WorldWideScience

Sample records for single transfer reactions

  1. Nucleon transfer reactions with radioactive beams

    Science.gov (United States)

    Wimmer, K.

    2018-03-01

    Transfer reactions are a valuable tool to study the single-particle structure of nuclei. At radioactive beam facilities transfer reactions have to be performed in inverse kinematics. This creates a number of experimental challenges, but it also has some advantages over normal kinematics measurements. An overview of the experimental and theoretical methods for transfer reactions, especially with radioactive beams, is presented. Recent experimental results and highlights on shell evolution in exotic nuclei are discussed.

  2. Single-particle and collective states in transfer reactions

    International Nuclear Information System (INIS)

    Lhenry, I.; Suomijaervi, T.; Giai, N. van

    1993-01-01

    The possibility to excite collective states in transfer reactions induced by heavy ions is studied. Collective states are described within the Random Phase Approximation (RPA) and the collectivity is defined according to the number of configurations contributing to a given state. The particle transfer is described within the Distorted Wave Born Approximation (DWBA). Calculations are performed for two different stripping reactions: 207 Pb( 20 Ne, 19 Ne) 208 Pb and 59 Co( 20 Ne, 19 F) 60 Ni at 48 MeV/nucleon for which experimental data are available. The calculation shows that a sizeable fraction of collective strength can be excited in these reactions. The comparison with experiment shows that this parameter-free calculation qualitatively explains the data. (author) 19 refs.; 10 figs

  3. Single proton transfer reactions on odd-even nuclei

    International Nuclear Information System (INIS)

    Blasi, N.

    1984-01-01

    This thesis is devoted to the study of one proton transfer reactions, performed with the use of the magnetic spectrograph QMG/2 of the KVI, in two regions of the mass table. Stripping and pickup reactions on the odd-A target nuclei 193 Ir and 197 Au are described in the first part. The experimental spectroscopic factors obtained are used to test several collective models that are based on coupling between bosons (phonons) and fermions. In the second part, the proton stripping reactions on 113 In and 115 In are studied. Shell model calculations are performed and applied to the experimental results. (Auth.)

  4. Single-Molecule Interfacial Electron Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Lu, H. Peter [Bowling Green State Univ., Bowling Green, OH (United States). Dept. of Chemistry and Center for Photochemical Sciences

    2017-11-28

    This project is focused on the use of single-molecule high spatial and temporal resolved techniques to study molecular dynamics in condensed phase and at interfaces, especially, the complex reaction dynamics associated with electron and energy transfer rate processes. The complexity and inhomogeneity of the interfacial ET dynamics often present a major challenge for a molecular level comprehension of the intrinsically complex systems, which calls for both higher spatial and temporal resolutions at ultimate single-molecule and single-particle sensitivities. Combined single-molecule spectroscopy and electrochemical atomic force microscopy approaches are unique for heterogeneous and complex interfacial electron transfer systems because the static and dynamic inhomogeneities can be identified and characterized by studying one molecule at a specific nanoscale surface site at a time. The goal of our project is to integrate and apply these spectroscopic imaging and topographic scanning techniques to measure the energy flow and electron flow between molecules and substrate surfaces as a function of surface site geometry and molecular structure. We have been primarily focusing on studying interfacial electron transfer under ambient condition and electrolyte solution involving both single crystal and colloidal TiO2 and related substrates. The resulting molecular level understanding of the fundamental interfacial electron transfer processes will be important for developing efficient light harvesting systems and broadly applicable to problems in fundamental chemistry and physics. We have made significant advancement on deciphering the underlying mechanism of the complex and inhomogeneous interfacial electron transfer dynamics in dyesensitized TiO2 nanoparticle systems that strongly involves with and regulated by molecule-surface interactions. We have studied interfacial electron transfer on TiO2 nanoparticle surfaces by using ultrafast single

  5. Single-collision studies of hot atom energy transfer and chemical reaction

    International Nuclear Information System (INIS)

    Valentini, J.J.

    1991-01-01

    This report discusses research in the collision dynamics of translationally hot atoms, with funding with DOE for the project ''Single-Collision Studies of Hot Atom Energy Transfer and Chemical Reaction,'' Grant Number DE-FG03-85ER13453. The work reported here was done during the period September 9, 1988 through October 31, 1991. During this period this DOE-funded work has been focused on several different efforts: (1) experimental studies of the state-to-state dynamics of the H + RH → H 2 R reactions where RH is CH 4 , C 2 H 6 , or C 3 H 8 , (2) theoretical (quasiclassical trajectory) studies of hot hydrogen atom collision dynamics, (3) the development of photochemical sources of translationally hot molecular free radicals and characterization of the high resolution CARS spectroscopy of molecular free radicals, (4) the implementation of stimulated Raman excitation (SRE) techniques for the preparation of vibrationally state-selected molecular reactants

  6. Neutron transfer reactions in the fp-shell region

    International Nuclear Information System (INIS)

    Mahgoub, Mahmoud

    2008-01-01

    Neutron transfer reactions were used to study the stability of the magic number N=28 near 56 Ni. On one hand the one-neutron pickup (d,p) reaction was used for precision spectroscopy of single-particle levels in 55 Fe. On the other hand we investigated the two-neutron transfer mechanism into 56 Ni using the pickup reaction 58 Ni(vectorp,t) 56 Ni. In addition the reliability of inverse kinematics reactions at low energy to study exotic nuclei was tested by the neutron transfer reactions t( 40 Ar,p) 42 Ar and d( 54 Fe,p) 55 Fe using tritium and deuterium targets, respectively, and by comparing the results with those of the normal kinematics reactions. The experimental data, differential cross-section and analyzing powers, are compared to DWBA and coupled channel calculations utilizing the code CHUCK3. By performing the single-neutron stripping reaction (vectord,p) on 54 Fe the 1f 7/2 shell in the ground state configuration was found to be partly broken. The instability of the 1f 7/2 shell and the magic number N=28 was confirmed once by observing a number of levels with J π = 7/2 - at low excitation energies, which should not be populated if 54 Fe has a closed 1f 7/2 shell, and also by comparing our high precision experimental data with a large scale shell model calculation using the ANTOINE code [5]. Calculations including a partly broken 1f 7/2 shell show better agreement with the experiment. The instability of the 1f 7/2 shell was confirmed also by performing the two-neutron pick-up reaction (vectorp,t) on 58 Ni to study 56 Ni, where a considerable improvement in the DWBA calculation was observed after considering 1f 7/2 as a broken shell. To prove the reliability of inverse kinematics transfer reactions at low energies (∝ 2 AMeV), the aforementioned single-neutron transfer reaction (d,p) was repeated using a beam of 54 Fe ions and a deuteron target. From this inverse kinematics experiment we were able to reproduce the absolute cross-section and angular

  7. Neutron transfer reactions in the fp-shell region

    Energy Technology Data Exchange (ETDEWEB)

    Mahgoub, Mahmoud

    2008-06-26

    Neutron transfer reactions were used to study the stability of the magic number N=28 near {sup 56}Ni. On one hand the one-neutron pickup (d,p) reaction was used for precision spectroscopy of single-particle levels in {sup 55}Fe. On the other hand we investigated the two-neutron transfer mechanism into {sup 56}Ni using the pickup reaction {sup 58}Ni((vector)p,t){sup 56}Ni. In addition the reliability of inverse kinematics reactions at low energy to study exotic nuclei was tested by the neutron transfer reactions t({sup 40}Ar,p){sup 42}Ar and d({sup 54}Fe,p){sup 55}Fe using tritium and deuterium targets, respectively, and by comparing the results with those of the normal kinematics reactions. The experimental data, differential cross-section and analyzing powers, are compared to DWBA and coupled channel calculations utilizing the code CHUCK3. By performing the single-neutron stripping reaction ((vector)d,p) on {sup 54}Fe the 1f{sub 7/2} shell in the ground state configuration was found to be partly broken. The instability of the 1f{sub 7/2} shell and the magic number N=28 was confirmed once by observing a number of levels with J{sup {pi}} = 7/2{sup -} at low excitation energies, which should not be populated if {sup 54}Fe has a closed 1f{sub 7/2} shell, and also by comparing our high precision experimental data with a large scale shell model calculation using the ANTOINE code [5]. Calculations including a partly broken 1f{sub 7/2} shell show better agreement with the experiment. The instability of the 1f{sub 7/2} shell was confirmed also by performing the two-neutron pick-up reaction ((vector)p,t) on {sup 58}Ni to study {sup 56}Ni, where a considerable improvement in the DWBA calculation was observed after considering 1f{sub 7/2} as a broken shell. To prove the reliability of inverse kinematics transfer reactions at low energies ({proportional_to} 2 AMeV), the aforementioned single-neutron transfer reaction (d,p) was repeated using a beam of {sup 54}Fe ions and a

  8. Electron transfer reactions

    CERN Document Server

    Cannon, R D

    2013-01-01

    Electron Transfer Reactions deals with the mechanisms of electron transfer reactions between metal ions in solution, as well as the electron exchange between atoms or molecules in either the gaseous or solid state. The book is divided into three parts. Part 1 covers the electron transfer between atoms and molecules in the gas state. Part 2 tackles the reaction paths of oxidation states and binuclear intermediates, as well as the mechanisms of electron transfer. Part 3 discusses the theories and models of the electron transfer process; theories and experiments involving bridged electron transfe

  9. Single particle transfer reactions: what can they tell us about vibrational states

    International Nuclear Information System (INIS)

    Hering, W.R.

    1975-01-01

    The topic discussed concerns single particle transfer reactions (SPTR) which are, in general, used to study SP states. However, good SP states are rare objects in nature and people who try to look for them have often to settle with something less than ideal. Indeed the picture of a pure SP state is physically not even reasonable. It means that a nucleon is moving around a core nucleus which stays in its ground state: a process which one could call equivalent to elastic scattering of a nucleon which is not free but rather in a bound state. However it is shown that inelastic scattering is a very strong competitor to elastic scattering if the nucleus possesses states of high collectivity. Thus one would expect inelastic scattering to happen also while the nucleon is bound. This is a very intuitive picture of what is called the fragmentation of SP states. A final state psi sub(B) is populated by the transfer reaction A + a → B + b where psi sub(B) = α 1 phi 1 phi sub(A)(0) + α 2 phi 2 phi sub(A)(lambda). Hence the population of psi sub(B) automatically involves the collective state phi sub(A)(lambda). A discussion of how one can get information about phi sub(A)(lambda) out of the experimental data is given. (Auth.)

  10. Photoinduced electron transfer in singly labeled thiouredopyrenetrisulfonate azurin derivatives

    DEFF Research Database (Denmark)

    Borovok, N; Kotlyar, A B; Pecht, I

    1999-01-01

    efficiency. TUPS derivatives of azurin, singly labeled at specific lysine residues, were prepared and purified to homogeneity by ion exchange HPLC. Transient absorption spectroscopy was used to directly monitor the rates of the electron transfer reaction from the photoexcited triplet state of TUPS to Cu......A novel method for the initiation of intramolecular electron transfer reactions in azurin is reported. The method is based on laser photoexcitation of covalently attached thiouredopyrenetrisulfonate (TUPS), the reaction that generates the low potential triplet state of the dye with high quantum......(II) and the back reaction from Cu(I) to the oxidized dye. For all singly labeled derivatives, the rate constants of copper ion reduction were one or two orders of magnitude larger than for its reoxidation, consistent with the larger thermodynamic driving force for the former process. Using 3-D coordinates...

  11. On the length dependence of bridge-mediated electron transfer reactions

    International Nuclear Information System (INIS)

    Petrov, E.G.; Shevchenko, Ye.V.; May, V.

    2003-01-01

    Bridge-mediated nonadiabatic donor-acceptor (D-A) electron transfer (ET) is studied for the case of a regular molecular bridge of N identical units. It is shown that the multi-exponential ET kinetics reduces to a single-exponential transfer if, and only if, the integral population of the bridge remains small (less than 10 -2 ). An analytical expression for the overall D-A ET rate is derived and the necessary and sufficient conditions are formulated at which the rate is given as a sum of a superexchange and a sequential contribution. To describe experimental data on the N-dependence of ET reactions an approximate form of the overall transfer rate is derived. This expression is used to reproduce experimental data on distant ET through polyproline chains. Finally it is noted that the obtained analytical results can also be used for the description of more complex two-electron transfer reactions if the latter comprises separate single-electron pathways

  12. Heavy ion transfer reactions

    International Nuclear Information System (INIS)

    Weisser, D.C.

    1977-06-01

    To complement discussions on the role of γ rays in heavy ion induced reactions, the author discusses the role played by particle detection. Transfer reactions are part of this subject and are among those in which one infers the properties of the residual nucleus in a reaction by observing the emerging light nucleus. Inelastic scattering ought not be excluded from this subject, although no particles are transferred, because of the role it plays in multistep reactions and in fixing O.M. parameters describing the entrance channel of the reaction. Heavy ion transfer reaction studies have been under study for some years and yet this research is still in its infancy. The experimental techniques are difficult and the demands on theory rigorous. One of the main products of heavy ion research has been the thrust to re-examine the assumptions of reaction theory and now include many effects neglected for light ion analysis. This research has spurred the addition of multistep processes to simple direct processes and coupled channel calculations. (J.R.)

  13. Comparison of dynamical aspects of nonadiabatic electron, proton, and proton-coupled electron transfer reactions

    International Nuclear Information System (INIS)

    Hatcher, Elizabeth; Soudackov, Alexander; Hammes-Schiffer, Sharon

    2005-01-01

    The dynamical aspects of a model proton-coupled electron transfer (PCET) reaction in solution are analyzed with molecular dynamics simulations. The rate for nonadiabatic PCET is expressed in terms of a time-dependent probability flux correlation function. The impact of the proton donor-acceptor and solvent dynamics on the probability flux is examined. The dynamical behavior of the probability flux correlation function is dominated by a solvent damping term that depends on the energy gap correlation function. The proton donor-acceptor motion does not impact the dynamical behavior of the probability flux correlation function but does influence the magnitude of the rate. The approximations previously invoked for the calculation of PCET rates are tested. The effects of solvent damping on the proton donor-acceptor vibrational motion are found to be negligible, and the short-time solvent approximation, in which only equilibrium fluctuations of the solvent are considered, is determined to be valid for these types of reactions. The analysis of PCET reactions is compared to previous analyses of single electron and proton transfer reactions. The dynamical behavior is qualitatively similar for all three types of reactions, but the time scale of the decay of the probability flux correlation function is significantly longer for single proton transfer than for PCET and single electron transfer due to a smaller solvent reorganization energy for proton transfer

  14. Mass transfer with complex reversible chemical reactions—I. Single reversible chemical reaction

    NARCIS (Netherlands)

    Versteeg, G.F.; Kuipers, J.A.M.; Beckum, F.P.H. van; Swaaij, W.P.M. van

    1989-01-01

    An improved numerical technique was used in order to develop an absorption model with which it is possible to calculate rapidly absorption rates for the phenomenon of mass transfer accompanied by a complex reversible chemical reaction. This model can be applied for the calculation of the mass

  15. Single-Molecule Interfacial Electron Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Wilson [Univ. of California, Irvine, CA (United States)

    2018-02-03

    Interfacial electron transfer (ET) plays an important role in many chemical and biological processes. Specifically, interfacial ET in TiO2-based systems is important to solar energy technology, catalysis, and environmental remediation technology. However, the microscopic mechanism of interfacial ET is not well understood with regard to atomic surface structure, molecular structure, bonding, orientation, and motion. In this project, we used two complementary methodologies; single-molecule fluorescence spectroscopy, and scanning-tunneling microscopy and spectroscopy (STM and STS) to address this scientific need. The goal of this project was to integrate these techniques and measure the molecular dependence of ET between adsorbed molecules and TiO2 semiconductor surfaces and the ET induced reactions such as the splitting of water. The scanning probe techniques, STM and STS, are capable of providing the highest spatial resolution but not easily time-resolved data. Single-molecule fluorescence spectroscopy is capable of good time resolution but requires further development to match the spatial resolution of the STM. The integrated approach involving Peter Lu at Bowling Green State University (BGSU) and Wilson Ho at the University of California, Irvine (UC Irvine) produced methods for time and spatially resolved chemical imaging of interfacial electron transfer dynamics and photocatalytic reactions. An integral aspect of the joint research was a significant exchange of graduate students to work at the two institutions. This project bridged complementary approaches to investigate a set of common problems by working with the same molecules on a variety of solid surfaces, but using appropriate techniques to probe under ambient (BGSU) and ultrahigh vacuum (UCI) conditions. The molecular level understanding of the fundamental interfacial electron transfer processes obtained in this joint project will be important for developing efficient light harvesting

  16. Hydrogen transfer reactions of interstellar Complex Organic Molecules

    Science.gov (United States)

    Álvarez-Barcia, S.; Russ, P.; Kästner, J.; Lamberts, T.

    2018-06-01

    Radical recombination has been proposed to lead to the formation of complex organic molecules (COMs) in CO-rich ices in the early stages of star formation. These COMs can then undergo hydrogen addition and abstraction reactions leading to a higher or lower degree of saturation. Here, we have studied 14 hydrogen transfer reactions for the molecules glyoxal, glycoaldehyde, ethylene glycol, and methylformate and an additional three reactions where CHnO fragments are involved. Over-the-barrier reactions are possible only if tunneling is invoked in the description at low temperature. Therefore the rate constants for the studied reactions are calculated using instanton theory that takes quantum effects into account inherently. The reactions were characterized in the gas phase, but this is expected to yield meaningful results for CO-rich ices due to the minimal alteration of reaction landscapes by the CO molecules. We found that rate constants should not be extrapolated based on the height of the barrier alone, since the shape of the barrier plays an increasingly larger role at decreasing temperature. It is neither possible to predict rate constants based only on considering the type of reaction, the specific reactants and functional groups play a crucial role. Within a single molecule, though, hydrogen abstraction from an aldehyde group seems to be always faster than hydrogen addition to the same carbon atom. Reactions that involve heavy-atom tunneling, e.g., breaking or forming a C-C or C-O bond, have rate constants that are much lower than those where H transfer is involved.

  17. Measurements of differential cross-section ratios for single-nucleon transfer reaction pairs near A=25

    Energy Technology Data Exchange (ETDEWEB)

    Howard, A J; Moise, T S [Trinity Coll., Hartford, CT (USA). Dept. of Physics; Champagne, A E [Princeton Univ., NJ (USA). Dept. of Physics; Magnus, P V; Smith, M S [Yale Univ., New Haven, CT (USA). Wright Nuclear Structure Lab.

    1991-06-10

    Differential cross sections for the (d,p), ({sup 3}He,d), ({alpha},t) and ({alpha},{sup 3}He) reactions involving seventy-one residual states in {sup 23}Na, {sup 25}Mg, {sup 25}Al, and {sup 27}Al have been measured at a forward angle with incident energies of 17.5, 20.2, and 34.8 MeV, respectively. The ratio of cross-section pairs involving formation of the same residual state is determined for forty-five cases where both the angular momentum transfer and single-particle spectroscopic strength have been previously established. These are compared to values calculated with conventional distorted-wave Born approximation analysis, and the utility of this technique for identifying some levels which are possible s- or p-wave resonances is demonstrated and discussed for states in the vicinity of proton thresholds. An application is made involving proton threshold states in {sup 27}Al. (orig.).

  18. Electron transfer reactions of metal complexes in solution

    International Nuclear Information System (INIS)

    Sutin, N.

    1977-01-01

    A few representative electron-transfer reactions are selected and their kinetic parameters compared with the predictions of activated complex models. Since Taube has presented an elegant treatment of intramolecular electron-transfer reactions, emphasis is on bimolecular reactions. The latter electron-transfer reactions are more complicated to treat theoretically since the geometries of their activated complexes are not as well known as for the intramolecular case. In addition in biomolecular reactions, the work required to bring the two reactants together needs to be calculated. Since both reactants generally carry charges this presents a non-trivial problem at the ionic strengths usually used to study bimolecular electron transfer

  19. Selectivity in heavy ion transfer reactions

    International Nuclear Information System (INIS)

    Boucenna, A.

    1989-01-01

    One-two-and three-nucleon stripping reactions induced by 480 MeV 12 C and by 793 MeV 16 O have been studied on 12 C, 16 O, 28 Si, 40 Ca, and 54 Fe targets. Discrete levels are fed with cross sections up to 1 mb/sr for d-transfer reactions and one and two orders of magnitude less for 2p- and 3 He-transfers, respectively. These reactions are governed by two selection rules contained in the semi-classical model of Brink: i) Large orbital final momentum states are selectively populated and ii) The most highly populated states correspond to no-flip transitions. Two-proton transfer reactions induced by 112 MeV 12 C on even Ni and Zn isotopes are found to be less selective than two-neutron transfer reactions induced by the same projectile on the same targets in a similar incident energy range. The additional collective aspects observed in the two-proton transfers are examined in view of a semiphenomenological model of two quasi-particles coupled to a triaxial asymmetric rotor. The energy of excited states is well reproduced by simple shell model calculations. Such estimates are useful in proposing spins of newly observed states, especially as the shapes of the measured angular distributions are independant of the final spin of the residual nucleus. The experimental results of two-proton and two-neutron stripping reactions and the simple shell model allow an estimate of two-body matrix elements describing the nucleon-nucleon interaction and of the Coulomb energy [fr

  20. One nucleon transfer reactions around $^{68}$Ni at REX-ISOLDE

    CERN Multimedia

    Blazhev, A A; Kruecken, R; Mertzimekis, T; Darby, I G; Lagogiannis, A; Habs, D; Diriken, J V J; Patronis, N

    2008-01-01

    We intend to investigate the single particle properties of the neutron-rich Ni isotopes in the mass region around $^{68}$Ni and at a later stage towards the doubly-magic $^{78}$Ni. As a first experiment we propose to study the single particle character of the ground and first excited states of $^{67}$Ni. This nucleus will be the projectile-like reaction product for the one-neutron transfer reaction. A $^{66}$Ni beam at 3A MeV delivered from REX-ISOLDE will be directed on a CD$_{2}$ target. Protons produced from the (d,p) reaction will be detected either in singles or in coincidence with ${\\gamma}$-rays recorded by the MINIBALL array. The particles will be detected by the newly-built Si position-sensitive barrel configuration. The objectives of this work are the unambiguous determination of the spins and parities of the first excited states of $^{67}$Ni and measurement of the relative spectroscopic factors of those states as well as of the ground state. The experimental results will be compared with those from...

  1. Coupled sensitizer-catalyst dyads: electron-transfer reactions in a perylene-polyoxometalate conjugate.

    Science.gov (United States)

    Odobel, Fabrice; Séverac, Marjorie; Pellegrin, Yann; Blart, Errol; Fosse, Céline; Cannizzo, Caroline; Mayer, Cédric R; Elliott, Kristopher J; Harriman, Anthony

    2009-01-01

    Ultrafast discharge of a single-electron capacitor: A variety of intramolecular electron-transfer reactions are apparent for polyoxometalates functionalized with covalently attached perylene monoimide chromophores, but these are restricted to single-electron events. (et=electron transfer, cr=charge recombination, csr=charge-shift reaction, PER=perylene, POM=polyoxometalate).A new strategy is introduced that permits covalent attachment of an organic chromophore to a polyoxometalate (POM) cluster. Two examples are reported that differ according to the nature of the anchoring group and the flexibility of the linker. Both POMs are functionalized with perylene monoimide units, which function as photon collectors and form a relatively long-lived charge-transfer state under illumination. They are reduced to a stable pi-radical anion by electrolysis or to a protonated dianion under photolysis in the presence of aqueous triethanolamine. The presence of the POM opens up an intramolecular electron-transfer route by which the charge-transfer state reduces the POM. The rate of this process depends on the molecular conformation and appears to involve through-space interactions. Prior reduction of the POM leads to efficient fluorescence quenching, again due to intramolecular electron transfer. In most cases, it is difficult to resolve the electron-transfer products because of relatively fast reverse charge shift that occurs within a closed conformer. Although the POM can store multiple electrons, it has not proved possible to use these systems as molecular-scale capacitors because of efficient electron transfer from the one-electron-reduced POM to the excited singlet state of the perylene monoimide.

  2. Studies of Nuclei Close to 132Sn Using Single-Neutron Transfer Reactions

    International Nuclear Information System (INIS)

    Jones, K.L.; Pain, S.D.; Kozub, R.L.; Adekola, Aderemi S.; Bardayan, Daniel W.; Blackmon, Jeff C.; Catford, Wilton N.; Chae, K.Y.; Chipps, K.; Cizewski, J.A.; Erikson, Luke; Gaddis, A.L.; Greife, U.; Grzywacz, R.K.; Harlin, Christopher W.; Hatarik, Robert; Howard, Joshua A.; James, J.; Kapler, R.; Krolas, W.; Liang, J. Felix; Ma, Zhanwen; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D.; O'Malley, Patrick; Patterson, N.P.; Paulauskas, Stanley; Shapira, Dan; Shriner, J.F. Jr.; Sikora, M.; Sissom, D.J.; Smith, Michael Scott; Swan, T.P.; Thomas, J.S.; Wilson, Gemma L.

    2009-01-01

    Neutron transfer reactions were performed in inverse kinematics using radioactive ion beams of 132Sn, 130Sn, and 134Te and deuterated polyethylene targets. Preliminary results are presented. The Q-value spectra for 133Sn, 131Sn and 135Te reveal a number of previously unobserved peaks. The angular distributions are compatible with the expected lf7/2 nature of the ground state of 133Sn, and 2p3/2 for the 3.4 MeV state in 131Sn.

  3. Reaction of electron-transfer flavoprotein with electron-transfer flavoprotein-ubiquinone oxidoreductase

    International Nuclear Information System (INIS)

    Beckmann, J.D.; Frerman, F.E.

    1985-01-01

    The oxidative half-reaction of electron-transfer flavoprotein (ETF), electron transfer from ETF to electron-transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO), is dependent on complementary surface charges on the two proteins. ETF is the positively charged member of the redox pair. The evidence is based on the pH and ionic strength dependencies of the comproportionation of oxidized ETF and ETF hydroquinone catalyzed by ETF-QO and on the effects of chemical modification of ETF on the comproportionation reaction. Acetylation of one and five epsilon-amino groups of lysyl residues results in 3- and 13-fold increases, respectively, in the K/sub m/ of ETF-QO for ETF but no change in V/sub max/. Amidination, which maintains positive charge at modified loci, has no effect on steady-state kinetic constants. These chemical modifications have no effect on the equilibrium constant for equilibration of ETF redox states. The K/sub m/ of ETF-QO for ETF is pH dependent above pH 8.5, suggesting titration of lysyl residues. The ionic strength dependence of TN/KmETF for the reaction follows the limiting Bronsted equation. The ETF-QO-catalyzed comproportionation reaction exhibits a primary deuterium isotope effect in D 2 O, perhaps indicating the participation of solvent water in the electron-transfer reaction

  4. Squids, supercurrents, and slope anomalies: Nuclear structure from heavy-ion transfer reactions

    International Nuclear Information System (INIS)

    Guidry, M.W.

    1989-01-01

    Within the past five years we have developed experimental techniques to study heavy-ion transfer reactions to high spin states in deformed nuclei. These methods have been turned into a quantitative tool to assess the influence of collective excitation on single-particle and pairing structure. I discuss some of the nuclear structure questions which are being answered in these experiments: How strong is ground state pairing? How does pairing change with angular momentum? Why is two-neutron transfer much stronger than expected at large radial separation? What is the evidence for a nuclear Josephson Effect? What is the evidence for a nuclear Berry phase effect (nuclear SQUID)? Why does one-neutron transfer populate much higher spins than would be naively expected? Conversely, why does two-neutron transfer populate much lower spins than anyone expected? The answer to each of these questions involves the influence of detailed nuclear structure on transfer reactions, and represents quantitative new information about the effect of angular momentum and excitation energy on many-body systems with a finite number of particles. 8 refs., 6 figs

  5. Proton-transfer reactions in ionized gases

    International Nuclear Information System (INIS)

    Stiller, W.; Schmidt, R.; Schuster, R.

    1985-01-01

    Ion-molecule reactions play an important role in various radiolytic processes, e.g. gas-pulse radiolysis, environmental research. For a discussion of mechanisms rate coefficients have to be assessed. Here gas-phase rate coefficients of ion-(polar) molecule reactions are calculated using the ideas of interaction potentials, reactive cross-sections and distribution functions of the translational energies of both the reactants (ions I, molecules M). The starting point of our approach, directed especially to gas-phase proton-transfer reactions, is the idea that the rate coefficient k can be calculated as an ion-molecule capture-rate coefficient multiplied by a 'steric factor' representing the probability for proton transfer. Mutual capture of the reaction partners within a possible reaction zone is caused by the physical interaction between an ion and a polar molecule. A model is discussed. Results are presented. (author)

  6. One-nucleon transfer reactions and the optical potential

    CERN Document Server

    Nunes, F M; Ross, A; Titus, L J; Charity, R J; Dickhoff, W H; Mahzoon, M H; Sarich, J; Wild, S M

    2015-01-01

    We provide a summary of new developments in the area of direct reaction theory with a particular focus on one-nucleon transfer reactions. We provide a status of the methods available for describing (d,p) reactions. We discuss the effects of nonlocality in the optical potential in transfer reactions. The results of a purely phenomenological potential and the optical potential obtained from the dispersive optical model are compared; both point toward the importance of including nonlocality in transfer reactions explicitly. Given the large ambiguities associated with optical potentials, we discuss some new developments toward the quantification of this uncertainty. We conclude with some general comments and a brief account of new advances that are in the pipeline.

  7. Reaction mechanism and spectroscopy of transfer reactions induced by heavy ions

    International Nuclear Information System (INIS)

    Lemaire, M.-C.

    1977-01-01

    The specific features displayed by data on heavy ion elastic and inelastic angular distributions are discussed, and their physical origin is pointed out from semi-classical calculations in counterpart ambiguities in the phenomenological description of the optical potential appear. Two nucleon transfer reactions induced by heavy ions successfully point out important contributions of a two-step process where the transfer is proceeding via target and residual nucleus inelastic excitation. At incident energies not too high above the Coulomb barrier, such process produces clear shape changes between different final state angular distributions. At higher incident energy, the angular distributions are forward peaked and display oscillations for both mechanisms. As for four-nucleon transfer reactions, the existing data suggest that the nucleons are well transferred into a Os relative

  8. Two-neutron transfer reactions with heavy-deformed nuclei

    International Nuclear Information System (INIS)

    Price, C.; Landowne, S.; Esbensen, H.

    1988-01-01

    In a recent communication we pointed out that one can combine the macroscopic model for two-particle transfer reactions on deformed nuclei with the sudden limit approximation for rotational excitation, and thereby obtain a practical method for calculating transfer reactions leading to high-spin states. As an example, we presented results for the reaction 162 Dy( 58 Ni, 60 Ni) 160 Dy populating the ground-state rotational band up to the spin I = 14 + state. We have also tested the validity of the sudden limit for the inelastic excitation of high spin states and we have noted how the macroscopic model may be modified to allow for more microscopic nuclear structure effects in an application to diabolic pair-transfer processes. This paper describes our subsequent work in which we investigated the systematic features of pair-transfer reactions within the macroscopic model by using heavier projectiles to generate higher spins and by decomposing the cross sections according to the multipolarity of the transfer interaction. Particular attention is paid to characteristic structures in the angular distributions for the lower spin states and how they depend on the angular momentum carried by the transferred particles. 11 refs., 3 figs

  9. Counter-transference reactions contributing to completed suicide.

    Science.gov (United States)

    Modestin, J

    1987-12-01

    Counter-transference reactions are frequently elicited while treating suicidal patients and they may contribute to the patient's committing suicide. Therapeutic constellations including the failure of the therapist to (1) cope with the patient's aggressiveness, (2) tolerate the patient's dependency, (3) handle the erotic transference adequately and (4) preserve loyalty towards the patient; they have all been identified as being responsible for a therapeutic impasse with fatal consequences. Knowledge of the therapeutic constellations especially prone to facilitate negative counter-transference reactions may help the therapist to master them effectively.

  10. Probing cluster structures through sub-barrier transfer reactions

    Directory of Open Access Journals (Sweden)

    Rafferty D. C.

    2016-01-01

    Full Text Available Multinucleon transfer probabilities and excitation energy distributions have been measured in 16,18O, 19F + 208Pb at energies between 90% - 100% of the Coulomb barrier. A strong 2p2n enhancement is observed for all reactions, though most spectacularly in the 18O induced reaction. Results are interpreted in terms of the Semiclassical model, which seems to suggest α-cluster transfer in all studied systems. The relation to cluster-states in the projectile is discussed, with the experimental results consistent with previous structure studies. Dissipation of energy in the collisions of 18O is compared between different reaction modes, with cluster transfer associated with dissipation over a large number of internal states. Cluster transfer is shown to be a long range dissipation mechanism, which will inform the development of future models to treat these dynamic processes in reactions.

  11. Probing the pairing interaction through two-neutron transfer reactions

    Directory of Open Access Journals (Sweden)

    Margueron J.

    2012-12-01

    Full Text Available The treatment of the pairing interaction in mean-field-based models is addressed. In particular, the possibility to use pair transfers as A tool to better constrain this interaction is discussed. First, pairing inter-actions with various density dependencies (surface/volume mixing are used in the microscopic Hartree-Fock-Bogoliubov + quasiparticle random-phase approximation model to generate the form factors to be used in reaction calculations. Cross sections for (p,t two-neutron transfer reactions are calculated in the one-step zero-range distorted-wave Born approximation for some Tin isotopes and for incident proton energies from 15 to 35 MeV. Three different surface/volume mixings of A zero-range density-dependent pairing interaction are employed in the microscopic calculations and the sensitivity of the cross sections to the different mixings is analyzed. Differences among the three different theoretical predictions are found espacially for the nucleus 136Sn and they are more important at the incident proton energy of 15 MeV. We thus indicate (p,t two-neutron transfer reactions with very neutron-rich Sn isotopes and at proton energies around 15 MeV as good experimental cases where the surface/volume mixing of the pairing interaction may be probed. In the second part of the manuscript, ground-state to ground-state transitions are investigated. Approximations made to estimate two-nucleon transfer probabilities in ground-state to ground-state transitions and the physical interpretation of these probabilities are discussed. Probabilities are often calculated by approximating both ground states of the initial nucleus A and of the final nucleus A±2 by the same quasiparticle vacuum. We analyze two improvements of this approach. First, the effect of using two different ground states with average numbers of particles A and A±2 is quantified. Second, by using projection techniques, the role of particle number restoration is analyzed. Our analysis

  12. Production of isomers in compound and transfer reactions with 4He ions

    International Nuclear Information System (INIS)

    Karamyan, S.A.; Aksenov, N.V.; Albin, Yu.A.; Bozhikov, G.A.; Dmitriev, S.N.; Starodub, G.Ya.; Vostokin, G.K.; Carroll, J.J.

    2011-01-01

    A well-known island of nuclear isomerism appears near A = 175-180 due to the deformation alignment of single-particle orbits at high angular momentum. This sometimes results in the formation of multi-quasiparticle states with record spin that are long-lived because of 'K-hindrance', i.e., symmetry rearrangement. Production methods and spectroscopic studies of these isomers remain a challenge for modern nuclear reaction and nuclear structure physics. Activities were produced by irradiation of 176 Yb(97.6%) enriched and nat Lu targets with 35-MeV 4 He ions from the internal beam of the U200 cyclotron. Induced activities were analyzed applying methods of radiochemistry and gamma spectroscopy. Yields of compound and nucleon-transfer reactions were measured and the isomer-to-ground state ratios were deduced. Calculated results were obtained using standard procedures to reproduce the (α, xn) cross sections, and the systematic behavior of the nucleon-transfer yields was established. The isomer-to-ground state ratios for direct reactions with 4 He ions were examined, resulting in a new characterization of the reaction mechanism

  13. Single-Molecule Sensing with Nanopore Confinement: from Chemical Reactions to Biological Interactions.

    Science.gov (United States)

    Lin, Yao; Ying, Yi-Lun; Gao, Rui; Long, Yi-Tao

    2018-03-25

    The nanopore can generate an electrochemical confinement for single-molecule sensing which help understand the fundamental chemical principle in nanoscale dimensions. By observing the generated ionic current, individual bond-making and bond-breaking steps, single biomolecule dynamic conformational changes and electron transfer processes that occur within pore can be monitored with high temporal and current resolution. These single-molecule studies in nanopore confinement are revealing information about the fundamental chemical and biological processes that cannot be extracted from ensemble measurements. In this concept, we introduce and discuss the electrochemical confinement effects on single-molecule covalent reactions, conformational dynamics of individual molecules and host-guest interactions in protein nanopores. Then, we extend the concept of nanopore confinement effects to confine electrochemical redox reactions in solid-state nanopores for developing new sensing mechanisms. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Nuclear structure effects in multi-nucleon transfer and sequential fission reactions

    International Nuclear Information System (INIS)

    Biswas, D.C.

    2001-01-01

    The role of the nuclear structure in multi-nucleon transfer and sequential fission reactions has been discussed. The recent results on multi-nucleon transfer and transfer induced fission reaction, have brought out many interesting features in understanding the reaction mechanism and collective dynamics of heavy ion reactions. The structure of the projectile nucleus has strong influence on the transfer of multi-nucleons and/or clusters from the projectile to the target. The mechanism of multi-nucleon transfer between two heavy nuclei is a complex process which has a strong dependence on the ground state Q-value of the reaction as well as on the number of transferred nucleons

  15. Bridge mediated two-electron transfer reactions: Analysis of stepwise and concerted pathways

    International Nuclear Information System (INIS)

    Petrov, E.G.; May, V.

    2004-01-01

    A theory of nonadiabatic donor (D)-acceptor (A) two-electron transfer (TET) mediated by a single regular bridge (B) is developed. The presence of different intermediate two-electron states connecting the reactant state D -- BA with the product state DBA -- results in complex multiexponential kinetics. The conditions are discussed at which a reduction to two-exponential as well as single-exponential kinetics becomes possible. For the latter case the rate K TET is calculated, which describes the bridge-mediated reaction as an effective two-electron D-A transfer. In the limit of small populations of the intermediate TET states D - B - A, DB -- A, D - BA - , and DB - A - , K TET is obtained as a sum of the rates K TET (step) and K TET (sup) . The first rate describes stepwise TET originated by transitions of a single electron. It starts at D -- BA and reaches DBA -- via the intermediate state D - BA - . These transitions cover contributions from sequential as well as superexchange reactions all including reduced bridge states. In contrast, a specific two-electron superexchange mechanism from D -- BA to DBA -- defines K TET (sup) . An analytic dependence of K TET (step) and K TET (sup) on the number of bridging units is presented and different regimes of D-A TET are studied

  16. Coherent and semi-coherent neutron transfer reactions

    International Nuclear Information System (INIS)

    Hagelstein, P.L.

    1992-01-01

    Neutron transfer reactions are proposed to account for anomalies reported in Pons-Fleischmann experiments. The prototypical reaction involves the transfer of a neutron (mediated by low frequency electric or magnetic fields) from a donor nucleus to virtual continuum states, followed by the capture of the virtual neutron by an acceptor nucleus. In this work we summarize basic principles, recent results and the ultimate goals of the theoretical effort

  17. Coherent and semi-coherent neutron transfer reactions

    International Nuclear Information System (INIS)

    Hagelstein, P.L.

    1993-01-01

    Neutron transfer reactions are proposed to account for anomalies reported in Pons-Fleischmann experiments. The prototypical reaction involves the transfer of a neutron (mediated by low frequency electric or magnetic fields) from a donor nucleus to virtual continuum states, followed by the capture of the virtual neutron by an acceptor nucleus. In this work we summarize basic principles, recent results and the ultimate goals of the theoretical effort. (author)

  18. Promotion of multi-electron transfer for enhanced photocatalysis: A review focused on oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Changhua [Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024 (China); College of Chemistry and Biology, Beihua University, Jilin 132013 (China); Zhang, Xintong, E-mail: xtzhang@nenu.edu.cn [Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024 (China); Liu, Yichun [Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024 (China)

    2015-12-15

    Highlights: • Oxygen reduction reaction (ORR) in photocatalysis process is focused. • Multi-electron transfer ORR is reviewed. • This review provides a guide to access to enhanced photocatalysis via multi-electron transfer. - Abstract: Semiconductor photocatalysis has attracted significant interest for solar light induced environmental remediation and solar fuel generation. As is well known, photocatalytic performance is determined by three steps: photoexcitation, separation and transport of photogenerated charge carriers, and surface reactions. To achieve higher efficiency, significant efforts have been made on improvement of efficiency of above first two steps, which have been well documented in recent review articles. In contrast, this review intends to focus on strategies moving onto the third step of improvement for enhanced photocatalysis wherein active oxygen species including superoxide radical, hydrogen peroxide, hydroxyl radical are in situ detected. Particularly, surface electron-transfer reduction of oxygen over single component photocatalysts is reviewed and systems enabling multi-electron transfer induced oxygen reduction reaction (ORR) are highlighted. It is expected this review could provide a guideline for readers to better understand the critical role of ORR over photocatalyst in charge carrier separation and transfer and obtain reliable results for enhanced aerobic photocatalysis.

  19. Mass and heat transfer at the outer surface of helical coils under single and two phase flow

    International Nuclear Information System (INIS)

    Abdel-Aziz, M.H.; Nirdosh, I.; Sedahmed, G.H.

    2016-01-01

    Highlights: • The work aims to develop reactors which need rapid temperature control. • Mass and heat transfer at the outer surface of helical coils was studied experimentally. • The experiments were conducted under gas sparing, single and two phase flow. • Variables were helical tube diameter, physical properties, and gas and liquid velocity. • Results verification in terms of natural convection and surface renewal mechanism was explained. - Abstract: The mass transfer behavior of the outer surface of vertical helical coil was studied by the electrochemical technique under single phase flow, gas sparging and two phase flow. Variables studied were helical tube diameter, physical properties of the solution, solution velocity and superficial gas velocity. The mass transfer data were correlated by dimensionless equations. Mass transfer enhancement ratio in case of two phase flow ranged from 1.1 to 4.9 compared to single phase flow. Implication of the results for the design and operation of helical coil reactors used to conduct L–S exothermic diffusion controlled reactions which need rapid temperature control were outlined. In this case the inner coil surface will act as a cooler while the outer surface will act a reaction surface. Immobilized enzyme catalyzed biochemical reactions where heat sensitive materials may be involved represent an example for the reactions which can employ the helical coil reactor. Also the importance of the results in the design of and operation of diffusion controlled membrane processes which employ helical coil membrane was noted. In view of the analogy between heat and mass transfer the possibility of using the results in the design and operation of helical coil heat exchangers was highlighted.

  20. Study of single particle properties of nuclei in the region of the "island of inversion" by means of neutron-transfer reactions

    CERN Multimedia

    Kruecken, R; Voulot, D

    2007-01-01

    We are aiming at the investigation of single particle properties of neutron-rich nuclei in the region of the "island of inversion" where intruder states from the $\\{fp}$-shell favour deformed ground states instead of the normal spherical $\\textit{sd}$-shell states. As first experiment, we propose to study single particle states in the neutron-rich isotope $^{31}$Mg. The nucleus will be populated by a one-neutron transfer reaction with a $^{30}$Mg beam at 3 MeV/u obtained from REX-ISOLDE impinging on a CD$_{2}$ target. The $\\gamma$-rays will be detected by the MINIBALL array and the particles by a newly built set-up of segmented Si detectors with a angular coverage of nearly 4$\\pi$. Relative spectroscopic factors extracted from the cross sections will enable us to pin down the configurations of the populated states. These will be compared to recent shell model calculations involving new residual interactions. This will shed new light on the evolution of single particle structure leading to the breaking of the ...

  1. Tem holder for sample transfer under reaction conditions

    DEFF Research Database (Denmark)

    Damsgaard, Christian Danvad; Zandbergen, Henny W.; Wagner, Jakob Birkedal

    Environmental transmission electron microscopy (ETEM) studies are usually performed using conventional sample holders in a dedicated ETEM [1] or in a traditional TEM by use of a dedicated high-pressure cell sample holder [2]. In both cases, the setup defines the conditions regarding gas, pressure......]. Furthermore, dedicated transfer holders have been used to transfer catalyst samples between reactor set-ups and TEM at room temperature in inert atmosphere [5]. To take the full advantage of complementary in situ techniques, transfer under reactions conditions is essential. This study introduces the in situ...... transfer concept by use of a dedicated TEM transfer holder capable of enclosing the sample in a gaseous environment at temperatures up to approx. 900C. By oxidation and reduction experiments of Cu nanoparticles it is shown possible to keep the reaction conditions during transfer outside the microscope...

  2. Scattering and transfer reactions with heavy ions

    International Nuclear Information System (INIS)

    Hussein, M.S.

    From the elastic scattering analysis the input parameters are found for the inelastic scattering analysis and the transfer reactions of the heavy ion reactions. The main theme reported is the likeness and conection among these processes. (L.C.) [pt

  3. Charge transfer reactions in Xe plasma expansion

    International Nuclear Information System (INIS)

    Jiao, C. Q.; Garscadden, A.; Ganguly, B. N.

    2007-01-01

    Charge transfer reactions of fast Xe ions with hydrocarbons including methane (CH 4 ), ethene (C 2 H 4 ), and propane (C 3 H 8 ) are studied by adding these hydrocarbon gases into a cross flowing Xe plasma expansion. Branching ratios and relative reaction rates for the charge transfers of fast Xe + with each of the three hydrocarbon gases are measured under different rf powers of the inductively coupled Xe discharge. For CH 4 /Xe system, we find that fast Xe + reacts readily with CH 4 generating CH 4 + and CH 3 + in a ratio of 1:0.56, with an estimated rate coefficient of (2.3±0.3)x10 -10 cm 3 /s at 75 W rf power which slowly increases to (2.9±0.3)x10 -10 cm 3 /s at 250 W (error bars reflect only the uncertainties due to the unknown extent of the ion recombination that follows the charge transfer reaction). These observed charge transfer reactions are made possible by the kinetically excited Xe ions produced by free expansion of the plasma. For the C 2 H 4 /Xe system product ions C 2 H 4 + and C 2 H 2 + are observed, and for C 3 H 8 /Xe, C 2 H 4 + and C 2 H 5 + and minor product ions including C 2 H 2 + and C 3 H 7 + are observed

  4. Post-prior equivalence for transfer reactions with complex potentials

    Science.gov (United States)

    Lei, Jin; Moro, Antonio M.

    2018-01-01

    In this paper, we address the problem of the post-prior equivalence in the calculation of inclusive breakup and transfer cross sections. For that, we employ the model proposed by Ichimura et al. [Phys. Rev. C 32, 431 (1985), 10.1103/PhysRevC.32.431], conveniently generalized to include the part of the cross section corresponding the transfer to bound states. We pay particular attention to the case in which the unobserved particle is left in a bound state of the residual nucleus, in which case the theory prescribes the use of a complex potential, responsible for the spreading width of the populated single-particle states. We see that the introduction of this complex potential gives rise to an additional term in the prior cross-section formula, not present in the usual case of real binding potentials. The equivalence is numerically tested for the 58Ni(d ,p X ) reaction.

  5. Mass transfer with complex reversible chemical reactions. II: Parallel reversible chemical reactions

    NARCIS (Netherlands)

    Versteeg, Geert; van Beckum, F.P.H.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    1990-01-01

    An absorption model has been developed which can be used to calculate rapidly absorption rates for the phenomenon mass transfer accompanied by multiple complex parallel reversible chemical reactions. This model can be applied for the calculation of the mass transfer rates, enhancement factors and

  6. Mass transfer with complex reversible chemical reactions. II: parallel reversible chemical reactions

    NARCIS (Netherlands)

    Versteeg, G.F.; Kuipers, J.A.M.; Beckum, van F.P.H.; van Swaaij, W.P.M.

    1990-01-01

    An absorption model has been developed which can be used to calculate rapidly absorption rates for the phenomenon mass transfer accompanied by multiple complex parallel reversible chemical reactions. This model can be applied for the calculation of the mass transfer rates, enhancement factors and

  7. Computational Approach to Electron Charge Transfer Reactions

    DEFF Research Database (Denmark)

    Jónsson, Elvar Örn

    -molecular mechanics scheme, and tools to analyse statistical data and generate relative free energies and free energy surfaces. The methodology is applied to several charge transfer species and reactions in chemical environments - chemical in the sense that solvent, counter ions and substrate surfaces are taken...... in to account - which directly influence the reactants and resulting reaction through both physical and chemical interactions. All methods are though general and can be applied to different types of chemistry. First, the basis of the various theoretical tools is presented and applied to several test systems...... and asymmetric charge transfer reactions between several first-row transition metals in water. The results are compared to experiments and rationalised with classical analytic expressions. Shortcomings of the methods are accounted for with clear steps towards improved accuracy. Later the analysis is extended...

  8. Saponification reaction system: a detailed mass transfer coefficient determination.

    Science.gov (United States)

    Pečar, Darja; Goršek, Andreja

    2015-01-01

    The saponification of an aromatic ester with an aqueous sodium hydroxide was studied within a heterogeneous reaction medium in order to determine the overall kinetics of the selected system. The extended thermo-kinetic model was developed compared to the previously used simple one. The reaction rate within a heterogeneous liquid-liquid system incorporates a chemical kinetics term as well as mass transfer between both phases. Chemical rate constant was obtained from experiments within a homogeneous medium, whilst the mass-transfer coefficient was determined separately. The measured thermal profiles were then the bases for determining the overall reaction-rate. This study presents the development of an extended kinetic model for considering mass transfer regarding the saponification of ethyl benzoate with sodium hydroxide within a heterogeneous reaction medium. The time-dependences are presented for the mass transfer coefficient and the interfacial areas at different heterogeneous stages and temperatures. The results indicated an important role of reliable kinetic model, as significant difference in k(L)a product was obtained with extended and simple approach.

  9. Polarization transfer in (d-vector,n-vector) reactions

    International Nuclear Information System (INIS)

    Walter, R.L.; Tornow, W.

    1986-01-01

    The status of the measurements and the role of polarization transfer coefficients for (d/sup →/,n/sup →/) reactions is reviewed. Emphasis is given to reactions, involving light-nuclei systems. The importance of (d/sup →/,n/sup →/) reactions as sources of polarized neutrons is pointed out

  10. Electron transfer reactions involving porphyrins and chlorophyll a

    International Nuclear Information System (INIS)

    Neta, P.; Scherz, A.; Levanon, H.

    1979-01-01

    Electron transfer reactions involving porphyrins (P) and quinones (Q) have been studied by pulse radiolysis. The porphyrins used were tetraphenylporphyrin (H 2 TPP), its tetracarboxy derivative (H 2 TCPP), the sodium and zinc compounds (Na 2 TPP and ZnTPP), and chlorophyll a (Chl a). These compounds were found to be rapidly reduced by electron transfer from (CH 3 ) 2 CO - . Reduction by (CH 3 ) 2 COH was rapid in aqueous solutions but relatively slow in i-PrOH solutions. Transient spectra of the anion radicals were determined and, in the case of H 2 TCPP - ., a pK = 9.7 was derived for its protonation. Electron-transfer reactions from the anion radical of H 2 TCPP to benzoquinone, duroquinone, 9,10-anthraquinone 2-sulfonate, and methylviologen occur in aqueous solutions with rate constants approx. 10 7 -10 9 M -1 s -1 which depend on the pH and the quinone reduction potential. Reactions of Na 2 TPP - ., ZnTPP - ., and Chl a - . with anthraquinone in basic i-PrOH solutions occur with rate constants approx. 10 9 M -1 s -1 . The spectral changes associated with these electron-transfer reactions as observed over a period of approx. 1 ms indicated, in some cases, the formation of an intermediate complex [P...Q - .]. 8 figures, 2 tables

  11. Mass transfer model for two-layer TBP oxidation reactions

    International Nuclear Information System (INIS)

    Laurinat, J.E.

    1994-01-01

    To prove that two-layer, TBP-nitric acid mixtures can be safely stored in the canyon evaporators, it must be demonstrated that a runaway reaction between TBP and nitric acid will not occur. Previous bench-scale experiments showed that, at typical evaporator temperatures, this reaction is endothermic and therefore cannot run away, due to the loss of heat from evaporation of water in the organic layer. However, the reaction would be exothermic and could run away if the small amount of water in the organic layer evaporates before the nitric acid in this layer is consumed by the reaction. Provided that there is enough water in the aqueous layer, this would occur if the organic layer is sufficiently thick so that the rate of loss of water by evaporation exceeds the rate of replenishment due to mixing with the aqueous layer. This report presents measurements of mass transfer rates for the mixing of water and butanol in two-layer, TBP-aqueous mixtures, where the top layer is primarily TBP and the bottom layer is comprised of water or aqueous salt solution. Mass transfer coefficients are derived for use in the modeling of two-layer TBP-nitric acid oxidation experiments. Three cases were investigated: (1) transfer of water into the TBP layer with sparging of both the aqueous and TBP layers, (2) transfer of water into the TBP layer with sparging of just the TBP layer, and (3) transfer of butanol into the aqueous layer with sparging of both layers. The TBP layer was comprised of 99% pure TBP (spiked with butanol for the butanol transfer experiments), and the aqueous layer was comprised of either water or an aluminum nitrate solution. The liquid layers were air sparged to simulate the mixing due to the evolution of gases generated by oxidation reactions. A plastic tube and a glass frit sparger were used to provide different size bubbles. Rates of mass transfer were measured using infrared spectrophotometers provided by SRTC/Analytical Development

  12. Reaction kinetics in open reactors and serial transfers between closed reactors

    Science.gov (United States)

    Blokhuis, Alex; Lacoste, David; Gaspard, Pierre

    2018-04-01

    Kinetic theory and thermodynamics of reaction networks are extended to the out-of-equilibrium dynamics of continuous-flow stirred tank reactors (CSTR) and serial transfers. On the basis of their stoichiometry matrix, the conservation laws and the cycles of the network are determined for both dynamics. It is shown that the CSTR and serial transfer dynamics are equivalent in the limit where the time interval between the transfers tends to zero proportionally to the ratio of the fractions of fresh to transferred solutions. These results are illustrated with a finite cross-catalytic reaction network and an infinite reaction network describing mass exchange between polymers. Serial transfer dynamics is typically used in molecular evolution experiments in the context of research on the origins of life. The present study is shedding a new light on the role played by serial transfer parameters in these experiments.

  13. Heat transfer characteristics around a single heated rod immersed in sodium pool with gas jet injection

    International Nuclear Information System (INIS)

    Hideto Niikura; Kazuo Soga; Ken-ichiro Sugiyama; Akira Yamaguchi

    2005-01-01

    In a steam generator using liquid sodium, water intensely reacts with sodium when it leaks out from a heat transfer tube. It is important to evaluate the influence of sodium-water reaction to surrounding tubes and the shell. Hence, it has been desired to develop the simulation code for the evaluation of sodium-water reaction. From this viewpoint, the Japan Nuclear Cycle is now developing the SERAPHIM code. We reported a preliminary study to establish an experimental method for a single heated rod immersed in sodium pool with steam jet impingement planned in the near future as well as to obtain a preliminary data to verify the adequacy of SERAPHIM code. We first measured local and mean heat transfer coefficients around a horizontal single heated rod immersed in a water pool and a sodium pool with a limited volume in the experimental apparatus. It was confirmed that the mean heat transfer coefficients fairly agreed with the existing data for natural convection in water and sodium. Secondary we measured local and mean heat transfer coefficients around a horizontal single heated rod with Ar gas jet impingement immersed in the limited water pool and in the limited sodium pool. It was clearly observed that the local heat transfer coefficients in the sodium pool keep almost the same values in every angle regardless of increase in Ar gas jet velocity varied from about 8.7m/s to about 78m/s. On the other hand, it was confirmed in the water pool that local heat transfer coefficients on the forward stagnation side exposed in the Ar gas jet impingement increase with increasing the jet velocity while the local heat transfer coefficients on the opposite surface keep almost same values regardless of increase in the velocity. (authors)

  14. Multi-nucleon transfer: a probe to investigate the reaction mechanism around the barrier

    International Nuclear Information System (INIS)

    Mandal, Samit K.

    2014-01-01

    The investigation of multi-nucleon transfer mechanism offers valuable information on the pairing interactions that enhance the transfer of nucleon pairs across heavy ions involved in the reaction. These reactions are also a useful tool to study exotic nuclei far from the stability line, which can be explored with the new generation radioactive beam facility. In this talk, multi-nucleon transfer reaction mechanisms between heavy ions and their effect on the reaction dynamics around the coulomb barrier energies have been discussed. Experimental results will be presented with a semi classical description of multi nucleon transfer reaction calculation. One and two nucleon transfer cross sections reproduced using a quantum mechanical coupled channel calculations will also be discussed. A feasibility of investigation of multi-nucleon transfer mechanism to explore the pairing correlation at moderate spin states with radioactive beams will be discussed. (author)

  15. Carbene Transfer Reactions Catalysed by Dyes of the Metalloporphyrin Group

    Directory of Open Access Journals (Sweden)

    Mário M. Q. Simões

    2018-03-01

    Full Text Available Carbene transfer reactions are very important transformations in organic synthesis, allowing the generation of structurally challenging products by catalysed cyclopropanation, cyclopropenation, carbene C-H, N-H, O-H, S-H, and Si-H insertion, and olefination of carbonyl compounds. In particular, chiral and achiral metalloporphyrins have been successfully explored as biomimetic catalysts for these carbene transfer reactions under both homogeneous and heterogeneous conditions. In this work the use of synthetic metalloporphyrins (MPorph, M = Fe, Ru, Os, Co, Rh, Ir, Sn as homogeneous or heterogeneous catalysts for carbene transfer reactions in the last years is reviewed, almost exclusively focused on the literature since the year 2010, except when reference to older publications was deemed to be crucial.

  16. Direct single-molecule dynamic detection of chemical reactions.

    Science.gov (United States)

    Guan, Jianxin; Jia, Chuancheng; Li, Yanwei; Liu, Zitong; Wang, Jinying; Yang, Zhongyue; Gu, Chunhui; Su, Dingkai; Houk, Kendall N; Zhang, Deqing; Guo, Xuefeng

    2018-02-01

    Single-molecule detection can reveal time trajectories and reaction pathways of individual intermediates/transition states in chemical reactions and biological processes, which is of fundamental importance to elucidate their intrinsic mechanisms. We present a reliable, label-free single-molecule approach that allows us to directly explore the dynamic process of basic chemical reactions at the single-event level by using stable graphene-molecule single-molecule junctions. These junctions are constructed by covalently connecting a single molecule with a 9-fluorenone center to nanogapped graphene electrodes. For the first time, real-time single-molecule electrical measurements unambiguously show reproducible large-amplitude two-level fluctuations that are highly dependent on solvent environments in a nucleophilic addition reaction of hydroxylamine to a carbonyl group. Both theoretical simulations and ensemble experiments prove that this observation originates from the reversible transition between the reactant and a new intermediate state within a time scale of a few microseconds. These investigations open up a new route that is able to be immediately applied to probe fast single-molecule physics or biophysics with high time resolution, making an important contribution to broad fields beyond reaction chemistry.

  17. Single Molecule Spectroscopy of Electron Transfer

    International Nuclear Information System (INIS)

    Holman, Michael; Zang, Ling; Liu, Ruchuan; Adams, David M.

    2009-01-01

    The objectives of this research are threefold: (1) to develop methods for the study electron transfer processes at the single molecule level, (2) to develop a series of modifiable and structurally well defined molecular and nanoparticle systems suitable for detailed single molecule/particle and bulk spectroscopic investigation, (3) to relate experiment to theory in order to elucidate the dependence of electron transfer processes on molecular and electronic structure, coupling and reorganization energies. We have begun the systematic development of single molecule spectroscopy (SMS) of electron transfer and summaries of recent studies are shown. There is a tremendous need for experiments designed to probe the discrete electronic and molecular dynamic fluctuations of single molecules near electrodes and at nanoparticle surfaces. Single molecule spectroscopy (SMS) has emerged as a powerful method to measure properties of individual molecules which would normally be obscured in ensemble-averaged measurement. Fluctuations in the fluorescence time trajectories contain detailed molecular level statistical and dynamical information of the system. The full distribution of a molecular property is revealed in the stochastic fluctuations, giving information about the range of possible behaviors that lead to the ensemble average. In the case of electron transfer, this level of understanding is particularly important to the field of molecular and nanoscale electronics: from a device-design standpoint, understanding and controlling this picture of the overall range of possible behaviors will likely prove to be as important as designing ia the ideal behavior of any given molecule.

  18. Coupled-channels analyses for 9,11Li + 208Pb fusion reactions with multi-neutron transfer couplings

    Science.gov (United States)

    Choi, Ki-Seok; Cheoun, Myung-Ki; So, W. Y.; Hagino, K.; Kim, K. S.

    2018-05-01

    We discuss the role of two-neutron transfer processes in the fusion reaction of the 9,11Li + 208Pb systems. We first analyze the 9Li + 208Pb reaction by taking into account the coupling to the 7Li + 210Pb channel. To this end, we assume that two neutrons are directly transferred to a single effective channel in 210Pb and solve the coupled-channels equations with the two channels. By adjusting the coupling strength and the effective Q-value, we successfully reproduce the experimental fusion cross sections for this system. We then analyze the 11Li + 208Pb reaction in a similar manner, that is, by taking into account three effective channels with 11Li + 208Pb, 9Li + 210Pb, and 7Li + 212Pb partitions. In order to take into account the halo structure of the 11Li nucleus, we construct the potential between 11Li and 208Pb with a double folding procedure, while we employ a Woods-Saxon type potential with the global Akyüz-Winther parameters for the other channels. Our calculation indicates that the multiple two-neutron transfer process plays a crucial role in the 11Li + 208Pb fusion reaction at energies around the Coulomb barrier.

  19. Conformational dependence of a protein kinase phosphate transfer reaction

    Science.gov (United States)

    Labute, Montiago; Henkelman, Graeme; Tung, Chang-Shung; Fenimore, Paul; McMahon, Ben

    2007-03-01

    Atomic motions and energetics for a phosphate transfer reaction catalyzed by the cAMP-dependent protein kinase have been calculated using plane-wave density functional theory, starting from structures of proteins crystallized in both the reactant conformation (RC) and the transition-state conformation (TC). In TC, we calculate that the reactants and products are nearly isoenergetic with a 20-kJ/mol barrier, whereas phosphate transfer is unfavorable by 120 kJ/mol in the RC, with an even higher barrier. Our results demonstrate that the phosphate transfer reaction occurs rapidly and reversibly in a particular conformation of the protein, and that the reaction can be gated by changes of a few tenths of an angstrom in the catalytic site [1]. [1] G.H. Henkelman, M.X. LaBute, C.-S. Tung, P.W. Fenimore, B.H. McMahon, Proc. Natl. Acad. Sci. USA vol. 102, no. 43:15347-15351 (2005).

  20. Transfer reactions with very heavy ions. Quarterly report 3. quarter 1987

    International Nuclear Information System (INIS)

    Juutinen, Sakari.

    1988-03-01

    This thesis deals with the reaction mechanism of the few-nucleon transfer reactions between the 58 Ni projectiles and the Dy targets. A series of transfer experiments utilizing the particle-γ coincidence technique was performed. Particle detection was used to give the scattering angles of two reaction products and the reaction channel was selected by the discrete γ-rays in the Ge detectors. Total γ-ray energy and multiplicity distributions were measured by the Spin Spectrometer. Total γ-ray energy and multiplicity distributions, γ-ray spectra obtained by the Ge and NaI detectors and angular distributions of the projectile-like ions are discussed. For one- and two-neutron transfer the experimental results provide direct evidence of a cold mechanism populating high-spin states near the yrast line. A schematic model for the transfer mechanism is proposed. This model accounts for the prominent features of one- and two-neutron pickup

  1. Two-proton transfer reactions on even Ni and Zn isotopes

    International Nuclear Information System (INIS)

    Boucenna, A.; Kraus, L.; Linck, I.; Tsan Ung Chan

    1988-01-01

    Two-proton transfer reactions induced by 112 MeV 12 C ions on even Ni and Zn isotopes are found to be less selective than the analogous two-neutron transfer reactions induced on the same targets in a similar incident energy range. The additional collective aspects observed in the proton transfer are examined in view of a semiphenomenological model of two quasi-particles coupled to a triaxial asymmetric rotor. Tentative spin and parity assignments emerge from this comparison, from crude shell model calculations and from systematic trends

  2. Transfer and breakup reactions at intermediate energies

    International Nuclear Information System (INIS)

    Stokstad, R.G.

    1986-04-01

    The origin of the quasi-elastic peak in peripheral heavy-ion reactions is discussed in terms of inelastic scattering and transfer reactions to unbound states of the primary projectile-like fragment. The situation is analogous to the use of reverse kinematics in fusion reactions, a technique in which the object of study is moving with nearly the beam velocity. It appears that several important features of the quasi-elastic peak may be explained by this approach. Projectile-breakup reactions have attractive features for the study of nuclear structure. They may also be used to determine the partition of excitation energy in peripheral reactions. At intermediate energies, neutron-pickup reactions leading to four-body final states become important. Examples of experiments are presented that illustrate these points. 15 refs., 14 figs

  3. Chemical Transfer (Single Small-Scale) Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry laboratoryThe Chemical Transfer Facility (CTF)  is the only U.S. single small-scale  facility, a single repository for the Army’s...

  4. Polarization transfer in (p,n) reactions at 495 MeV

    International Nuclear Information System (INIS)

    Taddeucci, T.N.

    1991-01-01

    Polarization transfer observables have been measured with the NTOF facility at LAMPF for (p,n) reactions at 495 MeV. Measurements of the longitudinal polarization transfer parameter D LL for transitions to discrete states at 0 degrees show convincing evidence for tensor interaction effects. Complete sets of polarization transfer observables have been measured for quasifree (p,n) reactions on 2 H, 12 C, 40 Ca at a scattering angle of 18 degrees. These measurements show no evidence for an enhancement in the isovector spin longitudinal response. 19 refs., 10 figs

  5. New Oxime Ligand with Potential for Proton-Coupled Electron-Transfer Reactions

    DEFF Research Database (Denmark)

    Deville, Claire; Sundberg, Jonas; McKenzie, Christine Joy

    Proton-coupled electron-transfer (PCET) is found in a range of oxidation-reduction reactions in biology.1 This mechanism is of interest for applications in energy conversion processes. The PCET reaction has been shown to be facilitated when the proton is transferred to an intramolecular basic sit...

  6. Nuclear transfer reaction measurements at the ESR—for the investigation of the astrophysical 15O(α,γ)19Ne reaction

    International Nuclear Information System (INIS)

    Doherty, D T; Woods, P J; Davinson, T; Estrade, A; Lotay, G; Litvinov, Yu A; Brandau, C; Dillmann, I; Egelhof, P; Evdokimov, A; Gumberidze, A; Heil, M; Litvinov, S A; Kiselev, O; Najafi, M Ali; Bagchi, S; Kalantar-Nayestanaki, N; Bishop, S; Bo, M; Lederer, C

    2015-01-01

    Astrophysical x-ray bursts are thought to be a result of thermonuclear explosions on the atmosphere of an accreting neutron star. Between these bursts, energy is thought to be generated by the hot CNO cycles. The 15 O(α,γ) 19 Ne reaction is one reaction that allows breakout from these CNO cycles and into the rp-process to fuel outbursts. The reaction is expected to be dominated by a single 3/2 + resonance at 4.033 MeV in 19 Ne, however, limited information is available on this key state. This work reports on a pioneering study of the 20 Ne(p,d) 19 Ne reaction, performed in inverse kinematics at the experimental storage ring (ESR) as a means of accessing the astrophysically important 4.033 MeV state in 19 Ne. The unique, background free, high luminosity conditions of the storage ring were utilized for this, the first transfer reaction performed at the ESR. The results of this pioneering test experiment are presented along with suggestions for future measurements at storage ring facilities. (paper)

  7. Development of Novel Electrode Materials for the Electrocatalysis of Oxygen-Transfer and Hydrogen-Transfer Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Brett Kimball [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    Throughout this thesis, the fundamental aspects involved in the electrocatalysis of anodic O-transfer reactions and cathodic H-transfer reactions have been studied. The investigation into anodic O-transfer reactions at undoped and Fe(III)[doped MnO2 films] revealed that MnO2 film electrodes prepared by a cycling voltammetry deposition show improved response for DMSO oxidation at the film electrodes vs. the Au substrate. Doping of the MnO2 films with Fe(III) further enhanced electrode activity. Reasons for this increase are believed to involve the adsorption of DMSO by the Fe(III) sites. The investigation into anodic O-transfer reactions at undoped and Fe(III)-doped RuO2 films showed that the Fe(III)-doped RuO2-film electrodes are applicable for anodic detection of sulfur compounds. The Fe(III) sites in the Fe-RuO2 films are speculated to act as adsorption sites for the sulfur species while the Ru(IV) sites function for anodic discharge of H2O to generate the adsorbed OH species. The investigation into cathodic H-transfer reactions, specifically nitrate reduction, at various pure metals and their alloys demonstrated that the incorporation of metals into alloy materials can create a material that exhibits bifunctional properties for the various steps involved in the overall nitrate reduction reaction. The Sb10Sn20Ti70, Cu63Ni37 and Cu25Ni75 alloy electrodes exhibited improved activity for nitrate reduction as compared to their pure component metals. The Cu63Ni37 alloy displayed the highest activity for nitrate reduction. The final investigation was a detailed study of the electrocatalytic activity of cathodic H-transfer reactions (nitrate reduction) at various compositions of Cu-Ni alloy electrodes. Voltammetric response for NO3- at the Cu-Ni alloy electrode is superior to

  8. Observation of the one- to six-neutron transfer reactions at sub-barrier energies

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, C.L.; Rehm, K.E.; Gehring, J. [and others

    1995-08-01

    It was suggested many years ago that when two heavy nuclei are in contact during a grazing collision, the transfer of several correlated neutron-pairs could occur. Despite considerable experimental effort, however, so far only cross sections for up to four-neutron transfers have been uniquely identified. The main difficulties in the study of multi-neutron transfer reactions are the small cross sections encountered at incident energies close to the barrier, and various experimental uncertainties which can complicate the analysis of these reactions. We have for the first time found evidence for multi-neutron transfer reactions covering the full sequence from one- to six-neutron transfer reactions at sub-barrier energies in the system {sup 58}Ni + {sup 100}Mo.

  9. One-neutron transfer reaction: a toy model in one dimension

    International Nuclear Information System (INIS)

    G. Galilei, Padova, Italy INFN, Sezione di Padova, Padova (Italy))" data-affiliation=" (Dipartimento di Fisica e Astronomia G. Galilei, Padova, Italy INFN, Sezione di Padova, Padova (Italy))" >Moschini, L

    2014-01-01

    A simple 1D toy model to study one-neutron transfer reactions is developed. It is based on the solution of the time dependent Schroedinger equation for a particle initially bound by a fixed potential well, perturbed by a second moving potential, which accounts for the second partner of the reaction. At the end of the time evolution it is possible to evaluate the probability of the transfer of the particle from a potential to the other, as well as the transfer to continuum states in the case of weakly-bound systems. Although rather simple, the model accounts for most of the physical characteristics of these kind of reactions: such as the existence of an optimum Q-value and the dependence on the parameters defining the relative motion of the two potentials

  10. Mass transfer with chemical reaction in multiphase systems

    International Nuclear Information System (INIS)

    Alper, E.

    1983-01-01

    These volumes deal with the phenomenon of 'mass transfer with chemical reaction' which is of industrial, biological and physiological importance. In process engineering, it is encountered both in separation processes and in reaction engineering and both aspects are covered here in four sections: introduction; gas-liquid system; liquid-liquid system; and gas-liquid-solid system

  11. Investigation of transition metal-catalyzed nitrene transfer reactions in water.

    Science.gov (United States)

    Alderson, Juliet M; Corbin, Joshua R; Schomaker, Jennifer M

    2018-04-11

    Transition metal-catalyzed nitrene transfer is a powerful method for incorporating new CN bonds into relatively unfunctionalized scaffolds. In this communication, we report the first examples of site- and chemoselective CH bond amination reactions in aqueous media. The unexpected ability to employ water as the solvent in these reactions is advantageous in that it eliminates toxic solvent use and enables reactions to be run at increased concentrations with lower oxidant loadings. Using water as the reaction medium has potential to expand the scope of nitrene transfer to encompass a variety of biomolecules and highly polar substrates, as well as enable pH control over the site-selectivity of CH bond amination. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Selective population of high-j states via heavy-ion-induced transfer reactions

    International Nuclear Information System (INIS)

    Bond, P.D.

    1982-01-01

    One of the early hopes of heavy-ion-induced transfer reactions was to populate states not seen easily or at all by other means. To date, however, I believe it is fair to say that spectroscopic studies of previously unknown states have had, at best, limited success. Despite the early demonstration of selectivity with cluster transfer to high-lying states in light nuclei, the study of heavy-ion-induced transfer reactions has emphasized the reaction mechanism. The value of using two of these reactions for spectroscopy of high spin states is demonstrated: 143 Nd( 16 O, 15 O) 144 Nd and 170 Er( 16 O, 15 Oγ) 171 Er

  13. Regge parametrization of angular distributions for heavy-ion transfer reactions

    International Nuclear Information System (INIS)

    Carlson, B.V.; McVoy, K.W.

    1977-01-01

    A two-pole one-zero Regge parametrization of the l-window for transfer reactions is employed in conjunction with a chi-squared search program to obtain high-quality fits to a wide variety of transfer data. The data employed include both direct and multi-step transfers. (Auth.)

  14. Isotope effects for base-promoted, gas-phase proton transfer reactions

    International Nuclear Information System (INIS)

    Grabowski, J.J.; Cheng, Xueheng

    1991-01-01

    Proton transfer reactions are among the most basic, the most common and the most important of chemical transformations; despite their apparent simplicity, much is unknown about this most fundamental of all chemical processes. Active interest in understanding the underlying principles of organic proton transfer reactions continues because of efforts being made to develop the theory of elementary chemical processes, because of the resurgence of interest in mechanistic organic chemistry and because of the resurgence of interest in mechanistic organic chemistry processes, because of the resurgence of interest in mechanistic organic chemistry and because of the dynamic role played by proton transfers in biochemical transformations. As organic chemists, the authors have used the flowing afterglow technique to gain an appreciation of the fundamental issues involved in reaction mechanisms by examining such processes in a solvent-free environment under thermally-equilibrated (300 K) conditions. Recent characterization of the facile production of both acetate and the monoenolate anion from the interaction of hydroxide or fluoride with acetic acid reinforces the idea that much yet must be learned about proton transfers/proton abstractions in general. Earlier work by Riveros and co-workers on competitive H vs D abstraction from α-d 1 -toluenes and by Noest and Nibbering on competitive H vs D abstraction from α,α,α-d 3 -acetone, in combination with the acetic acid results, challenged the author's to assemble a comprehensive picture of the competitive nature of proton transfer reactions for anionic base-promoted processes

  15. The (3He,α) reaction mechanism. A study of the angular momentum transfer

    International Nuclear Information System (INIS)

    Guttormsen, M.; Bergholt, L.; Ingebretsen, F.; Loevhoeiden, G.; Messelt, S.; Rekstad, J.; Tveter, T.S.; Helstrup, H.; Thorsteinsen, T.F.

    1994-01-01

    The γ-rays emitted after the 163 Dy( 3 He,αxn) reactions at E( 3 He) = 45 MeV have been measured. The transferred angular momentum in the reaction is deduced from the side-feeding γ-intensities of the ground bands in the residual 162-x Dy isotopes. With decreasing α-energy the average spin transfer increases from similar 5h to similar 11h. The ( 3 He,α) reaction at these energies is dominated by direct processes. Even at the highest spin transfer the contribution from the compound reaction channel is negligible. ((orig.))

  16. Spectroscopic Factors from the Single Neutron Transfer Reaction 111Cd(d,p)112Cd

    Science.gov (United States)

    Jamieson, D. S.; Garrett, P. E.; Demand, G. A.; Finlay, P.; Green, K. L.; Leach, K. G.; Phillips, A. A.; Svensson, C. E.; Sumithrarachchi, C. S.; Triambak, S.; Wong, J.; Ball, G.; Faestermann, T.; Krücken, R.; Hertenberger, R.; Wirth, H.-F.

    2013-03-01

    The cadmium isotopes have been cited as excellent examples of vibrational nuclei for decades, with multi-phonon quadrupole, quadrupole-octupole, and mixed-symmetry states proposed. From a variety of experimental studies, a large amount of spectroscopic data has been obtained, recently focused on γ-ray studies. In the present work, the single-particle structure of 112Cd has been investigated using the 111Cd(ěcd, p)112Cd reaction. The investigation was carried out using a 22 MeV beam of polarized deuterons obtained from the Maier-Leibnitz Laboratory at Garching, Germany. The reaction ejectiles were momentum analyzed using a Q3D spectrograph, and 115 levels have been identified up to 4.2 MeV of excitation energy. Spin-parity has been assigned to each analyzed level, and angular distributions for the reaction cross sections and analyzing powers were obtained. Many additional levels have been observed compared with the previous (d,p) study performed with 8 MeV deuterons,1 including strongly populated 5- and 6- states. The former was previously assigned as a member of the quadrupole-octupole quintuplet, based on a strongly enhanced B(E2) value to the 3- state, but is now re-assigned as being predominately s1/2 ⊗ h11/2 configuration.

  17. Dinuclear Tetrapyrazolyl Palladium Complexes Exhibiting Facile Tandem Transfer Hydrogenation/Suzuki Coupling Reaction of Fluoroarylketone

    KAUST Repository

    Dehury, Niranjan

    2016-07-18

    Herein, we report an unprecedented example of dinuclear pyrazolyl-based Pd complexes exhibiting facile tandem catalysis for fluoroarylketone: Tetrapyrazolyl di-palladium complexes with varying Pd-Pd distances efficiently catalyze the tandem reaction involving transfer hydrogenation of fluoroarylketone to the corresponding alcohol and Suzuki-Miyaura cross coupling reaction of the resulting fluoroarylalcohol under moderate reaction conditions, to biaryl alcohol. The complex with the shortest Pd-Pd distance exhibits the highest tandem activity among its di-metallic analogues, and exceeds in terms of activity and selectivity the analogous mononuclear compound. The kinetics of the reaction indicates clearly that reductive transformation of haloarylketone into haloaryalcohol is the rate determining step in the tandem reaction. Interestingly while fluoroarylketone undergoes the multistep tandem catalysis, the chloro- and bromo-arylketones undergo only a single step C-C coupling reaction resulting in biarylketone as the final product. Unlike the pyrazole based Pd compounds, the precursor PdCl2 and the phosphine based relevant complexes (PPh3)2PdCl2 and (PPh3)4Pd are found to be unable to exhibit the tandem catalysis.

  18. Effect of electrostatic interactions on electron-transfer reactions

    International Nuclear Information System (INIS)

    Hickel, B.

    1987-01-01

    Fast reactions of electron transfer are studied by pulsed radiolysis. By this technique radicals and ionic radicals with high redox potentials are created homogeneously in the solution in about 10 -8 second. For solvated electron effect of electrostatic interaction on kinetics of reactions limited by diffusion is obtained with a good approximation by the Debye equation when ion mobility is known. Deviation from the theory occurs in ion pair formation, which is evidenced experimentally in reactions between anions when cations are complexed by a cryptate. Slow reactions k 8 M -1 s -1 are more sensitive to electrostatic interactions than reactions limited by diffusion. When there is no ion pair formation the velocity constant depends upon dielectric constant of the solvent and reaction distance. 17 refs

  19. Electron emission from transfer ionization reaction in 30 keV amu‑1 He 2+ on Ar collision

    Science.gov (United States)

    Amaya-Tapia, A.; Antillón, A.; Estrada, C. D.

    2018-06-01

    A model is presented that describes the transfer ionization process in H{e}2++Ar collision at a projectile energy of 30 keV amu‑1. It is based on a semiclassical independent-particle close-coupling method that yields a reasonable agreement between calculated and experimental values of the total single-ionization and single-capture cross sections. It is found that the transfer ionization reaction is predominantly carried out through simultaneous capture and ionization, rather than by sequential processes. The transfer-ionization differential cross section in energy that is obtained satisfactorily reproduces the global behavior of the experimental data. Additionally, the probabilities of capture and ionization as function of the impact parameter for H{e}2++A{r}+ and H{e}++A{r}+ collisions are calculated, as far as we know, for the first time. The results suggest that the model captures essential elements that describe the two-electron transfer ionization process and could be applied to systems and processes of two electrons.

  20. Parallel proton transfer pathways in aqueous acid-base reactions

    NARCIS (Netherlands)

    Cox, M.J.; Bakker, H.J.

    2008-01-01

    We study the mechanism of proton transfer (PT) between the photoacid 8-hydroxy-1,3, 6-pyrenetrisulfonic acid (HPTS) and the base chloroacetate in aqueous solution. We investigate both proton and deuteron transfer reactions in solutions with base concentrations ranging from 0.25M to 4M. Using

  1. Study of charge transfer reactions in a microbial fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Martin, E.; Savadogo, O. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. de Genie Chimique; National Research Council of Canada, Montreal, PQ (Canada). Biotechnology Research Inst.; Tartakovsky, B. [National Research Council of Canada, Montreal, PQ (Canada). Biotechnology Research Inst.

    2008-07-01

    Electron transfer reactions in a microbial fuel cell (MFC) were evaluated. The MFC was inoculated with anaerobic mesophilic sludge and operated with carbon felt, carbon cloth, and platinum (Pt) coated carbon cloth. The MFC was then fed with either acetate or glucose as a source of fuel and operated at a temperature of 25 degrees C and a pH of 7. Scanning electron microscopy (SEM) micrographs demonstrated that the micro-organisms colonized the anodes. Cyclic voltammetry and polarization tests were conducted using different fractions of the anodophilic biofilm in order to determine charge transfer routes. The study characterized the electron transfer mechanisms used by the exoelectrogenic micro-organisms to produce electricity. It was concluded that further research is needed to characterize reaction transfer routes. 2 refs., 1 fig.

  2. An abnormally slow proton transfer reaction in a simple HBO derivative due to ultrafast intramolecular-charge transfer events.

    Science.gov (United States)

    Alarcos, Noemí; Gutierrez, Mario; Liras, Marta; Sánchez, Félix; Douhal, Abderrazzak

    2015-07-07

    We report on the steady-state, picosecond and femtosecond time-resolved studies of a charge and proton transfer dye 6-amino-2-(2'-hydroxyphenyl)benzoxazole (6A-HBO) and its methylated derivative 6-amino-2-(2'-methoxyphenyl)benzoxazole (6A-MBO), in different solvents. With femtosecond resolution and comparison with the photobehaviour of 6A-MBO, we demonstrate for 6A-HBO in solution, the photoproduction of an intramolecular charge-transfer (ICT) process at S1 taking place in ∼140 fs or shorter, followed by solvent relaxation in the charge transferred species. The generated structure (syn-enol charge transfer conformer) experiences an excited-state intramolecular proton-transfer (ESIPT) reaction to produce a keto-type tautomer. This subsequent proton motion occurs in 1.2 ps (n-heptane), 14 ps (DCM) and 35 ps (MeOH). In MeOH, it is assisted by the solvent molecules and occurs through tunneling for which we got a large kinetic isotope effect (KIE) of about 13. For the 6A-DBO (deuterated sample in CD3OD) the global proton-transfer reaction takes place in 200 ps, showing a remarkable slow KIE regime. The slow ESIPT reaction in DCM (14 ps), not through tunnelling as it is not sensitive to OH/OD exchange, has however to overcome an energy barrier using intramolecular as well as solvent coordinates. The rich ESIPT dynamics of 6A-HBO in the used solutions is governed by an ICT reaction, triggered by the amino group, and it is solvent dependent. Thus, the charge injection to a 6A-HBO molecular frame makes the ICT species more stable, and the phenol group less acidic, slowing down the subsequent ESIPT reaction. Our findings bring new insights into the coupling between ICT and ESIPT reactions on the potential-energy surfaces of several barriers.

  3. X-ray Crystal Structures Elucidate the Nucleotidyl Transfer Reaction of Transcript Initiation Using Two Nucleotides

    Energy Technology Data Exchange (ETDEWEB)

    M Gleghorn; E Davydova; R Basu; L Rothman-Denes; K Murakami

    2011-12-31

    We have determined the X-ray crystal structures of the pre- and postcatalytic forms of the initiation complex of bacteriophage N4 RNA polymerase that provide the complete set of atomic images depicting the process of transcript initiation by a single-subunit RNA polymerase. As observed during T7 RNA polymerase transcript elongation, substrate loading for the initiation process also drives a conformational change of the O helix, but only the correct base pairing between the +2 substrate and DNA base is able to complete the O-helix conformational transition. Substrate binding also facilitates catalytic metal binding that leads to alignment of the reactive groups of substrates for the nucleotidyl transfer reaction. Although all nucleic acid polymerases use two divalent metals for catalysis, they differ in the requirements and the timing of binding of each metal. In the case of bacteriophage RNA polymerase, we propose that catalytic metal binding is the last step before the nucleotidyl transfer reaction.

  4. Theory of nuclear heavy-ion direct transfer reactions

    International Nuclear Information System (INIS)

    Crowley, B.J.B.

    1979-01-01

    We review the distorted-wave approach to direct transfer reactions and draw attention to some of the shortcomings of current theories. We show that a reformulated form of the distorted-wave Born approximation (DWBA) for transfer can lead to important simplifications of the theory, which are valid for nuclear heavy-ion induced reactions at energies > or approx. =MeV/nucleon. In particular, in the semiclassical limit, it leads to a new and simple formula for the transfer t-matrix which includes all the essential physics while offering several important advantages over standard ''full-recoil finite-range'' DWBA. One such advantage is that the new formula is more transparent in that it is amendable to interpretation and analytical manipulation. At high-energy it is shown to reduce to one earlier deduced using eikonal-DWBA. The conditions for the validity of the new theory are discussed in detail. They are shown to be generally well satisfied for small-mass transfer between heavy-ions at energies at or above those particularly favour transfer (> or approx. =10 MeV/nucleon for transfer of valence nucleons). The restriction to small mass is not due to any recoil approximation; in fact, it is only a necessary restriction at certain energies. The theory treats recoil exactly. Consideration of the optimum dynamical conditions for transfer leads to a set of matching conditions. The presence of hitherto neglected absorption, arising from dynamical effects of poor matching, it suggested and qualitatively discussed. Condition under which such absorption may be neglected are derived. Results of numerical calculations are presented showing that the theory is capable of good agreement with standard full-recoil finite-range DWBA, and that it is capable of giving at least as good an account of experimental data for nucleon-transfer between heavy-ions at energies approx.10 MeV/nucleon

  5. Single-particle states in neutron-rich 69,71Cu by means of the (d,3He) transfer reaction

    International Nuclear Information System (INIS)

    Morfouace, Pierre

    2014-01-01

    In two (d, 3 He) transfer reactions with MUST2 at GANIL and the split-pole at Orsay, we have determined the position of the proton-hole states in the neutron-rich 71 Cu (N=42) and 69 Cu (N=40) isotopes. We have found that in 71 Cu the hole strength of the f7/2 orbital lies at higher excitation energies than expected. From beta-decay and laser spectroscopy, the f5/2 first excited particle state in these isotopes was known to come down rapidly in energy when passing N=40 and even become the ground state in 75 Cu. This sudden energy shift has been explained in a number of theoretical works. The prediction for the f7/2 spin-orbit partner was that it would change in energy too through a related effect. Experimentally, the f7/2 proton-hole state is not known for N≥40. In 71 Cu two 7/2- states around 1 MeV are candidates to be a proton-hole. The experiment at GANIL took place in March 2011. A secondary beam of 72 Zn at 38 AMeV was produced by fragmentation and purified through the LISE spectrometer. The transfer reaction in inverse kinematics was studied with the MUST2 detectors plus four 20 micrometer silicon detector to identified the 3 He of low kinetic energy. The excitation spectrum of 71 Cu was reconstruct thanks to the missing mass method and the angular distributions were extracted and compared with a reaction model using the DWUCK4 and DWUCK5 code. From this work no states have been populated around 1 MeV concluding that the centroid of the f7/2 lies at higher excitation energy. We then remeasured the single-particle strength in 69 Cu in the corresponding (d, 3 He) reaction at Orsay in March 2013 in order to extend the existing data where 60% of the f7/2 strength is missing and make sure that there is a consistent analysis of spectroscopic factors between both isotopes in order to well understood and well quantify the evolution of the f7/2 orbital when we start filling the g9/2 orbital. In this second experiment we have performed the reaction in direct

  6. Nuclear transfer in peripheral heavy ion reactions

    International Nuclear Information System (INIS)

    Werner, K.

    1984-01-01

    The aim of the whole thesis is to understand the experimental results of N. Frascaria et al. (1980), namely structures in the cross section as function of the excitation energy for the reaction 40 Ca + 40 Ca at 400 MeV incident energy. We present therefore in chapter 1 a simple model of two identical potentials with only two energy levels. On the base of statistically independent T-L excitations and by fitting a two parameters to the experiments it succeeds to reproduce sufficiently the experimental results. The next step is a microscopical treatment of these parameters for the understanding and the foundation of the fitted values. For this we develop in chapter 2 a theory of collective variables in the framework of TDHF which allows to perform in chapter 3 in a very transparent way microscopical calculations and especially to understand the transfer behaviour in peripheral heavy ion reactions. This transfer behaviour will also be the key for the understanding of the experimental structures. (orig.) [de

  7. Synthesis and Reactions of Five-Membered Heterocycles Using Phase Transfer Catalyst (PTC Techniques

    Directory of Open Access Journals (Sweden)

    Ahmed M. El-Sayed

    2014-01-01

    Full Text Available Phase transfer catalysts (PTCs have been widely used for the synthesis of organic compounds particularly in both liquid-liquid and solid-liquid heterogeneous reaction mixtures. They are known to accelerate reaction rates by facilitating formation of interphase transfer of species and making reactions between reagents in two immiscible phases possible. Application of PTC instead of traditional technologies for industrial processes of organic synthesis provides substantial benefits for the environment. On the basis of numerous reports it is evident that phase-transfer catalysis is the most efficient way for generation and reactions of many active intermediates. In this review we report various uses of PTC in syntheses and reactions of five-membered heterocycles compounds and their multifused rings.

  8. Mass transfer model for two-layer TBP oxidation reactions: Revision 1

    International Nuclear Information System (INIS)

    Laurinat, J.E.

    1994-01-01

    To prove that two-layer, TBP-nitric acid mixtures can be safely stored in the Canyon evaporators, it must be demonstrated that a runaway reaction between TBP and nitric acid will not occur. Previous bench-scale experiments showed that, at typical evaporator temperatures, this reaction is endothermic and therefore cannot run away, due to the loss of heat from evaporation of water in the organic layer. However, the reaction would be exothermic and could run away if the small amount of water in the organic layer evaporates before the nitric acid in this layer is consumed by the reaction. Provided that there is enough water in the aqueous layer, this would occur if the organic layer is sufficiently thick so that the rate of loss of water by evaporation exceeds the rate of replenishment due to mixing with the aqueous layer. Bubbles containing reaction products enhance the rate of transfer of water from the aqueous layer to the organic layer. These bubbles are generated by the oxidation of TBP and its reaction products in the organic layer and by the oxidation of butanol in the aqueous layer. Butanol is formed by the hydrolysis of TBP in the organic layer. For aqueous-layer bubbling to occur, butanol must transfer into the aqueous layer. Consequently, the rate of oxidation and bubble generation in the aqueous layer strongly depends on the rate of transfer of butanol from the organic to the aqueous layer. This report presents measurements of mass transfer rates for the mixing of water and butanol in two-layer, TBP-aqueous mixtures, where the top layer is primarily TBP and the bottom layer is comprised of water or aqueous salt solution. Mass transfer coefficients are derived for use in the modeling of two-layer TBP-nitric acid oxidation experiments

  9. Sub-Coulomb heavy ion neutron transfer reactions and neutron orbit sizes

    International Nuclear Information System (INIS)

    Phillips, W.R.

    1976-01-01

    Direct transfer reactions below the Coulomb barrier offer the best means of determining neutron densities near the nuclear surface. This paper describes how heavy ion sub-Coulomb transfer can be used to determine the rms radii of neutron orbits in certain nuclei. The theoretical background is outlined and problems associated with the comparison of experiment and theory are discussed. Experiments performed to calibrate sub-Coulomb heavy ion transfer reactions are presented, and some comments are made on the relative roles of light and heavy ion reactions. Preliminary values for the rms radii of neutron orbits and neutron excesses extracted from recent experiments are given, and some remarks are made concerning the implications of these results for the triton wave function and for the Coulomb energy difference anomaly. (author)

  10. Single-Atom Catalysts of Precious Metals for Electrochemical Reactions.

    Science.gov (United States)

    Kim, Jiwhan; Kim, Hee-Eun; Lee, Hyunjoo

    2018-01-10

    Single-atom catalysts (SACs), in which metal atoms are dispersed on the support without forming nanoparticles, have been used for various heterogeneous reactions and most recently for electrochemical reactions. In this Minireview, recent examples of single-atom electrocatalysts used for the oxygen reduction reaction (ORR), hydrogen oxidation reaction (HOR), hydrogen evolution reaction (HER), formic acid oxidation reaction (FAOR), and methanol oxidation reaction (MOR) are introduced. Many density functional theory (DFT) simulations have predicted that SACs may be effective for CO 2 reduction to methane or methanol production while suppressing H 2 evolution, and those cases are introduced here as well. Single atoms, mainly Pt single atoms, have been deposited on TiN or TiC nanoparticles, defective graphene nanosheets, N-doped covalent triazine frameworks, graphitic carbon nitride, S-doped zeolite-templated carbon, and Sb-doped SnO 2 surfaces. Scanning transmission electron microscopy, extended X-ray absorption fine structure measurement, and in situ infrared spectroscopy have been used to detect the single-atom structure and confirm the absence of nanoparticles. SACs have shown high mass activity, minimizing the use of precious metal, and unique selectivity distinct from nanoparticle catalysts owing to the absence of ensemble sites. Additional features that SACs should possess for effective electrochemical applications were also suggested. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. High spin levels populated in multinucleon transfer reaction with 480 MeV 12C

    International Nuclear Information System (INIS)

    Kraus, L.; Boucenna, A.; Linck, I.

    1988-01-01

    Two- and three-nucleon stripping reactions induced by 480 MeV 12 C have been studied on 12 C, 16 O, 28 Si, 40 Ca and 54 Fe target nuclei. Discrete levels are fed with cross sections up to 1 mb/sr for d-transfer reactions and one order and two orders of magnitude less for 2p- and 3 He-transfer reactions, respectively. These reactions preferentially populate high spin states with stretched configurations. Several spin assignments were known from transfer reactions induced by lighter projectiles at incident energies well above the Coulomb barrier. In the case of two-nucleon transfer reactions, the energy of these states is well reproduced by crude shell model calculations. Such estimates are of use in proposing spins of newly observed states especially as the shapes of the measured angular distributions are independent of the final spin of the residual nucleus

  12. Single particle tracking and single molecule energy transfer

    CERN Document Server

    Bräuchle, Christoph; Michaelis, Jens

    2009-01-01

    Closing a gap in the literature, this handbook gathers all the information on single particle tracking and single molecule energy transfer. It covers all aspects of this hot and modern topic, from detecting virus entry to membrane diffusion, and from protein folding using spFRET to coupled dye systems, as well recent achievements in the field. Throughout, the first-class editors and top international authors present content of the highest quality, making this a must-have for physical chemists, spectroscopists, molecular physicists and biochemists.

  13. Studies on electron transfer reactions of Keggin-type mixed ...

    Indian Academy of Sciences (India)

    Administrator

    (PV2) in aqueous phosphate buffer of pH 6 at ambient temperature. Electrochemical and optical studies show that the stoichiometry of the reaction is 1: 2 (NADH : HPA). EPR and optical studies show that HPA act as one electron acceptor and the products of electron transfer reactions are one elec- tron reduced heteropoly ...

  14. Study of single particle properties of neutron-rich Na isotopes on the "shore of the island of inversion" by means of neutron-transfer reactions

    CERN Multimedia

    Reiter, P; Blazhev, A A; Riisager, K; Bastin, B; Tengborn, E A; Kruecken, R; Voulot, D; Jeppesen, H B; Hadinia, B; Gernhaeuser, R A; Fynbo, H O U; Georgiev, G P; Habs, D; Fraile prieto, L M; Chapman, R; Nilsson, T; Diriken, J V J; Jenkins, D G; Kroell, T; Leske, J; Huyse, M L; Patronis, N

    We aim at the investigation of single particle properties of neutron-rich Na isotopes around the "shore of the island of inversion". As first experiment of this programme, we propose to study excited states in the isotope $^{29}$Na by a one-neutron transfer reaction with a $^{28}$Na beam at 3 MeV/u obtained from REX-ISOLDE impinging on a CD$_{2}$-target. The $\\gamma$-rays will be detected by the MINIBALL array and the particles by the T-REX array of segmented Si detectors. The main physics aims are to extract from the relative spectroscopic factors information on the configurations contributing to the wave functions of the populated states and, secondly, to identify and characterize negative parity states whose excitation energies reflect directly the N= 28 gap in this region. The results will be compared to recent shell model calculations involving new residual interactions. This will shed new light on the evolution of single particle structure and help to understand the underlying physics relevant for the f...

  15. Single-embryo transfer versus multiple-embryo transfer.

    Science.gov (United States)

    Gerris, Jan

    2009-01-01

    Despite the progress made in assisted reproductive technology, live birth rates remain disappointingly low. Multiple-embryo transfer has been an accepted practice with which to increase the success rate. This has led to a higher incidence of multiple-order births compared with natural conception, which not only increase the risk of mortality and morbidity to both mother and children but are also associated with social and economic consequences. Elective single-embryo transfer (eSET) was developed in an effort to increase singleton pregnancies in assisted reproduction. Studies comparing eSET with multiple-embryo transfer highlight the benefit of this approach and suggest that, with careful patient selection and the transfer of good-quality embryos, the risk of a multiple-order pregnancy can be reduced without significantly decreasing live birth rates. Although the use of eSET has gradually increased in clinical practice, its acceptance has been limited by factors such as availability of funding and awareness of the procedure. An open discussion of eSET is warranted in an effort to enable a broader understanding by physicians and patients of the merits of this approach. Ultimately, eSET may provide a more cost-effective, potentially safer approach to patients undergoing assisted reproduction technology.

  16. Intermolecula transfer and elimination of molecular hydrogen in thermal reactions of unsaturated organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Suria, Sabartanty [Iowa State Univ., Ames, IA (United States)

    1995-02-10

    Two reactions which are important to coal liquefaction include intermolecular transfer and the elimination of two hydrogen atoms. We have designed several model reactions to probe the viability of several hydrogen transfer and elimination pathways. This report described studies on these reactions using organic model compounds.

  17. Definition and determination of the triplet-triplet energy transfer reaction coordinate.

    Science.gov (United States)

    Zapata, Felipe; Marazzi, Marco; Castaño, Obis; Acuña, A Ulises; Frutos, Luis Manuel

    2014-01-21

    A definition of the triplet-triplet energy transfer reaction coordinate within the very weak electronic coupling limit is proposed, and a novel theoretical formalism is developed for its quantitative determination in terms of internal coordinates The present formalism permits (i) the separation of donor and acceptor contributions to the reaction coordinate, (ii) the identification of the intrinsic role of donor and acceptor in the triplet energy transfer process, and (iii) the quantification of the effect of every internal coordinate on the transfer process. This formalism is general and can be applied to classical as well as to nonvertical triplet energy transfer processes. The utility of the novel formalism is demonstrated here by its application to the paradigm of nonvertical triplet-triplet energy transfer involving cis-stilbene as acceptor molecule. In this way the effect of each internal molecular coordinate in promoting the transfer rate, from triplet donors in the low and high-energy limit, could be analyzed in detail.

  18. Flat Graphene-Enhanced Electron Transfer Involved in Redox Reactions.

    Science.gov (United States)

    Pan, Meilan; Zhang, Yanyang; Shan, Chao; Zhang, Xiaolin; Gao, Guandao; Pan, Bingcai

    2017-08-01

    Graphene is easily warped in the out-of-plane direction because of its high in-plane Young's modulus, and exploring the influence of wrinkled graphene on its properties is essential for the design of graphene-based materials for environmental applications. Herein, we prepared wrinkled graphene (WGN-1 and WGN-2) by thermal treatment and compared their electrochemical properties with those of flat graphene nanosheets (FGN). FGN exhibit activities that are much better than those of wrinkled graphene nanosheets (WGN), not only in the electrochemical oxidation of methylene blue (MB) but also in the electrochemical reduction of nitrobenzene (NB). Transformation ratios of MB and NB in FGN, WGN-1, and WGN-2 were 97.5, 80.1, and 57.9% and 94.6, 92.1, and 81.2%, respectively. Electrochemical impedance spectroscopy and the surface resistance of the graphene samples increased in the following order: FGN reaction charges transfer faster across the reaction interfaces and along the surface of FGN than that of WGN, and wrinkles restrict reaction charge transfer and reduce the reaction rates. This study reveals that the morphology of the graphene (flat or wrinkle) greatly affects redox reaction activities and may have important implications for the design of novel graphene-based nanostructures and for our understanding of graphene wrinkle-dependent redox reactions in environmental processes.

  19. Thermodynamic chemical energy transfer mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium chemical reactions

    International Nuclear Information System (INIS)

    Roh, Heui-Seol

    2015-01-01

    Chemical energy transfer mechanisms at finite temperature are explored by a chemical energy transfer theory which is capable of investigating various chemical mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium. Gibbs energy fluxes are obtained as a function of chemical potential, time, and displacement. Diffusion, convection, internal convection, and internal equilibrium chemical energy fluxes are demonstrated. The theory reveals that there are chemical energy flux gaps and broken discrete symmetries at the activation chemical potential, time, and displacement. The statistical, thermodynamic theory is the unification of diffusion and internal convection chemical reactions which reduces to the non-equilibrium generalization beyond the quasi-equilibrium theories of migration and diffusion processes. The relationship between kinetic theories of chemical and electrochemical reactions is also explored. The theory is applied to explore non-equilibrium chemical reactions as an illustration. Three variable separation constants indicate particle number constants and play key roles in describing the distinct chemical reaction mechanisms. The kinetics of chemical energy transfer accounts for the four control mechanisms of chemical reactions such as activation, concentration, transition, and film chemical reactions. - Highlights: • Chemical energy transfer theory is proposed for non-, quasi-, and equilibrium. • Gibbs energy fluxes are expressed by chemical potential, time, and displacement. • Relationship between chemical and electrochemical reactions is discussed. • Theory is applied to explore nonequilibrium energy transfer in chemical reactions. • Kinetics of non-equilibrium chemical reactions shows the four control mechanisms

  20. Transfer reactions at the neutron dripline with triton target

    CERN Multimedia

    Two-neutron transfer to $^{9}$Li will populate the ground state of $^{11}$Li as well as low-lying resonances in a way that is complementary to studies of these states performed at higher beam energies. We aim at detecting the charged particles from the transfer reactions as well as neutrons coming from the decay of possible $^{11}$Li resonances.

  1. Transfer reactions at the neutron dripline with triton target

    CERN Document Server

    Borge, M J G; Fynbo, H O U; Gomez Camacho, J; Johansen, J; Johansson, H T; Jonson, B; Krücken, R; Kurcewicz, J; Martel, I; Moro, A; Mücher, D; Nilsson, T; Nyman, G; Raabe, R; Randisi, G; Riisager, K; Sambi, S; Sanchez-Benitez, AM; Tengblad, O

    2012-01-01

    Two-neutron transfer to $^{9}$Li will populate the ground state of $^{11}$Li as well as low-lying resonances in a way that is complementary to studies of these states performed at higher beam energies. We aim at detecting the charged particles from the transfer reactions as well as neutrons coming from the decay of possible $^{11}$Li resonances.

  2. Temperature-dependent kinetics of charge transfer, hydrogen-atom transfer, and hydrogen-atom expulsion in the reaction of CO+ with CH4 and CD4.

    Science.gov (United States)

    Melko, Joshua J; Ard, Shaun G; Johnson, Ryan S; Shuman, Nicholas S; Guo, Hua; Viggiano, Albert A

    2014-09-18

    We have determined the rate constants and branching ratios for the reactions of CO(+) with CH4 and CD4 in a variable-temperature selected ion flow tube. We find that the rate constants are collisional for all temperatures measured (193-700 K for CH4 and 193-500 K for CD4). For the CH4 reaction, three product channels are identified, which include charge transfer (CH4(+) + CO), H-atom transfer (HCO(+) + CH3), and H-atom expulsion (CH3CO(+) + H). H-atom transfer is slightly preferred to charge transfer at low temperature, with the charge-transfer product increasing in contribution as the temperature is increased (H-atom expulsion is a minor product for all temperatures). Analogous products are identified for the CD4 reaction. Density functional calculations on the CO(+) + CH4 reaction were also conducted, revealing that the relative temperature dependences of the charge-transfer and H-atom transfer pathways are consistent with an initial charge transfer followed by proton transfer.

  3. Droplet heat transfer and chemical reactions during direct containment heating

    International Nuclear Information System (INIS)

    Baker, L. Jr.

    1986-01-01

    A simplified model of heat transfer and chemical reaction has been adapted to evaluate the expected behavior of droplets containing unreacted Zircaloy and stainless steel moving through the containment atmosphere during postulated accidents involving direct containment heating. The model includes internal and external diffusive resistances to reaction. The results indicate that reactions will be incomplete for many conditions characteristic of direct containment heating sequences

  4. Cluster-transfer reactions with radioactive beams: a spectroscopic tool for neutron-rich nuclei

    CERN Document Server

    AUTHOR|(CDS)2086156; Raabe, Riccardo; Bracco, Angela

    In this thesis work, an exploratory experiment to investigate cluster-transfer reactions with radioactive beams in inverse kinematics is presented. The aim of the experiment was to test the potential of cluster-transfer reactions at the Coulomb barrier, as a possible mean to perform $\\gamma$ spectroscopy studies of exotic neutron-rich nuclei at medium-high energies and spins. The experiment was performed at ISOLDE (CERN), employing the heavy-ion reaction $^{98}$Rb + $^{7}$Li at 2.85 MeV/A. Cluster-transfer reaction channels were studied through particle-$\\gamma$ coincidence measurements, using the MINIBALL Ge array coupled to the charged particle Si detectors T-REX. Sr, Y and Zr neutron-rich nuclei with A $\\approx$ 100 were populated by either triton- or $\\alpha$ transfer from $^{7}$Li to the beam nuclei and the emitted complementary charged fragment was detected in coincidence with the $\\gamma$ cascade of the residues, after few neutrons evaporation. The measured $\\gamma$ spectra were studied in detail and t...

  5. Many-nucleon transfer reactions at the coulomb barrier

    International Nuclear Information System (INIS)

    Wegmann, H.

    1974-01-01

    The aim of the present work was to investigate the many-nucleon transfer with heavy ion radiation near the coulomb barrier. The neutron-rich targets 76 Ge, sup(92,94,96)Zr and 100 Mo were thus irradiated with 32 S and 34 S radiation. By measuring the activity of the back-scattered light reaction products in the transfer, total cross sections were determined for the 3p, 4p, 3pn, 4pn, 3n, 4n and 6n transfer. Excitation functions for the 3p, 4p, 3pn and 4pn transfer were measured for the target-projectile combination 96 Zr- 32 S. Differential cross sections could be determined with 96 Zr and 100 Mo. The results were compared with various theoretical calculations. (orig./LH) [de

  6. Hydrogen atom transfer reactions in thiophenol: photogeneration of two new thione isomers.

    Science.gov (United States)

    Reva, Igor; Nowak, Maciej J; Lapinski, Leszek; Fausto, Rui

    2015-02-21

    Photoisomerization reactions of monomeric thiophenol have been investigated for the compound isolated in low-temperature argon matrices. The initial thiophenol population consists exclusively of the thermodynamically most stable thiol form. Phototransformations were induced by irradiation of the matrices with narrowband tunable UV light. Irradiation at λ > 290 nm did not induce any changes in isolated thiophenol molecules. Upon irradiation at 290-285 nm, the initial thiol form of thiophenol converted into its thione isomer, cyclohexa-2,4-diene-1-thione. This conversion occurs by transfer of an H atom from the SH group to a carbon atom at the ortho position of the ring. Subsequent irradiation at longer wavelengths (300-427 nm) demonstrated that this UV-induced hydrogen-atom transfer is photoreversible. Moreover, upon irradiation at 400-425 nm, the cyclohexa-2,4-diene-1-thione product converts, by transfer of a hydrogen atom from the ortho to para position, into another thione isomer, cyclohexa-2,5-diene-1-thione. The latter thione isomer is also photoreactive and is consumed if irradiated at λ atom-transfer isomerization reactions dominate the unimolecular photochemistry of thiophenol confined in a solid argon matrix. A set of low-intensity infrared bands, observed in the spectra of UV irradiated thiophenol, indicates the presence of a phenylthiyl radical with an H- atom detached from the SH group. Alongside the H-atom-transfer and H-atom-detachment processes, the ring-opening photoreaction occurred in cyclohexa-2,4-diene-1-thione by the cleavage of the C-C bond at the alpha position with respect to the thiocarbonyl C[double bond, length as m-dash]S group. The resulting open-ring conjugated thioketene adopts several isomeric forms, differing by orientations around single and double bonds. The species photogenerated upon UV irradiation of thiophenol were identified by comparison of their experimental infrared spectra with the spectra theoretically calculated for

  7. High transfer cross sections from reactions with 254Es

    International Nuclear Information System (INIS)

    Schaedel, M.; Bruechle, W.; Bruegger, M.; Gaeggeler, H.; Moody, J.; Schardt, D.; Suemmerer, K.; Hulet, E.K.; Dougan, A.D.; Dougan, R.J.; Landrum, J.H.; Lougheed, R.W.; Wild, J.F.; O'Kelly, G.D.

    1985-08-01

    We report radiochemically determined cross sections for the heaviest known actinides produced in transfer reactions of 101 MeV 16 O, 98 MeV 18 O and 127 MeV 22 Ne with 254 Es as a target. A comparison with data for similar transfers from 248 Cm targets is made. Transfer cross sections are extrapolated for the production of unknown, neutron-rich isotopes of elements 101 through 105, and the unique potential of 254 Es as a target to make these exotic nuclei accessible is demonstrated. (orig.)

  8. Nucleon transfer reactions to rotational states induced by 206,208PB projectiles

    International Nuclear Information System (INIS)

    Wollersheim, H.J.; DeBoer, F.W.N.; Emling, H.; Grein, H.; Grosse, E.; Spreng, W.; Eckert, G.; Elze, Th.W.; Stelzer, K.; Lauterbach, Ch.

    1986-01-01

    In a systematic study of nucleon transfer reactions accompanied by Coulomb excitation the authors bombarded 152 Sm, 160 Gd and 232 Th with 206, 208 Pb beams at incident energies close to the Coulomb barrier. Particle-gamma coincidence techniques were used to identify excited states of reaction products populated through inelastic scattering and in nucleon transfer reactions. Large cross sections were observed for one- and two-neutron pick-up from 232 Th at an incident energy of 6.4 MeV/μ. The results are analyzed in the framework of semiclassical models

  9. Electrocatalysis of anodic oxygen-transfer reactions at modified lead dioxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Yun-Lin.

    1990-09-21

    The electrocatalytic activities were compared for pure and chloride-doped beta-PbO{sub 2} (Cl-PbO{sub 2}) films on gold and platinum substrates. Rate constants were increased significantly for oxidations of Mn{sup 2+}, toluene, benzyl alcohol, dimethylsulphoxide (DMSO) and benzaldehyde in acidic media by the incorporation of Cl{sup {minus}} into the oxide films. These reactions are concluded to occur by the electrocatalytic transfer of oxygen from H{sub 2}O to the reaction products. Results of x-ray diffraction studies indicate the Cl-PbO{sub 2} film continues to have the slightly distorted rutile structure of pure beta-PbO{sub 2}. The observed electrocatalytic phenomena are concluded to be the beneficial consequence of surface defects generated when Cl{sup {minus}} serves for charge compensation within the surface matrix and, thereby, increases the number of surface sites capable of adsorbing hydroxyl radicals which are transferred in the electrocatalytic O-transfer reactions. 91 refs., 44 figs., 10 tabs.

  10. 7Li(d,p)8Li transfer reaction in the NCSM/RGM approach

    Science.gov (United States)

    Raimondi, F.; Hupin, G.; Navrátil, P.; Quaglioni, S.

    2018-03-01

    Recently, we applied an ab initio method, the no-core shell model combined with the resonating group method, to the transfer reactions with light p-shell nuclei as targets and deuteron as the projectile. In particular, we studied the elastic scattering of deuterium on 7Li and the 7Li(d,p)8Li transfer reaction starting from a realistic two-nucleon interaction. In this contribution, we review of our main results on the 7Li(d,p)8Li transfer reaction, and we extend the study of the relevant reaction channels, by showing the dominant resonant phase shifts of the scattering matrix. We assess also the impact of the polarization effects of the deuteron below the breakup on the positive-parity resonant states in the reaction. For this purpose, we perform an analysis of the convergence trend of the phase and eigenphase shifts, with respect to the number of deuteron pseudostates included in the model space.

  11. /sup 58,60,62/Ni (. cap alpha. ,p) three--nucleon transfer reactions and. cap alpha. optical potential ambiguities

    Energy Technology Data Exchange (ETDEWEB)

    Yuanda, Wang; Xiuming, Bao; Zhiqiang, Mao; Rongfang, Yuan; Keling, Wen; Binyin, Huang; Zhifu, Wang; Shuming, Li; Jianan, Wang; Zuxun, Sun; others, and

    1985-11-01

    The differential cross sections are measured using 26.0 MeV ..cap alpha.. particle for /sup 58,62/Ni(..cap alpha.., ..cap alpha..) /sup 58,62/Ni and /sup 58,62/Ni(..cap alpha..,p) /sup 61,65/Cu reactions as well as 25.4 MeV ..cap alpha.. particle for /sup 60/Ni(..cap alpha.., ..cap alpha..)/sup 69/Ni and /sup 60/Ni(..cap alpha.., p)/sup 63/Cu reactions. Consistent calculations with optical model and ZR DWBA are made for (..cap alpha.., ..cap alpha..) and (..cap alpha.., p) reactions by using of single, two, three and four nucleon optical potential parameters. For elastic scattering due to the ..cap alpha.. optical potential ambiguities, all the above optical potential can reproduce the experimental angular distributions. However, the single, two and three nucleon potential, including the Baird's mass systematics and the Chang's energy systematics of ..cap alpha.. potentials, obviously can not provide a reasonable fitting with the (..cap alpha..,p) reaction experimental data. Only the results from the four nucleon potential is in good agreement with the (..cap alpha..,p) reaction experimental data. This reveals that in the ..cap alpha..-particle induced transfer reactions, the real depth of the ..cap alpha..-nucleus optical potential should be rather deep.

  12. Hydrogen-transfer and charge transfer in photochemical and high energy radiation induced reactions: effects of thiols. Final report, February 1, 1960-january 31, 1979

    International Nuclear Information System (INIS)

    Cohen, S.G.

    1980-03-01

    Absorption of ultraviolet or visible light, or high energy radiation, may lead to highly reactive free radicals. Thiols affect the reactions of these radicals in the following ways: (1) transfer of hydrogen from sulfur of the thiol to a substrate radical, converting the radical to a stable molecule, and the thiol to a reactive thiyl radical; and (2) transfer of hydrogen from a substrate radical or molecule to thiyl, regenerating thiol. The thiol is thus used repeatedly and a single molecule may affect the consequences of many quanta. Three effects may ensue, depending upon the system irradiated: (1) the substrate radicals may be converted by thiol-thiyl to the original molecules, and protection against radiation damage is afforded. (2) The radicals may be converted to molecules not identical with the starting materials, and in both cases damage caused by radical combination processes is prevented. (3) Product yields may be increased where the initial radicals might otherwise regenerate starting materials. It was shown that rates of reaction of excited species can be correlated with triplet energies and reduction potentials, and with ionization potentials, that amines are very reactive toward excited carbonyl compounds of all types, and that yields of products from these reactions can be increased by thiols, leading to increased efficiency in utilization of light

  13. Single hole spectroscopic strength in 98Ru through the 99Ru(d,t) reaction

    International Nuclear Information System (INIS)

    Rodrigues, M.R.D.; Borello-Lewin, T.; Horodynski-Matsushigue, L.B.; Duarte, J.L.M.; Rodrigues, C.L.; Barbosa, M.D.L.; Silva, G.B. da; Ukita, G.M.

    2002-01-01

    The 99 Ru(d,t) 98 Ru reaction was measured for the first time at 16 MeV incident energy with the Sao Paulo Pelletron-Enge-spectrograph facility employing the nuclear emulsion technique. In all, up to 3.5 MeV, 23 levels were detected, eight of them new; angular distributions are presented for all of them. Least squares fits of distorted wave Born approximation one-neutron pickup predictions to the rather well structured experimental angular distributions enabled the determination of l transfers and of the corresponding spectroscopic factors for 19 of these states, some being tentative attributions. Only transfers of l=0, 2, and 4 were observed. Several states were populated through single l transfers. A pure l=2 transfer is associated with the 2 1 + level and with several other states which are considered collective, as well as with the (4 + ) state at 2.277 MeV, which presents the highest spectroscopic strength. Considering five valence neutrons above the N=50 core, only 41% of the spectroscopic strength expected for 99 Ru was detected

  14. Search for low spin superdeformed states by transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Blons, J; Goutte, D; Lepretre, A; Lucas, R; Meot, V; Paya, D; Phan, X H [DAPNIA SPhN CE Saclay 91191 Gif sur Yvette (France); Barreau, G; Doan, T P; Pedemay, G [CENBG, 33175 Gradignan (France); Becker, J A; Stoyer, M A [LLNL, Livermore, CA (United States)

    1992-08-01

    We present a specific experimental technique aiming to observe superdeformed isomeric states. Preliminary results on two proton transfer reaction on platinum targets leading to {sup 194}Hg are shown. (author). 6 refs., 5 figs.

  15. Nuclear rotational population patterns in heavy-ion scattering and transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, J O; Stoyer, M A [Lawrence Berkeley Lab., CA (USA); Canto, L F; Donangelo, R [Universidade Federal do Rio de Janeiro, RJ (Brazil); Ring, P [Technische Univ. Muenchen, Garching (Germany, F.R.). Fakultaet fuer Physik

    1991-05-01

    A model of {sup 239}Pu with decoupled neutron is used for theoretical calculations of rotational population patterns in heavy ion inelastic scattering and one-neutron transfer reactions. The system treated in {sup 90}Zr on {sup 239}Pu at the near-barrier energy of 500 MeV and backscattering angles of 180deg and 140deg. The influence of the complex nuclear optical potential is seen to be very strong, and the Nilsson wave function of the odd neutron produces a distinctive pattern in the transfer reaction. (orig.).

  16. Effects of electrostatic interactions on electron transfer reactions

    International Nuclear Information System (INIS)

    Hickel, B.

    1987-01-01

    The fast reactions of electron transfer are studied by pulse radiolysis. This technique allows the creation in about 10 -8 second radicals and radical ions with high redox potentials. For solvated electrons electrostatic interaction on the kinetics of reactions limited by diffusion is described by Debye's equation when ion mobility is known. Deviation from theory can occur in ion pairs formation. This is evidenced experimentally for anions by cation complexation with a cryptate. Relatively slow reactions are more sensitive to electrostatic interactions than limited by diffusion. If ion pairs are not formed kinetics constant depends on dielectric constant of solvent and reaction radius. Experimentally is studied the effect of electrostatic interaction on the rate constants of solvated electrons with anions and cations in water-ethanol mixtures where the dielectric constant change from 80 to 25 at room temperature. 17 refs

  17. Nucleon transfer between heavy nuclei

    International Nuclear Information System (INIS)

    Von Oertzen, W.

    1984-02-01

    Nucleon transfer reactions between heavy nuclei are characterized by the classical behaviour of the scattering orbits. Thus semiclassical concepts are well suited for the description of these reactions. In the present contribution the characteristics of single and multinucleon transfer reactions at energies below and above the Coulomb barrier are shown for systems like Sn+Sn, Xe+U and Ni+Pb. The role of the pairing interaction in the transfer of nucleon pairs is illustrated. For strong transitions the coupling of channels and the absorption into more complicated channels is taken into account in a coupled channels calculation

  18. Numerical study for melting heat transfer and homogeneous-heterogeneous reactions in flow involving carbon nanotubes

    Science.gov (United States)

    Hayat, Tasawar; Muhammad, Khursheed; Alsaedi, Ahmed; Asghar, Saleem

    2018-03-01

    Present work concentrates on melting heat transfer in three-dimensional flow of nanofluid over an impermeable stretchable surface. Analysis is made in presence of porous medium and homogeneous-heterogeneous reactions. Single and multi-wall CNTs (carbon nanotubes) are considered. Water is chosen as basefluid. Adequate transformations yield the non-linear ordinary differential systems. Solution of emerging problems is obtained using shooting method. Impacts of influential variables on velocity and temperature are discussed graphically. Skin friction coefficient and Nusselt number are numerically discussed. The results for MWCNTs and SWCNTs are compared and examined.

  19. Experiments on multi-nucleon transfer reactions with the systems {sup 58,64}Ni+{sup 207}Pb at SHIP

    Energy Technology Data Exchange (ETDEWEB)

    Fernandovich Comas Lijachev, Victor

    2012-07-01

    This work presents experimental results on multi-nucleon transfer reactions in the collision systems {sup 58}Ni+{sup 207}Pb and {sup 64}Ni+{sup 207}Pb which were measured at the velocity filter SHIP at GSI. The reactions were performed at beam energies below and up to 10% above the Coulomb barrier. The work was motivated by theoretical predictions to apply multi-nucleon transfer reactions in heavy systems to synthesize new neutron-rich isotopes in the region of superheavy nuclei with Z>100 and in the region of the closed neutron shell N=126. The expected cross-sections for the production of these nuclei in transfer reactions are small and reach typically nanobarn and below. Therefore, efficient separation techniques have to be applied and the detection system must allow for the identification of single nuclei. A dedicated experimental setup to study such rare transfer products does not exist presently. But already existing facilities which are used for the synthesis of superheavy fusion products meet the requirements for the detection of rare reaction products. In this context, the velocity filter SHIP offers the possibility to separate heavy target-like transfer products from projectiles and projectile-like reaction products before they reach the detection system where the particles are identified by their alpha-decay properties. At SHIP, a cross-section limit of 10 pb can be reached at usual beam intensities. In the present work on collisions of {sup 58,64}Ni+{sup 207}Pb the influence of the projectile neutron number on the cross-sections, isotopic distributions and excitation energies of the transfer products was studied. Especially with the more neutron-rich {sup 64}Ni projectiles a transfer of up to seven protons and eight neutrons to the target nucleus was observed. The largest cross-sections for the most neutron-rich isotopes were reached at the beam energies around the Coulomb barrier. The transfer was accompanied by the full dissipation of the available

  20. Mass transfer and slag-metal reaction in ladle refining : a CFD approach

    OpenAIRE

    Ramström, Eva

    2009-01-01

      In order to optimise the ladle treatment mass transfer modelling of aluminium addition and homogenisation time was carried out. It was stressed that incorporating slag-metal reactions into the mass transfer modelling strongly would enhance the reliability and amount of information to be analyzed from the CFD calculations.   In the present work, a thermodynamic model taking all the involved slag metal reactions into consideration was incorporated into a 2-D fluid flow model of an argon stirr...

  1. Excitation functions for quasielastic transfer reactions induced with heavy ions in bismuth

    International Nuclear Information System (INIS)

    Gardes, D.; Bimbot, R.; Maison, J.; de Reilhac, L.; Rivet, M.F.; Fleury, A.; Hubert, F.; Llabador, Y.

    1978-01-01

    The excitation functions for the production of 210 Bi, 210 Po, /sup 207-211/At, and 211 Rn through quasielastic transfer reactions induced with heavy ions in 209 Bi have been measured. The corresponding reactions involved the transfer of one neutron, one proton, two charges, and three charges from projectile to target. The projectiles used were 12 C, 14 N, 16 O, 19 F, 20 Ne, 40 Ar, 40 Ca, 56 Fe, and 63 Cu. The experimental techniques involved target irradiations and off-line α and γ activity measurements. Chemical separations were used to solve specific problems. Careful measuremnts of incident energies and cross sections were performed close to the reaction thresholds. All excitation functions exhibit the typical features of quasielastic transfer reactions: a sharp increase at low energy, and a constant value at high incident energy. The position of the thresholds are strongly influenced by the energetics of the reaction: High cross sections are observed under the strong interaction barrier if the energy balance at the minimum distance of approach is positive. This balance is equal to the difference between the interaction potentials in the entrance and exit channels, corrected for the mass balance. The constant cross sections observed for the high energy part of a given excitation function are consistent with the assumption that the curve P (R) which represents the transfer probability versus the distance between the nucleus centers does not vary with incident energy. This assumption implies the constancy of the optimum distance of approach R/sub opt/, of the R window ΔR for which P (R) is significant, and of the magnitude of P (R). Moreover the data show that the high energy cross sections for one-proton transfer are independent of the projectile, while odd-even effects of the projectile atomic number Z on the two-charge transfer cross sections are observed for the lightest incident ions 14 N to 20 Ne

  2. Alpha-transfer reactions and the pairing-vibration model

    International Nuclear Information System (INIS)

    Betts, R.R.

    1977-01-01

    The pairing-vibration model with isospin is extended to include α-transfer reactions. Selection rules and expressions for transition strengths are derived and compared with experimental results for A = 40--66 nuclei. The selection rules are found to be followed quite well in the examples studied. The systematics of ground-state transition strengths are qualitatively quite well reproduced although the quantitative agreement is poor. When the changing nature of the pairing quanta is incorporated using two-particle transfer data the agreement becomes quantitatively good. Evidence is presented for clustering other than that due to pairing in 40 Ca and 44 Ti

  3. Transfer reaction studies in the region of heavy and superheavy nuclei at SHIP

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, S; Comas, V; Hofmann, S; Ackermann, D; Heredia, J; Hessberger, F P; Khuyagbaatar, J; Kindler, B; Lommel, B; Mann, R, E-mail: s.heinz@gsi.de [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany)

    2011-02-01

    We studied multi-nucleon transfer reactions in the region of heavy and superheavy nuclei. The goal was to investigate these reactions as possibility to create new superheavy neutron-rich isotopes, which cannot be produced in fusion reactions. The experiments have been performed at the velocity filter SHIP at GSI. At SHIP we can detect and identify the heavy, target-like, transfer products. Due to the low background at the focal plane detector and the isotope identification via radioactive decays, the setup allows to reach an upper cross-section limit of 10 pb/sr within one day of beamtime. We investigated the systems {sup 58,64}Ni + {sup 207}Pb and {sup 48}Ca + {sup 248}Cm at beam energies below and up to 20% above the Coulomb barrier. At all energies we observed a massive transfer of protons and neutrons, where transfer products with up to eight neutrons more than the target nucleus could be identified.

  4. Geometric phase and quantum interference in photosynthetic reaction center: Regulation of electron transfer

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yuming, E-mail: ymsun@ytu.edu.cn; Su, Yuehua; Dai, Zhenhong; Wang, WeiTian

    2016-10-20

    Photosynthesis is driven by electron transfer in reaction centers in which the functional unit is composed of several simple molecules C{sub 2}-symmetrically arranged into two branches. In view of quantum mechanism, both branches are possible pathways traversed by the transferred electron. Due to different evolution of spin state along two pathways in transmembrane electric potential (TEP), quantum state of the transferred electron at the bridged site acquires a geometric phase difference dependent on TEP, the most efficient electron transport takes place in a specific range of TEP beyond which electron transfer is dramatically suppressed. What’s more, reaction center acts like elaborately designed quantum device preparing polarized spin dependent on TEP for the transferred electron to regulate the reduction potential at bridged site. In brief, electron transfer generates the TEP, reversely, TEP modulates the efficiency of electron transfer. This may be an important approach to maintaining an appreciable pH environment in photosynthesis.

  5. Role of transfer reactions in heavy-ion collisions at the Coulomb barrier

    Directory of Open Access Journals (Sweden)

    Pollarolo Giovanni

    2011-10-01

    Full Text Available One and two neutron transfer reactions are discussed in the semiclassical formalism. The twoneutrons transfer cross sections are calculated in the successive approximation. Comparisons with new experimental data below the Coulomb barrier are discussed in term of transfer probabilities as a function of the distance of closest approach for Coulomb scattering.

  6. Light induced electron transfer reactions of metal complexes

    International Nuclear Information System (INIS)

    Sutin, N.; Creutz, C.

    1980-01-01

    Properties of the excited states of tris(2,2'-bipyridine) and tris(1,10-phenanthroline) complexes of chromium(III), iron(II), ruthenium(II), osmium(II), rhodium(III), and iridium(III) are described. The electron transfer reactions of the ground and excited states are discussed and interpreted in terms of the driving force for the reaction and the distortions of the excited states relative to the corresponding ground states. General considerations relevant to the conversion of light into chemical energy are presented and progress in the use of polypyridine complexes to effect the light decomposition of water into hydrogen and oxygen is reviewed

  7. Heavy-ion induced multinucleon transfer reactions in the 2s--1d shell

    International Nuclear Information System (INIS)

    Olmer, C.

    1975-01-01

    In order to investigate whether new nuclear structure information can be obtained from studying the direct transfer of more than two nucleons using heavy-ion projectiles, we have investigated the 28 Si( 16 O, 12 C) 32 S and 12 C( 14 N,d) 24 Mg reactions as candidates for the direct transfer of four- and twelve-nucleons, respectively. The counter telescope-position sensitive detector kinematic coincidence method--both angular distributions (22 0 less than theta/sub L/ less than 95 0 , E/sub L/ = 55.54 MeV) and excitation functions (theta/sub L/ = 26 0 , 50 less than E/sub L/ less than 63 MeV) were obtained for strongly excited states below 10 MeV in excitation in the first reaction. For the 12 C + 14 N interaction, a measurement of the angular distributions (25 0 less than theta/sub L/ less than 140 0 , E/sub L/ = 20,25 MeV) for proton, deuteron and alpha-particle emission to many low-lying states sufficed for the present purposes. Comparison of Hauser-Feshbach statistical model calculations with these data indicated that the light-particle production from the 12 C + 14 N interaction as investigated here is predominantly compound nuclear in nature. The selectively strong population of a few states in 32 S by the 28 Si-( 16 O, 12 C) 32 S reaction is primarily direct. The structure of these states was deduced from available light-ion-induced transfer reaction studies and shell model calculations; the importance of shell model configurations is indicated, and an alpha-particle transfer model can not account for the observed selectivity. Calculations of the 28 Si( 16 O, 12 C) 32 S reaction with a microscopic multinucleon transfer code indicate selectivities consistent with the present results. Moreover, the calculations suggest the presence of other, unexpected selectivities, all of which may be understood on a physical basis, and some of which appear as an extension of a similar effect seen in two-nucleon transfer reactions

  8. Transfer reactions in inverse kinematics at REX-ISOLDE

    CERN Document Server

    Tengborn, E

    Research on the structure of exotic nuclei is one of the most intriguing topics in present day nuclear physics. With the use of facilities for isotope separation on-line, such as ISOLDE at CERN, short-lived isotopes can be studied experimentally. Since 2002, the REX-ISOLDE facility enables radioactive ions produced by ISOLDE to be post-accelerated, increasing the energy of the ions enough to do nuclear transfer reactions in inverse kinematics. In this thesis, transfer reactions are used to study the structure of neutron-rich lithium isotopes through a series of experiments at REX-ISOLDE. The first experiment used a 9Li beam at 2.36 MeV/u impinging on a deuterated polyethylene target to study 10Li, 9Li and 8Li. For the (d,p)-channel the resonance ground state and a first excited state are observed and the results agree with theoretical calculations. The elastic channel agrees with Optical Model, OM, calculations. For the (d,t)-channel the shape of the angular distribution agrees with Distorted Wave Born Approx...

  9. Spectroscopy of $^{46}$Ar by the $(t,p)$ two-neutron transfer reaction

    CERN Document Server

    Nowak, K.; Hellgartner, S.; Mücher, D.; Bildstein, V.; Diriken, J.; Elseviers, J.; Gaffney, L.P.; Gernhäuser, R.; Iwanicki, J.; Johansen, J.G.; Huyse, M.; Konki, J.; Kröll, T.; Krücken, T.; Lutter, R.; Orlandi, R.; Pakarinen, J.; Raabe, R.; Reiter, P.; Roger, T.; Schrieder, G.; Seidlitz, M.; Sorlin, O.; Van Duppen, P.; Warr, N.; De Witte, H.; Zielinska, M.

    2016-04-27

    States in the $N=28$ nucleus $^{46}$Ar have been studied by a two-neutron transfer reaction at REX-ISOLDE (CERN). A beam of radioactive $^{44}$ at an energy of 2.16~AMeV and a tritium loaded titanium target were used to populate $^{46}$ by the t($^{44}$,p) two-neutron transfer reaction. Protons emitted from the target were identified in the T-REX silicon detector array. The excitation energies of states in $^{46}$ have been reconstructed from the measured angles and energies of recoil protons. Angular distributions for three final states were measured and based on the shape of the differential cross section an excited state at 3695~keV has been identified as $J^\\pi = 0^+$. The angular differential cross section for the population of different states are compared to calculations using a reaction model employing both sequential and direct transfer of two neutrons. Results are compared to shell model calculations using state-of-the-art effective interactions.

  10. Deep-inelastic multinucleon transfer processes in the 16O+27Al reaction

    Science.gov (United States)

    Roy, B. J.; Sawant, Y.; Patwari, P.; Santra, S.; Pal, A.; Kundu, A.; Chattopadhyay, D.; Jha, V.; Pandit, S. K.; Parkar, V. V.; Ramachandran, K.; Mahata, K.; Nayak, B. K.; Saxena, A.; Kailas, S.; Nag, T. N.; Sahoo, R. N.; Singh, P. P.; Sekizawa, K.

    2018-03-01

    The reaction mechanism of deep-inelastic multinucleon transfer processes in the 16O+27Al reaction at an incident 16O energy (Elab=134 MeV) substantially above the Coulomb barrier has been studied both experimentally and theoretically. Elastic-scattering angular distribution, total kinetic energy loss spectra, and angular distributions for various transfer channels have been measured. The Q -value- and angle-integrated isotope production cross sections have been deduced. To obtain deeper insight into the underlying reaction mechanism, we have carried out a detailed analysis based on the time-dependent Hartree-Fock (TDHF) theory. A recently developed method, TDHF+GEMINI, has been applied to evaluate production cross sections for secondary products. From a comparison between the experimental and theoretical cross sections, we find that the theory qualitatively reproduces the experimental data. Significant effects of secondary light-particle emissions are demonstrated. Possible interplay among fusion-fission, deep-inelastic, multinucleon transfer, and particle evaporation processes is discussed.

  11. Supramolecular Systems and Chemical Reactions in Single-Molecule Break Junctions.

    Science.gov (United States)

    Li, Xiaohui; Hu, Duan; Tan, Zhibing; Bai, Jie; Xiao, Zongyuan; Yang, Yang; Shi, Jia; Hong, Wenjing

    2017-04-01

    The major challenges of molecular electronics are the understanding and manipulation of the electron transport through the single-molecule junction. With the single-molecule break junction techniques, including scanning tunneling microscope break junction technique and mechanically controllable break junction technique, the charge transport through various single-molecule and supramolecular junctions has been studied during the dynamic fabrication and continuous characterization of molecular junctions. This review starts from the charge transport characterization of supramolecular junctions through a variety of noncovalent interactions, such as hydrogen bond, π-π interaction, and electrostatic force. We further review the recent progress in constructing highly conductive molecular junctions via chemical reactions, the response of molecular junctions to external stimuli, as well as the application of break junction techniques in controlling and monitoring chemical reactions in situ. We suggest that beyond the measurement of single molecular conductance, the single-molecule break junction techniques provide a promising access to study molecular assembly and chemical reactions at the single-molecule scale.

  12. Advances in electron transfer chemistry

    CERN Document Server

    Mariano, Patrick S

    1995-01-01

    Advances in Electron Transfer Chemistry, Volume 4 presents the reaction mechanisms involving the movement of single electrons. This book discusses the electron transfer reactions in organic, biochemical, organometallic, and excited state systems. Organized into four chapters, this volume begins with an overview of the photochemical behavior of two classes of sulfonium salt derivatives. This text then examines the parameters that control the efficiencies for radical ion pair formation. Other chapters consider the progress in the development of parameters that control the dynamics and reaction p

  13. Determination of S17(0) from transfer reactions

    International Nuclear Information System (INIS)

    Tribble, R.E.; Azhari, A.; Clark, H.L.; Gagliardi, C.A.; Lui, Y.; Mukhamedzhanov, A.M.; Sattarov, A.; Trache, L.; Burjan, V.; Cejpek, J.; Kroha, V.; Piskor, S.; Vincour, J.

    1998-01-01

    The S-factor for the direct capture reaction 7 Be(p,γ) 8 B can be found at astrophysical energies from the asymptotic normalization coefficients which provide the normalization of the tails of the overlap functions for 8 B→ 7 Be+p. Peripheral transfer reactions offer a technique to determine these asymptotic normalization coefficients. As a test of the technique, the 16 O( 3 He,d) 17 F reaction has been used to determine asymptotic normalization coefficients for transitions to the ground and first excited states of 17 F. The S-factors for 16 O(p,γ) 17 F calculated from these 17 F→ 16 O+p asymptotic normalization coefficients are found to be in very good agreement with recent measurements. Following the same technique, the 10 B( 7 Be, 8 B) 9 Be reaction has been used to measure the asymptotic normalization coefficient for 7 Be(p,γ) 8 B. This result provides an indirect determination of S 17 (0). copyright 1998 American Institute of Physics

  14. Splendor and misery of the distorted wave method applied to heavy ions transfer reactions

    International Nuclear Information System (INIS)

    Mermaz, M.C.

    1979-01-01

    The success and failure of the Distorted Wave Method (DWM) applied to heavy ion transfer reactions are illustrated by few examples: one and multi-nucleon transfer reactions induced by 15 N and 18 O on 28 Si target nucleus performed on the vicinity of Coulomb barrier respectively at 44 and 56 MeV incident energy

  15. [Single embryo transfer: is Scandinavian model valuable in France?].

    Science.gov (United States)

    Belaisch-Allart, J; Mayenga, J-M; Grefenstette, I; Chouraqui, A; Serkine, A-M; Abirached, F; Kulski, O

    2008-11-01

    The aim of infertility treatment is clearly to obtain one healthy baby. If the transfer of a top quality single embryo could provide a baby to all the patients, there would be no more discussion. The problem is that, nowadays, French pregnancy rates after fresh embryo or frozen embryo transfer are not the same as in Nordic countries. All studies show that in unselected patients, single embryo transfer decreases twin pregnancy rate but decreases pregnancy rate too. Pregnancy rate is dependent on embryo quality, women's age, rank of IVF attempt (clear data) but also on body mass index, ovarian reserve, smoking habits. All these data cannot be taken into account in a law. That is the reason why a flexible policy of transfer adapted to each couple is preferable. Each couple and each IVF team are unique and must keep the freedom to choose how many embryos must be transferred to obtain healthy babies, and to avoid twin pregnancies but without demonizing them.

  16. Single-molecule chemical reactions on DNA origami

    DEFF Research Database (Denmark)

    Voigt, Niels Vinther; Tørring, Thomas; Rotaru, Alexandru

    2010-01-01

    as templates for building materials with new functional properties. Relatively large nanocomponents such as nanoparticles and biomolecules can also be integrated into DNA nanostructures and imaged. Here, we show that chemical reactions with single molecules can be performed and imaged at a local position...... on a DNA origami scaffold by atomic force microscopy. The high yields and chemoselectivities of successive cleavage and bond-forming reactions observed in these experiments demonstrate the feasibility of post-assembly chemical modification of DNA nanostructures and their potential use as locally......DNA nanotechnology and particularly DNA origami, in which long, single-stranded DNA molecules are folded into predetermined shapes, can be used to form complex self-assembled nanostructures. Although DNA itself has limited chemical, optical or electronic functionality, DNA nanostructures can serve...

  17. Kinetic mechanism of molecular energy transfer and chemical reactions in low-temperature air-fuel plasmas.

    Science.gov (United States)

    Adamovich, Igor V; Li, Ting; Lempert, Walter R

    2015-08-13

    This work describes the kinetic mechanism of coupled molecular energy transfer and chemical reactions in low-temperature air, H2-air and hydrocarbon-air plasmas sustained by nanosecond pulse discharges (single-pulse or repetitive pulse burst). The model incorporates electron impact processes, state-specific N(2) vibrational energy transfer, reactions of excited electronic species of N(2), O(2), N and O, and 'conventional' chemical reactions (Konnov mechanism). Effects of diffusion and conduction heat transfer, energy coupled to the cathode layer and gasdynamic compression/expansion are incorporated as quasi-zero-dimensional corrections. The model is exercised using a combination of freeware (Bolsig+) and commercial software (ChemKin-Pro). The model predictions are validated using time-resolved measurements of temperature and N(2) vibrational level populations in nanosecond pulse discharges in air in plane-to-plane and sphere-to-sphere geometry; temperature and OH number density after nanosecond pulse burst discharges in lean H(2)-air, CH(4)-air and C(2)H(4)-air mixtures; and temperature after the nanosecond pulse discharge burst during plasma-assisted ignition of lean H2-mixtures, showing good agreement with the data. The model predictions for OH number density in lean C(3)H(8)-air mixtures differ from the experimental results, over-predicting its absolute value and failing to predict transient OH rise and decay after the discharge burst. The agreement with the data for C(3)H(8)-air is improved considerably if a different conventional hydrocarbon chemistry reaction set (LLNL methane-n-butane flame mechanism) is used. The results of mechanism validation demonstrate its applicability for analysis of plasma chemical oxidation and ignition of low-temperature H(2)-air, CH(4)-air and C(2)H(4)-air mixtures using nanosecond pulse discharges. Kinetic modelling of low-temperature plasma excited propane-air mixtures demonstrates the need for development of a more accurate

  18. Large momentum transfer phenomena

    International Nuclear Information System (INIS)

    Imachi, Masahiro; Otsuki, Shoichiro; Matsuoka, Takeo; Sawada, Shoji.

    1978-01-01

    The large momentum transfer phenomena in hadron reaction drastically differ from small momentum transfer phenomena, and are described in this paper. Brief review on the features of the large transverse momentum transfer reactions is described in relation with two-body reactions, single particle productions, particle ratios, two jet structure, two particle correlations, jet production cross section, and the component of momentum perpendicular to the plane defined by the incident protons and the triggered pions and transverse momentum relative to jet axis. In case of two-body process, the exponent N of the power law of the differential cross section is a value between 10 to 11.5 in the large momentum transfer region. The breaks of the exponential behaviors into the power ones are observed at the large momentum transfer region. The break would enable to estimate the order of a critical length. The large momentum transfer phenomena strongly suggest an important role of constituents of hadrons in the hard region. Hard rearrangement of constituents from different initial hadrons induces large momentum transfer reactions. Several rules to count constituents in the hard region have been proposed so far to explain the power behavior. Scale invariant quark interaction and hard reactions are explained, and a summary of the possible types of hard subprocess is presented. (Kato, T.)

  19. Golden rule kinetics of transfer reactions in condensed phase: The microscopic model of electron transfer reactions in disordered solid matrices

    International Nuclear Information System (INIS)

    Basilevsky, M. V.; Mitina, E. A.; Odinokov, A. V.; Titov, S. V.

    2013-01-01

    The algorithm for a theoretical calculation of transfer reaction rates for light quantum particles (i.e., the electron and H-atom transfers) in non-polar solid matrices is formulated and justified. The mechanism postulated involves a local mode (an either intra- or inter-molecular one) serving as a mediator which accomplishes the energy exchange between the reacting high-frequency quantum mode and the phonon modes belonging to the environment. This approach uses as a background the Fermi golden rule beyond the usually applied spin-boson approximation. The dynamical treatment rests on the one-dimensional version of the standard quantum relaxation equation for the reduced density matrix, which describes the frequency fluctuation spectrum for the local mode under consideration. The temperature dependence of a reaction rate is controlled by the dimensionless parameter ξ 0 =ℏω 0 /k B T where ω 0 is the frequency of the local mode and T is the temperature. The realization of the computational scheme is different for the high/intermediate (ξ 0 0 ≫ 1) temperature ranges. For the first (quasi-classical) kinetic regime, the Redfield approximation to the solution of the relaxation equation proved to be sufficient and efficient in practical applications. The study of the essentially quantum-mechanical low-temperature kinetic regime in its asymptotic limit requires the implementation of the exact relaxation equation. The coherent mechanism providing a non-vanishing reaction rate has been revealed when T→ 0. An accurate computational methodology for the cross-over kinetic regime needs a further elaboration. The original model of the hopping mechanism for electronic conduction in photosensitive organic materials is considered, based on the above techniques. The electron transfer (ET) in active centers of such systems proceeds via local intra- and intermolecular modes. The active modes, as a rule, operate beyond the kinetic regimes, which are usually postulated in the

  20. Golden rule kinetics of transfer reactions in condensed phase: the microscopic model of electron transfer reactions in disordered solid matrices.

    Science.gov (United States)

    Basilevsky, M V; Odinokov, A V; Titov, S V; Mitina, E A

    2013-12-21

    The algorithm for a theoretical calculation of transfer reaction rates for light quantum particles (i.e., the electron and H-atom transfers) in non-polar solid matrices is formulated and justified. The mechanism postulated involves a local mode (an either intra- or inter-molecular one) serving as a mediator which accomplishes the energy exchange between the reacting high-frequency quantum mode and the phonon modes belonging to the environment. This approach uses as a background the Fermi golden rule beyond the usually applied spin-boson approximation. The dynamical treatment rests on the one-dimensional version of the standard quantum relaxation equation for the reduced density matrix, which describes the frequency fluctuation spectrum for the local mode under consideration. The temperature dependence of a reaction rate is controlled by the dimensionless parameter ξ0 = ℏω0/k(B)T where ω0 is the frequency of the local mode and T is the temperature. The realization of the computational scheme is different for the high/intermediate (ξ0 regime, the Redfield approximation to the solution of the relaxation equation proved to be sufficient and efficient in practical applications. The study of the essentially quantum-mechanical low-temperature kinetic regime in its asymptotic limit requires the implementation of the exact relaxation equation. The coherent mechanism providing a non-vanishing reaction rate has been revealed when T → 0. An accurate computational methodology for the cross-over kinetic regime needs a further elaboration. The original model of the hopping mechanism for electronic conduction in photosensitive organic materials is considered, based on the above techniques. The electron transfer (ET) in active centers of such systems proceeds via local intra- and intermolecular modes. The active modes, as a rule, operate beyond the kinetic regimes, which are usually postulated in the existing theories of the ET. Our alternative dynamic ET model for local

  1. Mass transfer with complex reversible chemical reactions—II. parallel reversible chemical reactions

    NARCIS (Netherlands)

    Versteeg, G.F.; Kuipers, J.A.M.; Beckum, F.P.H. van; Swaaij, W.P.M. van

    1990-01-01

    An absorption model has been developed which can be used to calculate rapidly absorption rates for the phenomenon mass transfer accompanied by multiple complex parallel reversible chemical reactions. This model can be applied for the calculation of the mass transfer rates, enhancement factors and

  2. High performance platinum single atom electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Liu, Jing; Jiao, Menggai; Lu, Lanlu; Barkholtz, Heather M.; Li, Yuping; Wang, Ying; Jiang, Luhua; Wu, Zhijian; Liu, Di-Jia; Zhuang, Lin; Ma, Chao; Zeng, Jie; Zhang, Bingsen; Su, Dangsheng; Song, Ping; Xing, Wei; Xu, Weilin; Wang, Ying; Jiang, Zheng; Sun, Gongquan

    2017-07-01

    For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm-2 at 80 °C with a low platinum loading of 0.09 mgPt cm-2, corresponding to a platinum utilization of 0.13 gPt kW-1 in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.

  3. Electron transfer reactions to probe the electrode/solution interface

    Energy Technology Data Exchange (ETDEWEB)

    Capitanio, F.; Guerrini, E.; Colombo, A.; Trasatti, S. [Milan Univ., Milan (Italy). Dept. of Physical Chemistry and Electrochemistry

    2008-07-01

    The reactions that occur at the interface between an electrode and an electrolyte were examined with particular reference to the interaction of different electrode surfaces with redox couples. A semi-integration or convolution technique was used to study the kinetics of electron transfer on different electrode materials with different hydrophilic behaviour, such as Boron-Doped-Diamond (BDD), Au and Pt. Standard reversible redox couples were also investigated, including (Fe3+/2+, Fe(CN)63-/4-, Ru(NH3)63+/2+, Co(NH3)63+/2+, Ir4+/3+, V4+/5+ and V3+/2+). The proposed method proved to be simple, straightforward and reliable since the obtained kinetic information was in good agreement with data in the literature. It was concluded that the kinetics of the electrode transfer reactions depend on the chemical nature of the redox couple and electrode material. The method should be further extended to irreversible couples and other electrode materials such as mixed oxide electrodes. 3 refs., 2 figs.

  4. 179Ta and 180Ta structure by transfer reactions

    International Nuclear Information System (INIS)

    Warde, Elias.

    1979-01-01

    Transfer reactions (α,t); ( 3 He,d); (p,t) and (p,d) have been used to study the nuclear spectroscopy of 179 Ta and 180 Ta. In 179 Ta, 5/2 - and 9/2 - states of the 1/2(541) configuration have been identified. The core-quasiproton interaction has to be taken into account in order to explain the two-nucleon transfer intensities in the 181 Ta(p,t) 179 Ta reaction. A level scheme has been proposed for 180 Ta for the first time. Especially the ground state is identified with the (1 + ,1) level of the [7/2 + (404)sub(p), 9/2 + (624)sub(n)] configuration and spin (9 - ,9) of the configuration [9/2 - (514)sub(p), 9/2 + (624)sub(n)] has been assigned to the long-lived isomer. From the observed configurations in 180 Ta, the matrix elements of the effective residual interaction vsub(np) have been deduced and compared to theoretical predictions [fr

  5. Gamow-Teller transitions and neutron-proton-pair transfer reactions

    Science.gov (United States)

    Van Isacker, P.; Macchiavelli, A. O.

    2018-05-01

    We propose a schematic model of nucleons moving in spin-orbit partner levels, j = l ± 1/2, to explain Gamow-Teller and two-nucleon transfer data in N = Z nuclei above 40Ca. Use of the LS coupling scheme provides a more transparent approach to interpret the structure and reaction data. We apply the model to the analysis of charge-exchange, 42Ca(3He,t)42Sc, and np-transfer, 40Ca(3He,p)42Sc, reactions data to define the elementary modes of excitation in terms of both isovector and isoscalar pairs, whose properties can be determined by adjusting the parameters of the model (spin-orbit splitting, isovector pairing strength and quadrupole matrix element) to the available data. The overall agreement with experiment suggests that the approach captures the main physics ingredients and provides the basis for a boson approximation that can be extended to heavier nuclei. Our analysis also reveals that the SU(4)-symmetry limit is not realized in 42Sc.

  6. Golden rule kinetics of transfer reactions in condensed phase: The microscopic model of electron transfer reactions in disordered solid matrices

    Science.gov (United States)

    Basilevsky, M. V.; Odinokov, A. V.; Titov, S. V.; Mitina, E. A.

    2013-12-01

    The algorithm for a theoretical calculation of transfer reaction rates for light quantum particles (i.e., the electron and H-atom transfers) in non-polar solid matrices is formulated and justified. The mechanism postulated involves a local mode (an either intra- or inter-molecular one) serving as a mediator which accomplishes the energy exchange between the reacting high-frequency quantum mode and the phonon modes belonging to the environment. This approach uses as a background the Fermi golden rule beyond the usually applied spin-boson approximation. The dynamical treatment rests on the one-dimensional version of the standard quantum relaxation equation for the reduced density matrix, which describes the frequency fluctuation spectrum for the local mode under consideration. The temperature dependence of a reaction rate is controlled by the dimensionless parameter ξ0 = ℏω0/kBT where ω0 is the frequency of the local mode and T is the temperature. The realization of the computational scheme is different for the high/intermediate (ξ0 conduction in photosensitive organic materials is considered, based on the above techniques. The electron transfer (ET) in active centers of such systems proceeds via local intra- and intermolecular modes. The active modes, as a rule, operate beyond the kinetic regimes, which are usually postulated in the existing theories of the ET. Our alternative dynamic ET model for local modes immersed in the continuum harmonic medium is formulated for both classical and quantum regimes, and accounts explicitly for the mode/medium interaction. The kinetics of the energy exchange between the local ET subsystem and the surrounding environment essentially determine the total ET rate. The efficient computer code for rate computations is elaborated on. The computations are available for a wide range of system parameters, such as the temperature, external field, local mode frequency, and characteristics of mode/medium interaction. The relation of the

  7. Analysis of transfer reactions: determination of spectroscopic factors

    Energy Technology Data Exchange (ETDEWEB)

    Keeley, N. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules de Physique Nucleaire et de l' Instrumentation Associee (DSM/DAPNIA/SPhN), 91- Gif sur Yvette (France); The Andrzej So an Institute for Nuclear Studies, Dept. of Nuclear Reactions, Warsaw (Poland)

    2007-07-01

    An overview of the most popular models used for the analysis of direct reaction data is given, concentrating on practical aspects. The 4 following models (in order of increasing sophistication): the distorted wave born approximation (DWBA), the adiabatic model, the coupled channels born approximation, and the coupled reaction channels are briefly described. As a concrete example, the C{sup 12}(d,p)C{sup 13} reaction at an incident deuteron energy of 30 MeV is analysed with progressively more physically sophisticated models. The effect of the choice of the reaction model on the spectroscopic information extracted from the data is investigated and other sources of uncertainty in the derived spectroscopic factors are discussed. We have showed that the choice of the reaction model can significantly influence the nuclear structure information, particularly the spectroscopic factors or amplitudes but occasionally also the spin-parity, that we wish to extract from direct reaction data. We have also demonstrated that the DWBA can fail to give a satisfactory description of transfer data but when the tenets of the theory are fulfilled DWBA can work very well and will yield the same results as most sophisticated models. The use of global rather than fitted optical potentials can also lead to important differences in the extracted spectroscopic factors.

  8. Hydride Transfer versus Deprotonation Kinetics in the Isobutane–Propene Alkylation Reaction: A Computational Study

    Science.gov (United States)

    2017-01-01

    The alkylation of isobutane with light alkenes plays an essential role in modern petrochemical processes for the production of high-octane gasoline. In this study we have employed periodic DFT calculations combined with microkinetic simulations to investigate the complex reaction mechanism of isobutane–propene alkylation catalyzed by zeolitic solid acids. Particular emphasis was given to addressing the selectivity of the alkylate formation versus alkene formation, which requires a high rate of hydride transfer in comparison to the competitive oligomerization and deprotonation reactions resulting in catalyst deactivation. Our calculations reveal that hydride transfer from isobutane to a carbenium ion occurs via a concerted C–C bond formation between a tert-butyl fragment and an additional olefin, or via deprotonation of the tert-butyl fragment to generate isobutene. A combination of high isobutane concentration and low propene concentration at the reaction center favor the selective alkylation. The key reaction step that has to be suppressed to increase the catalyst lifetime is the deprotonation of carbenium intermediates that are part of the hydride transfer reaction cycle. PMID:29226012

  9. Hydride Transfer versus Deprotonation Kinetics in the Isobutane-Propene Alkylation Reaction: A Computational Study.

    Science.gov (United States)

    Liu, Chong; van Santen, Rutger A; Poursaeidesfahani, Ali; Vlugt, Thijs J H; Pidko, Evgeny A; Hensen, Emiel J M

    2017-12-01

    The alkylation of isobutane with light alkenes plays an essential role in modern petrochemical processes for the production of high-octane gasoline. In this study we have employed periodic DFT calculations combined with microkinetic simulations to investigate the complex reaction mechanism of isobutane-propene alkylation catalyzed by zeolitic solid acids. Particular emphasis was given to addressing the selectivity of the alkylate formation versus alkene formation, which requires a high rate of hydride transfer in comparison to the competitive oligomerization and deprotonation reactions resulting in catalyst deactivation. Our calculations reveal that hydride transfer from isobutane to a carbenium ion occurs via a concerted C-C bond formation between a tert -butyl fragment and an additional olefin, or via deprotonation of the tert -butyl fragment to generate isobutene. A combination of high isobutane concentration and low propene concentration at the reaction center favor the selective alkylation. The key reaction step that has to be suppressed to increase the catalyst lifetime is the deprotonation of carbenium intermediates that are part of the hydride transfer reaction cycle.

  10. Excitation functions for quasi-elastic transfer reactions induced with heavy ions in bismuth

    International Nuclear Information System (INIS)

    Gardes, D.; Bimbot, R.; Maison, J.; Reilhac, L. de; Rivet, M.F.; Fleury, A.; Hubert, F.; Llabador, Y.

    1977-01-01

    The excitation functions for the production of 210 Bi, 210 Po, sup(207-211)At and 211 Rn through quasi-elastic transfer reactions induced with heavy ions in 209 Bi have been measured. The corresponding reactions involved the transfer of one neutron, one proton, two and three charges from projectile to target. The projectiles used were 12 C, 14 N, 16 O, 19 F, 20 Ne, 40 Ca, 56 Fe and 63 Cu. The experimental techniques involved target irradiations and off-line α and γ activity measurements. Chemical separations were used to solve specific problems. Careful measurements of incident energies and cross sections were performed close to the reaction thresholds

  11. Synthesis of 3-Alkenyl-1-azaanthraquinones via Diels-Alder and Electron Transfer Reactions

    Directory of Open Access Journals (Sweden)

    Patrice Vanelle

    2002-12-01

    Full Text Available A convenient route to 3-alkenyl-1-azaanthraquinones via a hetero Diels-Alder reaction between an azadiene and naphthoquinone, a free radical chlorination and an electron transfer reaction is reported.

  12. Chemical reaction between single hydrogen atom and graphene

    International Nuclear Information System (INIS)

    Ito, Atsushi; Nakamura, Hiroaki; Takayama, Arimichi

    2007-04-01

    We study chemical reaction between a single hydrogen atom and a graphene, which is the elemental reaction between hydrogen and graphitic carbon materials. In the present work, classical molecular dynamics simulation is used with modified Brenner's empirical bond order potential. The three reactions, that is, absorption reaction, reflection reaction and penetration reaction, are observed in our simulation. Reaction rates depend on the incident energy of the hydrogen atom and the graphene temperature. The dependence can be explained by the following mechanisms: (1) The hydrogen atom receives repulsive force by π-electrons in addition to nuclear repulsion. (2) Absorbing the hydrogen atom, the graphene transforms its structure to the 'overhand' configuration such as sp 3 state. (3) The hexagonal hole of the graphene is expanded during the penetration of the hydrogen atom. (author)

  13. Time-resolved FTIR emission studies of laser photofragmentation and radical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Leone, S.R. [Univ. of Colorado, Boulder (United States)

    1993-12-01

    Recent studies have focused specifically on collision processes, such as single collision energy transfer, reaction dynamics, and radical reactions. The authors employ novel FTIR techniques in the study of single collision energy transfer processes using translationally fast H atom, as well as radical-radical reactions, e.g. CH{sub 3} + O, CF{sub 3} + H(D), and Cl + C{sub 2}H{sub 5}. The fast atoms permit unique high energy regions of certain transition states of combustion species to be probed for the first time.

  14. Study of transfer induced fission and fusion-fission reactions for 28 Si + 232 Th system at 340 MeV

    International Nuclear Information System (INIS)

    Prete, G.; Rizzi, V.; Fioretto, E.; Cinausero, M.; Shetty, D.V.; Pesente, S.; Brondi, A.; La Rana, G.; Moro, R.; Vardaci, E.; Boiano, A.; Ordine, A.; Gelli, N.; Lucarelli, F.; Bortignon, P.F.; Saxena, A.; Nayak, B.K.; Biswas, D.C.; Choudhury, R.K.; Kapoor, R.S.

    2001-01-01

    and fusion-fission reactions. We have extracted the ratio of yield of transfer induced fission events to the singles yield of transfer products observed at grazing angle for different Z of ejectiles (PLF). It is seen that transfer induced fission yield increases with increasing Z transfer up to DZ = 4 and then becomes flat and starts to decrease for higher Z-transfers. This may indicate the onset of other processes which inhibit the fission; projectile break-up may be responsible for lowering the transfer of excitation energy and angular momentum to the fissioning system or the evaporation of charged particles may promptly reduce the excitation energy of the compound system which survive fission. This has been investigated looking at PLF in coincidence with protons, a particles, fission and target-like fragments. We have also analyzed the neutron energy spectra for the fusion-fission reaction obtained after correcting for the neutron detector efficiency. Fourteen laboratory neutron energy spectra for various fission-neutron correlation angles were simultaneously fitted with three moving sources. The results show a post- and pre-scission temperature of about 1.0 MeV and 2.24 MeV respectively, comparable to that observed in others low energy measurements and consistent with the compound nuclear excitation energy of 218 MeV, assuming a level density parameter a =A/8 MeV-1. (Author)

  15. On the ultrafast kinetics of the energy and electron transfer reactions in photosystem I

    Energy Technology Data Exchange (ETDEWEB)

    Slavov, Chavdar Lyubomirov

    2009-07-09

    The subject of the current work is one of the main participants in the light-dependent phase of oxygenic photosynthesis, Photosystem I (PS I). This complex carries an immense number of cofactors: chlorophylls (Chl), carotenoids, quinones, etc, which together with the protein entity exhibit several exceptional properties. First, PS I has an ultrafast light energy trapping kinetics with a nearly 100% quantum efficiency. Secondly, both of the electron transfer branches in the reaction center are suggested to be active. Thirdly, there are some so called 'red' Chls in the antenna system of PS I, absorbing light with longer wavelengths than the reaction center. These 'red' Chls significantly modify the trapping kinetics of PS I. The purpose of this thesis is to obtain better understanding of the above-mentioned, specific features of PS I. This will not merely cast more light on the mechanisms of energy and electron transfer in the complex, but also will contribute to the future developments of optimized artificial light-harvesting systems. In the current work, a number of PS I complexes isolated from different organisms (Thermosynechococcus elongatus, Chlamydomonas reinhardtii, Arabidopsis thaliana) and possessing distinctive features (different macroorganisation, monomers, trimers, monomers with a semibelt of peripheral antenna attached; presence of 'red' Chls) is investigated. The studies are primarily focused on the electron transfer kinetics in each of the cofactor branches in the PS I reaction center, as well as on the effect of the antenna size and the presence of 'red' Chls on the trapping kinetics of PS I. These aspects are explored with the help of several ultrafast optical spectroscopy methods: (i) time-resolved fluorescence ? single photon counting and synchroscan streak camera; and (ii) ultrafast transient absorption. Physically meaningful information about the molecular mechanisms of the energy trapping in PS I is

  16. Transfer reactions in sup(32,36)S + sup(144,154)Sm

    International Nuclear Information System (INIS)

    Pacheco, A.J.; Tada, M. di; Fernandez Niello, J.; Testoni, J.E.

    1990-01-01

    The deformation of spherical nuclei in transfer reactions near to the coulomb barrier is studied. The sup(32,36)S + sup(144,154)Sm reactions were carried out using sup(32)S beams produced by TANDAR accelerator in Buenos Aires with energies of 148 MeV and 160 MeV and sup(36)S beams produced by tandem accelerator of Laboratorio Nazionale di Legnaro with energies of 142 MeV and 155 MeV. The angular distributions were measured for sup(32)S reaction using gas ionization chamber and position sensitive detector. The mass spectra of reaction products were obtained measuring time of flight between time detectors, in the sup(36)S reaction. (M.C.K.)

  17. Mass transfer with complex chemical reactions in gas–liquid systems : two-step reversible reactions with unit stoichiometric and kinetic orders

    NARCIS (Netherlands)

    Vas Bhat, R.D.; Kuipers, J.A.M.; Versteeg, G.F.

    2000-01-01

    An absorption model to study gas–liquid mass transfer accompanied by reversible two-step reactions in the liquid phase has been presented. This model has been used to determine mass transfer rates, enhancement factors and concentration profiles over a wide range of process conditions. Although

  18. Single step synthesis of gold-amino acid composite, with the evidence of the catalytic hydrogen atom transfer (HAT) reaction, for the electrochemical recognition of Serotonin

    Science.gov (United States)

    Choudhary, Meenakshi; Siwal, Samarjeet; Nandi, Debkumar; Mallick, Kaushik

    2016-03-01

    A composite architecture of amino acid and gold nanoparticles has been synthesized using a generic route of 'in-situ polymerization and composite formation (IPCF)' [1,2]. The formation mechanism of the composite has been supported by a model hydrogen atom (H•≡H++e-) transfer (HAT) type of reaction which belongs to the proton coupled electron transfer (PCET) mechanism. The 'gold-amino acid composite' was used as a catalyst for the electrochemical recognition of Serotonin.

  19. Interplay of break-up and transfer processes in reactions involving weakly-bound systems

    Science.gov (United States)

    Vitturi, Andrea; Moschini, Laura

    2018-02-01

    In this note we illustrate some applications of a simple model which has been devised to clarify the reaction mechanism and the interplay of different reaction channels (elastic, inelastic, transfer, break-up) in heavy-ion collisions. The model involves two potential wells moving in one dimension and few active particles; in spite of its simplicity, it is supposed to maintain the main features, the properties and the physics of the full three-dimensional case. Special attention is given to the role of continuum states in reactions involving weakly-bound systems, and different approximation schemes (as first-order or coupled-channels) as well as different continuum discretization procedures are tested. In the case of two active particles the reaction mechanism associated with two-particle transfer and the effect of pairing intearction are investigated. Work done in collaboration with Antonio Moro and Kouichi Hagino

  20. Theoretical study of chain transfer to solvent reactions of alkyl acrylates.

    Science.gov (United States)

    Moghadam, Nazanin; Srinivasan, Sriraj; Grady, Michael C; Rappe, Andrew M; Soroush, Masoud

    2014-07-24

    This computational and theoretical study deals with chain transfer to solvent (CTS) reactions of methyl acrylate (MA), ethyl acrylate (EA), and n-butyl acrylate (n-BA) self-initiated homopolymerization in solvents such as butanol (polar, protic), methyl ethyl ketone (MEK) (polar, aprotic), and p-xylene (nonpolar). The results indicate that abstraction of a hydrogen atom from the methylene group next to the oxygen atom in n-butanol, from the methylene group in MEK, and from a methyl group in p-xylene by a live polymer chain are the most likely mechanisms of CTS reactions in MA, EA, and n-BA. Energy barriers and molecular geometries of reactants, products, and transition states are predicted. The sensitivity of the predictions to three hybrid functionals (B3LYP, X3LYP, and M06-2X) and three different basis sets (6-31G(d,p), 6-311G(d), and 6-311G(d,p)) is investigated. Among n-butanol, sec-butanol, and tert-butanol, tert-butanol has the highest CTS energy barrier and the lowest rate constant. Although the application of the conductor-like screening model (COSMO) does not affect the predicted CTS kinetic parameter values, the application of the polarizable continuum model (PCM) results in higher CTS energy barriers. This increase in the predicted CTS energy barriers is larger for butanol and MEK than for p-xylene. The higher rate constants of chain transfer to n-butanol reactions compared to those of chain transfer to MEK and p-xylene reactions suggest the higher CTS reactivity of n-butanol.

  1. Golden rule kinetics of transfer reactions in condensed phase: The microscopic model of electron transfer reactions in disordered solid matrices

    Energy Technology Data Exchange (ETDEWEB)

    Basilevsky, M. V.; Mitina, E. A. [Photochemistry Center, Russian Academy of Sciences, 7a, Novatorov ul., Moscow (Russian Federation); Odinokov, A. V. [Photochemistry Center, Russian Academy of Sciences, 7a, Novatorov ul., Moscow (Russian Federation); National Research Nuclear University “MEPhI,” 31, Kashirskoye shosse, Moscow (Russian Federation); Titov, S. V. [Karpov Institute of Physical Chemistry, 3-1/12, Building 6, Obuha pereulok, Moscow (Russian Federation)

    2013-12-21

    The algorithm for a theoretical calculation of transfer reaction rates for light quantum particles (i.e., the electron and H-atom transfers) in non-polar solid matrices is formulated and justified. The mechanism postulated involves a local mode (an either intra- or inter-molecular one) serving as a mediator which accomplishes the energy exchange between the reacting high-frequency quantum mode and the phonon modes belonging to the environment. This approach uses as a background the Fermi golden rule beyond the usually applied spin-boson approximation. The dynamical treatment rests on the one-dimensional version of the standard quantum relaxation equation for the reduced density matrix, which describes the frequency fluctuation spectrum for the local mode under consideration. The temperature dependence of a reaction rate is controlled by the dimensionless parameter ξ{sub 0}=ℏω{sub 0}/k{sub B}T where ω{sub 0} is the frequency of the local mode and T is the temperature. The realization of the computational scheme is different for the high/intermediate (ξ{sub 0} < 1 − 3) and for low (ξ{sub 0}≫ 1) temperature ranges. For the first (quasi-classical) kinetic regime, the Redfield approximation to the solution of the relaxation equation proved to be sufficient and efficient in practical applications. The study of the essentially quantum-mechanical low-temperature kinetic regime in its asymptotic limit requires the implementation of the exact relaxation equation. The coherent mechanism providing a non-vanishing reaction rate has been revealed when T→ 0. An accurate computational methodology for the cross-over kinetic regime needs a further elaboration. The original model of the hopping mechanism for electronic conduction in photosensitive organic materials is considered, based on the above techniques. The electron transfer (ET) in active centers of such systems proceeds via local intra- and intermolecular modes. The active modes, as a rule, operate beyond the

  2. One-electron transfer reactions of the couple NAD./NADH

    International Nuclear Information System (INIS)

    Grodkowski, J.; Neta, P.; Carlson, B.W.; Miller, L.

    1983-01-01

    One-electron transfer reactions involving nicotinamide-adenine dinucleotide in its oxidized and reducd forms (NAD./NADH) were studied by pulse radiolysis in aqueous solutions. One-electron oxidation of NADH by various phenoxyl radicals and phenothiazine cation radicals was found to take place with rate constants in the range of 10 5 to 10 8 M -1 s -1 , depending on the redox potential of the oxidizing species. In all cases, NAD. is formed quantitatively with no indication for the existence of the protonated form (NADH + .). The spectrum of NAD., as well as the rates of oxidation of NADH by phenoxyl and by (chlorpromazine) + . were independent of pH between pH 4.5 and 13.5. Reaction of deuterated NADH indicated only a small kinetic isotope effect. All these findings point to an electron transfer mechanism. On the other hand, attempts to observe the reverse electron transfer, i.e., one-electron reduction of NAD. to NADH by radicals such as semiquinones, showed that k was less than 10 4 to 10 5 M -1 s -1 , so that it was unobservable. Consequently, it was not possible to achieve equilibrium conditions which would have permitted the direct measurement of the redox potential for NAD./NADH. One-electron reduction of NAD. appears to be an unlikely process. 1 table

  3. Cost-effectiveness of single versus double embryo transfer in IVF in relation to female age.

    Science.gov (United States)

    van Loendersloot, Laura L; Moolenaar, Lobke M; van Wely, Madelon; Repping, Sjoerd; Bossuyt, Patrick M; Hompes, Peter G A; van der Veen, Fulco; Mol, Ben Willem J

    2017-07-01

    To evaluate the cost-effectiveness of single embryo transfer followed by an additional frozen-thawed single embryo transfer, if more embryos are available, as compared to double embryo transfer in relation to female age. We used a decision tree model to evaluate the costs from a healthcare provider perspective and the pregnancy rates of two embryo transfer policies: one fresh single embryo transfer followed by an additional frozen-thawed single embryo transfer, if more embryos are available (strategy I), and double embryo transfer (strategy II). The analysis was performed on an intention-to-treat basis. Sensitivity analyses were carried out to evaluate the robustness of our model and to identify which model parameters had the strongest impact on the results. SET followed by an additional frozen-thawed single embryo transfer if available was dominant, less costly and more effective, over DET in women under 32 years. In women aged 32 or older DET was more effective than SET followed by an additional frozen-thawed single embryo transfer if available but also more costly. SET followed by an additional frozen-thawed single embryo transfer should be the preferred strategy in women under 32 undergoing IVF. The choice for SET followed by an additional frozen-thawed single embryo transfer or DET in women aged 32 or older depends on individual patient preferences and on how much society is willing to pay for an extra child. There is a strong need for a randomized clinical trial comparing the cost and effects of SET followed by an additional frozen-thawed single embryo transfer and DET in the latter category of women. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Nobel Prize 1992: Rudolph A. Marcus: theory of electron transfer reactions in chemical systems

    International Nuclear Information System (INIS)

    Ulate Segura, Diego Guillermo

    2011-01-01

    A review of the theory developed by Rudolph A. Marcus is presented, who for his rating to the theory of electron transfer in chemical systems was awarded the Nobel Prize in Chemistry in 1992. Marcus theory has constituted not only a good extension of the use of a spectroscopic principle, but also has provided an energy balance and the application of energy conservation for electron transfer reactions. A better understanding of the reaction coordinate is exposed in terms energetic and establishing the principles that govern the transfer of electrons, protons and some labile small molecular groups as studied at present. Also, the postulates and equations described have established predictive models of reaction time, very useful for industrial environments, biological, metabolic, and others that involve redox processes. Marcus theory itself has also constituted a large contribution to the theory of complex transition [es

  5. What's new in the proton transfer reaction from pyranine to water? A femtosecond study of the proton transfer dynamics

    International Nuclear Information System (INIS)

    Prayer, C.; Gustavsson, T.; Tran-Thi, T.-H.

    1996-01-01

    The proton transfer from excited pyranine to water is studied by the femtosecond fluorescence upconversion technique. It is shown for the first time that the proton transfer reaction in water proceeds by three successive steps: the solvent cage relaxation, the specific solute-solvent hydrogen-bond formation and finally the ion pair dissociation/diffusion

  6. Mass transfer with complex chemical reactions in gas-liquid systems: two-step reversible reactions with unit stoichiometric and kinetic orders

    NARCIS (Netherlands)

    Vas bhat, R.D.; Kuipers, J.A.M.; Versteeg, Geert

    2000-01-01

    An absorption model to study gas¿liquid mass transfer accompanied by reversible two-step reactions in the liquid phase has been presented. This model has been used to determine mass transfer rates, enhancement factors and concentration profiles over a wide range of process conditions. Although

  7. Quasielastic reactions

    International Nuclear Information System (INIS)

    Henning, W.

    1979-01-01

    Quasielastic reaction studies, because of their capability to microscopically probe nuclear structure, are still of considerable interest in heavy-ion reactions. The recent progress in understanding various aspects of the reaction mechanism make this aim appear closer. The relation between microscopic and macroscopic behavior, as suggested, for example, by the single proton transfer data to individual final states or averaged excitation energy intervals, needs to be explored. It seems particularly useful to extend measurements to higher incident energies, to explore and understand nuclear structure aspects up to the limit of the energy range where they are important

  8. Mass transfer with complex reversible chemical reactions—II. parallel reversible chemical reactions

    OpenAIRE

    Versteeg, G.F.; Kuipers, J.A.M.; Beckum, F.P.H. van; Swaaij, W.P.M. van

    1990-01-01

    An absorption model has been developed which can be used to calculate rapidly absorption rates for the phenomenon mass transfer accompanied by multiple complex parallel reversible chemical reactions. This model can be applied for the calculation of the mass transfer rates, enhancement factors and concentration profiles for a wide range of processes and conditions, for both film and penetration model. With the aid of this mass transfer model it is demonstrated that the absorption rates in syst...

  9. Direct Observation of Double Hydrogen Transfer via Quantum Tunneling in a Single Porphycene Molecule on a Ag(110) Surface.

    Science.gov (United States)

    Koch, Matthias; Pagan, Mark; Persson, Mats; Gawinkowski, Sylwester; Waluk, Jacek; Kumagai, Takashi

    2017-09-13

    Quantum tunneling of hydrogen atoms (or protons) plays a crucial role in many chemical and biological reactions. Although tunneling of a single particle has been examined extensively in various one-dimensional potentials, many-particle tunneling in high-dimensional potential energy surfaces remains poorly understood. Here we present a direct observation of a double hydrogen atom transfer (tautomerization) within a single porphycene molecule on a Ag(110) surface using a cryogenic scanning tunneling microscope (STM). The tautomerization rates are temperature independent below ∼10 K, and a large kinetic isotope effect (KIE) is observed upon substituting the transferred hydrogen atoms by deuterium, indicating that the process is governed by tunneling. The observed KIE for three isotopologues and density functional theory calculations reveal that a stepwise transfer mechanism is dominant in the tautomerization. It is also found that the tautomerization rate is increased by vibrational excitation via an inelastic electron tunneling process. Moreover, the STM tip can be used to manipulate the tunneling dynamics through modification of the potential landscape.

  10. The 2H(e, e' p)n reaction at large energy transfers

    NARCIS (Netherlands)

    Willering, Hendrik Willem

    2003-01-01

    At the ELSA accelerator facillity in Bonn, Germany, we have measured the deutron "breakup" reaction 2H(e,e' p)n at four-momentum transfers around Q2 = -0 .20(GeV/c)2 with an electron beam energy of E0 = 1.6 GeV. The cross section has been determined for energy transfers extending from the

  11. Single-electron transfer in palladium complexes of 1,4-naphthoquinone-containing bis(pyrazol-1-yl)methane ligands.

    Science.gov (United States)

    Scheuermann, Sebastian; Sarkar, Biprajit; Bolte, Michael; Bats, Jan W; Lerner, Hans-Wolfram; Wagner, Matthias

    2009-10-05

    A 1,4-naphthoquinone-substituted bis(pyrazol-1-yl)methane ligand (N--N) has been synthesized and transformed into its corresponding Pd(II) chelate complex [(N--N)PdCl(2)]. Both N--N and [(N--N)PdCl(2)] have been fully characterized by NMR spectroscopy, spectro-electrochemistry, and X-ray crystallography. After treatment of [(N--N)PdCl(2)] with NEt(3), the signature of a 1,4-naphthosemiquinonate radical is visible in the UV-vis- and electron paramagnetic resonance (EPR) spectrum of the reaction mixture; the free ligand N--N does not react with NEt(3) under the conditions applied. It is therefore concluded that NEt(3) first reduces the Pd(II)-ion of [(N--N)PdCl(2)] to the zero-valent state and that this reaction is followed by a single-electron transfer from the metal atom to the 1,4-naphthoquinone moiety. The complex has been specifically designed to disfavor any direct Pd-to-naphthoquinone coordination. Electron transfer thus proceeds through space or, less likely, via sigma-bonds of the ligand framework.

  12. Elastic scattering and cluster-transfer reactions of 98Rb on 7Li at REX-ISOLDE

    CERN Document Server

    Bouma, Jake

    Exotic nuclei are nuclei with unusual proton to neutron ratios that exist far away from stability. Due to their instability, these nuclei are only available for nuclear reactions as radioactive ion beams. Experiments must therefore be performed in inverse kinematics at advanced radioactive isotope separation and acceleration facilities. REX-ISOLDE at CERN is one such facility, capable of producing post-accelerated radioactive ion beams with energies up to 2.85 MeV/u. Cluster-transfer reactions in inverse kinematics with a $^{7}$Li target are proposed as a tool for the study of exotic nuclei at REX-ISOLDE. In these reactions, either the $\\alpha$ or triton clusters that make up the weakly bound $^{7}$Li nucleus can be transfered to the beam nucleus. The remaining cluster that is not transferred can be detected, and identifies the particular transfer channel. Through this mechanism it is possible to populate states of very high spin, which is useful for $\\gamma$-spectroscopy in poorly known exotic regions. Speci...

  13. Exciplex mediated photoinduced electron transfer reactions of phthalocyanine-fullerene dyads

    NARCIS (Netherlands)

    Niemi, Marja; Tkachenko, Nikolai V.; Efimov, Alexander; Lehtivuori, Heli; Ohkubo, Kei; Fukuzumi, Shunichi; Lemmetyinen, Helge

    2008-01-01

    Evidences of an intramolecular exciplex intermediate in a photoinduced electron transfer (ET) reaction of double-linked free-base and zinc phthalocyanine-C-60 dyads were found. This was the first time for a dyad with phthalocyanine donor. Excitation of the phthalocyanine moiety of the dyads results

  14. Quantitative control of mitochondria transfer between live single cells using a microfluidic device

    Directory of Open Access Journals (Sweden)

    Ken-Ichi Wada

    2017-12-01

    Full Text Available Quantitative control of mitochondria transfer between live cells is a promising approach for genetic manipulation of mitochondrial DNA (mtDNA because single mitochondrion transfer to a mtDNA-less (ρ0 cell potentially leads to homoplasmy of mtDNA. In this paper, we describe a method for quantitative control of mitochondria transfer between live single cells. For this purpose, we fabricated novel microfluidic devices having cell paring structures with a 4.1, 5.6 or 10.0 μm-length microtunnel. When cells were fused through a microtunnel using the Sendai virus envelope-based method, a strictured cytoplasmic connection was achieved with a length corresponding to that of the microtunnel. Elongation of the cytoplasmic connection led to a decrease in mitochondria transfer to the fusion partner. Moreover, some cell pairs that fused through a 10.0 μm-length microtunnel showed single mitochondrion transfer. Fused cells were spontaneously disconnected from each other when they were recovered in a normal culture medium. These results suggest that our cell fusion method can perform quantitative control of mitochondria transfer that includes a single mitochondrion transfer.

  15. Communication: Transfer Ionization in a Thermal Reaction of a Cation and Anion: Ar+ with Br and I (Postprint)

    Science.gov (United States)

    2016-01-29

    AFRL-RV-PS- AFRL-RV-PS- TP-2015-0016 TP-2015-0016 COMMUNICATION: TRANSFER IONIZATION IN A THERMAL REACTION OF A CATION AND ANION: AR+ WITH BR...DATES COVERED (From - To) 01 Jun 2013 – 23 Sep 2013 4. TITLE AND SUBTITLE Communication: Transfer Ionization in a Thermal Reaction of a Cation and Anion...Rights. Communication: Transfer ionization in a thermal reaction of a cation and anion: Ar+ with Br− and I− Nicholas S. Shuman, Thomas M. Miller

  16. Electron transfer reactions of macrocyclic compounds of cobalt

    Energy Technology Data Exchange (ETDEWEB)

    Heckman, R.A.

    1978-08-01

    The kinetics and mechanisms of reduction of H/sub 2/O/sub 2/, Br/sub 2/, and I/sub 2/ by various macrocyclic tetraaza complexes of cobalt(II), including Vitamin B/sub 12r/, were studied. The synthetic macrocycles studied were all 14-membered rings which varied in the degree of unsaturation,substitution of methyl groups on the periphery of the ring, and substitution within the ring itself. Scavenging experiments demonstrated that the reductions of H/sub 2/O/sub 2/ produce free hydroxyl radicals only in the case of Co((14)ane)/sup 2 +/ but with none of the others. In the latter instances apparently H/sub 2/O/sub 2/ simultaneously oxidizes the metal center and the ligand. The reductions of Br/sub 2/ and I/sub 2/ produce an aquohalocobalt(III) product for all reductants (except B/sub 12r/ + Br/sub 2/, which was complicated by bromination of the corrin ring). The mechanism of halogen reduction was found to involve rate-limiting inner-sphere electron transfer from cobalt to halogen to produce a dihalide anion coordinated to the cobalt center. This intermediate subsequently decomposes in rapid reactions to halocobalt(III) and halogen atom species or reacts with another cobalt(II) center to give two molecules of halocobalt(III). The reductions of halomethylcobaloximes and related compounds and diamminecobaloxime by Cr/sup 2 +/ were also studied. The reaction was found to be biphasic in all cases with the reaction products being halomethane (for the halomethylcobaloximes), Co/sup 2 +/ (in less than 100 percent yield), a Cr(III)-dimethylglyoxime species, a small amount of free dmgH/sub 2/, and a highly-charged species containing both cobalt and chromium. The first-stage reaction occurs with a stoichiometry of 1:1 producing an intermediate with an absorption maximum at 460 nm for all starting reagents. The results were interpreted in terms of inner-sphere coordination of the cobaloxime to the Cr(II) and electron transfer through the oxime N-O bond.

  17. Intramolecular electron transfer in single-site-mutated azurins

    DEFF Research Database (Denmark)

    Farver, O; Skov, L K; Pascher, T

    1993-01-01

    . Natl. Acad. Sci. U.S.A. 86, 6968-6972]. The RSSR- radical produced in the above reaction was reoxidized in a slower intramolecular electron-transfer process (30-70 s-1 at 298 K) concomitant with a further reduction of the Cu(II) ion. The temperature dependence of the latter rates was determined......, lambda = 135 kJ mol-1 for the reorganization energy was derived. When Trp48, situated midway between the donor and the acceptor, was replaced by Leu or Met, only a small change in the rate of intramolecular electron transfer was observed, indicating that the aromatic residue in this position...... is apparently only marginally involved in electron transfer in wild-type azurin. Pathway calculations also suggest that a longer, through-backbone path is more efficient than the shorter one involving Trp48. The former pathway yields an exponential decay factor, beta, of 6.6 nm-1. Another mutation, raising...

  18. Influence of zeolite pore structure on product selectivities for protolysis and hydride transfer reactions in the cracking of n-pentane.

    Science.gov (United States)

    Miyaji, Akimitsu; Iwase, Yasuyoshi; Nishitoba, Toshiki; Long, Nguyen Quang; Motokura, Ken; Baba, Toshihide

    2015-02-21

    The conversion of n-pentane was carried out to examine the effects of reaction conditions on changes in product selectivities at 823 K, using zeolites with 10- and 12-membered rings. We also investigated the influence of the pore structure of these zeolites on their catalytic activities for both protolysis and hydride transfer reactions. In the first half of this work, we examined the influence of acidic proton concentration and n-pentane pressure on the reaction rates for protolysis and hydride transfer reactions using ZSM-5 zeolites. The rates of hydride transfer reactions were more influenced by pentane pressure compared to protolysis reactions, and were proportional to the square of n-pentane pressure and the concentration of acidic protons. In the second half of this work, the influence of the zeolite pore structure on changes in product selectivities with n-pentane conversion and that on the rates of protolysis and the hydride transfer reactions were revealed using various zeolites with 10- and 12-membered rings. The catalytic activities of zeolites for the protolysis and hydride transfer reactions were influenced more by the spatial volume of the zeolite cavity than the acid strength of protons on the zeolite.

  19. Understanding the two neutron transfer reaction mechanism in {sup 206}Pb({sup 18}O,{sup 16}O){sup 208}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, A.; Sonika [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai - 400 085 (India); Roy, B.J., E-mail: bjroy@barc.gov.in [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai - 400 085 (India); Jha, V.; Pal, U.K. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai - 400 085 (India); Sinha, T. [High Energy Nuclear and Particle Physics Division, Saha Institute of Nuclear Physics, Kolkata - 700 064 (India); Pandit, S.K.; Parkar, V.V.; Ramachandran, K.; Mahata, K.; Santra, S.; Mohanty, A.K. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai - 400 085 (India)

    2015-08-15

    The absolute cross sections for elastic scattering and two-neutron transfer reaction for {sup 18}O + {sup 206}Pb system have been measured at an incident energy near the Coulomb barrier. Detailed coupled reaction channel calculations have been carried out for description of the measured angular distributions for the elastic scattering and transfer reactions simultaneously. The two-neutron transfer reaction {sup 206}Pb({sup 18}O, {sup 16}O){sup 208}Pb in the g.s. → g.s. transition is analyzed in (i) extreme cluster model assuming a di-neutron transfer, (ii) two-step successive transfer, and (iii) microscopic approach (independent coordinate scheme) of simultaneous transfer of two neutrons. The relative importance of one step simultaneous transfer versus two-step successive transfer has been studied. Present analysis suggests dominance of cluster transfer of a di-neutron. The contribution from the two-step sequential processes is less significant, however, the combined “two-step plus simultaneous (microscopic)” calculations give a reasonably good agreement with the measurement. The possibility of multi-step route via projectile and target excitations and contribution from such indirect transfer paths to the present two-neutron transfer cross section has been investigated.

  20. Kinetic Monte Carlo modeling of chemical reactions coupled with heat transfer.

    Science.gov (United States)

    Castonguay, Thomas C; Wang, Feng

    2008-03-28

    In this paper, we describe two types of effective events for describing heat transfer in a kinetic Monte Carlo (KMC) simulation that may involve stochastic chemical reactions. Simulations employing these events are referred to as KMC-TBT and KMC-PHE. In KMC-TBT, heat transfer is modeled as the stochastic transfer of "thermal bits" between adjacent grid points. In KMC-PHE, heat transfer is modeled by integrating the Poisson heat equation for a short time. Either approach is capable of capturing the time dependent system behavior exactly. Both KMC-PHE and KMC-TBT are validated by simulating pure heat transfer in a rod and a square and modeling a heated desorption problem where exact numerical results are available. KMC-PHE is much faster than KMC-TBT and is used to study the endothermic desorption of a lattice gas. Interesting findings from this study are reported.

  1. On the development of a grid-enhanced single-phase convective heat transfer correlation

    International Nuclear Information System (INIS)

    Miller, D.J.; Cheung, F.B.; Bajorek, S.M.

    2011-01-01

    A new single-phase convective heat transfer augmentation correlation has been developed using single phase steam cooling experimental data obtained from the Penn State/NRC Rod Bundle Heat Transfer (RBHT) facility. Experimental data obtained from the RBHT single phase steam cooling tests have been evaluated and new findings identified. Previous rod bundle tests showed the importance of spacer grid on the local heat transfer, and that the augmentation in heat transfer downstream of a grid decays exponentially. The RBHT data also shows that the Reynolds number affects the rate at which this augmentation decays. The new correlation includes the strong dependence of heat transfer on both the Reynolds number and the grid blockage ratio. While the effects of both parameters were clearly evident in the RBHT experimental data, existing correlations do not account for the Reynolds number effect. The developed correlation incorporates Reynolds number in the decay curve of heat transfer. The newly developed correlation adequately accounts for the dependence of the heat transfer augmentation decay rate on the local flow Reynolds number. (author)

  2. Single-molecule detection of dihydroazulene photo-thermal reaction using break junction technique

    Science.gov (United States)

    Huang, Cancan; Jevric, Martyn; Borges, Anders; Olsen, Stine T.; Hamill, Joseph M.; Zheng, Jue-Ting; Yang, Yang; Rudnev, Alexander; Baghernejad, Masoud; Broekmann, Peter; Petersen, Anne Ugleholdt; Wandlowski, Thomas; Mikkelsen, Kurt V.; Solomon, Gemma C.; Brøndsted Nielsen, Mogens; Hong, Wenjing

    2017-05-01

    Charge transport by tunnelling is one of the most ubiquitous elementary processes in nature. Small structural changes in a molecular junction can lead to significant difference in the single-molecule electronic properties, offering a tremendous opportunity to examine a reaction on the single-molecule scale by monitoring the conductance changes. Here, we explore the potential of the single-molecule break junction technique in the detection of photo-thermal reaction processes of a photochromic dihydroazulene/vinylheptafulvene system. Statistical analysis of the break junction experiments provides a quantitative approach for probing the reaction kinetics and reversibility, including the occurrence of isomerization during the reaction. The product ratios observed when switching the system in the junction does not follow those observed in solution studies (both experiment and theory), suggesting that the junction environment was perturbing the process significantly. This study opens the possibility of using nano-structured environments like molecular junctions to tailor product ratios in chemical reactions.

  3. Some general features of alpha-particle pick-up reactions

    International Nuclear Information System (INIS)

    Becchetti, F.D.; Jaenecke, J.

    1982-01-01

    The general features of single- and multi-α transfer reactions are discussed. While there are numerous difficulties in extracting α-particle ''spectroscopic'' factors, the reduced α-widths extracted appear to be meaningful. These can be related, in an absolute fashion, to α-decay widths (or α-decay lifetimes). Simpler theories describing α-particle transfer reactions are needed and should be formulated in terms of α-widths, i.e. α-particle densities in the nuclear periphery. These are the quantities measured in most experiments. IBA and SU 3 models appear to be most relevant and should be extended to α-transfer reactions for heavy nuclei. (Auth.)

  4. The effect of intramolecular quantum modes on free energy relationships for electron transfer reactions

    DEFF Research Database (Denmark)

    Ulstrup, Jens; Jortner, Joshua

    1975-01-01

    A general quantum mechanical description of exothermic electron transfer reactions is formulated by treating such reactions as the nonradiative decay of a ''supermolecule'' consisting of the electron donor, the electron acceptor, and the polar solvent. In particular, the role of the high-frequenc...

  5. Detachment of CVD-grown graphene from single crystalline Ni films by a pure gas phase reaction

    Science.gov (United States)

    Zeller, Patrick; Henß, Ann-Kathrin; Weinl, Michael; Diehl, Leo; Keefer, Daniel; Lippmann, Judith; Schulz, Anne; Kraus, Jürgen; Schreck, Matthias; Wintterlin, Joost

    2016-11-01

    Despite great previous efforts there is still a high need for a simple, clean, and upscalable method for detaching epitaxial graphene from the metal support on which it was grown. We present a method based on a pure gas phase reaction that is free of solvents and polymer supports and avoids mechanical transfer steps. The graphene was grown on 150 nm thick, single crystalline Ni(111) films on Si(111) wafers with YSZ buffer layers. Its quality was monitored by using low energy electron diffraction and scanning tunneling microscopy. The gas phase etching uses a chemical transport reaction, the so-called Mond process, based on the formation of gaseous nickel tetracarbonyl in 1 bar of CO at 75 °C and by adding small amounts of sulfide catalysts. X-ray photoelectron spectroscopy, Raman spectroscopy and scanning electron microscopy were used to characterize the detached graphene. It was found that the method successfully removes the nickel from underneath the graphene layer, so that the graphene lies on the insulating oxide buffer layer. Small residual particles of nickel sulfide and cracks in the obtained graphene layer were identified. The defect concentrations were comparable to graphene samples obtained by wet chemical etching and by the bubbling transfer.

  6. A single residue controls electron transfer gating in photosynthetic reaction centers

    Czech Academy of Sciences Publication Activity Database

    Shlyk, O.; Samish, I.; Matěnová, M.; Dulebo, A.; Poláková, H.; Kaftan, David; Scherz, A.

    2017-01-01

    Roč. 7, MAR 16 (2017), s. 1-13, č. článku 44580. ISSN 2045-2322 R&D Projects: GA ČR GA15-00703S; GA MŠk(CZ) LO1416 Institutional support: RVO:61388971 Keywords : BACTERIAL REACTION CENTERS * INDUCED STRUCTURAL-CHANGES * ATOMIC-FORCE MICROSCOPE Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 4.259, year: 2016

  7. Investigation of the unbound 21C nucleus via transfer reaction

    Directory of Open Access Journals (Sweden)

    Fukui Tokuro

    2014-03-01

    Full Text Available The cross section of the transfer reaction 20C(d,p21C at 30.0 MeV is investigated. The continuum-discretized coupled-channels method (CDCC is used in order to obtain the final state wave function. The smoothing procedure of the transition matrix and the channel-coupling effect on the cross section are discussed.

  8. Pentanidium-catalyzed enantioselective phase-transfer conjugate addition reactions

    KAUST Repository

    Ma, Ting

    2011-03-09

    A new chiral entity, pentanidium, has been shown to be an excellent chiral phase-transfer catalyst. The enantioselective Michael addition reactions of tert-butyl glycinate-benzophenone Schiff base with various α,β- unsaturated acceptors provide adducts with high enantioselectivities. A successful gram-scale experiment at a low catalyst loading of 0.05 mol % indicates the potential for practical applications of this methodology. Phosphoglycine ester analogues can also be utilized as the Michael donor, affording enantioenriched α-aminophosphonic acid derivatives and phosphonic analogues of (S)-proline. © 2011 American Chemical Society.

  9. Molecular dynamics simulation of the first electron transfer step in the oxygen reduction reaction

    NARCIS (Netherlands)

    Hartnig, C.B.; Koper, M.T.M.

    2002-01-01

    We present a molecular dynamics simulation of solvent reorganization in the first electron transfer step in the oxygen reduction reaction, i.e. O2+e-¿O2-, modeled as taking place in the outer Helmholtz plane. The first electron transfer step is usually considered the rate-determining step from many

  10. Transfer and breakup reactions in 16O + CsI at 16.4 MeV/n

    Directory of Open Access Journals (Sweden)

    M.J. Murphy

    1983-01-01

    Full Text Available A streamer-chamber particle-telescope system has been used to observe ejectile charge, energy, and associated charged particle multiplicity in the reaction of 16O + CsI at 16.4 MeV/n. The measurement provides relative probabilities for transfer and projectile breakup as a function of ejectile charge, and spectra for the heavy ejectiles from transfer and breakup events. The results show that the interaction energy of 16.4 MeV/n is near the threshold for breakup reactions in heavy-ion collisions.

  11. Cost-effectiveness of single versus double embryo transfer in IVF in relation to female age

    NARCIS (Netherlands)

    van Loendersloot, Laura L.; Moolenaar, Lobke M.; van Wely, Madelon; Repping, Sjoerd; Bossuyt, Patrick M.; Hompes, Peter G. A.; van der Veen, Fulco; Mol, Ben Willem J.

    2017-01-01

    Objective: To evaluate the cost-effectiveness of single embryo transfer followed by an additional frozen thawed single embryo transfer, if more embryos are available, as compared to double embryo transfer in relation to female age. Study design: We used a decision tree model to evaluate the costs

  12. Time-resolved energy transfer from single chloride-terminated nanocrystals to graphene

    International Nuclear Information System (INIS)

    Ajayi, O. A.; Wong, C. W.; Anderson, N. C.; Wolcott, A.; Owen, J. S.; Cotlet, M.; Petrone, N.; Hone, J.; Gu, T.; Gesuele, F.

    2014-01-01

    We examine the time-resolved resonance energy transfer of excitons from single n-butyl amine-bound, chloride-terminated nanocrystals to two-dimensional graphene through time-correlated single photon counting. The radiative biexponential lifetime kinetics and blinking statistics of the individual surface-modified nanocrystal elucidate the non-radiative decay channels. Blinking modification as well as a 4× reduction in spontaneous emission were observed with the short chloride and n-butylamine ligands, probing the energy transfer pathways for the development of graphene-nanocrystal nanophotonic devices

  13. Time-resolved energy transfer from single chloride-terminated nanocrystals to graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ajayi, O. A., E-mail: oaa2114@columbia.edu, E-mail: cww2104@columbia.edu; Wong, C. W., E-mail: oaa2114@columbia.edu, E-mail: cww2104@columbia.edu [Optical Nanostructures Laboratory, Center for Integrated Science and Engineering, Solid-State Science and Engineering, Columbia University, New York, New York 10027 (United States); Department of Mechanical Engineering, Columbia University, New York, New York 10027 (United States); Anderson, N. C.; Wolcott, A.; Owen, J. S. [Department of Chemistry, Columbia University, New York, New York 10027 (United States); Cotlet, M. [Brookhaven National Laboratory, Upton, New York, New York 11973 (United States); Petrone, N.; Hone, J. [Department of Mechanical Engineering, Columbia University, New York, New York 10027 (United States); Gu, T.; Gesuele, F. [Optical Nanostructures Laboratory, Center for Integrated Science and Engineering, Solid-State Science and Engineering, Columbia University, New York, New York 10027 (United States)

    2014-04-28

    We examine the time-resolved resonance energy transfer of excitons from single n-butyl amine-bound, chloride-terminated nanocrystals to two-dimensional graphene through time-correlated single photon counting. The radiative biexponential lifetime kinetics and blinking statistics of the individual surface-modified nanocrystal elucidate the non-radiative decay channels. Blinking modification as well as a 4× reduction in spontaneous emission were observed with the short chloride and n-butylamine ligands, probing the energy transfer pathways for the development of graphene-nanocrystal nanophotonic devices.

  14. Delay-induced wave instabilities in single-species reaction-diffusion systems

    Science.gov (United States)

    Otto, Andereas; Wang, Jian; Radons, Günter

    2017-11-01

    The Turing (wave) instability is only possible in reaction-diffusion systems with more than one (two) components. Motivated by the fact that a time delay increases the dimension of a system, we investigate the presence of diffusion-driven instabilities in single-species reaction-diffusion systems with delay. The stability of arbitrary one-component systems with a single discrete delay, with distributed delay, or with a variable delay is systematically analyzed. We show that a wave instability can appear from an equilibrium of single-species reaction-diffusion systems with fluctuating or distributed delay, which is not possible in similar systems with constant discrete delay or without delay. More precisely, we show by basic analytic arguments and by numerical simulations that fast asymmetric delay fluctuations or asymmetrically distributed delays can lead to wave instabilities in these systems. Examples, for the resulting traveling waves are shown for a Fisher-KPP equation with distributed delay in the reaction term. In addition, we have studied diffusion-induced instabilities from homogeneous periodic orbits in the same systems with variable delay, where the homogeneous periodic orbits are attracting resonant periodic solutions of the system without diffusion, i.e., periodic orbits of the Hutchinson equation with time-varying delay. If diffusion is introduced, standing waves can emerge whose temporal period is equal to the period of the variable delay.

  15. Long-range versus short-range correlations in the two-neutron transfer reaction 64Ni(18O,16O)66Ni

    Science.gov (United States)

    Paes, B.; Santagati, G.; Vsevolodovna, R. Magana; Cappuzzello, F.; Carbone, D.; Cardozo, E. N.; Cavallaro, M.; García-Tecocoatzi, H.; Gargano, A.; Ferreira, J. L.; Lenzi, S. M.; Linares, R.; Santopinto, E.; Vitturi, A.; Lubian, J.

    2017-10-01

    Recently, various two-neutron transfer studies using the (18O,16O) reaction were performed with a large success. This was achieved because of a combined use of the microscopic quantum description of the reaction mechanism and of the nuclear structure. In the present work we use this methodology to study the two-neutron transfer reaction of the 18O+64Ni system at 84 MeV incident energy, to the ground and first 2+ excited state of the residual 66Ni nucleus. All the experimental data were measured by the large acceptance MAGNEX spectrometer at the Instituto Nazionale di Fisica Nucleare -Laboratori Nazionali del Sud (Italy). We have performed exact finite range cross section calculations using the coupled channel Born approximation (CCBA) and coupled reaction channel (CRC) method for the sequential and direct two-neutron transfers, respectively. Moreover, this is the first time that the formalism of the microscopic interaction boson model (IBM-2) was applied to a two-neutron transfer reaction. From our results we conclude that for two-neutron transfer to the ground state of 66Ni, the direct transfer is the dominant reaction mechanism, whereas for the transfer to the first excited state of 66Ni, the sequential process dominates. A competition between long-range and short-range correlations is discussed, in particular, how the use of two different models (Shell model and IBM's) help to disentangle long- and short-range correlations.

  16. The improvement of the heat transfer model for sodium-water reaction jet code

    International Nuclear Information System (INIS)

    Hashiguchi, Yoshirou; Yamamoto, Hajime; Kamoshida, Norio; Murata, Shuuichi

    2001-02-01

    For confirming the reasonable DBL (Design Base Leak) on steam generator (SG), it is necessary to evaluate phenomena of sodium-water reaction (SWR) in an actual steam generator realistically. The improvement of a heat transfer model on sodium-water reaction (SWR) jet code (LEAP-JET ver.1.40) and application analysis to the water injection tests for confirmation of propriety for the code were performed. On the improvement of the code, the heat transfer model between a inside fluid and a tube wall was introduced instead of the prior model which was heat capacity model including both heat capacity of the tube wall and inside fluid. And it was considered that the fluid of inside the heat exchange tube was able to treat as water or sodium and typical heat transfer equations used in SG design were also introduced in the new heat transfer model. Further additional work was carried out in order to improve the stability of the calculation for long calculation time. The test calculation using the improved code (LEAP-JET ver.1.50) were carried out with conditions of the SWAT-IR·Run-HT-2 test. It was confirmed that the SWR jet behavior on the result and the influence to the result of the heat transfer model were reasonable. And also on the improved code (LEAP-JET ver.1.50), user's manual was revised with additional I/O manual and explanation of the heat transfer model and new variable name. (author)

  17. Spin transfer in reactions between heavy ions

    International Nuclear Information System (INIS)

    Dong Pil Min.

    1980-06-01

    The model presented affords a better understanding of the manner in which the orbital angular moment can be converted into an intrinsic spin in the collision between two heavy ions. After referring to the vector fields and the collective energy of a spheroidal nucleus, the calculation of the exchange of nucleons is described and the dissipation function is constructed. The spin transfer and the reorientation of the spin during the reaction are then examined (effect of friction and vibration). The estimated calculations are compared with the results of the 63 Cu+ 197 Au and 86 Kr+ 209 Bi experiments. The sensitivity of the calculation to the parameters of the model is discussed (nuclear potential, vibrational inertial parameter) [fr

  18. Membrane introduction proton-transfer-reaction mass spectrometry

    International Nuclear Information System (INIS)

    Alexander, M.; Boscaini, E.; Maerk, T.; Lindinger, W.

    2002-01-01

    Proton-transfer-reaction mass spectrometry (PTR-MS) is a rapidly expanding field with multiple applications in ion physics, atmospheric chemistry, food chemistry, volatile organic compounds monitoring and biology. Initial studies that combine PTR-MS and membrane introduction mass spectrometry (MIMS) were researched and outlined. First using PTR-MS, certain fundamental physical properties of a poly-dimethylsiloxane (PDMS) membrane including solubilities and diffusion coefficients were measured. Second, it was shown how the chemical selectivity of the (PDMS) can be used to extend the capabilities of the PTR-MS instrument by eliminating certain isobaric interferences and excluding water from volatile organic compounds (VOCs). Experiments with mixtures of several VOCs (toluene, benzene, acetone, propanal, methanol) are presented. (nevyjel)

  19. Momentum transfer in relativistic heavy ion charge-exchange reactions

    Science.gov (United States)

    Townsend, L. W.; Wilson, J. W.; Khan, F.; Khandelwal, G. S.

    1991-01-01

    Relativistic heavy ion charge-exchange reactions yield fragments (Delta-Z = + 1) whose longitudinal momentum distributions are downshifted by larger values than those associated with the remaining fragments (Delta-Z = 1, -2,...). Kinematics alone cannot account for the observed downshifts; therefore, an additional contribution from collision dynamics must be included. In this work, an optical model description of collision momentum transfer is used to estimate the additional dynamical momentum downshift. Good agreement between theoretical estimates and experimental data is obtained.

  20. Heterogeneous Single-Atom Catalyst for Visible-Light-Driven High-Turnover CO2 Reduction: The Role of Electron Transfer.

    Science.gov (United States)

    Gao, Chao; Chen, Shuangming; Wang, Ying; Wang, Jiawen; Zheng, Xusheng; Zhu, Junfa; Song, Li; Zhang, Wenkai; Xiong, Yujie

    2018-03-01

    Visible-light-driven conversion of CO 2 into chemical fuels is an intriguing approach to address the energy and environmental challenges. In principle, light harvesting and catalytic reactions can be both optimized by combining the merits of homogeneous and heterogeneous photocatalysts; however, the efficiency of charge transfer between light absorbers and catalytic sites is often too low to limit the overall photocatalytic performance. In this communication, it is reported that the single-atom Co sites coordinated on the partially oxidized graphene nanosheets can serve as a highly active and durable heterogeneous catalyst for CO 2 conversion, wherein the graphene bridges homogeneous light absorbers with single-atom catalytic sites for the efficient transfer of photoexcited electrons. As a result, the turnover number for CO production reaches a high value of 678 with an unprecedented turnover frequency of 3.77 min -1 , superior to those obtained with the state-of-the-art heterogeneous photocatalysts. This work provides fresh insights into the design of catalytic sites toward photocatalytic CO 2 conversion from the angle of single-atom catalysis and highlights the role of charge kinetics in bridging the gap between heterogeneous and homogeneous photocatalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Studies of transfer reactions of photosensitized electrons involving complexes of transition metals in view of solar energy storage

    International Nuclear Information System (INIS)

    Takakubo, Masaaki

    1984-01-01

    This research thesis addresses electron transfer reactions occurring during photosynthesis, for example, photosensitized reaction in which chlorophyll is the sensitizer. More specifically, the author studied experimentally electron photo-transfers with type D sensitizers (riboflavin, phenoxazine and porphyrin), and various complexes of transition metals. After a presentation of these experiments, the author describes the photosensitisation process (photo-physics of riboflavin, oxygen deactivation, sensitized photo-oxidation and photo-reduction). The theoretical aspect of electron transfer is then addressed: generalities, deactivation of the riboflavin triplet, initial efficiency of electron transfer. Experimental results on three basic processes (non-radiative deactivation, energy transfer, electron transfer) are interpreted in a unified way by using the non-radiative transfer theory. Some applications are described: photo-electrochemical batteries, photo-oxidation and photo-reduction of the cobalt ion

  2. Study of neutron-proton pairing in N=Z unstable nuclei through transfer reactions

    International Nuclear Information System (INIS)

    Le Crom, B.

    2016-01-01

    A nucleus is described as a set of independent neutrons and protons linked by a mean-field potential. However, in order to have a better description one needs to take into account some residual interactions such as pairing. Neutron-neutron and proton-proton pairings are well-studied but neutron-proton pairing is not well-known. np pairing can be isovector pairing such as nn and pp pairing or isoscalar which is yet unknown. Over-binding of N=Z nuclei could be a manifestation of np pairing. We have studied np pairing through transfer reactions. In this case, the cross-section of np pair transfer is expected to be enhanced in the presence of important np pairing. np pairing is expected to be important in N=Z nuclei with high J orbitals. Since the development of radioactive beam facilities, such beams are only available. The experiment was performed at GANIL with an efficient set-up so as to detect products from the (p, 3 He) transfer reaction. This reaction is affected by isovector and isoscalar np pairing. We used 56 Ni and 52 Fe beams so as to see the effect of the occupancy of 0f 7/2 shell on the np pairing. First, we analysed the data from the 56 Ni(p,d) 55 Ni reaction and we compared the results with the literature to validate analysis procedure. After analysing data from the 56 Ni(p, 3 He) 54 Co reaction and extracting the population of the various states of 54 Co, we obtained information about the relative intensity between isoscalar and isovector np pairing in 56 Ni showing the predominance of isovector np pairing in this nucleus. Moreover, in the framework of developing a new charged particle detector, research on the discrimination of light nuclei using pulse shape analysis was performed and is also presented. (author)

  3. Visualization of Natural Convection Heat Transfer on a Single Sphere using the Electroplating System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Young; Chung, Bum Jin [Kyunghee University, Yongin (Korea, Republic of)

    2016-05-15

    The natural convective flows on outer sphere rise along surface. At top of sphere, the flows are lifted-up plume shape. For laminar flows, the local heat transfer shows maximum at the bottom of sphere and a monotonic decreases as flows approached to the top. The laminar natural convection heat transfer on a single sphere has been studied experimentally and numerically by several researchers. However, relatively less study has been performed for turbulent flows as it requires large facilities to achieve high Rayleigh numbers. The flows, which occur transition, is hard to experiment because of unstable. This study tried measurement of heat transfer and visualization external natural convection on a single sphere. The basic idea is that the plating patterns of copper on the sphere in mass transfer system will reveal the amount of heat transfer according to angular distance from the bottom. This study simulated natural convection on a single sphere and performed a mass transfer experiment using heat and mass transfer analogy concept. For visualization experiment, streak form plating pattern was observed. In this case, it seems that turbulence sets on the top of sphere and increases local heat transfer.

  4. Imaging the electron transfer reaction of Ne2+ with Ar using position-sensitive coincidence spectroscopy

    International Nuclear Information System (INIS)

    Harper, Sarah M; Hu Wanping; Price, Stephen D

    2002-01-01

    A new experiment, employing position-sensitive detection coupled with time-of-flight mass spectrometry, has been used to investigate the single-electron transfer reaction between Ne 2+ and Ar by detecting the resulting pairs of singly charged ions in coincidence. The experimental technique allows the determination of the individual velocity vectors of the ionic products, in the centre-of-mass frame, for each reactive event detected. The experiments show that forward scattering dominates the reactivity, although a bimodal angular distribution is apparent. In addition, the spectra show that at laboratory frame collision energies from 4-14 eV the reactivity is dominated by Ne 2+ (2p 4 , 3 P) accepting an electron from an argon atom to form the ground state of Ne + together with an Ar + ion in an excited electronic level, predominantly arising from the Ar + (3s 2 3p 4 3d) configuration. The form of this reactivity, and the differences between the reactivity observed in these experiments and those performed at higher collision energies, are well reproduced by Landau-Zener theory

  5. Single-phase convective heat transfer in rod bundles

    International Nuclear Information System (INIS)

    Holloway, Mary V.; Beasley, Donald E.; Conner, Michael E.

    2008-01-01

    The convective heat transfer for turbulent flow through rod bundles representative of nuclear fuel rods used in pressurized water reactors is examined. The rod bundles consist of a square array of parallel rods that are held on a constant pitch by support grids spaced axially along the rod bundle. Split-vane pair support grids, which create swirling flow in the rod bundle, as well as disc and standard support grids are investigated. Single-phase convective heat transfer coefficients are measured for flow downstream of support grids in a rod bundle. The rods are heated using direct resistance heating, and a bulk axial flow of air is used to cool the rods in the rod bundle. Air is used as the working fluid instead of water to reduce the power required to heat the rod bundle. Results indicate heat transfer enhancement for up to 10 hydraulic diameters downstream of the support grids. A general correlation is developed to predict the heat transfer development downstream of support grids. In addition, circumferential variations in heat transfer coefficients result in hot streaks that develop on the rods downstream of split-vane pair support grids

  6. Single-phase convective heat transfer in rod bundles

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, Mary V. [Mechanical Engineering Department, United States Naval Academy, 590 Holloway Rd., Annapolis, MD 21402 (United States)], E-mail: holloway@usna.edu; Beasley, Donald E. [Mechanical Engineering Department, Clemson University, Clemson, SC 29634 (United States); Conner, Michael E. [Westinghouse Nuclear Fuel, 5801 Bluff Road, Columbia, SC 29250 (United States)

    2008-04-15

    The convective heat transfer for turbulent flow through rod bundles representative of nuclear fuel rods used in pressurized water reactors is examined. The rod bundles consist of a square array of parallel rods that are held on a constant pitch by support grids spaced axially along the rod bundle. Split-vane pair support grids, which create swirling flow in the rod bundle, as well as disc and standard support grids are investigated. Single-phase convective heat transfer coefficients are measured for flow downstream of support grids in a rod bundle. The rods are heated using direct resistance heating, and a bulk axial flow of air is used to cool the rods in the rod bundle. Air is used as the working fluid instead of water to reduce the power required to heat the rod bundle. Results indicate heat transfer enhancement for up to 10 hydraulic diameters downstream of the support grids. A general correlation is developed to predict the heat transfer development downstream of support grids. In addition, circumferential variations in heat transfer coefficients result in hot streaks that develop on the rods downstream of split-vane pair support grids.

  7. Experimental research on single phase convection heat transfer in micro-fin tube

    International Nuclear Information System (INIS)

    Fan Guangming; Sun Zhongning; Zhu Sheng

    2011-01-01

    An experimental investigation of heat transfer and flow resistance characteristics of single phase water in three micro-fin tubes with different fin height was conducted. At the same time, the efficiency of micro-fin tubes within the experimental scope was evaluated and the optimal working region was determined. Based on the experimental data in the optimal working region, correlations for predicting the heat transfer and flow resistance were also given by multiple regression method. The result indicates that the micro-fin tubes can greatly enhance the single-phase heat transfer in turbulent flow, and the increase of heat transfer coefficient is higher than the increase of flow resistance. The accuracy of the correlation is very high, of which the deviation from the experimental value is very small. (authors)

  8. Stereochemistry of 1,2-elimination and proton-transfer reactions: toward a unified understanding.

    Science.gov (United States)

    Mohrig, Jerry R

    2013-07-16

    Many mechanistic and stereochemical studies have focused on the breaking of the C-H bond through base-catalyzed elimination reactions. When we began our research, however, chemists knew almost nothing about the stereospecificity of addition-elimination reactions involving conjugated acyclic carbonyl compounds, even though the carbonyl group is a pivotal functional group in organic chemistry. Over the last 25 years, we have studied the addition-elimination reactions of β-substituted acyclic esters, thioesters, and ketones in order to reach a comprehensive understanding of how electronic effects influence their stereochemistry. This Account brings together our understanding of the stereochemistry of 1,2-elimination and proton-transfer reactions, describing how each study has built upon previous work and contributed to our understanding of this field. When we began, chemists thought that anti stereospecificity in base-catalyzed 1,2-elimination reactions occurred via concerted E2 mechanisms, which provide a smooth path for anti elimination. Unexpectedly, we discovered that some E1cBirrev reactions produce the same anti stereospecificity as E2 reactions even though they proceed through diffusionally equilibrated, "free" enolate-anion intermediates. This result calls into question the conventional wisdom that anti stereochemistry must result from a concerted mechanism. While carrying out our research, we developed insights ranging from the role of historical contingency in the evolution of hydratase-dehydratase enzymes to the influence of buffers on the stereochemistry of H/D exchange in D2O. Negative hyperconjugation is the most important concept for understanding our results. This idea provides a unifying view for the largely anti stereochemistry in E1cBirrev elimination reactions and a basis for understanding the stereoelectronic influence of electron-withdrawing β-substituents on proton-transfer reactions.

  9. Microporous hollow fibre membrane modules as gas-liquid contactors. Part 2. Mass transfer with chemical reaction

    NARCIS (Netherlands)

    Kreulen, H.; Versteeg, G.F.; Swaaij, W.P.M. van

    1993-01-01

    Absorption determined by mass transfer in the liquid is described well with the Graetz-Lévèque equation adapted from heat transfer. The influence of a chemical reaction on the mass transfer was simulated with a numerical model and tested on the absorption of CO2 in a hydroxide solution. Absorption

  10. Analysis of Native-Like Proteins and Protein Complexes Using Cation to Anion Proton Transfer Reactions (CAPTR)

    Science.gov (United States)

    Laszlo, Kenneth J.; Bush, Matthew F.

    2015-12-01

    Mass spectra of native-like protein complexes often exhibit narrow charge-state distributions, broad peaks, and contributions from multiple, coexisting species. These factors can make it challenging to interpret those spectra, particularly for mixtures with significant heterogeneity. Here we demonstrate the use of ion/ion proton transfer reactions to reduce the charge states of m/ z-selected, native-like ions of proteins and protein complexes, a technique that we refer to as cation to anion proton transfer reactions (CAPTR). We then demonstrate that CAPTR can increase the accuracy of charge state assignments and the resolution of interfering species in native mass spectrometry. The CAPTR product ion spectra for pyruvate kinase exhibit ~30 peaks and enable unambiguous determination of the charge state of each peak, whereas the corresponding precursor spectra exhibit ~6 peaks and the assigned charge states have an uncertainty of ±3%. 15+ bovine serum albumin and 21+ yeast enolase dimer both appear near m/ z 4450 and are completely unresolved in a mixture. After a single CAPTR event, the resulting product ions are baseline resolved. The separation of the product ions increases dramatically after each subsequent CAPTR event; 12 events resulted in a 3000-fold improvement in separation relative to the precursor ions. Finally, we introduce a framework for interpreting and predicting the figures of merit for CAPTR experiments. More generally, these results suggest that CAPTR strongly complements other mass spectrometry tools for analyzing proteins and protein complexes, particularly those in mixtures.

  11. Vitrified/warmed single blastocyst transfer in preimplantation genetic diagnosis/preimplantation genetic screening cycles.

    Science.gov (United States)

    Huang, Jin; Li, Rong; Lian, Ying; Chen, Lixue; Shi, Xiaodan; Qiao, Jie; Liu, Ping

    2015-01-01

    To investigate the single blastocyst transfer in preimplantation genetic diagnosis (PGD)/preimplantation genetic screening (PGS) cycles. 80 PGD/PGS cycles undergoing blastocyst biopsy were studied. There were 88 warming cycles during the study period. Only one warmed blastocyst was transferred per cycle. The outcomes were followed up to the infants were born. The embryo implantation rate was 54.55% (48/88). The clinical pregnancy rate was 54.55% (48/88) per transfer cycle and 60% (48/80) per initial PGD/PGS cycle. There was no multi-pregnant in this study. The live birth rate was 42.05% (37/88) per transfer cycle and 46.25% (37/80) per initial PGD/PGS cycle. In PGD/PGS cycles, single blastocyst transfer reduces the multiple pregnancy rate without affecting the clinical outcomes.

  12. Proton transfer reaction time-of-flight mass spectrometry advancement in detection of hazardous substances

    International Nuclear Information System (INIS)

    Agarwal, B.

    2012-01-01

    Proton Transfer Reaction Mass Spectrometry (PTR-MS) is a mass spectrometric technique based on chemical ionization, which provides very rapid measurements (within seconds) of volatile organic compounds in air, usually without special sample preparation, and with a very low detection limit. The detection and study of product ion patterns of threat agents such as explosives and drugs and some major environmental pollutants (isocyanates and polychlorinated biphenyls (PCBs)) is explored in detail here using PTR-MS, specifically Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-TOF-MS). The proton transfer reaction (PTR) principle works on the detection of the compound in the vapor phase. For some compounds, which have extremely low vapor pressures, both sample and inlet line heating were needed. Generally, the protonated parent molecule (MH+) is found to be the dominant product ion, which therefore provides us with a higher level of confidence in the assignment of a trace compound. However, for several compounds, dissociative proton transfer can occur at various degrees resulting in other product ions. Analysis of other compounds, such as the presence of taggants and impurities were carried out, and in certain compounds unusual E/N anomalies were discovered (E/N is an instrumental set of parameters, where E is the electric field strength and N is the number density). Head space measurements above four different drinks (plain water, tea, red wine and white wine) spiked with four different 'date rape' drugs were also conducted. (author)

  13. Enantioselective H-atom transfer reaction: a strategy to synthesize formaldehyde aldol products.

    Science.gov (United States)

    Sibi, Mukund P; Patil, Kalyani

    2005-04-14

    [reaction: see text] Enantioselective radical alkylation of Baylis-Hillman adducts furnished aldol products in good yield and selectivity. The results illustrate that the selectivity in the hydrogen atom transfer is dependent on the size of the ester substituent, with smaller substituents providing better enantioselectivity.

  14. Analysis of trace gases at ppb levels by proton transfer reaction mass spectrometry (PTR-MS)

    International Nuclear Information System (INIS)

    Lindinger, W.; Hansel, A.

    1996-01-01

    A proton transfer reaction mass spectrometry (PTR-MS) system has been developed which allows for on-line measurements of trace gas components with concentrations as low as 1 ppb. The method is based on reactions of H 3 O + ions, which perform non-dissociative proton transfer to most of the common organic trace constituents but do not react with any of the components present in clean air. Examples of medical information obtained by means of breath analysis, of environmental trace analysis, and examples in the field of food chemistry demonstrate the wide applicability of the method. (Authors)

  15. Electronic shift register memory based on molecular electron-transfer reactions

    Science.gov (United States)

    Hopfield, J. J.; Onuchic, Jose Nelson; Beratan, David N.

    1989-01-01

    The design of a shift register memory at the molecular level is described in detail. The memory elements are based on a chain of electron-transfer molecules incorporated on a very large scale integrated (VLSI) substrate, and the information is shifted by photoinduced electron-transfer reactions. The design requirements for such a system are discussed, and several realistic strategies for synthesizing these systems are presented. The immediate advantage of such a hybrid molecular/VLSI device would arise from the possible information storage density. The prospect of considerable savings of energy per bit processed also exists. This molecular shift register memory element design solves the conceptual problems associated with integrating molecular size components with larger (micron) size features on a chip.

  16. Pair and single neutron transfer with Borromean 8He

    International Nuclear Information System (INIS)

    Lemasson, A.; Navin, A.; Rejmund, M.; Keeley, N.; Zelevinsky, V.; Bhattacharyya, S.; Shrivastava, A.; Bazin, D.; Beaumel, D.; Blumenfeld, Y.; Chatterjee, A.; Gupta, D.; France, G. de; Jacquot, B.; Labiche, M.; Lemmon, R.; Nanal, V.; Nyberg, J.; Pillay, R.G.; Raabe, R.

    2011-01-01

    Direct observation of the survival of 199 Au residues after 2n transfer in the 8 He+ 197 Au system and the absence of the corresponding 67 Cu in the 8 He+ 65 Cu system at various energies are reported. The measurements of the surprisingly large cross sections for 199 Au, coupled with the integral cross sections for the various Au residues, is used to obtain the first model-independent lower limits on the ratio of 2n to 1n transfer cross sections from 8 He to a heavy target. A comparison of the transfer cross sections for 6,8 He on these targets highlights the differences in the interactions of these Borromean nuclei. These measurements for the most neutron-rich nuclei on different targets highlight the need to probe the reaction mechanism with various targets and represent an experimental advance towards understanding specific features of pairing in the dynamics of dilute nuclear systems.

  17. Study of actinides fission induced by multi-nucleon transfer reactions in inverse kinematics

    International Nuclear Information System (INIS)

    Derkx, X.

    2010-10-01

    The study of actinide fission encounters two major issues. On one hand, measurements of the fission fragment distributions and the fission probabilities allow a better understanding of the fission process itself and the discrimination among the models of nuclear structure and dynamics. On the other hand, new measurements are required to improve nuclear data bases, which are a key component for the design of new generation reactors and radio-toxic waste incinerators. This thesis is in line with different French and American experimental projects using the surrogate method, i.e. transfer reactions leading to the same compound nuclei as in neutron irradiation, allowing the study of fission of actinides which are inaccessible by conventional techniques, whereas they are important for applications. The experiment is based on multi-nucleon transfer reactions between a 238 U beam and a 12 C target, using the inverse kinematics technique to measure, for each transfer channel, the complete isotopic distributions of the fission fragments with the VAMOS spectrometer. The work presented in this dissertation is focused on the identification of the transfer channels and their properties, as their angular distributions and the distributions of the associated excitation energy, using the SPIDER telescope to identify the target recoil nuclei. This work of an exploratory nature aims to generalize the surrogate method to heavy transfers and to measure, for the first time, the fission probabilities in inverse kinematics. The obtained results are compared with available direct kinematics and neutron irradiation measurements. (author)

  18. Pore to core scale simulation of the mass transfer with mineral reaction in porous media

    International Nuclear Information System (INIS)

    Bekri, S.; Renard, S.; Delprat-Jannaud, F.

    2015-01-01

    Pore Network Model (PNM) is used to simulate mass transfer with mineral reaction in a single phase flow through porous medium which is here a sandstone sample from the reservoir formation of the Pakoslaw gas field. The void space of the porous medium is represented by an idealized geometry of pore-bodies joined by pore-throats. Parameters defining the pore-bodies and the pore-throats distribution are determined by an optimization process aiming to match the experimental Mercury Intrusion Capillary Pressure (MICP) curve and petrophysical properties of the rock such as intrinsic permeability and formation factor. The generated network is used first to simulate the multiphase flow by solving Kirchhoff's laws. The capillary pressure and relative permeability curves are derived. Then, reactive transport is addressed under asymptotic regime where the solute concentration undergoes an exponential evolution with time. The porosity/ permeability relationship and the three phenomenological coefficients of transport, namely the solute velocity, the dispersion and the mean reaction rate are determined as functions of Peclet and Peclet-Damkohler dimensionless numbers. Finally, the role of the dimensionless numbers on the reactive flow properties is highlighted. (authors)

  19. A molecular dynamics study of intramolecular proton transfer reaction of malonaldehyde in solution based upon a mixed quantum-classical approximation. II. Proton transfer reaction in non-polar solvent

    Science.gov (United States)

    Kojima, H.; Yamada, A.; Okazaki, S.

    2015-05-01

    The intramolecular proton transfer reaction of malonaldehyde in neon solvent has been investigated by mixed quantum-classical molecular dynamics (QCMD) calculations and fully classical molecular dynamics (FCMD) calculations. Comparing these calculated results with those for malonaldehyde in water reported in Part I [A. Yamada, H. Kojima, and S. Okazaki, J. Chem. Phys. 141, 084509 (2014)], the solvent dependence of the reaction rate, the reaction mechanism involved, and the quantum effect therein have been investigated. With FCMD, the reaction rate in weakly interacting neon is lower than that in strongly interacting water. However, with QCMD, the order of the reaction rates is reversed. To investigate the mechanisms in detail, the reactions were categorized into three mechanisms: tunneling, thermal activation, and barrier vanishing. Then, the quantum and solvent effects were analyzed from the viewpoint of the reaction mechanism focusing on the shape of potential energy curve and its fluctuations. The higher reaction rate that was found for neon in QCMD compared with that found for water solvent arises from the tunneling reactions because of the nearly symmetric double-well shape of the potential curve in neon. The thermal activation and barrier vanishing reactions were also accelerated by the zero-point energy. The number of reactions based on these two mechanisms in water was greater than that in neon in both QCMD and FCMD because these reactions are dominated by the strength of solute-solvent interactions.

  20. Fragmentation and direct transfer reactions for 40Ar incident beam on 27Al target at 1760 MeV

    International Nuclear Information System (INIS)

    Cisse, Ousmane

    1985-01-01

    Peripheral collision studies performed with 40 Ar projectiles at 44 MeV/A and 27 Al target show that both fragmentation and transfer reactions can be discerned in this type of interaction. The experimental observation of fragments with masses charges and velocities close to those of the incident beam are the signature of transfer reactions and a detailed analysis of the energy spectra of such fragments has been carried out and interpreted in terms of a direct diffraction transfer model. On the other hand, for large mass transfer reactions, abrasion is the suitable mechanism. Inclusive fragment measurement together with the appropriate residual nuclei-fragment coincidence results then provides experimental data in good agreement with the theoretical predictions obtained from a participant spectator model. These investigations also indicate that the separation energies of the participant from the spectator nucleus, at least within the framework of the above model, can be interpreted in terms of a friction force which becomes more efficient as the projectile energy decreases. (author) [fr

  1. The mechanism distinguishability problem in biochemical kinetics: the single-enzyme, single-substrate reaction as a case study.

    Science.gov (United States)

    Schnell, Santiago; Chappell, Michael J; Evans, Neil D; Roussel, Marc R

    2006-01-01

    A theoretical analysis of the distinguishability problem of two rival models of the single enzyme-single substrate reaction, the Michaelis-Menten and Henri mechanisms, is presented. We also outline a general approach for analysing the structural indistinguishability between two mechanisms. The approach involves constructing, if possible, a smooth mapping between the two candidate models. Evans et al. [N.D. Evans, M.J. Chappell, M.J. Chapman, K.R. Godfrey, Structural indistinguishability between uncontrolled (autonomous) nonlinear analytic systems, Automatica 40 (2004) 1947-1953] have shown that if, in addition, either of the mechanisms satisfies a particular criterion then such a transformation always exists when the models are indistinguishable from their experimentally observable outputs. The approach is applied to the single enzyme-single substrate reaction mechanism. In principle, mechanisms can be distinguished using this analysis, but we show that our ability to distinguish mechanistic models depends both on the precise measurements made, and on our knowledge of the system prior to performing the kinetics experiments.

  2. Radiolytic and electron-transfer reactions in supercritical CO2

    International Nuclear Information System (INIS)

    Bartels, D. M.; Dimitrijevic, N. M.; Jonah, C. D.; Takahashi, K.

    2000-01-01

    Using supercritical fluids as solvents is useful for both practical and theoretical reasons. It has been proposed to use supercritical CO 2 as a solvent for synthesis because it eliminates the air pollution arising from other solvents. The properties of supercritical fluids can be easily varied with only modest changes in temperature and density, so they provide a way of testing theories of chemical reactions. It has also been proposed to use supercritical fluids for the treatment of hazardous mixed waste. For these reasons the authors have studied the production of radiolytic species in supercritical CO 2 and have measured their reactivity as a function of density. They have shown that the C 2 O 4 + is formed. They also have shown that the electron transfer reactions of dimethylaniline to C 2 O 4 + and CO 2 (e - ) to benzoquinone are diffusion controlled over a considerable density range

  3. Study of multi-nucleon transfer reactions in {sup 58,} {sup 64}Ni + {sup 207}Pb collisions at the velocity filter SHIP

    Energy Technology Data Exchange (ETDEWEB)

    Comas, V.F.; Heinz, S.; Ackermann, D.; Heredia, J.A.; Hessberger, F.P.; Khuyagbaatar, J.; Kindler, B.; Lommel, B.; Mann, R. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Hofmann, S. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Goethe-Universitaet Frankfurt, Institut fuer Physik, Frankfurt (Germany)

    2013-09-15

    We investigated multi-nucleon transfer reactions in collisions of {sup 58}Ni + {sup 207}Pb and {sup 64}Ni + {sup 207}Pb at Coulomb barrier energies. The new aspect is that we used a velocity filter (SHIP at GSI) for the separation of the heavy target-like transfer products from background events. The isotopic identification was performed via the {alpha} decay properties of the reaction products. The goal of the experiment was to study the characteristics of multi-nucleon transfer reactions in the region of heavy nuclei and the applicability of existing separation and detection techniques, which are usually used for identification of heavy fusion-evaporation residues, to heavy transfer products. This was motivated by recent theoretical results from macroscopic-microscopic models which suggest deep inelastic transfer reactions in heavy systems as a means to produce new neutron-rich isotopes in the region of N = 126 and in the region of superheavy nuclei. In this paper we present the isotopic yields, the excitation functions and the excitation energies of the heavy transfer products with Z > 82 as well as the influence of shell effects on the reaction products. The influence of the different neutron numbers of the projectiles is also discussed. (orig.)

  4. Electron-transfer reactions of extremely small AgI colloids

    International Nuclear Information System (INIS)

    Vucemilovic, M.I.; Micic, O.I.

    1988-01-01

    Small colloidal AgI particles (particle diameter 20-50 A) have been prepared in water and acetonitrile, and optical effects due to size quantization have been observed. Electron transfer reactions involving electron donors and electron acceptors with AgI have been studied by pulse radiolysis techniques. Both reduction and oxidation of the colloids led to transient bleaching of semiconductor absorption. The recovery of the bleaching has been attributed to corrosion processes. Electrons injected into AgI colloids produce metallic silver and hydrogen. Hydrogen evolution is catalyzed by metallic silver formation. (author)

  5. Four- and six-charge transfer reactions induced by 52Cr, 56Fe, 63Cu in rare-earths

    International Nuclear Information System (INIS)

    Mouchaty, G.

    1977-01-01

    The cross sections for transfer reactions in which 4 and 6 charges are gained by Sm and Nd targets have been measured, the projectiles being 52 Cr and 56 Fe at 343 and 377 MeV. These energies correspond to 1.5B, B being the interaction barrier. The results obtained indicate that the cross section increases when the number of charges transferred and the mass of the projectile are increased. The angular distributions and recoil ranges at each angle of 151 Dy produced through 52 Cr+ 148 Sm, 52 Cr+ 144 Nd, 56 Fe+ 144 Nd, 63 Cu+ 144 Nd reactions were determined for incident energies equivalent to 1.5B. After transformation into the c.m. system, the angular distributions exhibit a maximum close to 155 0 and a tail at small angles. The position of the maximum is independent of the incident ion and of the number of transferred charges. The analysis of the energy distributions indicate that the observed reactions can be explained by a two-step process: a transfer of nucleons followed by an evaporation step. The number of nucleons transferred in the 1st step and the associated excitation energies are higher for the events corresponding to the tail than for those corresponding to the maximum [fr

  6. Photo- and radiation chemical studies of intermediates involved in excited-state electron-transfer reactions

    International Nuclear Information System (INIS)

    Hoffman, M.Z.

    1985-01-01

    Excited-state inter- and intramolecular electron-transfer reactions lie at the heart of the most photochemical solar energy conversion schemes. The authors research, which has utilized the techniques of continuous and pulsed photolysis and radiolysis, has focused on three general aspects of these reactions involving transition metal coordination complexes and electron donor-acceptor complexes: i) the effect of solution medium on the properties and quenching of the excited states; ii) the control of the quantum yields of formation of redox products; iii) the mechanism by which reduced species interact with water to yield H 2 homogeneously and heterogeneously. EDTA is among the most popular sacrificial electron donors used in model systems. Its role is to scavenge the oxidized form of the photosensitizer in order to prevent its rapid reaction with the reduced form of the electron relay species that results from the electron-transfer quenching of the excited photosensitizer. In systems involving MV 2+ , the radicals resulting from the oxidation of EDTA can eventually lead to the generation of a second equivalent of MV + ; the reducing agent is believed to be a radical localized on the carbon atom alpha to the carboxylate group. The reaction of radiolytically-generated OH/H with EDTA produces this radical directly via H-abstraction or indirectly via deprotonation of the carbon atom adjacent to the nitrogen radical site in the oxidized amine moiety; it reduces MV 2+ with rate constants of 2.8 x 10 9 , 7.6 x 10 9 , and 8.5 x 10 6 M -1 s -1 at pH 12.5, 8.3, and 4.7, respectively. Degradative decarboxylation of EDTA-radicals and their back electron-transfer reactions are enhanced in acidic solution causing the yield of MV + to be severely diminished

  7. Electron transfer reactions, cyanide and O2 binding of truncated hemoglobin from Bacillus subtilis

    International Nuclear Information System (INIS)

    Fernandez, Esther; Larsson, Jonas T.; McLean, Kirsty J.; Munro, Andrew W.; Gorton, Lo; Wachenfeldt, Claes von; Ferapontova, Elena E.

    2013-01-01

    The truncated hemoglobin from Bacillus subtilis (trHb-Bs) possesses a surprisingly high affinity for oxygen and resistance to (auto)oxidation; its physiological role in the bacterium is not understood and may be connected with its very special redox and ligand binding reactions. Electron transfer reactions of trHb-Bs were electrochemically studied in solution and at graphite electrodes. Spectrophotometrical potentiometric titration and direct electrochemical measurements gave a heme iron redox potential of −103 ± 4 mV and −108 ± 2 mV vs. NHE, at pH 7, respectively. The redox potential of the heme in trHb-Bs shifted −59 mV per pH unit at pH higher than 7, consistently with a 1e − /1 H + – transfer reaction. The heterogeneous rate constant k s for a quasi-reversible 1e − – 1H + – transfer reaction between graphite and trHb-Bs was 10.1 ± 2.3 s −1 . Upon reversible cyanide binding the k s doubled, while the redox potential of heme shifted 21 mV negatively, presumably reflecting changes in redox activity and in vivo signaling functions of trHb-Bs associated with ligand binding. Bioelectrocatalytic reduction of O 2 catalyzed by trHb-Bs was one of the most efficient hitherto reported for Hbs, with an apparent catalytic rate constant, k cat , of 56 ± 6 s −1 . The results obtained are of particular interest for applications of trHb in environmental biosensing and toxicity screening

  8. Electron transfer reactions induced by the triplet state of thiacarbocyanine dimers

    International Nuclear Information System (INIS)

    Chibisov, Alexander K.; Slavnova, Tatyana D.; Goerner, Helmut

    2004-01-01

    The photoinduced electron transfer between either cationic 5,5 ' -dichloro-3,3 ' ,9-triethylthiacarbocyanine (1) or a structurally similar anionic dye (2) and appropriate donors, e.g. ascorbic acid, and acceptors, e.g. methyl viologen, was studied by ns-laser photolysis. In aqueous solution the dyes in the ground state are present as an equilibrated mixture of dimers and monomers, whereas the triplet state is mainly populated from dimers. The triplet states of both dimers and monomers are quenched by electron donors or acceptors and the rate constant for quenching is generally 2-4 times higher for dimers than for monomers. The kinetics of triplet decay and radical formation and decay as a result of primary and secondary electron transfer were analyzed. While the one-electron reduced dimer decays due to back reactions, the one-electron oxidized dimer rapidly dissociates into the monomer and the monomeric dye radical. For the dimeric dye/donor/acceptor systems the primary photoinduced electron transfer occurs either from the donor or to the acceptor yielding the dimeric dye radicals. The one-electron reduced dimer can be efficiently oxidized by acceptors, e.g. the rate constant for reaction of the dimeric dye radical of 1 with methyl viologen (photoreductive pathway of sensitization) is 1.6x10 9 M -1 s -1 . The photooxidative pathway of sensitization is more complicated; after dissociation of the dimeric dye radical, the monomeric dye radical is reduced in a secondary electron transfer from ascorbic acid, e.g. with a rate constant of 1x10 9 M -1 s -1 for 2, yielding the monomer. On increasing the donor concentration the photooxidative pathway of sensitization is switched to a photoreductive one

  9. Calculation of rate coefficients of some proton-transfer ion-molecule reactions in weakly ionized gases

    International Nuclear Information System (INIS)

    Stiller, W.

    1985-01-01

    A classical collision theory is used to describe thermal bimolecular rate coefficeints for reaction between positive and negative ions and polar molecules in a carrier gas. Special attention is paid to ion-molecule reaction in which proton transfer occurs. These reactions play an important role in terrestrial plasma devices, in ionosphere, in planetary atmospheres and in interstellar matter. The equilibrium rate coefficients of the reactions are calculated based on a microscopic reactive cross section derived from a long distance polar molecule-ion potential. The results are compared with experimental values of afterglow measurements. (D.Gy.)

  10. Evaporation rates and surface profiles on heterogeneous surfaces with mass transfer and surface reaction

    Energy Technology Data Exchange (ETDEWEB)

    Flytzani-Stephanopoulos, M; Schmidt, L D

    1979-01-01

    Simple models incorporating surface reaction and diffusion of volatile products through a boundary layer are developed to calculate effective rates of evaporation and local surface profiles on surfaces having active and inactive regions. The coupling between surface heterogeneities with respect to a particular reaction and external mass transfer may provide a mechanism for the surface rearrangement and metal loss encountered in several catalytic systems of practical interest. Calculated transport rates for the volatilization of platinum in oxidizing environments and the rearrangement of this metal during the ammonia oxidation reaction agree well with published experimental data.

  11. Mechanism of the Primary Charge Transfer Reaction in the Cytochrome bc1 Complex

    DEFF Research Database (Denmark)

    Barragan, Angela M; Schulten, Klaus; Solov'yov, Ilia A

    2016-01-01

    , the quinol-protein interaction, which initiates the Q-cycle, has not yet been completely described. Furthermore, the initial charge transfer reactions of the Q-cycle lack a physical description. The present investigation utilizes classical molecular dynamics simulations in tandem with quantum density...

  12. An annular ionization detector for quasi-elastic and transfer reaction studies

    CERN Document Server

    Dinesh, B V; Nayak, B K; Biswas, D C; Saxena, A; Pant, L M; Sahu, P K; Choudhury, R K

    2000-01-01

    An annular ionization chamber detector has been developed to study quasi-elastic and transfer reactions in heavy-ion collisions at near-barrier and sub-barrier energies. The important feature of the detector is that it has a near 2 pi coverage in the azimuthal angle phi for the particles entering in the detector at a given theta direction. This feature makes the detector very useful for measurement of the differential cross-sections at backward angles with respect to the beam direction, involving low cross-section reaction channels. The split anode configuration of the detector makes it capable of both particle identification and energy measurement for heavy ions and fission fragments. The detector has been tested using heavy-ion beams from the 14 MV-pelletron accelerator at Mumbai. Results on quasi-elastic excitation function measurements and barrier distribution studies in many heavy-ion reactions using this detector setup are discussed.

  13. Exciplex mediated photoinduced electron transfer reactions of phthalocyanine-fullerene dyads.

    Science.gov (United States)

    Niemi, Marja; Tkachenko, Nikolai V; Efimov, Alexander; Lehtivuori, Heli; Ohkubo, Kei; Fukuzumi, Shunichi; Lemmetyinen, Helge

    2008-07-31

    Evidences of an intramolecular exciplex intermediate in a photoinduced electron transfer (ET) reaction of double-linked free-base and zinc phthalocyanine-C60 dyads were found. This was the first time for a dyad with phthalocyanine donor. Excitation of the phthalocyanine moiety of the dyads results in rapid ET from phthalocyanine to fullerene via an exciplex state in both polar and nonpolar solvents. Relaxation of the charge-separated (CS) state Pc(*+)-C60(*-) in a polar solvent occurs directly to the ground state in 30-70 ps. In a nonpolar solvent, roughly 20% of the molecules undergo transition from the CS state to phthalocyanine triplet state (3)Pc*-C60 before relaxation to the ground state. Formation of the CS state was confirmed with electron spin resonance measurements at low temperature in both polar and nonpolar solvent. Reaction schemes for the photoinduced ET reactions of the dyads were completed with rate constants obtained from the time-resolved absorption and emission measurements and with state energies obtained from the fluorescence, phosphorescence, and voltammetric measurements.

  14. Large-scale membrane transfer process: its application to single-crystal-silicon continuous membrane deformable mirror

    International Nuclear Information System (INIS)

    Wu, Tong; Sasaki, Takashi; Hane, Kazuhiro; Akiyama, Masayuki

    2013-01-01

    This paper describes a large-scale membrane transfer process developed for the construction of large-scale membrane devices via the transfer of continuous single-crystal-silicon membranes from one substrate to another. This technique is applied for fabricating a large stroke deformable mirror. A bimorph spring array is used to generate a large air gap between the mirror membrane and the electrode. A 1.9 mm × 1.9 mm × 2 µm single-crystal-silicon membrane is successfully transferred to the electrode substrate by Au–Si eutectic bonding and the subsequent all-dry release process. This process provides an effective approach for transferring a free-standing large continuous single-crystal-silicon to a flexible suspension spring array with a large air gap. (paper)

  15. Tunable differentiation of tertiary C-H bonds in intramolecular transition metal-catalyzed nitrene transfer reactions.

    Science.gov (United States)

    Corbin, Joshua R; Schomaker, Jennifer M

    2017-04-13

    Metal-catalyzed nitrene transfer reactions are an appealing and efficient strategy for accessing tetrasubstituted amines through the direct amination of tertiary C-H bonds. Traditional catalysts for these reactions rely on substrate control to achieve site-selectivity in the C-H amination event; thus, tunability is challenging when competing C-H bonds have similar steric or electronic features. One consequence of this fact is that the impact of catalyst identity on the selectivity in the competitive amination of tertiary C-H bonds has not been well-explored, despite the potential for progress towards predictable and catalyst-controlled C-N bond formation. In this communication, we report investigations into tunable and site-selective nitrene transfers between tertiary C(sp 3 )-H bonds using a combination of transition metal catalysts, including complexes based on Ag, Mn, Rh and Ru. Particularly striking was the ability to reverse the selectivity of nitrene transfer by a simple change in the identity of the N-donor ligand supporting the Ag(i) complex. The combination of our Ag(i) catalysts with known Rh 2 (ii) complexes expands the scope of successful catalyst-controlled intramolecular nitrene transfer and represents a promising springboard for the future development of intermolecular C-H N-group transfer methods.

  16. Crossed beam study of He+-O2 charge transfer reactions in the collision energy range 0.5-200 eV

    International Nuclear Information System (INIS)

    Bischof, G.; Linder, F.

    1986-01-01

    Energy spectra and angular distributions of the O + and O 2 + product ions resulting from the He + -O 2 charge transfer reaction have been measured in the collision energy range 0.5-200 eV using the crossed-beam method. The O 2 + ions represent only a minor fraction of the reaction products (0.2-0.6% over the energy range measured). In the dissociative charge transfer reaction, four main processes are identified leading to O+O + reaction products in different electronic states. Two different mechanisms can be distinguished, each being responsible for two of the observed processes: (i) a long-distance energy-resonant charge transfer process involving the c 4 Σsub(u) - (upsilon'=0) state of O 2 + and (ii) a slightly exothermic charge transfer process via the (III) 2 PIsub(u) state of O 2 + (with the exothermicity depending on the collision energy). Angle-integrated branching ratios and partial cross sections (in absolute units) have been determined. The branching ratios of the individual processes show a pronounced dependence on the collision energy. At low energies, the O + product ions are preferentially formed in the 2 P 0 and 2 D 0 excited states. The angular distributions of the O + product ions show an anisotropic behaviour indicating an orientation-dependent charge transfer probability in the He + -O 2 reaction. (orig.)

  17. Proton transfers in the Strecker reaction revealed by DFT calculations

    Directory of Open Access Journals (Sweden)

    Shinichi Yamabe

    2014-08-01

    Full Text Available The Strecker reaction of acetaldehyde, NH3, and HCN to afford alanine was studied by DFT calculations for the first time, which involves two reaction stages. In the first reaction stage, the aminonitrile was formed. The rate-determining step is the deprotonation of the NH3+ group in MeCH(OH-NH3+ to form 1-aminoethanol, which occurs with an activation energy barrier (ΔE≠ of 9.6 kcal/mol. The stereochemistry (R or S of the aminonitrile product is determined at the NH3 addition step to the carbonyl carbon of the aldehyde. While the addition of CN− to the carbon atom of the protonated imine 7 appears to scramble the stereochemistry, the water cluster above the imine plane reinforces the CN− to attack the imine group below the plane. The enforcement hinders the scrambling. In the second stage, the aminonitrile transforms to alanine, where an amide Me-CH(NH2-C(=O-NH2 is the key intermediate. The rate-determining step is the hydrolysis of the cyano group of N(amino-protonated aminonitrile which occurs with an ΔE≠ value of 34.7 kcal/mol. In the Strecker reaction, the proton transfer along the hydrogen bonds plays a crucial role.

  18. Influence of Proton Acceptors on the Proton-Coupled Electron Transfer Reaction Kinetics of a Ruthenium-Tyrosine Complex.

    Science.gov (United States)

    Lennox, J Christian; Dempsey, Jillian L

    2017-11-22

    A polypyridyl ruthenium complex with fluorinated bipyridine ligands and a covalently bound tyrosine moiety was synthesized, and its photo-induced proton-coupled electron transfer (PCET) reactivity in acetonitrile was investigated with transient absorption spectroscopy. Using flash-quench methodology with methyl viologen as an oxidative quencher, a Ru 3+ species is generated that is capable of initiating the intramolecular PCET oxidation of the tyrosine moiety. Using a series of substituted pyridine bases, the reaction kinetics were found to vary as a function of proton acceptor concentration and identity, with no significant H/D kinetic isotope effect. Through analysis of the kinetics traces and comparison to a control complex without the tyrosine moiety, PCET reactivity was found to proceed through an equilibrium electron transfer followed by proton transfer (ET-PT) pathway in which irreversible deprotonation of the tyrosine radical cation shifts the ET equilibrium, conferring a base dependence on the reaction. Comprehensive kinetics modeling allowed for deconvolution of complex kinetics and determination of rate constants for each elementary step. Across the five pyridine bases explored, spanning a range of 4.2 pK a units, a linear free-energy relationship was found for the proton transfer rate constant with a slope of 0.32. These findings highlight the influence that proton transfer driving force exerts on PCET reaction kinetics.

  19. Chaotic scattering in heavy-ion reactions with mass transfer

    International Nuclear Information System (INIS)

    Rodriguez Padron, Emilio; Guzman Martinez, Fernando

    1998-01-01

    The role of the mass transfer in heavy ion collisions is analyzed in the framework of a simple semi phenomenological model searching for chaotic scattering effects. The model couples the relative motion of the ions to a collective degree of freedom. The collective degree of freedom is identified by the mass asymmetry of the system. A Saxon-Woods potential is used for nucleus-nucleus interaction whiles a harmonic potential rules the temporal behaviour of the collective degree of freedom. This model shows chaotic scattering which could be an explanation for certain types of cross-section fluctuations observed in this kind of reactions

  20. Cryogenic Fluid Transfer Components Using Single Crystal Piezoelectric Actuators, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic fluid transfer components using single crystal piezoelectric actuators are proposed to enable low thermal mass, minimal heat leak, low power consumption...

  1. Cryogenic Fluid Transfer Components Using Single Crystal Piezoelectric Actuators, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic fluid transfer components using single crystal piezoelectric actuators are proposed to enable low thermal mass, minimal heat leak, low power consumption...

  2. Single-Site Palladium(II) Catalyst for Oxidative Heck Reaction: Catalytic Performance and Kinetic Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Hui; Li, Mengyang; Zhang, Guanghui; Gallagher, James R.; Huang, Zhiliang; Sun, Yu; Luo, Zhong; Chen, Hongzhong; Miller, Jeffrey T.; Zou, Ruqiang; Lei, Aiwen; Zhao, Yanli

    2015-01-01

    ABSTRACT: The development of organometallic single-site catalysts (SSCs) has inspired the designs of new heterogeneous catalysts with high efficiency. Nevertheless, the application of SSCs in certain modern organic reactions, such as C-C bond formation reactions, has still been less investigated. In this study, a single-site Pd(II) catalyst was developed, where 2,2'-bipyridine-grafted periodic mesoporous organosilica (PMO) was employed as the support of a Pd(II) complex. The overall performance of the single-site Pd(II) catalyst in the oxidative Heck reaction was then investigated. The investigation results show that the catalyst displays over 99% selectivity for the product formation with high reaction yield. Kinetic profiles further confirm its high catalytic efficiency, showing that the rate constant is nearly 40 times higher than that for the free Pd(II) salt. X-ray absorption spectroscopy reveals that the catalyst has remarkable lifetime and recyclability.

  3. Study of photo-activated electron transfer reactions in the first excited singlet state by picosecond and nanosecond laser spectroscopy

    International Nuclear Information System (INIS)

    Doizi, Denis

    1983-01-01

    Picosecond laser spectroscopy has been used to study two photo-activated electron transfer reactions: - a bimolecular electron transfer reaction between a sensitizer, DODCI, and an electron acceptor, methylviologen. The two radical ions created with an electron transfer efficiency γ ≅ 0.07 have been identified in picosecond and nanosecond laser absorption spectroscopy by adding selective solutes such as para-benzoquinone (an electron acceptor) or L(+) ascorbic acid (an electron donor). - an intramolecular electron transfer reaction in a triad molecule consisting of a tetra-aryl-porphyrin covalently linked to both a carotenoid and a quinone. The photoinduced charge separation occurs within 30 ps and leads, with a yield of 25 pc, to the formation of a zwitterion whose half-life is 2.5 μs. The experimental results obtained in these two studies show an effective decrease in the recombination rate of the two radical ions created in the encounter pair. (author) [fr

  4. pH-dependent electron transfer reaction and direct bioelectrocatalysis of the quinohemoprotein pyranose dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Kouta [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan); Matsumura, Hirotoshi; Ishida, Takuya [Department of Biomaterial Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657 (Japan); Yoshida, Makoto [Department of Environmental and Natural Resource Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509 (Japan); Igarashi, Kiyohiko; Samejima, Masahiro [Department of Biomaterial Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657 (Japan); Ohno, Hiroyuki [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan); Nakamura, Nobuhumi, E-mail: nobu1@cc.tuat.ac.jp [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan)

    2016-08-26

    A pyranose dehydrogenase from Coprinopsis cinerea (CcPDH) is an extracellular quinohemoeprotein, which consists a b-type cytochrome domain, a pyrroloquinoline-quinone (PQQ) domain, and a family 1-type carbohydrate-binding module. The electron transfer reaction of CcPDH was studied using some electron acceptors and a carbon electrode at various pH levels. Phenazine methosulfate (PMS) reacted directly at the PQQ domain, whereas cytochrome c (cyt c) reacted via the cytochrome domain of intact CcPDH. Thus, electrons are transferred from reduced PQQ in the catalytic domain of CcPDH to heme b in the N-terminal cytochrome domain, which acts as a built-in mediator and transfers electron to a heterogenous electron transfer protein. The optimal pH values of the PMS reduction (pH 6.5) and the cyt c reduction (pH 8.5) differ. The catalytic currents for the oxidation of L-fucose were observed within a range of pH 4.5 to 11. Bioelectrocatalysis of CcPDH based on direct electron transfer demonstrated that the pH profile of the biocatalytic current was similar to the reduction activity of cyt c characters. - Highlights: • pH dependencies of activity were different for the reduction of cyt c and DCPIP. • DET-based bioelectrocatalysis of CcPDH was observed. • The similar pH-dependent profile was found with cyt c and electrode. • The present results suggested that IET reaction of CcPDH shows pH dependence.

  5. Nucleon transfer reactions in D.W.B.A; Les reactions de transfert d'un nucleon dans la D.W.B.A

    Energy Technology Data Exchange (ETDEWEB)

    Giraud, B; Picard, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-08-01

    The DWBA for one nucleon transfer reaction is described as simply and completely as possible to show the possibilities and limits of this method. The extraction of spectroscopic factors is described in the appendix. (authors) [French] Le formalisme de la DWBA est decrit d'une maniere aussi simple et complete que possible pour mettre en evidence les possibilites et les limites de cette methode d'analyse des reactions de transfert. L'extraction des facteurs spectroscopiques est exposee en appendice. (auteurs)

  6. Charged-particle transfer reactions and nuclear astrophysics problems

    International Nuclear Information System (INIS)

    Artemov, S.V.; Yarmukhamedov, R.; Yuldashev, B.S.; Burtebaev, N.; Duysebaev, A.; Kadyrzhanov, K.K.

    2002-01-01

    In the report a review of the recent results of calculation of the astrophysical S-factors S(E) for the D(α, γ) 6 Li, 3 He(α, γ) 7 Be, 7 Be(p, γ) 8 Be, 12,13 C(p, γ) 13, 14 N and 12 C(p,γ) 16 O* reactions at extremely low energies E, including value E=0 , performed within the framework of a new method taking into account the additional information about the nuclear vertex constant (Nc) (or the respective asymptotic normalization coefficient) are presented. The required values of Nc can be obtained from an analysis of measured differential cross-sections of proton and α-particle transfer reactions (for example A( 3 He,d)B, 6 Li(d, 6 Li)d, 6 Li(α, 6 Li)α, 12 C( 6 Li, d) 16 O* etc.). A comparative analysis between the results obtained by different authors is also done. Taking into account an important role of the NVC's values for the nuclear astrophysical A(p, γ)B and A(α, γ)B reactions, a possibility of obtaining the reliable NVC values for the virtual decay B→A+p and B→A+α from the analysis of differential cross sections both sub- and above-barrier A( 3 He, d) and A( 6,7 Li, 2,3 H)B reactions is discussed in detail. In this line the use the isochronous cyclotron U-150 M, the 'DC-60' heavy ion machine and electrostatic charge-exchanging accelerator UKP-2-1 of Institute of Nuclear Physics of National Nuclear Center of the Republic of Kazakhstan for carrying out the needed experiments is considered and the possibility of the obtained data application for the astrophysical interest is also discussed

  7. Heavy ion transfer reactions

    Indian Academy of Sciences (India)

    array (CLARA), extensive investigations of nuclear structure and reaction dynamics have been carried out. In the present paper aspects of these studies will be presented, focussing more closely on the reaction mechanism, in particular on the ...

  8. Disentangling the transfer and breakup contributions for the inclusive 8 Li + 208 Pb reaction

    International Nuclear Information System (INIS)

    Moro, A.M.; Crespo, R.; Garcia M, H.; Aguilera, E.F.; Martinez Q, E.; Gomez C, J.; Nunes, F.M.

    2003-01-01

    An analysis of the 8 Li + 208 Pb reaction at energies around the Coulomb barrier is presented. The study is focused on the elastic and one-neutron removal channels. For the elastic scattering, an optical model analysis of the experimental data is performed. The observed 7 Li is interpreted as the superposition of the one-neutron transfer reaction, 208 Pb ( 8 Li, 7 Li) 209 Pb, and the breakup reaction. The separate contribution of each one of these processes has been calculated within the DWBA formalism. The sum of both contributions explains adequately the experimental angular distribution of 7 Li. (Author)

  9. Experimental research of inclined-micro-fin flat tube on single phase convection heat transfer

    International Nuclear Information System (INIS)

    Fan Guangming; Sun Zhongning; Wang Meng

    2011-01-01

    The experimental research of heat transfer and flow resistance characteristics of single phase water in four inclined-micro-fin flat tubes with different physical dimensions was conducted. At the same time,suitable criteria were selected to evaluate the efficiency of inclined-micro-fin flat tubes within the experimental scope and the optimal working region was determined. The results indicate that inclined-micro-fin flat tubes can greatly enhance the single-phase heat transfer in turbulent flow and the maximum heat transfer coefficient attains to 5.9 times of that in smooth tube. The quantities of heat transfer for inclined-micro-fin flat tubes are three times higher than that of smooth tube with the same of heat exchange area and pump power. (authors)

  10. Room Temperature, Hybrid Sodium-Based Flow Batteries with Multi-Electron Transfer Redox Reactions

    Science.gov (United States)

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-01-01

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volume of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multi-electron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. The critical barriers to mature this new HNFBs have also been explored. PMID:26063629

  11. Hydrogen-transfer and charge-transfer in photochemical and radiation induced reactions. Progress report, November 1, 1975--October 31, 1976

    International Nuclear Information System (INIS)

    Cohen, S.G.

    1976-10-01

    The relative importance of light absorption, quenching of triplet, and hydrogen transfer repair has been examined in retardation by mercaptans of photoreduction of aromatic ketones by alcohols. In the reduction of benzophenone by 2-propanol, retardation is efficient and, after correction for the first two effects, is due entirely to hydrogen-transfer repair, as indicated by deuterium labeling. In reduction of acetophenone by α-methylbenzyl alcohol, repair by hydrogen transfer is also operative. In reduction of benzophenone by benzhydrol, retardation is less efficient and is due to quenching, as the ketyl radical does not abstract hydrogen from mercaptan rapidly in competition with coupling. Deuterium isotope effects are discussed in terms of competitive reactions. Photoreduction of benzophenone by 2-butylamine and by triethylamine is retarded by aromatic mercaptans and disulfides. Of the retardation not due to light absorption and triplet quenching by the sulfur compounds, half is due to hydrogen-transfer repair, as indicated by racemization and deuterium labeling. The remainder is attributed to quenching by the sulfur compound of the charge-transfer-complex intermediate. Photoreduction by primary and secondary amines, but not by tertiary amines, is accelerated by aliphatic mercaptans. The acceleration is attributed to catalysis of hydrogen transfer by the mercaptan in the charge-transfer complex. The effect is large in hydrocarbon solvent, less in polar organic solvents and absent in water

  12. Economic evaluations of single- versus double-embryo transfer in IVF.

    Science.gov (United States)

    Fiddelers, A A A; Severens, J L; Dirksen, C D; Dumoulin, J C M; Land, J A; Evers, J L H

    2007-01-01

    Multiple pregnancies lead to complications and induce high costs. The most successful way to decrease multiple pregnancies in IVF is to transfer only one embryo, which might reduce the efficacy of treatment. The objective of this review is to determine which embryo-transfer policy is most cost-effective: elective single-embryo transfer (eSET) or double-embryo transfer (DET). Several databases were searched for (cost* or econ*) and (single embryo* or double embryo* or one embryo* or two embryo* or elect* embryo or multip* embryo*). On the basis of five exclusion criteria, titles and abstracts were screened by two individual reviewers. The remaining papers were read for further selection, and data were extracted from the selected studies. A total of 496 titles were identified through the searches and resulted in the selection of one observational study and three randomized studies. Study characteristics, total costs and probability of live births were extracted. Besides this, cost-effectiveness and incremental cost-effectiveness were derived. It can be concluded that DET is the most expensive strategy. DET is also most effective if performed in one fresh cycle. eSET is only preferred from a cost-effectiveness point of view when performed in good prognosis patients and when frozen/thawed cycles are included. If frozen/thawed cycles are excluded, the choice between eSET and DET depends on how much society is willing to pay for one extra successful pregnancy.

  13. Single bunch transfer system for the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Sheehan, J.; Singh, O.; Rambo, W.

    1983-01-01

    The accelerator system at the National Synchrotron Light Source consists of an S-band 85 MeV linac and three synchrotron rings. The electron beam from the linac is accelerated by the booster ring to 600 MeV and transferred to one of the two storage rings. The smaller of the two rings operates between 300 and 800 MeV emtting photons in the vacuum ultraviolet (VUV), while the larger storage ring operates up to 2.5 GeV and emits photons in the x-ray spectrum. A system is described for loading the storage rings by filling a single-phase space bunch in the booster ring and transferring it at the end of each booster cycle into a selected bucket in one of the storage rings. By controlling the timing of the transfer on successive transfer cycles, many fill patterns may be obtained

  14. Possibilities of production of neutron-rich Md isotopes in multi-nucleon transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Myeong-Hwan; Lee, Young-Ouk [Korea Atomic Energy Research Institue, Daejeon (Korea, Republic of); Adamian, G.G.; Antonenko, N.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2016-12-15

    The possibilities of production of yet unknown neutron-rich isotopes of Md are explored in several multi-nucleon transfer reactions with actinide targets and stable and radioactive beams. The projectile-target combinations and bombarding energies are suggested to produce new neutron-rich isotopes of Md in future experiments. (orig.)

  15. Functional LH1 antenna complexes influence electron transfer in bacterial photosynthetic reaction centers

    NARCIS (Netherlands)

    Visschers, R.W.; Vulto, S.I.E.; Jones, M.R.; van Grondelle, R.; Kraayenhof, R.

    1999-01-01

    The effect of the light harvesting 1 (LH1) antenna complex on the driving force for light-driven electron transfer in the Rhodobacter sphaeroides reaction center has been examined. Equilibrium redox titrations show that the presence of the LH1 antenna complex influences the free energy change for

  16. Functional LH1 antenna complexes influence electron transfer in bacterial photosynthetic reaction centers.

    NARCIS (Netherlands)

    Visschers, R.W.; Vulto, S.I.E.; Jones, M.R.; van Grondelle, R.; Kraayenhof, R.

    1999-01-01

    The effect of the light harvesting 1 (LH1) antenna complex on the driving force for light-driven electron transfer in the Rhodobacter sphaeroides reaction center has been examined. Equilibrium redox titrations show that the presence of the LH1 antenna complex influences the free energy change for

  17. Charge separation in photoinitiated electron transfer reactions induced by a polyelectrolyte

    International Nuclear Information System (INIS)

    Meyerstein, D.; Rabani, J.; Matheson, M.S.; Meisel, D.

    1978-01-01

    When uncharged molecules quench the luminescence of Ru(bpy) 3 /sup 2+*/ by electron transfer to the quencher, the addition of poly(vinyl sulfate) (PVS) may, through its potential field, affect the rate of quenching, enhance the net separated charge yield, and slow the back reaction of the separated photoredox products. In all such cases that we have studied the quenching rate in the presence of PVS was reduced to about 60% of the rate measured in the absence of PVS. For two neutral species, iron(III) nitrilotriacetate (FeNTA) and cobalt(III) acetylacetonate (Co(acac) 3 ), photoreduction of the quencher was observed, and the redox yield escaping geminate recombination was substantially increased by added PVS. In the case of FeNTA the rate of the bulk back reaction was not changed appreciably by the presence of PVS owing to the rapid neutralization of Fe(NTA) - by protonation. For Co(acac) 3 the rate of the bulk back reaction was decreased by several orders of magnitude and the back reaction was shown to occur via the enolate form of the ligand which is released to the bulk solution. 4 figures, 4 tables

  18. Squeezing survival and transfer in single and double electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Ding, J L; Hou, B P; Wang, S J

    2010-01-01

    We investigate the propagation and storage of a squeezed vacuum as the probe light in a collection of N four-level tripod configuration atoms under the condition of single or double electromagnetically induced transparency (EIT). The squeezing of the probe light is well preserved in both the single transparency channel and the double transparency one. On the other hand, the effects of the ground state dephasing rates on the propagation and storage of the squeezed vacuum are investigated. It is found that the maximum squeezing at the transparency points is suppressed by the dephasing rates in single or double EIT. Meanwhile, the mapping of the squeezing of the probe light onto the atomic ground coherences or onto the two atomic dark-state polaritons is also studied. In the absence of the Langevin atomic noise, the quasi-ideal squeezing transfer between the squeezed vacuum and the atomic ground coherences or the dark-state polaritons can be realized in such a system. When considering the Langevin atomic noise, the quantum characteristics of the atomic coherences at resonance are submerged by the Langevin noise, while in the scenario of the dark-state polariton, it is found that squeezing transfer onto one polariton is damaged, but the squeezing transfer onto the other polariton survives even in the presence of the Langevin noise.

  19. Optically Controlled Electron-Transfer Reaction Kinetics and Solvation Dynamics : Effect of Franck-Condon States

    NARCIS (Netherlands)

    Gupta, Kriti; Patra, Aniket; Dhole, Kajal; Samanta, Alok Kumar; Ghosh, Swapan K.

    2017-01-01

    Experimental results for optically controlled electron-transfer reaction kinetics (ETRK) and nonequilibrium solvation dynamics (NESD) of Coumarin 480 in DMPC vesicle show their dependence on excitation wavelength λex. However, the celebrated Marcus theory and linear-response-theory-based approaches

  20. Single-Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions.

    Science.gov (United States)

    Yang, Sungeun; Kim, Jiwhan; Tak, Young Joo; Soon, Aloysius; Lee, Hyunjoo

    2016-02-05

    As a catalyst, single-atom platinum may provide an ideal structure for platinum minimization. Herein, a single-atom catalyst of platinum supported on titanium nitride nanoparticles were successfully prepared with the aid of chlorine ligands. Unlike platinum nanoparticles, the single-atom active sites predominantly produced hydrogen peroxide in the electrochemical oxygen reduction with the highest mass activity reported so far. The electrocatalytic oxidation of small organic molecules, such as formic acid and methanol, also exhibited unique selectivity on the single-atom platinum catalyst. A lack of platinum ensemble sites changed the reaction pathway for the oxygen-reduction reaction toward a two-electron pathway and formic acid oxidation toward direct dehydrogenation, and also induced no activity for the methanol oxidation. This work demonstrates that single-atom platinum can be an efficient electrocatalyst with high mass activity and unique selectivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Reaction of single-standard DNA with hydroxyl radical generated by iron(II)-ethylenediaminetetraacetic acid

    International Nuclear Information System (INIS)

    Prigodich, R.V.; Martin, C.T.

    1990-01-01

    This study demonstrates that the reaction of Fe(II)-EDTA and hydrogen peroxide with the single-stranded nucleic acids d(pT) 70 and a 29-base sequence containing a mixture of bases results in substantial damage which is not directly detected by gel electrophoresis. Cleavage of the DNA sugar backbone is enhanced significantly after the samples are incubated at 90 degree C in the presence of piperidine. The latter reaction is used in traditional Maxam-Gilbert DNA sequencing to detect base damage, and the current results are consistent with reaction of the hydroxyl radical with the bases in single-stranded DNA (although reaction with sugar may also produce adducts that are uncleaved but labile to cleavage by piperidine). We the authors propose that hydroxyl radicals may react preferentially with the nucleic acid bases in ssDNA and that reaction of the sugars in dsDNA is dominant because the bases are sequestered within the double helix. These results have implications both for the study of single-stranded DNA binding protein binding sites and for the interpretation of experiments using the hydroxyl radical to probe DNA structure or to footprint double-stranded DNA binding protein binding sites

  2. Kinetics and mechanisms of photoinduced electron-transfer reaction of zinc myoglobin

    International Nuclear Information System (INIS)

    Tsukahara, Keiichi; Asami, Satoko; Okada, Mihoko; Sakurai, Takeshi.

    1994-01-01

    Photoinduced electron transfer (ET) between zinc myoglobin (ZnPPMb) and a variety of quenchers, such as hexacyanoferrate(III)([Fe(CN) 6 ] 3- ) and hexaammineruthenium(III)(Ru(NH 3 ) 6 ] 3+ ions, cationic viologens, copper(II) protein (stellacyanin), and metmyoglobins, has been studied in aqueous degassed solutions. The excited triplet state of ZnPPMb( * ZnPPMb) was quenched by [Fe(CN) 6 ] 3- in a self-associated complex. Both quenching rate constant and formation constant of the self-associated complex decrease with increasing ionic strengths. The thermal backward ET reaction for this system was not observed; it is most likely that the backward ET step is much faster than the quenching reaction. All of the cationic quenchers examined in this work did not form a self-associated complex with * ZnPPMb, and the intermolecular quenching occurred. The thermal backward ET reaction was observed for these cationic quenchers. Not only photoinduced ET but also thermal backward ET reactions were insensitive to the driving force of the reactions, suggesting that the reactions are controlled by conformational changes in ZnPPMb. The quenching rate constants increase with increasing ionic strength for the cationic quenchers. The effects of poly-L-lysine hydrochloride, sodium poly-L-glutamate, and sodium cyclo-hexaphosphate were also examined. The active site of the * ZnPPMb toward both anionic and cationic quenchers is assumed to be the positively charged site near the heme pocket. (author)

  3. Collective charge and mass transfer in heavy ion reactions

    International Nuclear Information System (INIS)

    Hahn, J.

    1982-01-01

    In this thesis the dynamics of the charge and mass asymmetry degree of freedom was studied in the framework of the fragmentation theory by means of a time-dependent Schroedinger equation. New is the introduction of a friction potential which describes the coupling of these collective degrees of freedom to the not explicitely treated other collective respectively internal degrees of freedom. Thereby it was shown that the measured widths of the isobaric charge distributions in the 86 Kr+sup(92,98)Mo reaction can be explained mainly by the quantum mechanical uncertainty in the charge asymmetry degree of freedom. The charge equilibration occurring at the begin of a deep inelastic collision can therefore by considered as a quantum mechanical, collective, damped motion which is connected with the excitation of the isovector giant dipole resonance of the nucleus-nucleus system. The study of the mass transfer in the reactions 132 Xe+ 120 Sn and 86 Kr+ 166 Er shows, how important at the begin of a deep inelastic collision shell structures and their conservation are for a large part of the reaction, even if the elemental distribution show no maxima in the region of magic shell closures. The experimental width are up to 10 MeV/A well described under conservation of the shell structure. (orig./HSI) [de

  4. Characterization of the free energy dependence of an interprotein electron transfer reaction by variation of pH and site-directed mutagenesis.

    Science.gov (United States)

    Dow, Brian A; Davidson, Victor L

    2015-10-01

    The interprotein electron transfer (ET) reactions of the cupredoxin amicyanin, which mediates ET from the tryptophan tryptophylquinone (TTQ) cofactor of methylamine dehydrogenase to cytochrome c-551i have been extensively studied. However, it was not possible to perform certain key experiments in that native system. This study examines the ET reaction from reduced amicyanin to an alternative electron acceptor, the diheme protein MauG. It was possible to vary the ΔG° for this ET reaction by simply changing pH to determine the dependence of kET on ΔG°. A P94A mutation of amicyanin significantly altered its oxidation-reduction midpoint potential value. It was not possible to study the ET from reduced P94A amicyanin to cytochrome c-551i in the native system because that reaction was kinetically coupled. However, the reaction from reduced P94A amicyanin to MauG was a true ET reaction and it was possible to determine values of reorganization energy (λ) and electronic coupling for the reactions of this variant as well as native amicyanin. Comparison of the λ values associated with the ET reactions between amicyanin and the TTQ of methylamine dehydrogenase, the diheme center of MauG and the single heme of cytochrome c-551i, provides insight into the factors that dictate the λ values for the respective reactions. These results demonstrate how study of ET reactions with alternative redox partner proteins can complement and enhance our understanding of the reactions with the natural redox partners, and further our understanding of mechanisms of protein ET reactions. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Deeply inelastic transfer reactions induced by heavy ions in rare earth targets. II. Interpretation of experimental data

    International Nuclear Information System (INIS)

    Rivet, M.F.; Bimbot, R.; Ngo, C.

    1979-01-01

    The experimental angular distributions and cross sections for a series of deeply inelastic transfer reactions induced by various projectiles in rare earth targets have been interpreted using a model which includes a dynamical coupling between relative motion and mass asymmetry and treats statistical fluctuations. As the transfer reactions considered correspond to an increase of the potential energy of the composite system their observation is mainly due to fluctuations. The calculation reproduces correctly the angular distributions, but the cross sections are underestimated. Several effects are discussed which may increase these cross sections and are neglected in the calculation

  6. Nucleon transfer reactions in D.W.B.A; Les reactions de transfert d'un nucleon dans la D.W.B.A

    Energy Technology Data Exchange (ETDEWEB)

    Giraud, B.; Picard, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-08-01

    The DWBA for one nucleon transfer reaction is described as simply and completely as possible to show the possibilities and limits of this method. The extraction of spectroscopic factors is described in the appendix. (authors) [French] Le formalisme de la DWBA est decrit d'une maniere aussi simple et complete que possible pour mettre en evidence les possibilites et les limites de cette methode d'analyse des reactions de transfert. L'extraction des facteurs spectroscopiques est exposee en appendice. (auteurs)

  7. Isotopic resolution of fission fragments from 238U + 12C transfer and fusion reactions

    International Nuclear Information System (INIS)

    Caamano, M.; Rejmund, F.; Derkx, X.; Schmidt, K. H.; Andouin, L.; Bacri, C. O.; Barreau, G.; Benlliure, J.; Casarejos, E.; Fernandez-Dominguez, B.; Gaudefroy, L.; Golabek, C.; Jurado, B.; Lemasson, A.; Navin, A.; Rejmund, M.; Roger, T.; Shrivastava, A.; Schmitt, C.; Taieb, J.

    2010-01-01

    Recent results from an experiment at GANIL, performed to investigate the main properties of fission-fragment yields and energy distributions in different fissioning nuclei as a function of the excitation energy, in a neutron-rich region of actinides, are presented. Transfer reactions in inverse kinematics between a 238 U beam and a 12 C target produced different actinides, within a range of excitation energy below 30 MeV. These fissioning nuclei are identified by detecting the target-like recoil, and their kinetic and excitation energy are determined from the reconstruction of the transfer reaction. The large-acceptance spectrometer VAMOS was used to identify the mass, atomic number and charge state of the fission fragments in flight. As a result, the characteristics of the fission-fragment isotopic distributions of a variety of neutron-rich actinides are observed for the first time over the complete range of fission fragments. (authors)

  8. Reaction between aminoalkyl radicals and akyl halides: Dehalogenation by electron transfer?

    Science.gov (United States)

    Lalevée, J.; Fouassier, J. P.; Blanchard, N.; Ingold, K. U.

    2011-07-01

    Aminoalkyl radicals, such as Et2NCrad HCH3, have low oxidation potentials and are therefore powerful reducing agents. We have found that Et2NCrad HCH3 reacts with CCl4 and CBr4 in di-tert-butyl peroxide with bimolecular rate constants (measured by LFP) close, or equal, to the diffusion-controlled limit. For the less reactive halide, CH2Br2, the reaction rate is increased substantially by the addition of acetonitrile as a co-solvent. It is tentatively concluded that these reactions occur by electron-transfer from the aminoalkyl to the organohalide with formation of the iminium ion, Et2N+dbnd CHCH3 (NMR detection), halide ion and a halomethyl radical, e.g., rad CCl3 and rad CHCl2 (ESR, spin-trapping detection).

  9. Two-Dimensional Resonance Raman Signatures of Vibronic Coherence Transfer in Chemical Reactions.

    Science.gov (United States)

    Guo, Zhenkun; Molesky, Brian P; Cheshire, Thomas P; Moran, Andrew M

    2017-11-02

    Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in condensed phase systems. 2DRR spectroscopy is motivated by knowledge of non-equilibrium effects that cannot be detected with traditional resonance Raman spectroscopy. For example, 2DRR spectra may reveal correlated distributions of reactant and product geometries in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this chapter, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide. We show that signatures of "vibronic coherence transfer" in the photodissociation process can be targeted with particular 2DRR pulse sequences. Key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopy techniques are also addressed. Overall, recent experimental developments and applications of the 2DRR method suggest that it will be a valuable tool for elucidating ultrafast chemical reaction mechanisms.

  10. Investigations of Spectroscopic Factors and Sum Rules from the Single Neutron Transfer Reaction 111Cd(overrightarrow {{d}} ,p)112Cd

    Science.gov (United States)

    Jamieson, D. S.; Garrett, P. E.; Ball, G. C.; Demand, G. A.; Faestermann, T.; Finlay, P.; Green, K. L.; Hertenberger, R.; Krücken, R.; Leach, K. G.; Phillips, A. A.; Sumithrarachchi, C. S.; Triambak, S.; Wirth, H.-F.

    2014-03-01

    Cadmium isotopes have been presented for decades as excellent examples of vibrational nuclei, with low-lying levels interpreted as multi-phonon quadrupole, octupole, and mixed-symmetry states. A large amount of spectroscopic data has been obtained through various experimental studies of cadmiumisotopes. In the present work, the 111Cd(overrightarrow {{d}} ,p)112Cd reaction was used to investigate the single-particle structure of the 112Cd nucleus. A 22 MeV beam of polarized deuterons was obtained at the Maier-Leibnitz laboratory in Garching, Germany. The reaction ejectiles were momentum analyzed using a Q3D spectrograph, and 130 levels have been identified up to 4.2 MeV of excitation energy. Using DWBA analysis with optical model calculations, spin-parity assignments have been made for observed levels, and spectroscopic factors have been extracted from the experimental angular distributions of differential cross section and analyzing power. In this high energy resolution investigation, many additional levels have been observed compared with the previous (d,p) study using 8 MeV deuterons [1]. There were a total of 44 new levels observed, and the parity assignments of 34 levels were improved.

  11. Single Transition-to-single Transition Polarization Transfer (ST2-PT) in [15N,1H]-TROSY

    International Nuclear Information System (INIS)

    Pervushin, Konstantin V.; Wider, Gerhard; Wuethrich, Kurt

    1998-01-01

    This paper describes the use of single transition-to-single transition polarization transfer (ST2-PT) in transverse relaxation-optimized spectroscopy (TROSY), where it affords a √2 sensitivity enhancement for kinetically stable amide 15N-1H groups in proteins. Additional, conventional improvements of [15N,1H]-TROSY include that signal loss for kinetically labile 15N-1H groups due to saturation transfer from the solvent water is suppressed with the 'water flip back' technique and that the number of phase steps is reduced to two, which is attractive for the use of [15N,1H]-TROSY as an element in more complex NMR schemes. Finally, we show that the impact of the inclusion of the 15N steady-state magnetization (Pervushin et al., 1998) on the signal-to-noise ratio achieved with [15N,1H]-TROSY exceeds by up to two-fold the gain expected from the gyromagnetic ratios of 1H and 15N

  12. Dynamics of the F(-) + CH3I → HF + CH2I(-) Proton Transfer Reaction.

    Science.gov (United States)

    Zhang, Jiaxu; Xie, Jing; Hase, William L

    2015-12-17

    Direct chemical dynamics simulations, at collision energies Erel of 0.32 and 1.53 eV, were performed to obtain an atomistic understanding of the F(-) + CH3I reaction dynamics. There is only the F(-) + CH3I → CH3F + I(-) bimolecular nucleophilic substitution SN2 product channel at 0.32 eV. Increasing Erel to 1.53 eV opens the endothermic F(-) + CH3I → HF + CH2I(-) proton transfer reaction, which is less competitive than the SN2 reaction. The simulations reveal proton transfer occurs by two direct atomic-level mechanisms, rebound and stripping, and indirect mechanisms, involving formation of the F(-)···HCH2I complex and the roundabout. For the indirect trajectories all of the CH2I(-) is formed with zero-point energy (ZPE), while for the direct trajectories 50% form CH2I(-) without ZPE. Without a ZPE constraint for CH2I(-), the reaction cross sections for the rebound, stripping, and indirect mechanisms are 0.2 ± 0.1, 1.2 ± 0.4, and 0.7 ± 0.2 Å(2), respectively. Discarding trajectories that do not form CH2I(-) with ZPE reduces the rebound and stripping cross sections to 0.1 ± 0.1 and 0.7 ± 0.5 Å(2). The HF product is formed rotationally and vibrationally unexcited. The average value of J is 2.6 and with histogram binning n = 0. CH2I(-) is formed rotationally excited. The partitioning between CH2I(-) vibration and HF + CH2I(-) relative translation energy depends on the treatment of CH2I(-) ZPE. Without a CH2I(-) ZPE constraint the energy partitioning is primarily to relative translation with little CH2I(-) vibration. With a ZPE constraint, energy partitioning to CH2I(-) rotation, CH2I(-) vibration, and relative translation are statistically the same. The overall F(-) + CH3I rate constant at Erel of both 0.32 and 1.53 eV is in good agreement with experiment and negligibly affected by the treatment of CH2I(-) ZPE, since the SN2 reaction is the major contributor to the total reaction rate constant. The potential energy surface and reaction dynamics for F

  13. Ruthenium(II) pincer complexes with oxazoline arms for efficient transfer hydrogenation reactions

    KAUST Repository

    Chen, Tao

    2012-08-01

    Well-defined P NN CN pincer ruthenium complexes bearing both strong phosphine and weak oxazoline donors were developed. These easily accessible complexes exhibit significantly better catalytic activity in transfer hydrogenation of ketones compared to their PN 3P analogs. These reactions proceed under mild and base-free conditions via protonation- deprotonation of the \\'NH\\' group in the aromatization-dearomatization process. © 2012 Elsevier Ltd. All rights reserved.

  14. Three-nucleon transfer reactions and cluster structure in the A = 15 to A = 19 nuclei

    International Nuclear Information System (INIS)

    Martz, L.M.

    1978-01-01

    The ( 6 Li,t) and ( 6 Li, 3 He) reactions were studied on targets of 12 C, 13 C, 14 N, 15 N, and 16 O at E/sub Li/ approx. = 44 MeV and theta/sub lab/ approx. = 15 0 . A preferential population of final states was exhibited in spectra for the A = 15 to A = 19 nuclei. The strong forward peaking of angular distributions in the 13 C( 6 Li,t) 16 O and 13 C( 6 Li, 3 He) 16 N reactions can be reproduced by DWBA calculations but not by the Hauser-Feshbach model. Such indications of a primarily direct mechanism at forward angles suggest use of these three-nucleon-transfer reactions to identify candidates for 3p-nh states. A comparison with other multinucleon transfer data, e.g., those from ( 7 Li,α) and ( 7 Li,t) reactions on 13 C and 15 N targets, further tests dominant particle-hole configurations. The relationship between ( 6 Li,t) and ( 6 Li, 3 He) spectra reveals analog states, notably T = 1, T/sub z/ = 0 levels at high excitation in 16 O. Nuclear theory is used to investigate the role of triton clustering in such structure. The 2N + L = 6 band predicted by a folded-potential model of 18 O = 15 N + t shows an underlying correspondence to the experimental levels in triton-transfer data. Triton spectroscopic factors calculated from the SU(3) shell model further suggest the broad influence of clustering phenomena in this mass region. Experimental evidence of systematic behavior in the triton binding energies of proposed p/sup -n/(sd) 3 configurations was found

  15. Direct reactions induced by 16O on 208Pb at high incident energy

    International Nuclear Information System (INIS)

    Mermaz, M.C.

    1978-01-01

    Direct reactions induced by 16 O mainly on 208 Pb at 20 MeV/nucleon are reviewed. The quasi-elastic transfer reaction, such as one-proton and one-neutron transfer respectively leading to 209 Bi and 209 Pb single-particle-states, is first discussed, the fragmentation of 16 O projectile on heavy targets is then envisaged. The one-nucleon transfer can be described within the framework of one-step processes using the DWBA formalism to calculate the cross sections. At high incident energy (312.6 MeV), transfer reactions involving nucleons from the deeper 1p 3/2 orbit of 16 O are kinematically favoured and well observed. At 20 MeV/A and above, a large part of the reaction cross sections seems to be due to the fragmentation of the projectile; more especially, an abrasion-ablation model have to be used in order to explain the general trend of the data (energy spectra and angular distribution)

  16. Electron transfer reactions, cyanide and O2 binding of truncated hemoglobin from Bacillus subtilis

    DEFF Research Database (Denmark)

    Fernandez, Esther; Larsson, Jonas T.; McLean, Kirsty J.

    2013-01-01

    The truncated hemoglobin from Bacillus subtilis (trHb-Bs) possesses a surprisingly high affinity for oxygen and resistance to (auto)oxidation; its physiological role in the bacterium is not understood and may be connected with its very special redox and ligand binding reactions. Electron transfer...

  17. Detection of Babesia canis vogeli and Hepatozoon canis in canine blood by a single-tube real-time fluorescence resonance energy transfer polymerase chain reaction assay and melting curve analysis.

    Science.gov (United States)

    Kongklieng, Amornmas; Intapan, Pewpan M; Boonmars, Thidarut; Thanchomnang, Tongjit; Janwan, Penchom; Sanpool, Oranuch; Lulitanond, Viraphong; Taweethavonsawat, Piyanan; Chungpivat, Sudchit; Maleewong, Wanchai

    2015-03-01

    A real-time fluorescence resonance energy transfer polymerase chain reaction (qFRET PCR) coupled with melting curve analysis was developed for detection of Babesia canis vogeli and Hepatozoon canis infections in canine blood samples in a single tube assay. The target of the assay was a region within the 18S ribosomal RNA gene amplified in either species by a single pair of primers. Following amplification from the DNA of infected dog blood, a fluorescence melting curve analysis was done. The 2 species, B. canis vogeli and H. canis, could be detected and differentiated in infected dog blood samples (n = 37) with high sensitivity (100%). The detection limit for B. canis vogeli was 15 copies of a positive control plasmid, and for H. canis, it was 150 copies of a positive control plasmid. The assay could simultaneously distinguish the DNA of both parasites from the DNA of controls. Blood samples from 5 noninfected dogs were negative, indicating high specificity. Several samples can be run at the same time. The assay can reduce misdiagnosis and the time associated with microscopic examination, and is not prone to the carryover contamination associated with the agarose gel electrophoresis step of conventional PCR. In addition, this qFRET PCR method would be useful to accurately determine the range of endemic areas or to discover those areas where the 2 parasites co-circulate. © 2015 The Author(s).

  18. Single-crystal charge transfer interfaces for efficient photonic devices (Conference Presentation)

    Science.gov (United States)

    Alves, Helena; Pinto, Rui M.; Maçôas, Ermelinda M. S.; Baleizão, Carlos; Santos, Isabel C.

    2016-09-01

    Organic semiconductors have unique optical, mechanical and electronic properties that can be combined with customized chemical functionality. In the crystalline form, determinant features for electronic applications such as molecular purity, the charge mobility or the exciton diffusion length, reveal a superior performance when compared with materials in a more disordered form. Combining crystals of two different conjugated materials as even enable a new 2D electronic system. However, the use of organic single crystals in devices is still limited to a few applications, such as field-effect transistors. In 2013, we presented the first system composed of single-crystal charge transfer interfaces presenting photoconductivity behaviour. The system composed of rubrene and TCNQ has a responsivity reaching 1 A/W, corresponding to an external quantum efficiency of nearly 100%. A similar approach, with a hybrid structure of a PCBM film and rubrene single crystal also presents high responsivity and the possibility to extract excitons generated in acceptor materials. This strategy led to an extended action towards the near IR. By adequate material design and structural organisation of perylediimides, we demonstrate that is possible to improve exciton diffusion efficiency. More recently, we have successfully used the concept of charge transfer interfaces in phototransistors. These results open the possibility of using organic single-crystal interfaces in photonic applications.

  19. Transfer of energy from irradiated crystals to redox reactions: iodide/bromate and nitrite/bromate systems

    International Nuclear Information System (INIS)

    Arnikar, H.J.; Madhava Rao, B.S.; Bedekar, M.J.

    1978-01-01

    Earlier it had been shown by the authors that some of the redox reactions, which do not take place at room temperature can be induced by γ radiation. The yields are proportional to the dose. Results reported here show that instead of direct irradiation, the energy stored in irradiated crystals in the form of F and hole centres can be available, in part, in effecting redox reactions. The mechanism of such an energy transfer is discussed with reference to reactions in the I - +BrO 3 - and NO 2 - +BrO 3 - systems due to the addition of irradiated NaCl. (author)

  20. Extraordinary Mechanism of the Diels-Alder Reaction: Investigation of Stereochemistry, Charge Transfer, Charge Polarization, and Biradicaloid Formation.

    Science.gov (United States)

    Sexton, Thomas; Kraka, Elfi; Cremer, Dieter

    2016-02-25

    The Diels-Alder reaction between 1,3-butadiene and ethene is investigated from far-out in the entrance channel to the very last step in the exit channel thus passing two bifurcation points and extending the range of the reaction valley studied with URVA (Unified Reaction Valley Approach) by 300% compared to previous studies. For the first time, the pre- and postchemical steps of the reaction are analyzed at the same level of theory as the actual chemical processes utilizing the path curvature and its decomposition into internal coordinate or curvilinear coordinate components. A first smaller charge transfer to the dienophile facilitates the rotation of gauche butadiene into its cis form. The actual chemical processes are initiated by a second larger charge transfer to the dienophile that facilitates pyramidalization of the reacting carbon centers, bond equalization, and biradicaloid formation of the reactants. The transition state is aromatically stabilized and moved by five path units into the entrance channel in line with the Hammond-Leffler postulate. The pseudorotation of the boat form into the halfchair of cyclohexene is analyzed. Predictions are made for the Diels-Alder reaction based on a 11-phase mechanism obtained by the URVA analysis.

  1. Mass transfer intensification of nanofluid single drops with effect of temperature

    Energy Technology Data Exchange (ETDEWEB)

    Saien, Javad; Zardoshti, Mahdi [Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)

    2015-11-15

    The hydrodynamics and mass transfer of organic nanofluid single drops in liquid-liquid extraction process were investigated within temperature range of 20 to 40 .deg. C. Nanofluid drops of toluene+acetic acid, containing surface modified magnetite nanoparticles (NPs) with concentration within the range of (0.0005-0.005) wt%, were conducted in aqueous continuous phase. The rate of solute mass transfer was generally enhanced with NPs until about 0.002wt%, and small drops benefited more. The enhancement reached 184.1% with 0.002 wt% of NPs at 40 .deg. C; however, adding more NPs led to the mass transfer to either remain constant or face a reduction, depending on the applied temperature. The mass transfer coefficient was nicely reproduced using a developed correlation for enhancement factor of molecular diffusivity as a function of Reynolds and Schmidt numbers.

  2. Intramolecular energy transfer and mode-specific effects in unimolecular reactions of 1,2-difluoroethane

    Science.gov (United States)

    Raff, Lionel M.

    1989-06-01

    The unimolecular decomposition reactions of 1,2-difluoroethane upon mode-specific excitation to a total internal energy of 7.5 eV are investigated using classical trajectory methods and a previously formulated empirical potential-energy surface. The decomposition channels for 1,2-difluoroethane are, in order of importance, four-center HF elimination, C-C bond rupture, and hydrogen-atom dissociation. This order is found to be independent of the particular vibrational mode excited. Neither fluorine-atom nor F2 elimination reactions are ever observed even though these dissociation channels are energetically open. For four-center HF elimination, the average fraction of the total energy partitioned into internal HF motion varies between 0.115-0.181 depending upon the particular vibrational mode initially excited. The internal energy of the fluoroethylene product lies in the range 0.716-0.776. Comparison of the present results with those previously obtained for a random distribution of the initial 1,2-difluoroethane internal energy [J. Phys. Chem. 92, 5111 (1988)], shows that numerous mode-specific effects are present in these reactions in spite of the fact that intramolecular energy transfer rates for this system are 5.88-25.5 times faster than any of the unimolecular reaction rates. Mode-specific excitation always leads to a total decomposition rate significantly larger than that obtained for a random distribution of the internal energy. Excitation of different 1,2-difluoroethane vibrational modes is found to produce as much as a 51% change in the total decomposition rate. Mode-specific effects are also seen in the product energy partitioning. The rate coefficients for decomposition into the various channels are very sensitive to the particular mode excited. A comparison of the calculated mode-specific effects with the previously determined mode-to-mode energy transfer rate coefficients [J. Chem. Phys. 89, 5680 (1988)] shows that, to some extent, the presence of mode

  3. Formation of T-shaped versus charge-transfer molecular adducts in the reactions between bis(thiocarbonyl) donors and Br2 and I2.

    Science.gov (United States)

    Mancini, Annalisa; Aragoni, M Carla; Bricklebank, Neil; Castellano, Carlo; Demartin, Francesco; Isaia, Francesco; Lippolis, Vito; Pintus, Anna; Arca, Massimiliano

    2013-03-01

    The reactions of 4,5,6,7-tetrathiocino-[1,2-b:3,4-b']-1,3,8,10-tetrasubstituted-diimidazolyl-2,9-dithiones (R(2),R'(2)-todit; 1: R=R'=Et; 2: R=R'=Ph; 3: R=Et, R'=Ph) with Br(2) exclusively afforded 1:1 and 1:2 "T-shaped" adducts, as established by FT-Raman spectroscopy and single-crystal X-ray diffraction in the case of complex 1·2Br(2). On the other hand, the reactions of compounds 1-3 with molecular I(2) provided charge-transfer (CT) "spoke" adducts, among which the solvated species 3·2I(2)·(1-x)I(2)·xCH(2)Cl(2) (x=0.94) and (3)(2)·7I(2)·xCH(2)Cl(2), (x=0.66) were structurally characterized. The nature of all of the reaction products was elucidated based on elemental analysis and FT-Raman spectroscopy and supported by theoretical calculations at the DFT level. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Charge transfer at junctions of a single layer of graphene and a metallic single walled carbon nanotube.

    Science.gov (United States)

    Paulus, Geraldine L C; Wang, Qing Hua; Ulissi, Zachary W; McNicholas, Thomas P; Vijayaraghavan, Aravind; Shih, Chih-Jen; Jin, Zhong; Strano, Michael S

    2013-06-10

    Junctions between a single walled carbon nanotube (SWNT) and a monolayer of graphene are fabricated and studied for the first time. A single layer graphene (SLG) sheet grown by chemical vapor deposition (CVD) is transferred onto a SiO₂/Si wafer with aligned CVD-grown SWNTs. Raman spectroscopy is used to identify metallic-SWNT/SLG junctions, and a method for spectroscopic deconvolution of the overlapping G peaks of the SWNT and the SLG is reported, making use of the polarization dependence of the SWNT. A comparison of the Raman peak positions and intensities of the individual SWNT and graphene to those of the SWNT-graphene junction indicates an electron transfer of 1.12 × 10¹³ cm⁻² from the SWNT to the graphene. This direction of charge transfer is in agreement with the work functions of the SWNT and graphene. The compression of the SWNT by the graphene increases the broadening of the radial breathing mode (RBM) peak from 3.6 ± 0.3 to 4.6 ± 0.5 cm⁻¹ and of the G peak from 13 ± 1 to 18 ± 1 cm⁻¹, in reasonable agreement with molecular dynamics simulations. However, the RBM and G peak position shifts are primarily due to charge transfer with minimal contributions from strain. With this method, the ability to dope graphene with nanometer resolution is demonstrated. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. One-neutron and two-neutron transfer in the scattering

    International Nuclear Information System (INIS)

    Reisdorf, W.N.; Lau, P.H.; Vandenbosch, R.

    1975-01-01

    Angular distributions have been measured for one- and two-neutron transfer reactions induced by 18 O beams on 16 O targets at laboratory bombarding energies of 42 and 52 MeV. The reactions populating the ground and first excited states of 17 O and 18 O are analyzed in terms of single step finite range plus recoil DWBA theory taking into account antisymmetrization effects. Special attention is paid to an internally consistent description of the observed absolute magnitudes of all the reactions and to the theoretically expected interferences between various backward-forward scattering mechanisms. The importance of neutron transfer in accounting for different absorbing properties of the 16 O- 18 O systems as compared to the 16 O- 16 O system is shown. (13 figures, 2 tables)

  6. Condensation heat transfer of steam on a single horizontal tube

    Science.gov (United States)

    Graber, K. A.

    1983-06-01

    An experimental apparatus was designed, constructed and instrumented in an effort to systematically and carefully study the condensation heat-transfer coefficient on a single, horizontal tube. A smooth, thick-walled copper tube of length 133.5 mm, with an outside diameter of 15.9 mm and an inside diameter of 12.7 mm was instrumented with six wall thermocouples. The temperature rise across the test section was measured accurately using quartz crystal thermometers. The inside heat-transfer coefficient was determined using the Sieder-Tate correlation with leading coefficient of 0.029. Initial steam side data were taken at atmospheric pressure to test the data acquisition/reduction computer programs.

  7. Quantum State Transfer from a Single Photon to a Distant Quantum-Dot Electron Spin

    Science.gov (United States)

    He, Yu; He, Yu-Ming; Wei, Yu-Jia; Jiang, Xiao; Chen, Kai; Lu, Chao-Yang; Pan, Jian-Wei; Schneider, Christian; Kamp, Martin; Höfling, Sven

    2017-08-01

    Quantum state transfer from flying photons to stationary matter qubits is an important element in the realization of quantum networks. Self-assembled semiconductor quantum dots provide a promising solid-state platform hosting both single photon and spin, with an inherent light-matter interface. Here, we develop a method to coherently and actively control the single-photon frequency bins in superposition using electro-optic modulators, and measure the spin-photon entanglement with a fidelity of 0.796 ±0.020 . Further, by Greenberger-Horne-Zeilinger-type state projection on the frequency, path, and polarization degrees of freedom of a single photon, we demonstrate quantum state transfer from a single photon to a single electron spin confined in an InGaAs quantum dot, separated by 5 m. The quantum state mapping from the photon's polarization to the electron's spin is demonstrated along three different axes on the Bloch sphere, with an average fidelity of 78.5%.

  8. A Stefan model for mass transfer in a rotating disk reaction vessel

    KAUST Repository

    BOHUN, C. S.

    2015-05-04

    Copyright © Cambridge University Press 2015. In this paper, we focus on the process of mass transfer in the rotating disk apparatus formulated as a Stefan problem with consideration given to both the hydrodynamics of the process and the specific chemical reactions occurring in the bulk. The wide range in the reaction rates of the underlying chemistry allows for a natural decoupling of the problem into a simplified set of weakly coupled convective-reaction-diffusion equations for the slowly reacting chemical species and a set of algebraic relations for the species that react rapidly. An analysis of the chemical equilibrium conditions identifies an expansion parameter and a reduced model that remains valid for arbitrarily large times. Numerical solutions of the model are compared to an asymptotic analysis revealing three distinct time scales and chemical diffusion boundary layer that lies completely inside the hydrodynamic layer. Formulated as a Stefan problem, the model generalizes the work of Levich (Levich and Spalding (1962) Physicochemical hydrodynamics, vol. 689, Prentice-Hall Englewood Cliffs, NJ) and will help better understand the natural limitations of the rotating disk reaction vessel when consideration is made for the reacting chemical species.

  9. Insights into the mechanisms on chemical reactions: reaction paths for chemical reactions

    International Nuclear Information System (INIS)

    Dunning, T.H. Jr.; Rosen, E.; Eades, R.A.

    1987-01-01

    We report reaction paths for two prototypical chemical reactions: Li + HF, an electron transfer reaction, and OH + H 2 , an abstraction reaction. In the first reaction we consider the connection between the energetic terms in the reaction path Hamiltonian and the electronic changes which occur upon reaction. In the second reaction we consider the treatment of vibrational effects in chemical reactions in the reaction path formalism. 30 refs., 9 figs

  10. Analysis of coupled mass transfer and sol-gel reaction in a two-phase system

    NARCIS (Netherlands)

    Castelijns, H.J.; Huinink, H.P.; Pel, L.; Zitha, P.L.J.

    2006-01-01

    The coupled mass transfer and chemical reactions of a gel-forming compound in a two-phase system were studied in detail. Tetra-methyl-ortho-silicate (TMOS) is often used as a precursor in sol-gel chemistry to produce silica gels in aqueous systems. TMOS can also be mixed with many hydrocarbons

  11. A reagent for safe and efficient diazo-transfer to primary amines: 2-azido-1,3-dimethylimidazolinium hexafluorophosphate.

    Science.gov (United States)

    Kitamura, Mitsuru; Kato, So; Yano, Masakazu; Tashiro, Norifumi; Shiratake, Yuichiro; Sando, Mitsuyoshi; Okauchi, Tatsuo

    2014-07-07

    Organic azides were prepared from primary amines in high yields by a metal free diazo-transfer reaction using 2-azido-1,3-dimethylimidazolinium hexafluorophosphate (ADMP), which is safe and stable crystalline. The choice of base was important in the diazo-transfer reaction. In general, 4-(N,N-dimethyl)aminopyridine (DMAP) was efficient, but a stronger base such as alkylamine or DBU was more appropriate for the reaction of nucleophilic primary amines. X-ray single crystal structural analysis and geometry optimization using density functional theory (B3LYP/6-31G**) were conducted to study the ADMP structure, and the diazo-transfer reaction mechanism was explained with the help of the results of these analyses.

  12. Stripping of two protons and one alpha particle transfer reactions for 16 O + A Sm and their influence on the fusion cross section

    International Nuclear Information System (INIS)

    Maciel, A.M.M.; Gomes, P.R.S.

    1995-01-01

    Transfer cross section angular distribution data for the stripping of two protons and one alpha particle are studied for the 16 O + A Sm systems (A=144, 148, 150, 152 and 154), at near barrier energies. A semiclassical formalism is used to derive the corresponding transfer form factors. For only one channel the analysis shows evidences that the transfer reaction mechanism at backward angles - corresponding to small distances, may behave as a multi-step process leading to fusion. Simplified coupled channel calculations including transfer channels are performed for the study of the sub-barrier of these systems. The influence of short distance transfer reactions on the fusion is discussed. (author)

  13. [Intermediate energy studies of polarization transfer, polarized deuteron scattering, and (p,π+-) reactions: Rapporteur's report

    International Nuclear Information System (INIS)

    Moss, J.M.

    1985-01-01

    An overview of intermediate energy (80 to 1000 MeV) study contributions to the International Polarization Symposium in Osaka, Japan, August 1985 is presented in this report. Contributions fall into three categories: polarization transfer, polarized deuteron scattering and polarized (p,π +- ) reactions

  14. Study of transfer reactions (α,t), (α,3He) in the f-p shell: mechanism and spectroscopic use

    International Nuclear Information System (INIS)

    Roussel, P.

    1968-05-01

    We describe an experimental study of (α,t), (α, 3 He) reactions at 44 MeV using a solid-state identifier, on the target-nuclei 54 Fe and 58,60,62,64 Ni. A critical study of optical model and of disturbed wave analysis has been performed. We show the complementarity of different transfer-reactions, the ambiguity of spectroscopic factors, the importance of the problem of the reaction mechanism. (author) [fr

  15. Ultrafast excitation energy transfer from encapsulated quaterrylene to single-walled carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Takeshi, E-mail: koyama@nuap.nagoya-u.ac.jp [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Tsunekawa, Takuya [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Saito, Takeshi [Research Center for Advanced Carbon Materials, AIST, Tsukuba, Ibaraki 305-8565 (Japan); Asaka, Koji; Saito, Yahachi [Department of Quantum Engineering, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Kishida, Hideo [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Nakamura, Arao [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Toyota Physical and Chemical Research Institute, Nagakute, Aichi 480-1192 (Japan)

    2016-01-15

    We investigate excitation energy transfer from an encapsulated quaterrylene molecule to a single-walled carbon nanotube by means of femtosecond pump-probe spectroscopy. The time constant of energy transfer becomes shorter with increasing average diameter of nanotube: 1.4±0.2 ps for 1.0 nm, 1.1±0.2 ps for 1.4 nm, and 0.4±0.1 ps for 1.8 nm. The observed behavior is discussed considering the distance of less than 1 nm between the molecule and the nanotube wall. - Highlights: • Dynamical properties of excited states in quaterrylene/SWNT composites were studied. • Excitation energy transfer occurs in the time range of 0.4-1.4 ps. • The transfer rate depends on the nanotube diameter, i.e. molecule-nanotube wall distance. • This dependence indicates the feature of excitation energy transfer on the nanoscale.

  16. Production of 149Tb in deep inelastic transfer reactions: an approach to the angular momentum of fragments

    International Nuclear Information System (INIS)

    Rivet, M.F.; Bimbot, R.; Gardes, D.; Fleury, A.; Hubert, F.; Llabador, Y.

    1978-01-01

    The excitation functions for deep inelastic reactions in which two to six charges are transferred from 40 Ar and 63 Cu ions to rare earth targets have been measured using activation techniques, the observed radionuclides being 150 Dy, 151 Dy and 149 gTb. From the comparison of the curves relative to 149 gTb and those relative to 150 Dy, 151 Dy, it was deduced that the low spin isomer 149 gTb was produced with significant probability for low incident energies. Using data from (heavy ions, xn) reactions, it was possible to attribute this production to the deexcitation of Tb fragments formed in deep inelastic transfers with angular momenta lower than 9n. This result is in good agreement with the angular momentum calculations performed under the hypothesis that the initial angular momentum window leading to deep inelastic reactions is situated between the critical angular momentum for fusion and that corresponding to grazing collisions. As far as Cu induced reactions are concerned, both hypothesis of rolling and sticking are consistent with the experimental data. For Ar induced reactions, the results indicate that the stage of sticking is not reached when the incident energy is lower than 200 MeV

  17. Flexible single molecule simulation of reaction-diffusion processes

    International Nuclear Information System (INIS)

    Hellander, Stefan; Loetstedt, Per

    2011-01-01

    An algorithm is developed for simulation of the motion and reactions of single molecules at a microscopic level. The molecules diffuse in a solvent and react with each other or a polymer and molecules can dissociate. Such simulations are of interest e.g. in molecular biology. The algorithm is similar to the Green's function reaction dynamics (GFRD) algorithm by van Zon and ten Wolde where longer time steps can be taken by computing the probability density functions (PDFs) and then sample from the distribution functions. Our computation of the PDFs is much less complicated than GFRD and more flexible. The solution of the partial differential equation for the PDF is split into two steps to simplify the calculations. The sampling is without splitting error in two of the coordinate directions for a pair of molecules and a molecule-polymer interaction and is approximate in the third direction. The PDF is obtained either from an analytical solution or a numerical discretization. The errors due to the operator splitting, the partitioning of the system, and the numerical approximations are analyzed. The method is applied to three different systems involving up to four reactions. Comparisons with other mesoscopic and macroscopic models show excellent agreement.

  18. Electron transfer behaviour of biological macromolecules towards the single-molecule level

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Grubb, Mikala; Hansen, Allan Glargaard

    2003-01-01

    is combined with state-of-the-art physical electrochemistry with emphasis on single-crystal, atomically planar electrode surfaces, in situ scanning tunnelling microscopy (STM) and other surface techniques. These approaches have brought bioelectrochemistry important steps forward towards the nanoscale...... and single-molecule levels.We discuss here these advances with reference to two specific redox metalloproteins, the blue single-copper protein Pseudomonas aeruginosa azurin and the single-haem protein Saccharomyces cerevisiae yeast cytochrome c, and a short oligonucleotide. Both proteins can be immobilized...... electron transfer (ET) function retained. In situ STM can also address the microscopic mechanisms for electron tunnelling through the biomolecules and offers novel notions such as coherent multi-ET between the substrate and tip via the molecular redox levels. This differs in important respects from...

  19. Super-multi-nucleon transfer observed in 60Ni+124Sn reaction slightly above the barrier

    International Nuclear Information System (INIS)

    Tomasi, E.; Pravikoff, M.S.; Nolte, E.; Morinaga, H.

    1982-01-01

    In order to investigate the behaviour of nucleon transfer near the Coulomb barrier through the produced radioactivities, we have studied the 60 Ni+ 124 Sn system, the residual activity measurements were done at three lab energies of 237, 247 and 258 MeV (Bsub(c)(lab) = 234 MeV). For the highest energy we measured also the angular distribution. In addition to activities corresponding to a few nucleon transfers and evaporation residues, a large number of radioactive nuclei was found, which could be attributed to another class of reaction mechanism. Here, we report on this new phenomenon, which might be due to a super-multi-nucleon transfer, on the basis of the measured angular and mass distributions

  20. Study of kinetics and mechanism of diazo compound reactions using nuclear chemical polarization

    International Nuclear Information System (INIS)

    Gragerov, I.P.; Levit, A.F.; Kiprianova, L.A.; Buchachenko, A.L.; Sterleva, T.G.

    1975-01-01

    It has been established that at the rate-determining steps of the radical reactions in which aniline interacts with isoamyl nitrite and substituted diazo salts interact with sodium methylate, tertiary fatty amines, or phosphinic acid, no transfer of a single electron occurs. The processes of single electron transfer do not seem to play a decisive role in the kinetics of most transformations of diazo compounds. Chemical nuclear polarization is shown to be suitable for kinetic studies of fast radical processes

  1. Photochemical reactions of electron-deficient olefins with N,N,N',N'-tetramethylbenzidine via photoinduced electron-transfer

    International Nuclear Information System (INIS)

    Pan Yang; Zhao Junshu; Ji Yuanyuan; Yan Lei; Yu Shuqin

    2006-01-01

    Photoinduced electron transfer reactions of several electron-deficient olefins with N,N,N',N'-tetramethylbenzidine (TMB) in acetonitrile solution have been studied by using laser flash photolysis technique and steady-state fluorescence quenching method. Laser pulse excitation of TMB yields 3 TMB* after rapid intersystem crossing from 1 TMB*. The triplet which located at 480 nm is found to undergo fast quenching with the electron acceptors fumaronitrile (FN), dimethyl fumarate (DMF), diethyl fumarate (DEF), cinnamonitrile (CN), α-acetoxyacrylonitrile (AAN), crotononitrile (CrN) and 3-methoxyacrylonitrile (MAN). Substituents binding to olefin molecule own different electron-donating/withdrawing powers, which determine the electron-deficient property (π-cloud density) of olefin molecule as well as control the electron transfer rate constant directly. The detection of ion radical intermediates in the photolysis reactions confirms the proposed electron transfer mechanism, as expected from thermodynamics. The quenching rate constants of triplet TMB by these olefins have been determined at 510 nm to avoid the disturbance of formed TMB cation radical around 475 nm. All the k q T values approach or reach to the diffusion-controlled limit. In addition, fluorescence quenching rate constants k q S have been also obtained by calculating with Stern-Volmer equation. A correlation between experimental electron transfer rate constants and free energy changes has been explained by Marcus theory of adiabatic outer-sphere electron transfer. Disharmonic k q values for CN and CrN in endergonic region may be the disturbance of exciplexs formation. e of exciplex formation

  2. Digallane with redox-active diimine ligand: dualism of electron-transfer reactions.

    Science.gov (United States)

    Fedushkin, Igor L; Skatova, Alexandra A; Dodonov, Vladimir A; Chudakova, Valentina A; Bazyakina, Natalia L; Piskunov, Alexander V; Demeshko, Serhiy V; Fukin, Georgy K

    2014-05-19

    The reactivity of digallane (dpp-Bian)Ga-Ga(dpp-Bian) (1), which consists of redox-active ligand 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-Bian), has been studied. The reaction of 1 with I2 proceeds via one-electron oxidation of each of two dpp-Bian ligands to a radical-anionic state and affords complex (dpp-Bian)IGa-GaI(dpp-Bian) (2). Dissolution of complex 2 in pyridine (Py) gives monomeric compound (dpp-Bian)GaI(Py) (3) as a result of a solvent-induced intramolecular electron transfer from the metal-metal bond to the dpp-Bian ligands. Treatment of compound 3 with B(C6F5)3 leads to removal of pyridine and restores compound 2. The reaction of compound 1 with 3,6-di-tert-butyl-ortho-benzoquinone (3,6-Q) proceeds with oxidation of all the redox-active centers in 1 (the Ga-Ga bond and two dpp-Bian dianions) and results in mononuclear catecholate (dpp-Bian)Ga(Cat) (4) (Cat = [3,6-Q](2-)). Treatment of 4 with AgBF4 gives a mixture of [(dpp-Bian)2Ag][BF4] (5) and (dpp-Bian)GaF(Cat) (6), which both consist of neutral dpp-Bian ligands. The reduction of benzylideneacetone (BA) with 1 generates the BA radical-anions, which dimerize, affording (dpp-Bian)Ga-(BA-BA)-Ga(dpp-Bian) (7). In this case the Ga-Ga bond remains unchanged. Within 10 min at 95 °C in solution compound 7 undergoes transformation to paramagnetic complex (dpp-Bian)Ga(BA-BA) (8) and metal-free compound C36H40N2 (9). The latter is a product of intramolecular addition of the C-H bond of one of the iPr groups to the C═N bond in dpp-Bian. Diamagnetic compounds 3, 5, 6, and 9 have been characterized by NMR spectroscopy, and paramagnetic complexes 2, 4, 7, and 8 by ESR spectroscopy. Molecular structures of 2-7 and 9 have been established by single-crystal X-ray analysis.

  3. Charge transfer processes in collisions of Si{sup 4+} ions with He atoms at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, R. [Hitotsubashi Univ., Tokyo (Japan). Computer Center; Watanabe, A. [Dept. of Information Sciences, Ochanomizu Univ., Tokyo (Japan); Sato, H. [Graduate School of Humanities and Sciences, Ochanomizu Univ., Tokyo (Japan); Gu, J.P.; Hirsch, G.; Buenker, R.J. [Wuppertal Univ. (Gesamthochschule) (Germany). Lehrgebiet Theoretische Chemie; Kimura, M. [Graduate School of Science and Engineering, Yamaguchi Univ., Ube (Japan); Stancil, P.C. [Georgia Univ., Athens, GA (United States). Dept. of Physics

    2001-07-01

    Charge transfer in collisions of Si{sup 4+} ions with He atoms below 100 keV/u is studied by using a molecular orbital representation within both the semiclassical and quantal representations. Single transfer reaction Si{sup 4+} + He {yields} Si{sup 3+} + He{sup +} has been studied by a number of theoretical investigations. In addition to the reaction (1), the first semiclassical MOCC calculations are performed for the double transfer channel Si{sup 4+} + He {yields} Si{sup 2+} + He{sup 2+}. Nine molecular states that connect both with single and double electron transfer processes are considered in the present model. Electronic states and corresponding couplings are determined by the multireference single- and double- excitation configuration interaction method. The present cross sections tie well with the earlier calculations of Stancil et al., (1997) at lower energies, but show a rather different magnitude from those of Bacchus-Montabonel and Ceyzeriat, (1998). The present rate constant is found to be significantly different from the experimental finding of Fang and Kwong, (1996) at 4,600 K, and hence does not support the experiment. (orig.)

  4. Fission fragments mass distributions of nuclei populated by the multinucleon transfer channels of the 18O+232Th reaction

    Directory of Open Access Journals (Sweden)

    R. Léguillon

    2016-10-01

    Full Text Available It is shown that the multinucleon transfer reactions is a powerful tool to study fission of exotic neutron-rich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multinucleon transfer channels of the 18O+232Th reaction are used to study fission of fourteen nuclei 231,232,233,234Th, 232,233,234,235,236Pa, and 234,235,236,237,238U. Identification of fissioning nuclei and of their excitation energy is performed on an event-by-event basis, through the measurement of outgoing ejectile particle in coincidence with fission fragments. Fission fragment mass distributions are measured for each transfer channel, in selected bins of excitation energy. In particular, the mass distributions of 231,234Th and 234,235,236Pa are measured for the first time. Predominantly asymmetric fission is observed at low excitation energies for all studied cases, with a gradual increase of the symmetric mode towards higher excitation energy. The experimental distributions are found to be in general agreement with predictions of the fluctuation–dissipation model.

  5. Characterization of ferritin core on redox reactions as a nanocomposite for electron transfer

    International Nuclear Information System (INIS)

    Shin, Kwang Min; Watt, Richard K.; Watt, Gerald D.; Choi, Sang H.; Kim, Hyug-Han; Kim, Sun I.; Kim, Seon Jeong

    2010-01-01

    The kinetics of the change in mass related to the release from and deposition onto the cavities of a ferritin in the SWCNT nanocomposite by electrochemical redox reactions, and the effects of the SWCNT on the kinetics of the variation in mass of the ferritin nanocomposite were characterized using an electrochemical quartz crystal microbalance. The change in mass of reconstituted ferritin in the SWCNT nanocomposite shows reversible variation and stability of the ferritin/SWCNT nanocomposite on redox reactions was confirmed by using a coreless apoferritin and a Fe 2+ chelating agent. The ferritin/SWCNT nanocomposite is a good candidate for applications based on electron transfer, such as biosensor, biobatteries and electrodes for biofuel cell.

  6. Single Molecule Spectroelectrochemistry of Interfacial Charge Transfer Dynamics In Hybrid Organic Solar Cell

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Shanlin [Univ. of Alabama, Tuscaloosa, AL (United States)

    2014-11-16

    Our research under support of this DOE grant is focused on applied and fundamental aspects of model organic solar cell systems. Major accomplishments are: 1) we developed a spectroelectorchemistry technique of single molecule single nanoparticle method to study charge transfer between conjugated polymers and semiconductor at the single molecule level. The fluorescence of individual fluorescent polymers at semiconductor surfaces was shown to exhibit blinking behavior compared to molecules on glass substrates. Single molecule fluorescence excitation anisotropy measurements showed the conformation of the polymer molecules did not differ appreciably between glass and semiconductor substrates. The similarities in molecular conformation suggest that the observed differences in blinking activity are due to charge transfer between fluorescent polymer and semiconductor, which provides additional pathways between states of high and low fluorescence quantum efficiency. Similar spectroelectrochemistry work has been done for small organic dyes for understand their charge transfer dynamics on various substrates and electrochemical environments; 2) We developed a method of transferring semiconductor nanoparticles (NPs) and graphene oxide (GO) nanosheets into organic solvent for a potential electron acceptor in bulk heterojunction organic solar cells which employed polymer semiconductor as the electron donor. Electron transfer from the polymer semiconductor to semiconductor and GO in solutions and thin films was established through fluorescence spectroscopy and electroluminescence measurements. Solar cells containing these materials were constructed and evaluated using transient absorption spectroscopy and dynamic fluorescence techniques to understand the charge carrier generation and recombination events; 3) We invented a spectroelectorchemistry technique using light scattering and electroluminescence for rapid size determination and studying electrochemistry of single NPs in an

  7. Monitoring mass transport in heterogeneously catalyzed reactions by field-gradient NMR for assessing reaction efficiency in a single pellet

    Science.gov (United States)

    Buljubasich, L.; Blümich, B.; Stapf, S.

    2011-09-01

    An important aspect in assessing the performance of a catalytically active reactor is the accessibility of the reactive sites inside the individual pellets, and the mass transfer of reactants and products to and from these sites. Optimal design often requires a suitable combination of micro- and macropores in order to facilitate mass transport inside the pellet. In an exothermic reaction, fluid exchange between the pellet and the surrounding medium is enhanced by convection, and often by the occurrence of gas bubbles. Determining mass flow in the vicinity of a pellet thus represents a parameter for quantifying the reaction efficiency and its dependence on time or external reaction conditions. Field gradient Nuclear Magnetic Resonance (NMR) methods are suggested as a tool for providing parameters sensitive to this mass flow in a contact-free and non-invasive way. For the example of bubble-forming hydrogen peroxide decomposition in an alumina pellet, the dependence of the mean-squared displacement of fluid molecules on spatial direction, observation time and reaction time is presented, and multi-pulse techniques are employed in order to separate molecular displacements from coherent and incoherent motion on the timescale of the experiment. The reaction progress is followed until the complete decomposition of H 2O 2.

  8. Successful pregnancy following single blastocyst transfer in a renal transplant recipient.

    Science.gov (United States)

    Muthuvel, V Arun; Ravindran, Manipriya; Chander, Aravind; Veluswamy, Chandralekha

    2016-01-01

    Numerous spontaneous pregnancies have been reported in renal transplant recipients; however, only a few pregnancies after the use of assisted reproductive techniques. The authors report a case of renal transplant recipient with secondary infertility who delivered a healthy baby without any complications. The report highlights the importance of minimal stimulation protocol during ovarian stimulation, single embryo transfer, and the need for multispecialty care for these patients. To the best of the authors' knowledge, the present report is the first such case from India and also the second in the world to report a blastocyst transfer among renal transplant recipients.

  9. Kinetics of Single-Enzyme Reactions on Vesicles: Role of Substrate Aggregation

    Science.gov (United States)

    Zhdanov, Vladimir P.

    2015-03-01

    Enzymatic reactions occurring in vivo on lipid membranes can be influenced by various factors including macromolecular crowding in general and substrate aggregation in particular. In academic studies, the role of these factors can experimentally be clarified by tracking single-enzyme kinetics occurring on individual lipid vesicles. To extend the conceptual basis for such experiments, we analyze herein the corresponding kinetics mathematically with emphasis on the role of substrate aggregation. In general, the aggregation may occur on different length scales. Small aggregates may e.g. contain a few proteins or peptides while large aggregates may be mesoscopic as in the case of lipid domains which can be formed in the membranes composed of different lipids. We present a kinetic model describing comprehensively the effect of aggregation of the former type on the dependence of the reaction rate on substrate membrane concentration. The results obtained with physically reasonable parameters indicate that the aggregation-related deviations from the conventional Michaelis-Menten kinetics may be appreciable. Special Issue Comments: This theoretical article is focused on single-enzyme reactions occurring in parallel with substrate aggregation on individual vesicles. This subject is related to a few Special Issue articles concerning enzyme dynamics6,7 and function8 and mathematical aspects of stochastic kinetics.9

  10. Severe immediate allergic reactions to grapes: part of a lipid transfer protein-associated clinical syndrome

    NARCIS (Netherlands)

    Vassilopoulou, Emilia; Zuidmeer, Laurian; Akkerdaas, Jaap; Tassios, Ioannis; Rigby, Neil R.; Mills, E. N. Clare; van Ree, Ronald; Saxoni-Papageorgiou, Photini; Papadopoulos, Nikolaos G.

    2007-01-01

    BACKGROUND: Grape allergy is considered rare; grape lipid transfer protein (LTP; Vit v 1), an endochitinase and a thaumatin-like protein (TLP) have been reported as grape allergens. A considerable number of patients have referred to our department for severe reactions to grapes, and several IgE

  11. Experimental study of the $^{66}$Ni$(d,p)^{67}$Ni one-neutron transfer reaction

    CERN Document Server

    Diriken, J.; Andreyev, A.N.; Antalic, S.; Bildstein, V.; Blazhev, A.; Darby, I.G.; De Witte, H.; Eberth, J.; Elseviers, J.; Fedosseev, V.N.; Flavigny, F.; Fransen, Ch.; Georgiev, G.; Gernhauser, R.; Hess, H.; Huyse, M.; Jolie, J.; Kröll, Th.; Krücken, R.; Lutter, R.; Marsh, B.A.; Mertzimekis, T.; Muecher, D.; Orlandi, R.; Pakou, A.; Raabe, R.; Randisi, G.; Reiter, P.; Roger, T.; Seidlitz, M.; Seliverstov, M.; Sotty, C.; Tornqvist, H.; Van De Walle, J.; Van Duppen, P.; Voulot, D.; Warr, N.; Wenander, F.; Wimmer, K.

    2015-01-01

    The quasi-SU(3) sequence of the positive parity $νg_{9/2}, d_{5/2}, s_{1/2}$ orbitals above the N=40 shell gap are assumed to induce strong quadrupole collectivity in the neutron-rich Fe (Z=26) and Cr (Z=24) isotopes below the nickel region. In this paper the position and strength of these single-particle orbitals are characterized in the neighborhood of $^{68}$Ni (Z=28,N=40) through the $^{66}$Ni($d,p$)$^{67}$Ni one-neutron transfer reaction at 2.95 MeV/nucleon in inverse kinematics, performed at the REX-ISOLDE facility in CERN. A combination of the Miniball $\\gamma$-array and T-REX particle-detection setup was used and a delayed coincidence technique was employed to investigate the 13.3-$\\mu$s isomer at 1007 keV in $^{67}$Ni. Excited states up to an excitation energy of 5.8 MeV have been populated. Feeding of the $νg_{9/2}$ (1007 keV) and $νd_{5/2}$ (2207 keV and 3277 keV) positive-parity neutron states and negative parity ($νpf$) states have been observed at low excitation energy. The extracted relativ...

  12. Spectroscopic Factors from the Single Neutron Pickup Reaction ^64Zn(d,t)

    Science.gov (United States)

    Leach, Kyle; Garrett, P. E.; Ball, G. C.; Bangay, J. C.; Bianco, L.; Demand, G. A.; Faestermann, T.; Finlay, P.; Green, K. L.; Hertenberger, R.; Krücken, R.; Phillips, A. A.; Rand, E. T.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wirth, H.-F.; Wong, J.

    2009-10-01

    A great deal of attention has recently been paid towards high-precision superallowed β-decay Ft values. With the availability of extremely high-precision (<0.1%) experimental data, precision on the individual Ft values are now dominated by the ˜1% theoretical corrections^[1]. This limitation is most evident in heavier superallowed nuclei (e.g. ^62Ga) where the isospin-symmetry-breaking (ISB) correction calculations become more difficult due to the truncated model space. Experimental spectroscopic factors for these nuclei are important for the identification of the relevant orbitals that should be included in the model space of the calculations. Motivated by this need, the single-nucleon transfer reaction ^64Zn(d,t)^63Zn was conducted at the Maier-Leibnitz-Laboratory (MLL) of TUM/LMU in Munich, Germany, using a 22 MeV polarized deuteron beam from the tandem Van de Graaff accelerator and the TUM/LMU Q3D magnetic spectrograph, with angular distributions from 10^o to 60^o. Results from this experiment will be presented and implications for calculations of ISB corrections in the superallowed &+circ; decay of ^62Ga will be discussed.^[1] I.S. Towner and J.C. Hardy, Phys. Rev. C 77, 025501 (2008).

  13. Leading coordinate analysis of reaction pathways in proton chain transfer: Application to a two-proton transfer model for the green fluorescent protein

    International Nuclear Information System (INIS)

    Wang Sufan; Smith, Sean C.

    2006-01-01

    The 'leading coordinate' approach to computing an approximate reaction pathway, with subsequent determination of the true minimum energy profile, is applied to a two-proton chain transfer model based on the chromophore and its surrounding moieties within the green fluorescent protein (GFP). Using an ab initio quantum chemical method, a number of different relaxed energy profiles are found for several plausible guesses at leading coordinates. The results obtained for different trial leading coordinates are rationalized through the calculation of a two-dimensional relaxed potential energy surface (PES) for the system. Analysis of the 2-D relaxed PES reveals that two of the trial pathways are entirely spurious, while two others contain useful information and can be used to furnish starting points for successful saddle-point searches. Implications for selection of trial leading coordinates in this class of proton chain transfer reactions are discussed, and a simple diagnostic function is proposed for revealing whether or not a relaxed pathway based on a trial leading coordinate is likely to furnish useful information

  14. Determination by transfer reaction of alpha widths in fluorine for astrophysical interest

    International Nuclear Information System (INIS)

    Oliveira Santos, F. de

    1995-04-01

    The nucleosynthesis of fluorine is not known. Several astrophysical models predict the alpha radiative capture onto N 15 as the main fluorine production reaction. In the expression of the reaction rate, one parameter is missing: the alpha width of the resonance on the E = 4.377 MeV level in fluorine. A direct measurement is excluded due to the very low cross-section expected. We have determined this alpha width using a transfer reaction followed by analyses with FR-DWBA (Finite Range Distorted Wave Born Approximation) in a simple cluster alpha model. This experiment was carried out with a Li 7 beam with E = 28 MeV onto a N 15 gas target. The 16 first levels were studied. Spectroscopic factors were extracted for most of them. Alpha widths for unbound levels were determined. Many alpha width were compared with known values from direct reaction and the differences lie within the uncertainty range (factor 2). The alpha width for the E = 4.377 MeV level was determined (Γ α = 1.5*10 -15 MeV), its value is about 60 times weaker than the used value. The influence of our new rate was studied in AGB (Asymptotic Giant Branch) stars during thermal pulses. In this model the alteration is sensitive. (author)

  15. Modeling of the interplay between single-file diffusion and conversion reaction in mesoporous systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing [Iowa State Univ., Ames, IA (United States)

    2013-01-11

    We analyze the spatiotemporal behavior of species concentrations in a diffusion-mediated conversion reaction which occurs at catalytic sites within linear pores of nanometer diameter. A strict single-file (no passing) constraint occurs in the diffusion within such narrow pores. Both transient and steady-state behavior is precisely characterized by kinetic Monte Carlo simulations of a spatially discrete lattice–gas model for this reaction–diffusion process considering various distributions of catalytic sites. Exact hierarchical master equations can also be developed for this model. Their analysis, after application of mean-field type truncation approximations, produces discrete reaction–diffusion type equations (mf-RDE). For slowly varying concentrations, we further develop coarse-grained continuum hydrodynamic reaction–diffusion equations (h-RDE) incorporating a precise treatment of single-file diffusion (SFD) in this multispecies system. Noting the shortcomings of mf-RDE and h-RDE, we then develop a generalized hydrodynamic (GH) formulation of appropriate gh-RDE which incorporates an unconventional description of chemical diffusion in mixed-component quasi-single-file systems based on a refined picture of tracer diffusion for finite-length pores. The gh-RDE elucidate the non-exponential decay of the steady-state reactant concentration into the pore and the non-mean-field scaling of the reactant penetration depth. Then an extended model of a catalytic conversion reaction within a functionalized nanoporous material is developed to assess the effect of varying the reaction product – pore interior interaction from attractive to repulsive. The analysis is performed utilizing the generalized hydrodynamic formulation of the reaction-diffusion equations which can reliably capture the complex interplay between reaction and restricted transport for both irreversible and reversible reactions.

  16. Mass Transfer and Chemical Reaction Approach of the Kinetics of the Acetylation of Gadung Flour using Glacial Acetic Acid

    Directory of Open Access Journals (Sweden)

    Andri Cahyo Kumoro

    2015-03-01

    Full Text Available Acetylation is one of the common methods of modifying starch properties by introducing acetil (CH3CO groups to starch molecules at low temperatures. While most acetylation is conducted using starch as anhidroglucose source and acetic anhydride or vinyl acetate as nucleophilic agents, this work employ reactants, namely flour and glacial acetic acid. The purpose of this work are to study the effect of pH reaction and GAA/GF mass ratio on the rate of acetylation reaction and to determine its rate constants. The acetylation of gadung flour with glacial acetic acid in the presence of sodium hydroxide as a homogenous catalyst was studied at ambient temperature with pH ranging from 8-10 and different mass ratio of acetic acid : gadung flour (1:3; 1:4; and 1:5. It was found that increasing pH, lead to increase the degree of substitution, while increasing GAA/GF mass ratio caused such decreases in the degree of substitution, due to the hydrolysis of the acetylated starch. The desired starch acetylation reaction is accompanied by undesirable hydrolysis reaction of the acetylated starch after 40-50 minutes reaction time. Investigation of kinetics of the reaction observed that the value of mass transfer rate constant (Kcs is smaller than the surface reaction rate constant (k. Thus, it can be concluded that rate controlling step is mass transfer.  © 2015 BCREC UNDIP. All rights reservedReceived: 7th August 2014; Revised: 8th September 2014; Accepted: 14th September 2014How to Cite: Kumoro, A.C., Amelia, R. (2015. Mass Transfer and Chemical Reaction Approach of the Kinetics of the Acetylation of Gadung Flour using Glacial Acetic Acid. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (1: 30-37. (doi:10.9767/bcrec.10.1.7181.30-37Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.1.7181.30-37

  17. Structural integrity of callosal midbody influences intermanual transfer in a motor reaction-time task.

    Science.gov (United States)

    Bonzano, Laura; Tacchino, Andrea; Roccatagliata, Luca; Mancardi, Giovanni Luigi; Abbruzzese, Giovanni; Bove, Marco

    2011-02-01

    Training one hand on a motor task results in performance improvements in the other hand, also when stimuli are randomly presented (nonspecific transfer). Corpus callosum (CC) is the main structure involved in interhemispheric information transfer; CC pathology occurs in patients with multiple sclerosis (PwMS) and is related to altered performance of tasks requiring interhemispheric transfer of sensorimotor information. To investigate the role of CC in nonspecific transfer during a pure motor reaction-time task, we combined motor behavior with diffusion tensor imaging analysis in PwMS. Twenty-two PwMS and 10 controls, all right-handed, were asked to respond to random stimuli with appropriate finger opposition movements with the right (learning) and then the left (transfer) hand. PwMS were able to improve motor performance reducing response times with practice with a trend similar to controls and preserved the ability to transfer the acquired motor information from the learning to the transfer hand. A higher variability in the transfer process, indicated by a significantly larger standard deviation of mean nonspecific transfer, was found in the PwMS group with respect to the control group, suggesting the presence of subtle impairments in interhemispheric communication in some patients. Then, we correlated the amount of nonspecific transfer with mean fractional anisotropy (FA) values, indicative of microstructural damage, obtained in five CC subregions identified on PwMS's FA maps. A significant correlation was found only in the subregion including posterior midbody (Pearson's r = 0.74, P = 0.003), which thus seems to be essential for the interhemispheric transfer of information related to pure sensorimotor tasks. Copyright © 2010 Wiley-Liss, Inc.

  18. Nuclear reactions induced by the bombardment of 18O with 18O

    International Nuclear Information System (INIS)

    Kalinsky, D.; Melnik, D.; Smilansky, U.; Trautner, N.; Horowitz, Y.; Mordechai, S.

    1977-01-01

    Angular distributions have been measured for the elastic, inelastic, one and two-neutron transfer reactions for the system 18 O + 18 O at center of mass energies ranging from 10.0 to 18.0 MeV, at c.m. angles between 90deg and 125deg. The inelastic scattering data were analyzed assuming a collective excitation mechanism and with a coupled channels approach. In order to obtain a good fit it was necessary to include a hexadecapole deformation. The one and two neutron transfer reactions were analyzed in terms of a single step finite range plus recoil DWBA theory. (author)

  19. Single-electron transfer living radical copolymerization of SWCNT-g-PMMA via graft from approach

    Czech Academy of Sciences Publication Activity Database

    Jaisankar, S. N.; Haridharan, N.; Murali, A.; Ponyrko, Sergii; Špírková, Milena; Mandal, A. B.; Matějka, Libor

    2014-01-01

    Roč. 55, č. 13 (2014), s. 2959-2966 ISSN 0032-3861 R&D Projects: GA ČR GAP108/12/1459 Institutional support: RVO:61389013 Keywords : single electron transfer * single-walled carbon nanotubes * controlled radical polymerization Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.562, year: 2014

  20. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion.

    Science.gov (United States)

    Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2015-11-21

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton

  1. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion

    International Nuclear Information System (INIS)

    Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2015-01-01

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton

  2. Charge Transfer Processes in Collisions of Si4+ Ions with He Atoms at Intermediate Energies

    Science.gov (United States)

    Suzuki, R.; Watanabe, A.; Sato, H.; Gu, J. P.; Hirsch, G.; Buenker, R. J.; Kimura, M.; Stancil, P. C.

    Charge transfer in collisions of Si4+ ions with He atoms below 100 keV/u is studied by using a molecular orbital representation within both the semiclassical and quantal representations. Single transfer reaction Si4++He →Si3++He+ has been studied by a number of theoretical investigations. In addition to the reaction (1), the first semiclassical MOCC calculations are performed for the double transfer channel Si4++HE→Si2++He2+ Nine molecular states that connect both with single and double electron transfer processes are considered in the present model. Electronic states and corresponding couplings are determined by the multireference single- and double- excitation configuration interaction method. The present cross sections tie well with the earlier calculations of Stancil et al., Phys. Rev. A 55, 1064 (1997) at lower energies, but show a rather different magnitude from those of Bacchus-Montabonel and Ceyzeriat, Phys. Rev. A 58, 1162 (1998). The present rate constant is found to be significantly different from the experimental finding of Fang and Kwong, Phys. Rev. A 59, 342 (1996) at 4,600 K, and hence does not support the experiment.

  3. The roles of wetting liquid in the transfer process of single layer graphene onto arbitrary substrates.

    Science.gov (United States)

    Kim, Ju Hun; Yi, Junghwa; Jin, Hyeong Ki; Kim, Un Jeong; Park, Wanjun

    2013-11-01

    Wet transfer is crucial for most device structures of the proposed applications employing single layer graphene in order to take advantage of the unique physical, chemical, bio-chemical and electrical properties of the graphene. However, transfer methodologies that can be used to obtain continuous film without voids, wrinkles and cracks are limited although film perfectness critically depends on the relative surface tension of wetting liquids on the substrate. We report the importance of wetting liquid in the transfer process with a systematic study on the parameters governing film integrity in single layer graphene grown via chemical vapor deposition. Two different suspension liquids (in terms of polar character) are tested for adequacy of transfer onto SiO2 and hexamethyldisiloxane (HMDS). We found that the relative surface tension of the wetting liquid on the surfaces of the substrate is related to transfer quality. In addition, dimethyl sulfoxide (DMSO) is introduced as a good suspension liquid to HMDS, a mechanically flexible substrate.

  4. Enantioselective syntheses of aeruginosin 298-A and its analogues using a catalytic asymmetric phase-transfer reaction and epoxidation.

    Science.gov (United States)

    Ohshima, Takashi; Gnanadesikan, Vijay; Shibuguchi, Tomoyuki; Fukuta, Yuhei; Nemoto, Tetsuhiro; Shibasaki, Masakatsu

    2003-09-17

    We developed a versatile synthetic process for aeruginosin 298-A as well as several attractive analogues, in which all stereocenters were controlled by a catalytic asymmetric phase-transfer reaction and epoxidation. Furthermore, drastic counteranion effects in phase-transfer catalysis were observed for the first time, making it possible to three-dimensionally fine-tune the catalyst (ketal part, aromatic part, and counteranion).

  5. Treatment for the recoil effects of the multi-step heavy-ion nucleon transfers with the orthogonalized coupled-reaction-channel theory

    International Nuclear Information System (INIS)

    Misono, S.; Imanishi, B.

    1997-02-01

    We have investigated recoil effects in heavy-ion reactions for the nucleon transfers, and the validity of the spatially local approximation for the non-local transfer interaction defined by the orthogonalized coupled-reaction-channel (OCRC) theory. This approximation makes it easier to treat multi-step transfer processes with the coupled channel method and makes it possible to define the nucleon molecular orbitals with the inclusion of the recoil effects. The transfer interaction is expanded in a power series of the momentum operator, and is approximated by the first order term, i.e., the spatially local term. The numerical calculation for the core-symmetric systems 12 C+ 13 C and 16 O+ 17 O with this approximation shows that the recoil effects are well included in the results at energies lower than a few MeV/nucleon. Furthermore, the OCRC formalism allows us even to employ the complete no-recoil approximation for the calculation of cross sections, even though it is not adequate to use this approximation in the distorted wave Born approximation (DWBA) method. As to polarization, however, the no-recoil approximation is not good even in the OCRC formalism. We discuss the recoil effects on nucleon molecular-orbital states. It is shown that states of the covalent molecular orbitals of the valence (transferred) nucleon are little affected by the recoil effects, as already suggested by Korotky et al. in the full finite-range DWBA analysis of the transfer reaction, 13 C( 13 C, 12 C) 14 C. (author). 59 refs

  6. How far could energy transport within a single crystal

    Science.gov (United States)

    Zhang, Yifan; Che, Yanke; Zhao, Jincai; Steve, Granick

    Efficient transport of excitation energy over long distance is a vital process in light-harvesting systems and molecular electronics. The energy transfer distance is largely restricted by the probability decay of the exciton when hopping within a single crystal. Here, we fabricated an organic single crystal within which the energy could transfer more than 100 μm, a distance only limited by its crystal size. Our system could be regarded as a ``Sprint relay game'' performing on different surface of tracks. Photoinduced ``athletes'' (excitons) triggered intermolecular ``domino'' reaction to propagate energy for a long distance. In addition, athletes with the same ability runs much farther on smooth ideal track (single crystal assembled from merely van der Waals interaction) than bumpy mud track (crystal assembled from combination of pi-stacking, hydrogen bond and van der Waals interactions). Our finding presents new physics on enhancing energy transfer length within a single crystal. Current Affiliation: Institute for Basic Science, South Korea.

  7. Salt-assisted clean transfer of continuous monolayer MoS2 film for hydrogen evolution reaction

    Science.gov (United States)

    Cho, Heung-Yeol; Nguyen, Tri Khoa; Ullah, Farman; Yun, Jong-Won; Nguyen, Cao Khang; Kim, Yong Soo

    2018-03-01

    The transfer of two-dimensional (2D) materials from one substrate to another is challenging but of great importance for technological applications. Here, we propose a facile etching and residue-free method for transferring a large-area monolayer MoS2 film continuously grown on a SiO2/Si by chemical vapor deposition. Prior to synthesis, the substrate is dropped with water- soluble perylene-3, 4, 9, 10-tetracarboxylic acid tetrapotassium salt (PTAS). The as-grown MoS2 on the substrate is simply dipped in water to quickly dissolve PTAS to yield the MoS2 film floating on the water surface, which is subsequently transferred to the desired substrate. The morphological, optical and X-ray photoelectron spectroscopic results show that our method is useful for fast and clean transfer of the MoS2 film. Specially, we demonstrate that monolayer MoS2 film transferred onto a conducting substrate leads to excellent performance for hydrogen evolution reaction with low overpotential (0.29 V vs the reversible hydrogen electrode) and Tafel slope (85.5 mV/decade).

  8. Effects of rolling on single-phase water forced convective heat transfer characteristics

    International Nuclear Information System (INIS)

    Guo Yanming; Gao Puzhen; Huang Zhen

    2010-01-01

    A series of single-phase forced circulation tests in a vertical tube with rolling motion were performed in order to investigate effects of rolling motion on thermal-hydraulic characteristics. The amplitudes of the rolling motion in the tests were 10 degree, 15 degree and 20 degree. The rolling periods were 7.5 s, 10 s, 15 s and 20 s. The Reynolds number was from 6000 to 15000. Heat transfer in the test tube is bated by the rolling motion. As the test-bed rolling more acutely, the heat transfer coefficient of the test tube becomes smaller when the mass flow rate in the test tube is a constant. The heat transfer coefficient calculated by the formula which is for stable state doesn't fit very well with that from experiments. At last a formula for calculating heat transfer in rolling motion was introduced. (authors)

  9. Studying Chemical Reactions, One Bond at a Time, with Single Molecule AFM Techniques

    Science.gov (United States)

    Fernandez, Julio M.

    2008-03-01

    The mechanisms by which mechanical forces regulate the kinetics of a chemical reaction are unknown. In my lecture I will demonstrate how we use single molecule force-clamp spectroscopy and protein engineering to study the effect of force on the kinetics of thiol/disulfide exchange. Reduction of disulfide bond via the thiol/disulfide exchange chemical reaction is crucial in regulating protein function and is of common occurrence in mechanically stressed proteins. While reduction is thought to proceed through a substitution nucleophilic bimolecular (SN2) reaction, the role of a mechanical force in modulating this chemical reaction is unknown. We apply a constant stretching force to single engineered disulfide bonds and measure their rate of reduction by dithiothreitol (DTT). We find that while the reduction rate is linearly dependent on the concentration of DTT, it is exponentially dependent on the applied force, increasing 10-fold over a 300 pN range. This result predicts that the disulfide bond lengthens by 0.34 å at the transition state of the thiol/disulfide exchange reaction. In addition to DTT, we also study the reduction of the engineered disulfide bond by the E. coli enzyme thioredoxin (Trx). Thioredoxins are enzymes that catalyze disulfide bond reduction in all organisms. As before, we apply a mechanical force in the range of 25-450 pN to the engineered disulfide bond substrate and monitor the reduction of these bonds by individual enzymes. In sharp contrast with the data obtained with DTT, we now observe two alternative forms of the catalytic reaction, the first requiring a reorientation of the substrate disulfide bond, causing a shortening of the substrate polypeptide by 0.76±0.07 å, and the second elongating the substrate disulfide bond by 0.21±0.01 å. These results support the view that the Trx active site regulates the geometry of the participating sulfur atoms, with sub-ångström precision, in order to achieve efficient catalysis. Single molecule

  10. Single Turnover at Molecular Polymerization Catalysts Reveals Spatiotemporally Resolved Reactions.

    Science.gov (United States)

    Easter, Quinn T; Blum, Suzanne A

    2017-10-23

    Multiple active individual molecular ruthenium catalysts have been pinpointed within growing polynorbornene, thereby revealing information on the reaction dynamics and location that is unavailable through traditional ensemble experiments. This is the first single-turnover imaging of a molecular catalyst by fluorescence microscopy and allows detection of individual monomer reactions at an industrially important molecular ruthenium ring-opening metathesis polymerization (ROMP) catalyst under synthetically relevant conditions (e.g. unmodified industrial catalyst, ambient pressure, condensed phase, ca. 0.03 m monomer). These results further establish the key fundamentals of this imaging technique for characterizing the reactivity and location of active molecular catalysts even when they are the minor components. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A new pathway for transmembrane electron transfer in photosynthetic reaction centers of Rhodobacter sphaeroides not involving the excited special pair.

    NARCIS (Netherlands)

    van Brederode, M.E.; Jones, M.R.; van Mourik, F.; van Stokkum, I.H.M.; van Grondelle, R.

    1997-01-01

    It is generally accepted that electron transfer in bacterial photosynthesis is driven by the first singlet excited state of a special pair of bacteriochlorophylls (P*). We have examined the first steps of electron transfer in a mutant of the Rhodobacter sphaeroides reaction center in which charge

  12. A new pathway for transmembrane electron transfer in photosyntetic reaction centers of Rhodobacter sphaeroides not involving the excited special pair.

    NARCIS (Netherlands)

    van Brederode, M.E.; Jones, M.R.; van Mourik, F.; van Stokkum, I.H.M.; van Grondelle, R.

    1997-01-01

    It is generally accepted that electron transfer in bacterial photosynthesis is driven by the first singlet excited state of a special pair of bacteriochlorophylls (P*). We have examined the first steps of electron transfer in a mutant of the Rhodobacter sphaeroides reaction center in which charge

  13. Efficient and Adaptive Methods for Computing Accurate Potential Surfaces for Quantum Nuclear Effects: Applications to Hydrogen-Transfer Reactions.

    Science.gov (United States)

    DeGregorio, Nicole; Iyengar, Srinivasan S

    2018-01-09

    We present two sampling measures to gauge critical regions of potential energy surfaces. These sampling measures employ (a) the instantaneous quantum wavepacket density, an approximation to the (b) potential surface, its (c) gradients, and (d) a Shannon information theory based expression that estimates the local entropy associated with the quantum wavepacket. These four criteria together enable a directed sampling of potential surfaces that appears to correctly describe the local oscillation frequencies, or the local Nyquist frequency, of a potential surface. The sampling functions are then utilized to derive a tessellation scheme that discretizes the multidimensional space to enable efficient sampling of potential surfaces. The sampled potential surface is then combined with four different interpolation procedures, namely, (a) local Hermite curve interpolation, (b) low-pass filtered Lagrange interpolation, (c) the monomial symmetrization approximation (MSA) developed by Bowman and co-workers, and (d) a modified Shepard algorithm. The sampling procedure and the fitting schemes are used to compute (a) potential surfaces in highly anharmonic hydrogen-bonded systems and (b) study hydrogen-transfer reactions in biogenic volatile organic compounds (isoprene) where the transferring hydrogen atom is found to demonstrate critical quantum nuclear effects. In the case of isoprene, the algorithm discussed here is used to derive multidimensional potential surfaces along a hydrogen-transfer reaction path to gauge the effect of quantum-nuclear degrees of freedom on the hydrogen-transfer process. Based on the decreased computational effort, facilitated by the optimal sampling of the potential surfaces through the use of sampling functions discussed here, and the accuracy of the associated potential surfaces, we believe the method will find great utility in the study of quantum nuclear dynamics problems, of which application to hydrogen-transfer reactions and hydrogen

  14. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum.

    Science.gov (United States)

    Gao, Libo; Ren, Wencai; Xu, Huilong; Jin, Li; Wang, Zhenxing; Ma, Teng; Ma, Lai-Peng; Zhang, Zhiyong; Fu, Qiang; Peng, Lian-Mao; Bao, Xinhe; Cheng, Hui-Ming

    2012-02-28

    Large single-crystal graphene is highly desired and important for the applications of graphene in electronics, as grain boundaries between graphene grains markedly degrade its quality and properties. Here we report the growth of millimetre-sized hexagonal single-crystal graphene and graphene films joined from such grains on Pt by ambient-pressure chemical vapour deposition. We report a bubbling method to transfer these single graphene grains and graphene films to arbitrary substrate, which is nondestructive not only to graphene, but also to the Pt substrates. The Pt substrates can be repeatedly used for graphene growth. The graphene shows high crystal quality with the reported lowest wrinkle height of 0.8 nm and a carrier mobility of greater than 7,100 cm(2) V(-1) s(-1) under ambient conditions. The repeatable growth of graphene with large single-crystal grains on Pt and its nondestructive transfer may enable various applications.

  15. Mass-transfer in extraction and reextraction as a single-stage process

    International Nuclear Information System (INIS)

    Rodriguez del Cerro, M.; Trilleros, J.A.; Otero de la Gandara, J.L.

    1987-01-01

    The rate of mass transfer between water and naftenic acid and threebutilphosphate in kerosen are studied in the two possibilities to or from water. The two insoluble phases are brought in to intimate contact with dispersed phase droplets, in a single-stage process. The evolution of the equilibrium distribution of solute is taken in consideration. (author)

  16. Proton transfer reaction-mass spectrometry volatile organic compound fingerprinting for monovarietal extra virgin olive oil identification

    NARCIS (Netherlands)

    Ruiz-Samblas, C.; Tres, A.; Koot, A.H.; Ruth, van S.M.; Gonzalez-Casado, A.; Cuadros-Rodriguez, L.

    2012-01-01

    Proton transfer reaction-mass spectrometry (PTR-MS) is a relatively new technique that allows the fast and accurate qualification of the volatile organic compound (VOC) fingerprint. This paper describes the analysis of thirty samples of extra virgin olive oil, of five different varieties of olive

  17. Investigations of Spectroscopic Factors and Sum Rules from the Single Neutron Transfer Reaction 111Cd(d→$\\overrightarrow {\\rm{d}} $,p112Cd

    Directory of Open Access Journals (Sweden)

    Jamieson D.S.

    2014-03-01

    Full Text Available Cadmium isotopes have been presented for decades as excellent examples of vibrational nuclei, with low-lying levels interpreted as multi-phonon quadrupole, octupole, and mixed-symmetry states. A large amount of spectroscopic data has been obtained through various experimental studies of cadmiumisotopes. In the present work, the 111Cd(d→$\\overrightarrow {\\rm{d}} $,p112Cd reaction was used to investigate the single-particle structure of the 112Cd nucleus. A 22 MeV beam of polarized deuterons was obtained at the Maier-Leibnitz laboratory in Garching, Germany. The reaction ejectiles were momentum analyzed using a Q3D spectrograph, and 130 levels have been identified up to 4.2 MeV of excitation energy. Using DWBA analysis with optical model calculations, spin-parity assignments have been made for observed levels, and spectroscopic factors have been extracted from the experimental angular distributions of differential cross section and analyzing power. In this high energy resolution investigation, many additional levels have been observed compared with the previous (d,p study using 8 MeV deuterons [1]. There were a total of 44 new levels observed, and the parity assignments of 34 levels were improved.

  18. Tunable, Chemo- and Site-Selective Nitrene Transfer Reactions through the Rational Design of Silver(I) Catalysts.

    Science.gov (United States)

    Alderson, Juliet M; Corbin, Joshua R; Schomaker, Jennifer M

    2017-09-19

    Carbon-nitrogen (C-N) bonds are ubiquitous in pharmaceuticals, agrochemicals, diverse bioactive natural products, and ligands for transition metal catalysts. An effective strategy for introducing a new C-N bond into a molecule is through transition metal-catalyzed nitrene transfer chemistry. In these reactions, a metal-supported nitrene can either add across a C═C bond to form an aziridine or insert into a C-H bond to furnish the corresponding amine. Typical catalysts for nitrene transfer include Rh 2 L n and Ru 2 L n complexes supported by bridging carboxylate and related ligands, as well as complexes based on Cu, Co, Ir, Fe, and Mn supported by porphyrins and related ligands. A limitation of metal-catalyzed nitrene transfer is the ability to predictably select which specific site will undergo amination in the presence of multiple reactive groups; thus, many reactions rely primarily on substrate control. Achieving true catalyst-control over nitrene transfer would open up exciting possibilities for flexible installation of new C-N bonds into hydrocarbons, natural product-inspired scaffolds, existing pharmaceuticals or biorenewable building blocks. Silver-catalyzed nitrene transfer enables flexible control over the position at which a new C-N bond is introduced. Ag(I) supported by simple N-donor ligands accommodates a diverse range of coordination geometries, from linear to tetrahedral to seesaw, enabling the electronic and steric parameters of the catalyst to be tuned independently. In addition, the ligand, Ag salt counteranion, Ag/ligand ratio and the solvent all influence the fluxional and dynamic behavior of Ag(I) complexes in solution. Understanding the interplay of these parameters to manipulate the behavior of Ag-nitrenes in a predictable manner is a key design feature of our work. In this Account, we describe successful applications of a variety of design principles to tunable, Ag-catalyzed aminations, including (1) changing Ag/ligand ratios to influence

  19. Fast and quantitative differentiation of single-base mismatched DNA by initial reaction rate of catalytic hairpin assembly.

    Science.gov (United States)

    Li, Chenxi; Li, Yixin; Xu, Xiao; Wang, Xinyi; Chen, Yang; Yang, Xiaoda; Liu, Feng; Li, Na

    2014-10-15

    The widely used catalytic hairpin assembly (CHA) amplification strategy generally needs several hours to accomplish one measurement based on the prevailingly used maximum intensity detection mode, making it less practical for assays where high throughput or speed is desired. To make the best use of the kinetic specificity of toehold domain for circuit reaction initiation, we developed a mathematical model and proposed an initial reaction rate detection mode to quantitatively differentiate the single-base mismatch. Using the kinetic mode, assay time can be reduced substantially to 10 min for one measurement with the comparable sensitivity and single-base mismatch differentiating ability as were obtained by the maximum intensity detection mode. This initial reaction rate based approach not only provided a fast and quantitative differentiation of single-base mismatch, but also helped in-depth understanding of the CHA system, which will be beneficial to the design of highly sensitive and specific toehold-mediated hybridization reactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Reducing twin pregnancy rates after IVF--elective single embryo transfer (eSET).

    LENUS (Irish Health Repository)

    Milne, P

    2010-01-01

    Multiple pregnancy is a major complication of IVF and is associated with increased maternal, fetal and neonatal morbidity. Elective single embryo transfer (eSET) during IVF, rather than the more standard transfer of two embryos (double embryo transfer or DET), has been shown to significantly reduce the multiple pregnancy rate associated with IVF, while maintaining acceptable pregnancy rates. Couples undergoing IVF in 2008 who met good prognostic criteria had eSET performed. Pregnancy and twinning rates were compared with those for similar couples in 2007 who had DET. Couples unsuccessful with a fresh cycle of treatment had subsequent frozen embryo transfer cycles with DET. The cumulative pregnancy rate was similar for each group. However there were no multiple pregnancies in the eSET group, compared to 4 twins of 5 pregnancies in the DET group. 96% of eligible couples agreed to eSET. ESET is successful in and acceptable to good prognosis Irish couples undergoing IVF.

  1. Reactivity of Single-Walled Carbon Nanotubes in the Diels-Alder Cycloaddition Reaction: Distortion-Interaction Analysis along the Reaction Pathway.

    Science.gov (United States)

    Li, Yingzi; Osuna, Sílvia; Garcia-Borràs, Marc; Qi, Xiaotian; Liu, Song; Houk, Kendall N; Lan, Yu

    2016-08-26

    Diels-Alder cycloaddition is one of the most powerful tools for the functionalization of single-walled carbon nanotubes (SWCNTs). Density functional theory at the B3-LYP level of theory has been used to investigate the reactivity of different-diameter SWCNTs (4-9,5) in Diels-Alder reactions with 1,3-butadiene; the reactivity was found to decrease with increasing SWCNT diameter. Distortion/interaction analysis along the whole reaction pathway was found to be a better way to explore the reactivity of this type of reaction. The difference in interaction energy along the reaction pathway is larger than that of the corresponding distortion energy. However, the distortion energy plots for these reactions show the same trend. Therefore, the formation of the transition state can be determined from the interaction energy. A lower interaction energy leads to an earlier transition state, which indicates a lower activation energy. The computational results also indicate that the original distortion of the SWCNTs leads to an increase in the reactivity of the SWCNTs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Simultaneous and sequential transfer of proton and alpha-particle in the elastic 11B+16O scattering

    International Nuclear Information System (INIS)

    Kamys, B.; Rudy, Z.; Kisiel, J.; Kwasniewicsz, E.; Wolter, H.H.

    1992-01-01

    We have developed a method to treat multi-nucleon transfer as the transfer of two - possible different - subclusters, as e.g. with ' 5 Li'=(α,p). As a consequence we take into account two reaction mechanisms, the one-step simultaneous and the two-step sequential transfer of the two clusters. We formulate the method of calculation of the simultaneous transfer form factor for two non-identifical particles and also of the two-cluster spectroscopic amplitudes from shell model wave functions. We apply the method to the elastic transfer reaction 11 B( 16 O, 11 B) 11 O together with the single α and p transfer reaction 11 B( 16 O, 15 N) 12 C for E lab between 30 and 60 MeV. We obtain a consistently good description of all the data by reasonable adjustment of the spectroscopic amplitudes. In particular we find that the simultaneous (αp) transfer is considerably more important than the sequential transfer indicating strong five-nucleon correlations in these light nuclei. (orig.)

  3. Probing the Energy Transfer Dynamics of Photosynthetic Reaction Center Complexes Through Hole-Burning and Single-Complex Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Kerry Joseph [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Photosynthesis is the process by which light energy is used to drive reactions that generate sugars to supply energy for cellular processes. It is one of the most important fundamental biological reactions and occurs in both prokaryotic (e.g. bacteria) and eukaryotic (e.g. plants and algae) organisms. Photosynthesis is also remarkably intricate, requiring the coordination of many different steps and reactions in order to successfully transform absorbed solar energy into a biochemical usable form of energy. However, the net reaction for all photosynthetic organisms can be reduced to the following, deceptively general, equation developed by Van Niel[1] H2 - D + Aimplieshv A - H2 + D where H2-D is the electron donor, e.g. H2O, H2S. A is the electron acceptor, e.g. CO2, and A-H2 is the synthesized sugar. Amazingly, this simple net equation is responsible for creating the oxidizing atmosphere of Earth and the recycling of CO2, both of which are necessary for the sustainment of the global ecosystem.

  4. Effect of proton transfer on the electronic coupling in DNA

    International Nuclear Information System (INIS)

    Rak, Janusz; Makowska, Joanna; Voityuk, Alexander A.

    2006-01-01

    The effects of single and double proton transfer within Watson-Crick base pairs on donor-acceptor electronic couplings, V da , in DNA are studied on the bases of quantum chemical calculations. Four dimers [AT,AT], [GC,GC], [GC,AT] and [GC,TA)] are considered. Three techniques - the generalized Mulliken-Hush scheme, the fragment charge method and the diabatic states method - are employed to estimate V da for hole transfer between base pairs. We show that both single- and double proton transfer (PT) reactions may substantially affect the electronic coupling in DNA. The electronic coupling in [AT,AT] is predicted to be most sensitive to PT. Single PT within the first base pair in the dimer leads to increase in the hole transfer efficiency by a factor of 4, while proton transfer within the second pair should substantially, by 2.7 times, decrease the rate of charge transfer. Thus, directional asymmetry of the PT effects on the electronic coupling is predicted. The changes in the V da matrix elements correlate with the topological properties of orbitals of donor and acceptor and can be qualitatively rationalized in terms of resonance structures of donor and acceptor. Atomic pair contributions to the V da matrix elements are also analyzed

  5. Boiling heat transfer on single phosphor bronze and copper mesh microstructures

    Directory of Open Access Journals (Sweden)

    Orman Łukasz J.

    2014-03-01

    Full Text Available The paper presents experimental results of boiling heat transfer of distilled water and ethyl alcohol on surfaces covered with single layers of wire mesh structures made of phosphor bronze and copper. For each material two kinds of structures have been considered (higher and lower in order to determine the impact of the height of the structure on boiling heat transfer. The wire diameter of the copper meshes was 0,25 mm and 0,32 mm, while of the bronze meshes: 0,20 mm and 0,25 mm. The structures had the same mesh aperture (distance between the wires – 0,50 mm for copper and 0,40 for bronze but different wire diameter and, consequently, different height of the layers. The tests have been performed under ambient pressure in the pool boiling mode. The obtained results indicate a visible impact of the layer height on the boiling heat transfer performance of the analysed microstructures.

  6. Luminescence properties and energy transfer processes in YAG:Yb,Er single crystalline films

    International Nuclear Information System (INIS)

    Zorenko, Yu.; Gorbenko, V.; Savchyn, V.; Batentschuk, M.; Osvet, A.; Brabec, C.

    2013-01-01

    The paper is dedicated to the study of the optical properties of YAG:Yb,Er single-crystalline films (SCF) grown by liquid phase epitaxy. The absorption, cathodoluminescence and time-resolved photoluminescence spectra and photoluminescence decay curves were measured for the SCFs with different doping levels of Er 3+ (from 0.6 to 4.2 at.%) and Yb 3+ (from 0.1 to 0.6 at.%). The spectra, excited by synchrotron radiation in the fundamental absorption range of the YAG and in the intraionic absorption bands of both dopants, reveal energy transfer from the YAG host to the Er 3+ and Yb 3+ ions and between these ions. -- Highlights: •Growth of YAG:Yb,Er single crystalline films by LPE method. •Peculiarities of luminescence of YAG:Yb,Er films with different Er–Yb content. •Yb–Er energy transfer processes in YAG hosts

  7. Heterogeneous electron transfer and oxygen reduction reaction at nanostructured iron(II) phthalocyanine and its MWCNTs nanocomposites

    CSIR Research Space (South Africa)

    Mamuru, SA

    2010-05-01

    Full Text Available species within the porous layers of MWCNTs. Electron transfer process is much easier at the EPPGE-MWCNT and EPPGE-MWCNT-nanoFePc compared to the other electrodes. The best response for oxygen reduction reaction was at the EPPGE-MWCNTnanoFePc, yielding a 4...

  8. Clinical effectiveness of elective single versus double embryo transfer: meta-analysis of individual patient data from randomised trials

    NARCIS (Netherlands)

    McLernon, D. J.; Harrild, K.; Bergh, C.; Davies, M. J.; de Neubourg, D.; Dumoulin, J. C. M.; Gerris, J.; Kremer, J. A. M.; Martikainen, H.; Mol, B. W.; Norman, R. J.; Thurin-Kjellberg, A.; Tiitinen, A.; van Montfoort, A. P. A.; van Peperstraten, A. M.; van Royen, E.; Bhattacharya, S.

    2010-01-01

    Objective To compare the effectiveness of elective single embryo transfer versus double embryo transfer on the outcomes of live birth, multiple live birth, miscarriage, preterm birth, term singleton birth, and low birth weight after fresh embryo transfer, and on the outcomes of cumulative live birth

  9. Stripping of two protons and one alpha particle transfer reactions for {sup 16} O + {sup A} Sm and their influence on the fusion cross section

    Energy Technology Data Exchange (ETDEWEB)

    Maciel, A.M.M.; Gomes, P.R.S

    1995-12-31

    Transfer cross section angular distribution data for the stripping of two protons and one alpha particle are studied for the {sup 16} O + {sup A} Sm systems (A=144, 148, 150, 152 and 154), at near barrier energies. A semiclassical formalism is used to derive the corresponding transfer form factors. For only one channel the analysis shows evidences that the transfer reaction mechanism at backward angles - corresponding to small distances, may behave as a multi-step process leading to fusion. Simplified coupled channel calculations including transfer channels are performed for the study of the sub-barrier of these systems. The influence of short distance transfer reactions on the fusion is discussed. (author) 16 refs., 5 figs., 5 tabs.

  10. Study of the 18F(p,α)15O reaction by transfer reaction for application to γ-ray emission from Novae

    International Nuclear Information System (INIS)

    Sereville, N. de

    2003-12-01

    The gamma emission from novae at/or below 511 keV is due to the annihilation of the positrons produced in the beta + decay of F 18 . The interpretation of this emission through observations made by the Integral satellite for instance, requires a good knowledge of F 18 nucleosynthesis. The reaction rate of the F 18 (p,α)O 15 is the least known because of 2 resonances corresponding to the levels 6.419 and 6.449 MeV of Ne 19 whose proton widths are completely unknown. We have determined these proton widths via the study of one-nucleon transfer reaction D(F 18 ,pα)N 15 populating equivalent levels in F 19 . We have used a 14 MeV F 18 radioactive beam on a CD 2 target for inverse kinematics studies and the multi-track silicon detector LEDA. A DWBA (Distorted Wave Bound Approximation) has enabled us to determine the proton width of both resonances and has showed that they have an impact in the calculation of the reaction rate. A thorough study of the remaining uncertainties of the reaction rate has been undertaken, particularly for those concerning interferences between these resonances and a higher resonance of Ne 19 . The reaction rate that we have obtained is very similar to the previous rate used but now it rests on a more solid basis

  11. Mass transfer in porous media with heterogeneous chemical reaction

    Directory of Open Access Journals (Sweden)

    Souza S.M.A.G.Ulson de

    2003-01-01

    Full Text Available In this paper, the modeling of the mass transfer process in packed-bed reactors is presented and takes into account dispersion in the main fluid phase, internal diffusion of the reactant in the pores of the catalyst, and surface reaction inside the catalyst. The method of volume averaging is applied to obtain the governing equation for use on a small scale. The local mass equilibrium is assumed for obtaining the one-equation model for use on a large scale. The closure problems are developed subject to the length-scale constraints and the model of a spatially periodic porous medium. The expressions for effective diffusivity, hydrodynamic dispersion, total dispersion and the Darcy's law permeability tensors are presented. Solution of the set of final equations permits the variations of velocity and concentration of the chemical species along the packed-bed reactors to be obtained.

  12. Mediated Electron Transfer at Vertically Aligned Single-Walled Carbon Nanotube Electrodes During Detection of DNA Hybridization

    Science.gov (United States)

    Wallen, Rachel; Gokarn, Nirmal; Bercea, Priscila; Grzincic, Elissa; Bandyopadhyay, Krisanu

    2015-06-01

    Vertically aligned single-walled carbon nanotube (VASWCNT) assemblies are generated on cysteamine and 2-mercaptoethanol (2-ME)-functionalized gold surfaces through amide bond formation between carboxylic groups generated at the end of acid-shortened single-walled carbon nanotubes (SWCNTs) and amine groups present on the gold surfaces. Atomic force microscopy (AFM) imaging confirms the vertical alignment mode of SWCNT attachment through significant changes in surface roughness compared to bare gold surfaces and the lack of any horizontally aligned SWCNTs present. These SWCNT assemblies are further modified with an amine-terminated single-stranded probe-DNA. Subsequent hybridization of the surface-bound probe-DNA in the presence of complementary strands in solution is followed using impedance measurements in the presence of Fe(CN)6 3-/4- as the redox probe in solution, which show changes in the interfacial electrochemical properties, specifically the charge-transfer resistance, due to hybridization. In addition, hybridization of the probe-DNA is also compared when it is attached directly to the gold surfaces without any intermediary SWCNTs. Contrary to our expectations, impedance measurements show a decrease in charge-transfer resistance with time due to hybridization with 300 nM complementary DNA in solution with the probe-DNA attached to SWCNTs. In contrast, an increase in charge-transfer resistance is observed with time during hybridization when the probe-DNA is attached directly to the gold surfaces. The decrease in charge-transfer resistance during hybridization in the presence of VASWCNTs indicates an enhancement in the electron transfer process of the redox probe at the VASWCNT-modified electrode. The results suggest that VASWCNTs are acting as mediators of electron transfer, which facilitate the charge transfer of the redox probe at the electrode-solution interface.

  13. Highly Durable Platinum Single-Atom Alloy Catalyst for Electrochemical Reactions

    DEFF Research Database (Denmark)

    Kim, Jiwhan; Roh, Chi-Woo; Sahoo, Suman Kalyan

    2018-01-01

    Single atomic Pt catalyst can offer efficient utilization of the expensive platinum and provide unique selectivity because it lacks ensemble sites. However, designing such a catalyst with high Pt loading and good durability is very challenging. Here, single atomic Pt catalyst supported on antimony...... functional theory calculations show that replacing Sb sites with Pt atoms in the bulk phase or at the surface of SbSn or ATO is energetically favorable. The Pt1/ATO shows superior activity and durability for formic acid oxidation reaction, compared to a commercial Pt/C catalyst. The single atomic Pt...... structure is retained even after a harsh durability test, which is performed by repeating cyclic voltammetry in the range of 0.05–1.4 V for 1800 cycles. A full cell is fabricated for direct formic acid fuel cell using the Pt1/ATO as an anode catalyst, and an order of magnitude higher cell power is obtained...

  14. In Situ Solid-State Reactions Monitored by X-ray Absorption Spectroscopy: Temperature-Induced Proton Transfer Leads to Chemical Shifts.

    Science.gov (United States)

    Stevens, Joanna S; Walczak, Monika; Jaye, Cherno; Fischer, Daniel A

    2016-10-24

    The dramatic colour and phase alteration with the solid-state, temperature-dependent reaction between squaric acid and 4,4'-bipyridine has been probed in situ with X-ray absorption spectroscopy. The electronic and chemical sensitivity to the local atomic environment through chemical shifts in the near-edge X-ray absorption fine structure (NEXAFS) revealed proton transfer from the acid to the bipyridine base through the change in nitrogen protonation state in the high-temperature form. Direct detection of proton transfer coupled with structural analysis elucidates the nature of the solid-state process, with intermolecular proton transfer occurring along an acid-base chain followed by a domino effect to the subsequent acid-base chains, leading to the rapid migration along the length of the crystal. NEXAFS thereby conveys the ability to monitor the nature of solid-state chemical reactions in situ, without the need for a priori information or long-range order. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Study of the reaction of astrophysical interest 60Fe(n,γ)61Fe via (d,pγ) transfer reaction

    International Nuclear Information System (INIS)

    Giron, S.

    2011-12-01

    60 Fe is of special interest in nuclear astrophysics. Indeed the recent observations of 60 Fe characteristic gamma-ray lines by the RHESSI and INTEGRAL spacecrafts allowed to measure the total flux of 60 Fe over the Galaxy. Moreover the observation in presolar grains of an excess of the daughter-nuclei of 60 Fe, 60 Ni, gives constraints on the conditions of formation of the early solar system. However, the cross-sections of some reactions involved in 60 Fe nucleosynthesis and included to stellar models are still uncertain. The destruction reaction of 60 Fe, 60 Fe(n, γ) 61 Fe, is one of them. The total cross-section can be separate into two contributions: the direct one, involving states below the neutron separation threshold of 61 Fe, and the resonant one.We improved 61 Fe spectroscopy in order to evaluate the direct capture part of the 60 Fe(n, γ) 61 Fe reaction cross-section. 60 Fe(n, γ) 61 Fe was thus studied via d( 60 Fe, pγ) 61 Fe transfer reaction with the CATS/MUST2/EXOGAM setup at LISE-GANIL. DWBA analysis of experimental proton differential cross-sections allowed to extract orbital angular momentum and spectroscopic factors of different populated states identified below the neutron threshold. A comparison of experimental results for 61 Fe with experimental results for similar nuclei and with shell-model calculations was also performed. (author) [fr

  16. The Electronic Flux in Chemical Reactions. Insights on the Mechanism of the Maillard Reaction

    Science.gov (United States)

    Flores, Patricio; Gutiérrez-Oliva, Soledad; Herrera, Bárbara; Silva, Eduardo; Toro-Labbé, Alejandro

    2007-11-01

    The electronic transfer that occurs during a chemical process is analysed in term of a new concept, the electronic flux, that allows characterizing the regions along the reaction coordinate where electron transfer is actually taking place. The electron flux is quantified through the variation of the electronic chemical potential with respect to the reaction coordinate and is used, together with the reaction force, to shed light on reaction mechanism of the Schiff base formation in the Maillard reaction. By partitioning the reaction coordinate in regions in which different process might be taking place, electronic reordering associated to polarization and transfer has been identified and found to be localized at specific transition state regions where most bond forming and breaking occur.

  17. Transfer doping of single isolated nanodiamonds, studied by scanning probe microscopy techniques.

    Science.gov (United States)

    Bolker, Asaf; Saguy, Cecile; Kalish, Rafi

    2014-09-26

    The transfer doping of diamond surfaces has been applied in various novel two-dimensional electronic devices. Its extension to nanodiamonds (ND) is essential for ND-based applications in many fields. In particular, understanding the influence of the crystallite size on transfer doping is desirable. Here, we report the results of a detailed study of the electronic energetic band structure of single, isolated transfer-doped nanodiamonds with nanometric resolution using a combination of scanning tunneling spectroscopy and Kelvin force microscopy measurements. The results show how the band gap, the valence band maximum, the electron affinity and the work function all depend on the ND's size and nanoparticle surface properties. The present analysis, which combines information from both scanning tunneling spectroscopy and Kelvin force microscopy, should be applicable to any nanoparticle or surface that can be measured with scanning probe techniques.

  18. Transfer doping of single isolated nanodiamonds, studied by scanning probe microscopy techniques

    Science.gov (United States)

    Bolker, Asaf; Saguy, Cecile; Kalish, Rafi

    2014-09-01

    The transfer doping of diamond surfaces has been applied in various novel two-dimensional electronic devices. Its extension to nanodiamonds (ND) is essential for ND-based applications in many fields. In particular, understanding the influence of the crystallite size on transfer doping is desirable. Here, we report the results of a detailed study of the electronic energetic band structure of single, isolated transfer-doped nanodiamonds with nanometric resolution using a combination of scanning tunneling spectroscopy and Kelvin force microscopy measurements. The results show how the band gap, the valence band maximum, the electron affinity and the work function all depend on the ND’s size and nanoparticle surface properties. The present analysis, which combines information from both scanning tunneling spectroscopy and Kelvin force microscopy, should be applicable to any nanoparticle or surface that can be measured with scanning probe techniques.

  19. Transfer doping of single isolated nanodiamonds, studied by scanning probe microscopy techniques

    International Nuclear Information System (INIS)

    Bolker, Asaf; Kalish, Rafi; Saguy, Cecile

    2014-01-01

    The transfer doping of diamond surfaces has been applied in various novel two-dimensional electronic devices. Its extension to nanodiamonds (ND) is essential for ND-based applications in many fields. In particular, understanding the influence of the crystallite size on transfer doping is desirable. Here, we report the results of a detailed study of the electronic energetic band structure of single, isolated transfer-doped nanodiamonds with nanometric resolution using a combination of scanning tunneling spectroscopy and Kelvin force microscopy measurements. The results show how the band gap, the valence band maximum, the electron affinity and the work function all depend on the ND’s size and nanoparticle surface properties. The present analysis, which combines information from both scanning tunneling spectroscopy and Kelvin force microscopy, should be applicable to any nanoparticle or surface that can be measured with scanning probe techniques. (paper)

  20. Mass transfer rate through liquid membranes: interfacial chemical reactions and diffusion as simultaneous permeability controlling factors

    International Nuclear Information System (INIS)

    Danesi, P.R.; Horwitz, E.P.; Vandegrift, G.F.; Chiarizia, R.

    1981-01-01

    Equations describing the permeability of a liquid membrane to metal cations have been derived taking into account aqueous diffusion, membrane diffusion, and interfacial chemical reactions as simultaneous permeability controlling factors. Diffusion and chemical reactions have been coupled by a simple model analogous to the one previously described by us to represent liquid-liquid extraction kinetics. The derived equations, which make use of experimentally determined interfacial reaction mechanisms, qualitatively fit unexplained literature data regarding Cu 2+ transfer through liquid membranes. Their use to predict and optimize membrane permeability in practical separation processes by setting the appropriate concentration of the membrane carrier [LIX 64 (General Mills), a commercial β-hydroxy-oxime] and the pH of the aqueous copper feed solution is briefly discussed. 4 figures

  1. Spatially Mapping Energy Transfer from Single Plasmonic Particles to Semiconductor Substrates via STEM/EELS.

    Science.gov (United States)

    Li, Guoliang; Cherqui, Charles; Bigelow, Nicholas W; Duscher, Gerd; Straney, Patrick J; Millstone, Jill E; Masiello, David J; Camden, Jon P

    2015-05-13

    Energy transfer from plasmonic nanoparticles to semiconductors can expand the available spectrum of solar energy-harvesting devices. Here, we spatially and spectrally resolve the interaction between single Ag nanocubes with insulating and semiconducting substrates using electron energy-loss spectroscopy, electrodynamics simulations, and extended plasmon hybridization theory. Our results illustrate a new way to characterize plasmon-semiconductor energy transfer at the nanoscale and bear impact upon the design of next-generation solar energy-harvesting devices.

  2. Perceived barriers to elective single embryo transfer among IVF professionals: a national survey.

    NARCIS (Netherlands)

    Peperstraten, A.M. van; Hermens, R.P.M.G.; Nelen, W.L.D.M.; Stalmeier, P.F.M.; Scheffer, G.J.; Grol, R.P.T.M.; Kremer, J.A.M.

    2008-01-01

    BACKGROUND: After initial years of improvement, the multiple pregnancy rate after in vitro fertilization (IVF) in Europe now remains stable at 23% with single embryo transfer (SET) constituting 19% of all IVF cycles. Although elective SET prevents multiple pregnancies after IVF, couples and

  3. Production of neutron-rich nuclides in the vicinity of N = 126 shell closure in multinucleon transfer reactions

    Directory of Open Access Journals (Sweden)

    Karpov Alexander

    2017-01-01

    Full Text Available Multinucleon transfer in low-energy nucleus-nucleus collisions is widely discussed as a method of production of yet-unknown neutron-rich nuclei hardly accessible (or inaccessible by other methods. Modeling of complicated dynamics of nuclear reactions induced by heavy ions is done within a multidimensional dynamical model of nucleus-nucleus collisions based on the Langevin equations. The model gives a continuous description of the system evolution starting from the well-separated target and projectile in the entrance channel of the reaction up to the formation of final reaction products. In this paper, rather recent sets of experimental data for the 136Xe+198Pt,208Pb reactions are analyzed together with the production cross sections for neutron-rich nuclei in the vicinity of the N = 126 magic shell.

  4. Final Report: The Impact of Carbonate on Surface Protonation, Electron Transfer and Crystallization Reactions in Iron Oxide Nanoparticles and Colloids

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, David Adams [The University of Alabama

    2013-07-02

    This project addresses key issues of importance in the geochemical behavior of iron oxides and in the geochemical cycling of carbon and iron. For Fe, we are specifically studying the influence of carbonate on electron transfer reactions, solid phase transformations, and the binding of carbonate to reactive sites on the edges of particles. The emphasis on carbonate arises because it is widely present in the natural environment, is known to bind strongly to oxide surfaces, is reactive on the time scales of interest, and has a speciation driven by acid-base reactions. The geochemical behavior of carbonate strongly influences global climate change and CO{sub 2} sequestration technologies. Our goal is to answer key questions with regards to specific site binding, electron transfer reactions, and crystallization reactions of iron oxides that impact both the geochemical cycling of iron and CO{sub 2} species. Our work is focused on the molecular level description of carbonate chemistry in solution including the prediction of isotope fractionation factors. We have also done work on critical atmospheric species.

  5. A simple approach to the solvent reorganisation Gibbs free energy in electron transfer reactions of redox metalloproteins

    DEFF Research Database (Denmark)

    Ulstrup, Jens

    1999-01-01

    We discuss a simple model for the environmental reorganisation Gibbs free energy, E-r, in electron transfer between a metalloprotein and a small reaction partner. The protein is represented as a dielectric globule with low dielectric constant, the metal centres as conducting spheres, all embedded...

  6. Comparison between proton transfer reaction mass spectrometry and near infrared spectroscopy for the authentication of Brazilian coffee

    NARCIS (Netherlands)

    Monteiro, Pablo Inocêncio; Santos, Jânio Sousa; Alvarenga Brizola, Vitor Rafael; Pasini Deolindo, Carolina Turnes; Koot, Alex; Boerrigter-Eenling, Rita; Ruth, van Saskia; Georgouli, Konstantia; Koidis, Anastasios; Granato, Daniel

    2018-01-01

    In this study, proton-transfer reaction mass spectrometry (PTR-MS) and near-infrared spectroscopy (NIRS) were compared for the authentication of geographical and farming system origins of Brazilian coffees. For this purpose, n = 19 organic (ORG) and n = 26 conventional (CONV) coffees from

  7. The interaction between liquid motion and mass transfer induced by single rising bubble via PIV/LIE

    International Nuclear Information System (INIS)

    Yoshimoto, Kenjo; Yamamoto, Manabu; Sone, Daiji; Saito, Takayuki

    2009-01-01

    Deep understanding of gas-liquid two phase flows is essential for safe operation and high efficiency of nuclear reactors, chemical reactors and so on. In this study, we focus on the process of mass transfer induced by a single rising bubble. The mass transfer process of a zigzag ascending single bubble is investigated via LIF (Laser Induced Fluorescence) and PIV (Particle Image Velocimetry). From these results, we discuss the relationship between the mass transfer and the surrounding liquid motion of the single bubble. We examined single CO 2 -bubbles of 2-3 mm in equivalent diameter, which shows zigzagging motion in rest water. To directly visualize the dynamic mass transfer of CO 2 from the bubble surface to the surrounding liquid, HPTS (8-hydroxypyrene-1, 3, 6-trisulfonic acid) was used as a fluorescent substance for LIF. From LIF results, it was observed that the CO 2 -rich regions were spread by advective flow in the rest water as horseshoe-like vortices. From LIF results combined with the PIV results, it was observed that the horseshoe-like vortices were transported by the fast upward flow (buoyancy driven flow). Especially, in the case of a larger-diameter bubble with large shape oscillations, the high turbulence intensity (in a strict sense, fluctuation intensity of the liquid-phase velocity) was observed. The CO 2 -rich regions spread over a wide range by the strong flow. As a result, it is considered that the high turbulence intensity which was caused by the shape oscillations enhances the mass transportation from the bubble to the surrounding liquid. (author)

  8. 78 FR 41070 - Notice of Single-Case Deviation from Competition Requirements: Transfer of Grantee Request for...

    Science.gov (United States)

    2013-07-09

    ... Single-Case Deviation from Competition Requirements: Transfer of Grantee Request for the Detroit Healthy... Health and Human Services (HHS). ACTION: Notice of Single-Case Deviation from Competition Requirements... pregnancy and interconceptional phases for women and infants residing in the proposed project area. In order...

  9. Theoretical study of ultrarelativistic laser-electron interaction with radiation reaction

    Directory of Open Access Journals (Sweden)

    Seto K.

    2013-11-01

    Full Text Available When the laser intensity becomes higher than 1022  W/cm2, the motion of an electron becomes relativistic, and emits large amounts of radiation. This radiation energy loss transferred to the kinetic energy loss of the electron, is treated as an external force, the “radiation reaction force”. We show the new equation of motion including this radiation reaction and the simulation method, as well as results of single electron system or dual electrons system with Liénard-Wiechert field interaction.

  10. Energy transfer and reaction dynamics of matrix-isolated 1,2-difluoroethane-d4

    Science.gov (United States)

    Raff, Lionel M.

    1990-09-01

    The molecular dynamics of vibrationally excited 1,2-difluoroethane-d4 isolated in Ar, Kr, and Xe matrices at 12 K are investigated using trajectory methods. The matrix model is an fcc crystal containing 125 unit cells with 666 atoms in a cubic (5×5×5) arrangement. It is assumed that 1,2-difluoroethane-d4 is held interstitially within the volume bounded by the innermost unit cell of the crystal. The transport effects of the bulk are simulated using the velocity reset method introduced by Riley, Coltrin, and Diestler [J. Chem. Phys. 88, 5934 (1988)]. The system potential is written as the separable sum of a lattice potential, a lattice-molecule interaction and a gas-phase potential for 1,2-difluoroethane. The first two of these are assumed to have pairwise form while the molecular potential is a modified form of the global potential previously developed for 1,2-difluoroethane [J. Phys. Chem. 91, 3266 (1987)]. Calculated sublimation energies for the pure crystals are in good accord with the experimental data. The distribution of metastable-state energies for matrix-isolated 1,2-difluoroethane-d4 is Gaussian in form. In krypton, the full width at half maximum for the distribution is 0.37 eV. For a total excitation energy of 6.314 eV, the observed dynamic processes are vibrational relaxation, orientational exchange, and four-center DF elimination reactions. The first of these processes is characterized by a near linear, first-order decay curve with rate coefficients in the range 1.30-1.48×1011 s-1. The average rates in krypton and xenon are nearly equal. The process is slightly slower in argon. The decay curves exhibit characteristic high-frequency oscillations that are generally seen in energy transfer studies. It is demonstrated that these oscillations are associated with the frequencies for intramolecular energy transfer so that the entire frequency spectrum for such transfer processes can be obtained from the Fourier transform of the decay curve. Orientational

  11. Effects of specific adsorption of copper (II) ion on charge transfer reaction at the thin film LiMn2O4 electrode/aqueous electrolyte interface

    International Nuclear Information System (INIS)

    Nakayama, N.; Yamada, I.; Huang, Y.; Nozawa, T.; Iriyama, Y.; Abe, T.; Ogumi, Z.

    2009-01-01

    This study investigated the effect of a specific adsorption ion, copper (II) ion, on the kinetics of the charge transfer reaction at a LiMn 2 O 4 thin film electrode/aqueous solution (1 mol dm -3 LiNO 3 ) interface. The zeta potential of LiMn 2 O 4 particles showed a negative value in 1 x 10 -2 mol dm -3 LiNO 3 aqueous solution, while it was measured as positive in the presence of 1 x 10 -2 mol dm -3 Cu(NO 3 ) 2 in the solution. The presence of copper (II) ions in the solution increased the charge transfer resistance, and CV measurement revealed that the lithium insertion/extraction reaction was retarded by the presence of small amount of copper (II) ions. The activation energy for the charge transfer reaction in the solution with Cu(NO 3 ) 2 was estimated to be 35 kJ mol -1 , which was ca. 10 kJ mol -1 larger than that observed in the solution without Cu(NO 3 ) 2 . These results suggest that the interaction between the lithium ion and electrode surface is a factor in the kinetics of charge transfer reaction

  12. Modeling of mass transfer and chemical reactions in a bubble column reactor using a discrete bubble model

    NARCIS (Netherlands)

    Darmana, D.; Deen, N.G.; Kuipers, J.A.M.

    2004-01-01

    A 3D discrete bubble model is adopted to investigate complex behavior involving hydrodynamics, mass transfer and chemical reactions in a gas-liquid bubble column reactor. In this model a continuum description is adopted for the liquid phase and additionally each individual bubble is tracked in a

  13. Experimental research on single-phase heat transfer characteristics in a vertical circular tube under marine conditions

    International Nuclear Information System (INIS)

    Du Sijia; Zhang Hong; Jia Baoshan

    2011-01-01

    Experiments have been conducted to study the heat transfer characteristics of single-phase forced circulation when the test tube was under different marine conditions. The experiments measured the wall temperature of test tube to calculate the heat transfer coefficients at different circumferential places. When the test tube was under inclined conditions, the heat transfer coefficient increased at downside and decreased at upside of test tube because of buoyancy effect. When the test tube was under rolling conditions, the heat transfer coefficients fluctuated with the rolling motions, and the Coriolis force dominated the heat transfer fluctuation during the rolling motion. CFD method was used to simulate the heat transfer phenomena under marine conditions, and the results were accord to the experimental phenomena. (authors)

  14. Impulse transfer and light particles emission during the reaction α + 232Th at 70 MeV/u

    International Nuclear Information System (INIS)

    Nguyen, M.S.

    1988-02-01

    We have measured during the reaction 4 He + 232 Th at 70 MeV/u the angular correlation of heavy fragments of fission, the inclusive energy spectra of light particles (p, d, t, 3 He and α) and triple coincidence between two fission fragments and a light ejectile. Energy spectra show an evaporation component at low energy, a component of projectile fragmentation at energy equivalent to beam velocity and an intermediate component attributed to pre-equilibrium emission. The analysis of the correlation between linear momentum transfer to the fissioning nucleus and the characteristics of the ejectile in coincidence shows a phenomenon of incomplete massive transfer. We run an Intra-Nuclear Cascade (INC) computation to reproduce ejectile energy spectra, but the agreement with experiment was very bad. We conclude to the impossibility to apply INC computation at intermediate energy of 70 MeV/u. We also applied Distorted Wave Born Approximation (DWBA) for direct transfer reaction extended to continuum states: but the agreement with experiment was again deceiving. Finally, we used an analysis by moving sources for which we propose a model of generalized fragmentation giving a continuous representation of the emission source phenomenon from low energy up to high energy [fr

  15. Chemical Evolution of Groundwater Near a Sinkhole Lake, Northern Florida: 2. Chemical Patterns, Mass Transfer Modeling, and Rates of Mass Transfer Reactions

    Science.gov (United States)

    Katz, Brian G.; Plummer, L. Niel; Busenberg, Eurybiades; Revesz, Kinga M.; Jones, Blair F.; Lee, Terrie M.

    1995-06-01

    Chemical patterns along evolutionary groundwater flow paths in silicate and carbonate aquifers were interpreted using solute tracers, carbon and sulfur isotopes, and mass balance reaction modeling for a complex hydrologic system involving groundwater inflow to and outflow from a sinkhole lake in northern Florida. Rates of dominant reactions along defined flow paths were estimated from modeled mass transfer and ages obtained from CFC-modeled recharge dates. Groundwater upgradient from Lake Barco remains oxic as it moves downward, reacting with silicate minerals in a system open to carbon dioxide (CO2), producing only small increases in dissolved species. Beneath and downgradient of Lake Barco the oxic groundwater mixes with lake water leakage in a highly reducing, silicate-carbonate mineral environment. A mixing model, developed for anoxic groundwater downgradient from the lake, accounted for the observed chemical and isotopic composition by combining different proportions of lake water leakage and infiltrating meteoric water. The evolution of major ion chemistry and the 13C isotopic composition of dissolved carbon species in groundwater downgradient from the lake can be explained by the aerobic oxidation of organic matter in the lake, anaerobic microbial oxidation of organic carbon, and incongruent dissolution of smectite minerals to kaolinite. The dominant process for the generation of methane was by the CO2 reduction pathway based on the isotopic composition of hydrogen (δ2H(CH4) = -186 to -234‰) and carbon (δ13C(CH4) = -65.7 to -72.3‰). Rates of microbial metabolism of organic matter, estimated from the mass transfer reaction models, ranged from 0.0047 to 0.039 mmol L-1 yr-1 for groundwater downgradient from the lake.

  16. Characterisation of the semi-volatile component of Dissolved Organic Matter by Thermal Desorption - Proton Transfer Reaction - Mass Spectrometry

    NARCIS (Netherlands)

    Materić, Dušan; Peacock, Mike; Kent, Matthew; Cook, Sarah; Gauci, Vincent; Röckmann, Thomas; Holzinger, Rupert

    2017-01-01

    Proton Transfer Reaction - Mass Spectrometry (PTR-MS) is a sensitive, soft ionisation method suitable for qualitative and quantitative analysis of volatile and semi-volatile organic vapours. PTR-MS is used for various environmental applications including monitoring of volatile organic compounds

  17. Electron transfer oxidation of DNA radicals by paranitroacetophenone

    Energy Technology Data Exchange (ETDEWEB)

    Whillans, D W; Adams, G E [Mount Vernon Hospital, Northwood (UK)

    1975-12-01

    The reaction of a typical electron-affinic sensitizer, paranitroacetophenone (PNAP) with the model compounds thymine, thymidine, thymidylic acid, deoxyribose and single and double-stranded DNA has been investigated by pulse radiolysis. Radicals formed by one-electron reduction of the bases and of DNA reacted rapidly and efficiently with PNAP by electron transfer. A small yield of transfer (< 10 per cent) was also observed arising from oxidation of the radicals formed by the small proportion of OH which reacted at the sugar moieties in DNA. In contrast, electron transfer oxidation by PNAP of radicals formed by the addition of OH to the base moieties, e.g. thymine, was not an efficient process. Further, addition of the sensitizer to the thymine OH-adduct proceeded at a rate that was too low to measure the pulse radiolysis. We conclude that, since the major sites of OH reaction by DNA are the heterocyclic bases (> 80 per cent), oxidation of the resultant radicals is unlikely to be a major step in the mechanism of sensitization by this typical hypoxic-cell sensitizer.

  18. Localizing internal friction along the reaction coordinate of protein folding by combining ensemble and single-molecule fluorescence spectroscopy

    Science.gov (United States)

    Borgia, Alessandro; Wensley, Beth G.; Soranno, Andrea; Nettels, Daniel; Borgia, Madeleine B.; Hoffmann, Armin; Pfeil, Shawn H.; Lipman, Everett A.; Clarke, Jane; Schuler, Benjamin

    2012-01-01

    Theory, simulations and experimental results have suggested an important role of internal friction in the kinetics of protein folding. Recent experiments on spectrin domains provided the first evidence for a pronounced contribution of internal friction in proteins that fold on the millisecond timescale. However, it has remained unclear how this contribution is distributed along the reaction and what influence it has on the folding dynamics. Here we use a combination of single-molecule Förster resonance energy transfer, nanosecond fluorescence correlation spectroscopy, microfluidic mixing and denaturant- and viscosity-dependent protein-folding kinetics to probe internal friction in the unfolded state and at the early and late transition states of slow- and fast-folding spectrin domains. We find that the internal friction affecting the folding rates of spectrin domains is highly localized to the early transition state, suggesting an important role of rather specific interactions in the rate-limiting conformational changes. PMID:23149740

  19. Preferences of subfertile women regarding elective single embryo transfer : additional in vitro fertilization cycles are acceptable, lower pregnancy rates are not

    NARCIS (Netherlands)

    Twisk, Moniek; van der Veen, Fulco; Repping, Sjoerd; Heineman, Maas-Jan; Korevaar, Johanna C.; Bossuyt, Patrick M. M.

    2007-01-01

    With identical pregnancy rates after elective single embryo transfer (ET) and double ET strategies consisting of three cycles of IVF or intracytoplasmic sperm injection (ICSI) plus transfers of thawed/frozen embryos if available, 46% of the women undergoing IVF/ICSI favor elective single ET. If

  20. Preferences of subfertile women regarding elective single embryo transfer: additional in vitro fertilization cycles are acceptable, lower pregnancy rates are not

    NARCIS (Netherlands)

    Twisk, Moniek; van der Veen, Fulco; Repping, Sjoerd; Heineman, Maas-Jan; Korevaar, Johanna C.; Bossuyt, Patrick M. M.

    2007-01-01

    With identical pregnancy rates after elective single embryo transfer (ET) and double ET strategies consisting of three cycles of IVF or intracytoplasmic sperm injection (ICSI) plus transfers of thawed/frozen embryos if available, 46% of the women undergoing IVF/ICSI favor elective single ET. If

  1. B-side charge separation in bacterial photosynthetic reaction centers: nanosecond time scale electron transfer from HB- to QB.

    Science.gov (United States)

    Kirmaier, Christine; Laible, Philip D; Hanson, Deborah K; Holten, Dewey

    2003-02-25

    We report time-resolved optical measurements of the primary electron transfer reactions in Rhodobacter capsulatus reaction centers (RCs) having four mutations: Phe(L181) --> Tyr, Tyr(M208) --> Phe, Leu(M212) --> His, and Trp(M250) --> Val (denoted YFHV). Following direct excitation of the bacteriochlorophyll dimer (P) to its lowest excited singlet state P, electron transfer to the B-side bacteriopheophytin (H(B)) gives P(+)H(B)(-) in approximately 30% yield. When the secondary quinone (Q(B)) site is fully occupied, P(+)H(B)(-) decays with a time constant estimated to be in the range of 1.5-3 ns. In the presence of excess terbutryn, a competitive inhibitor of Q(B) binding, the observed lifetime of P(+)H(B)(-) is noticeably longer and is estimated to be in the range of 4-8 ns. On the basis of these values, the rate constant for P(+)H(B)(-) --> P(+)Q(B)(-) electron transfer is calculated to be between approximately (2 ns)(-)(1) and approximately (12 ns)(-)(1), making it at least an order of magnitude smaller than the rate constant of approximately (200 ps)(-)(1) for electron transfer between the corresponding A-side cofactors (P(+)H(A)(-) --> P(+)Q(A)(-)). Structural and energetic factors associated with electron transfer to Q(B) compared to Q(A) are discussed. Comparison of the P(+)H(B)(-) lifetimes in the presence and absence of terbutryn indicates that the ultimate (i.e., quantum) yield of P(+)Q(B)(-) formation relative to P is 10-25% in the YFHV RC.

  2. Photochemical reactions of electron-deficient olefins with N,N,N',N'-tetramethylbenzidine via photoinduced electron-transfer

    Energy Technology Data Exchange (ETDEWEB)

    Pan Yang [Laboratory of Bond-selective Chemistry, Department of Chemical Physics, University of Science and Technology of China, No. 96 of Jinzhai Road, Hefei, Anhui 230026 (China); Zhao Junshu [Laboratory of Bond-selective Chemistry, Department of Chemical Physics, University of Science and Technology of China, No. 96 of Jinzhai Road, Hefei, Anhui 230026 (China); Ji Yuanyuan [Laboratory of Bond-selective Chemistry, Department of Chemical Physics, University of Science and Technology of China, No. 96 of Jinzhai Road, Hefei, Anhui 230026 (China); Yan Lei [Laboratory of Bond-selective Chemistry, Department of Chemical Physics, University of Science and Technology of China, No. 96 of Jinzhai Road, Hefei, Anhui 230026 (China); Yu Shuqin [Laboratory of Bond-selective Chemistry, Department of Chemical Physics, University of Science and Technology of China, No. 96 of Jinzhai Road, Hefei, Anhui 230026 (China)], E-mail: sqyu@ustc.edu.cn

    2006-01-05

    Photoinduced electron transfer reactions of several electron-deficient olefins with N,N,N',N'-tetramethylbenzidine (TMB) in acetonitrile solution have been studied by using laser flash photolysis technique and steady-state fluorescence quenching method. Laser pulse excitation of TMB yields {sup 3}TMB* after rapid intersystem crossing from {sup 1}TMB*. The triplet which located at 480 nm is found to undergo fast quenching with the electron acceptors fumaronitrile (FN), dimethyl fumarate (DMF), diethyl fumarate (DEF), cinnamonitrile (CN), {alpha}-acetoxyacrylonitrile (AAN), crotononitrile (CrN) and 3-methoxyacrylonitrile (MAN). Substituents binding to olefin molecule own different electron-donating/withdrawing powers, which determine the electron-deficient property ({pi}-cloud density) of olefin molecule as well as control the electron transfer rate constant directly. The detection of ion radical intermediates in the photolysis reactions confirms the proposed electron transfer mechanism, as expected from thermodynamics. The quenching rate constants of triplet TMB by these olefins have been determined at 510 nm to avoid the disturbance of formed TMB cation radical around 475 nm. All the k{sub q}{sup T} values approach or reach to the diffusion-controlled limit. In addition, fluorescence quenching rate constants k{sub q}{sup S} have been also obtained by calculating with Stern-Volmer equation. A correlation between experimental electron transfer rate constants and free energy changes has been explained by Marcus theory of adiabatic outer-sphere electron transfer. Disharmonic k{sub q} values for CN and CrN in endergonic region may be the disturbance of exciplexs formation. e of exciplex formation.

  3. The electrodisintegration of the deuteron reaction at high four-momentum transfer

    Science.gov (United States)

    Ibrahim, Hassan F.

    This dissertation presents the highest four-momentum transfer, Q2, quasielastic (xBj = 1) results from Experiment E01-020 which systematically explored the 2H(e, e'p)n reaction ("Electro-disintegration" of the deuteron) at three different four-momentum transfers, Q 2 = 0.8, 2.1, and 3.5 GeV2 and missing momenta, pmiss = 0, 100, 200, 300, 400, and 500 GeV including separations of the longitudinal-transverse interference response function, RLT, and extraction of the longitudinal-transverse asymmetry, ALT. This systematic approach will help to understand the reaction mechanism and the deuteron structure down to the short range part of the nucleon-nucleon interaction which is one of the fundamental missions of nuclear physics. By studying the very short distance structure of the deuteron, one may also determine whether or to what extent the description of nuclei in terms of nucleon/meson degrees of freedom must be supplemented by inclusion of explicit quark effects. The unique combination of energy, current, duty factor, and control of systematics for Hall A at Jefferson Lab made Jefferson Lab the only facility in the world where these systematic studies of the deuteron can be undertaken. This is especially true when we want to understand the short range structure of the deuteron where high energies and high luminosity/duty factor are needed. All these features of Jefferson Lab allow us to examine large missing momenta (short range scales) at kinematics where the effects of final state interactions (FSI), meson exchange currents (MEC), and isobar currents (IC) are minimal, making the extraction of the deuteron structure less model-dependent. Jefferson Lab also provides the kinematical flexibility to perform the separation of RLT over a broad range of missing momenta and momentum transfers. Experiment E01-020 used the standard Hall A equipment in coincidence configuration in addition to the cryogenic target system. The low and middle Q2 kinematics were completed in June

  4. Metal-etching-free direct delamination and transfer of single-layer graphene with a high degree of freedom.

    Science.gov (United States)

    Yang, Sang Yoon; Oh, Joong Gun; Jung, Dae Yool; Choi, HongKyw; Yu, Chan Hak; Shin, Jongwoo; Choi, Choon-Gi; Cho, Byung Jin; Choi, Sung-Yool

    2015-01-14

    A method of graphene transfer without metal etching is developed to minimize the contamination of graphene in the transfer process and to endow the transfer process with a greater degree of freedom. The method involves direct delamination of single-layer graphene from a growth substrate, resulting in transferred graphene with nearly zero Dirac voltage due to the absence of residues that would originate from metal etching. Several demonstrations are also presented to show the high degree of freedom and the resulting versatility of this transfer method. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Pion-transfer (n,d) and (d, 3He) reactions leading to deeply bound pionic atoms

    International Nuclear Information System (INIS)

    Toki, H.; Hirenzaki, S.; Yamazaki, T.

    1990-11-01

    Theoretical studies are given on the (n,d) and (d, 3 He) reactions leading to deeply bound pionic atoms in heavy nuclei of configuration [(nl) π ·j n -1 ]J. The cross sections for various pionic and neutron-hole configurations in the case of a 208 Pb target are calculated at incident energies 300-1000 MeV/u by using the effective number approach and the eikonal approximation for distortion. The effective number with a pion in the 1s or 2p state and a neutron hole in the i 13/2 orbit peaks around the same incident energy (T n =600 MeV) as the elementary cross section n+n→d+π - , where the momentum transfer matches the angular-momentum transfer of L=5∼7. The DWIA cross section for (n,d) producing a pion in the 1s or 2p orbit at T n =600 MeV is found to be around 42 or 75 μb/sr, respectively. At T n =350 MeV, where the momentum transfer is small, quasi-substitutional states of configurations [(2p) π (3p 1/2 ) n -1 ]L=0 and [(2p) π (3p 3/2 ) n -1 ]L=0 are preferentially populated with cross sections of 190 and 380 μb/sr, respectively. The (d, 3 He) cross sections are estimated to be an order of magnitude smaller than the (n,d) cross sections. Thus, the (n,d) and (d, 3 He) reactions are found to be suited for the production of deeply bound pionic atoms. (author)

  6. Ruthenacycles and Iridacycles as Catalysts for Asymmetric Transfer Hydrogenation and Racemisation

    NARCIS (Netherlands)

    Jerphagnon, Thomas; Haak, Robert; Berthiol, Florian; Gayet, Arnaud J.A.; Ritleng, Vincent; Holuigue, Alexandre; Pannetier, Nicolas; Pfeffer, Michel; Voelklin, Adeline; Lefort, Laurent; Verzijl, Gerard; Tarabiono, Chiara; Janssen, Dick B.; Minnaard, Adriaan J.; Feringa, Ben L.; Vries, Johannes G. de

    2010-01-01

    Ruthenacycles, which are easily prepared in a single step by reaction between enantiopure aromatic amines and [Ru(arene)Cl2]2 in the presence of NaOH and KPF6, are very good asymmetric transfer hydrogenation catalysts. A range of aromatic ketones were reduced using isopropanol in good yields with

  7. Ship Detection Using Transfer Learned Single Shot Multi Box Detector

    Directory of Open Access Journals (Sweden)

    Nie Gu-Hong

    2017-01-01

    Full Text Available Ship detection in satellite images is a challenging task. In this paper, we introduce a transfer learned Single Shot MultiBox Detector (SSD for ship detection. To this end, a state-of-the-art object detection model pre-trained from a large number of natural images was transfer learned for ship detection with limited labeled satellite images. To the best of our knowledge, this could be one of the first studies which introduce SSD into ship detection on satellite images. Experiments demonstrated that our method could achieve 87.9% AP at 47 FPS using NVIDIA TITAN X. In comparison with Faster R-CNN, 6.7% AP improvement could be achieved. Effects of the observation resolution has also been studied with the changing input sizes among 300 × 300, 600 × 600 and 900 × 900. It has been noted that the detection accuracy declined sharply with the decreasing resolution that is mainly caused by the missing small ships.

  8. Hydrogen Transfer during Liquefaction of Elbistan Lignite to Biomass; Total Reaction Transformation Approach

    Science.gov (United States)

    Koyunoglu, Cemil; Karaca, Hüseyin

    2017-12-01

    Given the high cost of the tetraline solvent commonly used in liquefaction, the use of manure with EL is an important factor when considering the high cost of using tetraline as a hydrogen transfer source. In addition, due to the another cost factor which is the catalyst prices, red mud (commonly used, produced as a byproduct in the production of aluminium) is reduced cost in the work of liquefaction of coal, biomass, even coal combined biomass, corresponding that making the EL liquefaction an agenda for our country is another important factor. Conditions for liquefaction experiments conducted for hydrogen transfer from manure to coal; Catalyst concentration of 9%, liquid/solid ratio of 3/1, reaction time of 60 min, fertilizer/lignite ratio of 1/3, and the reaction temperature of 400 °C, the stirred speed of 400 rpm and the initial nitrogen pressure of 20 bar was fixed. In order to demonstrate the hydrogen, transfer from manure to coal, coal is used solely, by using tetraline (also known as a hydrogen carrier) and distilled water which is not hydrogen donor as a solvent in the co-liquefaction of experiments, and also the liquefaction conditions are carried out under an inert (N2) gas atmosphere. According to the results of the obtained liquefaction test; using tetraline solvent the total liquid product conversion percentage of the oil + gas conversion was 38.3 %, however, the results of oil+gas conversion obtained using distilled water and EL combined with manure the total liquid product conversion percentage was 7.4 %. According to the results of calorific value and elemental analysis, only the ratio of (H/C)atomic of coal obtained by using tetraline increased with the liquefaction of manure and distilled water. The reason of the increase in the amount of hydrogen due to hydrogen transfer from the manure on the solid surface of the coal, and also on the surface of the inner pore of the coal during the liquefaction, brings about the evaluation of the coal as a

  9. Reactions of guanine with methyl chloride and methyl bromide: O6-methylation versus charge transfer complex formation

    Science.gov (United States)

    Shukla, P. K.; Mishra, P. C.; Suhai, S.

    Density functional theory (DFT) at the B3LYP/6-31+G* and B3LYP/AUG-cc-pVDZ levels was employed to study O6-methylation of guanine due to its reactions with methyl chloride and methyl bromide and to obtain explanation as to why the methyl halides cause genotoxicity and possess mutagenic and carcinogenic properties. Geometries of the various isolated species involved in the reactions, reactant complexes (RCs), and product complexes (PCs) were optimized in gas phase. Transition states connecting the reactant complexes with the product complexes were also optimized in gas phase at the same levels of theory. The reactant complexes, product complexes, and transition states were solvated in aqueous media using the polarizable continuum model (PCM) of the self-consistent reaction field theory. Zero-point energy (ZPE) correction to total energy and the corresponding thermal energy correction to enthalpy were made in each case. The reactant complexes of the keto form of guanine with methyl chloride and methyl bromide in water are appreciably more stable than the corresponding complexes involving the enol form of guanine. The nature of binding in the product complexes was found to be of the charge transfer type (O6mG+ · X-, X dbond Cl, Br). Binding of HCl, HBr, and H2O molecules to the PCs obtained with the keto form of guanine did not alter the positions of the halide anions in the PCs, and the charge transfer character of the PCs was also not modified due to this binding. Further, the complexes obtained due to the binding of HCl, HBr, and H2O molecules to the PCs had greater stability than the isolated PCs. The reaction barriers involved in the formation of PCs were found to be quite high (?50 kcal/mol). Mechanisms of genotoxicity, mutagenesis and carcinogenesis caused by the methyl halides appear to involve charge transfer-type complex formation. Thus the mechanisms of these processes involving the methyl halides appear to be quite different from those that involve the

  10. Phosphorus-31 NMR magnetization transfer measurements of metabolic reaction rates in the rat heart and kidney in vivo

    International Nuclear Information System (INIS)

    Koretsky, A.P.

    1984-01-01

    31 P NMR is a unique tool to study bioenergetics in living cells. The application of magnetization transfer techniques to the measurement of steady-state enzyme reaction rates provides a new approach to understanding the regulation of high energy phosphate metabolism. This dissertation is concerned with the measurement of the rates of ATP synthesis in the rat kidney and of the creatine kinase catalyzed reaction in the rat heart in situ. The theoretical considerations of applying magnetization transfer techniques to intact organs are discussed with emphasis on the problems associated with multiple exchange reactions and compartmentation of reactants. Experimental measurements of the ATP synthesis rate were compared to whole kidney oxygen consumption and Na + reabsorption rates to derive ATP/O values. The problems associated with ATP synthesis rate measurements in kidney, e.g. the heterogeneity of the inorganic phosphate resonance, are discussed and experiments to overcome these problems proposed. In heart, the forward rate through creatine kinase was measured to be larger than the reverse rate. To account for the difference in forward and reverse rates a model is proposed based on the compartmentation of a small pool of ATP

  11. Catalytic conversion reactions mediated by single-file diffusion in linear nanopores: hydrodynamic versus stochastic behavior.

    Science.gov (United States)

    Ackerman, David M; Wang, Jing; Wendel, Joseph H; Liu, Da-Jiang; Pruski, Marek; Evans, James W

    2011-03-21

    We analyze the spatiotemporal behavior of species concentrations in a diffusion-mediated conversion reaction which occurs at catalytic sites within linear pores of nanometer diameter. Diffusion within the pores is subject to a strict single-file (no passing) constraint. Both transient and steady-state behavior is precisely characterized by kinetic Monte Carlo simulations of a spatially discrete lattice-gas model for this reaction-diffusion process considering various distributions of catalytic sites. Exact hierarchical master equations can also be developed for this model. Their analysis, after application of mean-field type truncation approximations, produces discrete reaction-diffusion type equations (mf-RDE). For slowly varying concentrations, we further develop coarse-grained continuum hydrodynamic reaction-diffusion equations (h-RDE) incorporating a precise treatment of single-file diffusion in this multispecies system. The h-RDE successfully describe nontrivial aspects of transient behavior, in contrast to the mf-RDE, and also correctly capture unreactive steady-state behavior in the pore interior. However, steady-state reactivity, which is localized near the pore ends when those regions are catalytic, is controlled by fluctuations not incorporated into the hydrodynamic treatment. The mf-RDE partly capture these fluctuation effects, but cannot describe scaling behavior of the reactivity.

  12. Laser-induced forward transfer of single-walled carbon nanotubes

    Science.gov (United States)

    Palla-Papavlu, A.; Dinescu, M.; Wokaun, A.; Lippert, T.

    2014-10-01

    The objective of this work is the application of laser-induced forward transfer (LIFT) for the fabrication of chemiresistor sensors. The receiver substrate is an array with metal electrodes and the active materials placed by LIFT are single-walled carbon nanotubes (SWCNT). The functionality of such sensors depends on the geometry of the active material onto the metallic electrodes. First the best geometry for the sensing materials and electrodes was determined, including the optimization of the process parameters for printing uniform pixels of SWCNT onto the sensor electrodes. The sensors were characterized in terms of their sensing characteristics, i.e., upon exposure to ammonia, proving the feasibility of LIFT.

  13. A quantum-rovibrational-state-selected study of the proton-transfer reaction H2+(X2Σ: v+ = 1-3; N+ = 0-3) + Ne → NeH+ + H using the pulsed field ionization-photoion method: observation of the rotational effect near the reaction threshold.

    Science.gov (United States)

    Xiong, Bo; Chang, Yih-Chung; Ng, Cheuk-Yiu

    2017-07-19

    Using the sequential electric field pulsing scheme for vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) detection, we have successfully prepared H 2 + (X 2 Σ: v + = 1-3; N + = 0-5) ions in the form of an ion beam in single quantum-rovibrational-states with high purity, high intensity, and narrow laboratory kinetic energy spread (ΔE lab ≈ 0.05 eV). This VUV-PFI-PI ion source, when coupled with the double-quadrupole double-octupole ion-molecule reaction apparatus, has made possible a systematic examination of the vibrational- as well as rotational-state effects on the proton transfer reaction of H 2 + (X 2 Σ: v + ; N + ) + Ne. Here, we present the integral cross sections [σ(v + ; N + )'s] for the H 2 + (v + = 1-3; N + = 0-3) + Ne → NeH + + H reaction observed in the center-of-mass kinetic energy (E cm ) range of 0.05-2.00 eV. The σ(v + = 1, N + = 1) exhibits a distinct E cm onset, which is found to agree with the endothermicity of 0.27 eV for the proton transfer process after taking into account of experimental uncertainties. Strong v + -vibrational enhancements are observed for σ(v + = 1-3, N + ) in the E cm range of 0.05-2.00 eV. While rotational excitations appear to have little effect on σ(v + = 3, N + ), a careful search leads to the observation of moderate N + -rotational enhancements at v + = 2: σ(v + = 2; N + = 0) quantum dynamics predictions. We hope that these new experimental results would further motivate more rigorous theoretical calculations on the dynamics of this prototypical ion-molecule reaction.

  14. Tuning Catalytic Performance through a Single or Sequential Post-Synthesis Reaction(s) in a Gas Phase

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Junjun [Department; Department; Zhang, Shiran [Department; Department; Choksi, Tej [Department; Nguyen, Luan [Department; Department; Bonifacio, Cecile S. [Department; Li, Yuanyuan [Department; Zhu, Wei [Department; Department; College; Tang, Yu [Department; Department; Zhang, Yawen [College; Yang, Judith C. [Department; Greeley, Jeffrey [Department; Frenkel, Anatoly I. [Department; Tao, Franklin [Department; Department

    2016-12-05

    Catalytic performance of a bimetallic catalyst is determined by geometric structure and electronic state of the surface or even the near-surface region of the catalyst. Here we report that single and sequential postsynthesis reactions of an as-synthesized bimetallic nanoparticle catalyst in one or more gas phases can tailor surface chemistry and structure of the catalyst in a gas phase, by which catalytic performance of this bimetallic catalyst can be tuned. Pt–Cu regular nanocube (Pt–Cu RNC) and concave nanocube (Pt–Cu CNC) are chosen as models of bimetallic catalysts. Surface chemistry and catalyst structure under different reaction conditions and during catalysis were explored in gas phase of one or two reactants with ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) and extended X-ray absorption fine structure (EXAFS) spectroscopy. The newly formed surface structures of Pt–Cu RNC and Pt–Cu CNC catalysts strongly depend on the reactive gas(es) used in the postsynthesis reaction(s). A reaction of Pt–Cu RNC-as synthesized with H2 at 200 °C generates a near-surface alloy consisting of a Pt skin layer, a Cu-rich subsurface, and a Pt-rich deep layer. This near-surface alloy of Pt–Cu RNC-as synthesized-H2 exhibits a much higher catalytic activity in CO oxidation in terms of a low activation barrier of 39 ± 4 kJ/mol in contrast to 128 ± 7 kJ/mol of Pt–Cu RNC-as synthesized. Here the significant decrease of activation barrier demonstrates a method to tune catalytic performances of as-synthesized bimetallic catalysts. A further reaction of Pt–Cu RNC-as synthesized-H2 with CO forms a Pt–Cu alloy surface, which exhibits quite different catalytic performance in CO oxidation. It suggests the capability of generating a different surface by using another gas. The capability of tuning surface chemistry and structure of bimetallic catalysts was also demonstrated in restructuring of Pt–Cu CNC-as synthesized.

  15. Study of nuclear isovector spin responses from polarization transfer in (p,n) reactions at intermediate energies

    International Nuclear Information System (INIS)

    Wakasa, Tomotsugu

    1997-01-01

    We have measured a complete set of polarization transfer observables has been measured for quasi-free (p vector, n vector) reactions on 2 H, 6 Li, 12 C, 40 Ca, and 208 Pb at a bombarding energy of 346MeV and a laboratory scattering angle of 22deg (q=1.7 fm -1 ). The polarization transfer observables for all five targets are remarkably similar. These polarization observables yield separated spin-longitudinal (σ·q) and spin-transverse (σxq) nuclear responses. These results are compared to the spin-transverse responses measured in deep-inelastic electron scattering as well as to nuclear responses based on the random phase approximation. Such a comparison reveals an enhancement in the (p vector, n vector) spin-transverse channel, which masks the effect of pionic correlations in the response ratio. Second, the double differential cross sections at θ lab between 0deg and 12.3deg and the polarization transfer D NN at 0deg for the 90 Zr(p,n) reaction are measured at a bombarding energy of 295MeV. The Gamow-Teller(GT) strength B(GT) in the continuum deduced from the L=0 cross section is compared both with the perturbative calculation by Bertsch and Hamamoto and with the second-order random phase approximation calculation by Drozdz et al. The sum of B(GT) values up to 50MeV excitation becomes S β- =28.0±1.6 after subtracting the contribution of the isovector spin-monopole strength. This S β- value of 28.0±1.6 corresponds to about (93±5)% of the minimum value of the sum-rule 3(N-Z)=30. Last, first measurements of D NN (0deg) for (p vector, n vector) reactions at 295MeV yield large negative values up to 50MeV excitation for the 6 Li, 11 B, 12 C, 13 C(p vector, n vector) reactions. DWIA calculations using the Franey and Love (FL) 270MeV interaction reproduce differential cross sections and D NN (0deg) values, while the FL 325MeV interaction yield D NN (0deg) values less negative than the experimental values. (J.P.N.)

  16. Resonating group method as applied to the spectroscopy of α-transfer reactions

    Science.gov (United States)

    Subbotin, V. B.; Semjonov, V. M.; Gridnev, K. A.; Hefter, E. F.

    1983-10-01

    In the conventional approach to α-transfer reactions the finite- and/or zero-range distorted-wave Born approximation is used in liaison with a macroscopic description of the captured α particle in the residual nucleus. Here the specific example of 16O(6Li,d)20Ne reactions at different projectile energies is taken to present a microscopic resonating group method analysis of the α particle in the final nucleus (for the reaction part the simple zero-range distorted-wave Born approximation is employed). In the discussion of suitable nucleon-nucleon interactions, force number one of the effective interactions presented by Volkov is shown to be most appropriate for the system considered. Application of the continuous analog of Newton's method to the evaluation of the resonating group method equations yields an increased accuracy with respect to traditional methods. The resonating group method description induces only minor changes in the structures of the angular distributions, but it does serve its purpose in yielding reliable and consistent spectroscopic information. NUCLEAR STRUCTURE 16O(6Li,d)20Ne; E=20 to 32 MeV; calculated B(E2); reduced widths, dσdΩ extracted α-spectroscopic factors. ZRDWBA with microscope RGM description of residual α particle in 20Ne; application of continuous analog of Newton's method; tested and applied Volkov force No. 1; direct mechanism.

  17. Reaction kinetics of oxygen on single-phase alloys, oxidation of nickel and niobium alloys

    International Nuclear Information System (INIS)

    Lalauze, Rene

    1973-01-01

    This research thesis first addresses the reaction kinetics of oxygen on alloys. It presents some generalities on heterogeneous reactions (conventional theory, theory of jumps), discusses the core reaction (with the influence of pressure), discusses the influence of metal self-diffusion on metal oxidation kinetics (equilibrium conditions at the interface, hybrid diffusion regime), reports the application of the hybrid diffusion model to the study of selective oxidation of alloys (Wagner model, hybrid diffusion model) and the study of the oxidation kinetics of an alloy forming a solid solution of two oxides. The second part reports the investigation of the oxidation of single phase nickel and niobium alloys (phase α, β and γ)

  18. Electron transfer in proteins

    DEFF Research Database (Denmark)

    Farver, O; Pecht, I

    1991-01-01

    Electron migration between and within proteins is one of the most prevalent forms of biological energy conversion processes. Electron transfer reactions take place between active centers such as transition metal ions or organic cofactors over considerable distances at fast rates and with remarkable...... specificity. The electron transfer is attained through weak electronic interaction between the active sites, so that considerable research efforts are centered on resolving the factors that control the rates of long-distance electron transfer reactions in proteins. These factors include (in addition......-containing proteins. These proteins serve almost exclusively in electron transfer reactions, and as it turns out, their metal coordination sites are endowed with properties uniquely optimized for their function....

  19. TD-S-HF single determinantal reaction theory and the description of many-body processes, including fission

    International Nuclear Information System (INIS)

    Griffin, J.J.; Lichtner, P.C.; Dworzecka, M.; Kan, K.K.

    1979-01-01

    The restrictions implied for the time dependent many-body reaction theory by the (TDHF) single determinantal assumption are explored by constructive analysis. A restructured TD-S-HF reaction theory is modelled, not after the initial-value form of the Schroedinger reaction theory, but after the (fully equivalent) S-matrix form, under the conditions that only self-consistent TDHF solutions occur in the theory, every wave function obeys the fundamental statistical interpretation of quantum mechanics, and the theory reduces to the exact Schroedinger theory for exact solutions which are single determinantal. All of these conditions can be accomodated provided that the theory is interpreted on a time-averaged basis, i.e., physical constants of the Schroedinger theory which are time-dependent in the TDHF theory, are interpreted in TD-S-HF in terms of their time averaged values. The resulting reaction theory, although formulated heuristically, prescribes a well defined and unambiguous calculational program which, although somewhat more demanding technically than the conventional initial-value TDHF method, is nevertheless more consonant with first principles, structurally and mechanistically. For its physical predictions do not depend upon the precise location of the distant measuring apparatus, and are in no way influenced by the spurious cross channel correlations which arise whenever the description of many reaction channels is imposed upon one single-determinantal solution. For nuclear structure physics, the TDHF-eigenfunctions provide the first plausible description of exact eigenstates in the time-dependent framework; moreover, they are unencumbered by any restriction to small amplitudes. 14 references

  20. Light-harvesting dendrimer zinc-phthalocyanines chromophores labeled single-wall carbon nanotube nanoensembles: Synthesis and photoinduced electron transfer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hongqin [Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007 (China); Pan, Sujuan; Ma, Dongdong; He, Dandan; Wang, Yuhua [College of Chemistry & Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007 (China); Xie, Shusen [Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007 (China); Peng, Yiru, E-mail: yirupeng@fjnu.edu.cn [College of Chemistry & Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007 (China)

    2016-11-15

    A novel series of light-harvesting dendrimer zinc-phthalocyanines chromophores labeled-single-wall carbon nanotubes (SWNTs) nanoparticles, in which 0–2 generations dendrimer zinc phthalocyanines covalently linked with SWNTs using either ethylenediamine or hexamethylenediamine as the space linkers were prepared. The structures and morphologies of these nanoconjugates were comprehensively characterized by Raman spectroscopy, transmission electron microscopy and thermal gravimetric analysis methods. Their photophysical properties were investigated by fluorescence and time-resolved spectroscopic methods. The photoinduced intramolecular electron transfer occurred from phthalocyanines (donors) to SWNTs (acceptors). Besides, the electron transfer exchange rates and exchange efficacies between the dendritic phthalocyanines and single-wall carbon nanotubes increased as the length of spacer linker decreased, or as the dendritic generation increased. Cyclic voltammetry (CV) method further confirmed thermodynamics possibility of the electron transfer from phthalocyanines to single-wall carbon nanotubes. These new nanoconjugates are fundamentally important due to the synergy effects of both carbon nanotubes and dendrimer phthalocyanines, which may find potential applications in the fields of drug delivery, biological labeling, or others.

  1. Pressure drop and heat transfer of lithium single-phase flow under transverse magnetic field

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Aritomi, Masanori; Inoue, Akira; Matsuzaki, Mitsuo

    1996-01-01

    Pressure drop and heat transfer characteristics of a lithium single-phase flow in a rectangular channel was investigated experimentally in the presence of a magnetic field. Friction loss coefficient under non-magnetic field and skin friction coefficient under magnetic field agreed well with the Blasius formula and a simple analytical expression, respectively. Nusselt number under non-magnetic field was slightly lower than the correlation by Hartnett and Irvine. Heat transfer was enhanced by increasing magnetic field above the Hartmann number of about 200. (author)

  2. Spectroscopic study of nuclei of the 1f-2p layer by means of (16O,14C) and (16O,12C) transfer reactions

    International Nuclear Information System (INIS)

    Mallet-Lemaire, M.C.

    1973-01-01

    One-and two-nucleon transfer reactions induced by light projectiles have long been established as powerful spectroscopic tools to test one-and two-nucleon configurations of the wave functions describing the excited states of the residual nucleus A comparatively to the target nuclei A-1 and A-2. As soon as heavy ion beams became available, a further step was made in the experimental study of few-nucleon configurations by increasing the number of transferred particles as well as the variety of reactions leading to the same residual nucleus. It is well known that many theoretical models emphasize the role played by four-nucleon correlations in the microscopic description of deformed states. An experimental study of the reaction mechanism for ( 16 0, 12 C) and ( 16 0, 14 C) has been carried out by measuring angular distributions at several incident energies and excitation functions. A semi-classical description of the experimental results shows the strong influence of nuclear distortions on multi-nucleon-transfer reactions which appear with increasing incident energies. It will be noticed that spectroscopic information concerning the transferred nucleons can be achieved only through a complete finite range DWBA calculation including a microscopic nuclear structure form factor. The relative influence of the kinematic factors and nuclear structure factors on the DWBA cross-sections has been also investigated. The preliminary results on the DWBA analysis of the 54 Fe( 16 0, 12 C) 58 Ni and 48 Ca( 16 O, 14 C) 50 Ti angular distributions are discussed. Finally, ( 16 0, 14 C) and ( 16 0, 12 C) transfer reactions on different 1f-2p shell targets are described

  3. Randomized single versus double embryo transfer: obstetric and paediatric outcome and a cost-effectiveness analysis.

    Science.gov (United States)

    Kjellberg, Ann Thurin; Carlsson, Per; Bergh, Christina

    2006-01-01

    Transfer of several embryos after IVF results in a high multiple birth rate associated with increased morbidity and high costs for the neonatal care. In a previous randomized trial we demonstrated that a single embryo transfer (SET) strategy, including one fresh single embryo transfer and, if no live birth, one additional frozen-thawed SET, resulted in a live-birth rate that was not substantially lower than after double embryo transfer (DET) but markedly reduced the multiple birth rate. We compared costs for maternal health care and productivity losses and paediatric costs for the SET and DET strategies. In addition, maternal and paediatric outcomes between the two groups were compared. The SET strategy resulted in lower average total costs from treatment until 6 months after delivery. There were a few more deliveries with at least one live-born child in the DET group. The incremental cost per extra delivery in the DET alternative was high, 71 940. The rates of prematurely born and low birthweight children were significantly lower with the SET strategy. There were also markedly fewer maternal and paediatric complications in the SET group. The SET strategy is superior to the DET strategy, when number of deliveries with at least one live-born child, incremental cost-effectiveness ratio and maternal and paediatric complications are taken into consideration. The findings do not support continuing transfers of two embryos in this group of patients.

  4. Multinucleon-Transfer Reactions as a Gateway to Neutron-Rich Actinides and Nuclei near the N=82 and Z=50 Shell Closures

    OpenAIRE

    Vogt, Andreas Günter Heinz

    2017-01-01

    In the present work, reaction products in the 136Xe+238U multinucleon-transfer reaction at 1 GeV were investigated employing the high-resolution position-sensitive gamma-ray tracking array AGATA coupled to the large-solid-angle mass spectrometer PRISMA at the Laboratori Nazionali di Legnaro (INFN, Italy). Beam-like reaction products were identified and selected by the PRISMA spectrometer. Recoils and fission fragments were tagged by DANTE micro-channel plate detectors installed within the sca...

  5. Energy transfer and kinetics in mechanochemistry.

    Science.gov (United States)

    Chen, Zhiliang; Lu, Shengyong; Mao, Qiongjing; Buekens, Alfons; Wang, Yuting; Yan, Jianhua

    2017-11-01

    Mechanochemistry (MC) exerts extraordinary degradation and decomposition effects on many chlorinated, brominated, and even fluorinated persistent organic pollutants (POPs). However, its application is still limited by inadequate study of its reaction kinetic aspects. In the present work, the ball motion and energy transfer in planetary ball mill are investigated in some detail. Almost all milling parameters are summarised in a single factor-total effective impact energy. Furthermore, the MC kinetic between calcium oxide/Al and hexachlorobenzene is well established and modelled. The results indicate that total effective impact energy and reagent ratio are the two factors sufficient for describing the MC degradation degree of POPs. The reaction rate constant only depends on the chemical properties of reactants, so it could be used as an important index to appraise the quality of MC additives. This model successfully predicts the reaction rate for different operating conditions, indicating that it could be suitably applied for conducting MC reactions in other reactors.

  6. Study on actinoids in boundary ion transfer from an aspect of solution chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kihara, Sorin; Shirai, Makoto; Matsui, Masakazu [Kyoto Univ., Uji (Japan). Inst. for Chemical Research; Yoshida, Zenko; Aoyagi, Hisao; Kitatsuji, Yoshihiro

    1996-01-01

    This study aimed to elucidate the fundamental properties of boundary ion transfer between water (W) and organic solvent (O) and to apply the results to the study on actinoid ions. First, dissolved states of ion in W and O in relation to boundary transfer were investigated and the transfer stimulation effects by an addition of some agents which can induce their complex formation were examined. Then, a theoretical equation which expresses a relationship between ion-pair extraction reaction and {Delta}Gtr was proposed and proved with {Delta}Gtr of single ion obtained by the use of VITIES, which is an apparatus for voltammetric determination of boundary ion transfer developed by the authors. Single ion transfer in W/O was estimated from the voltammogram based on I-{Delta}V curve (I; electric current which corresponds to the amount of ion transfer and {Delta}V; phase boundary voltage). In addition, determination of actinoid ion transfer in W/O boundary was made by VITIES to clarify the ion transfer energy, velocity and transferred molecular species. Thus, developments of a new isolation method and a trial sensor for actinoid ions were undertaken based on these results. (M.N.)

  7. Study of shell evolution in the Ni isotopes via one-neutron transfer reaction in $^{70}$Ni

    CERN Multimedia

    This proposal aims at the study of the single particle properties of the neutron-rich nickel isotopes, specifically of the $^{71}$Ni isotope via a $^{70}$Ni(d,p) $^{71}$Ni reaction. The $^{70}$Ni beam will be delivered by HIE-ISOLDE at 5.5 MeV/u onto a 1.0 mg/cm$^{2}$ CD$_{2}$ target. The protons produced in the (d,p) reaction will be detected with the T-REX silicon array either in singles or in coincidence with $\\gamma$- rays recorded by MINIBALL. The experimental results will be compared with large-scale shell-model calculations using effective interactions that involve large valence spaces for protons and neutrons, with excitations beyond the Z =28 and N=50 shell gap. This comparison will permit the study of the single-particle orbital d$_{5/2}$ that together with the quasi-SU3 partner g$_{9/2}$ gives rise to the collectivity in this region and has direct implications on the $^{78}$Ni.

  8. Multi-nucleon transfer reaions with heavy ions

    International Nuclear Information System (INIS)

    Nadkarni, D.M.

    1975-01-01

    The reaction mechanisms of multinucleon transfer reactions with heavy ions such as O 16 , Ne 22 , Ar 40 , Ge 74 , Kr 84 and Xe 136 are discussed. As an example, the transfer reactions of Th 232 bombarded with O 16 , Ne 22 and Ar 40 ions are described. Some general features and a semiclassical picture of these reactions are presented. Cross sections, energy spectra and angular distributions are derived for the products of these reactions. The energy dependence of nucleon transfer cross sections in the interaction of Ge 74 with Th 232 is discussed. The importance of the study of multinucleon transfer reactions in the production of neutron-rich isotopes and transuranium elements is pointed out. (A.K.)

  9. Spectrophotometric determination of quetiapine fumarate in pharmaceuticals and human urine by two charge-transfer complexation reactions

    Directory of Open Access Journals (Sweden)

    Vinay K.B.

    2012-01-01

    Full Text Available Two simple, rapid and accurate spectrophotometric procedures are proposed for the determination of quetiapine fumarate (QTF in pharmaceuticals and in spiked human urine. The methods are based on charge transfer complexation reactions of free base form of the drug (quetiapine, QTP, as n-electron donor (D, with either p-chloranilic acid (p-CAA (method A or 2,3-dichloro-5,6-dicyanoquinone (DDQ (method B as π-acceptors (A. The coloured charge transfer complexes produced exhibit absorption maxima at 520 and 540 nm, in method A and method B, respectively. The experimental conditions such as reagent concentration, reaction solvent and time have been carefully optimized to achieve the maximum sensitivity. Beer’s law is obeyed over the concentration ranges of 8.0 - 160 and 4.0 - 80.0 μg ml-1, for method A and method B, respectively. The calculated molar absorptivity values are 1.77 × 103 and 4.59 × 103 l mol-1cm-1, respectively, for method A and method B. The Sandell sensitivity values, limits of detection (LOD and quantification (LOQ have also been reported. The stoichiometry of the reaction in both cases was accomplished adopting the limiting logarithmic method and was found to be 1: 2 (D: A. The accuracy and precision of the methods were evaluated on intra-day and inter-day basis. The proposed methods were successfully applied for the determination of QTF in pharmaceutical formulations and spiked human urine.

  10. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.

    Science.gov (United States)

    Hammarström, Leif

    2015-03-17

    The conversion and storage of solar energy into a fuel holds promise to provide a significant part of the future renewable energy demand of our societies. Solar energy technologies today generate heat or electricity, while the large majority of our energy is used in the form of fuels. Direct conversion of solar energy to a fuel would satisfy our needs for storable energy on a large scale. Solar fuels can be generated by absorbing light and converting its energy to chemical energy by electron transfer leading to separation of electrons and holes. The electrons are used in the catalytic reduction of a cheap substrate with low energy content into a high-energy fuel. The holes are filled by oxidation of water, which is the only electron source available for large scale solar fuel production. Absorption of a single photon typically leads to separation of a single electron-hole pair. In contrast, fuel production and water oxidation are multielectron, multiproton reactions. Therefore, a system for direct solar fuel production must be able to accumulate the electrons and holes provided by the sequential absorption of several photons in order to complete the catalytic reactions. In this Account, the process is termed accumulative charge separation. This is considerably more complicated than charge separation on a single electron level and needs particular attention. Semiconductor materials and molecular dyes have for a long time been optimized for use in photovoltaic devices. Efforts are made to develop new systems for light harvesting and charge separation that are better optimized for solar fuel production than those used in the early devices presented so far. Significant progress has recently been made in the discovery and design of better homogeneous and heterogeneous catalysts for solar fuels and water oxidation. While the heterogeneous ones perform better today, molecular catalysts based on transition metal complexes offer much greater tunability of electronic and

  11. Bimolecular reactions of carbenes: Proton transfer mechanism

    Science.gov (United States)

    Abu-Saleh, Abd Al-Aziz A.; Almatarneh, Mansour H.; Poirier, Raymond A.

    2018-04-01

    Here we report the bimolecular reaction of trifluoromethylhydroxycarbene conformers and the water-mediated mechanism of the 1,2-proton shift for the unimolecular trans-conformer by using quantum chemical calculations. The CCSD(T)/cc-pVTZ//MP2/cc-pVDZ potential-energy profile of the bimolecular reaction of cis- and trans-trifluoromethylhydroxycarbene, shows the lowest gas-phase barrier height of 13 kJ mol-1 compared to the recently reported value of 128 kJ mol-1 for the unimolecular reaction. We expect bimolecular reactions of carbene's stereoisomers will open a valuable field for new and useful synthetic strategies.

  12. Quasifree (p , 2 p ) Reactions on Oxygen Isotopes: Observation of Isospin Independence of the Reduced Single-Particle Strength

    Science.gov (United States)

    Atar, L.; Paschalis, S.; Barbieri, C.; Bertulani, C. A.; Díaz Fernández, P.; Holl, M.; Najafi, M. A.; Panin, V.; Alvarez-Pol, H.; Aumann, T.; Avdeichikov, V.; Beceiro-Novo, S.; Bemmerer, D.; Benlliure, J.; Boillos, J. M.; Boretzky, K.; Borge, M. J. G.; Caamaño, M.; Caesar, C.; Casarejos, E.; Catford, W.; Cederkall, J.; Chartier, M.; Chulkov, L.; Cortina-Gil, D.; Cravo, E.; Crespo, R.; Dillmann, I.; Elekes, Z.; Enders, J.; Ershova, O.; Estrade, A.; Farinon, F.; Fraile, L. M.; Freer, M.; Galaviz Redondo, D.; Geissel, H.; Gernhäuser, R.; Golubev, P.; Göbel, K.; Hagdahl, J.; Heftrich, T.; Heil, M.; Heine, M.; Heinz, A.; Henriques, A.; Hufnagel, A.; Ignatov, A.; Johansson, H. T.; Jonson, B.; Kahlbow, J.; Kalantar-Nayestanaki, N.; Kanungo, R.; Kelic-Heil, A.; Knyazev, A.; Kröll, T.; Kurz, N.; Labiche, M.; Langer, C.; Le Bleis, T.; Lemmon, R.; Lindberg, S.; Machado, J.; Marganiec-Gałązka, J.; Movsesyan, A.; Nacher, E.; Nikolskii, E. Y.; Nilsson, T.; Nociforo, C.; Perea, A.; Petri, M.; Pietri, S.; Plag, R.; Reifarth, R.; Ribeiro, G.; Rigollet, C.; Rossi, D. M.; Röder, M.; Savran, D.; Scheit, H.; Simon, H.; Sorlin, O.; Syndikus, I.; Taylor, J. T.; Tengblad, O.; Thies, R.; Togano, Y.; Vandebrouck, M.; Velho, P.; Volkov, V.; Wagner, A.; Wamers, F.; Weick, H.; Wheldon, C.; Wilson, G. L.; Winfield, J. S.; Woods, P.; Yakorev, D.; Zhukov, M.; Zilges, A.; Zuber, K.; R3B Collaboration

    2018-01-01

    Quasifree one-proton knockout reactions have been employed in inverse kinematics for a systematic study of the structure of stable and exotic oxygen isotopes at the R3B /LAND setup with incident beam energies in the range of 300 - 450 MeV /u . The oxygen isotopic chain offers a large variation of separation energies that allows for a quantitative understanding of single-particle strength with changing isospin asymmetry. Quasifree knockout reactions provide a complementary approach to intermediate-energy one-nucleon removal reactions. Inclusive cross sections for quasifree knockout reactions of the type O A (p ,2 p )N-1A have been determined and compared to calculations based on the eikonal reaction theory. The reduction factors for the single-particle strength with respect to the independent-particle model were obtained and compared to state-of-the-art ab initio predictions. The results do not show any significant dependence on proton-neutron asymmetry.

  13. Quasifree (p, 2p) Reactions on Oxygen Isotopes: Observation of Isospin Independence of the Reduced Single-Particle Strength.

    Science.gov (United States)

    Atar, L; Paschalis, S; Barbieri, C; Bertulani, C A; Díaz Fernández, P; Holl, M; Najafi, M A; Panin, V; Alvarez-Pol, H; Aumann, T; Avdeichikov, V; Beceiro-Novo, S; Bemmerer, D; Benlliure, J; Boillos, J M; Boretzky, K; Borge, M J G; Caamaño, M; Caesar, C; Casarejos, E; Catford, W; Cederkall, J; Chartier, M; Chulkov, L; Cortina-Gil, D; Cravo, E; Crespo, R; Dillmann, I; Elekes, Z; Enders, J; Ershova, O; Estrade, A; Farinon, F; Fraile, L M; Freer, M; Galaviz Redondo, D; Geissel, H; Gernhäuser, R; Golubev, P; Göbel, K; Hagdahl, J; Heftrich, T; Heil, M; Heine, M; Heinz, A; Henriques, A; Hufnagel, A; Ignatov, A; Johansson, H T; Jonson, B; Kahlbow, J; Kalantar-Nayestanaki, N; Kanungo, R; Kelic-Heil, A; Knyazev, A; Kröll, T; Kurz, N; Labiche, M; Langer, C; Le Bleis, T; Lemmon, R; Lindberg, S; Machado, J; Marganiec-Gałązka, J; Movsesyan, A; Nacher, E; Nikolskii, E Y; Nilsson, T; Nociforo, C; Perea, A; Petri, M; Pietri, S; Plag, R; Reifarth, R; Ribeiro, G; Rigollet, C; Rossi, D M; Röder, M; Savran, D; Scheit, H; Simon, H; Sorlin, O; Syndikus, I; Taylor, J T; Tengblad, O; Thies, R; Togano, Y; Vandebrouck, M; Velho, P; Volkov, V; Wagner, A; Wamers, F; Weick, H; Wheldon, C; Wilson, G L; Winfield, J S; Woods, P; Yakorev, D; Zhukov, M; Zilges, A; Zuber, K

    2018-02-02

    Quasifree one-proton knockout reactions have been employed in inverse kinematics for a systematic study of the structure of stable and exotic oxygen isotopes at the R^{3}B/LAND setup with incident beam energies in the range of 300-450  MeV/u. The oxygen isotopic chain offers a large variation of separation energies that allows for a quantitative understanding of single-particle strength with changing isospin asymmetry. Quasifree knockout reactions provide a complementary approach to intermediate-energy one-nucleon removal reactions. Inclusive cross sections for quasifree knockout reactions of the type ^{A}O(p,2p)^{A-1}N have been determined and compared to calculations based on the eikonal reaction theory. The reduction factors for the single-particle strength with respect to the independent-particle model were obtained and compared to state-of-the-art ab initio predictions. The results do not show any significant dependence on proton-neutron asymmetry.

  14. Investigating radical cation chain processes in the electrocatalytic Diels-Alder reaction.

    Science.gov (United States)

    Imada, Yasushi; Okada, Yohei; Chiba, Kazuhiro

    2018-01-01

    Single electron transfer (SET)-triggered radical ion-based reactions have proven to be powerful options in synthetic organic chemistry. Although unique chain processes have been proposed in various photo- and electrochemical radical ion-based transformations, the turnover number, also referred to as catalytic efficiency, remains unclear in most cases. Herein, we disclose our investigations of radical cation chain processes in the electrocatalytic Diels-Alder reaction, leading to a scalable synthesis. A gram-scale synthesis was achieved with high current efficiency of up to 8000%. The reaction monitoring profiles showed sigmoidal curves with induction periods, suggesting the involvement of intermediate(s) in the rate determining step.

  15. Detailed modeling of hydrodynamics mass transfer and chemical reactions in a bubble column using a discrete bubble model

    NARCIS (Netherlands)

    Darmana, D.; Deen, N.G.; Kuipers, J.A.M.

    2005-01-01

    A 3D discrete bubble model is adopted to investigate complex behavior involving hydrodynamics, mass transfer and chemical reactions in a gas–liquid bubble column reactor. In this model a continuum description is adopted for the liquid phase and additionally each individual bubble is tracked in a

  16. Positive photocatalysis of a Diels-Alder reaction by quenching of excited naphthalene-indole charge-transfer complex with cyclohexadiene.

    Science.gov (United States)

    Gonzalez-Béjar, María; Stiriba, Salah-Eddine; Miranda, Miguel A; Pérez-Prieto, Julia

    2007-02-01

    [reaction: see text] Naphthalene photo-catalyzes formation of cyclohexadiene-indole cycloadducts in a wavelength-dependent process. Steady-state irradiation and time-resolved fluorescence studies agree well with NP-InH ground-state charge transfer (CT) complexes as the key species responsible for the photo-catalyzed process.

  17. In vitro and in vivo volatile flavour analysis of red kidney beans by proton transfer reaction-mass spectrometry

    NARCIS (Netherlands)

    Ruth, van S.M.; Dings, L.; Buhr, K.; Posthumus, M.A.

    2004-01-01

    The volatile flavour released from red kidney beans was evaluated in vitro (in a model mouth system) and in vivo (in-nose). The dynamic release of the volatile flavour compounds was analysed by proton transfer reaction¿mass spectrometry. The flavour compounds were identified by gas

  18. Some aspects of the use of deep inelastic transfer reactions to produce nuclei far from stability and nuclei with large angular momenta

    International Nuclear Information System (INIS)

    Volkov, V.V.

    1980-01-01

    Some experimental data are considered that indicate the validity of the Q/sub gg/ systematics of cross sections for production of isotopes in multinucleon transfer reactions for any target-projectile combination. The effect of the nuclear structure of the light fragment on the evolution and disintegration of the double nuclear system formed in deep inelastic collisions of complex nuclei is discussed. Predominance of the α-particle emission over all other channels of the disintegration of the double nuclear system is demonstrated. It is shown that deep inelastic transfer reactions can be used to study the deformation of nuclei with large angular momenta. 9 figures

  19. Spectroscopy of particle-phonon coupled states in $^{133}$Sb by the cluster transfer reaction of $^{132}$Sn on $^{7}$Li

    CERN Multimedia

    We propose to investigate, with MINIBALL coupled to T-REX, the one-valence-proton $^{133}$Sb nucleus by the cluster transfer reaction of $^{132}$Sn on $^{7}$Li. The excited $^{133}$Sb will be populated by transfer of a triton into $^{132}$Sn, followed by the emission of an $\\alpha$-particle (detected in T-REX) and 2 neutrons. The aim of the experiment is to locate states arising from the coupling of the valence proton of $^{133}$Sb to the collective low-lying phonon excitations of $^{132}$Sn (in particular the 3$^−$). According to calculations in the weak-coupling approach, these states lie in the 4$\\, - \\,$5 MeV excitation energy region and in the spin interval 1/2$\\, - \\,$ 19/2, i.e., in the region populated by the cluster transfer reaction. The results will be used to perform advanced tests of different types of nuclear interactions, usually employed in the description of particle-phonon coupled excitations. States arising from couplings of the proton with simpler core excitations, involving few nucleons...

  20. Single blastocyst transfer: The key to reduce multiple pregnancy rates without compromising the live birth rate

    Directory of Open Access Journals (Sweden)

    Uma M Sundhararaj

    2017-01-01

    Full Text Available Background: Historically, to achieve higher pregnancy rates, multiple embryos were transferred after an in-vitro fertilisation (IVF. However, this practice is being reassessed, because it leads to multiple pregnancies that is known to cause adverse maternal and fetal outcomes. Aim: To compare the pregnancy outcomes in fresh IVF or intracytoplasmic sperm injection (ICSI cycles among women undergoing elective single blastocyst transfer (eSBT vs. those undergoing double blastocyst transfer (DBT. Settings and Design: It is a retrospective data analysis of 582 patients undergoing fresh IVF/ICSI cycles performed from January 2012 to June 2015. Materials and Methods: Patients, who underwent IVF/ICSI and developed more than one blastocyst, were included in the study. Donor cycles were excluded from the study. All the embryos were cultured to blastocyst stage in sequential media followed by transfer of two blastocysts (DBT or eSBT and cryopreservation of the remaining. Statistical Analysis: Statistical analysis was performed using chi square test. Results: Out of 582 patients, in 149 patients one blastocyst was transferred and in 433 patients two blastocysts were transferred. There was no statistical difference in the biochemical pregnancy rate, clinical pregnancy rate and live birth rate in both the groups. Statistics demonstrated a significant drop in miscarriage rate in eSBT group. There was no incidence of twins in eSBT group, whereas twin birth rate per clinical pregnancy was 29.02% in DBT group. Conclusion: Single blastocyst transfer is an effective method to reduce the risk of multiple births without compromising the pregnancy outcomes. Given the promising potential of vitrification; the remaining blastocyst can be cryopreserved.

  1. On the charge transfer between single-walled carbon nanotubes and graphene

    International Nuclear Information System (INIS)

    Rao, Rahul; Pierce, Neal; Dasgupta, Archi

    2014-01-01

    It is important to understand the electronic interaction between single-walled carbon nanotubes (SWNTs) and graphene in order to use them efficiently in multifunctional hybrid devices. Here, we deposited SWNT bundles on graphene-covered copper and SiO 2 substrates by chemical vapor deposition and investigated the charge transfer between them by Raman spectroscopy. Our results revealed that, on both copper and SiO 2 substrates, graphene donates electrons to the SWNTs, resulting in p-type doped graphene and n-type doped SWNTs.

  2. The effect of defects on the catalytic activity of single Au atom supported carbon nanotubes and reaction mechanism for CO oxidation.

    Science.gov (United States)

    Ali, Sajjad; Fu Liu, Tian; Lian, Zan; Li, Bo; Sheng Su, Dang

    2017-08-23

    The mechanism of CO oxidation by O 2 on a single Au atom supported on pristine, mono atom vacancy (m), di atom vacancy (di) and the Stone Wales defect (SW) on single walled carbon nanotube (SWCNT) surface is systematically investigated theoretically using density functional theory. We determine that single Au atoms can be trapped effectively by the defects on SWCNTs. The defects on SWCNTs can enhance both the binding strength and catalytic activity of the supported single Au atom. Fundamental aspects such as adsorption energy and charge transfer are elucidated to analyze the adsorption properties of CO and O 2 and co-adsorption of CO and O 2 molecules. It is found that CO binds stronger than O 2 on Au supported SWCNT. We clearly demonstrate that the defected SWCNT surface promotes electron transfer from the supported single Au atom to O 2 molecules. On the other hand, this effect is weaker for pristine SWCNTs. It is observed that the high density of spin-polarized states are localized in the region of the Fermi level due to the strong interactions between Au (5d orbital) and the adjacent carbon (2p orbital) atoms, which influence the catalytic performance. In addition, we elucidate both the Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms of CO oxidation by O 2 . For the LH pathway, the barriers of the rate-limiting step are calculated to be 0.02 eV and 0.05 eV for Au/m-SWCNT and Au/di-SWCNT, respectively. To regenerate the active sites, an ER-like reaction occurs to form a second CO 2 molecule. The ER pathway is observed on Au/m-SWCNT, Au/SW-SWCNT and Au/SWCNT in which the Au/m-SWCNT has a smaller barrier. The comparison with a previous study (Lu et al., J. Phys. Chem. C, 2009, 113, 20156-20160.) indicates that the curvature effect of SWCNTs is important for the catalytic property of the supported single Au. Overall, Au/m-SWCNT is identified as the most active catalyst for CO oxidation compared to pristine SWCNT, SW-SWCNT and di-SWCNT. Our findings give a

  3. Single phase flow pressure drop and heat transfer in rectangular metallic microchannels

    International Nuclear Information System (INIS)

    Sahar, Amirah M.; Özdemir, Mehmed R.; Fayyadh, Ekhlas M.; Wissink, Jan; Mahmoud, Mohamed M.; Karayiannis, Tassos G.

    2016-01-01

    Numerical simulations were performed using Fluent 14.5 to investigate single phase flow and conjugate heat transfer in copper rectangular microchannels. Two different configurations were simulated: (1) single channel with hydraulic diameter of 0.561 mm and (2) multichannel configuration consisting of inlet and outlet manifolds and 25 channels with hydraulic diameter of 0.409 mm. In the single channel configuration, four numerical models were investigated namely, 2D thin-wall, 3D thin-wall (heated from the bottom), 3D thin-wall (three side heated) and 3D full conjugate models. In the multichannel configuration, only 3D full conjugate model was used. The simulation results of the single channel configuration were validated using experimental data of water as a test fluid while the results of the multichannel configuration were validated using experimental data of R134a refrigerant. In the multichannel configuration, flow distribution among the channels was also investigated. The 3D thin-wall model simulation was conducted at thermal boundary conditions similar to those assumed in the experimental data reduction (uniform heat flux) and showed excellent agreement with the experimental data. However, the results of the 3D full conjugate model demonstrated that there is a significant conjugate effect and the heat flux is not uniformly distributed along the channel resulting in significant deviation compared to the experimental data (more than 50%). Also, the results demonstrated that there is a significant difference between the 3D thin-wall and full conjugate models. The simulation of the multichannel configuration with an inlet manifold having gradual decrease in cross sectional area achieved very reasonable uniform flow distribution among the channels which will provide uniform heat transfer rates across the base of the microchannels.

  4. Study of breakup and transfer of weakly bound nucleus 6Li to explore the low energy reaction dynamics

    Science.gov (United States)

    Zhang, G. L.; Zhang, G. X.; Hu, S. P.; Zhang, H. Q.; Gomes, P. R. S.; Lubian, J.; Guo, C. L.; Wu, X. G.; Yang, J. C.; Zheng, Y.; Li, C. B.; He, C. Y.; Zhong, J.; Li, G. S.; Yao, Y. J.; Guo, M. F.; Sun, H. B.; Valiente-Dobòn, J. J.; Goasduff, A.; Siciliano, M.; Galtarosa, F.; Francesco, R.; Testov, D.; Mengoni, D.; Bazzacco, D.; John, P. R.; Qu, W. W.; Wang, F.; Zheng, L.; Yu, L.; Chen, Q. M.; Luo, P. W.; Li, H. W.; Wu, Y. H.; Zhou, W. K.; Zhu, B. J.; Li, E. T.; Hao, X.

    2017-11-01

    Investigation of the breakup and transfer effect of weakly bound nuclei on the fusion process has been an interesting research topic in the past several years. However, owing to the low intensities of the presently available radioactive ion beam (RIB), it is difficult to clearly explore the reaction mechanisms of nuclear systems with unstable nuclei. In comparison with RIB, the beam intensities of stable weakly bound nuclei such as 6,7Li and 9Be, which have significant breakup probability, are orders of magnitude higher. Precise fusion measurements have already been performed with those stable weakly bound nuclei, and the effect of breakup of those nuclei on the fusion process has been extensively studied. Those nuclei indicated large production cross sections for particles other than the α + x breakup. The particles are originated from non-capture breakup (NCBU), incomplete fusion (ICF) and transfer processes. However, the conclusion of reaction dynamics was not clear and has the contradiction. In our previous experiments we have performed 6Li+96Zr and 154Sm at HI-13 Tandem accelerator of China Institute of Atomic Energy (CIAE) by using HPGe array. It is shown that there is a small complete fusion (CF) suppression on medium-mass target nucleus 96Zr different from about 35% suppression on heavier target nucleus 154Sm at near-barrier energies. It seems that the CF suppression factor depends on the charge of target nuclei. We also observed one neutron transfer process. However, the experimental data are scarce for medium-mass target nuclei. In order to have a proper understanding of the influence of breakup and transfer of weakly bound projectiles on the fusion process, we performed the 6Li+89Y experiment with incident energies of 22 MeV and 34 MeV on Galileo array in cooperation with Si-ball EUCLIDES at Legnaro National Laboratory (LNL) in Italy. Using particle-particle and particle-γ coincidences, the different reaction mechanisms can be clearly explored.

  5. The measurement of cross sections of inelastic and transfer reactions with gamma-particle coincidence

    International Nuclear Information System (INIS)

    Zagatto, V.A.B.; Oliveira, J.R.B.; Pereira, D.; Allegro, P.R.P.; Chamon, L.C.; Cybulska, E.W.; Medina, N.H.; Ribas, R.V.; Rossi Junior, E.S.; Seale, W.A.; Silva, C.P.; Gasques, L.; Toufen, D.L.; Silveira, M.A.G.; Zahn, G.S.; Genezini, F.A.; Shorto, J.M.B.; Lubian, J.; Linares, R.

    2011-01-01

    Full text: The following work aims to obtain experimental reaction cross sections of inelastic excitation and transfer to excited states reactions (both measured by gamma-particle coincidences) and its comparison with theoretical predictions based in a new model based on the Sao Paulo Potential. The measurements were made at the Pelletron accelerator laboratory of the University of Sao Paulo with the Saci-Perere spectrometer, which consists of 4 a GeHP Compton suppressed gamma detectors and a 4 π charged particle ancillary system with 11ΔΕ - Ε plastic phoswich scintillators (further details about the experimental procedure may be found in: J.R.B. Oliveira et al., XVIII International School on Nuclear Physics, Neutron Physics and Applications (2009). Theoretical angular distribution calculations (using code GOSIA) were performed with a new model based on the Sao Paulo Potential, specifically developed for the inclusion of dissipative processes like deep-inelastic collisions (DIC) considering the Coulomb plus nuclear potential (with the aid of code FRESCO). The experimental cross sections were obtained such as described in J.R.B. Oliveira et al however, in this work, the particle-gamma angular correlations and the vacuum de-alignment effects (caused by hyperfine interaction) were finally added for the 110 Pd inelastic reaction and for the 112 Pd transfer reaction. For these purposes a new code has been developed to assist in the data analysis. We take into account the particle-gamma angular correlations using the scattering amplitudes given by FRESCO, considering the vacuum de-alignment effects as proposed by A. Abragam and R. V. Pound, Phys. Rev. 92, 943 (1953). The theoretical predictions still consider 2 different types of Sao Paulo Potential, the first one has a multiplying factor equals to 1.0 in the real part of the potential and the second considers this factor equals to 0.6, as proposed in D. Pereira, J. Lubian, J.R.B. Oliveira, D.P. de Sousa and L

  6. Detailed modeling of hydrodynamics mass transfer and chemical reactions in a bubble column using a discrete bubble model

    NARCIS (Netherlands)

    Darmana, D.; Deen, N.G.; Kuipers, J.A.M.

    2005-01-01

    A 3D discrete bubble model is adopted to investigate complex behavior involving hydrodynamics, mass transfer and chemical reactions in a gas¿liquid bubble column reactor. In this model a continuum description is adopted for the liquid phase and additionally each individual bubble is tracked in a

  7. Self-Assembled Colloidal Particle Clusters from In Situ Pickering-Like Emulsion Polymerization via Single Electron Transfer Mechanism.

    Science.gov (United States)

    Yuan, Jinfeng; Zhao, Weiting; Pan, Mingwang; Zhu, Lei

    2016-08-01

    A simple route is reported to synthesize colloidal particle clusters (CPCs) from self-assembly of in situ poly(vinylidene fluoride)/poly(styrene-co-tert-butyl acrylate) [PVDF/P(St-co-tBA)] Janus particles through one-pot seeded emulsion single electron transfer radical polymerization. In the in situ Pickering-like emulsion polymerization, the tBA/St/PVDF feed ratio and polymerization temperature are important for the formation of well-defined CPCs. When the tBA/St/PVDF feed ratio is 0.75 g/2.5 g/0.5 g and the reaction temperature is 35 °C, relatively uniform raspberry-like CPCs are obtained. The hydrophobicity of the P(St-co-tBA) domains and the affinity of PVDF to the aqueous environment are considered to be the driving force for the self-assembly of the in situ formed PVDF/P(St-co-tBA) Janus particles. The resultant raspberry-like CPCs with PVDF particles protruding outward may be promising for superhydrophobic smart coatings. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Heat transfer corrected isothermal model for devolatilization of thermally-thick biomass particles

    DEFF Research Database (Denmark)

    Luo, Hao; Wu, Hao; Lin, Weigang

    Isothermal model used in current computational fluid dynamic (CFD) model neglect the internal heat transfer during biomass devolatilization. This assumption is not reasonable for thermally-thick particles. To solve this issue, a heat transfer corrected isothermal model is introduced. In this model......, two heat transfer corrected coefficients: HT-correction of heat transfer and HR-correction of reaction, are defined to cover the effects of internal heat transfer. A series of single biomass devitalization case have been modeled to validate this model, the results show that devolatilization behaviors...... of both thermally-thick and thermally-thin particles are predicted reasonable by using heat transfer corrected model, while, isothermal model overestimate devolatilization rate and heating rate for thermlly-thick particle.This model probably has better performance than isothermal model when it is coupled...

  9. Breakup-fusion analyses of light ion induced stripping reactions to both bound and unbound regions

    International Nuclear Information System (INIS)

    Lee, Y.J.

    1987-01-01

    The breakup-fusion theory developed recently by our group at the University of Texas has been very successful in explaining observed continuum spectra of particles emitted from breakup type reactions, such as (d,p), (h,p), (h,d), (α,p), and (α,t) reactions. The aim of the present work is to extend the breakup-fusion formalism to calculate the usual stripping reaction, in which a nucleon or a nucleon-cluster is transferred into abound orbit in the target nucleus. With this extension, it is now possible to calculate the spectra of particles emitted from stripping type reactions. We particularly explore the possibility of using the breakup-fusion theory as a spectroscopic tool to obtain information about single particle states in both bound and unbound regions. For this purpose, we extend the theory so as to include the spin-orbit interaction between the transferred particle and the target which has been neglected in all the breakup-fusion studies made in the past. We then apply the thus extended breakup-fusion theory to analyze data of (d,p) and (α,t) reactions. The results of the calculations fit the observed spectra very well and the BF method is shown indeed to be useful for extracting information about the single particle states observed as bumps in both the continuum and discrete regions

  10. Thermally multiplexed polymerase chain reaction.

    Science.gov (United States)

    Phaneuf, Christopher R; Pak, Nikita; Saunders, D Curtis; Holst, Gregory L; Birjiniuk, Joav; Nagpal, Nikita; Culpepper, Stephen; Popler, Emily; Shane, Andi L; Jerris, Robert; Forest, Craig R

    2015-07-01

    Amplification of multiple unique genetic targets using the polymerase chain reaction (PCR) is commonly required in molecular biology laboratories. Such reactions are typically performed either serially or by multiplex PCR. Serial reactions are time consuming, and multiplex PCR, while powerful and widely used, can be prone to amplification bias, PCR drift, and primer-primer interactions. We present a new thermocycling method, termed thermal multiplexing, in which a single heat source is uniformly distributed and selectively modulated for independent temperature control of an array of PCR reactions. Thermal multiplexing allows amplification of multiple targets simultaneously-each reaction segregated and performed at optimal conditions. We demonstrate the method using a microfluidic system consisting of an infrared laser thermocycler, a polymer microchip featuring 1 μl, oil-encapsulated reactions, and closed-loop pulse-width modulation control. Heat transfer modeling is used to characterize thermal performance limitations of the system. We validate the model and perform two reactions simultaneously with widely varying annealing temperatures (48 °C and 68 °C), demonstrating excellent amplification. In addition, to demonstrate microfluidic infrared PCR using clinical specimens, we successfully amplified and detected both influenza A and B from human nasopharyngeal swabs. Thermal multiplexing is scalable and applicable to challenges such as pathogen detection where patients presenting non-specific symptoms need to be efficiently screened across a viral or bacterial panel.

  11. Effects of intraparticle heat and mass transfer during devolatilization of a single coal particle

    NARCIS (Netherlands)

    Bliek, A.; Poelje, W.M.; van Swaaij, Willibrordus Petrus Maria; van Beckum, F.P.H.

    1985-01-01

    The objective of the present work is to elucidate the influence of intraparticle mass and heat transfer phenomena on the overall rate and product yields during devolatilization of a single coal particle in an inert atmosphere. To this end a mathematical model has been formulated which covers

  12. Detailed modelling of hydrodynamics, mass transfer and chemical reactions in a bubble column using a discrete bubble model: Chemisorption of CO2 into NaOH solution, numerical and experimental study

    NARCIS (Netherlands)

    Darmana, D.; Henket, R.L.B.; Deen, N.G.; Kuipers, J.A.M.

    2007-01-01

    This paper describes simulations that were performed with an Euler–Lagrange model that takes into account mass transfer and chemical reaction reported by Darmana et al. (2005. Detailed modelling of hydrodynamics, mass transfer and chemical reactions in a bubble column using a discrete bubble model.

  13. The Reaction Mechanism of Claisen Rearrangement Obtained by Transition State Spectroscopy and Single Direct-Dynamics Trajectory

    Directory of Open Access Journals (Sweden)

    Takayoshi Kobayashi

    2013-02-01

    Full Text Available Chemical bond breaking and formation during chemical reactions can be observed using “transition state spectroscopy”. Comparing the measurement result of the transition state spectroscopy with the simulation result of single direct-dynamics trajectory, we have elucidated the reaction dynamics of Claisen rearrangement of allyl vinyl ether. Observed the reaction of the neat sample liquid, we have estimated the time constants of transformation from straight-chain structure to aromatic-like six-membered ring structure forming the C1-C6 bond. The result clarifies that the reaction proceeds via three steps taking longer time than expected from the gas phase calculation. This finding provides new hypothesis and discussions, helping the development of the field of reaction mechanism analysis.

  14. Influence of isovector pairing and particle-number projection effects on spectroscopic factors for one-pair like-particle transfer reactions in proton-rich even-even nuclei

    Science.gov (United States)

    Benbouzid, Y.; Allal, N. H.; Fellah, M.; Oudih, M. R.

    2018-04-01

    Isovector neutron-proton (np) pairing and particle-number fluctuation effects on the spectroscopic factors (SF) corresponding to one-pair like-particle transfer reactions in proton-rich even-even nuclei are studied. With this aim, expressions of the SF corresponding to two-neutron stripping and two-proton pick-up reactions, which take into account the isovector np pairing effect, are established within the generalized BCS approach, using a schematic definition proposed by Chasman. Expressions of the same SF which strictly conserve the particle number are also established within the Sharp-BCS (SBCS) discrete projection method. In both cases, it is shown that these expressions generalize those obtained when only the pairing between like particles is considered. First, the formalism is tested within the Richardson schematic model. Second, it is applied to study even-even proton-rich nuclei using the single-particle energies of a Woods-Saxon mean-field. In both cases, it is shown that the np pairing effect and the particle-number projection effect on the SF values are important, particularly in N = Z nuclei, and must then be taken into account.

  15. Is a Blanket Elective Single Embryo Transfer Policy Defensible?

    Directory of Open Access Journals (Sweden)

    Eli Y. Adashi

    2017-04-01

    Full Text Available For the purpose of reducing maternal and neonatal morbidity, elective single transfer (eSET in in vitro fertilization (IVF was first proposed in 1999. The purpose of this review is to summarize recent oral debate between a proponent and an opponent of expanded eSET utilization in an attempt to determine whether a blanket eSET policy, as is increasingly considered, is defensible. While eSET is preferable when possible, and agreed upon by provider and patient, selective double embryo transfer (DET must be seriously entertained if deemed more appropriate or is desired by the patient. Patient autonomy, let alone prolonged infertility and advancing age, demand nothing less. Importantly, IVF-generated twins represent only 15.7% of the national twin birth rate in the United States. Non-IVF fertility treatments have been identified as the main cause of all multiple births for quite some time. However, educational and regulatory efforts over the last decade, paradoxically, have exclusively only been directed at the practice of IVF, although IVF patient populations are rapidly aging. It is difficult to understand why non-IVF fertility treatments, usually applied to younger women, have so far escaped attention. This debate on eSET utilization in association with IVF may contribute to a redirection of priorities.

  16. Experimental study on the convective heat transfer enhancement in single-phase steam flow by a support grid

    International Nuclear Information System (INIS)

    Kim, Byoung Jae; Kim, Kihwan; Kim, Dong-Eok; Youn, Young-Jung; Park, Jong-Kuk; Moon, Sang-Ki; Song, Chul-Hwa

    2014-01-01

    Highlights: • The convective heat transfer enhancement by support grids is investigated. • Experiments were performed in a square array 2 × 2 rod bundle. • The enhancement was affected not only by the blockage ratio also by the Reynolds number. • For low Reynolds numbers, the enhancement depends on the Reynolds number (Re). • For high Reynolds numbers, the enhancement is nearly independent of Re. - Abstract: Single-phase flow occurs in the fuel rod bundle of a pressurized water reactor, during the normal operation period or at the early stage of the reflood phase in a loss-of-coolant accident scenario. In the former period, the flow is single-phase water flow, but in the latter case, the flow is single-phase steam flow. Support grids are required to maintain a proper geometry configuration of fuel rods within nuclear fuel assemblies. This study was conducted to elucidate the effects of support grids on the convective heat transfer in single-phase steam flow. Experiments were made in a square array 2 × 2 rod bundle. The four electrically-heating rods were maintained by support grids with mixing vanes creating a swirl flow. Two types of support grids were considered in this study. The two types are geometrically similar except the blockage ratio by different mixing vane angles. For all test runs, 2 kW power was supplied to each rod. The working fluid was superheated steam with Re = 2,301–39,594. The axial profile of the rod surface temperatures was measured, and the convective heat transfer enhancement by the presence of the support grids was examined. The peak heat transfer enhancement was a function of not only the blockage ratio but also the Reynolds number. Given the same blockage ratio, the heat transfer enhancement was sensitive to the Reynolds number in laminar flow, whereas it was nearly independent of the Reynolds number in turbulent flow

  17. Oxidoreduction reactions involving the electrostatic and the covalent complex of cytochrome c and plastocyanin: Importance of the protein rearrangement for the intracomplex electron-transfer reaction

    International Nuclear Information System (INIS)

    Peerey, L.M.; Kostic, N.M.

    1989-01-01

    Horse heart cytochrome c and French bean plastocyanin are cross-linked one-to-one by a carbodiimide in the same general orientation in which they associate electrostatically. The reduction potentials of the Fe and Cu atoms in the covalent diprotein complex are respectively 245 and 385 mV vs NHE; the EPR spectra of the two metals are not perturbed by cross-linking. For isomers of the covalent diprotein complex, which probably differ slightly from one another in the manner of cross-linking, are separated efficiently by cation-exchange chromatography. Stopped-flow spectrophotometric experiments with the covalent diprotein complex show that the presence of plastocyanin somewhat inhibits oxidation of ferrocytochrome c by [Fe(CN) 6 ] 3- and somewhat promotes oxidation of this protein by [Fe(C 5 H 5 ) 2 ] + . These changes in reactivity are explained in terms of electrostatic and steric effects. Pulse-radiolysis experiments with the electrostatic diprotein complex yield association constants of ≥5 x 10 6 and 1 x 10 5 M -1 at ionic strengths of 1 and 40 mM, respectively, and the rate constant of 1.05 x 10 3 s -1 , regardless of the ionic strength, for the intracomplex electron-transfer reaction. Analogous pulse-radiolysis experiments with each of the four isomers of the covalent diprotein complex, at ionic strengths of both 2 and 200 mM, show an absence of the intracomplex electron-transfer reaction. A rearrangement of the proteins for this reaction seems to be possible (or unnecessary) in the electrostatic complex but impossible in the covalent complex

  18. Eddy covariance emission and deposition flux measurements using proton transfer reaction – time of flight – mass spectrometry (PTR-TOF-MS): comparison with PTR-MS measured vertical gradients and fluxes

    NARCIS (Netherlands)

    Park, J.H.; Goldstein, A.H.; Timkovsky, J|info:eu-repo/dai/nl/330541676; Fares, S.; Weber, R.; Karlik, J.; Holzinger, R.|info:eu-repo/dai/nl/337989338

    2013-01-01

    During summer 2010, a proton transfer reaction – time of flight – mass spectrometer (PTR-TOF-MS) and a quadrupole proton transfer reaction mass spectrometer (PTR-MS) were deployed simultaneously for one month in an orange orchard in the Central Valley of California to collect continuous data

  19. Is mandating elective single embryo transfer ethically justifiable in young women?

    Directory of Open Access Journals (Sweden)

    Kelton Tremellen

    2015-12-01

    Full Text Available Compared with natural conception, IVF is an effective form of fertility treatment associated with higher rates of obstetric complications and poorer neonatal outcomes. While some increased risk is intrinsic to the infertile population requiring treatment, the practice of multiple embryo transfer contributes to these complications and outcomes, especially concerning its role in higher order pregnancies. As a result, several jurisdictions (e.g. Sweden, Belgium, Turkey, and Quebec have legally mandated elective single-embryo transfer (eSET for young women. We accept that in very high-risk scenarios (e.g. past history of preterm delivery and poor maternal health, double-embryo transfer (DET should be prohibited due to unacceptably high risks. However, we argue that mandating eSET for all young women can be considered an unacceptable breach of patient autonomy, especially since DET offers certain women financial and social advantages. We also show that mandated eSET is inconsistent with other practices (e.g. ovulation induction and intrauterine insemination–ovulation induction that can expose women and their offspring to risks associated with multiple pregnancies. While defending the option of DET for certain women, some recommendations are offered regarding IVF practice (e.g. preimplantation genetic screening and better support of IVF and maternity leave to incentivise patients to choose eSET.

  20. Characterisation of the volatile profiles of infant formulas by proton transfer reaction-mass spectrometry and gas chromatography-mass spectrometry

    NARCIS (Netherlands)

    Ruth, van S.M.; Floris, V.; Fayoux, S.

    2006-01-01

    The volatile profiles of 13 infant formulas were evaluated by proton transfer reaction-mass spectrometry (PTR-MS) and gas chromatography¿mass spectrometry (GC¿MS). The infant formulas varied in brand (Aptamil, Cow & Gate, SMA), type (for different infant target groups) and physical form

  1. Kinematical coincidence method in transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Acosta, L.; Amorini, F. [INFN—Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Auditore, L. [INFN Gruppo Collegato di Messina and Dipartimento di Fisica, Università di Messina (Italy); Berceanu, I. [Institute for Physics and Nuclear Engineering, Bucharest (Romania); Cardella, G., E-mail: cardella@ct.infn.it [INFN—Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Chatterjiee, M.B. [Saha Institute for Nuclear Physics, Kolkata (India); De Filippo, E. [INFN—Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Francalanza, L.; Gianì, R. [INFN—Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia, Catania (Italy); Grassi, L. [INFN—Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Rudjer Boskovic Institute, Zagreb (Croatia); Grzeszczuk, A. [Institut of Physics, University of Silesia, Katowice (Poland); La Guidara, E. [INFN—Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Centro Siciliano di Fisica Nucleare e Struttura della Materia, Catania (Italy); Lanzalone, G. [INFN—Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Facoltà di Ingegneria e Architettura, Università Kore, Enna (Italy); Lombardo, I. [INFN—Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Dipartimento di Scienze Fisiche, Università Federico II and INFN Sezione di Napoli (Italy); Loria, D.; Minniti, T. [INFN Gruppo Collegato di Messina and Dipartimento di Fisica, Università di Messina (Italy); Pagano, E.V. [INFN—Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia, Catania (Italy); and others

    2013-07-01

    A new method to extract high resolution angular distributions from kinematical coincidence measurements in binary reactions is presented. Kinematics is used to extract the center of mass angular distribution from the measured energy spectrum of light particles. Results obtained in the case of {sup 10}Be+p→{sup 9}Be+d reaction measured with the CHIMERA detector are shown. An angular resolution of few degrees in the center of mass is obtained. The range of applicability of the method is discussed.

  2. Heat-transfer resistance at solid-liquid interfaces: a tool for the detection of single-nucleotide polymorphisms in DNA.

    Science.gov (United States)

    van Grinsven, Bart; Vanden Bon, Natalie; Strauven, Hannelore; Grieten, Lars; Murib, Mohammed; Monroy, Kathia L Jiménez; Janssens, Stoffel D; Haenen, Ken; Schöning, Michael J; Vermeeren, Veronique; Ameloot, Marcel; Michiels, Luc; Thoelen, Ronald; De Ceuninck, Ward; Wagner, Patrick

    2012-03-27

    In this article, we report on the heat-transfer resistance at interfaces as a novel, denaturation-based method to detect single-nucleotide polymorphisms in DNA. We observed that a molecular brush of double-stranded DNA grafted onto synthetic diamond surfaces does not notably affect the heat-transfer resistance at the solid-to-liquid interface. In contrast to this, molecular brushes of single-stranded DNA cause, surprisingly, a substantially higher heat-transfer resistance and behave like a thermally insulating layer. This effect can be utilized to identify ds-DNA melting temperatures via the switching from low- to high heat-transfer resistance. The melting temperatures identified with this method for different DNA duplexes (29 base pairs without and with built-in mutations) correlate nicely with data calculated by modeling. The method is fast, label-free (without the need for fluorescent or radioactive markers), allows for repetitive measurements, and can also be extended toward array formats. Reference measurements by confocal fluorescence microscopy and impedance spectroscopy confirm that the switching of heat-transfer resistance upon denaturation is indeed related to the thermal on-chip denaturation of DNA. © 2012 American Chemical Society

  3. Dissociation pathways of a single dimethyl disulfide on Cu(111): Reaction induced by simultaneous excitation of two vibrational modes

    Energy Technology Data Exchange (ETDEWEB)

    Motobayashi, Kenta, E-mail: kmotobayashi@cat.hokudai.ac.jp [Catalysis Research Center, Hokkaido University, Sapporo 001-0021 (Japan); Department of Advanced Materials Science, The University of Tokyo, Kashiwa 277-8561 (Japan); Surface and Interface Science Laboratory, RIKEN, Wako 351-0198 (Japan); Kim, Yousoo [Surface and Interface Science Laboratory, RIKEN, Wako 351-0198 (Japan); Arafune, Ryuichi [International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044 (Japan); Ohara, Michiaki; Ueba, Hiromu; Kawai, Maki, E-mail: maki@k.u-tokyo.ac.jp [Department of Advanced Materials Science, The University of Tokyo, Kashiwa 277-8561 (Japan)

    2014-05-21

    We present a novel reaction mechanism for a single adsorbed molecule that proceeds via simultaneous excitation of two different vibrational modes excited by inelastic tunneling electrons from a scanning tunneling microscope. Specifically, we analyze the dissociation of a single dimethyl disulfide (DMDS, (CH{sub 3}S){sub 2}) molecule on Cu(111) by using a versatile theoretical method, which permits us to simulate reaction rates as a function of sample bias voltage. The reaction is induced by the excitation of C-H stretch and S-S stretch modes by a two-electron process at low positive bias voltages. However, at increased voltages, the dissociation becomes a single-electron process that excites a combination mode of these stretches, where excitation of the C-H stretch is the energy source and excitation of the S-S stretch mode enhances the anharmonic coupling rate. A much smaller dissociation yield (few orders of magnitude) at negative bias voltages is understood in terms of the projected density of states of a single DMDS on Cu(111), which reflects resonant excitation through the molecular orbitals.

  4. Effects of electron-transfer chemical modification on the electrical characteristics of graphene

    International Nuclear Information System (INIS)

    Fan Xiaoyan; Tanigaki, Katsumi; Nouchi, Ryo; Yin Lichang

    2010-01-01

    Because of the large reactivity of single layer graphene to electron-transfer chemistries, 4-nitrobenzene diazonium tetrafluoroborate is employed to modify the electrical properties of graphene field-effect transistors. After modification, the transfer characteristics of chemically modified graphene show a reduction in the minimum conductivity, electron-hole mobility asymmetry, a decrease in the electron/hole mobility, and a positive shift of the charge neutrality point with broadening of the minimum conductivity region. These phenomena are attributed to a dediazoniation reaction and the adsorbates on the graphene surface.

  5. Effects of electron-transfer chemical modification on the electrical characteristics of graphene

    Energy Technology Data Exchange (ETDEWEB)

    Fan Xiaoyan; Tanigaki, Katsumi [Department of Physics, Graduate School of Science, Tohoku University, Sendai 980-8578 (Japan); Nouchi, Ryo [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8578 (Japan); Yin Lichang, E-mail: nouchi@sspns.phys.tohoku.ac.jp [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2010-11-26

    Because of the large reactivity of single layer graphene to electron-transfer chemistries, 4-nitrobenzene diazonium tetrafluoroborate is employed to modify the electrical properties of graphene field-effect transistors. After modification, the transfer characteristics of chemically modified graphene show a reduction in the minimum conductivity, electron-hole mobility asymmetry, a decrease in the electron/hole mobility, and a positive shift of the charge neutrality point with broadening of the minimum conductivity region. These phenomena are attributed to a dediazoniation reaction and the adsorbates on the graphene surface.

  6. Proposal for probing energy transfer pathway by single-molecule pump-dump experiment

    OpenAIRE

    Tao, Ming-Jie; Ai, Qing; Deng, Fu-Guo; Cheng, Yuan-Chung

    2016-01-01

    The structure of Fenna-Matthews-Olson (FMO) light-harvesting complex has long been recognized as containing seven bacteriochlorophyll (BChl) molecules. Recently, an additional BChl molecule was discovered in the crystal structure of the FMO complex, which may serve as a link between baseplate and the remaining seven molecules. Here, we investigate excitation energy transfer (EET) process by simulating single-molecule pump-dump experiment in the eight-molecules complex. We adopt the coherent m...

  7. Single versus double embryo transfer: cost-effectiveness analysis alongside a randomized clinical trial.

    Science.gov (United States)

    Fiddelers, Audrey A A; van Montfoort, Aafke P A; Dirksen, Carmen D; Dumoulin, John C M; Land, Jolande A; Dunselman, Gerard A J; Janssen, J Marij; Severens, Johan L; Evers, Johannes L H

    2006-08-01

    Twin pregnancies after IVF are still frequent and are considered high-risk pregnancies leading to high costs. Transferring one embryo can reduce the twin pregnancy rate. We compared cost-effectiveness of one fresh cycle elective single embryo transfer (eSET) versus one fresh cycle double embryo transfer (DET) in an unselected patient population. Patients starting their first IVF cycle were randomized between eSET and DET. Societal costs per couple were determined empirically, from hormonal stimulation up to 42 weeks after embryo transfer. An incremental cost-effectiveness ratio (ICER) was calculated, representing additional costs per successful pregnancy. Successful pregnancy rates were 20.8% for eSET and 39.6% for DET. Societal costs per couple were significantly lower after eSET (7334 euro) compared with DET (10,924 euro). The ICER of DET compared with eSET was 19,096 euro, meaning that each additional successful pregnancy in the DET group will cost 19,096 euro extra. One cycle eSET was less expensive, but also less effective compared to one cycle DET. It depends on the society's willingness to pay for one extra successful pregnancy, whether one cycle DET is preferred from a cost-effectiveness point of view.

  8. Boomerang-type substitution reaction: reactivity of fullerene epoxides and a halofullerenol.

    Science.gov (United States)

    Jia, Zhenshan; Zhang, Xiang; Zhang, Gaihong; Huang, Shaohua; Fang, Hao; Hu, Xiangqing; Li, Yuliang; Gan, Liangbing; Zhang, Shiwei; Zhu, Daoben

    2007-02-05

    The C(s)-symmetric fullerene chlorohydrin C60(Cl)(OH)(OOtBu)4 reacts with 4-dimethylaminopyridine (DMAP) and 1,4-diazabicyclo[2.2.2]octane (DABCO) to yield two isomers with the formula C60(O)(OOtBu)4 in good yields. These isomers differ with respect to the location of the epoxy functionality. The one from DMAP is C(s) symmetric, whereas that from DABCO is C1 symmetric with the epoxy group on the central pentagon. Two different mechanisms are proposed to explain the chemoselectivity of these reactions. The reaction with DMAP involves single-electron transfer as the key step; DMAP acts as the electron donor. A combination of an oxygen-atom shift and S(N)2'' processes (boomerang substitution) are responsible for the formation of isomer with DACBO. Various related reactions support the proposed mechanisms. The structures of new fullerene derivatives were determined by spectroscopy, single-crystal X-ray analysis, and chemical correlation experiments.

  9. (e,2e) reactions on atoms and molecules

    International Nuclear Information System (INIS)

    McCarthy, I.E.

    1984-01-01

    At high enough incident energy and for high enough momentum transfer an incident electron interacts with a single electron of a target atom or molecule, cleanly removing it and leaving the residual ion in one of its spectrum of quantum states. Under these conditions the dynamics of the reaction simply involves a two-electron collision, the target electron having a momentum given by the structure of the target and ion, and equal and opposite to the recoil momentum of the ion. Since two-electron collisions are well understood (Mott scattering) the reaction is the basis of the understanding of the energy and momentum structure of the target and ion known as electron momentum spectroscopy

  10. Perinatal outcomes among singletons after assisted reproductive technology with single-embryo or double-embryo transfer versus no assisted reproductive technology.

    Science.gov (United States)

    Martin, Angela S; Chang, Jeani; Zhang, Yujia; Kawwass, Jennifer F; Boulet, Sheree L; McKane, Patricia; Bernson, Dana; Kissin, Dmitry M; Jamieson, Denise J

    2017-04-01

    To examine outcomes of singleton pregnancies conceived without assisted reproductive technology (non-ART) compared with singletons conceived with ART by elective single-embryo transfer (eSET), nonelective single-embryo transfer (non-eSET), and double-embryo transfer with the establishment of 1 (DET -1) or ≥2 (DET ≥2) early fetal heartbeats. Retrospective cohort using linked ART surveillance data and vital records from Florida, Massachusetts, Michigan, and Connecticut. Not applicable. Singleton live-born infants. None. Preterm birth (PTB score score approach, we found that singletons conceived after eSET were less likely to have a 5-minute Apgar Reproductive Medicine. All rights reserved.

  11. Reaction-time-resolved measurements of laser-induced fluorescence in a shock tube with a single laser pulse

    Science.gov (United States)

    Zabeti, S.; Fikri, M.; Schulz, C.

    2017-11-01

    Shock tubes allow for the study of ultra-fast gas-phase reactions on the microsecond time scale. Because the repetition rate of the experiments is low, it is crucial to gain as much information as possible from each individual measurement. While reaction-time-resolved species concentration and temperature measurements with fast absorption methods are established, conventional laser-induced fluorescence (LIF) measurements with pulsed lasers provide data only at a single reaction time. Therefore, fluorescence methods have rarely been used in shock-tube diagnostics. In this paper, a novel experimental concept is presented that allows reaction-time-resolved LIF measurements with one single laser pulse using a test section that is equipped with several optical ports. After the passage of the shock wave, the reactive mixture is excited along the center of the tube with a 266-nm laser beam directed through a window in the end wall of the shock tube. The emitted LIF signal is collected through elongated sidewall windows and focused onto the entrance slit of an imaging spectrometer coupled to an intensified CCD camera. The one-dimensional spatial resolution of the measurement translates into a reaction-time-resolved measurement while the species information can be gained from the spectral axis of the detected two-dimensional image. Anisole pyrolysis was selected as the benchmark reaction to demonstrate the new apparatus.

  12. Dielectric Losses and Charge Transfer in Antimony-Doped TlGaS2 Single Crystal

    Science.gov (United States)

    Asadov, S. M.; Mustafaeva, S. N.

    2018-03-01

    Effect of semimetallic antimony (0.5 mol % Sb) on the dielectric properties and ac-conductivity of TlGaS2-based single crystals grown by the Bridgman-Stockbarger method has been studied. The experimental results on the frequency dispersion of dielectric coefficients and the conductivity of TlGa0.995Sb0.005S2 single crystals allowed the revealing of the dielectric loss nature, the charge transfer mechanism, and the estimation of the parameters of the states localized in the energy gap. The antimony-doping of the TlGaS2 single crystal leads to an increase in the density of states near the Fermi level and a decrease in the average time and average distance of hopes.

  13. Search for proton emission in {sup 54}Ni and multi-nucleon transfer reactions in the actinide region

    Energy Technology Data Exchange (ETDEWEB)

    Geibel, Kerstin

    2012-06-15

    The first part of the thesis presents the investigation of fusion-evaporation reactions in order to verify one-proton emission from the isomeric 10{sup +} state in the proton rich nucleus {sup 54}Ni. Between the years 2006 and 2009 a series of experimental studies were performed at the Tandem accelerator in the Institut fuer Kernphysik (IKP), University of Cologne. These experiments used fusion-evaporation reactions to populate {sup 54}Ni via the two-neutron-evaporation channel of the compound nucleus {sup 56}Ni. The cross section for the population of the ground state of {sup 54}Ni was predicted to be in orders of microbarn. This required special care with respect to the sensitivity of the experimental setup, which consisted of a double-sided silicon-strip detector (DSSSD), a neutron-detector array and HPGe detectors. In two experiments the excitation functions of the reactions ({sup 32}S+{sup 24}Mg) and ({sup 28}Si+{sup 28}Si) were determined to find the optimal experimental conditions for the population of {sup 54}Ni. A final experiment employed a {sup 28}Si beam at an energy of 70 MeV, impinging on a {sup 28}Si target. With a complex analysis it is possible to obtain a background-free energy spectrum of the DSSSD. An upper cross section limit for the population of the 10{sup +} state in {sup 54}Ni is established at σ({sup 54}Ni(10{sup +})) ≤ (13.9 ± 7.8) nbarn. In the second part of the thesis the population of actinide nuclei by multi-nucleon transfer reactions is investigated. Two experiments, performed in 2007 and 2008 at the CLARA-PRISMA setup at the Laboratori Nazionali di Legnaro, are analyzed with respect to the target-like reaction products. In both experiments {sup 238}U was used as target. A {sup 70}Zn beam with 460 MeV and a {sup 136}Xe beam with 926 MeV, respectively, impinged on the target, inducing transfer reactions. Kinematic correlations between the reaction partners are used to obtain information on the unobserved target-like reaction

  14. Oxygen atom transfer reactions from Mimoun complexes to sulfides and sulfoxides. A bonding evolution theory analysis.

    Science.gov (United States)

    González-Navarrete, Patricio; Sensato, Fabricio R; Andrés, Juan; Longo, Elson

    2014-08-07

    In this research, a comprehensive theoretical investigation has been conducted on oxygen atom transfer (OAT) reactions from Mimoun complexes to sulfides and sulfoxides. The joint use of the electron localization function (ELF) and Thom's catastrophe theory (CT) provides a powerful tool to analyze the evolution of chemical events along a reaction pathway. The progress of the reaction has been monitored by structural stability domains from ELF topology while the changes between them are controlled by turning points derived from CT which reveal that the reaction mechanism can be separated in several steps: first, a rupture of the peroxo O1-O2 bond, then a rearrangement of lone pairs of the sulfur atom occurs and subsequently the formation of S-O1 bond. The OAT process involving the oxidation of sulfides and sulfoxides is found to be an asynchronous process where O1-O2 bond breaking and S-O1 bond formation processes do not occur simultaneously. Nucleophilic/electrophilic characters of both dimethyl sulfide and dimethyl sulfoxide, respectively, are sufficiently described by our results, which hold the key to unprecedented insight into the mapping of electrons that compose the bonds while the bonds change.

  15. Lifetime and g-factor measurements of excited states using Coulomb excitation and alpha transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Guevara, Z. E., E-mail: zjguevaram@unal.edu.co; Torres, D. A., E-mail: datorresg@unal.edu.co [Physics Department, Universidad Nacional de Colombia, Bogotá D.C. (Colombia)

    2016-07-07

    In this contribution the challenges in the use of a setup to simultaneously measure lifetimes and g-factor values will be presented. The simultaneous use of the transient field technique and the Doppler Shift Attenuation Method, to measure magnetic moments and lifetimes respectively, allows to obtain a complete characterization of the currents of nucleons and the deformation in excited states close to the ground state. The technique is at the moment limited to Coulomb excitation and alpha-transfer reactions, what opens an interesting perspective to consider this type of experiments with radioactive beams. The use of deep-inelastic and fusion-evaporation reactions will be discussed. An example of a setup that makes use of a beam of {sup 106}Cd to study excited states of {sup 110}Sn and the beam nuclei itself will be presented.

  16. Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Salinas-Torres, David [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain); Huerta, Francisco [Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, Plaza Ferrandiz y Carbonell, 1. E-03801 Alcoy (Spain); Montilla, Francisco, E-mail: francisco.montilla@ua.e [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain); Morallon, Emilia [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain)

    2011-02-01

    An investigation of the electrocatalysis of single-walled carbon nanotubes modified electrodes has been performed in this work. Nanotube-modified electrodes present a surface area much higher than the bare glassy carbon surfaces as determined by capacitance measurements. Several redox probes were selected for checking the reactivity of specific sites at the carbon nanotube surface. The presence of carbon nanotubes on the electrode improves the kinetics for all the reactions studied compared with the bare glassy carbon electrode with variations of the heterogeneous electron transfer rate constant up to 5 orders of magnitude. The most important effects are observed for the benzoquinone/hydroquinone and ferrocene/ferricinium redox couples, which show a remarkable improvement of their electron transfer kinetics on SWCNT-modified electrodes, probably due to strong {pi}-{pi} interaction between the organic molecules and the walls of the carbon nanotubes. For many of the reactions studied, less than 1% of the nanotube-modified electrode surface is transferring charge to species in solution. This result suggests that only nanotube tips are active sites for the electron transfer in such cases. On the contrary, the electroactive surface for the reactions of ferrocene and quinone is higher indicating that the electron transfer is produced also from the nanotube walls.

  17. Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes

    International Nuclear Information System (INIS)

    Salinas-Torres, David; Huerta, Francisco; Montilla, Francisco; Morallon, Emilia

    2011-01-01

    An investigation of the electrocatalysis of single-walled carbon nanotubes modified electrodes has been performed in this work. Nanotube-modified electrodes present a surface area much higher than the bare glassy carbon surfaces as determined by capacitance measurements. Several redox probes were selected for checking the reactivity of specific sites at the carbon nanotube surface. The presence of carbon nanotubes on the electrode improves the kinetics for all the reactions studied compared with the bare glassy carbon electrode with variations of the heterogeneous electron transfer rate constant up to 5 orders of magnitude. The most important effects are observed for the benzoquinone/hydroquinone and ferrocene/ferricinium redox couples, which show a remarkable improvement of their electron transfer kinetics on SWCNT-modified electrodes, probably due to strong π-π interaction between the organic molecules and the walls of the carbon nanotubes. For many of the reactions studied, less than 1% of the nanotube-modified electrode surface is transferring charge to species in solution. This result suggests that only nanotube tips are active sites for the electron transfer in such cases. On the contrary, the electroactive surface for the reactions of ferrocene and quinone is higher indicating that the electron transfer is produced also from the nanotube walls.

  18. The Phase Behavior Effect on the Reaction Engineering of Transesterification Reactions and Reactor Design for Continuous Biodiesel Production

    Science.gov (United States)

    Csernica, Stephen N.

    transitions from two phases to a single phase, or pseudo-single phase. The transition to a single phase or pseudo-single phase is a function of the methanol content. Regardless, the maximum observed reaction rate occurs at the point of the phase transition, when the concentration of triglycerides in the methanol phase is largest. The phase transition occurs due to the accumulation of the primary product, biodiesel methyl esters. Through various experiments, it was determined that the rate of the triglyceride mass transfer into the methanol phase, as well as the solubility of triglycerides in methanol, increases with increasing methyl ester concentration. Thus, there exists some critical methyl ester concentration which favors the formation of a single or pseudo-single phase system. The effect of the by-product glycerol on the reaction kinetics was also investigated. It was determined that at low methanol to triglyceride molar ratios, glycerol acts to inhibit the reaction rate and limit the overall triglyceride conversion. This occurs because glycerol accumulates in the methanol phase, i.e. the primary reaction volume. When glycerol is at relatively high concentrations within the methanol phase, triglycerides become excluded from the reaction volume. This greatly reduces the reaction rate and limits the overall conversion. As the concentration of methanol is increased, glycerol becomes diluted and the inhibitory effects become dampened. Assuming pseudo-homogeneous phase behavior, a simple kinetic model incorporating the inhibitory effects of glycerol was proposed based on batch reactor data. The kinetic model was primarily used to theoretically compare the performance of different types of continuous flow reactors for continuous biodiesel production. It was determined that the inhibitory effects of glycerol result in the requirement of very large reactor volumes when using continuous stirred tank reactors (CSTR). The reactor volume can be greatly reduced using tubular style

  19. Two-photon-induced hot-electron transfer to a single molecule in a scanning tunneling microscope

    International Nuclear Information System (INIS)

    Wu, S. W.; Ho, W.

    2010-01-01

    The junction of a scanning tunneling microscope (STM) operating in the tunneling regime was irradiated with femtosecond laser pulses. A photoexcited hot electron in the STM tip resonantly tunnels into an excited state of a single molecule on the surface, converting it from the neutral to the anion. The electron-transfer rate depends quadratically on the incident laser power, suggesting a two-photon excitation process. This nonlinear optical process is further confirmed by the polarization measurement. Spatial dependence of the electron-transfer rate exhibits atomic-scale variations. A two-pulse correlation experiment reveals the ultrafast dynamic nature of photoinduced charging process in the STM junction. Results from these experiments are important for understanding photoinduced interfacial charge transfer in many nanoscale inorganic-organic structures.

  20. Influence of mass transfer and chemical reaction on ozonation of azo dyes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, I.S.; Wiesmann, U. [Dept. of Environmental Engineering, Technical Univ. of Berlin, Berlin (Germany)

    2003-07-01

    Azo dyes can be only mineralised by chemical oxidation. In this paper the oxidation of reactive black 5 (RB 5) and reactive orange 96 (RO 96) with concentrations between 35 and 5700 mgL{sup -1} (RB 5) and between 20 and 2050 mgL{sup -1} (RO 96) is investigated. A lab scale bubble column was used, which was gassed by a mixture of O{sub 2} and O{sub 3}. The oxidation rate was influenced by mass transfer for all dye concentrations used. For lower dye concentrations mass transfer alone was decisive for reaction rate showing an enhancement factor of E {approx} 1. However, in the region of higher dye concentrations, the slope of the decreasing ozone concentration inside the liquid boundary layer increases more and more with increasing dye concentration as a result of a chemical oxidation. Therefore, the enhancement factor depends on the kind and concentration of the azo dyes. For RB 5 as an diazo dye an enhancement factor of E = 9 was observed for 3800 mgL{sup -1}, RO 96 as a mono azo dye with a remarkable higher chemical oxidation rate shows an E = 17 already for 2050 mgL{sup -1}. (orig.)

  1. Evolution of Single Particle and Collective properties in the Neutron-Rich Mg Isotopes

    CERN Multimedia

    Reiter, P; Wiens, A; Fitting, J; Lauer, M; Van duppen, P L E; Finke, F

    2002-01-01

    We propose to study the single particle and collective properties of the neutron-rich Mg isotopes in transfer reactions and Coulomb excitation using REX-ISOLDE and MINIBALL. From the Coulomb excitation measurement precise and largely model independent B( E2 ; 0$^{+}_{g.s.}\\rightarrow$ 2$^{+}_{1}$ ) will be determined for the even-even isotopes. For the odd isotopes the distribution of the E2 strength over a few low-lying states will be measured. The sign of the M1/E2 mixing ratio, extracted from angular distributions, is characteristic of the sign of the deformation, as is the resulting level scheme. The neutron-pickup channel in the transfer reactions will allow for a determination of the single particle properties (spin, parity, spectroscopic factors) of these nuclei. This information will give new insights in changes of nuclear structure in the vicinity of the island of deformation around $^{32}$Mg. A total of 24 shifts of REX beam time is requested.

  2. Transient core characteristics of small molten salt reactor coupling problem between heat transfer/flow and nuclear fission reaction

    International Nuclear Information System (INIS)

    Yamamoto, Takahisa; Mitachi, Koshi

    2004-01-01

    This paper performed the transient core analysis of a small Molten Salt Reactor (MSR). The emphasis is that the numerical model employed in this paper takes into account the interaction among fuel salt flow, nuclear reaction and heat transfer. The model consists of two group diffusion equations for fast and thermal neutron fluexs, balance equations for six-group delayed neutron precursors and energy conservation equations for fuel salt and graphite moderator. The results of transient analysis are that (1) fission reaction (heat generation) rate significantly increases soon after step reactivity insertion, e.g., the peak of fission reaction rate achieves about 2.7 times larger than the rated power 350 MW when the reactivity of 0.15% Δk/k 0 is inserted to the rated state, and (2) the self-control performance of the small MSR effectively works under the step reactivity insertion of 0.56% Δk/k 0 , putting the fission reaction rate back on the rated state. (author)

  3. Theoretical study on production of heavy neutron-rich isotopes around the N=126 shell closure in radioactive beam induced transfer reactions

    Directory of Open Access Journals (Sweden)

    Long Zhu

    2017-04-01

    Full Text Available In order to produce more unknown neutron-rich nuclei around N=126, the transfer reactions 136Xe + 198Pt, 136–144Xe + 208Pb, and 132Sn + 208Pb are investigated within the framework of the dinuclear system (DNS model. The influence of neutron excess of projectile on production cross sections of target-like products is studied through the reactions 136,144Xe + 208Pb. We find that the radioactive projectile 144Xe with much larger neutron excess is favorable to produce neutron-rich nuclei with charge number less than the target rather than produce transtarget nuclei. The incident energy dependence of yield distributions of fragments in the reaction 132Sn + 208Pb are also studied. The production cross sections of neutron-rich nuclei with Z=72–77 are predicted in the reactions 136–144Xe + 208Pb and 132Sn + 208Pb. It is noticed that the production cross sections of unknown neutron-rich nuclei in the reaction 144Xe + 208Pb are at least two orders of magnitude larger than those in the reaction 136Xe + 208Pb. The radioactive beam induced transfer reactions 139,144Xe + 208Pb, considering beam intensities proposed in SPIRAL2 (Production System of Radioactive Ion and Acceleration On-Line project as well, for production of neutron-rich nuclei around the N=126 shell closure are investigated for the first time. It is found that, in comparison to the stable beam 136Xe, the radioactive beam 144Xe shows great advantages for producing neutron-rich nuclei with N=126 and the advantages get more obvious for producing nuclei with less charge number.

  4. Elective single-embryo transfer: persuasive communication strategies can affect choice in a young British population.

    Science.gov (United States)

    van den Akker, O B A; Purewal, S

    2011-12-01

    This study tested the effectiveness of the framing effect and fear appeals to inform young people about the risks of multiple births and the option of selecting elective single-embryo transfer (eSET). A non-patient student sample (age (mean±SD) 23±5.5 years; n=321) were randomly allocated to one of seven groups: (1) framing effect: (1a) gain and (1b) loss frame; (2) fear appeal: (2a) high, (2b) medium and (2c) low fear; or (3) a control group: (3a) education and (3b) non-education. The primary outcome measure was the Attitudes towards Single Embryo Transfer questionnaire, before exposure to the messages (time 1) and immediately afterwards (time 2). Results revealed participants in the high fear, medium fear and gain condition demonstrated the most positive and significant differences (Pframe and education and non-education messages. The results demonstrate that the use of complex persuasive communication techniques on a student population to promote immediate and hypothetical eSET preferences is more successful at promoting eSET than merely reporting educational content. Future research should investigate its application in a clinical population. A multiple pregnancy is a health risk to both infant and mother following IVF treatment. The aims of this study were to test the effectiveness of two persuasive communication techniques (the framing effect and fear appeals) to inform young people about the risks of multiple births and the hypothetical option of selecting elective single-embryo transfer (eSET) (i.e., only one embryo is transferred to the uterus using IVF treatment). A total of 321 non-patient student sample (mean age 23) were randomly allocated to read a message from one of seven groups: (1) framing effect: (1a) gain and (1b) loss frame; (2) fear appeal: (2a) high, (2b) medium and (2c) low fear; or (3) a control group: education (3a) and (3b) non-education. Participants completed the Attitudes towards Single Embryo Transfer questionnaire, before exposure

  5. Comprehensive genetic assessment of the human embryo: can empiric application of microarray comparative genomic hybridization reduce multiple gestation rate by single fresh blastocyst transfer?

    Science.gov (United States)

    Sills, Eric Scott; Yang, Zhihong; Walsh, David J; Salem, Shala A

    2012-09-01

    The unacceptable multiple gestation rate currently associated with in vitro fertilization (IVF) would be substantially alleviated if the routine practice of transferring more than one embryo were reconsidered. While transferring a single embryo is an effective method to reduce the clinical problem of multiple gestation, rigid adherence to this approach has been criticized for negatively impacting clinical pregnancy success in IVF. In general, single embryo transfer is viewed cautiously by IVF patients although greater acceptance would result from a more effective embryo selection method. Selection of one embryo for fresh transfer on the basis of chromosomal normalcy should achieve the dual objective of maintaining satisfactory clinical pregnancy rates and minimizing the multiple gestation problem, because embryo aneuploidy is a major contributing factor in implantation failure and miscarriage in IVF. The initial techniques for preimplantation genetic screening unfortunately lacked sufficient sensitivity and did not yield the expected results in IVF. However, newer molecular genetic methods could be incorporated with standard IVF to bring the goal of single embryo transfer within reach. Aiming to make multiple embryo transfers obsolete and unnecessary, and recognizing that array comparative genomic hybridization (aCGH) will typically require an additional 12 h of laboratory time to complete, we propose adopting aCGH for mainstream use in clinical IVF practice. As aCGH technology continues to develop and becomes increasingly available at lower cost, it may soon be considered unusual for IVF laboratories to select a single embryo for fresh transfer without regard to its chromosomal competency. In this report, we provide a rationale supporting aCGH as the preferred methodology to provide a comprehensive genetic assessment of the single embryo before fresh transfer in IVF. The logistics and cost of integrating aCGH with IVF to enable fresh embryo transfer are also

  6. Low energy collision experiments using the beam guide technique. Charge transfer cross sections of Ar/sup 3+/ and Kr/sup 3+/ in their own gases

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, Kazuhiko; Kaneko, Yozaburo

    1986-12-01

    The trajectories of charged particles moving in an octopole ion beam guide (OPIG) are computer-simulated for various initial conditions of motion. Boundary conditions between the stable and unstable regions of beam trajectory in OPIG are obtained. These calculated results are very useful for operation of OPIG under the best condition. In low energy collision experiments using the beam guide technique, cross sections of one-, two- and three-electron capture processes in collision systems of Ar/sup 3+/-Ar and Kr/sup 3+/-Kr are measured in energy region from 0.375 to 768 eV in center-of-mass system. In both collision systems, one-electron capture reaction is predominant in higher energy side, however, the dominant reaction changes from one-electron capture reaction to the symmetric resonant three-electron capture reaction in the low energy region below about 10 eV. As was predicted, it was first confirmed that each cross section obtained for symmetric resonant triple-charge-transfer reaction of Ar/sup 3+/ and Kr/sup 3+/ at the low energy end of Ecm = 0.375 eV is larger than both cross sections of symmetric resonant double-charge-transfer for the doubly charged ion and symmetric resonant single-charge-transfer for the singly charged ion.

  7. Microscopic models for proton transfer in water and strongly hydrogen-bonded complexes with a single-well proton potential

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens

    2004-01-01

    A new mechanism and formalism for proton transfer in donor-acceptor complexes with long hydrogen bonds introduced recently [1], is applied to a proton transfer in liquid water. "Structural diffusion" of hydroxonium ions is regarded as totally adiabatic process, with synchronous hindered translation...... of two closest water molecules to and from the reaction complex as crucial steps. The water molecules induce a "gated" shift of the proton from the donor to the acceptor in the double-well potential with simultaneous breaking/formation of hydrogen bonds between these molecules and the proton donor...... and acceptor. The short-range and long-range proton transfer as "structural diffusion" of Zundel complexes is also considered. The theoretical formalism is illustrated with the use of Morse, exponential, and harmonic molecular potentials. This approach is extended to proton transfer in strongly hydrogen...

  8. Geographical provenancing of purple grape juices from different farming systems by proton transfer reaction mass spectrometry using supervised statistical techniques

    NARCIS (Netherlands)

    Granato, Daniel; Koot, Alex; Ruth, van S.M.

    2015-01-01

    BACKGROUND: Organic, biodynamic and conventional purple grape juices (PGJ; n = 79) produced in Brazil and Europe were characterized by volatile organic compounds (m/z 20-160) measured by proton transfer reaction mass spectrometry (PTR-MS), and classification models were built using supervised

  9. An experimental approach to angular momentum transfer in heavy ion reactions

    International Nuclear Information System (INIS)

    Babinet, R.

    1980-01-01

    The current experimental status on angular momentum transfer status in heavy ion reactions is reviewed. After a short presentation of the basic theoretical concepts that are underlying all the research works in this field, the experimental techniques that have been commonly used are presented. Results obtained by the γ-multiplicity method are discussed first. Then come, for the very heavy systems, the sequential fission data, followed by the results of a recent experiment on light charged particles. The simple theoretical concepts that are introduced first are continuously used as guidelines to discuss the following results. The respective advantages but also the basic limitations of the above three experimental techniques are exposed. Although they are expected to work best in different regions of the mass table, it is shown, that they give complementary informations which have been most useful in improving our understanding of the tangential friction mechanism

  10. Analysis of the Ballot Shuffling Attack on Irish ballot counting for Proportional Representation by Single Transferable Vote (PR-STV)

    DEFF Research Database (Denmark)

    Cochran, Dermot Robert

    2015-01-01

    The current Irish legislation for counting of ballots does not fully comply with the true meaning of proportional representation by single transferable vote. This is due to the way in which second and subsequent transfers are handled, the legislative requirement to only count the last set of ball...

  11. Oriented nano-wire formation and selective adhesion on substrates by single ion track reaction in polysilanes

    International Nuclear Information System (INIS)

    Shu Seki; Satoshi Tsukuda, Yoichi Yoshida; Seiichi Tagawa; Masaki Sugimoto; Shigeru Tanaka

    2002-01-01

    1-D nano-sized materials such as carbon nanotubes have attracted much attention as ideal quantum wires for future manufacturing techniques of nano-scaled opto-electronic devices. However it is still difficult to control the sizes, spatial distributions, or positions of nanotubes by conventional synthetic techniques to date. The MeV order heavy ion beams causes ultra-high density energy deposition which can not be realized by any other techniques (lasers, H, etc), and penetrate the polymer target straighforward as long as 1∼100 m depth. the energy deposited area produces non-homogeneous field can be controlled by changing the energy deposition rate of incident ions (LET: linear energy transfer, eV/nm). We found that cross-linking reaction of polysilane derivatives was predominantly caused and gave nano-gel in the chemical core, unlike main chain scission occurring at the outside of the area. high density energy deposition by ion beams causes non-homogeneous crosslinking reaction of polysilane derivatives within a nano-sized cylindrical area along an ion trajectory, and gives -SiC based nano-wires of which sizes (length, thickness) and number densities are completely under control by changing the parameters of incident ion beams and molecular sizes of target polymers. based on the concept pf the single track gelation, the present study demonstrates the formation of cross-linked polysilane nano-wires with the fairly controlled sizes. Recently the techniques of position-selective single ion hitting have been developed for MeV order ion beams, however it is not sufficient to control precisely the positions of the nano-wires on the substrates within sub- m area. in the present study, we report the selective adhesion of anno-wires on Si substrates by the surface treatments before coating, which enables the patterning of planted nano-wires on substrates and/or electrodes as candidates for nano-sized field emissive cathodes or electro-luminescent devices. Some examples of

  12. Dimensional feature weighting utilizing multiple kernel learning for single-channel talker location discrimination using the acoustic transfer function.

    Science.gov (United States)

    Takashima, Ryoichi; Takiguchi, Tetsuya; Ariki, Yasuo

    2013-02-01

    This paper presents a method for discriminating the location of the sound source (talker) using only a single microphone. In a previous work, the single-channel approach for discriminating the location of the sound source was discussed, where the acoustic transfer function from a user's position is estimated by using a hidden Markov model of clean speech in the cepstral domain. In this paper, each cepstral dimension of the acoustic transfer function is newly weighted, in order to obtain the cepstral dimensions having information that is useful for classifying the user's position. Then, this paper proposes a feature-weighting method for the cepstral parameter using multiple kernel learning, defining the base kernels for each cepstral dimension of the acoustic transfer function. The user's position is trained and classified by support vector machine. The effectiveness of this method has been confirmed by sound source (talker) localization experiments performed in different room environments.

  13. Modelling of simultaneous mass and heat transfer with chemical reaction using the Maxwell-Stefan theory II. Non-isothermal study

    NARCIS (Netherlands)

    Frank, M.J.W.; Kuipers, J.A.M.; Krishna, R.; van Swaaij, W.P.M.

    1995-01-01

    In Part I a general applicable model has been developed which calculates mass and heat transfer fluxes through a vapour/gas-liquid interface in case a reversible chemical reaction with associated heat effect takes place in the liquid phase. In this model the Maxwell-Stefan theory has been used to

  14. Nonelectrophoretic bidirectional transfer of a single SDS-PAGE gel with multiple antigens to obtain 12 immunoblots.

    Science.gov (United States)

    Kurien, Biji T; Scofield, R Hal

    2009-01-01

    Protein blotting is an invaluable technique in immunology to detect and characterize proteins of low abundance. Proteins resolved on sodium dodecyl sulfate (SDS) polyacrylamide gels are normally transferred electrophoretically to adsorbent membranes such as nitrocellulose or polyvinylidene diflouride membranes. Here, we describe the nonelectrophroretic transfer of the Ro 60 (or SSA) autoantigen, 220- and 240-kD spectrin antigens, and prestained molecular weight standards from SDS polyacrylamide gels to obtain up to 12 immunoblots from a single gel and multiple sera.

  15. 31P NMR saturation-transfer measurements in Saccharomyces cerevisiae: characterization of phosphate exchange reactions by iodoacetate and antimycin A inhibition

    International Nuclear Information System (INIS)

    Campbell-Burk, S.L.; Jones, K.A.; Shulman, R.G.

    1987-01-01

    31 P nuclear magnetic resonance (NMR) saturation-transfer (ST) techniques have been used to measure steady-state flows through phosphate-adenosine 5'-triphosphate (ATP) exchange reactions in glucose-grown derepressed yeast. The results have revealed that the reactions catalyzed by glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase (GAPDH/PGK) and by the mitochondrial ATPase contribute to the observed ST. Contributions from these reactions were evaluated by performing ST studies under various metabolic conditions in the presence and absence of either iodoacetate, a specific inhibitor of GAPDH, or the respiratory chain inhibitor antimycin A. Intracellular phosphate (P/sub i/) longitudinal relaxation times were determined by performing inversion recovery experiments during steady-state ATP/sub λ/ saturation and were used in combination with ST data to determine P/sub i/ consumption rates. 13 C NMR and O 2 electrode measurements were also conducted to monitor changes in rates of glucose consumption and O 2 consumption, respectively, under the various metabolic conditions examined. The results suggest that GAPDH/PGK-catalyzed P/sub i/-ATP exchange is responsible for antimycin-resistant saturation transfer observed in anaerobic and aerobic glucose-fed yeast. Kinetics through GAPDH/PGK were found to depend on metabolic conditions. The coupled system appears to operate in a unidirectional manner during anaerobic glucose metabolism and bidirectionally when the cells are respiring on exogenously supplied ethanol. Additionally, mitochondrial ATPase activity appears to be responsible for the transfer observed in iodoacetate-treated aerobic cells supplied with either glucose or ethanol, with synthesis of ATP occurring unidirectionally

  16. Manganese-Oxygen Intermediates in O-O Bond Activation and Hydrogen-Atom Transfer Reactions.

    Science.gov (United States)

    Rice, Derek B; Massie, Allyssa A; Jackson, Timothy A

    2017-11-21

    Biological systems capitalize on the redox versatility of manganese to perform reactions involving dioxygen and its derivatives superoxide, hydrogen peroxide, and water. The reactions of manganese enzymes influence both human health and the global energy cycle. Important examples include the detoxification of reactive oxygen species by manganese superoxide dismutase, biosynthesis by manganese ribonucleotide reductase and manganese lipoxygenase, and water splitting by the oxygen-evolving complex of photosystem II. Although these enzymes perform very different reactions and employ structurally distinct active sites, manganese intermediates with peroxo, hydroxo, and oxo ligation are commonly proposed in catalytic mechanisms. These intermediates are also postulated in mechanisms of synthetic manganese oxidation catalysts, which are of interest due to the earth abundance of manganese. In this Account, we describe our recent efforts toward understanding O-O bond activation pathways of Mn III -peroxo adducts and hydrogen-atom transfer reactivity of Mn IV -oxo and Mn III -hydroxo complexes. In biological and synthetic catalysts, peroxomanganese intermediates are commonly proposed to decay by either Mn-O or O-O cleavage pathways, although it is often unclear how the local coordination environment influences the decay mechanism. To address this matter, we generated a variety of Mn III -peroxo adducts with varied ligand environments. Using parallel-mode EPR and Mn K-edge X-ray absorption techniques, the decay pathway of one Mn III -peroxo complex bearing a bulky macrocylic ligand was investigated. Unlike many Mn III -peroxo model complexes that decay to oxo-bridged-Mn III Mn IV dimers, decay of this Mn III -peroxo adduct yielded mononuclear Mn III -hydroxo and Mn IV -oxo products, potentially resulting from O-O bond activation of the Mn III -peroxo unit. These results highlight the role of ligand sterics in promoting the formation of mononuclear products and mark an important

  17. Large work function difference driven electron transfer from electrides to single-walled carbon nanotubes

    KAUST Repository

    Menamparambath, Mini Mol; Park, Jong Ho; Yoo, Ho Sung; Patole, Shashikant P.; Yoo, Ji Beom; Kim, Sung Wng; Baik, Seunghyun

    2014-01-01

    V. Here we investigated charge transfer between two different types of electrides, [Ca2N]+·e- and [Ca 24Al28O64]4+·4e-, and single-walled carbon nanotubes (SWNTs) with a work function of 4.73-5.05 eV. [Ca2N]+·e- with open 2-dimensional electron layers

  18. Synthesis of single-crystal perovskite PbCrO3 through a new reaction route at high pressure

    Science.gov (United States)

    Han, Yunxia; Wang, Shanmin; Liu, Yinjuan; Ma, Dejiang; He, Duanwei; Zhao, Yusheng

    2018-04-01

    As a new member in the family of Mott system, perovskite PbCrO3 has recently been uncovered to exhibit fantastic structural transition under pressure, coupled with magnetic, electronic, and ferromagnetic transitions, which provide many opportunities for understanding of correlated system. However, it is still challenging to synthesize high-quality single-crystal PbCrO3, leading to the limited exploration of this Mott compound. In this work, we formulate a new high-pressure reaction route for preparation of high-quality PbCrO3 crystals between PbCl2 and Na2CrO4 at high pressure of 5-10 GPa and at high temperature of 750-1500°C. Because of the formation of reaction byproduct NaCl, the final product can readily be separated by washing with water. The obtained sample is in the form of single crystal with crystallite size up to 200 μm. In addition, combined with X-ray diffraction measurement, a tentative pressure-temperature synthesis diagram of PbCrO3 is mapped out from the reaction between PbCl2 and Na2CrO4 and the reaction mechanism is also explored in detail.

  19. Determination of minor actinides fission cross sections by means of transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Jurado, B.; Aiche, M.; Barreau, G.; Boyer, S.; Czajkowski, S.; Dassie, D.; Grosjean, C.; Guiral, A.; Haas, B.; Osmanov, B.; Petit, M. [CENBG - UMR 5795 CNRS/IN2P3-Univ. Bordeaux 1- Le Haut Vigneau, 33175 Gradignan (France); Berthoumieux, E.; Gunsing, F.; Perrot, L.; Theisen, Ch. [CEN Saclay, DSM/DAPNIA/SPhN, 91191 Gif-sur-Yvette cedex (France); Bauge, E. [CEA, SPhN, BP12 91680 Bruyeres-le-Chatel (France); Michel-Sendis, F. [IPN, 15 rue G. Clemenceau, 91406 Orsay cedex (France); Billebaud, A. [LPSC, 53 Avenue des Martyrs, 38026 Grenoble cedex (France); Wilson, J. N. [IPN, 15 rue G. Clemenceau, 91406 Orsay cedex (France); LPSC, 53 Avenue des Martyrs, 38026 Grenoble cedex (France); Ahmad, I.; Greene, J.P.; Janssens, R. V. F. [ANL, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2005-07-01

    We present an original method that allows to determine neutron-induced cross sections of very short-lived minor actinides. This indirect method, based on the use of transfer reactions, has already been applied with success for the determination of the neutron-induced fission and capture cross section of {sup 233}Pa, a key nucleus in the {sup 232}Th - {sup 233}U fuel cycle. A recent experiment using this technique has been performed to determine the neutron-induced fission cross sections of {sup 242,243,244}Cm and {sup 241}Am which are present in the nuclear waste of the current U-Pu fuel cycle. These cross sections are highly relevant for the design of reactors capable to incinerate minor actinides. The first results will be illustrated. (authors)

  20. Single-phase heat transfer enhancement in micro/minichannels using nanofluids: Theory and applications

    International Nuclear Information System (INIS)

    Hussien, Ahmed A.; Abdullah, Mohd Z.; Al-Nimr, Moh’d A.

    2016-01-01

    Highlights: • Review recent experimental and numerical studies on heat transfer in micro/minichannels and nanofluids. • Display the new applications of using nanofluids and micro/minichannels to enhance thermal performance. • Explain the factors affecting the thermal conductivity enhancement ratio of nanofluids. • The challenges of using the mini/microchannels and nanofluids. - Abstract: New cooling techniques are being explored for the dissipation of heat fluxes. Many recent studies on heat transfer in micro/minichannels (M/MCs) with nanofluids have focused on combining the advantages of both, for the purpose of obtaining higher single-phase enhancement of heat transfer. Developing of many applications such as cooling electronic device, solar cell, and automotive technology is highly demanded now a day to obtain high efficiency and reduce the operating cost. This review article summarizes recent studies, with a focus on two main topics: The first part contains the main concepts such as scaling effects of M/MCs, physical properties and convective heat transfer. The second part displays the main recent applications of M/MCs with nanofluids with the challenges to be widely used. The purpose of this article to provide exhaustive and comprehensive review of updated works published in this new area, with general conclusions.

  1. Low energy ion-molecule reactions

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, J.M. [Univ. of Rochester, NY (United States)

    1993-12-01

    This project is concerned with elucidating the dynamics of elementary ion-molecule reactions at collision energies near and below 1 eV. From measurements of the angular and energy distributions of the reaction products, one can infer intimathe details about the nature of collisions leading to chemical reaction, the geometries and lifetimes of intermediate complexes that govern the reaction dynamics, and the collision energy dependence of these dynamical features. The author employs crossed-beam low energy mass spectrometry technology developed over the last several years, with the focus of current research on proton transfer and hydrogen atom transfer reactions of te O{sup {minus}} ion with species such as HF, H{sub 2}O, and NH{sub 3}.

  2. Experimental and numerical reaction analysis on sodium-water chemical reaction field

    International Nuclear Information System (INIS)

    Deguchi, Yoshihiro; Takata, Takashi; Yamaguchi, Akira; Kikuchi, Shin; Ohshima, Hiroyuki

    2015-01-01

    In a sodium-cooled fast reactor (SFR), liquid sodium is used as a heat transfer fluid because of its excellent heat transport capability. On the other hand, it has strong chemical reactivity with water vapor. One of the design basis accidents of the SFR is the water leakage into the liquid sodium flow by a breach of heat transfer tubes. This process ends up damages on the heat transport equipment in the SFR. Therefore, the study on sodium-water chemical reactions is of paramount importance for security reasons. This study aims to clarify the sodium-water reaction mechanisms using an elementary reaction analysis. A quasi one-dimensional flame model is applied to a sodium-water counter-flow reaction field. The analysis contains 25 elementary reactions, which consist of 17 H_2-O_2 and 8 Na-H_2O reactions. Temperature and species concentrations in the counter-flow reaction field were measured using laser diagnostics such as LIF and CARS. The main reaction in the experimental conditions is Na+H_2O → NaOH+H and OH is produced by H_2O+H → H_2+OH. It is demonstrated that the reaction model in this study well explains the structure of the sodium-water counter-flow diffusion flame. (author)

  3. Excitations of the isobaric analog states T=0, 1, 2 and 2 in isobars 60Zn (Tz=0), 60Cu (Tz=1) and 60Ni (Tz=2) by the two-nucleon (2p, pn, 2n) stripping transfer reactions of 16O ions on 58Ni nuclei

    International Nuclear Information System (INIS)

    Okuma, Yasuhiko

    1992-01-01

    The isobaric analog states (IAS's) T=0, 1, 2 and 2 in isobars 60 Zn (Tz=0), 60 Cu (Tz=1) and 60 Ni (Tz=2) were studied by the three types of two-nucleon (2p, pn, 2n) stripping transfer reactions induced by the same beams 16 O and targets 58 Ni at an incident energy 80 MeV. The excitation energies of observed IAS's are in good fits with those calculated theoretically. The g'nd state 2 + , T=1 in 60 Cu may not be populated vy the ( 16 O, 14 N) reaction. The mutual excitation ( 16 O, 14 N * ) may be considered in the present population in 50 Cu. The isospin aspects of these reactions are quite prominent. All angular distributions of these IAS's have a forward peaked shape. Those of the O + states show a strongly oscillated pattern. Those of the 2 + states have no evidences of the clear oscillations. The similarities are observed between the angular distributions of IAS's. The EFR-DWBA calculations, in which the direct one-step cluster transferrs of two nucleons are assumed, reproduce reasonably the data points. The similarities between the heavy and the light ion induced two-nucleon stripping transfer reactions appear in both the reaction mechanisms and the spectroscopies of residual nuclei. The excitations of these IAS's will be an appearances of the single particle properties of transferred two-nucleons. (author)

  4. Pressure drop and heat transfer characteristics for single-phase developing flow of water in rectangular microchannels

    International Nuclear Information System (INIS)

    Mirmanto; Kenning, D B R; Lewis, J S; Karayiannis, T G

    2012-01-01

    Experiments were conducted to investigate the pressure drop and heat transfer characteristics of single-phase flow of de-ionized water in single copper microchannels of hydraulic diameters 0.438 mm, 0.561 mm and 0.635 mm. The channel length was 62 mm. The experimental conditions covered a range of mass flux from 500 to 5000 kg/m 2 s in the laminar, transitional and low Reynolds number turbulent regimes. Pressure drop was measured for adiabatic flows with fluid inlet temperatures of 30°C, 60°C and 90°C. In the heat transfer tests, the heat flux ranged from 256 kW/m 2 to 519 kW/m 2 . Friction factors and Nusselt numbers determined from the measurements were higher than for fully-developed conditions, but in reasonable agreement with predictions made using published solutions for hydrodynamically and thermally developing flow. When entrance effects, experimental uncertainties, heat losses, inlet and exit losses, thermal boundary conditions and departure from laminar flow were considered, the results indicate that equations developed for flow and heat transfer in conventional size channels are applicable for water flows in microchannels of these sizes.

  5. Enhanced Single Seed Trait Predictions in Soybean (Glycine max) and Robust Calibration Model Transfer with Near-Infrared Reflectance Spectroscopy.

    Science.gov (United States)

    Hacisalihoglu, Gokhan; Gustin, Jeffery L; Louisma, Jean; Armstrong, Paul; Peter, Gary F; Walker, Alejandro R; Settles, A Mark

    2016-02-10

    Single seed near-infrared reflectance (NIR) spectroscopy predicts soybean (Glycine max) seed quality traits of moisture, oil, and protein. We tested the accuracy of transferring calibrations between different single seed NIR analyzers of the same design by collecting NIR spectra and analytical trait data for globally diverse soybean germplasm. X-ray microcomputed tomography (μCT) was used to collect seed density and shape traits to enhance the number of soybean traits that can be predicted from single seed NIR. Partial least-squares (PLS) regression gave accurate predictive models for oil, weight, volume, protein, and maximal cross-sectional area of the seed. PLS models for width, length, and density were not predictive. Although principal component analysis (PCA) of the NIR spectra showed that black seed coat color had significant signal, excluding black seeds from the calibrations did not impact model accuracies. Calibrations for oil and protein developed in this study as well as earlier calibrations for a separate NIR analyzer of the same design were used to test the ability to transfer PLS regressions between platforms. PLS models built from data collected on one NIR analyzer had minimal differences in accuracy when applied to spectra collected from a sister device. Model transfer was more robust when spectra were trimmed from 910 to 1679 nm to 955-1635 nm due to divergence of edge wavelengths between the two devices. The ability to transfer calibrations between similar single seed NIR spectrometers facilitates broader adoption of this high-throughput, nondestructive, seed phenotyping technology.

  6. A few aspects of intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Guet, C.

    1982-10-01

    Some aspects of reactions induced by intermediate energy heavy ions, with a special emphasis of 85 MeV/nucleon 12 C data, are discussed and compared to low energy and relativistic energy features. Transition from mean field to independant nucleon picture is advocated by an increase of nuclear transparency illuminated by reaction cross section estimations. Projectile-like fragment distributions, while demonstrating a typical high energy fragmentation behaviour, exhibit low energy regime distortions. Light fragments, associated to large parallel momentum transfer may result from total explosion. Proton emission is investigated and discussed in terms of opposite models such as thermal equilibrium and nucleon-nucleon scattering. First pion production data are well explained by single nucleon-nucleon inelastic scattering

  7. Experimental determination of the effective nucleon-nucleon interaction for p-nucleus reactions at intermediate energies

    International Nuclear Information System (INIS)

    McClelland, J.B.; Aas, B.; Azizi, A.

    1982-01-01

    A complete measurement of the polarization transfer observables has been made for the first time in the (p,p') reaction at intermediate energies. Measurements are reported for the 12 C(p,p') 12 C reaction to the 1 + , T = 0(12.71 MeV) and 1 + , T = 1(15.11 MeV) states at 500 MeV at laboratory scattering angles of 3.5 0 , 5.5 0 , 7.5 0 , and 12.0 0 . Linear combinations of these observables are shown to exhibit a very selective dependence on the isoscalar and isovector spin-dependent components of the nucleon-nucleon interaction. To the extent of the validity of the single collision approximation, these amplitudes are compared directly to the free nucleon-nucleon amplitudes at small momentum transfers

  8. COBRA-SFS predictions of single assembly spent fuel heat transfer data

    International Nuclear Information System (INIS)

    Lombardo, N.J.; Michener, T.E.; Wheeler, C.L.; Rector, D.R.

    1986-04-01

    The study reported here is one of several efforts to evaluate and qualify the COBRA-SFS computer code for use in spent fuel storage system thermal analysis. The ability of COBRA-SFS to predict the thermal response of two single assembly spent fuel heat transfer tests was investigated through comparisons of predictions with experimental test data. From these comparisons, conclusions regarding the computational treatment of the physical phenomena occurring within a storage system can be made. This objective was successfully accomplished as reasonable agreement between predictions and data were obtained for the 21 individual test cases of the two experiments

  9. Role of pendant proton relays and proton-coupled electron transfer on the hydrogen evolution reaction by nickel hangman porphyrins

    Science.gov (United States)

    Bediako, D. Kwabena; Solis, Brian H.; Dogutan, Dilek K.; Roubelakis, Manolis M.; Maher, Andrew G.; Lee, Chang Hoon; Chambers, Matthew B.; Hammes-Schiffer, Sharon; Nocera, Daniel G.

    2014-01-01

    The hangman motif provides mechanistic insights into the role of pendant proton relays in governing proton-coupled electron transfer (PCET) involved in the hydrogen evolution reaction (HER). We now show improved HER activity of Ni compared with Co hangman porphyrins. Cyclic voltammogram data and simulations, together with computational studies using density functional theory, implicate a shift in electrokinetic zone between Co and Ni hangman porphyrins due to a change in the PCET mechanism. Unlike the Co hangman porphyrin, the Ni hangman porphyrin does not require reduction to the formally metal(0) species before protonation by weak acids in acetonitrile. We conclude that protonation likely occurs at the Ni(I) state followed by reduction, in a stepwise proton transfer–electron transfer pathway. Spectroelectrochemical and computational studies reveal that upon reduction of the Ni(II) compound, the first electron is transferred to a metal-based orbital, whereas the second electron is transferred to a molecular orbital on the porphyrin ring. PMID:25298534

  10. Single-particle states in ^112Cd probed with the ^111Cd(d,p) reaction

    Science.gov (United States)

    Garrett, P. E.; Jamieson, D.; Demand, G. A.; Finlay, P.; Green, K. L.; Leach, K. G.; Phillips, A. A.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wong, J.; Ball, G. C.; Hertenberger, R.; Wirth, H.-F.; Kr"Ucken, R.; Faestermann, T.

    2009-10-01

    As part of a program of detailed spectroscopy of the Cd isotopes, the single-particle neutron states in ^112Cd have been probed with the ^111Cd(d,p) reaction. Beams of polarized 22 MeV deuterons, obtained from the LMU/TUM Tandem Accelerator, bombarded a target of ^111Cd. The protons from the reaction, corresponding to excitation energies up to 3 MeV in ^112Cd, were momentum analyzed with the Q3D spectrograph. Cross sections and analyzing powers were fit to results of DWBA calculations, and spectroscopic factors were determined. The results from the experiment, and implications for the structure of ^112Cd, will be presented.

  11. Time-resolved FTIR [Fourier transform infrared] emission studies of laser photofragmentation and chain reactions

    International Nuclear Information System (INIS)

    Leone, S.R.

    1990-01-01

    Recent progress is described resulting from the past three years of DOE support for studies of combustion-related photofragmentation dynamics, energy transfer, and reaction processes using a time-resolved Fourier transform infrared (FTIR) emission technique. The FTIR is coupled to a high repetition rate excimer laser which produces radicals by photolysis to obtain novel, high resolution measurements on vibrational and rotational state dynamics. The results are important for the study of numerous radical species relevant to combustion processes. The method has been applied to the detailed study of photofragmentation dynamics in systems such as acetylene, which produces C 2 H; chlorofluoroethylene to study the HF product channel; vinyl chloride and dichloroethylene, which produce HCl; acetone, which produces CO and CH 3 ; and ammonia, which produces NH 2 . In addition, we have recently demonstrated use of the FTIR technique for preliminary studies of energy transfer events under near single collision conditions, radical-radical reactions, and laser-initiated chain reaction processes

  12. Claustral single cell reactions to tooth pulp stimulation in cats.

    Science.gov (United States)

    Jastreboff, P; Sikora, M; Frydrychowski, A; Słoniewski, P

    1983-01-01

    Single unit activity in the central region of the claustrum, evoked by electrical stimulation of tooth pulp or paws was studied on cats under chloralose anesthesia. The majority of cells responded in similar manner to stimulation of tooth pulp or paws, but there were cells with clear preference to a given type of stimulation. Latencies of reactions evoked by tooth pulp stimulation were significantly shorter than those for limb stimulation. In the former case latencies as short as 8 rns were observed. It is postulated that the central region of the claustrum receives a projection from the tooth pulp, and that in those cases with very short latency the projection is direct and does not involve the cerebral cortex.

  13. Spin dynamics and zero-field splitting constants of the triplet exciplex generated by photoinduced electron transfer reaction between erythrosin B and duroquinone

    OpenAIRE

    Tachikawa, Takashi; Kobori, Yasuhiro; Akiyama, Kimio; Katsuki, Akio; Steiner, Ulrich; Tero-Kubota, Shozo

    2002-01-01

    The spin dynamics of the duroquinone anion radical generated by photoinduced electron transfer reactions from triplet erythrosin B to duroquinone has been studied by using transient absorption and pulsed FT-EPR spectroscopy. Triplet exciplex formation as the reaction intermediate is verified by the observation of spin orbit coupling induced electron spin polarization. The kinetic parameters for exciplex formation and the intrinsic enhancement factors of electron spin polarization are determin...

  14. The influence of transfer reactions on the sub-barrier fusion enhancement in the systems {sup 58.64}Ni +, {sup 92,100}Mo

    Energy Technology Data Exchange (ETDEWEB)

    Rehm, K.E.; Jiang, C.L.; Esbensen, H. [and others

    1995-08-01

    High resolution experiments performed during the past few years demonstrated that the various reaction modes occurring in heavy ion collisions can strongly influence each other. This interrelation of the different reaction modes brings a nuclear structure dependence to the fusion and deep-inelastic channels that were previously described in the framework of pure statistical models. In order to fully understand the interrelation between these reaction channels, a complete set of measurements including elastic and inelastic scattering, few-nucleon transfer and fusion is required. In continuation of our earlier measurements of the fusion cross sections in the system {sup 58,64}Ni + {sup 92,100}Mo we finished the studies of the quasielastic process in these systems. The experiments were done in inverse reaction kinematics using the split-pole spectrograph with its hybrid focal-plane detector for particle identification. The experiments with {sup 100}Mo beams were performed previously. First test runs with {sup 92}Mo showed the possible interference with {sup 98}Mo ions which could be eliminated by using the 13{sup +} charge state from the ECR source. The data from these experiments were completely analyzed. The smallest transfer cross sections are observed for the systems {sup 64}Ni + {sup 100}Mo and {sup 58}Ni + {sup 92}Mo, i.e., the most neutron-rich and neutron-deficient systems, respectively. For the other systems, {sup 64}Ni + {sup 92}Mo and {sup 58}Ni + {sup 100}Mo, the transfer cross sections at energies close to the barrier are about of equal magnitude. This observation does not correlate with the deviation of the experimental fusion cross sections from the coupled-channels predictions. While for {sup 58}Ni + {sup 100}Mo discrepancies between the experimental and theoretical fusion cross sections are observed, the system {sup 64}Ni + {sup 92}Mo which shows about the same transfer yields, is quite well described by the coupled-channels calculations.

  15. Risk Evaluation of Endoscopic Retrograde Cholangiopancreatography-Related Contrast Media Allergic-Like Reaction: A Single Centre Experience

    Directory of Open Access Journals (Sweden)

    Félix Trottier-Tellier

    2018-01-01

    Full Text Available Background and Aims. Few cases of endoscopic retrograde cholangiopancreatography- (ERCP- related contrast media (CM adverse reactions have been reported in the current literature. There is a lack of standardisation in practice regarding premedication prophylaxis for at-risk patients undergoing ERCP and there are few data to guide the practitioners. Our goal is to evaluate the risk of CM adverse reaction in a group of patients with a past history of allergic-like reaction to iodine product undergoing ERCP. Methods. A retrospective chart review study was performed of patients who underwent ERCP at our single centre from January 2010 to December 2015. Results. 2295 ERCPs were performed among 1766 patients. No anaphylactoid or severe adverse reaction occurred. One (0.04% ERCP-related CM benign reaction was reported in a patient known for penicillin allergy. Among 127 ERCPs performed on patients with a prior adverse reaction to iodine, 121 procedures were done without and 6 with a premedication prophylaxis. In both groups, no ERCP-related CM reaction occurred. Conclusions. To our knowledge, we report the largest cohort of iodine allergic patients undergoing ERCP ever published. These results suggest that ERCP-related CM adverse reactions are very rare even among patients at risk for CM reaction.

  16. Spectroscopy of low-lying single-particle states in $^{81}$Zn populated in the $^{80}$Zn(d,p) reaction

    CERN Multimedia

    The aim of this proposal is the study of single-particle states of $^{81}$Zn via the $^{80}$Zn(d,p) reaction in inverse kinematics. $^{81}$Zn will be produced by means of a laser-ionized, 5.5 MeV/u HIE-Isolde $^{80}$Zn beam impinging on a deuterated-polyethylene target. The protons and $\\gamma$-rays emitted in the reaction will be studied using the Miniball + T-REX setup. This experiment will constitute the first spectroscopic study of $^{81}$Zn, which is critically important to determine the energy and ordering of neutron single-particle orbits above the N=50 gap and the properties of $^{78}$Ni.

  17. CCl 4 chemistry on the magnetite selvedge of single-crystal hematite: competitive surface reactions

    Science.gov (United States)

    Adib, K.; Camillone, N., III; Fitts, J. P.; Rim, K. T.; Flynn, G. W.; Joyce, S. A.; Osgood, R. M., Jr.

    2002-01-01

    Temperature programmed reaction/desorption (TPR/D) studies were undertaken to characterize the surface chemistry which occurs between CCl 4 and the Fe 3O 4 (1 1 1) selvedge of single crystal α-Fe 2O 3 (0 0 0 1). Six separate desorption events are clearly observed and four desorbing species are identified: CCl 4, OCCl 2, C 2Cl 4 and FeCl 2. It is proposed that OCCl 2, CCl 4 and C 2Cl 4 are produced in reactions involving the same precursor, CCl 2. Three reaction paths compete for the CCl 2 precursor: oxygen atom abstraction (for OCCl 2), molecular recombinative desorption (for CCl 4) and associative desorption (for C 2Cl 4). During the TPR/D temperature ramp, the branching ratio is observed to depend upon temperature and the availability of reactive sites. The data are consistent with a rich site-dependent chemistry.

  18. Study of shell evolution around the doubly magic $^{208}$Pb via a multinucleon transfer reaction with an unstable beam

    CERN Multimedia

    This proposal aims at the study of the neutron-rich region around the doubly-magic nucleus $^{208}$Pb populated via a multinucleon transfer reaction. An unstable $^{94}$Rb beam will be delivered by HIE-ISOLDE at 5.5 MeV$\\cdot$u onto a $^{208}$Pb 13.0 mg/cm$^{2}$ target. The $\\gamma$- rays will be recorded by the MINIBALL $\\gamma$-ray spectrometer. The aim of the experiment is twofold: \\\\ \\\\ i) firstly it will represent the proof of principle that multinucleon transfer reactions with neutron-rich unstable beams is efficient to populate neutron-rich heavy binary partners and represents a competitive method to cold fragmentation \\\\ ii) secondly we aim at populating medium- to high-spin states in $^{212;214}$Pb and $^{208;210}$Hg to elucidate the existence of the 16$^{+}$ isomer in the lead isotopes and at the same time to disentangle the puzzling case of a very low energy 3$^{-}$ state in $^{210}$Hg not described by any nuclear model. \\\\ \\\\ The experimental results will be compared with large-scale shell-model ...

  19. Humidity independent mass spectrometry for gas phase chemical analysis via ambient proton transfer reaction.

    Science.gov (United States)

    Zhu, Hongying; Huang, Guangming

    2015-03-31

    In this work, a humidity independent mass spectrometric method was developed for rapid analysis of gas phase chemicals. This method is based upon ambient proton transfer reaction between gas phase chemicals and charged water droplets, in a reaction chamber with nearly saturate humidity under atmospheric pressure. The humidity independent nature enables direct and rapid analysis of raw gas phase samples, avoiding time- and sample-consuming sample pretreatments in conventional mass spectrometry methods to control sample humidity. Acetone, benzene, toluene, ethylbenzene and meta-xylene were used to evaluate the analytical performance of present method. The limits of detection for benzene, toluene, ethylbenzene and meta-xylene are in the range of ∼0.1 to ∼0.3 ppbV; that of benzene is well below the present European Union permissible exposure limit for benzene vapor (5 μg m(-3), ∼1.44 ppbV), with linear ranges of approximately two orders of magnitude. The majority of the homemade device contains a stainless steel tube as reaction chamber and an ultrasonic humidifier as the source of charged water droplets, which makes this cheap device easy to assemble and facile to operate. In addition, potential application of this method was illustrated by the real time identification of raw gas phase chemicals released from plants at different physiological stages. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Inner Surface Chirality of Single-Handed Twisted Carbonaceous Tubular Nanoribbons.

    Science.gov (United States)

    Liu, Dan; Li, Baozong; Guo, Yongmin; Li, Yi; Yang, Yonggang

    2015-11-01

    Single-handed twisted 4,4'-biphenylene-bridged polybissilsesquioxane tubular nanoribbons and single-layered nanoribbons were prepared by tuning the water/ethanol volume ratio in the reaction mixture at pH = 11.6 through a supramolecular templating approach. The single-layered nanoribbons were formed by shrinking tubular nanoribbons after the removal of the templates. In addition, solvent-induced handedness inversion was achieved. The handedness of the polybissilsesquioxanes could be controlled by changing the ethanol/water volume ratio in the reaction mixture. After carbonization at 900 °C for 4.0 h and removal of silica, single-handed twisted carbonaceous tubular nanoribbons and single-layered nanoribbons with micropores in the walls were obtained. X-ray diffraction and Raman spectroscopy analyses indicated that the carbon is predominantly amorphous. The circular dichroism spectra show that the twisted tubular nanoribbons exhibit optical activity, while the twisted single-layered nanoribbons do not. The results shown here indicate that chirality is transferred from the organic self-assemblies to the inner surfaces of the 4,4'-biphenylene-bridged polybissilsesquioxane tubular nanoribbons and subsequently to those of the carbonaceous tubular nanoribbons. © 2015 Wiley Periodicals, Inc.