaches have been developed, which not just supplement but may fully replace the traditional ones. These new techniques are based on microfluidic chips, droplets, micro-well plates, and automatic collection of cells using capillaries, magnets, an electric field, or a punching probe. In this review we summarize the current methods and developments in this field. We discuss the advantages of the different commercially available platforms and their applicability, and also provide remarks on future developments.

  1. Platforms for Single-Cell Collection and Analysis.

    Science.gov (United States)

    Valihrach, Lukas; Androvic, Peter; Kubista, Mikael

    2018-03-11

    Single-cell analysis has become an established method to study cell heterogeneity and for rare cell characterization. Despite the high cost and technical constraints, applications are increasing every year in all fields of biology. Following the trend, there is a tremendous development of tools for single-cell analysis, especially in the RNA sequencing field. Every improvement increases sensitivity and throughput. Collecting a large amount of data also stimulates the development of new approaches for bioinformatic analysis and interpretation. However, the essential requirement for any analysis is the collection of single cells of high quality. The single-cell isolation must be fast, effective, and gentle to maintain the native expression profiles. Classical methods for single-cell isolation are micromanipulation, microdissection, and fluorescence-activated cell sorting (FACS). In the last decade several new and highly efficient approaches have been developed, which not just supplement but may fully replace the traditional ones. These new techniques are based on microfluidic chips, droplets, micro-well plates, and automatic collection of cells using capillaries, magnets, an electric field, or a punching probe. In this review we summarize the current methods and developments in this field. We discuss the advantages of the different commercially available platforms and their applicability, and also provide remarks on future developments.

  2. Single-cell regulome data analysis by SCRAT.

    Science.gov (United States)

    Ji, Zhicheng; Zhou, Weiqiang; Ji, Hongkai

    2017-09-15

    Emerging single-cell technologies (e.g. single-cell ATAC-seq, DNase-seq or ChIP-seq) have made it possible to assay regulome of individual cells. Single-cell regulome data are highly sparse and discrete. Analyzing such data is challenging. User-friendly software tools are still lacking. We present SCRAT, a Single-Cell Regulome Analysis Toolbox with a graphical user interface, for studying cell heterogeneity using single-cell regulome data. SCRAT can be used to conveniently summarize regulatory activities according to different features (e.g. gene sets, transcription factor binding motif sites, etc.). Using these features, users can identify cell subpopulations in a heterogeneous biological sample, infer cell identities of each subpopulation, and discover distinguishing features such as gene sets and transcription factors that show different activities among subpopulations. SCRAT is freely available at https://zhiji.shinyapps.io/scrat as an online web service and at https://github.com/zji90/SCRAT as an R package. hji@jhu.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  3. Scientist, Single Cell Analysis Facility | Center for Cancer Research

    Science.gov (United States)

    The Cancer Research Technology Program (CRTP) develops and implements emerging technology, cancer biology expertise and research capabilities to accomplish NCI research objectives.  The CRTP is an outward-facing, multi-disciplinary hub purposed to enable the external cancer research community and provides dedicated support to NCI’s intramural Center for Cancer Research (CCR).  The dedicated units provide electron microscopy, protein characterization, protein expression, optical microscopy and nextGen sequencing. These research efforts are an integral part of CCR at the Frederick National Laboratory for Cancer Research (FNLCR).  CRTP scientists also work collaboratively with intramural NCI investigators to provide research technologies and expertise. KEY ROLES AND RESPONSIBILITIES We are seeking a highly motivated Scientist II to join the newly established Single Cell Analysis Facility (SCAF) of the Center for Cancer Research (CCR) at NCI. The SCAF will house state of the art single cell sequencing technologies including 10xGenomics Chromium, BD Genomics Rhapsody, DEPPArray, and other emerging single cell technologies. The Scientist: Will interact with close to 200 laboratories within the CCR to design and carry out single cell experiments for cancer research Will work on single cell isolation/preparation from various tissues and cells and related NexGen sequencing library preparation Is expected to author publications in peer reviewed scientific journals

  4. Single cell analysis contemporary research and clinical applications

    CERN Document Server

    Cossarizza, Andrea

    2017-01-01

    This book highlights the current state of the art in single cell analysis, an area that involves many fields of science – from clinical hematology, functional analysis and drug screening, to platelet and microparticle analysis, marine biology and fundamental cancer research. This book brings together an eclectic group of current applications, all of which have a significant impact on our current state of knowledge. The authors of these chapters are all pioneering researchers in the field of single cell analysis. The book will not only appeal to those readers more focused on clinical applications, but also those interested in highly technical aspects of the technologies. All of the technologies identified utilize unique applications of photon detection systems.

  5. Condensing Raman spectrum for single-cell phenotype analysis

    KAUST Repository

    Sun, Shiwei

    2015-12-09

    Background In recent years, high throughput and non-invasive Raman spectrometry technique has matured as an effective approach to identification of individual cells by species, even in complex, mixed populations. Raman profiling is an appealing optical microscopic method to achieve this. To fully utilize Raman proling for single-cell analysis, an extensive understanding of Raman spectra is necessary to answer questions such as which filtering methodologies are effective for pre-processing of Raman spectra, what strains can be distinguished by Raman spectra, and what features serve best as Raman-based biomarkers for single-cells, etc. Results In this work, we have proposed an approach called rDisc to discretize the original Raman spectrum into only a few (usually less than 20) representative peaks (Raman shifts). The approach has advantages in removing noises, and condensing the original spectrum. In particular, effective signal processing procedures were designed to eliminate noise, utilising wavelet transform denoising, baseline correction, and signal normalization. In the discretizing process, representative peaks were selected to signicantly decrease the Raman data size. More importantly, the selected peaks are chosen as suitable to serve as key biological markers to differentiate species and other cellular features. Additionally, the classication performance of discretized spectra was found to be comparable to full spectrum having more than 1000 Raman shifts. Overall, the discretized spectrum needs about 5storage space of a full spectrum and the processing speed is considerably faster. This makes rDisc clearly superior to other methods for single-cell classication.

  6. Implementation of stimulated Raman scattering microscopy for single cell analysis

    Science.gov (United States)

    D'Arco, Annalisa; Ferrara, Maria Antonietta; Indolfi, Maurizio; Tufano, Vitaliano; Sirleto, Luigi

    2017-05-01

    In this work, we present successfully realization of a nonlinear microscope, not purchasable in commerce, based on stimulated Raman scattering. It is obtained by the integration of a femtosecond SRS spectroscopic setup with an inverted research microscope equipped with a scanning unit. Taking account of strength of vibrational contrast of SRS, it provides label-free imaging of single cell analysis. Validation tests on images of polystyrene beads are reported to demonstrate the feasibility of the approach. In order to test the microscope on biological structures, we report and discuss the label-free images of lipid droplets inside fixed adipocyte cells.

  7. RoboSCell: An automated single cell arraying and analysis instrument

    KAUST Repository

    Sakaki, Kelly; Foulds, Ian G.; Liu, William; Dechev, Nikolai; Burke, Robert Douglas; Park, Edward

    2009-01-01

    Single cell research has the potential to revolutionize experimental methods in biomedical sciences and contribute to clinical practices. Recent studies suggest analysis of single cells reveals novel features of intracellular processes, cell-to-cell

  8. Embryo genome profiling by single-cell sequencing for preimplantation genetic diagnosis in a β-thalassemia family

    DEFF Research Database (Denmark)

    Xu, Yanwen; Chen, Shengpei; Yin, Xuyang

    2015-01-01

    for a β-thalassemia-carrier couple to have a healthy second baby. We carried out sequencing for single blastomere cells and the family trio and further developed the analysis pipeline, including recovery of the missing alleles, removal of the majority of errors, and phasing of the embryonic genome...... leukocyte antigen matching tests. CONCLUSIONS: This retrospective study in a β-thalassemia family demonstrates a method for embryo genome recovery through single-cell sequencing, which permits detection of genetic variations in preimplantation genetic diagnosis. It shows the potential of single...

  9. Mapping cellular hierarchy by single-cell analysis of the cell surface repertoire.

    Science.gov (United States)

    Guo, Guoji; Luc, Sidinh; Marco, Eugenio; Lin, Ta-Wei; Peng, Cong; Kerenyi, Marc A; Beyaz, Semir; Kim, Woojin; Xu, Jian; Das, Partha Pratim; Neff, Tobias; Zou, Keyong; Yuan, Guo-Cheng; Orkin, Stuart H

    2013-10-03

    Stem cell differentiation pathways are most often studied at the population level, whereas critical decisions are executed at the level of single cells. We have established a highly multiplexed, quantitative PCR assay to profile in an unbiased manner a panel of all commonly used cell surface markers (280 genes) from individual cells. With this method, we analyzed over 1,500 single cells throughout the mouse hematopoietic system and illustrate its utility for revealing important biological insights. The comprehensive single cell data set permits mapping of the mouse hematopoietic stem cell differentiation hierarchy by computational lineage progression analysis. Further profiling of 180 intracellular regulators enabled construction of a genetic network to assign the earliest differentiation event during hematopoietic lineage specification. Analysis of acute myeloid leukemia elicited by MLL-AF9 uncovered a distinct cellular hierarchy containing two independent self-renewing lineages with different clonal activities. The strategy has broad applicability in other cellular systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Single-cell Analysis of Lambda Immunity Regulation

    DEFF Research Database (Denmark)

    Bæk, Kristoffer Torbjørn; Svenningsen, Sine Lo; Eisen, Harvey

    2003-01-01

    We have examined expression of the ¿cI operon in single cells via a rexgfp substitution. Although average fluorescence agreed with expectations for expression of ¿-repressor, fluorescence fluctuated greatly from cell-to-cell. Fluctuations in repressor concentration are not predicted by previous m...

  11. Tools for Genomic and Transcriptomic Analysis of Microbes at Single-Cell Level

    Directory of Open Access Journals (Sweden)

    Zixi Chen

    2017-09-01

    Full Text Available Microbiologists traditionally study population rather than individual cells, as it is generally assumed that the status of individual cells will be similar to that observed in the population. However, the recent studies have shown that the individual behavior of each single cell could be quite different from that of the whole population, suggesting the importance of extending traditional microbiology studies to single-cell level. With recent technological advances, such as flow cytometry, next-generation sequencing (NGS, and microspectroscopy, single-cell microbiology has greatly enhanced the understanding of individuality and heterogeneity of microbes in many biological systems. Notably, the application of multiple ‘omics’ in single-cell analysis has shed light on how individual cells perceive, respond, and adapt to the environment, how heterogeneity arises under external stress and finally determines the fate of the whole population, and how microbes survive under natural conditions. As single-cell analysis involves no axenic cultivation of target microorganism, it has also been demonstrated as a valuable tool for dissecting the microbial ‘dark matter.’ In this review, current state-of-the-art tools and methods for genomic and transcriptomic analysis of microbes at single-cell level were critically summarized, including single-cell isolation methods and experimental strategies of single-cell analysis with NGS. In addition, perspectives on the future trends of technology development in the field of single-cell analysis was also presented.

  12. Addressable droplet microarrays for single cell protein analysis.

    Science.gov (United States)

    Salehi-Reyhani, Ali; Burgin, Edward; Ces, Oscar; Willison, Keith R; Klug, David R

    2014-11-07

    Addressable droplet microarrays are potentially attractive as a way to achieve miniaturised, reduced volume, high sensitivity analyses without the need to fabricate microfluidic devices or small volume chambers. We report a practical method for producing oil-encapsulated addressable droplet microarrays which can be used for such analyses. To demonstrate their utility, we undertake a series of single cell analyses, to determine the variation in copy number of p53 proteins in cells of a human cancer cell line.

  13. Single-Cell Analysis of Human Pancreas Reveals Transcriptional Signatures of Aging and Somatic Mutation Patterns.

    Science.gov (United States)

    Enge, Martin; Arda, H Efsun; Mignardi, Marco; Beausang, John; Bottino, Rita; Kim, Seung K; Quake, Stephen R

    2017-10-05

    As organisms age, cells accumulate genetic and epigenetic errors that eventually lead to impaired organ function or catastrophic transformation such as cancer. Because aging reflects a stochastic process of increasing disorder, cells in an organ will be individually affected in different ways, thus rendering bulk analyses of postmitotic adult cells difficult to interpret. Here, we directly measure the effects of aging in human tissue by performing single-cell transcriptome analysis of 2,544 human pancreas cells from eight donors spanning six decades of life. We find that islet endocrine cells from older donors display increased levels of transcriptional noise and potential fate drift. By determining the mutational history of individual cells, we uncover a novel mutational signature in healthy aging endocrine cells. Our results demonstrate the feasibility of using single-cell RNA sequencing (RNA-seq) data from primary cells to derive insights into genetic and transcriptional processes that operate on aging human tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Symposium on single cell analysis and genomic approaches, Experimental Biology 2017 Chicago, Illinois, April 23, 2017.

    Science.gov (United States)

    Coller, Hilary A

    2017-09-01

    Emerging technologies for the analysis of genome-wide information in single cells have the potential to transform many fields of biology, including our understanding of cell states, the response of cells to external stimuli, mosaicism, and intratumor heterogeneity. At Experimental Biology 2017 in Chicago, Physiological Genomics hosted a symposium in which five leaders in the field of single cell genomics presented their recent research. The speakers discussed emerging methodologies in single cell analysis and critical issues for the analysis of single cell data. Also discussed were applications of single cell genomics to understanding the different types of cells within an organism or tissue and the basis for cell-to-cell variability in response to stimuli. Copyright © 2017 the American Physiological Society.

  15. Chip based single cell analysis for nanotoxicity assessment.

    Science.gov (United States)

    Shah, Pratikkumar; Kaushik, Ajeet; Zhu, Xuena; Zhang, Chengxiao; Li, Chen-Zhong

    2014-05-07

    Nanomaterials, because of their tunable properties and performances, have been utilized extensively in everyday life related consumable products and technology. On exposure, beyond the physiological range, nanomaterials cause health risks via affecting the function of organisms, genomic systems, and even the central nervous system. Thus, new analytical approaches for nanotoxicity assessment to verify the feasibility of nanomaterials for future use are in demand. The conventional analytical techniques, such as spectrophotometric assay-based techniques, usually require a lengthy and time-consuming process and often produce false positives, and often cannot be implemented at a single cell level measurement for studying cell behavior without interference from its surrounding environment. Hence, there is a demand for a precise, accurate, sensitive assessment for toxicity using single cells. Recently, due to the advantages of automation of fluids and minimization of human errors, the integration of a cell-on-a-chip (CoC) with a microfluidic system is in practice for nanotoxicity assessments. This review explains nanotoxicity and its assessment approaches with advantages/limitations and new approaches to overcome the confines of traditional techniques. Recent advances in nanotoxicity assessment using a CoC integrated with a microfluidic system are also discussed in this review, which may be of use for nanotoxicity assessment and diagnostics.

  16. Condensing Raman spectrum for single-cell phenotype analysis

    KAUST Repository

    Sun, Shiwei; Wang, Xuetao; Gao, Xin; Ren, Lihui; Su, Xiaoquan; Bu, Dongbo; Ning, Kang

    2015-01-01

    In this work, we have proposed an approach called rDisc to discretize the original Raman spectrum into only a few (usually less than 20) representative peaks (Raman shifts). The approach has advantages in removing noises, and condensing the original spectrum. In particular, effective signal processing procedures were designed to eliminate noise, utilising wavelet transform denoising, baseline correction, and signal normalization. In the discretizing process, representative peaks were selected to signicantly decrease the Raman data size. More importantly, the selected peaks are chosen as suitable to serve as key biological markers to differentiate species and other cellular features. Additionally, the classication performance of discretized spectra was found to be comparable to full spectrum having more than 1000 Raman shifts. Overall, the discretized spectrum needs about 5storage space of a full spectrum and the processing speed is considerably faster. This makes rDisc clearly superior to other methods for single-cell classication.

  17. Analysis of single-cell differences by use of an on-chip microculture system and optical trapping.

    Science.gov (United States)

    Wakamoto, Y; Inoue, I; Moriguchi, H; Yasuda, K

    2001-09-01

    A method is described for continuous observation of isolated single cells that enables genetically identical cells to be compared; it uses an on-chip microculture system and optical tweezers. Photolithography is used to construct microchambers with 5-microm-high walls made of thick photoresist (SU-8) on the surface of a glass slide. These microchambers are connected by a channel through which cells are transported, by means of optical tweezers, from a cultivation microchamber to an analysis microchamber, or from the analysis microchamber to a waste microchamber. The microchambers are covered with a semi-permeable membrane to separate them from nutrient medium circulating through a "cover chamber" above. Differential analysis of isolated direct descendants of single cells showed that this system could be used to compare genetically identical cells under contamination-free conditions. It should thus help in the clarification of heterogeneous phenomena, for example unequal cell division and cell differentiation.

  18. Numerical Analysis of Hydrodynamic Flow in Microfluidic Biochip for Single-Cell Trapping Application

    Directory of Open Access Journals (Sweden)

    Amelia Ahmad Khalili

    2015-11-01

    Full Text Available Single-cell analysis has become the interest of a wide range of biological and biomedical engineering research. It could provide precise information on individual cells, leading to important knowledge regarding human diseases. To perform single-cell analysis, it is crucial to isolate the individual cells before further manipulation is carried out. Recently, microfluidic biochips have been widely used for cell trapping and single cell analysis, such as mechanical and electrical detection. This work focuses on developing a finite element simulation model of single-cell trapping system for any types of cells or particles based on the hydrodynamic flow resistance (Rh manipulations in the main channel and trap channel to achieve successful trapping. Analysis is carried out using finite element ABAQUS-FEA™ software. A guideline to design and optimize single-cell trapping model is proposed and the example of a thorough optimization analysis is carried out using a yeast cell model. The results show the finite element model is able to trap a single cell inside the fluidic environment. Fluid’s velocity profile and streamline plots for successful and unsuccessful single yeast cell trapping are presented according to the hydrodynamic concept. The single-cell trapping model can be a significant important guideline in designing a new chip for biomedical applications.

  19. Fluidic Logic Used in a Systems Approach to Enable Integrated Single-cell Functional Analysis

    Directory of Open Access Journals (Sweden)

    Naveen Ramalingam

    2016-09-01

    Full Text Available The study of single cells has evolved over the past several years to include expression and genomic analysis of an increasing number of single cells. Several studies have demonstrated wide-spread variation and heterogeneity within cell populations of similar phenotype. While the characterization of these populations will likely set the foundation for our understanding of genomic- and expression-based diversity, it will not be able to link the functional differences of a single cell to its underlying genomic structure and activity. Currently, it is difficult to perturb single cells in a controlled environment, monitor and measure the response due to perturbation, and link these response measurements to downstream genomic and transcriptomic analysis. In order to address this challenge, we developed a platform to integrate and miniaturize many of the experimental steps required to study single-cell function. The heart of this platform is an elastomer-based Integrated Fluidic Circuit (IFC that uses fluidic logic to select and sequester specific single cells based on a phenotypic trait for downstream experimentation. Experiments with sequestered cells that have been performed include on-chip culture, exposure to a variety of stimulants, and post-exposure image-based response analysis, followed by preparation of the mRNA transcriptome for massively parallel sequencing analysis. The flexible system embodies experimental design and execution that enable routine functional studies of single cells.

  20. QSpec: online control and data analysis system for single-cell Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Lihui Ren

    2014-06-01

    Full Text Available Single-cell phenotyping is critical to the success of biological reductionism. Raman-activated cell sorting (RACS has shown promise in resolving the dynamics of living cells at the individual level and to uncover population heterogeneities in comparison to established approaches such as fluorescence-activated cell sorting (FACS. Given that the number of single-cells would be massive in any experiment, the power of Raman profiling technique for single-cell analysis would be fully utilized only when coupled with a high-throughput and intelligent process control and data analysis system. In this work, we established QSpec, an automatic system that supports high-throughput Raman-based single-cell phenotyping. Additionally, a single-cell Raman profile database has been established upon which data-mining could be applied to discover the heterogeneity among single-cells under different conditions. To test the effectiveness of this control and data analysis system, a sub-system was also developed to simulate the phenotypes of single-cells as well as the device features.

  1. Essentials of single-cell analysis concepts, applications and future prospects

    CERN Document Server

    Santra, Tuhin

    2016-01-01

    This book provides an overview of single-cell isolation, separation, injection, lysis and dynamics analysis as well as a study of their heterogeneity using different miniaturized devices. As an important part of single-cell analysis, different techniques including electroporation, microinjection, optical trapping, optoporation, rapid electrokinetic patterning and optoelectronic tweezers are described in detail. It presents different fluidic systems (e.g. continuous micro/nano-fluidic devices, microfluidic cytometry) and their integration with sensor technology, optical and hydrodynamic stretchers etc., and demonstrates the applications of single-cell analysis in systems biology, proteomics, genomics, epigenomics, cancer transcriptomics, metabolomics, biomedicine and drug delivery systems. It also discusses the future challenges for single-cell analysis, including the advantages and limitations. This book is enjoyable reading material while at the same time providing essential information to scientists in acad...

  2. Parallel single-cell analysis of active caspase-3/7 in apoptotic and non-apoptotic cells

    Czech Academy of Sciences Publication Activity Database

    Ledvina, Vojtěch; Janečková, Eva; Matalová, Eva; Klepárník, Karel

    2017-01-01

    Roč. 409, č. 1 (2017), s. 269-274 ISSN 1618-2642 R&D Projects: GA ČR(CZ) GA14-28254S Institutional support: RVO:68081715 ; RVO:67985904 Keywords : single-cell analysis * bioluminescence * apoptosis * caspase-3/7 Subject RIV: CB - Analytical Chemistry , Separation; EB - Genetics ; Molecular Biology (UZFG-Y) OBOR OECD: Analytical chemistry ; Developmental biology (UZFG-Y) Impact factor: 3.431, year: 2016

  3. Parallel single-cell analysis of active caspase-3/7 in apoptotic and non-apoptotic cells

    Czech Academy of Sciences Publication Activity Database

    Ledvina, Vojtěch; Janečková, Eva; Matalová, Eva; Klepárník, Karel

    2017-01-01

    Roč. 409, č. 1 (2017), s. 269-274 ISSN 1618-2642 R&D Projects: GA ČR(CZ) GA14-28254S Institutional support: RVO:68081715 ; RVO:67985904 Keywords : single-cell analysis * bioluminescence * apoptosis * caspase-3/7 Subject RIV: CB - Analytical Chemistry, Separation; EB - Genetics ; Molecular Biology (UZFG-Y) OBOR OECD: Analytical chemistry; Developmental biology (UZFG-Y) Impact factor: 3.431, year: 2016

  4. Single cell analysis: the new frontier in 'Omics'

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daojing; Bodovitz, Steven

    2010-01-14

    Cellular heterogeneity arising from stochastic expression of genes, proteins, and metabolites is a fundamental principle of cell biology, but single cell analysis has been beyond the capabilities of 'Omics' technologies. This is rapidly changing with the recent examples of single cell genomics, transcriptomics, proteomics, and metabolomics. The rate of change is expected to accelerate owing to emerging technologies that range from micro/nanofluidics to microfabricated interfaces for mass spectrometry to third- and fourth-generation automated DNA sequencers. As described in this review, single cell analysis is the new frontier in Omics, and single cell Omics has the potential to transform systems biology through new discoveries derived from cellular heterogeneity.

  5. RoboSCell: An automated single cell arraying and analysis instrument

    KAUST Repository

    Sakaki, Kelly

    2009-09-09

    Single cell research has the potential to revolutionize experimental methods in biomedical sciences and contribute to clinical practices. Recent studies suggest analysis of single cells reveals novel features of intracellular processes, cell-to-cell interactions and cell structure. The methods of single cell analysis require mechanical resolution and accuracy that is not possible using conventional techniques. Robotic instruments and novel microdevices can achieve higher throughput and repeatability; however, the development of such instrumentation is a formidable task. A void exists in the state-of-the-art for automated analysis of single cells. With the increase in interest in single cell analyses in stem cell and cancer research the ability to facilitate higher throughput and repeatable procedures is necessary. In this paper, a high-throughput, single cell microarray-based robotic instrument, called the RoboSCell, is described. The proposed instrument employs a partially transparent single cell microarray (SCM) integrated with a robotic biomanipulator for in vitro analyses of live single cells trapped at the array sites. Cells, labeled with immunomagnetic particles, are captured at the array sites by channeling magnetic fields through encapsulated permalloy channels in the SCM. The RoboSCell is capable of systematically scanning the captured cells temporarily immobilized at the array sites and using optical methods to repeatedly measure extracellular and intracellular characteristics over time. The instrument\\'s capabilities are demonstrated by arraying human T lymphocytes and measuring the uptake dynamics of calcein acetoxymethylester-all in a fully automated fashion. © 2009 Springer Science+Business Media, LLC.

  6. Lessons from single-cell transcriptome analysis of oxygen-sensing cells.

    Science.gov (United States)

    Zhou, Ting; Matsunami, Hiroaki

    2018-05-01

    The advent of single-cell RNA-sequencing (RNA-Seq) technology has enabled transcriptome profiling of individual cells. Comprehensive gene expression analysis at the single-cell level has proven to be effective in characterizing the most fundamental aspects of cellular function and identity. This unbiased approach is revolutionary for small and/or heterogeneous tissues like oxygen-sensing cells in identifying key molecules. Here, we review the major methods of current single-cell RNA-Seq technology. We discuss how this technology has advanced the understanding of oxygen-sensing glomus cells in the carotid body and helped uncover novel oxygen-sensing cells and mechanisms in the mice olfactory system. We conclude by providing our perspective on future single-cell RNA-Seq research directed at oxygen-sensing cells.

  7. Programmable lab-on-a-chip system for single cell analysis

    Science.gov (United States)

    Thalhammer, S.

    2009-05-01

    The collection, selection, amplification and detection of minimum genetic samples became a part of everyday life in medical and biological laboratories, to analyze DNA-fragments of pathogens, patient samples and traces on crime scenes. About a decade ago, a handful of researchers began discussing an intriguing idea. Could the equipment needed for everyday chemistry and biology procedures be shrunk to fit on a chip in the size of a fingernail? Miniature devices for, say, analysing DNA and proteins should be faster and cheaper than conventional versions. Lab-on-a-chip is an advanced technology that integrates a microfluidic system on a microscale chip device. The "laboratory" is created by means of channels, mixers, reservoirs, diffusion chambers, integrated electrodes, pumps, valves and more. With lab-ona- chip technology, complete laboratories on a square centimetre can be created. Here, a multifunctional programmable Lab-on-a-Chip driven by nanofluidics and controlled by surface acoustic waves (SAW) is presented. This system combines serial DNA-isolation-, amplification- and array-detection-process on a modified glass-platform. The fluid actuation is controlled via SAW by interdigital transducers implemented in the chemical modified chip surface. The chemical surface modification allows fluid handling in the sub-microliter range. Minute amount of sample material is extracted by laser-based microdissection out of e.g. histological sections at the single cell level. A few picogram of genetic material are isolated and transferred via a low-pressure transfer system (SPATS) onto the chip. Subsequently the genetic material inside single droplets, which behave like "virtual" beaker, is transported to the reaction and analysis centers on the chip surface via surface acoustic waves, mainly known as noise dumping filters in mobile phones. At these "biological reactors" the genetic material is processed, e.g. amplified via polymerase chain reaction methods, and genetically

  8. Genome wide single cell analysis of chemotherapy resistant metastatic cells in a case of gastroesophageal adenocarcinoma

    International Nuclear Information System (INIS)

    Hjortland, Geir Olav; Fodstad, Oystein; Smeland, Sigbjorn; Hovig, Eivind; Meza-Zepeda, Leonardo A; Beiske, Klaus; Ree, Anne H; Tveito, Siri; Hoifodt, Hanne; Bohler, Per J; Hole, Knut H; Myklebost, Ola

    2011-01-01

    Metastatic progression due to development or enrichment of therapy-resistant tumor cells is eventually lethal. Molecular characterization of such chemotherapy resistant tumor cell clones may identify markers responsible for malignant progression and potential targets for new treatment. Here, in a case of stage IV adenocarcinoma of the gastroesophageal junction, we report the successful genome wide analysis using array comparative genomic hybridization (CGH) of DNA from only fourteen tumor cells using a bead-based single cell selection method from a bone metastasis progressing during chemotherapy. In a case of metastatic adenocarcinoma of the gastroesophageal junction, the progression of bone metastasis was observed during a chemotherapy regimen of epirubicin, oxaliplatin and capecitabine, whereas lung-, liver and lymph node metastases as well as the primary tumor were regressing. A bone marrow aspirate sampled at the site of progressing metastasis in the right iliac bone was performed, and single cell molecular analysis using array-CGH of Epithelial Specific Antigen (ESA)-positive metastatic cells, and revealed two distinct regions of amplification, 12p12.1 and 17q12-q21.2 amplicons, containing the KRAS (12p) and ERBB2 (HER2/NEU) (17q) oncogenes. Further intrapatient tumor heterogeneity of these highlighted gene copy number changes was analyzed by fluorescence in situ hybridization (FISH) in all available primary and metastatic tumor biopsies, and ErbB2 protein expression was investigated by immunohistochemistry. ERBB2 was heterogeneously amplified by FISH analysis in the primary tumor, as well as liver and bone metastasis, but homogenously amplified in biopsy specimens from a progressing bone metastasis after three initial cycles of chemotherapy, indicating a possible enrichment of erbB2 positive tumor cells in the progressing bone marrow metastasis during chemotherapy. A similar amplification profile was detected for wild-type KRAS, although more heterogeneously

  9. An automated approach for single-cell tracking in epifluorescence microscopy applied to E. coli growth analysis on microfluidics biochips

    Science.gov (United States)

    Fetita, Catalin; Kirov, Boris; Jaramillo, Alfonso; Lefevre, Christophe

    2012-03-01

    With the accumulation of knowledge for the intimate molecular mechanisms governing the processes inside the living cells in the later years, the ability to characterize the performance of elementary genetic circuits and parts at the single-cell level is becoming of crucial importance. Biological science is arriving to the point where it can develop hypothesis for the action of each molecule participating in the biochemical reactions and need proper techniques to test those hypothesis. Microfluidics is emerging as the technology that combined with high-magnification microscopy will allow for the long-term single-cell level observation of bacterial physiology. In this study we design, build and characterize the gene dynamics of genetic circuits as one of the basic parts governing programmed cell behavior. We use E. coli as model organism and grow it in microfluidics chips, which we observe with epifluorescence microscopy. One of the most invaluable segments of this technology is the consequent image processing, since it allows for the automated analysis of vast amount of single-cell observation and the fast and easy derivation of conclusions based on that data. Specifically, we are interested in promoter activity as function of time. We expect it to be oscillatory and for that we use GFP (green fluorescent protein) as a reporter in our genetic circuits. In this paper, an automated framework for single-cell tracking in phase-contrast microscopy is developed, combining 2D segmentation of cell time frames and graph-based reconstruction of their spatiotemporal evolution with fast tracking of the associated fluorescence signal. The results obtained on the investigated biological database are presented and discussed.

  10. Microfluidic device for continuous single cells analysis via Raman spectroscopy enhanced by integrated plasmonic nanodimers

    DEFF Research Database (Denmark)

    Perozziello, Gerardo; Candeloro, Patrizio; De Grazia, Antonio

    2016-01-01

    In this work a Raman flow cytometer is presented. It consists of a microfluidic device that takes advantages of the basic principles of Raman spectroscopy and flow cytometry. The microfluidic device integrates calibrated microfluidic channels-where the cells can flow one-by-one -, allowing single...... cell Raman analysis. The microfluidic channel integrates plasmonic nanodimers in a fluidic trapping region. In this way it is possible to perform Enhanced Raman Spectroscopy on single cell. These allow a label-free analysis, providing information about the biochemical content of membrane and cytoplasm...

  11. Single Cell Analysis of Dystrophin and SRY Gene by Using Whole Genome Amplification

    Institute of Scientific and Technical Information of China (English)

    徐晨明; 金帆; 黄荷凤; 陶冶; 叶英辉

    2001-01-01

    Objective To develop a reliable and sensitive method for detection of sex and multiloci of Duchenne muscular dystrophy (DMD) gene in single cell Materials & methods Whole genome of single cell were amplified by using 15-base random primers (primer extension preamplification, PEP), then a small aliquot of PEP product were analyzed by using locus-specific nest PCR amplification. The procedure was evaluated by detection dystrophin exons 8, 17, 19, 44, 45, 48 and human testis-determining gene (SRY)in single lymphocytes from known sources and single blastomeres from the couples with no family history of DMD.Results The amplification efficiency rate of six dystrophin exons from single lymphocytes and single blastomeres were 97. 2% (175/180) and 100% (60/60) respectively.Results of SRY showed that 100% (15/15) amplification in single male-derived lymphocytes and 0% (0/15) amplification in single female-derived lymphocytes. Conclusion The technique of single cell PEP-nest PCR for dystrophin exons 8, 17,19, 44, 45, 48 and SRY is highly specifc. PEP-nest PCR is suitable for Preimplantation genetic diagnosis (PGD) of DMD at single cell level.

  12. Photocleavable DNA Barcoding Antibodies for Multiplexed Protein Analysis in Single Cells.

    Science.gov (United States)

    Ullal, Adeeti V; Weissleder, Ralph

    2015-01-01

    We describe a DNA-barcoded antibody sensing technique for single cell protein analysis in which the barcodes are photocleaved and digitally detected without amplification steps (Ullal et al., Sci Transl Med 6:219, 2014). After photocleaving the unique ~70 mer DNA barcodes we use a fluorescent hybridization technology for detection, similar to what is commonly done for nucleic acid readouts. This protocol offers a simple method for multiplexed protein detection using 100+ antibodies and can be performed on clinical samples as well as single cells.

  13. Recent advances in the development of single cell analysis-A review

    Czech Academy of Sciences Publication Activity Database

    Klepárník, Karel; Foret, František

    2013-01-01

    Roč. 800, OCT (2013), s. 12-21 ISSN 0003-2670 R&D Projects: GA MŠk(CZ) EE2.3.20.0182; GA ČR GAP206/11/2377 Institutional support: RVO:68081715 Keywords : single cell analysis * capillary electrophoresis * electrochemistry * microfluidic devices Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.517, year: 2013

  14. Deconstructing stem cell population heterogeneity: Single-cell analysis and modeling approaches

    Science.gov (United States)

    Wu, Jincheng; Tzanakakis, Emmanuel S.

    2014-01-01

    Isogenic stem cell populations display cell-to-cell variations in a multitude of attributes including gene or protein expression, epigenetic state, morphology, proliferation and proclivity for differentiation. The origins of the observed heterogeneity and its roles in the maintenance of pluripotency and the lineage specification of stem cells remain unclear. Addressing pertinent questions will require the employment of single-cell analysis methods as traditional cell biochemical and biomolecular assays yield mostly population-average data. In addition to time-lapse microscopy and flow cytometry, recent advances in single-cell genomic, transcriptomic and proteomic profiling are reviewed. The application of multiple displacement amplification, next generation sequencing, mass cytometry and spectrometry to stem cell systems is expected to provide a wealth of information affording unprecedented levels of multiparametric characterization of cell ensembles under defined conditions promoting pluripotency or commitment. Establishing connections between single-cell analysis information and the observed phenotypes will also require suitable mathematical models. Stem cell self-renewal and differentiation are orchestrated by the coordinated regulation of subcellular, intercellular and niche-wide processes spanning multiple time scales. Here, we discuss different modeling approaches and challenges arising from their application to stem cell populations. Integrating single-cell analysis with computational methods will fill gaps in our knowledge about the functions of heterogeneity in stem cell physiology. This combination will also aid the rational design of efficient differentiation and reprogramming strategies as well as bioprocesses for the production of clinically valuable stem cell derivatives. PMID:24035899

  15. Single-Cell Quantitative PCR: Advances and Potential in Cancer Diagnostics.

    Science.gov (United States)

    Ok, Chi Young; Singh, Rajesh R; Salim, Alaa A

    2016-01-01

    Tissues are heterogeneous in their components. If cells of interest are a minor population of collected tissue, it would be difficult to obtain genetic or genomic information of the interested cell population with conventional genomic DNA extraction from the collected tissue. Single-cell DNA analysis is important in the analysis of genetics of cell clonality, genetic anticipation, and single-cell DNA polymorphisms. Single-cell PCR using Single Cell Ampligrid/GeXP platform is described in this chapter.

  16. Stochasticity in the enterococcal sex pheromone response revealed by quantitative analysis of transcription in single cells.

    Science.gov (United States)

    Breuer, Rebecca J; Bandyopadhyay, Arpan; O'Brien, Sofie A; Barnes, Aaron M T; Hunter, Ryan C; Hu, Wei-Shou; Dunny, Gary M

    2017-07-01

    In Enterococcus faecalis, sex pheromone-mediated transfer of antibiotic resistance plasmids can occur under unfavorable conditions, for example, when inducing pheromone concentrations are low and inhibiting pheromone concentrations are high. To better understand this paradox, we adapted fluorescence in situ hybridization chain reaction (HCR) methodology for simultaneous quantification of multiple E. faecalis transcripts at the single cell level. We present direct evidence for variability in the minimum period, maximum response level, and duration of response of individual cells to a specific inducing condition. Tracking of induction patterns of single cells temporally using a fluorescent reporter supported HCR findings. It also revealed subpopulations of rapid responders, even under low inducing pheromone concentrations where the overall response of the entire population was slow. The strong, rapid induction of small numbers of cells in cultures exposed to low pheromone concentrations is in agreement with predictions of a stochastic model of the enterococcal pheromone response. The previously documented complex regulatory circuitry controlling the pheromone response likely contributes to stochastic variation in this system. In addition to increasing our basic understanding of the biology of a horizontal gene transfer system regulated by cell-cell signaling, demonstration of the stochastic nature of the pheromone response also impacts any future efforts to develop therapeutic agents targeting the system. Quantitative single cell analysis using HCR also has great potential to elucidate important bacterial regulatory mechanisms not previously amenable to study at the single cell level, and to accelerate the pace of functional genomic studies.

  17. Single-cell analysis of growth and cell division of the anaerobe Desulfovibrio vulgaris Hildenborough

    Directory of Open Access Journals (Sweden)

    Anouchka eFievet

    2015-12-01

    Full Text Available Recent years have seen significant progress in understanding basic bacterial cell cycle properties such as cell growth and cell division. While characterization and regulation of bacterial cell cycle is quite well documented in the case of fast growing aerobic model organisms, no data has been so far reported for anaerobic bacteria. This lack of information in anaerobic microorganisms can mainly be explained by the absence of molecular and cellular tools such as single cell microscopy and fluorescent probes usable for anaerobes and essential to study cellular events and/or subcellular localization of the actors involved in cell cycle.In this study, single-cell microscopy has been adapted to study for the first time, in real time, the cell cycle of a bacterial anaerobe, Desulfovibrio vulgaris Hildenborough (DvH. This single-cell analysis provides mechanistic insights into the cell division cycle of DvH, which seems to be governed by the recently discussed so-called incremental model that generates remarkably homogeneous cell sizes. Furthermore, cell division was reversibly blocked during oxygen exposure. This may constitute a strategy for anaerobic cells to cope with transient exposure to oxygen that they may encounter in their natural environment, thereby contributing to their aerotolerance. This study lays the foundation for the first molecular, single-cell assay that will address factors that cannot otherwise be resolved in bulk assays and that will allow visualization of a wide range of molecular mechanisms within living anaerobic cells.

  18. Microfluidic device for continuous single cells analysis via Raman spectroscopy enhanced by integrated plasmonic nanodimers

    KAUST Repository

    Perozziello, Gerardo

    2015-12-11

    In this work a Raman flow cytometer is presented. It consists of a microfluidic device that takes advantages of the basic principles of Raman spectroscopy and flow cytometry. The microfluidic device integrates calibrated microfluidic channels- where the cells can flow one-by-one -, allowing single cell Raman analysis. The microfluidic channel integrates plasmonic nanodimers in a fluidic trapping region. In this way it is possible to perform Enhanced Raman Spectroscopy on single cell. These allow a label-free analysis, providing information about the biochemical content of membrane and cytoplasm of the each cell. Experiments are performed on red blood cells (RBCs), peripheral blood lymphocytes (PBLs) and myelogenous leukemia tumor cells (K562). © 2015 Optical Society of America.

  19. Determination of selenium in BCR single cell protein via destructive neutron activation analysis

    International Nuclear Information System (INIS)

    Goeij, J.J.M. de; Zegers, C.

    1978-10-01

    The amount of selenium in single cell protein (SCP), a product of BP Research Centre at Sunbury-at-Thames, England, was determined by neutron activation analysis. The SCP-samples were irradiated in the reactor of the Interuniversity Reactor Institute at Delft, in a neutron flux of 1.0 x 10 13 n/cm 2 s for 24 hours. After chemical destruction of the samples the amount of selenium was determined by measuring the γ-peaks of selenium-75

  20. Single cell analysis of Vibrio harveyi uncovers functional heterogeneity in response to quorum sensing signals

    Directory of Open Access Journals (Sweden)

    Anetzberger Claudia

    2012-09-01

    Full Text Available Abstract Background Vibrio harveyi and closely related species are important pathogens in aquaculture. A complex quorum sensing cascade involving three autoinducers controls bioluminescence and several genes encoding virulence factors. Single cell analysis of a V. harveyi population has already indicated intercellular heterogeneity in the production of bioluminescence. This study was undertaken to analyze the expression of various autoinducer-dependent genes in individual cells. Results Here we used reporter strains bearing promoter::gfp fusions to monitor the induction/repression of three autoinducer-regulated genes in wild type conjugates at the single cell level. Two genes involved in pathogenesis - vhp and vscP, which code for an exoprotease and a component of the type III secretion system, respectively, and luxC (the first gene in the lux operon were chosen for analysis. The lux operon and the exoprotease gene are induced, while vscP is repressed at high cell density. As controls luxS and recA, whose expression is not dependent on autoinducers, were examined. The responses of the promoter::gfp fusions in individual cells from the same culture ranged from no to high induction. Importantly, simultaneous analysis of two autoinducer induced phenotypes, bioluminescence (light detection and exoproteolytic activity (fluorescence of a promoter::gfp fusion, in single cells provided evidence for functional heterogeneity within a V. harveyi population. Conclusions Autoinducers are not only an indicator for cell density, but play a pivotal role in the coordination of physiological activities within the population.

  1. Image segmentation and dynamic lineage analysis in single-cell fluorescence microscopy.

    Science.gov (United States)

    Wang, Quanli; Niemi, Jarad; Tan, Chee-Meng; You, Lingchong; West, Mike

    2010-01-01

    An increasingly common component of studies in synthetic and systems biology is analysis of dynamics of gene expression at the single-cell level, a context that is heavily dependent on the use of time-lapse movies. Extracting quantitative data on the single-cell temporal dynamics from such movies remains a major challenge. Here, we describe novel methods for automating key steps in the analysis of single-cell, fluorescent images-segmentation and lineage reconstruction-to recognize and track individual cells over time. The automated analysis iteratively combines a set of extended morphological methods for segmentation, and uses a neighborhood-based scoring method for frame-to-frame lineage linking. Our studies with bacteria, budding yeast and human cells, demonstrate the portability and usability of these methods, whether using phase, bright field or fluorescent images. These examples also demonstrate the utility of our integrated approach in facilitating analyses of engineered and natural cellular networks in diverse settings. The automated methods are implemented in freely available, open-source software.

  2. Accounting for technical noise in differential expression analysis of single-cell RNA sequencing data.

    Science.gov (United States)

    Jia, Cheng; Hu, Yu; Kelly, Derek; Kim, Junhyong; Li, Mingyao; Zhang, Nancy R

    2017-11-02

    Recent technological breakthroughs have made it possible to measure RNA expression at the single-cell level, thus paving the way for exploring expression heterogeneity among individual cells. Current single-cell RNA sequencing (scRNA-seq) protocols are complex and introduce technical biases that vary across cells, which can bias downstream analysis without proper adjustment. To account for cell-to-cell technical differences, we propose a statistical framework, TASC (Toolkit for Analysis of Single Cell RNA-seq), an empirical Bayes approach to reliably model the cell-specific dropout rates and amplification bias by use of external RNA spike-ins. TASC incorporates the technical parameters, which reflect cell-to-cell batch effects, into a hierarchical mixture model to estimate the biological variance of a gene and detect differentially expressed genes. More importantly, TASC is able to adjust for covariates to further eliminate confounding that may originate from cell size and cell cycle differences. In simulation and real scRNA-seq data, TASC achieves accurate Type I error control and displays competitive sensitivity and improved robustness to batch effects in differential expression analysis, compared to existing methods. TASC is programmed to be computationally efficient, taking advantage of multi-threaded parallelization. We believe that TASC will provide a robust platform for researchers to leverage the power of scRNA-seq. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Single cell analysis of Vibrio harveyi uncovers functional heterogeneity in response to quorum sensing signals.

    Science.gov (United States)

    Anetzberger, Claudia; Schell, Ursula; Jung, Kirsten

    2012-09-18

    Vibrio harveyi and closely related species are important pathogens in aquaculture. A complex quorum sensing cascade involving three autoinducers controls bioluminescence and several genes encoding virulence factors. Single cell analysis of a V. harveyi population has already indicated intercellular heterogeneity in the production of bioluminescence. This study was undertaken to analyze the expression of various autoinducer-dependent genes in individual cells. Here we used reporter strains bearing promoter::gfp fusions to monitor the induction/repression of three autoinducer-regulated genes in wild type conjugates at the single cell level. Two genes involved in pathogenesis - vhp and vscP, which code for an exoprotease and a component of the type III secretion system, respectively, and luxC (the first gene in the lux operon) were chosen for analysis. The lux operon and the exoprotease gene are induced, while vscP is repressed at high cell density. As controls luxS and recA, whose expression is not dependent on autoinducers, were examined. The responses of the promoter::gfp fusions in individual cells from the same culture ranged from no to high induction. Importantly, simultaneous analysis of two autoinducer induced phenotypes, bioluminescence (light detection) and exoproteolytic activity (fluorescence of a promoter::gfp fusion), in single cells provided evidence for functional heterogeneity within a V. harveyi population. Autoinducers are not only an indicator for cell density, but play a pivotal role in the coordination of physiological activities within the population.

  4. Single cells for forensic DNA analysis--from evidence material to test tube.

    Science.gov (United States)

    Brück, Simon; Evers, Heidrun; Heidorn, Frank; Müller, Ute; Kilper, Roland; Verhoff, Marcel A

    2011-01-01

    The purpose of this project was to develop a method that, while providing morphological quality control, allows single cells to be obtained from the surfaces of various evidence materials and be made available for DNA analysis in cases where only small amounts of cell material are present or where only mixed traces are found. With the SteREO Lumar.V12 stereomicroscope and UV unit from Zeiss, it was possible to detect and assess single epithelial cells on the surfaces of various objects (e.g., glass, plastic, metal). A digitally operated micromanipulator developed by aura optik was used to lift a single cell from the surface of evidence material and to transfer it to a conventional PCR tube or to an AmpliGrid(®) from Advalytix. The actual lifting of the cells was performed with microglobes that acted as carriers. The microglobes were held with microtweezers and were transferred to the DNA analysis receptacles along with the adhering cells. In a next step, the PCR can be carried out in this receptacle without removing the microglobe. Our method allows a single cell to be isolated directly from evidence material and be made available for forensic DNA analysis. © 2010 American Academy of Forensic Sciences.

  5. Single-cell analysis reveals early manifestation of cancerous phenotype in pre-malignant esophageal cells.

    Directory of Open Access Journals (Sweden)

    Jiangxin Wang

    Full Text Available Cellular heterogeneity plays a pivotal role in a variety of functional processes in vivo including carcinogenesis. However, our knowledge about cell-to-cell diversity and how differences in individual cells manifest in alterations at the population level remains very limited mainly due to the lack of appropriate tools enabling studies at the single-cell level. We present a study on changes in cellular heterogeneity in the context of pre-malignant progression in response to hypoxic stress. Utilizing pre-malignant progression of Barrett's esophagus (BE as a disease model system we studied molecular mechanisms underlying the progression from metaplastic to dysplastic (pre-cancerous stage. We used newly developed methods enabling measurements of cell-to-cell differences in copy numbers of mitochondrial DNA, expression levels of a set of mitochondrial and nuclear genes involved in hypoxia response pathways, and mitochondrial membrane potential. In contrast to bulk cell studies reported earlier, our study shows significant differences between metaplastic and dysplastic BE cells in both average values and single-cell parameter distributions of mtDNA copy numbers, mitochondrial function, and mRNA expression levels of studied genes. Based on single-cell data analysis, we propose that mitochondria may be one of the key factors in pre-malignant progression in BE.

  6. Granatum: a graphical single-cell RNA-Seq analysis pipeline for genomics scientists.

    Science.gov (United States)

    Zhu, Xun; Wolfgruber, Thomas K; Tasato, Austin; Arisdakessian, Cédric; Garmire, David G; Garmire, Lana X

    2017-12-05

    Single-cell RNA sequencing (scRNA-Seq) is an increasingly popular platform to study heterogeneity at the single-cell level. Computational methods to process scRNA-Seq data are not very accessible to bench scientists as they require a significant amount of bioinformatic skills. We have developed Granatum, a web-based scRNA-Seq analysis pipeline to make analysis more broadly accessible to researchers. Without a single line of programming code, users can click through the pipeline, setting parameters and visualizing results via the interactive graphical interface. Granatum conveniently walks users through various steps of scRNA-Seq analysis. It has a comprehensive list of modules, including plate merging and batch-effect removal, outlier-sample removal, gene-expression normalization, imputation, gene filtering, cell clustering, differential gene expression analysis, pathway/ontology enrichment analysis, protein network interaction visualization, and pseudo-time cell series construction. Granatum enables broad adoption of scRNA-Seq technology by empowering bench scientists with an easy-to-use graphical interface for scRNA-Seq data analysis. The package is freely available for research use at http://garmiregroup.org/granatum/app.

  7. Toward single-cell analysis by plume collimation in laser ablation electrospray ionization mass spectrometry.

    Science.gov (United States)

    Stolee, Jessica A; Vertes, Akos

    2013-04-02

    Ambient ionization methods for mass spectrometry have enabled the in situ and in vivo analysis of biological tissues and cells. When an etched optical fiber is used to deliver laser energy to a sample in laser ablation electrospray ionization (LAESI) mass spectrometry, the analysis of large single cells becomes possible. However, because in this arrangement the ablation plume expands in three dimensions, only a small portion of it is ionized by the electrospray. Here we show that sample ablation within a capillary helps to confine the radial expansion of the plume. Plume collimation, due to the altered expansion dynamics, leads to greater interaction with the electrospray plume resulting in increased ionization efficiency, reduced limit of detection (by a factor of ~13, reaching 600 amol for verapamil), and extended dynamic range (6 orders of magnitude) compared to conventional LAESI. This enhanced sensitivity enables the analysis of a range of metabolites from small cell populations and single cells in the ambient environment. This technique has the potential to be integrated with flow cytometry for high-throughput metabolite analysis of sorted cells.

  8. Integrated genetic analysis microsystems

    International Nuclear Information System (INIS)

    Lagally, Eric T; Mathies, Richard A

    2004-01-01

    With the completion of the Human Genome Project and the ongoing DNA sequencing of the genomes of other animals, bacteria, plants and others, a wealth of new information about the genetic composition of organisms has become available. However, as the demand for sequence information grows, so does the workload required both to generate this sequence and to use it for targeted genetic analysis. Microfabricated genetic analysis systems are well poised to assist in the collection and use of these data through increased analysis speed, lower analysis cost and higher parallelism leading to increased assay throughput. In addition, such integrated microsystems may point the way to targeted genetic experiments on single cells and in other areas that are otherwise very difficult. Concomitant with these advantages, such systems, when fully integrated, should be capable of forming portable systems for high-speed in situ analyses, enabling a new standard in disciplines such as clinical chemistry, forensics, biowarfare detection and epidemiology. This review will discuss the various technologies available for genetic analysis on the microscale, and efforts to integrate them to form fully functional robust analysis devices. (topical review)

  9. Automated patterning and probing with multiple nanoscale tools for single-cell analysis.

    Science.gov (United States)

    Li, Jiayao; Kim, Yeonuk; Liu, Boyin; Qin, Ruwen; Li, Jian; Fu, Jing

    2017-10-01

    The nano-manipulation approach that combines Focused Ion Beam (FIB) milling and various imaging and probing techniques enables researchers to investigate the cellular structures in three dimensions. Such fusion approach, however, requires extensive effort on locating and examining randomly-distributed targets due to limited Field of View (FOV) when high magnification is desired. In the present study, we present the development that automates 'pattern and probe' particularly for single-cell analysis, achieved by computer aided tools including feature recognition and geometric planning algorithms. Scheduling of serial FOVs for imaging and probing of multiple cells was considered as a rectangle covering problem, and optimal or near-optimal solutions were obtained with the heuristics developed. FIB milling was then employed automatically followed by downstream analysis using Atomic Force Microscopy (AFM) to probe the cellular interior. Our strategy was applied to examine bacterial cells (Klebsiella pneumoniae) and achieved high efficiency with limited human interference. The developed algorithms can be easily adapted and integrated with different imaging platforms towards high-throughput imaging analysis of single cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. High-content analysis of single cells directly assembled on CMOS sensor based on color imaging.

    Science.gov (United States)

    Tanaka, Tsuyoshi; Saeki, Tatsuya; Sunaga, Yoshihiko; Matsunaga, Tadashi

    2010-12-15

    A complementary metal oxide semiconductor (CMOS) image sensor was applied to high-content analysis of single cells which were assembled closely or directly onto the CMOS sensor surface. The direct assembling of cell groups on CMOS sensor surface allows large-field (6.66 mm×5.32 mm in entire active area of CMOS sensor) imaging within a second. Trypan blue-stained and non-stained cells in the same field area on the CMOS sensor were successfully distinguished as white- and blue-colored images under white LED light irradiation. Furthermore, the chemiluminescent signals of each cell were successfully visualized as blue-colored images on CMOS sensor only when HeLa cells were placed directly on the micro-lens array of the CMOS sensor. Our proposed approach will be a promising technique for real-time and high-content analysis of single cells in a large-field area based on color imaging. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Comparison of reverse transcription-quantitative polymerase chain reaction methods and platforms for single cell gene expression analysis.

    Science.gov (United States)

    Fox, Bridget C; Devonshire, Alison S; Baradez, Marc-Olivier; Marshall, Damian; Foy, Carole A

    2012-08-15

    Single cell gene expression analysis can provide insights into development and disease progression by profiling individual cellular responses as opposed to reporting the global average of a population. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is the "gold standard" for the quantification of gene expression levels; however, the technical performance of kits and platforms aimed at single cell analysis has not been fully defined in terms of sensitivity and assay comparability. We compared three kits using purification columns (PicoPure) or direct lysis (CellsDirect and Cells-to-CT) combined with a one- or two-step RT-qPCR approach using dilutions of cells and RNA standards to the single cell level. Single cell-level messenger RNA (mRNA) analysis was possible using all three methods, although the precision, linearity, and effect of lysis buffer and cell background differed depending on the approach used. The impact of using a microfluidic qPCR platform versus a standard instrument was investigated for potential variability introduced by preamplification of template or scaling down of the qPCR to nanoliter volumes using laser-dissected single cell samples. The two approaches were found to be comparable. These studies show that accurate gene expression analysis is achievable at the single cell level and highlight the importance of well-validated experimental procedures for low-level mRNA analysis. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Linnorm: improved statistical analysis for single cell RNA-seq expression data.

    Science.gov (United States)

    Yip, Shun H; Wang, Panwen; Kocher, Jean-Pierre A; Sham, Pak Chung; Wang, Junwen

    2017-12-15

    Linnorm is a novel normalization and transformation method for the analysis of single cell RNA sequencing (scRNA-seq) data. Linnorm is developed to remove technical noises and simultaneously preserve biological variations in scRNA-seq data, such that existing statistical methods can be improved. Using real scRNA-seq data, we compared Linnorm with existing normalization methods, including NODES, SAMstrt, SCnorm, scran, DESeq and TMM. Linnorm shows advantages in speed, technical noise removal and preservation of cell heterogeneity, which can improve existing methods in the discovery of novel subtypes, pseudo-temporal ordering of cells, clustering analysis, etc. Linnorm also performs better than existing DEG analysis methods, including BASiCS, NODES, SAMstrt, Seurat and DESeq2, in false positive rate control and accuracy. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Dissecting Transcriptional Heterogeneity in Pluripotency: Single Cell Analysis of Mouse Embryonic Stem Cells.

    Science.gov (United States)

    Guedes, Ana M V; Henrique, Domingos; Abranches, Elsa

    2016-01-01

    Mouse Embryonic Stem cells (mESCs) show heterogeneous and dynamic expression of important pluripotency regulatory factors. Single-cell analysis has revealed the existence of cell-to-cell variability in the expression of individual genes in mESCs. Understanding how these heterogeneities are regulated and what their functional consequences are is crucial to obtain a more comprehensive view of the pluripotent state.In this chapter we describe how to analyze transcriptional heterogeneity by monitoring gene expression of Nanog, Oct4, and Sox2, using single-molecule RNA FISH in single mESCs grown in different cell culture medium. We describe in detail all the steps involved in the protocol, from RNA detection to image acquisition and processing, as well as exploratory data analysis.

  14. Single Cell Oncogenesis

    Science.gov (United States)

    Lu, Xin

    It is believed that cancer originates from a single cell that has gone through generations of evolution of genetic and epigenetic changes that associate with the hallmarks of cancer. In some cancers such as various types of leukemia, cancer is clonal. Yet in other cancers like glioblastoma (GBM), there is tremendous tumor heterogeneity that is likely to be caused by simultaneous evolution of multiple subclones within the same tissue. It is obvious that understanding how a single cell develops into a clonal tumor upon genetic alterations, at molecular and cellular levels, holds the key to the real appreciation of tumor etiology and ultimate solution for therapeutics. Surprisingly very little is known about the process of spontaneous tumorigenesis from single cells in human or vertebrate animal models. The main reason is the lack of technology to track the natural process of single cell changes from a homeostatic state to a progressively cancerous state. Recently, we developed a patented compound, photoactivatable (''caged'') tamoxifen analogue 4-OHC and associated technique called optochemogenetic switch (OCG switch), which we believe opens the opportunity to address this urgent biological as well as clinical question about cancer. We propose to combine OCG switch with genetically engineered mouse models of head and neck squamous cell carcinoma and high grade astrocytoma (including GBM) to study how single cells, when transformed through acute loss of tumor suppressor genes PTEN and TP53 and gain of oncogenic KRAS, can develop into tumor colonies with cellular and molecular heterogeneity in these tissues. The abstract is for my invited talk in session ``Beyond Darwin: Evolution in Single Cells'' 3/18/2016 11:15 AM.

  15. Single-Cell Analysis of SMN Reveals Its Broader Role in Neuromuscular Disease

    Directory of Open Access Journals (Sweden)

    Natalia Rodriguez-Muela

    2017-02-01

    Full Text Available The mechanism underlying selective motor neuron (MN death remains an essential question in the MN disease field. The MN disease spinal muscular atrophy (SMA is attributable to reduced levels of the ubiquitous protein SMN. Here, we report that SMN levels are widely variable in MNs within a single genetic background and that this heterogeneity is seen not only in SMA MNs but also in MNs derived from controls and amyotrophic lateral sclerosis (ALS patients. Furthermore, cells with low SMN are more susceptible to cell death. These findings raise the important clinical implication that some SMN-elevating therapeutics might be effective in MN diseases besides SMA. Supporting this, we found that increasing SMN across all MN populations using an Nedd8-activating enzyme inhibitor promotes survival in both SMA and ALS-derived MNs. Altogether, our work demonstrates that examination of human neurons at the single-cell level can reveal alternative strategies to be explored in the treatment of degenerative diseases.

  16. Micromagnetic Cancer Cell Immobilization and Release for Real-Time Single Cell Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jaiswal, Devina; Rad, Armin Tahmasbi [Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269 (United States); Nieh, Mu-Ping [Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269 (United States); Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269 (United States); Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States); Claffey, Kevin P. [Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030 (United States); Hoshino, Kazunori, E-mail: hoshino@engr.uconn.edu [Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269 (United States)

    2017-04-01

    Understanding the interaction of live cells with macromolecules is crucial for designing efficient therapies. Considering the functional heterogeneity found in cancer cells, real-time single cell analysis is necessary to characterize responses. In this study, we have designed and fabricated a microfluidic channel with patterned micromagnets which can temporarily immobilize the cells during analysis and release them after measurements. The microchannel is composed of plain coverslip top and bottom panels to facilitate easy microscopic observation and undisturbed application of analytes to the cells. Cells labeled with functionalized magnetic beads were immobilized in the device with an efficiency of 90.8±3.6%. Since the micromagnets are made of soft magnetic material (Ni), they released cells when external magnetic field was turned off from the channel. This allows the reuse of the channel for a new sample. As a model drug analysis, the immobilized breast cancer cells (MCF7) were exposed to fluorescent lipid nanoparticles and association and dissociation were measured through fluorescence analysis. Two concentrations of nanoparticles, 0.06 µg/ml and 0.08 µg/ml were tested and time lapse images were recorded and analyzed. The microfluidic device was able to provide a microenvironment for sample analysis, making it an efficient platform for real-time analysis.

  17. Genetic analysis

    NARCIS (Netherlands)

    Koornneef, M.; Alonso-Blanco, C.; Stam, P.

    2006-01-01

    The Mendelian analysis of genetic variation, available as induced mutants or as natural variation, requires a number of steps that are described in this chapter. These include the determination of the number of genes involved in the observed trait's variation, the determination of dominance

  18. Quantitative analysis of chemical elements in single cells using nuclear microprobe and nano-probe

    International Nuclear Information System (INIS)

    Deves, Guillaume

    2010-01-01

    The study of the role of trace elements at cellular level requires the use of state-of-the-art analytical tools that could achieve enough sensitivity and spatial resolution. We developed a new methodology for the accurate quantification of chemical element distribution in single cells based on a combination of ion beam analysis techniques STIM, PIXE and RBS. The quantification procedure relies on the development of a STIM data analysis software (Paparamborde). Validity of this methodology and limits are discussed here. The method allows the quantification of trace elements (μg/g) with a 19.8 % uncertainty in cellular compartments with mass below 0.1 ng. The main limit of the method lies in the poor number of samples that can be analyzed, due to long irradiation times required and limited access to ion beam analysis facilities. This is the reason why we developed a database for cellular chemical composition capitalization (BDC4). BDC4 has been designed in order to use cellular chemical composition as a tracer for biological activities and is expected to provide in the future reference chemical compositions for any cellular type or compartment. Application of the STIM-PIXE-RBS methodology to the study of nuclear toxicology of cobalt compounds is presented here showing that STIM analysis is absolutely needed when organic mass loss appears during PIXE-RBS irradiation. (author)

  19. Going single but not solo with podocytes: potentials, limitations, and pitfalls of single-cell analysis.

    Science.gov (United States)

    Schiffer, Mario

    2017-11-01

    Single-cell RNA-sequence (RNA-seq) is a widely used tool to study biological questions in single cells. The discussed study identified 92 genes being predominantly expressed in podocytes based on a 5-fold higher expression compared with endothelial and mesangial cells. In addition to technical pitfalls, the question that is discussed in this commentary is whether results of a single-cell RNAseq study are able to deliver expression data that truly characterize a podocyte. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  20. Single cell proteomics in biomedicine: High-dimensional data acquisition, visualization, and analysis.

    Science.gov (United States)

    Su, Yapeng; Shi, Qihui; Wei, Wei

    2017-02-01

    New insights on cellular heterogeneity in the last decade provoke the development of a variety of single cell omics tools at a lightning pace. The resultant high-dimensional single cell data generated by these tools require new theoretical approaches and analytical algorithms for effective visualization and interpretation. In this review, we briefly survey the state-of-the-art single cell proteomic tools with a particular focus on data acquisition and quantification, followed by an elaboration of a number of statistical and computational approaches developed to date for dissecting the high-dimensional single cell data. The underlying assumptions, unique features, and limitations of the analytical methods with the designated biological questions they seek to answer will be discussed. Particular attention will be given to those information theoretical approaches that are anchored in a set of first principles of physics and can yield detailed (and often surprising) predictions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A comprehensive strategy for the analysis of acoustic compressibility and optical deformability on single cells

    DEFF Research Database (Denmark)

    Yang, Tie; Bragheri, Francesca; Nava, Giovanni

    2016-01-01

    We realized an integrated microfluidic chip that allows measuring both optical deformability and acoustic compressibility on single cells, by optical stretching and acoustophoresis experiments respectively. Additionally, we propose a measurement protocol that allows evaluating the experimental ap...

  2. Gold-coated polydimethylsiloxane microwells for high-throughput electrochemiluminescence analysis of intracellular glucose at single cells.

    Science.gov (United States)

    Xia, Juan; Zhou, Junyu; Zhang, Ronggui; Jiang, Dechen; Jiang, Depeng

    2018-06-04

    In this communication, a gold-coated polydimethylsiloxane (PDMS) chip with cell-sized microwells was prepared through a stamping and spraying process that was applied directly for high-throughput electrochemiluminescence (ECL) analysis of intracellular glucose at single cells. As compared with the previous multiple-step fabrication of photoresist-based microwells on the electrode, the preparation process is simple and offers fresh electrode surface for higher luminescence intensity. More luminescence intensity was recorded from cell-retained microwells than that at the planar region among the microwells that was correlated with the content of intracellular glucose. The successful monitoring of intracellular glucose at single cells using this PDMS chip will provide an alternative strategy for high-throughput single-cell analysis. Graphical abstract ᅟ.

  3. Mapping Cellular Hierarchy by Single-Cell Analysis of the Cell Surface Repertoire

    OpenAIRE

    Guo, Guoji; Luc, Sidinh; Marco, Eugenio; Lin, Ta-Wei; Peng, Cong; Kerenyi, Marc A.; Beyaz, Semir; Kim, Woojin; Xu, Jian; Das, Partha Pratim; Neff, Tobias; Zou, Keyong; Yuan, Guo-Cheng; Orkin, Stuart H.

    2013-01-01

    Stem cell differentiation pathways are most often studied at the population level, whereas critical decisions are executed at the level of single cells. We have established a highly multiplexed, quantitative PCR assay to profile in an unbiased manner a panel of all commonly used cell surface markers (280 genes) from individual cells. With this method we analyzed over 1500 single cells throughout the mouse hematopoietic system, and illustrate its utility for revealing important biological insi...

  4. A probabilistic cell model in background corrected image sequences for single cell analysis

    Directory of Open Access Journals (Sweden)

    Fieguth Paul

    2010-10-01

    of localizing single cells in microwells and can be adapted for the other cell types that may not have circular shape. This method can be potentially used for single cell analysis to study the temporal dynamics of cells.

  5. Single-Cell Network Analysis Identifies DDIT3 as a Nodal Lineage Regulator in Hematopoiesis

    Directory of Open Access Journals (Sweden)

    Cristina Pina

    2015-06-01

    Full Text Available We explore cell heterogeneity during spontaneous and transcription-factor-driven commitment for network inference in hematopoiesis. Since individual genes display discrete OFF states or a distribution of ON levels, we compute and combine pairwise gene associations from binary and continuous components of gene expression in single cells. Ddit3 emerges as a regulatory node with positive linkage to erythroid regulators and negative association with myeloid determinants. Ddit3 loss impairs erythroid colony output from multipotent cells, while forcing Ddit3 in granulo-monocytic progenitors (GMPs enhances self-renewal and impedes differentiation. Network analysis of Ddit3-transduced GMPs reveals uncoupling of myeloid networks and strengthening of erythroid linkages. RNA sequencing suggests that Ddit3 acts through development or stabilization of a precursor upstream of GMPs with inherent Meg-E potential. The enrichment of Gata2 target genes in Ddit3-dependent transcriptional responses suggests that Ddit3 functions in an erythroid transcriptional network nucleated by Gata2.

  6. One drop at a time: toward droplet microfluidics as a versatile tool for single-cell analysis

    NARCIS (Netherlands)

    Rakszewska, A.; Tel, J.; Chokkalingam, V.; Huck, W.T.

    2014-01-01

    Miniaturization has been the key driver for many remarkable technological developments in recent decades. Miniaturization has now also extended into biology, thereby setting the stage for high-throughput single-cell analysis. This advancement is important because, despite detailed molecular

  7. Single-cell analysis of ploidy and centrosomes underscores the peculiarity of normal hepatocytes.

    Directory of Open Access Journals (Sweden)

    Francesca Faggioli

    Full Text Available Polyploidization is the most well recognized feature of the liver. Yet, a quantitative and behavioral analysis of centrosomes and DNA content in normal hepatocytes has been limited by the technical challenges of methods available. By using a novel approach employing FISH for chromosomes 18, X and Y we provide, for the first time, a detailed analysis of DNA copies during physiological development in the liver at single cell level. We demonstrate that aneuploidy and unbalanced DNA content in binucleated hepatocytes are common features in normal adult liver. Despite the common belief that hepatocytes contain 1, 2 or no more than 4 centrosomes, our double staining for centrosome associated proteins reveals extranumerary centrosomes in a high percentage of cells as early as 15 days of age. We show that in murine liver the period between 15 days and 1.5 months marks the transition from a prevalence of mononucleated cells to up to 75% of binucleated cells. Our data demonstrate that this timing correlates with a switch in centrosomes number. At 15 days the expected 1 or 2 centrosomes converge with several hepatocytes that contain 3 centrosomes; at 1.5 months the percentage of cells with 3 centrosomes decreases concomitantly with the increase of cells with more than 4 centrosomes. Our analysis shows that the extranumerary centrosomes emerge in concomitance with the process of binucleation and polyploidization and maintain α-tubulin nucleation activity. Finally, by integrating interphase FISH and immunofluorescent approaches, we detected an imbalance between centrosome number and DNA content in liver cells that deviates from the equilibrium expected in normal cells. We speculate that these unique features are relevant to the peculiar biological function of liver cells which are continuously challenged by stress, a condition that could predispose to genomic instability.

  8. Single cell analysis of yeast replicative aging using a new generation of microfluidic device.

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    Full Text Available A major limitation to yeast aging study has been the inability to track mother cells and observe molecular markers during the aging process. The traditional lifespan assay relies on manual micro-manipulation to remove daughter cells from the mother, which is laborious, time consuming, and does not allow long term tracking with high resolution microscopy. Recently, we have developed a microfluidic system capable of retaining mother cells in the microfluidic chambers while removing daughter cells automatically, making it possible to observe fluorescent reporters in single cells throughout their lifespan. Here we report the development of a new generation of microfluidic device that overcomes several limitations of the previous system, making it easier to fabricate and operate, and allowing functions not possible with the previous design. The basic unit of the device consists of microfluidic channels with pensile columns that can physically trap the mother cells while allowing the removal of daughter cells automatically by the flow of the fresh media. The whole microfluidic device contains multiple independent units operating in parallel, allowing simultaneous analysis of multiple strains. Using this system, we have reproduced the lifespan curves for the known long and short-lived mutants, demonstrating the power of the device for automated lifespan measurement. Following fluorescent reporters in single mother cells throughout their lifespan, we discovered a surprising change of expression of the translation elongation factor TEF2 during aging, suggesting altered translational control in aged mother cells. Utilizing the capability of the new device to trap mother-daughter pairs, we analyzed mother-daughter inheritance and found age dependent asymmetric partitioning of a general stress response reporter between mother and daughter cells.

  9. Temporal dynamics and transcriptional control using single-cell gene expression analysis.

    Science.gov (United States)

    Kouno, Tsukasa; de Hoon, Michiel; Mar, Jessica C; Tomaru, Yasuhiro; Kawano, Mitsuoki; Carninci, Piero; Suzuki, Harukazu; Hayashizaki, Yoshihide; Shin, Jay W

    2013-01-01

    Changes in environmental conditions lead to expression variation that manifest at the level of gene regulatory networks. Despite a strong understanding of the role noise plays in synthetic biological systems, it remains unclear how propagation of expression heterogeneity in an endogenous regulatory network is distributed and utilized by cells transitioning through a key developmental event. Here we investigate the temporal dynamics of a single-cell transcriptional network of 45 transcription factors in THP-1 human myeloid monocytic leukemia cells undergoing differentiation to macrophages. We systematically measure temporal regulation of expression and variation by profiling 120 single cells at eight distinct time points, and infer highly controlled regulatory modules through which signaling operates with stochastic effects. This reveals dynamic and specific rewiring as a cellular strategy for differentiation. The integration of both positive and negative co-expression networks further identifies the proto-oncogene MYB as a network hinge to modulate both the pro- and anti-differentiation pathways. Compared to averaged cell populations, temporal single-cell expression profiling provides a much more powerful technique to probe for mechanistic insights underlying cellular differentiation. We believe that our approach will form the basis of novel strategies to study the regulation of transcription at a single-cell level.

  10. Single-Cell Gene Expression Analysis of Cholinergic Neurons in the Arcuate Nucleus of the Hypothalamus.

    Directory of Open Access Journals (Sweden)

    Jae Hoon Jeong

    Full Text Available The cholinoceptive system in the hypothalamus, in particular in the arcuate nucleus (ARC, plays a role in regulating food intake. Neurons in the ARC contain multiple neuropeptides, amines, and neurotransmitters. To study molecular and neurochemical heterogeneity of ARC neurons, we combine single-cell qRT-PCR and single-cell whole transcriptome amplification methods to analyze expression patterns of our hand-picked 60 genes in individual neurons in the ARC. Immunohistochemical and single-cell qRT-PCR analyses show choline acetyltransferase (ChAT-expressing neurons in the ARC. Gene expression patterns are remarkably distinct in each individual cholinergic neuron. Two-thirds of cholinergic neurons express tyrosine hydroxylase (Th mRNA. A large subset of these Th-positive cholinergic neurons is GABAergic as they express the GABA synthesizing enzyme glutamate decarboxylase and vesicular GABA transporter transcripts. Some cholinergic neurons also express the vesicular glutamate transporter transcript gene. POMC and POMC-processing enzyme transcripts are found in a subpopulation of cholinergic neurons. Despite this heterogeneity, gene expression patterns in individual cholinergic cells appear to be highly regulated in a cell-specific manner. In fact, membrane receptor transcripts are clustered with their respective intracellular signaling and downstream targets. This novel population of cholinergic neurons may be part of the neural circuitries that detect homeostatic need for food and control the drive to eat.

  11. Single-Cell Transcriptomic Analysis Defines Heterogeneity and Transcriptional Dynamics in the Adult Neural Stem Cell Lineage

    Directory of Open Access Journals (Sweden)

    Ben W. Dulken

    2017-01-01

    Full Text Available Neural stem cells (NSCs in the adult mammalian brain serve as a reservoir for the generation of new neurons, oligodendrocytes, and astrocytes. Here, we use single-cell RNA sequencing to characterize adult NSC populations and examine the molecular identities and heterogeneity of in vivo NSC populations. We find that cells in the NSC lineage exist on a continuum through the processes of activation and differentiation. Interestingly, rare intermediate states with distinct molecular profiles can be identified and experimentally validated, and our analysis identifies putative surface markers and key intracellular regulators for these subpopulations of NSCs. Finally, using the power of single-cell profiling, we conduct a meta-analysis to compare in vivo NSCs and in vitro cultures, distinct fluorescence-activated cell sorting strategies, and different neurogenic niches. These data provide a resource for the field and contribute to an integrative understanding of the adult NSC lineage.

  12. Single cell analysis of caspase-3 in apoptotic and non-apoptotic cells during mouse limb development

    Czech Academy of Sciences Publication Activity Database

    Adamová, Eva; Klepárník, Karel; Matalová, E.

    2014-01-01

    Roč. 3, - (2014), PP58 ISSN 2052-1219. [European Calcified Tissue Society Congress /41./. 17.05.2014-20.05.2014, Praha] R&D Projects: GA ČR GAP206/11/2377; GA ČR(CZ) GA14-28254S Institutional support: RVO:68081715 Keywords : single cell analysis * caspase-3 * mouse limb development Subject RIV: CB - Analytical Chemistry, Separation

  13. Single-cell analysis by ICP-MS/MS as a fast tool for cellular bioavailability studies of arsenite.

    Science.gov (United States)

    Meyer, S; López-Serrano, A; Mitze, H; Jakubowski, N; Schwerdtle, T

    2018-01-24

    Single-cell inductively coupled plasma mass spectrometry (SC-ICP-MS) has become a powerful and fast tool to evaluate the elemental composition at a single-cell level. In this study, the cellular bioavailability of arsenite (incubation of 25 and 50 μM for 0-48 h) has been successfully assessed by SC-ICP-MS/MS for the first time directly after re-suspending the cells in water. This procedure avoids the normally arising cell membrane permeabilization caused by cell fixation methods (e.g. methanol fixation). The reliability and feasibility of this SC-ICP-MS/MS approach with a limit of detection of 0.35 fg per cell was validated by conventional bulk ICP-MS/MS analysis after cell digestion and parallel measurement of sulfur and phosphorus.

  14. Combined histochemical staining, RNA amplification, regional, and single cell cDNA analysis within the hippocampus.

    Science.gov (United States)

    Ginsberg, Stephen D; Che, Shaoli

    2004-08-01

    The use of five histochemical stains (cresyl violet, thionin, hematoxylin & eosin, silver stain, and acridine orange) was evaluated in combination with an expression profiling paradigm that included regional and single cell analyses within the hippocampus of post-mortem human brains and adult mice. Adjacent serial sections of human and mouse hippocampus were labeled by histochemistry or neurofilament immunocytochemistry. These tissue sections were used as starting material for regional and single cell microdissection followed by a newly developed RNA amplification procedure (terminal continuation (TC) RNA amplification) and subsequent hybridization to custom-designed cDNA arrays. Results indicated equivalent levels of global hybridization signal intensity and relative expression levels for individual genes for hippocampi stained by cresyl violet, thionin, and hematoxylin & eosin, and neurofilament immunocytochemistry. Moreover, no significant differences existed between the Nissl stains and neurofilament immunocytochemistry for individual CA1 neurons obtained via laser capture microdissection. In contrast, a marked decrement was observed in adjacent hippocampal sections stained for silver stain and acridine orange, both at the level of the regional dissection and at the CA1 neuron population level. Observations made on the cDNA array platform were validated by real-time qPCR using primers directed against beta-actin and glyceraldehyde-3 phosphate dehydrogenase. Thus, this report demonstrated the utility of using specific Nissl stains, but not stains that bind RNA species directly, in both human and mouse brain tissues at the regional and cellular level for state-of-the-art molecular fingerprinting studies.

  15. Single-cell RNA-seq analysis unveils a prevalent epithelial/mesenchymal hybrid state during mouse organogenesis.

    Science.gov (United States)

    Dong, Ji; Hu, Yuqiong; Fan, Xiaoying; Wu, Xinglong; Mao, Yunuo; Hu, Boqiang; Guo, Hongshan; Wen, Lu; Tang, Fuchou

    2018-03-14

    Organogenesis is crucial for proper organ formation during mammalian embryonic development. However, the similarities and shared features between different organs and the cellular heterogeneity during this process at single-cell resolution remain elusive. We perform single-cell RNA sequencing analysis of 1916 individual cells from eight organs and tissues of E9.5 to E11.5 mouse embryos, namely, the forebrain, hindbrain, skin, heart, somite, lung, liver, and intestine. Based on the regulatory activities rather than the expression patterns, all cells analyzed can be well classified into four major groups with epithelial, mesodermal, hematopoietic, and neuronal identities. For different organs within the same group, the similarities and differences of their features and developmental paths are revealed and reconstructed. We identify mutual interactions between epithelial and mesenchymal cells and detect epithelial cells with prevalent mesenchymal features during organogenesis, which are similar to the features of intermediate epithelial/mesenchymal cells during tumorigenesis. The comprehensive transcriptome at single-cell resolution profiled in our study paves the way for future mechanistic studies of the gene-regulatory networks governing mammalian organogenesis.

  16. Single-Cell RNA-Seq Analysis of Infiltrating Neoplastic Cells at the Migrating Front of Human Glioblastoma

    Directory of Open Access Journals (Sweden)

    Spyros Darmanis

    2017-10-01

    Full Text Available Summary: Glioblastoma (GBM is the most common primary brain cancer in adults and is notoriously difficult to treat because of its diffuse nature. We performed single-cell RNA sequencing (RNA-seq on 3,589 cells in a cohort of four patients. We obtained cells from the tumor core as well as surrounding peripheral tissue. Our analysis revealed cellular variation in the tumor’s genome and transcriptome. We were also able to identify infiltrating neoplastic cells in regions peripheral to the core lesions. Despite the existence of significant heterogeneity among neoplastic cells, we found that infiltrating GBM cells share a consistent gene signature between patients, suggesting a common mechanism of infiltration. Additionally, in investigating the immunological response to the tumors, we found transcriptionally distinct myeloid cell populations residing in the tumor core and the surrounding peritumoral space. Our data provide a detailed dissection of GBM cell types, revealing an abundance of information about tumor formation and migration. : Darmanis et al. perform single-cell transcriptomic analyses of neoplastic and stromal cells within and proximal to primary glioblastomas. The authors describe a population of neoplastic-infiltrating glioblastoma cells as well as a putative role of tumor-infiltrating immune cells in supporting tumor growth. Keywords: single cell, RNA-seq, glioma, glioblastoma, GBM, brain, heterogeneity, infiltrating, diffuse, checkpoint

  17. Longitudinal multiparameter single-cell analysis of macaques immunized with pneumococcal protein-conjugated or unconjugated polysaccharide vaccines reveals distinct antigen specific memory B cell repertoires.

    Directory of Open Access Journals (Sweden)

    Bin Jia

    Full Text Available The efficacy of protein-conjugated pneumococcal polysaccharide vaccines has been well characterized for children. The level of protection conferred by unconjugated polysaccharide vaccines remains less clear, particularly for elderly individuals who have had prior antigenic experience through immunization with unconjugated polysaccharide vaccines or natural exposure to Streptococcus pneumoniae.We compared the magnitude, diversity and genetic biases of antigen-specific memory B cells in two groups of adult cynomolgus macaques that were immunized with a 7-valent conjugated vaccine and boosted after five years with either a 13-valent pneumococcal polysaccharide conjugate vaccine (13vPnC or a 23-valent unconjugated pneumococcal polysaccharide vaccine (23vPS using microengraving (a single-cell analysis method and single-cell RT-PCR.Seven days after boosting, the mean frequency of antigen-specific memory B cells was significantly increased in macaques vaccinated with 13vPnC compared to those receiving 23vPS. The 13vPnC-vaccinated macaques also exhibited a more even distribution of antibody specificities to four polysaccharides in the vaccine (PS4, 6B, 14, 23F that were examined. However, single-cell analysis of the antibody variable region sequences from antigen-specific B cells elicited by unconjugated and conjugated vaccines indicated that both the germline gene segments forming the heavy chains and the average lengths of the Complementary Determining Region 3 (CDR3 were similar.Our results confirm that distinctive differences can manifest between antigen-specific memory B cell repertoires in nonhuman primates immunized with conjugated and unconjugated pneumococcal polysaccharide vaccines. The study also supports the notion that the conjugated vaccines have a favorable profile in terms of both the frequency and breadth of the anamnestic response among antigen-specific memory B cells.

  18. Single-cell multiple gene expression analysis based on single-molecule-detection microarray assay for multi-DNA determination

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lu [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Wang, Xianwei [School of Life Sciences, Shandong University, Jinan 250100 (China); Zhang, Xiaoli [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Wang, Jinxing [School of Life Sciences, Shandong University, Jinan 250100 (China); Jin, Wenrui, E-mail: jwr@sdu.edu.cn [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2015-01-07

    Highlights: • A single-molecule-detection (SMD) microarray for 10 samples is fabricated. • The based-SMD microarray assay (SMA) can determine 8 DNAs for each sample. • The limit of detection of SMA is as low as 1.3 × 10{sup −16} mol L{sup −1}. • The SMA can be applied in single-cell multiple gene expression analysis. - Abstract: We report a novel ultra-sensitive and high-selective single-molecule-detection microarray assay (SMA) for multiple DNA determination. In the SMA, a capture DNA (DNAc) microarray consisting of 10 subarrays with 9 spots for each subarray is fabricated on a silanized glass coverslip as the substrate. On the subarrays, the spot-to-spot spacing is 500 μm and each spot has a diameter of ∼300 μm. The sequence of the DNAcs on the 9 spots of a subarray is different, to determine 8 types of target DNAs (DNAts). Thus, 8 types of DNAts are captured to their complementary DNAcs at 8 spots of a subarray, respectively, and then labeled with quantum dots (QDs) attached to 8 types of detection DNAs (DNAds) with different sequences. The ninth spot is used to detect the blank value. In order to determine the same 8 types of DNAts in 10 samples, the 10 DNAc-modified subarrays on the microarray are identical. Fluorescence single-molecule images of the QD-labeled DNAts on each spot of the subarray are acquired using a home-made single-molecule microarray reader. The amounts of the DNAts are quantified by counting the bright dots from the QDs. For a microarray, 8 types of DNAts in 10 samples can be quantified in parallel. The limit of detection of the SMA for DNA determination is as low as 1.3 × 10{sup −16} mol L{sup −1}. The SMA for multi-DNA determination can also be applied in single-cell multiple gene expression analysis through quantification of complementary DNAs (cDNAs) corresponding to multiple messenger RNAs (mRNAs) in single cells. To do so, total RNA in single cells is extracted and reversely transcribed into their cDNAs. Three

  19. Analysis of allelic expression patterns in clonal somatic cells by single-cell RNA-seq.

    Science.gov (United States)

    Reinius, Björn; Mold, Jeff E; Ramsköld, Daniel; Deng, Qiaolin; Johnsson, Per; Michaëlsson, Jakob; Frisén, Jonas; Sandberg, Rickard

    2016-11-01

    Cellular heterogeneity can emerge from the expression of only one parental allele. However, it has remained controversial whether, or to what degree, random monoallelic expression of autosomal genes (aRME) is mitotically inherited (clonal) or stochastic (dynamic) in somatic cells, particularly in vivo. Here we used allele-sensitive single-cell RNA-seq on clonal primary mouse fibroblasts and freshly isolated human CD8 + T cells to dissect clonal and dynamic monoallelic expression patterns. Dynamic aRME affected a considerable portion of the cells' transcriptomes, with levels dependent on the cells' transcriptional activity. Notably, clonal aRME was detected, but it was surprisingly scarce (aRME occurs transiently within individual cells, and patterns of aRME are thus primarily scattered throughout somatic cell populations rather than, as previously hypothesized, confined to patches of clonally related cells.

  20. Microtools for single-cell analysis in biopharmaceutical development and manufacturing.

    Science.gov (United States)

    Love, Kerry Routenberg; Bagh, Sangram; Choi, Jonghoon; Love, J Christopher

    2013-05-01

    Biologic drugs are promoting growth in the biopharmaceutical industry. Despite the clinical benefits of these drugs, the time and costs required to bring new biologics to market still are substantial. Three key challenges, among others, persist in the development of biologic drugs: namely, establishing product similarity, product toxicity, and global accessibility. New classes of microtools that facilitate the isolation and interrogation of single cells have the potential to impact each of these challenges. This opinion considers recent examples of microtools with demonstrated or potential utility to address problems in these areas. Integrating these advanced technologies into the development of new biologics could greatly reduce time and costs required to bring alternative products to market, and thus expand their global availability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Single cell analysis demonstrating somatic mosaicism involving 11p in a patient with paternal isodisomy and Beckwith-Wiedemann Syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Bischoff, F.Z.; McCaskill, C.; Subramanian, S. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1994-09-01

    Beckwith-Wiedemann Syndrome (BWS) is characterized by numerous growth abnormalities including exomphalos, macroglossia, gigantism, and hemihypertrophy or hemihyperplasia. The {open_quotes}BWS gene{close_quotes} appears to be maternally repressed and is suspected to function as a growth factor or regulator of somatic growth, since activation of this gene through a variety of mechanisms appears to result in somatic overgrowth and tumor development. Mosaic paternal isodisomy of 11p has been observed previously by others in patients with BWS by Southern blot analysis of genomic DNA. The interpretation of these results was primarily based on the intensities of the hybridization signals for the different alleles. In our study, we demonstrate somatic mosaicism directly through PCR and single cell analysis. Peripheral blood was obtained from a patient with BWS and initial genomic DNA analysis by PCR was suggestive of somatic mosaicism for paternal isodisomy of 11p. Through micromanipulation, single cells were isolated and subjected to primer extention preamplification. Locus-specific microsatellite marker analyses by PCR were performed to determine the chromosome 11 origins in the preamplified individual cells. Two populations of cells were detected, a population of cells with normal biparental inheritance and a population of cells with paternal isodisomy of 11p and biparental disomy of 11q. Using the powerful approach of single cell analysis, the detected somatic mosaicism provides evidence for a mitotic recombinational event that has resulted in loss of the maternal 11p region and gain of a second copy of paternal 11p in some cells. The direct demonstration of mosaicism may explain the variable phenotypes and hemihypertrophy often observed in BWS.

  2. ASAP: a web-based platform for the analysis and interactive visualization of single-cell RNA-seq data.

    Science.gov (United States)

    Gardeux, Vincent; David, Fabrice P A; Shajkofci, Adrian; Schwalie, Petra C; Deplancke, Bart

    2017-10-01

    Single-cell RNA-sequencing (scRNA-seq) allows whole transcriptome profiling of thousands of individual cells, enabling the molecular exploration of tissues at the cellular level. Such analytical capacity is of great interest to many research groups in the world, yet these groups often lack the expertise to handle complex scRNA-seq datasets. We developed a fully integrated, web-based platform aimed at the complete analysis of scRNA-seq data post genome alignment: from the parsing, filtering and normalization of the input count data files, to the visual representation of the data, identification of cell clusters, differentially expressed genes (including cluster-specific marker genes), and functional gene set enrichment. This Automated Single-cell Analysis Pipeline (ASAP) combines a wide range of commonly used algorithms with sophisticated visualization tools. Compared with existing scRNA-seq analysis platforms, researchers (including those lacking computational expertise) are able to interact with the data in a straightforward fashion and in real time. Furthermore, given the overlap between scRNA-seq and bulk RNA-seq analysis workflows, ASAP should conceptually be broadly applicable to any RNA-seq dataset. As a validation, we demonstrate how we can use ASAP to simply reproduce the results from a single-cell study of 91 mouse cells involving five distinct cell types. The tool is freely available at asap.epfl.ch and R/Python scripts are available at github.com/DeplanckeLab/ASAP. bart.deplancke@epfl.ch. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  3. Noninvasive High-Throughput Single-Cell Analysis of HIV Protease Activity Using Ratiometric Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Rok Gaber

    2013-11-01

    Full Text Available To effectively fight against the human immunodeficiency virus infection/ acquired immunodeficiency syndrome (HIV/AIDS epidemic, ongoing development of novel HIV protease inhibitors is required. Inexpensive high-throughput screening assays are needed to quickly scan large sets of chemicals for potential inhibitors. We have developed a Förster resonance energy transfer (FRET-based, HIV protease-sensitive sensor using a combination of a fluorescent protein pair, namely mCerulean and mCitrine. Through extensive in vitro characterization, we show that the FRET-HIV sensor can be used in HIV protease screening assays. Furthermore, we have used the FRET-HIV sensor for intracellular quantitative detection of HIV protease activity in living cells, which more closely resembles an actual viral infection than an in vitro assay. We have developed a high-throughput method that employs a ratiometric flow cytometry for analyzing large populations of cells that express the FRET-HIV sensor. The method enables FRET measurement of single cells with high sensitivity and speed and should be used when subpopulation-specific intracellular activity of HIV protease needs to be estimated. In addition, we have used a confocal microscopy sensitized emission FRET technique to evaluate the usefulness of the FRET-HIV sensor for spatiotemporal detection of intracellular HIV protease activity.

  4. Noninvasive High-Throughput Single-Cell Analysis of HIV Protease Activity Using Ratiometric Flow Cytometry

    Science.gov (United States)

    Gaber, Rok; Majerle, Andreja; Jerala, Roman; Benčina, Mojca

    2013-01-01

    To effectively fight against the human immunodeficiency virus infection/acquired immunodeficiency syndrome (HIV/AIDS) epidemic, ongoing development of novel HIV protease inhibitors is required. Inexpensive high-throughput screening assays are needed to quickly scan large sets of chemicals for potential inhibitors. We have developed a Förster resonance energy transfer (FRET)-based, HIV protease-sensitive sensor using a combination of a fluorescent protein pair, namely mCerulean and mCitrine. Through extensive in vitro characterization, we show that the FRET-HIV sensor can be used in HIV protease screening assays. Furthermore, we have used the FRET-HIV sensor for intracellular quantitative detection of HIV protease activity in living cells, which more closely resembles an actual viral infection than an in vitro assay. We have developed a high-throughput method that employs a ratiometric flow cytometry for analyzing large populations of cells that express the FRET-HIV sensor. The method enables FRET measurement of single cells with high sensitivity and speed and should be used when subpopulation-specific intracellular activity of HIV protease needs to be estimated. In addition, we have used a confocal microscopy sensitized emission FRET technique to evaluate the usefulness of the FRET-HIV sensor for spatiotemporal detection of intracellular HIV protease activity. PMID:24287545

  5. Finite Element Analysis of Single Cell Stiffness Measurements Using PZT-Integrated Buckling Nanoneedles.

    Science.gov (United States)

    Rad, Maryam Alsadat; Tijjani, Auwal Shehu; Ahmad, Mohd Ridzuan; Auwal, Shehu Muhammad

    2016-12-23

    This paper proposes a new technique for real-time single cell stiffness measurement using lead zirconate titanate (PZT)-integrated buckling nanoneedles. The PZT and the buckling part of the nanoneedle have been modelled and validated using the ABAQUS software. The two parts are integrated together to function as a single unit. After calibration, the stiffness, Young's modulus, Poisson's ratio and sensitivity of the PZT-integrated buckling nanoneedle have been determined to be 0.7100 N·m -1 , 123.4700 GPa, 0.3000 and 0.0693 V·m·N -1 , respectively. Three Saccharomyces cerevisiae cells have been modelled and validated based on compression tests. The average global stiffness and Young's modulus of the cells are determined to be 10.8867 ± 0.0094 N·m -1 and 110.7033 ± 0.0081 MPa, respectively. The nanoneedle and the cell have been assembled to measure the local stiffness of the single Saccharomyces cerevisiae cells The local stiffness, Young's modulus and PZT output voltage of the three different size Saccharomyces cerevisiae have been determined at different environmental conditions. We investigated that, at low temperature the stiffness value is low to adapt to the change in the environmental condition. As a result, Saccharomyces cerevisiae becomes vulnerable to viral and bacterial attacks. Therefore, the proposed technique will serve as a quick and accurate process to diagnose diseases at early stage in a cell for effective treatment.

  6. SinCHet: a MATLAB toolbox for single cell heterogeneity analysis in cancer.

    Science.gov (United States)

    Li, Jiannong; Smalley, Inna; Schell, Michael J; Smalley, Keiran S M; Chen, Y Ann

    2017-09-15

    Single-cell technologies allow characterization of transcriptomes and epigenomes for individual cells under different conditions and provide unprecedented resolution for researchers to investigate cellular heterogeneity in cancer. The SinCHet ( gle ell erogeneity) toolbox is developed in MATLAB and has a graphical user interface (GUI) for visualization and user interaction. It analyzes both continuous (e.g. mRNA expression) and binary omics data (e.g. discretized methylation data). The toolbox does not only quantify cellular heterogeneity using S hannon P rofile (SP) at different clonal resolutions but also detects heterogeneity differences using a D statistic between two populations. It is defined as the area under the P rofile of S hannon D ifference (PSD). This flexible tool provides a default clonal resolution using the change point of PSD detected by multivariate adaptive regression splines model; it also allows user-defined clonal resolutions for further investigation. This tool provides insights into emerging or disappearing clones between conditions, and enables the prioritization of biomarkers for follow-up experiments based on heterogeneity or marker differences between and/or within cell populations. The SinCHet software is freely available for non-profit academic use. The source code, example datasets, and the compiled package are available at http://labpages2.moffitt.org/chen/software/ . ann.chen@moffitt.org. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  7. Quantitative analysis of circadian single cell oscillations in response to temperature.

    Science.gov (United States)

    Abraham, Ute; Schlichting, Julia Katharina; Kramer, Achim; Herzel, Hanspeter

    2018-01-01

    Body temperature rhythms synchronize circadian oscillations in different tissues, depending on the degree of cellular coupling: the responsiveness to temperature is higher when single circadian oscillators are uncoupled. So far, the role of coupling in temperature responsiveness has only been studied in organotypic tissue slices of the central circadian pacemaker, because it has been assumed that peripheral target organs behave like uncoupled multicellular oscillators. Since recent studies indicate that some peripheral tissues may exhibit cellular coupling as well, we asked whether peripheral network dynamics also influence temperature responsiveness. Using a novel technique for long-term, high-resolution bioluminescence imaging of primary cultured cells, exposed to repeated temperature cycles, we were able to quantitatively measure period, phase, and amplitude of central (suprachiasmatic nuclei neuron dispersals) and peripheral (mouse ear fibroblasts) single cell oscillations in response to temperature. Employing temperature cycles of different lengths, and different cell densities, we found that some circadian characteristics appear cell-autonomous, e.g. period responses, while others seem to depend on the quality/degree of cellular communication, e.g. phase relationships, robustness of the oscillation, and amplitude. Overall, our findings indicate a strong dependence on the cell's ability for intercellular communication, which is not only true for neuronal pacemakers, but, importantly, also for cells in peripheral tissues. Hence, they stress the importance of comparative studies that evaluate the degree of coupling in a given tissue, before it may be used effectively as a target for meaningful circadian manipulation.

  8. Synthetical Analysis for Morphology, biological Species, and stable Isotopes (SAMSI) of single-cell planktonic foraminifer

    Science.gov (United States)

    Ujiie, Y.; Kimoto, K.; Ishimura, T.

    2017-12-01

    Planktonic foraminifers are widely used in the studies of paleontology and paleoceanography, because the morphology of their calcareous shells is enough highly variable to identify the morphospecies and the chemical composition of the shells reflect ambient seawater condition. Although the morphospecies were believed to represent environments associating with latitudinal temperature range of the world ocean, molecular phylogeographic studies have unveiled the presence of multiple biological species in a single morphospecies and their species-specific distributions. This implicates the actual complexity of planktonic foraminiferal ecology. Conversely, these biological species have a high potential for providing novel ecological and environmental information to us. In order to reassess the morphological and geochemical characters of biological species, the DNA extraction method with the guanidium isothiocyanate buffer was developed to preserve the calcareous shells. The present study carefully tested the physical and chemical damages of the DNA extraction process to the shells, by our novel approaches with geochemical analysis of the shells after non-destructive analysis for morphometrics on a same specimen. First, we checked the changes of the shell densities between pre- and post-DNA extraction by using the micro-focus X-ray CT (MXCT) scanning. Based on the simultaneous measurement of a sample and the standard material, we confirmed no significant changes to the shell densities through the DNA extraction process. As a next step, we compared stable oxygen and carbon isotopes among individuals of three sample sets: (1) no chemical and incubation as control, (2) incubation in the DNA extraction buffer at 65-70°C for 40 minutes as standard way, and (3) incubation in the DNA extraction buffer at 65-70°C for 120 minutes, by using the microscale isotopic analytical system (MICAL3c). Consequently, there were no significant differences among the three sample sets. These

  9. Single cell lineage analysis of mouse embryonic stem cells at the exit from pluripotency

    Directory of Open Access Journals (Sweden)

    Jamie Trott

    2013-08-01

    Understanding how interactions between extracellular signalling pathways and transcription factor networks influence cellular decision making will be crucial for understanding mammalian embryogenesis and for generating specialised cell types in vitro. To this end, pluripotent mouse Embryonic Stem (mES cells have proven to be a useful model system. However, understanding how transcription factors and signalling pathways affect decisions made by individual cells is confounded by the fact that measurements are generally made on groups of cells, whilst individual mES cells differentiate at different rates and towards different lineages, even in conditions that favour a particular lineage. Here we have used single-cell measurements of transcription factor expression and Wnt/β-catenin signalling activity to investigate their effects on lineage commitment decisions made by individual cells. We find that pluripotent mES cells exhibit differing degrees of heterogeneity in their expression of important regulators from pluripotency, depending on the signalling environment to which they are exposed. As mES cells differentiate, downregulation of Nanog and Oct4 primes cells for neural commitment, whilst loss of Sox2 expression primes cells for primitive streak commitment. Furthermore, we find that Wnt signalling acts through Nanog to direct cells towards a primitive streak fate, but that transcriptionally active β-catenin is associated with both neural and primitive streak commitment. These observations confirm and extend previous suggestions that pluripotency genes influence lineage commitment and demonstrate how their dynamic expression affects the direction of lineage commitment, whilst illustrating two ways in which the Wnt signalling pathway acts on this network during cell fate assignment.

  10. Finite Element Analysis of Single Cell Stiffness Measurements Using PZT-Integrated Buckling Nanoneedles

    Directory of Open Access Journals (Sweden)

    Maryam Alsadat Rad

    2016-12-01

    Full Text Available This paper proposes a new technique for real-time single cell stiffness measurement using lead zirconate titanate (PZT-integrated buckling nanoneedles. The PZT and the buckling part of the nanoneedle have been modelled and validated using the ABAQUS software. The two parts are integrated together to function as a single unit. After calibration, the stiffness, Young’s modulus, Poisson’s ratio and sensitivity of the PZT-integrated buckling nanoneedle have been determined to be 0.7100 N·m−1, 123.4700 GPa, 0.3000 and 0.0693 V·m·N−1, respectively. Three Saccharomyces cerevisiae cells have been modelled and validated based on compression tests. The average global stiffness and Young’s modulus of the cells are determined to be 10.8867 ± 0.0094 N·m−1 and 110.7033 ± 0.0081 MPa, respectively. The nanoneedle and the cell have been assembled to measure the local stiffness of the single Saccharomyces cerevisiae cells The local stiffness, Young’s modulus and PZT output voltage of the three different size Saccharomyces cerevisiae have been determined at different environmental conditions. We investigated that, at low temperature the stiffness value is low to adapt to the change in the environmental condition. As a result, Saccharomyces cerevisiae becomes vulnerable to viral and bacterial attacks. Therefore, the proposed technique will serve as a quick and accurate process to diagnose diseases at early stage in a cell for effective treatment.

  11. Single-cell analysis of pyroptosis dynamics reveals conserved GSDMD-mediated subcellular events that precede plasma membrane rupture.

    Science.gov (United States)

    de Vasconcelos, Nathalia M; Van Opdenbosch, Nina; Van Gorp, Hanne; Parthoens, Eef; Lamkanfi, Mohamed

    2018-04-17

    Pyroptosis is rapidly emerging as a mechanism of anti-microbial host defense, and of extracellular release of the inflammasome-dependent cytokines interleukin (IL)-1β and IL-18, which contributes to autoinflammatory pathology. Caspases 1, 4, 5 and 11 trigger this regulated form of necrosis by cleaving the pyroptosis effector gasdermin D (GSDMD), causing its pore-forming amino-terminal domain to oligomerize and perforate the plasma membrane. However, the subcellular events that precede pyroptotic cell lysis are ill defined. In this study, we triggered primary macrophages to undergo pyroptosis from three inflammasome types and recorded their dynamics and morphology using high-resolution live-cell spinning disk confocal laser microscopy. Based on quantitative analysis of single-cell subcellular events, we propose a model of pyroptotic cell disintegration that is initiated by opening of GSDMD-dependent ion channels or pores that are more restrictive than recently proposed GSDMD pores, followed by osmotic cell swelling, commitment of mitochondria and other membrane-bound organelles prior to sudden rupture of the plasma membrane and full permeability to intracellular proteins. This study provides a dynamic framework for understanding cellular changes that occur during pyroptosis, and charts a chronological sequence of GSDMD-mediated subcellular events that define pyroptotic cell death at the single-cell level.

  12. Proximity-Based Differential Single-Cell Analysis of the Niche to Identify Stem/Progenitor Cell Regulators.

    Science.gov (United States)

    Silberstein, Lev; Goncalves, Kevin A; Kharchenko, Peter V; Turcotte, Raphael; Kfoury, Youmna; Mercier, Francois; Baryawno, Ninib; Severe, Nicolas; Bachand, Jacqueline; Spencer, Joel A; Papazian, Ani; Lee, Dongjun; Chitteti, Brahmananda Reddy; Srour, Edward F; Hoggatt, Jonathan; Tate, Tiffany; Lo Celso, Cristina; Ono, Noriaki; Nutt, Stephen; Heino, Jyrki; Sipilä, Kalle; Shioda, Toshihiro; Osawa, Masatake; Lin, Charles P; Hu, Guo-Fu; Scadden, David T

    2016-10-06

    Physiological stem cell function is regulated by secreted factors produced by niche cells. In this study, we describe an unbiased approach based on the differential single-cell gene expression analysis of mesenchymal osteolineage cells close to, and further removed from, hematopoietic stem/progenitor cells (HSPCs) to identify candidate niche factors. Mesenchymal cells displayed distinct molecular profiles based on their relative location. We functionally examined, among the genes that were preferentially expressed in proximal cells, three secreted or cell-surface molecules not previously connected to HSPC biology-the secreted RNase angiogenin, the cytokine IL18, and the adhesion molecule Embigin-and discovered that all of these factors are HSPC quiescence regulators. Therefore, our proximity-based differential single-cell approach reveals molecular heterogeneity within niche cells and can be used to identify novel extrinsic stem/progenitor cell regulators. Similar approaches could also be applied to other stem cell/niche pairs to advance the understanding of microenvironmental regulation of stem cell function. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Proximity-based differential single cell analysis of the niche to identify stem/progenitor cell regulators

    Science.gov (United States)

    Silberstein, Lev; Goncalves, Kevin A; Kharchenko, Peter V; Turcotte, Raphael; Kfoury, Youmna; Mercier, Francois; Baryawno, Ninib; Severe, Nicolas; Bachand, Jacqueline; Spencer, Joel; Papazian, Ani; Lee, Dongjun; Chitteti, Brahmananda Reddy; Srour, Edward F; Hoggatt, Jonathan; Tate, Tiffany; Celso, Cristina Lo; Ono, Noriaki; Nutt, Stephen; Heino, Jyrki; Sipilä, Kalle; Shioda, Toshihiro; Osawa, Masatake; Lin, Charles P; Hu, Guo-fu; Scadden, David T

    2016-01-01

    SUMMARY Physiological stem cell function is regulated by secreted factors produced by niche cells. In this study, we describe an unbiased approach based on differential single-cell gene expression analysis of mesenchymal osteolineage cells close to and further removed from hematopoietic stem/progenitor cells to identify candidate niche factors. Mesenchymal cells displayed distinct molecular profiles based on their relative location. Amongst the genes which were preferentially expressed in proximal cells, we functionally examined three secreted or cell surface molecules not previously connected to HSPC biology: the secreted RNase Angiogenin, the cytokine IL18 and the adhesion molecule Embigin and discovered that all of these factors are HSPC quiescence regulators. Our proximity-based differential single cell approach therefore reveals molecular heterogeneity within niche cells and can be used to identify novel extrinsic stem/progenitor cell regulators. Similar approaches could also be applied to other stem cell/niche pairs to advance understanding of microenvironmental regulation of stem cell function. PMID:27524439

  14. Analysis of SOS-Induced Spontaneous Prophage Induction in Corynebacterium glutamicum at the Single-Cell Level

    Science.gov (United States)

    Nanda, Arun M.; Heyer, Antonia; Krämer, Christina; Grünberger, Alexander; Kohlheyer, Dietrich

    2014-01-01

    The genome of the Gram-positive soil bacterium Corynebacterium glutamicum ATCC 13032 contains three integrated prophage elements (CGP1 to -3). Recently, it was shown that the large lysogenic prophage CGP3 (∼187 kbp) is excised spontaneously in a small number of cells. In this study, we provide evidence that a spontaneously induced SOS response is partly responsible for the observed spontaneous CGP3 induction. Whereas previous studies focused mainly on the induction of prophages at the population level, we analyzed the spontaneous CGP3 induction at the single-cell level using promoters of phage genes (Pint2 and Plysin) fused to reporter genes encoding fluorescent proteins. Flow-cytometric analysis revealed a spontaneous CGP3 activity in about 0.01 to 0.08% of the cells grown in standard minimal medium, which displayed a significantly reduced viability. A PrecA-eyfp promoter fusion revealed that a small fraction of C. glutamicum cells (∼0.2%) exhibited a spontaneous induction of the SOS response. Correlation of PrecA to the activity of downstream SOS genes (PdivS and PrecN) confirmed a bona fide induction of this stress response rather than stochastic gene expression. Interestingly, the reporter output of PrecA and CGP3 promoter fusions displayed a positive correlation at the single-cell level (ρ = 0.44 to 0.77). Furthermore, analysis of the PrecA-eyfp/Pint2-e2-crimson strain during growth revealed the highest percentage of spontaneous PrecA and Pint2 activity in the early exponential phase, when fast replication occurs. Based on these studies, we postulate that spontaneously occurring DNA damage induces the SOS response, which in turn triggers the induction of lysogenic prophages. PMID:24163339

  15. Single-cell time-lapse analysis of depletion of the universally conserved essential protein YgjD

    Directory of Open Access Journals (Sweden)

    Ackermann Martin

    2011-05-01

    Full Text Available Abstract Background The essential Escherichia coli gene ygjD belongs to a universally conserved group of genes whose function has been the focus of a number of recent studies. Here, we put ygjD under control of an inducible promoter, and used time-lapse microscopy and single cell analysis to investigate the phenotypic consequences of the depletion of YgjD protein from growing cells. Results We show that loss of YgjD leads to a marked decrease in cell size and termination of cell division. The transition towards smaller size occurs in a controlled manner: cell elongation and cell division remain coupled, but cell size at division decreases. We also find evidence that depletion of YgjD leads to the synthesis of the intracellular signaling molecule (pppGpp, inducing a cellular reaction resembling the stringent response. Concomitant deletion of the relA and spoT genes - leading to a strain that is uncapable of synthesizing (pppGpp - abrogates the decrease in cell size, but does not prevent termination of cell division upon YgjD depletion. Conclusions Depletion of YgjD protein from growing cells leads to a decrease in cell size that is contingent on (pppGpp, and to a termination of cell division. The combination of single-cell timelapse microscopy and statistical analysis can give detailed insights into the phenotypic consequences of the loss of essential genes, and can thus serve as a new tool to study the function of essential genes.

  16. Single-cell analysis reveals a link between CD3- and CD59-mediated signaling pathways in Jurkat T cells

    International Nuclear Information System (INIS)

    Lipp, A. M.

    2012-01-01

    Elevation of intracellular free calcium concentration ([Ca2+]i) is a key signal during T cell activation and is commonly used as a read-out parameter for stimulation of T cell signaling. Upon T cell stimulation a variety of calcium signals is produced by individual cells of the T cell population and the type of calcium signal strongly influences cell fate decisions. The heterogeneous nature of T cells is masked in ensemble measurements, which highlights the need for single-cell measurements. In this study we used single-cell calcium measurements in Jurkat cells to investigate signaling pathways, which are triggered by different proteins, namely CD3 and CD59. By application of an automated cluster algorithm the presented assay provides unbiased analysis of a large data set of individual calcium time traces generated by the whole cell population. By using this method we could demonstrate that the Jurkat population generates heterogeneous calcium signals in a stimulus-dependent manner. Furthermore, our data revealed the existence of a link between CD3- and CD59-mediated signaling pathways. Single-cell calcium measurements in Jurkat cells expressing different levels of the T cell receptor (TCR) complex indicated that CD59-mediated calcium signaling is critically dependent on TCR surface expression levels. In addition, triggering CD59-mediated calcium signaling resulted in down-regulation of TCR surface expression levels, which is known to happen upon direct TCR triggering too. Moreover, by using siRNA-mediated protein knock-downs and protein knock-out Jurkat mutants we could show that CD3- and CD59-mediated calcium signaling require identical key proteins. We therefore explored by which mechanism CD59-mediated signaling couples into TCR-mediated signaling. Fluorescence recovery after photobleaching (FRAP) experiments and live-cell protein-protein interaction assays provided no evidence of a direct physical interaction between CD3- and CD59-mediated signaling pathways

  17. Single-Cell Biomolecular Analysis of Coral Algal Symbionts Reveals Opposing Metabolic Responses to Heat Stress and Expulsion

    Directory of Open Access Journals (Sweden)

    Katherina Petrou

    2018-03-01

    Full Text Available The success of corals in nutrient poor environments is largely attributed to the symbiosis between the cnidarian host and its intracellular alga. Warm water anomalies have been shown to destabilize this symbiosis, yet detailed analysis of the effect of temperature and expulsion on cell-specific carbon and nutrient allocation in the symbiont is limited. Here, we exposed colonies of the hard coral Acropora millepora to heat stress and using synchrotron-based infrared microspectroscopy measured the biomolecular profiles of individual in hospite and expelled symbiont cells at an acute state of bleaching. Our results showed symbiont metabolic profiles to be remarkably distinct with heat stress and expulsion, where the two effectors elicited opposing metabolic adjustments independent of treatment or cell type. Elevated temperature resulted in biomolecular changes reflecting cellular stress, with relative increases in free amino acids and phosphorylation of molecules and a concomitant decline in protein content, suggesting protein modification and degradation. This contrasted with the metabolic profiles of expelled symbionts, which showed relative decreases in free amino acids and phosphorylated molecules, but increases in proteins and lipids, suggesting expulsion lessens the overall effect of heat stress on the metabolic signature of the algal symbionts. Interestingly, the combined effects of expulsion and thermal stress were additive, reducing the overall shifts in all biomolecules, with the notable exception of the significant accumulation of lipids and saturated fatty acids. This first use of a single-cell metabolomics approach on the coral symbiosis provides novel insight into coral bleaching and emphasizes the importance of a single-cell approach to demark the cell-to-cell variability in the physiology of coral cellular populations.

  18. SmashCell: A software framework for the analysis of single-cell amplified genome sequences

    DEFF Research Database (Denmark)

    Harrington, Eoghan D; Arumugam, Manimozhiyan; Raes, Jeroen

    2010-01-01

    - in a way that allows parameter and algorithm exploration at each step in the process. It alsomanages the data created by these analyses and provides visualisation methods to allow rapid analysis of the results. AVAILABILITY: The SmashCell source code and a comprehensive manual are available at http...

  19. Analysis of Single-cell Gene Transcription by RNA Fluorescent In Situ Hybridization (FISH)

    DEFF Research Database (Denmark)

    Ronander, Elena; Bengtsson, Dominique C; Joergensen, Louise

    2012-01-01

    Adhesion of Plasmodium falciparum infected erythrocytes (IE) to human endothelial receptors during malaria infections is mediated by expression of PfEMP1 protein variants encoded by the var genes. The haploid P. falciparum genome harbors approximately 60 different var genes of which only one has...... been believed to be transcribed per cell at a time during the blood stage of the infection. How such mutually exclusive regulation of var gene transcription is achieved is unclear, as is the identification of individual var genes or sub-groups of var genes associated with different receptors...... fluorescent in situ hybridization (FISH) analysis of var gene transcription by the parasite in individual nuclei of P. falciparum IE(1). Here, we present a detailed protocol for carrying out the RNA-FISH methodology for analysis of var gene transcription in single-nuclei of P. falciparum infected human...

  20. Photocleavable DNA barcode-antibody conjugates allow sensitive and multiplexed protein analysis in single cells.

    Science.gov (United States)

    Agasti, Sarit S; Liong, Monty; Peterson, Vanessa M; Lee, Hakho; Weissleder, Ralph

    2012-11-14

    DNA barcoding is an attractive technology, as it allows sensitive and multiplexed target analysis. However, DNA barcoding of cellular proteins remains challenging, primarily because barcode amplification and readout techniques are often incompatible with the cellular microenvironment. Here we describe the development and validation of a photocleavable DNA barcode-antibody conjugate method for rapid, quantitative, and multiplexed detection of proteins in single live cells. Following target binding, this method allows DNA barcodes to be photoreleased in solution, enabling easy isolation, amplification, and readout. As a proof of principle, we demonstrate sensitive and multiplexed detection of protein biomarkers in a variety of cancer cells.

  1. Recovery of soil unicellular eukaryotes: an efficiency and activity analysis on the single cell level.

    Science.gov (United States)

    Lentendu, Guillaume; Hübschmann, Thomas; Müller, Susann; Dunker, Susanne; Buscot, François; Wilhelm, Christian

    2013-12-01

    Eukaryotic unicellular organisms are an important part of the soil microbial community, but they are often neglected in soil functional microbial diversity analysis, principally due to the absence of specific investigation methods in the special soil environment. In this study we used a method based on high-density centrifugation to specifically isolate intact algal and yeast cells, with the aim to analyze them with flow cytometry and sort them for further molecular analysis such as deep sequencing. Recovery efficiency was tested at low abundance levels that fit those in natural environments (10(4) to 10(6) cells per g soil). Five algae and five yeast morphospecies isolated from soil were used for the testing. Recovery efficiency was between 1.5 to 43.16% and 2 to 30.2%, respectively, and was dependent on soil type for three of the algae. Control treatments without soil showed that the majority of cells were lost due to the method itself (58% and 55.8% respectively). However, the cell extraction technique did not much compromise cell vitality because a fluorescein di-acetate assay indicated high viability percentages (73.3% and 97.2% of cells, respectively). The low abundant algae and yeast morphospecies recovered from soil were cytometrically analyzed and sorted. Following, their DNA was isolated and amplified using specific primers. The developed workflow enables isolation and enrichment of intact autotrophic and heterotrophic soil unicellular eukaryotes from natural environments for subsequent application of deep sequencing technologies. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Systems Level Dissection of Anaerobic Methane Cycling: Quantitative Measurements of Single Cell Ecophysiology, Genetic Mechanisms, and Microbial Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Orphan, Victoria [California Inst. of Technology (CalTech), Pasadena, CA (United States); Tyson, Gene [University of Queensland, Brisbane Australia; Meile, Christof [University of Georgia, Athens, Georgia; McGlynn, Shawn [California Inst. of Technology (CalTech), Pasadena, CA (United States); Yu, Hang [California Inst. of Technology (CalTech), Pasadena, CA (United States); Chadwick, Grayson [California Inst. of Technology (CalTech), Pasadena, CA (United States); Marlow, Jeffrey [California Inst. of Technology (CalTech), Pasadena, CA (United States); Trembath-Reichert, Elizabeth [California Inst. of Technology (CalTech), Pasadena, CA (United States); Dekas, Anne [California Inst. of Technology (CalTech), Pasadena, CA (United States); Hettich, Robert [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pan, Chongle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ellisman, Mark [University of California San Diego; Hatzenpichler, Roland [California Inst. of Technology (CalTech), Pasadena, CA (United States); Skennerton, Connor [California Inst. of Technology (CalTech), Pasadena, CA (United States); Scheller, Silvan [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2017-12-25

    The global biological CH4 cycle is largely controlled through coordinated and often intimate microbial interactions between archaea and bacteria, the majority of which are still unknown or have been only cursorily identified. Members of the methanotrophic archaea, aka ‘ANME’, are believed to play a major role in the cycling of methane in anoxic environments coupled to sulfate, nitrate, and possibly iron and manganese oxides, frequently forming diverse physical and metabolic partnerships with a range of bacteria. The thermodynamic challenges overcome by the ANME and their bacterial partners and corresponding slow rates of growth are common characteristics in anaerobic ecosystems, and, in stark contrast to most cultured microorganisms, this type of energy and resource limited microbial lifestyle is likely the norm in the environment. While we have gained an in-depth systems level understanding of fast-growing, energy-replete microorganisms, comparatively little is known about the dynamics of cell respiration, growth, protein turnover, gene expression, and energy storage in the slow-growing microbial majority. These fundamental properties, combined with the observed metabolic and symbiotic versatility of methanotrophic ANME, make these cooperative microbial systems a relevant (albeit challenging) system to study and for which to develop and optimize culture-independent methodologies, which enable a systems-level understanding of microbial interactions and metabolic networks. We used an integrative systems biology approach to study anaerobic sediment microcosms and methane-oxidizing bioreactors and expanded our understanding of the methanotrophic ANME archaea, their interactions with physically-associated bacteria, ecophysiological characteristics, and underlying genetic basis for cooperative microbial methane-oxidation linked with different terminal electron acceptors. Our approach is inherently multi-disciplinary and multi-scaled, combining transcriptional and

  3. Single-cell analysis of transcription kinetics across the cell cycle

    Science.gov (United States)

    Skinner, Samuel O; Xu, Heng; Nagarkar-Jaiswal, Sonal; Freire, Pablo R; Zwaka, Thomas P; Golding, Ido

    2016-01-01

    Transcription is a highly stochastic process. To infer transcription kinetics for a gene-of-interest, researchers commonly compare the distribution of mRNA copy-number to the prediction of a theoretical model. However, the reliability of this procedure is limited because the measured mRNA numbers represent integration over the mRNA lifetime, contribution from multiple gene copies, and mixing of cells from different cell-cycle phases. We address these limitations by simultaneously quantifying nascent and mature mRNA in individual cells, and incorporating cell-cycle effects in the analysis of mRNA statistics. We demonstrate our approach on Oct4 and Nanog in mouse embryonic stem cells. Both genes follow similar two-state kinetics. However, Nanog exhibits slower ON/OFF switching, resulting in increased cell-to-cell variability in mRNA levels. Early in the cell cycle, the two copies of each gene exhibit independent activity. After gene replication, the probability of each gene copy to be active diminishes, resulting in dosage compensation. DOI: http://dx.doi.org/10.7554/eLife.12175.001 PMID:26824388

  4. SigEMD: A powerful method for differential gene expression analysis in single-cell RNA sequencing data.

    Science.gov (United States)

    Wang, Tianyu; Nabavi, Sheida

    2018-04-24

    Differential gene expression analysis is one of the significant efforts in single cell RNA sequencing (scRNAseq) analysis to discover the specific changes in expression levels of individual cell types. Since scRNAseq exhibits multimodality, large amounts of zero counts, and sparsity, it is different from the traditional bulk RNA sequencing (RNAseq) data. The new challenges of scRNAseq data promote the development of new methods for identifying differentially expressed (DE) genes. In this study, we proposed a new method, SigEMD, that combines a data imputation approach, a logistic regression model and a nonparametric method based on the Earth Mover's Distance, to precisely and efficiently identify DE genes in scRNAseq data. The regression model and data imputation are used to reduce the impact of large amounts of zero counts, and the nonparametric method is used to improve the sensitivity of detecting DE genes from multimodal scRNAseq data. By additionally employing gene interaction network information to adjust the final states of DE genes, we further reduce the false positives of calling DE genes. We used simulated datasets and real datasets to evaluate the detection accuracy of the proposed method and to compare its performance with those of other differential expression analysis methods. Results indicate that the proposed method has an overall powerful performance in terms of precision in detection, sensitivity, and specificity. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Unbiased analysis of TCRα/β chains at the single-cell level in human CD8+ T-cell subsets.

    Directory of Open Access Journals (Sweden)

    Xiaoming Sun

    Full Text Available T-cell receptor (TCR α/β chains are expressed on the surface of CD8(+ T-cells and have been implicated in antigen recognition, activation, and proliferation. However, the methods for characterization of human TCRα/β chains have not been well established largely because of the complexity of their structures owing to the extensive genetic rearrangements that they undergo. Here we report the development of an integrated 5'-RACE and multiplex PCR method to amplify the full-length transcripts of TCRα/β at the single-cell level in human CD8(+ subsets, including naive, central memory, early effector memory, late effector memory, and effector phenotypic cells. Using this method, with an approximately 47% and 62% of PCR success rate for TCRα and for TCRβ chains, respectively, we were able to analyze more than 1,000 reads of transcripts of each TCR chain. Our comprehensive analysis revealed the following: (1 chimeric rearrangements of TCRδ-α, (2 control of TCRα/β transcription with multiple transcriptional initiation sites, (3 altered utilization of TCRα/β chains in CD8(+ subsets, and (4 strong association between the clonal size of TCRα/β chains and the effector phenotype of CD8(+ T-cells. Based on these findings, we conclude that our method is a useful tool to identify the dynamics of the TCRα/β repertoire, and provides new insights into the study of human TCRα/β chains.

  6. Unbiased analysis of TCRα/β chains at the single-cell level in human CD8+ T-cell subsets.

    Science.gov (United States)

    Sun, Xiaoming; Saito, Masumichi; Sato, Yoshinori; Chikata, Takayuki; Naruto, Takuya; Ozawa, Tatsuhiko; Kobayashi, Eiji; Kishi, Hiroyuki; Muraguchi, Atsushi; Takiguchi, Masafumi

    2012-01-01

    T-cell receptor (TCR) α/β chains are expressed on the surface of CD8(+) T-cells and have been implicated in antigen recognition, activation, and proliferation. However, the methods for characterization of human TCRα/β chains have not been well established largely because of the complexity of their structures owing to the extensive genetic rearrangements that they undergo. Here we report the development of an integrated 5'-RACE and multiplex PCR method to amplify the full-length transcripts of TCRα/β at the single-cell level in human CD8(+) subsets, including naive, central memory, early effector memory, late effector memory, and effector phenotypic cells. Using this method, with an approximately 47% and 62% of PCR success rate for TCRα and for TCRβ chains, respectively, we were able to analyze more than 1,000 reads of transcripts of each TCR chain. Our comprehensive analysis revealed the following: (1) chimeric rearrangements of TCRδ-α, (2) control of TCRα/β transcription with multiple transcriptional initiation sites, (3) altered utilization of TCRα/β chains in CD8(+) subsets, and (4) strong association between the clonal size of TCRα/β chains and the effector phenotype of CD8(+) T-cells. Based on these findings, we conclude that our method is a useful tool to identify the dynamics of the TCRα/β repertoire, and provides new insights into the study of human TCRα/β chains.

  7. Evaluation of the Cow Rumen Metagenome: Assembly by Single Copy Gene Analysis and Single Cell Genome Assemblies (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Sczyrba, Alex

    2011-10-13

    DOE JGI's Alex Sczyrba on "Evaluation of the Cow Rumen Metagenome" and "Assembly by Single Copy Gene Analysis and Single Cell Genome Assemblies" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  8. Max-Min SINR in Large-Scale Single-Cell MU-MIMO: Asymptotic Analysis and Low Complexity Transceivers

    KAUST Repository

    Sifaou, Houssem

    2016-12-28

    This work focuses on the downlink and uplink of large-scale single-cell MU-MIMO systems in which the base station (BS) endowed with M antennas communicates with K single-antenna user equipments (UEs). Particularly, we aim at reducing the complexity of the linear precoder and receiver that maximize the minimum signal-to-interference-plus-noise ratio subject to a given power constraint. To this end, we consider the asymptotic regime in which M and K grow large with a given ratio. Tools from random matrix theory (RMT) are then used to compute, in closed form, accurate approximations for the parameters of the optimal precoder and receiver, when imperfect channel state information (modeled by the generic Gauss-Markov formulation form) is available at the BS. The asymptotic analysis allows us to derive the asymptotically optimal linear precoder and receiver that are characterized by a lower complexity (due to the dependence on the large scale components of the channel) and, possibly, by a better resilience to imperfect channel state information. However, the implementation of both is still challenging as it requires fast inversions of large matrices in every coherence period. To overcome this issue, we apply the truncated polynomial expansion (TPE) technique to the precoding and receiving vector of each UE and make use of RMT to determine the optimal weighting coefficients on a per- UE basis that asymptotically solve the max-min SINR problem. Numerical results are used to validate the asymptotic analysis in the finite system regime and to show that the proposed TPE transceivers efficiently mimic the optimal ones, while requiring much lower computational complexity.

  9. Max-Min SINR in Large-Scale Single-Cell MU-MIMO: Asymptotic Analysis and Low Complexity Transceivers

    KAUST Repository

    Sifaou, Houssem; Kammoun, Abla; Sanguinetti, Luca; Debbah, Merouane; Alouini, Mohamed-Slim

    2016-01-01

    This work focuses on the downlink and uplink of large-scale single-cell MU-MIMO systems in which the base station (BS) endowed with M antennas communicates with K single-antenna user equipments (UEs). Particularly, we aim at reducing the complexity

  10. An Immunofluorescence-assisted Microfluidic Single Cell Quantitative Reverse Transcription Polymerase Chain Reaction Analysis of Tumour Cells Separated from Blood

    Directory of Open Access Journals (Sweden)

    Kazunori Hoshino

    2015-11-01

    matched the results from a few thousand cells. Some markers (e.g., ER, HER2 that are commonly used for cancer identification showed relatively large deviations in expres‐ sion levels. However, others (e.g., GRB7 showed devia‐ tions that are small enough to supplement single cell disease profiling.

  11. Single cell analysis facilitates staging of Blimp1-dependent primordial germ cells derived from mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    John J Vincent

    Full Text Available The cell intrinsic programming that regulates mammalian primordial germ cell (PGC development in the pre-gonadal stage is challenging to investigate. To overcome this we created a transgene-free method for generating PGCs in vitro (iPGCs from mouse embryonic stem cells (ESCs. Using labeling for SSEA1 and cKit, two cell surface molecules used previously to isolate presumptive iPGCs, we show that not all SSEA1+/cKit+ double positive cells exhibit a PGC identity. Instead, we determined that selecting for cKit(bright cells within the SSEA1+ fraction significantly enriches for the putative iPGC population. Single cell analysis comparing SSEA1+/cKit(bright iPGCs to ESCs and embryonic PGCs demonstrates that 97% of single iPGCs co-express PGC signature genes Blimp1, Stella, Dnd1, Prdm14 and Dazl at similar levels to e9.5-10.5 PGCs, whereas 90% of single mouse ESC do not co-express PGC signature genes. For the 10% of ESCs that co-express PGC signature genes, the levels are significantly lower than iPGCs. Microarray analysis shows that iPGCs are transcriptionally distinct from ESCs and repress gene ontology groups associated with mesoderm and heart development. At the level of chromatin, iPGCs contain 5-methyl cytosine bases in their DNA at imprinted and non-imprinted loci, and are enriched in histone H3 lysine 27 trimethylation, yet do not have detectable levels of Mvh protein, consistent with a Blimp1-positive pre-gonadal PGC identity. In order to determine whether iPGC formation is dependent upon Blimp1, we generated Blimp1 null ESCs and found that loss of Blimp1 significantly depletes SSEA1/cKit(bright iPGCs. Taken together, the generation of Blimp1-positive iPGCs from ESCs constitutes a robust model for examining cell-intrinsic regulation of PGCs during the Blimp1-positive stage of development.

  12. Single Cell Analysis of Human RAD18-Dependent DNA Post-Replication Repair by Alkaline Bromodeoxyuridine Comet Assay

    Science.gov (United States)

    Mórocz, Mónika; Gali, Himabindu; Raskó, István; Downes, C. Stephen; Haracska, Lajos

    2013-01-01

    Damage to DNA can block replication progression resulting in gaps in the newly synthesized DNA. Cells utilize a number of post-replication repair (PRR) mechanisms such as the RAD18 controlled translesion synthesis or template switching to overcome the discontinuities formed opposite the DNA lesions and to complete DNA replication. Gaining more insights into the role of PRR genes promotes better understanding of DNA damage tolerance and of how their malfunction can lead to increased genome instability and cancer. However, a simple and efficient method to characterise gene specific PRR deficiencies at a single cell level has not been developed. Here we describe the so named BrdU comet PRR assay to test the contribution of human RAD18 to PRR at a single cell level, by which we kinetically characterized the consequences of the deletion of human RAD18 on the replication of UV-damaged DNA. Moreover, we demonstrate the capability of our method to evaluate PRR at a single cell level in unsynchronized cell population. PMID:23936422

  13. Single-cell RNA-seq and computational analysis using temporal mixture modelling resolves Th1/Tfh fate bifurcation in malaria

    OpenAIRE

    L?nnberg, Tapio; Svensson, Valentine; James, Kylie R.; Fernandez-Ruiz, Daniel; Sebina, Ismail; Montandon, Ruddy; Soon, Megan S. F.; Fogg, Lily G.; Nair, Arya Sheela; Liligeto, Urijah; Stubbington, Michael J. T.; Ly, Lam-Ha; Bagger, Frederik Otzen; Zwiessele, Max; Lawrence, Neil D.

    2017-01-01

    Differentiation of na?ve CD4+ T cells into functionally distinct T helper subsets is crucial for the orchestration of immune responses. Due to extensive heterogeneity and multiple overlapping transcriptional programs in differentiating T cell populations, this process has remained a challenge for systematic dissection in vivo. By using single-cell transcriptomics and computational analysis using a temporal mixtures of Gaussian processes model, termed GPfates, we reconstructed the developmenta...

  14. Single-cell analysis of S. cerevisiae growth recovery after a sublethal heat-stress applied during an alcoholic fermentation.

    Science.gov (United States)

    Tibayrenc, Pierre; Preziosi-Belloy, Laurence; Ghommidh, Charles

    2011-06-01

    Interest in bioethanol production has experienced a resurgence in the last few years. Poor temperature control in industrial fermentation tanks exposes the yeast cells used for this production to intermittent heat stress which impairs fermentation efficiency. Therefore, there is a need for yeast strains with improved tolerance, able to recover from such temperature variations. Accordingly, this paper reports the development of methods for the characterization of Saccharomyces cerevisiae growth recovery after a sublethal heat stress. Single-cell measurements were carried out in order to detect cell-to-cell variability. Alcoholic batch fermentations were performed on a defined medium in a 2 l instrumented bioreactor. A rapid temperature shift from 33 to 43 °C was applied when ethanol concentration reached 50 g l⁻¹. Samples were collected at different times after the temperature shift. Single cell growth capability, lag-time and initial growth rate were determined by monitoring the growth of a statistically significant number of cells after agar medium plating. The rapid temperature shift resulted in an immediate arrest of growth and triggered a progressive loss of cultivability from 100 to 0.0001% within 8 h. Heat-injured cells were able to recover their growth capability on agar medium after a lag phase. Lag-time was longer and more widely distributed as the time of heat exposure increased. Thus, lag-time distribution gives an insight into strain sensitivity to heat-stress, and could be helpful for the selection of yeast strains of technological interest.

  15. Single-cell Transcriptional Analysis Reveals Novel Neuronal Phenotypes and Interaction Networks involved In the Central Circadian Clock

    Directory of Open Access Journals (Sweden)

    James Park

    2016-10-01

    Full Text Available Single-cell heterogeneity confounds efforts to understand how a population of cells organizes into cellular networks that underlie tissue-level function. This complexity is prominent in the mammalian suprachiasmatic nucleus (SCN. Here, individual neurons exhibit a remarkable amount of asynchronous behavior and transcriptional heterogeneity. However, SCN neurons are able to generate precisely coordinated synaptic and molecular outputs that synchronize the body to a common circadian cycle by organizing into cellular networks. To understand this emergent cellular network property, it is important to reconcile single-neuron heterogeneity with network organization. In light of recent studies suggesting that transcriptionally heterogeneous cells organize into distinct cellular phenotypes, we characterized the transcriptional, spatial, and functional organization of 352 SCN neurons from mice experiencing phase-shifts in their circadian cycle. Using the community structure detection method and multivariate analytical techniques, we identified previously undescribed neuronal phenotypes that are likely to participate in regulatory networks with known SCN cell types. Based on the newly discovered neuronal phenotypes, we developed a data-driven neuronal network structure in which multiple cell types interact through known synaptic and paracrine signaling mechanisms. These results provide a basis from which to interpret the functional variability of SCN neurons and describe methodologies towards understanding how a population of heterogeneous single cells organizes into cellular networks that underlie tissue-level function.

  16. Single-cell technologies in environmental omics

    KAUST Repository

    Kodzius, Rimantas; Gojobori, Takashi

    2015-01-01

    Environmental studies are primarily done by culturing isolated microorganisms or by amplifying and sequencing conserved genes. Difficulties understanding the complexity of large numbers of various microorganisms in an environment led to the development of techniques to enrich specific microorganisms for upstream analysis, ultimately leading to single-cell isolation and analyses. We discuss the significance of single-cell technologies in omics studies with focus on metagenomics and metatranscriptomics. We propose that by reducing sample heterogeneity using single-cell genomics, metaomic studies can be simplified.

  17. Single-cell technologies in environmental omics

    KAUST Repository

    Kodzius, Rimantas

    2015-10-22

    Environmental studies are primarily done by culturing isolated microorganisms or by amplifying and sequencing conserved genes. Difficulties understanding the complexity of large numbers of various microorganisms in an environment led to the development of techniques to enrich specific microorganisms for upstream analysis, ultimately leading to single-cell isolation and analyses. We discuss the significance of single-cell technologies in omics studies with focus on metagenomics and metatranscriptomics. We propose that by reducing sample heterogeneity using single-cell genomics, metaomic studies can be simplified.

  18. Compare analysis for the nanotoxicity effects of different amounts of endocytic iron oxide nanoparticles at single cell level.

    Science.gov (United States)

    Huang, Chen-Yu; Ger, Tzong-Rong; Wei, Zung-Hang; Lai, Mei-Feng

    2014-01-01

    Developing methods that evaluate the cellular uptake of magnetic nanoparticles (MNPs) and nanotoxicity effects at single-cellular level are needed. In this study, magnetophoresis combining fluorescence based cytotoxicity assay was proposed to assess the viability and the single-cellular MNPs uptake simultaneously. Malignant cells (SKHep-1, HepG2, HeLa) were incubated with 10 nm anionic iron oxide nanoparticles. Prussian blue stain was performed to visualize the distribution of magnetic nanoparticles. MTT and fluorescence based assay analyzed the cytotoxicity effects of the bulk cell population and single cell, respectively. DAPI/PI stained was applied to evaluate death mechanism. The number of intracellular MNPs was found to be strongly correlated with the cell death. Significant differences between cellular MNP uptake in living and dead cells were observed. The method could be useful for future study of the nanotoxicity induced by MNPs.

  19. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Su, Hui [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, the author introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, they demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm2 for 40-μm wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection. In the second part of this dissertation, the author used laser-induced native fluorescence coupled with capillary electrophoresis (LINF-CE) and microscope imaging to study the single cell degranulation. On the basis of good temporal correlation with events observed through an optical microscope, they have identified individual peaks in the fluorescence electropherograms as serotonin released from the granular core on contact with the surrounding fluid.

  20. Single-cell-type quantitative proteomic and ionomic analysis of epidermal bladder cells from the halophyte model plant Mesembryanthemum crystallinum to identify salt-responsive proteins.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Raymond, Carolyn

    2016-05-10

    Epidermal bladder cells (EBC) are large single-celled, specialized, and modified trichomes found on the aerial parts of the halophyte Mesembryanthemum crystallinum. Recent development of a simple but high throughput technique to extract the contents from these cells has provided an opportunity to conduct detailed single-cell-type analyses of their molecular characteristics at high resolution to gain insight into the role of these cells in the salt tolerance of the plant. In this study, we carry out large-scale complementary quantitative proteomic studies using both a label (DIGE) and label-free (GeLC-MS) approach to identify salt-responsive proteins in the EBC extract. Additionally we perform an ionomics analysis (ICP-MS) to follow changes in the amounts of 27 different elements. Using these methods, we were able to identify 54 proteins and nine elements that showed statistically significant changes in the EBC from salt-treated plants. GO enrichment analysis identified a large number of transport proteins but also proteins involved in photosynthesis, primary metabolism and Crassulacean acid metabolism (CAM). Validation of results by western blot, confocal microscopy and enzyme analysis helped to strengthen findings and further our understanding into the role of these specialized cells. As expected EBC accumulated large quantities of sodium, however, the most abundant element was chloride suggesting the sequestration of this ion into the EBC vacuole is just as important for salt tolerance. This single-cell type omics approach shows that epidermal bladder cells of M. crystallinum are metabolically active modified trichomes, with primary metabolism supporting cell growth, ion accumulation, compatible solute synthesis and CAM. Data are available via ProteomeXchange with identifier PXD004045.

  1. Single Cell HLA Matching Feasibility by Whole Genomic Amplification and Nested PCR

    Institute of Scientific and Technical Information of China (English)

    Xiao-hong Li; Fang-yin Meng

    2004-01-01

    @@ PCR based single-cell DNA analysis has been widely used in forensic science, preimplantation genetic diagnosis and so on. However, the original sample cannot be efficiently retrieved following single cell PCR, consequently the amount of information gained is limited. HLA system is too sophisticated that it is very hard to complete HLA typing by single cell. A Taq polymerase-based method using random primers to amplify whole genome termed as whole genome amplification (WGA) has demonstrated to be a useful method in increasing the copies of minimum sample. We establish a technique in this study to amplify HLA-A and HLA-B loci at same time in a single cell using WGA.

  2. Epigenetics reloaded: the single-cell revolution.

    Science.gov (United States)

    Bheda, Poonam; Schneider, Robert

    2014-11-01

    Mechanistically, how epigenetic states are inherited through cellular divisions remains an important open question in the chromatin field and beyond. Defining the heritability of epigenetic states and the underlying chromatin-based mechanisms within a population of cells is complicated due to cell heterogeneity combined with varying levels of stability of these states; thus, efforts must be focused toward single-cell analyses. The approaches presented here constitute the forefront of epigenetics research at the single-cell level using classic and innovative methods to dissect epigenetics mechanisms from the limited material available in a single cell. This review further outlines exciting future avenues of research to address the significance of epigenetic heterogeneity and the contributions of microfluidics technologies to single-cell isolation and analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Single cell analysis of innate cytokine responses to pattern recognition receptor stimulation in children across four continents

    Science.gov (United States)

    Smolen, Kinga K; Cai, Bing; Fortuno, Edgardo S; Gelinas, Laura; Larsen, Martin; Speert, David P; Chamekh, Mustapha; Kollmann, Tobias R

    2014-01-01

    Innate immunity instructs adaptive immunity, and suppression of innate immunity is associated with increased risk for infection. We had previously shown that whole blood cellular components from a cohort of South African children secreted significantly lower levels of most cytokines following stimulation of pattern recognition receptors (PRR) as compared to whole blood from cohorts of Ecuadorian, Belgian, or Canadian children. To begin dissecting the responsible molecular mechanisms, we now set out to identify the relevant cellular source of these differences. Across the four cohorts represented in our study, we identified significant variation in the cellular composition of whole blood; however, significant reduction of the intracellular cytokine production on the single cell level was only detected in South African childrens’ monocytes, cDC, and pDC. We also uncovered a marked reduction in polyfunctionality for each of these cellular compartments in South African children as compared to children from other continents. Together our data identify differences in cell composition as well as profoundly lower functional responses of innate cells in our cohort of South African children. A possible link between altered innate immunity and increased risk for infection or lower response to vaccines in South African infants needs to be explored. PMID:25135829

  4. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Su, Hui [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, we introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, we demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm2 for 40-μm wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection.

  5. Improved Laser Manipulation for On-chip Fabricated Microstructures Based on Solution Replacement and Its Application in Single Cell Analysis

    Directory of Open Access Journals (Sweden)

    Tao Yue

    2014-02-01

    Full Text Available In this paper, we present the fabrication and assembly of microstructures inside a microfluidic device based on a photocrosslinkable resin and optical tweezers. We also report a method of solution replacement inside the microfluidic channel in order to improve the manipulation performance and apply the assembled microstructures for single cell cultivation. By the illumination of patterned ultraviolet (UV through a microscope, microstructures of arbitrary shape were fabricated by the photocrosslinkable resin inside a microfluidic channel. Based on the microfluidic channel with both glass and polydimethylsiloxane (PDMS surfaces, immovable and movable microstructures were fabricated and manipulated. The microstructures were fabricated at the desired places and manipulated by the optical tweezers. A rotational microstructure including a microgear and a rotation axis was assembled and rotated in demonstrating this technique. The improved laser manipulation of microstructures was achieved based on the on-chip solution replacement method. The manipulation speed of the microstructures increased when the viscosity of the solvent decreased. The movement efficiency of the fabricated microstructures inside the lower viscosity solvent was evaluated and compared with those microstructures inside the former high viscosity solvent. A novel cell cage was fabricated and the cultivation of a single yeast cell (w303 was demonstrated in the cell cage, inside the microfluidic device.

  6. Single-cell gel electrophoresis applied to the analysis of UV-C damage and its repair in human cells

    International Nuclear Information System (INIS)

    Gedik, C.M.; Collins, A.R.; Ewen, S.W.B.

    1992-01-01

    The authors have adapted procedure of single cell gel electrophoresis (SCGE) for studying DNA damage and repair induced by UV-C-radiation, using HeLa cells. UV-C itself does not induce DNA breakage, and though cellular repair of UV-C damage produces DNA breaks as intermediates, these are too short-lived to be detected by SCGE. Incubation of UV-C-irradiated cells with the DNA synthesis inhibitor aphidicolin causes accumulation of incomplete repair sites to a level readily detected by SCGE even after doses as low as 0.5 J m -2 and incubation for as little as 5 min. The authors also studied UV-C-dependent incision, repair synthesis and ligation in permeable cells. Finally, key incubated permeable cells, after UV-C-irradiation, with exogenous UV endonuclease, examined consequent breaks both by SCGE and by alkaline unwinding to express results of the electrophoretic method in terms of DNA break frequencies. The sensitivity of the SCGE technique can thus be estimated; as few as 0.1 DNA breaks per 10 9 daltons are detected. (Author)

  7. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    International Nuclear Information System (INIS)

    Hui Su

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, we introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, we demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm(sub 2) for 40-(micro)m wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection

  8. Protein Expression Analyses at the Single Cell Level

    Directory of Open Access Journals (Sweden)

    Masae Ohno

    2014-09-01

    Full Text Available The central dogma of molecular biology explains how genetic information is converted into its end product, proteins, which are responsible for the phenotypic state of the cell. Along with the protein type, the phenotypic state depends on the protein copy number. Therefore, quantification of the protein expression in a single cell is critical for quantitative characterization of the phenotypic states. Protein expression is typically a dynamic and stochastic phenomenon that cannot be well described by standard experimental methods. As an alternative, fluorescence imaging is being explored for the study of protein expression, because of its high sensitivity and high throughput. Here we review key recent progresses in fluorescence imaging-based methods and discuss their application to proteome analysis at the single cell level.

  9. Time-resolved, single-cell analysis of induced and programmed cell death via non-invasive propidium iodide and counterstain perfusion.

    Science.gov (United States)

    Krämer, Christina E M; Wiechert, Wolfgang; Kohlheyer, Dietrich

    2016-09-01

    Conventional propidium iodide (PI) staining requires the execution of multiple steps prior to analysis, potentially affecting assay results as well as cell vitality. In this study, this multistep analysis method has been transformed into a single-step, non-toxic, real-time method via live-cell imaging during perfusion with 0.1 μM PI inside a microfluidic cultivation device. Dynamic PI staining was an effective live/dead analytical tool and demonstrated consistent results for single-cell death initiated by direct or indirect triggers. Application of this method for the first time revealed the apparent antibiotic tolerance of wild-type Corynebacterium glutamicum cells, as indicated by the conversion of violet fluorogenic calcein acetoxymethyl ester (CvAM). Additional implementation of this method provided insight into the induced cell lysis of Escherichia coli cells expressing a lytic toxin-antitoxin module, providing evidence for non-lytic cell death and cell resistance to toxin production. Finally, our dynamic PI staining method distinguished necrotic-like and apoptotic-like cell death phenotypes in Saccharomyces cerevisiae among predisposed descendants of nutrient-deprived ancestor cells using PO-PRO-1 or green fluorogenic calcein acetoxymethyl ester (CgAM) as counterstains. The combination of single-cell cultivation, fluorescent time-lapse imaging, and PI perfusion facilitates spatiotemporally resolved observations that deliver new insights into the dynamics of cellular behaviour.

  10. Combined use of different Gfp reporters for monitoring single-cell activities of a genetically modified PCB degrader in the rhizosphere of alfalfa

    DEFF Research Database (Denmark)

    Boldt, T.S.; Sørensen, J.; Karlsson, U.

    2004-01-01

    Single-cell localization and activity of Pseudomonas,fluorescens F113, colonizing alfalfa roots, were monitored using fusions of the Escherichia coli rrnBP1 ribosomal promoter and gfp genes encoding green fluorescent protein (Gfp) of different stability. The monitoring systems permitted non...... of chlorinated biphenyl was constructed, using another gfp fusion with the meta-pathway Pin promoter from Pseudomonas putida (TOL plasmid). Expression of this promoter, which is strongly induced by the PCB-2 degradation product, 3-chlorobenzoate, was tested in vitro and subsequently monitored in vivo on alfalfa...... roots using the P. fluorescens F113rifpcb reporter. A small but distinct fraction of the introduced bacteria activated the Pm promoter and thus appeared to sense a PCB-2 degradation product in the alfalfa rhizosphere. The degrading cells, which by design were identical to the sensing cells, were located...

  11. Single cell analysis of G1 check points-the relationship between the restriction point and phosphorylation of pRb

    International Nuclear Information System (INIS)

    Martinsson, Hanna-Stina; Starborg, Maria; Erlandsson, Fredrik; Zetterberg, Anders

    2005-01-01

    Single cell analysis allows high resolution investigation of temporal relationships between transition events in G 1 . It has been suggested that phosphorylation of the retinoblastoma tumor suppressor protein (pRb) is the molecular mechanism behind passage through the restriction point (R). We performed a detailed single cell study of the temporal relationship between R and pRb phosphorylation in human fibroblasts using time lapse video-microscopy combined with immunocytochemistry. Four principally different criteria for pRb phosphorylation were used, namely (i) phosphorylation of residues Ser 795 and Ser 780 (ii) degree of pRb-association with the nuclear structure, a property that is closely related with pRb phosphorylation status, (iii) release of the transcription factor E2F-1 from pRb, and (iv) accumulation of cyclin E, which is dependent on phosphorylation of pRb. The analyses of individual cells revealed that passage through R preceded phosphorylation of pRb, which occurs in a gradually increasing proportion of cells in late G 1 . Our data clearly suggest that pRb phosphorylation is not the molecular mechanism behind the passage through R. The restriction point and phosphorylation of pRb thus seem to represent two separate check point in G 1

  12. High-recovery visual identification and single-cell retrieval of circulating tumor cells for genomic analysis using a dual-technology platform integrated with automated immunofluorescence staining

    International Nuclear Information System (INIS)

    Campton, Daniel E; Ramirez, Arturo B; Nordberg, Joshua J; Drovetto, Nick; Clein, Alisa C; Varshavskaya, Paulina; Friemel, Barry H; Quarre, Steve; Breman, Amy; Dorschner, Michael; Blau, Sibel; Blau, C Anthony; Sabath, Daniel E; Stilwell, Jackie L; Kaldjian, Eric P

    2015-01-01

    Circulating tumor cells (CTCs) are malignant cells that have migrated from solid cancers into the blood, where they are typically present in rare numbers. There is great interest in using CTCs to monitor response to therapies, to identify clinically actionable biomarkers, and to provide a non-invasive window on the molecular state of a tumor. Here we characterize the performance of the AccuCyte® – CyteFinder® system, a comprehensive, reproducible and highly sensitive platform for collecting, identifying and retrieving individual CTCs from microscopic slides for molecular analysis after automated immunofluorescence staining for epithelial markers. All experiments employed a density-based cell separation apparatus (AccuCyte) to separate nucleated cells from the blood and transfer them to microscopic slides. After staining, the slides were imaged using a digital scanning microscope (CyteFinder). Precisely counted model CTCs (mCTCs) from four cancer cell lines were spiked into whole blood to determine recovery rates. Individual mCTCs were removed from slides using a single-cell retrieval device (CytePicker™) for whole genome amplification and subsequent analysis by PCR and Sanger sequencing, whole exome sequencing, or array-based comparative genomic hybridization. Clinical CTCs were evaluated in blood samples from patients with different cancers in comparison with the CellSearch® system. AccuCyte – CyteFinder presented high-resolution images that allowed identification of mCTCs by morphologic and phenotypic features. Spike-in mCTC recoveries were between 90 and 91%. More than 80% of single-digit spike-in mCTCs were identified and even a single cell in 7.5 mL could be found. Analysis of single SKBR3 mCTCs identified presence of a known TP53 mutation by both PCR and whole exome sequencing, and confirmed the reported karyotype of this cell line. Patient sample CTC counts matched or exceeded CellSearch CTC counts in a small feasibility cohort. The AccuCyte

  13. A single-cell analysis platform for electrochemiluminescent detection of platelets adhesion to endothelial cells based on Au@DL-ZnCQDs nanoprobes.

    Science.gov (United States)

    Long, Dongping; Shang, Yunfei; Qiu, Youyi; Zhou, Bin; Yang, Peihui

    2018-04-15

    A novel single-cell analysis platform (SCA) was developed for the investigation of platelets adhesion to single human umbilical vein endothelial cell (HUVEC) via using the adhesion molecule (E-selectin) on the damaged HUVEC as the marker site, and integrating electrochemiluminescence (ECL) with the ultrasensitive Au@DL-ZnCQDs nanoprobes. The Au@DL-ZnCQDs nanocomposite, a kind of double layer zinc-coadsorbed carbon quantum dot (ZnCQDs) core-shell nanoprobe, was firstly constructed by using gold nanoparticles (AuNPs) as the core to load with ZnCQDs and then the citrate-modified silver nanoparticles (AgNPs) as the bridge to link AuNPs-ZnCQDs with ZnCQDs to form the core-shell with double layer ZnCQDs (DL-ZnCQDs) nanoprobe, revealed a 10-fold signal amplification. The H 2 O 2 -induced oxidative damage HUVECs were utilized as the cellular model on which anti-E-selectin functionalized nanoprobes specially recognized E-selectin, the SCA showed that the ECL signals decreased with platelets adhesion to single HUVEC. The proposed SCA could effectively and dynamically monitor the adhesion between single HUVEC and platelets in the absence and presence of collagen activation, moreover, be able to quantitatively detect the number of platelets adhesion to single HUVEC, and show a good analytical performance with linear range from 1 to 15 platelets. In contrast, the HUVEC was down-regulated the expression of adhesion molecules by treating with quercetin inhibitor, and the SCA also exhibited the feasibility for analysis of platelets adhesion to single HUVEC. Therefore, the single-cell analysis platform provided a novel and promising protocol for analysis of the single intercellular adhesion, and it will be beneficial to elucidate the pathogenesis of cardiovascular diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Full-length single-cell RNA-seq applied to a viral human cancer: applications to HPV expression and splicing analysis in HeLa S3 cells.

    Science.gov (United States)

    Wu, Liang; Zhang, Xiaolong; Zhao, Zhikun; Wang, Ling; Li, Bo; Li, Guibo; Dean, Michael; Yu, Qichao; Wang, Yanhui; Lin, Xinxin; Rao, Weijian; Mei, Zhanlong; Li, Yang; Jiang, Runze; Yang, Huan; Li, Fuqiang; Xie, Guoyun; Xu, Liqin; Wu, Kui; Zhang, Jie; Chen, Jianghao; Wang, Ting; Kristiansen, Karsten; Zhang, Xiuqing; Li, Yingrui; Yang, Huanming; Wang, Jian; Hou, Yong; Xu, Xun

    2015-01-01

    Viral infection causes multiple forms of human cancer, and HPV infection is the primary factor in cervical carcinomas. Recent single-cell RNA-seq studies highlight the tumor heterogeneity present in most cancers, but virally induced tumors have not been studied. HeLa is a well characterized HPV+ cervical cancer cell line. We developed a new high throughput platform to prepare single-cell RNA on a nanoliter scale based on a customized microwell chip. Using this method, we successfully amplified full-length transcripts of 669 single HeLa S3 cells and 40 of them were randomly selected to perform single-cell RNA sequencing. Based on these data, we obtained a comprehensive understanding of the heterogeneity of HeLa S3 cells in gene expression, alternative splicing and fusions. Furthermore, we identified a high diversity of HPV-18 expression and splicing at the single-cell level. By co-expression analysis we identified 283 E6, E7 co-regulated genes, including CDC25, PCNA, PLK4, BUB1B and IRF1 known to interact with HPV viral proteins. Our results reveal the heterogeneity of a virus-infected cell line. It not only provides a transcriptome characterization of HeLa S3 cells at the single cell level, but is a demonstration of the power of single cell RNA-seq analysis of virally infected cells and cancers.

  15. Technologies for Single-Cell Isolation.

    Science.gov (United States)

    Gross, Andre; Schoendube, Jonas; Zimmermann, Stefan; Steeb, Maximilian; Zengerle, Roland; Koltay, Peter

    2015-07-24

    The handling of single cells is of great importance in applications such as cell line development or single-cell analysis, e.g., for cancer research or for emerging diagnostic methods. This review provides an overview of technologies that are currently used or in development to isolate single cells for subsequent single-cell analysis. Data from a dedicated online market survey conducted to identify the most relevant technologies, presented here for the first time, shows that FACS (fluorescence activated cell sorting) respectively Flow cytometry (33% usage), laser microdissection (17%), manual cell picking (17%), random seeding/dilution (15%), and microfluidics/lab-on-a-chip devices (12%) are currently the most frequently used technologies. These most prominent technologies are described in detail and key performance factors are discussed. The survey data indicates a further increasing interest in single-cell isolation tools for the coming years. Additionally, a worldwide patent search was performed to screen for emerging technologies that might become relevant in the future. In total 179 patents were found, out of which 25 were evaluated by screening the title and abstract to be relevant to the field.

  16. Technologies for Single-Cell Isolation

    Science.gov (United States)

    Gross, Andre; Schoendube, Jonas; Zimmermann, Stefan; Steeb, Maximilian; Zengerle, Roland; Koltay, Peter

    2015-01-01

    The handling of single cells is of great importance in applications such as cell line development or single-cell analysis, e.g., for cancer research or for emerging diagnostic methods. This review provides an overview of technologies that are currently used or in development to isolate single cells for subsequent single-cell analysis. Data from a dedicated online market survey conducted to identify the most relevant technologies, presented here for the first time, shows that FACS (fluorescence activated cell sorting) respectively Flow cytometry (33% usage), laser microdissection (17%), manual cell picking (17%), random seeding/dilution (15%), and microfluidics/lab-on-a-chip devices (12%) are currently the most frequently used technologies. These most prominent technologies are described in detail and key performance factors are discussed. The survey data indicates a further increasing interest in single-cell isolation tools for the coming years. Additionally, a worldwide patent search was performed to screen for emerging technologies that might become relevant in the future. In total 179 patents were found, out of which 25 were evaluated by screening the title and abstract to be relevant to the field. PMID:26213926

  17. Technologies for Single-Cell Isolation

    Directory of Open Access Journals (Sweden)

    Andre Gross

    2015-07-01

    Full Text Available The handling of single cells is of great importance in applications such as cell line development or single-cell analysis, e.g., for cancer research or for emerging diagnostic methods. This review provides an overview of technologies that are currently used or in development to isolate single cells for subsequent single-cell analysis. Data from a dedicated online market survey conducted to identify the most relevant technologies, presented here for the first time, shows that FACS (fluorescence activated cell sorting respectively Flow cytometry (33% usage, laser microdissection (17%, manual cell picking (17%, random seeding/dilution (15%, and microfluidics/lab-on-a-chip devices (12% are currently the most frequently used technologies. These most prominent technologies are described in detail and key performance factors are discussed. The survey data indicates a further increasing interest in single-cell isolation tools for the coming years. Additionally, a worldwide patent search was performed to screen for emerging technologies that might become relevant in the future. In total 179 patents were found, out of which 25 were evaluated by screening the title and abstract to be relevant to the field.

  18. Low-dose DNA damage and replication stress responses quantified by optimized automated single-cell image analysis

    DEFF Research Database (Denmark)

    Mistrik, Martin; Oplustilova, Lenka; Lukas, Jiri

    2009-01-01

    sensitive, quantitative, rapid and simple fluorescence image analysis in thousands of adherent cells per day. Sensitive DNA breakage estimation through analysis of phosphorylated histone H2AX (gamma-H2AX), and homologous recombination (HR) assessed by a new RPA/Rad51 dual-marker approach illustrate...

  19. COMPUTER METHODS OF GENETIC ANALYSIS.

    Directory of Open Access Journals (Sweden)

    A. L. Osipov

    2017-02-01

    Full Text Available The basic statistical methods used in conducting the genetic analysis of human traits. We studied by segregation analysis, linkage analysis and allelic associations. Developed software for the implementation of these methods support.

  20. Single cell gel electrophoresis as a tool to assess genetic damage in Heleobia cf. australis (Mollusca: Gastropoda as sentinel for industrial and domestic pollution in Montevideo bay (Uruguay

    Directory of Open Access Journals (Sweden)

    Silvia Villar

    2015-09-01

    Full Text Available AbstractThe knowledge of the extent of DNA damage in aquatic organisms in polluted areas is an important issue because contamination may alter their health at sublethal levels. Although molluscs have been widely used to monitor water pollution, there are no records of in vivo genotoxicity studies. Heleobia cf. australis, is distributed in almost all Uruguayan coastal ecosystems, including highly polluted sites. The comet assay is a damage genetic biomarker based on the migration of negatively charged DNA fragments produced by mutagenic agents in individual cells. Live individuals were collected in the Montevideo Bay (impacted area and Laguna Garzón (control to analyze the presence of mutagenic agents in the former site through comet assay. Cells from organisms of the impacted area showed significantly higher levels of genetic damage than those obtained in the control population, measured by percentage of DNA in the tail. Although preliminary, this approach supports the idea that H. cf. australis could be used as a sentinel to evaluate the presence of mutagenic agents in estuarine environments, alerting to the impact of contamination in its early stages.

  1. Single-cell-type quantitative proteomic and ionomic analysis of epidermal bladder cells from the halophyte model plant Mesembryanthemum crystallinum to identify salt-responsive proteins

    OpenAIRE

    Barkla, Bronwyn J.; Vera-Estrella, Rosario; Raymond, Carolyn

    2016-01-01

    Background Epidermal bladder cells (EBC) are large single-celled, specialized, and modified trichomes found on the aerial parts of the halophyte Mesembryanthemum crystallinum. Recent development of a simple but high throughput technique to extract the contents from these cells has provided an opportunity to conduct detailed single-cell-type analyses of their molecular characteristics at high resolution to gain insight into the role of these cells in the salt tolerance of the plant. Results In...

  2. Near Infrared Microspectroscopy, Fluorescence Microspectroscopy, Infrared Chemical Imaging and High Resolution Nuclear Magnetic Resonance Analysis of Soybean Seeds, Somatic Embryos and Single Cells

    CERN Document Server

    Baianu, I C; Hofmann, N E; Korban, S S; Lozano, P; You, T; AOCS 94th Meeting, Kansas

    2002-01-01

    Novel methodologies are currently being developed and established for the chemical analysis of soybean seeds, embryos and single cells by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR) Microspectroscopy, Fluorescence and High-Resolution NMR (HR-NMR). The first FT-NIR chemical images of biological systems approaching one micron resolution are presented here. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as two cubic microns. Related, HR-NMR analyses of oil contents in somatic embryos are also presented here with nanoliter precision. Such 400 MHz 1H NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. ~20%) compared to non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monitored by FT-NIR with a precision ...

  3. Single-cell systems level analysis of human Toll-Like-Receptor activation defines a chemokine signature in Systemic Lupus Erythematosus

    Science.gov (United States)

    O'Gorman, William E.; Hsieh, Elena W.Y.; Savig, Erica S.; Gherardini, Pier Federico; Hernandez, Joseph D.; Hansmann, Leo; Balboni, Imelda M.; Utz, Paul J.; Bendall, Sean C.; Fantl, Wendy J.; Lewis, David B.; Nolan, Garry P.; Davis, Mark M.

    2015-01-01

    Background Activation of Toll-Like Receptors (TLRs) induces inflammatory responses involved in immunity to pathogens and autoimmune pathogenesis, such as in Systemic Lupus Erythematosus (SLE). Although TLRs are differentially expressed across the immune system, a comprehensive analysis of how multiple immune cell subsets respond in a system-wide manner has previously not been described. Objective To characterize TLR activation across multiple immune cell subsets and individuals, with the goal of establishing a reference framework against which to compare pathological processes. Methods Peripheral whole blood samples were stimulated with TLR ligands, and analyzed by mass cytometry simultaneously for surface marker expression, activation states of intracellular signaling proteins, and cytokine production. We developed a novel data visualization tool to provide an integrated view of TLR signaling networks with single-cell resolution. We studied seventeen healthy volunteer donors and eight newly diagnosed untreated SLE patients. Results Our data revealed the diversity of TLR-induced responses within cell types, with TLR ligand specificity. Subsets of NK and T cells selectively induced NF-κB in response to TLR2 ligands. CD14hi monocytes exhibited the most polyfunctional cytokine expression patterns, with over 80 distinct cytokine combinations. Monocytic TLR-induced cytokine patterns were shared amongst a group of healthy donors, with minimal intra- and inter- individual variability. Furthermore, autoimmune disease altered baseline cytokine production, as newly diagnosed untreated SLE patients shared a distinct monocytic chemokine signature, despite clinical heterogeneity. Conclusion Mass cytometry analysis defined a systems-level reference framework for human TLR activation, which can be applied to study perturbations in inflammatory disease, such as SLE. PMID:26037552

  4. Single-cell RNA-seq and computational analysis using temporal mixture modelling resolves Th1/Tfh fate bifurcation in malaria.

    Science.gov (United States)

    Lönnberg, Tapio; Svensson, Valentine; James, Kylie R; Fernandez-Ruiz, Daniel; Sebina, Ismail; Montandon, Ruddy; Soon, Megan S F; Fogg, Lily G; Nair, Arya Sheela; Liligeto, Urijah; Stubbington, Michael J T; Ly, Lam-Ha; Bagger, Frederik Otzen; Zwiessele, Max; Lawrence, Neil D; Souza-Fonseca-Guimaraes, Fernando; Bunn, Patrick T; Engwerda, Christian R; Heath, William R; Billker, Oliver; Stegle, Oliver; Haque, Ashraful; Teichmann, Sarah A

    2017-03-03

    Differentiation of naïve CD4 + T cells into functionally distinct T helper subsets is crucial for the orchestration of immune responses. Due to extensive heterogeneity and multiple overlapping transcriptional programs in differentiating T cell populations, this process has remained a challenge for systematic dissection in vivo . By using single-cell transcriptomics and computational analysis using a temporal mixtures of Gaussian processes model, termed GPfates, we reconstructed the developmental trajectories of Th1 and Tfh cells during blood-stage Plasmodium infection in mice. By tracking clonality using endogenous TCR sequences, we first demonstrated that Th1/Tfh bifurcation had occurred at both population and single-clone levels. Next, we identified genes whose expression was associated with Th1 or Tfh fates, and demonstrated a T-cell intrinsic role for Galectin-1 in supporting a Th1 differentiation. We also revealed the close molecular relationship between Th1 and IL-10-producing Tr1 cells in this infection. Th1 and Tfh fates emerged from a highly proliferative precursor that upregulated aerobic glycolysis and accelerated cell cycling as cytokine expression began. Dynamic gene expression of chemokine receptors around bifurcation predicted roles for cell-cell in driving Th1/Tfh fates. In particular, we found that precursor Th cells were coached towards a Th1 but not a Tfh fate by inflammatory monocytes. Thus, by integrating genomic and computational approaches, our study has provided two unique resources, a database www.PlasmoTH.org, which facilitates discovery of novel factors controlling Th1/Tfh fate commitment, and more generally, GPfates, a modelling framework for characterizing cell differentiation towards multiple fates.

  5. Single cell analysis of gene expression patterns of competence development and initiation of sporulation in Bacillus subtilis grown on chemically defined media

    NARCIS (Netherlands)

    Veening, J. -W.; Smits, W. K.; Hamoen, L. W.; Kuipers, O. P.

    Aim: Understanding the basis for the heterogeneous (or bistable) expression patterns of competence development and sporulation in Bacillus subtilis. Methods and Results: Using flow cytometric analyses of various promoter-GFP fusions, we have determined the single-cell gene expression patterns of

  6. Dynamic single-cell analysis of Saccharomyces cerevisiae under process perturbation: Comparison of different methods for monitoring the intensity of population heterogeneity

    DEFF Research Database (Denmark)

    Delvigne, Frank; Baert, Jonathan; Gofflot, Sébastien

    2015-01-01

    BACKGROUND: Single cell biology has attracted a lot of attention in recent years and has led to numerous fundamental results pointing out the heterogeneity of clonal cell populations. In this context, microbial phenotypic heterogeneity under bioprocessing conditions needs to be further investigat...

  7. Embryo genome profiling by single-cell sequencing for successful preimplantation genetic diagnosis in a family harboring COL4A1 c.1537G>A; p.G513S mutation

    Directory of Open Access Journals (Sweden)

    Nayana H Patel

    2016-01-01

    Full Text Available CONTEXT: Genetic profiling of embryos (also known as preimplantation genetic diagnosis before implantation has dramatically enhanced the success quotient of in vitro fertilization (IVF in recent times. The technology helps in avoiding selective pregnancy termination since the baby is likely to be free of the disease under consideration. AIM: Screening of embryos free from c.1537G>A; p.G513S mutation within the COL4A1 gene for which the father was known in before be in heterozygous condition. SUBJECTS AND METHODS: Processing of trophectoderm biopsies was done from twelve embryos for c.1537G>A; p.G513S mutation within the COL4A1 gene. DNA extracted from isolated cells were subjected to whole genome amplification using an isothermal amplification and strand displacement technology. Oligonucleotide primers bracketing the mutation were synthesized and used to amplify 162 base pairs (bp polymerase chain reaction amplicons originating from each embryo which were subsequently sequenced to detect the presence or absence of the single base polymorphism. RESULTS: Three out of 12 embryos interrogated in this study were found to be normal while 9 were found to harbor the mutation in heterozygous condition. Implantation of one of the normal embryos following by chorionic villus sampling at 11 th week of pregnancy indicated that the baby was free from c.1537G>A; p.G513S mutation within the COL4A1 gene. CONCLUSIONS: Single-cell sequencing is a helpful tool for preimplantation embryo profiling. This is the first report from India describing the birth of a normal child through IVF procedure where a potential pathogenic COL4A1 allele was avoided using this technology.

  8. Single Cell Genomics: Approaches and Utility in Immunology

    Science.gov (United States)

    Neu, Karlynn E; Tang, Qingming; Wilson, Patrick C; Khan, Aly A

    2017-01-01

    Single cell genomics offers powerful tools for studying lymphocytes, which make it possible to observe rare and intermediate cell states that cannot be resolved at the population-level. Advances in computer science and single cell sequencing technology have created a data-driven revolution in immunology. The challenge for immunologists is to harness computing and turn an avalanche of quantitative data into meaningful discovery of immunological principles, predictive models, and strategies for therapeutics. Here, we review the current literature on computational analysis of single cell RNA-seq data and discuss underlying assumptions, methods, and applications in immunology, and highlight important directions for future research. PMID:28094102

  9. Single-cell photoacoustic thermometry

    Science.gov (United States)

    Gao, Liang; Wang, Lidai; Li, Chiye; Liu, Yan; Ke, Haixin; Zhang, Chi

    2013-01-01

    Abstract. A novel photoacoustic thermometric method is presented for simultaneously imaging cells and sensing their temperature. With three-seconds-per-frame imaging speed, a temperature resolution of 0.2°C was achieved in a photo-thermal cell heating experiment. Compared to other approaches, the photoacoustic thermometric method has the advantage of not requiring custom-developed temperature-sensitive biosensors. This feature should facilitate the conversion of single-cell thermometry into a routine lab tool and make it accessible to a much broader biological research community. PMID:23377004

  10. Attitudes towards genetic testing: analysis of contradictions

    DEFF Research Database (Denmark)

    Jallinoja, P; Hakonen, A; Aro, A R

    1998-01-01

    A survey study was conducted among 1169 people to evaluate attitudes towards genetic testing in Finland. Here we present an analysis of the contradictions detected in people's attitudes towards genetic testing. This analysis focuses on the approval of genetic testing as an individual choice and o...... studies on attitudes towards genetic testing as well as in the health care context, e.g. in genetic counselling.......A survey study was conducted among 1169 people to evaluate attitudes towards genetic testing in Finland. Here we present an analysis of the contradictions detected in people's attitudes towards genetic testing. This analysis focuses on the approval of genetic testing as an individual choice...... and on the confidence in control of the process of genetic testing and its implications. Our analysis indicated that some of the respondents have contradictory attitudes towards genetic testing. It is proposed that contradictory attitudes towards genetic testing should be given greater significance both in scientific...

  11. Dielectrophoretic capture and genetic analysis of single neuroblastoma tumor cells

    Directory of Open Access Journals (Sweden)

    Erica L Carpenter

    2014-07-01

    Full Text Available Our understanding of the diversity of cells that escape the primary tumor and seed micrometastases remains rudimentary, and approaches for studying circulating and disseminated tumor cells have been limited by low throughput and sensitivity, reliance on single parameter sorting, and a focus on enumeration rather than phenotypic and genetic characterization. Here we utilize a highly sensitive microfluidic and dielectrophoretic approach for the isolation and genetic analysis of individual tumor cells. We employed fluorescence labeling to isolate 208 single cells from spiking experiments conducted with 11 cell lines, including 8 neuroblastoma cell lines, and achieved a capture sensitivity of 1 tumor cell per 106 white blood cells. Sample fixation or freezing had no detectable effect on cell capture. Point mutations were accurately detected in the whole genome amplification product of captured single tumor cells but not in negative control white blood cells. We applied this approach to capture 144 single tumor cells from 10 bone marrow samples from patients suffering from neuroblastoma. In this pediatric malignancy, high-risk patients often exhibit wide-spread hematogenous metastasis, but access to primary tumor can be difficult or impossible. Here we used flow-based sorting to pre-enrich samples with tumor involvement below 0.02%. For all patients for whom a mutation in the Anaplastic Lymphoma Kinase gene had already been detected in their primary tumor, the same mutation was detected in single cells from their marrow. These findings demonstrate a novel, non-invasive, and adaptable method for the capture and genetic analysis of single tumor cells from cancer patients.

  12. Single-Cell Memory Regulates a Neural Circuit for Sensory Behavior.

    Science.gov (United States)

    Kobayashi, Kyogo; Nakano, Shunji; Amano, Mutsuki; Tsuboi, Daisuke; Nishioka, Tomoki; Ikeda, Shingo; Yokoyama, Genta; Kaibuchi, Kozo; Mori, Ikue

    2016-01-05

    Unveiling the molecular and cellular mechanisms underlying memory has been a challenge for the past few decades. Although synaptic plasticity is proven to be essential for memory formation, the significance of "single-cell memory" still remains elusive. Here, we exploited a primary culture system for the analysis of C. elegans neurons and show that a single thermosensory neuron has an ability to form, retain, and reset a temperature memory. Genetic and proteomic analyses found that the expression of the single-cell memory exhibits inter-individual variability, which is controlled by the evolutionarily conserved CaMKI/IV and Raf pathway. The variable responses of a sensory neuron influenced the neural activity of downstream interneurons, suggesting that modulation of the sensory neurons ultimately determines the behavioral output in C. elegans. Our results provide proof of single-cell memory and suggest that the individual differences in neural responses at the single-cell level can confer individuality. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Direct chromosome-length haplotyping by single-cell sequencing

    NARCIS (Netherlands)

    Porubský, David; Sanders, Ashley D; van Wietmarschen, Niek; Falconer, Ester; Hills, Mark; Spierings, Diana C J; Bevova, Marianna R; Guryev, Victor; Lansdorp, Peter Michael

    Haplotypes are fundamental to fully characterize the diploid genome of an individual, yet methods to directly chart the unique genetic makeup of each parental chromosome are lacking. Here we introduce single-cell DNA template strand sequencing (Strand-seq) as a novel approach to phasing diploid

  14. Assessing T cell differentiation at the single-cell level

    NARCIS (Netherlands)

    Gerlach, Carmen

    2012-01-01

    This thesis describes the development and use of a novel technology for single-cell fate mapping, called cellular barcoding. With this technology, unique and heritable genetic tags (barcodes) are introduced into naïve T cells. Using cellular barcoding, we investigated I) how different

  15. Measuring single-cell density.

    Science.gov (United States)

    Grover, William H; Bryan, Andrea K; Diez-Silva, Monica; Suresh, Subra; Higgins, John M; Manalis, Scott R

    2011-07-05

    We have used a microfluidic mass sensor to measure the density of single living cells. By weighing each cell in two fluids of different densities, our technique measures the single-cell mass, volume, and density of approximately 500 cells per hour with a density precision of 0.001 g mL(-1). We observe that the intrinsic cell-to-cell variation in density is nearly 100-fold smaller than the mass or volume variation. As a result, we can measure changes in cell density indicative of cellular processes that would be otherwise undetectable by mass or volume measurements. Here, we demonstrate this with four examples: identifying Plasmodium falciparum malaria-infected erythrocytes in a culture, distinguishing transfused blood cells from a patient's own blood, identifying irreversibly sickled cells in a sickle cell patient, and identifying leukemia cells in the early stages of responding to a drug treatment. These demonstrations suggest that the ability to measure single-cell density will provide valuable insights into cell state for a wide range of biological processes.

  16. Dynamic heterogeneity of DNA methylation and hydroxymethylation in embryonic stem cell populations captured by single-cell 3D high-content analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tajbakhsh, Jian, E-mail: tajbakhshj@cshs.org [Chromatin Biology Laboratory, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Translational Cytomics Group, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Stefanovski, Darko [Translational Cytomics Group, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19348 (United States); Tang, George [Chromatin Biology Laboratory, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Translational Cytomics Group, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Wawrowsky, Kolja [Translational Cytomics Group, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Liu, Naiyou; Fair, Jeffrey H. [Department of Surgery and UF Health Comprehensive Transplant Center, University of Florida College of Medicine, Gainesville, FL 32608 (United States)

    2015-03-15

    Cell-surface markers and transcription factors are being used in the assessment of stem cell fate and therapeutic safety, but display significant variability in stem cell cultures. We assessed nuclear patterns of 5-hydroxymethylcytosine (5hmC, associated with pluripotency), a second important epigenetic mark, and its combination with 5-methylcytosine (5mC, associated with differentiation), also in comparison to more established markers of pluripotency (Oct-4) and endodermal differentiation (FoxA2, Sox17) in mouse embryonic stem cells (mESC) over a 10-day differentiation course in vitro: by means of confocal and super-resolution imaging together with 3D high-content analysis, an essential tool in single-cell screening. In summary: 1) We did not measure any significant correlation of putative markers with global 5mC or 5hmC. 2) While average Oct-4 levels stagnated on a cell-population base (0.015 lnIU/day), Sox17 and FoxA2 increased 22-fold and 3-fold faster, respectively (Sox17: 0.343 lnIU/day; FoxA2: 0.046 lnIU/day). In comparison, global DNA methylation levels increased 4-fold faster (0.068 lnIU/day), and global hydroxymethylation declined at 0.046 lnIU/day, both with a better explanation of the temporal profile. 3) This progression was concomitant with the occurrence of distinct nuclear codistribution patterns that represented a heterogeneous spectrum of states in differentiation; converging to three major coexisting 5mC/5hmC phenotypes by day 10: 5hmC{sup +}/5mC{sup −}, 5hmC{sup +}/5mC{sup +}, and 5hmC{sup −}/5mC{sup +} cells. 4) Using optical nanoscopy we could delineate the respective topologies of 5mC/5hmC colocalization in subregions of nuclear DNA: in the majority of 5hmC{sup +}/5mC{sup +} cells 5hmC and 5mC predominantly occupied mutually exclusive territories resembling euchromatic and heterochromatic regions, respectively. Simultaneously, in a smaller subset of cells we observed a tighter colocalization of the two cytosine variants, presumably

  17. Single-Cell Gene Expression Analysis of a Human ESC Model of Pancreatic Endocrine Development Reveals Different Paths to β-Cell Differentiation.

    Science.gov (United States)

    Petersen, Maja Borup Kjær; Azad, Ajuna; Ingvorsen, Camilla; Hess, Katja; Hansson, Mattias; Grapin-Botton, Anne; Honoré, Christian

    2017-10-10

    The production of insulin-producing β cells from human embryonic stem cells (hESCs) in vitro represents a promising strategy for a cell-based therapy for type 1 diabetes mellitus. To explore the cellular heterogeneity and temporal progression of endocrine progenitors and their progeny, we performed single-cell qPCR on more than 500 cells across several stages of in vitro differentiation of hESCs and compared them with human islets. We reveal distinct subpopulations along the endocrine differentiation path and an early lineage bifurcation toward either polyhormonal cells or β-like cells. We uncover several similarities and differences with mouse development and reveal that cells can take multiple paths to the same differentiation state, a principle that could be relevant to other systems. Notably, activation of the key β-cell transcription factor NKX6.1 can be initiated before or after endocrine commitment. The single-cell temporal resolution we provide can be used to improve the production of functional β cells. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Single cell time-lapse analysis reveals that podoplanin enhances cell survival and colony formation capacity of squamous cell carcinoma cells.

    Science.gov (United States)

    Miyashita, Tomoyuki; Higuchi, Youichi; Kojima, Motohiro; Ochiai, Atsushi; Ishii, Genichiro

    2017-01-06

    Tumor initiating cells (TICs) are characterized by high clonal expansion capacity. We previously reported that podoplanin is a TIC-specific marker for the human squamous cell carcinoma cell line A431. The aim of this study is to explore the molecular mechanism underlying the high clonal expansion potential of podoplanin-positive A431cells using Fucci imaging. Single podoplanin-positive cells created large colonies at a significantly higher frequency than single podoplanin-negative cells, whereas no difference was observed between the two types of cells with respect to cell cycle status. Conversely, the cell death ratio of progenies derived from podoplanin-positive single cell was significantly lower than that of cells derived from podoplanin-negative cells. Single A431 cells, whose podoplanin expression was suppressed by RNA interference, exhibited increased cell death ratios and decreased frequency of large colony forming. Moreover, the frequency of large colony forming decreased significantly when podoplanin-positive single cells was treated with a ROCK (Rho-associated coiled-coil kinase) inhibitor, whereas no difference was observed in single podoplanin-negative cells. Our current study cleared that high clonal expansion capacity of podoplanin-positive TICs populations was the result of reduced cell death by podoplanin-mediated signaling. Therefore, podoplanin activity may be a therapeutic target in the treatment of squamous cell carcinomas.

  19. Application of single-cell technology in cancer research.

    Science.gov (United States)

    Liang, Shao-Bo; Fu, Li-Wu

    2017-07-01

    In this review, we have outlined the application of single-cell technology in cancer research. Single-cell technology has made encouraging progress in recent years and now provides the means to detect rare cancer cells such as circulating tumor cells and cancer stem cells. We reveal how this technology has advanced the analysis of intratumor heterogeneity and tumor epigenetics, and guided individualized treatment strategies. The future prospects now are to bring single-cell technology into the clinical arena. We believe that the clinical application of single-cell technology will be beneficial in cancer diagnostics and treatment, and ultimately improve survival in cancer patients. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Arthritis Genetics Analysis Aids Drug Discovery

    Science.gov (United States)

    ... NIH Research Matters January 13, 2014 Arthritis Genetics Analysis Aids Drug Discovery An international research team identified 42 new ... Edition Distracted Driving Raises Crash Risk Arthritis Genetics Analysis Aids Drug Discovery Oxytocin Affects Facial Recognition Connect with Us ...

  1. The genetic manipulation of the yeast Saccharomyces cerevisiae with the aim of converting polysaccharide-rich agricultural crops and industrial waste to single-cell protein and fuel ethanol

    Directory of Open Access Journals (Sweden)

    I. S. Pretorius

    1994-07-01

    Full Text Available The world’s problem with overpopulation and environmental pollution has created an urgent demand for alternative protein and energy sources. One way of addressing these burning issues is to produce single-cell protein (for food and animal feed supplements and fuel ethanol from polysaccharide-rich agricultural crops and industrial waste by using baker’s yeast.

  2. Single cell FRET analysis for the identification of optimal FRET-pairs in Bacillus subtilis using a prototype MEM-FLIM system.

    Directory of Open Access Journals (Sweden)

    Ruud G J Detert Oude Weme

    Full Text Available Protein-protein interactions can be studied in vitro, e.g. with bacterial or yeast two-hybrid systems or surface plasmon resonance. In contrast to in vitro techniques, in vivo studies of protein-protein interactions allow examination of spatial and temporal behavior of such interactions in their native environment. One approach to study protein-protein interactions in vivo is via Förster Resonance Energy Transfer (FRET. Here, FRET efficiency of selected FRET-pairs was studied at the single cell level using sensitized emission and Frequency Domain-Fluorescence Lifetime Imaging Microscopy (FD-FLIM. For FRET-FLIM, a prototype Modulated Electron-Multiplied FLIM system was used, which is, to the best of our knowledge, the first account of Frequency Domain FLIM to analyze FRET in single bacterial cells. To perform FRET-FLIM, we first determined and benchmarked the best fluorescent protein-pair for FRET in Bacillus subtilis using a novel BglBrick-compatible integration vector. We show that GFP-tagRFP is an excellent donor-acceptor pair for B. subtilis in vivo FRET studies. As a proof of concept, selected donor and acceptor fluorescent proteins were fused using a linker that contained a tobacco etch virus (TEV-protease recognition sequence. Induction of TEV-protease results in loss of FRET efficiency and increase in fluorescence lifetime. The loss of FRET efficiency after TEV induction can be followed in time in single cells via time-lapse microscopy. This work will facilitate future studies of in vivo dynamics of protein complexes in single B. subtilis cells.

  3. Single Cell Analysis Linking Ribosomal (r)DNA and rRNA Copy Numbers to Cell Size and Growth Rate Provides Insights into Molecular Protistan Ecology.

    Science.gov (United States)

    Fu, Rao; Gong, Jun

    2017-11-01

    Ribosomal (r)RNA and rDNA have been golden molecular markers in microbial ecology. However, it remains poorly understood how ribotype copy number (CN)-based characteristics are linked with diversity, abundance, and activity of protist populations and communities observed at organismal levels. Here, we applied a single-cell approach to quantify ribotype CNs in two ciliate species reared at different temperatures. We found that in actively growing cells, the per-cell rDNA and rRNA CNs scaled with cell volume (CV) to 0.44 and 0.58 powers, respectively. The modeled rDNA and rRNA concentrations thus appear to be much higher in smaller than in larger cells. The observed rRNA:rDNA ratio scaled with CV 0.14 . The maximum growth rate could be well predicted by a combination of per-cell ribotype CN and temperature. Our empirical data and modeling on single-cell ribotype scaling are in agreement with both the metabolic theory of ecology and the growth rate hypothesis, providing a quantitative framework for linking cellular rDNA and rRNA CNs with body size, growth (activity), and biomass stoichiometry. This study also demonstrates that the expression rate of rRNA genes is constrained by cell size, and favors biomass rather than abundance-based interpretation of quantitative ribotype data in population and community ecology of protists. © 2017 The Authors. Journal of Eukaryotic Microbiology published by Wiley Periodicals, Inc. on behalf of International Society of Protistologists.

  4. Single Cell Assay for Analyzing Single Cell Exosome and Endocrine Secretion and Cancer Markers

    Science.gov (United States)

    Chiu, Yu-Jui

    To understand the inhomogeneity of cells in biological systems, there is a growing demand for the capability to characterize the properties of individual single cells. Since single cell studies require continuous monitoring of the cell behaviors instead of a snapshot test at a single time point, an effective single-cell assay that can support time lapsed studies in a high throughput manner is desired. Most currently available single-cell technologies cannot provide proper environments to sustain cell growth and cannot provide, for appropriate cell types, proliferation of single cells and convenient, non-invasive tests of single cell behaviors from molecular markers. In this dissertation, I present a highly versatile single-cell assay that can accommodate different cellular types, enable easy and efficient single cell loading and culturing, and be suitable for the study of effects of in-vitro environmental factors in combination with drug screening. The salient features of the assay are the non-invasive collection and surveying of single cell secretions at different time points and massively parallel translocation of single cells by user defined criteria, producing very high compatibility to the downstream process such as single cell qPCR and sequencing. Above all, the acquired information is quantitative -- for example, one of the studies is measured by the number of exosomes each single cell secretes for a given time period. Therefore, our single-cell assay provides a convenient, low-cost, and enabling tool for quantitative, time lapsed studies of single cell properties.

  5. Single cell enzyme diagnosis on the chip

    DEFF Research Database (Denmark)

    Jensen, Sissel Juul; Harmsen, Charlotte; Nielsen, Mette Juul

    2013-01-01

    Conventional diagnosis based on ensemble measurements often overlooks the variation among cells. Here, we present a droplet-microfluidics based platform to investigate single cell activities. Adopting a previously developed isothermal rolling circle amplification-based assay, we demonstrate...... detection of enzymatic activities down to the single cell level with small quantities of biological samples, which outcompetes existing techniques. Such a system, capable of resolving single cell activities, will ultimately have clinical applications in diagnosis, prediction of drug response and treatment...

  6. An analysis of the genetic diversity and genetic structure of ...

    African Journals Online (AJOL)

    Scientific approaches to conservation of threatened species depend on a good understanding of the genetic information of wild and artificial population. The genetic diversity and structure analysis of 10 Eucommia ulmoides population was analyzed using inter-simple sequence repeat (ISSR) markers in this paper.

  7. Single-cell analysis of differences in transcriptomic profiles of oocytes and cumulus cells at GV, MI, MII stages from PCOS patients.

    Science.gov (United States)

    Liu, Qiwei; Li, Yumei; Feng, Yun; Liu, Chaojie; Ma, Jieliang; Li, Yifei; Xiang, Huifen; Ji, Yazhong; Cao, Yunxia; Tong, Xiaowen; Xue, Zhigang

    2016-12-22

    Polycystic ovary syndrome (PCOS) is a common frequent endocrine disorder among women of reproductive age. Although assisted reproductive techniques (ARTs) are used to address subfertility in PCOS women, their effectiveness is not clear. Our aim was to compare transcriptomic profiles of oocytes and cumulus cells (CCs) between women with and without PCOS, and assess the effectiveness of ARTs in treating PCOS patients. We collected oocytes and CCs from 16 patients with and without PCOS patients to categorize them into 6 groups according to oocyte nuclear maturation. Transcriptional gene expression of oocyte and CCs was determined via single-cell RNA sequencing. The ratio of fertilization and cleavage was higher in PCOS patients than in non-PCOS patients undergoing ARTs, and there was no difference in the number of high-quality embryos between the groups. Differentially expressed genes including PPP2R1A, PDGFRA, EGFR, GJA1, PTGS2, TNFAIP6, TGF-β1, CAV1, INHBB et al. were investigated as potential causes of PCOS oocytes and CCs disorder at early stages, but their expression returned to the normal level at the metaphase II (MII) stage via ARTs. In conclusion, ARTs can improve the quality of cumulus-oocyte complex (COC) and increase the ratio of fertilization and cleavage in PCOS women.

  8. Single-cell analysis of peptide expression and electrophysiology of right parietal neurons involved in male copulation behavior of a simultaneous hermaphrodite.

    Science.gov (United States)

    El Filali, Z; de Boer, P A C M; Pieneman, A W; de Lange, R P J; Jansen, R F; Ter Maat, A; van der Schors, R C; Li, K W; van Straalen, N M; Koene, J M

    2015-12-01

    Male copulation is a complex behavior that requires coordinated communication between the nervous system and the peripheral reproductive organs involved in mating. In hermaphroditic animals, such as the freshwater snail Lymnaea stagnalis, this complexity increases since the animal can behave both as male and female. The performance of the sexual role as a male is coordinated via a neuronal communication regulated by many peptidergic neurons, clustered in the cerebral and pedal ganglia and dispersed in the pleural and parietal ganglia. By combining single-cell matrix-assisted laser mass spectrometry with retrograde staining and electrophysiology, we analyzed neuropeptide expression of single neurons of the right parietal ganglion and their axonal projections into the penial nerve. Based on the neuropeptide profile of these neurons, we were able to reconstruct a chemical map of the right parietal ganglion revealing a striking correlation with the earlier electrophysiological and neuroanatomical studies. Neurons can be divided into two main groups: (i) neurons that express heptapeptides and (ii) neurons that do not. The neuronal projection of the different neurons into the penial nerve reveals a pattern where (spontaneous) activity is related to branching pattern. This heterogeneity in both neurochemical anatomy and branching pattern of the parietal neurons reflects the complexity of the peptidergic neurotransmission involved in the regulation of male mating behavior in this simultaneous hermaphrodite.

  9. Single cell-type analysis of cellular lipid remodelling in response to salinity in the epidermal bladder cells of the model halophyte Mesembryanthemum crystallinum.

    Science.gov (United States)

    Barkla, Bronwyn J; Garibay-Hernández, Adriana; Melzer, Michael; Rupasinghe, Thusitha W T; Roessner, Ute

    2018-05-29

    Salt stress causes dramatic changes in the organization and dynamic properties of membranes, however, little is known about the underlying mechanisms involved. Modified trichomes, known as epidermal bladder cells (EBC), on the leaves and stems of the halophyte Mesembryanthemum crystallinum can be successfully exploited as a single-cell-type system to investigate salt-induced changes to cellular lipid composition. In this study alterations in key molecular species from different lipid classes highlighted an increase in phospholipid species, particularly those from phosphatidylcholine (PC) and phosphatidic acid (PA), where the latter is central to the synthesis of membrane lipids. Triacylglycerol (TG) species decreased during salinity, while there was little change in plastidic galactolipids. EBC transcriptomic and proteomic data mining revealed changes in genes and proteins involved in lipid metabolism and the upregulation of transcripts for PIPKIB, PI5PII, PIPKIII, and PLDδ, suggested the induction of signalling processes mediated by phosphoinositides and PA. TEM and flow cytometry showed the dynamic nature of lipid droplets in these cells under salt stress. Altogether, this work indicates the metabolism of TG might play an important role in EBC response to salinity as either an energy reserve for sodium accumulation and/or driving membrane biosynthesis for EBC expansion. This article is protected by copyright. All rights reserved.

  10. Fast methods for analysis of neurotransmitters from single cell and monitoring their releases in central nervous system by capillary electrophoresis, fluorescence microscopy and luminescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ziqiang [Iowa State Univ., Ames, IA (United States)

    1999-12-10

    Fast methods for separation and detection of important neurotransmitters and the releases in central nervous system (CNS) were developed. Enzyme based immunoassay combined with capillary electrophoresis was used to analyze the contents of amino acid neurotransmitters from single neuron cells. The release of amino acid neurotransmitters from neuron cultures was monitored by laser induced fluorescence imaging method. The release and signal transduction of adenosine triphosphate (ATP) in CNS was studied with sensitive luminescence imaging method. A new dual-enzyme on-column reaction method combined with capillary electrophoresis has been developed for determining the glutamate content in single cells. Detection was based on monitoring the laser-induced fluorescence of the reaction product NADH, and the measured fluorescence intensity was related to the concentration of glutamate in each cell. The detection limit of glutamate is down to 10-8 M level, which is 1 order of magnitude lower than the previously reported detection limit based on similar detection methods. The mass detection limit of a few attomoles is far superior to that of any other reports. Selectivity for glutamate is excellent over most of amino acids. The glutamate content in single human erythrocyte and baby rat brain neurons were determined with this method and results agreed well with literature values.

  11. Concerning the role of cell lysis-cryptic growth in anaerobic side-stream reactors: the single-cell analysis of viable, dead and lysed bacteria.

    Science.gov (United States)

    Foladori, P; Velho, V F; Costa, R H R; Bruni, L; Quaranta, A; Andreottola, G

    2015-05-01

    In the Anaerobic Side-Stream Reactor (ASSR), part of the return sludge undergoes alternating aerobic and anaerobic conditions with the aim of reducing sludge production. In this paper, viability, enzymatic activity, death and lysis of bacterial cells exposed to aerobic and anaerobic conditions for 16 d were investigated at single-cell level by flow cytometry, with the objective of contributing to the understanding of the mechanisms of sludge reduction in the ASSR systems. Results indicated that total and viable bacteria did not decrease during the anaerobic phase, indicating that anaerobiosis at ambient temperature does not produce a significant cell lysis. Bacteria decay and lysis occurred principally under aerobic conditions. The aerobic decay rate of total bacteria (bTB) was considered as the rate of generation of lysed bacteria. Values of bTB of 0.07-0.11 d(-1) were measured in anaerobic + aerobic sequence. The enzymatic activity was not particularly affected by the transition from anaerobiosis to aerobiosis. Large solubilisation of COD and NH4(+) was observed only under anaerobic conditions, as a consequence of hydrolysis of organic matter, but not due to cell lysis. The observations supported the proposal of two independent mechanisms contributing equally to sludge reduction: (1) under anaerobic conditions: sludge hydrolysis of non-bacterial material, (2) under aerobic conditions: bacterial cell lysis and oxidation of released biodegradable compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. T-cell receptor repertoire of human peripheral CD161hiTRAV1-2+ MAIT cells revealed by next generation sequencing and single cell analysis.

    Science.gov (United States)

    Held, Kathrin; Beltrán, Eduardo; Moser, Markus; Hohlfeld, Reinhard; Dornmair, Klaus

    2015-09-01

    Mucosal-associated invariant T (MAIT) cells are a T-cell subset that expresses a conserved TRAV1-2 (Vα7.2) T-cell receptor (TCR) chain and the surface marker CD161. They are involved in the defence against microbes as they recognise small organic molecules of microbial origin that are presented by the non-classical MHC molecule 1 (MR1). MAIT cells express a semi-restricted TCR α chain with TRAV1-2 preferentially linked to TRAJ33, TRAJ12, or TRAJ20 which pairs with a limited set of β chains. To investigate the TCR repertoire of human CD161(hi)TRAV1-2(+) T cells in depth we analysed the α and β chains of this T-cell subset by next generation sequencing. Concomitantly we analysed 132 paired α and β chains from single cells to assess the αβ pairing preferences. We found that the CD161(hi)TRAV1-2(+) TCR repertoire in addition to the typical MAIT TCRs further contains polyclonal elements reminiscent of classical αβ T cells. Copyright © 2015 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  13. Unravelling biology and shifting paradigms in cancer with single-cell sequencing.

    Science.gov (United States)

    Baslan, Timour; Hicks, James

    2017-08-24

    The fundamental operative unit of a cancer is the genetically and epigenetically innovative single cell. Whether proliferating or quiescent, in the primary tumour mass or disseminated elsewhere, single cells govern the parameters that dictate all facets of the biology of cancer. Thus, single-cell analyses provide the ultimate level of resolution in our quest for a fundamental understanding of this disease. Historically, this quest has been hampered by technological shortcomings. In this Opinion article, we argue that the rapidly evolving field of single-cell sequencing has unshackled the cancer research community of these shortcomings. From furthering an elemental understanding of intra-tumoural genetic heterogeneity and cancer genome evolution to illuminating the governing principles of disease relapse and metastasis, we posit that single-cell sequencing promises to unravel the biology of all facets of this disease.

  14. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor [version 2; referees: 1 approved, 4 approved with reservations

    Directory of Open Access Journals (Sweden)

    Aaron T.L. Lun

    2016-10-01

    Full Text Available Single-cell RNA sequencing (scRNA-seq is widely used to profile the transcriptome of individual cells. This provides biological resolution that cannot be matched by bulk RNA sequencing, at the cost of increased technical noise and data complexity. The differences between scRNA-seq and bulk RNA-seq data mean that the analysis of the former cannot be performed by recycling bioinformatics pipelines for the latter. Rather, dedicated single-cell methods are required at various steps to exploit the cellular resolution while accounting for technical noise. This article describes a computational workflow for low-level analyses of scRNA-seq data, based primarily on software packages from the open-source Bioconductor project. It covers basic steps including quality control, data exploration and normalization, as well as more complex procedures such as cell cycle phase assignment, identification of highly variable and correlated genes, clustering into subpopulations and marker gene detection. Analyses were demonstrated on gene-level count data from several publicly available datasets involving haematopoietic stem cells, brain-derived cells, T-helper cells and mouse embryonic stem cells. This will provide a range of usage scenarios from which readers can construct their own analysis pipelines.

  15. Microsatellite data analysis for population genetics

    Science.gov (United States)

    Theories and analytical tools of population genetics have been widely applied for addressing various questions in the fields of ecological genetics, conservation biology, and any context where the role of dispersal or gene flow is important. Underlying much of population genetics is the analysis of ...

  16. The Analysis of Polyploid Genetic Data

    NARCIS (Netherlands)

    Meirmans, P.G.; Liu, S.; van Tienderen, P.H.

    2018-01-01

    Though polyploidy is an important aspect of the evolutionary genetics of both plants and animals, the development of population genetic theory of polyploids has seriously lagged behind that of diploids. This is unfortunate since the analysis of polyploid genetic data—and the interpretation of the

  17. Biological Evaluation of Single Cell Protein

    International Nuclear Information System (INIS)

    Hasan, I.A.; Mohamed, N.E.; El-Sayed, E.A.; Younis, N.A.

    2011-01-01

    In this study, the nutritional value of single cell protein (SCP) was evaluated as a non conventional protein source produced by fermenting fungal local strains of Trichoderma longibrachiatum, Aspergillus niger, Aspergillus terreus and Penicillium funiculosum with alkali treated sugar cane bagasse. Amino acid analysis revealed that the produced SCP contains essential and non essential amino acids. Male mice were fed on normal (basal) diet which contains 18% conventional protein and served as control group. In the second (T1) and the third (T2) group, the animals were fed on a diet in which 15% and 30% of conventional protein source were replaced by SCP, respectively. At intervals of 15, 30, 45 and 60 days, mice were sacrificed and the blood samples were collected for the biochemical evaluation. The daily averages of body weight were significantly higher with group T2 than group T1. Where as, the kidney weights in groups (T1) and (T2) were significantly increased as compared with control. A non significant difference between the tested groups in the enzyme activities of AST, ALT and GSH content of liver tissue were recorded. While, cholesterol and triglycerides contents showed a significant decrease in both (T1) and (T2) groups as compared with control. The recorded values of the serum hormone (T4), ALP activities, albumin and A/G ratio did not changed by the previous treatments. Serum levels of total protein, urea, creatinine and uric acid were higher for groups (T1) and (T2) than the control group. In conclusion, partial substitution of soy bean protein in mice diet with single cell protein (15%) improved the mice growth without any adverse effects on some of the physiological functions tested

  18. Cloning of Plasmodium falciparum by single-cell sorting.

    Science.gov (United States)

    Miao, Jun; Li, Xiaolian; Cui, Liwang

    2010-10-01

    Malaria parasite cloning is traditionally carried out mainly by using the limiting dilution method, which is laborious, imprecise, and unable to distinguish multiply-infected RBCs. In this study, we used a parasite engineered to express green fluorescent protein (GFP) to evaluate a single-cell sorting method for rapidly cloning Plasmodium falciparum. By dividing a two-dimensional scattergram from a cell sorter into 17 gates, we determined the parameters for isolating singly-infected erythrocytes and sorted them into individual cultures. Pre-gating of the engineered parasites for GFP allowed the isolation of almost 100% GFP-positive clones. Compared with the limiting dilution method, the number of parasite clones obtained by single-cell sorting was much higher. Molecular analyses showed that parasite isolates obtained by single-cell sorting were highly homogenous. This highly efficient single-cell sorting method should prove very useful for cloning both P. falciparum laboratory populations from genetic manipulation experiments and clinical samples. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Cloning of Plasmodium falciparum by single-cell sorting

    Science.gov (United States)

    Miao, Jun; Li, Xiaolian; Cui, Liwang

    2010-01-01

    Malaria parasite cloning is traditionally carried out mainly by using the limiting dilution method, which is laborious, imprecise, and unable to distinguish multiply-infected RBCs. In this study, we used a parasite engineered to express green fluorescent protein (GFP) to evaluate a single-cell sorting method for rapidly cloning Plasmodium falciparum. By dividing a two dimensional scattergram from a cell sorter into 17 gates, we determined the parameters for isolating singly-infected erythrocytes and sorted them into individual cultures. Pre-gating of the engineered parasites for GFP allowed the isolation of almost 100% GFP-positive clones. Compared with the limiting dilution method, the number of parasite clones obtained by single-cell sorting was much higher. Molecular analyses showed that parasite isolates obtained by single-cell sorting were highly homogenous. This highly efficient single-cell sorting method should prove very useful for cloning both P. falciparum laboratory populations from genetic manipulation experiments and clinical samples. PMID:20435038

  20. Plants and Photosynthesis: Level III, Unit 3, Lesson 1; The Human Digestive System: Lesson 2; Functions of the Blood: Lesson 3; Human Circulation and Respiration: Lesson 4; Reproduction of a Single Cell: Lesson 5; Reproduction by Male and Female Cells: Lesson 6; The Human Reproductive System: Lesson 7; Genetics and Heredity: Lesson 8; The Nervous System: Lesson 9; The Glandular System: Lesson 10. Advanced General Education Program. A High School Self-Study Program.

    Science.gov (United States)

    Manpower Administration (DOL), Washington, DC. Job Corps.

    This self-study program for the high-school level contains lessons in the following subjects: Plants and Photosynthesis; The Human Digestive System; Functions of the Blood; Human Circulation and Respiration; Reproduction of a Single Cell; Reproduction by Male and Female Cells; The Human Reproductive System; Genetics and Heredity; The Nervous…

  1. Single-cell measurement of red blood cell oxygen affinity.

    Science.gov (United States)

    Di Caprio, Giuseppe; Stokes, Chris; Higgins, John M; Schonbrun, Ethan

    2015-08-11

    Oxygen is transported throughout the body by hemoglobin (Hb) in red blood cells (RBCs). Although the oxygen affinity of blood is well-understood and routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of RBC volume and Hb concentration are taken millions of times per day by clinical hematology analyzers, and they are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume, and Hb concentration for individual RBCs in high throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.9%, which corresponds to the maximum slope of the oxygen-Hb dissociation curve. In addition, single-cell oxygen affinity is positively correlated with Hb concentration but independent of osmolarity, which suggests variation in the Hb to 2,3-diphosphoglycerate (2-3 DPG) ratio on a cellular level. By quantifying the functional behavior of a cellular population, our system adds a dimension to blood cell analysis and other measurements of single-cell variability.

  2. RESEARCH NOTE Molecular genetic analysis of consanguineous ...

    Indian Academy of Sciences (India)

    Navya

    Molecular genetic analysis of consanguineous families with primary microcephaly ... Translational Research Institute, Academic Health System, Hamad Medical ..... bridging the gap between homozygosity mapping and deep sequencing.

  3. Massively parallel whole genome amplification for single-cell sequencing using droplet microfluidics.

    Science.gov (United States)

    Hosokawa, Masahito; Nishikawa, Yohei; Kogawa, Masato; Takeyama, Haruko

    2017-07-12

    Massively parallel single-cell genome sequencing is required to further understand genetic diversities in complex biological systems. Whole genome amplification (WGA) is the first step for single-cell sequencing, but its throughput and accuracy are insufficient in conventional reaction platforms. Here, we introduce single droplet multiple displacement amplification (sd-MDA), a method that enables massively parallel amplification of single cell genomes while maintaining sequence accuracy and specificity. Tens of thousands of single cells are compartmentalized in millions of picoliter droplets and then subjected to lysis and WGA by passive droplet fusion in microfluidic channels. Because single cells are isolated in compartments, their genomes are amplified to saturation without contamination. This enables the high-throughput acquisition of contamination-free and cell specific sequence reads from single cells (21,000 single-cells/h), resulting in enhancement of the sequence data quality compared to conventional methods. This method allowed WGA of both single bacterial cells and human cancer cells. The obtained sequencing coverage rivals those of conventional techniques with superior sequence quality. In addition, we also demonstrate de novo assembly of uncultured soil bacteria and obtain draft genomes from single cell sequencing. This sd-MDA is promising for flexible and scalable use in single-cell sequencing.

  4. Single-Cell Genomics: Approaches and Utility in Immunology.

    Science.gov (United States)

    Neu, Karlynn E; Tang, Qingming; Wilson, Patrick C; Khan, Aly A

    2017-02-01

    Single-cell genomics offers powerful tools for studying immune cells, which make it possible to observe rare and intermediate cell states that cannot be resolved at the population level. Advances in computer science and single-cell sequencing technology have created a data-driven revolution in immunology. The challenge for immunologists is to harness computing and turn an avalanche of quantitative data into meaningful discovery of immunological principles, predictive models, and strategies for therapeutics. Here, we review the current literature on computational analysis of single-cell RNA-sequencing data and discuss underlying assumptions, methods, and applications in immunology, and highlight important directions for future research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Single-cell sequencing in stem cell biology.

    Science.gov (United States)

    Wen, Lu; Tang, Fuchou

    2016-04-15

    Cell-to-cell variation and heterogeneity are fundamental and intrinsic characteristics of stem cell populations, but these differences are masked when bulk cells are used for omic analysis. Single-cell sequencing technologies serve as powerful tools to dissect cellular heterogeneity comprehensively and to identify distinct phenotypic cell types, even within a 'homogeneous' stem cell population. These technologies, including single-cell genome, epigenome, and transcriptome sequencing technologies, have been developing rapidly in recent years. The application of these methods to different types of stem cells, including pluripotent stem cells and tissue-specific stem cells, has led to exciting new findings in the stem cell field. In this review, we discuss the recent progress as well as future perspectives in the methodologies and applications of single-cell omic sequencing technologies.

  6. Single-cell proteomics: potential implications for cancer diagnostics.

    Science.gov (United States)

    Gavasso, Sonia; Gullaksen, Stein-Erik; Skavland, Jørn; Gjertsen, Bjørn T

    2016-01-01

    Single-cell proteomics in cancer is evolving and promises to provide more accurate diagnoses based on detailed molecular features of cells within tumors. This review focuses on technologies that allow for collection of complex data from single cells, but also highlights methods that are adaptable to routine cancer diagnostics. Current diagnostics rely on histopathological analysis, complemented by mutational detection and clinical imaging. Though crucial, the information gained is often not directly transferable to defined therapeutic strategies, and predicting therapy response in a patient is difficult. In cancer, cellular states revealed through perturbed intracellular signaling pathways can identify functional mutations recurrent in cancer subsets. Single-cell proteomics remains to be validated in clinical trials where serial samples before and during treatment can reveal excessive clonal evolution and therapy failure; its use in clinical trials is anticipated to ignite a diagnostic revolution that will better align diagnostics with the current biological understanding of cancer.

  7. Single-cell technologies to study the immune system.

    Science.gov (United States)

    Proserpio, Valentina; Mahata, Bidesh

    2016-02-01

    The immune system is composed of a variety of cells that act in a coordinated fashion to protect the organism against a multitude of different pathogens. The great variability of existing pathogens corresponds to a similar high heterogeneity of the immune cells. The study of individual immune cells, the fundamental unit of immunity, has recently transformed from a qualitative microscopic imaging to a nearly complete quantitative transcriptomic analysis. This shift has been driven by the rapid development of multiple single-cell technologies. These new advances are expected to boost the detection of less frequent cell types and transient or intermediate cell states. They will highlight the individuality of each single cell and greatly expand the resolution of current available classifications and differentiation trajectories. In this review we discuss the recent advancement and application of single-cell technologies, their limitations and future applications to study the immune system. © 2015 The Authors. Immunology Published by John Wiley & Sons Ltd.

  8. Automated Single Cell Data Decontamination Pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Tennessen, Kristin [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Pati, Amrita [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.

    2014-03-21

    Recent technological advancements in single-cell genomics have encouraged the classification and functional assessment of microorganisms from a wide span of the biospheres phylogeny.1,2 Environmental processes of interest to the DOE, such as bioremediation and carbon cycling, can be elucidated through the genomic lens of these unculturable microbes. However, contamination can occur at various stages of the single-cell sequencing process. Contaminated data can lead to wasted time and effort on meaningless analyses, inaccurate or erroneous conclusions, and pollution of public databases. A fully automated decontamination tool is necessary to prevent these instances and increase the throughput of the single-cell sequencing process

  9. MicroBioRobots for single cell manipulation

    Science.gov (United States)

    Sakar, Mahmut Selman

    of sub-micron scale transport and assembly as well as computer-based closed-loop control of MBRs are presented. We demonstrate experimentally that vision-based feedback control allows a four-electrode experimental device to steer MBRs along arbitrary paths with micrometer precision. At each time instant, the system identifies the current location of the robot, a control algorithm determines the power supply voltages that will move the charged robot from its current location toward its next desired position, and the necessary electric field is then created. Second, we develop biosensors for the MBRs. Microscopic devices with sensing capabilities could significantly improve single cell analysis, especially in high-resolution detection of patterns of chemicals released from cells in vitro. Two different types of sensing mechanisms are employed. The first method is based on harnessing bacterial power, and in the second method we use genetically engineered bacteria. The small size of the devices gives them access to individual cells, and their large numbers permit simultaneous monitoring of many cells. In the second part, we describe the construction and operation of truly micron-sized, biocompatible ferromagnetic micro transporters driven by external magnetic fields capable of exerting forces at the pico Newton scale. We develop micro transporters using a simple, single step micro fabrication technique that allows us to produce large numbers in the same step. We also fabricate microgels to deliver drugs. We demonstrate that the micro transporters can be navigated to separate single cells with micron-size precision and localize microgels without disturbing the local environment.

  10. Parameter Screening in Microfluidics Based Hydrodynamic Single-Cell Trapping

    Directory of Open Access Journals (Sweden)

    B. Deng

    2014-01-01

    Full Text Available Microfluidic cell-based arraying technology is widely used in the field of single-cell analysis. However, among developed devices, there is a compromise between cellular loading efficiencies and trapped cell densities, which deserves further analysis and optimization. To address this issue, the cell trapping efficiency of a microfluidic device with two parallel micro channels interconnected with cellular trapping sites was studied in this paper. By regulating channel inlet and outlet status, the microfluidic trapping structure can mimic key functioning units of previously reported devices. Numerical simulations were used to model this cellular trapping structure, quantifying the effects of channel on/off status and trapping structure geometries on the cellular trapping efficiency. Furthermore, the microfluidic device was fabricated based on conventional microfabrication and the cellular trapping efficiency was quantified in experiments. Experimental results showed that, besides geometry parameters, cellular travelling velocities and sizes also affected the single-cell trapping efficiency. By fine tuning parameters, more than 95% of trapping sites were taken by individual cells. This study may lay foundation in further studies of single-cell positioning in microfluidics and push forward the study of single-cell analysis.

  11. Technical aspects and recommendations for single-cell qPCR.

    Science.gov (United States)

    Ståhlberg, Anders; Kubista, Mikael

    2018-02-01

    Single cells are basic physiological and biological units that can function individually as well as in groups in tissues and organs. It is central to identify, characterize and profile single cells at molecular level to be able to distinguish different kinds, to understand their functions and determine how they interact with each other. During the last decade several technologies for single-cell profiling have been developed and used in various applications, revealing many novel findings. Quantitative PCR (qPCR) is one of the most developed methods for single-cell profiling that can be used to interrogate several analytes, including DNA, RNA and protein. Single-cell qPCR has the potential to become routine methodology but the technique is still challenging, as it involves several experimental steps and few molecules are handled. Here, we discuss technical aspects and provide recommendation for single-cell qPCR analysis. The workflow includes experimental design, sample preparation, single-cell collection, direct lysis, reverse transcription, preamplification, qPCR and data analysis. Detailed reporting and sharing of experimental details and data will promote further development and make validation studies possible. Efforts aiming to standardize single-cell qPCR open up means to move single-cell analysis from specialized research settings to standard research laboratories. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Genetic analysis of Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Ekwall, Karl; Thon, Genevieve

    2017-01-01

    In this introduction we discuss some basic genetic tools and techniques that are used with the fission yeast Schizosaccharomyces pombe. Genes commonly used for selection or as reporters are discussed, with an emphasis on genes that permit counterselection, intragenic complementation, or colony......-color assays. S. pombe is most stable as a haploid organism. We describe its mating-type system, how to perform genetic crosses and methods for selecting and propagating diploids. We discuss the relative merits of tetrad dissection and random spore preparation in strain construction and genetic analyses...

  13. The role of nanotechnology in single-cell detection: a review.

    Science.gov (United States)

    Wang, Changling; Zhang, Yuxiang; Xia, Mingdian; Zhu, Xingxi; Qi, Shitao; Shen, Huaqiang; Liu, Tiebing; Tang, Liming

    2014-10-01

    Biological processes in single cells, such as signal transduction, DNA duplication, and protein synthesis and trafficking, occur in subcellular compartments at nanoscale level. Achieving high spatial-temporal resolution, high sensitivity, and high specificity in single-cell detection poses a great challenge. Nanotechnology, which has been widely applied in the fields of medicine, electronics, biomaterials, and energy production, has the potential to provide solutions for single-cell detection. Here we present a review of the use of nanotechnology in single-cell detection over the past two decades. First, we review the main areas of scientific interest, including morphology, ion concentration, DNA, RNA, protein, intracellular temperature, elements, and mechanical properties. Second, four categories of application of nanotechnology to single-cell detection are described: nanomanipulation, nanodevices, nanomaterials as labels, and nano Secondary ion mass spectrometry. Finally, the prospects and future trends in single-cell detection and analysis are discussed.

  14. Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization

    Science.gov (United States)

    Chen, Jian; Xue, Chengcheng; Zhao, Yang; Chen, Deyong; Wu, Min-Hsien; Wang, Junbo

    2015-01-01

    This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2) microfluidic impedance flow cytometry with enhanced sensitivity; (3) microfluidic impedance and optical flow cytometry for single-cell analysis and (4) integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications. PMID:25938973

  15. Chromosome copy analysis by single-cell comparative genomic hybridization technique based on primer extension preamplification and degenerate oligonucleotide primed-PCR%引物延伸预扩增结合简并引物PCR在单细胞比较基因组杂交分析染色体异常中的应用

    Institute of Scientific and Technical Information of China (English)

    谭珂; 狄玉芬; 程德华; 徐芳; 卢光绣; 谭跃球

    2010-01-01

    Objective To establish a single-cell whole genome amplification (WGA) technique, in combination with comparative genomic hybridization (CGH), for analyzing chromosomal copy number changes, and to explore its clinical application in preimplantation genetic diagnosis (PGD). Methods Twelve single cell samples with known karyotypes, including 5 chorionic villus samples, 4 human embryonic stem cell (hESC) samples and 3 peripheral lymphocyte samples, and 4 single blastomere samples carrying chromosomal abnormalities detected by PGD, were collected for whole genome amplification by combining primer extension preamplification (PEP) with degenerate oligonucleotide primed-PCR (DOP-PCR)amplification. The amplified products labeled by red fluorescence were mixed with control DNA labeled by green fluorescence, and then the mixture was analyzed by CGH. As a comparison, 10 single cell samples were amplified by DOP-PCR only and then CGH analysis was performed. Results The amplification using PEP-DOP-PCR was more stable than traditional DOP-PCR. The products of PEP-DOP-PCR range from 100 bp to 1000 bp, with the mean size being about 400 bp. The CGH results were consistent with analyses by other methods. However, only 6 out of 10 single cell samples were successfully amplified by DOP-PCR,and CGH analysis showed a high background and 2 samples showed inconsistent results from other methods. Conclusion PEP-DOP-PCR can effectively amplify the whole genome DNA of single cell.Combined with CGH, this WGA method can successfully detect single-cell chromosomal copy number changes, while DOP-PCR was easy to fail to amplify and amplify inhomogeneousty, and CGH analysis using this PCR product usually showed high background. These results suggest that PEP-DOP-CGH is a promising method for preimplantation genetic diagnosis.%目的 建立一种可信的单细胞全基因组扩增(whole genome amplification.WGA)技术,结合比较基因组杂交(comparative genomic hybridization,CGH)分析单细

  16. Effects of sample treatments on genome recovery via single-cell genomics

    Energy Technology Data Exchange (ETDEWEB)

    Clingenpeel, Scott [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Schwientek, Patrick [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Hugenholtz, Philip [Univ. of Queensland, Brisbane (Australia); Woyke, Tanja [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States)

    2014-06-13

    It is known that single-cell genomics is a powerful tool for accessing genetic information from uncultivated microorganisms. Methods of handling samples before single-cell genomic amplification may affect the quality of the genomes obtained. Using three bacterial strains we demonstrate that, compared to cryopreservation, lower-quality single-cell genomes are recovered when the sample is preserved in ethanol or if the sample undergoes fluorescence in situ hybridization, while sample preservation in paraformaldehyde renders it completely unsuitable for sequencing.

  17. Analysis of genetic diversity inpigeonpeagermplasm using ...

    Indian Academy of Sciences (India)

    Navya

    2016-11-25

    Nov 25, 2016 ... accessions from Orissa (105) and AP (15) do not group with any Indian accessions. ... In the present work, comparison between SSAP and REMAP revealed ... (sequence-specific amplified polymorphism) for genetic analysis of sweet potato. ... Sharma,V.and Nandinemi, M.R. 2014 Assessment of genetic ...

  18. Gene set analysis for interpreting genetic studies

    DEFF Research Database (Denmark)

    Pers, Tune H

    2016-01-01

    Interpretation of genome-wide association study (GWAS) results is lacking behind the discovery of new genetic associations. Consequently, there is an urgent need for data-driven methods for interpreting genetic association studies. Gene set analysis (GSA) can identify aetiologic pathways...

  19. Mutation dynamics and fitness effects followed in single cells.

    Science.gov (United States)

    Robert, Lydia; Ollion, Jean; Robert, Jerome; Song, Xiaohu; Matic, Ivan; Elez, Marina

    2018-03-16

    Mutations have been investigated for more than a century but remain difficult to observe directly in single cells, which limits the characterization of their dynamics and fitness effects. By combining microfluidics, time-lapse imaging, and a fluorescent tag of the mismatch repair system in Escherichia coli , we visualized the emergence of mutations in single cells, revealing Poissonian dynamics. Concomitantly, we tracked the growth and life span of single cells, accumulating ~20,000 mutations genome-wide over hundreds of generations. This analysis revealed that 1% of mutations were lethal; nonlethal mutations displayed a heavy-tailed distribution of fitness effects and were dominated by quasi-neutral mutations with an average cost of 0.3%. Our approach has enabled the investigation of single-cell individuality in mutation rate, mutation fitness costs, and mutation interactions. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  20. High-dimensional single-cell cancer biology.

    Science.gov (United States)

    Irish, Jonathan M; Doxie, Deon B

    2014-01-01

    Cancer cells are distinguished from each other and from healthy cells by features that drive clonal evolution and therapy resistance. New advances in high-dimensional flow cytometry make it possible to systematically measure mechanisms of tumor initiation, progression, and therapy resistance on millions of cells from human tumors. Here we describe flow cytometry techniques that enable a "single-cell " view of cancer. High-dimensional techniques like mass cytometry enable multiplexed single-cell analysis of cell identity, clinical biomarkers, signaling network phospho-proteins, transcription factors, and functional readouts of proliferation, cell cycle status, and apoptosis. This capability pairs well with a signaling profiles approach that dissects mechanism by systematically perturbing and measuring many nodes in a signaling network. Single-cell approaches enable study of cellular heterogeneity of primary tissues and turn cell subsets into experimental controls or opportunities for new discovery. Rare populations of stem cells or therapy-resistant cancer cells can be identified and compared to other types of cells within the same sample. In the long term, these techniques will enable tracking of minimal residual disease (MRD) and disease progression. By better understanding biological systems that control development and cell-cell interactions in healthy and diseased contexts, we can learn to program cells to become therapeutic agents or target malignant signaling events to specifically kill cancer cells. Single-cell approaches that provide deep insight into cell signaling and fate decisions will be critical to optimizing the next generation of cancer treatments combining targeted approaches and immunotherapy.

  1. Developments in statistical analysis in quantitative genetics

    DEFF Research Database (Denmark)

    Sorensen, Daniel

    2009-01-01

    of genetic means and variances, models for the analysis of categorical and count data, the statistical genetics of a model postulating that environmental variance is partly under genetic control, and a short discussion of models that incorporate massive genetic marker information. We provide an overview......A remarkable research impetus has taken place in statistical genetics since the last World Conference. This has been stimulated by breakthroughs in molecular genetics, automated data-recording devices and computer-intensive statistical methods. The latter were revolutionized by the bootstrap...... and by Markov chain Monte Carlo (McMC). In this overview a number of specific areas are chosen to illustrate the enormous flexibility that McMC has provided for fitting models and exploring features of data that were previously inaccessible. The selected areas are inferences of the trajectories over time...

  2. The Analysis of Polyploid Genetic Data.

    Science.gov (United States)

    Meirmans, Patrick G; Liu, Shenglin; van Tienderen, Peter H

    2018-03-16

    Though polyploidy is an important aspect of the evolutionary genetics of both plants and animals, the development of population genetic theory of polyploids has seriously lagged behind that of diploids. This is unfortunate since the analysis of polyploid genetic data-and the interpretation of the results-requires even more scrutiny than with diploid data. This is because of several polyploidy-specific complications in segregation and genotyping such as tetrasomy, double reduction, and missing dosage information. Here, we review the theoretical and statistical aspects of the population genetics of polyploids. We discuss several widely used types of inferences, including genetic diversity, Hardy-Weinberg equilibrium, population differentiation, genetic distance, and detecting population structure. For each, we point out how the statistical approach, expected result, and interpretation differ between different ploidy levels. We also discuss for each type of inference what biases may arise from the polyploid-specific complications and how these biases can be overcome. From our overview, it is clear that the statistical toolbox that is available for the analysis of genetic data is flexible and still expanding. Modern sequencing techniques will soon be able to overcome some of the current limitations to the analysis of polyploid data, though the techniques are lagging behind those available for diploids. Furthermore, the availability of more data may aggravate the biases that can arise, and increase the risk of false inferences. Therefore, simulations such as we used throughout this review are an important tool to verify the results of analyses of polyploid genetic data.

  3. Genetic analysis in Bartter syndrome from India.

    Science.gov (United States)

    Sharma, Pradeep Kumar; Saikia, Bhaskar; Sharma, Rachna; Ankur, Kumar; Khilnani, Praveen; Aggarwal, Vinay Kumar; Cheong, Hae

    2014-10-01

    Bartter syndrome is a group of inherited, salt-losing tubulopathies presenting as hypokalemic metabolic alkalosis with normotensive hyperreninemia and hyperaldosteronism. Around 150 cases have been reported in literature till now. Mutations leading to salt losing tubulopathies are not routinely tested in Indian population. The authors have done the genetic analysis for the first time in the Bartter syndrome on two cases from India. First case was antenatal Bartter syndrome presenting with massive polyuria and hyperkalemia. Mutational analysis revealed compound heterozygous mutations in KCNJ1(ROMK) gene [p(Leu220Phe), p(Thr191Pro)]. Second case had a phenotypic presentation of classical Bartter syndrome however, genetic analysis revealed only heterozygous novel mutation in SLC12A gene p(Ala232Thr). Bartter syndrome is a clinical diagnosis and genetic analysis is recommended for prognostication and genetic counseling.

  4. Genetic analysis of rare disorders

    DEFF Research Database (Denmark)

    van den Berg, Stéphanie M; von Bornemann Hjelmborg, Jacob

    2012-01-01

    Twin concordance rates provide insight into the possibility of a genetic background for a disease. These concordance rates are usually estimated within a frequentistic framework. Here we take a Bayesian approach. For rare diseases, estimation methods based on asymptotic theory cannot be applied due....... The Bayesian method is able to include prior information on both concordance rates and prevalence rates at the same time and is illustrated using twin data on cleft lip and rheumatoid arthritis....

  5. Digital Image Analysis of Yeast Single Cells Growing in Two Different Oxygen Concentrations to Analyze the Population Growth and to Assist Individual-Based Modeling.

    Science.gov (United States)

    Ginovart, Marta; Carbó, Rosa; Blanco, Mónica; Portell, Xavier

    2017-01-01

    Nowadays control of the growth of Saccharomyces to obtain biomass or cellular wall components is crucial for specific industrial applications. The general aim of this contribution is to deal with experimental data obtained from yeast cells and from yeast cultures to attempt the integration of the two levels of information, individual and population, to progress in the control of yeast biotechnological processes by means of the overall analysis of this set of experimental data, and to assist in the improvement of an individual-based model, namely, INDISIM- Saccha . Populations of S. cerevisiae growing in liquid batch culture, in aerobic and microaerophilic conditions, were studied. A set of digital images was taken during the population growth, and a protocol for the treatment and analyses of the images obtained was established. The piecewise linear model of Buchanan was adjusted to the temporal evolutions of the yeast populations to determine the kinetic parameters and changes of growth phases. In parallel, for all the yeast cells analyzed, values of direct morphological parameters, such as area, perimeter, major diameter, minor diameter, and derived ones, such as circularity and elongation, were obtained. Graphical and numerical methods from descriptive statistics were applied to these data to characterize the growth phases and the budding state of the yeast cells in both experimental conditions, and inferential statistical methods were used to compare the diverse groups of data achieved. Oxidative metabolism of yeast in a medium with oxygen available and low initial sugar concentration can be taken into account in order to obtain a greater number of cells or larger cells. Morphological parameters were analyzed statistically to identify which were the most useful for the discrimination of the different states, according to budding and/or growth phase, in aerobic and microaerophilic conditions. The use of the experimental data for subsequent modeling work was then

  6. Inference of Tumor Evolution during Chemotherapy by Computational Modeling and In Situ Analysis of Genetic and Phenotypic Cellular Diversity

    Directory of Open Access Journals (Sweden)

    Vanessa Almendro

    2014-02-01

    Full Text Available Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and posttreatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution.

  7. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity

    International Nuclear Information System (INIS)

    Almendro, Vanessa; Cheng, Yu-Kang; Randles, Amanda; Itzkovitz, Shalev; Marusyk, Andriy; Ametller, Elisabet; Gonzalez-Farre, Xavier; Muñoz, Montse; Russnes, Hege G.; Helland, Åslaug; Rye, Inga H.; Borresen-Dale, Anne-Lise; Maruyama, Reo; Van Oudenaarden, Alexander; Dowsett, Mitchell; Jones, Robin L.; Reis-Filho, Jorge; Gascon, Pere; Gönen, Mithat; Michor, Franziska; Polyak, Kornelia

    2014-01-01

    Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and post-treatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution

  8. Integrated analysis of genetic data with R

    Directory of Open Access Journals (Sweden)

    Zhao Jing

    2006-01-01

    Full Text Available Abstract Genetic data are now widely available. There is, however, an apparent lack of concerted effort to produce software systems for statistical analysis of genetic data compared with other fields of statistics. It is often a tremendous task for end-users to tailor them for particular data, especially when genetic data are analysed in conjunction with a large number of covariates. Here, R http://www.r-project.org, a free, flexible and platform-independent environment for statistical modelling and graphics is explored as an integrated system for genetic data analysis. An overview of some packages currently available for analysis of genetic data is given. This is followed by examples of package development and practical applications. With clear advantages in data management, graphics, statistical analysis, programming, internet capability and use of available codes, it is a feasible, although challenging, task to develop it into an integrated platform for genetic analysis; this will require the joint efforts of many researchers.

  9. Capillary Electrophoretic Technologies for Single Cell Metabolomics

    Science.gov (United States)

    Lapainis, Theodore E.

    2009-01-01

    Understanding the functioning of the brain is hindered by a lack of knowledge of the full complement of neurotransmitters and neuromodulatory compounds. Single cell measurements aid in the discovery of neurotransmitters used by small subsets of neurons that would be diluted below detection limits or masked by ubiquitous compounds when working with…

  10. Dissecting stem cell differentiation using single cell expression profiling

    OpenAIRE

    Moignard, Victoria Rachel; Göttgens, Berthold

    2016-01-01

    Many assumptions about the way cells behave are based on analyses of populations. However, it is now widely recognized that even apparently pure populations can display a remarkable level of heterogeneity. This is particularly true in stem cell biology where it hinders our understanding of normal development and the development of strategies for regenerative medicine. Over the past decade technologies facilitating gene expression analysis at the single cell level have become widespread, provi...

  11. Single cell transcriptomics of neighboring hyphae of Aspergillus niger

    Science.gov (United States)

    2011-01-01

    Single cell profiling was performed to assess differences in RNA accumulation in neighboring hyphae of the fungus Aspergillus niger. A protocol was developed to isolate and amplify RNA from single hyphae or parts thereof. Microarray analysis resulted in a present call for 4 to 7% of the A. niger genes, of which 12% showed heterogeneous RNA levels. These genes belonged to a wide range of gene categories. PMID:21816052

  12. Genetic analysis of Mexican Criollo cattle populations.

    Science.gov (United States)

    Ulloa-Arvizu, R; Gayosso-Vázquez, A; Ramos-Kuri, M; Estrada, F J; Montaño, M; Alonso, R A

    2008-10-01

    The objective of this study was to evaluate the genetic structure of Mexican Criollo cattle populations using microsatellite genetic markers. DNA samples were collected from 168 animals from four Mexican Criollo cattle populations, geographically isolated in remote areas of Sierra Madre Occidental (West Highlands). Also were included samples from two breeds with Iberian origin: the fighting bull (n = 24) and the milking central American Criollo (n = 24) and one Asiatic breed: Guzerat (n = 32). Genetic analysis consisted of the estimation of the genetic diversity in each population by the allele number and the average expected heterozygosity found in nine microsatellite loci. Furthermore, genetic relationships among the populations were defined by their genetic distances. Our data shows that Mexican cattle populations have a relatively high level of genetic diversity based either on the mean number of alleles (10.2-13.6) and on the expected heterozygosity (0.71-0.85). The degree of observed homozygosity within the Criollo populations was remarkable and probably caused by inbreeding (reduced effective population size) possibly due to reproductive structure within populations. Our data shows that considerable genetic differentiation has been occurred among the Criollo cattle populations in different regions of Mexico.

  13. Genetic divergence analysis in pumpkin

    International Nuclear Information System (INIS)

    Quamruzzaman, A.M.; Moniruzzaman, M.

    2013-01-01

    Genetic divergence among 18 punpkin genotypes was estimated using Mahalanohis's 1) statistic. Altogether lour clusters were formed where cluster I contained the highest number of genotypes (8) and cluster II contained the lowest (I). The highest intra-cluster distance was observed h.ir cluster I (0.83 I) and the lowest for clustcr IV (0.65 I). The highest inter-cluster distance was observed between cluster I and 11(24.346). Cluster II recorded the highest mean for fruit number/plant, TSS, fruit yield and niinitnuiii III cavity length and cavity diameter. Cluster III had the second highest mean for fruit diameter, fruit number/plant, individual unit weight, fruit yield and the fewest number of days to 1st Female flowering, earliness being a desirable trait. These crosses may produce new recombinants with desirable traits. (author)

  14. Single Cell Genomics and Transcriptomics for Unicellular Eukaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Ciobanu, Doina; Clum, Alicia; Singh, Vasanth; Salamov, Asaf; Han, James; Copeland, Alex; Grigoriev, Igor; James, Timothy; Singer, Steven; Woyke, Tanja; Malmstrom, Rex; Cheng, Jan-Fang

    2014-03-14

    Despite their small size, unicellular eukaryotes have complex genomes with a high degree of plasticity that allow them to adapt quickly to environmental changes. Unicellular eukaryotes live with prokaryotes and higher eukaryotes, frequently in symbiotic or parasitic niches. To this day their contribution to the dynamics of the environmental communities remains to be understood. Unfortunately, the vast majority of eukaryotic microorganisms are either uncultured or unculturable, making genome sequencing impossible using traditional approaches. We have developed an approach to isolate unicellular eukaryotes of interest from environmental samples, and to sequence and analyze their genomes and transcriptomes. We have tested our methods with six species: an uncharacterized protist from cellulose-enriched compost identified as Platyophrya, a close relative of P. vorax; the fungus Metschnikowia bicuspidate, a parasite of water flea Daphnia; the mycoparasitic fungi Piptocephalis cylindrospora, a parasite of Cokeromyces and Mucor; Caulochytrium protosteloides, a parasite of Sordaria; Rozella allomycis, a parasite of the water mold Allomyces; and the microalgae Chlamydomonas reinhardtii. Here, we present the four components of our approach: pre-sequencing methods, sequence analysis for single cell genome assembly, sequence analysis of single cell transcriptomes, and genome annotation. This technology has the potential to uncover the complexity of single cell eukaryotes and their role in the environmental samples.

  15. Rapid Genetic Analysis in Congenital Hyperinsulinism

    DEFF Research Database (Denmark)

    Christesen, Henrik Thybo; Brusgaard, Klaus; Alm, Jan

    2007-01-01

    BACKGROUND: In severe, medically unresponsive congenital hyperinsulinism (CHI), the histological differentiation of focal versus diffuse disease is vital, since the surgical management is completely different. Genetic analysis may help in the differential diagnosis, as focal CHI is associated...... with a paternal germline ABCC8 or KCNJ11 mutation and a focal loss of maternal chromosome 11p15, whereas a maternal mutation, or homozygous/compound heterozygous ABCC8 and KCNJ11 mutations predict diffuse-type disease. However, genotyping usually takes too long to be helpful in the absence of a founder mutation....... METHODS: In 4 patients, a rapid genetic analysis of the ABBC8 and KCNJ11 genes was performed within 2 weeks on request prior to the decision of pancreatic surgery. RESULTS: Two patients had no mutations, rendering the genetic analysis non-informative. Peroperative multiple biopsies showed diffuse disease...

  16. Dissecting human cerebral organoids and fetal neocortex using single-cell RNAseq

    Science.gov (United States)

    Treutlein, Barbara

    Cerebral organoids - three-dimensional cultures of human cerebral tissue derived from pluripotent stem cells - have emerged as models of human cortical development. However, the extent to which in vitro organoid systems recapitulate neural progenitor cell proliferation and neuronal differentiation programs observed in vivo remains unclear. Here we use single-cell RNA sequencing (scRNA-seq) to dissect and compare cell composition and progenitor-to-neuron lineage relationships in human cerebral organoids and fetal neocortex. Covariation network analysis using the fetal neocortex data reveals known and novel interactions among genes central to neural progenitor proliferation and neuronal differentiation. In the organoid, we detect diverse progenitors and differentiated cell types of neuronal and mesenchymal lineages, and identify cells that derived from regions resembling the fetal neocortex. We find that these organoid cortical cells use gene expression programs remarkably similar to those of the fetal tissue in order to organize into cerebral cortex-like regions. Our comparison of in vivo and in vitro cortical single cell transcriptomes illuminates the genetic features underlying human cortical development that can be studied in organoid cultures.

  17. Single-cell nanotoxicity assays of superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Eustaquio, Trisha; Leary, James F

    2012-01-01

    Properly evaluating the nanotoxicity of nanoparticles involves much more than bulk-cell assays of cell death by necrosis. Cells exposed to nanoparticles may undergo repairable oxidative stress and DNA damage or be induced into apoptosis. Exposure to nanoparticles may cause the cells to alter their proliferation or differentiation or their cell-cell signaling with neighboring cells in a tissue. Nanoparticles are usually more toxic to some cell subpopulations than others, and toxicity often varies with cell cycle. All of these facts dictate that any nanotoxicity assay must be at the single-cell level and must try whenever feasible and reasonable to include many of these other factors. Focusing on one type of quantitative measure of nanotoxicity, we describe flow and scanning image cytometry approaches to measuring nanotoxicity at the single-cell level by using a commonly used assay for distinguishing between necrotic and apoptotic causes of cell death by one type of nanoparticle. Flow cytometry is fast and quantitative, provided that the cells can be prepared into a single-cell suspension for analysis. But when cells cannot be put into suspension without altering nanotoxicity results, or if morphology, attachment, and stain location are important, a scanning image cytometry approach must be used. Both methods are described with application to a particular type of nanoparticle, a superparamagnetic iron oxide nanoparticle (SPION), as an example of how these assays may be applied to the more general problem of determining the effects of nanomaterial exposure to living cells.

  18. A disposable picolitre bioreactor for cultivation and investigation of industrially relevant bacteria on the single cell level.

    Science.gov (United States)

    Grünberger, Alexander; Paczia, Nicole; Probst, Christopher; Schendzielorz, Georg; Eggeling, Lothar; Noack, Stephan; Wiechert, Wolfgang; Kohlheyer, Dietrich

    2012-05-08

    In the continuously growing field of industrial biotechnology the scale-up from lab to industrial scale is still a major hurdle to develop competitive bioprocesses. During scale-up the productivity of single cells might be affected by bioreactor inhomogeneity and population heterogeneity. Currently, these complex interactions are difficult to investigate. In this report, design, fabrication and operation of a disposable picolitre cultivation system is described, in which environmental conditions can be well controlled on a short time scale and bacterial microcolony growth experiments can be observed by time-lapse microscopy. Three exemplary investigations will be discussed emphasizing the applicability and versatility of the device. Growth and analysis of industrially relevant bacteria with single cell resolution (in particular Escherichia coli and Corynebacterium glutamicum) starting from one single mother cell to densely packed cultures is demonstrated. Applying the picolitre bioreactor, 1.5-fold increased growth rates of C. glutamicum wild type cells were observed compared to typical 1 litre lab-scale batch cultivation. Moreover, the device was used to analyse and quantify the morphological changes of an industrially relevant l-lysine producer C. glutamicum after artificially inducing starvation conditions. Instead of a one week lab-scale experiment, only 1 h was sufficient to reveal the same information. Furthermore, time lapse microscopy during 24 h picolitre cultivation of an arginine producing strain containing a genetically encoded fluorescence sensor disclosed time dependent single cell productivity and growth, which was not possible with conventional methods.

  19. Automated quantification of neuronal networks and single-cell calcium dynamics using calcium imaging.

    Science.gov (United States)

    Patel, Tapan P; Man, Karen; Firestein, Bonnie L; Meaney, David F

    2015-03-30

    Recent advances in genetically engineered calcium and membrane potential indicators provide the potential to estimate the activation dynamics of individual neurons within larger, mesoscale networks (100s-1000+neurons). However, a fully integrated automated workflow for the analysis and visualization of neural microcircuits from high speed fluorescence imaging data is lacking. Here we introduce FluoroSNNAP, Fluorescence Single Neuron and Network Analysis Package. FluoroSNNAP is an open-source, interactive software developed in MATLAB for automated quantification of numerous biologically relevant features of both the calcium dynamics of single-cells and network activity patterns. FluoroSNNAP integrates and improves upon existing tools for spike detection, synchronization analysis, and inference of functional connectivity, making it most useful to experimentalists with little or no programming knowledge. We apply FluoroSNNAP to characterize the activity patterns of neuronal microcircuits undergoing developmental maturation in vitro. Separately, we highlight the utility of single-cell analysis for phenotyping a mixed population of neurons expressing a human mutant variant of the microtubule associated protein tau and wild-type tau. We show the performance of semi-automated cell segmentation using spatiotemporal independent component analysis and significant improvement in detecting calcium transients using a template-based algorithm in comparison to peak-based or wavelet-based detection methods. Our software further enables automated analysis of microcircuits, which is an improvement over existing methods. We expect the dissemination of this software will facilitate a comprehensive analysis of neuronal networks, promoting the rapid interrogation of circuits in health and disease. Copyright © 2015. Published by Elsevier B.V.

  20. An integrated system for genetic analysis

    Directory of Open Access Journals (Sweden)

    Duan Xiao

    2006-04-01

    Full Text Available Abstract Background Large-scale genetic mapping projects require data management systems that can handle complex phenotypes and detect and correct high-throughput genotyping errors, yet are easy to use. Description We have developed an Integrated Genotyping System (IGS to meet this need. IGS securely stores, edits and analyses genotype and phenotype data. It stores information about DNA samples, plates, primers, markers and genotypes generated by a genotyping laboratory. Data are structured so that statistical genetic analysis of both case-control and pedigree data is straightforward. Conclusion IGS can model complex phenotypes and contain genotypes from whole genome association studies. The database makes it possible to integrate genetic analysis with data curation. The IGS web site http://bioinformatics.well.ox.ac.uk/project-igs.shtml contains further information.

  1. Event History Analysis in Quantitative Genetics

    DEFF Research Database (Denmark)

    Maia, Rafael Pimentel

    Event history analysis is a clas of statistical methods specially designed to analyze time-to-event characteristics, e.g. the time until death. The aim of the thesis was to present adequate multivariate versions of mixed survival models that properly represent the genetic aspects related to a given...

  2. A Microchip for Integrated Single-Cell Gene Expression Profiling and Genotoxicity Detection

    Directory of Open Access Journals (Sweden)

    Hui Dong

    2016-09-01

    Full Text Available Microfluidics-based single-cell study is an emerging approach in personalized treatment or precision medicine studies. Single-cell gene expression holds a potential to provide treatment selections with maximized efficacy to help cancer patients based on a genetic understanding of their disease. This work presents a multi-layer microchip for single-cell multiplexed gene expression profiling and genotoxicity detection. Treated by three drug reagents (i.e., methyl methanesulfonate, docetaxel and colchicine with varied concentrations and time lengths, individual human cancer cells (MDA-MB-231 are lysed on-chip, and the released mRNA templates are captured and reversely transcribed into single strand DNA. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH, cyclin-dependent kinase inhibitor 1A (CDKN1A, and aurora kinase A (AURKA genes from single cells are amplified and real-time quantified through multiplex polymerase chain reaction. The microchip is capable of integrating all steps of single-cell multiplexed gene expression profiling, and providing precision detection of drug induced genotoxic stress. Throughput has been set to be 18, and can be further increased following the same approach. Numerical simulation of on-chip single cell trapping and heat transfer has been employed to evaluate the chip design and operation.

  3. Droplet Microfluidics for Compartmentalized Cell Lysis and Extension of DNA from Single-Cells

    Science.gov (United States)

    Zimny, Philip; Juncker, David; Reisner, Walter

    Current single cell DNA analysis methods suffer from (i) bias introduced by the need for molecular amplification and (ii) limited ability to sequence repetitive elements, resulting in (iii) an inability to obtain information regarding long range genomic features. Recent efforts to circumvent these limitations rely on techniques for sensing single molecules of DNA extracted from single-cells. Here we demonstrate a droplet microfluidic approach for encapsulation and biochemical processing of single-cells inside alginate microparticles. In our approach, single-cells are first packaged inside the alginate microparticles followed by cell lysis, DNA purification, and labeling steps performed off-chip inside this microparticle system. The alginate microparticles are then introduced inside a micro/nanofluidic system where the alginate is broken down via a chelating buffer, releasing long DNA molecules which are then extended inside nanofluidic channels for analysis via standard mapping protocols.

  4. Single-cell Hi-C for genome-wide detection of chromatin interactions that occur simultaneously in a single cell.

    Science.gov (United States)

    Nagano, Takashi; Lubling, Yaniv; Yaffe, Eitan; Wingett, Steven W; Dean, Wendy; Tanay, Amos; Fraser, Peter

    2015-12-01

    Hi-C is a powerful method that provides pairwise information on genomic regions in spatial proximity in the nucleus. Hi-C requires millions of cells as input and, as genome organization varies from cell to cell, a limitation of Hi-C is that it only provides a population average of genome conformations. We developed single-cell Hi-C to create snapshots of thousands of chromatin interactions that occur simultaneously in a single cell. To adapt Hi-C to single-cell analysis, we modified the protocol to include in-nucleus ligation. This enables the isolation of single nuclei carrying Hi-C-ligated DNA into separate tubes, followed by reversal of cross-links, capture of biotinylated ligation junctions on streptavidin-coated magnetic beads and PCR amplification of single-cell Hi-C libraries. The entire laboratory protocol can be carried out in 1 week, and although we have demonstrated its use in mouse T helper (TH1) cells, it should be applicable to any cell type or species for which standard Hi-C has been successful. We also developed an analysis pipeline to filter noise and assess the quality of data sets in a few hours. Although the interactome maps produced by single-cell Hi-C are sparse, the data provide useful information to understand cellular variability in nuclear genome organization and chromosome structure. Standard wet and dry laboratory skills in molecular biology and computational analysis are required.

  5. Voltage controlled nano-injection system for single-cell surgery

    Science.gov (United States)

    Seger, R. Adam; Actis, Paolo; Penfold, Catherine; Maalouf, Michelle; Vilozny, Boaz; Pourmand, Nader

    2015-01-01

    Manipulation and analysis of single cells is the next frontier in understanding processes that control the function and fate of cells. Herein we describe a single-cell injection platform based on nanopipettes. The system uses scanning microscopy techniques to detect cell surfaces, and voltage pulses to deliver molecules into individual cells. As a proof of concept, we injected adherent mammalian cells with fluorescent dyes. PMID:22899383

  6. Mixture models for single-cell assays with applications to vaccine studies

    OpenAIRE

    Finak, Greg; McDavid, Andrew; Chattopadhyay, Pratip; Dominguez, Maria; De Rosa, Steve; Roederer, Mario; Gottardo, Raphael

    2013-01-01

    Blood and tissue are composed of many functionally distinct cell subsets. In immunological studies, these can be measured accurately only using single-cell assays. The characterization of these small cell subsets is crucial to decipher system-level biological changes. For this reason, an increasing number of studies rely on assays that provide single-cell measurements of multiple genes and proteins from bulk cell samples. A common problem in the analysis of such data is to identify biomarkers...

  7. Methods for genetic linkage analysis using trisomies.

    OpenAIRE

    Feingold, E; Lamb, N E; Sherman, S L

    1995-01-01

    Certain genetic disorders are rare in the general population, but more common in individuals with specific trisomies. Examples of this include leukemia and duodenal atresia in trisomy 21. This paper presents a linkage analysis method for using trisomic individuals to map genes for such traits. It is based on a very general gene-specific dosage model that posits that the trait is caused by specific effects of different alleles at one or a few loci and that duplicate copies of "susceptibility" ...

  8. Advances of Single-Cell Sequencing Technique in Tumors

    Directory of Open Access Journals (Sweden)

    Ji-feng FENG

    2017-03-01

    Full Text Available With the completion of human genome project (HGP and the international HapMap project as well as rapid development of high-throughput biochip technology, whole genomic sequencing-targeted analysis of genomic structures has been primarily finished. Application of single cell for the analysis of the whole genomics is not only economical in material collection, but more importantly, the cell will be more purified, and the laboratory results will be more accurate and reliable. Therefore, exploration and analysis of hereditary information of single tumor cells has become the dream of all researchers in the field of basic research of tumors. At present, single-cell sequencing (SCS on malignancies has been widely used in the studies of pathogeneses of multiple malignancies, such as glioma, renal cancer and hematologic neoplasms, and in the studies of the metastatic mechanism of breast cancer by some researchers. This study mainly reviewed the SCS, the mechanisms and the methods of SCS in isolating tumor cells, and application of SCS technique in tumor-related basic research and clinical treatment.

  9. Analysis of genetic polymorphism and genetic distance among four ...

    African Journals Online (AJOL)

    use

    2011-11-21

    Nov 21, 2011 ... The genomes of 4 sheep populations {Yuanqu white Tan sheep (YWT), Baozhongchang white Tan sheep. (BWT), black Tan sheep (BT) and small-tailed Han sheep (Han)} were screened using 10 microsatellite. DNA markers to estimate the genetic diversities and genetic distances among these ...

  10. Precision toxicology based on single cell sequencing: an evolving trend in toxicological evaluations and mechanism exploration.

    Science.gov (United States)

    Zhang, Boyang; Huang, Kunlun; Zhu, Liye; Luo, Yunbo; Xu, Wentao

    2017-07-01

    In this review, we introduce a new concept, precision toxicology: the mode of action of chemical- or drug-induced toxicity can be sensitively and specifically investigated by isolating a small group of cells or even a single cell with typical phenotype of interest followed by a single cell sequencing-based analysis. Precision toxicology can contribute to the better detection of subtle intracellular changes in response to exogenous substrates, and thus help researchers find solutions to control or relieve the toxicological effects that are serious threats to human health. We give examples for single cell isolation and recommend laser capture microdissection for in vivo studies and flow cytometric sorting for in vitro studies. In addition, we introduce the procedures for single cell sequencing and describe the expected application of these techniques to toxicological evaluations and mechanism exploration, which we believe will become a trend in toxicology.

  11. Single-Cell Whole-Genome Amplification and Sequencing: Methodology and Applications.

    Science.gov (United States)

    Huang, Lei; Ma, Fei; Chapman, Alec; Lu, Sijia; Xie, Xiaoliang Sunney

    2015-01-01

    We present a survey of single-cell whole-genome amplification (WGA) methods, including degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR), multiple displacement amplification (MDA), and multiple annealing and looping-based amplification cycles (MALBAC). The key parameters to characterize the performance of these methods are defined, including genome coverage, uniformity, reproducibility, unmappable rates, chimera rates, allele dropout rates, false positive rates for calling single-nucleotide variations, and ability to call copy-number variations. Using these parameters, we compare five commercial WGA kits by performing deep sequencing of multiple single cells. We also discuss several major applications of single-cell genomics, including studies of whole-genome de novo mutation rates, the early evolution of cancer genomes, circulating tumor cells (CTCs), meiotic recombination of germ cells, preimplantation genetic diagnosis (PGD), and preimplantation genomic screening (PGS) for in vitro-fertilized embryos.

  12. A Genetic Analysis of Mortality in Pigs

    DEFF Research Database (Denmark)

    Varona, Luis; Sorensen, Daniel

    2010-01-01

    to investigate whether there is support for genetic variation for mortality and to study the quality of fit and predictive properties of the various models. In both breeds, the model that provided the best fit to the data was the standard binomial hierarchical model. The model that performed best in terms......An analysis of mortality is undertaken in two breeds of pigs: Danish Landrace and Yorkshire. Zero-inflated and standard versions of hierarchical Poisson, binomial, and negative binomial Bayesian models were fitted using Markov chain Monte Carlo (MCMC). The objectives of the study were...... of the ability to predict the distribution of stillbirths was the hierarchical zero-inflated negative binomial model. The best fit of the binomial hierarchical model and of the zero-inflated hierarchical negative binomial model was obtained when genetic variation was included as a parameter. For the hierarchical...

  13. Linear-after-the-exponential polymerase chain reaction and allied technologies. Real-time detection strategies for rapid, reliable diagnosis from single cells.

    Science.gov (United States)

    Pierce, Kenneth E; Wangh, Lawrence J

    2007-01-01

    Accurate detection of gene sequences in single cells is the ultimate challenge to polymerase chain reaction (PCR) sensitivity. Unfortunately, commonly used conventional and real-time PCR techniques are often too unreliable at that level to provide the accuracy needed for clinical diagnosis. Here we provide details of linear-after-the-exponential-PCR (LATE-PCR), a method similar to asymmetric PCR in the use of primers at different concentrations, but with novel design criteria to ensure high efficiency and specificity. Compared with conventional PCR, LATE-PCR increases the signal strength and allele discrimination capability of oligonucleotide probes such as molecular beacons and reduces variability among replicate samples. The analysis of real-time kinetics of LATE-PCR signals provides a means for improving the accuracy of single cell genetic diagnosis.

  14. A robust method to analyze copy number alterations of less than 100 kb in single cells using oligonucleotide array CGH.

    Directory of Open Access Journals (Sweden)

    Birte Möhlendick

    Full Text Available Comprehensive genome wide analyses of single cells became increasingly important in cancer research, but remain to be a technically challenging task. Here, we provide a protocol for array comparative genomic hybridization (aCGH of single cells. The protocol is based on an established adapter-linker PCR (WGAM and allowed us to detect copy number alterations as small as 56 kb in single cells. In addition we report on factors influencing the success of single cell aCGH downstream of the amplification method, including the characteristics of the reference DNA, the labeling technique, the amount of input DNA, reamplification, the aCGH resolution, and data analysis. In comparison with two other commercially available non-linear single cell amplification methods, WGAM showed a very good performance in aCGH experiments. Finally, we demonstrate that cancer cells that were processed and identified by the CellSearch® System and that were subsequently isolated from the CellSearch® cartridge as single cells by fluorescence activated cell sorting (FACS could be successfully analyzed using our WGAM-aCGH protocol. We believe that even in the era of next-generation sequencing, our single cell aCGH protocol will be a useful and (cost- effective approach to study copy number alterations in single cells at resolution comparable to those reported currently for single cell digital karyotyping based on next generation sequencing data.

  15. An analysis of the genetic diversity and genetic structure of ...

    African Journals Online (AJOL)

    ajl yemi

    2011-12-26

    Dec 26, 2011 ... relief, diuresis, blood pressure and lipid metabolism. (Kawasaki et al., 2000). ... Habitat. Longitude(N),. Latitude(E). Population size. Sample size. LY. Luoyang, Henan ..... Compared with the high genetic diversity at the species.

  16. Population genetic analysis of ascertained SNP data

    Directory of Open Access Journals (Sweden)

    Nielsen Rasmus

    2004-03-01

    Full Text Available Abstract The large single nucleotide polymorphism (SNP typing projects have provided an invaluable data resource for human population geneticists. Almost all of the available SNP loci, however, have been identified through a SNP discovery protocol that will influence the allelic distributions in the sampled loci. Standard methods for population genetic analysis based on the available SNP data will, therefore, be biased. This paper discusses the effect of this ascertainment bias on allelic distributions and on methods for quantifying linkage disequilibrium and estimating demographic parameters. Several recently developed methods for correcting for the ascertainment bias will also be discussed.

  17. Convergence analysis of canonical genetic algorithms.

    Science.gov (United States)

    Rudolph, G

    1994-01-01

    This paper analyzes the convergence properties of the canonical genetic algorithm (CGA) with mutation, crossover and proportional reproduction applied to static optimization problems. It is proved by means of homogeneous finite Markov chain analysis that a CGA will never converge to the global optimum regardless of the initialization, crossover, operator and objective function. But variants of CGA's that always maintain the best solution in the population, either before or after selection, are shown to converge to the global optimum due to the irreducibility property of the underlying original nonconvergent CGA. These results are discussed with respect to the schema theorem.

  18. Gravisensing in single-celled systems

    Science.gov (United States)

    Braun, M.; Limbach, C.

    Single-celled systems are favourable cell types for studying several aspects of gravisensing and gravitropic responses. Whether and how actin is involved in both processes in higher plant statocytes is still a matter of intensive debate. In single-celled and tip-growing characean rhizoids and protonemata, however, there is clear evidence that actin is a central keyplayer controlling polarized growth and the mechanisms of gravity sensing and growth reorientation. Both cell types exhibit a unique actin polymerization in the extending tip, strictly colocalized with the prominent ER-aggregate in the center of the Spitzenkoerper. The local accumulation of ADF and profilin in this central array suggest that actin polymerization is controlled by these actin-binding proteins, which can be regulated by calcium, pH and a variety of other parameters. Distinct actin filaments extend even into the outermost tip and form a dense meshwork in the apical and subapical region, before they become bundled by villin to form two populations of thick actin cables that generate rotational cytoplasmic streaming in the basal region. Actomyosin not only mediates the delivery of secretory vesicles to the growing tip and controls the incorporation pattern of cell wall material, but also coordinates the tip-focused distribution pattern of calcium channels in the apical membrane. They establish the tip-high calcium gradient, a prerequisite for exocytosis. Microgravity experiments have added much to our understanding that both cell types use an efficient actomyosin-based system to control and correct the position of their statoliths and to direct sedimenting statoliths to confined graviperception sites at the plasma membrane. Actin's involvement in the graviresponses is more indirect. The upward growth of negatively gravitropic protonemata was shown to be preceded by a statolith-induced relocalization the Ca2+-calcium gradient to the upper flank that does not occur in positively gravitropic

  19. Analysis of genetic structure and relationship among nine ...

    Indian Academy of Sciences (India)

    These results indicated that the clustering analysis using the Structure program might provide an ..... of the current genetic relations among the breeds, and con- tribute to ... sis of the genetic structure of the Canary goat populations using.

  20. Genetic analysis of Myanmar Vigna species in responses to salt ...

    African Journals Online (AJOL)

    Genetic analysis of Myanmar Vigna species in responses to salt stress at the ... of reduction was highly dependent on different genotypes and salinity levels. ... the mechanism of salt tolerance and for the provision of genetic resources for ...

  1. Analysis of genetic relationships of mulberry (Morus L.) germplasm ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... Full Length Research Paper. Analysis of genetic ... Key words: Mulberry, molecular marker, genetic diversity, SRAP. ... Europe, North and South America, and Africa, and it is cultivated ... Xingjiang autonomous region, China.

  2. A genetic epidemiological mega analysis of smoking initiation in adolescents

    NARCIS (Netherlands)

    Maes, H.H.; Prom-Wormley, E.; Eaves, L.J.; Rhee, S.H.; Hewitt, J.K.; Young, S.; Corley, R.; McGue, M.K.; Iacono, W.G.; Legrand, L.; Samek, D.; Murrelle, E.L.; Silberg, J.L.; Miles, D.; Schieken, R.M.; Beunen, G.P.; Thomis, M.; Rose, R.J.; Dick, D.M.; Boomsma, D.I.; Bartels, M.; Vink, J.M.; Lichtenstein, P.; White, V.; Kaprio, J.; Neale, M.C.

    2017-01-01

    Introduction. Previous studies in adolescents were not adequately powered to accurately disentangle genetic and environmental influences on smoking initiation across adolescence. Methods. Mega-analysis of pooled genetically informative data on smoking initiation was performed, with structural

  3. Reliable single cell array CGH for clinical samples.

    Directory of Open Access Journals (Sweden)

    Zbigniew T Czyż

    Full Text Available BACKGROUND: Disseminated cancer cells (DCCs and circulating tumor cells (CTCs are extremely rare, but comprise the precursors cells of distant metastases or therapy resistant cells. The detailed molecular analysis of these cells may help to identify key events of cancer cell dissemination, metastatic colony formation and systemic therapy escape. METHODOLOGY/PRINCIPAL FINDINGS: Using the Ampli1™ whole genome amplification (WGA technology and high-resolution oligonucleotide aCGH microarrays we optimized conditions for the analysis of structural copy number changes. The protocol presented here enables reliable detection of numerical genomic alterations as small as 0.1 Mb in a single cell. Analysis of single cells from well-characterized cell lines and single normal cells confirmed the stringent quantitative nature of the amplification and hybridization protocol. Importantly, fixation and staining procedures used to detect DCCs showed no significant impact on the outcome of the analysis, proving the clinical usability of our method. In a proof-of-principle study we tracked the chromosomal changes of single DCCs over a full course of high-dose chemotherapy treatment by isolating and analyzing DCCs of an individual breast cancer patient at four different time points. CONCLUSIONS/SIGNIFICANCE: The protocol enables detailed genome analysis of DCCs and thereby assessment of the clonal evolution during the natural course of the disease and under selection pressures. The results from an exemplary patient provide evidence that DCCs surviving selective therapeutic conditions may be recruited from a pool of genomically less advanced cells, which display a stable subset of specific genomic alterations.

  4. Single cells from human primary colorectal tumors exhibit polyfunctional heterogeneity in secretions of ELR+ CXC chemokines.

    Science.gov (United States)

    Adalsteinsson, Viktor A; Tahirova, Narmin; Tallapragada, Naren; Yao, Xiaosai; Campion, Liam; Angelini, Alessandro; Douce, Thomas B; Huang, Cindy; Bowman, Brittany; Williamson, Christina A; Kwon, Douglas S; Wittrup, K Dane; Love, J Christopher

    2013-10-01

    Cancer is an inflammatory disease of tissue that is largely influenced by the interactions between multiple cell types, secreted factors, and signal transduction pathways. While single-cell sequencing continues to refine our understanding of the clonotypic heterogeneity within tumors, the complex interplay between genetic variations and non-genetic factors ultimately affects therapeutic outcome. Much has been learned through bulk studies of secreted factors in the tumor microenvironment, but the secretory behavior of single cells has been largely uncharacterized. Here we directly profiled the secretions of ELR+ CXC chemokines from thousands of single colorectal tumor and stromal cells, using an array of subnanoliter wells and a technique called microengraving to characterize both the rates of secretion of several factors at once and the numbers of cells secreting each chemokine. The ELR+ CXC chemokines are highly redundant, pro-angiogenic cytokines that signal via the CXCR1 and CXCR2 receptors, influencing tumor growth and progression. We find that human primary colorectal tumor and stromal cells exhibit polyfunctional heterogeneity in the combinations and magnitudes of secretions for these chemokines. In cell lines, we observe similar variance: phenotypes observed in bulk can be largely absent among the majority of single cells, and discordances exist between secretory states measured and gene expression for these chemokines among single cells. Together, these measures suggest secretory states among tumor cells are complex and can evolve dynamically. Most importantly, this study reveals new insight into the intratumoral phenotypic heterogeneity of human primary tumors.

  5. Single cell protein from mandarin orange peel

    Energy Technology Data Exchange (ETDEWEB)

    Mishio, M.; Magai, J.

    1981-01-01

    As the hydrolysis of mandarin orange peel with macerating enzyme (40 degrees C, 24 h) produced 0.59 g g-1 reducing sugar per dry peel compared to 0.36 by acid-hydrolysis (15 min at 120 degrees C with 0.8 N H2S04), the production of single cell protein (SCP) from orange peel was studied mostly using enzymatically hydrolyzed orange peel. When the enzymatically hydrolyzed peel media were used, the utilization efficiency of reducing sugars (%) and the growth yield from reducing sugars (g g-1) were: 63 and 0.51 for Saccharomyces cerevisiae; 56 and 0.48 for Candida utilis; 74 and 0.69 for Debaryomyces hansenii and 64 and 0.70 for Rhodotorula glutinis. SCP production from orange peel by D. hansenii and R. glutinis were further studied. Batch cultures for 24 h at 30 degrees C using 100g dried orange peel produced 45 g of dried cultivated peel (protein content, 33%) with D. hansenii and 34 g (protein content, 50%) with R. glutinis, and 38 g (protein content, 44%) with a mixture of both yeasts. (Refs. 12).

  6. Single-Cell RNA Sequencing of Glioblastoma Cells.

    Science.gov (United States)

    Sen, Rajeev; Dolgalev, Igor; Bayin, N Sumru; Heguy, Adriana; Tsirigos, Aris; Placantonakis, Dimitris G

    2018-01-01

    Single-cell RNA sequencing (sc-RNASeq) is a recently developed technique used to evaluate the transcriptome of individual cells. As opposed to conventional RNASeq in which entire populations are sequenced in bulk, sc-RNASeq can be beneficial when trying to better understand gene expression patterns in markedly heterogeneous populations of cells or when trying to identify transcriptional signatures of rare cells that may be underrepresented when using conventional bulk RNASeq. In this method, we describe the generation and analysis of cDNA libraries from single patient-derived glioblastoma cells using the C1 Fluidigm system. The protocol details the use of the C1 integrated fluidics circuit (IFC) for capturing, imaging and lysing cells; performing reverse transcription; and generating cDNA libraries that are ready for sequencing and analysis.

  7. Silicon Dioxide Thin Film Mediated Single Cell Nucleic Acid Isolation

    Science.gov (United States)

    Bogdanov, Evgeny; Dominova, Irina; Shusharina, Natalia; Botman, Stepan; Kasymov, Vitaliy; Patrushev, Maksim

    2013-01-01

    A limited amount of DNA extracted from single cells, and the development of single cell diagnostics make it necessary to create a new highly effective method for the single cells nucleic acids isolation. In this paper, we propose the DNA isolation method from biomaterials with limited DNA quantity in sample, and from samples with degradable DNA based on the use of solid-phase adsorbent silicon dioxide nanofilm deposited on the inner surface of PCR tube. PMID:23874571

  8. Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia.

    Science.gov (United States)

    Giustacchini, Alice; Thongjuea, Supat; Barkas, Nikolaos; Woll, Petter S; Povinelli, Benjamin J; Booth, Christopher A G; Sopp, Paul; Norfo, Ruggiero; Rodriguez-Meira, Alba; Ashley, Neil; Jamieson, Lauren; Vyas, Paresh; Anderson, Kristina; Segerstolpe, Åsa; Qian, Hong; Olsson-Strömberg, Ulla; Mustjoki, Satu; Sandberg, Rickard; Jacobsen, Sten Eirik W; Mead, Adam J

    2017-06-01

    Recent advances in single-cell transcriptomics are ideally placed to unravel intratumoral heterogeneity and selective resistance of cancer stem cell (SC) subpopulations to molecularly targeted cancer therapies. However, current single-cell RNA-sequencing approaches lack the sensitivity required to reliably detect somatic mutations. We developed a method that combines high-sensitivity mutation detection with whole-transcriptome analysis of the same single cell. We applied this technique to analyze more than 2,000 SCs from patients with chronic myeloid leukemia (CML) throughout the disease course, revealing heterogeneity of CML-SCs, including the identification of a subgroup of CML-SCs with a distinct molecular signature that selectively persisted during prolonged therapy. Analysis of nonleukemic SCs from patients with CML also provided new insights into cell-extrinsic disruption of hematopoiesis in CML associated with clinical outcome. Furthermore, we used this single-cell approach to identify a blast-crisis-specific SC population, which was also present in a subclone of CML-SCs during the chronic phase in a patient who subsequently developed blast crisis. This approach, which might be broadly applied to any malignancy, illustrates how single-cell analysis can identify subpopulations of therapy-resistant SCs that are not apparent through cell-population analysis.

  9. Single-Cell Mass Spectrometry Reveals Changes in Lipid and Metabolite Expression in RAW 264.7 Cells upon Lipopolysaccharide Stimulation

    Science.gov (United States)

    Yang, Bo; Patterson, Nathan Heath; Tsui, Tina; Caprioli, Richard M.; Norris, Jeremy L.

    2018-05-01

    It has been widely recognized that individual cells that exist within a large population of cells, even if they are genetically identical, can have divergent molecular makeups resulting from a variety of factors, including local environmental factors and stochastic processes within each cell. Presently, numerous approaches have been described that permit the resolution of these single-cell expression differences for RNA and protein; however, relatively few techniques exist for the study of lipids and metabolites in this manner. This study presents a methodology for the analysis of metabolite and lipid expression at the level of a single cell through the use of imaging mass spectrometry on a high-performance Fourier transform ion cyclotron resonance mass spectrometer. This report provides a detailed description of the overall experimental approach, including sample preparation as well as the data acquisition and analysis strategy for single cells. Applying this approach to the study of cultured RAW264.7 cells, we demonstrate that this method can be used to study the variation in molecular expression with cell populations and is sensitive to alterations in that expression that occurs upon lipopolysaccharide stimulation. [Figure not available: see fulltext.

  10. Single-Cell Mass Spectrometry Reveals Changes in Lipid and Metabolite Expression in RAW 264.7 Cells upon Lipopolysaccharide Stimulation

    Science.gov (United States)

    Yang, Bo; Patterson, Nathan Heath; Tsui, Tina; Caprioli, Richard M.; Norris, Jeremy L.

    2018-03-01

    It has been widely recognized that individual cells that exist within a large population of cells, even if they are genetically identical, can have divergent molecular makeups resulting from a variety of factors, including local environmental factors and stochastic processes within each cell. Presently, numerous approaches have been described that permit the resolution of these single-cell expression differences for RNA and protein; however, relatively few techniques exist for the study of lipids and metabolites in this manner. This study presents a methodology for the analysis of metabolite and lipid expression at the level of a single cell through the use of imaging mass spectrometry on a high-performance Fourier transform ion cyclotron resonance mass spectrometer. This report provides a detailed description of the overall experimental approach, including sample preparation as well as the data acquisition and analysis strategy for single cells. Applying this approach to the study of cultured RAW264.7 cells, we demonstrate that this method can be used to study the variation in molecular expression with cell populations and is sensitive to alterations in that expression that occurs upon lipopolysaccharide stimulation. [Figure not available: see fulltext.

  11. Single-Cell Transcriptomics Bioinformatics and Computational Challenges

    Directory of Open Access Journals (Sweden)

    Lana Garmire

    2016-09-01

    Full Text Available The emerging single-cell RNA-Seq (scRNA-Seq technology holds the promise to revolutionize our understanding of diseases and associated biological processes at an unprecedented resolution. It opens the door to reveal the intercellular heterogeneity and has been employed to a variety of applications, ranging from characterizing cancer cells subpopulations to elucidating tumor resistance mechanisms. Parallel to improving experimental protocols to deal with technological issues, deriving new analytical methods to reveal the complexity in scRNA-Seq data is just as challenging. Here we review the current state-of-the-art bioinformatics tools and methods for scRNA-Seq analysis, as well as addressing some critical analytical challenges that the field faces.

  12. Single-cell technologies in molecular marine studies

    KAUST Repository

    Kodzius, Rimantas

    2015-01-24

    Middle Eastern countries are experiencing a renaissance, with heavy investment in both in infrastructure and science. King Abdullah University of Science and Technology (KAUST) is a new and modern university in Saudi Arabia. At the Computational Bioscience Research Center (CBRC) we are working on exploring the Red Sea and beyond, collaborating with Japanese and other research centers. We are using the environment to collect and analyze the microorganisms present. The platform being established at CBRC allows to process samples in a pipeline. The pipeline components consist of sample collection, processing and sequencing, following the in silico analysis, determining the gene functions, identifying the organisms. The genomes of microorganisms of interest are targeted modified by genome editing technology such as CRISPR and desired properties are selected by single cell instrumentation. The final output is to identify valuable microorganisms with production of bio-energy, nutrients, the food and fine chemicals.

  13. Using measures of single-cell physiology and physiological state to understand organismic aging.

    Science.gov (United States)

    Mendenhall, Alexander; Driscoll, Monica; Brent, Roger

    2016-02-01

    Genetically identical organisms in homogeneous environments have different lifespans and healthspans. These differences are often attributed to stochastic events, such as mutations and 'epimutations', changes in DNA methylation and chromatin that change gene function and expression. But work in the last 10 years has revealed differences in lifespan- and health-related phenotypes that are not caused by lasting changes in DNA or identified by modifications to DNA or chromatin. This work has demonstrated persistent differences in single-cell and whole-organism physiological states operationally defined by values of reporter gene signals in living cells. While some single-cell states, for example, responses to oxygen deprivation, were defined previously, others, such as a generally heightened ability to make proteins, were, revealed by direct experiment only recently, and are not well understood. Here, we review technical progress that promises to greatly increase the number of these measurable single-cell physiological variables and measureable states. We discuss concepts that facilitate use of single-cell measurements to provide insight into physiological states and state transitions. We assert that researchers will use this information to relate cell level physiological readouts to whole-organism outcomes, to stratify aging populations into groups based on different physiologies, to define biomarkers predictive of outcomes, and to shed light on the molecular processes that bring about different individual physiologies. For these reasons, quantitative study of single-cell physiological variables and state transitions should provide a valuable complement to genetic and molecular explanations of how organisms age. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  14. Hydrodynamic lift for single cell manipulation in a femtosecond laser fabricated optofluidic chip

    Directory of Open Access Journals (Sweden)

    Bragheri Francesca

    2017-08-01

    Full Text Available Single cell sorting based either on fluorescence or on mechanical properties has been exploited in the last years in microfluidic devices. Hydrodynamic focusing allows increasing the efficiency of theses devices by improving the matching between the region of optical analysis and that of cell flow. Here we present a very simple solution fabricated by femtosecond laser micromachining that exploits flow laminarity in microfluidic channels to easily lift the sample flowing position to the channel portion illuminated by the optical waveguides used for single cell trapping and analysis.

  15. Single-cell gene-expression profiling and its potential diagnostic applications

    Czech Academy of Sciences Publication Activity Database

    Stahlberg, A.; Kubista, Mikael; Aman, P.

    2011-01-01

    Roč. 11, č. 7 (2011), s. 735-740 ISSN 1473-7159 R&D Projects: GA ČR(CZ) GAP303/10/1338; GA ČR(CZ) GA301/09/1752 Institutional research plan: CEZ:AV0Z50520701 Keywords : gene-expression profiling * RT-qPCR * single-cell gene-expression profiling Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.859, year: 2011

  16. The workflow of single-cell expression profiling using quantitative real-time PCR

    Czech Academy of Sciences Publication Activity Database

    Stahlberg, A.; Kubista, Mikael

    2014-01-01

    Roč. 14, č. 3 (2014), s. 323-331 ISSN 1473-7159 R&D Projects: GA ČR GA13-02154S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : single-cell workflow * gene expression profiling * RT-qPCR Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.516, year: 2014

  17. Heterogeneity of Astrocytes: From Development to Injury - Single Cell Gene Expression

    Czech Academy of Sciences Publication Activity Database

    Rusňáková, Vendula; Honsa, Pavel; Džamba, Dávid; Stahlberg, A.; Kubista, Mikael; Anděrová, Miroslava

    2013-01-01

    Roč. 8, č. 8 (2013), e69734 E-ISSN 1932-6203 R&D Projects: GA ČR GA13-02154S Institutional research plan: CEZ:AV0Z50520701; CEZ:AV0Z50390703 Keywords : Single cell expression profiling * astrocytes * GenEx Subject RIV: EB - Genetics ; Molecular Biology; FH - Neurology (UEM-P) Impact factor: 3.534, year: 2013

  18. Quantitative genetic analysis of total glucosinolate, oil and protein ...

    African Journals Online (AJOL)

    Quantitative genetic analysis of total glucosinolate, oil and protein contents in Ethiopian mustard ( Brassica carinata A. Braun) ... Seeds were analyzed using HPLC (glucosinolates), NMR (oil) and NIRS (protein). Analyses of variance, Hayman's method of diallel analysis and a mixed linear model of genetic analysis were ...

  19. Single-Cell RNA Sequencing of the Bronchial Epithelium in Smokers with Lung Cancer

    Science.gov (United States)

    2017-07-01

    and to discuss library preparations protocols and data analysis techniques. The goal is to develop a single cell sequencing analysis toolkit . In...Research Support LUNGevity Career Development Award What other organizations were involved as partners? Organization Name: Broad Institute 19

  20. Direct Correlation between Motile Behavior and Protein Abundance in Single Cells.

    Directory of Open Access Journals (Sweden)

    Yann S Dufour

    2016-09-01

    Full Text Available Understanding how stochastic molecular fluctuations affect cell behavior requires the quantification of both behavior and protein numbers in the same cells. Here, we combine automated microscopy with in situ hydrogel polymerization to measure single-cell protein expression after tracking swimming behavior. We characterized the distribution of non-genetic phenotypic diversity in Escherichia coli motility, which affects single-cell exploration. By expressing fluorescently tagged chemotaxis proteins (CheR and CheB at different levels, we quantitatively mapped motile phenotype (tumble bias to protein numbers using thousands of single-cell measurements. Our results disagreed with established models until we incorporated the role of CheB in receptor deamidation and the slow fluctuations in receptor methylation. Beyond refining models, our central finding is that changes in numbers of CheR and CheB affect the population mean tumble bias and its variance independently. Therefore, it is possible to adjust the degree of phenotypic diversity of a population by adjusting the global level of expression of CheR and CheB while keeping their ratio constant, which, as shown in previous studies, confers functional robustness to the system. Since genetic control of protein expression is heritable, our results suggest that non-genetic diversity in motile behavior is selectable, supporting earlier hypotheses that such diversity confers a selective advantage.

  1. visnormsc: A Graphical User Interface to Normalize Single-cell RNA Sequencing Data.

    Science.gov (United States)

    Tang, Lijun; Zhou, Nan

    2017-12-26

    Single-cell RNA sequencing (RNA-seq) allows the analysis of gene expression with high resolution. The intrinsic defects of this promising technology imports technical noise into the single-cell RNA-seq data, increasing the difficulty of accurate downstream inference. Normalization is a crucial step in single-cell RNA-seq data pre-processing. SCnorm is an accurate and efficient method that can be used for this purpose. An R implementation of this method is currently available. On one hand, the R package possesses many excellent features from R. On the other hand, R programming ability is required, which prevents the biologists who lack the skills from learning to use it quickly. To make this method more user-friendly, we developed a graphical user interface, visnormsc, for normalization of single-cell RNA-seq data. It is implemented in Python and is freely available at https://github.com/solo7773/visnormsc . Although visnormsc is based on the existing method, it contributes to this field by offering a user-friendly alternative. The out-of-the-box and cross-platform features make visnormsc easy to learn and to use. It is expected to serve biologists by simplifying single-cell RNA-seq normalization.

  2. Capturing Three-Dimensional Genome Organization in Individual Cells by Single-Cell Hi-C.

    Science.gov (United States)

    Nagano, Takashi; Wingett, Steven W; Fraser, Peter

    2017-01-01

    Hi-C is a powerful method to investigate genome-wide, higher-order chromatin and chromosome conformations averaged from a population of cells. To expand the potential of Hi-C for single-cell analysis, we developed single-cell Hi-C. Similar to the existing "ensemble" Hi-C method, single-cell Hi-C detects proximity-dependent ligation events between cross-linked and restriction-digested chromatin fragments in cells. A major difference between the single-cell Hi-C and ensemble Hi-C protocol is that the proximity-dependent ligation is carried out in the nucleus. This allows the isolation of individual cells in which nearly the entire Hi-C procedure has been carried out, enabling the production of a Hi-C library and data from individual cells. With this new method, we studied genome conformations and found evidence for conserved topological domain organization from cell to cell, but highly variable interdomain contacts and chromosome folding genome wide. In addition, we found that the single-cell Hi-C protocol provided cleaner results with less technical noise suggesting it could be used to improve the ensemble Hi-C technique.

  3. SCNS: a graphical tool for reconstructing executable regulatory networks from single-cell genomic data.

    Science.gov (United States)

    Woodhouse, Steven; Piterman, Nir; Wintersteiger, Christoph M; Göttgens, Berthold; Fisher, Jasmin

    2018-05-25

    Reconstruction of executable mechanistic models from single-cell gene expression data represents a powerful approach to understanding developmental and disease processes. New ambitious efforts like the Human Cell Atlas will soon lead to an explosion of data with potential for uncovering and understanding the regulatory networks which underlie the behaviour of all human cells. In order to take advantage of this data, however, there is a need for general-purpose, user-friendly and efficient computational tools that can be readily used by biologists who do not have specialist computer science knowledge. The Single Cell Network Synthesis toolkit (SCNS) is a general-purpose computational tool for the reconstruction and analysis of executable models from single-cell gene expression data. Through a graphical user interface, SCNS takes single-cell qPCR or RNA-sequencing data taken across a time course, and searches for logical rules that drive transitions from early cell states towards late cell states. Because the resulting reconstructed models are executable, they can be used to make predictions about the effect of specific gene perturbations on the generation of specific lineages. SCNS should be of broad interest to the growing number of researchers working in single-cell genomics and will help further facilitate the generation of valuable mechanistic insights into developmental, homeostatic and disease processes.

  4. GENETIC ANALYSIS OF ABSCISIC ACID BIOSYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    MCCARTY D R

    2012-01-10

    The carotenoid cleavage dioxygenases (CCD) catalyze synthesis of a variety of apo-carotenoid secondary metabolites in plants, animals and bacteria. In plants, the reaction catalyzed by the 11, 12, 9-cis-epoxy carotenoid dioxygenase (NCED) is the first committed and key regulated step in synthesis of the plant hormone, abscisic acid (ABA). ABA is a key regulator of plant stress responses and has critical functions in normal root and seed development. The molecular mechanisms responsible for developmental control of ABA synthesis in plant tissues are poorly understood. Five of the nine CCD genes present in the Arabidopsis genome encode NCED's involved in control of ABA synthesis in the plant. This project is focused on functional analysis of these five AtNCED genes as a key to understanding developmental regulation of ABA synthesis and dissecting the role of ABA in plant development. For this purpose, the project developed a comprehensive set of gene knockouts in the AtNCED genes that facilitate genetic dissection of ABA synthesis. These mutants were used in combination with key molecular tools to address the following specific objectives: (1) the role of ABA synthesis in root development; (2) developmental control of ABA synthesis in seeds; (3) analysis of ATNCED over-expressers; (4) preliminary crystallography of the maize VP14 protein.

  5. Single-cell and subcellular pharmacokinetic imaging allows insight into drug action in vivo.

    Science.gov (United States)

    Thurber, Greg M; Yang, Katy S; Reiner, Thomas; Kohler, Rainer H; Sorger, Peter; Mitchison, Tim; Weissleder, Ralph

    2013-01-01

    Pharmacokinetic analysis at the organ level provides insight into how drugs distribute throughout the body, but cannot explain how drugs work at the cellular level. Here we demonstrate in vivo single-cell pharmacokinetic imaging of PARP-1 inhibitors and model drug behaviour under varying conditions. We visualize intracellular kinetics of the PARP-1 inhibitor distribution in real time, showing that PARP-1 inhibitors reach their cellular target compartment, the nucleus, within minutes in vivo both in cancer and normal cells in various cancer models. We also use these data to validate predictive finite element modelling. Our theoretical and experimental data indicate that tumour cells are exposed to sufficiently high PARP-1 inhibitor concentrations in vivo and suggest that drug inefficiency is likely related to proteomic heterogeneity or insensitivity of cancer cells to DNA-repair inhibition. This suggests that single-cell pharmacokinetic imaging and derived modelling improve our understanding of drug action at single-cell resolution in vivo.

  6. Analyzing cell fate control by cytokines through continuous single cell biochemistry.

    Science.gov (United States)

    Rieger, Michael A; Schroeder, Timm

    2009-10-01

    Cytokines are important regulators of cell fates with high clinical and commercial relevance. However, despite decades of intense academic and industrial research, it proved surprisingly difficult to describe the biological functions of cytokines in a precise and comprehensive manner. The exact analysis of cytokine biology is complicated by the fact that individual cytokines control many different cell fates and activate a multitude of intracellular signaling pathways. Moreover, although activating different molecular programs, different cytokines can be redundant in their biological effects. In addition, cytokines with different biological effects can activate overlapping signaling pathways. This prospect article will outline the necessity of continuous single cell biochemistry to unravel the biological functions of molecular cytokine signaling. It focuses on potentials and limitations of recent technical developments in fluorescent time-lapse imaging and single cell tracking allowing constant long-term observation of molecules and behavior of single cells. (c) 2009 Wiley-Liss, Inc.

  7. Repair of γ-irradiation-induced DNA single-strand breaks in human bone marrow cells. Analysis of unfractionated and CD34+ cells using single-cell gel electrophoresis

    International Nuclear Information System (INIS)

    Lankinen, Maarit H.; Vilpo, Juhani A.

    1997-01-01

    Human bone marrow mononuclear cells (BMMNCs) were separated by density gradient centrifugation, and a subpopulation of progenitor cells was further isolated using anti-CD34-coated magnetic beads. The cells were irradiated with γ-rays (0.93-5.43 Gy) from a 137 Cs source. The extent of DNA damage, i.e., single-strand breaks (SSBs) and alkali-labile lesions of individual cells, was investigated using the alkaline single-cell gel electrophoresis technique. The irradiation resulted in a dose-dependent increase in DNA migration, reflecting the number of detectable DNA lesions. An approximately similar extent of SSB formation was observed in BMMNCs and CD34+ cells. Damage was repaired when the cells were incubated at 37C: a fast initial repair phase was followed by a slower rejoining of SSBs in both BMMNC and CD34+ cell populations. A significantly longer time was required to repair the lesions caused by 5.43 Gy than those caused by 0.93 Gy. In the present work we report, for the first time, the induction and repair of DNA SSBs at the level of single human bone marrow cells when exposed to ionizing radiation at clinically relevant doses. These data, together with our previous results with human blood granulocytes and lymphocytes, indicate an approximately similar extent of formation and repair of γ-irradiation-induced DNA SSBs in immature and mature human hematopoietic cells

  8. Microfluidic platform for multiplexed detection in single cells and methods thereof

    Science.gov (United States)

    Wu, Meiye; Singh, Anup K.

    2018-05-01

    The present invention relates to a microfluidic device and platform configured to conduct multiplexed analysis within the device. In particular, the device allows multiple targets to be detected on a single-cell level. Also provided are methods of performing multiplexed analyses to detect one or more target nucleic acids, proteins, and post-translational modifications.

  9. Genetic analysis of the Venezuelan Criollo horse.

    Science.gov (United States)

    Cothran, E G; Canelon, J L; Luis, C; Conant, E; Juras, R

    2011-10-07

    Various horse populations in the Americas have an origin in Spain; they are remnants of the first livestock introduced to the continent early in the colonial period (16th and 17th centuries). We evaluated genetic variability within the Venezuelan Criollo horse and its relationship with other horse breeds. We observed high levels of genetic diversity within the Criollo breed. Significant population differentiation was observed between all South American breeds. The Venezuelan Criollo horse showed high levels of genetic diversity, and from a conservation standpoint, there is no immediate danger of losing variation unless there is a large drop in population size.

  10. Plant Systems Biology at the Single-Cell Level.

    Science.gov (United States)

    Libault, Marc; Pingault, Lise; Zogli, Prince; Schiefelbein, John

    2017-11-01

    Our understanding of plant biology is increasingly being built upon studies using 'omics and system biology approaches performed at the level of the entire plant, organ, or tissue. Although these approaches open new avenues to better understand plant biology, they suffer from the cellular complexity of the analyzed sample. Recent methodological advances now allow plant scientists to overcome this limitation and enable biological analyses of single-cells or single-cell-types. Coupled with the development of bioinformatics and functional genomics resources, these studies provide opportunities for high-resolution systems analyses of plant phenomena. In this review, we describe the recent advances, current challenges, and future directions in exploring the biology of single-cells and single-cell-types to enhance our understanding of plant biology as a system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Functional Insights into Sponge Microbiology by Single Cell Genomics

    KAUST Repository

    Hentschel, Ute

    2011-04-09

    Marine Sponges (Porifera) are known to harbor enormous amounts of microorganisms with members belonging to at least 30 different bacterial phyla including several candidate phyla and both archaeal lineages. Here, we applied single cell genomics to the mic

  12. Probing bacterial adhesion at the single-cell level

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Müller, Torsten; Meyer, Rikke Louise

    be considered. We have developed a simple and versatile method to make single-cell bacterial probes for measuring single cell adhesion by force spectroscopy using atomic force microscopy (AFM). A single-cell probe was readily made by picking up a bacterial cell from a glass surface by approaching a tipless AFM...... cantilever coated with the commercial cell adhesive CellTakTM. We applied the method to study adhesion of living cells to abiotic surfaces at the single-cell level. Immobilisation of single bacterial cells to the cantilever was stable for several hours, and viability was confirmed by Live/Dead staining...... on the adhesion force, we explored the bond formation and adhesive strength of four different bacterial strains towards three abiotic substrates with variable hydrophobicity and surface roughness. The adhesion force and final rupture length were dependent on bacterial strains, surfaces properties, and time...

  13. Single-cell measurement of red blood cell oxygen affinity

    OpenAIRE

    Caprio, Di; Stokes, Chris; Higgins, John M.; Schonbrun, Ethan

    2015-01-01

    Oxygen is transported throughout the body by hemoglobin in red blood cells. While the oxygen affinity of blood is well understood and is routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of red blood cell volume and hemoglobin concentration are taken millions of times per day by clinical hematology analyzers and are important factors in determining the health of the hematologic system....

  14. Sampling strategies to capture single-cell heterogeneity

    OpenAIRE

    Satwik Rajaram; Louise E. Heinrich; John D. Gordan; Jayant Avva; Kathy M. Bonness; Agnieszka K. Witkiewicz; James S. Malter; Chloe E. Atreya; Robert S. Warren; Lani F. Wu; Steven J. Altschuler

    2017-01-01

    Advances in single-cell technologies have highlighted the prevalence and biological significance of cellular heterogeneity. A critical question is how to design experiments that faithfully capture the true range of heterogeneity from samples of cellular populations. Here, we develop a data-driven approach, illustrated in the context of image data, that estimates the sampling depth required for prospective investigations of single-cell heterogeneity from an existing collection of samples. ...

  15. Preimplantation genetic diagnosis of Von Hippel-Lindau disease cancer syndrome by combined mutation and segregation analysis

    Directory of Open Access Journals (Sweden)

    Denilce R. Sumita

    2007-03-01

    Full Text Available Von Hippel-Lindau (VHL disease is an autosomal dominant cancer syndrome, associated with the development of tumors and cysts in multiple organ systems, whose expression and age of onset are highly variable. The VHL disease tumor suppressor gene (VHL maps to 3p25-p26 and mutations ranging from a single base change to large deletions have been detected in patients with VHL disease. We developed a single cell PCR protocol for preimplantation genetic diagnosis (PGD of VHL disease to select unaffected embryos on the basis of the detection of the specific mutation and segregation analysis of polymorphic linked markers. Multiplex-nested PCR using single buccal cells of an affected individual were performed in order to test the accuracy and reliability of this single-cell protocol. For each locus tested, amplification efficiency was 83% to 87% and allelic drop-out rates ranged from 12% to 8%. Three VHL disease PGD cycles were performed on cells from a couple with paternal transmission of a 436delC mutation in exon 2 of the VHL gene, leading to the identification of three unaffected embryos. Independent of the mutation present, this general PGD protocol for the diagnosis of VHL disease can be used in families informative for either the D3S1038 or D3S1317 microsatellite markers.

  16. Personality and divorce: a genetic analysis.

    Science.gov (United States)

    Jocklin, V; McGue, M; Lykken, D T

    1996-08-01

    M. McGue and D.T. Lykken (1992) found that divorce risk was, to a substantial degree, genetically mediated; prior research has identified numerous social and psychological factors that affect divorce risk (G.C. Kitson, K.B. Barbi, & M.J. Roach, 1985). The present study attempted to link these domains by examining the extent to which genetic influences on one such psychological factor, personality, explain divorce risk heritability. A sample of adult twins from the Minnesota Twin Registry completed a marital history questionnaire and the Multidimensional Personality Questionnaire (A. Tellegen, 1982). Positive Emotionality and Negative Emotionality factors were positively related to divorce risk, whereas Constraint was negatively related. In women and men, respectively, 30% and 42% of the heritability of divorce risk consisted of genetic factors affecting personality and divorce risk correlated largely as a result of these common genetic influences.

  17. Genetic algorithms and supernovae type Ia analysis

    International Nuclear Information System (INIS)

    Bogdanos, Charalampos; Nesseris, Savvas

    2009-01-01

    We introduce genetic algorithms as a means to analyze supernovae type Ia data and extract model-independent constraints on the evolution of the Dark Energy equation of state w(z) ≡ P DE /ρ DE . Specifically, we will give a brief introduction to the genetic algorithms along with some simple examples to illustrate their advantages and finally we will apply them to the supernovae type Ia data. We find that genetic algorithms can lead to results in line with already established parametric and non-parametric reconstruction methods and could be used as a complementary way of treating SNIa data. As a non-parametric method, genetic algorithms provide a model-independent way to analyze data and can minimize bias due to premature choice of a dark energy model

  18. Analysis of genetic structure in Melia volkensii (Gurke.) populations ...

    African Journals Online (AJOL)

    Administrator

    2Farm Forestry Programme, Kenya Forestry Research Institute, P. O. Box 20412, Nairobi, Kenya. Accepted 5 ... were used to estimate genetic distances between populations and for construction of neighbour-joining phenograms. Analysis of Molecular Variance (AMOVA) indicated significant genetic differentiation between ...

  19. Quantum Dot Platform for Single-Cell Molecular Profiling

    Science.gov (United States)

    Zrazhevskiy, Pavel S.

    In-depth understanding of the nature of cell physiology and ability to diagnose and control the progression of pathological processes heavily rely on untangling the complexity of intracellular molecular mechanisms and pathways. Therefore, comprehensive molecular profiling of individual cells within the context of their natural tissue or cell culture microenvironment is essential. In principle, this goal can be achieved by tagging each molecular target with a unique reporter probe and detecting its localization with high sensitivity at sub-cellular resolution, primarily via microscopy-based imaging. Yet, neither widely used conventional methods nor more advanced nanoparticle-based techniques have been able to address this task up to date. High multiplexing potential of fluorescent probes is heavily restrained by the inability to uniquely match probes with corresponding molecular targets. This issue is especially relevant for quantum dot probes---while simultaneous spectral imaging of up to 10 different probes is possible, only few can be used concurrently for staining with existing methods. To fully utilize multiplexing potential of quantum dots, it is necessary to design a new staining platform featuring unique assignment of each target to a corresponding quantum dot probe. This dissertation presents two complementary versatile approaches towards achieving comprehensive single-cell molecular profiling and describes engineering of quantum dot probes specifically tailored for each staining method. Analysis of expanded molecular profiles is achieved through augmenting parallel multiplexing capacity with performing several staining cycles on the same specimen in sequential manner. In contrast to other methods utilizing quantum dots or other nanoparticles, which often involve sophisticated probe synthesis, the platform technology presented here takes advantage of simple covalent bioconjugation and non-covalent self-assembly mechanisms for straightforward probe

  20. An analysis of food irradiation : genetic effects

    International Nuclear Information System (INIS)

    MacPhee, D.; Hall, W.

    1988-01-01

    A series of studies undertaken at the National Institute of Nutrition (NIN) in India in the 1970s reported the occurrence of polyploidy in bone-marrow or peripheral lymphocytes in a number of species, including children, fed on freshly irradiated wheat. Opponents of food irradiation use these studies as evidence that genetic damage is caused by the consumption of irradiated food. This review of those NIN studies and of the attempts to replicate them and of two other relevant studies concludes that the claim that consumption of irradiated food causes genetic damage has not been substantiated. Other researchers have been unable to replicate the NIN studies. Polyploidy appears to be a poor indicator of genetic damage and the NIN results are biologically implausible

  1. Preparation of Single Cells for Imaging Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Berman, E S; Fortson, S L; Kulp, K S; Checchi, K D; Wu, L; Felton, J S; Wu, K J

    2007-10-24

    Characterizing chemical changes within single cells is important for determining fundamental mechanisms of biological processes that will lead to new biological insights and improved disease understanding. Imaging biological systems with mass spectrometry (MS) has gained popularity in recent years as a method for creating precise chemical maps of biological samples. In order to obtain high-quality mass spectral images that provide relevant molecular information about individual cells, samples must be prepared so that salts and other cell-culture components are removed from the cell surface and the cell contents are rendered accessible to the desorption beam. We have designed a cellular preparation protocol for imaging MS that preserves the cellular contents for investigation and removes the majority of the interfering species from the extracellular matrix. Using this method, we obtain excellent imaging results and reproducibility in three diverse cell types: MCF7 human breast cancer cells, Madin-Darby canine kidney (MDCK) cells, and NIH/3T3 mouse fibroblasts. This preparation technique allows routine imaging MS analysis of cultured cells, allowing for any number of experiments aimed at furthering scientific understanding of molecular processes within individual cells.

  2. A Genetic Analysis of Crystal Growth

    DEFF Research Database (Denmark)

    Brown, Stanley; Sarikaya, Mehmet; Johnson, E.

    2000-01-01

    The regulation of crystal morphology by proteins is often observed in biology. It is a central feature in the formation of hard tissues such as bones, teeth and mollusc shells. We have developed a genetic system in the bacterium Escherichia coli to study the protein-mediated control of crystal...

  3. Analysis of the genetic diversity of four rabbit genotypes using ...

    African Journals Online (AJOL)

    Dr.Ola

    2013-05-15

    May 15, 2013 ... consumption and low cost, it has been widely utilized in genetics analysis in ... isozyme variation among the selected individuals within each rabbit genotype. ... with different embryo survival (Bolet and Theau-Clement, 1994).

  4. Genetic analysis of a consanguineous Pakistani family with Leber ...

    Indian Academy of Sciences (India)

    2014-08-01

    Aug 1, 2014 ... RESEARCH NOTE. Genetic analysis of a consanguineous Pakistani family with Leber .... representation of the deleterious mutation at genomic and protein level. ... In the last couple of years, numerous mutations in. GUCY2D ...

  5. A genetic analysis of segregation distortion revealed by molecular ...

    Indian Academy of Sciences (India)

    Journal of Genetics, Vol. 90, No. ... Segregation analysis was based on 64 molecular markers, including 26 .... FHB of RIL populations was controlled by quantitative trait ... The authors acknowledge financial support by the National Basic.

  6. Analysis of genetic diversity in mango ( Mangifera indica L.) using ...

    African Journals Online (AJOL)

    Analysis of genetic diversity in mango ( Mangifera indica L.) using isozymetic polymorphism. ... All the isozymes, used in the present study showed polymorphism for mango. A total of 25 different electrophoretic ... HOW TO USE AJOL.

  7. Phenotypic and molecular genetic analysis of Pyruvate Kinase ...

    African Journals Online (AJOL)

    Phenotypic and molecular genetic analysis of Pyruvate Kinase deficiency in a Tunisian family. Jaouani Mouna, Hamdi Nadia, Chaouch Leila, Kalai Miniar, Mellouli Fethi, Darragi Imen, Boudriga Imen, Chaouachi Dorra, Bejaoui Mohamed, Abbes Salem ...

  8. Identification of innate lymphoid cells in single-cell RNA-Seq data.

    Science.gov (United States)

    Suffiotti, Madeleine; Carmona, Santiago J; Jandus, Camilla; Gfeller, David

    2017-07-01

    Innate lymphoid cells (ILCs) consist of natural killer (NK) cells and non-cytotoxic ILCs that are broadly classified into ILC1, ILC2, and ILC3 subtypes. These cells recently emerged as important early effectors of innate immunity for their roles in tissue homeostasis and inflammation. Over the last few years, ILCs have been extensively studied in mouse and human at the functional and molecular level, including gene expression profiling. However, sorting ILCs with flow cytometry for gene expression analysis is a delicate and time-consuming process. Here we propose and validate a novel framework for studying ILCs at the transcriptomic level using single-cell RNA-Seq data. Our approach combines unsupervised clustering and a new cell type classifier trained on mouse ILC gene expression data. We show that this approach can accurately identify different ILCs, especially ILC2 cells, in human lymphocyte single-cell RNA-Seq data. Our new model relies only on genes conserved across vertebrates, thereby making it in principle applicable in any vertebrate species. Considering the rapid increase in throughput of single-cell RNA-Seq technology, our work provides a computational framework for studying ILC2 cells in single-cell transcriptomic data and may help exploring their conservation in distant vertebrate species.

  9. Prognostic significance of tumor budding and single cell invasion in gastric adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Che K

    2017-02-01

    Full Text Available Keying Che,1,* Yang Zhao,2,3,* Xiao Qu,1 Zhaofei Pang,1 Yang Ni,4 Tiehong Zhang,4 Jiajun Du,1,5 Hongchang Shen4 1Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 2Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Collaborative Innovation Center of Cancer Medicine, Fudan University Shanghai Cancer Center, 3Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 4Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 5Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People’s Republic of China *These authors contributed equally to this work Purpose: Gastric carcinoma (GC is a highly aggressive cancer and one of the leading causes of cancer-related deaths worldwide. Histopathological evaluation pertaining to invasiveness is likely to provide additional information in relation to patient outcome. In this study, we aimed to evaluate the prognostic significance of tumor budding and single cell invasion in gastric adenocarcinoma.Materials and methods: Hematoxylin and eosin-stained slides generated from 296 gastric adenocarcinoma patients with full clinical and pathological and follow-up information were systematically reviewed. The patients were grouped on the basis of tumor budding, single cell invasion, large cell invasion, mitotic count, and fibrosis. The association between histopathological parameters, different classification systems, and overall survival (OS was statistically analyzed.Results: Among the 296 cases that were analyzed, high-grade tumor budding was observed in 49.0% (145 of them. Single cell invasion and large cell invasion were observed in 62.8% (186 and 16.9% (50 of the cases, respectively. Following univariate analysis, patients with high-grade tumor budding had shorter OS than those with low-grade tumor budding (hazard ratio [HR]: 2.260, P<0

  10. Genetic analysis of sunflower chlorophyll mutants

    International Nuclear Information System (INIS)

    Mashkina, E.V.; Guskov, E.P.

    2001-01-01

    The method of getting the chlorophyll mutations in sunflower was developed by Y.D. Beletskii in 1969 with the use of N-nitroso-N-methylurea (NMH). Certain concentrations of NMH are known to induce plastid mutations in growing seeds, and their yield depends on the duration of the exposure. The given work presented studies on the influence of rifampicin (R) and 2,4-dinitrophenol (DNP) on the genetic activity NMH, as an inductor of plastid and nuclear mutations

  11. Simultaneous Multiplexed Measurement of RNA and Proteins in Single Cells

    Directory of Open Access Journals (Sweden)

    Spyros Darmanis

    2016-01-01

    Full Text Available Significant advances have been made in methods to analyze genomes and transcriptomes of single cells, but to fully define cell states, proteins must also be accessed as central actors defining a cell’s phenotype. Methods currently used to analyze endogenous protein expression in single cells are limited in specificity, throughput, or multiplex capability. Here, we present an approach to simultaneously and specifically interrogate large sets of protein and RNA targets in lysates from individual cells, enabling investigations of cell functions and responses. We applied our method to investigate the effects of BMP4, an experimental therapeutic agent, on early-passage glioblastoma cell cultures. We uncovered significant heterogeneity in responses to treatment at levels of RNA and protein, with a subset of cells reacting in a distinct manner to BMP4. Moreover, we found overall poor correlation between protein and RNA at the level of single cells, with proteins more accurately defining responses to treatment.

  12. Spatial reconstruction of single-cell gene expression data.

    Science.gov (United States)

    Satija, Rahul; Farrell, Jeffrey A; Gennert, David; Schier, Alexander F; Regev, Aviv

    2015-05-01

    Spatial localization is a key determinant of cellular fate and behavior, but methods for spatially resolved, transcriptome-wide gene expression profiling across complex tissues are lacking. RNA staining methods assay only a small number of transcripts, whereas single-cell RNA-seq, which measures global gene expression, separates cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos and generated a transcriptome-wide map of spatial patterning. We confirmed Seurat's accuracy using several experimental approaches, then used the strategy to identify a set of archetypal expression patterns and spatial markers. Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems.

  13. Spatial reconstruction of single-cell gene expression

    Science.gov (United States)

    Satija, Rahul; Farrell, Jeffrey A.; Gennert, David; Schier, Alexander F.; Regev, Aviv

    2015-01-01

    Spatial localization is a key determinant of cellular fate and behavior, but spatial RNA assays traditionally rely on staining for a limited number of RNA species. In contrast, single-cell RNA-seq allows for deep profiling of cellular gene expression, but established methods separate cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos, inferring a transcriptome-wide map of spatial patterning. We confirmed Seurat’s accuracy using several experimental approaches, and used it to identify a set of archetypal expression patterns and spatial markers. Additionally, Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems. PMID:25867923

  14. What Population Reveals about Individual Cell Identity: Single-Cell Parameter Estimation of Models of Gene Expression in Yeast.

    Directory of Open Access Journals (Sweden)

    Artémis Llamosi

    2016-02-01

    Full Text Available Significant cell-to-cell heterogeneity is ubiquitously observed in isogenic cell populations. Consequently, parameters of models of intracellular processes, usually fitted to population-averaged data, should rather be fitted to individual cells to obtain a population of models of similar but non-identical individuals. Here, we propose a quantitative modeling framework that attributes specific parameter values to single cells for a standard model of gene expression. We combine high quality single-cell measurements of the response of yeast cells to repeated hyperosmotic shocks and state-of-the-art statistical inference approaches for mixed-effects models to infer multidimensional parameter distributions describing the population, and then derive specific parameters for individual cells. The analysis of single-cell parameters shows that single-cell identity (e.g. gene expression dynamics, cell size, growth rate, mother-daughter relationships is, at least partially, captured by the parameter values of gene expression models (e.g. rates of transcription, translation and degradation. Our approach shows how to use the rich information contained into longitudinal single-cell data to infer parameters that can faithfully represent single-cell identity.

  15. Single-cell vs. bulk activity properties of coastal bacterioplankton over an annual cycle in a temperate ecosystem.

    Science.gov (United States)

    Morán, Xosé Anxelu G; Calvo-Díaz, Alejandra

    2009-01-01

    The connections between single-cell activity properties of heterotrophic planktonic bacteria and whole community metabolism are still poorly understood. Here, we show flow cytometry single-cell analysis of membrane-intact (live), high nucleic acid (HNA) content and actively respiring (CTC+) bacteria with samples collected monthly during 2006 in northern Spain coastal waters. Bulk activity was assessed by measuring 3H-Leucine incorporation and specific growth rates. Consistently, different single-cell relative abundances were found, with 60-100% for live, 30-84% for HNA and 0.2-12% for CTC+ cells. Leucine incorporation rates (2-153 pmol L(-1) h(-1)), specific growth rates (0.01-0.29 day(-1)) and the total and relative abundances of the three single-cell groups showed marked seasonal patterns. Distinct depth distributions during summer stratification and different relations with temperature, chlorophyll and bacterial biovolume suggest the existence of different controlling factors on each single-cell property. Pooled leucine incorporation rates were similarly correlated with the abundance of all physiological groups, while specific growth rates were only substantially explained by the percentage of CTC+ cells. However, the ability to reduce CTC proved notably better than the other two single-cell properties at predicting bacterial bulk rates within seasons, suggesting a tight linkage between bacterial individual respiration and biomass production at the community level.

  16. Multivariate Survival Mixed Models for Genetic Analysis of Longevity Traits

    DEFF Research Database (Denmark)

    Pimentel Maia, Rafael; Madsen, Per; Labouriau, Rodrigo

    2014-01-01

    A class of multivariate mixed survival models for continuous and discrete time with a complex covariance structure is introduced in a context of quantitative genetic applications. The methods introduced can be used in many applications in quantitative genetics although the discussion presented co...... applications. The methods presented are implemented in such a way that large and complex quantitative genetic data can be analyzed......A class of multivariate mixed survival models for continuous and discrete time with a complex covariance structure is introduced in a context of quantitative genetic applications. The methods introduced can be used in many applications in quantitative genetics although the discussion presented...... concentrates on longevity studies. The framework presented allows to combine models based on continuous time with models based on discrete time in a joint analysis. The continuous time models are approximations of the frailty model in which the hazard function will be assumed to be piece-wise constant...

  17. Multivariate Survival Mixed Models for Genetic Analysis of Longevity Traits

    DEFF Research Database (Denmark)

    Pimentel Maia, Rafael; Madsen, Per; Labouriau, Rodrigo

    2013-01-01

    A class of multivariate mixed survival models for continuous and discrete time with a complex covariance structure is introduced in a context of quantitative genetic applications. The methods introduced can be used in many applications in quantitative genetics although the discussion presented co...... applications. The methods presented are implemented in such a way that large and complex quantitative genetic data can be analyzed......A class of multivariate mixed survival models for continuous and discrete time with a complex covariance structure is introduced in a context of quantitative genetic applications. The methods introduced can be used in many applications in quantitative genetics although the discussion presented...... concentrates on longevity studies. The framework presented allows to combine models based on continuous time with models based on discrete time in a joint analysis. The continuous time models are approximations of the frailty model in which the hazard function will be assumed to be piece-wise constant...

  18. Polyglot programming in applications used for genetic data analysis.

    Science.gov (United States)

    Nowak, Robert M

    2014-01-01

    Applications used for the analysis of genetic data process large volumes of data with complex algorithms. High performance, flexibility, and a user interface with a web browser are required by these solutions, which can be achieved by using multiple programming languages. In this study, I developed a freely available framework for building software to analyze genetic data, which uses C++, Python, JavaScript, and several libraries. This system was used to build a number of genetic data processing applications and it reduced the time and costs of development.

  19. COMPARITIVE GENETIC DIVERSITY ANALYSIS OF OAT (Avena ...

    African Journals Online (AJOL)

    knsccf

    protein and 30 to 35% dry matter. ... environment interaction, hence not much dependable but ... Principal coordinate (3D) analysis was .... Relationships among 20 genotypes of oat visualized by principal component analysis (PCoA) of rainfed ...

  20. Conversion of Food waste to Single Cell Protein using Aspergillus ...

    African Journals Online (AJOL)

    The utilization of food waste into products like single cell protein is an alternative solution to global protein shortage and to alleviate pollution problems. This investigation was carried out with food wastes such as orange, pineapple, banana, watermelon and cucumber waste as growth media for A. niger using standard ...

  1. PRODt;CTION OF SINGLE CELL PROTEIN FROM BREWERY ...

    African Journals Online (AJOL)

    BSN

    customary food and feed sources of protein (agriculnrre and fishery) to ocher sources like single cell protein (SCP); whose production from hydrocarbons is one ... origin is unicellular or simple multicellular organism such as bacteria, yeasts, fungi, algae. protozoa, mid even bacterinphagcs generally cultivated on substrates ...

  2. PRODt;CTION OF SINGLE CELL PROTEIN FROM BREWERY ...

    African Journals Online (AJOL)

    BSN

    origin is unicellular or simple multicellular organism such as bacteria, yeasts, fungi, ... Pilot plant produe1io11 of single cell proteins now take place in several centre.ii in ... animal feed but little or no information has been documented as per its ...

  3. Signatures of nonlinearity in single cell noise-induced oscillations

    NARCIS (Netherlands)

    Thomas, P.; Straube, A.V.; Timmer, J.; Fleck, C.; Grima, R.

    2013-01-01

    A class of theoretical models seeks to explain rhythmic single cell data by postulating that they are generated by intrinsic noise in biochemical systems whose deterministic models exhibit only damped oscillations. The main features of such noise-induced oscillations are quantified by the power

  4. Single-cell LEP-type cavity on measurement stand

    CERN Multimedia

    CERN PhotoLab

    1982-01-01

    A single-cell cavity, made of copper, with tapered connectors for impedance measurements. It was used as a model of LEP-type superconducting cavities, to investigate impedance and higher-order modes and operated at around 600 MHz (the LEP acceleration frequency was 352.2 MHz). See 8202500.

  5. Microbeam evolution: From single cell irradiation to preclinical studies

    DEFF Research Database (Denmark)

    Ghita, Mihaela; Fernandez-Palomo, Cristian; Fukunaga, Hisanori

    2018-01-01

    Purpose: This review follows the development of microbeam technology from the early days of single cell irradiations, to investigations of specific cellular mechanisms and to the development of new treatment modalities in vivo. A number of microbeam applications are discussed with a focus on prec...... to deliver radiotherapy using plane parallel microbeams, in Microbeam Radiotherapy (MRT)....

  6. Evaluation of yeast single cell protein (SCP) diets on growth ...

    African Journals Online (AJOL)

    An investigation was carried out on the possibility of replacing fishmeal with graded levels of yeast single cell protein (SCP; 10, 20, 30, 40 and 50%) in isonitrogenous feed formulations (30% protein) in the diet of Oreochromis niloticus fingerlings for a period of 12 weeks. The control diet had fishmeal as the primary protein ...

  7. The single-cell gel electrophoresis assay to determine apoptosis ...

    African Journals Online (AJOL)

    When the frequency of appearance of apoptotic cells following was observed over a period of time, there was a significant increase in appearance of apoptosis when using single cell gel electrophoresis assay. The present report demonstrates that the characteristic pattern of apoptotic comets detected by the comet assay ...

  8. Single-cell sequencing to quantify genomic integrity in cancer

    NARCIS (Netherlands)

    van den Bos, Hilda; Bakker, Bjorn; Spierings, Diana C J; Lansdorp, Peter M; Foijer, Floris

    The use of single-cell DNA sequencing (sc-seq) techniques for the diagnosis, prognosis and treatment of cancer is a rapidly developing field. Sc-seq research is gaining momentum by decreased sequencing costs and continuous improvements in techniques. In this review, we provide an overview of recent

  9. Parameter determination for quantitative PIXE analysis using genetic algorithms

    International Nuclear Information System (INIS)

    Aspiazu, J.; Belmont-Moreno, E.

    1996-01-01

    For biological and environmental samples, PIXE technique is in particular advantage for elemental analysis, but the quantitative analysis implies accomplishing complex calculations that require the knowledge of more than a dozen parameters. Using a genetic algorithm, the authors give here an account of the procedure to obtain the best values for the parameters necessary to fit the efficiency for a X-ray detector. The values for some variables involved in quantitative PIXE analysis, were manipulated in a similar way as the genetic information is treated in a biological process. The authors carried out the algorithm until they reproduce, within the confidence interval, the elemental concentrations corresponding to a reference material

  10. Genetic Diversity of Rose germplasm based on RAPD analysis

    African Journals Online (AJOL)

    AHSAN IQBAL

    2012-06-12

    Jun 12, 2012 ... identification and analysis of genetic variation within a collection of 4 species and 30 accessions of rose using RAPD analysis technique. The results showed the molecular distinctions among the ... that range in colour from white and yellow to many shades of pink and red have been developed. Since.

  11. Genetic data analysis for plant and animal breeding

    Science.gov (United States)

    This book is an advanced textbook covering the application of quantitative genetics theory to analysis of actual data (both trait and DNA marker information) for breeding populations of crops, trees, and animals. Chapter 1 is an introduction to basic software used for trait data analysis. Chapter 2 ...

  12. Single-cell intracellular nano-pH probes†

    Science.gov (United States)

    Özel, Rıfat Emrah; Lohith, Akshar; Mak, Wai Han; Pourmand, Nader

    2016-01-01

    Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular pH of individual cells within a cell population is challenging with existing technologies, and there is a need to engineer new methodologies. In this paper, we discuss the use of nanopipette technology to overcome the limitations of intracellular pH measurements at the single-cell level. We have developed a nano-pH probe through physisorption of chitosan onto hydroxylated quartz nanopipettes with extremely small pore sizes (~100 nm). The dynamic pH range of the nano-pH probe was from 2.6 to 10.7 with a sensitivity of 0.09 units. We have performed single-cell intracellular pH measurements using non-cancerous and cancerous cell lines, including human fibroblasts, HeLa, MDA-MB-231 and MCF-7, with the pH nanoprobe. We have further demonstrated the real-time continuous single-cell pH measurement capability of the sensor, showing the cellular pH response to pharmaceutical manipulations. These findings suggest that the chitosan-functionalized nanopore is a powerful nano-tool for pH sensing at the single-cell level with high temporal and spatial resolution. PMID:27708772

  13. Single-cell intracellular nano-pH probes.

    Science.gov (United States)

    Özel, Rıfat Emrah; Lohith, Akshar; Mak, Wai Han; Pourmand, Nader

    2015-01-01

    Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular pH of individual cells within a cell population is challenging with existing technologies, and there is a need to engineer new methodologies. In this paper, we discuss the use of nanopipette technology to overcome the limitations of intracellular pH measurements at the single-cell level. We have developed a nano-pH probe through physisorption of chitosan onto hydroxylated quartz nanopipettes with extremely small pore sizes (~100 nm). The dynamic pH range of the nano-pH probe was from 2.6 to 10.7 with a sensitivity of 0.09 units. We have performed single-cell intracellular pH measurements using non-cancerous and cancerous cell lines, including human fibroblasts, HeLa, MDA-MB-231 and MCF-7, with the pH nanoprobe. We have further demonstrated the real-time continuous single-cell pH measurement capability of the sensor, showing the cellular pH response to pharmaceutical manipulations. These findings suggest that the chitosan-functionalized nanopore is a powerful nano-tool for pH sensing at the single-cell level with high temporal and spatial resolution.

  14. Detecting β-thalassaemia mutations from a single cell by PEP and RDB

    Institute of Scientific and Technical Information of China (English)

    YI Ping; LI Li; YAO Hong; ZHOU Yuan-guo; DENG Bing; CHEN Zhu-qin

    2006-01-01

    Objective:To evaluate the possibility of the technology involving PEP and RDB for detecting β-thalassaemia multipoint mutations from a single cell simultaneously. Methods: A set of allele specific oligonucleotide (ASO) probes used for detecting 8 familiar β-thalassaemia mutations (CD41-42, IVS- Ⅱ -654, CD17, TATA box nt-28, CD71-72, TATA box nt-29, CD26, IVS- Ⅰ -5) were immobilized on a strip of nylon membrane. The genome of a individual cell was amplified by primer extension preamplification (PEP) with the mixture of15-base random oligonucleotides. The aliquots from PEP were used to amplify the objective gene fractions of β-thalassaemia gene by nested or semi-nested PCR. The membrane was hybridized with the final amplified products and then treated with Streptavidin-HRP and color development.Results :Totally 30 lymphocytes were picked up from blood samples of 1 healthy female and 4 patients with known β-thalassaemia mutations respectively. Each single lymphocyte was lysed in the proteinase K buffer. The amplification efficacy was 94.0% and alle drop-out(ADO) rate was 8.0%. Revert dot blot (RDB) was applied to the final amplified products from the 5 participants. The results of diagnosis were the same to the expected, and their genotypes were N/N, CD17 (A→T)/N, IVS- Ⅱ -654(C→T)/CD17(A → T), CD41-42 (-CTTT)/N and TATA box nt-28 (A→G)/N, respectively. Conclusion: The technology involving PEP and RDB could detectmultiple β-thalassaemia mutations from a single cell simultaneously,and the research provides experimental evidences for the feasibility of applying PEP and DNA array technology to screening multiple genetic mutations from a single cell, and will be applied to preimplantation genetic diagnosis and non-invasive prenatal diagnosis for β-thalassaemia.

  15. Timing Analysis of Genetic Logic Circuits using D-VASim

    DEFF Research Database (Denmark)

    Baig, Hasan; Madsen, Jan

    and propagation delay analysis of single as well as cascaded geneticlogic circuits can be performed. D-VASim allows user to change the circuit parameters during runtime simulation to observe its effectson circuit’s timing behavior. The results obtained from D-VASim can be used not only to characterize the timing...... delay analysis may play a very significant role in the designing of genetic logic circuits. In thisdemonstration, we present the capability of D-VASim (Dynamic Virtual Analyzer and Simulator) to perform the timing and propagationdelay analysis of genetic logic circuits. Using D-VASim, the timing...... behavior of geneticlogic circuits but also to analyze the timing constraints of cascaded genetic logic circuits....

  16. Smoking and caffeine consumption: a genetic analysis of their association.

    Science.gov (United States)

    Treur, Jorien L; Taylor, Amy E; Ware, Jennifer J; Nivard, Michel G; Neale, Michael C; McMahon, George; Hottenga, Jouke-Jan; Baselmans, Bart M L; Boomsma, Dorret I; Munafò, Marcus R; Vink, Jacqueline M

    2017-07-01

    Smoking and caffeine consumption show a strong positive correlation, but the mechanism underlying this association is unclear. Explanations include shared genetic/environmental factors or causal effects. This study employed three methods to investigate the association between smoking and caffeine. First, bivariate genetic models were applied to data of 10 368 twins from the Netherlands Twin Register in order to estimate genetic and environmental correlations between smoking and caffeine use. Second, from the summary statistics of meta-analyses of genome-wide association studies on smoking and caffeine, the genetic correlation was calculated by LD-score regression. Third, causal effects were tested using Mendelian randomization analysis in 6605 Netherlands Twin Register participants and 5714 women from the Avon Longitudinal Study of Parents and Children. Through twin modelling, a genetic correlation of r0.47 and an environmental correlation of r0.30 were estimated between current smoking (yes/no) and coffee use (high/low). Between current smoking and total caffeine use, this was r0.44 and r0.00, respectively. LD-score regression also indicated sizeable genetic correlations between smoking and coffee use (r0.44 between smoking heaviness and cups of coffee per day, r0.28 between smoking initiation and coffee use and r0.25 between smoking persistence and coffee use). Consistent with the relatively high genetic correlations and lower environmental correlations, Mendelian randomization provided no evidence for causal effects of smoking on caffeine or vice versa. Genetic factors thus explain most of the association between smoking and caffeine consumption. These findings suggest that quitting smoking may be more difficult for heavy caffeine consumers, given their genetic susceptibility. © 2016 The Authors.Addiction Biology published by John Wiley & Sons Ltd on behalf of Society for the Study of Addiction.

  17. Single cell Hi-C reveals cell-to-cell variability in chromosome structure

    Science.gov (United States)

    Schoenfelder, Stefan; Yaffe, Eitan; Dean, Wendy; Laue, Ernest D.; Tanay, Amos; Fraser, Peter

    2013-01-01

    Large-scale chromosome structure and spatial nuclear arrangement have been linked to control of gene expression and DNA replication and repair. Genomic techniques based on chromosome conformation capture assess contacts for millions of loci simultaneously, but do so by averaging chromosome conformations from millions of nuclei. Here we introduce single cell Hi-C, combined with genome-wide statistical analysis and structural modeling of single copy X chromosomes, to show that individual chromosomes maintain domain organisation at the megabase scale, but show variable cell-to-cell chromosome territory structures at larger scales. Despite this structural stochasticity, localisation of active gene domains to boundaries of territories is a hallmark of chromosomal conformation. Single cell Hi-C data bridge current gaps between genomics and microscopy studies of chromosomes, demonstrating how modular organisation underlies dynamic chromosome structure, and how this structure is probabilistically linked with genome activity patterns. PMID:24067610

  18. Genetic diversity analysis of common beans based on molecular markers

    Directory of Open Access Journals (Sweden)

    Homar R. Gill-Langarica

    Full Text Available A core collection of the common bean (Phaseolus vulgaris L., representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each, as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP +3/+3 primer combinations and seven simple sequence repeats (SSR loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA and molecular variance (AMOVA analyses. AFLP analysis produced 530 bands (88.5% polymorphic while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus. AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  19. A roadmap for the genetic analysis of renal aging

    Science.gov (United States)

    Noordmans, Gerda A; Hillebrands, Jan-Luuk; van Goor, Harry; Korstanje, Ron

    2015-01-01

    Several studies show evidence for the genetic basis of renal disease, which renders some individuals more prone than others to accelerated renal aging. Studying the genetics of renal aging can help us to identify genes involved in this process and to unravel the underlying pathways. First, this opinion article will give an overview of the phenotypes that can be observed in age-related kidney disease. Accurate phenotyping is essential in performing genetic analysis. For kidney aging, this could include both functional and structural changes. Subsequently, this article reviews the studies that report on candidate genes associated with renal aging in humans and mice. Several loci or candidate genes have been found associated with kidney disease, but identification of the specific genetic variants involved has proven to be difficult. CUBN, UMOD, and SHROOM3 were identified by human GWAS as being associated with albuminuria, kidney function, and chronic kidney disease (CKD). These are promising examples of genes that could be involved in renal aging, and were further mechanistically evaluated in animal models. Eventually, we will provide approaches for performing genetic analysis. We should leverage the power of mouse models, as testing in humans is limited. Mouse and other animal models can be used to explain the underlying biological mechanisms of genes and loci identified by human GWAS. Furthermore, mouse models can be used to identify genetic variants associated with age-associated histological changes, of which Far2, Wisp2, and Esrrg are examples. A new outbred mouse population with high genetic diversity will facilitate the identification of genes associated with renal aging by enabling high-resolution genetic mapping while also allowing the control of environmental factors, and by enabling access to renal tissues at specific time points for histology, proteomics, and gene expression. PMID:26219736

  20. Genetic diversity analysis of common beans based on molecular markers

    Directory of Open Access Journals (Sweden)

    Homar R. Gill-Langarica

    2011-01-01

    Full Text Available A core collection of the common bean (Phaseolus vulgaris L., representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each, as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP +3/+3 primer combinations and seven simple sequence repeats (SSR loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA and molecular variance (AMOVA analyses. AFLP analysis produced 530 bands (88.5% polymorphic while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus. AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  1. A roadmap for the genetic analysis of renal aging.

    Science.gov (United States)

    Noordmans, Gerda A; Hillebrands, Jan-Luuk; van Goor, Harry; Korstanje, Ron

    2015-10-01

    Several studies show evidence for the genetic basis of renal disease, which renders some individuals more prone than others to accelerated renal aging. Studying the genetics of renal aging can help us to identify genes involved in this process and to unravel the underlying pathways. First, this opinion article will give an overview of the phenotypes that can be observed in age-related kidney disease. Accurate phenotyping is essential in performing genetic analysis. For kidney aging, this could include both functional and structural changes. Subsequently, this article reviews the studies that report on candidate genes associated with renal aging in humans and mice. Several loci or candidate genes have been found associated with kidney disease, but identification of the specific genetic variants involved has proven to be difficult. CUBN, UMOD, and SHROOM3 were identified by human GWAS as being associated with albuminuria, kidney function, and chronic kidney disease (CKD). These are promising examples of genes that could be involved in renal aging, and were further mechanistically evaluated in animal models. Eventually, we will provide approaches for performing genetic analysis. We should leverage the power of mouse models, as testing in humans is limited. Mouse and other animal models can be used to explain the underlying biological mechanisms of genes and loci identified by human GWAS. Furthermore, mouse models can be used to identify genetic variants associated with age-associated histological changes, of which Far2, Wisp2, and Esrrg are examples. A new outbred mouse population with high genetic diversity will facilitate the identification of genes associated with renal aging by enabling high-resolution genetic mapping while also allowing the control of environmental factors, and by enabling access to renal tissues at specific time points for histology, proteomics, and gene expression. © 2015 The Authors. Aging Cell published by the Anatomical Society and John

  2. Genetic diversity analysis of common beans based on molecular markers.

    Science.gov (United States)

    Gill-Langarica, Homar R; Muruaga-Martínez, José S; Vargas-Vázquez, M L Patricia; Rosales-Serna, Rigoberto; Mayek-Pérez, Netzahualcoyotl

    2011-10-01

    A core collection of the common bean (Phaseolus vulgaris L.), representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico) Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions) was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each), as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP) +3/+3 primer combinations and seven simple sequence repeats (SSR) loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA) and molecular variance (AMOVA) analyses. AFLP analysis produced 530 bands (88.5% polymorphic) while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus). AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  3. Single-cell analysis of dihydroartemisinin-induced apoptosis through reactive oxygen species-mediated caspase-8 activation and mitochondrial pathway in ASTC-a-1 cells using fluorescence imaging techniques

    Science.gov (United States)

    Lu, Ying-Ying; Chen, Tong-Sheng; Wang, Xiao-Ping; Li, Li

    2010-07-01

    Dihydroartemisinin (DHA), a front-line antimalarial herbal compound, has been shown to possess promising anticancer activity with low toxicity. We have previously reported that DHA induced caspase-3-dependent apoptosis in human lung adenocarcinoma cells. However, the cellular target and molecular mechanism of DHA-induced apoptosis is still poorly defined. We use confocal fluorescence microscopy imaging, fluorescence resonance energy transfer, and fluorescence recovery after photobleaching techniques to explore the roles of DHA-elicited reactive oxygen species (ROS) in the DHA-induced Bcl-2 family proteins activation, mitochondrial dysfunction, caspase cascade, and cell death. Cell Counting Kit-8 assay and flow cytometry analysis showed that DHA induced ROS-mediated apoptosis. Confocal imaging analysis in a single living cell and Western blot assay showed that DHA triggered ROS-dependent Bax translocation, mitochondrial membrane depolarization, alteration of mitochondrial morphology, cytochrome c release, caspase-9, caspase-8, and caspase-3 activation, indicating the coexistence of ROS-mediated mitochondrial and death receptor pathway. Collectively, our findings demonstrate for the first time that DHA induces cell apoptosis by triggering ROS-mediated caspase-8/Bid activation and the mitochondrial pathway, which provides some novel insights into the application of DHA as a potential anticancer drug and a new therapeutic strategy by targeting ROS signaling in lung adenocarcinoma therapy in the future.

  4. A genetic analysis of retinitis pigmentosa

    Directory of Open Access Journals (Sweden)

    Shanker Jayashree

    1993-01-01

    Full Text Available The data consists of sixty probands affected with Retinitis pigmentosa. Syndromic cases were found in five percent of the RP probands. Segregation analysis was carried out on proband sibship data. The ascertainment probability was estimated at 0.5517. Analysis of the data by parental mating types of proband sibships indicated the presence of dominant forms of RP (2.05%. Analysis of proband sibships indicated the presence of low risk families in the Normal x Normal matings (45% and in the consanguineous matings (40%. The hypothesis of recessive inheritance could be confirmed only in multiplex sibships (p = 0.383 +/- 0.0793. Data on proband matings though incomplete conformed in general to autosomal recessive gene hypothesis.

  5. Cryo-imaging of fluorescently labeled single cells in a mouse

    Science.gov (United States)

    Steyer, Grant J.; Roy, Debashish; Salvado, Olivier; Stone, Meredith E.; Wilson, David L.

    2009-02-01

    We developed a cryo-imaging system to provide single-cell detection of fluorescently labeled cells in mouse, with particular applicability to stem cells and metastatic cancer. The Case cryoimaging system consists of a fluorescence microscope, robotic imaging positioner, customized cryostat, PC-based control system, and visualization/analysis software. The system alternates between sectioning (10-40 μm) and imaging, collecting color brightfield and fluorescent blockface image volumes >60GB. In mouse experiments, we imaged quantum-dot labeled stem cells, GFP-labeled cancer and stem cells, and cell-size fluorescent microspheres. To remove subsurface fluorescence, we used a simplified model of light-tissue interaction whereby the next image was scaled, blurred, and subtracted from the current image. We estimated scaling and blurring parameters by minimizing entropy of subtracted images. Tissue specific attenuation parameters were found [uT : heart (267 +/- 47.6 μm), liver (218 +/- 27.1 μm), brain (161 +/- 27.4 μm)] to be within the range of estimates in the literature. "Next image" processing removed subsurface fluorescence equally well across multiple tissues (brain, kidney, liver, adipose tissue, etc.), and analysis of 200 microsphere images in the brain gave 97+/-2% reduction of subsurface fluorescence. Fluorescent signals were determined to arise from single cells based upon geometric and integrated intensity measurements. Next image processing greatly improved axial resolution, enabled high quality 3D volume renderings, and improved enumeration of single cells with connected component analysis by up to 24%. Analysis of image volumes identified metastatic cancer sites, found homing of stem cells to injury sites, and showed microsphere distribution correlated with blood flow patterns. We developed and evaluated cryo-imaging to provide single-cell detection of fluorescently labeled cells in mouse. Our cryo-imaging system provides extreme (>60GB), micron

  6. A genetic analysis of Adh1 regulation

    Energy Technology Data Exchange (ETDEWEB)

    Freeling, M.

    1992-01-01

    The overall goal of our research proposal is to understand the meaning of the various cis-acting sites responsible for AdH1 expression in the entire maize plant. Progress is reported in the following areas: Studies on the TATA box and analysis of revertants of the Adh1-3F1124 allele; screening for more different mutants that affect Adh1 expression differentially; studies on cis-acting sequences required for root-specific Adh1 expression; refinement of the use of the particle gun; and functional analysis of a non- glycolytic anaerobic protein.

  7. Single-cell MALDI-MS as an analytical tool for studying intrapopulation metabolic heterogeneity of unicellular organisms.

    Science.gov (United States)

    Amantonico, Andrea; Urban, Pawel L; Fagerer, Stephan R; Balabin, Roman M; Zenobi, Renato

    2010-09-01

    Heterogeneity is a characteristic feature of all populations of living organisms. Here we make an attempt to validate a single-cell mass spectrometric method for detection of changes in metabolite levels occurring in populations of unicellular organisms. Selected metabolites involved in central metabolism (ADP, ATP, GTP, and UDP-Glucose) could readily be detected in single cells of Closterium acerosum by means of negative-mode matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). The analytical capabilities of this approach were characterized using standard compounds. The method was then used to study populations of individual cells with different levels of the chosen metabolites. With principal component analysis and support vector machine algorithms, it was possible to achieve a clear separation of individual C. acerosum cells in different metabolic states. This study demonstrates the suitability of mass spectrometric analysis of metabolites in single cells to measure cell-population heterogeneity.

  8. Genetic analysis for grain quality traits in pakistani wheat varieties

    International Nuclear Information System (INIS)

    Minhas, N.M.; Ajmal, S.U.; Iqbal, Z.; Munir, M.

    2014-01-01

    A set of eight parental diallel involving seven commercial wheat cultivars and one breeding line was made to investigate the nature of gene action determining inheritance pattern of grain quality characters. Highly significant differences were observed among the genotypes for 1000 grain weight, protein content, wet gluten and lysine content. Adequacy tests were employed to estimate the fitness of data sets to additive dominance model. Both the tests i.e. analysis of uniformity of Wr, Vr and joint regression analysis validated the data of these traits for genetic analysis. Gene actions for grain quality traits were ascertained following Hayman's analysis of variance. Results of the genetic analysis revealed that both additive and dominance genetic components were involved in the manifestation of characters under study. However, additive gene effects were more pronounced in the genetic control of these traits. Non significance of b1, b2 and b3 values revealed the absence of directional dominance, symmetrical distribution of genes among the parental lines and absence of specific genes action respectively in all the traits. Maternal effects were also noted in 1000 grain weight, protein content and wet gluten percentage. It is concluded that additive effects are crucial in the expression of grain quality characters of wheat in germplasm under study and single plant selection may be recommended in segregating generations for effective improvement in these characters. (author)

  9. Genetic analysis of repeated, biparental, diploid, hydatidiform moles

    DEFF Research Database (Denmark)

    Sunde, Lone; Vejerslev, Lars O.; Jensen, Mie Poulsen

    1993-01-01

    for the abnormal development can be envisaged, environmental as well as genetic. To conform to current ideas of molar pathogenesis, it is suggested that the present conceptuses might have arisen from imbalances in imprinted genomic regions. This could be a consequence of uniparental disomy in critical regions......A woman presented with five consecutive pregnancies displaying molar morphology. In the fifth pregnancy, a non-malformed, liveborn infant was delivered. Genetic analyses (RFLP analysis, cytogenetics, flow cytometry) were performed in pregnancies II-V. It was demonstrated that these pregnancies...... originated in separate conceptions, all conceptuses were diploid, and all had maternally as well as paternally derived genetic markers. By cytogenetic analysis, aberrant heteromorphisms were noted; no other abnormalities were observed in chromosome structure or in DNA sequence. Many different causes...

  10. RF Breakdown in Normal Conducting Single-cell Structures

    CERN Document Server

    Dolgashev, Valery A; Higo, Toshiyasu; Nantista, Christopher D; Tantawi, Sami G

    2005-01-01

    Operating accelerating gradient in normal conducting accelerating structures is often limited by rf breakdown. The limit depends on multiple parameters, including input rf power, rf circuit, cavity shape and material. Experimental and theoretical study of the effects of these parameters on the breakdown limit in full scale structures is difficult and costly. We use 11.4 GHz single-cell traveling wave and standing wave accelerating structures for experiments and modeling of rf breakdown behavior. These test structures are designed so that the electromagnetic fields in one cell mimic the fields in prototype multicell structures for the X-band linear collider. Fields elsewhere in the test structures are significantly lower than that of the single cell. The setup uses matched mode converters that launch the circular TM01 mode into short test structures. The test structures are connected to the mode launchers with vacuum rf flanges. This setup allows economic testing of different cell geometries, cell materials an...

  11. Quantification of DNA damage by single-cell electrophoresis

    International Nuclear Information System (INIS)

    Ikushima, Takaji

    1990-01-01

    A simple technique of micro-agarose gel electrophoresis has been developed to quantify DNA damage in individual cells. Cells are embedded in agarose gel on microscope slides, lysed by detergents and then electrophoresed for a short time under neutral or alkaline condition. In irradiated cells, DNA migrates from the nucleus toward the anode, displaying commet-like pattern by staining with DNA-specific fluorescence dye. DNA damage is evaluated by measuring the distance of DNA migration. The technique was applied for measuring DNA damage in single cells exposed to 60 Co γ-rays, or to KUR radiation in the presence or absence of 10 B-enriched boric acid. The enhanced production of double-stranded DNA breaks by 10 B(n,α) 7 Li reaction was demonstrated here. The significant increase in the length of DNA migration was observed in single cells exposed to such a low dose as 20 cGy after alkaline micro electrophoresis. (author)

  12. Unravel lipid accumulation mechanism in oleaginous yeast through single cell systems biology study

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Shiyou; Xiaoliang, Xie

    2017-12-18

    Replacement of petroleum with advanced biofuels is critical for environmental protection needs, sustainable and secure energy demands, and economic development. Bacteria, yeasts, and fungi can naturally synthesize fatty acids, isoprenoids, or polyalkanoates for energy storage, and therefore are currently explored for hydrocarbon fuel production. Oleaginous yeasts can accumulate high levels of lipids in the form of triacylglycerols (TAGs) when encountering stress conditions or imbalanced growth (e.g., growing under excess carbon sources and limited nitrogen conditions). Advantages of using oleaginous yeast as cell factories include short duplication time (< 1 hour), high yield of intracellular droplets, and easy scale-up for industrial production. Currently, various oleaginous yeasts (e.g., Yarrowia, Candida, Rhodotorulla, Rhodosporidium, Cryptococcus, Trichosporon, and Lipomyces) have been developed as potential advanced biofuel producers. Oleaginous yeast lipid production has two phases: 1) growth phase, where cells utilize the carbon and nitrogen source to build up biomass. And 2) lipid accumulation phase, where they convert carbon source in media into the storage lipid body. (i.e. a high carbon to nitrogen ratio leads to high lipid production). The lipid production varies dramatically when different sugar, e.g. glucose, xylose is used as carbon source. The efficient utilization of all monomeric sugars of hexoses and pentoses from various lignocellulosic biomass processing approaches is the key for economic lignocellulosic biofuel production. In this project, we explored lipid production in oleaginous yeast under different nitrogen and sugar conditions at the single-cell level. To understand the lipid production mechanism and identify genetic features responsive to lipid accumulation in the presence of pentose and nitrogen, we developed an automated chemical imaging and single-cell transcriptomics method to correlate the lipid accumulation with the

  13. SSR Analysis of Genetic Diversity Among 192 Diploid Potato Cultivars

    Directory of Open Access Journals (Sweden)

    Xiaoyan Song

    2016-05-01

    Full Text Available In potato breeding, it is difficult to improve the traits of interest at the tetraploid level due to the tetrasomic inheritance. A promising alternative is diploid breeding. Thus it is necessary to assess the genetic diversity of diploid potato germplasm for efficient exploration and deployment of desirable traits. In this study, we used SSR markers to evaluate the genetic diversity of diploid potato cultivars. To screen polymorphic SSR markers, 55 pairs of SSR primers were employed to amplify 39 cultivars with relatively distant genetic relationships. Among them, 12 SSR markers with high polymorphism located at 12 chromosomes were chosen to evaluate the genetic diversity of 192 diploid potato cultivars. The primers produced 6 to 18 bands with an average of 8.2 bands per primer. In total, 98 bands were amplified from 192 cultivars, and 97 of them were polymorphic. Cluster analysis using UPGMA showed the genetic relationships of all accessions tested: 186 of the 192 accessions could be distinguished by only 12 pairs of SSR primers, and the 192 diploid cultivars were divided into 11 groups, and 83.3% constituted the first group. Clustering results showed relatively low genetic diversity among 192 diploid cultivars, with closer relationship at the molecular level. The results can provide molecular basis for diploid potato breeding.

  14. Multivariate Methods for Meta-Analysis of Genetic Association Studies.

    Science.gov (United States)

    Dimou, Niki L; Pantavou, Katerina G; Braliou, Georgia G; Bagos, Pantelis G

    2018-01-01

    Multivariate meta-analysis of genetic association studies and genome-wide association studies has received a remarkable attention as it improves the precision of the analysis. Here, we review, summarize and present in a unified framework methods for multivariate meta-analysis of genetic association studies and genome-wide association studies. Starting with the statistical methods used for robust analysis and genetic model selection, we present in brief univariate methods for meta-analysis and we then scrutinize multivariate methodologies. Multivariate models of meta-analysis for a single gene-disease association studies, including models for haplotype association studies, multiple linked polymorphisms and multiple outcomes are discussed. The popular Mendelian randomization approach and special cases of meta-analysis addressing issues such as the assumption of the mode of inheritance, deviation from Hardy-Weinberg Equilibrium and gene-environment interactions are also presented. All available methods are enriched with practical applications and methodologies that could be developed in the future are discussed. Links for all available software implementing multivariate meta-analysis methods are also provided.

  15. Single-cell intracellular nano-pH probes†

    OpenAIRE

    Özel, Rıfat Emrah; Lohith, Akshar; Mak, Wai Han; Pourmand, Nader

    2015-01-01

    Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular p...

  16. Single-cell magnetic imaging using a quantum diamond microscope.

    Science.gov (United States)

    Glenn, D R; Lee, K; Park, H; Weissleder, R; Yacoby, A; Lukin, M D; Lee, H; Walsworth, R L; Connolly, C B

    2015-08-01

    We apply a quantum diamond microscope for detection and imaging of immunomagnetically labeled cells. This instrument uses nitrogen-vacancy (NV) centers in diamond for correlated magnetic and fluorescence imaging. Our device provides single-cell resolution and a field of view (∼1 mm(2)) two orders of magnitude larger than that of previous NV imaging technologies, enabling practical applications. To illustrate, we quantified cancer biomarkers expressed by rare tumor cells in a large population of healthy cells.

  17. Simultaneous Multiplexed Measurement of RNA and Proteins in Single Cells.

    Science.gov (United States)

    Darmanis, Spyros; Gallant, Caroline Julie; Marinescu, Voichita Dana; Niklasson, Mia; Segerman, Anna; Flamourakis, Georgios; Fredriksson, Simon; Assarsson, Erika; Lundberg, Martin; Nelander, Sven; Westermark, Bengt; Landegren, Ulf

    2016-01-12

    Significant advances have been made in methods to analyze genomes and transcriptomes of single cells, but to fully define cell states, proteins must also be accessed as central actors defining a cell's phenotype. Methods currently used to analyze endogenous protein expression in single cells are limited in specificity, throughput, or multiplex capability. Here, we present an approach to simultaneously and specifically interrogate large sets of protein and RNA targets in lysates from individual cells, enabling investigations of cell functions and responses. We applied our method to investigate the effects of BMP4, an experimental therapeutic agent, on early-passage glioblastoma cell cultures. We uncovered significant heterogeneity in responses to treatment at levels of RNA and protein, with a subset of cells reacting in a distinct manner to BMP4. Moreover, we found overall poor correlation between protein and RNA at the level of single cells, with proteins more accurately defining responses to treatment. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Clustering Single-Cell Expression Data Using Random Forest Graphs.

    Science.gov (United States)

    Pouyan, Maziyar Baran; Nourani, Mehrdad

    2017-07-01

    Complex tissues such as brain and bone marrow are made up of multiple cell types. As the study of biological tissue structure progresses, the role of cell-type-specific research becomes increasingly important. Novel sequencing technology such as single-cell cytometry provides researchers access to valuable biological data. Applying machine-learning techniques to these high-throughput datasets provides deep insights into the cellular landscape of the tissue where those cells are a part of. In this paper, we propose the use of random-forest-based single-cell profiling, a new machine-learning-based technique, to profile different cell types of intricate tissues using single-cell cytometry data. Our technique utilizes random forests to capture cell marker dependences and model the cellular populations using the cell network concept. This cellular network helps us discover what cell types are in the tissue. Our experimental results on public-domain datasets indicate promising performance and accuracy of our technique in extracting cell populations of complex tissues.

  19. Bridging the Timescales of Single-Cell and Population Dynamics

    Science.gov (United States)

    Jafarpour, Farshid; Wright, Charles S.; Gudjonson, Herman; Riebling, Jedidiah; Dawson, Emma; Lo, Klevin; Fiebig, Aretha; Crosson, Sean; Dinner, Aaron R.; Iyer-Biswas, Srividya

    2018-04-01

    How are granular details of stochastic growth and division of individual cells reflected in smooth deterministic growth of population numbers? We provide an integrated, multiscale perspective of microbial growth dynamics by formulating a data-validated theoretical framework that accounts for observables at both single-cell and population scales. We derive exact analytical complete time-dependent solutions to cell-age distributions and population growth rates as functionals of the underlying interdivision time distributions, for symmetric and asymmetric cell division. These results provide insights into the surprising implications of stochastic single-cell dynamics for population growth. Using our results for asymmetric division, we deduce the time to transition from the reproductively quiescent (swarmer) to the replication-competent (stalked) stage of the Caulobacter crescentus life cycle. Remarkably, population numbers can spontaneously oscillate with time. We elucidate the physics leading to these population oscillations. For C. crescentus cells, we show that a simple measurement of the population growth rate, for a given growth condition, is sufficient to characterize the condition-specific cellular unit of time and, thus, yields the mean (single-cell) growth and division timescales, fluctuations in cell division times, the cell-age distribution, and the quiescence timescale.

  20. Affinity of antibody secreted by a single cell

    International Nuclear Information System (INIS)

    Doran, D.M.

    1978-01-01

    It was the intention of this research to measure the affinity of antibody secreted by a single cell, and to describe the spectrum of affinities displayed in response to antigenic stimulation. The single cell secreting specific antibody was isolated by means of the hemolytic plaque assay. The amount of antibody secreted by the cell was to be measured through the use of a solid phase radioimmunoassay. The affinity of the antibody would be estimated by comparing the diameter of the plaque, and the amount of antibody secreted, with a mathematical theory of the formation of a plaque in agar. As a test system, a solid phase radioimmunoassay was developed for human serum albumin using antibody coupled to Sephadex. A sensitivity of 1 nanogram was attained with this assay. A solid phase radioimmunoassay for mouse immunoglobulin M was developed, using antibody coupled to Sepharose. The sensitivity attained with this assay was only on the order of 10 micrograms. The mouse immunoglobulin M radioimmunoassay was not sensitive enough to measure the amount of antibody secreted by a single cell. From a theoretical equation, the relationship between antibody affinity, plaque diameter and antibody secretion rate was calculated for the experimental conditions used in this research. By assuming a constant antibody secretion rate, an effective binding constant for the antibody was estimated from the average plaque diameters. This effective binding constant was observed to increase during the immune response

  1. Genetic diversity of popcorn genotypes using molecular analysis.

    Science.gov (United States)

    Resh, F S; Scapim, C A; Mangolin, C A; Machado, M F P S; do Amaral, A T; Ramos, H C C; Vivas, M

    2015-08-19

    In this study, we analyzed dominant molecular markers to estimate the genetic divergence of 26 popcorn genotypes and evaluate whether using various dissimilarity coefficients with these dominant markers influences the results of cluster analysis. Fifteen random amplification of polymorphic DNA primers produced 157 amplified fragments, of which 65 were monomorphic and 92 were polymorphic. To calculate the genetic distances among the 26 genotypes, the complements of the Jaccard, Dice, and Rogers and Tanimoto similarity coefficients were used. A matrix of Dij values (dissimilarity matrix) was constructed, from which the genetic distances among genotypes were represented in a more simplified manner as a dendrogram generated using the unweighted pair-group method with arithmetic average. Clusters determined by molecular analysis generally did not group material from the same parental origin together. The largest genetic distance was between varieties 17 (UNB-2) and 18 (PA-091). In the identification of genotypes with the smallest genetic distance, the 3 coefficients showed no agreement. The 3 dissimilarity coefficients showed no major differences among their grouping patterns because agreement in determining the genotypes with large, medium, and small genetic distances was high. The largest genetic distances were observed for the Rogers and Tanimoto dissimilarity coefficient (0.74), followed by the Jaccard coefficient (0.65) and the Dice coefficient (0.48). The 3 coefficients showed similar estimations for the cophenetic correlation coefficient. Correlations among the matrices generated using the 3 coefficients were positive and had high magnitudes, reflecting strong agreement among the results obtained using the 3 evaluated dissimilarity coefficients.

  2. Estimating intrinsic and extrinsic noise from single-cell gene expression measurements

    Science.gov (United States)

    Fu, Audrey Qiuyan; Pachter, Lior

    2017-01-01

    Gene expression is stochastic and displays variation (“noise”) both within and between cells. Intracellular (intrinsic) variance can be distinguished from extracellular (extrinsic) variance by applying the law of total variance to data from two-reporter assays that probe expression of identically regulated gene pairs in single cells. We examine established formulas [Elowitz, M. B., A. J. Levine, E. D. Siggia and P. S. Swain (2002): “Stochastic gene expression in a single cell,” Science, 297, 1183–1186.] for the estimation of intrinsic and extrinsic noise and provide interpretations of them in terms of a hierarchical model. This allows us to derive alternative estimators that minimize bias or mean squared error. We provide a geometric interpretation of these results that clarifies the interpretation in [Elowitz, M. B., A. J. Levine, E. D. Siggia and P. S. Swain (2002): “Stochastic gene expression in a single cell,” Science, 297, 1183–1186.]. We also demonstrate through simulation and re-analysis of published data that the distribution assumptions underlying the hierarchical model have to be satisfied for the estimators to produce sensible results, which highlights the importance of normalization. PMID:27875323

  3. Development of 650 MHz (β=0.9) single-cell SCRF cavity

    International Nuclear Information System (INIS)

    Bagre, M.; Jain, V.; Yedle, A.; Maurya, T.; Yadav, A.; Puntambekar, A.; Goswami, S.G.; Choudhary, R.S.; Sandha, S.; Dwivedi, J.; Kane, G.V.; Mahawar, A.; Mohania, P.; Shrivastava, P.; Sharma, S.; Gupta, R.; Sharma, S.D.; Joshi, S.C.; Mistri, K.K.; Prakash, P.N.

    2013-01-01

    Raja Ramanna Centre for Advanced Technology has initiated the work on development of Superconducting Radio Frequency (SCRF) cavities and associated technologies as part of R and D activities for upcoming Spallation Neutron Source (SNS) project involving superconducting Linear Accelerator (LINAC). It is planned to use 650 MHz SCRF cavities for the medium and high energy section of the proposed LINAC. Under Indian Institution Fermilab Collaboration (IIFC), Raja Ramanna Centre for Advanced Technology is also working on development of 650 MHz (β=0.9) SCRF cavities proposed to be used in the high energy section of Project-X at FNAL. The work has been initiated with design and development of 650 MHz single cell SCRF cavity. FE analysis was done to estimate change in frequency with temperature as well as to estimate the frequency of the cavity at different cavity manufacturing stages. The development cycle comprises of design and manufacturing of forming tooling, machining, welding and RF measurement fixtures as well as design for manufacturing. The half-cell and beam tubes forming and machining of all parts were done using in-house facilities. The Electron beam welding was carried out at Inter-University Accelerator Centre (IUAC), New Delhi under a MoU. One 650 MHz single cell SCRF cavity has been recently manufactured. In this paper we present the development efforts on manufacturing and pre-qualification of 650 MHz (β=0.9) single cell SCRF cavity. (author)

  4. A genetic analysis of Adhl regulation

    Energy Technology Data Exchange (ETDEWEB)

    Freeling, M.

    1992-01-01

    Several separate but related studies are reported on the mechanism of alcohol dehydrogenase (Adh-1) are reported. A study of a deletion mutation in the TATA box region which resulted in an increase from 6--60% of wildtype Adh-1 expression in the revertant has led to a focus on trans-acting protein factors that bind the TATA box. Analysis of another revertant has led to study of cis-acting sequences in Adh-1 expression. Screening efforts aimed at defining different mutants affecting Adh-1 expression are reported.

  5. A Facile Droplet-Chip-Time-Resolved Inductively Coupled Plasma Mass Spectrometry Online System for Determination of Zinc in Single Cell.

    Science.gov (United States)

    Wang, Han; Chen, Beibei; He, Man; Hu, Bin

    2017-05-02

    Single cell analysis is a significant research field in recent years reflecting the heterogeneity of cells in a biological system. In this work, a facile droplet chip was fabricated and online combined with time-resolved inductively coupled plasma mass spectrometry (ICPMS) via a microflow nebulizer for the determination of zinc in single HepG2 cells. On the focusing geometric designed PDMS microfluidic chip, the aqueous cell suspension was ejected and divided by hexanol to generate droplets. The droplets encapsulated single cells remain intact during the transportation into ICP for subsequent detection. Under the optimized conditions, the frequency of droplet generation is 3-6 × 10 6 min -1 , and the injected cell number is 2500 min -1 , which can ensure the single cell encapsulation. ZnO nanoparticles (NPs) were used for the quantification of zinc in single cells, and the accuracy was validated by conventional acid digestion-ICPMS method. The ZnO NPs incubated HepG2 cells were analyzed as model samples, and the results exhibit the heterogeneity of HepG2 cells in the uptake/adsorption of ZnO NPs. The developed online droplet-chip-ICPMS analysis system achieves stable single cell encapsulation and has high throughput for single cell analysis. It has the potential in monitoring the content as well as distribution of trace elements/NPs at the single cell level.

  6. Molecular analysis of genetic diversity in elite II synthetic hexaploid ...

    African Journals Online (AJOL)

    The present study was conducted to assess the genetic diversity of Elite-II synthetic hexaploid (SH) wheat by genome DNA fingerprinting as revealed by random amplified polymorphic DNA (RAPD) analysis. Ten decamer RAPD primers (OPG-1, OPG-2, OPG-3, OPG-4, OPG-5, OPA-3, OPA-4, OPA-5, OPA-8, and OPA-15) ...

  7. Analysis of genetic diversity in pigeon pea germplasm using ...

    Indian Academy of Sciences (India)

    MANEESHA

    2017-08-16

    Aug 16, 2017 ... Th, Thailand; It, Italy; B, Barbados; Ta, Taiwan; J, Jamaica; V, Venezuela; UK, United Kingdom; My, Myanmar; U, Uganda; G,. Germany. .... from Orissa (105) and AP (15) do not group with any .... In the present work, comparison between SSAP and ... fied polymorphism) for genetic analysis of sweet potato.

  8. Genetic and phylogenetic analysis of ten Gobiidae species in China ...

    African Journals Online (AJOL)

    To study the genetic and phylogenetic relationship of gobioid fishes in China, the representatives of 10 gobioid fishes from 2 subfamilies in China were examined by amplified fragment length polymorphism (AFLP) analysis. We established 220 AFLP bands for 45 individuals from the 10 species, and the percentage of ...

  9. Genetic analysis on the competitive ability of barley ( Hordeum ...

    African Journals Online (AJOL)

    Genetic analysis on the competitive ability of barley ( Hordeum vulgare L.) recombinant inbred lines intercropped with oat ( Avena sativa L.) weeds. ... Furthermore, the commonly used herbicide price is soaring from time to time and out of the reach of the poor farmers in the developing countries. Therefore, this method is an ...

  10. Genetic analysis of feather pecking behavior in laying hens

    NARCIS (Netherlands)

    Buitenhuis, A.J.

    2003-01-01

    This thesis describes the genetic analysis of feather pecking behavior in laying hens. Feather pecking (FP) is a major welfare problem in laying hens.In the European

  11. Genetic analysis of yield in peanut (Arachis hypogaea L.) using ...

    African Journals Online (AJOL)

    Jane

    2011-07-20

    Jul 20, 2011 ... only should the two major genes' effects be considered but also the polygene's effect should be considered in breeding to increase peanut yield. Key words: Peanut, yield, major gene plus polygene inheritance model, genetic analysis. INTRODUCTION. Peanut consists of diploid (2n = 2x = 20), tetraploid ...

  12. Genetic analysis of yield in peanut ( Arachis hypogaea L.) using ...

    African Journals Online (AJOL)

    The yield had significant major gene effect and the results implied that not only should the two major genes' effects be considered but also the polygene's effect should be considered in breeding to increase peanut yield. Key words: Peanut, yield, major gene plus polygene inheritance model, genetic analysis.

  13. Genetic diversity analysis of pearl millet ( Pennisetum glauccum [L ...

    African Journals Online (AJOL)

    between genotype PT 2835/1 and PT 5552 and lowest similarity index was observed between PT 5554 and PT 2835/1. Analysis of RAPD data appears to be helpful in determining the genetic relationship among 20 pearl millet genotypes. The associations among the 20 genotypes were also examined with Principle ...

  14. The genetic analysis of repeated measures I: Simplex models

    NARCIS (Netherlands)

    Molenaar, P.C.M.; Boomsma, D.I.

    1987-01-01

    Extends the simplex model to a model that may be used for the genetic and environmental analysis of covariance (ANCOVA) structures. This "double" simplex structure can be specified as a linear structural relationships model. It is shown that data that give rise to a simplex correlation structure,

  15. Potentials of single-cell biology in identification and validation of disease biomarkers.

    Science.gov (United States)

    Niu, Furong; Wang, Diane C; Lu, Jiapei; Wu, Wei; Wang, Xiangdong

    2016-09-01

    Single-cell biology is considered a new approach to identify and validate disease-specific biomarkers. However, the concern raised by clinicians is how to apply single-cell measurements for clinical practice, translate the message of single-cell systems biology into clinical phenotype or explain alterations of single-cell gene sequencing and function in patient response to therapies. This study is to address the importance and necessity of single-cell gene sequencing in the identification and development of disease-specific biomarkers, the definition and significance of single-cell biology and single-cell systems biology in the understanding of single-cell full picture, the development and establishment of whole-cell models in the validation of targeted biological function and the figure and meaning of single-molecule imaging in single cell to trace intra-single-cell molecule expression, signal, interaction and location. We headline the important role of single-cell biology in the discovery and development of disease-specific biomarkers with a special emphasis on understanding single-cell biological functions, e.g. mechanical phenotypes, single-cell biology, heterogeneity and organization of genome function. We have reason to believe that such multi-dimensional, multi-layer, multi-crossing and stereoscopic single-cell biology definitely benefits the discovery and development of disease-specific biomarkers. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  16. Isolation and genetic analysis of pure cells from forensic biological mixtures: The precision of a digital approach.

    Science.gov (United States)

    Fontana, F; Rapone, C; Bregola, G; Aversa, R; de Meo, A; Signorini, G; Sergio, M; Ferrarini, A; Lanzellotto, R; Medoro, G; Giorgini, G; Manaresi, N; Berti, A

    2017-07-01

    Latest genotyping technologies allow to achieve a reliable genetic profile for the offender identification even from extremely minute biological evidence. The ultimate challenge occurs when genetic profiles need to be retrieved from a mixture, which is composed of biological material from two or more individuals. In this case, DNA profiling will often result in a complex genetic profile, which is then subject matter for statistical analysis. In principle, when more individuals contribute to a mixture with different biological fluids, their single genetic profiles can be obtained by separating the distinct cell types (e.g. epithelial cells, blood cells, sperm), prior to genotyping. Different approaches have been investigated for this purpose, such as fluorescent-activated cell sorting (FACS) or laser capture microdissection (LCM), but currently none of these methods can guarantee the complete separation of different type of cells present in a mixture. In other fields of application, such as oncology, DEPArray™ technology, an image-based, microfluidic digital sorter, has been widely proven to enable the separation of pure cells, with single-cell precision. This study investigates the applicability of DEPArray™ technology to forensic samples analysis, focusing on the resolution of the forensic mixture problem. For the first time, we report here the development of an application-specific DEPArray™ workflow enabling the detection and recovery of pure homogeneous cell pools from simulated blood/saliva and semen/saliva mixtures, providing full genetic match with genetic profiles of corresponding donors. In addition, we assess the performance of standard forensic methods for DNA quantitation and genotyping on low-count, DEPArray™-isolated cells, showing that pure, almost complete profiles can be obtained from as few as ten haploid cells. Finally, we explore the applicability in real casework samples, demonstrating that the described approach provides complete

  17. Single-cell-based system to monitor carrier driven cellular auxin homeostasis

    Science.gov (United States)

    2013-01-01

    Background Abundance and distribution of the plant hormone auxin play important roles in plant development. Besides other metabolic processes, various auxin carriers control the cellular level of active auxin and, hence, are major regulators of cellular auxin homeostasis. Despite the developmental importance of auxin transporters, a simple medium-to-high throughput approach to assess carrier activities is still missing. Here we show that carrier driven depletion of cellular auxin correlates with reduced nuclear auxin signaling in tobacco Bright Yellow-2 (BY-2) cell cultures. Results We developed an easy to use transient single-cell-based system to detect carrier activity. We use the relative changes in signaling output of the auxin responsive promoter element DR5 to indirectly visualize auxin carrier activity. The feasibility of the transient approach was demonstrated by pharmacological and genetic interference with auxin signaling and transport. As a proof of concept, we provide visual evidence that the prominent auxin transport proteins PIN-FORMED (PIN)2 and PIN5 regulate cellular auxin homeostasis at the plasma membrane and endoplasmic reticulum (ER), respectively. Our data suggest that PIN2 and PIN5 have different sensitivities to the auxin transport inhibitor 1-naphthylphthalamic acid (NPA). Also the putative PIN-LIKES (PILS) auxin carrier activity at the ER is insensitive to NPA in our system, indicating that NPA blocks intercellular, but not intracellular auxin transport. Conclusions This single-cell-based system is a useful tool by which the activity of putative auxin carriers, such as PINs, PILS and WALLS ARE THIN1 (WAT1), can be indirectly visualized in a medium-to-high throughput manner. Moreover, our single cell system might be useful to investigate also other hormonal signaling pathways, such as cytokinin. PMID:23379388

  18. Single-Cell mRNA-Seq Using the Fluidigm C1 System and Integrated Fluidics Circuits.

    Science.gov (United States)

    Gong, Haibiao; Do, Devin; Ramakrishnan, Ramesh

    2018-01-01

    Single-cell mRNA-seq is a valuable tool to dissect expression profiles and to understand the regulatory network of genes. Microfluidics is well suited for single-cell analysis owing both to the small volume of the reaction chambers and easiness of automation. Here we describe the workflow of single-cell mRNA-seq using C1 IFC, which can isolate and process up to 96 cells. Both on-chip procedure (lysis, reverse transcription, and preamplification PCR) and off-chip sequencing library preparation protocols are described. The workflow generates full-length mRNA information, which is more valuable compared to 3' end counting method for many applications.

  19. 3D Restoration Microscopy Improves Quantification of Enzyme-Labeled Fluorescence-Based Single-Cell Phosphatase Activity in Plankton

    OpenAIRE

    Diaz-de-Quijano, Daniel; Palacios, Pilar; Hornák, Karel; Felip, Marisol

    2014-01-01

    The ELF or fluorescence-labeled enzyme activity (FLEA) technique is a culture-independent single-cell tool for assessing plankton enzyme activity in close-to-in situ conditions. We demonstrate that single-cell FLEA quantifications based on two-dimensional (2D) image analysis were biased by up to one order of magnitude relative to deconvolved 3D. This was basically attributed to out-of-focus light, and partially to object size. Nevertheless, if sufficient cells were measured (25-40 cells), bia...

  20. Analysis of genetic diversity in Bolivian llama populations using microsatellites.

    Science.gov (United States)

    Barreta, J; Gutiérrez-Gil, B; Iñiguez, V; Romero, F; Saavedra, V; Chiri, R; Rodríguez, T; Arranz, J J

    2013-08-01

    South American camelids (SACs) have a major role in the maintenance and potential future of rural Andean human populations. More than 60% of the 3.7 million llamas living worldwide are found in Bolivia. Due to the lack of studies focusing on genetic diversity in Bolivian llamas, this analysis investigates both the genetic diversity and structure of 12 regional groups of llamas that span the greater part of the range of distribution for this species in Bolivia. The analysis of 42 microsatellite markers in the considered regional groups showed that, in general, there were high levels of polymorphism (a total of 506 detected alleles; average PIC across per marker: 0.66), which are comparable with those reported for other populations of domestic SACs. The estimated diversity parameters indicated that there was high intrapopulational genetic variation (average number of alleles and average expected heterozygosity per marker: 12.04 and 0.68, respectively) and weak genetic differentiation among populations (FST range: 0.003-0.052). In agreement with these estimates, Bolivian llamas showed a weak genetic structure and an intense gene flow between all the studied regional groups, which is due to the exchange of reproductive males between the different flocks. Interestingly, the groups for which the largest pairwise FST estimates were observed, Sud Lípez and Nor Lípez, showed a certain level of genetic differentiation that is probably due to the pattern of geographic isolation and limited communication infrastructures of these southern localities. Overall, the population parameters reported here may serve as a reference when establishing conservation policies that address Bolivian llama populations. © 2012 Blackwell Verlag GmbH.

  1. Comparative single-cell genomics reveals potential ecological niches for the freshwater acI Actinobacteria lineage.

    Science.gov (United States)

    Ghylin, Trevor W; Garcia, Sarahi L; Moya, Francisco; Oyserman, Ben O; Schwientek, Patrick; Forest, Katrina T; Mutschler, James; Dwulit-Smith, Jeffrey; Chan, Leong-Keat; Martinez-Garcia, Manuel; Sczyrba, Alexander; Stepanauskas, Ramunas; Grossart, Hans-Peter; Woyke, Tanja; Warnecke, Falk; Malmstrom, Rex; Bertilsson, Stefan; McMahon, Katherine D

    2014-12-01

    Members of the acI lineage of Actinobacteria are the most abundant microorganisms in most freshwater lakes; however, our understanding of the keys to their success and their role in carbon and nutrient cycling in freshwater systems has been hampered by the lack of pure cultures and genomes. We obtained draft genome assemblies from 11 single cells representing three acI tribes (acI-A1, acI-A7, acI-B1) from four temperate lakes in the United States and Europe. Comparative analysis of acI SAGs and other available freshwater bacterial genomes showed that acI has more gene content directed toward carbohydrate acquisition as compared to Polynucleobacter and LD12 Alphaproteobacteria, which seem to specialize more on carboxylic acids. The acI genomes contain actinorhodopsin as well as some genes involved in anaplerotic carbon fixation indicating the capacity to supplement their known heterotrophic lifestyle. Genome-level differences between the acI-A and acI-B clades suggest specialization at the clade level for carbon substrate acquisition. Overall, the acI genomes appear to be highly streamlined versions of Actinobacteria that include some genes allowing it to take advantage of sunlight and N-rich organic compounds such as polyamines, di- and oligopeptides, branched-chain amino acids and cyanophycin. This work significantly expands the known metabolic potential of the cosmopolitan freshwater acI lineage and its ecological and genetic traits.

  2. A markerless protocol for genetic analysis of Aggregatibacter actinomycetemcomitans

    Science.gov (United States)

    Cheng, Ya-An; Jee, Jason; Hsu, Genie; Huang, Yanyan; Chen, Casey; Lin, Chun-Pin

    2015-01-01

    Background/Purpose The genomes of different Aggregatibacter actinomycetemcomitans strains contain many strain-specific genes and genomic islands (defined as DNA found in some but not all strains) of unknown functions. Genetic analysis for the functions of these islands will be constrained by the limited availability of genetic markers and vectors for A. actinomycetemcomitans. In this study we tested a novel genetic approach of gene deletion and restoration in a naturally competent A. actinomycetemcomitans strain D7S-1. Methods Specific genes’ deletion mutants and mutants restored with the deleted genes were constructed by a markerless loxP/Cre system. In mutants with sequential deletion of multiple genes loxP with different spacer regions were used to avoid unwanted recombinations between loxP sites. Results Eight single-gene deletion mutants, four multiple-gene deletion mutants, and two mutants with restored genes were constructed. No unintended non-specific deletion mutants were generated by this protocol. The protocol did not negatively affect the growth and biofilm formation of A. actinomycetemcomitans. Conclusion The protocol described in this study is efficient and specific for genetic manipulation of A. actinomycetemcomitans, and will be amenable for functional analysis of multiple genes in A. actinomycetemcomitans. PMID:24530245

  3. A Genetic Epidemiological Mega Analysis of Smoking Initiation in Adolescents.

    Science.gov (United States)

    Maes, Hermine H; Prom-Wormley, Elizabeth; Eaves, Lindon J; Rhee, Soo Hyun; Hewitt, John K; Young, Susan; Corley, Robin; McGue, Matt; Iacono, William G; Legrand, Lisa; Samek, Diana R; Murrelle, E Lenn; Silberg, Judy L; Miles, Donna R; Schieken, Richard M; Beunen, Gaston P; Thomis, Martine; Rose, Richard J; Dick, Danielle M; Boomsma, Dorret I; Bartels, Meike; Vink, Jacqueline M; Lichtenstein, Paul; White, Victoria; Kaprio, Jaakko; Neale, Michael C

    2017-04-01

    Previous studies in adolescents were not adequately powered to accurately disentangle genetic and environmental influences on smoking initiation (SI) across adolescence. Mega-analysis of pooled genetically informative data on SI was performed, with structural equation modeling, to test equality of prevalence and correlations across cultural backgrounds, and to estimate the significance and effect size of genetic and environmental effects according to the classical twin study, in adolescent male and female twins from same-sex and opposite-sex twin pairs (N = 19 313 pairs) between ages 10 and 19, with 76 358 longitudinal assessments between 1983 and 2007, from 11 population-based twin samples from the United States, Europe, and Australia. Although prevalences differed between samples, twin correlations did not, suggesting similar etiology of SI across developed countries. The estimate of additive genetic contributions to liability of SI increased from approximately 15% to 45% from ages 13 to 19. Correspondingly, shared environmental factors accounted for a substantial proportion of variance in liability to SI at age 13 (70%) and gradually less by age 19 (40%). Both additive genetic and shared environmental factors significantly contribute to variance in SI throughout adolescence. The present study, the largest genetic epidemiological study on SI to date, found consistent results across 11 studies for the etiology of SI. Environmental factors, especially those shared by siblings in a family, primarily influence SI variance in early adolescence, while an increasing role of genetic factors is seen at later ages, which has important implications for prevention strategies. This is the first study to find evidence of genetic factors in liability to SI at ages as young as 12. It also shows the strongest evidence to date for decay of effects of the shared environment from early adolescence to young adulthood. We found remarkable consistency of twin correlations across

  4. Signatures of nonlinearity in single cell noise-induced oscillations.

    Science.gov (United States)

    Thomas, Philipp; Straube, Arthur V; Timmer, Jens; Fleck, Christian; Grima, Ramon

    2013-10-21

    A class of theoretical models seeks to explain rhythmic single cell data by postulating that they are generated by intrinsic noise in biochemical systems whose deterministic models exhibit only damped oscillations. The main features of such noise-induced oscillations are quantified by the power spectrum which measures the dependence of the oscillatory signal's power with frequency. In this paper we derive an approximate closed-form expression for the power spectrum of any monostable biochemical system close to a Hopf bifurcation, where noise-induced oscillations are most pronounced. Unlike the commonly used linear noise approximation which is valid in the macroscopic limit of large volumes, our theory is valid over a wide range of volumes and hence affords a more suitable description of single cell noise-induced oscillations. Our theory predicts that the spectra have three universal features: (i) a dominant peak at some frequency, (ii) a smaller peak at twice the frequency of the dominant peak and (iii) a peak at zero frequency. Of these, the linear noise approximation predicts only the first feature while the remaining two stem from the combination of intrinsic noise and nonlinearity in the law of mass action. The theoretical expressions are shown to accurately match the power spectra determined from stochastic simulations of mitotic and circadian oscillators. Furthermore it is shown how recently acquired single cell rhythmic fibroblast data displays all the features predicted by our theory and that the experimental spectrum is well described by our theory but not by the conventional linear noise approximation. © 2013 Elsevier Ltd. All rights reserved.

  5. Single cell adhesion assay using computer controlled micropipette.

    Directory of Open Access Journals (Sweden)

    Rita Salánki

    Full Text Available Cell adhesion is a fundamental phenomenon vital for all multicellular organisms. Recognition of and adhesion to specific macromolecules is a crucial task of leukocytes to initiate the immune response. To gain statistically reliable information of cell adhesion, large numbers of cells should be measured. However, direct measurement of the adhesion force of single cells is still challenging and today's techniques typically have an extremely low throughput (5-10 cells per day. Here, we introduce a computer controlled micropipette mounted onto a normal inverted microscope for probing single cell interactions with specific macromolecules. We calculated the estimated hydrodynamic lifting force acting on target cells by the numerical simulation of the flow at the micropipette tip. The adhesion force of surface attached cells could be accurately probed by repeating the pick-up process with increasing vacuum applied in the pipette positioned above the cell under investigation. Using the introduced methodology hundreds of cells adhered to specific macromolecules were measured one by one in a relatively short period of time (∼30 min. We blocked nonspecific cell adhesion by the protein non-adhesive PLL-g-PEG polymer. We found that human primary monocytes are less adherent to fibrinogen than their in vitro differentiated descendants: macrophages and dendritic cells, the latter producing the highest average adhesion force. Validation of the here introduced method was achieved by the hydrostatic step-pressure micropipette manipulation technique. Additionally the result was reinforced in standard microfluidic shear stress channels. Nevertheless, automated micropipette gave higher sensitivity and less side-effect than the shear stress channel. Using our technique, the probed single cells can be easily picked up and further investigated by other techniques; a definite advantage of the computer controlled micropipette. Our experiments revealed the existence of a

  6. Magnetic domain wall conduits for single cell applications

    DEFF Research Database (Denmark)

    Donolato, Marco; Torti, A.; Kostesha, Natalie

    2011-01-01

    The ability to trap, manipulate and release single cells on a surface is important both for fundamental studies of cellular processes and for the development of novel lab-on-chip miniaturized tools for biological and medical applications. In this paper we demonstrate how magnetic domain walls...... walls over 16 hours. Moreover, we demonstrate the controlled transport and release of individual yeast cells via displacement and annihilation of individual domain walls in micro- and nano-sized magnetic structures. These results pave the way to the implementation of magnetic devices based on domain...... walls technology in lab-on-chip systems devoted to accurate individual cell trapping and manipulation....

  7. Pitfalls in genetic analysis of pheochromocytomas/paragangliomas-case report.

    Science.gov (United States)

    Canu, Letizia; Rapizzi, Elena; Zampetti, Benedetta; Fucci, Rossella; Nesi, Gabriella; Richter, Susan; Qin, Nan; Giachè, Valentino; Bergamini, Carlo; Parenti, Gabriele; Valeri, Andrea; Ercolino, Tonino; Eisenhofer, Graeme; Mannelli, Massimo

    2014-07-01

    About 35% of patients with pheochromocytoma/paraganglioma carry a germline mutation in one of the 10 main susceptibility genes. The recent introduction of next-generation sequencing will allow the analysis of all these genes in one run. When positive, the analysis is generally unequivocal due to the association between a germline mutation and a concordant clinical presentation or positive family history. When genetic analysis reveals a novel mutation with no clinical correlates, particularly in the presence of a missense variant, the question arises whether the mutation is pathogenic or a rare polymorphism. We report the case of a 35-year-old patient operated for a pheochromocytoma who turned out to be a carrier of a novel SDHD (succinate dehydrogenase subunit D) missense mutation. With no positive family history or clinical correlates, we decided to perform additional analyses to test the clinical significance of the mutation. We performed in silico analysis, tissue loss of heterozygosity analysis, immunohistochemistry, Western blot analysis, SDH enzymatic assay, and measurement of the succinate/fumarate concentration ratio in the tumor tissue by tandem mass spectrometry. Although the in silico analysis gave contradictory results according to the different methods, all the other tests demonstrated that the SDH complex was conserved and normally active. We therefore came to the conclusion that the variant was a nonpathogenic polymorphism. Advancements in technology facilitate genetic analysis of patients with pheochromocytoma but also offer new challenges to the clinician who, in some cases, needs clinical correlates and/or functional tests to give significance to the results of the genetic assay.

  8. Frequent sgRNA-barcode recombination in single-cell perturbation assays.

    Directory of Open Access Journals (Sweden)

    Shiqi Xie

    Full Text Available Simultaneously detecting CRISPR-based perturbations and induced transcriptional changes in the same cell is a powerful approach to unraveling genome function. Several lentiviral approaches have been developed, some of which rely on the detection of distally located genetic barcodes as an indirect proxy of sgRNA identity. Since barcodes are often several kilobases from their corresponding sgRNAs, viral recombination-mediated swapping of barcodes and sgRNAs is feasible. Using a self-circularization-based sgRNA-barcode library preparation protocol, we estimate the recombination rate to be ~50% and we trace this phenomenon to the pooled viral packaging step. Recombination is random, and decreases the signal-to-noise ratio of the assay. Our results suggest that alternative approaches can increase the throughput and sensitivity of single-cell perturbation assays.

  9. Current Developments in Prokaryotic Single Cell Whole Genome Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Goudeau, Danielle; Nath, Nandita; Ciobanu, Doina; Cheng, Jan-Fang; Malmstrom, Rex

    2014-03-14

    Our approach to prokaryotic single-cell Whole Genome Amplification at the JGI continues to evolve. To increase both the quality and number of single-cell genomes produced, we explore all aspects of the process from cell sorting to sequencing. For example, we now utilize specialized reagents, acoustic liquid handling, and reduced reaction volumes eliminate non-target DNA contamination in WGA reactions. More specifically, we use a cleaner commercial WGA kit from Qiagen that employs a UV decontamination procedure initially developed at the JGI, and we use the Labcyte Echo for tip-less liquid transfer to set up 2uL reactions. Acoustic liquid handling also dramatically reduces reagent costs. In addition, we are exploring new cell lysis methods including treatment with Proteinase K, lysozyme, and other detergents, in order to complement standard alkaline lysis and allow for more efficient disruption of a wider range of cells. Incomplete lysis represents a major hurdle for WGA on some environmental samples, especially rhizosphere, peatland, and other soils. Finding effective lysis strategies that are also compatible with WGA is challenging, and we are currently assessing the impact of various strategies on genome recovery.

  10. Ciliary heterogeneity within a single cell: the Paramecium model.

    Science.gov (United States)

    Aubusson-Fleury, Anne; Cohen, Jean; Lemullois, Michel

    2015-01-01

    Paramecium is a single cell able to divide in its morphologically differentiated stage that has many cilia anchored at its cell surface. Many thousands of cilia are thus assembled in a short period of time during division to duplicate the cell pattern while the cell continues swimming. Most, but not all, of these sensory cilia are motile and involved in two main functions: prey capture and cell locomotion. These cilia display heterogeneity, both in their length and their biochemical properties. Thanks to these properties, as well as to the availability of many postgenomic tools and the possibility to follow the regrowth of cilia after deciliation, Paramecium offers a nice opportunity to study the assembly of the cilia, as well as the genesis of their diversity within a single cell. In this paper, after a brief survey of Paramecium morphology and cilia properties, we describe the tools and the protocols currently used for immunofluorescence, transmission electron microscopy, and ultrastructural immunocytochemistry to analyze cilia, with special recommendations to overcome the problem raised by cilium diversity. Copyright © 2015. Published by Elsevier Inc.

  11. Correlated receptor transport processes buffer single-cell heterogeneity.

    Directory of Open Access Journals (Sweden)

    Stefan M Kallenberger

    2017-09-01

    Full Text Available Cells typically vary in their response to extracellular ligands. Receptor transport processes modulate ligand-receptor induced signal transduction and impact the variability in cellular responses. Here, we quantitatively characterized cellular variability in erythropoietin receptor (EpoR trafficking at the single-cell level based on live-cell imaging and mathematical modeling. Using ensembles of single-cell mathematical models reduced parameter uncertainties and showed that rapid EpoR turnover, transport of internalized EpoR back to the plasma membrane, and degradation of Epo-EpoR complexes were essential for receptor trafficking. EpoR trafficking dynamics in adherent H838 lung cancer cells closely resembled the dynamics previously characterized by mathematical modeling in suspension cells, indicating that dynamic properties of the EpoR system are widely conserved. Receptor transport processes differed by one order of magnitude between individual cells. However, the concentration of activated Epo-EpoR complexes was less variable due to the correlated kinetics of opposing transport processes acting as a buffering system.

  12. RF Breakdown in Normal Conducting Single-Cell Structures

    International Nuclear Information System (INIS)

    Dolgashev, V.A.; Nantista, C.D.; Tantawi, S.G.; Higashi, Y.; Higo, T.

    2006-01-01

    Operating accelerating gradient in normal conducting accelerating structures is often limited by rf breakdown. The limit depends on multiple parameters, including input rf power, rf circuit, cavity shape and material. Experimental and theoretical study of the effects of these parameters on the breakdown limit in full scale structures is difficult and costly. We use 11.4 GHz single-cell traveling wave and standing wave accelerating structures for experiments and modeling of rf breakdown behavior. These test structures are designed so that the electromagnetic fields in one cell mimic the fields in prototype multicell structures for the X-band linear collider. Fields elsewhere in the test structures are significantly lower than that of the single cell. The setup uses matched mode converters that launch the circular TM 01 mode into short test structures. The test structures are connected to the mode launchers with vacuum rf flanges. This setup allows economic testing of different cell geometries, cell materials and preparation techniques with short turn-around time. Simple 2D geometry of the test structures simplifies modeling of the breakdown currents and their thermal effects

  13. Single-cell force spectroscopy of pili-mediated adhesion

    Science.gov (United States)

    Sullan, Ruby May A.; Beaussart, Audrey; Tripathi, Prachi; Derclaye, Sylvie; El-Kirat-Chatel, Sofiane; Li, James K.; Schneider, Yves-Jacques; Vanderleyden, Jos; Lebeer, Sarah; Dufrêne, Yves F.

    2013-12-01

    Although bacterial pili are known to mediate cell adhesion to a variety of substrates, the molecular interactions behind this process are poorly understood. We report the direct measurement of the forces guiding pili-mediated adhesion, focusing on the medically important probiotic bacterium Lactobacillus rhamnosus GG (LGG). Using non-invasive single-cell force spectroscopy (SCFS), we quantify the adhesion forces between individual bacteria and biotic (mucin, intestinal cells) or abiotic (hydrophobic monolayers) surfaces. On hydrophobic surfaces, bacterial pili strengthen adhesion through remarkable nanospring properties, which - presumably - enable the bacteria to resist high shear forces under physiological conditions. On mucin, nanosprings are more frequent and adhesion forces larger, reflecting the influence of specific pili-mucin bonds. Interestingly, these mechanical responses are no longer observed on human intestinal Caco-2 cells. Rather, force curves exhibit constant force plateaus with extended ruptures reflecting the extraction of membrane nanotethers. These single-cell analyses provide novel insights into the molecular mechanisms by which piliated bacteria colonize surfaces (nanosprings, nanotethers), and offer exciting avenues in nanomedicine for understanding and controlling the adhesion of microbial cells (probiotics, pathogens).

  14. Differential network analysis reveals genetic effects on catalepsy modules.

    Directory of Open Access Journals (Sweden)

    Ovidiu D Iancu

    Full Text Available We performed short-term bi-directional selective breeding for haloperidol-induced catalepsy, starting from three mouse populations of increasingly complex genetic structure: an F2 intercross, a heterogeneous stock (HS formed by crossing four inbred strains (HS4 and a heterogeneous stock (HS-CC formed from the inbred strain founders of the Collaborative Cross (CC. All three selections were successful, with large differences in haloperidol response emerging within three generations. Using a custom differential network analysis procedure, we found that gene coexpression patterns changed significantly; importantly, a number of these changes were concordant across genetic backgrounds. In contrast, absolute gene-expression changes were modest and not concordant across genetic backgrounds, in spite of the large and similar phenotypic differences. By inferring strain contributions from the parental lines, we are able to identify significant differences in allelic content between the selected lines concurrent with large changes in transcript connectivity. Importantly, this observation implies that genetic polymorphisms can affect transcript and module connectivity without large changes in absolute expression levels. We conclude that, in this case, selective breeding acts at the subnetwork level, with the same modules but not the same transcripts affected across the three selections.

  15. Genetic analysis of growth traits in Iranian Makuie sheep breed

    Directory of Open Access Journals (Sweden)

    Mohammad Farhadian

    2012-01-01

    Full Text Available The Makuie sheep is a fat-tailed sheep breed which can be found in the Azerbaijan province of Iran. In 1986, a Makuie sheep breeding station was established in the city of Maku in order to breed, protect and purify this breed. The genetic parameters for birth weight, weaning weight (3 months, 6-month, 9-month and yearling weight, and average daily gain from birth to weaning traits were estimated based on 25 years of data using DFREML software. Six different models were applied and a likelihood ratio test (LRT was used to select the appropriate model. Bivariate analysis was used to define the genetic correlation between studied traits. Based on the LRT, model II was selected as an appropriate model for all studied traits. Direct heritability estimates of birth, weaning, 6-month, 9-month and yearling weights and average daily gain from birth to weaning were 0.36, 0.41, 0.48, 0.42, 0.36 and 0.37, respectively. Estimates of direct genetic correlation between birth and weaning weights, birth and 6-month weights, birth and 9-month weights, as well as between birth and yearling weights were 0.57, 0.49, 0.46 and 0.32, respectively. The results suggest there is a substantial additive genetic variability for studied traits in the Makuie sheep breed population, and the direct additive effect and maternal permanent environment variance are the main source of phenotypic variance.

  16. [Prediction of the molecular response to pertubations from single cell measurements].

    Science.gov (United States)

    Remacle, Françoise; Levine, Raphael D

    2014-12-01

    The response of protein signalization networks to perturbations is analysed from single cell measurements. This experimental approach allows characterizing the fluctuations in protein expression levels from cell to cell. The analysis is based on an information theoretic approach grounded in thermodynamics leading to a quantitative version of Le Chatelier principle which allows to predict the molecular response. Two systems are investigated: human macrophages subjected to lipopolysaccharide challenge, analogous to the immune response against Gram-negative bacteria and the response of the proteins involved in the mTOR signalizing network of GBM cancer cells to changes in partial oxygen pressure. © 2014 médecine/sciences – Inserm.

  17. Study on the non-target effect of ionizing radiation using single cell gel electrophoresis

    International Nuclear Information System (INIS)

    Wang Yan; Li Deguan; Liu Jianfeng; Chu Liping; Liu Qiang

    2008-01-01

    Objective: To assess the non-target effect of ionizing radiation by single cell gel electrophoresis (SCGE). Methods: Cross incubated the irradiated( 137 Cs; 2Gy) or non-irradiated lymphocytes of human peripheral blood in the irradiated or non-irradiated plasma respectively, then, assess the DNA damage of lymphocytes using SCGE analysis. Results: The lymphocytes incubated in the irradiated plasma presented more obvious DNA damage than the incubated in the non-irradiated plasma dose (P<0.05). Conclusion: The non-target effect of ionizing radiation can be assessed by SCGE, and the results confirm that cytokines may play a great role in it. (authors)

  18. A strategy analysis for genetic association studies with known inbreeding

    Directory of Open Access Journals (Sweden)

    del Giacco Stefano

    2011-07-01

    Full Text Available Abstract Background Association studies consist in identifying the genetic variants which are related to a specific disease through the use of statistical multiple hypothesis testing or segregation analysis in pedigrees. This type of studies has been very successful in the case of Mendelian monogenic disorders while it has been less successful in identifying genetic variants related to complex diseases where the insurgence depends on the interactions between different genes and the environment. The current technology allows to genotype more than a million of markers and this number has been rapidly increasing in the last years with the imputation based on templates sets and whole genome sequencing. This type of data introduces a great amount of noise in the statistical analysis and usually requires a great number of samples. Current methods seldom take into account gene-gene and gene-environment interactions which are fundamental especially in complex diseases. In this paper we propose to use a non-parametric additive model to detect the genetic variants related to diseases which accounts for interactions of unknown order. Although this is not new to the current literature, we show that in an isolated population, where the most related subjects share also most of their genetic code, the use of additive models may be improved if the available genealogical tree is taken into account. Specifically, we form a sample of cases and controls with the highest inbreeding by means of the Hungarian method, and estimate the set of genes/environmental variables, associated with the disease, by means of Random Forest. Results We have evidence, from statistical theory, simulations and two applications, that we build a suitable procedure to eliminate stratification between cases and controls and that it also has enough precision in identifying genetic variants responsible for a disease. This procedure has been successfully used for the beta-thalassemia, which is

  19. Fusion genetic analysis of jasmonate-signalling mutants in Arabidopsis

    DEFF Research Database (Denmark)

    Jensen, Anders Bøgh; Raventos, D.; Mundy, John Williams

    2002-01-01

    as two recessive mutants, designated joe1 and 2, that overexpress the reporter. Genetic analysis indicated that reporter overexpression in the joe mutants requires COI. joe1 responded to MeJA with increased anthocyanin accumulation, while joe2 responded with decreased root growth inhibition. In addition...... activity was also induced by the protein kinase inhibitor staurosporine and antagonized by the protein phosphatase inhibitor okadaic acid. FLUC bio-imaging, RNA gel-blot analysis and progeny analyses identified three recessive mutants that underexpress the FLUC reporter, designated jue1, 2 and 3, as well...

  20. DMPD: The Toll-like receptors: analysis by forward genetic methods. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16001129 The Toll-like receptors: analysis by forward genetic methods. Beutler B. I...mmunogenetics. 2005 Jul;57(6):385-92. (.png) (.svg) (.html) (.csml) Show The Toll-like receptors: analysis by forwar...d genetic methods. PubmedID 16001129 Title The Toll-like receptors: analysis by forward genetic meth

  1. Genetic algorithms and the analysis of SnIa data

    International Nuclear Information System (INIS)

    Nesseris, Savvas

    2011-01-01

    The Genetic Algorithm is a heuristic that can be used to produce model independent solutions to an optimization problem, thus making it ideal for use in cosmology and more specifically in the analysis of type Ia supernovae data. In this work we use the Genetic Algorithms (GA) in order to derive a null test on the spatially flat cosmological constant model ΛCDM. This is done in two steps: first, we apply the GA to the Constitution SNIa data in order to acquire a model independent reconstruction of the expansion history of the Universe H(z) and second, we use the reconstructed H(z) in conjunction with the Om statistic, which is constant only for the ΛCDM model, to derive our constraints. We find that while ΛCDM is consistent with the data at the 2σ level, some deviations from ΛCDM model at low redshifts can be accommodated.

  2. Microencapsulation of single-cell protein from various microalgae species

    Directory of Open Access Journals (Sweden)

    Purnama Sukardi

    2015-10-01

    Full Text Available ABSTRACT The objective of the research was to evaluate nutritional values of microencapsulated diet made from single cell protein of microalgae. Complete randomized design was applied using three different types of microalgae for inclusion trials i.e. (A Nannochloropsis sp., (B Chlorella sp., and (C Spirulina sp. with five replications respectively. Microencapsulated diet was produced by a modification method based on thermal cross-linking with stable temperature. Phytoplankton was cultured in sea water for which fertilized by a modification of Walne and Guillard fertilizer. The results showed that the highest value of nutrition content was Spirulina sp. and the average composition of protein, crude lipid, carbohydrate, ash, nitrogen free extract, and water content was 34.80%, 0.30%, 18.53%, 20.09%, 26.29%, and 13.32%, respectively. Organoleptically, microcapsule showed that the color of capsule was dark green and smell fresh phytoplankton. Keywords: microcapsule, single-cell protein, thermal cross-linking, microalgae, phytoplankton  ABSTRAK Tujuan penelitian adalah mengevaluasi kandungan nutrisi pakan mikrokapsul protein sel tunggal (single cell protein yang berasal dari berbagai jenis mikroalga (fitoplankton. Rancangan percobaan yang digunakan adalah rancangan acak lengkap, dengan perlakuan inklusi mikrokapsul dari jenis fitoplankton (A Nannochloropsis sp., (B Chlorella sp., dan (C Spirulina sp., masing-masing diulang lima kali. Pembuatan mikrokapsul dilakukan dengan menggunakan modifikasi metode dasar thermal cross-linking, serta menerapkan teknik pengeringan suhu konstan. Proses pembuatan mikrokapsul protein diawali dengan kultur fitoplankton jenis Nannochloropsis sp., Chlorella sp., dan Spirulina sp. Kultur dilakukan di dalam laboratorium menggunakan media air laut dan modifikasi pupuk Walne dan Guillard. Hasil penelitian menunjukkan bahwa kandungan nutrisi tertinggi terdapat pada jenis mikrokapsul protein sel tunggal yang berasal dari

  3. DNA degradation and genetic analysis of empty puparia: genetic identification limits in forensic entomology.

    Science.gov (United States)

    Mazzanti, Morena; Alessandrini, Federica; Tagliabracci, Adriano; Wells, Jeffrey D; Campobasso, Carlo P

    2010-02-25

    Puparial cases are common remnants of necrophagous flies in crime investigations. They usually represent the longest developmental time and, therefore, they can be very useful for the estimation of the post-mortem interval (PMI). However, before any PMI estimate, it is crucial to identify the species of fly eclosed from each puparium associated with the corpse. Morphological characteristics of the puparium are often distinctive enough to permit a species identification. But, even an accurate morphological analysis of empty puparia cannot discriminate among different species of closely related flies. Furthermore, morphological identification may be impossible if the fly puparia are poorly preserved or in fragments. This study explores the applicability of biomolecular techniques on empty puparia and their fragments for identification purposes. A total of 63 empty puparia of necrophagous Diptera resulting from forensic casework were examined. Samples were divided into three groups according to size, type and time of eclosion in order to verify whether the physical characteristics and puparia weathering can influence the amount of DNA extraction. The results suggest that a reliable genetic identification of forensically important flies may also be performed from empty puparia and/or their fragments. However, DNA degradation can deeply compromise the genetic analysis since the older the fly puparia, the smaller are the amplified fragments. 2009 Elsevier Ireland Ltd. All rights reserved.

  4. High resolution ultrasound and photoacoustic imaging of single cells

    Directory of Open Access Journals (Sweden)

    Eric M. Strohm

    2016-03-01

    Full Text Available High resolution ultrasound and photoacoustic images of stained neutrophils, lymphocytes and monocytes from a blood smear were acquired using a combined acoustic/photoacoustic microscope. Photoacoustic images were created using a pulsed 532 nm laser that was coupled to a single mode fiber to produce output wavelengths from 532 nm to 620 nm via stimulated Raman scattering. The excitation wavelength was selected using optical filters and focused onto the sample using a 20× objective. A 1000 MHz transducer was co-aligned with the laser spot and used for ultrasound and photoacoustic images, enabling micrometer resolution with both modalities. The different cell types could be easily identified due to variations in contrast within the acoustic and photoacoustic images. This technique provides a new way of probing leukocyte structure with potential applications towards detecting cellular abnormalities and diseased cells at the single cell level.

  5. MICROORGANISMS: A MARVELOUS SOURCE OF SINGLE CELL PROTEINS

    Directory of Open Access Journals (Sweden)

    Agam Nangul

    2013-08-01

    Full Text Available The increasing global population living below the poverty line is driving the scientific community to search for non-conventional protein sources that can replace conventional expensive ones. Microbial proteins, or single-cell protein (SCP, represent a potential future nutrient source for human food and animal feed. These microbial proteins can be grown rapidly on substrates with minimum dependence on soil, water and climate conditions. They can be produced from algae, fungi and bacteria the chief sources of SCP. It is convenient to use microorganisms for production of SCP as they grow rapidly and have high protein content. Industrially, they can be produced from algal biomass, yeast, fungi. There are several other ways of getting SCP as well. Despite numerous advantages of SCP, they have disadvantages and toxic effects too, especially related to mycotoxins and bacterial toxins.

  6. Nano-imaging of single cells using STIM

    Energy Technology Data Exchange (ETDEWEB)

    Ren Minqin [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Department of Biochemistry, National University of Singapore (Singapore); Kan, J.A. van [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Bettiol, A.A. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Daina, Lim [Department of Anatomy, National University of Singapore (Singapore); Gek, Chan Yee [Department of Anatomy, National University of Singapore (Singapore); Huat, Bay Boon [Department of Anatomy, National University of Singapore (Singapore); Whitlow, H.J. [Department of Physics, University of Jyvaskyla, P.O. Box 35 (YFL), FIN-40014 (Finland); Osipowicz, T. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Watt, F. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore)]. E-mail: phywattf@nus.edu.sg

    2007-07-15

    Scanning transmission ion microscopy (STIM) is a technique which utilizes the energy loss of high energy (MeV) ions passing through a sample to provide structural images. In this paper, we have successfully demonstrated STIM imaging of single cells at the nano-level using the high resolution capability of the proton beam writing facility at the Centre for Ion Beam Applications, National University of Singapore. MCF-7 breast cancer cells (American Type Culture Collection [ATCC]) were seeded on to silicon nitride windows, backed by a Hamamatsu pin diode acting as a particle detector. A reasonable contrast was obtained using 1 MeV protons and excellent contrast obtained using 1 MeV alpha particles. In a further experiment, nano-STIM was also demonstrated using cells seeded on to the pin diode directly, and high quality nano-STIM images showing the nucleus and multiple nucleoli were extracted before the detector was significantly damaged.

  7. Rotational manipulation of single cells and organisms using acoustic waves.

    Science.gov (United States)

    Ahmed, Daniel; Ozcelik, Adem; Bojanala, Nagagireesh; Nama, Nitesh; Upadhyay, Awani; Chen, Yuchao; Hanna-Rose, Wendy; Huang, Tony Jun

    2016-03-23

    The precise rotational manipulation of single cells or organisms is invaluable to many applications in biology, chemistry, physics and medicine. In this article, we describe an acoustic-based, on-chip manipulation method that can rotate single microparticles, cells and organisms. To achieve this, we trapped microbubbles within predefined sidewall microcavities inside a microchannel. In an acoustic field, trapped microbubbles were driven into oscillatory motion generating steady microvortices which were utilized to precisely rotate colloids, cells and entire organisms (that is, C. elegans). We have tested the capabilities of our method by analysing reproductive system pathologies and nervous system morphology in C. elegans. Using our device, we revealed the underlying abnormal cell fusion causing defective vulval morphology in mutant worms. Our acoustofluidic rotational manipulation (ARM) technique is an easy-to-use, compact, and biocompatible method, permitting rotation regardless of optical, magnetic or electrical properties of the sample under investigation.

  8. Recent Advances in Microbial Single Cell Genomics Technology and Applications

    Science.gov (United States)

    Stepanauskas, R.

    2016-02-01

    Single cell genomics is increasingly utilized as a powerful tool to decipher the metabolic potential, evolutionary histories and in situ interactions of environmental microorganisms. This transformative technology recovers extensive information from cultivation-unbiased samples of individual, unicellular organisms. Thus, it does not require data binning into arbitrary phylogenetic or functional groups and therefore is highly compatible with agent-based modeling approaches. I will present several technological advances in this field, which significantly improve genomic data recovery from individual cells and provide direct linkages between cell's genomic and phenotypic properties. I will also demonstrate how these new technical capabilities help understanding the metabolic potential and viral infections of the "microbial dark matter" inhabiting aquatic and subsurface environments.

  9. Metagenomics, metatranscriptomics and single cell genomics reveal functional response of active Oceanospirillales to Gulf oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Mason, Olivia U.; Hazen, Terry C.; Borglin, Sharon; Chain, Patrick S. G.; Dubinsky, Eric A.; Fortney, Julian L.; Han, James; Holman, Hoi-Ying N.; Hultman, Jenni; Lamendella, Regina; Mackelprang, Rachel; Malfatti, Stephanie; Tom, Lauren M.; Tringe, Susannah G.; Woyke, Tanja; Zhou, Jizhong; Rubin, Edward M.; Jansson, Janet K.

    2012-06-12

    The Deepwater Horizon oil spill in the Gulf of Mexico resulted in a deep-sea hydrocarbon plume that caused a shift in the indigenous microbial community composition with unknown ecological consequences. Early in the spill history, a bloom of uncultured, thus uncharacterized, members of the Oceanospirillales was previously detected, but their role in oil disposition was unknown. Here our aim was to determine the functional role of the Oceanospirillales and other active members of the indigenous microbial community using deep sequencing of community DNA and RNA, as well as single-cell genomics. Shotgun metagenomic and metatranscriptomic sequencing revealed that genes for motility, chemotaxis and aliphatic hydrocarbon degradation were significantly enriched and expressed in the hydrocarbon plume samples compared with uncontaminated seawater collected from plume depth. In contrast, although genes coding for degradation of more recalcitrant compounds, such as benzene, toluene, ethylbenzene, total xylenes and polycyclic aromatic hydrocarbons, were identified in the metagenomes, they were expressed at low levels, or not at all based on analysis of the metatranscriptomes. Isolation and sequencing of two Oceanospirillales single cells revealed that both cells possessed genes coding for n-alkane and cycloalkane degradation. Specifically, the near-complete pathway for cyclohexane oxidation in the Oceanospirillales single cells was elucidated and supported by both metagenome and metatranscriptome data. The draft genome also included genes for chemotaxis, motility and nutrient acquisition strategies that were also identified in the metagenomes and metatranscriptomes. These data point towards a rapid response of members of the Oceanospirillales to aliphatic hydrocarbons in the deep sea.

  10. The Means: Cytometry and Mass Spectrometry Converge in a Single Cell Deep Profiling Platform

    Science.gov (United States)

    Weis-Garcia, Frances; Bandura, Dmitry; Baranov, Vladimir; Ornatsky, Olga; Tanner, Scott

    2013-01-01

    Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a distinct flavor of mass spectrometry that has had little association with cell biology: it remains the state of the art for the determination of the atomic composition of materials. Unrelatedly, flow cytometry is the superior method for distinguishing the heterogeneity of cells through the determination of antigen signatures using tagged antibodies. Simply replacing fluorophore tags with stable isotopes of the heavy metals, and measuring these cell-by-cell with ICP-MS, dramatically increases the number of probes that can be simultaneously measured in cytometry and enables a transformative increase in the resolution of rare cell populations in complex biological samples. While this can be thought of as a novel incarnation of single-cell targeted proteomics, the metal-labeling reagents, ICP-MS of single cells, and accompanying informatics comprise a new field of technology termed Mass Cytometry. While the conception of mass cytometry is simple the embodiment to address the issues of multi-parameter flow cytometry has been far more challenging. There are many elements, and many more stable isotopes of those elements, that might be used as distinct reporter tags. Still, there are many approaches to conjugating metals to antibodies (or other affinity reagents) and work in this area along with developing new applications is ongoing. The mass resolution and linear (quantitative) dynamic range of ICP-MS allows those many stable isotopes to be measured simultaneously and without the spectral overlap issues that limit fluorescence assay. However, the adaptation of ICP-MS to allow high-speed simultaneous measurement with single cell distinction at high throughput required innovation of the cell introduction system, ion optics (sampling, transmission and beam-shaping), mass analysis, and signal handling and processing. An overview of “the nuts and bolts” of Mass Cytometry is presented.

  11. A photoacoustic technique to measure the properties of single cells

    Science.gov (United States)

    Strohm, Eric M.; Berndl, Elizabeth S. L.; Kolios, Michael C.

    2013-03-01

    We demonstrate a new technique to non-invasively determine the diameter and sound speed of single cells using a combined ultrasonic and photoacoustic technique. Two cell lines, B16-F1 melanoma cells and MCF7 breast cancer cells were examined using this technique. Using a 200 MHz transducer, the ultrasound backscatter from a single cell in suspension was recorded. Immediately following, the cell was irradiated with a 532 nm laser and the resulting photoacoustic wave recorded by the same transducer. The melanoma cells contain optically absorbing melanin particles, which facilitated photoacoustic wave generation. MCF7 cells have negligible optical absorption at 532 nm; the cells were permeabilized and stained with trypan blue prior to measurements. The measured ultrasound and photoacoustic power spectra were compared to theoretical equations with the cell diameter and sound speed as variables (Anderson scattering model for ultrasound, and a thermoelastic expansion model for photoacoustics). The diameter and sound speed were extracted from the models where the spectral shape matched the measured signals. However the photoacoustic spectrum for the melanoma cell did not match theory, which is likely because melanin particles are located around the cytoplasm, and not within the nucleus. Therefore a photoacoustic finite element model of a cell was developed where the central region was not used to generate a photoacoustic wave. The resulting power spectrum was in better agreement with the measured signal than the thermoelastic expansion model. The MCF7 cell diameter obtained using the spectral matching method was 17.5 μm, similar to the optical measurement of 16 μm, while the melanoma cell diameter obtained was 22 μm, similar to the optical measurement of 21 μm. The sound speed measured from the MCF7 and melanoma cell was 1573 and 1560 m/s, respectively, which is within acceptable values that have been published in literature.

  12. Limited angle STIM and PIXE tomography of single cells

    International Nuclear Information System (INIS)

    Andrea, T.; Rothermel, M.; Werner, R.; Butz, T.; Reinert, T.

    2010-01-01

    STIM (scanning transmission ion microscopy) tomography has been shown to be a valuable method for the three-dimensional characterization of microsamples. It has, however, rarely been employed for the study of single cells, since a free-standing sample is needed for an ordinary tomography experiment. This requirement places high demands on sample preparation techniques. In this study cells fixated on a substrate rather than free-standing were used for tomography. Since the substrate prevented a full rotation of the sample an algorithm for limited-angle tomography was devised. STIM projections covering only a limited angular range of ca. 120 o were supplemented with simulated projections generated from a back and forth iteration between real space and Radon space. The energy loss caused by the substrate was subtracted from each projection. The cells were reconstructed using filtered backprojection. The surface of the cells as well as some interior structures could be reconstructed. Following the STIM projections a lesser number of PIXE (particle induced X-ray emission) projections were taken in order to obtain information about the elemental distribution of the sample. From the PIXE projections the three-dimensional phosphorus distribution within the cell was reconstructed using limited-angle tomography. Superimposition of the STIM and PIXE tomograms revealed the location of intracellular structures. Whereas STIM tomography is sensitive to density contrast, which are greatest at the surface, PIXE tomography is sensitive to changes in elemental concentration. Hence, the combination of the two methods can be very fruitful, while the limited angle approach can compensate some of the difficulties associated with tomography of single cells, namely preparation difficulties and excessive sample damage.

  13. Single cell adhesion force measurement for cell viability identification using an AFM cantilever-based micro putter

    Science.gov (United States)

    Shen, Yajing; Nakajima, Masahiro; Kojima, Seiji; Homma, Michio; Kojima, Masaru; Fukuda, Toshio

    2011-11-01

    Fast and sensitive cell viability identification is a key point for single cell analysis. To address this issue, this paper reports a novel single cell viability identification method based on the measurement of single cell shear adhesion force using an atomic force microscopy (AFM) cantilever-based micro putter. Viable and nonviable yeast cells are prepared and put onto three kinds of substrate surfaces, i.e. tungsten probe, gold and ITO substrate surfaces. A micro putter is fabricated from the AFM cantilever by focused ion beam etching technique. The spring constant of the micro putter is calibrated using the nanomanipulation approach. The shear adhesion force between the single viable or nonviable cell and each substrate is measured using the micro putter based on the nanorobotic manipulation system inside an environmental scanning electron microscope. The adhesion force is calculated based on the deflection of the micro putter beam. The results show that the adhesion force of the viable cell to the substrate is much larger than that of the nonviable cell. This identification method is label free, fast, sensitive and can give quantitative results at the single cell level.

  14. High-efficiency single cell encapsulation and size selective capture of cells in picoliter droplets based on hydrodynamic micro-vortices.

    Science.gov (United States)

    Kamalakshakurup, Gopakumar; Lee, Abraham P

    2017-12-05

    Single cell analysis has emerged as a paradigm shift in cell biology to understand the heterogeneity of individual cells in a clone for pathological interrogation. Microfluidic droplet technology is a compelling platform to perform single cell analysis by encapsulating single cells inside picoliter-nanoliter (pL-nL) volume droplets. However, one of the primary challenges for droplet based single cell assays is single cell encapsulation in droplets, currently achieved either randomly, dictated by Poisson statistics, or by hydrodynamic techniques. In this paper, we present an interfacial hydrodynamic technique which initially traps the cells in micro-vortices, and later releases them one-to-one into the droplets, controlled by the width of the outer streamline that separates the vortex from the flow through the streaming passage adjacent to the aqueous-oil interface (d gap ). One-to-one encapsulation is achieved at a d gap equal to the radius of the cell, whereas complete trapping of the cells is realized at a d gap smaller than the radius of the cell. The unique feature of this technique is that it can perform 1. high efficiency single cell encapsulations and 2. size-selective capturing of cells, at low cell loading densities. Here we demonstrate these two capabilities with a 50% single cell encapsulation efficiency and size selective separation of platelets, RBCs and WBCs from a 10× diluted blood sample (WBC capture efficiency at 70%). The results suggest a passive, hydrodynamic micro-vortex based technique capable of performing high-efficiency single cell encapsulation for cell based assays.

  15. The nature and nurture of cell heterogeneity: accounting for macrophage gene-environment interactions with single-cell RNA-Seq.

    Science.gov (United States)

    Wills, Quin F; Mellado-Gomez, Esther; Nolan, Rory; Warner, Damien; Sharma, Eshita; Broxholme, John; Wright, Benjamin; Lockstone, Helen; James, William; Lynch, Mark; Gonzales, Michael; West, Jay; Leyrat, Anne; Padilla-Parra, Sergi; Filippi, Sarah; Holmes, Chris; Moore, Michael D; Bowden, Rory

    2017-01-07

    Single-cell RNA-Seq can be a valuable and unbiased tool to dissect cellular heterogeneity, despite the transcriptome's limitations in describing higher functional phenotypes and protein events. Perhaps the most important shortfall with transcriptomic 'snapshots' of cell populations is that they risk being descriptive, only cataloging heterogeneity at one point in time, and without microenvironmental context. Studying the genetic ('nature') and environmental ('nurture') modifiers of heterogeneity, and how cell population dynamics unfold over time in response to these modifiers is key when studying highly plastic cells such as macrophages. We introduce the programmable Polaris™ microfluidic lab-on-chip for single-cell sequencing, which performs live-cell imaging while controlling for the culture microenvironment of each cell. Using gene-edited macrophages we demonstrate how previously unappreciated knockout effects of SAMHD1, such as an altered oxidative stress response, have a large paracrine signaling component. Furthermore, we demonstrate single-cell pathway enrichments for cell cycle arrest and APOBEC3G degradation, both associated with the oxidative stress response and altered proteostasis. Interestingly, SAMHD1 and APOBEC3G are both HIV-1 inhibitors ('restriction factors'), with no known co-regulation. As single-cell methods continue to mature, so will the ability to move beyond simple 'snapshots' of cell populations towards studying the determinants of population dynamics. By combining single-cell culture, live-cell imaging, and single-cell sequencing, we have demonstrated the ability to study cell phenotypes and microenvironmental influences. It's these microenvironmental components - ignored by standard single-cell workflows - that likely determine how macrophages, for example, react to inflammation and form treatment resistant HIV reservoirs.

  16. A hybrid correlation analysis with application to imaging genetics

    Science.gov (United States)

    Hu, Wenxing; Fang, Jian; Calhoun, Vince D.; Wang, Yu-Ping

    2018-03-01

    Investigating the association between brain regions and genes continues to be a challenging topic in imaging genetics. Current brain region of interest (ROI)-gene association studies normally reduce data dimension by averaging the value of voxels in each ROI. This averaging may lead to a loss of information due to the existence of functional sub-regions. Pearson correlation is widely used for association analysis. However, it only detects linear correlation whereas nonlinear correlation may exist among ROIs. In this work, we introduced distance correlation to ROI-gene association analysis, which can detect both linear and nonlinear correlations and overcome the limitation of averaging operations by taking advantage of the information at each voxel. Nevertheless, distance correlation usually has a much lower value than Pearson correlation. To address this problem, we proposed a hybrid correlation analysis approach, by applying canonical correlation analysis (CCA) to the distance covariance matrix instead of directly computing distance correlation. Incorporating CCA into distance correlation approach may be more suitable for complex disease study because it can detect highly associated pairs of ROI and gene groups, and may improve the distance correlation level and statistical power. In addition, we developed a novel nonlinear CCA, called distance kernel CCA, which seeks the optimal combination of features with the most significant dependence. This approach was applied to imaging genetic data from the Philadelphia Neurodevelopmental Cohort (PNC). Experiments showed that our hybrid approach produced more consistent results than conventional CCA across resampling and both the correlation and statistical significance were increased compared to distance correlation analysis. Further gene enrichment analysis and region of interest (ROI) analysis confirmed the associations of the identified genes with brain ROIs. Therefore, our approach provides a powerful tool for finding

  17. Genetic Analysis of Oncorhynchus Nerka : Life History and Genetic Analysis of Redfish Lake Oncorhynchus Nerka, 1993-1994 Completion Report.

    Energy Technology Data Exchange (ETDEWEB)

    Brannon, E.L.; Thorgaard, G.H.; Cummings, S.A.

    1994-10-01

    The study has shown through life history examination and DNA analysis that three forms of O. nerka are present in Redfish Lake. The three forms are closely related, but may be sufficiently different to be considered three separate stocks. Fishhook Creek kokanee are temporally isolated from the beach spawners, and may represent the gene pool most similar to the historic sockeye population that once spawned there. Fishhook Creek offers the best spawning area available in the lake system, and should be considered for use in reestablishing an anadromous Fishhook Creek sockeye swain. The resident beach spawning strain of O. nerka is likewise the most similar genetic form of the companion anadromous beach spawning O. nerka, and needs to be considered the most appropriate genetic source to help minimize reduced fitness of the sockeye from inbreeding.

  18. Analysis of conditional genetic effects and variance components in developmental genetics.

    Science.gov (United States)

    Zhu, J

    1995-12-01

    A genetic model with additive-dominance effects and genotype x environment interactions is presented for quantitative traits with time-dependent measures. The genetic model for phenotypic means at time t conditional on phenotypic means measured at previous time (t-1) is defined. Statistical methods are proposed for analyzing conditional genetic effects and conditional genetic variance components. Conditional variances can be estimated by minimum norm quadratic unbiased estimation (MINQUE) method. An adjusted unbiased prediction (AUP) procedure is suggested for predicting conditional genetic effects. A worked example from cotton fruiting data is given for comparison of unconditional and conditional genetic variances and additive effects.

  19. Genetic analysis of the heparan modification network in Caenorhabditis elegans.

    Science.gov (United States)

    Townley, Robert A; Bülow, Hannes E

    2011-05-13

    Heparan sulfates (HS) are highly modified sugar polymers in multicellular organisms that function in cell adhesion and cellular responses to protein signaling. Functionally distinct, cell type-dependent HS modification patterns arise as the result of a conserved network of enzymes that catalyze deacetylations, sulfations, and epimerizations in specific positions of the sugar residues. To understand the genetic interactions of the enzymes during the HS modification process, we have measured the composition of HS purified from mutant strains of Caenorhabditis elegans. From these measurements we have developed a genetic network model of HS modification. We find the interactions to be highly recursive positive feed-forward and negative feedback loops. Our genetic analyses show that the HS C-5 epimerase hse-5, the HS 2-O-sulfotransferase hst-2, or the HS 6-O-sulfotransferase hst-6 inhibit N-sulfation. In contrast, hse-5 stimulates both 2-O- and 6-O-sulfation and, hst-2 and hst-6 inhibit 6-O- and 2-O-sulfation, respectively. The effects of hst-2 and hst-6 on N-sulfation, 6-O-sulfation, and 2-O-sulfation appear largely dependent on hse-5 function. This core of regulatory interactions is further modulated by 6-O-endosulfatase activity (sul-1). 47% of all 6-O-sulfates get removed from HS and this editing process is dependent on hst-2, thereby providing additional negative feedback between 2-O- and 6-O-sulfation. These findings suggest that the modification patterns are highly sensitive to the relative composition of the HS modification enzymes. Our comprehensive genetic analysis forms the basis of understanding the HS modification network in metazoans.

  20. Genetic Analysis of the Heparan Modification Network in Caenorhabditis elegans*

    Science.gov (United States)

    Townley, Robert A.; Bülow, Hannes E.

    2011-01-01

    Heparan sulfates (HS) are highly modified sugar polymers in multicellular organisms that function in cell adhesion and cellular responses to protein signaling. Functionally distinct, cell type-dependent HS modification patterns arise as the result of a conserved network of enzymes that catalyze deacetylations, sulfations, and epimerizations in specific positions of the sugar residues. To understand the genetic interactions of the enzymes during the HS modification process, we have measured the composition of HS purified from mutant strains of Caenorhabditis elegans. From these measurements we have developed a genetic network model of HS modification. We find the interactions to be highly recursive positive feed-forward and negative feedback loops. Our genetic analyses show that the HS C-5 epimerase hse-5, the HS 2-O-sulfotransferase hst-2, or the HS 6-O-sulfotransferase hst-6 inhibit N-sulfation. In contrast, hse-5 stimulates both 2-O- and 6-O-sulfation and, hst-2 and hst-6 inhibit 6-O- and 2-O-sulfation, respectively. The effects of hst-2 and hst-6 on N-sulfation, 6-O-sulfation, and 2-O-sulfation appear largely dependent on hse-5 function. This core of regulatory interactions is further modulated by 6-O-endosulfatase activity (sul-1). 47% of all 6-O-sulfates get removed from HS and this editing process is dependent on hst-2, thereby providing additional negative feedback between 2-O- and 6-O-sulfation. These findings suggest that the modification patterns are highly sensitive to the relative composition of the HS modification enzymes. Our comprehensive genetic analysis forms the basis of understanding the HS modification network in metazoans. PMID:21454666

  1. Genetic analysis of bulimia nervosa: methods and sample description.

    Science.gov (United States)

    Kaye, Walter H; Devlin, Bernie; Barbarich, Nicole; Bulik, Cynthia M; Thornton, Laura; Bacanu, Silviu-Alin; Fichter, Manfred M; Halmi, Katherine A; Kaplan, Allan S; Strober, Michael; Woodside, D Blake; Bergen, Andrew W; Crow, Scott; Mitchell, James; Rotondo, Alessandro; Mauri, Mauro; Cassano, Giovanni; Keel, Pamela; Plotnicov, Katherine; Pollice, Christine; Klump, Kelly L; Lilenfeld, Lisa R; Ganjei, J Kelly; Quadflieg, Norbert; Berrettini, Wade H

    2004-05-01

    Twin and family studies suggest that genetic variants contribute to the pathogenesis of bulimia nervosa (BN) and anorexia nervosa (AN). The Price Foundation has supported an international, multisite study of families with these disorders to identify these genetic variations. The current study presents the clinical characteristics of this sample as well as a description of the study methodology. All probands met modified criteria for BN or bulimia nervosa with a history of AN (BAN) as defined in the 4th ed. of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV; American Psychiatric Association, 1994). All affected relatives met DSM-IV criteria for BN, AN, BAN, or eating disorders not otherwise specified (EDNOS). Probands and affected relatives were assessed diagnostically using both trained-rater and self-report assessments. DNA samples were collected from probands, affected relatives, and available biologic parents. Assessments were obtained from 163 BN probands and 165 BAN probands. Overall, there were 365 relative pairs available for linkage analysis. Of the affected relatives of BN probands, 62 were diagnosed as BN (34.8%), 49 as BAN (27.5%), 35 as AN (19.7%), and 32 as EDNOS (18.0%). For the relatives of BAN probands, 42 were diagnosed as BN (22.5%), 67 as BAN (35.8%), 48 as AN (25.7%), and 30 as EDNOS (16.0%). This study represents the largest genetic study of eating disorders to date. Clinical data indicate that although there are a large number of individuals with BN disorders, a range of eating pathology is represented in the sample, allowing for the examination of several different phenotypes in molecular genetic analyses. Copyright 2004 by Wiley Periodicals, Inc. Int J Eat Disord 35: 556-570, 2004.

  2. Population genetic analysis of Enterocytozoon bieneusi in humans.

    Science.gov (United States)

    Li, Wei; Cama, Vitaliano; Feng, Yaoyu; Gilman, Robert H; Bern, Caryn; Zhang, Xichen; Xiao, Lihua

    2012-01-01

    Genotyping based on sequence analysis of the ribosomal internal transcribed spacer has revealed significant genetic diversity in Enterocytozoonbieneusi. Thus far, the population genetics of E. bieneusi and its significance in the epidemiology of microsporidiosis have not been examined. In this study, a multilocus sequence typing of E. bieneusi in AIDS patients in Lima, Peru was conducted, using 72 specimens previously genotyped as A, D, IV, EbpC, WL11, Peru7, Peru8, Peru10 and Peru11 at the internal transcribed spacer locus. Altogether, 39 multilocus genotypes were identified among the 72 specimens. The observation of strong intragenic linkage disequilibria and limited genetic recombination among markers were indicative of an overall clonal population structure of E. bieneusi. Measures of pair-wise intergenic linkage disequilibria and a standardised index of association (IAS) based on allelic profile data further supported this conclusion. Both sequence-based and allelic profile-based phylogenetic analyses showed the presence of two genetically isolated groups in the study population, one (group 1) containing isolates of the anthroponotic internal transcribed spacer genotype A, and the other (group 2) containing isolates of multiple internal transcribed spacer genotypes (mainly genotypes D and IV) with zoonotic potential. The measurement of linkage disequilibria and recombination indicated group 2 had a clonal population structure, whereas group 1 had an epidemic population structure. The formation of the two sub-populations was confirmed by STRUCTURE and Wright's fixation index (FST) analyses. The data highlight the power of MLST in understanding the epidemiology of E. bieneusi. Published by Elsevier Ltd.

  3. A cluster analysis on road traffic accidents using genetic algorithms

    Science.gov (United States)

    Saharan, Sabariah; Baragona, Roberto

    2017-04-01

    The analysis of traffic road accidents is increasingly important because of the accidents cost and public road safety. The availability or large data sets makes the study of factors that affect the frequency and severity accidents are viable. However, the data are often highly unbalanced and overlapped. We deal with the data set of the road traffic accidents recorded in Christchurch, New Zealand, from 2000-2009 with a total of 26440 accidents. The data is in a binary set and there are 50 factors road traffic accidents with four level of severity. We used genetic algorithm for the analysis because we are in the presence of a large unbalanced data set and standard clustering like k-means algorithm may not be suitable for the task. The genetic algorithm based on clustering for unknown K, (GCUK) has been used to identify the factors associated with accidents of different levels of severity. The results provided us with an interesting insight into the relationship between factors and accidents severity level and suggest that the two main factors that contributes to fatal accidents are "Speed greater than 60 km h" and "Did not see other people until it was too late". A comparison with the k-means algorithm and the independent component analysis is performed to validate the results.

  4. EMBO Course “Formal Analysis of Genetic Regulation”

    CERN Document Server

    1979-01-01

    The E M B 0 course on "Formal Analysis of Genetic Regulation" A course entitled "Formal analysis of Genetic Regulation" was held at the University of Brussels from 6 to 16 September 1977 under the auspices of EMBO (European Molecular Biology Organization). As indicated by the title of the book (but not explicitly enough by the title of the course), the main emphasis was put on a dynamic analysis of systems using logical methods, that is, methods in which functions and variables take only a limited number of values - typically two. In this respect, this course was complementary to an EMBO course using continuous methods which was held some months later in Israel by Prof. Segel. People from four very different laboratories took an active part in teaching our course in Brussels : Drs Anne LEUSSLER and Philippe VAN HAM, from the Laboratory of Prof. Jean FLORINE (Laboratoire des Systemes logiques et numeriques, Faculte des Sciences appliquees, Universite Libre de Bruxelles). Dr Stuart KAUFFMAN (Dept. of Biochemist...

  5. Genetic analysis of fibre quality traits in upland cotton

    International Nuclear Information System (INIS)

    Khan, I.A.; Shakeel, A.; Azhar, F.M.

    2001-01-01

    Five-parent diallel cross data were analysed following Hayman-Jinks genetic model in order to study pattern of inheritance of staple length, fibre strength, fibre fineness and fibre uniformity of upland cotton. The regression analysis of the F/sub 1/ data revealed that the simple additive dominance model was adequate for genetic analysis. Graphic analysis showed the presence of over-dominance type of gene action in the inheritance e of all the traits. The comparison of array means indicated that varieties Co-2-1 and B-682 had good general combining ability for staple length and fibre strength respectively, whilst CIM-443 showed better general combining ability for fibre fineness and fibre uniformity than the other varieties. The cross combination of Co-2-1 and CIM-443 with B-682 expressed best specific combining ability for staple length and fibre uniformity respectively. Similarly variety B-682 nickel well with DPL 7740-424 for the fibre strength, and coker-307 with CO-2-1 for fibre fineness. The type of gene action controlling inheritance of these characters, and better performance of some of the hybrids suggest that improvement may be possible by developing on appropriate breeding programme. (author)

  6. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms.

    Science.gov (United States)

    Kumar, Sudhir; Stecher, Glen; Li, Michael; Knyaz, Christina; Tamura, Koichiro

    2018-06-01

    The Molecular Evolutionary Genetics Analysis (Mega) software implements many analytical methods and tools for phylogenomics and phylomedicine. Here, we report a transformation of Mega to enable cross-platform use on Microsoft Windows and Linux operating systems. Mega X does not require virtualization or emulation software and provides a uniform user experience across platforms. Mega X has additionally been upgraded to use multiple computing cores for many molecular evolutionary analyses. Mega X is available in two interfaces (graphical and command line) and can be downloaded from www.megasoftware.net free of charge.

  7. [Wolfram syndrome: clinical and genetic analysis in two sisters].

    Science.gov (United States)

    Conart, J-B; Maalouf, T; Jonveaux, P; Guerci, B; Angioi, K

    2011-10-01

    Wolfram syndrome is a severe genetic disorder defined by the association of diabetes mellitus, optic atrophy, deafness, and diabetes insipidus. Two sisters complained of progressive visual loss. Fundus examination evidenced optic atrophy. Their past medical history revealed diabetes mellitus and deafness since childhood. The association of these symptoms made the diagnosis of Wolfram syndrome possible. It was confirmed by molecular analysis, which evidenced composite WFS1 heterozygous mutations inherited from both their mother and father. Ophthalmologists should be aware of the possibility of Wolfram syndrome when diagnosing optic atrophy in diabetic children. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  8. Sorting of cells of the same size, shape, and cell cycle stage for a single cell level assay without staining

    Directory of Open Access Journals (Sweden)

    Yomo Tetsuya

    2006-06-01

    Full Text Available Abstract Background Single-cell level studies are being used increasingly to measure cell properties not directly observable in a cell population. High-performance data acquisition systems for such studies have, by necessity, developed in synchrony. However, improvements in sample purification techniques are also required to reveal new phenomena. Here we assessed a cell sorter as a sample-pretreatment tool for a single-cell level assay. A cell sorter is routinely used for selecting one type of cells from a heterogeneous mixture of cells using specific fluorescence labels. In this case, we wanted to select cells of exactly the same size, shape, and cell-cycle stage from a population, without using a specific fluorescence label. Results We used four light scatter parameters: the peak height and area of the forward scatter (FSheight and FSarea and side scatter (SSheight and SSarea. The rat pheochromocytoma PC12 cell line, a neuronal cell line, was used for all experiments. The living cells concentrated in the high FSarea and middle SSheight/SSarea fractions. Single cells without cell clumps were concentrated in the low SS and middle FS fractions, and in the higher FSheight/FSarea and SSheight/SSarea fractions. The cell populations from these viable, single-cell-rich fractions were divided into twelve subfractions based on their FSarea-SSarea profiles, for more detailed analysis. We found that SSarea was proportional to the cell volume and the FSarea correlated with cell roundness and elongation, as well as with the level of DNA in the cell. To test the method and to characterize the basic properties of the isolated single cells, sorted cells were cultured in separate wells. The cells in all subfractions survived, proliferated and differentiated normally, suggesting that there was no serious damage. The smallest, roundest, and smoothest cells had the highest viability. There was no correlation between proliferation and differentiation. NGF increases

  9. Single Nanowire Probe for Single Cell Endoscopy and Sensing

    Science.gov (United States)

    Yan, Ruoxue

    The ability to manipulate light in subwavelength photonic and plasmonic structures has shown great potentials in revolutionizing how information is generated, transformed and processed. Chemically synthesized nanowires, in particular, offers a unique toolbox not only for highly compact and integrated photonic modules and devices, including coherent and incoherent light sources, waveguides, photodetectors and photovoltaics, but also for new types of nanoscopic bio-probes for spot cargo delivery and in-situ single cell endoscopy and sensing. Such nanowire probes would enable us to carry out intracellular imaging and probing with high spatial resolution, monitor in-vivo biological processes within single living cells and greatly improve our fundamental understanding of cell functions, intracellular physiological processes, and cellular signal pathways. My work is aimed at developing a material and instrumental platform for such single nanowire probe. Successful optical integration of Ag nanowire plasmonic waveguides, which offers deep subwavelength mode confinement, and conventional photonic waveguides was demonstrated on a single nanowire level. The highest plasmonic-photonic coupling efficiency coupling was found at small coupling angles and low input frequencies. The frequency dependent propagation loss was observed in Ag nanowire and was confirmed by quantitative measurement and in agreement with theoretical expectations. Rational integration of dielectric and Ag nanowire waveguide components into hybrid optical-plasmonic routing devices has been demonstrated. This capability is essential for incorporating sub-100nm Ag nanowire waveguides into optical fiber based nanoprobes for single cell endoscopy. The nanoprobe system based on single nanowire waveguides was demonstrated by optically coupling semiconductor or metal nanowire with an optical fiber with tapered tip. This nanoprobe design requires minimal instrumentation which makes it cost efficient and readily

  10. Genetic Segregation Analysis of a Rapeseed Dwarf Mutant

    International Nuclear Information System (INIS)

    Xiang, G.; Yu, S.; Zhang, T.; Zhao, J.; Lei, S.; Du, C.

    2016-01-01

    Dwarf resources in Brassica napus are very important for developing high-yield cultivars through dwarf-type and lodging-resistant breeding. However, few dwarf varieties have been available for this species. Here, we reported a new rapeseed dwarf mutant GRC1157, which exhibits obvious phenotypic variations on dwarf. Six generations (P /sub 1/, P/sub 1/, F/sub 1/, F/sub 1/, B/sub 1/, and B/sub 1/) were produced from a cross between dwarf mutant GRC1157 and an elite tall-type line XR16 to analyze genetic inheritances of plant height (PH), numbers of the 1st valid branch (VBN), main inflorescence length (MIL), pod numbers per main inflorescence (MPN), pod length (PL) and seed numbers per pod (PSN) using the mixed major gene plus polygene inheritance model. The genetic analysis shows different traits were controlled by different inheritance models: PH and PL by two pairs of additive-dominant-epistatic major genes plus additive-dominant-epistatic polygenes, MPN and PSN by two-pair additive-dominant-epistatic major genes plus additive-dominant polygenes, MIL by two-pair additive-dominant-epistatic major genes and VBN by one-pair additive-dominant major genes plus additive-dominant-epistatic polygenes. Furthermore, positive correlations between PH and some other traits were observed, suggesting that some traits may be co-regulated by several linkage or same loci/genes. In addition, high heritability (40.35-93.7 percent) were found for five traits (except VBN) in different segregating generations, indicating these traits were mainly affected by hereditary factors and suitable for early artificial selection. In sum, the dwarf mutant GRC1157 can serve as a valuable resource for rapeseed dwarf breeding and the genetic analysis in this study provided a foundation for further mapping and cloning dwarf genes in mutant GRC1157. (author)

  11. Genetic analysis of radiation-induced mouse thymic lymphomas

    International Nuclear Information System (INIS)

    Kominami, R.; Wakabayashi, Y.; Niwa, O.

    2003-01-01

    Mouse thymic lymphomas are one of the classic models of radiation-induced malignancies, and the model has been used for the study of genes involved in carcinogenesis. ras oncogenes are the first isolate which undergoes mutations in 10 to 30 % of lymphomas, and p16INK4a and p19ARF in the INK4a-ARF locus are also frequently inactivated. In our previous study, the inactivation of Ikaros, a key regurator of lymphoid system, was found in those lymphomas, and it was suggested that there are other responsible genes yet to be discovered. On the other hand, genetic predisposition to radiation-induced lymphoma often differs in different strains, and this reflects the presence of low penetrance genes that can modify the impact of a given mutation. Little study of such modifiers or susceptibility genes has been performed, either. Recent availability of databases on mouse genome information and the power of mouse genetic system underline usefulness of the lymphoma model in search for novel genes involved, which may provide clues to molecular mechanisms of development of the radiogenic lymphoma and also genes involved in human lymphomas and other malignancies. Accordingly, we have carried out positional cloning for the two different types of tumor-related genes. In this symposium, our current progress is presented that includes genetic mapping of susceptibility/ resistance loci on mouse chromosomes 4, 5 and 19, and also functional analysis of a novel tumor suppressor gene, Rit1/Bcl11b, that has been isolated from allelic loss (LOH) mapping and sequence analysis for γ -ray induced mouse thymic lymphomas

  12. Single-cell and population NF-κB dynamic responses depend on lipopolysaccharide preparation.

    Directory of Open Access Journals (Sweden)

    Miriam V Gutschow

    Full Text Available Lipopolysaccharide (LPS, found in the outer membrane of gram-negative bacteria, elicits a strong response from the transcription factor family Nuclear factor (NF-κB via Toll-like receptor (TLR 4. The cellular response to lipopolysaccharide varies depending on the source and preparation of the ligand, however. Our goal was to compare single-cell NF-κB dynamics across multiple sources and concentrations of LPS.Using live-cell fluorescence microscopy, we determined the NF-κB activation dynamics of hundreds of single cells expressing a p65-dsRed fusion protein. We used computational image analysis to measure the nuclear localization of the fusion protein in the cells over time. The concentration range spanned up to nine orders of magnitude for three E. coli LPS preparations. We find that the LPS preparations induce markedly different responses, even accounting for potency differences. We also find that the ability of soluble TNF receptor to affect NF-κB dynamics varies strikingly across the three preparations.Our work strongly suggests that the cellular response to LPS is highly sensitive to the source and preparation of the ligand. We therefore caution that conclusions drawn from experiments using one preparation may not be applicable to LPS in general.

  13. Isotachophoresis for fractionation and recovery of cytoplasmic RNA and nucleus from single cells.

    Science.gov (United States)

    Kuriyama, Kentaro; Shintaku, Hirofumi; Santiago, Juan G

    2015-07-01

    There is a substantial need for simultaneous analyses of RNA and DNA from individual single cells. Such analysis provides unique evidence of cell-to-cell differences and the correlation between gene expression and genomic mutation in highly heterogeneous cell populations. We present a novel microfluidic system that leverages isotachophoresis to fractionate and isolate cytoplasmic RNA and genomic DNA (gDNA) from single cells. The system uniquely enables independent, sequence-specific analyses of these critical markers. Our system uses a microfluidic chip with a simple geometry and four end-channel electrodes, and completes the entire process in RNA output reservoirs, each containing high quality and purity aliquots with no measurable cross-contamination of cytoplasmic RNA versus gDNA. We demonstrate our system with simultaneous, sequence-specific quantitation using off-chip RT-qPCR and qPCR for simultaneous cytoplasmic RNA and gDNA analyses, respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Single-cell mRNA transfection studies: delivery, kinetics and statistics by numbers.

    Science.gov (United States)

    Leonhardt, Carolin; Schwake, Gerlinde; Stögbauer, Tobias R; Rappl, Susanne; Kuhr, Jan-Timm; Ligon, Thomas S; Rädler, Joachim O

    2014-05-01

    In artificial gene delivery, messenger RNA (mRNA) is an attractive alternative to plasmid DNA (pDNA) since it does not require transfer into the cell nucleus. Here we show that, unlike for pDNA transfection, the delivery statistics and dynamics of mRNA-mediated expression are generic and predictable in terms of mathematical modeling. We measured the single-cell expression time-courses and levels of enhanced green fluorescent protein (eGFP) using time-lapse microscopy and flow cytometry (FC). The single-cell analysis provides direct access to the distribution of onset times, life times and expression rates of mRNA and eGFP. We introduce a two-step stochastic delivery model that reproduces the number distribution of successfully delivered and translated mRNA molecules and thereby the dose-response relation. Our results establish a statistical framework for mRNA transfection and as such should advance the development of RNA carriers and small interfering/micro RNA-based drugs. This team of authors established a statistical framework for mRNA transfection by using a two-step stochastic delivery model that reproduces the number distribution of successfully delivered and translated mRNA molecules and thereby their dose-response relation. This study establishes a nice connection between theory and experimental planning and will aid the cellular delivery of mRNA molecules. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Genetic diversity and relationship analysis of Gossypium arboreum accessions.

    Science.gov (United States)

    Liu, F; Zhou, Z L; Wang, C Y; Wang, Y H; Cai, X Y; Wang, X X; Zhang, Z S; Wang, K B

    2015-11-19

    Simple sequence repeat techniques were used to identify the genetic diversity of 101 Gossypium arboreum accessions collected from India, Vietnam, and the southwest of China (Guizhou, Guangxi, and Yunnan provinces). Twenty-six pairs of SSR primers produced a total of 103 polymorphic loci with an average of 3.96 polymorphic loci per primer. The average of the effective number of alleles, Nei's gene diversity, and Shannon's information index were 0.59, 0.2835, and 0.4361, respectively. The diversity varied among different geographic regions. The result of principal component analysis was consistent with that of unweighted pair group method with arithmetic mean clustering analysis. The 101 G. arboreum accessions were clustered into 2 groups.

  16. Genetic analysis of superovulatory response of Holstein cows in Canada.

    Science.gov (United States)

    Jaton, C; Koeck, A; Sargolzaei, M; Malchiodi, F; Price, C A; Schenkel, F S; Miglior, F

    2016-05-01

    Superovulation of dairy cattle is frequently used in Canada. The cost of this protocol is high, and so is the variability of the outcome. Knowing the superovulatory potential of a donor cow could influence the breeder's decision to superovulate it or not. The main objective of this study was to perform a genetic analysis for superovulatory response of Holstein cows in Canada using data recorded by Holstein Canada, and to investigate if these data could be used for genetic evaluation. Data contained the total number of embryos and the number of viable embryos from every successful flushing performed across Canada. After editing, 137,446 records of superovulation performed between 1992 and 2014 were analyzed. A univariate repeatability animal model analysis was performed for both total number of embryos and number of viable embryos. Because both data and residuals did not follow a normal distribution, records were subject to either logarithmic or Anscombe transformation. Using logarithmic transformation, heritability estimates (SE) of 0.15 (0.01) and 0.14 (0.01) were found for total number of embryos and number of viable embryos, respectively. Using Anscombe transformation, heritability estimates (SE) of 0.17 (0.01) and 0.14 (0.01) were found for total number of embryos and number of viable embryos, respectively. The genetic correlation between the 2 traits was estimated at 0.97 using logarithmic transformation and 0.95 using Anscombe transformation. Breeding values were estimated for 54,463 cows, and 3,513 sires. Only estimated breeding values of sires having a reliability higher than 40% were considered for estimated breeding values correlations with other routinely evaluated traits. The results showed that selection for a higher response to superovulation would lead to a slight decrease in milk production, but an improvement for functional traits, including all reproduction traits. In all cases, the estimated correlations are either low or modest. We conclude that

  17. Opto-acoustic microscopy reveals adhesion mechanics of single cells

    Science.gov (United States)

    Abi Ghanem, Maroun; Dehoux, Thomas; Liu, Liwang; Le Saux, Guillaume; Plawinski, Laurent; Durrieu, Marie-Christine; Audoin, Bertrand

    2018-01-01

    Laser-generated GHz-ultrasonic-based technologies have shown the ability to image single cell adhesion and stiffness simultaneously. Using this new modality, we here demonstrate quantitative indicators to investigate contact mechanics and adhesion processes of the cell. We cultured human cells on a rigid substrate, and we used an inverted pulsed opto-acoustic microscope to generate acoustic pulses containing frequencies up to 100 GHz in the substrate. We map the reflection of the acoustic pulses at the cell-substrate interface to obtain images of the acoustic impedance of the cell, Zc, as well as of the stiffness of the interface, K, with 1 μm lateral resolution. Our results show that the standard deviation ΔZc reveals differences between different cell types arising from the multiplicity of local conformations within the nucleus. From the distribution of K-values within the nuclear region, we extract a mean interfacial stiffness, Km, that quantifies the average contact force in areas of the cell displaying weak bonding. By analogy with classical contact mechanics, we also define the ratio of the real to nominal contact areas, Sr/St. We show that Km can be interpreted as a quantitative indicator of passive contact at metal-cell interfaces, while Sr/St is sensitive to active adhesive processes in the nuclear region. The ability to separate the contributions of passive and active adhesion processes should allow gaining insight into cell-substrate interactions, with important applications in tissue engineering.

  18. Experimental techniques for single cell and single molecule biomechanics

    International Nuclear Information System (INIS)

    Lim, C.T.; Zhou, E.H.; Li, A.; Vedula, S.R.K.; Fu, H.X.

    2006-01-01

    Stresses and strains that act on the human body can arise either from external physical forces or internal physiological environmental conditions. These biophysical interactions can occur not only at the musculoskeletal but also cellular and molecular levels and can determine the health and function of the human body. Here, we seek to investigate the structure-property-function relationship of cells and biomolecules so as to understand their important physiological functions as well as establish possible connections to human diseases. With the recent advancements in cell and molecular biology, biophysics and nanotechnology, several innovative and state-of-the-art experimental techniques and equipment have been developed to probe the structural and mechanical properties of biostructures from the micro- down to picoscale. Some of these experimental techniques include the optical or laser trap method, micropipette aspiration, step-pressure technique, atomic force microscopy and molecular force spectroscopy. In this article, we will review the basic principles and usage of these techniques to conduct single cell and single molecule biomechanics research

  19. Distribution of inorganic elements in single cells of Chara corallina

    International Nuclear Information System (INIS)

    Li Zijie; Zhang Zhiyong; Chai Zhifang; Yu Ming; Zhou Yunlong

    2005-01-01

    There are actually 20 chemical elements necessary or beneficial for plant growth. Carbon, hydrogen, and oxygen are supplied by air and water. The six macronutrients, nitrogen, phosphorus, potassium., calcium, magnesium, and sulfur are required by plants in large amounts. The rest of the elements are required in trace amounts (micronutrients). Essential trace elements include boron, chlorine, copper, iron, manganese, sodium, zinc, molybdenum, and nickel. Beneficial mineral elements include silicon and cobalt. The functions of the inorganic elements closely related to their destinations in plant cells. Plant cells have unique structures, including a central vacuole, plastids, and a thick cell wall that surrounds the cell membrane. Generally, it is very difficult to determine concentrations of inorganic elements in a single plant cell. Chara corallina is a freshwater plant that inhabits temperate zone ponds and lakes. It consists of alternating nodes and internodes. Each internodal segment is a single large cell, up to 10 cm in length, and 1 mm in diameter. With this species it was possible to isolate subcellular fractions with surgical methods with minimal risk of cross contamination. In this study, concentrations of magnesium, calcium, manganese, iron, copper, zinc, and molybdenum in the cell wall, cytoplasm, and vacuole of single cells of Chara corallina were determined by inductively coupled plasma mass spectrometry (ICP-MS). The distribution characteristics of these elements in the cell components were discussed.

  20. Irradiation of single cells with individual high-LET particles

    International Nuclear Information System (INIS)

    Nelson, J.M.; Braby, L.A.

    1993-01-01

    The dose-limiting normal tissue of concern when irradiating head and neck lesions is often the vascular endothelium within the treatment field. Consequently, the response of capillary endothelial cells exposed to moderate doses of high LET particles is essential for establishing exposure limits for neutron-capture therapy. In an effort to characterize the high-LET radiation biology of cultured endothelial cells, the authors are attempting to measure cellular response to single particles. The single-particle irradiation apparatus, described below, allows them to expose individual cells to known numbers of high-LET particles and follow these cells for extended periods, in order to assess the impact of individual particles on cell growth kinetics. Preliminary cell irradiation experiments have revealed complications related to the smooth and efficient operation of the equipment; these are being resolved. Therefore, the following paragraphs deal primarily with the manner by which high LET particles deposit energy, the requirements for single-cell irradiation, construction and assembly of such apparatus, and testing of experimental procedures, rather than with the radiation biology of endothelial cells

  1. Single cell protein production from mandarin orange peel

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, N.; Nagai, S.

    1981-01-01

    As the hydrolysis of mandarin orange peel with macerating enzyme (40/sup 0/C,24 h)produced 0.59 g g/sup -1/ reducing sugar per dry peel compared to 0.36 by acid-hydrolysis (15 min at 120/sup 0/C with 0.8 N H/sub 2/SO/sub 4/), the production of single cell protein (SCP) from orange peel was studied mostly using enzymatically hydrolyzed orange peel. When the enzymatically hydrolyzed peel media were used, the utilization efficiency of reducing sugars (%) and the growth yield from reducing sugars (gg/sup -1/)were: 63 and 0.51 for Saccharomyces cerevisiae; 56 and 0.48 for Candida utilis; 74 and 0.69 for Debaryomyces hansenii and 64 and 0.70 for Rhodotorula glutinis. SCP production from orange peel by D. hansenii and R. glutinis were further studied. Batch cultures for 24 h at 30/sup 0/C using 100 g dried orange peel produced 45 g of dried cultivated peel (protein content, 33%) with D. hansenii and 34 g (protein content, 50%) with R. glutinis, and 38 g (protein content, 44%) with a mixture of both yeasts.

  2. Bubble Jet agent release cartridge for chemical single cell stimulation.

    Science.gov (United States)

    Wangler, N; Welsche, M; Blazek, M; Blessing, M; Vervliet-Scheebaum, M; Reski, R; Müller, C; Reinecke, H; Steigert, J; Roth, G; Zengerle, R; Paust, N

    2013-02-01

    We present a new method for the distinct specific chemical stimulation of single cells and small cell clusters within their natural environment. By single-drop release of chemical agents with droplets in size of typical cell diameters (d agent release cartridge with integrated fluidic structures and integrated agent reservoirs are shown, tested, and compared in this publication. The single channel setup features a fluidic structure fabricated by anisotropic etching of silicon. To allow for simultaneous release of different agents even though maintaining the same device size, the second type comprises a double channel fluidic structure, fabricated by photolithographic patterning of TMMF. Dispensed droplet volumes are V = 15 pl and V = 10 pl for the silicon and the TMMF based setups, respectively. Utilizing the agent release cartridges, the application in biological assays was demonstrated by hormone-stimulated premature bud formation in Physcomitrella patens and the individual staining of one single L 929 cell within a confluent grown cell culture.

  3. Single cell detection using a magnetic zigzag nanowire biosensor.

    Science.gov (United States)

    Huang, Hao-Ting; Ger, Tzong-Rong; Lin, Ya-Hui; Wei, Zung-Hang

    2013-08-07

    A magnetic zigzag nanowire device was designed for single cell biosensing. Nanowires with widths of 150, 300, 500, and 800 nm were fabricated on silicon trenches by electron beam lithography, electron beam evaporation, and lift-off processes. Magnetoresistance measurements were performed before and after the attachment of a single magnetic cell to the nanowires to characterize the magnetic signal change due to the influence of the magnetic cell. Magnetoresistance responses were measured in different magnetic field directions, and the results showed that this nanowire device can be used for multi-directional detection. It was observed that the highest switching field variation occurred in a 150 nm wide nanowire when the field was perpendicular to the substrate plane. On the other hand, the highest magnetoresistance ratio variation occurred in a 800 nm wide nanowire also when the field was perpendicular to the substrate plane. Besides, the trench-structured substrate proposed in this study can fix the magnetic cell to the sensor in a fluid environment, and the stray field generated by the corners of the magnetic zigzag nanowires has the function of actively attracting the magnetic cells for detection.

  4. Genetics

    International Nuclear Information System (INIS)

    Hubitschek, H.E.

    1975-01-01

    Progress is reported on the following research projects: genetic effects of high LET radiations; genetic regulation, alteration, and repair; chromosome replication and the division cycle of Escherichia coli; effects of radioisotope decay in the DNA of microorganisms; initiation and termination of DNA replication in Bacillus subtilis; mutagenesis in mouse myeloma cells; lethal and mutagenic effects of near-uv radiation; effect of 8-methoxypsoralen on photodynamic lethality and mutagenicity in Escherichia coli; DNA repair of the lethal effects of far-uv; and near uv irradiation of bacterial cells

  5. Morphological Identification and Single-Cell Genomics of Marine Diplonemids

    Czech Academy of Sciences Publication Activity Database

    Gawryluk, R. M. R.; del Campo, J.; Okamoto, n.; Strassert, J. F. H.; Lukeš, Julius; Richards, T.A.; Worden, A.Z.; Santoro, A. E.; Keeling, P. J.

    2016-01-01

    Roč. 26, č. 22 (2016), s. 3053-3059 ISSN 0960-9822 Institutional support: RVO:60077344 Keywords : Euglena gracilis * introns * genes * annotation * RNA Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.851, year: 2016

  6. Early dynamic fate changes in haemogenic endothelium characterized at the single-cell level

    Science.gov (United States)

    Swiers, Gemma; Baumann, Claudia; O'Rourke, John; Giannoulatou, Eleni; Taylor, Stephen; Joshi, Anagha; Moignard, Victoria; Pina, Cristina; Bee, Thomas; Kokkaliaris, Konstantinos D.; Yoshimoto, Momoko; Yoder, Mervin C.; Frampton, Jon; Schroeder, Timm; Enver, Tariq; Göttgens, Berthold; de Bruijn, Marella F. T. R.

    2013-12-01

    Haematopoietic stem cells (HSCs) are the founding cells of the adult haematopoietic system, born during ontogeny from a specialized subset of endothelium, the haemogenic endothelium (HE) via an endothelial-to-haematopoietic transition (EHT). Although recently imaged in real time, the underlying mechanism of EHT is still poorly understood. We have generated a Runx1 +23 enhancer-reporter transgenic mouse (23GFP) for the prospective isolation of HE throughout embryonic development. Here we perform functional analysis of over 1,800 and transcriptional analysis of 268 single 23GFP+ HE cells to explore the onset of EHT at the single-cell level. We show that initiation of the haematopoietic programme occurs in cells still embedded in the endothelial layer, and is accompanied by a previously unrecognized early loss of endothelial potential before HSCs emerge. Our data therefore provide important insights on the timeline of early haematopoietic commitment.

  7. Evaluation of Human Adipose Tissue Stromal Heterogeneity in Metabolic Disease Using Single Cell RNA-Seq

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0251 TITLE: “Evaluation of Human Adipose Tissue Stromal Heterogeneity in Metabolic Disease Using Single Cell RNA...Heterogeneity in Metabolic Disease Using Single- Cell RNA-Seq 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Linus Tzu-Yen...ABSTRACT We have developed a robust protocol to generate single cell transcriptional profiles from subcutaneous adipose tissue samples of both human

  8. Genetics

    DEFF Research Database (Denmark)

    Christensen, Kaare; McGue, Matt

    2016-01-01

    The sequenced genomes of individuals aged ≥80 years, who were highly educated, self-referred volunteers and with no self-reported chronic diseases were compared to young controls. In these data, healthy ageing is a distinct phenotype from exceptional longevity and genetic factors that protect...

  9. Molecular analysis of genetic diversity in elite II synthetic hexaploid ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-07-20

    Jul 20, 2009 ... The presence of sufficient genetic diversity in the germplam is an important ..... Figure 1. PCR amplification profile of Elite-II SH Wheat using the primer OPG-2. .... genetic relationships among cowpea breeding lines and local.

  10. Analysis of genetic variation in different sheep breeds using ...

    African Journals Online (AJOL)

    SERVER

    2008-04-17

    Apr 17, 2008 ... Department of Cell Biology, Genetic Engineering Division, National Research Center, Dokki, Giza, .... polymerase chain reaction (PCR) using genomic DNA extracted ..... Technology, Egypt through the project titled "Genetic.

  11. Genetic analysis of fertility restoration under CGMS system in rice ...

    Indian Academy of Sciences (India)

    restore complete fertility of a certain CMS line by various restorer lines (Tan et ... Keywords. rice; heterosis; three-way test cross; fertility restoration genetics. Journal of ..... plants indicating a strong genetic load of maintenance in. DE2. Table 8.

  12. Analysis of genetic diversity and construction of core collection of ...

    African Journals Online (AJOL)

    Jane

    2011-06-03

    Jun 3, 2011 ... Genetic diversity of 73 local mulberry varieties from Shanxi Province were screened using ISSR ... number effective of alleles, Nei's genetic diversity index and Shannon's ...... resources conservation program of the Agriculture.

  13. Comparative Analysis of Genetic Crossover Operators in Knapsack ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Knapsack problem via GA (Genetic Algorithm) is presented. We compared ... Keywords: Genetic Algorithm, Crossover, Heuristic, Arithmetic, Intermediate, Evolutionary Algorithm. The knapsack .... application to 0/1 Knapsack problem, Applied.

  14. Molecular genetic analysis of consanguineous families with primary ...

    Indian Academy of Sciences (India)

    MUZAMMIL AHMAD KHAN

    3Institute of Human Genetics, Medical University of Graz, Graz 8010, Austria. 4Department of Cell and ... Materials and methods. Family recruitment and sample collection ..... 2014 A Drosophila genetic resource of mutats to study mechanism ...

  15. Genetics researchers’ and iRB professionals’ attitudes toward genetic research review: a comparative analysis

    Science.gov (United States)

    Edwards, Karen L.; Lemke, Amy A.; Trinidad, Susan B.; Lewis, Susan M.; Starks, Helene; Snapinn, Katherine W.; Griffin, Mary Quinn; Wiesner, Georgia L.; Burke, Wylie

    2012-01-01

    Purpose Genetic research involving human participants can pose challenging questions related to ethical and regulatory standards for research oversight. However, few empirical studies describe how genetic researchers and institutional review board (IRB) professionals conceptualize ethical issues in genetic research or where common ground might exist. Methods Parallel online surveys collected information from human genetic researchers (n = 351) and IRB professionals (n = 208) regarding their views about human participant oversight for genetic protocols. Results A range of opinions were observed within groups on most issues. In both groups, a minority thought it likely that people would be harmed by participation in genetic research or identified from coded genetic data. A majority of both groups agreed that reconsent should be required for four of the six scenarios presented. Statistically significant differences were observed between groups on some issues, with more genetic researcher respondents trusting the confidentiality of coded data, fewer expecting harms from reidentification, and fewer considering reconsent necessary in certain scenarios. Conclusions The range of views observed within and between IRB and genetic researcher groups highlights the complexity and unsettled nature of many ethical issues in genome research. Our findings also identify areas where researcher and IRB views diverge and areas of common ground. PMID:22241102

  16. Genetically Modified Products in Lithuania: Situational Analysis and Consumers’ Attitudes

    OpenAIRE

    Dainora Grundey; Indre Rimkiene

    2012-01-01

    The paper analyses the genetically modified organism products (GMP) in relation to genetically modified organisms (GMO) from two perspectives: 1) from the theoretical standpoint, discussing the GMO and GMP trade conditions and 2) from the practical perspective, namely analysing the availability of GMP in the Lithuanian market. With the growing of genetically modified products (GMP) levels, it becomes important to examine the situation of genetically modified products. According to various stu...

  17. Stability analysis of delayed genetic regulatory networks with stochastic disturbances

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Qi, E-mail: zhouqilhy@yahoo.com.c [School of Automation, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China); Xu Shengyuan [School of Automation, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China); Chen Bing [Institute of Complexity Science, Qingdao University, Qingdao 266071, Shandong (China); Li Hongyi [Space Control and Inertial Technology Research Center, Harbin Institute of Technology, Harbin 150001 (China); Chu Yuming [Department of Mathematics, Huzhou Teacher' s College, Huzhou 313000, Zhejiang (China)

    2009-10-05

    This Letter considers the problem of stability analysis of a class of delayed genetic regulatory networks with stochastic disturbances. The delays are assumed to be time-varying and bounded. By utilizing Ito's differential formula and Lyapunov-Krasovskii functionals, delay-range-dependent and rate-dependent (rate-independent) stability criteria are proposed in terms of linear matrices inequalities. An important feature of the proposed results is that all the stability conditions are dependent on the upper and lower bounds of the delays. Another important feature is that the obtained stability conditions are less conservative than certain existing ones in the literature due to introducing some appropriate free-weighting matrices. A simulation example is employed to illustrate the applicability and effectiveness of the proposed methods.

  18. Genetic analysis of the cytoplasmic dynein subunit families.

    Science.gov (United States)

    Pfister, K Kevin; Shah, Paresh R; Hummerich, Holger; Russ, Andreas; Cotton, James; Annuar, Azlina Ahmad; King, Stephen M; Fisher, Elizabeth M C

    2006-01-01

    Cytoplasmic dyneins, the principal microtubule minus-end-directed motor proteins of the cell, are involved in many essential cellular processes. The major form of this enzyme is a complex of at least six protein subunits, and in mammals all but one of the subunits are encoded by at least two genes. Here we review current knowledge concerning the subunits, their interactions, and their functional roles as derived from biochemical and genetic analyses. We also carried out extensive database searches to look for new genes and to clarify anomalies in the databases. Our analysis documents evolutionary relationships among the dynein subunits of mammals and other model organisms, and sheds new light on the role of this diverse group of proteins, highlighting the existence of two cytoplasmic dynein complexes with distinct cellular roles.

  19. Genetic analysis of the cytoplasmic dynein subunit families.

    Directory of Open Access Journals (Sweden)

    K Kevin Pfister

    2006-01-01

    Full Text Available Cytoplasmic dyneins, the principal microtubule minus-end-directed motor proteins of the cell, are involved in many essential cellular processes. The major form of this enzyme is a complex of at least six protein subunits, and in mammals all but one of the subunits are encoded by at least two genes. Here we review current knowledge concerning the subunits, their interactions, and their functional roles as derived from biochemical and genetic analyses. We also carried out extensive database searches to look for new genes and to clarify anomalies in the databases. Our analysis documents evolutionary relationships among the dynein subunits of mammals and other model organisms, and sheds new light on the role of this diverse group of proteins, highlighting the existence of two cytoplasmic dynein complexes with distinct cellular roles.

  20. A machine learning approach for the identification of key markers involved in brain development from single-cell transcriptomic data.

    Science.gov (United States)

    Hu, Yongli; Hase, Takeshi; Li, Hui Peng; Prabhakar, Shyam; Kitano, Hiroaki; Ng, See Kiong; Ghosh, Samik; Wee, Lawrence Jin Kiat

    2016-12-22

    The ability to sequence the transcriptomes of single cells using single-cell RNA-seq sequencing technologies presents a shift in the scientific paradigm where scientists, now, are able to concurrently investigate the complex biology of a heterogeneous population of cells, one at a time. However, till date, there has not been a suitable computational methodology for the analysis of such intricate deluge of data, in particular techniques which will aid the identification of the unique transcriptomic profiles difference between the different cellular subtypes. In this paper, we describe the novel methodology for the analysis of single-cell RNA-seq data, obtained from neocortical cells and neural progenitor cells, using machine learning algorithms (Support Vector machine (SVM) and Random Forest (RF)). Thirty-eight key transcripts were identified, using the SVM-based recursive feature elimination (SVM-RFE) method of feature selection, to best differentiate developing neocortical cells from neural progenitor cells in the SVM and RF classifiers built. Also, these genes possessed a higher discriminative power (enhanced prediction accuracy) as compared commonly used statistical techniques or geneset-based approaches. Further downstream network reconstruction analysis was carried out to unravel hidden general regulatory networks where novel interactions could be further validated in web-lab experimentation and be useful candidates to be targeted for the treatment of neuronal developmental diseases. This novel approach reported for is able to identify transcripts, with reported neuronal involvement, which optimally differentiate neocortical cells and neural progenitor cells. It is believed to be extensible and applicable to other single-cell RNA-seq expression profiles like that of the study of the cancer progression and treatment within a highly heterogeneous tumour.

  1. Opto-acoustic microscopy reveals adhesion mechanics of single cells.

    Science.gov (United States)

    Abi Ghanem, Maroun; Dehoux, Thomas; Liu, Liwang; Le Saux, Guillaume; Plawinski, Laurent; Durrieu, Marie-Christine; Audoin, Bertrand

    2018-01-01

    Laser-generated GHz-ultrasonic-based technologies have shown the ability to image single cell adhesion and stiffness simultaneously. Using this new modality, we here demonstrate quantitative indicators to investigate contact mechanics and adhesion processes of the cell. We cultured human cells on a rigid substrate, and we used an inverted pulsed opto-acoustic microscope to generate acoustic pulses containing frequencies up to 100 GHz in the substrate. We map the reflection of the acoustic pulses at the cell-substrate interface to obtain images of the acoustic impedance of the cell, Z c , as well as of the stiffness of the interface, K, with 1 μm lateral resolution. Our results show that the standard deviation ΔZ c reveals differences between different cell types arising from the multiplicity of local conformations within the nucleus. From the distribution of K-values within the nuclear region, we extract a mean interfacial stiffness, K m , that quantifies the average contact force in areas of the cell displaying weak bonding. By analogy with classical contact mechanics, we also define the ratio of the real to nominal contact areas, S r /S t . We show that K m can be interpreted as a quantitative indicator of passive contact at metal-cell interfaces, while S r /S t is sensitive to active adhesive processes in the nuclear region. The ability to separate the contributions of passive and active adhesion processes should allow gaining insight into cell-substrate interactions, with important applications in tissue engineering.

  2. Whey utilization for single-cell protein production

    Energy Technology Data Exchange (ETDEWEB)

    Barraquio, V; Silverio, L G; Revilleza, R P; Fernadez, W L

    1980-01-01

    The production of single-cell protein by yeast assimilation of lactose in soft cheese whey was studied using Candida pseudotropicalis as a test organism. Under shake-flask cultivation conditions with deproteinized whey as the medium, lactose (initially 4.20%) was completely assimilated in 48h; cell mass was 5.56 mg/mL after 72h; and average protein content of the dried mass was approximately 11.8%. Batch cultivation using undeproteinized whey resulted in a faster lactose utilization rate from an initial 3.93% to a residual 0.56% in 12 h; cell mass was 8.41 mg/mL in 10 h; and average protein was approximately 37.7%. In a semicontinuous culture with 10 to the power of 7 viable cells/mL as initial cell concentration, 15.69 mg/mL cell mass with a mean protein content of approximately 21.4% could be produced and lactose could be considerably consumed (from an initial 4.75% to a residual 0.42%) within 13-14 h. Supplementation with (NH/sub 4/)/sub 2/S0/sub 4/ and KH/sub 2/P0/sub 4/ did not increase cell mass (12.47 mg/mL in 12 h) and hasten lactose assimulation (from initial 4.49% to residual 0.3% in 12 h). Average protein content was approximately 31%. Cell mass yield was established as 0.29 mg yeast cell/mg lactose consumed. Factors that might have affected protein content are also discussed.

  3. Genetic Analysis of Mice Skin Exposed by Hyper-Gravity

    Science.gov (United States)

    Takahashi, Rika; Terada, Masahiro; Seki, Masaya; Higashibata, Akira; Majima, Hideyuki J.; Ohira, Yoshinobu; Mukai, Chiaki; Ishioka, Noriaki

    2013-02-01

    In the space environment, physiological alterations, such as low bone density, muscle weakness and decreased immunity, are caused by microgravity and cosmic radiation. On the other hand, it is known that the leg muscles are hypertrophy by 2G-gravity. An understanding of the effects on human body from microgravity to hyper-gravity is very important. Recently, the Japan Aerospace Exploration Agency (JAXA) has started a project to detect the changes on gene expression and mineral metabolism caused by microgravity by analyzing the hair of astronauts who stay in the international Space Station (ISS) for a long time. From these results of human hair’s research, the genetic effects of human hair roots by microgravity will become clear. However, it is unclear how the gene expression of hair roots was effected by hypergravity. Therefore, in this experiment, we analyzed the effect on mice skin contained hair roots by comparing microgravity or hypergravity exposed mice. The purpose of this experiment is to evaluate the genetic effects on mice skin by microgravity or 2G-gravity. The samples were taken from mice exposed to space flight (FL) or hypergravity environment (2G) for 3-months, respectively. The extracted and amplified RNA from these mice skin was used to DNA microarray analysis. in this experiment, we analyzed the effect of gravity by using mice skin contained hair roots, which exposed space (FL) and hyper-gravity (2G) for 3 months and each control. By DNA microarray analysis, we found the common 98 genes changed in both FL and 2G. Among these 98 genes, the functions and pathways were identified by Gene Ontology (GO) analysis and Ingenuity Pathways Analysis (IPA) software. Next, we focused the one of the identified pathways and compared the effects on each molecules in this pathways by the different environments, such as FL and 2G. As the results, we could detect some interesting molecules, which might be depended on the gravity levels. In addition, to investigate

  4. Genetic Code Analysis Toolkit: A novel tool to explore the coding properties of the genetic code and DNA sequences

    Science.gov (United States)

    Kraljić, K.; Strüngmann, L.; Fimmel, E.; Gumbel, M.

    2018-01-01

    The genetic code is degenerated and it is assumed that redundancy provides error detection and correction mechanisms in the translation process. However, the biological meaning of the code's structure is still under current research. This paper presents a Genetic Code Analysis Toolkit (GCAT) which provides workflows and algorithms for the analysis of the structure of nucleotide sequences. In particular, sets or sequences of codons can be transformed and tested for circularity, comma-freeness, dichotomic partitions and others. GCAT comes with a fertile editor custom-built to work with the genetic code and a batch mode for multi-sequence processing. With the ability to read FASTA files or load sequences from GenBank, the tool can be used for the mathematical and statistical analysis of existing sequence data. GCAT is Java-based and provides a plug-in concept for extensibility. Availability: Open source Homepage:http://www.gcat.bio/

  5. Analysis of genetic effects of nuclear-cytoplasmic interaction on quantitative traits: genetic model for diploid plants.

    Science.gov (United States)

    Han, Lide; Yang, Jian; Zhu, Jun

    2007-06-01

    A genetic model was proposed for simultaneously analyzing genetic effects of nuclear, cytoplasm, and nuclear-cytoplasmic interaction (NCI) as well as their genotype by environment (GE) interaction for quantitative traits of diploid plants. In the model, the NCI effects were further partitioned into additive and dominance nuclear-cytoplasmic interaction components. Mixed linear model approaches were used for statistical analysis. On the basis of diallel cross designs, Monte Carlo simulations showed that the genetic model was robust for estimating variance components under several situations without specific effects. Random genetic effects were predicted by an adjusted unbiased prediction (AUP) method. Data on four quantitative traits (boll number, lint percentage, fiber length, and micronaire) in Upland cotton (Gossypium hirsutum L.) were analyzed as a worked example to show the effectiveness of the model.

  6. Single-Cell RNA-Sequencing Reveals a Continuous Spectrum of Differentiation in Hematopoietic Cells

    Directory of Open Access Journals (Sweden)

    Iain C. Macaulay

    2016-02-01

    Full Text Available The transcriptional programs that govern hematopoiesis have been investigated primarily by population-level analysis of hematopoietic stem and progenitor cells, which cannot reveal the continuous nature of the differentiation process. Here we applied single-cell RNA-sequencing to a population of hematopoietic cells in zebrafish as they undergo thrombocyte lineage commitment. By reconstructing their developmental chronology computationally, we were able to place each cell along a continuum from stem cell to mature cell, refining the traditional lineage tree. The progression of cells along this continuum is characterized by a highly coordinated transcriptional program, displaying simultaneous suppression of genes involved in cell proliferation and ribosomal biogenesis as the expression of lineage specific genes increases. Within this program, there is substantial heterogeneity in the expression of the key lineage regulators. Overall, the total number of genes expressed, as well as the total mRNA content of the cell, decreases as the cells undergo lineage commitment.

  7. Transcending the biomarker mindset: deciphering disease mechanisms at the single cell level.

    Science.gov (United States)

    Danna, Erika A; Nolan, Garry P

    2006-02-01

    The application of proteomics to disease research promises to enhance the understanding and treatment of many human maladies through the identification of molecular profiles associated with each disease. However, although much is made of the utility of molecular signatures as markers of disease state, insufficient emphasis is often placed on the simultaneous need for biological mechanism inquiry. Focused and detailed analyses of disease-associated signaling networks have the potential to be more mechanistically informative than large-scale proteomic profiling approaches, providing insight into the cellular processes involved in pathogenesis, disease progression and therapeutic resistance; while still providing diagnostic or clinical management direction. Phospho-specific flow cytometry provides a method for the analysis of pathological signaling networks, enabling the investigation of disease mechanisms at the single-cell level.

  8. Single-cell-based evaluation of sperm progressive motility via fluorescent assessment of mitochondria membrane potential.

    Science.gov (United States)

    Moscatelli, Natalina; Spagnolo, Barbara; Pisanello, Marco; Lemma, Enrico Domenico; De Vittorio, Massimo; Zara, Vincenzo; Pisanello, Ferruccio; Ferramosca, Alessandra

    2017-12-20

    Sperm cells progressive motility is the most important parameter involved in the fertilization process. Sperm middle piece contains mitochondria, which play a critical role in energy production and whose proper operation ensures the reproductive success. Notably, sperm progressive motility is strictly related to mitochondrial membrane potential (MMP) and consequently to mitochondrial functionality. Although previous studies presented an evaluation of mitochondrial function through MMP assessment in entire sperm cells samples, a quantitative approach at single-cell level could provide more insights in the analysis of semen quality. Here we combine laser scanning confocal microscopy and functional fluorescent staining of mitochondrial membrane to assess MMP distribution among isolated spermatozoa. We found that the sperm fluorescence value increases as a function of growing progressive motility and that such fluorescence is influenced by MMP disruptors, potentially allowing for the discrimination of different quality classes of sperm cells in heterogeneous populations.

  9. Determination of trace elements in BCR single cell protein via destructive neutron activation analyses

    International Nuclear Information System (INIS)

    Tjioe, P.S.; Goeij, J.J.M. de; Nooijen, J.L.; Kroon, J.J.

    1978-10-01

    The amount of some trace elements in single cell protein (SCP), a product of BP Research Centre at Sunbury-at-Thames, England, was determined by neutron activation analysis. The SCP-samples were irradiated in the reactor of the Interuniversity Reactor Institute at Delft in a neutron flux of 1.0x10 13 n/cm 2 s for 12 hours. Samples of Bowen's Kale were used as reference material. After a decay of two or three days the samples were chemically destroyed, and the trace elements were separated. The quantity of the following elements was determined by measuring the γ-activity by means of a scintillation counter: antimony, cadmium, mercury, arsenic and selenium. The amounts of these elements in the SCP and in the reference material were tabled

  10. The Genetic Analysis of an Acinetobacter johnsonii Clinical Strain Evidenced the Presence of Horizontal Genetic Transfer.

    Directory of Open Access Journals (Sweden)

    Sabrina Montaña

    Full Text Available Acinetobacter johnsonii rarely causes human infections. While most A. johnsonii isolates are susceptible to virtually all antibiotics, strains harboring a variety of β-lactamases have recently been described. An A. johnsonii Aj2199 clinical strain recovered from a hospital in Buenos Aires produces PER-2 and OXA-58. We decided to delve into its genome by obtaining the whole genome sequence of the Aj2199 strain. Genome comparison studies on Aj2199 revealed 240 unique genes and a close relation to strain WJ10621, isolated from the urine of a patient in China. Genomic analysis showed evidence of horizontal genetic transfer (HGT events. Forty-five insertion sequences and two intact prophages were found in addition to several resistance determinants such as blaPER-2, blaOXA-58, blaTEM-1, strA, strB, ereA, sul1, aacC2 and a new variant of blaOXA-211, called blaOXA-498. In particular, blaPER-2 and blaTEM-1 are present within the typical contexts previously described in the Enterobacteriaceae family. These results suggest that A. johnsonii actively acquires exogenous DNA from other bacterial species and concomitantly becomes a reservoir of resistance genes.

  11. Probing the Kinetic Anabolism of Poly-Beta-Hydroxybutyrate in Cupriavidus necator H16 Using Single-Cell Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Zhanhua Tao

    2016-08-01

    Full Text Available Poly-beta-hydroxybutyrate (PHB can be formed in large amounts in Cupriavidus necator and is important for the industrial production of biodegradable plastics. In this investigation, laser tweezers Raman spectroscopy (LTRS was used to characterize dynamic changes in PHB content—as well as in the contents of other common biomolecule—in C. necator during batch growth at both the population and single-cell levels. PHB accumulation began in the early stages of bacterial growth, and the maximum PHB production rate occurred in the early and middle exponential phases. The active biosynthesis of DNA, RNA, and proteins occurred in the lag and early exponential phases, whereas the levels of these molecules decreased continuously during the remaining fermentation process until the minimum values were reached. The PHB content inside single cells was relatively homogenous in the middle stage of fermentation; during the late growth stage, the variation in PHB levels between cells increased. In addition, bacterial cells in various growth phases could be clearly discriminated when principle component analysis was performed on the spectral data. These results suggest that LTRS is a valuable single-cell analysis tool that can provide more comprehensive information about the physiological state of a growing microbial population.

  12. Stochastic adaptation and fold-change detection: from single-cell to population behavior

    Directory of Open Access Journals (Sweden)

    Leier André

    2011-02-01

    Full Text Available Abstract Background In cell signaling terminology, adaptation refers to a system's capability of returning to its equilibrium upon a transient response. To achieve this, a network has to be both sensitive and precise. Namely, the system must display a significant output response upon stimulation, and later on return to pre-stimulation levels. If the system settles at the exact same equilibrium, adaptation is said to be 'perfect'. Examples of adaptation mechanisms include temperature regulation, calcium regulation and bacterial chemotaxis. Results We present models of the simplest adaptation architecture, a two-state protein system, in a stochastic setting. Furthermore, we consider differences between individual and collective adaptive behavior, and show how our system displays fold-change detection properties. Our analysis and simulations highlight why adaptation needs to be understood in terms of probability, and not in strict numbers of molecules. Most importantly, selection of appropriate parameters in this simple linear setting may yield populations of cells displaying adaptation, while single cells do not. Conclusions Single cell behavior cannot be inferred from population measurements and, sometimes, collective behavior cannot be determined from the individuals. By consequence, adaptation can many times be considered a purely emergent property of the collective system. This is a clear example where biological ergodicity cannot be assumed, just as is also the case when cell replication rates are not homogeneous, or depend on the cell state. Our analysis shows, for the first time, how ergodicity cannot be taken for granted in simple linear examples either. The latter holds even when cells are considered isolated and devoid of replication capabilities (cell-cycle arrested. We also show how a simple linear adaptation scheme displays fold-change detection properties, and how rupture of ergodicity prevails in scenarios where transitions between

  13. A precise pointing nanopipette for single-cell imaging via electroosmotic injection.

    Science.gov (United States)

    Lv, Jian; Qian, Ruo-Can; Hu, Yong-Xu; Liu, Shao-Chuang; Cao, Yue; Zheng, Yong-Jie; Long, Yi-Tao

    2016-11-24

    The precise transportation of fluorescent probes to the designated location in living cells is still a challenge. Here, we present a new addition to nanopipettes as a powerful tool to deliver fluorescent molecules to a given place in a single cell by electroosmotic flow, indicating favorable potential for further application in single-cell imaging.

  14. Mass Spectrometric Method for Analyzing Metabolites in Yeast with Single Cell Sensitivity

    NARCIS (Netherlands)

    Amantonico, Andrea; Oh, Joo Yeon; Sobek, Jens; Heinemann, Matthias; Zenobi, Renato

    2008-01-01

    Getting a look-in: An optimized MALDI-MS procedure has been developed to detect endogenous primary metabolites directly in the cell extract. A detection limit corresponding to metabolites from less than a single cell has been attained, opening the door to single-cell metabolomics by mass

  15. DNA template strand sequencing of single-cells maps genomic rearrangements at high resolution

    NARCIS (Netherlands)

    Falconer, Ester; Hills, Mark; Naumann, Ulrike; Poon, Steven S. S.; Chavez, Elizabeth A.; Sanders, Ashley D.; Zhao, Yongjun; Hirst, Martin; Lansdorp, Peter M.

    DNA rearrangements such as sister chromatid exchanges (SCEs) are sensitive indicators of genomic stress and instability, but they are typically masked by single-cell sequencing techniques. We developed Strand-seq to independently sequence parental DNA template strands from single cells, making it

  16. Genetic causes of amyotrophic lateral sclerosis: new genetic analysis methodologies entailing new opportunities and challenges

    Science.gov (United States)

    Marangi, Giuseppe; Traynor, Bryan J.

    2018-01-01

    The genetic architecture of amyotrophic lateral sclerosis (ALS) is being increasingly understood. In this far-reaching review, we examine what is currently known about ALS genetics and how these genes were initially identified. We also discuss the various types of mutations that might underlie this fatal neurodegenerative condition and outline some of the strategies that might be useful in untangling them. These include expansions of short repeat sequences, common and low-frequency genetic variations, de novo mutations, epigenetic changes, somatic mutations, epistasis, oligogenic and polygenic hypotheses. PMID:25316630

  17. Feature selection using genetic algorithms for fetal heart rate analysis

    International Nuclear Information System (INIS)

    Xu, Liang; Redman, Christopher W G; Georgieva, Antoniya; Payne, Stephen J

    2014-01-01

    The fetal heart rate (FHR) is monitored on a paper strip (cardiotocogram) during labour to assess fetal health. If necessary, clinicians can intervene and assist with a prompt delivery of the baby. Data-driven computerized FHR analysis could help clinicians in the decision-making process. However, selecting the best computerized FHR features that relate to labour outcome is a pressing research problem. The objective of this study is to apply genetic algorithms (GA) as a feature selection method to select the best feature subset from 64 FHR features and to integrate these best features to recognize unfavourable FHR patterns. The GA was trained on 404 cases and tested on 106 cases (both balanced datasets) using three classifiers, respectively. Regularization methods and backward selection were used to optimize the GA. Reasonable classification performance is shown on the testing set for the best feature subset (Cohen's kappa values of 0.45 to 0.49 using different classifiers). This is, to our knowledge, the first time that a feature selection method for FHR analysis has been developed on a database of this size. This study indicates that different FHR features, when integrated, can show good performance in predicting labour outcome. It also gives the importance of each feature, which will be a valuable reference point for further studies. (paper)

  18. Clinical features and genetic analysis of tuberous sclerosis pedigrees

    Directory of Open Access Journals (Sweden)

    LI Ya-qin

    2012-06-01

    Full Text Available Objective In order to understand tuberous sclerosis complex better, the clinical manifestation, imaging characteristics, and genetic characteristics of tuberous sclerosis complex from 3 pedigrees were investigated. Methods The clinical data of patients from 3 tuberous sclerosis families were collected. The gene mutation type of TSC2 of proband in pedigree one was determined by PCR and direct gene sequencing. Results All of the 3 probands went to our clinic for the reason of epilepsy. Brain imaging examination noted intracranial nodular calcification. EEG showed comprehensive spines and slow waves, sharp waves. The pedigree 1 has family history, two male patients and 3 female patients, all had facial angiofibromas and epilepsy. Gene mutation analysis of TSC2 demonstrated the c.1444-2A > C mutation in index patient. All the 3 index patients had mental retardation, autism and hypopigmented macule. Conclusion For infants and young children with epilepsy as the first symptom, accompanied by mental retardation, autism, facial angiofibromas or hypopigmented macule and other skin abnormalities, brain imaging examination noted intracranial nodular calcification are highly suggestive of tuberous sclerosis complex. TSC1 and TSC2 gene analysis contribute to the diagnosis of this disease, genentic counseling and prenatal diagnosis.

  19. Probing living bacterial adhesion by single cell force spectroscopy using atomic force microscopy

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Ogaki, Ryosuke; Regina, Viduthalai R.

    be considered. We have therefore developed a simple and versatile method to make single-cell bacterial probes for measuring single cell adhesion with atomic force microscopy (AFM).[1] A single-cell probe was readily made by picking up a bacterial cell from a glass surface using a tipless AFM cantilever coated...... random immobilization is obtained by submerging the cantilever in a bacterial suspension. The reported method provides a general platform for investigating single cell interactions of bacteria with different surfaces and other cells by AFM force spectroscopy, thus improving our understanding....... The strain-dependent susceptibility to bacterial colonization on conventional PLL-g-PEG illustrates how bacterial diversity challenges development of “universal” antifouling coatings, and AFM single-cell force spectroscopy was proven to be a powerful tool to provide insights into the molecular mechanisms...

  20. Single-cell duplex RT-LATE-PCR reveals Oct4 and Xist RNA gradients in 8-cell embryos

    Directory of Open Access Journals (Sweden)

    Hartung Odelya

    2007-12-01

    combined with PurAmp sample preparation, for quantitative analysis of transcript levels in single cells. With this technique, copy numbers of different RNAs can be accurately measured independently from their relative abundance in a cell, a goal that cannot be achieved using symmetric PCR. The technique illustrated in this work is relevant to a wide array of applications, such as stem cell and cancer cell analysis and preimplantation genetic diagnostics.

  1. Single-cell real-time imaging of transgene expression upon lipofection.

    Science.gov (United States)

    Fiume, Giuseppe; Di Rienzo, Carmine; Marchetti, Laura; Pozzi, Daniela; Caracciolo, Giulio; Cardarelli, Francesco

    2016-05-20

    Here we address the process of lipofection by quantifying the expression of a genetically-encoded fluorescent reporter at the single-cell level, and in real-time, by confocal imaging in live cells. The Lipofectamine gold-standard formulation is compared to the alternative promising DC-Chol/DOPE formulation. In both cases, we report that only dividing cells are able to produce a detectable amount of the fluorescent reporter protein. Notably, by measuring fluorescence over time in each pair of daughter cells, we find that Lipofectamine-based transfection statistically yields a remarkably higher degree of "symmetry" in protein expression between daughter cells as compared to DC-Chol/DOPE. A model is envisioned in which the degree of symmetry of protein expression is linked to the number of bioavailable DNA copies within the cell before nuclear breakdown. Reported results open new perspectives for the understanding of the lipofection mechanism and define a new experimental platform for the quantitative comparison of transfection reagents. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Single-cell real-time imaging of transgene expression upon lipofection

    Energy Technology Data Exchange (ETDEWEB)

    Fiume, Giuseppe [Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa (Italy); Di Rienzo, Carmine [Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa (Italy); NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127, Pisa (Italy); Marchetti, Laura [Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa (Italy); Pozzi, Daniela; Caracciolo, Giulio [Department of Molecular Medicine, “Sapienza” University of Rome, Viale Regina Elena 291, 00161, Rome (Italy); Cardarelli, Francesco, E-mail: francesco.cardarelli@iit.it [Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa (Italy)

    2016-05-20

    Here we address the process of lipofection by quantifying the expression of a genetically-encoded fluorescent reporter at the single-cell level, and in real-time, by confocal imaging in live cells. The Lipofectamine gold-standard formulation is compared to the alternative promising DC-Chol/DOPE formulation. In both cases, we report that only dividing cells are able to produce a detectable amount of the fluorescent reporter protein. Notably, by measuring fluorescence over time in each pair of daughter cells, we find that Lipofectamine-based transfection statistically yields a remarkably higher degree of “symmetry” in protein expression between daughter cells as compared to DC-Chol/DOPE. A model is envisioned in which the degree of symmetry of protein expression is linked to the number of bioavailable DNA copies within the cell before nuclear breakdown. Reported results open new perspectives for the understanding of the lipofection mechanism and define a new experimental platform for the quantitative comparison of transfection reagents. -- Highlights: •The process of lipofection is followed by quantifying the transgene expression in real time. •The Lipofectamine gold-standard is compared to the promising DC-Chol/DOPE formulation. •We report that only dividing cells are able to produce the fluorescent reporter protein. •The degree of symmetry of protein expression in daughter cells is linked to DNA bioavailability. •A new experimental platform for the quantitative comparison of transfection reagents is proposed.

  3. Single-cell real-time imaging of transgene expression upon lipofection

    International Nuclear Information System (INIS)

    Fiume, Giuseppe; Di Rienzo, Carmine; Marchetti, Laura; Pozzi, Daniela; Caracciolo, Giulio; Cardarelli, Francesco

    2016-01-01

    Here we address the process of lipofection by quantifying the expression of a genetically-encoded fluorescent reporter at the single-cell level, and in real-time, by confocal imaging in live cells. The Lipofectamine gold-standard formulation is compared to the alternative promising DC-Chol/DOPE formulation. In both cases, we report that only dividing cells are able to produce a detectable amount of the fluorescent reporter protein. Notably, by measuring fluorescence over time in each pair of daughter cells, we find that Lipofectamine-based transfection statistically yields a remarkably higher degree of “symmetry” in protein expression between daughter cells as compared to DC-Chol/DOPE. A model is envisioned in which the degree of symmetry of protein expression is linked to the number of bioavailable DNA copies within the cell before nuclear breakdown. Reported results open new perspectives for the understanding of the lipofection mechanism and define a new experimental platform for the quantitative comparison of transfection reagents. -- Highlights: •The process of lipofection is followed by quantifying the transgene expression in real time. •The Lipofectamine gold-standard is compared to the promising DC-Chol/DOPE formulation. •We report that only dividing cells are able to produce the fluorescent reporter protein. •The degree of symmetry of protein expression in daughter cells is linked to DNA bioavailability. •A new experimental platform for the quantitative comparison of transfection reagents is proposed.

  4. Quantitative control of mitochondria transfer between live single cells using a microfluidic device

    Directory of Open Access Journals (Sweden)

    Ken-Ichi Wada

    2017-12-01

    Full Text Available Quantitative control of mitochondria transfer between live cells is a promising approach for genetic manipulation of mitochondrial DNA (mtDNA because single mitochondrion transfer to a mtDNA-less (ρ0 cell potentially leads to homoplasmy of mtDNA. In this paper, we describe a method for quantitative control of mitochondria transfer between live single cells. For this purpose, we fabricated novel microfluidic devices having cell paring structures with a 4.1, 5.6 or 10.0 μm-length microtunnel. When cells were fused through a microtunnel using the Sendai virus envelope-based method, a strictured cytoplasmic connection was achieved with a length corresponding to that of the microtunnel. Elongation of the cytoplasmic connection led to a decrease in mitochondria transfer to the fusion partner. Moreover, some cell pairs that fused through a 10.0 μm-length microtunnel showed single mitochondrion transfer. Fused cells were spontaneously disconnected from each other when they were recovered in a normal culture medium. These results suggest that our cell fusion method can perform quantitative control of mitochondria transfer that includes a single mitochondrion transfer.

  5. Analysis of the genetic basis of disease in the context of worldwide human relationships and migration.

    Directory of Open Access Journals (Sweden)

    Erik Corona

    2013-05-01

    Full Text Available Genetic diversity across different human populations can enhance understanding of the genetic basis of disease. We calculated the genetic risk of 102 diseases in 1,043 unrelated individuals across 51 populations of the Human Genome Diversity Panel. We found that genetic risk for type 2 diabetes and pancreatic cancer decreased as humans migrated toward East Asia. In addition, biliary liver cirrhosis, alopecia areata, bladder cancer, inflammatory bowel disease, membranous nephropathy, systemic lupus erythematosus, systemic sclerosis, ulcerative colitis, and vitiligo have undergone genetic risk differentiation. This analysis represents a large-scale attempt to characterize genetic risk differentiation in the context of migration. We anticipate that our findings will enable detailed analysis pertaining to the driving forces behind genetic risk differentiation.

  6. Genetic analysis of three South African horse breeds

    Directory of Open Access Journals (Sweden)

    E.G. Cothran

    1998-07-01

    Full Text Available Genetic variability at 7 blood-group and 10 biochemical genetic loci was examined in 3 South African horse breeds, the Nooitgedacht, Boerperd and Basuto Pony. Observed heterozygosity for these breeds was intermediate for domestic horses, with the highest heterozygosity in the Boerperd and the lowest in the Basuto Pony. The 3 breeds show greater genetic similarity to each other than to other domestic horse breeds. Compared to other breeds, the South African breeds show greater genetic similarity to breeds such as the Thoroughbred, Holstein, Trakehner and Hanovarian and also to North American breeds such as the Saddlebred, Standardbred and Morgan Horse.

  7. Image-Based Single Cell Profiling: High-Throughput Processing of Mother Machine Experiments.

    Directory of Open Access Journals (Sweden)

    Christian Carsten Sachs

    Full Text Available Microfluidic lab-on-chip technology combined with live-cell imaging has enabled the observation of single cells in their spatio-temporal context. The mother machine (MM cultivation system is particularly attractive for the long-term investigation of rod-shaped bacteria since it facilitates continuous cultivation and observation of individual cells over many generations in a highly parallelized manner. To date, the lack of fully automated image analysis software limits the practical applicability of the MM as a phenotypic screening tool.We present an image analysis pipeline for the automated processing of MM time lapse image stacks. The pipeline supports all analysis steps, i.e., image registration, orientation correction, channel/cell detection, cell tracking, and result visualization. Tailored algorithms account for the specialized MM layout to enable a robust automated analysis. Image data generated in a two-day growth study (≈ 90 GB is analyzed in ≈ 30 min with negligible differences in growth rate between automated and manual evaluation quality. The proposed methods are implemented in the software molyso (MOther machine AnaLYsis SOftware that provides a new profiling tool to analyze unbiasedly hitherto inaccessible large-scale MM image stacks.Presented is the software molyso, a ready-to-use open source software (BSD-licensed for the unsupervised analysis of MM time-lapse image stacks. molyso source code and user manual are available at https://github.com/modsim/molyso.

  8. An improved filtering algorithm for big read datasets and its application to single-cell assembly.

    Science.gov (United States)

    Wedemeyer, Axel; Kliemann, Lasse; Srivastav, Anand; Schielke, Christian; Reusch, Thorsten B; Rosenstiel, Philip

    2017-07-03

    For single-cell or metagenomic sequencing projects, it is necessary to sequence with a very high mean coverage in order to make sure that all parts of the sample DNA get covered by the reads produced. This leads to huge datasets with lots of redundant data. A filtering of this data prior to assembly is advisable. Brown et al. (2012) presented the algorithm Diginorm for this purpose, which filters reads based on the abundance of their k-mers. We present Bignorm, a faster and quality-conscious read filtering algorithm. An important new algorithmic feature is the use of phred quality scores together with a detailed analysis of the k-mer counts to decide which reads to keep. We qualify and recommend parameters for our new read filtering algorithm. Guided by these parameters, we remove in terms of median 97.15% of the reads while keeping the mean phred score of the filtered dataset high. Using the SDAdes assembler, we produce assemblies of high quality from these filtered datasets in a fraction of the time needed for an assembly from the datasets filtered with Diginorm. We conclude that read filtering is a practical and efficient method for reducing read data and for speeding up the assembly process. This applies not only for single cell assembly, as shown in this paper, but also to other projects with high mean coverage datasets like metagenomic sequencing projects. Our Bignorm algorithm allows assemblies of competitive quality in comparison to Diginorm, while being much faster. Bignorm is available for download at https://git.informatik.uni-kiel.de/axw/Bignorm .

  9. Genetic diversity analysis and conservation of the Chinese herb ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-05

    Oct 5, 2009 ... Salvia miltiorrhiza is an economically important floral herb. However, little work has been conducted to further our understanding of the genetics of this herb. In this study, a representative set of germplasm of. S. miltiorrhiza populations was used to analyze genetic diversity using amplified fragment length.

  10. An existential analysis of genetic engineering and human rights ...

    African Journals Online (AJOL)

    Genetic engineering for purposes of human enhancement poses risks that justify regulation. However, this paper argues philosophically that it is inappropriate to use human rights treaties to prohibit germ-line genetic engineering whether therapeutic or for purposes of enhancement. When also looked at existentially, the ...

  11. Genetic analysis of seed proteins contents in cowpea ( Vigna ...

    African Journals Online (AJOL)

    In order to select cowpea genotypes with high food value, 10 varieties were genetically screened in Ngaoundéré (Cameroon) for seed crude protein and its soluble fractions contents. Five divergent lines were studied through a 5 x 5 half diallel cross mating. The genotypes presented a significant genetic variability for these ...

  12. A roadmap for the genetic analysis of renal aging

    NARCIS (Netherlands)

    Noordmans, Gerda A.; van Goor, Harry; Hillebrands, Jan-Luuk; Korstanje, Ron

    2015-01-01

    Several studies show evidence for the genetic basis of renal disease, which renders some individuals more prone than others to accelerated renal aging. Studying the genetics of renal aging can help us to identify genes involved in this process and to unravel the underlying pathways. First, this

  13. Genetic diversity analysis in the Hypericum perforatum populations ...

    African Journals Online (AJOL)

    Assessment of genetic variability among the Hypericum perforatum populations is critical to the development of effective conservation strategies in the Kashmir valley. To obtain accurate estimates of genetic diversity among and within populations of H. perforatum, inter-simple sequence repeats (ISSR) markers were used.

  14. Genetic diversity of Najdi sheep based on microsatellite analysis ...

    African Journals Online (AJOL)

    The prime objective of this research was to measure the genetic polymorphism of main sheep breed of Saudi Arabia, Najdi. Randomly selected 49 blood samples were used to extract the DNA followed by polymerase chain reaction (PCR), using 19 microsatellite markers, which were used to investigate the genetic ...

  15. Genetic diversity analysis and conservation of the Chinese herb ...

    African Journals Online (AJOL)

    Salvia miltiorrhiza is an economically important floral herb. However, little work has been conducted to further our understanding of the genetics of this herb. In this study, a representative set of germplasm of. S. miltiorrhiza populations was used to analyze genetic diversity using amplified fragment length polymorphism ...

  16. Genetic diversity analysis of rice cultivars from various origins using ...

    African Journals Online (AJOL)

    Genetic diversity is of paramount importance for the success of any plant breeding program. An experiment was conducted to assess the extent of genetic diversity and similarity of 24 rice cultivars from various origins using 29 simple sequence repeat (SSR) markers. A total of 144 alleles were detected at the 29 SSR primer ...

  17. A quantitative genetic analysis of intermediate asthma phenotypes

    DEFF Research Database (Denmark)

    Thomsen, S.F.; Ferreira, M.A.R.; Kyvik, K.O.

    2009-01-01

    to the observed data using maximum likelihood methods. RESULTS: Additive genetic factors explained 67% of the variation in FeNO, 43% in airway responsiveness, 22% in airway obstruction, and 81% in serum total IgE. In general, traits had genetically and environmentally distinct variance structures. The most......AIM: To study the relative contribution of genetic and environmental factors to the correlation between exhaled nitric oxide (FeNO), airway responsiveness, airway obstruction, and serum total immunoglobulin E (IgE). METHODS: Within a sampling frame of 21,162 twin subjects, 20-49 years of age, from...... substantial genetic similarity was observed between FeNO and serum total IgE, genetic correlation (rhoA) = 0.37, whereas the strongest environmental resemblance was observed between airway responsiveness and airway obstruction, specific environmental correlation (rhoE) = -0.46, and between FeNO and airway...

  18. A quantitative genetic analysis of intermediate asthma phenotypes

    DEFF Research Database (Denmark)

    Thomsen, S F; Ferreira, M A R; Kyvik, K O

    2009-01-01

    to the observed data using maximum likelihood methods. Results: Additive genetic factors explained 67% of the variation in FeNO, 43% in airway responsiveness, 22% in airway obstruction, and 81% in serum total IgE. In general, traits had genetically and environmentally distinct variance structures. The most......Aim: To study the relative contribution of genetic and environmental factors to the correlation between exhaled nitric oxide (FeNO), airway responsiveness, airway obstruction, and serum total immunoglobulin E (IgE). Methods: Within a sampling frame of 21 162 twin subjects, 20-49 years of age, from...... substantial genetic similarity was observed between FeNO and serum total IgE, genetic correlation (rho(A)) = 0.37, whereas the strongest environmental resemblance was observed between airway responsiveness and airway obstruction, specific environmental correlation (rho(E)) = -0.46, and between FeNO and airway...

  19. Genetic variation analysis of the Bali street dog using microsatellites

    Directory of Open Access Journals (Sweden)

    Wilton Alan N

    2005-02-01

    Full Text Available Abstract Background Approximately 800,000 primarily feral dogs live on the small island of Bali. To analyze the genetic diversity in this population, forty samples were collected at random from dogs in the Denpasar, Bali region and tested using 31 polymorphic microsatellites. Australian dingoes and 28 American Kennel Club breeds were compared to the Bali Street Dog (BSD for allelic diversity, heterozygosities, F-statistics, GST estimates, Nei's DA distance and phylogenetic relationships. Results The BSD proved to be the most heterogeneous, exhibiting 239 of the 366 total alleles observed across all groups and breeds and had an observed heterozygosity of 0.692. Thirteen private alleles were observed in the BSD with an additional three alleles observed only in the BSD and the Australian dingo. The BSD was related most closely to the Chow Chow with a FST of 0.088 and also with high bootstrap support to the Australian dingo and Akita in the phylogenetic analysis. Conclusions This preliminary study into the diversity and relationship of the BSD to other domestic and feral dog populations shows the BSD to be highly heterogeneous and related to populations of East Asian origin. These results indicate that a viable and diverse population of dogs existed on the island of Bali prior to its geographic isolation approximately 12,000 years ago and has been little influenced by domesticated European dogs since that time.

  20. Molecular genetic analysis of phosphomannomutase genes in Triticum monococcum

    Institute of Scientific and Technical Information of China (English)

    Chunmei; Yu; Xinyan; Liu; Qian; Zhang; Xinyu; He; Wan; Huai; Baohua; Wang; Yunying; Cao; Rong; Zhou

    2015-01-01

    In higher plants, phosphomannomutase(PMM) is essential for synthesizing the antioxidant ascorbic acid through the Smirnoff–Wheeler pathway. Previously, we characterized six PMM genes(Ta PMM-A1, A2, B1, B2, D1 and D2) in common wheat(Triticum aestivum, AABBDD).Here, we report a molecular genetic analysis of PMM genes in Triticum monococcum(AmAm), a diploid wheat species whose Amgenome is closely related to the A genome of common wheat. Two distinct PMM genes, Tm PMM-1 and Tm PMM-2, were found in T. monococcum. The coding region of Tm PMM-1 was intact and highly conserved. In contrast, two main Tm PMM-2 alleles were identified, with Tm PMM-2a possessing an intact coding sequence and Tm PMM-2b being a pseudogene. The transcript level of Tm PMM-2a was much higher than that of Tm PMM-2b, and a bacterially expressed Tm PMM-2a recombinant protein displayed relatively high PMM activity. In general, the total transcript level of PMM was substantially higher in accessions carrying Tm PMM-1 and Tm PMM-2a than those harboring Tm PMM-1 and Tm PMM-2b. However, total PMM protein and activity levels did not differ drastically between the two genotypes. This work provides new information on PMM genes in T. monococcum and expands our understanding on Triticeae PMM genes, which may aid further functional and applied studies of PMM in crop plants.