Anti-control of chaos of single time-scale brushless DC motor.
Ge, Zheng-Ming; Chang, Ching-Ming; Chen, Yen-Sheng
2006-09-15
Anti-control of chaos of single time-scale brushless DC motors is studied in this paper. In order to analyse a variety of periodic and chaotic phenomena, we employ several numerical techniques such as phase portraits, bifurcation diagrams and Lyapunov exponents. Anti-control of chaos can be achieved by adding an external constant term or an external periodic term.
International Nuclear Information System (INIS)
Yamanashi, Yuki; Masubuchi, Kota; Yoshikawa, Nobuyuki
2016-01-01
The relationship between the timing margin and the error rate of the large-scale single flux quantum logic circuits is quantitatively investigated to establish a timing design guideline. We observed that the fluctuation in the set-up/hold time of single flux quantum logic gates caused by thermal noises is the most probable origin of the logical error of the large-scale single flux quantum circuit. The appropriate timing margin for stable operation of the large-scale logic circuit is discussed by taking the fluctuation of setup/hold time and the timing jitter in the single flux quantum circuits. As a case study, the dependence of the error rate of the 1-million-bit single flux quantum shift register on the timing margin is statistically analyzed. The result indicates that adjustment of timing margin and the bias voltage is important for stable operation of a large-scale SFQ logic circuit.
Energy Technology Data Exchange (ETDEWEB)
Yamanashi, Yuki, E-mail: yamanasi@ynu.ac.jp [Department of Electrical and Computer Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240-8501 (Japan); Masubuchi, Kota; Yoshikawa, Nobuyuki [Department of Electrical and Computer Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240-8501 (Japan)
2016-11-15
The relationship between the timing margin and the error rate of the large-scale single flux quantum logic circuits is quantitatively investigated to establish a timing design guideline. We observed that the fluctuation in the set-up/hold time of single flux quantum logic gates caused by thermal noises is the most probable origin of the logical error of the large-scale single flux quantum circuit. The appropriate timing margin for stable operation of the large-scale logic circuit is discussed by taking the fluctuation of setup/hold time and the timing jitter in the single flux quantum circuits. As a case study, the dependence of the error rate of the 1-million-bit single flux quantum shift register on the timing margin is statistically analyzed. The result indicates that adjustment of timing margin and the bias voltage is important for stable operation of a large-scale SFQ logic circuit.
International Nuclear Information System (INIS)
Ge Zhengming; Chang Chingming; Chen Yensheng
2006-01-01
Anti-control of chaos of single time scale brushless dc motors (BLDCM) and chaos synchronization of different order systems are studied in this paper. By addition of an external nonlinear term, we can obtain anti-control of chaos. Then, by addition of the coupling terms, by the use of Lyapunov stability theorem and by the linearization of the error dynamics, chaos synchronization between a third-order BLDCM and a second-order Duffing system are presented
Mukherjee, Biswaroop; Peter, Christine; Kremer, Kurt
2017-09-21
Understanding the connections between the characteristic dynamical time scales associated with a coarse-grained (CG) and a detailed representation is central to the applicability of the coarse-graining methods to understand molecular processes. The process of coarse graining leads to an accelerated dynamics, owing to the smoothening of the underlying free-energy landscapes. Often a single time-mapping factor is used to relate the time scales associated with the two representations. We critically examine this idea using a model system ideally suited for this purpose. Single molecular transport properties are studied via molecular dynamics simulations of the CG and atomistic representations of a liquid crystalline, azobenzene containing mesogen, simulated in the smectic and the isotropic phases. The out-of-plane dynamics in the smectic phase occurs via molecular hops from one smectic layer to the next. Hopping can occur via two mechanisms, with and without significant reorientation. The out-of-plane transport can be understood as a superposition of two (one associated with each mode of transport) independent continuous time random walks for which a single time-mapping factor would be rather inadequate. A comparison of the free-energy surfaces, relevant to the out-of-plane transport, qualitatively supports the above observations. Thus, this work underlines the need for building CG models that exhibit both structural and dynamical consistency to the underlying atomistic model.
Mukherjee, Biswaroop; Peter, Christine; Kremer, Kurt
2017-09-01
Understanding the connections between the characteristic dynamical time scales associated with a coarse-grained (CG) and a detailed representation is central to the applicability of the coarse-graining methods to understand molecular processes. The process of coarse graining leads to an accelerated dynamics, owing to the smoothening of the underlying free-energy landscapes. Often a single time-mapping factor is used to relate the time scales associated with the two representations. We critically examine this idea using a model system ideally suited for this purpose. Single molecular transport properties are studied via molecular dynamics simulations of the CG and atomistic representations of a liquid crystalline, azobenzene containing mesogen, simulated in the smectic and the isotropic phases. The out-of-plane dynamics in the smectic phase occurs via molecular hops from one smectic layer to the next. Hopping can occur via two mechanisms, with and without significant reorientation. The out-of-plane transport can be understood as a superposition of two (one associated with each mode of transport) independent continuous time random walks for which a single time-mapping factor would be rather inadequate. A comparison of the free-energy surfaces, relevant to the out-of-plane transport, qualitatively supports the above observations. Thus, this work underlines the need for building CG models that exhibit both structural and dynamical consistency to the underlying atomistic model.
Time-scales for quenching single-bubble sonoluminescence in the presence of alcohols
Guan, Jingfeng; Matula, Thomas
2002-11-01
A small amount of alcohol added to water dramatically decreases the light intensity from single-bubble sonoluminescence [Weninger et al., J. Phys. Chem. 99, 14195-14197 (1995)]. From an excess accumulation at the bubble surface [Ashokkumar et al., J. Phys. Chem. 104, 8462-8465 (2000)], the molecules evaporate into the bubble interior, reducing the effective adiabatic exponent of the gas, and decreasing the bubble temperature and light output [Toegel et al., Phys. Rev. Lett. 84, 2509-2512 (2000)]. There is a debate as to the rate at which alcohol is injected into the bubble interior. One camp favors the notion that molecules must be repetitively injected over many acoustic cycles. Another camp favors the notion that most quenching occurs during a single collapse. An experiment has been conducted in order to resolve the debate. Quenching rates were measured by recording the instantaneous bubble response and corresponding light emission during a sudden increase in pressure. It was found that complete quenching in the presence of methanol requires over 8000 acoustic cycles, while quenching with butanol occurs in about 20 acoustic cycles. These observations are consistent with the view that quenching requires the repetitive injection of alcohol molecules over repetitive acoustic cycles.
Kuehn, Christian
2015-01-01
This book provides an introduction to dynamical systems with multiple time scales. The approach it takes is to provide an overview of key areas, particularly topics that are less available in the introductory form. The broad range of topics included makes it accessible for students and researchers new to the field to gain a quick and thorough overview. The first of its kind, this book merges a wide variety of different mathematical techniques into a more unified framework. The book is highly illustrated with many examples and exercises and an extensive bibliography. The target audience of this book are senior undergraduates, graduate students as well as researchers interested in using the multiple time scale dynamics theory in nonlinear science, either from a theoretical or a mathematical modeling perspective.
Neggers, Roel
2016-04-01
), and iii) process-level evaluation at climate time-scales. The advantages and disadvantages of each approach will be identified and discussed, and some thoughts about possible future developments will be given.
International Nuclear Information System (INIS)
Sohier, Till
2011-01-01
This research thesis reports the first fundamental study of the dosimetry of charged and gamma radiations by measurement of fluorescence resolved in time at a nanosecond scale, in organic matter. This method allows an in-depth and real-time analysis of the deposited dose, while taking ionisation as well as excitation processes into account. The author describes mechanisms of interaction and deposition of energy on dense matter, reports the detailed study of the ion-matter interaction, and the interaction of secondary electrons produced within traces. He addresses mechanisms of energy relaxation, and more particularly the study or organic scintillators. Then, he presents the adopted experimental approach: experimental observation with a statistic reconstitution of the curve representing the intensity of the emitted fluorescence in time and with a nanosecond resolution by using a scintillating sensor for time correlated single photon counting (TCSPC). The next part reports the development of an experimental multi-modal platform for dosimetry by TCSPC aimed at the measurement of fluorescence decays under pulsed excitation (nanosecond pulsed ion beams) and continuous flow excitation (non pulsed beams and radioactive sources). Experimental results are then presented for fluorescence measurements, and compared with measurements obtained by using an ionization chamber under the same irradiation conditions: dose deposited by hellions and carbon ions within polyvinyl toluene and polyethylene terephthalate, use of scintillating optic fibers under gamma irradiation of Caesium 137 and Cobalt 60. A new experimental approach is finally presented to perform dosimetry measurements while experimentally ignoring luminescence produced by Cerenkov effect [fr
Chemical Transfer (Single Small-Scale) Facility
Federal Laboratory Consortium — Description/History: Chemistry laboratoryThe Chemical Transfer Facility (CTF) is the only U.S. single small-scale facility, a single repository for the Army’s...
2006-12-01
as the fundamental unit of time in the International System of Units. It was defined as ( Metrologia , 1968) “the duration of 9 192 631 770 periods of...atomic time equivalent to the second of ET in principle. The Comité Consultatif pour la Définition de la Seconde (CCDS) of the CIPM recommended...with the definition of the second, the unit of time of the Inter- national System of Units” ( Metrologia , 1971). The CCDS (BIPM Com. Cons. Déf. Seconde
Gradstein, F.M.; Ogg, J.G.; Hilgen, F.J.
2012-01-01
This report summarizes the international divisions and ages in the Geologic Time Scale, published in 2012 (GTS2012). Since 2004, when GTS2004 was detailed, major developments have taken place that directly bear and have considerable impact on the intricate science of geologic time scaling. Precam
Dynamic inequalities on time scales
Agarwal, Ravi; Saker, Samir
2014-01-01
This is a monograph devoted to recent research and results on dynamic inequalities on time scales. The study of dynamic inequalities on time scales has been covered extensively in the literature in recent years and has now become a major sub-field in pure and applied mathematics. In particular, this book will cover recent results on integral inequalities, including Young's inequality, Jensen's inequality, Holder's inequality, Minkowski's inequality, Steffensen's inequality, Hermite-Hadamard inequality and Čebyšv's inequality. Opial type inequalities on time scales and their extensions with weighted functions, Lyapunov type inequalities, Halanay type inequalities for dynamic equations on time scales, and Wirtinger type inequalities on time scales and their extensions will also be discussed here in detail.
Smith; Evensen; York; Odin
1998-03-06
The mineral series glaucony supplies 40% of the absolute-age database for the geologic time scale of the last 250 million years. However, glauconies have long been suspected of giving young potassium-argon ages on bulk samples. Laser-probe argon-argon dating shows that glaucony populations comprise grains with a wide range of ages, suggesting a period of genesis several times longer ( approximately 5 million years) than previously thought. An estimate of the age of their enclosing sediments (and therefore of time scale boundaries) is given by the oldest nonrelict grains in the glaucony populations, whereas the formation times of the younger grains appear to be modulated by global sea level.
Pair plasma relaxation time scales.
Aksenov, A G; Ruffini, R; Vereshchagin, G V
2010-04-01
By numerically solving the relativistic Boltzmann equations, we compute the time scale for relaxation to thermal equilibrium for an optically thick electron-positron plasma with baryon loading. We focus on the time scales of electromagnetic interactions. The collisional integrals are obtained directly from the corresponding QED matrix elements. Thermalization time scales are computed for a wide range of values of both the total-energy density (over 10 orders of magnitude) and of the baryonic loading parameter (over 6 orders of magnitude). This also allows us to study such interesting limiting cases as the almost purely electron-positron plasma or electron-proton plasma as well as intermediate cases. These results appear to be important both for laboratory experiments aimed at generating optically thick pair plasmas as well as for astrophysical models in which electron-positron pair plasmas play a relevant role.
Todo, Kenichi; Sakai, Nobuyuki; Kono, Tomoyuki; Hoshi, Taku; Imamura, Hirotoshi; Adachi, Hidemitsu; Kohara, Nobuo
2016-05-01
Outcomes after successful endovascular therapy in acute ischemic stroke are associated with onset-to-reperfusion time (ORT) and the National Institutes of Health Stroke Scale (NIHSS) score. In intravenous recombinant tissue plasminogen activator therapy, the NIHSS-time score, calculated by multiplying onset-to-treatment time with the NIHSS score, has been shown to predict clinical outcomes. In this study, we assessed whether a similar combination of the ORT and the NIHSS score can be applied to predict the outcomes after endovascular therapy. We retrospectively reviewed the charts of 128 consecutive ischemic stroke patients with successful reperfusion after endovascular therapy. We analyzed the association of the ORT, the NIHSS score, and the NIHSS-time score with good outcome (modified Rankin Scale score ≤ 2 at 3 months). Good outcome rates for patients with NIHSS-time scores of 84.7 or lower, scores higher than 84.7 up to 127.5 or lower, and scores higher than 127.5 were 72.1%, 44.2%, and 14.3%, respectively (P < .01). Multivariate logistic regression analysis revealed that the NIHSS-time score was an independent predictor of good outcomes (odds ratio, .372; 95% confidence interval, .175-.789) after adjusting for age, sex, internal carotid artery occlusion, plasma glucose level, ORT, and NIHSS score. The NIHSS-time score can predict good clinical outcomes after endovascular treatment. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Ergodicity breakdown and scaling from single sequences
Energy Technology Data Exchange (ETDEWEB)
Kalashyan, Armen K. [Center for Nonlinear Science, University of North Texas, P.O. Box 311427, Denton, TX 76203-1427 (United States); Buiatti, Marco [Laboratoire de Neurophysique et Physiologie, CNRS UMR 8119 Universite Rene Descartes - Paris 5 45, rue des Saints Peres, 75270 Paris Cedex 06 (France); Cognitive Neuroimaging Unit - INSERM U562, Service Hospitalier Frederic Joliot, CEA/DRM/DSV, 4 Place du general Leclerc, 91401 Orsay Cedex (France); Grigolini, Paolo [Center for Nonlinear Science, University of North Texas, P.O. Box 311427, Denton, TX 76203-1427 (United States); Dipartimento di Fisica ' E.Fermi' - Universita di Pisa and INFM, Largo Pontecorvo 3, 56127 Pisa (Italy); Istituto dei Processi Chimico, Fisici del CNR Area della Ricerca di Pisa, Via G. Moruzzi 1, 56124 Pisa (Italy)], E-mail: grigo@df.unipi.it
2009-01-30
In the ergodic regime, several methods efficiently estimate the temporal scaling of time series characterized by long-range power-law correlations by converting them into diffusion processes. However, in the condition of ergodicity breakdown, the same methods give ambiguous results. We show that in such regime, two different scaling behaviors emerge depending on the age of the windows used for the estimation. We explain the ambiguity of the estimation methods by the different influence of the two scaling behaviors on each method. Our results suggest that aging drastically alters the scaling properties of non-ergodic processes.
Ergodicity breakdown and scaling from single sequences
International Nuclear Information System (INIS)
Kalashyan, Armen K.; Buiatti, Marco; Grigolini, Paolo
2009-01-01
In the ergodic regime, several methods efficiently estimate the temporal scaling of time series characterized by long-range power-law correlations by converting them into diffusion processes. However, in the condition of ergodicity breakdown, the same methods give ambiguous results. We show that in such regime, two different scaling behaviors emerge depending on the age of the windows used for the estimation. We explain the ambiguity of the estimation methods by the different influence of the two scaling behaviors on each method. Our results suggest that aging drastically alters the scaling properties of non-ergodic processes.
Kutter, T
2015-01-01
The Deep Underground Neutrino Experiment (DUNE) will use a large liquid argon (LAr) detector to measure the CP violating phase, determine the neutrino mass hier- archy and perform precision tests of the three-flavor paradigm in long-baseline neutrino oscillations. The detector will consist of four modules each with a fiducial mass of 10 kt of LAr and due to its unprecedented size will allow sensitive searches for proton decay and the detection and measurement of electron neutrinos from core collapse supernovae [1]. The first 10 kt module will use single-phase LAr detection technique and be itself modular in design. The successful manufacturing, installation and operation of several full-scale detector components in a suitable configuration represents a critical engineering milestone prior to the construction and operation of the first full 10 kt DUNE detector module at the SURF underground site. A charged particle beam test of a prototype detector will provide critical calibration measurements as well as inva...
A laboratory scale fundamental time?
International Nuclear Information System (INIS)
Mendes, R.V.
2012-01-01
The existence of a fundamental time (or fundamental length) has been conjectured in many contexts. However, the ''stability of physical theories principle'' seems to be the one that provides, through the tools of algebraic deformation theory, an unambiguous derivation of the stable structures that Nature might have chosen for its algebraic framework. It is well-known that c and ℎ are the deformation parameters that stabilize the Galilean and the Poisson algebra. When the stability principle is applied to the Poincare-Heisenberg algebra, two deformation parameters emerge which define two time (or length) scales. In addition there are, for each of them, a plus or minus sign possibility in the relevant commutators. One of the deformation length scales, related to non-commutativity of momenta, is probably related to the Planck length scale but the other might be much larger and already detectable in laboratory experiments. In this paper, this is used as a working hypothesis to look for physical effects that might settle this question. Phase-space modifications, resonances, interference, electron spin resonance and non-commutative QED are considered. (orig.)
Nanosecond time measurements of single pulse
International Nuclear Information System (INIS)
Xing Jingyuan; Cheng Shiyuan
1986-01-01
This report mainly describes the principle specification of circuit design and time-interval calibrations of model SHS 500 time-to-digital converter. Its range is 12 to 500 ns, with six ranges: 50, 100, 200, 300, 400 and 500 ns. The precision of measured time-interval is 0.3% of full scale and time resolution is 0.1% of full scale
Pathological mechanisms underlying single large‐scale mitochondrial DNA deletions
Rocha, Mariana C.; Rosa, Hannah S.; Grady, John P.; Blakely, Emma L.; He, Langping; Romain, Nadine; Haller, Ronald G.; Newman, Jane; McFarland, Robert; Ng, Yi Shiau; Gorman, Grainne S.; Schaefer, Andrew M.; Tuppen, Helen A.; Taylor, Robert W.
2018-01-01
Objective Single, large‐scale deletions in mitochondrial DNA (mtDNA) are a common cause of mitochondrial disease. This study aimed to investigate the relationship between the genetic defect and molecular phenotype to improve understanding of pathogenic mechanisms associated with single, large‐scale mtDNA deletions in skeletal muscle. Methods We investigated 23 muscle biopsies taken from adult patients (6 males/17 females with a mean age of 43 years) with characterized single, large‐scale mtDNA deletions. Mitochondrial respiratory chain deficiency in skeletal muscle biopsies was quantified by immunoreactivity levels for complex I and complex IV proteins. Single muscle fibers with varying degrees of deficiency were selected from 6 patient biopsies for determination of mtDNA deletion level and copy number by quantitative polymerase chain reaction. Results We have defined 3 “classes” of single, large‐scale deletion with distinct patterns of mitochondrial deficiency, determined by the size and location of the deletion. Single fiber analyses showed that fibers with greater respiratory chain deficiency harbored higher levels of mtDNA deletion with an increase in total mtDNA copy number. For the first time, we have demonstrated that threshold levels for complex I and complex IV deficiency differ based on deletion class. Interpretation Combining genetic and immunofluorescent assays, we conclude that thresholds for complex I and complex IV deficiency are modulated by the deletion of complex‐specific protein‐encoding genes. Furthermore, removal of mt‐tRNA genes impacts specific complexes only at high deletion levels, when complex‐specific protein‐encoding genes remain. These novel findings provide valuable insight into the pathogenic mechanisms associated with these mutations. Ann Neurol 2018;83:115–130 PMID:29283441
Estimates of expansion time scales
International Nuclear Information System (INIS)
Jones, E.M.
1979-01-01
Monte Carlo simulations of the expansion of a spacefaring civilization show that descendants of that civilization should be found near virtually every useful star in the Galaxy in a time much less than the current age of the Galaxy. Only extreme assumptions about local population growth rates, emigration rates, or ship ranges can slow or halt an expansion. The apparent absence of extraterrestrials from the solar system suggests that no such civilization has arisen in the Galaxy. 1 figure
Stochastic time scale for the Universe
International Nuclear Information System (INIS)
Szydlowski, M.; Golda, Z.
1986-01-01
An intrinsic time scale is naturally defined within stochastic gradient dynamical systems. It should be interpreted as a ''relaxation time'' to a local potential minimum after the system has been randomly perturbed. It is shown that for a flat Friedman-like cosmological model this time scale is of order of the age of the Universe. 7 refs. (author)
Time scale in quasifission reactions
Energy Technology Data Exchange (ETDEWEB)
Back, B.B.; Paul, P.; Nestler, J. [and others
1995-08-01
The quasifission process arises from the hindrance of the complete fusion process when heavy-ion beams are used. The strong dissipation in the system tends to prevent fusion and lead the system towards reseparation into two final products of similar mass reminiscent of a fission process. This dissipation slows down the mass transfer and shape transformation and allows for the emission of high energy {gamma}-rays during the process, albeit with a low probability. Giant Dipole {gamma} rays emitted during this time have a characteristic spectral shape and may thus be discerned in the presence of a background of {gamma} rays emitted from the final fission-like fragments. Since the rate of GDR {gamma} emission is very well established, the strength of this component may therefore be used to measure the timescale of the quasifission process. In this experiment we studied the reaction between 368-MeV {sup 58}Ni and a {sup 165}Ho target, where deep inelastic scattering and quasifission processes are dominant. Coincidences between fission fragments (detected in four position-sensitive avalanche detectors) and high energy {gamma} rays (measured in a 10{close_quotes} x 10{close_quotes} actively shielded NaI detector) were registered. Beams were provided by the Stony Brook Superconducting Linac. The {gamma}-ray spectrum associated with deep inelastic scattering events is well reproduced by statistical cooling of projectile and target-like fragments with close to equal initial excitation energy sharing. The y spectrum associated with quasifission events is well described by statistical emission from the fission fragments alone, with only weak evidence for GDR emission from the mono-nucleus. A 1{sigma} limit of t{sub ss} < 11 x 10{sup -21} s is obtained for the mono-nucleus lifetime, which is consistent with the lifetime obtained from quasifission fragment angular distributions. A manuscript was accepted for publication.
Some nonlinear dynamic inequalities on time scales
Indian Academy of Sciences (India)
In 1988, Stefan Hilger [10] introduced the calculus on time scales which unifies continuous and discrete analysis. Since then many authors have expounded on various aspects of the theory of dynamic equations on time scales. Recently, there has been much research activity concerning the new theory. For example, we ...
Multiple time scale methods in tokamak magnetohydrodynamics
International Nuclear Information System (INIS)
Jardin, S.C.
1984-01-01
Several methods are discussed for integrating the magnetohydrodynamic (MHD) equations in tokamak systems on other than the fastest time scale. The dynamical grid method for simulating ideal MHD instabilities utilizes a natural nonorthogonal time-dependent coordinate transformation based on the magnetic field lines. The coordinate transformation is chosen to be free of the fast time scale motion itself, and to yield a relatively simple scalar equation for the total pressure, P = p + B 2 /2μ 0 , which can be integrated implicitly to average over the fast time scale oscillations. Two methods are described for the resistive time scale. The zero-mass method uses a reduced set of two-fluid transport equations obtained by expanding in the inverse magnetic Reynolds number, and in the small ratio of perpendicular to parallel mobilities and thermal conductivities. The momentum equation becomes a constraint equation that forces the pressure and magnetic fields and currents to remain in force balance equilibrium as they evolve. The large mass method artificially scales up the ion mass and viscosity, thereby reducing the severe time scale disparity between wavelike and diffusionlike phenomena, but not changing the resistive time scale behavior. Other methods addressing the intermediate time scales are discussed
Uniform Statistical Convergence on Time Scales
Directory of Open Access Journals (Sweden)
Yavuz Altin
2014-01-01
Full Text Available We will introduce the concept of m- and (λ,m-uniform density of a set and m- and (λ,m-uniform statistical convergence on an arbitrary time scale. However, we will define m-uniform Cauchy function on a time scale. Furthermore, some relations about these new notions are also obtained.
Time Scale in Least Square Method
Directory of Open Access Journals (Sweden)
Özgür Yeniay
2014-01-01
Full Text Available Study of dynamic equations in time scale is a new area in mathematics. Time scale tries to build a bridge between real numbers and integers. Two derivatives in time scale have been introduced and called as delta and nabla derivative. Delta derivative concept is defined as forward direction, and nabla derivative concept is defined as backward direction. Within the scope of this study, we consider the method of obtaining parameters of regression equation of integer values through time scale. Therefore, we implemented least squares method according to derivative definition of time scale and obtained coefficients related to the model. Here, there exist two coefficients originating from forward and backward jump operators relevant to the same model, which are different from each other. Occurrence of such a situation is equal to total number of values of vertical deviation between regression equations and observation values of forward and backward jump operators divided by two. We also estimated coefficients for the model using ordinary least squares method. As a result, we made an introduction to least squares method on time scale. We think that time scale theory would be a new vision in least square especially when assumptions of linear regression are violated.
Single start multiple stop time digitizer
International Nuclear Information System (INIS)
Deshpande, P.A.; Mukhopadhyay, P.K.; Gopalakrishnan, K.R.
1997-01-01
A single start multiple stop time digitizer has been developed which can digitize the time between a start pulse and multiple stop pulses. The system has been designed as a PC add on card. The resolution of the instrument is 10 nSecs and the maximum length of time that it can measure is 1.28 milliseconds. Apart from time digitization, it can also resolve the height of the incoming pulses into 64 levels. After each input pulse the system dead time is less than 300 nSecs. The driver software for this card has been developed on DOS platform. It uses graphical user interface to provide a user friendly environment. The system is intended to be used in time of flight mass spectroscopy experiments. It can also be used for time of flight experiments in nuclear physics. (author). 2 figs
Development and validation of the Single Item Narcissism Scale (SINS).
Konrath, Sara; Meier, Brian P; Bushman, Brad J
2014-01-01
The narcissistic personality is characterized by grandiosity, entitlement, and low empathy. This paper describes the development and validation of the Single Item Narcissism Scale (SINS). Although the use of longer instruments is superior in most circumstances, we recommend the SINS in some circumstances (e.g. under serious time constraints, online studies). In 11 independent studies (total N = 2,250), we demonstrate the SINS' psychometric properties. The SINS is significantly correlated with longer narcissism scales, but uncorrelated with self-esteem. It also has high test-retest reliability. We validate the SINS in a variety of samples (e.g., undergraduates, nationally representative adults), intrapersonal correlates (e.g., positive affect, depression), and interpersonal correlates (e.g., aggression, relationship quality, prosocial behavior). The SINS taps into the more fragile and less desirable components of narcissism. The SINS can be a useful tool for researchers, especially when it is important to measure narcissism with constraints preventing the use of longer measures.
Single-crossover recombination in discrete time.
von Wangenheim, Ute; Baake, Ellen; Baake, Michael
2010-05-01
Modelling the process of recombination leads to a large coupled nonlinear dynamical system. Here, we consider a particular case of recombination in discrete time, allowing only for single crossovers. While the analogous dynamics in continuous time admits a closed solution (Baake and Baake in Can J Math 55:3-41, 2003), this no longer works for discrete time. A more general model (i.e. without the restriction to single crossovers) has been studied before (Bennett in Ann Hum Genet 18:311-317, 1954; Dawson in Theor Popul Biol 58:1-20, 2000; Linear Algebra Appl 348:115-137, 2002) and was solved algorithmically by means of Haldane linearisation. Using the special formalism introduced by Baake and Baake (Can J Math 55:3-41, 2003), we obtain further insight into the single-crossover dynamics and the particular difficulties that arise in discrete time. We then transform the equations to a solvable system in a two-step procedure: linearisation followed by diagonalisation. Still, the coefficients of the second step must be determined in a recursive manner, but once this is done for a given system, they allow for an explicit solution valid for all times.
Hardy type inequalities on time scales
Agarwal, Ravi P; Saker, Samir H
2016-01-01
The book is devoted to dynamic inequalities of Hardy type and extensions and generalizations via convexity on a time scale T. In particular, the book contains the time scale versions of classical Hardy type inequalities, Hardy and Littlewood type inequalities, Hardy-Knopp type inequalities via convexity, Copson type inequalities, Copson-Beesack type inequalities, Liendeler type inequalities, Levinson type inequalities and Pachpatte type inequalities, Bennett type inequalities, Chan type inequalities, and Hardy type inequalities with two different weight functions. These dynamic inequalities contain the classical continuous and discrete inequalities as special cases when T = R and T = N and can be extended to different types of inequalities on different time scales such as T = hN, h > 0, T = qN for q > 1, etc.In this book the authors followed the history and development of these inequalities. Each section in self-contained and one can see the relationship between the time scale versions of the inequalities and...
Steffensen's Integral Inequality on Time Scales
Directory of Open Access Journals (Sweden)
Ozkan Umut Mutlu
2007-01-01
Full Text Available We establish generalizations of Steffensen's integral inequality on time scales via the diamond- dynamic integral, which is defined as a linear combination of the delta and nabla integrals.
JY1 time scale: a new Kalman-filter time scale designed at NIST
International Nuclear Information System (INIS)
Yao, Jian; Parker, Thomas E; Levine, Judah
2017-01-01
We report on a new Kalman-filter hydrogen-maser time scale (i.e. JY1 time scale) designed at the National Institute of Standards and Technology (NIST). The JY1 time scale is composed of a few hydrogen masers and a commercial Cs clock. The Cs clock is used as a reference clock to ease operations with existing data. Unlike other time scales, the JY1 time scale uses three basic time-scale equations, instead of only one equation. Also, this time scale can detect a clock error (i.e. time error, frequency error, or frequency drift error) automatically. These features make the JY1 time scale stiff and less likely to be affected by an abnormal clock. Tests show that the JY1 time scale deviates from the UTC by less than ±5 ns for ∼100 d, when the time scale is initially aligned to the UTC and then is completely free running. Once the time scale is steered to a Cs fountain, it can maintain the time with little error even if the Cs fountain stops working for tens of days. This can be helpful when we do not have a continuously operated fountain or when the continuously operated fountain accidentally stops, or when optical clocks run occasionally. (paper)
Mouse Activity across Time Scales: Fractal Scenarios
Lima, G. Z. dos Santos; Lobão-Soares, B.; do Nascimento, G. C.; França, Arthur S. C.; Muratori, L.; Ribeiro, S.; Corso, G.
2014-01-01
In this work we devise a classification of mouse activity patterns based on accelerometer data using Detrended Fluctuation Analysis. We use two characteristic mouse behavioural states as benchmarks in this study: waking in free activity and slow-wave sleep (SWS). In both situations we find roughly the same pattern: for short time intervals we observe high correlation in activity - a typical 1/f complex pattern - while for large time intervals there is anti-correlation. High correlation of short intervals ( to : waking state and to : SWS) is related to highly coordinated muscle activity. In the waking state we associate high correlation both to muscle activity and to mouse stereotyped movements (grooming, waking, etc.). On the other side, the observed anti-correlation over large time scales ( to : waking state and to : SWS) during SWS appears related to a feedback autonomic response. The transition from correlated regime at short scales to an anti-correlated regime at large scales during SWS is given by the respiratory cycle interval, while during the waking state this transition occurs at the time scale corresponding to the duration of the stereotyped mouse movements. Furthermore, we find that the waking state is characterized by longer time scales than SWS and by a softer transition from correlation to anti-correlation. Moreover, this soft transition in the waking state encompass a behavioural time scale window that gives rise to a multifractal pattern. We believe that the observed multifractality in mouse activity is formed by the integration of several stereotyped movements each one with a characteristic time correlation. Finally, we compare scaling properties of body acceleration fluctuation time series during sleep and wake periods for healthy mice. Interestingly, differences between sleep and wake in the scaling exponents are comparable to previous works regarding human heartbeat. Complementarily, the nature of these sleep-wake dynamics could lead to a better
EDITORIAL: Special issue on time scale algorithms
Matsakis, Demetrios; Tavella, Patrizia
2008-12-01
one single atomic clock. An international symposium dedicated to these topics was initiated in 1972 as the first International Symposium on Atomic Time Scale Algorithms and it was the beginning of a series: 1st Symposium: organized at the NIST (NBS at that epoch) in 1972, 2nd Symposium: again at the NIST in 1982, 3rd Symposium: in Italy at the INRIM (IEN at that epoch) in 1988, 4th Symposium: in Paris at the BIPM in 2002 (see Metrologia 40 (3), 2003) 5th Symposium: in San Fernando, Spain at the ROA in 2008. The early symposia were concerned with establishing the basics of how to estimate and characterize the behavior of an atomic frequency standard in an unambiguous and clearly identifiable way, and how to combine the reading of different clocks to form an optimal time scale within a laboratory. Later, as atomic frequency standards began to be used as components in larger systems, interest grew in understanding the impact of a clock in a more complex environment. For example, use of clocks in telecommunication networks in a Synchronous Digital Hierarchy created a need to measure the maximum time error spanned by a clock in a certain interval. Timekeeping metrologists became interested in estimating time deviations and time stability, so they had to find ways to convert their common frequency characteristics to time characteristics. Tests of fundamental physics provided a motivation for launching atomic frequency standards into space in long-lasting missions, whose high-precision measurements might be available for only a few hours a day, yielding a series of clock data with many gaps and outliers for which a suitable statistical analysis was necessary to extract as much information as possible from the data. In the 21st century, the field has been transformed by the advent of atomic-clock-based Global Navigation Satellite Systems (GNSS), the steady increase in precision brought about by rapidly improving clocks and measurement systems, and the growing number of
Wollman, Adam J. M.; Miller, Helen; Foster, Simon; Leake, Mark C.
2016-10-01
Staphylococcus aureus is an important pathogen, giving rise to antimicrobial resistance in cell strains such as Methicillin Resistant S. aureus (MRSA). Here we report an image analysis framework for automated detection and image segmentation of cells in S. aureus cell clusters, and explicit identification of their cell division planes. We use a new combination of several existing analytical tools of image analysis to detect cellular and subcellular morphological features relevant to cell division from millisecond time scale sampled images of live pathogens at a detection precision of single molecules. We demonstrate this approach using a fluorescent reporter GFP fused to the protein EzrA that localises to a mid-cell plane during division and is involved in regulation of cell size and division. This image analysis framework presents a valuable platform from which to study candidate new antimicrobials which target the cell division machinery, but may also have more general application in detecting morphologically complex structures of fluorescently labelled proteins present in clusters of other types of cells.
Energy Technology Data Exchange (ETDEWEB)
Shcheslavskiy, V., E-mail: vis@becker-hickl.de; Becker, W. [Becker & Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin (Germany); Morozov, P.; Divochiy, A. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Vakhtomin, Yu. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Moscow State Pedagogical University, 1/1 M. Pirogovskaya St., Moscow 119991 (Russian Federation); Smirnov, K. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Moscow State Pedagogical University, 1/1 M. Pirogovskaya St., Moscow 119991 (Russian Federation); National Research University Higher School of Economics, 20 Myasnitskaya St., Moscow 101000 (Russian Federation)
2016-05-15
Time resolution is one of the main characteristics of the single photon detectors besides quantum efficiency and dark count rate. We demonstrate here an ultrafast time-correlated single photon counting (TCSPC) setup consisting of a newly developed single photon counting board SPC-150NX and a superconducting NbN single photon detector with a sensitive area of 7 × 7 μm. The combination delivers a record instrument response function with a full width at half maximum of 17.8 ps and system quantum efficiency ∼15% at wavelength of 1560 nm. A calculation of the root mean square value of the timing jitter for channels with counts more than 1% of the peak value yielded about 7.6 ps. The setup has also good timing stability of the detector–TCSPC board.
Multivariable dynamic calculus on time scales
Bohner, Martin
2016-01-01
This book offers the reader an overview of recent developments of multivariable dynamic calculus on time scales, taking readers beyond the traditional calculus texts. Covering topics from parameter-dependent integrals to partial differentiation on time scales, the book’s nine pedagogically oriented chapters provide a pathway to this active area of research that will appeal to students and researchers in mathematics and the physical sciences. The authors present a clear and well-organized treatment of the concept behind the mathematics and solution techniques, including many practical examples and exercises.
Time scales in tidal disruption events
Directory of Open Access Journals (Sweden)
Krolik J.
2012-12-01
Full Text Available We explore the temporal structure of tidal disruption events pointing out the corresponding transitions in the lightcurves of the thermal accretion disk and of the jet emerging from such events. The hydrodynamic time scale of the disrupted star is the minimal time scale of building up the accretion disk and the jet and it sets a limit on the rise time. This suggest that Swift J1644+57, that shows several flares with a rise time as short as a few hundred seconds could not have arisen from a tidal disruption of a main sequence star whose hydrodynamic time is a few hours. The disrupted object must have been a white dwarf. A second important time scale is the Eddington time in which the accretion rate changes form super to sub Eddington. It is possible that such a transition was observed in the light curve of Swift J2058+05. If correct this provides interesting constraints on the parameters of the system.
The Second Noether Theorem on Time Scales
Directory of Open Access Journals (Sweden)
Agnieszka B. Malinowska
2013-01-01
Full Text Available We extend the second Noether theorem to variational problems on time scales. As corollaries we obtain the classical second Noether theorem, the second Noether theorem for the h-calculus and the second Noether theorem for the q-calculus.
Structure of Student Time Management Scale (STMS)
Balamurugan, M.
2013-01-01
With the aim of constructing a Student Time Management Scale (STMS), the initial version was administered and data were collected from 523 standard eleventh students. (Mean age = 15.64). The data obtained were subjected to Reliability and Factor analysis using PASW Statistical software version 18. From 42 items 14 were dropped, resulting in the…
Some Nonlinear Dynamic Inequalities on Time Scales
Indian Academy of Sciences (India)
The aim of this paper is to investigate some nonlinear dynamic inequalities on time scales, which provide explicit bounds on unknown functions. The inequalities given here unify and extend some inequalities in (B G Pachpatte, On some new inequalities related to a certain inequality arising in the theory of differential ...
Development and Validation of the Single Item Narcissism Scale (SINS)
Konrath, Sara; Meier, Brian P.; Bushman, Brad J.
2014-01-01
Main Objectives The narcissistic personality is characterized by grandiosity, entitlement, and low empathy. This paper describes the development and validation of the Single Item Narcissism Scale (SINS). Although the use of longer instruments is superior in most circumstances, we recommend the SINS in some circumstances (e.g. under serious time constraints, online studies). Methods In 11 independent studies (total N = 2,250), we demonstrate the SINS' psychometric properties. Results The SINS is significantly correlated with longer narcissism scales, but uncorrelated with self-esteem. It also has high test-retest reliability. We validate the SINS in a variety of samples (e.g., undergraduates, nationally representative adults), intrapersonal correlates (e.g., positive affect, depression), and interpersonal correlates (e.g., aggression, relationship quality, prosocial behavior). The SINS taps into the more fragile and less desirable components of narcissism. Significance The SINS can be a useful tool for researchers, especially when it is important to measure narcissism with constraints preventing the use of longer measures. PMID:25093508
Development and validation of the Single Item Narcissism Scale (SINS.
Directory of Open Access Journals (Sweden)
Sara Konrath
Full Text Available MAIN OBJECTIVES: The narcissistic personality is characterized by grandiosity, entitlement, and low empathy. This paper describes the development and validation of the Single Item Narcissism Scale (SINS. Although the use of longer instruments is superior in most circumstances, we recommend the SINS in some circumstances (e.g. under serious time constraints, online studies. METHODS: In 11 independent studies (total N = 2,250, we demonstrate the SINS' psychometric properties. RESULTS: The SINS is significantly correlated with longer narcissism scales, but uncorrelated with self-esteem. It also has high test-retest reliability. We validate the SINS in a variety of samples (e.g., undergraduates, nationally representative adults, intrapersonal correlates (e.g., positive affect, depression, and interpersonal correlates (e.g., aggression, relationship quality, prosocial behavior. The SINS taps into the more fragile and less desirable components of narcissism. SIGNIFICANCE: The SINS can be a useful tool for researchers, especially when it is important to measure narcissism with constraints preventing the use of longer measures.
Special Issue on Time Scale Algorithms
2008-01-01
unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 IOP PUBLISHING METROLOGIA Metrologia 45 (2008) doi:10.1088/0026-1394/45/6/E01...special issue of Metrologia presents selected papers from the Fifth International Time Scale Algorithm Symposium (VITSAS), including some of the...scientists, and hosted by the Real Instituto y Observatorio de la Armada (ROA) in San Fernando, Spain, whose staff further enhanced their nation’s high
Current relaxation time scales in toroidal plasmas
International Nuclear Information System (INIS)
Mikkelsen, D.R.
1987-02-01
An approximate normal mode analysis of plasma current diffusion in tokamaks is presented. The work is based on numerical solutions of the current diffusion equation in cylindrical geometry. Eigenvalues and eigenfunctions are shown for a broad range of plasma conductivity profile shapes. Three classes of solutions are considered which correspond to three types of tokamak operation. Convenient approximations to the three lowest eigenvalues in each class are presented and simple formulae for the current relaxation time scales are given
Liquidity crises on different time scales
Corradi, Francesco; Zaccaria, Andrea; Pietronero, Luciano
2015-12-01
We present an empirical analysis of the microstructure of financial markets and, in particular, of the static and dynamic properties of liquidity. We find that on relatively large time scales (15 min) large price fluctuations are connected to the failure of the subtle mechanism of compensation between the flows of market and limit orders: in other words, the missed revelation of the latent order book breaks the dynamical equilibrium between the flows, triggering the large price jumps. On smaller time scales (30 s), instead, the static depletion of the limit order book is an indicator of an intrinsic fragility of the system, which is related to a strongly nonlinear enhancement of the response. In order to quantify this phenomenon we introduce a measure of the liquidity imbalance present in the book and we show that it is correlated to both the sign and the magnitude of the next price movement. These findings provide a quantitative definition of the effective liquidity, which proves to be strongly dependent on the considered time scales.
Multidimensional scaling of musical time estimations.
Cocenas-Silva, Raquel; Bueno, José Lino Oliveira; Molin, Paul; Bigand, Emmanuel
2011-06-01
The aim of this study was to identify the psycho-musical factors that govern time evaluation in Western music from baroque, classic, romantic, and modern repertoires. The excerpts were previously found to represent variability in musical properties and to induce four main categories of emotions. 48 participants (musicians and nonmusicians) freely listened to 16 musical excerpts (lasting 20 sec. each) and grouped those that seemed to have the same duration. Then, participants associated each group of excerpts to one of a set of sine wave tones varying in duration from 16 to 24 sec. Multidimensional scaling analysis generated a two-dimensional solution for these time judgments. Musical excerpts with high arousal produced an overestimation of time, and affective valence had little influence on time perception. The duration was also overestimated when tempo and loudness were higher, and to a lesser extent, timbre density. In contrast, musical tension had little influence.
uncertain dynamic systems on time scales
Directory of Open Access Journals (Sweden)
V. Lakshmikantham
1995-01-01
Full Text Available A basic feedback control problem is that of obtaining some desired stability property from a system which contains uncertainties due to unknown inputs into the system. Despite such imperfect knowledge in the selected mathematical model, we often seek to devise controllers that will steer the system in a certain required fashion. Various classes of controllers whose design is based on the method of Lyapunov are known for both discrete [4], [10], [15], and continuous [3–9], [11] models described by difference and differential equations, respectively. Recently, a theory for what is known as dynamic systems on time scales has been built which incorporates both continuous and discrete times, namely, time as an arbitrary closed sets of reals, and allows us to handle both systems simultaneously [1], [2], [12], [13]. This theory permits one to get some insight into and better understanding of the subtle differences between discrete and continuous systems. We shall, in this paper, utilize the framework of the theory of dynamic systems on time scales to investigate the stability properties of conditionally invariant sets which are then applied to discuss controlled systems with uncertain elements. For the notion of conditionally invariant set and its stability properties, see [14]. Our results offer a new approach to the problem in question.
Time-Scale Invariant Audio Data Embedding
Directory of Open Access Journals (Sweden)
Mansour Mohamed F
2003-01-01
Full Text Available We propose a novel algorithm for high-quality data embedding in audio. The algorithm is based on changing the relative length of the middle segment between two successive maximum and minimum peaks to embed data. Spline interpolation is used to change the lengths. To ensure smooth monotonic behavior between peaks, a hybrid orthogonal and nonorthogonal wavelet decomposition is used prior to data embedding. The possible data embedding rates are between 20 and 30 bps. However, for practical purposes, we use repetition codes, and the effective embedding data rate is around 5 bps. The algorithm is invariant after time-scale modification, time shift, and time cropping. It gives high-quality output and is robust to mp3 compression.
DEFF Research Database (Denmark)
Nazmutdinov, Renat R.; Zinkicheva, Tamara T.; Zinkicheva, Tamara T.
2018-01-01
Electrochemistry at ultra-small scales, where even the single molecule or biomolecule can be characterized and manipulated, is on the way to a consolidated status. At the same time molecular electrochemistry is expanding into other areas of sophisticated nano- and molecular scale systems includin...... molecular scale metal and semiconductor nanoparticles (NPs) and other nanostructures, e.g. nanotubes, “nanoflowers” etc.. The new structures offer both new electronic properties and highly confined novel charge transfer environments....
Scaling of ion implanted Si:P single electron devices
International Nuclear Information System (INIS)
Escott, C C; Hudson, F E; Chan, V C; Petersson, K D; Clark, R G; Dzurak, A S
2007-01-01
We present a modelling study on the scaling prospects for phosphorus in silicon (Si:P) single electron devices using readily available commercial and free-to-use software. The devices comprise phosphorus ion implanted, metallically doped (n + ) dots (size range 50-500 nm) with source and drain reservoirs. Modelling results are compared to measurements on fabricated devices and discussed in the context of scaling down to few-electron structures. Given current fabrication constraints, we find that devices with 70-75 donors per dot should be realizable. We comment on methods for further reducing this number
Scaling of ion implanted Si:P single electron devices
Energy Technology Data Exchange (ETDEWEB)
Escott, C C [Centre for Quantum Computer Technology, School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052 (Australia); Hudson, F E [Centre for Quantum Computer Technology, School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052 (Australia); Chan, V C [Centre for Quantum Computer Technology, School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052 (Australia); Petersson, K D [Centre for Quantum Computer Technology, School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052 (Australia); Clark, R G [Centre for Quantum Computer Technology, School of Physics, UNSW, Sydney, 2052 (Australia); Dzurak, A S [Centre for Quantum Computer Technology, School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052 (Australia)
2007-06-13
We present a modelling study on the scaling prospects for phosphorus in silicon (Si:P) single electron devices using readily available commercial and free-to-use software. The devices comprise phosphorus ion implanted, metallically doped (n{sup +}) dots (size range 50-500 nm) with source and drain reservoirs. Modelling results are compared to measurements on fabricated devices and discussed in the context of scaling down to few-electron structures. Given current fabrication constraints, we find that devices with 70-75 donors per dot should be realizable. We comment on methods for further reducing this number.
Multiple time scales of adaptation in auditory cortex neurons.
Ulanovsky, Nachum; Las, Liora; Farkas, Dina; Nelken, Israel
2004-11-17
Neurons in primary auditory cortex (A1) of cats show strong stimulus-specific adaptation (SSA). In probabilistic settings, in which one stimulus is common and another is rare, responses to common sounds adapt more strongly than responses to rare sounds. This SSA could be a correlate of auditory sensory memory at the level of single A1 neurons. Here we studied adaptation in A1 neurons, using three different probabilistic designs. We showed that SSA has several time scales concurrently, spanning many orders of magnitude, from hundreds of milliseconds to tens of seconds. Similar time scales are known for the auditory memory span of humans, as measured both psychophysically and using evoked potentials. A simple model, with linear dependence on both short-term and long-term stimulus history, provided a good fit to A1 responses. Auditory thalamus neurons did not show SSA, and their responses were poorly fitted by the same model. In addition, SSA increased the proportion of failures in the responses of A1 neurons to the adapting stimulus. Finally, SSA caused a bias in the neuronal responses to unbiased stimuli, enhancing the responses to eccentric stimuli. Therefore, we propose that a major function of SSA in A1 neurons is to encode auditory sensory memory on multiple time scales. This SSA might play a role in stream segregation and in binding of auditory objects over many time scales, a property that is crucial for processing of natural auditory scenes in cats and of speech and music in humans.
Delving Deep into Multiscale Pedestrian Detection via Single Scale Feature Maps
Directory of Open Access Journals (Sweden)
Xinchuan Fu
2018-04-01
Full Text Available The standard pipeline in pedestrian detection is sliding a pedestrian model on an image feature pyramid to detect pedestrians of different scales. In this pipeline, feature pyramid construction is time consuming and becomes the bottleneck for fast detection. Recently, a method called multiresolution filtered channels (MRFC was proposed which only used single scale feature maps to achieve fast detection. However, there are two shortcomings in MRFC which limit its accuracy. One is that the receptive field correspondence in different scales is weak. Another is that the features used are not scale invariance. In this paper, two solutions are proposed to tackle with the two shortcomings respectively. Specifically, scale-aware pooling is proposed to make a better receptive field correspondence, and soft decision tree is proposed to relive scale variance problem. When coupled with efficient sliding window classification strategy, our detector achieves fast detecting speed at the same time with state-of-the-art accuracy.
A model for AGN variability on multiple time-scales
Sartori, Lia F.; Schawinski, Kevin; Trakhtenbrot, Benny; Caplar, Neven; Treister, Ezequiel; Koss, Michael J.; Urry, C. Megan; Zhang, C. E.
2018-05-01
We present a framework to link and describe active galactic nuclei (AGN) variability on a wide range of time-scales, from days to billions of years. In particular, we concentrate on the AGN variability features related to changes in black hole fuelling and accretion rate. In our framework, the variability features observed in different AGN at different time-scales may be explained as realisations of the same underlying statistical properties. In this context, we propose a model to simulate the evolution of AGN light curves with time based on the probability density function (PDF) and power spectral density (PSD) of the Eddington ratio (L/LEdd) distribution. Motivated by general galaxy population properties, we propose that the PDF may be inspired by the L/LEdd distribution function (ERDF), and that a single (or limited number of) ERDF+PSD set may explain all observed variability features. After outlining the framework and the model, we compile a set of variability measurements in terms of structure function (SF) and magnitude difference. We then combine the variability measurements on a SF plot ranging from days to Gyr. The proposed framework enables constraints on the underlying PSD and the ability to link AGN variability on different time-scales, therefore providing new insights into AGN variability and black hole growth phenomena.
Neural Computations in a Dynamical System with Multiple Time Scales.
Mi, Yuanyuan; Lin, Xiaohan; Wu, Si
2016-01-01
Neural systems display rich short-term dynamics at various levels, e.g., spike-frequency adaptation (SFA) at the single-neuron level, and short-term facilitation (STF) and depression (STD) at the synapse level. These dynamical features typically cover a broad range of time scales and exhibit large diversity in different brain regions. It remains unclear what is the computational benefit for the brain to have such variability in short-term dynamics. In this study, we propose that the brain can exploit such dynamical features to implement multiple seemingly contradictory computations in a single neural circuit. To demonstrate this idea, we use continuous attractor neural network (CANN) as a working model and include STF, SFA and STD with increasing time constants in its dynamics. Three computational tasks are considered, which are persistent activity, adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, and hence cannot be implemented by a single dynamical feature or any combination with similar time constants. However, with properly coordinated STF, SFA and STD, we show that the network is able to implement the three computational tasks concurrently. We hope this study will shed light on the understanding of how the brain orchestrates its rich dynamics at various levels to realize diverse cognitive functions.
Single Motherhood, Living Arrangements, and Time With Children in Japan.
Raymo, James M; Park, Hyunjoon; Iwasawa, Miho; Zhou, Yanfei
2014-08-01
The authors examined relationships between single parenthood and mothers' time with children in Japan. Using data from the 2011 National Survey of Households with Children (N = 1,926), they first demonstrate that time spent with children and the frequency of shared dinners are significantly lower for single mothers than for their married counterparts. For single mothers living alone, less time with children reflects long work hours and work-related stress. Single mothers coresiding with parents spend less time with children and eat dinner together less frequently than either married mothers or their unmarried counterparts not living with parents, net of (grand)parental support, work hours, income, and stress. The findings suggest that rising divorce rates and associated growth in single-mother families may have a detrimental impact on parents' time with children in Japan and that the relatively high prevalence of intergenerational coresidence among single mothers may do little to temper this impact.
EVALUTION OF THE SINGLE INTERCITY FREIGHT TRANSPORTATION WAITING TIME
Directory of Open Access Journals (Sweden)
N. Ponomariova
2015-07-01
Full Text Available The example of vechicle operation on the pendulum intercity route during single freightages processing is considered. Two approaches to the definition of the single freightage waiting time by the carrier are proposed. These approaches allow to take into account the probability of the single freightage obtaining by the carrier during the different load level of the transport enterprise capacity.
Almost Automorphic Functions on the Quantum Time Scale and Applications
Directory of Open Access Journals (Sweden)
Yongkun Li
2017-01-01
Full Text Available We first propose two types of concepts of almost automorphic functions on the quantum time scale. Secondly, we study some basic properties of almost automorphic functions on the quantum time scale. Then, we introduce a transformation between functions defined on the quantum time scale and functions defined on the set of generalized integer numbers; by using this transformation we give equivalent definitions of almost automorphic functions on the quantum time scale; following the idea of the transformation, we also give a concept of almost automorphic functions on more general time scales that can unify the concepts of almost automorphic functions on almost periodic time scales and on the quantum time scale. Finally, as an application of our results, we establish the existence of almost automorphic solutions of linear and semilinear dynamic equations on the quantum time scale.
Simulating Biomass Fast Pyrolysis at the Single Particle Scale
Energy Technology Data Exchange (ETDEWEB)
Ciesielski, Peter [National Renewable Energy Laboratory (NREL); Wiggins, Gavin [ORNL; Daw, C Stuart [ORNL; Jakes, Joseph E. [U.S. Forest Service, Forest Products Laboratory, Madison, Wisconsin, USA
2017-07-01
Simulating fast pyrolysis at the scale of single particles allows for the investigation of the impacts of feedstock-specific parameters such as particle size, shape, and species of origin. For this reason particle-scale modeling has emerged as an important tool for understanding how variations in feedstock properties affect the outcomes of pyrolysis processes. The origins of feedstock properties are largely dictated by the composition and hierarchical structure of biomass, from the microstructural porosity to the external morphology of milled particles. These properties may be accounted for in simulations of fast pyrolysis by several different computational approaches depending on the level of structural and chemical complexity included in the model. The predictive utility of particle-scale simulations of fast pyrolysis can still be enhanced substantially by advancements in several areas. Most notably, considerable progress would be facilitated by the development of pyrolysis kinetic schemes that are decoupled from transport phenomena, predict product evolution from whole-biomass with increased chemical speciation, and are still tractable with present-day computational resources.
A Quaternary Geomagnetic Instability Time Scale
Singer, B. S.
2013-12-01
Reversals and excursions of Earth's geomagnetic field create marker horizons that are readily detected in sedimentary and volcanic rocks worldwide. An accurate and precise chronology of these geomagnetic field instabilities is fundamental to understanding several aspects of Quaternary climate, dynamo processes, and surface processes. For example, stratigraphic correlation between marine sediment and polar ice records of climate change across the cryospheres benefits from a highly resolved record of reversals and excursions. The temporal patterns of dynamo behavior may reflect physical interactions between the molten outer core and the solid inner core or lowermost mantle. These interactions may control reversal frequency and shape the weak magnetic fields that arise during successive dynamo instabilities. Moreover, weakening of the axial dipole during reversals and excursions enhances the production of cosmogenic isotopes that are used in sediment and ice core stratigraphy and surface exposure dating. The Geomagnetic Instability Time Scale (GITS) is based on the direct dating of transitional polarity states recorded by lava flows using the 40Ar/39Ar method, in parallel with astrochronologic age models of marine sediments in which O isotope and magnetic records have been obtained. A review of data from Quaternary lava flows and sediments yields a GITS comprising 10 polarity reversals and 27 excursions during the past 2.6 million years. Nine of the ten reversals bounding chrons and subchrons are associated with 40Ar/39Ar ages of transitionally-magnetized lava flows. The tenth, the Guass-Matuyama chron boundary, is tightly bracketed by 40Ar/39Ar dated ash deposits. Of the 27 well-documented excursions, 14 occurred during the Matuyama chron and 13 during the Brunhes chron; 19 have been dated directly using the 40Ar/39Ar method on transitionally-magnetized volcanic rocks and form the backbone of the GITS. Excursions are clearly not the rare phenomena once thought
On single-time reduction in quantum field theory
International Nuclear Information System (INIS)
Arkhipov, A.A.
1984-01-01
It is shown, how the causality and spectrality properties in qUantum field theory may help one to carry out a single-time reduction of the Bethe-Salpeter wave fUnction. The single-time reduction technique is not based on any concrete model of the quantum field theory. Axiomatic formulations underline the quantum field theory
A Review of Time-Scale Modification of Music Signals
Directory of Open Access Journals (Sweden)
Jonathan Driedger
2016-02-01
Full Text Available Time-scale modification (TSM is the task of speeding up or slowing down an audio signal’s playback speed without changing its pitch. In digital music production, TSM has become an indispensable tool, which is nowadays integrated in a wide range of music production software. Music signals are diverse—they comprise harmonic, percussive, and transient components, among others. Because of this wide range of acoustic and musical characteristics, there is no single TSM method that can cope with all kinds of audio signals equally well. Our main objective is to foster a better understanding of the capabilities and limitations of TSM procedures. To this end, we review fundamental TSM methods, discuss typical challenges, and indicate potential solutions that combine different strategies. In particular, we discuss a fusion approach that involves recent techniques for harmonic-percussive separation along with time-domain and frequency-domain TSM procedures.
Energy Technology Data Exchange (ETDEWEB)
Hirvonen, Liisa M. [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom); Petrášek, Zdeněk [Max Planck Institute of Biochemistry, Department of Cellular and Molecular Biophysics, Am Klopferspitz 18, D-82152 Martinsried (Germany); Suhling, Klaus, E-mail: klaus.suhling@kcl.ac.uk [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom)
2015-07-01
Fast frame rate CMOS cameras in combination with photon counting intensifiers can be used for fluorescence imaging with single photon sensitivity at kHz frame rates. We show here how the phosphor decay of the image intensifier can be exploited for accurate timing of photon arrival well below the camera exposure time. This is achieved by taking ratios of the intensity of the photon events in two subsequent frames, and effectively allows wide-field TCSPC. This technique was used for measuring decays of ruthenium compound Ru(dpp) with lifetimes as low as 1 μs with 18.5 μs frame exposure time, including in living HeLa cells, using around 0.1 μW excitation power. We speculate that by using an image intensifier with a faster phosphor decay to match a higher camera frame rate, photon arrival time measurements on the nanosecond time scale could well be possible.
Role of optometry school in single day large scale school vision testing
Anuradha, N; Ramani, Krishnakumar
2015-01-01
Background: School vision testing aims at identification and management of refractive errors. Large-scale school vision testing using conventional methods is time-consuming and demands a lot of chair time from the eye care professionals. A new strategy involving a school of optometry in single day large scale school vision testing is discussed. Aim: The aim was to describe a new approach of performing vision testing of school children on a large scale in a single day. Materials and Methods: A single day vision testing strategy was implemented wherein 123 members (20 teams comprising optometry students and headed by optometrists) conducted vision testing for children in 51 schools. School vision testing included basic vision screening, refraction, frame measurements, frame choice and referrals for other ocular problems. Results: A total of 12448 children were screened, among whom 420 (3.37%) were identified to have refractive errors. 28 (1.26%) children belonged to the primary, 163 to middle (9.80%), 129 (4.67%) to secondary and 100 (1.73%) to the higher secondary levels of education respectively. 265 (2.12%) children were referred for further evaluation. Conclusion: Single day large scale school vision testing can be adopted by schools of optometry to reach a higher number of children within a short span. PMID:25709271
Single-stage micro-scale solvent extraction in parallel microbore tubes using MDIMJ
International Nuclear Information System (INIS)
Darekar, Mayur; Singh, K.K.; Joshi, J.M.; Mukhopadhyay, S.; Shenoy, K.T.
2016-01-01
Single-stage micro-scale solvent extraction of U(VI) from simulated lean streams is explored using micro-scale contactor comprising of a MDIMJ (Monoblock Distributor with Integrated Microfluidic Junction) and PTFE microbore tubes. 30% (v/v) TBP in dodecane has been used as the extracting phase. The objective of the study is to demonstrate numbering up approach for scale-up of micro-scale extraction using indigenously conceptualized and fabricated MDIMJ. First the performance of MIDIMJ for equal flow distribution is tested. Then the effects of inlet flow rate and O/A ratio on stage efficiency and percentage extraction are studied. The experiments show that it is easy to scale-up single-stage micro-scale solvent extraction by using MDIMJ for numbering up approach. Maximum capacity tested is 4.8 LPH. With O/A = 2/1, more than 90% extraction is achieved in a very short contact time of less than 3s. The study thus demonstrates possibility of process intensification and easy scale-up of micro-scale solvent extraction
Gendered Expectations? Reconsidering Single Fathers' Child-Care Time
Hook, Jennifer L.; Chalasani, Satvika
2008-01-01
We take a fresh look at an important question in the sociology of gender and family: Do single fathers "mother"? We add to the theoretical debate by proposing that single fathers face competing interactional pressures, to simultaneously act like mothers and men. Using nationally representative data from the American Time Use Survey 2003-2006 (N =…
Speed scaling for weighted flow time
Bansal, N.; Pruhs, K.R.; Stein, C.
2007-01-01
In addition to the traditional goal of efficiently managing time and space, many computers now need to efficiently manage power usage. For example, Intel's SpeedStep and AMD's PowerNOW technologies allow the Windows XP operating system to dynamically change the speed of the processor to prolong
Long-time data storage: relevant time scales
Elwenspoek, Michael Curt
2011-01-01
Dynamic processes relevant for long-time storage of information about human kind are discussed, ranging from biological and geological processes to the lifecycle of stars and the expansion of the universe. Major results are that life will end ultimately and the remaining time that the earth is
A simple shear limited, single size, time dependent flocculation model
Kuprenas, R.; Tran, D. A.; Strom, K.
2017-12-01
This research focuses on the modeling of flocculation of cohesive sediment due to turbulent shear, specifically, investigating the dependency of flocculation on the concentration of cohesive sediment. Flocculation is important in larger sediment transport models as cohesive particles can create aggregates which are orders of magnitude larger than their unflocculated state. As the settling velocity of each particle is determined by the sediment size, density, and shape, accounting for this aggregation is important in determining where the sediment is deposited. This study provides a new formulation for flocculation of cohesive sediment by modifying the Winterwerp (1998) flocculation model (W98) so that it limits floc size to that of the Kolmogorov micro length scale. The W98 model is a simple approach that calculates the average floc size as a function of time. Because of its simplicity, the W98 model is ideal for implementing into larger sediment transport models; however, the model tends to over predict the dependency of the floc size on concentration. It was found that the modification of the coefficients within the original model did not allow for the model to capture the dependency on concentration. Therefore, a new term within the breakup kernel of the W98 formulation was added. The new formulation results is a single size, shear limited, and time dependent flocculation model that is able to effectively capture the dependency of the equilibrium size of flocs on both suspended sediment concentration and the time to equilibrium. The overall behavior of the new model is explored and showed align well with other studies on flocculation. Winterwerp, J. C. (1998). A simple model for turbulence induced flocculation of cohesive sediment. .Journal of Hydraulic Research, 36(3):309-326.
Superconducting fluctuations and characteristic time scales in amorphous WSi
Zhang, Xiaofu; Lita, Adriana E.; Sidorova, Mariia; Verma, Varun B.; Wang, Qiang; Nam, Sae Woo; Semenov, Alexei; Schilling, Andreas
2018-05-01
We study magnitudes and temperature dependencies of the electron-electron and electron-phonon interaction times which play the dominant role in the formation and relaxation of photon-induced hotspots in two-dimensional amorphous WSi films. The time constants are obtained through magnetoconductance measurements in a perpendicular magnetic field in the superconducting fluctuation regime and through time-resolved photoresponse to optical pulses. The excess magnetoconductivity is interpreted in terms of the weak-localization effect and superconducting fluctuations. Aslamazov-Larkin and Maki-Thompson superconducting fluctuations alone fail to reproduce the magnetic field dependence in the relatively high magnetic field range when the temperature is rather close to Tc because the suppression of the electronic density of states due to the formation of short-lifetime Cooper pairs needs to be considered. The time scale τi of inelastic scattering is ascribed to a combination of electron-electron (τe -e) and electron-phonon (τe -p h) interaction times, and a characteristic electron-fluctuation time (τe -f l) , which makes it possible to extract their magnitudes and temperature dependencies from the measured τi. The ratio of phonon-electron (τp h -e) and electron-phonon interaction times is obtained via measurements of the optical photoresponse of WSi microbridges. Relatively large τe -p h/τp h -e and τe -p h/τe -e ratios ensure that in WSi the photon energy is more efficiently confined in the electron subsystem than in other materials commonly used in the technology of superconducting nanowire single-photon detectors (SNSPDs). We discuss the impact of interaction times on the hotspot dynamics and compare relevant metrics of SNSPDs from different materials.
Time scale of random sequential adsorption.
Erban, Radek; Chapman, S Jonathan
2007-04-01
A simple multiscale approach to the diffusion-driven adsorption from a solution to a solid surface is presented. The model combines two important features of the adsorption process: (i) The kinetics of the chemical reaction between adsorbing molecules and the surface and (ii) geometrical constraints on the surface made by molecules which are already adsorbed. The process (i) is modeled in a diffusion-driven context, i.e., the conditional probability of adsorbing a molecule provided that the molecule hits the surface is related to the macroscopic surface reaction rate. The geometrical constraint (ii) is modeled using random sequential adsorption (RSA), which is the sequential addition of molecules at random positions on a surface; one attempt to attach a molecule is made per one RSA simulation time step. By coupling RSA with the diffusion of molecules in the solution above the surface the RSA simulation time step is related to the real physical time. The method is illustrated on a model of chemisorption of reactive polymers to a virus surface.
Single-field consistency relations of large scale structure
International Nuclear Information System (INIS)
Creminelli, Paolo; Noreña, Jorge; Simonović, Marko; Vernizzi, Filippo
2013-01-01
We derive consistency relations for the late universe (CDM and ΛCDM): relations between an n-point function of the density contrast δ and an (n+1)-point function in the limit in which one of the (n+1) momenta becomes much smaller than the others. These are based on the observation that a long mode, in single-field models of inflation, reduces to a diffeomorphism since its freezing during inflation all the way until the late universe, even when the long mode is inside the horizon (but out of the sound horizon). These results are derived in Newtonian gauge, at first and second order in the small momentum q of the long mode and they are valid non-perturbatively in the short-scale δ. In the non-relativistic limit our results match with [1]. These relations are a consequence of diffeomorphism invariance; they are not satisfied in the presence of extra degrees of freedom during inflation or violation of the Equivalence Principle (extra forces) in the late universe
Nuclear disassembly time scales using space time correlations
Energy Technology Data Exchange (ETDEWEB)
Durand, D.; Colin, J.; Lecolley, J.F.; Meslin, C.; Aboufirassi, M.; Bougault, R.; Brou, R. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; Bilwes, B.; Cosmo, F. [Strasbourg-1 Univ., 67 (France); Galin, J. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); and others
1996-09-01
The lifetime, {tau}, with respect to multifragmentation of highly excited nuclei is deduced from the analysis of strongly damped Pb+Au collisions at 29 MeV/u. The method is based on the study of space-time correlations induced by `proximity` effects between fragments emitted by the two primary products of the reaction and gives the time between the re-separation of the two primary products and the subsequent multifragment decay of one partner. (author). 2 refs.
Nuclear disassembly time scales using space time correlations
International Nuclear Information System (INIS)
Durand, D.; Colin, J.; Lecolley, J.F.; Meslin, C.; Aboufirassi, M.; Bougault, R.; Brou, R.; Galin, J.; and others.
1996-01-01
The lifetime, τ, with respect to multifragmentation of highly excited nuclei is deduced from the analysis of strongly damped Pb+Au collisions at 29 MeV/u. The method is based on the study of space-time correlations induced by 'proximity' effects between fragments emitted by the two primary products of the reaction and gives the time between the re-separation of the two primary products and the subsequent multifragment decay of one partner. (author)
Relaxation Processes and Time Scale Transformation.
1982-03-01
the response function may be immediately recognized as being 14 of the Kubo - Green type in the classical regime. Given this general framework, it is now...b as a function of temperature is 24 equivalent to the Vogel-Beuche-Fulcher empirical law for viscosity or the Williams-Landel-Ferry empirical law...relaxation times. With the weighted sum in the form of an integral , one can write exp(-(t/T)b ] = f dT’g(r’) exp[-(t/T’)], O
Long-Time Data Storage: Relevant Time Scales
Directory of Open Access Journals (Sweden)
Miko C. Elwenspoek
2011-02-01
Full Text Available Dynamic processes relevant for long-time storage of information about human kind are discussed, ranging from biological and geological processes to the lifecycle of stars and the expansion of the universe. Major results are that life will end ultimately and the remaining time that the earth is habitable for complex life is about half a billion years. A system retrieved within the next million years will be read by beings very closely related to Homo sapiens. During this time the surface of the earth will change making it risky to place a small number of large memory systems on earth; the option to place it on the moon might be more favorable. For much longer timescales both options do not seem feasible because of geological processes on the earth and the flux of small meteorites to the moon.
Optimization of time-correlated single photon counting spectrometer
International Nuclear Information System (INIS)
Zhang Xiufeng; Du Haiying; Sun Jinsheng
2011-01-01
The paper proposes a performance improving scheme for the conventional time-correlated single photon counting spectrometer and develops a high speed data acquisition card based on PCI bus and FPGA technologies. The card is used to replace the multi-channel analyzer to improve the capability and decrease the volume of the spectrometer. The process of operation is introduced along with the integration of the spectrometer system. Many standard samples are measured. The experimental results show that the sensitivity of the spectrometer is single photon counting, and the time resolution of fluorescence lifetime measurement can be picosecond level. The instrument could measure the time-resolved spectroscopy. (authors)
Bounds of Certain Dynamic Inequalities on Time Scales
Directory of Open Access Journals (Sweden)
Deepak B. Pachpatte
2014-10-01
Full Text Available In this paper we study explicit bounds of certain dynamic integral inequalities on time scales. These estimates give the bounds on unknown functions which can be used in studying the qualitative aspects of certain dynamic equations. Using these inequalities we prove the uniqueness of some partial integro-differential equations on time scales.
Temperature dependence of fluctuation time scales in spin glasses
DEFF Research Database (Denmark)
Kenning, Gregory G.; Bowen, J.; Sibani, Paolo
2010-01-01
Using a series of fast cooling protocols we have probed aging effects in the spin glass state as a function of temperature. Analyzing the logarithmic decay found at very long time scales within a simple phenomenological barrier model, leads to the extraction of the fluctuation time scale of the s...
International Nuclear Information System (INIS)
Hao Yinghang; Gong, Yubing; Wang Li; Ma Xiaoguang; Yang Chuanlu
2011-01-01
Research highlights: → Single synchronization transition for gap-junctional coupling. → Multiple synchronization transitions for chemical synaptic coupling. → Gap junctions and chemical synapses have different impacts on synchronization transition. → Chemical synapses may play a dominant role in neurons' information processing. - Abstract: In this paper, we have studied time delay- and coupling strength-induced synchronization transitions in scale-free modified Hodgkin-Huxley (MHH) neuron networks with gap-junctions and chemical synaptic coupling. It is shown that the synchronization transitions are much different for these two coupling types. For gap-junctions, the neurons exhibit a single synchronization transition with time delay and coupling strength, while for chemical synapses, there are multiple synchronization transitions with time delay, and the synchronization transition with coupling strength is dependent on the time delay lengths. For short delays we observe a single synchronization transition, whereas for long delays the neurons exhibit multiple synchronization transitions as the coupling strength is varied. These results show that gap junctions and chemical synapses have different impacts on the pattern formation and synchronization transitions of the scale-free MHH neuronal networks, and chemical synapses, compared to gap junctions, may play a dominant and more active function in the firing activity of the networks. These findings would be helpful for further understanding the roles of gap junctions and chemical synapses in the firing dynamics of neuronal networks.
Energy Technology Data Exchange (ETDEWEB)
Hao Yinghang [School of Physics, Ludong University, Yantai 264025 (China); Gong, Yubing, E-mail: gongyubing09@hotmail.co [School of Physics, Ludong University, Yantai 264025 (China); Wang Li; Ma Xiaoguang; Yang Chuanlu [School of Physics, Ludong University, Yantai 264025 (China)
2011-04-15
Research highlights: Single synchronization transition for gap-junctional coupling. Multiple synchronization transitions for chemical synaptic coupling. Gap junctions and chemical synapses have different impacts on synchronization transition. Chemical synapses may play a dominant role in neurons' information processing. - Abstract: In this paper, we have studied time delay- and coupling strength-induced synchronization transitions in scale-free modified Hodgkin-Huxley (MHH) neuron networks with gap-junctions and chemical synaptic coupling. It is shown that the synchronization transitions are much different for these two coupling types. For gap-junctions, the neurons exhibit a single synchronization transition with time delay and coupling strength, while for chemical synapses, there are multiple synchronization transitions with time delay, and the synchronization transition with coupling strength is dependent on the time delay lengths. For short delays we observe a single synchronization transition, whereas for long delays the neurons exhibit multiple synchronization transitions as the coupling strength is varied. These results show that gap junctions and chemical synapses have different impacts on the pattern formation and synchronization transitions of the scale-free MHH neuronal networks, and chemical synapses, compared to gap junctions, may play a dominant and more active function in the firing activity of the networks. These findings would be helpful for further understanding the roles of gap junctions and chemical synapses in the firing dynamics of neuronal networks.
Multiple time scale analysis of pressure oscillations in solid rocket motors
Ahmed, Waqas; Maqsood, Adnan; Riaz, Rizwan
2018-03-01
In this study, acoustic pressure oscillations for single and coupled longitudinal acoustic modes in Solid Rocket Motor (SRM) are investigated using Multiple Time Scales (MTS) method. Two independent time scales are introduced. The oscillations occur on fast time scale whereas the amplitude and phase changes on slow time scale. Hopf bifurcation is employed to investigate the properties of the solution. The supercritical bifurcation phenomenon is observed for linearly unstable system. The amplitude of the oscillations result from equal energy gain and loss rates of longitudinal acoustic modes. The effect of linear instability and frequency of longitudinal modes on amplitude and phase of oscillations are determined for both single and coupled modes. For both cases, the maximum amplitude of oscillations decreases with the frequency of acoustic mode and linear instability of SRM. The comparison of analytical MTS results and numerical simulations demonstrate an excellent agreement.
Time scales of supercooled water and implications for reversible polyamorphism
Limmer, David T.; Chandler, David
2015-09-01
Deeply supercooled water exhibits complex dynamics with large density fluctuations, ice coarsening and characteristic time scales extending from picoseconds to milliseconds. Here, we discuss implications of these time scales as they pertain to two-phase coexistence and to molecular simulations of supercooled water. Specifically, we argue that it is possible to discount liquid-liquid criticality because the time scales imply that correlation lengths for such behaviour would be bounded by no more than a few nanometres. Similarly, it is possible to discount two-liquid coexistence because the time scales imply a bounded interfacial free energy that cannot grow in proportion to a macroscopic surface area. From time scales alone, therefore, we see that coexisting domains of differing density in supercooled water can be no more than nanoscale transient fluctuations.
Time scales of tunneling decay of a localized state
International Nuclear Information System (INIS)
Ban, Yue; Muga, J. G.; Sherman, E. Ya.; Buettiker, M.
2010-01-01
Motivated by recent time-domain experiments on ultrafast atom ionization, we analyze the transients and time scales that characterize, aside from the relatively long lifetime, the decay of a localized state by tunneling. While the tunneling starts immediately, some time is required for the outgoing flux to develop. This short-term behavior depends strongly on the initial state. For the initial state, tightly localized so that the initial transients are dominated by over-the-barrier motion, the time scale for flux propagation through the barrier is close to the Buettiker-Landauer traversal time. Then a quasistationary, slow-decay process follows, which sets ideal conditions for observing diffraction in time at longer times and distances. To define operationally a tunneling time at the barrier edge, we extrapolate backward the propagation of the wave packet that escaped from the potential. This extrapolated time is considerably longer than the time scale of the flux and density buildup at the barrier edge.
Advanced time-correlated single photon counting applications
Becker, Wolfgang
2015-01-01
This book is an attempt to bridge the gap between the instrumental principles of multi-dimensional time-correlated single photon counting (TCSPC) and typical applications of the technique. Written by an originator of the technique and by sucessful users, it covers the basic principles of the technique, its interaction with optical imaging methods and its application to a wide range of experimental tasks in life sciences and clinical research. The book is recommended for all users of time-resolved detection techniques in biology, bio-chemistry, spectroscopy of live systems, live cell microscopy, clinical imaging, spectroscopy of single molecules, and other applications that require the detection of low-level light signals at single-photon sensitivity and picosecond time resolution.
Time expansion chamber and single ionization cluster measurement
International Nuclear Information System (INIS)
Walenta, A.H.
1978-10-01
The time expansion chamber (TEC), a new type of drift chamber, allows the measurement of microscopic details of ionization. The mean drift time interval from subsequent sngle ionization clusters of a relativistic particle in the TEC can be made large enough compared to the width of a anode signal to allow the recording of the clusters separately. Since single primary electrons can be detected, the cluster counting would allow an improved particle separation using the relativistic rise of primary ionization. In another application, very high position accuracy for track detectors or improved energy resolution may be obtained. Basic ionization phenomena and drift properties can be measured at the single electron level
Soil moisture memory at sub-monthly time scales
Mccoll, K. A.; Entekhabi, D.
2017-12-01
For soil moisture-climate feedbacks to occur, the soil moisture storage must have `memory' of past atmospheric anomalies. Quantifying soil moisture memory is, therefore, essential for mapping and characterizing land-atmosphere interactions globally. Most previous studies estimate soil moisture memory using metrics based on the autocorrelation function of the soil moisture time series (e.g., the e-folding autocorrelation time scale). This approach was first justified by Delworth and Manabe (1988) on the assumption that monthly soil moisture time series can be modelled as red noise. While this is a reasonable model for monthly soil moisture averages, at sub-monthly scales, the model is insufficient due to the highly non-Gaussian behavior of the precipitation forcing. Recent studies have shown that significant soil moisture-climate feedbacks appear to occur at sub-monthly time scales. Therefore, alternative metrics are required for defining and estimating soil moisture memory at these shorter time scales. In this study, we introduce metrics, based on the positive and negative increments of the soil moisture time series, that can be used to estimate soil moisture memory at sub-monthly time scales. The positive increments metric corresponds to a rapid drainage time scale. The negative increments metric represents a slower drying time scale that is most relevant to the study of land-atmosphere interactions. We show that autocorrelation-based metrics mix the two time scales, confounding physical interpretation. The new metrics are used to estimate soil moisture memory at sub-monthly scales from in-situ and satellite observations of soil moisture. Reference: Delworth, Thomas L., and Syukuro Manabe. "The Influence of Potential Evaporation on the Variabilities of Simulated Soil Wetness and Climate." Journal of Climate 1, no. 5 (May 1, 1988): 523-47. doi:10.1175/1520-0442(1988)0012.0.CO;2.
Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes
Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng
2016-09-01
Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ˜400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.
Single-Index Additive Vector Autoregressive Time Series Models
LI, YEHUA; GENTON, MARC G.
2009-01-01
We study a new class of nonlinear autoregressive models for vector time series, where the current vector depends on single-indexes defined on the past lags and the effects of different lags have an additive form. A sufficient condition is provided
Liquidity spillover in international stock markets through distinct time scales.
Righi, Marcelo Brutti; Vieira, Kelmara Mendes
2014-01-01
This paper identifies liquidity spillovers through different time scales based on a wavelet multiscaling method. We decompose daily data from U.S., British, Brazilian and Hong Kong stock markets indices in order to calculate the scale correlation between their illiquidities. The sample is divided in order to consider non-crisis, sub-prime crisis and Eurozone crisis. We find that there are changes in correlations of distinct scales and different periods. Association in finest scales is smaller than in coarse scales. There is a rise on associations in periods of crisis. In frequencies, there is predominance for significant distinctions involving the coarsest scale, while for crises periods there is predominance for distinctions on the finest scale.
Stock, Philipp; Utzig, Thomas; Valtiner, Markus
2017-02-08
In all realms of soft matter research a fundamental understanding of the structure/property relationships based on molecular interactions is crucial for developing a framework for the targeted design of soft materials. However, a molecular picture is often difficult to ascertain and yet essential for understanding the many different competing interactions at play, including entropies and cooperativities, hydration effects, and the enormous design space of soft matter. Here, we characterized for the first time the interaction between single hydrophobic molecules quantitatively using atomic force microscopy, and demonstrated that single molecular hydrophobic interaction free energies are dominated by the area of the smallest interacting hydrophobe. The interaction free energy amounts to 3-4 kT per hydrophobic unit. Also, we find that the transition state of the hydrophobic interactions is located at 3 Å with respect to the ground state, based on Bell-Evans theory. Our results provide a new path for understanding the nature of hydrophobic interactions at the single molecular scale. Our approach enables us to systematically vary hydrophobic and any other interaction type by utilizing peptide chemistry providing a strategic advancement to unravel molecular surface and soft matter interactions at the single molecular scale.
AFSC/ABL: Ugashik sockeye salmon scale time series
National Oceanic and Atmospheric Administration, Department of Commerce — A time series of scale samples (1956 b?? 2002) collected from adult sockeye salmon returning to Ugashik River were retrieved from the Alaska Department of Fish and...
AFSC/ABL: Naknek sockeye salmon scale time series
National Oceanic and Atmospheric Administration, Department of Commerce — A time series of scale samples (1956 2002) collected from adult sockeye salmon returning to Naknek River were retrieved from the Alaska Department of Fish and Game....
An extended Halanay inequality of integral type on time scales
Directory of Open Access Journals (Sweden)
Boqun Ou
2015-07-01
Full Text Available In this paper, we obtain a Halanay-type inequality of integral type on time scales which improves and extends some earlier results for both the continuous and discrete cases. Several illustrative examples are also given.
Multiple dynamical time-scales in networks with hierarchically
Indian Academy of Sciences (India)
Modular networks; hierarchical organization; synchronization. ... we show that such a topological structure gives rise to characteristic time-scale separation ... This suggests a possible functional role of such mesoscopic organization principle in ...
Entangled time in flocking: Multi-time-scale interaction reveals emergence of inherent noise.
Niizato, Takayuki; Murakami, Hisashi
2018-01-01
Collective behaviors that seem highly ordered and result in collective alignment, such as schooling by fish and flocking by birds, arise from seamless shuffling (such as super-diffusion) and bustling inside groups (such as Lévy walks). However, such noisy behavior inside groups appears to preclude the collective behavior: intuitively, we expect that noisy behavior would lead to the group being destabilized and broken into small sub groups, and high alignment seems to preclude shuffling of neighbors. Although statistical modeling approaches with extrinsic noise, such as the maximum entropy approach, have provided some reasonable descriptions, they ignore the cognitive perspective of the individuals. In this paper, we try to explain how the group tendency, that is, high alignment, and highly noisy individual behavior can coexist in a single framework. The key aspect of our approach is multi-time-scale interaction emerging from the existence of an interaction radius that reflects short-term and long-term predictions. This multi-time-scale interaction is a natural extension of the attraction and alignment concept in many flocking models. When we apply this method in a two-dimensional model, various flocking behaviors, such as swarming, milling, and schooling, emerge. The approach also explains the appearance of super-diffusion, the Lévy walk in groups, and local equilibria. At the end of this paper, we discuss future developments, including extending our model to three dimensions.
Large Deviations for Two-Time-Scale Diffusions, with Delays
International Nuclear Information System (INIS)
Kushner, Harold J.
2010-01-01
We consider the problem of large deviations for a two-time-scale reflected diffusion process, possibly with delays in the dynamical terms. The Dupuis-Ellis weak convergence approach is used. It is perhaps the most intuitive and simplest for the problems of concern. The results have applications to the problem of approximating optimal controls for two-time-scale systems via use of the averaged equation.
Some New Inequalities of Opial's Type on Time Scales
Directory of Open Access Journals (Sweden)
Samir H. Saker
2012-01-01
Full Text Available We will prove some new dynamic inequalities of Opial's type on time scales. The results not only extend some results in the literature but also improve some of them. Some continuous and discrete inequalities are derived from the main results as special cases. The results can be applied on the study of distribution of generalized zeros of half-linear dynamic equations on time scales.
A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy
Li, Hao; Yang, Haw
2018-03-01
This work reports the design and implementation of a multi-function optical microscope for time-dependent spectroscopy on single molecules and single nanoparticles. It integrates the now-routine single-object measurements into one standalone platform so that no reconfiguration is needed when switching between different types of sample or spectroscopy modes. The illumination modes include evanescent field through total internal reflection, dark-field illumination, and epi-excitation onto a diffraction-limited spot suitable for confocal detection. The detection modes include spectrally resolved line imaging, wide-field imaging with dual-color capability, and two-color single-element photon-counting detection. The switch between different spectroscopy and data acquisition modes is fully automated and executed through computer programming. The capability of this microscope is demonstrated through selected proof-of-principle experiments.
A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy.
Li, Hao; Yang, Haw
2018-03-28
This work reports the design and implementation of a multi-function optical microscope for time-dependent spectroscopy on single molecules and single nanoparticles. It integrates the now-routine single-object measurements into one standalone platform so that no reconfiguration is needed when switching between different types of sample or spectroscopy modes. The illumination modes include evanescent field through total internal reflection, dark-field illumination, and epi-excitation onto a diffraction-limited spot suitable for confocal detection. The detection modes include spectrally resolved line imaging, wide-field imaging with dual-color capability, and two-color single-element photon-counting detection. The switch between different spectroscopy and data acquisition modes is fully automated and executed through computer programming. The capability of this microscope is demonstrated through selected proof-of-principle experiments.
Real-time Avatar Animation from a Single Image.
Saragih, Jason M; Lucey, Simon; Cohn, Jeffrey F
2011-01-01
A real time facial puppetry system is presented. Compared with existing systems, the proposed method requires no special hardware, runs in real time (23 frames-per-second), and requires only a single image of the avatar and user. The user's facial expression is captured through a real-time 3D non-rigid tracking system. Expression transfer is achieved by combining a generic expression model with synthetically generated examples that better capture person specific characteristics. Performance of the system is evaluated on avatars of real people as well as masks and cartoon characters.
Scale-dependent intrinsic entropies of complex time series.
Yeh, Jia-Rong; Peng, Chung-Kang; Huang, Norden E
2016-04-13
Multi-scale entropy (MSE) was developed as a measure of complexity for complex time series, and it has been applied widely in recent years. The MSE algorithm is based on the assumption that biological systems possess the ability to adapt and function in an ever-changing environment, and these systems need to operate across multiple temporal and spatial scales, such that their complexity is also multi-scale and hierarchical. Here, we present a systematic approach to apply the empirical mode decomposition algorithm, which can detrend time series on various time scales, prior to analysing a signal's complexity by measuring the irregularity of its dynamics on multiple time scales. Simulated time series of fractal Gaussian noise and human heartbeat time series were used to study the performance of this new approach. We show that our method can successfully quantify the fractal properties of the simulated time series and can accurately distinguish modulations in human heartbeat time series in health and disease. © 2016 The Author(s).
The multiple time scales of sleep dynamics as a challenge for modelling the sleeping brain.
Olbrich, Eckehard; Claussen, Jens Christian; Achermann, Peter
2011-10-13
A particular property of the sleeping brain is that it exhibits dynamics on very different time scales ranging from the typical sleep oscillations such as sleep spindles and slow waves that can be observed in electroencephalogram (EEG) segments of several seconds duration over the transitions between the different sleep stages on a time scale of minutes to the dynamical processes involved in sleep regulation with typical time constants in the range of hours. There is an increasing body of work on mathematical and computational models addressing these different dynamics, however, usually considering only processes on a single time scale. In this paper, we review and present a new analysis of the dynamics of human sleep EEG at the different time scales and relate the findings to recent modelling efforts pointing out both the achievements and remaining challenges.
Russian national time scale long-term stability
Alshina, A. P.; Gaigerov, B. A.; Koshelyaevsky, N. B.; Pushkin, S. B.
1994-05-01
The Institute of Metrology for Time and Space NPO 'VNIIFTRI' generates the National Time Scale (NTS) of Russia -- one of the most stable time scales in the world. Its striking feature is that it is based on a free ensemble of H-masers only. During last two years the estimations of NTS longterm stability based only on H-maser intercomparison data gives a flicker floor of about (2 to 3) x 10(exp -15) for averaging times from 1 day to 1 month. Perhaps the most significant feature for a time laboratory is an extremely low possible frequency drift -- it is too difficult to estimate it reliably. The other estimations, free from possible inside the ensemble correlation phenomena, are available based on the time comparison of NTS relative to the stable enough time scale of outer laboratories. The data on NTS comparison relative to the time scale of secondary time and frequency standards at Golitzino and Irkutsk in Russia and relative to NIST, PTB and USNO using GLONASS and GPS time transfer links gives stability estimations which are close to that based on H-maser intercomparisons.
Atomic-Scale Control of Electron Transport through Single Molecules
DEFF Research Database (Denmark)
Wang, Y. F.; Kroger, J.; Berndt, R.
2010-01-01
Tin-phthalocyanine molecules adsorbed on Ag(111) were contacted with the tip of a cryogenic scanning tunneling microscope. Orders-of-magnitude variations of the single-molecule junction conductance were achieved by controllably dehydrogenating the molecule and by modifying the atomic structure...
Microarray-based large scale detection of single feature ...
Indian Academy of Sciences (India)
2015-12-08
Dec 8, 2015 ... mental stages was used to identify single feature polymorphisms (SFPs). ... on a high-density oligonucleotide expression array in which. ∗ ..... The sign (+/−) with SFPs indicates direction of polymorphism. In the. (−) sign (i.e. ...
Wind power impacts and electricity storage - a time scale perspective
DEFF Research Database (Denmark)
Hedegaard, Karsten; Meibom, Peter
2012-01-01
Integrating large amounts of wind power in energy systems poses balancing challenges due to the variable and only partly predictable nature of wind. The challenges cover different time scales from intra-hour, intra-day/day-ahead to several days and seasonal level. Along with flexible electricity...... demand options, various electricity storage technologies are being discussed as candidates for contributing to large-scale wind power integration and these also differ in terms of the time scales at which they can operate. In this paper, using the case of Western Denmark in 2025 with an expected 57% wind...... power penetration, wind power impacts on different time scales are analysed. Results show consecutive negative and high net load period lengths indicating a significant potential for flexibility measures capable of charging/activating demand and discharging/inactivating demand in periods of 1 h to one...
Microsecond time-scale kinetics of transient biochemical reactions
Mitic, S.; Strampraad, M.J.F.; Hagen, W.R.; de Vries, S.
2017-01-01
To afford mechanistic studies in enzyme kinetics and protein folding in the microsecond time domain we have developed a continuous-flow microsecond time-scale mixing instrument with an unprecedented dead-time of 3.8 ± 0.3 μs. The instrument employs a micro-mixer with a mixing time of 2.7 μs
Scaling Analysis of the Single-Phase Natural Circulation: the Hydraulic Similarity
International Nuclear Information System (INIS)
Yu, Xin-Guo; Choi, Ki-Yong
2015-01-01
These passive safety systems all rely on the natural circulation to cool down the reactor cores during an accident. Thus, a robust and accurate scaling methodology must be developed and employed to both assist in the design of a scaled-down test facility and guide the tests in order to mimic the natural circulation flow of its prototype. The natural circulation system generally consists of a heat source, the connecting pipes and several heat sinks. Although many applauding scaling methodologies have been proposed during last several decades, few works have been dedicated to systematically analyze and exactly preserve the hydraulic similarity. In the present study, the hydraulic similarity analyses are performed at both system and local level. By this mean, the scaling criteria for the exact hydraulic similarity in a full-pressure model have been sought. In other words, not only the system-level but also the local-level hydraulic similarities are pursued. As the hydraulic characteristics of a fluid system is governed by the momentum equation, the scaling analysis starts with it. A dimensionless integral loop momentum equation is derived to obtain the dimensionless numbers. In the dimensionless momentum equation, two dimensionless numbers, the dimensionless flow resistance number and the dimensionless gravitational force number, are identified along with a unique hydraulic time scale, characterizing the system hydraulic response. A full-height full-pressure model is also made to see which model among the full-height model and reduced-height model can preserve the hydraulic behavior of the prototype. From the dimensionless integral momentum equation, a unique hydraulic time scale, which characterizes the hydraulic response of a single-phase natural circulation system, is identified along with two dimensionless parameters: the dimensionless flow resistance number and the dimensionless gravitational force number. By satisfying the equality of both dimensionless numbers
Scaling Analysis of the Single-Phase Natural Circulation: the Hydraulic Similarity
Energy Technology Data Exchange (ETDEWEB)
Yu, Xin-Guo; Choi, Ki-Yong [KAERI, Daejeon (Korea, Republic of)
2015-05-15
These passive safety systems all rely on the natural circulation to cool down the reactor cores during an accident. Thus, a robust and accurate scaling methodology must be developed and employed to both assist in the design of a scaled-down test facility and guide the tests in order to mimic the natural circulation flow of its prototype. The natural circulation system generally consists of a heat source, the connecting pipes and several heat sinks. Although many applauding scaling methodologies have been proposed during last several decades, few works have been dedicated to systematically analyze and exactly preserve the hydraulic similarity. In the present study, the hydraulic similarity analyses are performed at both system and local level. By this mean, the scaling criteria for the exact hydraulic similarity in a full-pressure model have been sought. In other words, not only the system-level but also the local-level hydraulic similarities are pursued. As the hydraulic characteristics of a fluid system is governed by the momentum equation, the scaling analysis starts with it. A dimensionless integral loop momentum equation is derived to obtain the dimensionless numbers. In the dimensionless momentum equation, two dimensionless numbers, the dimensionless flow resistance number and the dimensionless gravitational force number, are identified along with a unique hydraulic time scale, characterizing the system hydraulic response. A full-height full-pressure model is also made to see which model among the full-height model and reduced-height model can preserve the hydraulic behavior of the prototype. From the dimensionless integral momentum equation, a unique hydraulic time scale, which characterizes the hydraulic response of a single-phase natural circulation system, is identified along with two dimensionless parameters: the dimensionless flow resistance number and the dimensionless gravitational force number. By satisfying the equality of both dimensionless numbers
Time-Scale and Time-Frequency Analyses of Irregularly Sampled Astronomical Time Series
Directory of Open Access Journals (Sweden)
S. Roques
2005-09-01
Full Text Available We evaluate the quality of spectral restoration in the case of irregular sampled signals in astronomy. We study in details a time-scale method leading to a global wavelet spectrum comparable to the Fourier period, and a time-frequency matching pursuit allowing us to identify the frequencies and to control the error propagation. In both cases, the signals are first resampled with a linear interpolation. Both results are compared with those obtained using Lomb's periodogram and using the weighted waveletZ-transform developed in astronomy for unevenly sampled variable stars observations. These approaches are applied to simulations and to light variations of four variable stars. This leads to the conclusion that the matching pursuit is more efficient for recovering the spectral contents of a pulsating star, even with a preliminary resampling. In particular, the results are almost independent of the quality of the initial irregular sampling.
The role of topography on catchment‐scale water residence time
McGuire, K.J.; McDonnell, Jeffery J.; Weiler, M.; Kendall, C.; McGlynn, B.L.; Welker, J.M.; Seibert, J.
2005-01-01
The age, or residence time, of water is a fundamental descriptor of catchment hydrology, revealing information about the storage, flow pathways, and source of water in a single integrated measure. While there has been tremendous recent interest in residence time estimation to characterize watersheds, there are relatively few studies that have quantified residence time at the watershed scale, and fewer still that have extended those results beyond single catchments to larger landscape scales. We examined topographic controls on residence time for seven catchments (0.085–62.4 km2) that represent diverse geologic and geomorphic conditions in the western Cascade Mountains of Oregon. Our primary objective was to determine the dominant physical controls on catchment‐scale water residence time and specifically test the hypothesis that residence time is related to the size of the basin. Residence times were estimated by simple convolution models that described the transfer of precipitation isotopic composition to the stream network. We found that base flow mean residence times for exponential distributions ranged from 0.8 to 3.3 years. Mean residence time showed no correlation to basin area (r2 organization (i.e., topography) rather than basin area controls catchment‐scale transport. Results from this study may provide a framework for describing scale‐invariant transport across climatic and geologic conditions, whereby the internal form and structure of the basin defines the first‐order control on base flow residence time.
Full-scale and time-scale heating experiments at Stripa: preliminary results
International Nuclear Information System (INIS)
Cook, N.G.W.; Hood, Michael; California Univ., Berkeley
1978-01-01
Two full-scale heating experiments and a time-scale heating experiment have recently been started in granite 340 meters below surface. The purpose of the full-scale heating experiments is to assess the near-field effects of thermal loading for the design of an underground repository of nuclear wastes. That of the time-scale heating experiments is to obtain field data of the interaction between heaters and its effect on the rock mass during a period of about two years, which corresponds to about twenty years of full-scale operation. Geological features of the rock around each experiment have been mapped carefully, and temperatures, stresses and displacements induced in the rock by heating have been calculated in advance of the experiments. Some 800 different measurements are recorded at frequent intervals by a computer system situated underground. These data can be compared at any time with predictions made earlier on video display units underground
Accuracy of single photoelectron time spread measurement of fast photomultipliers
International Nuclear Information System (INIS)
Leskovar, B.
1975-01-01
The accuracy of time spread measurements of fast photomultipliers was investigated, using single photoelectrons. The effect of the finite light pulse width on the measurement accuracy was determined and discussed. Experimental data were obtained on a special measuring system for light pulse widths ranging from 200 psec to 10 nsec, using fast photomultipliers 8850 and C31024 with optimized operating conditions for minimum transit time spread. A modified exponential function expression and curve-fitting parameters are given, which fit closely the experimentally obtained data over a wide dynamic range of light pulse widths. (U.S.)
Time-resolved luminescent spectroscopy of YAG:Ce single crystal and single crystalline films
International Nuclear Information System (INIS)
Zorenko, Yu.; Gorbenko, V.; Savchyn, V.; Vozniak, T.; Puzikov, V.; Danko, A.; Nizhankovski, S.
2010-01-01
The peculiarities of the luminescence and energy transfer from YAG host to the emission centers formed by the Y Al antisite defects and Ce 3+ ions have been studied in YAG:Ce single crystals, grown from the melt by modified Bridgman method in Ar and CO 2 + H 2 atmospheres, and YAG:Ce single crystalline film, grown by liquid phase epitaxy method, using the comparative time-resolved luminescent spectroscopy under excitation by synchrotron radiation in the range of fundamental adsorption of this garnet.
Hydrodynamic time scales for intense laser-heated clusters
International Nuclear Information System (INIS)
Parra, Enrique; Alexeev, Ilya; Fan, Jingyun; Kim, Kiong Y.; McNaught, Stuart J.; Milchberg, Howard M.
2003-01-01
Measurements are presented of x-ray (>1.5 keV) and extreme ultraviolet (EUV, λ equal to 2-44 nm) emission from argon clusters irradiated with constant-energy (50 mJ), variable-width laser pulses ranging from 100 fs to 10 ns. The results for clusters can be understood in terms of two time scales: a short time scale for optimal resonant absorption at the critical-density layer in the expanding plasma, and a longer time scale for the plasma to drop below critical density. We present a one-dimensional hydrodynamic model of the intense laser-cluster interaction in which the laser field is treated self-consistently. We find that nonuniform expansion of the heated material results in long-time resonance of the laser field at the critical-density plasma layer. These simulations explain the dependence of generation efficiency on laser pulse width
Scaling properties in time-varying networks with memory
Kim, Hyewon; Ha, Meesoon; Jeong, Hawoong
2015-12-01
The formation of network structure is mainly influenced by an individual node's activity and its memory, where activity can usually be interpreted as the individual inherent property and memory can be represented by the interaction strength between nodes. In our study, we define the activity through the appearance pattern in the time-aggregated network representation, and quantify the memory through the contact pattern of empirical temporal networks. To address the role of activity and memory in epidemics on time-varying networks, we propose temporal-pattern coarsening of activity-driven growing networks with memory. In particular, we focus on the relation between time-scale coarsening and spreading dynamics in the context of dynamic scaling and finite-size scaling. Finally, we discuss the universality issue of spreading dynamics on time-varying networks for various memory-causality tests.
Ignition in net for different energy confinement time scalings
International Nuclear Information System (INIS)
Johner, J.; Prevot, F.
1988-06-01
A zero-dimensional profile dependent model is used to assess the feasibility of ignition in the extended version of NET. Five recent scalings for the energy confinement time (Goldston, Kaye All, Kaye Big, Shimomura-Odajima, Rebut-Lallia) are compared in the frame of two different scenarii, i.e., H-mode with a flat density profile or L-mode with a peaked density profile. For the flat density H-mode case, ignition is accessible with none of the scalings except Rebut-Lallia's. For the peaked density L-mode case, ignition is accessible with none of the scalings except Rebut-Lallia's. For the two Kaye's scalings, ignition is forbidden in H-mode even with the peaked density profile. For the Rebut-Lallia scaling, ignition is allowed in L-mode even with the flat density profile
Deviations from uniform power law scaling in nonstationary time series
Viswanathan, G. M.; Peng, C. K.; Stanley, H. E.; Goldberger, A. L.
1997-01-01
A classic problem in physics is the analysis of highly nonstationary time series that typically exhibit long-range correlations. Here we test the hypothesis that the scaling properties of the dynamics of healthy physiological systems are more stable than those of pathological systems by studying beat-to-beat fluctuations in the human heart rate. We develop techniques based on the Fano factor and Allan factor functions, as well as on detrended fluctuation analysis, for quantifying deviations from uniform power-law scaling in nonstationary time series. By analyzing extremely long data sets of up to N = 10(5) beats for 11 healthy subjects, we find that the fluctuations in the heart rate scale approximately uniformly over several temporal orders of magnitude. By contrast, we find that in data sets of comparable length for 14 subjects with heart disease, the fluctuations grow erratically, indicating a loss of scaling stability.
Physics in space-time with scale-dependent metrics
Balankin, Alexander S.
2013-10-01
We construct three-dimensional space Rγ3 with the scale-dependent metric and the corresponding Minkowski space-time Mγ,β4 with the scale-dependent fractal (DH) and spectral (DS) dimensions. The local derivatives based on scale-dependent metrics are defined and differential vector calculus in Rγ3 is developed. We state that Mγ,β4 provides a unified phenomenological framework for dimensional flow observed in quite different models of quantum gravity. Nevertheless, the main attention is focused on the special case of flat space-time M1/3,14 with the scale-dependent Cantor-dust-like distribution of admissible states, such that DH increases from DH=2 on the scale ≪ℓ0 to DH=4 in the infrared limit ≫ℓ0, where ℓ0 is the characteristic length (e.g. the Planck length, or characteristic size of multi-fractal features in heterogeneous medium), whereas DS≡4 in all scales. Possible applications of approach based on the scale-dependent metric to systems of different nature are briefly discussed.
Length and time scales of atmospheric moisture recycling
Directory of Open Access Journals (Sweden)
R. J. van der Ent
2011-03-01
Full Text Available It is difficult to quantify the degree to which terrestrial evaporation supports the occurrence of precipitation within a certain study region (i.e. regional moisture recycling due to the scale- and shape-dependence of regional moisture recycling ratios. In this paper we present a novel approach to quantify the spatial and temporal scale of moisture recycling, independent of the size and shape of the region under study. In contrast to previous studies, which essentially used curve fitting, the scaling laws presented by us follow directly from the process equation. thus allowing a fair comparison between regions and seasons. The calculation is based on ERA-Interim reanalysis data for the period 1999 to 2008. It is shown that in the tropics or in mountainous terrain the length scale of recycling can be as low as 500 to 2000 km. In temperate climates the length scale is typically between 3000 to 5000 km whereas it amounts to more than 7000 km in desert areas. The time scale of recycling ranges from 3 to 20 days, with the exception of deserts, where it is much longer. The most distinct seasonal differences can be observed over the Northern Hemisphere: in winter, moisture recycling is insignificant, whereas in summer it plays a major role in the climate. The length and time scales of atmospheric moisture recycling can be useful metrics to quantify local climatic effects of land use change.
EON: software for long time simulations of atomic scale systems
Chill, Samuel T.; Welborn, Matthew; Terrell, Rye; Zhang, Liang; Berthet, Jean-Claude; Pedersen, Andreas; Jónsson, Hannes; Henkelman, Graeme
2014-07-01
The EON software is designed for simulations of the state-to-state evolution of atomic scale systems over timescales greatly exceeding that of direct classical dynamics. States are defined as collections of atomic configurations from which a minimization of the potential energy gives the same inherent structure. The time evolution is assumed to be governed by rare events, where transitions between states are uncorrelated and infrequent compared with the timescale of atomic vibrations. Several methods for calculating the state-to-state evolution have been implemented in EON, including parallel replica dynamics, hyperdynamics and adaptive kinetic Monte Carlo. Global optimization methods, including simulated annealing, basin hopping and minima hopping are also implemented. The software has a client/server architecture where the computationally intensive evaluations of the interatomic interactions are calculated on the client-side and the state-to-state evolution is managed by the server. The client supports optimization for different computer architectures to maximize computational efficiency. The server is written in Python so that developers have access to the high-level functionality without delving into the computationally intensive components. Communication between the server and clients is abstracted so that calculations can be deployed on a single machine, clusters using a queuing system, large parallel computers using a message passing interface, or within a distributed computing environment. A generic interface to the evaluation of the interatomic interactions is defined so that empirical potentials, such as in LAMMPS, and density functional theory as implemented in VASP and GPAW can be used interchangeably. Examples are given to demonstrate the range of systems that can be modeled, including surface diffusion and island ripening of adsorbed atoms on metal surfaces, molecular diffusion on the surface of ice and global structural optimization of nanoparticles.
Vision for single flux quantum very large scale integrated technology
International Nuclear Information System (INIS)
Silver, Arnold; Bunyk, Paul; Kleinsasser, Alan; Spargo, John
2006-01-01
Single flux quantum (SFQ) electronics is extremely fast and has very low on-chip power dissipation. SFQ VLSI is an excellent candidate for high-performance computing and other applications requiring extremely high-speed signal processing. Despite this, SFQ technology has generally not been accepted for system implementation. We argue that this is due, at least in part, to the use of outdated tools to produce SFQ circuits and chips. Assuming the use of tools equivalent to those employed in the semiconductor industry, we estimate the density of Josephson junctions, circuit speed, and power dissipation that could be achieved with SFQ technology. Today, CMOS lithography is at 90-65 nm with about 20 layers. Assuming equivalent technology, aggressively increasing the current density above 100 kA cm -2 to achieve junction speeds approximately 1000 GHz, and reducing device footprints by converting device profiles from planar to vertical, one could expect to integrate about 250 M Josephson junctions cm -2 into SFQ digital circuits. This should enable circuit operation with clock frequencies above 200 GHz and place approximately 20 K gates within a radius of one clock period. As a result, complete microprocessors, including integrated memory registers, could be fabricated on a single chip
Vision for single flux quantum very large scale integrated technology
Energy Technology Data Exchange (ETDEWEB)
Silver, Arnold [Northrop Grumman Space Technology, One Space Park, Redondo Beach, CA 90278 (United States); Bunyk, Paul [Northrop Grumman Space Technology, One Space Park, Redondo Beach, CA 90278 (United States); Kleinsasser, Alan [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 (United States); Spargo, John [Northrop Grumman Space Technology, One Space Park, Redondo Beach, CA 90278 (United States)
2006-05-15
Single flux quantum (SFQ) electronics is extremely fast and has very low on-chip power dissipation. SFQ VLSI is an excellent candidate for high-performance computing and other applications requiring extremely high-speed signal processing. Despite this, SFQ technology has generally not been accepted for system implementation. We argue that this is due, at least in part, to the use of outdated tools to produce SFQ circuits and chips. Assuming the use of tools equivalent to those employed in the semiconductor industry, we estimate the density of Josephson junctions, circuit speed, and power dissipation that could be achieved with SFQ technology. Today, CMOS lithography is at 90-65 nm with about 20 layers. Assuming equivalent technology, aggressively increasing the current density above 100 kA cm{sup -2} to achieve junction speeds approximately 1000 GHz, and reducing device footprints by converting device profiles from planar to vertical, one could expect to integrate about 250 M Josephson junctions cm{sup -2} into SFQ digital circuits. This should enable circuit operation with clock frequencies above 200 GHz and place approximately 20 K gates within a radius of one clock period. As a result, complete microprocessors, including integrated memory registers, could be fabricated on a single chip.
Physical time scale in kinetic Monte Carlo simulations of continuous-time Markov chains.
Serebrinsky, Santiago A
2011-03-01
We rigorously establish a physical time scale for a general class of kinetic Monte Carlo algorithms for the simulation of continuous-time Markov chains. This class of algorithms encompasses rejection-free (or BKL) and rejection (or "standard") algorithms. For rejection algorithms, it was formerly considered that the availability of a physical time scale (instead of Monte Carlo steps) was empirical, at best. Use of Monte Carlo steps as a time unit now becomes completely unnecessary.
Fractional dynamic calculus and fractional dynamic equations on time scales
Georgiev, Svetlin G
2018-01-01
Pedagogically organized, this monograph introduces fractional calculus and fractional dynamic equations on time scales in relation to mathematical physics applications and problems. Beginning with the definitions of forward and backward jump operators, the book builds from Stefan Hilger’s basic theories on time scales and examines recent developments within the field of fractional calculus and fractional equations. Useful tools are provided for solving differential and integral equations as well as various problems involving special functions of mathematical physics and their extensions and generalizations in one and more variables. Much discussion is devoted to Riemann-Liouville fractional dynamic equations and Caputo fractional dynamic equations. Intended for use in the field and designed for students without an extensive mathematical background, this book is suitable for graduate courses and researchers looking for an introduction to fractional dynamic calculus and equations on time scales. .
Chen, Xiaoyang; Lam, Kwok Ho; Chen, Ruimin; Chen, Zeyu; Yu, Ping; Chen, Zhongping; Shung, K Kirk; Zhou, Qifa
2017-11-01
This paper reports the fabrication, characterization, and microparticle manipulation capability of an adjustable multi-scale single beam acoustic tweezers (SBAT) that is capable of flexibly changing the size of "tweezers" like ordinary metal tweezers with a single-element ultrahigh frequency (UHF) ultrasonic transducer. The measured resonant frequency of the developed transducer at 526 MHz is the highest frequency of piezoelectric single crystal based ultrasonic transducers ever reported. This focused UHF ultrasonic transducer exhibits a wide bandwidth (95.5% at -10 dB) due to high attenuation of high-frequency ultrasound wave, which allows the SBAT effectively excite with a wide range of excitation frequency from 150 to 400 MHz by using the "piezoelectric actuator" model. Through controlling the excitation frequency, the wavelength of ultrasound emitted from the SBAT can be changed to selectively manipulate a single microparticle of different sizes (3-100 μm) by using only one transducer. This concept of flexibly changing "tweezers" size is firstly introduced into the study of SBAT. At the same time, it was found that this incident ultrasound wavelength play an important role in lateral trapping and manipulation for microparticle of different sizes. Biotechnol. Bioeng. 2017;114: 2637-2647. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Time-dependent scaling patterns in high frequency financial data
Nava, Noemi; Di Matteo, Tiziana; Aste, Tomaso
2016-10-01
We measure the influence of different time-scales on the intraday dynamics of financial markets. This is obtained by decomposing financial time series into simple oscillations associated with distinct time-scales. We propose two new time-varying measures of complexity: 1) an amplitude scaling exponent and 2) an entropy-like measure. We apply these measures to intraday, 30-second sampled prices of various stock market indices. Our results reveal intraday trends where different time-horizons contribute with variable relative amplitudes over the course of the trading day. Our findings indicate that the time series we analysed have a non-stationary multifractal nature with predominantly persistent behaviour at the middle of the trading session and anti-persistent behaviour at the opening and at the closing of the session. We demonstrate that these patterns are statistically significant, robust, reproducible and characteristic of each stock market. We argue that any modelling, analytics or trading strategy must take into account these non-stationary intraday scaling patterns.
Evaluation of scaling invariance embedded in short time series.
Directory of Open Access Journals (Sweden)
Xue Pan
Full Text Available Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2. Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03 and sharp confidential interval (standard deviation ≤0.05. Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.
Evaluation of scaling invariance embedded in short time series.
Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping
2014-01-01
Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2). Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03) and sharp confidential interval (standard deviation ≤0.05). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.
Nonlinear triple-point problems on time scales
Directory of Open Access Journals (Sweden)
Douglas R. Anderson
2004-04-01
Full Text Available We establish the existence of multiple positive solutions to the nonlinear second-order triple-point boundary-value problem on time scales, $$displaylines{ u^{Delta abla}(t+h(tf(t,u(t=0, cr u(a=alpha u(b+delta u^Delta(a,quad eta u(c+gamma u^Delta(c=0 }$$ for $tin[a,c]subsetmathbb{T}$, where $mathbb{T}$ is a time scale, $eta, gamma, deltage 0$ with $Beta+gamma>0$, $0
Dynamics symmetries of Hamiltonian system on time scales
Energy Technology Data Exchange (ETDEWEB)
Peng, Keke, E-mail: pengkeke88@126.com; Luo, Yiping, E-mail: zjstulyp@126.com [Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018 (China)
2014-04-15
In this paper, the dynamics symmetries of Hamiltonian system on time scales are studied. We study the symmetries and quantities based on the calculation of variation and Lie transformation group. Particular focus lies in: the Noether symmetry leads to the Noether conserved quantity and the Lie symmetry leads to the Noether conserved quantity if the infinitesimal transformations satisfy the structure equation. As the new application of result, at end of the article, we give a simple example of Noether symmetry and Lie symmetry on time scales.
International Nuclear Information System (INIS)
Lee, H. W.
1999-01-01
Wh study phase coherent transport in a single channel system using the scattering matrix approach. It is show that the Friedel sum rule and the time-reversal symmetry result in the generic appearance of transmission zeros in quasi-1d systems. The transmission zeros naturally lead to abrupt phase changes (without any intrinsic energy scale) and in-phase resonances, thus providing insights to recent experiments on phase coherent transport through a quantum dot
Single-mode Laser by Parity-time Symmetry Breaking
2014-11-21
solenoid -like Pds5B that reside in direct proximity to Wapl and the Smc3-Scc1 in- teraction interface (fig. S13), implying that Wapl and Pds5 control the...accepted 26 September 2014 10.1126/science.1256904 REPORTS ◥ OPTICS Single-mode laser by parity-time symmetry breaking Liang Feng,1* Zi Jing Wong,1...Ren-Min Ma,1* Yuan Wang,1,2 Xiang Zhang1,2† Effective manipulation of cavity resonant modes is crucial for emission control in laser physics and
Current scaling of radiated power for 40-mm diameter single wire arrays on Z
Nash, T. J.; Cuneo, M. E.; Spielman, R. B.; Chandler, G. A.; Leeper, R. J.; Seaman, J. F.; McGurn, J.; Lazier, S.; Torres, J.; Jobe, D.; Gilliland, T.; Nielsen, D.; Hawn, R.; Bailey, J. E.; Lake, P.; Carlson, A. L.; Seamen, H.; Moore, T.; Smelser, R.; Pyle, J.; Wagoner, T. C.; LePell, P. D.; Deeney, C.; Douglas, M. R.; McDaniel, D.; Struve, K.; Mazarakis, M.; Stygar, W. A.
2004-11-01
In order to estimate the radiated power that can be expected from the next-generation Z-pinch driver such as ZR at 28 MA, current-scaling experiments have been conducted on the 20 MA driver Z. We report on the current scaling of single 40 mm diameter tungsten 240 wire arrays with a fixed 110 ns implosion time. The wire diameter is decreased in proportion to the load current. Reducing the charge voltage on the Marx banks reduces the load current. On one shot, firing only three of the four levels of the Z machine further reduced the load current. The radiated energy scaled as the current squared as expected but the radiated power scaled as the current to the 3.52±0.42 power due to increased x-ray pulse width at lower current. As the current is reduced, the rise time of the x-ray pulse increases and at the lowest current value of 10.4 MA, a shoulder appears on the leading edge of the x-ray pulse. In order to determine the nature of the plasma producing the leading edge of the x-ray pulse at low currents further shots were taken with an on-axis aperture to view on-axis precursor plasma. This aperture appeared to perturb the pinch in a favorable manner such that with the aperture in place there was no leading edge to the x-ray pulses at lower currents and the radiated power scaled as the current squared ±0.75. For a full-current shot we will present x-ray images that show precursor plasma emitting on-axis 77 ns before the main x-ray burst.
Can a quantum state over time resemble a quantum state at a single time?
Horsman, Dominic; Heunen, Chris; Pusey, Matthew F; Barrett, Jonathan; Spekkens, Robert W
2017-09-01
The standard formalism of quantum theory treats space and time in fundamentally different ways. In particular, a composite system at a given time is represented by a joint state, but the formalism does not prescribe a joint state for a composite of systems at different times. If there were a way of defining such a joint state, this would potentially permit a more even-handed treatment of space and time, and would strengthen the existing analogy between quantum states and classical probability distributions. Under the assumption that the joint state over time is an operator on the tensor product of single-time Hilbert spaces, we analyse various proposals for such a joint state, including one due to Leifer and Spekkens, one due to Fitzsimons, Jones and Vedral, and another based on discrete Wigner functions. Finding various problems with each, we identify five criteria for a quantum joint state over time to satisfy if it is to play a role similar to the standard joint state for a composite system: that it is a Hermitian operator on the tensor product of the single-time Hilbert spaces; that it represents probabilistic mixing appropriately; that it has the appropriate classical limit; that it has the appropriate single-time marginals; that composing over multiple time steps is associative. We show that no construction satisfies all these requirements. If Hermiticity is dropped, then there is an essentially unique construction that satisfies the remaining four criteria.
Relativity theory and time perception: single or multiple clocks?
Buhusi, Catalin V; Meck, Warren H
2009-07-22
Current theories of interval timing assume that humans and other animals time as if using a single, absolute stopwatch that can be stopped or reset on command. Here we evaluate the alternative view that psychological time is represented by multiple clocks, and that these clocks create separate temporal contexts by which duration is judged in a relative manner. Two predictions of the multiple-clock hypothesis were tested. First, that the multiple clocks can be manipulated (stopped and/or reset) independently. Second, that an event of a given physical duration would be perceived as having different durations in different temporal contexts, i.e., would be judged differently by each clock. Rats were trained to time three durations (e.g., 10, 30, and 90 s). When timing was interrupted by an unexpected gap in the signal, rats reset the clock used to time the "short" duration, stopped the "medium" duration clock, and continued to run the "long" duration clock. When the duration of the gap was manipulated, the rats reset these clocks in a hierarchical order, first the "short", then the "medium", and finally the "long" clock. Quantitative modeling assuming re-allocation of cognitive resources in proportion to the relative duration of the gap to the multiple, simultaneously timed event durations was used to account for the results. These results indicate that the three event durations were effectively timed by separate clocks operated independently, and that the same gap duration was judged relative to these three temporal contexts. Results suggest that the brain processes the duration of an event in a manner similar to Einstein's special relativity theory: A given time interval is registered differently by independent clocks dependent upon the context.
Relativity theory and time perception: single or multiple clocks?
Directory of Open Access Journals (Sweden)
Catalin V Buhusi
2009-07-01
Full Text Available Current theories of interval timing assume that humans and other animals time as if using a single, absolute stopwatch that can be stopped or reset on command. Here we evaluate the alternative view that psychological time is represented by multiple clocks, and that these clocks create separate temporal contexts by which duration is judged in a relative manner. Two predictions of the multiple-clock hypothesis were tested. First, that the multiple clocks can be manipulated (stopped and/or reset independently. Second, that an event of a given physical duration would be perceived as having different durations in different temporal contexts, i.e., would be judged differently by each clock.Rats were trained to time three durations (e.g., 10, 30, and 90 s. When timing was interrupted by an unexpected gap in the signal, rats reset the clock used to time the "short" duration, stopped the "medium" duration clock, and continued to run the "long" duration clock. When the duration of the gap was manipulated, the rats reset these clocks in a hierarchical order, first the "short", then the "medium", and finally the "long" clock. Quantitative modeling assuming re-allocation of cognitive resources in proportion to the relative duration of the gap to the multiple, simultaneously timed event durations was used to account for the results.These results indicate that the three event durations were effectively timed by separate clocks operated independently, and that the same gap duration was judged relative to these three temporal contexts. Results suggest that the brain processes the duration of an event in a manner similar to Einstein's special relativity theory: A given time interval is registered differently by independent clocks dependent upon the context.
Multi-scale Modeling of Compressible Single-phase Flow in Porous Media using Molecular Simulation
Saad, Ahmed Mohamed
2016-05-01
In this study, an efficient coupling between Monte Carlo (MC) molecular simulation and Darcy-scale flow in porous media is presented. The cell-centered finite difference method with a non-uniform rectangular mesh were used to discretize the simulation domain and solve the governing equations. To speed up the MC simulations, we implemented a recently developed scheme that quickly generates MC Markov chains out of pre-computed ones, based on the reweighting and reconstruction algorithm. This method astonishingly reduces the required computational time by MC simulations from hours to seconds. In addition, the reweighting and reconstruction scheme, which was originally designed to work with the LJ potential model, is extended to work with a potential model that accounts for the molecular quadrupole moment of fluids with non-spherical molecules such as CO2. The potential model was used to simulate the thermodynamic equilibrium properties for single-phase and two-phase systems using the canonical ensemble and the Gibbs ensemble, respectively. Comparing the simulation results with the experimental data showed that the implemented model has an excellent fit outperforming the standard LJ model. To demonstrate the strength of the proposed coupling in terms of computational time efficiency and numerical accuracy in fluid properties, various numerical experiments covering different compressible single-phase flow scenarios were conducted. The novelty in the introduced scheme is in allowing an efficient coupling of the molecular scale and Darcy scale in reservoir simulators. This leads to an accurate description of the thermodynamic behavior of the simulated reservoir fluids; consequently enhancing the confidence in the flow predictions in porous media.
Cognitive componets of speech at different time scales
DEFF Research Database (Denmark)
Feng, Ling; Hansen, Lars Kai
2007-01-01
Cognitive component analysis (COCA) is defined as unsupervised grouping of data leading to a group structure well aligned with that resulting from human cognitive activity. We focus here on speech at different time scales looking for possible hidden ‘cognitive structure’. Statistical regularities...
Development of the Free Time Motivation Scale for Adolescents.
Baldwin, Cheryl K.; Caldwell, Linda L.
2003-01-01
Developed a self-report measure of adolescent free time motivation based in self-determination theory, using data from 634 seventh graders. The scale measured five forms of motivation (amotivation, external, introjected, identified, and intrinsic motivation). Examination of each of the subscales indicated minimally acceptable levels of fit. The…
Vibration amplitude rule study for rotor under large time scale
International Nuclear Information System (INIS)
Yang Xuan; Zuo Jianli; Duan Changcheng
2014-01-01
The rotor is an important part of the rotating machinery; its vibration performance is one of the important factors affecting the service life. This paper presents both theoretical analyses and experimental demonstrations of the vibration rule of the rotor under large time scales. The rule can be used for the service life estimation of the rotor. (authors)
THEORETICAL REVIEW The Hippocampus, Time, and Memory Across Scales
Howard, Marc W.; Eichenbaum, Howard
2014-01-01
A wealth of experimental studies with animals have offered insights about how neural networks within the hippocampus support the temporal organization of memories. These studies have revealed the existence of “time cells” that encode moments in time, much as the well-known “place cells” map locations in space. Another line of work inspired by human behavioral studies suggests that episodic memories are mediated by a state of temporal context that changes gradually over long time scales, up to at least a few thousand seconds. In this view, the “mental time travel” hypothesized to support the experience of episodic memory corresponds to a “jump back in time” in which a previous state of temporal context is recovered. We suggest that these 2 sets of findings could be different facets of a representation of temporal history that maintains a record at the last few thousand seconds of experience. The ability to represent long time scales comes at the cost of discarding precise information about when a stimulus was experienced—this uncertainty becomes greater for events further in the past. We review recent computational work that describes a mechanism that could construct such a scale-invariant representation. Taken as a whole, this suggests the hippocampus plays its role in multiple aspects of cognition by representing events embedded in a general spatiotemporal context. The representation of internal time can be useful across nonhippocampal memory systems. PMID:23915126
Doubly stochastic Poisson process models for precipitation at fine time-scales
Ramesh, Nadarajah I.; Onof, Christian; Xie, Dichao
2012-09-01
This paper considers a class of stochastic point process models, based on doubly stochastic Poisson processes, in the modelling of rainfall. We examine the application of this class of models, a neglected alternative to the widely-known Poisson cluster models, in the analysis of fine time-scale rainfall intensity. These models are mainly used to analyse tipping-bucket raingauge data from a single site but an extension to multiple sites is illustrated which reveals the potential of this class of models to study the temporal and spatial variability of precipitation at fine time-scales.
Energy Technology Data Exchange (ETDEWEB)
Morris, Tim R. [STAG Research Centre & Department of Physics and Astronomy, University of Southampton,Highfield, Southampton, SO17 1BJ (United Kingdom)
2016-11-25
In single-metric approximations to the exact renormalization group (RG) for quantum gravity, it has been not been clear how to treat the large curvature domain beyond the point where the effective cutoff scale k is less than the lowest eigenvalue of the appropriate modified Laplacian. We explain why this puzzle arises from background dependence, resulting in Wilsonian RG concepts being inapplicable. We show that when properly formulated over an ensemble of backgrounds, the Wilsonian RG can be restored. This in turn implies that solutions should be smooth and well defined no matter how large the curvature is taken. Even for the standard single-metric type approximation schemes, this construction can be rigorously derived by imposing a modified Ward identity (mWI) corresponding to rescaling the background metric by a constant factor. However compatibility in this approximation requires the space-time dimension to be six. Solving the mWI and flow equation simultaneously, new variables are then derived that are independent of overall background scale.
Time scale algorithm: Definition of ensemble time and possible uses of the Kalman filter
Tavella, Patrizia; Thomas, Claudine
1990-01-01
The comparative study of two time scale algorithms, devised to satisfy different but related requirements, is presented. They are ALGOS(BIPM), producing the international reference TAI at the Bureau International des Poids et Mesures, and AT1(NIST), generating the real-time time scale AT1 at the National Institute of Standards and Technology. In each case, the time scale is a weighted average of clock readings, but the weight determination and the frequency prediction are different because they are adapted to different purposes. The possibility of using a mathematical tool, such as the Kalman filter, together with the definition of the time scale as a weighted average, is also analyzed. Results obtained by simulation are presented.
Time scale controversy: Accurate orbital calibration of the early Paleogene
Roehl, U.; Westerhold, T.; Laskar, J.
2012-12-01
Timing is crucial to understanding the causes and consequences of events in Earth history. The calibration of geological time relies heavily on the accuracy of radioisotopic and astronomical dating. Uncertainties in the computations of Earth's orbital parameters and in radioisotopic dating have hampered the construction of a reliable astronomically calibrated time scale beyond 40 Ma. Attempts to construct a robust astronomically tuned time scale for the early Paleogene by integrating radioisotopic and astronomical dating are only partially consistent. Here, using the new La2010 and La2011 orbital solutions, we present the first accurate astronomically calibrated time scale for the early Paleogene (47-65 Ma) uniquely based on astronomical tuning and thus independent of the radioisotopic determination of the Fish Canyon standard. Comparison with geological data confirms the stability of the new La2011 solution back to 54 Ma. Subsequent anchoring of floating chronologies to the La2011 solution using the very long eccentricity nodes provides an absolute age of 55.530 ± 0.05 Ma for the onset of the Paleocene/Eocene Thermal Maximum (PETM), 54.850 ± 0.05 Ma for the early Eocene ash -17, and 65.250 ± 0.06 Ma for the K/Pg boundary. The new astrochronology presented here indicates that the intercalibration and synchronization of U/Pb and 40Ar/39Ar radioisotopic geochronology is much more challenging than previously thought.
Decoding the Mobility and Time Scales of Protein Loops.
Gu, Yina; Li, Da-Wei; Brüschweiler, Rafael
2015-03-10
The flexible nature of protein loops and the time scales of their dynamics are critical for many biologically important events at the molecular level, such as protein interaction and recognition processes. In order to obtain a predictive understanding of the dynamic properties of loops, 500 ns molecular dynamics (MD) computer simulations of 38 different proteins were performed and validated using NMR chemical shifts. A total of 169 loops were analyzed and classified into three types, namely fast loops with correlation times Web server (http://spin.ccic.ohio-state.edu/index.php/loop). The results demonstrate that loop dynamics with their time scales can be predicted rapidly with reasonable accuracy, which will allow the screening of average protein structures to help better understand the various roles loops can play in the context of protein-protein interactions and binding.
Human learning: Power laws or multiple characteristic time scales?
Directory of Open Access Journals (Sweden)
Gottfried Mayer-Kress
2006-09-01
Full Text Available The central proposal of A. Newell and Rosenbloom (1981 was that the power law is the ubiquitous law of learning. This proposition is discussed in the context of the key factors that led to the acceptance of the power law as the function of learning. We then outline the principles of an epigenetic landscape framework for considering the role of the characteristic time scales of learning and an approach to system identification of the processes of performance dynamics. In this view, the change of performance over time is the product of a superposition of characteristic exponential time scales that reflect the influence of different processes. This theoretical approach can reproduce the traditional power law of practice within the experimental resolution of performance data sets - but we hypothesize that this function may prove to be a special and perhaps idealized case of learning.
Real-time simulation of large-scale floods
Liu, Q.; Qin, Y.; Li, G. D.; Liu, Z.; Cheng, D. J.; Zhao, Y. H.
2016-08-01
According to the complex real-time water situation, the real-time simulation of large-scale floods is very important for flood prevention practice. Model robustness and running efficiency are two critical factors in successful real-time flood simulation. This paper proposed a robust, two-dimensional, shallow water model based on the unstructured Godunov- type finite volume method. A robust wet/dry front method is used to enhance the numerical stability. An adaptive method is proposed to improve the running efficiency. The proposed model is used for large-scale flood simulation on real topography. Results compared to those of MIKE21 show the strong performance of the proposed model.
Multi-Scale Dissemination of Time Series Data
DEFF Research Database (Denmark)
Guo, Qingsong; Zhou, Yongluan; Su, Li
2013-01-01
In this paper, we consider the problem of continuous dissemination of time series data, such as sensor measurements, to a large number of subscribers. These subscribers fall into multiple subscription levels, where each subscription level is specified by the bandwidth constraint of a subscriber......, which is an abstract indicator for both the physical limits and the amount of data that the subscriber would like to handle. To handle this problem, we propose a system framework for multi-scale time series data dissemination that employs a typical tree-based dissemination network and existing time...
Real-time single-molecule imaging of quantum interference.
Juffmann, Thomas; Milic, Adriana; Müllneritsch, Michael; Asenbaum, Peter; Tsukernik, Alexander; Tüxen, Jens; Mayor, Marcel; Cheshnovsky, Ori; Arndt, Markus
2012-03-25
The observation of interference patterns in double-slit experiments with massive particles is generally regarded as the ultimate demonstration of the quantum nature of these objects. Such matter-wave interference has been observed for electrons, neutrons, atoms and molecules and, in contrast to classical physics, quantum interference can be observed when single particles arrive at the detector one by one. The build-up of such patterns in experiments with electrons has been described as the "most beautiful experiment in physics". Here, we show how a combination of nanofabrication and nano-imaging allows us to record the full two-dimensional build-up of quantum interference patterns in real time for phthalocyanine molecules and for derivatives of phthalocyanine molecules, which have masses of 514 AMU and 1,298 AMU respectively. A laser-controlled micro-evaporation source was used to produce a beam of molecules with the required intensity and coherence, and the gratings were machined in 10-nm-thick silicon nitride membranes to reduce the effect of van der Waals forces. Wide-field fluorescence microscopy detected the position of each molecule with an accuracy of 10 nm and revealed the build-up of a deterministic ensemble interference pattern from single molecules that arrived stochastically at the detector. In addition to providing this particularly clear demonstration of wave-particle duality, our approach could also be used to study larger molecules and explore the boundary between quantum and classical physics.
The Single-Item Math Anxiety Scale: An Alternative Way of Measuring Mathematical Anxiety
Núñez-Peña, M. Isabel; Guilera, Georgina; Suárez-Pellicioni, Macarena
2014-01-01
This study examined whether the Single-Item Math Anxiety Scale (SIMA), based on the item suggested by Ashcraft, provided valid and reliable scores of mathematical anxiety. A large sample of university students (n = 279) was administered the SIMA and the 25-item Shortened Math Anxiety Rating Scale (sMARS) to evaluate the relation between the scores…
King, Adam C; Newell, Karl M
2015-10-01
The experiment investigated the effect of selectively augmenting faster time scales of visual feedback information on the learning and transfer of continuous isometric force tracking tasks to test the generality of the self-organization of 1/f properties of force output. Three experimental groups tracked an irregular target pattern either under a standard fixed gain condition or with selectively enhancement in the visual feedback display of intermediate (4-8 Hz) or high (8-12 Hz) frequency components of the force output. All groups reduced tracking error over practice, with the error lowest in the intermediate scaling condition followed by the high scaling and fixed gain conditions, respectively. Selective visual scaling induced persistent changes across the frequency spectrum, with the strongest effect in the intermediate scaling condition and positive transfer to novel feedback displays. The findings reveal an interdependence of the timescales in the learning and transfer of isometric force output frequency structures consistent with 1/f process models of the time scales of motor output variability.
IPNS time-of-flight single crystal diffractometer
International Nuclear Information System (INIS)
Schultz, A.J.; Teller, R.G.; Williams, J.M.
1983-01-01
The single crystal diffractometer (SCD) at the Argonne Intense Pulsed Neutron Source (IPNS) utilizes the time-of-flight (TOF) Laue technique to provide a three-dimensional sampling of reciprocal space during each pulse. The instrument contains a unique neutron position-sensitive 6 Li-glass scintillation detector with an active area of 30 x 30 cm. The three-dimensional nature of the data is very useful for fast, efficient measurement of Bragg intensities and for the studies of superlattice and diffuse scattering. The instrument was designed to achieve a resolution of 2% or better (R = δQ/Q) with 2 THETA > 60 0 and lambda > 0.7A
Single-Index Additive Vector Autoregressive Time Series Models
LI, YEHUA
2009-09-01
We study a new class of nonlinear autoregressive models for vector time series, where the current vector depends on single-indexes defined on the past lags and the effects of different lags have an additive form. A sufficient condition is provided for stationarity of such models. We also study estimation of the proposed model using P-splines, hypothesis testing, asymptotics, selection of the order of the autoregression and of the smoothing parameters and nonlinear forecasting. We perform simulation experiments to evaluate our model in various settings. We illustrate our methodology on a climate data set and show that our model provides more accurate yearly forecasts of the El Niño phenomenon, the unusual warming of water in the Pacific Ocean. © 2009 Board of the Foundation of the Scandinavian Journal of Statistics.
MonoSLAM: real-time single camera SLAM.
Davison, Andrew J; Reid, Ian D; Molton, Nicholas D; Stasse, Olivier
2007-06-01
We present a real-time algorithm which can recover the 3D trajectory of a monocular camera, moving rapidly through a previously unknown scene. Our system, which we dub MonoSLAM, is the first successful application of the SLAM methodology from mobile robotics to the "pure vision" domain of a single uncontrolled camera, achieving real time but drift-free performance inaccessible to Structure from Motion approaches. The core of the approach is the online creation of a sparse but persistent map of natural landmarks within a probabilistic framework. Our key novel contributions include an active approach to mapping and measurement, the use of a general motion model for smooth camera movement, and solutions for monocular feature initialization and feature orientation estimation. Together, these add up to an extremely efficient and robust algorithm which runs at 30 Hz with standard PC and camera hardware. This work extends the range of robotic systems in which SLAM can be usefully applied, but also opens up new areas. We present applications of MonoSLAM to real-time 3D localization and mapping for a high-performance full-size humanoid robot and live augmented reality with a hand-held camera.
Time scale of diffusion in molecular and cellular biology
International Nuclear Information System (INIS)
Holcman, D; Schuss, Z
2014-01-01
Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function. (topical review)
Time scale of diffusion in molecular and cellular biology
Holcman, D.; Schuss, Z.
2014-05-01
Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function.
Development and validation of the Single Item Trait Empathy Scale (SITES).
Konrath, Sara; Meier, Brian P; Bushman, Brad J
2018-04-01
Empathy involves feeling compassion for others and imagining how they feel. In this article, we develop and validate the Single Item Trait Empathy Scale (SITES), which contains only one item that takes seconds to complete. In seven studies (N=5,724), the SITES was found to be both reliable and valid. It correlated in expected ways with a wide variety of intrapersonal outcomes. For example, it is negatively correlated with narcissism, depression, anxiety, and alexithymia. In contrast, it is positively correlated with other measures of empathy, self-esteem, subjective well-being, and agreeableness. The SITES also correlates with a wide variety of interpersonal outcomes, especially compassion for others and helping others. The SITES is recommended in situations when time or question quantity is constrained.
Burnout of pulverized biomass particles in large scale boiler - Single particle model approach
Energy Technology Data Exchange (ETDEWEB)
Saastamoinen, Jaakko; Aho, Martti; Moilanen, Antero [VTT Technical Research Centre of Finland, Box 1603, 40101 Jyvaeskylae (Finland); Soerensen, Lasse Holst [ReaTech/ReAddit, Frederiksborgsveij 399, Niels Bohr, DK-4000 Roskilde (Denmark); Clausen, Soennik [Risoe National Laboratory, DK-4000 Roskilde (Denmark); Berg, Mogens [ENERGI E2 A/S, A.C. Meyers Vaenge 9, DK-2450 Copenhagen SV (Denmark)
2010-05-15
Burning of coal and biomass particles are studied and compared by measurements in an entrained flow reactor and by modelling. The results are applied to study the burning of pulverized biomass in a large scale utility boiler originally planned for coal. A simplified single particle approach, where the particle combustion model is coupled with one-dimensional equation of motion of the particle, is applied for the calculation of the burnout in the boiler. The particle size of biomass can be much larger than that of coal to reach complete burnout due to lower density and greater reactivity. The burner location and the trajectories of the particles might be optimised to maximise the residence time and burnout. (author)
HMC algorithm with multiple time scale integration and mass preconditioning
Urbach, C.; Jansen, K.; Shindler, A.; Wenger, U.
2006-01-01
We present a variant of the HMC algorithm with mass preconditioning (Hasenbusch acceleration) and multiple time scale integration. We have tested this variant for standard Wilson fermions at β=5.6 and at pion masses ranging from 380 to 680 MeV. We show that in this situation its performance is comparable to the recently proposed HMC variant with domain decomposition as preconditioner. We give an update of the "Berlin Wall" figure, comparing the performance of our variant of the HMC algorithm to other published performance data. Advantages of the HMC algorithm with mass preconditioning and multiple time scale integration are that it is straightforward to implement and can be used in combination with a wide variety of lattice Dirac operators.
Nonlinear MHD dynamics of tokamak plasmas on multiple time scales
International Nuclear Information System (INIS)
Kruger, S.E.; Schnack, D.D.; Brennan, D.P.; Gianakon, T.A.; Sovinec, C.R.
2003-01-01
Two types of numerical, nonlinear simulations using the NIMROD code are presented. In the first simulation, we model the disruption occurring in DIII-D discharge 87009 as an ideal MHD instability driven unstable by neutral-beam heating. The mode grows faster than exponential, but on a time scale that is a hybrid of the heating rate and the ideal MHD growth rate as predicted by analytic theory. The second type of simulations, which occur on a much longer time scale, focus on the seeding of tearing modes by sawteeth. Pressure effects play a role both in the exterior region solutions and in the neoclassical drive terms. The results of both simulations are reviewed and their implications for experimental analysis is discussed. (author)
The length and time scales of water's glass transitions
Limmer, David T.
2014-06-01
Using a general model for the equilibrium dynamics of supercooled liquids, I compute from molecular properties the emergent length and time scales that govern the nonequilibrium relaxation behavior of amorphous ice prepared by rapid cooling. Upon cooling, the liquid water falls out of equilibrium whereby the temperature dependence of its relaxation time is predicted to change from super-Arrhenius to Arrhenius. A consequence of this crossover is that the location of the apparent glass transition temperature depends logarithmically on cooling rate. Accompanying vitrification is the emergence of a dynamical length-scale, the size of which depends on the cooling rate and varies between angstroms and tens of nanometers. While this protocol dependence clarifies a number of previous experimental observations for amorphous ice, the arguments are general and can be extended to other glass forming liquids.
The length and time scales of water's glass transitions.
Limmer, David T
2014-06-07
Using a general model for the equilibrium dynamics of supercooled liquids, I compute from molecular properties the emergent length and time scales that govern the nonequilibrium relaxation behavior of amorphous ice prepared by rapid cooling. Upon cooling, the liquid water falls out of equilibrium whereby the temperature dependence of its relaxation time is predicted to change from super-Arrhenius to Arrhenius. A consequence of this crossover is that the location of the apparent glass transition temperature depends logarithmically on cooling rate. Accompanying vitrification is the emergence of a dynamical length-scale, the size of which depends on the cooling rate and varies between angstroms and tens of nanometers. While this protocol dependence clarifies a number of previous experimental observations for amorphous ice, the arguments are general and can be extended to other glass forming liquids.
The fission time scale measured with an atomic clock
Kravchuk, VL; Wilschut, HW; Hunyadi, M; Kopecky, S; Lohner, H; Rogachevskiy, A; Siemssen, RH; Krasznahorkay, A; Hamilton, JH; Ramayya, AV; Carter, HK
2003-01-01
We present a new direct method of measuring the fission absolute time scale using an atomic clock based on the lifetime of a vacancy in the atomic K-shell. We studied the reaction Ne-20 + Th-232 -> O-16 + U-236* at 30 MeV/u. The excitation energy of about 115 MeV in such a reaction is in the range
Diffusion time scales and accretion in the sun
International Nuclear Information System (INIS)
Michaud, G.
1977-01-01
It is thought that surface abundances in the Sun could be due largely to accretion either of comets or grains, and it has been suggested that if surface convection zones were smaller than is usually indicated by model calculations, accretion would be especially important. Unless the zone immediately below the surface convection zone is sufficiently stable for diffusion to be important, other transport processes, such as turbulence and meridional circulation, more efficient than diffusion, will tend to homogenise the Sun. Diffusion is the slowest of the transport processes and will become important when other transport processes become inoperative. Using diffusion theory the minimum mass of the convection zone can be determined in order that transport processes at the bottom of the zone are not to influence abundances in the convection zone. If diffusion time scales are shorter than the life of the star (Sun) diffusion will modify the abundances in the convection zone. The mass in the convection zone for which diffusion time scales are equal to the life of the star on the main sequence then determines the minimum mass in the convection zone that justifies neglect of transport processes at the bottom of the convection zone. It is calculated here that, for the Sun, this mass is between 3 x 10 -3 and 10 -2 solar mass, and a general explosion is derived for the diffusion time scale as a function of the mass of the convection zone. (U.K.)
Backpropagation and ordered derivatives in the time scales calculus.
Seiffertt, John; Wunsch, Donald C
2010-08-01
Backpropagation is the most widely used neural network learning technique. It is based on the mathematical notion of an ordered derivative. In this paper, we present a formulation of ordered derivatives and the backpropagation training algorithm using the important emerging area of mathematics known as the time scales calculus. This calculus, with its potential for application to a wide variety of inter-disciplinary problems, is becoming a key area of mathematics. It is capable of unifying continuous and discrete analysis within one coherent theoretical framework. Using this calculus, we present here a generalization of backpropagation which is appropriate for cases beyond the specifically continuous or discrete. We develop a new multivariate chain rule of this calculus, define ordered derivatives on time scales, prove a key theorem about them, and derive the backpropagation weight update equations for a feedforward multilayer neural network architecture. By drawing together the time scales calculus and the area of neural network learning, we present the first connection of two major fields of research.
Atomistic simulations of graphite etching at realistic time scales.
Aussems, D U B; Bal, K M; Morgan, T W; van de Sanden, M C M; Neyts, E C
2017-10-01
Hydrogen-graphite interactions are relevant to a wide variety of applications, ranging from astrophysics to fusion devices and nano-electronics. In order to shed light on these interactions, atomistic simulation using Molecular Dynamics (MD) has been shown to be an invaluable tool. It suffers, however, from severe time-scale limitations. In this work we apply the recently developed Collective Variable-Driven Hyperdynamics (CVHD) method to hydrogen etching of graphite for varying inter-impact times up to a realistic value of 1 ms, which corresponds to a flux of ∼10 20 m -2 s -1 . The results show that the erosion yield, hydrogen surface coverage and species distribution are significantly affected by the time between impacts. This can be explained by the higher probability of C-C bond breaking due to the prolonged exposure to thermal stress and the subsequent transition from ion- to thermal-induced etching. This latter regime of thermal-induced etching - chemical erosion - is here accessed for the first time using atomistic simulations. In conclusion, this study demonstrates that accounting for long time-scales significantly affects ion bombardment simulations and should not be neglected in a wide range of conditions, in contrast to what is typically assumed.
Stability theory for dynamic equations on time scales
Martynyuk, Anatoly A
2016-01-01
This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The second is based on the generalization of the direct Lyapunovs method for equations on time scales, using scalar, vector and matrix-valued auxiliary functions. The third approach is the application of auxiliary functions (scalar, vector, or matrix-valued ones) in combination with differential dynamic inequalities. This is an alternative comparison method, developed for time continuous and time discrete systems. In recent decades, automatic control theory in the study of air- and spacecraft dynamics and in other areas of modern applied mathematics has encountered problems in the analysis of the behavior of solutions of time continuous-discrete linear and/or nonlinear equations of perturbed motion. In the book “Men of Ma...
Quantum universe on extremely small space-time scales
International Nuclear Information System (INIS)
Kuzmichev, V.E.; Kuzmichev, V.V.
2010-01-01
The semiclassical approach to the quantum geometrodynamical model is used for the description of the properties of the Universe on extremely small space-time scales. Under this approach, the matter in the Universe has two components of the quantum nature which behave as antigravitating fluids. The first component does not vanish in the limit h → 0 and can be associated with dark energy. The second component is described by an extremely rigid equation of state and goes to zero after the transition to large spacetime scales. On small space-time scales, this quantum correction turns out to be significant. It determines the geometry of the Universe near the initial cosmological singularity point. This geometry is conformal to a unit four-sphere embedded in a five-dimensional Euclidean flat space. During the consequent expansion of the Universe, when reaching the post-Planck era, the geometry of the Universe changes into that conformal to a unit four-hyperboloid in a five-dimensional Lorentzsignatured flat space. This agrees with the hypothesis about the possible change of geometry after the origin of the expanding Universe from the region near the initial singularity point. The origin of the Universe can be interpreted as a quantum transition of the system from a region in the phase space forbidden for the classical motion, but where a trajectory in imaginary time exists, into a region, where the equations of motion have the solution which describes the evolution of the Universe in real time. Near the boundary between two regions, from the side of real time, the Universe undergoes almost an exponential expansion which passes smoothly into the expansion under the action of radiation dominating over matter which is described by the standard cosmological model.
Scale and time dependence of serial correlations in word-length time series of written texts
Rodriguez, E.; Aguilar-Cornejo, M.; Femat, R.; Alvarez-Ramirez, J.
2014-11-01
This work considered the quantitative analysis of large written texts. To this end, the text was converted into a time series by taking the sequence of word lengths. The detrended fluctuation analysis (DFA) was used for characterizing long-range serial correlations of the time series. To this end, the DFA was implemented within a rolling window framework for estimating the variations of correlations, quantified in terms of the scaling exponent, strength along the text. Also, a filtering derivative was used to compute the dependence of the scaling exponent relative to the scale. The analysis was applied to three famous English-written literary narrations; namely, Alice in Wonderland (by Lewis Carrol), Dracula (by Bram Stoker) and Sense and Sensibility (by Jane Austen). The results showed that high correlations appear for scales of about 50-200 words, suggesting that at these scales the text contains the stronger coherence. The scaling exponent was not constant along the text, showing important variations with apparent cyclical behavior. An interesting coincidence between the scaling exponent variations and changes in narrative units (e.g., chapters) was found. This suggests that the scaling exponent obtained from the DFA is able to detect changes in narration structure as expressed by the usage of words of different lengths.
Memory effect in silicon time-gated single-photon avalanche diodes
International Nuclear Information System (INIS)
Dalla Mora, A.; Contini, D.; Di Sieno, L.; Tosi, A.; Boso, G.; Villa, F.; Pifferi, A.
2015-01-01
We present a comprehensive characterization of the memory effect arising in thin-junction silicon Single-Photon Avalanche Diodes (SPADs) when exposed to strong illumination. This partially unknown afterpulsing-like noise represents the main limiting factor when time-gated acquisitions are exploited to increase the measurement dynamic range of very fast (picosecond scale) and faint (single-photon) optical signals following a strong stray one. We report the dependences of this unwelcome signal-related noise on photon wavelength, detector temperature, and biasing conditions. Our results suggest that this so-called “memory effect” is generated in the deep regions of the detector, well below the depleted region, and its contribution on detector response is visible only when time-gated SPADs are exploited to reject a strong burst of photons
Memory effect in silicon time-gated single-photon avalanche diodes
Energy Technology Data Exchange (ETDEWEB)
Dalla Mora, A.; Contini, D., E-mail: davide.contini@polimi.it; Di Sieno, L. [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Tosi, A.; Boso, G.; Villa, F. [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Pifferi, A. [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); CNR, Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy)
2015-03-21
We present a comprehensive characterization of the memory effect arising in thin-junction silicon Single-Photon Avalanche Diodes (SPADs) when exposed to strong illumination. This partially unknown afterpulsing-like noise represents the main limiting factor when time-gated acquisitions are exploited to increase the measurement dynamic range of very fast (picosecond scale) and faint (single-photon) optical signals following a strong stray one. We report the dependences of this unwelcome signal-related noise on photon wavelength, detector temperature, and biasing conditions. Our results suggest that this so-called “memory effect” is generated in the deep regions of the detector, well below the depleted region, and its contribution on detector response is visible only when time-gated SPADs are exploited to reject a strong burst of photons.
A hierarchy of time-scales and the brain.
Kiebel, Stefan J; Daunizeau, Jean; Friston, Karl J
2008-11-01
In this paper, we suggest that cortical anatomy recapitulates the temporal hierarchy that is inherent in the dynamics of environmental states. Many aspects of brain function can be understood in terms of a hierarchy of temporal scales at which representations of the environment evolve. The lowest level of this hierarchy corresponds to fast fluctuations associated with sensory processing, whereas the highest levels encode slow contextual changes in the environment, under which faster representations unfold. First, we describe a mathematical model that exploits the temporal structure of fast sensory input to track the slower trajectories of their underlying causes. This model of sensory encoding or perceptual inference establishes a proof of concept that slowly changing neuronal states can encode the paths or trajectories of faster sensory states. We then review empirical evidence that suggests that a temporal hierarchy is recapitulated in the macroscopic organization of the cortex. This anatomic-temporal hierarchy provides a comprehensive framework for understanding cortical function: the specific time-scale that engages a cortical area can be inferred by its location along a rostro-caudal gradient, which reflects the anatomical distance from primary sensory areas. This is most evident in the prefrontal cortex, where complex functions can be explained as operations on representations of the environment that change slowly. The framework provides predictions about, and principled constraints on, cortical structure-function relationships, which can be tested by manipulating the time-scales of sensory input.
A hierarchy of time-scales and the brain.
Directory of Open Access Journals (Sweden)
Stefan J Kiebel
2008-11-01
Full Text Available In this paper, we suggest that cortical anatomy recapitulates the temporal hierarchy that is inherent in the dynamics of environmental states. Many aspects of brain function can be understood in terms of a hierarchy of temporal scales at which representations of the environment evolve. The lowest level of this hierarchy corresponds to fast fluctuations associated with sensory processing, whereas the highest levels encode slow contextual changes in the environment, under which faster representations unfold. First, we describe a mathematical model that exploits the temporal structure of fast sensory input to track the slower trajectories of their underlying causes. This model of sensory encoding or perceptual inference establishes a proof of concept that slowly changing neuronal states can encode the paths or trajectories of faster sensory states. We then review empirical evidence that suggests that a temporal hierarchy is recapitulated in the macroscopic organization of the cortex. This anatomic-temporal hierarchy provides a comprehensive framework for understanding cortical function: the specific time-scale that engages a cortical area can be inferred by its location along a rostro-caudal gradient, which reflects the anatomical distance from primary sensory areas. This is most evident in the prefrontal cortex, where complex functions can be explained as operations on representations of the environment that change slowly. The framework provides predictions about, and principled constraints on, cortical structure-function relationships, which can be tested by manipulating the time-scales of sensory input.
Decay of surface nanostructures via long-time-scale dynamics
International Nuclear Information System (INIS)
Voter, A.F.; Stanciu, N.
1998-01-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have developed a new approach for extending the time scale of molecular dynamics simulations. For infrequent-event systems, the category that includes most diffusive events in the solid phase, this hyperdynamics method can extend the simulation time by a few orders of magnitude compared to direct molecular dynamics. The trajectory is run on a potential surface that has been biased to raise the energy in the potential basins without affecting the transition state region. The method is described and applied to surface and bulk diffusion processes, achieving microsecond and millisecond simulation times. The authors have also developed a new parallel computing method that is efficient for small system sizes. The combination of the hyperdynamics with this parallel replica dynamics looks promising as a general materials simulation tool
Time scaling internal state predictive control of a solar plant
Energy Technology Data Exchange (ETDEWEB)
Silva, R.N. [DEE-FCT/UNL, Caparica (Portugal); Rato, L.M. [INESC-ID/University, Evora (Portugal); Lemos, J.M. [INESC-ID/IST, Lisboa (Portugal)
2003-12-01
The control of a distributed collector solar field is addressed in this work, exploiting the plant's transport characteristic. The plant is modeled by a hyperbolic type partial differential equation (PDE) where the transport speed is the manipulated flow, i.e. the controller output. The model has an external distributed source, which is the solar radiation captured along the collector, approximated to depend only of time. From the solution of the PDE, a linear discrete state space model is obtained by using time-scaling and the redefinition of the control input. This method allows overcoming the dependency of the time constants with the operating point. A model-based predictive adaptive controller is derived with the internal temperature distribution estimated with a state observer. Experimental results at the solar power plant are presented, illustrating the advantages of the approach under consideration. (author)
Directory of Open Access Journals (Sweden)
John J. Degnan
2016-11-01
Full Text Available Several scanning, single photon sensitive, 3D imaging lidars are herein described that operate at aircraft above ground levels (AGLs between 1 and 11 km, and speeds in excess of 200 knots. With 100 beamlets and laser fire rates up to 60 kHz, we, at the Sigma Space Corporation (Lanham, MD, USA, have interrogated up to 6 million ground pixels per second, all of which can record multiple returns from volumetric scatterers such as tree canopies. High range resolution has been achieved through the use of subnanosecond laser pulsewidths, detectors and timing receivers. The systems are presently being deployed on a variety of aircraft to demonstrate their utility in multiple applications including large scale surveying, bathymetry, forestry, etc. Efficient noise filters, suitable for near realtime imaging, have been shown to effectively eliminate the solar background during daytime operations. Geolocation elevation errors measured to date are at the subdecimeter level. Key differences between our Single Photon Lidars, and competing Geiger Mode lidars are also discussed.
International Nuclear Information System (INIS)
Van Zon, Ramses; Ashwin, S S; Cohen, E G D
2008-01-01
To describe short time (picosecond) and small scale (nanometre) transport in fluids, a Green's function approach was recently developed. This approach relies on an expansion of the distribution of single particle displacements around a Gaussian function, yielding an infinite series of correction terms. Applying a recent theorem (van Zon and Cohen 2006 J. Stat. Phys. 123 1–37) shows that for sufficiently small times the terms in this series become successively smaller, so that truncating the series near or at the Gaussian level might provide a good approximation. In this paper, we derive a theoretical estimate for the time scale at which truncating the series at or near the Gaussian level could be supposed to be accurate for equilibrium nanoscale systems. In order to numerically estimate this time scale, the coefficients for the first few terms in the series are determined in computer simulations for a Lennard-Jones (LJ) fluid, an isotopic LJ mixture and a suspension of a LJ-based model of nanoparticles in a LJ fluid. The results suggest that for LJ fluids an expansion around a Gaussian is accurate at time scales up to a picosecond, while for nanoparticles in suspension (a nanofluid), the characteristic time scale up to which the Gaussian is accurate becomes of the order of 5–10 ps. (invited article)
Neural Computations in a Dynamical System with Multiple Time Scales
Directory of Open Access Journals (Sweden)
Yuanyuan Mi
2016-09-01
Full Text Available Neural systems display rich short-term dynamics at various levels, e.g., spike-frequencyadaptation (SFA at single neurons, and short-term facilitation (STF and depression (STDat neuronal synapses. These dynamical features typically covers a broad range of time scalesand exhibit large diversity in different brain regions. It remains unclear what the computationalbenefit for the brain to have such variability in short-term dynamics is. In this study, we proposethat the brain can exploit such dynamical features to implement multiple seemingly contradictorycomputations in a single neural circuit. To demonstrate this idea, we use continuous attractorneural network (CANN as a working model and include STF, SFA and STD with increasing timeconstants in their dynamics. Three computational tasks are considered, which are persistent activity,adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, andhence cannot be implemented by a single dynamical feature or any combination with similar timeconstants. However, with properly coordinated STF, SFA and STD, we show that the network isable to implement the three computational tasks concurrently. We hope this study will shed lighton the understanding of how the brain orchestrates its rich dynamics at various levels to realizediverse cognitive functions.
High-resolution time-frequency representation of EEG data using multi-scale wavelets
Li, Yang; Cui, Wei-Gang; Luo, Mei-Lin; Li, Ke; Wang, Lina
2017-09-01
An efficient time-varying autoregressive (TVAR) modelling scheme that expands the time-varying parameters onto the multi-scale wavelet basis functions is presented for modelling nonstationary signals and with applications to time-frequency analysis (TFA) of electroencephalogram (EEG) signals. In the new parametric modelling framework, the time-dependent parameters of the TVAR model are locally represented by using a novel multi-scale wavelet decomposition scheme, which can allow the capability to capture the smooth trends as well as track the abrupt changes of time-varying parameters simultaneously. A forward orthogonal least square (FOLS) algorithm aided by mutual information criteria are then applied for sparse model term selection and parameter estimation. Two simulation examples illustrate that the performance of the proposed multi-scale wavelet basis functions outperforms the only single-scale wavelet basis functions or Kalman filter algorithm for many nonstationary processes. Furthermore, an application of the proposed method to a real EEG signal demonstrates the new approach can provide highly time-dependent spectral resolution capability.
Multiple time-scale methods in particle simulations of plasmas
International Nuclear Information System (INIS)
Cohen, B.I.
1985-01-01
This paper surveys recent advances in the application of multiple time-scale methods to particle simulation of collective phenomena in plasmas. These methods dramatically improve the efficiency of simulating low-frequency kinetic behavior by allowing the use of a large timestep, while retaining accuracy. The numerical schemes surveyed provide selective damping of unwanted high-frequency waves and preserve numerical stability in a variety of physics models: electrostatic, magneto-inductive, Darwin and fully electromagnetic. The paper reviews hybrid simulation models, the implicitmoment-equation method, the direct implicit method, orbit averaging, and subcycling
DEFF Research Database (Denmark)
Jørgensen, Peter Søgaard; Böhning-Gaese, Katrin; Thorup, Kasper
2016-01-01
foundation for attributing species responses to global change may be achieved by complementing an attributes-based approach by one estimating the relationship between repeated measures of organismal and environmental changes over short time scales. To assess the benefit of this multiscale perspective, we...... on or in the peak of the breeding season with the largest effect sizes observed in cooler parts of species' climatic ranges. Our results document the potential of combining time scales and integrating both species attributes and environmental variables for global change attribution. We suggest such an approach......Species attributes are commonly used to infer impacts of environmental change on multiyear species trends, e.g. decadal changes in population size. However, by themselves attributes are of limited value in global change attribution since they do not measure the changing environment. A broader...
Cross-Scale Modelling of Subduction from Minute to Million of Years Time Scale
Sobolev, S. V.; Muldashev, I. A.
2015-12-01
Subduction is an essentially multi-scale process with time-scales spanning from geological to earthquake scale with the seismic cycle in-between. Modelling of such process constitutes one of the largest challenges in geodynamic modelling today.Here we present a cross-scale thermomechanical model capable of simulating the entire subduction process from rupture (1 min) to geological time (millions of years) that employs elasticity, mineral-physics-constrained non-linear transient viscous rheology and rate-and-state friction plasticity. The model generates spontaneous earthquake sequences. The adaptive time-step algorithm recognizes moment of instability and drops the integration time step to its minimum value of 40 sec during the earthquake. The time step is then gradually increased to its maximal value of 5 yr, following decreasing displacement rates during the postseismic relaxation. Efficient implementation of numerical techniques allows long-term simulations with total time of millions of years. This technique allows to follow in details deformation process during the entire seismic cycle and multiple seismic cycles. We observe various deformation patterns during modelled seismic cycle that are consistent with surface GPS observations and demonstrate that, contrary to the conventional ideas, the postseismic deformation may be controlled by viscoelastic relaxation in the mantle wedge, starting within only a few hours after the great (M>9) earthquakes. Interestingly, in our model an average slip velocity at the fault closely follows hyperbolic decay law. In natural observations, such deformation is interpreted as an afterslip, while in our model it is caused by the viscoelastic relaxation of mantle wedge with viscosity strongly varying with time. We demonstrate that our results are consistent with the postseismic surface displacement after the Great Tohoku Earthquake for the day-to-year time range. We will also present results of the modeling of deformation of the
Fine Scale Baleen Whale Behavior Observed Via Tagging Over Daily Time Scales
2014-09-30
system to do a comparison between the two. While at Wildlife Computers, I also asked for and they kindly provided a small change in how their MK10...cetacean behavior at intermediate daily time scales. Recent efforts to assess the impacts of sound on marine mammals and to estimate foraging ...efficiency have called for the need to measure daily activity budgets to quantify how much of each day an individual devotes to foraging , resting
Sinitskiy, Anton V.; Pande, Vijay S.
2018-01-01
Markov state models (MSMs) have been widely used to analyze computer simulations of various biomolecular systems. They can capture conformational transitions much slower than an average or maximal length of a single molecular dynamics (MD) trajectory from the set of trajectories used to build the MSM. A rule of thumb claiming that the slowest implicit time scale captured by an MSM should be comparable by the order of magnitude to the aggregate duration of all MD trajectories used to build this MSM has been known in the field. However, this rule has never been formally proved. In this work, we present analytical results for the slowest time scale in several types of MSMs, supporting the above rule. We conclude that the slowest implicit time scale equals the product of the aggregate sampling and four factors that quantify: (1) how much statistics on the conformational transitions corresponding to the longest implicit time scale is available, (2) how good the sampling of the destination Markov state is, (3) the gain in statistics from using a sliding window for counting transitions between Markov states, and (4) a bias in the estimate of the implicit time scale arising from finite sampling of the conformational transitions. We demonstrate that in many practically important cases all these four factors are on the order of unity, and we analyze possible scenarios that could lead to their significant deviation from unity. Overall, we provide for the first time analytical results on the slowest time scales captured by MSMs. These results can guide further practical applications of MSMs to biomolecular dynamics and allow for higher computational efficiency of simulations.
Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network.
Du, Xiaofeng; Qu, Xiaobo; He, Yifan; Guo, Di
2018-03-06
Deep convolutional neural networks (CNNs) are successful in single-image super-resolution. Traditional CNNs are limited to exploit multi-scale contextual information for image reconstruction due to the fixed convolutional kernel in their building modules. To restore various scales of image details, we enhance the multi-scale inference capability of CNNs by introducing competition among multi-scale convolutional filters, and build up a shallow network under limited computational resources. The proposed network has the following two advantages: (1) the multi-scale convolutional kernel provides the multi-context for image super-resolution, and (2) the maximum competitive strategy adaptively chooses the optimal scale of information for image reconstruction. Our experimental results on image super-resolution show that the performance of the proposed network outperforms the state-of-the-art methods.
Shukla, Pragya
2004-01-01
We find that the statistics of levels undergoing metal-insulator transition in systems with multi-parametric Gaussian disorders and non-interacting electrons behaves in a way similar to that of the single parametric Brownian ensembles \\cite{dy}. The latter appear during a Poisson $\\to$ Wigner-Dyson transition, driven by a random perturbation. The analogy provides the analytical evidence for the single parameter scaling of the level-correlations in disordered systems as well as a tool to obtai...
Scale invariance in chaotic time series: Classical and quantum examples
Landa, Emmanuel; Morales, Irving O.; Stránský, Pavel; Fossion, Rubén; Velázquez, Victor; López Vieyra, J. C.; Frank, Alejandro
Important aspects of chaotic behavior appear in systems of low dimension, as illustrated by the Map Module 1. It is indeed a remarkable fact that all systems tha make a transition from order to disorder display common properties, irrespective of their exacta functional form. We discuss evidence for 1/f power spectra in the chaotic time series associated in classical and quantum examples, the one-dimensional map module 1 and the spectrum of 48Ca. A Detrended Fluctuation Analysis (DFA) method is applied to investigate the scaling properties of the energy fluctuations in the spectrum of 48Ca obtained with a large realistic shell model calculation (ANTOINE code) and with a random shell model (TBRE) calculation also in the time series obtained with the map mod 1. We compare the scale invariant properties of the 48Ca nuclear spectrum sith similar analyses applied to the RMT ensambles GOE and GDE. A comparison with the corresponding power spectra is made in both cases. The possible consequences of the results are discussed.
Adaptation and learning: characteristic time scales of performance dynamics.
Newell, Karl M; Mayer-Kress, Gottfried; Hong, S Lee; Liu, Yeou-Teh
2009-12-01
A multiple time scales landscape model is presented that reveals structures of performance dynamics that were not resolved in the traditional power law analysis of motor learning. It shows the co-existence of separate processes during and between practice sessions that evolve in two independent dimensions characterized by time scales that differ by about an order of magnitude. Performance along the slow persistent dimension of learning improves often as much and sometimes more during rest (memory consolidation and/or insight generation processes) than during a practice session itself. In contrast, the process characterized by the fast, transient dimension of adaptation reverses direction between practice sessions, thereby significantly degrading performance at the beginning of the next practice session (warm-up decrement). The theoretical model fits qualitatively and quantitatively the data from Snoddy's [Snoddy, G. S. (1926). Learning and stability. Journal of Applied Psychology, 10, 1-36] classic learning study of mirror tracing and other averaged and individual data sets, and provides a new account of the processes of change in adaptation and learning. 2009 Elsevier B.V. All rights reserved.
Yomogida, Yohei; Tanaka, Takeshi; Zhang, Minfang; Yudasaka, Masako; Wei, Xiaojun; Kataura, Hiromichi
2016-01-01
Single-chirality, single-wall carbon nanotubes are desired due to their inherent physical properties and performance characteristics. Here, we demonstrate a chromatographic separation method based on a newly discovered chirality-selective affinity between carbon nanotubes and a gel containing a mixture of the surfactants. In this system, two different selectivities are found: chiral-angle selectivity and diameter selectivity. Since the chirality of nanotubes is determined by the chiral angle and diameter, combining these independent selectivities leads to high-resolution single-chirality separation with milligram-scale throughput and high purity. Furthermore, we present efficient vascular imaging of mice using separated single-chirality (9,4) nanotubes. Due to efficient absorption and emission, blood vessels can be recognized even with the use of ∼100-fold lower injected dose than the reported value for pristine nanotubes. Thus, 1 day of separation provides material for up to 15,000 imaging experiments, which is acceptable for industrial use. PMID:27350127
Frontend electronics for high-precision single photo-electron timing using FPGA-TDCs
Energy Technology Data Exchange (ETDEWEB)
Cardinali, M., E-mail: cardinal@kph.uni-mainz.de [Institut für Kernphysik, Johannes Gutenberg-University Mainz, Mainz (Germany); Helmholtz Institut Mainz, Mainz (Germany); Dzyhgadlo, R.; Gerhardt, A.; Götzen, K.; Hohler, R.; Kalicy, G.; Kumawat, H.; Lehmann, D.; Lewandowski, B.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwarz, C.; Schwiening, J.; Traxler, M.; Ugur, C.; Zühlsdorf, M. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Dodokhov, V.Kh. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Britting, A. [Friedrich Alexander-University of Erlangen-Nuremberg, Erlangen (Germany); and others
2014-12-01
The next generation of high-luminosity experiments requires excellent particle identification detectors which calls for Imaging Cherenkov counters with fast electronics to cope with the expected hit rates. A Barrel DIRC will be used in the central region of the Target Spectrometer of the planned PANDA experiment at FAIR. A single photo-electron timing resolution of better than 100 ps is required by the Barrel DIRC to disentangle the complicated patterns created on the image plane. R and D studies have been performed to provide a design based on the TRB3 readout using FPGA-TDCs with a precision better than 20 ps RMS and custom frontend electronics with high-bandwidth pre-amplifiers and fast discriminators. The discriminators also provide time-over-threshold information thus enabling walk corrections to improve the timing resolution. Two types of frontend electronics cards optimised for reading out 64-channel PHOTONIS Planacon MCP-PMTs were tested: one based on the NINO ASIC and the other, called PADIWA, on FPGA discriminators. Promising results were obtained in a full characterisation using a fast laser setup and in a test experiment at MAMI, Mainz, with a small scale DIRC prototype. - Highlights: • Frontend electronics for Cherenkov detectors have been developed. • FPGA-TDCs have been used for high precision timing. • Time over threshold has been utilised for walk correction. • Single photo-electron timing resolution less than 100 ps has been achieved.
Scale-invariant Green-Kubo relation for time-averaged diffusivity
Meyer, Philipp; Barkai, Eli; Kantz, Holger
2017-12-01
In recent years it was shown both theoretically and experimentally that in certain systems exhibiting anomalous diffusion the time- and ensemble-averaged mean-squared displacement are remarkably different. The ensemble-averaged diffusivity is obtained from a scaling Green-Kubo relation, which connects the scale-invariant nonstationary velocity correlation function with the transport coefficient. Here we obtain the relation between time-averaged diffusivity, usually recorded in single-particle tracking experiments, and the underlying scale-invariant velocity correlation function. The time-averaged mean-squared displacement is given by 〈δ2¯〉 ˜2 DνtβΔν -β , where t is the total measurement time and Δ is the lag time. Here ν is the anomalous diffusion exponent obtained from ensemble-averaged measurements 〈x2〉 ˜tν , while β ≥-1 marks the growth or decline of the kinetic energy 〈v2〉 ˜tβ . Thus, we establish a connection between exponents that can be read off the asymptotic properties of the velocity correlation function and similarly for the transport constant Dν. We demonstrate our results with nonstationary scale-invariant stochastic and deterministic models, thereby highlighting that systems with equivalent behavior in the ensemble average can differ strongly in their time average. If the averaged kinetic energy is finite, β =0 , the time scaling of 〈δ2¯〉 and 〈x2〉 are identical; however, the time-averaged transport coefficient Dν is not identical to the corresponding ensemble-averaged diffusion constant.
Two-Agent Single-Machine Scheduling of Jobs with Time-Dependent Processing Times and Ready Times
Directory of Open Access Journals (Sweden)
Jan-Yee Kung
2013-01-01
Full Text Available Scheduling involving jobs with time-dependent processing times has recently attracted much research attention. However, multiagent scheduling with simultaneous considerations of jobs with time-dependent processing times and ready times is relatively unexplored. Inspired by this observation, we study a two-agent single-machine scheduling problem in which the jobs have both time-dependent processing times and ready times. We consider the model in which the actual processing time of a job of the first agent is a decreasing function of its scheduled position while the actual processing time of a job of the second agent is an increasing function of its scheduled position. In addition, each job has a different ready time. The objective is to minimize the total completion time of the jobs of the first agent with the restriction that no tardy job is allowed for the second agent. We propose a branch-and-bound and several genetic algorithms to obtain optimal and near-optimal solutions for the problem, respectively. We also conduct extensive computational results to test the proposed algorithms and examine the impacts of different problem parameters on their performance.
A single gene (yes controls pigmentation of eyes and scales in Heliothis virescens
Directory of Open Access Journals (Sweden)
Thomas M. Brown
2001-02-01
Full Text Available A yellow-eyed mutant was discovered in a strain of Heliothis virescens, the tobacco budworm, that already exhibited a mutation for yellow scale, y. We investigated the inheritance of these visible mutations as candidate markers for transgenesis. Yellow eye was controlled by a single, recessive, autosomal factor, the same type of inheritance previously known for y. Presence of the recombinant mutants with yellow scales with wild type eyes in test crosses indicated independent segregation of genes for these traits. The recombinant class with wild type scales and yellow eyes was completely absent and there was a corresponding increase of the double mutant parental class having yellow scales and yellow eyes. These results indicated that a single factor for yellow eye also controls yellow scales independently of y. This gene was named yes, for yellow eye and scale. We hypothesize that yes controls both eye and scale color through a deficiency in transport of pigment precursors in both the ommochrome and melanin pathways. The unlinked gene y likely controls an enzyme affecting the melanin pathway only. Both y and yes segregated independently of AceIn, acetylcholinesterase insensitivity, and sodium channel hscp, which are genes related to insecticide resistance.
Heart rate detection from single-foot plantar bioimpedance measurements in a weighing scale.
Diaz, Delia H; Casas, Oscar; Pallas-Areny, Ramon
2010-01-01
Electronic bathroom scales are an easy-to-use, affordable mean to measure physiological parameters in addition to body weight. They have been proposed to obtain the ballistocardiogram (BCG) and derive from it the heart rate, cardiac output and systolic blood pressure. Therefore, weighing scales may suit intermittent monitoring in e-health and patient screening. Scales intended for bioelectrical impedance analysis (BIA) have also been proposed to estimate the heart rate by amplifying the pulsatile impedance component superimposed on the basal impedance. However, electronic weighing scales cannot easily obtain the BCG from people that have a single leg neither are bioimpedance measurements between both feet recommended for people wearing a pacemaker or other electronic implants, neither for pregnant women. We propose a method to detect the heart rate (HR) from bioimpedance measured in a single foot while standing on an bathroom weighting scale intended for BIA. The electrodes built in the weighing scale are used to apply a 50 kHz voltage between the outer electrode pair and to measure the drop in voltage across the inner electrode pair. The agreement with the HR simultaneously obtained from the ECG is excellent. We have also compared the drop in voltage across the waist and the thorax with that obtained when measuring bioimpedance between both feet to compare the possible risk of the proposed method to that of existing BIA scales.
The Time Scale of Recombination Rate Evolution in Great Apes
Stevison, Laurie S.; Woerner, August E.; Kidd, Jeffrey M.; Kelley, Joanna L.; Veeramah, Krishna R.; McManus, Kimberly F.; Bustamante, Carlos D.; Hammer, Michael F.; Wall, Jeffrey D.
2016-01-01
Abstract We present three linkage-disequilibrium (LD)-based recombination maps generated using whole-genome sequence data from 10 Nigerian chimpanzees, 13 bonobos, and 15 western gorillas, collected as part of the Great Ape Genome Project (Prado-Martinez J, et al. 2013. Great ape genetic diversity and population history. Nature 499:471–475). We also identified species-specific recombination hotspots in each group using a modified LDhot framework, which greatly improves statistical power to detect hotspots at varying strengths. We show that fewer hotspots are shared among chimpanzee subspecies than within human populations, further narrowing the time scale of complete hotspot turnover. Further, using species-specific PRDM9 sequences to predict potential binding sites (PBS), we show higher predicted PRDM9 binding in recombination hotspots as compared to matched cold spot regions in multiple great ape species, including at least one chimpanzee subspecies. We found that correlations between broad-scale recombination rates decline more rapidly than nucleotide divergence between species. We also compared the skew of recombination rates at centromeres and telomeres between species and show a skew from chromosome means extending as far as 10–15 Mb from chromosome ends. Further, we examined broad-scale recombination rate changes near a translocation in gorillas and found minimal differences as compared to other great ape species perhaps because the coordinates relative to the chromosome ends were unaffected. Finally, on the basis of multiple linear regression analysis, we found that various correlates of recombination rate persist throughout the African great apes including repeats, diversity, and divergence. Our study is the first to analyze within- and between-species genome-wide recombination rate variation in several close relatives. PMID:26671457
Evaluating Change in Behavioral Preferences: Multidimensional Scaling Single-Ideal Point Model
Ding, Cody
2016-01-01
The purpose of the article is to propose a multidimensional scaling single-ideal point model as a method to evaluate changes in individuals' preferences under the explicit methodological framework of behavioral preference assessment. One example is used to illustrate the approach for a clear idea of what this approach can accomplish.
Atomic-scale structure of single-layer MoS2 nanoclusters
DEFF Research Database (Denmark)
Helveg, S.; Lauritsen, J. V.; Lægsgaard, E.
2000-01-01
We have studied using scanning tunneling microscopy (STM) the atomic-scale realm of molybdenum disulfide (MoS2) nanoclusters, which are of interest as a model system in hydrodesulfurization catalysis. The STM gives the first real space images of the shape and edge structure of single-layer MoS2...
A psychometric comparison of three scales and a single-item measure to assess sexual satisfaction.
Mark, Kristen P; Herbenick, Debby; Fortenberry, J Dennis; Sanders, Stephanie; Reece, Michael
2014-01-01
This study was designed to systematically compare and contrast the psychometric properties of three scales developed to measure sexual satisfaction and a single-item measure of sexual satisfaction. The Index of Sexual Satisfaction (ISS), Global Measure of Sexual Satisfaction (GMSEX), and the New Sexual Satisfaction Scale-Short (NSSS-S) were compared to one another and to a single-item measure of sexual satisfaction. Conceptualization of the constructs, distribution of scores, internal consistency, convergent validity, test-retest reliability, and factor structure were compared between the measures. A total of 211 men and 214 women completed the scales and a measure of relationship satisfaction, with 33% (n = 139) of the sample reassessed two months later. All scales demonstrated appropriate distribution of scores and adequate internal consistency. The GMSEX, NSSS-S, and the single-item measure demonstrated convergent validity. Test-retest reliability was demonstrated by the ISS, GMSEX, and NSSS-S, but not the single-item measure. Taken together, the GMSEX received the strongest psychometric support in this sample for a unidimensional measure of sexual satisfaction and the NSSS-S received the strongest psychometric support in this sample for a bidimensional measure of sexual satisfaction.
Time-scales of stellar rotational variability and starspot diagnostics
Arkhypov, Oleksiy V.; Khodachenko, Maxim L.; Lammer, Helmut; Güdel, Manuel; Lüftinger, Teresa; Johnstone, Colin P.
2018-01-01
The difference in stability of starspot distribution on the global and hemispherical scales is studied in the rotational spot variability of 1998 main-sequence stars observed by Kepler mission. It is found that the largest patterns are much more stable than smaller ones for cool, slow rotators, whereas the difference is less pronounced for hotter stars and/or faster rotators. This distinction is interpreted in terms of two mechanisms: (1) the diffusive decay of long-living spots in activity complexes of stars with saturated magnetic dynamos, and (2) the spot emergence, which is modulated by gigantic turbulent flows in convection zones of stars with a weaker magnetism. This opens a way for investigation of stellar deep convection, which is yet inaccessible for asteroseismology. Moreover, a subdiffusion in stellar photospheres was revealed from observations for the first time. A diagnostic diagram was proposed that allows differentiation and selection of stars for more detailed studies of these phenomena.
BOX-COX REGRESSION METHOD IN TIME SCALING
Directory of Open Access Journals (Sweden)
ATİLLA GÖKTAŞ
2013-06-01
Full Text Available Box-Cox regression method with λj, for j = 1, 2, ..., k, power transformation can be used when dependent variable and error term of the linear regression model do not satisfy the continuity and normality assumptions. The situation obtaining the smallest mean square error when optimum power λj, transformation for j = 1, 2, ..., k, of Y has been discussed. Box-Cox regression method is especially appropriate to adjust existence skewness or heteroscedasticity of error terms for a nonlinear functional relationship between dependent and explanatory variables. In this study, the advantage and disadvantage use of Box-Cox regression method have been discussed in differentiation and differantial analysis of time scale concept.
Razavi, Saman; Vogel, Richard
2018-02-01
Prewhitening, the process of eliminating or reducing short-term stochastic persistence to enable detection of deterministic change, has been extensively applied to time series analysis of a range of geophysical variables. Despite the controversy around its utility, methodologies for prewhitening time series continue to be a critical feature of a variety of analyses including: trend detection of hydroclimatic variables and reconstruction of climate and/or hydrology through proxy records such as tree rings. With a focus on the latter, this paper presents a generalized approach to exploring the impact of a wide range of stochastic structures of short- and long-term persistence on the variability of hydroclimatic time series. Through this approach, we examine the impact of prewhitening on the inferred variability of time series across time scales. We document how a focus on prewhitened, residual time series can be misleading, as it can drastically distort (or remove) the structure of variability across time scales. Through examples with actual data, we show how such loss of information in prewhitened time series of tree rings (so-called "residual chronologies") can lead to the underestimation of extreme conditions in climate and hydrology, particularly droughts, reconstructed for centuries preceding the historical period.
Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography
Liu, Huaping; Nishide, Daisuke; Tanaka, Takeshi; Kataura, Hiromichi
2011-01-01
Monostructured single-wall carbon nanotubes (SWCNTs) are important in both scientific research and electronic and biomedical applications; however, the bulk separation of SWCNTs into populations of single-chirality nanotubes remains challenging. Here we report a simple and effective method for the large-scale chirality separation of SWCNTs using a single-surfactant multicolumn gel chromatography method utilizing one surfactant and a series of vertically connected gel columns. This method is based on the structure-dependent interaction strength of SWCNTs with an allyl dextran-based gel. Overloading an SWCNT dispersion on the top column results in the adsorption sites of the column becoming fully occupied by the nanotubes that exhibit the strongest interaction with the gel. The unbound nanotubes flow through to the next column, and the nanotubes with the second strongest interaction with the gel are adsorbed in this stage. In this manner, 13 different (n, m) species were separated. Metallic SWCNTs were finally collected as unbound nanotubes because they exhibited the lowest interaction with the gel. PMID:21556063
Preliminary Study of Single-Phase Natural Circulation for Lab-scaled Molten Salt Application
Energy Technology Data Exchange (ETDEWEB)
Shin, Yukyung; Kang, Sarah; Kim, In Guk; Seo, Seok Bin; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of); Park, Seong Dae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-10-15
Advanced reactors such as MSR (FHR), VHTR and AHTR utilized molten salt as a coolant for efficiency and safety which has advantages in higher heat capacity, lower pumping power and scale compared to liquid metal. It becomes more necessary to study on the characteristics of molten salt. However, due to several characteristics such as high operating temperature, large-scale facility and preventing solidification, satisfying that condition for study has difficulties. Thus simulant fluid was used with scaling method for lab-scale experiment. Scaled experiment enables simulant fluid to simulate fluid mechanics and heat transfer behavior of molten salt on lower operating temperature and reduced scale. In this paper, as a proof test of the scaled experiment, simplified single-phase natural circulation loop was designed in a lab-scale and applied to the passive safety system in advanced reactor in which molten salt is considered as a major coolant of the system. For the application of the improved safety system, prototype was based on the primary loop of the test-scale DRACS, the main passive safety system in FHR, developed at the OSU. For preliminary experiment, single-phase natural circulation under low power was performed. DOWTHERM A and DOWTHERM RP were selected as simulant candidates. Then, study of feasibility with simulant was conducted based on the scaling law for heat transfer characteristics and geometric parameters. Additionally, simulation with MARS code and ANSYS-CFX with the same condition of natural circulation was carried out as verification. For the accurate code simulation, thermo-physical properties of DOWTHERM A and RP were developed and implemented into MARS code. In this study, single-phase natural circulation experiment was performed with simulant oil, DOWTHERM RP, based on the passive safety system of FHR. Feasibility of similarity experiment for molten salt with oil simulant was confirmed by scaling method. In addition, simulation with two
The pace of aging: Intrinsic time scales in demography
Directory of Open Access Journals (Sweden)
Tomasz Wrycza
2014-05-01
Full Text Available Background: The pace of aging is a concept that captures the time-related aspect of aging. It formalizesthe idea of a characteristic life span or intrinsic population time scale. In the rapidly developing field of comparative biodemography, measures that account for inter-speciesdifferences in life span are needed to compare how species age. Objective: We aim to provide a mathematical foundation for the concept of pace. We derive desiredmathematical properties of pace measures and suggest candidates which satisfy these properties. Subsequently, we introduce the concept of pace-standardization, which reveals differences in demographic quantities that are not due to pace. Examples and consequences are discussed. Conclusions: Mean life span (i.e., life expectancy from birth or from maturity is intuitively appealing,theoretically justified, and the most appropriate measure of pace. Pace-standardizationprovides a serviceable method for comparative aging studies to explore differences indemographic patterns of aging across species, and it may considerably alter conclusionsabout the strength of aging.
Linear Scaling Solution of the Time-Dependent Self-Consistent-Field Equations
Directory of Open Access Journals (Sweden)
Matt Challacombe
2014-03-01
Full Text Available A new approach to solving the Time-Dependent Self-Consistent-Field equations is developed based on the double quotient formulation of Tsiper 2001 (J. Phys. B. Dual channel, quasi-independent non-linear optimization of these quotients is found to yield convergence rates approaching those of the best case (single channel Tamm-Dancoff approximation. This formulation is variational with respect to matrix truncation, admitting linear scaling solution of the matrix-eigenvalue problem, which is demonstrated for bulk excitons in the polyphenylene vinylene oligomer and the (4,3 carbon nanotube segment.
A Fully Polynomial-Time Approximation Scheme for Speed Scaling with Sleep State
Antoniadis, Antonios; Huang, Chien-Chung; Ott, Sebastian
2014-01-01
We study classical deadline-based preemptive scheduling of tasks in a computing environment equipped with both dynamic speed scaling and sleep state capabilities: Each task is specified by a release time, a deadline and a processing volume, and has to be scheduled on a single, speed-scalable processor that is supplied with a sleep state. In the sleep state, the processor consumes no energy, but a constant wake-up cost is required to transition back to the active state. In contrast to speed sc...
Scaling of F-actin network rheology to probe single filament elasticity and dynamics.
Gardel, M L; Shin, J H; MacKintosh, F C; Mahadevan, L; Matsudaira, P A; Weitz, D A
2004-10-29
The linear and nonlinear viscoelastic response of networks of cross-linked and bundled cytoskeletal filaments demonstrates remarkable scaling with both frequency and applied prestress, which helps elucidate the origins of the viscoelasticity. The frequency dependence of the shear modulus reflects the underlying single-filament relaxation dynamics for 0.1-10 rad/sec. Moreover, the nonlinear strain stiffening of such networks exhibits a universal form as a function of prestress; this is quantitatively explained by the full force-extension relation of single semiflexible filaments.
Science at the Time-scale of the Electron
Murnane, Margaret
2010-03-01
Replace this text with your abstract Ever since the invention of the laser 50 years ago and its application in nonlinear optics, scientists have been striving to extend coherent laser beams into the x-ray region of the spectrum. Very recently however, the prospects for tabletop coherent sources, with attosecond pulse durations, at very short wavelengths even in the hard x-ray region of the spectrum at wavelengths movie of how electron orbitals in a molecule change shape as a molecule breaks apart, following how fast a magnetic material can flip orientation, understanding how fast heat flows in a nanocircuit, or building a microscope without lenses. [4pt] [1] T. Popmintchev et al., ``Phase matched upconversion of coherent ultrafast laser light into the soft and hard x-ray regions of the spectrum'', PNAS 106, 10516 (2009). [0pt] [2] C. LaOVorakiat et al., ``Ultrafast Soft X-Ray Magneto-Optics at the M-edge Using a Tabletop High-Harmonic Source'', Physical Review Letters 103, 257402 (2009). [0pt] [3] M. Siemens et al. ``Measurement of quasi-ballistic heat transport across nanoscale interfaces using ultrafast coherent soft x-ray beams'', Nature Materials 9, 26 (2010). [0pt] [4] K. Raines et al., ``Three-dimensional structure determination from a single view,'' Nature 463, 214 (2010). [0pt] [5] W. Li et al., ``Time-resolved Probing of Dynamics in Polyatomic Molecules using High Harmonic Generation'', Science 322, 1207 (2008).
The impact of ordinate scaling on the visual analysis of single-case data.
Dart, Evan H; Radley, Keith C
2017-08-01
Visual analysis is the primary method for detecting the presence of treatment effects in graphically displayed single-case data and it is often referred to as the "gold standard." Although researchers have developed standards for the application of visual analysis (e.g., Horner et al., 2005), over- and underestimation of effect size magnitude is not uncommon among analysts. Several characteristics have been identified as potential contributors to these errors; however, researchers have largely focused on characteristics of the data itself (e.g., autocorrelation), paying less attention to characteristics of the graphic display which are largely in control of the analyst (e.g., ordinate scaling). The current study investigated the impact that differences in ordinate scaling, a graphic display characteristic, had on experts' accuracy in judgments regarding the magnitude of effect present in single-case percentage data. 32 participants were asked to evaluate eight ABAB data sets (2 each presenting null, small, moderate, and large effects) along with three iterations of each (32 graphs in total) in which only the ordinate scale was manipulated. Results suggest that raters are less accurate in their detection of treatment effects as the ordinate scale is constricted. Additionally, raters were more likely to overestimate the size of a treatment effect when the ordinate scale was constricted. Copyright © 2017 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.
Nanoscale heterostructures with molecular-scale single-crystal metal wires.
Kundu, Paromita; Halder, Aditi; Viswanath, B; Kundu, Dipan; Ramanath, Ganpati; Ravishankar, N
2010-01-13
Creating nanoscale heterostructures with molecular-scale (synthesis of nanoscale heterostructures with single-crystal molecular-scale Au nanowires attached to different nanostructure substrates. Our method involves the formation of Au nanoparticle seeds by the reduction of rocksalt AuCl nanocubes heterogeneously nucleated on the substrates and subsequent nanowire growth by oriented attachment of Au nanoparticles from the solution phase. Nanoscale heterostructures fabricated by such site-specific nucleation and growth are attractive for many applications including nanoelectronic device wiring, catalysis, and sensing.
Ozone time scale decomposition and trend assessment from surface observations
Boleti, Eirini; Hueglin, Christoph; Takahama, Satoshi
2017-04-01
Emissions of ozone precursors have been regulated in Europe since around 1990 with control measures primarily targeting to industries and traffic. In order to understand how these measures have affected air quality, it is now important to investigate concentrations of tropospheric ozone in different types of environments, based on their NOx burden, and in different geographic regions. In this study, we analyze high quality data sets for Switzerland (NABEL network) and whole Europe (AirBase) for the last 25 years to calculate long-term trends of ozone concentrations. A sophisticated time scale decomposition method, called the Ensemble Empirical Mode Decomposition (EEMD) (Huang,1998;Wu,2009), is used for decomposition of the different time scales of the variation of ozone, namely the long-term trend, seasonal and short-term variability. This allows subtraction of the seasonal pattern of ozone from the observations and estimation of long-term changes of ozone concentrations with lower uncertainty ranges compared to typical methodologies used. We observe that, despite the implementation of regulations, for most of the measurement sites ozone daily mean values have been increasing until around mid-2000s. Afterwards, we observe a decline or a leveling off in the concentrations; certainly a late effect of limitations in ozone precursor emissions. On the other hand, the peak ozone concentrations have been decreasing for almost all regions. The evolution in the trend exhibits some differences between the different types of measurement. In addition, ozone is known to be strongly affected by meteorology. In the applied approach, some of the meteorological effects are already captured by the seasonal signal and already removed in the de-seasonalized ozone time series. For adjustment of the influence of meteorology on the higher frequency ozone variation, a statistical approach based on Generalized Additive Models (GAM) (Hastie,1990;Wood,2006), which corrects for meteorological
8-Channel acquisition system for Time-Correlated Single-Photon Counting.
Antonioli, S; Miari, L; Cuccato, A; Crotti, M; Rech, I; Ghioni, M
2013-06-01
Nowadays, an increasing number of applications require high-performance analytical instruments capable to detect the temporal trend of weak and fast light signals with picosecond time resolution. The Time-Correlated Single-Photon Counting (TCSPC) technique is currently one of the preferable solutions when such critical optical signals have to be analyzed and it is fully exploited in biomedical and chemical research fields, as well as in security and space applications. Recent progress in the field of single-photon detector arrays is pushing research towards the development of high performance multichannel TCSPC systems, opening the way to modern time-resolved multi-dimensional optical analysis. In this paper we describe a new 8-channel high-performance TCSPC acquisition system, designed to be compact and versatile, to be used in modern TCSPC measurement setups. We designed a novel integrated circuit including a multichannel Time-to-Amplitude Converter with variable full-scale range, a D∕A converter, and a parallel adder stage. The latter is used to adapt each converter output to the input dynamic range of a commercial 8-channel Analog-to-Digital Converter, while the integrated DAC implements the dithering technique with as small as possible area occupation. The use of this monolithic circuit made the design of a scalable system of very small dimensions (95 × 40 mm) and low power consumption (6 W) possible. Data acquired from the TCSPC measurement are digitally processed and stored inside an FPGA (Field-Programmable Gate Array), while a USB transceiver allows real-time transmission of up to eight TCSPC histograms to a remote PC. Eventually, the experimental results demonstrate that the acquisition system performs TCSPC measurements with high conversion rate (up to 5 MHz/channel), extremely low differential nonlinearity (<0.04 peak-to-peak of the time bin width), high time resolution (down to 20 ps Full-Width Half-Maximum), and very low crosstalk between channels.
Review of Tropical-Extratropical Teleconnections on Intraseasonal Time Scales
Stan, Cristiana; Straus, David M.; Frederiksen, Jorgen S.; Lin, Hai; Maloney, Eric D.; Schumacher, Courtney
2017-12-01
The interactions and teleconnections between the tropical and midlatitude regions on intraseasonal time scales are an important modulator of tropical and extratropical circulation anomalies and their associated weather patterns. These interactions arise due to the impact of the tropics on the extratropics, the impact of the midlatitudes on the tropics, and two-way interactions between the regions. Observational evidence, as well as theoretical studies with models of complexity ranging from the linear barotropic framework to intricate Earth system models, suggest the involvement of a myriad of processes and mechanisms in generating and maintaining these interconnections. At this stage, our understanding of these teleconnections is primarily a collection of concepts; a comprehensive theoretical framework has yet to be established. These intraseasonal teleconnections are increasingly recognized as an untapped source of potential subseasonal predictability. However, the complexity and diversity of mechanisms associated with these teleconnections, along with the lack of a conceptual framework to relate them, prevent this potential predictability from being translated into realized forecast skill. This review synthesizes our progress in understanding the observed characteristics of intraseasonal tropical-extratropical interactions and their associated mechanisms, identifies the significant gaps in this understanding, and recommends new research endeavors to address the remaining challenges.
Towards a single empirical correlation to predict kLa across scales and processes
DEFF Research Database (Denmark)
Quintanilla Hernandez, Daniela Alejandra; Gernaey, Krist; Albæk, Mads O.
Mathematical models are increasingly used in fermentation. Nevertheless, one of the major limitations of these models is that the parameters they include are process specific, e.g. the volumetric mass transfer coefficient (kLa). Oxygen transfer was studied in order to establish a single equation...... different calculations of the average shear rate. The experimental kLa value was determined with the direct method; however, eight variations of its calculation were evaluated. Several simple correlations were fitted to the measured kLa data. The standard empirical equation was found to be best...... scales using on ‐ line viscosity measurements. A single correlation for all processes and all scales could not be established...
Magnetoresistive sensor for real-time single nucleotide polymorphism genotyping
DEFF Research Database (Denmark)
Rizzi, Giovanni; Østerberg, Frederik Westergaard; Dufva, Martin
2014-01-01
We demonstrate a magnetoresistive sensor platform that allows for the real-time detection of point mutations in DNA targets. Specifically, we detect point mutations at two sites in the human beta globin gene. For DNA detection, the present sensor technology has a detection limit of about 160p...... of magnetic beads, which enables real-time quantification of the specific binding of magnetic beads to the sensor surface under varying experimental conditions....
Directory of Open Access Journals (Sweden)
Xuewei Yan
2018-02-01
Full Text Available Liquid metal cooling (LMC process as a powerful directional solidification (DS technique is prospectively used to manufacture single crystal (SC turbine blades. An understanding of the temperature distribution and microstructure evolution in LMC process is required in order to improve the properties of the blades. For this reason, a multi-scale model coupling with the temperature field, grain growth and solute diffusion was established. The temperature distribution and mushy zone evolution of the hollow blade was simulated and discussed. According to the simulation results, the mushy zone might be convex and ahead of the ceramic beads at a lower withdrawal rate, while it will be concave and laggard at a higher withdrawal rate, and a uniform and horizontal mushy zone will be formed at a medium withdrawal rate. Grain growth of the blade at different withdrawal rates was also investigated. Single crystal structures were all selected out at three different withdrawal rates. Moreover, mis-orientation of the grains at 8 mm/min reached ~30°, while it was ~5° and ~15° at 10 mm/min and 12 mm/min, respectively. The model for predicting dendritic morphology was verified by corresponding experiment. Large scale for 2D dendritic distribution in the whole sections was investigated by experiment and simulation, and they presented a well agreement with each other. Keywords: Hollow blade, Single crystal, Multi-scale simulation, Liquid metal cooling
A Bayesian method for construction of Markov models to describe dynamics on various time-scales.
Rains, Emily K; Andersen, Hans C
2010-10-14
The dynamics of many biological processes of interest, such as the folding of a protein, are slow and complicated enough that a single molecular dynamics simulation trajectory of the entire process is difficult to obtain in any reasonable amount of time. Moreover, one such simulation may not be sufficient to develop an understanding of the mechanism of the process, and multiple simulations may be necessary. One approach to circumvent this computational barrier is the use of Markov state models. These models are useful because they can be constructed using data from a large number of shorter simulations instead of a single long simulation. This paper presents a new Bayesian method for the construction of Markov models from simulation data. A Markov model is specified by (τ,P,T), where τ is the mesoscopic time step, P is a partition of configuration space into mesostates, and T is an N(P)×N(P) transition rate matrix for transitions between the mesostates in one mesoscopic time step, where N(P) is the number of mesostates in P. The method presented here is different from previous Bayesian methods in several ways. (1) The method uses Bayesian analysis to determine the partition as well as the transition probabilities. (2) The method allows the construction of a Markov model for any chosen mesoscopic time-scale τ. (3) It constructs Markov models for which the diagonal elements of T are all equal to or greater than 0.5. Such a model will be called a "consistent mesoscopic Markov model" (CMMM). Such models have important advantages for providing an understanding of the dynamics on a mesoscopic time-scale. The Bayesian method uses simulation data to find a posterior probability distribution for (P,T) for any chosen τ. This distribution can be regarded as the Bayesian probability that the kinetics observed in the atomistic simulation data on the mesoscopic time-scale τ was generated by the CMMM specified by (P,T). An optimization algorithm is used to find the most
Time-scales for runoff and erosion estimates, with implications for spatial scaling
Kirkby, M. J.; Irvine, B. J.; Dalen, E. N.
2009-04-01
Using rainfall data at high temporal resolution, runoff may be estimated for every bucket-tip, or for aggregated hourly or daily periods. Although there is no doubt that finer resolution gives substantially better estimates, many models make use of coarser time steps because these data are more widely available. This paper makes comparisons between runoff estimates based on infiltration measurements used with high resolution rainfall data for SE Spain and theoretical work on improving the time resolution in the PESERA model from daily to hourly values, for areas where these are available. For a small plot at fine temporal scale, runoff responds to bursts of intense rainfall which, for the Guadalentin catchment, typically lasts for about 30 minutes. However, when a larger area is considered, the large and unstructured variability in infiltration capacity produces an aggregate runoff that differs substantially from estimates using average infiltration parameters (in the Green-Ampt equation). When these estimates are compared with estimates based on rainfall for aggregated hourly or daily periods, using a simpler infiltration model, it can be seen that there a substantial scatter, as expected, but that suitable parameterisation can provide reasonable average estimates. Similar conclusions may be drawn for erosion estimates, assuming that sediment transport is proportional to a power of runoff discharge.. The spatial implications of these estimates can be made explicit with fine time resolution, showing that, with observed low overland flow velocities, only a small fraction of the hillside is generally able to deliver runoff to the nearest channel before rainfall intensity drops and runoff re-infiltrates. For coarser time resolutions, this has to be parameterised as a delivery ratio, and we show that how this ratio can be rationally estimated from rainfall characteristics.
Single photon imaging and timing array sensor apparatus and method
Smith, R. Clayton
2003-06-24
An apparatus and method are disclosed for generating a three-dimension image of an object or target. The apparatus is comprised of a photon source for emitting a photon at a target. The emitted photons are received by a photon receiver for receiving the photon when reflected from the target. The photon receiver determines a reflection time of the photon and further determines an arrival position of the photon on the photon receiver. An analyzer is communicatively coupled to the photon receiver, wherein the analyzer generates a three-dimensional image of the object based upon the reflection time and the arrival position.
Nonequilibrium Physics at Short Time Scales: Formation of Correlations
International Nuclear Information System (INIS)
Peliti, L
2005-01-01
It is a happy situation when similar concepts and theoretical techniques can be applied to widely different physical systems because of a deep similarity in the situations being studied. The book illustrates this well; it focuses on the description of correlations in quantum systems out of equilibrium at very short time scales, prompted by experiments with short laser pulses in semiconductors, and in complex reactions in heavy nuclei. In both cases the experiments are characterized by nonlinear dynamics and by strong correlations out of equilibrium. In some systems there are also important finite-size effects. The book comprises several independent contributions of moderate length, and I sometimes felt that a more intensive effort in cross-coordination of the different contributions could have been of help. It is divided almost equally between theory and experiment. In the theoretical part, there is a thorough discussion both of the kinematic aspects (description of correlations) and the dynamical ones (evaluation of correlations). The experimental part is naturally divided according to the nature of the system: the interaction of pulsed lasers with matter on the one hand, and the correlations in finite-size systems (nanoparticles and nuclei) on the other. There is also a discussion on the dynamics of superconductors, a subject currently of great interest. Although an effort has been made to keep each contribution self-contained, I must admit that reading level is uneven. However, there are a number of thorough and stimulating contributions that make this book a useful introduction to the topic at the level of graduate students or researchers acquainted with quantum statistical mechanics. (book review)
The determination of time-stationary two-dimensional convection patterns with single-station radars
International Nuclear Information System (INIS)
Freeman, M.P.; Ruohoniemi, J.M.; Greenwald, R.A.
1991-01-01
At the present time, most ground-based radar estimations of ionospheric convection use observations from single-station facilities. This approach requires certain assumptions as to the spatial and/or temporal uniformity of the convection. In this paper the authors present a critical examination of the accuracy of these vector velocity determinations, using realistic modeled flow patterns that are time-stationary but not spatially uniform. They find that under certain circumstances the actual and inferred flow fields show considerable discrepancy, sometimes not even agreeing in the sense of flow direction. Specifically, they show that the natural curvature present in ionospheric convection on varying spatial scales can introduce significant error in the velocity estimate, particularly when the radius of curvature of the flow structure is less than or equal to the radar range to the scattering volume. The presence of flow curvature cannot be detected by radars which determine velocities from measurements in two viewing directions, and it might not be detected by radars using azimuth scanning techniques. Thus they argue that every effort should be made to measure the ionospheric convection by bidirectional or multidirectional observations of a common ionospheric volume and that a synthesis of coherent and incoherent radar observations from different sites is preferable to multidirectional single-station observations using either radar alone. These conclusions are applicable to any Doppler measurement technique and are equally valid for high-latitude wind patterns using Fabry-Perot interferometer techniques
Real-time observation of conformational switching in single conjugated polymer chains.
Tenopala-Carmona, Francisco; Fronk, Stephanie; Bazan, Guillermo C; Samuel, Ifor D W; Penedo, J Carlos
2018-02-01
Conjugated polymers (CPs) are an important class of organic semiconductors that combine novel optoelectronic properties with simple processing from organic solvents. It is important to study CP conformation in solution to understand the physics of these materials and because it affects the properties of solution-processed films. Single-molecule techniques are unique in their ability to extract information on a chain-to-chain basis; however, in the context of CPs, technical challenges have limited their general application to host matrices or semiliquid environments that constrain the conformational dynamics of the polymer. We introduce a conceptually different methodology that enables measurements in organic solvents using the single-end anchoring of polymer chains to avoid diffusion while preserving polymer flexibility. We explore the effect of organic solvents and show that, in addition to chain-to-chain conformational heterogeneity, collapsed and extended polymer segments can coexist within the same chain. The technique enables real-time solvent-exchange measurements, which show that anchored CP chains respond to sudden changes in solvent conditions on a subsecond time scale. Our results give an unprecedented glimpse into the mechanism of solvent-induced reorganization of CPs and can be expected to lead to a new range of techniques to investigate and conformationally manipulate CPs.
Assessing the scientific relevance of a single publication over time
Directory of Open Access Journals (Sweden)
Philipp A. Bloching
2013-09-01
Full Text Available Quantitatively assessing the scientific relevance of a research paper is challenging for two reasons. Firstly, scientific relevance may change over time, and secondly, it is unclear how to evaluate a recently published paper. The temporally averaged paper-specific impact factor is defined as the yearly average of citations to the paper until now including bonus citations equal to the journal impact factor in the publication year. This new measure subsequently allows relevance rankings and annual updates of all (i.e. both recent and older scientific papers of a department, or even a whole scientific field, on a more objective basis. It can also be used to assess both the average and overall time-dependent scientific relevance of researchers in a specific department or scientific field.
International Nuclear Information System (INIS)
Schulz, Johannes H P; Chechkin, Aleksei V; Metzler, Ralf
2013-01-01
Standard continuous time random walk (CTRW) models are renewal processes in the sense that at each jump a new, independent pair of jump length and waiting time are chosen. Globally, anomalous diffusion emerges through scale-free forms of the jump length and/or waiting time distributions by virtue of the generalized central limit theorem. Here we present a modified version of recently proposed correlated CTRW processes, where we incorporate a power-law correlated noise on the level of both jump length and waiting time dynamics. We obtain a very general stochastic model, that encompasses key features of several paradigmatic models of anomalous diffusion: discontinuous, scale-free displacements as in Lévy flights, scale-free waiting times as in subdiffusive CTRWs, and the long-range temporal correlations of fractional Brownian motion (FBM). We derive the exact solutions for the single-time probability density functions and extract the scaling behaviours. Interestingly, we find that different combinations of the model parameters lead to indistinguishable shapes of the emerging probability density functions and identical scaling laws. Our model will be useful for describing recent experimental single particle tracking data that feature a combination of CTRW and FBM properties. (paper)
A Group Simulation of the Development of the Geologic Time Scale.
Bennington, J. Bret
2000-01-01
Explains how to demonstrate to students that the relative dating of rock layers is redundant. Uses two column diagrams to simulate stratigraphic sequences from two different geological time scales and asks students to complete the time scale. (YDS)
Large-Scale Mixed Temperate Forest Mapping at the Single Tree Level using Airborne Laser Scanning
Scholl, V.; Morsdorf, F.; Ginzler, C.; Schaepman, M. E.
2017-12-01
Monitoring vegetation on a single tree level is critical to understand and model a variety of processes, functions, and changes in forest systems. Remote sensing technologies are increasingly utilized to complement and upscale the field-based measurements of forest inventories. Airborne laser scanning (ALS) systems provide valuable information in the vertical dimension for effective vegetation structure mapping. Although many algorithms exist to extract single tree segments from forest scans, they are often tuned to perform well in homogeneous coniferous or deciduous areas and are not successful in mixed forests. Other methods are too computationally expensive to apply operationally. The aim of this study was to develop a single tree detection workflow using leaf-off ALS data for the canton of Aargau in Switzerland. Aargau covers an area of over 1,400km2 and features mixed forests with various development stages and topography. Forest type was classified using random forests to guide local parameter selection. Canopy height model-based treetop maxima were detected and maintained based on the relationship between tree height and window size, used as a proxy to crown diameter. Watershed segmentation was used to generate crown polygons surrounding each maximum. The location, height, and crown dimensions of single trees were derived from the ALS returns within each polygon. Validation was performed through comparison with field measurements and extrapolated estimates from long-term monitoring plots of the Swiss National Forest Inventory within the framework of the Swiss Federal Institute for Forest, Snow, and Landscape Research. This method shows promise for robust, large-scale single tree detection in mixed forests. The single tree data will aid ecological studies as well as forest management practices. Figure description: Height-normalized ALS point cloud data (top) and resulting single tree segments (bottom) on the Laegeren mountain in Switzerland.
Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale
International Nuclear Information System (INIS)
Maslennikov, Oleg V.; Nekorkin, Vladimir I.
2016-01-01
In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.
Time-optimal thermalization of single-mode Gaussian states
Carlini, Alberto; Mari, Andrea; Giovannetti, Vittorio
2014-11-01
We consider the problem of time-optimal control of a continuous bosonic quantum system subject to the action of a Markovian dissipation. In particular, we consider the case of a one-mode Gaussian quantum system prepared in an arbitrary initial state and which relaxes to the steady state due to the action of the dissipative channel. We assume that the unitary part of the dynamics is represented by Gaussian operations which preserve the Gaussian nature of the quantum state, i.e., arbitrary phase rotations, bounded squeezing, and unlimited displacements. In the ideal ansatz of unconstrained quantum control (i.e., when the unitary phase rotations, squeezing, and displacement of the mode can be performed instantaneously), we study how control can be optimized for speeding up the relaxation towards the fixed point of the dynamics and we analytically derive the optimal relaxation time. Our model has potential and interesting applications to the control of modes of electromagnetic radiation and of trapped levitated nanospheres.
Psychometric properties of the Rosenberg self-esteem scale in African American single mothers.
Hatcher, Jennifer; Hall, Lynne A
2009-02-01
The Rosenberg Self-Esteem (RSE) Scale is a commonly used measure of global self-esteem, an important element of mental health. The purpose of this cross sectional secondary analysis was to examine the psychometric properties of the scale in a sample of 98 African American single mothers. The RSE Scale showed adequate internal consistency with an alpha coefficient of .83. Two factors that accounted for a total of 54.7% of the variance were extracted. Self-esteem showed a strong negative relationship with both depressive symptoms and negative thinking. This study provides support for the internal consistency of the RSE Scale and partial support for its construct validity in this population. The RSE appears to represent a bidimensional construct of self-esteem for African American women, with the cultural influences of racial esteem and the rejection of negative stereotypes forming a separate and distinct aspect of this concept. The RSE Scale should be used and interpreted with caution in this population given these findings.
Single-molecule stochastic times in a reversible bimolecular reaction
Keller, Peter; Valleriani, Angelo
2012-08-01
In this work, we consider the reversible reaction between reactants of species A and B to form the product C. We consider this reaction as a prototype of many pseudobiomolecular reactions in biology, such as for instance molecular motors. We derive the exact probability density for the stochastic waiting time that a molecule of species A needs until the reaction with a molecule of species B takes place. We perform this computation taking fully into account the stochastic fluctuations in the number of molecules of species B. We show that at low numbers of participating molecules, the exact probability density differs from the exponential density derived by assuming the law of mass action. Finally, we discuss the condition of detailed balance in the exact stochastic and in the approximate treatment.
International Nuclear Information System (INIS)
Schwerdtfeger, Christine A.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon
2014-01-01
The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents for a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible
Xie, Hongbo; Mao, Chensheng; Ren, Yongjie; Zhu, Jigui; Wang, Chao; Yang, Lei
2017-10-01
In high precision and large-scale coordinate measurement, one commonly used approach to determine the coordinate of a target point is utilizing the spatial trigonometric relationships between multiple laser transmitter stations and the target point. A light receiving device at the target point is the key element in large-scale coordinate measurement systems. To ensure high-resolution and highly sensitive spatial coordinate measurement, a high-performance and miniaturized omnidirectional single-point photodetector (OSPD) is greatly desired. We report one design of OSPD using an aspheric lens, which achieves an enhanced reception angle of -5 deg to 45 deg in vertical and 360 deg in horizontal. As the heart of our OSPD, the aspheric lens is designed in a geometric model and optimized by LightTools Software, which enables the reflection of a wide-angle incident light beam into the single-point photodiode. The performance of home-made OSPD is characterized with working distances from 1 to 13 m and further analyzed utilizing developed a geometric model. The experimental and analytic results verify that our device is highly suitable for large-scale coordinate metrology. The developed device also holds great potential in various applications such as omnidirectional vision sensor, indoor global positioning system, and optical wireless communication systems.
International Nuclear Information System (INIS)
Xu Zurun; Wu Shiying; Liu Haitao; Yao Yangsen; Wang Yingguan; Yang Chaowen
1998-01-01
The technique of employing single-chip microcomputers and PC computers to compose a fast and large scale nuclear data acquisition and control system was discussed in detail. The optimum composition mode of this kind of system, the acquisition and control circuit unit based on single-chip microcomputers, the real-time communication methods and the software composition under the Windows 3.2 were also described. One, two and three dimensional spectra measured by this system were demonstrated
International Nuclear Information System (INIS)
Xu Zurun; Wu Shiying; Liu Haitao; Yao Yangsen; Wang Yingguan; Yang Chaowen
1997-01-01
The technique of employing single-chip microcomputers and PC computers to compose a fast and large scale nuclear data acquisition and control system was discussed in detail. The optimum composition mode of this kind of system, the acquisition and control circuit unit based on single-chip microcomputers, the real-time communication methods and the software composition under the Windows 3.2 were also described. One, two and three dimensional spectra measured by this system were demonstrated
Time-Efficient Cloning Attacks Identification in Large-Scale RFID Systems
Directory of Open Access Journals (Sweden)
Ju-min Zhao
2017-01-01
Full Text Available Radio Frequency Identification (RFID is an emerging technology for electronic labeling of objects for the purpose of automatically identifying, categorizing, locating, and tracking the objects. But in their current form RFID systems are susceptible to cloning attacks that seriously threaten RFID applications but are hard to prevent. Existing protocols aimed at detecting whether there are cloning attacks in single-reader RFID systems. In this paper, we investigate the cloning attacks identification in the multireader scenario and first propose a time-efficient protocol, called the time-efficient Cloning Attacks Identification Protocol (CAIP to identify all cloned tags in multireaders RFID systems. We evaluate the performance of CAIP through extensive simulations. The results show that CAIP can identify all the cloned tags in large-scale RFID systems fairly fast with required accuracy.
Changes in channel morphology over human time scales [Chapter 32
John M. Buffington
2012-01-01
Rivers are exposed to changing environmental conditions over multiple spatial and temporal scales, with the imposed environmental conditions and response potential of the river modulated to varying degrees by human activity and our exploitation of natural resources. Watershed features that control river morphology include topography (valley slope and channel...
Length and time scales of atmospheric moisture recycling
Van der Ent, R.J.; Savenije, H.H.G.
2011-01-01
It is difficult to quantify the degree to which terrestrial evaporation supports the occurrence of precipitation within a certain study region (i.e. regional moisture recycling) due to the scale- and shape-dependence of regional moisture recycling ratios. In this paper we present a novel approach to
Large-Scale Synthesis of Single-Crystalline Iron Oxide Magnetic Nanorings
DEFF Research Database (Denmark)
Jia, Chun-Jiang; Sun, Ling-Dong; Luo, Feng
2008-01-01
We present an innovative approach to the production of single-crystal iron oxide nanorings employing a solution-based route. Single-crystal hematite (alpha-Fe2O3) nanorings were synthesized using a double anion-assisted hydrothermal method (involving phosphate and sulfate ions), which can...... an intriguing three-dimensional magnetic configuration. This work provides an easily scaled-up method for preparing tailor-made iron oxide nanorings that could meet the demands of a variety of applications ranging from medicine to magnetoelectronics....... able to control the size, morphology, and surface architecture to produce a variety of three-dimensional hollow nanostructures. These can then be converted to magnetite (Fe3O4) and maghemite (gamma-Fe2O3) by a reduction or reduction-oxidation process while preserving the same morphology. The structures...
Vijayashree, M.; Uthayakumar, R.
2017-09-01
Lead time is one of the major limits that affect planning at every stage of the supply chain system. In this paper, we study a continuous review inventory model. This paper investigates the ordering cost reductions are dependent on lead time. This study addressed two-echelon supply chain problem consisting of a single vendor and a single buyer. The main contribution of this study is that the integrated total cost of the single vendor and the single buyer integrated system is analyzed by adopting two different (linear and logarithmic) types ordering cost reductions act dependent on lead time. In both cases, we develop effective solution procedures for finding the optimal solution and then illustrative numerical examples are given to illustrate the results. The solution procedure is to determine the optimal solutions of order quantity, ordering cost, lead time and the number of deliveries from the single vendor and the single buyer in one production run, so that the integrated total cost incurred has the minimum value. Ordering cost reduction is the main aspect of the proposed model. A numerical example is given to validate the model. Numerical example solved by using Matlab software. The mathematical model is solved analytically by minimizing the integrated total cost. Furthermore, the sensitivity analysis is included and the numerical examples are given to illustrate the results. The results obtained in this paper are illustrated with the help of numerical examples. The sensitivity of the proposed model has been checked with respect to the various major parameters of the system. Results reveal that the proposed integrated inventory model is more applicable for the supply chain manufacturing system. For each case, an algorithm procedure of finding the optimal solution is developed. Finally, the graphical representation is presented to illustrate the proposed model and also include the computer flowchart in each model.
The development of the time-keeping clock with TS-1 single chip microcomputer.
Zhou, Jiguang; Li, Yongan
The authors have developed a time-keeping clock with Intel 8751 single chip microcomputer that has been successfully used in time-keeping station. The hard-soft ware design and performance of the clock are introduced.
International Nuclear Information System (INIS)
Cook, N.G.W.; Hood, M.
1978-12-01
Two full-scale heating experiments and a time-scale heating experiment have recently been started in granite 340 meters below surface. The purpose of the full-scale heating experiments is to assess the near-field effects of thermal loading for the design of an underground repository of nuclear wastes. That of the time-scale heating experiments is to obtain field data of the interaction between heaters and its effect on the rock mass during a period of about two years, which corresponds to about twenty years of full-scale operation. Geological features of the rock around each experiment have been mapped carefully, and temperatures, stresses and displacements induced in the rock by heating have been calculated in advance of the experiments. Some 800 different measurements are recorded at frequent intervals by a computer system situated underground. These data can be compared at any time with predictions made earlier on video display units underground
Atomic scale mass delivery driven by bend kink in single walled carbon nanotube
International Nuclear Information System (INIS)
Kan Biao; Ding Jianning; Ling Zhiyong; Yuan Ningyi; Cheng Guanggui
2010-01-01
The possibility of atomic scale mass delivery by bend kink in single walled carbon nanotube was investigated with the aid of molecular dynamics simulation. By keeping the bending angle while moving the tube end, the encapsulated atomic scale mass such as atom, molecule and atom group were successfully delivered through the nanotube. The van der Waals interaction between the encapsulated mass and the tube wall provided the driving force for the delivery. There were no dramatic changes in the van der Waals interaction, and a smooth and steady delivery was achieved when constant loading rate was applied. The influence of temperature on the atom group delivery was also analyzed. It is found raising temperature is harmful to the smooth movement of the atom group. However, the delivery rate can be promoted under higher temperature when the atom group is situated before the kink during the delivery.
Control Algorithms for Large-scale Single-axis Photovoltaic Trackers
Directory of Open Access Journals (Sweden)
Dorian Schneider
2012-01-01
Full Text Available The electrical yield of large-scale photovoltaic power plants can be greatly improved by employing solar trackers. While fixed-tilt superstructures are stationary and immobile, trackers move the PV-module plane in order to optimize its alignment to the sun. This paper introduces control algorithms for single-axis trackers (SAT, including a discussion for optimal alignment and backtracking. The results are used to simulate and compare the electrical yield of fixed-tilt and SAT systems. The proposed algorithms have been field tested, and are in operation in solar parks worldwide.
The method of arbitrarily large moments to calculate single scale processes in quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC)
2017-01-15
We device a new method to calculate a large number of Mellin moments of single scale quantities using the systems of differential and/or difference equations obtained by integration-by-parts identities between the corresponding Feynman integrals of loop corrections to physical quantities. These scalar quantities have a much simpler mathematical structure than the complete quantity. A sufficiently large set of moments may even allow the analytic reconstruction of the whole quantity considered, holding in case of first order factorizing systems. In any case, one may derive highly precise numerical representations in general using this method, which is otherwise completely analytic.
The method of arbitrarily large moments to calculate single scale processes in quantum field theory
Directory of Open Access Journals (Sweden)
Johannes Blümlein
2017-08-01
Full Text Available We devise a new method to calculate a large number of Mellin moments of single scale quantities using the systems of differential and/or difference equations obtained by integration-by-parts identities between the corresponding Feynman integrals of loop corrections to physical quantities. These scalar quantities have a much simpler mathematical structure than the complete quantity. A sufficiently large set of moments may even allow the analytic reconstruction of the whole quantity considered, holding in case of first order factorizing systems. In any case, one may derive highly precise numerical representations in general using this method, which is otherwise completely analytic.
Time Spent in Home Production Activities by Married Couples and Single Adults with Children.
Douthitt, Robin A.
1988-01-01
A study found that, over time, married women employed full time have not decreased the time spent working in the home. Married men with young children have increased the time spent on home work. Single parents' time most closely resembled that of married women. (JOW)
Frontend electronics for high-precision single photo-electron timing using FPGA-TDCs
Cardinali, M.; Dzyhgadlo, R.; Gerhardt, A.; Götzen, K.; Hohler, R.; Kalicy, G.; Kumawat, H.; Lehmann, D.; Lewandowski, B.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwarz, C.; Schwiening, J.; Traxler, M.; Ugur, C.; Zühlsdorf, M.; Dodokhov, V. Kh.; Britting, A.; Eyrich, W.; Lehmann, A.; Uhlig, F.; Düren, M.; Föhl, K.; Hayrapetyan, A.; Kröck, B.; Merle, O.; Rieke, J.; Cowie, E.; Keri, T.; Montgomery, R.; Rosner, G.; Achenbach, P.; Corell, O.; Ferretti Bondy, M. I.; Hoek, M.; Lauth, W.; Rosner, C.; Sfienti, C.; Thiel, M.; Bühler, P.; Gruber, L.; Marton, J.; Suzuki, K.
2014-12-01
The next generation of high-luminosity experiments requires excellent particle identification detectors which calls for Imaging Cherenkov counters with fast electronics to cope with the expected hit rates. A Barrel DIRC will be used in the central region of the Target Spectrometer of the planned PANDA experiment at FAIR. A single photo-electron timing resolution of better than 100 ps is required by the Barrel DIRC to disentangle the complicated patterns created on the image plane. R&D studies have been performed to provide a design based on the TRB3 readout using FPGA-TDCs with a precision better than 20 ps RMS and custom frontend electronics with high-bandwidth pre-amplifiers and fast discriminators. The discriminators also provide time-over-threshold information thus enabling walk corrections to improve the timing resolution. Two types of frontend electronics cards optimised for reading out 64-channel PHOTONIS Planacon MCP-PMTs were tested: one based on the NINO ASIC and the other, called PADIWA, on FPGA discriminators. Promising results were obtained in a full characterisation using a fast laser setup and in a test experiment at MAMI, Mainz, with a small scale DIRC prototype.
Gauge-Invariant Formulation of Time-Dependent Configuration Interaction Singles Method
Directory of Open Access Journals (Sweden)
Takeshi Sato
2018-03-01
Full Text Available We propose a gauge-invariant formulation of the channel orbital-based time-dependent configuration interaction singles (TDCIS method [Phys. Rev. A, 74, 043420 (2006], one of the powerful ab initio methods to investigate electron dynamics in atoms and molecules subject to an external laser field. In the present formulation, we derive the equations of motion (EOMs in the velocity gauge using gauge-transformed time-dependent, not fixed, orbitals that are equivalent to the conventional EOMs in the length gauge using fixed orbitals. The new velocity-gauge EOMs avoid the use of the length-gauge dipole operator, which diverges at large distance, and allows us to exploit computational advantages of the velocity-gauge treatment over the length-gauge one, e.g., a faster convergence in simulations with intense and long-wavelength lasers, and the feasibility of exterior complex scaling as an absorbing boundary. The reformulated TDCIS method is applied to an exactly solvable model of one-dimensional helium atom in an intense laser field to numerically demonstrate the gauge invariance. We also discuss the consistent method for evaluating the time derivative of an observable, which is relevant, e.g., in simulating high-harmonic generation.
Global terrestrial biogeochemistry: Perturbations, interactions, and time scales
Energy Technology Data Exchange (ETDEWEB)
Braswell, B.H. Jr.
1996-12-01
Global biogeochemical processes are being perturbed by human activity, principally that which is associated with industrial activity and expansion of urban and agricultural complexes. Perturbations have manifested themselves at least since the beginning of the 19th Century, and include emissions of CO{sub 2} and other pollutants from fossil fuel combustion, agricultural emissions of reactive nitrogen, and direct disruption of ecosystem function through land conversion. These perturbations yield local impacts, but there are also global consequences that are the sum of local-scale influences. Several approaches to understanding the global-scale implications of chemical perturbations to the Earth system are discussed. The lifetime of anthropogenic CO{sub 2} in the atmosphere is an important concept for understanding the current and future commitment to an altered atmospheric heat budget. The importance of the terrestrial biogeochemistry relative to the lifetime of excess CO{sub 2} is demonstrated using dynamic, aggregated models of the global carbon cycle.
Christianson, D. S.; Kaufman, C. G.; Kueppers, L. M.; Harte, J.
2013-12-01
fine-spatial scales (sub-meter to 10-meter) shows greater temperature variability with warmer mean temperatures. This is inconsistent with the inherent assumption made in current species distribution models that fine-scale variability is static, implying that current projections of future species ranges may be biased -- the direction and magnitude requiring further study. While we focus our findings on the cross-scaling characteristics of temporal and spatial variability, we also compare the mean-variance relationship between 1) experimental climate manipulations and observed conditions and 2) temporal versus spatial variance, i.e., variability in a time-series at one location vs. variability across a landscape at a single time. The former informs the rich debate concerning the ability to experimentally mimic a warmer future. The latter informs space-for-time study design and analyses, as well as species persistence via a combined spatiotemporal probability of suitable future habitat.
Multi-time-scale heat transfer modeling of turbid tissues exposed to short-pulsed irradiations.
Kim, Kyunghan; Guo, Zhixiong
2007-05-01
A combined hyperbolic radiation and conduction heat transfer model is developed to simulate multi-time-scale heat transfer in turbid tissues exposed to short-pulsed irradiations. An initial temperature response of a tissue to an ultrashort pulse irradiation is analyzed by the volume-average method in combination with the transient discrete ordinates method for modeling the ultrafast radiation heat transfer. This response is found to reach pseudo steady state within 1 ns for the considered tissues. The single pulse result is then utilized to obtain the temperature response to pulse train irradiation at the microsecond/millisecond time scales. After that, the temperature field is predicted by the hyperbolic heat conduction model which is solved by the MacCormack's scheme with error terms correction. Finally, the hyperbolic conduction is compared with the traditional parabolic heat diffusion model. It is found that the maximum local temperatures are larger in the hyperbolic prediction than the parabolic prediction. In the modeled dermis tissue, a 7% non-dimensional temperature increase is found. After about 10 thermal relaxation times, thermal waves fade away and the predictions between the hyperbolic and parabolic models are consistent.
Jenkins, David R.; Basden, Alastair; Myers, Richard M.
2018-05-01
We propose a solution to the increased computational demands of Extremely Large Telescope (ELT) scale adaptive optics (AO) real-time control with the Intel Xeon Phi Knights Landing (KNL) Many Integrated Core (MIC) Architecture. The computational demands of an AO real-time controller (RTC) scale with the fourth power of telescope diameter and so the next generation ELTs require orders of magnitude more processing power for the RTC pipeline than existing systems. The Xeon Phi contains a large number (≥64) of low power x86 CPU cores and high bandwidth memory integrated into a single socketed server CPU package. The increased parallelism and memory bandwidth are crucial to providing the performance for reconstructing wavefronts with the required precision for ELT scale AO. Here, we demonstrate that the Xeon Phi KNL is capable of performing ELT scale single conjugate AO real-time control computation at over 1.0kHz with less than 20μs RMS jitter. We have also shown that with a wavefront sensor camera attached the KNL can process the real-time control loop at up to 966Hz, the maximum frame-rate of the camera, with jitter remaining below 20μs RMS. Future studies will involve exploring the use of a cluster of Xeon Phis for the real-time control of the MCAO and MOAO regimes of AO. We find that the Xeon Phi is highly suitable for ELT AO real time control.
Separation of time scales in one-dimensional directed nucleation-growth processes
Pierobon, Paolo; Miné-Hattab, Judith; Cappello, Giovanni; Viovy, Jean-Louis; Lagomarsino, Marco Cosentino
2010-12-01
Proteins involved in homologous recombination such as RecA and hRad51 polymerize on single- and double-stranded DNA according to a nucleation-growth kinetics, which can be monitored by single-molecule in vitro assays. The basic models currently used to extract biochemical rates rely on ensemble averages and are typically based on an underlying process of bidirectional polymerization, in contrast with the often observed anisotropic polymerization of similar proteins. For these reasons, if one considers single-molecule experiments, the available models are useful to understand observations only in some regimes. In particular, recent experiments have highlighted a steplike polymerization kinetics. The classical model of one-dimensional nucleation growth, the Kolmogorov-Avrami-Mehl-Johnson (KAMJ) model, predicts the correct polymerization kinetics only in some regimes and fails to predict the steplike behavior. This work illustrates by simulations and analytical arguments the limitation of applicability of the KAMJ description and proposes a minimal model for the statistics of the steps based on the so-called stick-breaking stochastic process. We argue that this insight might be useful to extract information on the time and length scales involved in the polymerization kinetics.
A multi scale approximation solution for the time dependent Boltzmann-transport equation
International Nuclear Information System (INIS)
Merk, B.
2004-03-01
once more compared with the exact analytical solution obtaining good agreement. In the next steps multiple scale expansion solutions are developed for the space-time dependent P 1 and P 3 transport equations for the homogenized cell and 2 delayed neutorn groups. These results are analysed versus the solution for the diffusion equation emphasizing the differences in the space-time structure between the time dependent diffusion- and transport solutions. The effect of the additional derivation terms in the transport equations can be observed during the analytical expansion process and in the graphical analysis of the differences between the solutions. The developed solution is tested for direct calculation of the time behaviour of single nodes in the framework of a nodal code and the results are compared. It is evident that the nature of the inserted perturbation has major impact on the discrepancy of the results compared to the reference nodal method. (orig.) [de
Scaling of dynamical decoupling for a single electron spin in nanodiamonds at room temperature
International Nuclear Information System (INIS)
Liu, Dong-Qi; Liu, Gang-Qin; Chang, Yan-Chun; Pan, Xin-Yu
2014-01-01
Overcoming the spin qubit decoherence is a challenge for quantum science and technology. We investigate the decoherence process in nanodiamonds by Carr–Purcell–Meiboom–Gill (CPMG) technique at room temperature. We find that the coherence time T 2 scales as n γ . The elongation effect of coherence time can be represented by a constant power of the number of pulses n. Considering the filter function of CPMG decoupling sequence as a δ function, the spectrum density of noise has been reconstructed directly from the coherence time measurements and a Lorentzian noise power spectrum model agrees well with the experiment. These results are helpful for the application of nanodiamonds to nanoscale magnetic imaging
High-pT Jet Energy Scale Uncertainty from single hadron response with the ATLAS detector
AUTHOR|(INSPIRE)INSPIRE-00534683; The ATLAS collaboration
2016-01-01
The jet energy scale (JES) uncertainty is estimated using different methods at different p$_\\text{T}$ ranges. In-situ techniques exploiting the p$_\\text{T}$ balance between a jet and a reference object (e.g. Z or gamma) are used at lower p$_\\text{T}$, but at very high p$_\\text{T}$ (> 2.5 TeV) there is not enough statistics for such in-situ techniques. A low JES uncertainty at high-p$_\\text{T}$ is important in several searches for new phenomena, e.g. the dijet resonance and angular searches. In the highest p$_\\text{T}$ range, the JES uncertainty is estimated using the calorimeter response to single hadrons. In this method, jets are treated as a superposition of energy depositions of single particles. An uncertainty is applied to each energy deposition belonging to the particles within the jet, and propagated to the final jet energy scale. This poster presents the JES uncertainty found with this method at sqrt(s) = 8 TeV and its developments.
Dynamics at Intermediate Time Scales and Management of Ecological Populations
2017-05-10
thinking about the importance of transients is to recognize the importance of serial autocorrelation in time of forcing terms over realistic ecological time...rich areas helps produce divergent home range responses bet - ween individuals from difference age classes. This model has broad applications for
Grasping Deep Time with Scaled Space in Personal Environs
DEFF Research Database (Denmark)
Jacobsen, B. H.
2014-01-01
of modern man, the age of dinosaurs ended at 650 m and the Big Bang is 137 km away. This choice obviously makes mental calculations easy, and all of time fits inside a geographical area of moderate size and so helps the citizen gain ownership to this learning tool and hence to time. The idea was tested...
Tate, Robyn L; McDonald, Skye; Perdices, Michael; Togher, Leanne; Schultz, Regina; Savage, Sharon
2008-08-01
Rating scales that assess methodological quality of clinical trials provide a means to critically appraise the literature. Scales are currently available to rate randomised and non-randomised controlled trials, but there are none that assess single-subject designs. The Single-Case Experimental Design (SCED) Scale was developed for this purpose and evaluated for reliability. Six clinical researchers who were trained and experienced in rating methodological quality of clinical trials developed the scale and participated in reliability studies. The SCED Scale is an 11-item rating scale for single-subject designs, of which 10 items are used to assess methodological quality and use of statistical analysis. The scale was developed and refined over a 3-year period. Content validity was addressed by identifying items to reduce the main sources of bias in single-case methodology as stipulated by authorities in the field, which were empirically tested against 85 published reports. Inter-rater reliability was assessed using a random sample of 20/312 single-subject reports archived in the Psychological Database of Brain Impairment Treatment Efficacy (PsycBITE). Inter-rater reliability for the total score was excellent, both for individual raters (overall ICC = 0.84; 95% confidence interval 0.73-0.92) and for consensus ratings between pairs of raters (overall ICC = 0.88; 95% confidence interval 0.78-0.95). Item reliability was fair to excellent for consensus ratings between pairs of raters (range k = 0.48 to 1.00). The results were replicated with two independent novice raters who were trained in the use of the scale (ICC = 0.88, 95% confidence interval 0.73-0.95). The SCED Scale thus provides a brief and valid evaluation of methodological quality of single-subject designs, with the total score demonstrating excellent inter-rater reliability using both individual and consensus ratings. Items from the scale can also be used as a checklist in the design, reporting and critical
Single-time reduction of bethe-salpeter formalism for two-fermion system
International Nuclear Information System (INIS)
Arkhipov, A.A.
1988-01-01
The single-time reduction method proposed in other refs. for the system of two scalar particles is generalized for the case of two-fermion system. A self-consistent procedure of single-time reduction has been constructed both in terms of the Bethe-Salpeter wave function and in terms of the Green's function of two-fermion system. Three-dimensional dynamic equations have been obtained for single-time wave functions and two-time Green's functions of a two-fermion system and the Schroedinger structure of the equations obtained is shown to be a consequence of the causality structure of the local QFT. 32 refs
Feng, Sha; Li, Zhijin; Liu, Yangang; Lin, Wuyin; Zhang, Minghua; Toto, Tami; Vogelmann, Andrew M.; Endo, Satoshi
2015-01-01
three-dimensional fields have been produced using the Community Gridpoint Statistical Interpolation (GSI) data assimilation system for the U.S. Department of Energy's Atmospheric Radiation Measurement Program (ARM) Southern Great Plains region. The GSI system is implemented in a multiscale data assimilation framework using the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. From the fine-resolution three-dimensional fields, large-scale forcing is derived explicitly at grid-scale resolution; a subgrid-scale dynamic component is derived separately, representing subgrid-scale horizontal dynamic processes. Analyses show that the subgrid-scale dynamic component is often a major component over the large-scale forcing for grid scales larger than 200 km. The single-column model (SCM) of the Community Atmospheric Model version 5 is used to examine the impact of the grid-scale and subgrid-scale dynamic components on simulated precipitation and cloud fields associated with a mesoscale convective system. It is found that grid-scale size impacts simulated precipitation, resulting in an overestimation for grid scales of about 200 km but an underestimation for smaller grids. The subgrid-scale dynamic component has an appreciable impact on the simulations, suggesting that grid-scale and subgrid-scale dynamic components should be considered in the interpretation of SCM simulations.
A Matter of Time: Faster Percolator Analysis via Efficient SVM Learning for Large-Scale Proteomics.
Halloran, John T; Rocke, David M
2018-05-04
Percolator is an important tool for greatly improving the results of a database search and subsequent downstream analysis. Using support vector machines (SVMs), Percolator recalibrates peptide-spectrum matches based on the learned decision boundary between targets and decoys. To improve analysis time for large-scale data sets, we update Percolator's SVM learning engine through software and algorithmic optimizations rather than heuristic approaches that necessitate the careful study of their impact on learned parameters across different search settings and data sets. We show that by optimizing Percolator's original learning algorithm, l 2 -SVM-MFN, large-scale SVM learning requires nearly only a third of the original runtime. Furthermore, we show that by employing the widely used Trust Region Newton (TRON) algorithm instead of l 2 -SVM-MFN, large-scale Percolator SVM learning is reduced to nearly only a fifth of the original runtime. Importantly, these speedups only affect the speed at which Percolator converges to a global solution and do not alter recalibration performance. The upgraded versions of both l 2 -SVM-MFN and TRON are optimized within the Percolator codebase for multithreaded and single-thread use and are available under Apache license at bitbucket.org/jthalloran/percolator_upgrade .
Wei, Hongqiang; Zhou, Guiyun; Zhou, Junjie
2018-04-01
The classification of leaf and wood points is an essential preprocessing step for extracting inventory measurements and canopy characterization of trees from the terrestrial laser scanning (TLS) data. The geometry-based approach is one of the widely used classification method. In the geometry-based method, it is common practice to extract salient features at one single scale before the features are used for classification. It remains unclear how different scale(s) used affect the classification accuracy and efficiency. To assess the scale effect on the classification accuracy and efficiency, we extracted the single-scale and multi-scale salient features from the point clouds of two oak trees of different sizes and conducted the classification on leaf and wood. Our experimental results show that the balanced accuracy of the multi-scale method is higher than the average balanced accuracy of the single-scale method by about 10 % for both trees. The average speed-up ratio of single scale classifiers over multi-scale classifier for each tree is higher than 30.
Directory of Open Access Journals (Sweden)
Sadosky Alesia B
2009-06-01
Full Text Available Abstract Background Sleep disturbances are a common and bothersome symptom of fibromyalgia (FM. This study reports psychometric properties of a single-item scale to assess sleep quality among individuals with FM. Methods Analyses were based on data from two randomized, double-blind, placebo-controlled trials of pregabalin (studies 1056 and 1077. In a daily diary, patients reported the quality of their sleep on a numeric rating scale ranging from 0 ("best possible sleep" to 10 ("worst possible sleep". Test re-test reliability of the Sleep Quality Scale was evaluated by computing intraclass correlation coefficients. Pearson correlation coefficients were computed between baseline Sleep Quality scores and baseline pain diary and Medical Outcomes Study (MOS Sleep scores. Responsiveness to treatment was evaluated by standardized effect sizes computed as the difference between least squares mean changes in Sleep Quality scores in the pregabalin and placebo groups divided by the standard deviation of Sleep Quality scores across all patients at baseline. Results Studies 1056 and 1077 included 748 and 745 patients, respectively. Most patients were female (study 1056: 94.4%; study 1077: 94.5% and white (study 1056: 90.2%; study 1077: 91.0%. Mean ages were 48.8 years (study 1056 and 50.1 years (study 1077. Test re-test reliability coefficients of the Sleep Quality Scale were 0.91 and 0.90 in the 1056 and 1077 studies, respectively. Pearson correlation coefficients between baseline Sleep Quality scores and baseline pain diary scores were 0.64 (p Conclusion These results provide evidence of the reproducibility, convergent validity, and responsiveness to treatment of the Sleep Quality Scale and provide a foundation for its further use and evaluation in FM patients.
Single-polymer dynamics under constraints: scaling theory and computer experiment
International Nuclear Information System (INIS)
Milchev, Andrey
2011-01-01
The relaxation, diffusion and translocation dynamics of single linear polymer chains in confinement is briefly reviewed with emphasis on the comparison between theoretical scaling predictions and observations from experiment or, most frequently, from computer simulations. Besides cylindrical, spherical and slit-like constraints, related problems such as the chain dynamics in a random medium and the translocation dynamics through a nanopore are also considered. Another particular kind of confinement is imposed by polymer adsorption on attractive surfaces or selective interfaces-a short overview of single-chain dynamics is also contained in this survey. While both theory and numerical experiments consider predominantly coarse-grained models of self-avoiding linear chain molecules with typically Rouse dynamics, we also note some recent studies which examine the impact of hydrodynamic interactions on polymer dynamics in confinement. In all of the aforementioned cases we focus mainly on the consequences of imposed geometric restrictions on single-chain dynamics and try to check our degree of understanding by assessing the agreement between theoretical predictions and observations. (topical review)
International Nuclear Information System (INIS)
Ueland, Stian M.; Schuh, Christopher A.
2013-01-01
The morphology of the martensitic transformation during a superelastic cycle is studied by in situ scanning electron microscopy deformation experiments in microwires of Cu–Zn–Al. The diameters of the wires studied (21–136 μm) span the range in which significant size effects upon transformation hysteresis have been observed. In larger wires the transformation is accommodated by the continual nucleation of many new martensite plates that grow and eventually coalesce with their neighbors. In small wires a single martensite plate nucleates at the start of transformation and then proceeds to grow in a monolithic fashion; the wire transforms by smooth axial propagation of a single interface. The transition from many domain to single domain transformation is gradual with wire diameter, and is based upon scaling of the domain density with sample size. We attribute it to a crossover from bulk to surface obstacle control of transformation front propagation. This observation also sheds light on reported size effects in energy dissipation in shape memory alloys
Determinants of single family residential water use across scales in four western US cities.
Chang, Heejun; Bonnette, Matthew Ryan; Stoker, Philip; Crow-Miller, Britt; Wentz, Elizabeth
2017-10-15
A growing body of literature examines urban water sustainability with increasing evidence that locally-based physical and social spatial interactions contribute to water use. These studies however are based on single-city analysis and often fail to consider whether these interactions occur more generally. We examine a multi-city comparison using a common set of spatially-explicit water, socioeconomic, and biophysical data. We investigate the relative importance of variables for explaining the variations of single family residential (SFR) water uses at Census Block Group (CBG) and Census Tract (CT) scales in four representative western US cities - Austin, Phoenix, Portland, and Salt Lake City, - which cover a wide range of climate and development density. We used both ordinary least squares regression and spatial error regression models to identify the influence of spatial dependence on water use patterns. Our results show that older downtown areas show lower water use than newer suburban areas in all four cities. Tax assessed value and building age are the main determinants of SFR water use across the four cities regardless of the scale. Impervious surface area becomes an important variable for summer water use in all cities, and it is important in all seasons for arid environments such as Phoenix. CT level analysis shows better model predictability than CBG analysis. In all cities, seasons, and spatial scales, spatial error regression models better explain the variations of SFR water use. Such a spatially-varying relationship of urban water consumption provides additional evidence for the need to integrate urban land use planning and municipal water planning. Copyright © 2017 Elsevier B.V. All rights reserved.
Interplay between multiple length and time scales in complex ...
Indian Academy of Sciences (India)
Administrator
Processes in complex chemical systems, such as macromolecules, electrolytes, interfaces, ... by processes operating on a multiplicity of length .... real time. The design and interpretation of femto- second experiments has required considerable ...
International Nuclear Information System (INIS)
Ishii, M.; Kataoka, I.
1983-03-01
Scaling criteria for a natural circulation loop under single phase and two-phase flow conditions have been derived. For a single phase case the continuity, integral momentum, and energy equations in one-dimensional area average forms have been used. From this, the geometrical similarity groups, friction number, Richardson number, characteristic time constant ratio, Biot number, and heat source number are obtained. The Biot number involves the heat transfer coefficient which may cause some difficulties in simulating the turbulent flow regime. For a two-phase flow case, the similarity groups obtained from a perturbation analysis based on the one-dimensional drift-flux model have been used. The physical significance of the phase change number, subcooling number, drift-flux number, friction number are discussed and conditions imposed by these groups are evaluated. In the two-phase flow case, the critical heat flux is one of the most important transients which should be simulated in a scale model. The above results are applied to the LOFT facility in case of a natural circulation simulation. Some preliminary conclusions on the feasibility of the facility have been obtained
Energy Technology Data Exchange (ETDEWEB)
Ishii, M.; Kataoka, I.
1983-03-01
Scaling criteria for a natural circulation loop under single phase and two-phase flow conditions have been derived. For a single phase case the continuity, integral momentum, and energy equations in one-dimensional area average forms have been used. From this, the geometrical similarity groups, friction number, Richardson number, characteristic time constant ratio, Biot number, and heat source number are obtained. The Biot number involves the heat transfer coefficient which may cause some difficulties in simulating the turbulent flow regime. For a two-phase flow case, the similarity groups obtained from a perturbation analysis based on the one-dimensional drift-flux model have been used. The physical significance of the phase change number, subcooling number, drift-flux number, friction number are discussed and conditions imposed by these groups are evaluated. In the two-phase flow case, the critical heat flux is one of the most important transients which should be simulated in a scale model. The above results are applied to the LOFT facility in case of a natural circulation simulation. Some preliminary conclusions on the feasibility of the facility have been obtained.
Gradient plasticity for thermo-mechanical processes in metals with length and time scales
Voyiadjis, George Z.; Faghihi, Danial
2013-03-01
A thermodynamically consistent framework is developed in order to characterize the mechanical and thermal behavior of metals in small volume and on the fast transient time. In this regard, an enhanced gradient plasticity theory is coupled with the application of a micromorphic approach to the temperature variable. A physically based yield function based on the concept of thermal activation energy and the dislocation interaction mechanisms including nonlinear hardening is taken into consideration in the derivation. The effect of the material microstructural interface between two materials is also incorporated in the formulation with both temperature and rate effects. In order to accurately address the strengthening and hardening mechanisms, the theory is developed based on the decomposition of the mechanical state variables into energetic and dissipative counterparts which endowed the constitutive equations to have both energetic and dissipative gradient length scales for the bulk material and the interface. Moreover, the microstructural interaction effect in the fast transient process is addressed by incorporating two time scales into the microscopic heat equation. The numerical example of thin film on elastic substrate or a single phase bicrystal under uniform tension is addressed here. The effects of individual counterparts of the framework on the thermal and mechanical responses are investigated. The model is also compared with experimental results.
Imura, Tomoya; Takamura, Masahiro; Okazaki, Yoshihiro; Tokunaga, Satoko
2016-10-01
We developed a scale to measure time management and assessed its reliability and validity. We then used this scale to examine the impact of time management on psychological stress response. In Study 1-1, we developed the scale and assessed its internal consistency and criterion-related validity. Findings from a factor analysis revealed three elements of time management, “time estimation,” “time utilization,” and “taking each moment as it comes.” In Study 1-2, we assessed the scale’s test-retest reliability. In Study 1-3, we assessed the validity of the constructed scale. The results indicate that the time management scale has good reliability and validity. In Study 2, we performed a covariance structural analysis to verify our model that hypothesized that time management influences perceived control of time and psychological stress response, and perceived control of time influences psychological stress response. The results showed that time estimation increases the perceived control of time, which in turn decreases stress response. However, we also found that taking each moment as it comes reduces perceived control of time, which in turn increases stress response.
Finite-Time Stability of Large-Scale Systems with Interval Time-Varying Delay in Interconnection
Directory of Open Access Journals (Sweden)
T. La-inchua
2017-01-01
Full Text Available We investigate finite-time stability of a class of nonlinear large-scale systems with interval time-varying delays in interconnection. Time-delay functions are continuous but not necessarily differentiable. Based on Lyapunov stability theory and new integral bounding technique, finite-time stability of large-scale systems with interval time-varying delays in interconnection is derived. The finite-time stability criteria are delays-dependent and are given in terms of linear matrix inequalities which can be solved by various available algorithms. Numerical examples are given to illustrate effectiveness of the proposed method.
Flow time prediction for a single-server order picking workstation using aggregate process times
Andriansyah, R.; Etman, L.F.P.; Rooda, J.E.
2010-01-01
In this paper we propose a simulation modeling approach based on aggregate process times for the performance analysis of order picking workstations in automated warehouses. The aggregate process time distribution is calculated from tote arrival and departure times. We refer to the aggregate process
Perception of short time scale intervals in a hypnotic virtuoso
Noreika, Valdas; Falter, Christine M.; Arstila, Valtteri; Wearden, John H.; Kallio, Sakari
2012-01-01
Previous studies showed that hypnotized individuals underestimate temporal intervals in the range of several seconds to tens of minutes. However, no previous work has investigated whether duration perception is equally disorderly when shorter time intervals are probed. In this study, duration
Dynamic modelling of heavy metals - time scales and target loads
Posch, M.; Vries, de W.
2009-01-01
Over the past decade steady-state methods have been developed to assess critical loads of metals avoiding long-term risks in view of food quality and eco-toxicological effects on organisms in soils and surface waters. However, dynamic models are needed to estimate the times involved in attaining a
Time Scales in the JPL and CfA Ephemerides
Standish, E. M.
1998-01-01
Over the past decades, the IAU has repeatedly attempted to correct its definition of the basic fundamental argument used in the emphemerides. Finally, they have defined a time system which is physically possible, according to the accepted standard theory of gravitation.
Coherent spectroscopies on ultrashort time and length scales
Directory of Open Access Journals (Sweden)
Schneider C.
2013-03-01
Full Text Available Three spectroscopic techniques are presented that provide simultaneous spatial and temporal resolution: modified confocal microscopy with heterodyne detection, space-time-resolved spectroscopy using coherent control concepts, and coherent two-dimensional nano-spectroscopy. Latest experimental results are discussed.
Does expressive timing in music performance scale proportionally with tempo?
Desain, P.; Honing, H.
1994-01-01
Evidence is presented that expressive timing in music is not relationally invariant with global tempo. Our results stem from an analysis of repeated performances of Beethoven's variations on a Paisiello theme. Recordings were made of two pianists playing the pieces at three tempi. In contrast with
Indo-Pacific sea level variability at multidecadal time scales
Merrifield, M. A.; Thompson, P. R.
2016-12-01
Long tide gauge and atmospheric pressure measurements are used to infer multidecadal fluctuations in trade wind forcing and the associated Indo-Pacific sea level response along coastal and equatorial waveguides. The trade wind variations are marked by a weakening beginning with the late 1970s climate shift and a subsequent return to mean conditions since the early 1990s. These fluctuations covary with multidecadal wind changes at mid-latitudes, as measured by the Pacific Decadal Oscillation or the North Pacific indices; however, the mid-latitude multidecadal variations prior to 1970 or noticeably absent in the inferred trade wind record. The different behavior of tropical and mid-latitude winds support the notion that multidecadal climate variations in the Pacific result from a combination of processes and not a single coherent mode spanning the basin. In particular, the two-decade long satellite altimeter record represents a period of apparent connection between the two regions that was not exhibited earlier in the century.
Strategies for real-time position control of a single atom in cavity QED
International Nuclear Information System (INIS)
Lynn, T W; Birnbaum, K; Kimble, H J
2005-01-01
Recent realizations of single-atom trapping and tracking in cavity QED open the door for feedback schemes which actively stabilize the motion of a single atom in real time. We present feedback algorithms for cooling the radial component of motion for a single atom trapped by strong coupling to single-photon fields in an optical cavity. Performance of various algorithms is studied through simulations of single-atom trajectories, with full dynamical and measurement noise included. Closed loop feedback algorithms compare favourably to open loop 'switching' analogues, demonstrating the importance of applying actual position information in real time. The high optical information rate in current experiments enables real-time tracking that approaches the standard quantum limit for broadband position measurements, suggesting that realistic active feedback schemes may reach a regime where measurement backaction appreciably alters the motional dynamics
Wohlmuth, Johannes; Andersen, Jørgen Vitting
2006-05-01
We use agent-based models to study the competition among investors who use trading strategies with different amount of information and with different time scales. We find that mixing agents that trade on the same time scale but with different amount of information has a stabilizing impact on the large and extreme fluctuations of the market. Traders with the most information are found to be more likely to arbitrage traders who use less information in the decision making. On the other hand, introducing investors who act on two different time scales has a destabilizing effect on the large and extreme price movements, increasing the volatility of the market. Closeness in time scale used in the decision making is found to facilitate the creation of local trends. The larger the overlap in commonly shared information the more the traders in a mixed system with different time scales are found to profit from the presence of traders acting at another time scale than themselves.
Structure and dating errors in the geologic time scale and periodicity in mass extinctions
Stothers, Richard B.
1989-01-01
Structure in the geologic time scale reflects a partly paleontological origin. As a result, ages of Cenozoic and Mesozoic stage boundaries exhibit a weak 28-Myr periodicity that is similar to the strong 26-Myr periodicity detected in mass extinctions of marine life by Raup and Sepkoski. Radiometric dating errors in the geologic time scale, to which the mass extinctions are stratigraphically tied, do not necessarily lessen the likelihood of a significant periodicity in mass extinctions, but do spread the acceptable values of the period over the range 25-27 Myr for the Harland et al. time scale or 25-30 Myr for the DNAG time scale. If the Odin time scale is adopted, acceptable periods fall between 24 and 33 Myr, but are not robust against dating errors. Some indirect evidence from independently-dated flood-basalt volcanic horizons tends to favor the Odin time scale.
Qualitative aspects of Volterra integro-dynamic system on time scales
Directory of Open Access Journals (Sweden)
Vasile Lupulescu
2013-01-01
Full Text Available This paper deals with the resolvent, asymptotic stability and boundedness of the solution of time-varying Volterra integro-dynamic system on time scales in which the coefficient matrix is not necessarily stable. We generalize at time scale some known properties about asymptotic behavior and boundedness from the continuous case. Some new results for discrete case are obtained.
Time-scale invariance as an emergent property in a perceptron with realistic, noisy neurons.
Buhusi, Catalin V; Oprisan, Sorinel A
2013-05-01
In most species, interval timing is time-scale invariant: errors in time estimation scale up linearly with the estimated duration. In mammals, time-scale invariance is ubiquitous over behavioral, lesion, and pharmacological manipulations. For example, dopaminergic drugs induce an immediate, whereas cholinergic drugs induce a gradual, scalar change in timing. Behavioral theories posit that time-scale invariance derives from particular computations, rules, or coding schemes. In contrast, we discuss a simple neural circuit, the perceptron, whose output neurons fire in a clockwise fashion based on the pattern of coincidental activation of its input neurons. We show numerically that time-scale invariance emerges spontaneously in a perceptron with realistic neurons, in the presence of noise. Under the assumption that dopaminergic drugs modulate the firing of input neurons, and that cholinergic drugs modulate the memory representation of the criterion time, we show that a perceptron with realistic neurons reproduces the pharmacological clock and memory patterns, and their time-scale invariance, in the presence of noise. These results suggest that rather than being a signature of higher order cognitive processes or specific computations related to timing, time-scale invariance may spontaneously emerge in a massively connected brain from the intrinsic noise of neurons and circuits, thus providing the simplest explanation for the ubiquity of scale invariance of interval timing. Copyright © 2013 Elsevier B.V. All rights reserved.
Max-Min SINR in Large-Scale Single-Cell MU-MIMO: Asymptotic Analysis and Low Complexity Transceivers
Sifaou, Houssem; Kammoun, Abla; Sanguinetti, Luca; Debbah, Merouane; Alouini, Mohamed-Slim
2016-01-01
This work focuses on the downlink and uplink of large-scale single-cell MU-MIMO systems in which the base station (BS) endowed with M antennas communicates with K single-antenna user equipments (UEs). Particularly, we aim at reducing the complexity
Kelley, Luke Zoltan; Blecha, Laura; Hernquist, Lars; Sesana, Alberto; Taylor, Stephen R.
2018-06-01
We calculate the properties, occurrence rates and detection prospects of individually resolvable `single sources' in the low-frequency gravitational wave (GW) spectrum. Our simulations use the population of galaxies and massive black hole binaries from the Illustris cosmological hydrodynamic simulations, coupled to comprehensive semi-analytic models of the binary merger process. Using mock pulsar timing arrays (PTA) with, for the first time, varying red-noise models, we calculate plausible detection prospects for GW single sources and the stochastic GW background (GWB). Contrary to previous results, we find that single sources are at least as detectable as the GW background. Using mock PTA, we find that these `foreground' sources (also `deterministic'/`continuous') are likely to be detected with ˜20 yr total observing baselines. Detection prospects, and indeed the overall properties of single sources, are only moderately sensitive to binary evolution parameters - namely eccentricity and environmental coupling, which can lead to differences of ˜5 yr in times to detection. Red noise has a stronger effect, roughly doubling the time to detection of the foreground between a white-noise only model (˜10-15 yr) and severe red noise (˜20-30 yr). The effect of red noise on the GWB is even stronger, suggesting that single source detections may be more robust. We find that typical signal-to-noise ratios for the foreground peak near f = 0.1 yr-1, and are much less sensitive to the continued addition of new pulsars to PTA.
A Study on Time-Scales Ratio and Turbulent Prandtl Number in Ducts of Industrial Applications
DEFF Research Database (Denmark)
Rokni, Masoud
2006-01-01
is solved using a two-equation heat ﬂux model. The computed results compare satisfactory with the available experimental data. The time-scale ratio R is deﬁned as the ratio between the dynamic time-scale (k/ε) and the scalar time-scale(0.5θθ/εθ). Based on existing DNS data and calculations in this work...... of heat exchangers for various applications area....
Time scales of solar microwave bursts and scenarios of flare enregy release
International Nuclear Information System (INIS)
Krueger, A.; Kliem, B.; Hildebrandt, J.
1989-01-01
Based on earlier observational evidence that characteristic time scales of different solar microwave burst types are distributed over a wide range (10 -3 -10 4 sec), different mechanisms of energy release have been considered to account for the impulsive flux increase (time scale 3 sec). Among different competing processes the coalescence instability is found to be a promising candidate to combine sufficiently short time scales with substantial energy release. (author). 20 refs.; 1 fig
Directory of Open Access Journals (Sweden)
Ahmed eEleryan
2014-07-01
Full Text Available In the study of population coding in neurobiological systems, tracking unit identity may be critical to assess possible changes in the coding properties of neuronal constituents over prolonged periods of time. Ensuring unit stability is even more critical for reliable neural decoding of motor variables in intra-cortically controlled brain-machine interfaces (BMIs. Variability in intrinsic spike patterns, tuning characteristics, and single-unit identity over chronic use is a major challenge to maintaining this stability, requiring frequent daily calibration of neural decoders in BMI sessions by an experienced human operator. Here, we report on a unit-stability tracking algorithm that efficiently and autonomously identifies putative single-units that are stable across many sessions using a relatively short duration recording interval at the start of each session. The algorithm first builds a database of features extracted from units' average spike waveforms and firing patterns across many days of recording. It then uses these features to decide whether spike occurrences on the same channel on one day belong to the same unit recorded on another day or not. We assessed the overall performance of the algorithm for different choices of features and classifiers trained using human expert judgment, and quantified it as a function of accuracy and execution time. Overall, we found a trade-off between accuracy and execution time with increasing data volumes from chronically implanted rhesus macaques, with an average of 12 seconds processing time per channel at ~90% classification accuracy. Furthermore, 77% of the resulting putative single-units matched those tracked by human experts. These results demonstrate that over the span of a few months of recordings, automated unit tracking can be performed with high accuracy and used to streamline the calibration phase during BMI sessions.
Long time scale simulation of a grain boundary in copper
DEFF Research Database (Denmark)
Pedersen, A.; Henkelman, G.; Schiøtz, Jakob
2009-01-01
A general, twisted and tilted, grain boundary in copper has been simulated using the adaptive kinetic Monte Carlo method to study the atomistic structure of the non-crystalline region and the mechanism of annealing events that occur at low temperature. The simulated time interval spanned 67 mu s...... was also observed. In the final low-energy configurations, the thickness of the region separating the crystalline grains corresponds to just one atomic layer, in good agreement with reported experimental observations. The simulated system consists of 1307 atoms and atomic interactions were described using...
Valdé s, Felipe; Andriulli, Francesco P.; Bagci, Hakan; Michielssen, Eric
2013-01-01
Single-source time-domain electric-and magnetic-field integral equations for analyzing scattering from homogeneous penetrable objects are presented. Their temporal discretization is effected by using shifted piecewise polynomial temporal basis
Zhou, Hua; Su, Yang; Wang, Rong; Zhu, Yong; Shen, Huiping; Pu, Tao; Wu, Chuanxin; Zhao, Jiyong; Zhang, Baofu; Xu, Zhiyong
2017-10-01
Online reconstruction of a time-variant quantum state from the encoding/decoding results of quantum communication is addressed by developing a method of evolution reconstruction from a single measurement record with random time intervals. A time-variant two-dimensional state is reconstructed on the basis of recovering its expectation value functions of three nonorthogonal projectors from a random single measurement record, which is composed from the discarded qubits of the six-state protocol. The simulated results prove that our method is robust to typical metro quantum channels. Our work extends the Fourier-based method of evolution reconstruction from the version for a regular single measurement record with equal time intervals to a unified one, which can be applied to arbitrary single measurement records. The proposed protocol of evolution reconstruction runs concurrently with the one of quantum communication, which can facilitate the online quantum tomography.
Sojourn time tails in the single server queue with heavy-tailed service times
Boxma, O.J.; Denisov, D.E.
2009-01-01
We consider the GI/GI/1 queue with regularly varying service requirement distribution of index -a. It is well known that, in the M/G/1 FCFS queue, the sojourn time distribution is also regularly varying, of index 1 - a, whereas in the case of LCFS or Processor Sharing, the sojourn time distribution
Sojourn time tails in the single server queue with heavy-tailed service times
Boxma, O.J.; Denisov, D.E.
2011-01-01
We consider the GI/GI/1 queue with regularly varying service requirement distribution of index -a. It is well known that, in the M/G/1 FCFS queue, the sojourn time distribution is also regularly varying, of index 1-a, whereas in the case of LCFS or Processor Sharing, the sojourn time distribution is
Techniques for extracting single-trial activity patterns from large-scale neural recordings
Churchland, Mark M; Yu, Byron M; Sahani, Maneesh; Shenoy, Krishna V
2008-01-01
Summary Large, chronically-implanted arrays of microelectrodes are an increasingly common tool for recording from primate cortex, and can provide extracellular recordings from many (order of 100) neurons. While the desire for cortically-based motor prostheses has helped drive their development, such arrays also offer great potential to advance basic neuroscience research. Here we discuss the utility of array recording for the study of neural dynamics. Neural activity often has dynamics beyond that driven directly by the stimulus. While governed by those dynamics, neural responses may nevertheless unfold differently for nominally identical trials, rendering many traditional analysis methods ineffective. We review recent studies – some employing simultaneous recording, some not – indicating that such variability is indeed present both during movement generation, and during the preceding premotor computations. In such cases, large-scale simultaneous recordings have the potential to provide an unprecedented view of neural dynamics at the level of single trials. However, this enterprise will depend not only on techniques for simultaneous recording, but also on the use and further development of analysis techniques that can appropriately reduce the dimensionality of the data, and allow visualization of single-trial neural behavior. PMID:18093826
Directory of Open Access Journals (Sweden)
Yongkun Li
2009-01-01
Full Text Available Based on the theory of calculus on time scales, the homeomorphism theory, Lyapunov functional method, and some analysis techniques, sufficient conditions are obtained for the existence, uniqueness, and global exponential stability of the equilibrium point of Cohen-Grossberg bidirectional associative memory (BAM neural networks with distributed delays and impulses on time scales. This is the first time applying the time-scale calculus theory to unify the discrete-time and continuous-time Cohen-Grossberg BAM neural network with impulses under the same framework.
International Nuclear Information System (INIS)
Vijayan, P.K.; Nayak, A.K.; Bade, M.H.; Kumar, N.; Saha, D.; Sinha, R.K.
2002-01-01
Scaling methods for both single-phase and two-phase natural circulation systems have been presented. For single-phase systems, simulation of the steady state flow can be achieved by preserving just one nondimensional parameter. For uniform diameter two-phase systems also, it is possible to simulate the steady state behaviour with just one non-dimensional parameter. Simulation of the stability behaviour requires geometric similarity in addition to the similarity of the physical parameters appearing in the governing equations. The scaling laws proposed have been tested with experimental data in case of single-phase natural circulation. (author)
A Novel Multiple-Time Scale Integrator for the Hybrid Monte Carlo Algorithm
International Nuclear Information System (INIS)
Kamleh, Waseem
2011-01-01
Hybrid Monte Carlo simulations that implement the fermion action using multiple terms are commonly used. By the nature of their formulation they involve multiple integration time scales in the evolution of the system through simulation time. These different scales are usually dealt with by the Sexton-Weingarten nested leapfrog integrator. In this scheme the choice of time scales is somewhat restricted as each time step must be an exact multiple of the next smallest scale in the sequence. A novel generalisation of the nested leapfrog integrator is introduced which allows for far greater flexibility in the choice of time scales, as each scale now must only be an exact multiple of the smallest step size.
Time scales and the problem of radioactive waste
International Nuclear Information System (INIS)
Goble, R.L.
1984-01-01
The author argues that decisions about future nuclear development can be made essentially independent of waste management considerations for the next 20 years. His arguments are based on five propositions: 1 Risks and costs of storing spent fuel or high-level waste and transuranics are lower than other directly comparable risks and costs of operating a reactor. 2 Storage of mill tailings is the most serious long-term waste problem; it is not serious enough to rule out the use of nuclear power. 3 There are compelling reasons for beginning to implement a waste management program now. 4 It is important to separate the problem of providing temporary storage from that of finding permanent repositories. 5 A prudent waste management strategy, by 2000, will have identified and evaluated more than enough repository space for the waste generated by that time, independent of the decision made about nuclear futures. 13 references, 4 figures, 4 tables
International Nuclear Information System (INIS)
Micic, Radoslav D.; Tomić, Milan D.; Kiss, Ferenc E.; Martinovic, Ferenc L.; Simikić, Mirko Ð.; Molnar, Tibor T.
2016-01-01
Highlights: • Single-step supercritical transesterification compared to the two-step process. • Two-step process: oil hydrolysis and subsequent supercritical methyl esterification. • Experiments were conducted in a laboratory-scale batch reactor. • Higher biodiesel yields in two-step process at milder reaction conditions. • Two-step process has potential to be cost-competitive with the single-step process. - Abstract: Single-step supercritical transesterification and two-step biodiesel production process consisting of oil hydrolysis and subsequent supercritical methyl esterification were studied and compared. For this purpose, comparative experiments were conducted in a laboratory-scale batch reactor and optimal reaction conditions (temperature, pressure, molar ratio and time) were determined. Results indicate that in comparison to a single-step transesterification, methyl esterification (second step of the two-step process) produces higher biodiesel yields (95 wt% vs. 91 wt%) at lower temperatures (270 °C vs. 350 °C), pressures (8 MPa vs. 12 MPa) and methanol to oil molar ratios (1:20 vs. 1:42). This can be explained by the fact that the reaction system consisting of free fatty acid (FFA) and methanol achieves supercritical condition at milder reaction conditions. Furthermore, the dissolved FFA increases the acidity of supercritical methanol and acts as an acid catalyst that increases the reaction rate. There is a direct correlation between FFA content of the product obtained in hydrolysis and biodiesel yields in methyl esterification. Therefore, the reaction parameters of hydrolysis were optimized to yield the highest FFA content at 12 MPa, 250 °C and 1:20 oil to water molar ratio. Results of direct material and energy costs comparison suggest that the process based on the two-step reaction has the potential to be cost-competitive with the process based on single-step supercritical transesterification. Higher biodiesel yields, similar or lower energy
Solar radiation transmissivity of a single-span greenhouse through measurements on scale models
International Nuclear Information System (INIS)
Papadakis, G.; Manolakos, D.; Kyritsis, S.
1998-01-01
The solar transmissivity of a single-span greenhouse has been investigated experimentally using a scale model, of dimensions 40 cm width and 80 cm length. The solar transmissivity was measured at 48 positions on the “ground” surface of the scale model using 48 small silicon solar cells. The greenhouse model was positioned horizontally on a specially made goniometric mechanism. In this way, the greenhouse azimuth could be changed so that typical days of the year could be simulated using different combinations of greenhouse azimuth and the position of the sun in the sky. The measured solar transmissivity distribution at the “ground” surface and the average greenhouse solar transmissivity are presented and analysed, for characteristic days of the year, for winter and summer for a latitude of 37°58′ (Athens, Greece). It is shown that for the latitude of 37°58′ N during winter, the E–W orientation is preferable to the N–S one. The side walls, and especially the East and West ones for the E–W orientation, reduce considerably the greenhouse transmissivity at areas close to the walls for long periods of the day when the angle of incidence of the solar rays to these walls is large. (author)
Wei, Xiaohua; Zhang, Mingfang
2010-12-01
Climatic variability and forest disturbance are commonly recognized as two major drivers influencing streamflow change in large-scale forested watersheds. The greatest challenge in evaluating quantitative hydrological effects of forest disturbance is the removal of climatic effect on hydrology. In this paper, a method was designed to quantify respective contributions of large-scale forest disturbance and climatic variability on streamflow using the Willow River watershed (2860 km2) located in the central part of British Columbia, Canada. Long-term (>50 years) data on hydrology, climate, and timber harvesting history represented by equivalent clear-cutting area (ECA) were available to discern climatic and forestry influences on streamflow by three steps. First, effective precipitation, an integrated climatic index, was generated by subtracting evapotranspiration from precipitation. Second, modified double mass curves were developed by plotting accumulated annual streamflow against annual effective precipitation, which presented a much clearer picture of the cumulative effects of forest disturbance on streamflow following removal of climatic influence. The average annual streamflow changes that were attributed to forest disturbances and climatic variability were then estimated to be +58.7 and -72.4 mm, respectively. The positive (increasing) and negative (decreasing) values in streamflow change indicated opposite change directions, which suggest an offsetting effect between forest disturbance and climatic variability in the study watershed. Finally, a multivariate Autoregressive Integrated Moving Average (ARIMA) model was generated to establish quantitative relationships between accumulated annual streamflow deviation attributed to forest disturbances and annual ECA. The model was then used to project streamflow change under various timber harvesting scenarios. The methodology can be effectively applied to any large-scale single watershed where long-term data (>50
RECENT GEODYNAMICS OF FAULT ZONES: FAULTING IN REAL TIME SCALE
Directory of Open Access Journals (Sweden)
Yu. O. Kuzmin
2014-01-01
Full Text Available Recent deformation processes taking place in real time are analyzed on the basis of data on fault zones which were collected by long-term detailed geodetic survey studies with application of field methods and satellite monitoring.A new category of recent crustal movements is described and termed as parametrically induced tectonic strain in fault zones. It is shown that in the fault zones located in seismically active and aseismic regions, super intensive displacements of the crust (5 to 7 cm per year, i.e. (5 to 7·10–5 per year occur due to very small external impacts of natural or technogenic / industrial origin.The spatial discreteness of anomalous deformation processes is established along the strike of the regional Rechitsky fault in the Pripyat basin. It is concluded that recent anomalous activity of the fault zones needs to be taken into account in defining regional regularities of geodynamic processes on the basis of real-time measurements.The paper presents results of analyses of data collected by long-term (20 to 50 years geodetic surveys in highly seismically active regions of Kopetdag, Kamchatka and California. It is evidenced by instrumental geodetic measurements of recent vertical and horizontal displacements in fault zones that deformations are ‘paradoxically’ deviating from the inherited movements of the past geological periods.In terms of the recent geodynamics, the ‘paradoxes’ of high and low strain velocities are related to a reliable empirical fact of the presence of extremely high local velocities of deformations in the fault zones (about 10–5 per year and above, which take place at the background of slow regional deformations which velocities are lower by the order of 2 to 3. Very low average annual velocities of horizontal deformation are recorded in the seismic regions of Kopetdag and Kamchatka and in the San Andreas fault zone; they amount to only 3 to 5 amplitudes of the earth tidal deformations per year.A
Scaling of dynamical decoupling for a single electron spin in nanodiamonds at room temperature
Energy Technology Data Exchange (ETDEWEB)
Liu, Dong-Qi; Liu, Gang-Qin; Chang, Yan-Chun; Pan, Xin-Yu, E-mail: xypan@aphy.iphy.ac.cn
2014-01-01
Overcoming the spin qubit decoherence is a challenge for quantum science and technology. We investigate the decoherence process in nanodiamonds by Carr–Purcell–Meiboom–Gill (CPMG) technique at room temperature. We find that the coherence time T{sub 2} scales as n{sup γ}. The elongation effect of coherence time can be represented by a constant power of the number of pulses n. Considering the filter function of CPMG decoupling sequence as a δ function, the spectrum density of noise has been reconstructed directly from the coherence time measurements and a Lorentzian noise power spectrum model agrees well with the experiment. These results are helpful for the application of nanodiamonds to nanoscale magnetic imaging.
Salinization of aquifers at the regional scale by marine transgression: Time scales and processes
Armandine Les Landes, A.; Davy, P.; Aquilina, L.
2014-12-01
Saline fluids with moderate concentrations have been sampled and reported in the Armorican basement at the regional scale (northwestern France). The horizontal and vertical distributions of high chloride concentrations (60-1400mg/L) at the regional scale support the marine origin and provide constraints on the age of these saline fluids. The current distribution of fresh and "saline" groundwater at depth is the result mostly of processes occurring at geological timescales - seawater intrusion processes followed by fresh groundwater flushing -, and only slightly of recent anthropogenic activities. In this study, we focus on seawater intrusion mechanisms in continental aquifers. We argue that one of the most efficient processes in macrotidal environments is the gravity-driven downconing instability below coastal salinized rivers. 2-D numerical experiments have been used to quantify this process according to four main parameter types: (1) the groundwater system permeability, (2) the salinity degree of the river, (3) the river width and slope, and (4) the tidal amplitude. A general expression of the salinity inflow rates have been derived, which has been used to estimate groundwater salinization rates in Brittany, given the geomorphological and environmental characteristics (drainage basin area, river widths and slopes, tidal range, aquifer permeability). We found that downconing below coastal rivers entail very high saline rates, indicating that this process play a major role in the salinization of regional aquifers. This is also likely to be an issue in the context of climate change, where sea-level rise is expected.
Synthesis of Large-Scale Single-Crystalline Monolayer WS2 Using a Semi-Sealed Method
Directory of Open Access Journals (Sweden)
Feifei Lan
2018-02-01
Full Text Available As a two-dimensional semiconductor, WS2 has attracted great attention due to its rich physical properties and potential applications. However, it is still difficult to synthesize monolayer single-crystalline WS2 at larger scale. Here, we report the growth of large-scale triangular single-crystalline WS2 with a semi-sealed installation by chemical vapor deposition (CVD. Through this method, triangular single-crystalline WS2 with an average length of more than 300 µm was obtained. The largest one was about 405 μm in length. WS2 triangles with different sizes and thicknesses were analyzed by optical microscope and atomic force microscope (AFM. Their optical properties were evaluated by Raman and photoluminescence (PL spectra. This report paves the way to fabricating large-scale single-crystalline monolayer WS2, which is useful for the growth of high-quality WS2 and its potential applications in the future.
Marine Dispersal Scales Are Congruent over Evolutionary and Ecological Time
Pinsky, Malin L.
2016-12-15
The degree to which offspring remain near their parents or disperse widely is critical for understanding population dynamics, evolution, and biogeography, and for designing conservation actions. In the ocean, most estimates suggesting short-distance dispersal are based on direct ecological observations of dispersing individuals, while indirect evolutionary estimates often suggest substantially greater homogeneity among populations. Reconciling these two approaches and their seemingly competing perspectives on dispersal has been a major challenge. Here we show for the first time that evolutionary and ecological measures of larval dispersal can closely agree by using both to estimate the distribution of dispersal distances. In orange clownfish (Amphiprion percula) populations in Kimbe Bay, Papua New Guinea, we found that evolutionary dispersal kernels were 17 km (95% confidence interval: 12–24 km) wide, while an exhaustive set of direct larval dispersal observations suggested kernel widths of 27 km (19–36 km) or 19 km (15–27 km) across two years. The similarity between these two approaches suggests that ecological and evolutionary dispersal kernels can be equivalent, and that the apparent disagreement between direct and indirect measurements can be overcome. Our results suggest that carefully applied evolutionary methods, which are often less expensive, can be broadly relevant for understanding ecological dispersal across the tree of life.
Updating the planetary time scale: focus on Mars
Tanaka, Kenneth L.; Quantin-Nataf, Cathy
2013-01-01
Formal stratigraphic systems have been developed for the surface materials of the Moon, Mars, Mercury, and the Galilean satellite Ganymede. These systems are based on geologic mapping, which establishes relative ages of surfaces delineated by superposition, morphology, impact crater densities, and other relations and features. Referent units selected from the mapping determine time-stratigraphic bases and/or representative materials characteristic of events and periods for definition of chronologic units. Absolute ages of these units in some cases can be estimated using crater size-frequency data. For the Moon, the chronologic units and cratering record are calibrated by radiometric ages measured from samples collected from the lunar surface. Model ages for other cratered planetary surfaces are constructed primarily by estimating cratering rates relative to that of the Moon. Other cratered bodies with estimated surface ages include Venus and the Galilean satellites of Jupiter. New global geologic mapping and crater dating studies of Mars are resulting in more accurate and detailed reconstructions of its geologic history.
Probabilistic eruption forecasting at short and long time scales
Marzocchi, Warner; Bebbington, Mark S.
2012-10-01
Any effective volcanic risk mitigation strategy requires a scientific assessment of the future evolution of a volcanic system and its eruptive behavior. Some consider the onus should be on volcanologists to provide simple but emphatic deterministic forecasts. This traditional way of thinking, however, does not deal with the implications of inherent uncertainties, both aleatoric and epistemic, that are inevitably present in observations, monitoring data, and interpretation of any natural system. In contrast to deterministic predictions, probabilistic eruption forecasting attempts to quantify these inherent uncertainties utilizing all available information to the extent that it can be relied upon and is informative. As with many other natural hazards, probabilistic eruption forecasting is becoming established as the primary scientific basis for planning rational risk mitigation actions: at short-term (hours to weeks or months), it allows decision-makers to prioritize actions in a crisis; and at long-term (years to decades), it is the basic component for land use and emergency planning. Probabilistic eruption forecasting consists of estimating the probability of an eruption event and where it sits in a complex multidimensional time-space-magnitude framework. In this review, we discuss the key developments and features of models that have been used to address the problem.
Biochemical recovery time scales in elderly patients with osteomalacia
Allen, S C; Raut, S
2004-01-01
Osteomalacia is not rare in the UK and climatically similar countries, particularly in elderly people and those of Asian descent. Overt clinical osteomalacia is usually treated with a loading dose of vitamin D, followed by a regular supplement. However, little is known of the time taken to reach a stable biochemical state after starting treatment. Such information would shed light on the duration of the bone remineralization phase and guide decisions on the length of follow-up. To address this we conducted a 2-year follow-up study of 42 patients (35 female, mean age 80.8 years) with biopsy proven osteomalacia treated with a standard replacement regimen and general nutritional support. Although normocalcaemia was attained within 4 weeks the mean values continued to rise, to a mid-range plateau at 52 weeks. The phosphate and alkaline phosphatase values also took at least a year to reach a stable mean, with a slight further trend towards the mid-range for the entire 104 weeks. The mean serum albumin also rose throughout the first 52 weeks, indicating an effective response to the general nutritional support measures. Our observations suggest that the dynamic relationship between calcium, phosphate and bone requires at least a year, and probably longer, to reach an equilibrium after treatment for osteomalacia in elderly patients. The findings emphasize the need for close medical and social follow-up in this clinical context. PMID:15520146
Fission time-scale from the measurement of pre-scission light ...
Indian Academy of Sciences (India)
and hence can only probe a part of the fission time distribution. .... with the conclusion of recent fission time-scale measurements using the fission probability ... using the statistical model code JOANNE2 suitably modified to include the GDR ...
Time structure of ns duration bunches with single crystal diamond detector
Energy Technology Data Exchange (ETDEWEB)
Duenas, J.A., E-mail: jose.duenas@dfa.uhu.es [Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Campus de El Carmen, 21071 Huelva (Spain); Ausset, P. [Institut de Physique Nucleaire d' Orsay (IPNO), Universite Paris-Sub 11, CNRS/IN2P3, 91406 Orsay Cedex (France); Berjillos, R. [Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Campus de El Carmen, 21071 Huelva (Spain); Gardes, D.; Junquera, T.; Lavergne, L. [Institut de Physique Nucleaire d' Orsay (IPNO), Universite Paris-Sub 11, CNRS/IN2P3, 91406 Orsay Cedex (France); Martel, I. [Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Campus de El Carmen, 21071 Huelva (Spain); Martinet, G.; Rauly, E.; Said, A. [Institut de Physique Nucleaire d' Orsay (IPNO), Universite Paris-Sub 11, CNRS/IN2P3, 91406 Orsay Cedex (France); Sanchez Benitez, A.M. [Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Campus de El Carmen, 21071 Huelva (Spain); Semsoun, A.; Waast, B. [Institut de Physique Nucleaire d' Orsay (IPNO), Universite Paris-Sub 11, CNRS/IN2P3, 91406 Orsay Cedex (France)
2011-06-11
A single crystal diamond detector (SC-DD) has been used to obtain the time structure of bunches with lengths between 4 and 88 ns. This was achieved by setting an electronic chain based on a time-to-amplitude converter (TAC), which used the output of the diamond detector as the start of the time interval, and the accelerator RF as the stop. Moreover, the SC-DD not only provided the time information, but also the energy of the beam.
Measures of spike train synchrony for data with multiple time scales
Satuvuori, Eero; Mulansky, Mario; Bozanic, Nebojsa; Malvestio, Irene; Zeldenrust, Fleur; Lenk, Kerstin; Kreuz, Thomas
2017-01-01
Background Measures of spike train synchrony are widely used in both experimental and computational neuroscience. Time-scale independent and parameter-free measures, such as the ISI-distance, the SPIKE-distance and SPIKE-synchronization, are preferable to time scale parametric measures, since by
Wang, Ji-Bo; Wang, Ming-Zheng; Ji, Ping
2012-05-01
In this article, we consider a single machine scheduling problem with a time-dependent learning effect and deteriorating jobs. By the effects of time-dependent learning and deterioration, we mean that the job processing time is defined by a function of its starting time and total normal processing time of jobs in front of it in the sequence. The objective is to determine an optimal schedule so as to minimize the total completion time. This problem remains open for the case of -1 < a < 0, where a denotes the learning index; we show that an optimal schedule of the problem is V-shaped with respect to job normal processing times. Three heuristic algorithms utilising the V-shaped property are proposed, and computational experiments show that the last heuristic algorithm performs effectively and efficiently in obtaining near-optimal solutions.
WE-G-BRF-04: Robust Real-Time Volumetric Imaging Based On One Single Projection
International Nuclear Information System (INIS)
Xu, Y; Yan, H; Ouyang, L; Wang, J; Jiang, S; Jia, X; Zhou, L
2014-01-01
Purpose: Real-time volumetric imaging is highly desirable to provide instantaneous image guidance for lung radiation therapy. This study proposes a scheme to achieve this goal using one single projection by utilizing sparse learning and a principal component analysis (PCA) based lung motion model. Methods: A patient-specific PCA-based lung motion model is first constructed by analyzing deformable vector fields (DVFs) between a reference image and 4DCT images at each phase. At the training stage, we “learn” the relationship between the DVFs and the projection using sparse learning. Specifically, we first partition the projections into patches, and then apply sparse learning to automatically identify patches that best correlate with the principal components of the DVFs. Once the relationship is established, at the application stage, we first employ a patchbased intensity correction method to overcome the problem of different intensity scale between the calculated projection in the training stage and the measured projection in the application stage. The corrected projection image is then fed to the trained model to derive a DVF, which is applied to the reference image, yielding a volumetric image corresponding to the projection. We have validated our method through a NCAT phantom simulation case and one experiment case. Results: Sparse learning can automatically select those patches containing motion information, such as those around diaphragm. For the simulation case, over 98% of the lung region pass the generalized gamma test (10HU/1mm), indicating combined accuracy in both intensity and spatial domain. For the experimental case, the average tumor localization errors projected to the imager are 0.68 mm and 0.4 mm on the axial and tangential direction, respectively. Conclusion: The proposed method is capable of accurately generating a volumetric image using one single projection. It will potentially offer real-time volumetric image guidance to facilitate lung
WE-G-BRF-04: Robust Real-Time Volumetric Imaging Based On One Single Projection
Energy Technology Data Exchange (ETDEWEB)
Xu, Y [UT Southwestern Medical Center, Dallas, TX (United States); Southern Medical University, Guangzhou (China); Yan, H; Ouyang, L; Wang, J; Jiang, S; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States); Zhou, L [Southern Medical University, Guangzhou (China)
2014-06-15
Purpose: Real-time volumetric imaging is highly desirable to provide instantaneous image guidance for lung radiation therapy. This study proposes a scheme to achieve this goal using one single projection by utilizing sparse learning and a principal component analysis (PCA) based lung motion model. Methods: A patient-specific PCA-based lung motion model is first constructed by analyzing deformable vector fields (DVFs) between a reference image and 4DCT images at each phase. At the training stage, we “learn” the relationship between the DVFs and the projection using sparse learning. Specifically, we first partition the projections into patches, and then apply sparse learning to automatically identify patches that best correlate with the principal components of the DVFs. Once the relationship is established, at the application stage, we first employ a patchbased intensity correction method to overcome the problem of different intensity scale between the calculated projection in the training stage and the measured projection in the application stage. The corrected projection image is then fed to the trained model to derive a DVF, which is applied to the reference image, yielding a volumetric image corresponding to the projection. We have validated our method through a NCAT phantom simulation case and one experiment case. Results: Sparse learning can automatically select those patches containing motion information, such as those around diaphragm. For the simulation case, over 98% of the lung region pass the generalized gamma test (10HU/1mm), indicating combined accuracy in both intensity and spatial domain. For the experimental case, the average tumor localization errors projected to the imager are 0.68 mm and 0.4 mm on the axial and tangential direction, respectively. Conclusion: The proposed method is capable of accurately generating a volumetric image using one single projection. It will potentially offer real-time volumetric image guidance to facilitate lung
Energy Technology Data Exchange (ETDEWEB)
Buttafava, Mauro, E-mail: mauro.buttafava@polimi.it; Boso, Gianluca; Ruggeri, Alessandro; Tosi, Alberto [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Dalla Mora, Alberto [Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy)
2014-08-15
We present the design and characterization of a complete single-photon counting module capable of time-gating a silicon single-photon avalanche diode with ON and OFF transition times down to 110 ps, at repetition rates up to 80 MHz. Thanks to this sharp temporal filtering of incoming photons, it is possible to reject undesired strong light pulses preceding (or following) the signal of interest, allowing to increase the dynamic range of optical acquisitions up to 7 decades. A complete experimental characterization of the module highlights its very flat temporal response, with a time resolution of the order of 30 ps. The instrument is fully user-configurable via a PC interface and can be easily integrated in any optical setup, thanks to its small and compact form factor.
International Nuclear Information System (INIS)
Buttafava, Mauro; Boso, Gianluca; Ruggeri, Alessandro; Tosi, Alberto; Dalla Mora, Alberto
2014-01-01
We present the design and characterization of a complete single-photon counting module capable of time-gating a silicon single-photon avalanche diode with ON and OFF transition times down to 110 ps, at repetition rates up to 80 MHz. Thanks to this sharp temporal filtering of incoming photons, it is possible to reject undesired strong light pulses preceding (or following) the signal of interest, allowing to increase the dynamic range of optical acquisitions up to 7 decades. A complete experimental characterization of the module highlights its very flat temporal response, with a time resolution of the order of 30 ps. The instrument is fully user-configurable via a PC interface and can be easily integrated in any optical setup, thanks to its small and compact form factor
A 30 ps Timing Resolution for Single Photons with Multi-pixel Burle MCP-PMT
Energy Technology Data Exchange (ETDEWEB)
Va' vra, J.; Benitez, J.; Coleman, J.; Leith, D.W.G.S.; Mazaheri, G.; Ratcliff, B.; Schwiening, J.; /SLAC
2006-07-05
We have achieved {approx}30 psec single-photoelectron and {approx}12ps for multi-photoelectron timing resolution with a new 64 pixel Burle MCP-PMT with 10 micron microchannel holes. We have also demonstrated that this detector works in a magnetic field of 15kG, and achieved a single-photoelectron timing resolution of better than 60 psec. The study is relevant for a new focusing DIRC RICH detector for particle identification at future Colliders such as the super B-factory or ILC, and for future TOF techniques. This study shows that a highly pixilated MCP-PMT can deliver excellent timing resolution.
High-Accuracy Elevation Data at Large Scales from Airborne Single-Pass SAR Interferometry
Directory of Open Access Journals (Sweden)
Guy Jean-Pierre Schumann
2016-01-01
Full Text Available Digital elevation models (DEMs are essential data sets for disaster risk management and humanitarian relief services as well as many environmental process models. At present, on the hand, globally available DEMs only meet the basic requirements and for many services and modeling studies are not of high enough spatial resolution and lack accuracy in the vertical. On the other hand, LiDAR-DEMs are of very high spatial resolution and great vertical accuracy but acquisition operations can be very costly for spatial scales larger than a couple of hundred square km and also have severe limitations in wetland areas and under cloudy and rainy conditions. The ideal situation would thus be to have a DEM technology that allows larger spatial coverage than LiDAR but without compromising resolution and vertical accuracy and still performing under some adverse weather conditions and at a reasonable cost. In this paper, we present a novel single pass In-SAR technology for airborne vehicles that is cost-effective and can generate DEMs with a vertical error of around 0.3 m for an average spatial resolution of 3 m. To demonstrate this capability, we compare a sample single-pass In-SAR Ka-band DEM of the California Central Valley from the NASA/JPL airborne GLISTIN-A to a high-resolution LiDAR DEM. We also perform a simple sensitivity analysis to floodplain inundation. Based on the findings of our analysis, we argue that this type of technology can and should be used to replace large regions of globally available lower resolution DEMs, particularly in coastal, delta and floodplain areas where a high number of assets, habitats and lives are at risk from natural disasters. We conclude with a discussion on requirements, advantages and caveats in terms of instrument and data processing.
Note: Time-gated 3D single quantum dot tracking with simultaneous spinning disk imaging
International Nuclear Information System (INIS)
DeVore, M. S.; Stich, D. G.; Keller, A. M.; Phipps, M. E.; Hollingsworth, J. A.; Goodwin, P. M.; Werner, J. H.; Cleyrat, C.; Lidke, D. S.; Wilson, B. S.
2015-01-01
We describe recent upgrades to a 3D tracking microscope to include simultaneous Nipkow spinning disk imaging and time-gated single-particle tracking (SPT). Simultaneous 3D molecular tracking and spinning disk imaging enable the visualization of cellular structures and proteins around a given fluorescently labeled target molecule. The addition of photon time-gating to the SPT hardware improves signal to noise by discriminating against Raman scattering and short-lived fluorescence. In contrast to camera-based SPT, single-photon arrival times are recorded, enabling time-resolved spectroscopy (e.g., measurement of fluorescence lifetimes and photon correlations) to be performed during single molecule/particle tracking experiments
Analysis of single-photon time resolution of FBK silicon photomultipliers
International Nuclear Information System (INIS)
Acerbi, Fabio; Ferri, Alessandro; Gola, Alberto; Zorzi, Nicola; Piemonte, Claudio
2015-01-01
We characterized and analyzed an important feature of silicon photomultipliers: the single-photon time resolution (SPTR). We characterized the SPTR of new RGB (Red–Green–Blue) type Silicon Photomultipliers and SPADs produced at FBK (Trento, Italy), studying its main limiting factors. We compared time resolution of 1×1 mm 2 and 3×3 mm 2 SiPMs and a single SiPM cell (i.e. a SPAD with integrated passive-quenching), employing a mode-locked pulsed laser with 2-ps wide pulses. We estimated the contribution of front-end electronic-noise, of cell-to-cell uniformity, and intrinsic cell time-resolution. At a single-cell level, we compared the results obtained with different layouts. With a circular cell with a top metallization covering part of the edge and enhancing the signal extraction, we reached ~20 ps FWHM of time resolution
Analysis of single-photon time resolution of FBK silicon photomultipliers
Energy Technology Data Exchange (ETDEWEB)
Acerbi, Fabio, E-mail: acerbi@fbk.eu; Ferri, Alessandro; Gola, Alberto; Zorzi, Nicola; Piemonte, Claudio
2015-07-01
We characterized and analyzed an important feature of silicon photomultipliers: the single-photon time resolution (SPTR). We characterized the SPTR of new RGB (Red–Green–Blue) type Silicon Photomultipliers and SPADs produced at FBK (Trento, Italy), studying its main limiting factors. We compared time resolution of 1×1 mm{sup 2} and 3×3 mm{sup 2} SiPMs and a single SiPM cell (i.e. a SPAD with integrated passive-quenching), employing a mode-locked pulsed laser with 2-ps wide pulses. We estimated the contribution of front-end electronic-noise, of cell-to-cell uniformity, and intrinsic cell time-resolution. At a single-cell level, we compared the results obtained with different layouts. With a circular cell with a top metallization covering part of the edge and enhancing the signal extraction, we reached ~20 ps FWHM of time resolution.
Note: Time-gated 3D single quantum dot tracking with simultaneous spinning disk imaging
Energy Technology Data Exchange (ETDEWEB)
DeVore, M. S.; Stich, D. G.; Keller, A. M.; Phipps, M. E.; Hollingsworth, J. A.; Goodwin, P. M.; Werner, J. H., E-mail: jwerner@lanl.gov [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Mail Stop G755, Los Alamos, New Mexico 87545 (United States); Cleyrat, C.; Lidke, D. S.; Wilson, B. S. [Department of Pathology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico 87131 (United States)
2015-12-15
We describe recent upgrades to a 3D tracking microscope to include simultaneous Nipkow spinning disk imaging and time-gated single-particle tracking (SPT). Simultaneous 3D molecular tracking and spinning disk imaging enable the visualization of cellular structures and proteins around a given fluorescently labeled target molecule. The addition of photon time-gating to the SPT hardware improves signal to noise by discriminating against Raman scattering and short-lived fluorescence. In contrast to camera-based SPT, single-photon arrival times are recorded, enabling time-resolved spectroscopy (e.g., measurement of fluorescence lifetimes and photon correlations) to be performed during single molecule/particle tracking experiments.
Sikora, Grzegorz; Teuerle, Marek; Wyłomańska, Agnieszka; Grebenkov, Denis
2017-08-01
The most common way of estimating the anomalous scaling exponent from single-particle trajectories consists of a linear fit of the dependence of the time-averaged mean-square displacement on the lag time at the log-log scale. We investigate the statistical properties of this estimator in the case of fractional Brownian motion (FBM). We determine the mean value, the variance, and the distribution of the estimator. Our theoretical results are confirmed by Monte Carlo simulations. In the limit of long trajectories, the estimator is shown to be asymptotically unbiased, consistent, and with vanishing variance. These properties ensure an accurate estimation of the scaling exponent even from a single (long enough) trajectory. As a consequence, we prove that the usual way to estimate the diffusion exponent of FBM is correct from the statistical point of view. Moreover, the knowledge of the estimator distribution is the first step toward new statistical tests of FBM and toward a more reliable interpretation of the experimental histograms of scaling exponents in microbiology.
International Nuclear Information System (INIS)
Swift, Damian C.; Tierney, Thomas E.; Luo Shengnian; Paisley, Dennis L.; Kyrala, George A.; Hauer, Allan; Greenfield, Scott R.; Koskelo, Aaron C.; McClellan, Kenneth J.; Lorenzana, Hector E.; Kalantar, Daniel; Remington, Bruce A.; Peralta, Pedro; Loomis, Eric
2005-01-01
During the past few years, substantial progress has been made in developing experimental techniques capable of investigating the response of materials to dynamic loading on nanosecond time scales and shorter, with multiple diagnostics probing different aspects of the behavior. These relatively short time scales are scientifically interesting because plastic flow and phase changes in common materials with simple crystal structures--such as iron--may be suppressed, allowing unusual states to be induced and the dynamics of plasticity and polymorphism to be explored. Loading by laser-induced ablation can be particularly convenient: this technique has been used to impart shocks and isentropic compression waves from ∼1 to 200 GPa in a range of elements and alloys, with diagnostics including line imaging surface velocimetry, surface displacement (framed area imaging), x-ray diffraction (single crystal and polycrystal), ellipsometry, and Raman spectroscopy. A major motivation has been the study of the properties of beryllium under conditions relevant to the fuel capsule in inertial confinement fusion: magnetically driven shock and isentropic compression shots at Z were used to investigate the equation of state and shock melting characteristics, complemented by laser ablation experiments to investigate plasticity and heterogeneous response from the polycrystalline microstructure. These results will help to constrain acceptable tolerances on manufacturing, and possible loading paths, for inertial fusion ignition experiments at the National Ignition Facility. Laser-based techniques are being developed further for future material dynamics experiments, where it should be possible to obtain high quality data on strength and phase changes up to at least 1 TPa
234Th/238U disequilibrium in near-shore sediment: particle reworking and diagenetic time scales
International Nuclear Information System (INIS)
Aller, R.C.; Cochran, J.K.
1976-01-01
The distribution of 234 Th (tsub(1.2)=24.1 days) in excess of its parent 238 U in the upper layers of near-shore sediment makes possible the evaluation of short-term sediment reworking and diagenetic rates. 234 Th has a maximum residence time in Long Island Sound water of 1.4 days. Seasonal measurement of 234 Th/ 238 U disequilibrium in sediment at a single station in central Long Island Sound demonstrates rapid particle reworking and high 234 Thsub(XS)(>1 dpm/g) in the upper 4 cm of sediment with slower, irregular reworking and low 234 Thsub(XS) to at least 12 cm. The rate of rapid particle reworking varies seasonally and is highest in the fall. The rapidly mixed zone is characterized by steep gradients in sediment chemistry implying fast reactions spanned by 234 Th decay time scales. 238 U is depleted in the upper mixed zone and shows addition in reducing sediment at depth. (Auth.)
Directory of Open Access Journals (Sweden)
Chuan-Li Zhao
2014-01-01
Full Text Available This paper considers single machine scheduling and due date assignment with setup time. The setup time is proportional to the length of the already processed jobs; that is, the setup time is past-sequence-dependent (p-s-d. It is assumed that a job's processing time depends on its position in a sequence. The objective functions include total earliness, the weighted number of tardy jobs, and the cost of due date assignment. We analyze these problems with two different due date assignment methods. We first consider the model with job-dependent position effects. For each case, by converting the problem to a series of assignment problems, we proved that the problems can be solved in On4 time. For the model with job-independent position effects, we proved that the problems can be solved in On3 time by providing a dynamic programming algorithm.
Estimating envelope thermal characteristics from single point in time thermal images
Alshatshati, Salahaldin Faraj
Energy efficiency programs implemented nationally in the U.S. by utilities have rendered savings which have cost on average 0.03/kWh. This cost is still well below generation costs. However, as the lowest cost energy efficiency measures are adopted, this the cost effectiveness of further investment declines. Thus there is a need to more effectively find the most opportunities for savings regionally and nationally, so that the greatest cost effectiveness in implementing energy efficiency can be achieved. Integral to this process. are at scale energy audits. However, on-site building energy audits process are expensive, in the range of US1.29/m2-$5.37/m2 and there are an insufficient number of professionals to perform the audits. Energy audits that can be conducted at-scale and at low cost are needed. Research is presented that addresses at community-wide scales characterization of building envelope thermal characteristics via drive-by and fly-over GPS linked thermal imaging. A central question drives this research: Can single point-in-time thermal images be used to infer U-values and thermal capacitances of walls and roofs? Previous efforts to use thermal images to estimate U-values have been limited to rare steady exterior weather conditions. The approaches posed here are based upon the development two models first is a dynamic model of a building envelope component with unknown U-value and thermal capacitance. The weather conditions prior to the thermal image are used as inputs to the model. The model is solved to determine the exterior surface temperature, ultimately predicted the temperature at the thermal measurement time. The model U-value and thermal capacitance are tuned in order to force the error between the predicted surface temperature and the measured surface temperature from thermal imaging to be near zero. This model is developed simply to show that such a model cannot be relied upon to accurately estimate the U-value. The second is a data
CMOS SPAD-based image sensor for single photon counting and time of flight imaging
Dutton, Neale Arthur William
2016-01-01
The facility to capture the arrival of a single photon, is the fundamental limit to the detection of quantised electromagnetic radiation. An image sensor capable of capturing a picture with this ultimate optical and temporal precision is the pinnacle of photo-sensing. The creation of high spatial resolution, single photon sensitive, and time-resolved image sensors in complementary metal oxide semiconductor (CMOS) technology offers numerous benefits in a wide field of applications....
Piovesan, Davide; Pierobon, Alberto; DiZio, Paul; Lackner, James R.
2013-01-01
We tested an innovative method to estimate joint stiffness and damping during multijoint unfettered arm movements. The technique employs impulsive perturbations and a time-frequency analysis to estimate the arm's mechanical properties along a reaching trajectory. Each single impulsive perturbation provides a continuous estimation on a single-reach basis, making our method ideal to investigate motor adaptation in the presence of force fields and to study the control of movement in impaired ind...
A study of pile-up in integrated time-correlated single photon counting systems.
Arlt, Jochen; Tyndall, David; Rae, Bruce R; Li, David D-U; Richardson, Justin A; Henderson, Robert K
2013-10-01
Recent demonstration of highly integrated, solid-state, time-correlated single photon counting (TCSPC) systems in CMOS technology is set to provide significant increases in performance over existing bulky, expensive hardware. Arrays of single photon single photon avalanche diode (SPAD) detectors, timing channels, and signal processing can be integrated on a single silicon chip with a degree of parallelism and computational speed that is unattainable by discrete photomultiplier tube and photon counting card solutions. New multi-channel, multi-detector TCSPC sensor architectures with greatly enhanced throughput due to minimal detector transit (dead) time or timing channel dead time are now feasible. In this paper, we study the potential for future integrated, solid-state TCSPC sensors to exceed the photon pile-up limit through analytic formula and simulation. The results are validated using a 10% fill factor SPAD array and an 8-channel, 52 ps resolution time-to-digital conversion architecture with embedded lifetime estimation. It is demonstrated that pile-up insensitive acquisition is attainable at greater than 10 times the pulse repetition rate providing over 60 dB of extended dynamic range to the TCSPC technique. Our results predict future CMOS TCSPC sensors capable of live-cell transient observations in confocal scanning microscopy, improved resolution of near-infrared optical tomography systems, and fluorescence lifetime activated cell sorting.
Hashemi Kamangar, Somayeh Sadat; Moradimanesh, Zahra; Mokhtari, Setareh; Bakouie, Fatemeh
2018-06-11
A developmental process can be described as changes through time within a complex dynamic system. The self-organized changes and emergent behaviour during development can be described and modeled as a dynamical system. We propose a dynamical system approach to answer the main question in human cognitive development i.e. the changes during development happens continuously or in discontinuous stages. Within this approach there is a concept; the size of time scales, which can be used to address the aforementioned question. We introduce a framework, by considering the concept of time-scale, in which "fast" and "slow" is defined by the size of time-scales. According to our suggested model, the overall pattern of development can be seen as one continuous function, with different time-scales in different time intervals.
Does the Assessment of Recovery Capital scale reflect a single or multiple domains?
Arndt, Stephan; Sahker, Ethan; Hedden, Suzy
2017-01-01
The goal of this study was to determine whether the 50-item Assessment of Recovery Capital scale represents a single general measure or whether multiple domains might be psychometrically useful for research or clinical applications. Data are from a cross-sectional de-identified existing program evaluation information data set with 1,138 clients entering substance use disorder treatment. Principal components and iterated factor analysis were used on the domain scores. Multiple group factor analysis provided a quasi-confirmatory factor analysis. The solution accounted for 75.24% of the total variance, suggesting that 10 factors provide a reasonably good fit. However, Tucker's congruence coefficients between the factor structure and defining weights (0.41-0.52) suggested a poor fit to the hypothesized 10-domain structure. Principal components of the 10-domain scores yielded one factor whose eigenvalue was greater than one (5.93), accounting for 75.8% of the common variance. A few domains had perceptible but small unique variance components suggesting that a few of the domains may warrant enrichment. Our findings suggest that there is one general factor, with a caveat. Using the 10 measures inflates the chance for Type I errors. Using one general measure avoids this issue, is simple to interpret, and could reduce the number of items. However, those seeking to maximally predict later recovery success may need to use the full instrument and all 10 domains.
Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.
2014-12-01
Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices.
A robust single-beam optical trap for a gram-scale mechanical oscillator.
Altin, P A; Nguyen, T T-H; Slagmolen, B J J; Ward, R L; Shaddock, D A; McClelland, D E
2017-11-06
Precise optical control of microscopic particles has been mastered over the past three decades, with atoms, molecules and nano-particles now routinely trapped and cooled with extraordinary precision, enabling rapid progress in the study of quantum phenomena. Achieving the same level of control over macroscopic objects is expected to bring further advances in precision measurement, quantum information processing and fundamental tests of quantum mechanics. However, cavity optomechanical systems dominated by radiation pressure - so-called 'optical springs' - are inherently unstable due to the delayed dynamical response of the cavity. Here we demonstrate a fully stable, single-beam optical trap for a gram-scale mechanical oscillator. The interaction of radiation pressure with thermo-optic feedback generates damping that exceeds the mechanical loss by four orders of magnitude. The stability of the resultant spring is robust to changes in laser power and detuning, and allows purely passive self-locking of the cavity. Our results open up a new way of trapping and cooling macroscopic objects for optomechanical experiments.
Large-scale synthesis of single-crystalline MgO with bone-like nanostructures
International Nuclear Information System (INIS)
Niu Haixia; Yang Qing; Tang Kaibin; Xie Yi
2006-01-01
Uniform bone-like MgO nanocrystals have been prepared via a solvothermal process using commercial Mg powders as the starting material in the absence of any catalyst or surfactant followed by a subsequent calcination. Field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) measurements indicate that the product consists of a large quantity of bone-like nanocrystals with lengths of 120-200 nm. The widths of these nanocrystals at both ends are in the range of 20-50 nm, which are 3-20 nm wider than those of the middle parts. Explorations of X-ray diffraction (XRD) and selected area electronic diffraction (SAED) exhibit that the product is high-quality cubic single-crystalline nanocrystals. The photoluminescence (PL) measurement suggests that the product has an intensive emission centered at 410 nm, showing that the product has potential application in optical devices. The advantages of our method lie in high yield, the easy availability of the starting materials and permitting large-scale production at low cost. The growth mechanism was proposed to be related with solvent's oxidation in the precursor formation process and following nucleation and mass-transfer in the decomposition of the precursor
Large-scale separation of single-walled carbon nanotubes by electronic type using click chemistry
Um, Jo-Eun; Song, Sun Gu; Yoo, Pil J.; Song, Changsik; Kim, Woo-Jae
2018-01-01
Single-walled carbon nanotubes (SWCNTs) can be either metallic or semiconducting, making their separation critical for applications in nanoelectronics, biomedical materials, and solar cells. Herein, we investigate a novel solution-phase separation method based on click chemistry (azide-alkyne Huisgen cycloaddition) and determine its efficiency and scalability. In this method, metallic SWCNTs in metallic/semiconducting SWCNT mixtures are selectively functionalized with alkyne groups by being reacted with 4-propargyloxybenezenediazonium tetrafluoroborate. Subsequently, silica nanoparticles are functionalized with azide groups and reacted with alkyne-bearing metallic SWCNTs in the SWCNT mixture in the presence of a Cu catalyst. As a result, metallic SWCNTs are anchored on silica powder, whereas non-functionalized semiconducting SWCNTs remain in solution. Low-speed centrifugation effectively removes the silica powder with attached metallic SWCNTs, furnishing a solution of highly pure semiconducting SWCNTs, as confirmed by Raman and UV-vis/near-infrared absorption measurements. This novel separation scheme exhibits the advantage of simultaneously separating both metallic and semiconducting SWCNTs from their mixtures, being cost-effective and therefore applicable at an industrial scale.
destiny: diffusion maps for large-scale single-cell data in R.
Angerer, Philipp; Haghverdi, Laleh; Büttner, Maren; Theis, Fabian J; Marr, Carsten; Buettner, Florian
2016-04-15
: Diffusion maps are a spectral method for non-linear dimension reduction and have recently been adapted for the visualization of single-cell expression data. Here we present destiny, an efficient R implementation of the diffusion map algorithm. Our package includes a single-cell specific noise model allowing for missing and censored values. In contrast to previous implementations, we further present an efficient nearest-neighbour approximation that allows for the processing of hundreds of thousands of cells and a functionality for projecting new data on existing diffusion maps. We exemplarily apply destiny to a recent time-resolved mass cytometry dataset of cellular reprogramming. destiny is an open-source R/Bioconductor package "bioconductor.org/packages/destiny" also available at www.helmholtz-muenchen.de/icb/destiny A detailed vignette describing functions and workflows is provided with the package. carsten.marr@helmholtz-muenchen.de or f.buettner@helmholtz-muenchen.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Directory of Open Access Journals (Sweden)
Daniela eGandolfi
2013-04-01
Full Text Available The neuronal circuits of the brain are thought to use resonance and oscillations to improve communication over specific frequency bands (Llinas, 1988; Buzsaki, 2006. However, the properties and mechanism of these phenomena in brain circuits remain largely unknown. Here we show that, at the cerebellum input stage, the granular layer generates its maximum response at 5-7 Hz both in vivo following tactile sensory stimulation of the whisker pad and in acute slices following mossy fiber-bundle stimulation. The spatial analysis of granular layer activity performed using voltage-sensitive dye (VSD imaging revealed 5-7 Hz resonance covering large granular layer areas. In single granule cells, resonance appeared as a reorganization of output spike bursts on the millisecond time-scale, such that the first spike occurred earlier and with higher temporal precision and the probability of spike generation increased. Resonance was independent from circuit inhibition, as it persisted with little variation in the presence of the GABAA receptor blocker, gabazine. However, circuit inhibition reduced the resonance area more markedly at 7 Hz. Simulations with detailed computational models suggested that resonance depended on intrinsic granule cells ionic mechanisms: specifically, Kslow (M-like and KA currents acted as resonators and the persistent Na current and NMDA current acted as amplifiers. This form of resonance may play an important role for enhancing coherent spike emission from the granular layer when theta-frequency bursts are transmitted by the cerebral cortex and peripheral sensory structures during sensory-motor processing, cognition and learning.
Dynamically Switching among Bundled and Single Tickets with Time-Dependent Demand Rates
Directory of Open Access Journals (Sweden)
Serhan Duran
2012-01-01
Full Text Available The most important market segmentation in sports and entertainment industry is the competition between customers that buy bundled and single tickets. A common selling practice is starting the selling season with bundled ticket sales and switching to selling single tickets later on. The aim of this practice is to increase the number of customers that buy bundles, which in return increases the load factor of the events with low demand. In this paper, we investigate the effect of time dependent demand on dynamic switching times from bundled to single ticket sales and the potential revenue gain over the case where the demand rate of events is assumed to be constant with time.
Energy Technology Data Exchange (ETDEWEB)
Peronio, P.; Acconcia, G.; Rech, I.; Ghioni, M. [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)
2015-11-15
Time-Correlated Single Photon Counting (TCSPC) has been long recognized as the most sensitive method for fluorescence lifetime measurements, but often requiring “long” data acquisition times. This drawback is related to the limited counting capability of the TCSPC technique, due to pile-up and counting loss effects. In recent years, multi-module TCSPC systems have been introduced to overcome this issue. Splitting the light into several detectors connected to independent TCSPC modules proportionally increases the counting capability. Of course, multi-module operation also increases the system cost and can cause space and power supply problems. In this paper, we propose an alternative approach based on a new detector and processing electronics designed to reduce the overall system dead time, thus enabling efficient photon collection at high excitation rate. We present a fast active quenching circuit for single-photon avalanche diodes which features a minimum dead time of 12.4 ns. We also introduce a new Time-to-Amplitude Converter (TAC) able to attain extra-short dead time thanks to the combination of a scalable array of monolithically integrated TACs and a sequential router. The fast TAC (F-TAC) makes it possible to operate the system towards the upper limit of detector count rate capability (∼80 Mcps) with reduced pile-up losses, addressing one of the historic criticisms of TCSPC. Preliminary measurements on the F-TAC are presented and discussed.
Probing dynamics and pinning of single vortices in superconductors at nanometer scales
Embon, L.; Anahory, Y.; Suhov, A.; Halbertal, D.; Cuppens, J.; Yakovenko, A.; Uri, A.; Myasoedov, Y.; Rappaport, M. L.; Huber, M. E.; Gurevich, A.; Zeldov, E.
2015-01-01
The dynamics of quantized magnetic vortices and their pinning by materials defects determine electromagnetic properties of superconductors, particularly their ability to carry non-dissipative currents. Despite recent advances in the understanding of the complex physics of vortex matter, the behavior of vortices driven by current through a multi-scale potential of the actual materials defects is still not well understood, mostly due to the scarcity of appropriate experimental tools capable of tracing vortex trajectories on nanometer scales. Using a novel scanning superconducting quantum interference microscope we report here an investigation of controlled dynamics of vortices in lead films with sub-Angstrom spatial resolution and unprecedented sensitivity. We measured, for the first time, the fundamental dependence of the elementary pinning force of multiple defects on the vortex displacement, revealing a far more complex behavior than has previously been recognized, including striking spring softening and broken-spring depinning, as well as spontaneous hysteretic switching between cellular vortex trajectories. Our results indicate the importance of thermal fluctuations even at 4.2 K and of the vital role of ripples in the pinning potential, giving new insights into the mechanisms of magnetic relaxation and electromagnetic response of superconductors.
International Nuclear Information System (INIS)
Botelho, David A.; Faccini, Jose L.H.
2002-01-01
The main topic in this paper is a new device being considered to improve nuclear reactor safety employing the natural circulation. A scaled experiment used to demonstrate the performance of the device is also described. We also applied a similarity analysis method for single and two-phase natural convection loop flow to the IEN CCN experiment and to an APEX like experiment to verify the degree of similarity relative to a full-scale prototype like the AP600. Most of the CCN similarity numbers that represent important single and two-phase similarity conditions are comparable to the APEX like loop non-dimensional numbers calculated employing the same methodology. Despite the much smaller geometric, pressure, and power scales, we conclude that the IEN CCN has single and two-phase natural circulation similarity numbers that represent fairly well the full-scale prototype. even lacking most complementary primary and safety systems, this IEN circuit provided a much valid experience to develop human, experimental, and analytical resources, besides its utilization as a training tool. (author)
Study on the ratio of signal to noise for single photon resolution time spectrometer
International Nuclear Information System (INIS)
Wang Zhaomin; Huang Shengli; Xu Zizong; Wu Chong
2001-01-01
The ratio of signal to noise for single photon resolution time spectrometer and their influence factors were studied. A method to depress the background, to shorten the measurement time and to increase the ratio of signal to noise was discussed. Results show that ratio of signal to noise is proportional to solid angle of detector to source and detection efficiency, and inverse proportional to electronics noise. Choose the activity of the source was important for decreasing of random coincidence counting. To use a coincidence gate and a discriminator of single photon were an effective way of increasing measurement accuracy and detection efficiency
Time-resolved energy transfer from single chloride-terminated nanocrystals to graphene
International Nuclear Information System (INIS)
Ajayi, O. A.; Wong, C. W.; Anderson, N. C.; Wolcott, A.; Owen, J. S.; Cotlet, M.; Petrone, N.; Hone, J.; Gu, T.; Gesuele, F.
2014-01-01
We examine the time-resolved resonance energy transfer of excitons from single n-butyl amine-bound, chloride-terminated nanocrystals to two-dimensional graphene through time-correlated single photon counting. The radiative biexponential lifetime kinetics and blinking statistics of the individual surface-modified nanocrystal elucidate the non-radiative decay channels. Blinking modification as well as a 4× reduction in spontaneous emission were observed with the short chloride and n-butylamine ligands, probing the energy transfer pathways for the development of graphene-nanocrystal nanophotonic devices
Time delay between singly and doubly ionizing wavepackets in laser-driven helium
International Nuclear Information System (INIS)
Parker, J S; Doherty, B J S; Meharg, K J; Taylor, K T
2003-01-01
We present calculations of the time delay between single and double ionization of helium, obtained from full-dimensionality numerical integrations of the helium-laser Schroedinger equation. The notion of a quantum mechanical time delay is defined in terms of the interval between correlated bursts of single and double ionization. Calculations are performed at 390 and 780 nm in laser intensities that range from 2 x 10 14 to 14 x 10 14 Wcm -2 . We find results consistent with the rescattering model of double ionization but supporting its classical interpretation only at 780 nm. (letter to the editor)
Multiuser underwater acoustic communication using single-element virtual time reversal mirror
Institute of Scientific and Technical Information of China (English)
YIN JingWei; WANG YiLin; WANG Lei; HUI JunYing
2009-01-01
Pattern time delay shift coding (PDS) scheme is introduced and combined with spread spectrum tech-nique called SS-PDS for short which is power-saving and competent for long-range underwater acous-tic networks.Single-element virtual time reversal mirror (VTRM) is presented in this paper and validated by the lake trial results.Employing single-element VTRM in multiuser communication system based on SS-PDS can separate different users' information simultaneously at master node as indicated in the simulation results.
Time-resolved energy transfer from single chloride-terminated nanocrystals to graphene
Energy Technology Data Exchange (ETDEWEB)
Ajayi, O. A., E-mail: oaa2114@columbia.edu, E-mail: cww2104@columbia.edu; Wong, C. W., E-mail: oaa2114@columbia.edu, E-mail: cww2104@columbia.edu [Optical Nanostructures Laboratory, Center for Integrated Science and Engineering, Solid-State Science and Engineering, Columbia University, New York, New York 10027 (United States); Department of Mechanical Engineering, Columbia University, New York, New York 10027 (United States); Anderson, N. C.; Wolcott, A.; Owen, J. S. [Department of Chemistry, Columbia University, New York, New York 10027 (United States); Cotlet, M. [Brookhaven National Laboratory, Upton, New York, New York 11973 (United States); Petrone, N.; Hone, J. [Department of Mechanical Engineering, Columbia University, New York, New York 10027 (United States); Gu, T.; Gesuele, F. [Optical Nanostructures Laboratory, Center for Integrated Science and Engineering, Solid-State Science and Engineering, Columbia University, New York, New York 10027 (United States)
2014-04-28
We examine the time-resolved resonance energy transfer of excitons from single n-butyl amine-bound, chloride-terminated nanocrystals to two-dimensional graphene through time-correlated single photon counting. The radiative biexponential lifetime kinetics and blinking statistics of the individual surface-modified nanocrystal elucidate the non-radiative decay channels. Blinking modification as well as a 4× reduction in spontaneous emission were observed with the short chloride and n-butylamine ligands, probing the energy transfer pathways for the development of graphene-nanocrystal nanophotonic devices.
Super-transient scaling in time-delay autonomous Boolean network motifs
Energy Technology Data Exchange (ETDEWEB)
D' Huys, Otti, E-mail: otti.dhuys@phy.duke.edu; Haynes, Nicholas D. [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Lohmann, Johannes [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin (Germany); Gauthier, Daniel J. [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)
2016-09-15
Autonomous Boolean networks are commonly used to model the dynamics of gene regulatory networks and allow for the prediction of stable dynamical attractors. However, most models do not account for time delays along the network links and noise, which are crucial features of real biological systems. Concentrating on two paradigmatic motifs, the toggle switch and the repressilator, we develop an experimental testbed that explicitly includes both inter-node time delays and noise using digital logic elements on field-programmable gate arrays. We observe transients that last millions to billions of characteristic time scales and scale exponentially with the amount of time delays between nodes, a phenomenon known as super-transient scaling. We develop a hybrid model that includes time delays along network links and allows for stochastic variation in the delays. Using this model, we explain the observed super-transient scaling of both motifs and recreate the experimentally measured transient distributions.
Li, Jinna; Kiumarsi, Bahare; Chai, Tianyou; Lewis, Frank L; Fan, Jialu
2017-12-01
Industrial flow lines are composed of unit processes operating on a fast time scale and performance measurements known as operational indices measured at a slower time scale. This paper presents a model-free optimal solution to a class of two time-scale industrial processes using off-policy reinforcement learning (RL). First, the lower-layer unit process control loop with a fast sampling period and the upper-layer operational index dynamics at a slow time scale are modeled. Second, a general optimal operational control problem is formulated to optimally prescribe the set-points for the unit industrial process. Then, a zero-sum game off-policy RL algorithm is developed to find the optimal set-points by using data measured in real-time. Finally, a simulation experiment is employed for an industrial flotation process to show the effectiveness of the proposed method.
Csatari Divall, Marta; Mutter, Patrick; Divall, Edwin J; Hauri, Christoph P
2015-11-16
Intense ultrashort pulse lasers are used for fs resolution pump-probe experiments more and more at large scale facilities, such as free electron lasers (FEL). Measurement of the arrival time of the laser pulses and stabilization to the machine or other sub-systems on the target, is crucial for high time-resolution measurements. In this work we report on a single shot, spectrally resolved, non-collinear cross-correlator with sub-fs resolution. With a feedback applied we keep the output of the TW class Ti:sapphire amplifier chain in time with the seed oscillator to ~3 fs RMS level for several hours. This is well below the typical pulse duration used at FELs and supports fs resolution pump-probe experiments. Short term jitter and long term timing drift measurements are presented. Applicability to other wavelengths and integration into the timing infrastructure of the FEL are also covered to show the full potential of the device.
Hardware solution for continuous time-resolved burst detection of single molecules in flow
Wahl, Michael; Erdmann, Rainer; Lauritsen, Kristian; Rahn, Hans-Juergen
1998-04-01
Time Correlated Single Photon Counting (TCSPC) is a valuable tool for Single Molecule Detection (SMD). However, existing TCSPC systems did not support continuous data collection and processing as is desirable for applications such as SMD for e.g. DNA-sequencing in a liquid flow. First attempts at using existing instrumentation in this kind of operation mode required additional routing hardware to switch between several memory banks and were not truly continuous. We have designed a hard- and software system to perform continuous real-time TCSPC based upon a modern solid state Time to Digital Converter (TDC). Short dead times of the fully digital TDC design combined with fast Field Programmable Gay Array logic permit a continuous data throughput as high as 3 Mcounts/sec. The histogramming time may be set as short as 100 microsecond(s) . Every histogram or every single fluorescence photon can be real-time tagged at 200 ns resolution in addition to recording its arrival time relative to the excitation pulse. Continuous switching between memory banks permits concurrent histogramming and data read-out. The instrument provides a time resolution of 60 ps and up to 4096 histogram channels. The overall instrument response function in combination with a low cost picosecond diode laser and an inexpensive photomultiplier tube was found to be 180 ps and well sufficient to measure sub-nanosecond fluorescence lifetimes.
Zabeti, S.; Fikri, M.; Schulz, C.
2017-11-01
Shock tubes allow for the study of ultra-fast gas-phase reactions on the microsecond time scale. Because the repetition rate of the experiments is low, it is crucial to gain as much information as possible from each individual measurement. While reaction-time-resolved species concentration and temperature measurements with fast absorption methods are established, conventional laser-induced fluorescence (LIF) measurements with pulsed lasers provide data only at a single reaction time. Therefore, fluorescence methods have rarely been used in shock-tube diagnostics. In this paper, a novel experimental concept is presented that allows reaction-time-resolved LIF measurements with one single laser pulse using a test section that is equipped with several optical ports. After the passage of the shock wave, the reactive mixture is excited along the center of the tube with a 266-nm laser beam directed through a window in the end wall of the shock tube. The emitted LIF signal is collected through elongated sidewall windows and focused onto the entrance slit of an imaging spectrometer coupled to an intensified CCD camera. The one-dimensional spatial resolution of the measurement translates into a reaction-time-resolved measurement while the species information can be gained from the spectral axis of the detected two-dimensional image. Anisole pyrolysis was selected as the benchmark reaction to demonstrate the new apparatus.
REAL-TIME VIDEO SCALING BASED ON CONVOLUTION NEURAL NETWORK ARCHITECTURE
S Safinaz; A V Ravi Kumar
2017-01-01
In recent years, video super resolution techniques becomes mandatory requirements to get high resolution videos. Many super resolution techniques researched but still video super resolution or scaling is a vital challenge. In this paper, we have presented a real-time video scaling based on convolution neural network architecture to eliminate the blurriness in the images and video frames and to provide better reconstruction quality while scaling of large datasets from lower resolution frames t...
International Nuclear Information System (INIS)
Metzger, M.
2006-01-01
Reynolds number effects on relevant length and time scales in the near-wall region of a canonical turbulent boundary layer are investigated. Well resolved measurements in the atmospheric surface layer are compared with existing laboratory data to give a composite Reynolds number range spanning over three orders of magnitude. In the field experiments, a vertical rake of twenty single element hot-wires was used to measure the axial velocity, u, characteristics in the lower log layer region of the atmospheric surface layer that flows over Utah's western desert. Only data acquired under conditions of near-neutral thermal stability are analyzed. The shape of the power spectra of u as a function of distance from the wall, y, and Reynolds number is investigated, with emphasis on the appropriate scaling parameters valid across different wavenumber, k, bands. In particular, distance from the wall is found to scale the region of the u spectra around ky = 1. The presence of a k -1 slope in the spectra is also found to correlate with the Reynolds number dependence in the peak of the root mean square u profile. In addition, Reynolds number trends in the profiles of the Taylor microscales, which represent intermediate length and time scales in the boundary layer, are shown to deviate from classical scaling
Digital atom interferometer with single particle control on a discretized space-time geometry.
Steffen, Andreas; Alberti, Andrea; Alt, Wolfgang; Belmechri, Noomen; Hild, Sebastian; Karski, Michał; Widera, Artur; Meschede, Dieter
2012-06-19
Engineering quantum particle systems, such as quantum simulators and quantum cellular automata, relies on full coherent control of quantum paths at the single particle level. Here we present an atom interferometer operating with single trapped atoms, where single particle wave packets are controlled through spin-dependent potentials. The interferometer is constructed from a sequence of discrete operations based on a set of elementary building blocks, which permit composing arbitrary interferometer geometries in a digital manner. We use this modularity to devise a space-time analogue of the well-known spin echo technique, yielding insight into decoherence mechanisms. We also demonstrate mesoscopic delocalization of single atoms with a separation-to-localization ratio exceeding 500; this result suggests their utilization beyond quantum logic applications as nano-resolution quantum probes in precision measurements, being able to measure potential gradients with precision 5 x 10(-4) in units of gravitational acceleration g.
Pulsed single-photon spectrometer by frequency-to-time mapping using chirped fiber Bragg gratings.
Davis, Alex O C; Saulnier, Paul M; Karpiński, Michał; Smith, Brian J
2017-05-29
A fiber-integrated spectrometer for single-photon pulses outside the telecommunications wavelength range based upon frequency-to-time mapping, implemented by chromatic group delay dispersion (GDD), and precise temporally-resolved single-photon counting, is presented. A chirped fiber Bragg grating provides low-loss GDD, mapping the frequency distribution of an input pulse onto the temporal envelope of the output pulse. Time-resolved detection with fast single-photon-counting modules enables monitoring of a wavelength range from 825 nm to 835 nm with nearly uniform efficiency at 55 pm resolution (24 GHz at 830 nm). To demonstrate the versatility of this technique, spectral interference of heralded single photons and the joint spectral intensity distribution of a photon-pair source are measured. This approach to single-photon-level spectral measurements provides a route to realize applications of time-frequency quantum optics at visible and near-infrared wavelengths, where multiple spectral channels must be simultaneously monitored.
Time scale defined by the fractal structure of the price fluctuations in foreign exchange markets
Kumagai, Yoshiaki
2010-04-01
In this contribution, a new time scale named C-fluctuation time is defined by price fluctuations observed at a given resolution. The intraday fractal structures and the relations of the three time scales: real time (physical time), tick time and C-fluctuation time, in foreign exchange markets are analyzed. The data set used is trading prices of foreign exchange rates; US dollar (USD)/Japanese yen (JPY), USD/Euro (EUR), and EUR/JPY. The accuracy of the data is one minute and data within a minute are recorded in order of transaction. The series of instantaneous velocity of C-fluctuation time flowing are exponentially distributed for small C when they are measured by real time and for tiny C when they are measured by tick time. When the market is volatile, for larger C, the series of instantaneous velocity are exponentially distributed.
Does the Assessment of Recovery Capital scale reflect a single or multiple domains?
Directory of Open Access Journals (Sweden)
Arndt S
2017-07-01
Full Text Available Stephan Arndt,1–3 Ethan Sahker,1,4 Suzy Hedden1 1Iowa Consortium for Substance Abuse Research and Evaluation, 2Department of Psychiatry, Carver College of Medicine, 3Department of Biostatistics, College of Public Health, 4Department of Psychological and Quantitative Foundations, Counseling Psychology Program College of Education, University of Iowa, Iowa City, IA, USA Objective: The goal of this study was to determine whether the 50-item Assessment of Recovery Capital scale represents a single general measure or whether multiple domains might be psychometrically useful for research or clinical applications. Methods: Data are from a cross-sectional de-identified existing program evaluation information data set with 1,138 clients entering substance use disorder treatment. Principal components and iterated factor analysis were used on the domain scores. Multiple group factor analysis provided a quasi-confirmatory factor analysis. Results: The solution accounted for 75.24% of the total variance, suggesting that 10 factors provide a reasonably good fit. However, Tucker’s congruence coefficients between the factor structure and defining weights (0.41–0.52 suggested a poor fit to the hypothesized 10-domain structure. Principal components of the 10-domain scores yielded one factor whose eigenvalue was greater than one (5.93, accounting for 75.8% of the common variance. A few domains had perceptible but small unique variance components suggesting that a few of the domains may warrant enrichment. Conclusion: Our findings suggest that there is one general factor, with a caveat. Using the 10 measures inflates the chance for Type I errors. Using one general measure avoids this issue, is simple to interpret, and could reduce the number of items. However, those seeking to maximally predict later recovery success may need to use the full instrument and all 10 domains. Keywords: social support, psychometrics, quality of life
Robust Stability of Scaled-Four-Channel Teleoperation with Internet Time-Varying Delays
Directory of Open Access Journals (Sweden)
Emma Delgado
2016-04-01
Full Text Available We describe the application of a generic stability framework for a teleoperation system under time-varying delay conditions, as addressed in a previous work, to a scaled-four-channel (γ-4C control scheme. Described is how varying delays are dealt with by means of dynamic encapsulation, giving rise to mu-test conditions for robust stability and offering an appealing frequency technique to deal with the stability robustness of the architecture. We discuss ideal transparency problems and we adapt classical solutions so that controllers are proper, without single or double differentiators, and thus avoid the negative effects of noise. The control scheme was fine-tuned and tested for complete stability to zero of the whole state, while seeking a practical solution to the trade-off between stability and transparency in the Internet-based teleoperation. These ideas were tested on an Internet-based application with two Omni devices at remote laboratory locations via simulations and real remote experiments that achieved robust stability, while performing well in terms of position synchronization and force transparency.
Robust Stability of Scaled-Four-Channel Teleoperation with Internet Time-Varying Delays.
Delgado, Emma; Barreiro, Antonio; Falcón, Pablo; Díaz-Cacho, Miguel
2016-04-26
We describe the application of a generic stability framework for a teleoperation system under time-varying delay conditions, as addressed in a previous work, to a scaled-four-channel (γ-4C) control scheme. Described is how varying delays are dealt with by means of dynamic encapsulation, giving rise to mu-test conditions for robust stability and offering an appealing frequency technique to deal with the stability robustness of the architecture. We discuss ideal transparency problems and we adapt classical solutions so that controllers are proper, without single or double differentiators, and thus avoid the negative effects of noise. The control scheme was fine-tuned and tested for complete stability to zero of the whole state, while seeking a practical solution to the trade-off between stability and transparency in the Internet-based teleoperation. These ideas were tested on an Internet-based application with two Omni devices at remote laboratory locations via simulations and real remote experiments that achieved robust stability, while performing well in terms of position synchronization and force transparency.
Thermospheric mass density model error variance as a function of time scale
Emmert, J. T.; Sutton, E. K.
2017-12-01
In the increasingly crowded low-Earth orbit environment, accurate estimation of orbit prediction uncertainties is essential for collision avoidance. Poor characterization of such uncertainty can result in unnecessary and costly avoidance maneuvers (false positives) or disregard of a collision risk (false negatives). Atmospheric drag is a major source of orbit prediction uncertainty, and is particularly challenging to account for because it exerts a cumulative influence on orbital trajectories and is therefore not amenable to representation by a single uncertainty parameter. To address this challenge, we examine the variance of measured accelerometer-derived and orbit-derived mass densities with respect to predictions by thermospheric empirical models, using the data-minus-model variance as a proxy for model uncertainty. Our analysis focuses mainly on the power spectrum of the residuals, and we construct an empirical model of the variance as a function of time scale (from 1 hour to 10 years), altitude, and solar activity. We find that the power spectral density approximately follows a power-law process but with an enhancement near the 27-day solar rotation period. The residual variance increases monotonically with altitude between 250 and 550 km. There are two components to the variance dependence on solar activity: one component is 180 degrees out of phase (largest variance at solar minimum), and the other component lags 2 years behind solar maximum (largest variance in the descending phase of the solar cycle).
Bridging time scales in cellular decision making with a stochastic bistable switch
Directory of Open Access Journals (Sweden)
Waldherr Steffen
2010-08-01
Full Text Available Abstract Background Cellular transformations which involve a significant phenotypical change of the cell's state use bistable biochemical switches as underlying decision systems. Some of these transformations act over a very long time scale on the cell population level, up to the entire lifespan of the organism. Results In this work, we aim at linking cellular decisions taking place on a time scale of years to decades with the biochemical dynamics in signal transduction and gene regulation, occuring on a time scale of minutes to hours. We show that a stochastic bistable switch forms a viable biochemical mechanism to implement decision processes on long time scales. As a case study, the mechanism is applied to model the initiation of follicle growth in mammalian ovaries, where the physiological time scale of follicle pool depletion is on the order of the organism's lifespan. We construct a simple mathematical model for this process based on experimental evidence for the involved genetic mechanisms. Conclusions Despite the underlying stochasticity, the proposed mechanism turns out to yield reliable behavior in large populations of cells subject to the considered decision process. Our model explains how the physiological time constant may emerge from the intrinsic stochasticity of the underlying gene regulatory network. Apart from ovarian follicles, the proposed mechanism may also be of relevance for other physiological systems where cells take binary decisions over a long time scale.
Data warehousing technologies for large-scale and right-time data
DEFF Research Database (Denmark)
Xiufeng, Liu
heterogeneous sources into a central data warehouse (DW) by Extract-Transform-Load (ETL) at regular time intervals, e.g., monthly, weekly, or daily. But now, it becomes challenging for large-scale data, and hard to meet the near real-time/right-time business decisions. This thesis considers some...
2010-08-18
Spectral domain response calculated • Time domain response obtained through inverse transform Approach 4: WASABI Wavelet Analysis of Structural Anomalies...differences at unity scale! Time Function Transform Apply Spectral Domain Transfer Function Time Function Inverse Transform Transform Transform mtP
Single-molecule three-color FRET with both negligible spectral overlap and long observation time.
Directory of Open Access Journals (Sweden)
Sanghwa Lee
Full Text Available Full understanding of complex biological interactions frequently requires multi-color detection capability in doing single-molecule fluorescence resonance energy transfer (FRET experiments. Existing single-molecule three-color FRET techniques, however, suffer from severe photobleaching of Alexa 488, or its alternative dyes, and have been limitedly used for kinetics studies. In this work, we developed a single-molecule three-color FRET technique based on the Cy3-Cy5-Cy7 dye trio, thus providing enhanced observation time and improved data quality. Because the absorption spectra of three fluorophores are well separated, real-time monitoring of three FRET efficiencies was possible by incorporating the alternating laser excitation (ALEX technique both in confocal microscopy and in total-internal-reflection fluorescence (TIRF microscopy.
Characteristic time scales for diffusion processes through layers and across interfaces
Carr, Elliot J.
2018-04-01
This paper presents a simple tool for characterizing the time scale for continuum diffusion processes through layered heterogeneous media. This mathematical problem is motivated by several practical applications such as heat transport in composite materials, flow in layered aquifers, and drug diffusion through the layers of the skin. In such processes, the physical properties of the medium vary across layers and internal boundary conditions apply at the interfaces between adjacent layers. To characterize the time scale, we use the concept of mean action time, which provides the mean time scale at each position in the medium by utilizing the fact that the transition of the transient solution of the underlying partial differential equation model, from initial state to steady state, can be represented as a cumulative distribution function of time. Using this concept, we define the characteristic time scale for a multilayer diffusion process as the maximum value of the mean action time across the layered medium. For given initial conditions and internal and external boundary conditions, this approach leads to simple algebraic expressions for characterizing the time scale that depend on the physical and geometrical properties of the medium, such as the diffusivities and lengths of the layers. Numerical examples demonstrate that these expressions provide useful insight into explaining how the parameters in the model affect the time it takes for a multilayer diffusion process to reach steady state.
Directory of Open Access Journals (Sweden)
Y. Kawada
2007-10-01
Full Text Available We investigate the time-scale invariant changes in electromagnetic and mechanical energy releases prior to a rock failure or a large earthquake. The energy release processes are caused by damage evolutions such as crack propagation, motion of charged dislocation, area-enlargement of sheared asperities and repetitive creep-rate changes. Damage mechanics can be used to represent the time-scale invariant evolutions of both brittle and plastic damages. Irreversible thermodynamics applied to the damage mechanics reveals that the damage evolution produces the variations in charge, dipole and electromagnetic signals in addition to mechanical energy release, and yields the time-scale invariant patterns of Benioff electromagnetic radiation and cumulative Benioff strain-release. The irreversible thermodynamic framework of damage mechanics is also applicable to the seismo-magnetic effect, and the time-scale invariance is recognized in the remanent magnetization change associated with damage evolution prior to a rock failure.
OSCILLATION CRITERIA FOR A FOURTH ORDER SUBLINEAR DYNAMIC EQUATION ON TIME SCALE
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
Some new criteria for the oscillation of a fourth order sublinear and/or linear dynamic equation on time scale are established. Our results are new for the corresponding fourth order differential equations as well as difference equations.
Multiple Positive Symmetric Solutions to p-Laplacian Dynamic Equations on Time Scales
Directory of Open Access Journals (Sweden)
You-Hui Su
2009-01-01
two examples are given to illustrate the main results and their differences. These results are even new for the special cases of continuous and discrete equations, as well as in the general time-scale setting.
Multiple time scales in modeling the incidence of infections acquired in intensive care units
Directory of Open Access Journals (Sweden)
Martin Wolkewitz
2016-09-01
Full Text Available Abstract Background When patients are admitted to an intensive care unit (ICU their risk of getting an infection will be highly depend on the length of stay at-risk in the ICU. In addition, risk of infection is likely to vary over calendar time as a result of fluctuations in the prevalence of the pathogen on the ward. Hence risk of infection is expected to depend on two time scales (time in ICU and calendar time as well as competing events (discharge or death and their spatial location. The purpose of this paper is to develop and apply appropriate statistical models for the risk of ICU-acquired infection accounting for multiple time scales, competing risks and the spatial clustering of the data. Methods A multi-center data base from a Spanish surveillance network was used to study the occurrence of an infection due to Methicillin-resistant Staphylococcus aureus (MRSA. The analysis included 84,843 patient admissions between January 2006 and December 2011 from 81 ICUs. Stratified Cox models were used to study multiple time scales while accounting for spatial clustering of the data (patients within ICUs and for death or discharge as competing events for MRSA infection. Results Both time scales, time in ICU and calendar time, are highly associated with the MRSA hazard rate and cumulative risk. When using only one basic time scale, the interpretation and magnitude of several patient-individual risk factors differed. Risk factors concerning the severity of illness were more pronounced when using only calendar time. These differences disappeared when using both time scales simultaneously. Conclusions The time-dependent dynamics of infections is complex and should be studied with models allowing for multiple time scales. For patient individual risk-factors we recommend stratified Cox regression models for competing events with ICU time as the basic time scale and calendar time as a covariate. The inclusion of calendar time and stratification by ICU
Single-machine common/slack due window assignment problems with linear decreasing processing times
Zhang, Xingong; Lin, Win-Chin; Wu, Wen-Hsiang; Wu, Chin-Chia
2017-08-01
This paper studies linear non-increasing processing times and the common/slack due window assignment problems on a single machine, where the actual processing time of a job is a linear non-increasing function of its starting time. The aim is to minimize the sum of the earliness cost, tardiness cost, due window location and due window size. Some optimality results are discussed for the common/slack due window assignment problems and two O(n log n) time algorithms are presented to solve the two problems. Finally, two examples are provided to illustrate the correctness of the corresponding algorithms.
Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole
2018-04-01
We simulate the dynamics of a single-electron source, modeled as a quantum dot with on-site Coulomb interaction and tunnel coupling to an adjacent lead in time-dependent density-functional theory. Based on this system, we develop a time-nonlocal exchange-correlation potential by exploiting analogies with quantum-transport theory. The time nonlocality manifests itself in a dynamical potential step. We explicitly link the time evolution of the dynamical step to physical relaxation timescales of the electron dynamics. Finally, we discuss prospects for simulations of larger mesoscopic systems.
Single-machine scheduling with release dates, due dates and family setup times
Schutten, Johannes M.J.; van de Velde, S.L.; van de Velde, S.L.; Zijm, Willem H.M.
1996-01-01
We address the NP-hard problem of scheduling n independent jobs with release dates, due dates, and family setup times on a single machine to minimize the maximum lateness. This problem arises from the constant tug-of-war going on in manufacturing between efficient production and delivery
Single-machine scheduling with release dates, due dates, and family setup times
J.M.J. Schutten (Marco); S.L. van de Velde (Steef); W.H.M. Zijm
1996-01-01
textabstractWe address the NP-hard problem of scheduling n independent jobs with release dates, due dates, and family setup times on a single machine to minimize the maximum lateness. This problem arises from the constant tug-of-war going on in manufacturing between efficient production and delivery
Improving performance of single-path code through a time-predictable memory hierarchy
DEFF Research Database (Denmark)
Cilku, Bekim; Puffitsch, Wolfgang; Prokesch, Daniel
2017-01-01
-predictable memory hierarchy with a prefetcher that exploits the predictability of execution traces in single-path code to speed up code execution. The new memory hierarchy reduces both the cache-miss penalty time and the cache-miss rate on the instruction cache. The benefit of the approach is demonstrated through...
Real-time single-molecule observation of rolling-circle DNA replication
Tanner, Nathan A.; Loparo, Joseph J.; Hamdan, Samir M.; Jergic, Slobodan; Dixon, Nicholas E.; Oijen, Antoine M. van
2009-01-01
We present a simple technique for visualizing replication of individual DNA molecules in real time. By attaching a rolling-circle substrate to a TIRF microscope-mounted flow chamber, we are able to monitor the progression of single-DNA synthesis events and accurately measure rates and processivities
Carpenter, Dick M., II; Kaka, Sarah J.; Tygret, Jennifer A.; Cathcart, Katy
2018-01-01
This study examines the efficacy of a scholarship program designed to assist single parent, post-freshmen, full time undergraduate students and predictors of success among a sample of said students, where success is defined as progress toward completion, academic achievement, and degree completion. Results of fixed effects regression and…
Kuroda, Masaharu; Ikenaga, Sachiko
2015-01-01
We present a novel protocol for small-scale production of crop seed in a plant incubator termed "Single-tube hydroponics." Our protocol minimizes the materials and methods for cultivation whereby a large number of independent plants can be cultured in a limited space. This study may aid in the improvement of crop seed components, especially in the cultivation of transgenic plants.
Single view reflectance capture using multiplexed scattering and time-of-flight imaging
Zhao, Shuang; Velten, Andreas; Raskar, Ramesh; Bala, Kavita; Naik, Nikhil Deepak
2011-01-01
This paper introduces the concept of time-of-flight reflectance estimation, and demonstrates a new technique that allows a camera to rapidly acquire reflectance properties of objects from a single view-point, over relatively long distances and without encircling equipment. We measure material properties by indirectly illuminating an object by a laser source, and observing its reflected light indirectly using a time-of-flight camera. The configuration collectively acquires dense angular, but l...
GHOLAMI, SAEID; BABOLIAN, ESMAIL; JAVIDI, MOHAMMAD
2016-01-01
This paper presents a new numerical approach to solve single and multiterm time fractional diffusion equations. In this work, the space dimension is discretized to the Gauss$-$Lobatto points. We use the normalized Grunwald approximation for the time dimension and a pseudospectral successive integration matrix for the space dimension. This approach shows that with fewer numbers of points, we can approximate the solution with more accuracy. Some examples with numerical results in tables and fig...
Hu, L; Zhang, Z G; Mouraux, A; Iannetti, G D
2015-05-01
Transient sensory, motor or cognitive event elicit not only phase-locked event-related potentials (ERPs) in the ongoing electroencephalogram (EEG), but also induce non-phase-locked modulations of ongoing EEG oscillations. These modulations can be detected when single-trial waveforms are analysed in the time-frequency domain, and consist in stimulus-induced decreases (event-related desynchronization, ERD) or increases (event-related synchronization, ERS) of synchrony in the activity of the underlying neuronal populations. ERD and ERS reflect changes in the parameters that control oscillations in neuronal networks and, depending on the frequency at which they occur, represent neuronal mechanisms involved in cortical activation, inhibition and binding. ERD and ERS are commonly estimated by averaging the time-frequency decomposition of single trials. However, their trial-to-trial variability that can reflect physiologically-important information is lost by across-trial averaging. Here, we aim to (1) develop novel approaches to explore single-trial parameters (including latency, frequency and magnitude) of ERP/ERD/ERS; (2) disclose the relationship between estimated single-trial parameters and other experimental factors (e.g., perceived intensity). We found that (1) stimulus-elicited ERP/ERD/ERS can be correctly separated using principal component analysis (PCA) decomposition with Varimax rotation on the single-trial time-frequency distributions; (2) time-frequency multiple linear regression with dispersion term (TF-MLRd) enhances the signal-to-noise ratio of ERP/ERD/ERS in single trials, and provides an unbiased estimation of their latency, frequency, and magnitude at single-trial level; (3) these estimates can be meaningfully correlated with each other and with other experimental factors at single-trial level (e.g., perceived stimulus intensity and ERP magnitude). The methods described in this article allow exploring fully non-phase-locked stimulus-induced cortical
Time Scale Inequalities of the Ostrowski Type for Functions Differentiable on the Coordinates
Directory of Open Access Journals (Sweden)
Eze R. Nwaeze
2018-01-01
Full Text Available In 2016, some inequalities of the Ostrowski type for functions (of two variables differentiable on the coordinates were established. In this paper, we extend these results to an arbitrary time scale by means of a parameter λ∈0,1. The aforementioned results are regained for the case when the time scale T=R. Besides extension, our results are employed to the continuous and discrete calculus to get some new inequalities in this direction.
Bounds of Double Integral Dynamic Inequalities in Two Independent Variables on Time Scales
Directory of Open Access Journals (Sweden)
S. H. Saker
2011-01-01
Full Text Available Our aim in this paper is to establish some explicit bounds of the unknown function in a certain class of nonlinear dynamic inequalities in two independent variables on time scales which are unbounded above. These on the one hand generalize and on the other hand furnish a handy tool for the study of qualitative as well as quantitative properties of solutions of partial dynamic equations on time scales. Some examples are considered to demonstrate the applications of the results.
Delay time in a single barrier for a movable quantum shutter
International Nuclear Information System (INIS)
Hernandez, Alberto
2010-01-01
The transient solution and delay time for a δ potential scatterer with a movable quantum shutter is calculated by solving analytically the time-dependent Schroedinger equation. The delay time is analyzed as a function of the distance between the shutter and the potential barrier and also as a function of the distance between the potential barrier and the detector. In both cases, it is found that the delay time exhibits a dynamical behavior and that it tends to a saturation value Δt sat in the limit of very short distances, which represents the maximum delay produced by the potential barrier near the interaction region. The phase time τ θ , on the other hand, is not an appropriate time scale for measuring the time delay near the interaction region, except if the shutter is moved far away from the potential. The role played by the antibound state of the system on the behavior of the delay time is also discussed.
In-depth study of single photon time resolution for the Philips digital silicon photomultiplier
International Nuclear Information System (INIS)
Liu, Z.; Pizzichemi, M.; Ghezzi, A.; Paganoni, M.; Gundacker, S.; Auffray, E.; Lecoq, P.
2016-01-01
The digital silicon photomultiplier (SiPM) has been commercialised by Philips as an innovative technology compared to analog silicon photomultiplier devices. The Philips digital SiPM, has a pair of time to digital converters (TDCs) connected to 12800 single photon avalanche diodes (SPADs). Detailed measurements were performed to understand the low photon time response of the Philips digital SiPM. The single photon time resolution (SPTR) of every single SPAD in a pixel consisting of 3200 SPADs was measured and an average value of 85 ps full width at half maximum (FWHM) was observed. Each SPAD sends the signal to the TDC with different signal propagation time, resulting in a so called trigger network skew. This distribution of the trigger network skew for a pixel (3200 SPADs) has been measured and a variation of 50 ps FWHM was extracted. The SPTR of the whole pixel is the combination of SPAD jitter, trigger network skew, and the SPAD non-uniformity. The SPTR of a complete pixel was 103 ps FWHM at 3.3 V above breakdown voltage. Further, the effect of the crosstalk at a low photon level has been studied, with the two photon time resolution degrading if the events are a combination of detected (true) photons and crosstalk events. Finally, the time response to multiple photons was investigated.
International Nuclear Information System (INIS)
Wu, Tong; Sasaki, Takashi; Hane, Kazuhiro; Akiyama, Masayuki
2013-01-01
This paper describes a large-scale membrane transfer process developed for the construction of large-scale membrane devices via the transfer of continuous single-crystal-silicon membranes from one substrate to another. This technique is applied for fabricating a large stroke deformable mirror. A bimorph spring array is used to generate a large air gap between the mirror membrane and the electrode. A 1.9 mm × 1.9 mm × 2 µm single-crystal-silicon membrane is successfully transferred to the electrode substrate by Au–Si eutectic bonding and the subsequent all-dry release process. This process provides an effective approach for transferring a free-standing large continuous single-crystal-silicon to a flexible suspension spring array with a large air gap. (paper)
Antipersistent dynamics in short time scale variability of self-potential signals
Directory of Open Access Journals (Sweden)
M. Ragosta
2000-06-01
Full Text Available Time scale properties of self-potential signals are investigated through the analysis of the second order structure function (variogram, a powerful tool to investigate the spatial and temporal variability of observational data. In this work we analyse two sequences of self-potential values measured by means of a geophysical monitoring array located in a seismically active area of Southern Italy. The range of scales investigated goes from a few minutes to several days. It is shown that signal fluctuations are characterised by two time scale ranges in which self-potential variability appears to follow slightly different dynamical behaviours. Results point to the presence of fractal, non stationary features expressing a long term correlation with scaling coefficients which are the clue of stabilising mechanisms. In the scale ranges in which the series show scale invariant behaviour, self-potentials evolve like fractional Brownian motions with anticorrelated increments typical of processes regulated by negative feedback mechanisms (antipersistence. On scales below about 6 h the strength of such an antipersistence appears to be slightly greater than that observed on larger time scales where the fluctuations are less efficiently stabilised.
Matveev, A. S.; Ishchenko, R.
2017-11-01
We consider a generic deterministic time-invariant fluid model of a single server switched network, which consists of finitely many infinite size buffers (queues) and receives constant rate inflows of jobs from the outside. Any flow undergoes a multi-phase service, entering a specific buffer after every phase, and ultimately leaves the network; the route of the flow over the buffers is pre-specified, and flows may merge inside the network. They share a common source of service, which can serve at most one buffer at a time and has to switch among buffers from time to time; any switch consumes a nonzero switchover period. With respect to the long-run maximal scaled wip (work in progress) performance metric, near-optimality of periodic scheduling and service protocols is established: the deepest optimum (that is over all feasible processes in the network, irrespective of the initial state) is furnished by such a protocol up to as small error as desired. Moreover, this can be achieved with a special periodic protocol introduced in the paper. It is also shown that the exhaustive policy is optimal for any buffer whose service at the maximal rate does not cause growth of the scaled wip.
Cycles, scaling and crossover phenomenon in length of the day (LOD) time series
Telesca, Luciano
2007-06-01
The dynamics of the temporal fluctuations of the length of the day (LOD) time series from January 1, 1962 to November 2, 2006 were investigated. The power spectrum of the whole time series has revealed annual, semi-annual, decadal and daily oscillatory behaviors, correlated with oceanic-atmospheric processes and interactions. The scaling behavior was analyzed by using the detrended fluctuation analysis (DFA), which has revealed two different scaling regimes, separated by a crossover timescale at approximately 23 days. Flicker-noise process can describe the dynamics of the LOD time regime involving intermediate and long timescales, while Brownian dynamics characterizes the LOD time series for small timescales.
Impact of sequential disorder on the scaling behavior of airplane boarding time
Baek, Yongjoo; Ha, Meesoon; Jeong, Hawoong
2013-05-01
Airplane boarding process is an example where disorder properties of the system are relevant to the emergence of universality classes. Based on a simple model, we present a systematic analysis of finite-size effects in boarding time, and propose a comprehensive view of the role of sequential disorder in the scaling behavior of boarding time against the plane size. Using numerical simulations and mathematical arguments, we find how the scaling behavior depends on the number of seat columns and the range of sequential disorder. Our results show that new scaling exponents can arise as disorder is localized to varying extents.
Understanding relationships among ecosystem services across spatial scales and over time
Qiu, Jiangxiao; Carpenter, Stephen R.; Booth, Eric G.; Motew, Melissa; Zipper, Samuel C.; Kucharik, Christopher J.; Loheide, Steven P., II; Turner, Monica G.
2018-05-01
Sustaining ecosystem services (ES), mitigating their tradeoffs and avoiding unfavorable future trajectories are pressing social-environmental challenges that require enhanced understanding of their relationships across scales. Current knowledge of ES relationships is often constrained to one spatial scale or one snapshot in time. In this research, we integrated biophysical modeling with future scenarios to examine changes in relationships among eight ES indicators from 2001–2070 across three spatial scales—grid cell, subwatershed, and watershed. We focused on the Yahara Watershed (Wisconsin) in the Midwestern United States—an exemplar for many urbanizing agricultural landscapes. Relationships among ES indicators changed over time; some relationships exhibited high interannual variations (e.g. drainage vs. food production, nitrate leaching vs. net ecosystem exchange) and even reversed signs over time (e.g. perennial grass production vs. phosphorus yield). Robust patterns were detected for relationships among some regulating services (e.g. soil retention vs. water quality) across three spatial scales, but other relationships lacked simple scaling rules. This was especially true for relationships of food production vs. water quality, and drainage vs. number of days with runoff >10 mm, which differed substantially across spatial scales. Our results also showed that local tradeoffs between food production and water quality do not necessarily scale up, so reducing local tradeoffs may be insufficient to mitigate such tradeoffs at the watershed scale. We further synthesized these cross-scale patterns into a typology of factors that could drive changes in ES relationships across scales: (1) effects of biophysical connections, (2) effects of dominant drivers, (3) combined effects of biophysical linkages and dominant drivers, and (4) artificial scale effects, and concluded with management implications. Our study highlights the importance of taking a dynamic
Vea, Isabelle M.; Grimaldi, David A.
2016-01-01
The radiation of flowering plants in the mid-Cretaceous transformed landscapes and is widely believed to have fuelled the radiations of major groups of phytophagous insects. An excellent group to test this assertion is the scale insects (Coccomorpha: Hemiptera), with some 8,000 described Recent species and probably the most diverse fossil record of any phytophagous insect group preserved in amber. We used here a total-evidence approach (by tip-dating) employing 174 morphological characters of 73 Recent and 43 fossil taxa (48 families) and DNA sequences of three gene regions, to obtain divergence time estimates and compare the chronology of the most diverse lineage of scale insects, the neococcoid families, with the timing of the main angiosperm radiation. An estimated origin of the Coccomorpha occurred at the beginning of the Triassic, about 245 Ma [228–273], and of the neococcoids 60 million years later [210–165 Ma]. A total-evidence approach allows the integration of extinct scale insects into a phylogenetic framework, resulting in slightly younger median estimates than analyses using Recent taxa, calibrated with fossil ages only. From these estimates, we hypothesise that most major lineages of coccoids shifted from gymnosperms onto angiosperms when the latter became diverse and abundant in the mid- to Late Cretaceous. PMID:27000526
A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China
International Nuclear Information System (INIS)
Xu, Lilai; Gao, Peiqing; Cui, Shenghui; Liu, Chun
2013-01-01
Highlights: ► We propose a hybrid model that combines seasonal SARIMA model and grey system theory. ► The model is robust at multiple time scales with the anticipated accuracy. ► At month-scale, the SARIMA model shows good representation for monthly MSW generation. ► At medium-term time scale, grey relational analysis could yield the MSW generation. ► At long-term time scale, GM (1, 1) provides a basic scenario of MSW generation. - Abstract: Accurate forecasting of municipal solid waste (MSW) generation is crucial and fundamental for the planning, operation and optimization of any MSW management system. Comprehensive information on waste generation for month-scale, medium-term and long-term time scales is especially needed, considering the necessity of MSW management upgrade facing many developing countries. Several existing models are available but of little use in forecasting MSW generation at multiple time scales. The goal of this study is to propose a hybrid model that combines the seasonal autoregressive integrated moving average (SARIMA) model and grey system theory to forecast MSW generation at multiple time scales without needing to consider other variables such as demographics and socioeconomic factors. To demonstrate its applicability, a case study of Xiamen City, China was performed. Results show that the model is robust enough to fit and forecast seasonal and annual dynamics of MSW generation at month-scale, medium- and long-term time scales with the desired accuracy. In the month-scale, MSW generation in Xiamen City will peak at 132.2 thousand tonnes in July 2015 – 1.5 times the volume in July 2010. In the medium term, annual MSW generation will increase to 1518.1 thousand tonnes by 2015 at an average growth rate of 10%. In the long term, a large volume of MSW will be output annually and will increase to 2486.3 thousand tonnes by 2020 – 2.5 times the value for 2010. The hybrid model proposed in this paper can enable decision makers to
A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China
Energy Technology Data Exchange (ETDEWEB)
Xu, Lilai, E-mail: llxu@iue.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021 (China); Xiamen Key Lab of Urban Metabolism, Xiamen 361021 (China); Gao, Peiqing, E-mail: peiqing15@yahoo.com.cn [Xiamen City Appearance and Environmental Sanitation Management Office, 51 Hexiangxi Road, Xiamen 361004 (China); Cui, Shenghui, E-mail: shcui@iue.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021 (China); Xiamen Key Lab of Urban Metabolism, Xiamen 361021 (China); Liu, Chun, E-mail: xmhwlc@yahoo.com.cn [Xiamen City Appearance and Environmental Sanitation Management Office, 51 Hexiangxi Road, Xiamen 361004 (China)
2013-06-15
Highlights: ► We propose a hybrid model that combines seasonal SARIMA model and grey system theory. ► The model is robust at multiple time scales with the anticipated accuracy. ► At month-scale, the SARIMA model shows good representation for monthly MSW generation. ► At medium-term time scale, grey relational analysis could yield the MSW generation. ► At long-term time scale, GM (1, 1) provides a basic scenario of MSW generation. - Abstract: Accurate forecasting of municipal solid waste (MSW) generation is crucial and fundamental for the planning, operation and optimization of any MSW management system. Comprehensive information on waste generation for month-scale, medium-term and long-term time scales is especially needed, considering the necessity of MSW management upgrade facing many developing countries. Several existing models are available but of little use in forecasting MSW generation at multiple time scales. The goal of this study is to propose a hybrid model that combines the seasonal autoregressive integrated moving average (SARIMA) model and grey system theory to forecast MSW generation at multiple time scales without needing to consider other variables such as demographics and socioeconomic factors. To demonstrate its applicability, a case study of Xiamen City, China was performed. Results show that the model is robust enough to fit and forecast seasonal and annual dynamics of MSW generation at month-scale, medium- and long-term time scales with the desired accuracy. In the month-scale, MSW generation in Xiamen City will peak at 132.2 thousand tonnes in July 2015 – 1.5 times the volume in July 2010. In the medium term, annual MSW generation will increase to 1518.1 thousand tonnes by 2015 at an average growth rate of 10%. In the long term, a large volume of MSW will be output annually and will increase to 2486.3 thousand tonnes by 2020 – 2.5 times the value for 2010. The hybrid model proposed in this paper can enable decision makers to
Directory of Open Access Journals (Sweden)
Guohua Zeng
Full Text Available OBJECTIVE: As almost any version of percutaneous nephrolithotomy (PCNL was safely and efficiently applied for adults as well as children without age being a limiting risk factor, the aim of the study was to compare the different characteristics as well as the efficacy, outcome, and safety of the pediatric and adult patients who had undergone mini-PCNL (MPCNL in a single institution. METHODS: We retrospective reviewed 331 renal units in children and 8537 renal units in adults that had undergone MPCNL for upper urinary tract stones between the years of 2000-2012. The safety, efficacy, and outcome were analyzed and compared. RESULTS: The children had a smaller stone size (2.3 vs. 3.1 cm but had smilar stone distribution (number and locations. The children required fewer percutaneous accesses, smaller nephrostomy tract, shorter operative time and less hemoglobin drop. The children also had higher initial stone free rate (SFR (80.4% vs. 78.6% after single session of MPCNL (p0.05. Both groups had low rate of high grade Clavien complications. There was no grade III, IV, V complications and no angiographic embolization required in pediatric group. One important caveat, children who required multiple percutaneous nephrostomy tracts had significant higher transfusion rate than in adults (18.8% vs. 4.5%, p = 0.007. CONCLUSIONS: This contemporary largest-scale analysis confirms that the stone-free rate in pediatric patients is at least as good as in adults without an increase of complication rates. However, multiple percutaneous nephrostomy tracts should be practiced with caution in children.
Directory of Open Access Journals (Sweden)
Yanning Wang
2016-01-01
Full Text Available Using conformable fractional calculus on time scales, we first introduce fractional Sobolev spaces on time scales, characterize them, and define weak conformable fractional derivatives. Second, we prove the equivalence of some norms in the introduced spaces and derive their completeness, reflexivity, uniform convexity, and compactness of some imbeddings, which can be regarded as a novelty item. Then, as an application, we present a recent approach via variational methods and critical point theory to obtain the existence of solutions for a p-Laplacian conformable fractional differential equation boundary value problem on time scale T: Tα(Tαup-2Tα(u(t=∇F(σ(t,u(σ(t, Δ-a.e. t∈a,bTκ2, u(a-u(b=0, Tα(u(a-Tα(u(b=0, where Tα(u(t denotes the conformable fractional derivative of u of order α at t, σ is the forward jump operator, a,b∈T, 01, and F:[0,T]T×RN→R. By establishing a proper variational setting, we obtain three existence results. Finally, we present two examples to illustrate the feasibility and effectiveness of the existence results.
In situ probing the interior of single bacterial cells at nanometer scale
International Nuclear Information System (INIS)
Liu, Boyin; Wah Ng, Tuck; Fu, Jing; Hemayet Uddin, Md; Paterson, David L; Velkov, Tony; Li, Jian
2014-01-01
We report a novel approach to probe the interior of single bacterial cells at nanometre resolution by combining focused ion beam (FIB) and atomic force microscopy (AFM). After removing layers of pre-defined thickness in the order of 100 nm on the target bacterial cells with FIB milling, AFM of different modes can be employed to probe the cellular interior under both ambient and aqueous environments. Our initial investigations focused on the surface topology induced by FIB milling and the hydration effects on AFM measurements, followed by assessment of the sample protocols. With fine-tuning of the process parameters, in situ AFM probing beneath the bacterial cell wall was achieved for the first time. We further demonstrate the proposed method by performing a spatial mapping of intracellular elasticity and chemistry of the multi-drug resistant strain Klebsiella pneumoniae cells prior to and after it was exposed to the ‘last-line’ antibiotic polymyxin B. Our results revealed increased stiffness occurring in both surface and interior regions of the treated cells, suggesting loss of integrity of the outer membrane from polymyxin treatments. In addition, the hydrophobicity measurement using a functionalized AFM tip was able to highlight the evident hydrophobic portion of the cell such as the regions containing cell membrane. We expect that the proposed FIB–AFM platform will help in gaining deeper insights of bacteria–drug interactions to develop potential strategies for combating multi-drug resistance. (paper)
Energy Technology Data Exchange (ETDEWEB)
Jeffs, S.P., E-mail: s.p.jeffs@swansea.ac.uk [Institute of Structural Materials, Swansea University, Singleton Park SA2 8PP (United Kingdom); Lancaster, R.J. [Institute of Structural Materials, Swansea University, Singleton Park SA2 8PP (United Kingdom); Garcia, T.E. [IUTA (University Institute of Industrial Technology of Asturias), University of Oviedo, Edificio Departamental Oeste 7.1.17, Campus Universitario, 33203 Gijón (Spain)
2015-06-11
In recent years, advances in creep data interpretation have been achieved either by modified Monkman–Grant relationships or through the more contemporary Wilshire equations, which offer the opportunity of predicting long term behaviour extrapolated from short term results. Long term lifing techniques prove extremely useful in creep dominated applications, such as in the power generation industry and in particular nuclear where large static loads are applied, equally a reduction in lead time for new alloy implementation within the industry is critical. The latter requirement brings about the utilisation of the small punch (SP) creep test, a widely recognised approach for obtaining useful mechanical property information from limited material volumes, as is typically the case with novel alloy development and for any in-situ mechanical testing that may be required. The ability to correlate SP creep results with uniaxial data is vital when considering the benefits of the technique. As such an equation has been developed, known as the k{sub SP} method, which has been proven to be an effective tool across several material systems. The current work now explores the application of the aforementioned empirical approaches to correlate small punch creep data obtained on a single crystal superalloy over a range of elevated temperatures. Finite element modelling through ABAQUS software based on the uniaxial creep data has also been implemented to characterise the SP deformation and help corroborate the experimental results.
International Nuclear Information System (INIS)
Jeffs, S.P.; Lancaster, R.J.; Garcia, T.E.
2015-01-01
In recent years, advances in creep data interpretation have been achieved either by modified Monkman–Grant relationships or through the more contemporary Wilshire equations, which offer the opportunity of predicting long term behaviour extrapolated from short term results. Long term lifing techniques prove extremely useful in creep dominated applications, such as in the power generation industry and in particular nuclear where large static loads are applied, equally a reduction in lead time for new alloy implementation within the industry is critical. The latter requirement brings about the utilisation of the small punch (SP) creep test, a widely recognised approach for obtaining useful mechanical property information from limited material volumes, as is typically the case with novel alloy development and for any in-situ mechanical testing that may be required. The ability to correlate SP creep results with uniaxial data is vital when considering the benefits of the technique. As such an equation has been developed, known as the k SP method, which has been proven to be an effective tool across several material systems. The current work now explores the application of the aforementioned empirical approaches to correlate small punch creep data obtained on a single crystal superalloy over a range of elevated temperatures. Finite element modelling through ABAQUS software based on the uniaxial creep data has also been implemented to characterise the SP deformation and help corroborate the experimental results
Nano-scale microfluidics to study 3D chemotaxis at the single cell level.
Directory of Open Access Journals (Sweden)
Corina Frick
Full Text Available Directed migration of cells relies on their ability to sense directional guidance cues and to interact with pericellular structures in order to transduce contractile cytoskeletal- into mechanical forces. These biomechanical processes depend highly on microenvironmental factors such as exposure to 2D surfaces or 3D matrices. In vivo, the majority of cells are exposed to 3D environments. Data on 3D cell migration are mostly derived from intravital microscopy or collagen-based in vitro assays. Both approaches offer only limited controllability of experimental conditions. Here, we developed an automated microfluidic system that allows positioning of cells in 3D microenvironments containing highly controlled diffusion-based chemokine gradients. Tracking migration in such gradients was feasible in real time at the single cell level. Moreover, the setup allowed on-chip immunocytochemistry and thus linking of functional with phenotypical properties in individual cells. Spatially defined retrieval of cells from the device allows down-stream off-chip analysis. Using dendritic cells as a model, our setup specifically allowed us for the first time to quantitate key migration characteristics of cells exposed to identical gradients of the chemokine CCL19 yet placed on 2D vs in 3D environments. Migration properties between 2D and 3D migration were distinct. Morphological features of cells migrating in an in vitro 3D environment were similar to those of cells migrating in animal tissues, but different from cells migrating on a surface. Our system thus offers a highly controllable in vitro-mimic of a 3D environment that cells traffic in vivo.
Bi-dimensional arrays of SPAD for time-resolved single photon imaging
International Nuclear Information System (INIS)
Tudisco, S.; Lanzano, L.; Musumeci, F.; Neri, L.; Privitera, S.; Scordino, A.; Condorelli, G.; Fallica, G.; Mazzillo, M.; Sanfilippo, D.; Valvo, G.
2009-01-01
Many scientific areas like astronomy, biophysics, biomedicine, nuclear and plasma science, etc. are interested in the development of a new time-resolved single photon imaging device. Such a device represents today one of the most challenging goals in the field of photonics. In collaboration with Catania R and D staff of ST-Microelectronics (STM) we created, during the last few years, a new avalanche photosensor-Single Photon Avalanche Diode (SPAD) able to detect and count, with excellent performance, single photons. Further we will discuss the possible realization of a single photon imaging device through the many elements integration (bi-dimensional arrays) of SPADs. In order to achieve the goal, it is also important to develop an appropriate readout strategy able to address the time information of each individual sensor and in order to read a great number of elements easily. First prototypes were designed and manufactured by STM and the results are reported here. In the paper we will discuss in particular: (i) sensor performance (gain, photodetection efficiency, timing, after-pulsing, etc.); (ii) array performance (layout, cross-talk, etc.); (iii) readout strategy (quenching, electronics), and (iv) first imaging results (general performance).
Real-time Bacterial Detection by Single Cell Based Sensors UsingSynchrotron FTIR Spectromicroscopy
Energy Technology Data Exchange (ETDEWEB)
Veiseh, Mandana; Veiseh, Omid; Martin, Michael C.; Bertozzi,Carolyn; Zhang, Miqin
2005-08-10
Microarrays of single macrophage cell based sensors weredeveloped and demonstrated for real time bacterium detection bysynchrotron FTIR microscopy. The cells were patterned on gold-SiO2substrates via a surface engineering technique by which the goldelectrodes were immobilized with fibronectin to mediate cell adhesion andthe silicon oxide background were passivated with PEG to resist proteinadsorption and cell adhesion. Cellular morphology and IR spectra ofsingle, double, and triple cells on gold electrodes exposed tolipopolysaccharide (LPS) of different concentrations were compared toreveal the detection capabilities of these biosensors. The single-cellbased sensors were found to generate the most significant IR wave numbervariation and thus provide the highest detection sensitivity. Changes inmorphology and IR spectrum for single cells exposed to LPS were found tobe time- and concentration-dependent and correlated with each other verywell. FTIR spectra from single cell arrays of gold electrodes withsurface area of 25 mu-m2, 100 mu-m2, and 400 mu-m2 were acquired usingboth synchrotron and conventional FTIR spectromicroscopes to study thesensitivity of detection. The results indicated that the developedsingle-cell platform can be used with conventional FTIRspectromicroscopy. This technique provides real-time, label-free, andrapid bacterial detection, and may allow for statistic and highthroughput analyses, and portability.
Double Scaling in the Relaxation Time in the β -Fermi-Pasta-Ulam-Tsingou Model
Lvov, Yuri V.; Onorato, Miguel
2018-04-01
We consider the original β -Fermi-Pasta-Ulam-Tsingou system; numerical simulations and theoretical arguments suggest that, for a finite number of masses, a statistical equilibrium state is reached independently of the initial energy of the system. Using ensemble averages over initial conditions characterized by different Fourier random phases, we numerically estimate the time scale of equipartition and we find that for very small nonlinearity it matches the prediction based on exact wave-wave resonant interaction theory. We derive a simple formula for the nonlinear frequency broadening and show that when the phenomenon of overlap of frequencies takes place, a different scaling for the thermalization time scale is observed. Our result supports the idea that the Chirikov overlap criterion identifies a transition region between two different relaxation time scalings.
Valdés, Felipe
2013-03-01
Single-source time-domain electric-and magnetic-field integral equations for analyzing scattering from homogeneous penetrable objects are presented. Their temporal discretization is effected by using shifted piecewise polynomial temporal basis functions and a collocation testing procedure, thus allowing for a marching-on-in-time (MOT) solution scheme. Unlike dual-source formulations, single-source equations involve space-time domain operator products, for which spatial discretization techniques developed for standalone operators do not apply. Here, the spatial discretization of the single-source time-domain integral equations is achieved by using the high-order divergence-conforming basis functions developed by Graglia alongside the high-order divergence-and quasi curl-conforming (DQCC) basis functions of Valdés The combination of these two sets allows for a well-conditioned mapping from div-to curl-conforming function spaces that fully respects the space-mapping properties of the space-time operators involved. Numerical results corroborate the fact that the proposed procedure guarantees accuracy and stability of the MOT scheme. © 2012 IEEE.
Real-time monitoring of Lévy flights in a single quantum system
Issler, M.; Höller, J.; Imamoǧlu, A.
2016-02-01
Lévy flights are random walks where the dynamics is dominated by rare events. Even though they have been studied in vastly different physical systems, their observation in a single quantum system has remained elusive. Here we analyze a periodically driven open central spin system and demonstrate theoretically that the dynamics of the spin environment exhibits Lévy flights. For the particular realization in a single-electron charged quantum dot driven by periodic resonant laser pulses, we use Monte Carlo simulations to confirm that the long waiting times between successive nuclear spin-flip events are governed by a power-law distribution; the corresponding exponent η =-3 /2 can be directly measured in real time by observing the waiting time distribution of successive photon emission events. Remarkably, the dominant intrinsic limitation of the scheme arising from nuclear quadrupole coupling can be minimized by adjusting the magnetic field or by implementing spin echo.
A natural-color mapping for single-band night-time image based on FPGA
Wang, Yilun; Qian, Yunsheng
2018-01-01
A natural-color mapping for single-band night-time image method based on FPGA can transmit the color of the reference image to single-band night-time image, which is consistent with human visual habits and can help observers identify the target. This paper introduces the processing of the natural-color mapping algorithm based on FPGA. Firstly, the image can be transformed based on histogram equalization, and the intensity features and standard deviation features of reference image are stored in SRAM. Then, the real-time digital images' intensity features and standard deviation features are calculated by FPGA. At last, FPGA completes the color mapping through matching pixels between images using the features in luminance channel.
Invariant operator theory for the single-photon energy in time-varying media
International Nuclear Information System (INIS)
Jeong-Ryeol, Choi
2010-01-01
After the birth of quantum mechanics, the notion in physics that the frequency of light is the only factor that determines the energy of a single photon has played a fundamental role. However, under the assumption that the theory of Lewis–Riesenfeld invariants is applicable in quantum optics, it is shown in the present work that this widely accepted notion is valid only for light described by a time-independent Hamiltonian, i.e., for light in media satisfying the conditions, ε(i) = ε(0), μ(t) = μ(0), and σ(t) = 0 simultaneously. The use of the Lewis–Riesenfeld invariant operator method in quantum optics leads to a marvelous result: the energy of a single photon propagating through time-varying linear media exhibits nontrivial time dependence without a change of frequency. (general)
Energy Technology Data Exchange (ETDEWEB)
Grodzicka, Martyna, E-mail: m.grodzicka@ncbj.gov.pl; Szczęśniak, Tomasz; Moszyński, Marek; Szawłowski, Marek; Grodzicki, Krystian
2015-05-21
The linearity of a silicon photomultiplier (SiPM) response depends on the number of APD cells and its effective recovery time and it is related to the intensity and duration of the detected light pulses. The aim of this study was to determine the effective recovery time on the basis of the measured SiPM response to light pulses of different durations. A closer analysis of the SiPM response to the light pulses shorter than the effective recovery time of APD cells led to a method for the evaluation of the single photoelectron response of the devices where the single photoelectron peak cannot be clearly measured. This is necessary in the evaluation of the number of fired APD cells (or the number of photoelectrons) in measurements with light pulses of various durations. Measurements were done with SiPMs manufactured by two companies: Hamamatsu and SensL.
Linden, Ariel; Yarnold, Paul R
2016-12-01
Single-group interrupted time series analysis (ITSA) is a popular evaluation methodology in which a single unit of observation is being studied, the outcome variable is serially ordered as a time series and the intervention is expected to 'interrupt' the level and/or trend of the time series, subsequent to its introduction. Given that the internal validity of the design rests on the premise that the interruption in the time series is associated with the introduction of the treatment, treatment effects may seem less plausible if a parallel trend already exists in the time series prior to the actual intervention. Thus, sensitivity analyses should focus on detecting structural breaks in the time series before the intervention. In this paper, we introduce a machine-learning algorithm called optimal discriminant analysis (ODA) as an approach to determine if structural breaks can be identified in years prior to the initiation of the intervention, using data from California's 1988 voter-initiated Proposition 99 to reduce smoking rates. The ODA analysis indicates that numerous structural breaks occurred prior to the actual initiation of Proposition 99 in 1989, including perfect structural breaks in 1983 and 1985, thereby casting doubt on the validity of treatment effects estimated for the actual intervention when using a single-group ITSA design. Given the widespread use of ITSA for evaluating observational data and the increasing use of machine-learning techniques in traditional research, we recommend that structural break sensitivity analysis is routinely incorporated in all research using the single-group ITSA design. © 2016 John Wiley & Sons, Ltd.
Moving source localization with a single hydrophone using multipath time delays in the deep ocean.
Duan, Rui; Yang, Kunde; Ma, Yuanliang; Yang, Qiulong; Li, Hui
2014-08-01
Localizing a source of radial movement at moderate range using a single hydrophone can be achieved in the reliable acoustic path by tracking the time delays between the direct and surface-reflected arrivals (D-SR time delays). The problem is defined as a joint estimation of the depth, initial range, and speed of the source, which are the state parameters for the extended Kalman filter (EKF). The D-SR time delays extracted from the autocorrelation functions are the measurements for the EKF. Experimental results using pseudorandom signals show that accurate localization results are achieved by offline iteration of the EKF.
da Silva, Thiago Ferreira; Xavier, Guilherme B; Temporão, Guilherme P; von der Weid, Jean Pierre
2012-08-13
By employing real-time monitoring of single-photon avalanche photodiodes we demonstrate how two types of practical eavesdropping strategies, the after-gate and time-shift attacks, may be detected. Both attacks are identified with the detectors operating without any special modifications, making this proposal well suited for real-world applications. The monitoring system is based on accumulating statistics of the times between consecutive detection events, and extracting the afterpulse and overall efficiency of the detectors in real-time using mathematical models fit to the measured data. We are able to directly observe changes in the afterpulse probabilities generated from the after-gate and faint after-gate attacks, as well as different timing signatures in the time-shift attack. We also discuss the applicability of our scheme to other general blinding attacks.
Single product lot-sizing on unrelated parallel machines with non-decreasing processing times
Eremeev, A.; Kovalyov, M.; Kuznetsov, P.
2018-01-01
We consider a problem in which at least a given quantity of a single product has to be partitioned into lots, and lots have to be assigned to unrelated parallel machines for processing. In one version of the problem, the maximum machine completion time should be minimized, in another version of the problem, the sum of machine completion times is to be minimized. Machine-dependent lower and upper bounds on the lot size are given. The product is either assumed to be continuously divisible or discrete. The processing time of each machine is defined by an increasing function of the lot volume, given as an oracle. Setup times and costs are assumed to be negligibly small, and therefore, they are not considered. We derive optimal polynomial time algorithms for several special cases of the problem. An NP-hard case is shown to admit a fully polynomial time approximation scheme. An application of the problem in energy efficient processors scheduling is considered.
Multi-Scale Entropy Analysis as a Method for Time-Series Analysis of Climate Data
Directory of Open Access Journals (Sweden)
Heiko Balzter
2015-03-01
Full Text Available Evidence is mounting that the temporal dynamics of the climate system are changing at the same time as the average global temperature is increasing due to multiple climate forcings. A large number of extreme weather events such as prolonged cold spells, heatwaves, droughts and floods have been recorded around the world in the past 10 years. Such changes in the temporal scaling behaviour of climate time-series data can be difficult to detect. While there are easy and direct ways of analysing climate data by calculating the means and variances for different levels of temporal aggregation, these methods can miss more subtle changes in their dynamics. This paper describes multi-scale entropy (MSE analysis as a tool to study climate time-series data and to identify temporal scales of variability and their change over time in climate time-series. MSE estimates the sample entropy of the time-series after coarse-graining at different temporal scales. An application of MSE to Central European, variance-adjusted, mean monthly air temperature anomalies (CRUTEM4v is provided. The results show that the temporal scales of the current climate (1960–2014 are different from the long-term average (1850–1960. For temporal scale factors longer than 12 months, the sample entropy increased markedly compared to the long-term record. Such an increase can be explained by systems theory with greater complexity in the regional temperature data. From 1961 the patterns of monthly air temperatures are less regular at time-scales greater than 12 months than in the earlier time period. This finding suggests that, at these inter-annual time scales, the temperature variability has become less predictable than in the past. It is possible that climate system feedbacks are expressed in altered temporal scales of the European temperature time-series data. A comparison with the variance and Shannon entropy shows that MSE analysis can provide additional information on the
International Nuclear Information System (INIS)
Khaizer, A.N.; Hussain, I.
2015-01-01
This paper presents a time-domain approach for identification of longitudinal dynamics of single rotor model helicopter. A frequency sweep excitation input signal is applied for hover flying mode widely used for space state linearized model. A fully automated programmed flight test method provides high quality flight data for system identification using the computer controlled flight simulator X-plane. The flight test data were recorded, analyzed and reduced using the SIDPAC (System Identification Programs for Air Craft) toolbox for MATLAB, resulting in an aerodynamic model of single rotor helicopter. Finally, the identified model of single rotor helicopter is validated on Raptor 30-class model helicopter at hover showing the reliability of proposed approach. (author)
Velten, Andreas
2017-05-01
Light scattering is a primary obstacle to optical imaging in a variety of different environments and across many size and time scales. Scattering complicates imaging on large scales when imaging through the atmosphere when imaging from airborne or space borne platforms, through marine fog, or through fog and dust in vehicle navigation, for example in self driving cars. On smaller scales, scattering is the major obstacle when imaging through human tissue in biomedical applications. Despite the large variety of participating materials and size scales, light transport in all these environments is usually described with very similar scattering models that are defined by the same small set of parameters, including scattering and absorption length and phase function. We attempt a study of scattering and methods of imaging through scattering across different scales and media, particularly with respect to the use of time of flight information. We can show that using time of flight, in addition to spatial information, provides distinct advantages in scattering environments. By performing a comparative study of scattering across scales and media, we are able to suggest scale models for scattering environments to aid lab research. We also can transfer knowledge and methodology between different fields.
Salvalaglio, Matteo; Tiwary, Pratyush; Maggioni, Giovanni Maria; Mazzotti, Marco; Parrinello, Michele
2016-12-01
Condensation of a liquid droplet from a supersaturated vapour phase is initiated by a prototypical nucleation event. As such it is challenging to compute its rate from atomistic molecular dynamics simulations. In fact at realistic supersaturation conditions condensation occurs on time scales that far exceed what can be reached with conventional molecular dynamics methods. Another known problem in this context is the distortion of the free energy profile associated to nucleation due to the small, finite size of typical simulation boxes. In this work the problem of time scale is addressed with a recently developed enhanced sampling method while contextually correcting for finite size effects. We demonstrate our approach by studying the condensation of argon, and showing that characteristic nucleation times of the order of magnitude of hours can be reliably calculated. Nucleation rates spanning a range of 10 orders of magnitude are computed at moderate supersaturation levels, thus bridging the gap between what standard molecular dynamics simulations can do and real physical systems.
Holloran-Schwartz, M Brigid; Gavard, Jeffrey A; Martin, Jared C; Blaskiewicz, Robert J; Yeung, Patrick P
2016-01-01
To compare the intraoperative direct costs of a single-use energy device with reusable energy devices during laparoscopic hysterectomy. A randomized controlled trial (Canadian Task Force Classification I). An academic hospital. Forty-six women who underwent laparoscopic hysterectomy from March 2013 to September 2013. Each patient served as her own control. One side of the uterine attachments was desiccated and transected with the single-use device (Ligasure 5-mm Blunt Tip LF1537 with the Force Triad generator). The other side was desiccated and transected with reusable bipolar forceps (RoBi 5 mm), and transected with monopolar scissors using the same Covidien Force Triad generator. The instrument approach used was randomized to the attending physician who was always on the patient's left side. Resident physicians always operated on the patient's right side and used the converse instruments of the attending physician. Start time was recorded at the utero-ovarian pedicle and end time was recorded after transection of the uterine artery on the same side. Costs included the single-use device; amortized costs of the generator, reusable instruments, and cords; cleaning and packaging of reusable instruments; and disposal of the single-use device. Operating room time was $94.14/min. We estimated that our single use-device cost $630.14 and had a total time savings of 6.7 min per case, or 3.35 min per side, which could justify the expense of the device. The single-use energy device had significant median time savings (-4.7 min per side, p energy device that both desiccates and cuts significantly reduced operating room time to justify its own cost, and it also reduced total intraoperative direct costs during laparoscopic hysterectomy in our institution. Operating room cost per minute varies between institutions and must be considered before generalizing our results. Copyright © 2016 AAGL. Published by Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Renke Lühken
2016-05-01
Full Text Available This study analysed Culicoides presence-absence data from 46 sampling sites in Germany, where monitoring was carried out from April 2007 until May 2008. Culicoides presence-absence data were analysed in relation to land cover data, in order to study whether the prevalence of biting midges is correlated to land cover data with respect to the trapping sites. We differentiated eight scales, i.e. buffer zones with radii of 0.5, 1, 2, 3, 4, 5, 7.5 and 10 km, around each site, and chose several land cover variables. For each species, we built eight single-scale models (i.e. predictor variables from one of the eight scales for each model based on averaged, generalised linear models and two multiscale models (i.e. predictor variables from all of the eight scales based on averaged, generalised linear models and generalised linear models with random forest variable selection. There were no significant differences between performance indicators of models built with land cover data from different buffer zones around the trapping sites. However, the overall performance of multi-scale models was higher than the alternatives. Furthermore, these models mostly achieved the best performance for the different species using the index area under the receiver operating characteristic curve. However, as also presented in this study, the relevance of the different variables could significantly differ between various scales, including the number of species affected and the positive or negative direction. This is an even more severe problem if multi-scale models are concerned, in which one model can have the same variable at different scales but with different directions, i.e. negative and positive direction of the same variable at different scales. However, multi-scale modelling is a promising approach to model the distribution of Culicoides species, accounting much more for the ecology of biting midges, which uses different resources (breeding sites, hosts, etc. at
Reduction in the ionospheric error for a single-frequency GPS timing solution using tomography
Directory of Open Access Journals (Sweden)
Cathryn N. Mitchell
2009-06-01
Full Text Available
Times;">Abstract
Times;">Single-frequency Global Positioning System (GPS receivers do not accurately compensate for the ionospheric delay imposed upon a GPS signal. They rely upon models to compensate for the ionosphere. This delay compensation can be improved by measuring it directly with a dual-frequency receiver, or by monitoring the ionosphere using real-time maps. This investigation uses a 4D tomographic algorithm, Multi Instrument Data Analysis System (MIDAS, to correct for the ionospheric delay and compares the results to existing single and dualfrequency techniques. Maps of the ionospheric electron density, across Europe, are produced by using data collected from a fixed network of dual-frequency GPS receivers. Single-frequency pseudorange observations are corrected by using the maps to find the excess propagation delay on the GPS L1 signals. Days during the solar maximum year 2002 and the October 2003 storm have been chosen to display results when the ionospheric delays are large and variable. Results that improve upon the use of existing ionospheric models are achieved by applying MIDAS to fixed and mobile single-frequency GPS timing solutions. The approach offers the potential for corrections to be broadcast over a local region, or provided via the internet and allows timing accuracies to within 10 ns to be achieved.
Directory of Open Access Journals (Sweden)
Shichao Sun
2015-01-01
Full Text Available This paper addressed the vehicle routing problem (VRP in large-scale urban transportation networks with stochastic time-dependent (STD travel times. The subproblem which is how to find the optimal path connecting any pair of customer nodes in a STD network was solved through a robust approach without requiring the probability distributions of link travel times. Based on that, the proposed STD-VRP model can be converted into solving a normal time-dependent VRP (TD-VRP, and algorithms for such TD-VRPs can also be introduced to obtain the solution. Numerical experiments were conducted to address STD-VRPTW of practical sizes on a real world urban network, demonstrated here on the road network of Shenzhen, China. The stochastic time-dependent link travel times of the network were calibrated by historical floating car data. A route construction algorithm was applied to solve the STD problem in 4 delivery scenarios efficiently. The computational results showed that the proposed STD-VRPTW model can improve the level of customer service by satisfying the time-window constraint under any circumstances. The improvement can be very significant especially for large-scale network delivery tasks with no more increase in cost and environmental impacts.
Mountain erosion over 10 yr, 10 k.y., and 10 m.y. time scales
James W. Kirchner; Robert C. Finkel; Clifford S. Riebe; Darryl E. Granger; James L. Clayton; John G. King; Walter F. Megahan
2001-01-01
We used cosmogenic 10Be to measure erosion rates over 10 k.y. time scales at 32 Idaho mountain catchments, ranging from small experimental watersheds (0.2 km2) to large river basins (35 000 km2). These long-term sediment yields are, on average, 17 times higher than stream sediment fluxes measured over...
Multi-time, multi-scale correlation functions in turbulence and in turbulent models
Biferale, L.; Boffetta, G.; Celani, A.; Toschi, F.
1999-01-01
A multifractal-like representation for multi-time, multi-scale velocity correlation in turbulence and dynamical turbulent models is proposed. The importance of subleading contributions to time correlations is highlighted. The fulfillment of the dynamical constraints due to the equations of motion is
Mixing and flushing time scales in the Azhikode Estuary, southwest coast of India
Digital Repository Service at National Institute of Oceanography (India)
Revichandran, C.; Pylee, A.
Flushing time scales of the Azhikode Estuary, Kerala, India showed pronounced dry season and wet season signals as well as large inter-annual variation. Cumulative flushing time of the estuary varies from 4.8 tide cycles in April to 1.22 tide cycles...
Time Scale Analysis of Interest Rate Spreads and Output Using Wavelets
Directory of Open Access Journals (Sweden)
Marco Gallegati
2013-04-01
Full Text Available This paper adds to the literature on the information content of different spreads for real activity by explicitly taking into account the time scale relationship between a variety of monetary and financial indicators (real interest rate, term and credit spreads and output growth. By means of wavelet-based exploratory data analysis we obtain richer results relative to the aggregate analysis by identifying the dominant scales of variation in the data and the scales and location at which structural breaks have occurred. Moreover, using the “double residuals” regression analysis on a scale-by-scale basis, we find that changes in the spread in several markets have different information content for output at different time frames. This is consistent with the idea that allowing for different time scales of variation in the data can provide a fruitful understanding of the complex dynamics of economic relationships between variables with non-stationary or transient components, certainly richer than those obtained using standard time domain methods.
Projective synchronization of time-varying delayed neural network with adaptive scaling factors
International Nuclear Information System (INIS)
Ghosh, Dibakar; Banerjee, Santo
2013-01-01
Highlights: • Projective synchronization in coupled delayed neural chaotic systems with modulated delay time is introduced. • An adaptive rule for the scaling factors is introduced. • This scheme is highly applicable in secure communication. -- Abstract: In this work, the projective synchronization between two continuous time delayed neural systems with time varying delay is investigated. A sufficient condition for synchronization for the coupled systems with modulated delay is presented analytically with the help of the Krasovskii–Lyapunov approach. The effect of adaptive scaling factors on synchronization are also studied in details. Numerical simulations verify the effectiveness of the analytic results
Time scales of the stick–slip dynamics of the peeling of an adhesive tape
Mishra, Nachiketa; Parida, Nigam Chandra; Raha, Soumyendu
2015-01-01
The stick–slip dynamics of the peeling of an adhesive tape is characterized by bifurcations that have been experimentally well studied. In this work, we investigate the time scale in which the the stick–slips happen leading to the bifurcations. This is fundamental to understanding the triboluminescence and acoustic emissions associated with the bifurcations. We establish a relationship between the time scale of the bifurcations and the inherent mathematical structure of the peeling dynamics by studying a characteristic time quantity associated with the dynamics. PMID:25663802
Measurement of the Rise-Time in a Single Sided Ladder Detector
International Nuclear Information System (INIS)
Gerber, C.E.
1997-01-01
In this note we report on the measurement of the preamplifier output rise time for a SVXII chip mounted on a D0 single sided ladder. The measurements were performed on the ladder 001-883-L, using the laser test stand of Lab D. The rise time was measured for different values of the response (or bandwidth) of the preamplifier. As a bigger bandwidth results in longer rise times and therefore in less noise, the largest possible bandwidth consistent with the time between bunch crossings should be chosen to operate the detectors. The rise time is defined as the time elapsed between 10% and 90% of the charge is collected. It is also interesting to measure the time for full charge collection and the percentage of charge collected in 132 ns and 396 ns. The results are shown in table 1, for bandwidths between 2 and 63 (binary numbers). The uncertainty on the time measurement is considered to be ∼ 10 ns. Figure 1 schematically defines the four quantities measured: rise time, time of full charge collection, and percentage of charge collected in 132 ns and 396 ns. Figures 2 to 8 are the actual measurements for bandwidths of 2, 4, 8, 12, 24, 32 and 63. Figure 9 is a second measurement for BW=24, used as a consistency check of the system and the time measurement performed on the plots. The data indicate that the single sided ladders can be operated at BW=63 for 396 ns and BW=12 for 132 ns, achieving full charge collection. This will result in smaller noise than originally anticipated.
Li, Xingxing
2014-05-01
Earthquake monitoring and early warning system for hazard assessment and mitigation has traditional been based on seismic instruments. However, for large seismic events, it is difficult for traditional seismic instruments to produce accurate and reliable displacements because of the saturation of broadband seismometers and problematic integration of strong-motion data. Compared with the traditional seismic instruments, GPS can measure arbitrarily large dynamic displacements without saturation, making them particularly valuable in case of large earthquakes and tsunamis. GPS relative positioning approach is usually adopted to estimate seismic displacements since centimeter-level accuracy can be achieved in real-time by processing double-differenced carrier-phase observables. However, relative positioning method requires a local reference station, which might itself be displaced during a large seismic event, resulting in misleading GPS analysis results. Meanwhile, the relative/network approach is time-consuming, particularly difficult for the simultaneous and real-time analysis of GPS data from hundreds or thousands of ground stations. In recent years, several single-receiver approaches for real-time GPS seismology, which can overcome the reference station problem of the relative positioning approach, have been successfully developed and applied to GPS seismology. One available method is real-time precise point positioning (PPP) relied on precise satellite orbit and clock products. However, real-time PPP needs a long (re)convergence period, of about thirty minutes, to resolve integer phase ambiguities and achieve centimeter-level accuracy. In comparison with PPP, Colosimo et al. (2011) proposed a variometric approach to determine the change of position between two adjacent epochs, and then displacements are obtained by a single integration of the delta positions. This approach does not suffer from convergence process, but the single integration from delta positions to
Directory of Open Access Journals (Sweden)
Donald A. McLaren
2013-04-01
Full Text Available This paper describes and tests a wavelet-based implicit numerical method for solving partial differential equations. Intended for problems with localized small-scale interactions, the method exploits the form of the wavelet decomposition to divide the implicit system created by the time-discretization into multiple smaller systems that can be solved sequentially. Included is a test on a basic non-linear problem, with both the results of the test, and the time required to calculate them, compared with control results based on a single system with fine resolution. The method is then tested on a non-trivial problem, its computational time and accuracy checked against control results. In both tests, it was found that the method requires less computational expense than the control. Furthermore, the method showed convergence towards the fine resolution control results.
A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China.
Xu, Lilai; Gao, Peiqing; Cui, Shenghui; Liu, Chun
2013-06-01
Accurate forecasting of municipal solid waste (MSW) generation is crucial and fundamental for the planning, operation and optimization of any MSW management system. Comprehensive information on waste generation for month-scale, medium-term and long-term time scales is especially needed, considering the necessity of MSW management upgrade facing many developing countries. Several existing models are available but of little use in forecasting MSW generation at multiple time scales. The goal of this study is to propose a hybrid model that combines the seasonal autoregressive integrated moving average (SARIMA) model and grey system theory to forecast MSW generation at multiple time scales without needing to consider other variables such as demographics and socioeconomic factors. To demonstrate its applicability, a case study of Xiamen City, China was performed. Results show that the model is robust enough to fit and forecast seasonal and annual dynamics of MSW generation at month-scale, medium- and long-term time scales with the desired accuracy. In the month-scale, MSW generation in Xiamen City will peak at 132.2 thousand tonnes in July 2015 - 1.5 times the volume in July 2010. In the medium term, annual MSW generation will increase to 1518.1 thousand tonnes by 2015 at an average growth rate of 10%. In the long term, a large volume of MSW will be output annually and will increase to 2486.3 thousand tonnes by 2020 - 2.5 times the value for 2010. The hybrid model proposed in this paper can enable decision makers to develop integrated policies and measures for waste management over the long term. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wang, Xu; Gao, Zhensen; Kataoka, Nobuyuki; Wada, Naoya
2010-05-10
A novel scheme using single phase modulator for simultaneous time domain spectral phase encoding (SPE) signal generation and DPSK data modulation is proposed and experimentally demonstrated. Array- Waveguide-Grating and Variable-Bandwidth-Spectrum-Shaper based devices can be used for decoding the signal directly in spectral domain. The effects of fiber dispersion, light pulse width and timing error on the coding performance have been investigated by simulation and verified in experiment. In the experiment, SPE signal with 8-chip, 20GHz/chip optical code patterns has been generated and modulated with 2.5 Gbps DPSK data using single modulator. Transmission of the 2.5 Gbps data over 34km fiber with BEROCDMA) and secure optical communication applications. (c) 2010 Optical Society of America.
Reduction In Setup Time By Single Minute Exchange Of Dies SMED Methodology
Directory of Open Access Journals (Sweden)
Pallavi A. Gade
2015-08-01
Full Text Available Life is a race if you dont chase it someone is definitely chase you and will go ahead. Hence to survive in todays business world every manufacturer has to have some idea and plans for their betterment. Market scenario has nearly change after 1990s that every manufacturer must go through the global competition demand for short lead time demand for variety small lot sizes and also proliferation of OEMs. If we have to increase the frequency of delivery without compromising the quality Single Minute Exchange of Dies is the answer. Single Minute Exchange of Dies is not only apply to bottleneck machines it is to be implemented company wide and aim must be to bring all setup time to less than ten minutes in this paper some techniques basic procedure problems faced by companies are discussed and solution for them are suggested.
Single molecule diffusion and the solution of the spherically symmetric residence time equation.
Agmon, Noam
2011-06-16
The residence time of a single dye molecule diffusing within a laser spot is propotional to the total number of photons emitted by it. With this application in mind, we solve the spherically symmetric "residence time equation" (RTE) to obtain the solution for the Laplace transform of the mean residence time (MRT) within a d-dimensional ball, as a function of the initial location of the particle and the observation time. The solutions for initial conditions of potential experimental interest, starting in the center, on the surface or uniformly within the ball, are explicitly presented. Special cases for dimensions 1, 2, and 3 are obtained, which can be Laplace inverted analytically for d = 1 and 3. In addition, the analytic short- and long-time asymptotic behaviors of the MRT are derived and compared with the exact solutions for d = 1, 2, and 3. As a demonstration of the simplification afforded by the RTE, the Appendix obtains the residence time distribution by solving the Feynman-Kac equation, from which the MRT is obtained by differentiation. Single-molecule diffusion experiments could be devised to test the results for the MRT presented in this work. © 2011 American Chemical Society
Assessing Health Status in Inflammatory Bowel Disease using a Novel Single-Item Numeric Rating Scale
Surti, Bijal; Spiegel, Brennan; Ippoliti, Andrew; Vasiliauskas, Eric; Simpson, Peter; Shih, David; Targan, Stephan; McGovern, Dermot; Melmed, Gil Y.
2014-01-01
Background Current instruments used to measure disease activity and health-related quality of life (HRQOL) in patients with Crohn’s disease (CD) and ulcerative colitis (UC) are often cumbersome, time-consuming, and expensive; although used in clinical trials, they are not convenient for clinical practice. A numeric rating scale (NRS) is a quick, inexpensive, and convenient patient-reported outcome (PRO) that can capture the patient’s overall perception of health. Aims To assess the validity, reliability, and responsiveness of an NRS and evaluate its use in clinical practice in patients with CD and UC. Methods We prospectively evaluated patient-reported NRS scores and measured correlations between NRS and a range of severity measures, including physician-reported NRS, Crohn’s disease activity index (CDAI), Harvey-Bradshaw index (HBI), inflammatory bowel disease questionnaire (IBDQ), and C-reactive protein (CRP) in patients with CD. Subsequently, we evaluated the correlation between the NRS and standard measures of health status (HBI or simple colitis clinical activity index [SCCAI]) and laboratory tests (sedimentation rate [ESR], CRP, and fecal calprotectin) in patients with CD and UC. Results The patient-reported NRS showed excellent correlation with CDAI (R2=0.59, p<0.0001), IBDQ (R2=0.66, p<0.0001), and HBI (R2=0.32, p<0.0001) in patients with CD. The NRS showed poor, but statistically significant correlation with SCCAI (R2=0.25, p<0.0001) in patients with UC. The NRS did not correlate with CRP, ESR, or calprotectin. The NRS was reliable and responsive to change. Conclusions The NRS is a valid, reliable, and responsive measure that may be useful to evaluate patients with CD and possibly UC. PMID:23250673
A multiple-time-scale approach to the control of ITBs on JET
Energy Technology Data Exchange (ETDEWEB)
Laborde, L.; Mazon, D.; Moreau, D. [EURATOM-CEA Association (DSM-DRFC), CEA Cadarache, 13 - Saint Paul lez Durance (France); Moreau, D. [Culham Science Centre, EFDA-JET, Abingdon, OX (United Kingdom); Ariola, M. [EURATOM/ENEA/CREATE Association, Univ. Napoli Federico II, Napoli (Italy); Cordoliani, V. [Ecole Polytechnique, 91 - Palaiseau (France); Tala, T. [EURATOM-Tekes Association, VTT Processes (Finland)
2005-07-01
The simultaneous real-time control of the current and temperature gradient profiles could lead to the steady state sustainment of an internal transport barrier (ITB) and so to a stationary optimized plasma regime. Recent experiments in JET have demonstrated significant progress in achieving such a control: different current and temperature gradient target profiles have been reached and sustained for several seconds using a controller based on a static linear model. It's worth noting that the inverse safety factor profile evolves on a slow time scale (resistive time) while the normalized electron temperature gradient reacts on a faster one (confinement time). Moreover these experiments have shown that the controller was sensitive to rapid plasma events such as transient ITBs during the safety factor profile evolution or MHD instabilities which modify the pressure profiles on the confinement time scale. In order to take into account the different dynamics of the controlled profiles and to better react to rapid plasma events the control technique is being improved by using a multiple-time-scale approximation. The paper describes the theoretical analysis and closed-loop simulations using a control algorithm based on two-time-scale state-space model. These closed-loop simulations using the full dynamic but linear model used for the controller design to simulate the plasma response have demonstrated that this new controller allows the normalized electron temperature gradient target profile to be reached faster than the one used in previous experiments. (A.C.)
A multiple-time-scale approach to the control of ITBs on JET
International Nuclear Information System (INIS)
Laborde, L.; Mazon, D.; Moreau, D.; Moreau, D.; Ariola, M.; Cordoliani, V.; Tala, T.
2005-01-01
The simultaneous real-time control of the current and temperature gradient profiles could lead to the steady state sustainment of an internal transport barrier (ITB) and so to a stationary optimized plasma regime. Recent experiments in JET have demonstrated significant progress in achieving such a control: different current and temperature gradient target profiles have been reached and sustained for several seconds using a controller based on a static linear model. It's worth noting that the inverse safety factor profile evolves on a slow time scale (resistive time) while the normalized electron temperature gradient reacts on a faster one (confinement time). Moreover these experiments have shown that the controller was sensitive to rapid plasma events such as transient ITBs during the safety factor profile evolution or MHD instabilities which modify the pressure profiles on the confinement time scale. In order to take into account the different dynamics of the controlled profiles and to better react to rapid plasma events the control technique is being improved by using a multiple-time-scale approximation. The paper describes the theoretical analysis and closed-loop simulations using a control algorithm based on two-time-scale state-space model. These closed-loop simulations using the full dynamic but linear model used for the controller design to simulate the plasma response have demonstrated that this new controller allows the normalized electron temperature gradient target profile to be reached faster than the one used in previous experiments. (A.C.)
Kajian dan Implementasi Real TIME Operating System pada Single Board Computer Berbasis Arm
A, Wiedjaja; M, Handi; L, Jonathan; Christian, Benyamin; Kristofel, Luis
2014-01-01
Operating System is an important software in computer system. For personal and office use the operating system is sufficient. However, to critical mission applications such as nuclear power plants and braking system on the car (auto braking system) which need a high level of reliability, it requires operating system which operates in real time. The study aims to assess the implementation of the Linux-based operating system on a Single Board Computer (SBC) ARM-based, namely Pandaboard ES with ...
Single machine scheduling with time-dependent linear deterioration and rate-modifying maintenance
Rustogi, Kabir; Strusevich, Vitaly A.
2015-01-01
We study single machine scheduling problems with linear time-dependent deterioration effects and maintenance activities. Maintenance periods (MPs) are included into the schedule, so that the machine, that gets worse during the processing, can be restored to a better state. We deal with a job-independent version of the deterioration effects, that is, all jobs share a common deterioration rate. However, we introduce a novel extension to such models and allow the deterioration rates to change af...
Covariant single-time equations for a system of N spinor particles
International Nuclear Information System (INIS)
Dej, E.A.; Kapshaj, V.N.; Skachkov, N.B.
1993-01-01
Based on the field-theoretical Green functions that describe a system of N fermions in terms of a single-time variables we have derived covariant equations for the wave function of a bound state. The interaction operators in these equations and normalization conditions for the wave function are determined. As an example, the baryon is considered as a bound state of three quarks. 19 refs.; 1 fig
Time and amplitude dependent damping in a single crystal of zirconium
International Nuclear Information System (INIS)
Atrens, A.; Ritchie, I.G.; Sprungmann, K.W.; CEA Centre d'Etudes Nucleaires de Grenoble, 38
1977-01-01
The amplitude dependent and time dependent damping in a single crystal of zirconium has been investigated in the temperature range ambient to 400 0 C. The results are attributed to a combination of dislocation unpinning and pin rearrangement. After stabilization of the pin distribution by vibration conditioning, followed by a sudden large increase in amplitude, it is shown that the specimen retains a memory of the stabilized state
Time profile of harmonics generated by a single atom in a strong electromagnetic field
International Nuclear Information System (INIS)
Antoine, P.; Piraux, B.; Maquet, A.
1995-01-01
We show that the time profile of the harmonics emitted by a single atom exposed to a strong electromagnetic field may be obtained through a wavelet or a Gabor analysis of the acceleration of the atomic dipole. This analysis is extremely sensitive to the details of the dynamics and sheds some light on the competition between the atomic excitation or ionization processes and photon emission. For illustration we study the interaction of atomic hydrogen with an intense laser pulse
Lung Injury; Relates to Real-Time Endoscopic Monitoring of Single Cells Respiratory Health in Lung
2017-09-01
AWARD NUMBER: W81XWH-16-1-0253 TITLE: Lung Injury; Relates to Real- Time Endoscopic Monitoring of Single Cells Respiratory Health in Lung...2017 TYPE OF REPORT: Annual PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION ...STATEMENT: Approved for Public Release; Distribution Unlimited The views, opinions and/or findings contained in this report are those of the author(s
Rise time of voltage pulses in NbN superconducting single photon detectors
Energy Technology Data Exchange (ETDEWEB)
Smirnov, K. V. [Moscow State Pedagogical University, 1 Malaya Pirogovskaya St., 119435 Moscow (Russian Federation); CJSC “Superconducting Nanotechnology” (Scontel), 5/22-1 Rossolimo St., 119021 Moscow (Russian Federation); National Research University Higher School of Economics, Moscow Institute of Electronics and Mathematics, 34 Tallinskaya St., 109028 Moscow (Russian Federation); Divochiy, A. V.; Karpova, U. V.; Morozov, P. V. [CJSC “Superconducting Nanotechnology” (Scontel), 5/22-1 Rossolimo St., 119021 Moscow (Russian Federation); Vakhtomin, Yu. B.; Seleznev, V. A. [Moscow State Pedagogical University, 1 Malaya Pirogovskaya St., 119435 Moscow (Russian Federation); CJSC “Superconducting Nanotechnology” (Scontel), 5/22-1 Rossolimo St., 119021 Moscow (Russian Federation); Sidorova, M. V. [Moscow State Pedagogical University, 1 Malaya Pirogovskaya St., 119435 Moscow (Russian Federation); Zotova, A. N.; Vodolazov, D. Yu. [Institute for Physics of Microstructure, Russian Academy of Sciences, GSP-105, 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod (Russian Federation)
2016-08-01
We have found experimentally that the rise time of voltage pulse in NbN superconducting single photon detectors increases nonlinearly with increasing the length of the detector L. The effect is connected with dependence of resistance of the detector R{sub n}, which appears after photon absorption, on its kinetic inductance L{sub k} and, hence, on the length of the detector. This conclusion is confirmed by our calculations in the framework of two temperature model.
Scaling of the first-passage time of biased diffusion on hierarchical comb structures
International Nuclear Information System (INIS)
Lin Zhifang; Tao Ruibao.
1989-12-01
Biased diffusion on hierarchical comb structures is studied within an exact renormalization group scheme. The scaling exponents of the moments of the first-passage time for random walks are obtained. It is found that the scaling properties of the diffusion depend only on the direction of bias. In this particular case, the presence of bias may give rise to a new multifractality. (author). 7 refs, 2 figs
Antipersistent dynamics in short time scale variability of self-potential signals
Cuomo, V.; Lanfredi, M.; Lapenna, V.; Macchiato, M.; Ragosta, M.; Telesca, L.
2000-01-01
Time scale properties of self-potential signals are investigated through the analysis of the second order structure function (variogram), a powerful tool to investigate the spatial and temporal variability of observational data. In this work we analyse two sequences of self-potential values measured by means of a geophysical monitoring array located in a seismically active area of Southern Italy. The range of scales investigated goes from a few minutes to several days. It is shown that signal...
Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period
DEFF Research Database (Denmark)
Blunier, T; Brook, E J
2001-01-01
A precise relative chronology for Greenland and West Antarctic paleotemperature is extended to 90,000 years ago, based on correlation of atmospheric methane records from the Greenland Ice Sheet Project 2 and Byrd ice cores. Over this period, the onset of seven major millennial-scale warmings in A....... This pattern provides further evidence for the operation of a "bipolar see-saw" in air temperatures and an oceanic teleconnection between the hemispheres on millennial time scales....
An alcator-like confinement time scaling law derived from buckingham's PI theorem
International Nuclear Information System (INIS)
Roth, J.R.
1983-01-01
The unsatisfactory state of understanding of particle transport and confinement in tokamaks is well known. The best available theory, neoclassical transport, predicts a confinement time which scales as the square of the magnetic field, and inversely as the number density. Until recently, the best available phenomenological scaling law was the Alcator scaling law. This scaling law has recently been supplanted by the neoAlcator scaling law. Both of these expressions are unsatisfactory, because they not only are unsupported by any physical theory, but also their numerical constants are dimensional, suggesting that additional physical parameters need to be accounted for. A more firmly based scaling law can be derived from Buckingham's pi theorem. We adopt the particle confinement time as the dependent variable (derived dimension), and as independent variables (fundamental dimensions) we use the plasma volume, the average ion charge density, the ion current on the limiter, and the magnetic induction. From Buckingham's pi theorem, we obtain an equation which correctly predicts the absence of magnetic induction dependence, and the direct dependence on the ion density. The dependence on the product of the major radius and the plasma radius is intermediate between the original and neoAlcator scaling laws, and may be consistent with the data if the ion kinetic temperature and limiter area were accounted for
Directory of Open Access Journals (Sweden)
Othman M. K. Alsmadi
2015-01-01
Full Text Available A robust computational technique for model order reduction (MOR of multi-time-scale discrete systems (single input single output (SISO and multi-input multioutput (MIMO is presented in this paper. This work is motivated by the singular perturbation of multi-time-scale systems where some specific dynamics may not have significant influence on the overall system behavior. The new approach is proposed using genetic algorithms (GA with the advantage of obtaining a reduced order model, maintaining the exact dominant dynamics in the reduced order, and minimizing the steady state error. The reduction process is performed by obtaining an upper triangular transformed matrix of the system state matrix defined in state space representation along with the elements of B, C, and D matrices. The GA computational procedure is based on maximizing the fitness function corresponding to the response deviation between the full and reduced order models. The proposed computational intelligence MOR method is compared to recently published work on MOR techniques where simulation results show the potential and advantages of the new approach.
Time-of-flight camera via a single-pixel correlation image sensor
Mao, Tianyi; Chen, Qian; He, Weiji; Dai, Huidong; Ye, Ling; Gu, Guohua
2018-04-01
A time-of-flight imager based on single-pixel correlation image sensors is proposed for noise-free depth map acquisition in presence of ambient light. Digital micro-mirror device and time-modulated IR-laser provide spatial and temporal illumination on the unknown object. Compressed sensing and ‘four bucket principle’ method are combined to reconstruct the depth map from a sequence of measurements at a low sampling rate. Second-order correlation transform is also introduced to reduce the noise from the detector itself and direct ambient light. Computer simulations are presented to validate the computational models and improvement of reconstructions.
On the thermal inertia and time constant of single-family houses
Energy Technology Data Exchange (ETDEWEB)
Hedbrant, J.
2001-08-01
Since the 1970s, electricity has become a common heating source in Swedish single-family houses. About one million small houses can use electricity for heating, about 600.000 have electricity as the only heating source, A liberalised European electricity market would most likely raise the Swedish electricity prices during daytime on weekdays and lower it at other times. In the long run, electrical heating of houses would be replaced by fuels, but in the shorter perspective, other strategies may be considered. This report evaluates the use of electricity for heating a dwelling, or part of it, at night when both the demand and the price are low. The stored heat is utilised in the daytime some hours later, when the electricity price is high. Essential for heat storage is the thermal time constant. The report gives a simple theoretical framework for the calculation of the time constant for a single-family house with furniture. Furthermore the comfort time constant, that is, the time for a house to cool down from a maximum to a minimum acceptable temperature, is derived. Two theoretical model houses are calculated, and the results are compared to data from empirical studies in three inhabited test houses. The results show that it was possible to store about 8 kWh/K in a house from the seventies and about 5 kWh/K in a house from the eighties. The time constants were 34 h and 53 h, respectively. During winter conditions with 0 deg C outdoor, the 'comfort' time constants with maximum and minimum indoor temperatures of 23 and 20 deg C were 6 h and 10 h. The results indicate that the maximum load-shifting potential of an average single family house is about 1 kw during 16 daytime hours shifted into 2 kw during 8 night hours. Upscaled to the one million Swedish single-family houses that can use electricity as a heating source, the maximum potential is 1000 MW daytime time-shifted into 2000 MW at night.
Real-time, single-step bioassay using nanoplasmonic resonator with ultra-high sensitivity
Energy Technology Data Exchange (ETDEWEB)
Zhang, Xiang; Ellman, Jonathan A; Chen, Fanqing Frank; Su, Kai-Hang; Wei, Qi-Huo; Sun, Cheng
2014-04-01
A nanoplasmonic resonator (NPR) comprising a metallic nanodisk with alternating shielding layer(s), having a tagged biomolecule conjugated or tethered to the surface of the nanoplasmonic resonator for highly sensitive measurement of enzymatic activity. NPRs enhance Raman signals in a highly reproducible manner, enabling fast detection of protease and enzyme activity, such as Prostate Specific Antigen (paPSA), in real-time, at picomolar sensitivity levels. Experiments on extracellular fluid (ECF) from paPSA-positive cells demonstrate specific detection in a complex bio-fluid background in real-time single-step detection in very small sample volumes.
Babin, Anatoli
2016-01-01
In this monograph, the authors present their recently developed theory of electromagnetic interactions. This neoclassical approach extends the classical electromagnetic theory down to atomic scales and allows the explanation of various non-classical phenomena in the same framework. While the classical Maxwell–Lorentz electromagnetism theory succeeds in describing the physical reality at macroscopic scales, it struggles at atomic scales. Here, quantum mechanics traditionally takes over to describe non-classical phenomena such as the hydrogen spectrum and de Broglie waves. By means of modifying the classical theory, the approach presented here is able to consistently explain quantum-mechanical effects, and while similar to quantum mechanics in some respects, this neoclassical theory also differs markedly from it. In particular, the newly developed framework omits probabilistic interpretations of the wave function and features a new fundamental spatial scale which, at the size of the free electron, is much lar...
Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bona, Marcella; Bondarenko, Valery; Bondioli, Mario; Boonekamp, Maarten; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Caminada, Lea Michaela; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Colijn, Auke-Pieter; Collard, Caroline; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lotto, Barbara; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dean, Simon; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dobson, Marc; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jürgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hackenburg, Robert; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hong, Tae Min; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Ilic, Nikolina; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kasmi, Azzedine; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khakzad, Mohsen; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Lawrence; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamäki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kraus, Jana; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Leltchouk, Mikhail; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Lilley, Joseph; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian Thomas; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morin, Jerome; Morley, Anthony Keith; Mornacchi, Giuseppe; Morozov, Sergey; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Muir, Alex; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olcese, Marco; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penning, Bjoern; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Perus, Antoine; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Placakyte, Ringaile; Plamondon, Mathieu; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Joe; Price, Lawrence; Price, Michael John; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Renkel, Peter; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodriguez, Diego; Roe, Adam; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romanov, Victor; Romeo, Gaston; Romero Adam, Elena; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Takashi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuh, Silvia; Schuler, Georges; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloper, John erik; Smakhtin, Vladimir; Smart, Ben; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Tobias, Jürgen; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendland, Dennis; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Catherine; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zenonos, Zenonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz
2013-03-02
The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of $\\sqrt{s}$ = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.
Camassa, Roberto; McLaughlin, Richard M.; Viotti, Claudio
2010-11-01
The time evolution of a passive scalar advected by parallel shear flows is studied for a class of rapidly varying initial data. Such situations are of practical importance in a wide range of applications from microfluidics to geophysics. In these contexts, it is well-known that the long-time evolution of the tracer concentration is governed by Taylor's asymptotic theory of dispersion. In contrast, we focus here on the evolution of the tracer at intermediate time scales. We show how intermediate regimes can be identified before Taylor's, and in particular, how the Taylor regime can be delayed indefinitely by properly manufactured initial data. A complete characterization of the sorting of these time scales and their associated spatial structures is presented. These analytical predictions are compared with highly resolved numerical simulations. Specifically, this comparison is carried out for the case of periodic variations in the streamwise direction on the short scale with envelope modulations on the long scales, and show how this structure can lead to "anomalously" diffusive transients in the evolution of the scalar onto the ultimate regime governed by Taylor dispersion. Mathematically, the occurrence of these transients can be viewed as a competition in the asymptotic dominance between large Péclet (Pe) numbers and the long/short scale aspect ratios (LVel/LTracer≡k), two independent nondimensional parameters of the problem. We provide analytical predictions of the associated time scales by a modal analysis of the eigenvalue problem arising in the separation of variables of the governing advection-diffusion equation. The anomalous time scale in the asymptotic limit of large k Pe is derived for the short scale periodic structure of the scalar's initial data, for both exactly solvable cases and in general with WKBJ analysis. In particular, the exactly solvable sawtooth flow is especially important in that it provides a short cut to the exact solution to the
New time scale based k-epsilon model for near-wall turbulence
Yang, Z.; Shih, T. H.
1993-01-01
A k-epsilon model is proposed for wall bonded turbulent flows. In this model, the eddy viscosity is characterized by a turbulent velocity scale and a turbulent time scale. The time scale is bounded from below by the Kolmogorov time scale. The dissipation equation is reformulated using this time scale and no singularity exists at the wall. The damping function used in the eddy viscosity is chosen to be a function of R(sub y) = (k(sup 1/2)y)/v instead of y(+). Hence, the model could be used for flows with separation. The model constants used are the same as in the high Reynolds number standard k-epsilon model. Thus, the proposed model will be also suitable for flows far from the wall. Turbulent channel flows at different Reynolds numbers and turbulent boundary layer flows with and without pressure gradient are calculated. Results show that the model predictions are in good agreement with direct numerical simulation and experimental data.
Revealing time bunching effect in single-molecule enzyme conformational dynamics.
Lu, H Peter
2011-04-21
In this perspective, we focus our discussion on how the single-molecule spectroscopy and statistical analysis are able to reveal enzyme hidden properties, taking the study of T4 lysozyme as an example. Protein conformational fluctuations and dynamics play a crucial role in biomolecular functions, such as in enzymatic reactions. Single-molecule spectroscopy is a powerful approach to analyze protein conformational dynamics under physiological conditions, providing dynamic perspectives on a molecular-level understanding of protein structure-function mechanisms. Using single-molecule fluorescence spectroscopy, we have probed T4 lysozyme conformational motions under the hydrolysis reaction of a polysaccharide of E. coli B cell walls by monitoring the fluorescence resonant energy transfer (FRET) between a donor-acceptor probe pair tethered to T4 lysozyme domains involving open-close hinge-bending motions. Based on the single-molecule spectroscopic results, molecular dynamics simulation, a random walk model analysis, and a novel 2D statistical correlation analysis, we have revealed a time bunching effect in protein conformational motion dynamics that is critical to enzymatic functions. Bunching effect implies that conformational motion times tend to bunch in a finite and narrow time window. We show that convoluted multiple Poisson rate processes give rise to the bunching effect in the enzymatic reaction dynamics. Evidently, the bunching effect is likely common in protein conformational dynamics involving in conformation-gated protein functions. In this perspective, we will also discuss a new approach of 2D regional correlation analysis capable of analyzing fluctuation dynamics of complex multiple correlated and anti-correlated fluctuations under a non-correlated noise background. Using this new method, we are able to map out any defined segments along the fluctuation trajectories and determine whether they are correlated, anti-correlated, or non-correlated; after which, a
Computational Fluid Dynamics Study on the Effects of RATO Timing on the Scale Model Acoustic Test
Nielsen, Tanner; Williams, B.; West, Jeff
2015-01-01
The Scale Model Acoustic Test (SMAT) is a 5% scale test of the Space Launch System (SLS), which is currently being designed at Marshall Space Flight Center (MSFC). The purpose of this test is to characterize and understand a variety of acoustic phenomena that occur during the early portions of lift off, one being the overpressure environment that develops shortly after booster ignition. The SLS lift off configuration consists of four RS-25 liquid thrusters on the core stage, with two solid boosters connected to each side. Past experience with scale model testing at MSFC (in ER42), has shown that there is a delay in the ignition of the Rocket Assisted Take Off (RATO) motor, which is used as the 5% scale analog of the solid boosters, after the signal to ignite is given. This delay can range from 0 to 16.5ms. While this small of a delay maybe insignificant in the case of the full scale SLS, it can significantly alter the data obtained during the SMAT due to the much smaller geometry. The speed of sound of the air and combustion gas constituents is not scaled, and therefore the SMAT pressure waves propagate at approximately the same speed as occurs during full scale. However, the SMAT geometry is much smaller allowing the pressure waves to move down the exhaust duct, through the trench, and impact the vehicle model much faster than occurs at full scale. To better understand the effect of the RATO timing simultaneity on the SMAT IOP test data, a computational fluid dynamics (CFD) analysis was performed using the Loci/CHEM CFD software program. Five different timing offsets, based on RATO ignition delay statistics, were simulated. A variety of results and comparisons will be given, assessing the overall effect of RATO timing simultaneity on the SMAT overpressure environment.
Reusable single-port access device shortens operative time and reduces operative costs.
Shussman, Noam; Kedar, Asaf; Elazary, Ram; Abu Gazala, Mahmoud; Rivkind, Avraham I; Mintz, Yoav
2014-06-01
In recent years, single-port laparoscopy (SPL) has become an attractive approach for performing surgical procedures. The pitfalls of this approach are technical and financial. Financial concerns are due to the increased cost of dedicated devices and prolonged operating room time. Our aim was to calculate the cost of SPL using a reusable port and instruments in order to evaluate the cost difference between this approach to SPL using the available disposable ports and standard laparoscopy. We performed 22 laparoscopic procedures via the SPL approach using a reusable single-port access system and reusable laparoscopic instruments. These included 17 cholecystectomies and five other procedures. Operative time, postoperative length of stay (LOS) and complications were prospectively recorded and were compared with similar data from our SPL database. Student's t test was used for statistical analysis. SPL was successfully performed in all cases. Mean operative time for cholecystectomy was 72 min (range 40-116). Postoperative LOS was not changed from our standard protocols and was 1.1 days for cholecystectomy. The postoperative course was within normal limits for all patients and perioperative morbidity was recorded. Both operative time and length of hospital stay were shorter for the 17 patients who underwent cholecystectomy using a reusable port than for the matched previous 17 SPL cholecystectomies we performed (p cost difference. Operating with a reusable port ended up with an average cost savings of US$388 compared with using disposable ports, and US$240 compared with standard laparoscopy. Single-port laparoscopic surgery is a technically challenging and expensive surgical approach. Financial concerns among others have been advocated against this approach; however, we demonstrate herein that using a reusable port and instruments reduces operative time and overall operative costs, even beyond the cost of standard laparoscopy.
Zhu, Shijia; Beaulaurier, John; Deikus, Gintaras; Wu, Tao; Strahl, Maya; Hao, Ziyang; Luo, Guanzheng; Gregory, James A; Chess, Andrew; He, Chuan; Xiao, Andrew; Sebra, Robert; Schadt, Eric E; Fang, Gang
2018-05-15
N6-methyladenine (m6dA) has been discovered as a novel form of DNA methylation prevalent in eukaryotes, however, methods for high resolution mapping of m6dA events are still lacking. Single-molecule real-time (SMRT) sequencing has enabled the detection of m6dA events at single-nucleotide resolution in prokaryotic genomes, but its application to detecting m6dA in eukaryotic genomes has not been rigorously examined. Herein, we identified unique characteristics of eukaryotic m6dA methylomes that fundamentally differ from those of prokaryotes. Based on these differences, we describe the first approach for mapping m6dA events using SMRT sequencing specifically designed for the study of eukaryotic genomes, and provide appropriate strategies for designing experiments and carrying out sequencing in future studies. We apply the novel approach to study two eukaryotic genomes. For green algae, we construct the first complete genome-wide map of m6dA at single nucleotide and single molecule resolution. For human lymphoblastoid cells (hLCLs), joint analyses of SMRT sequencing and independent sequencing data suggest that putative m6dA events are enriched in the promoters of young, full length LINE-1 elements (L1s). These analyses demonstrate a general method for rigorous mapping and characterization of m6dA events in eukaryotic genomes. Published by Cold Spring Harbor Laboratory Press.
Time scales of magma transport and mixing at Kīlauea Volcano, Hawai’i
Rae, Auriol S.P.; Edmonds, Marie; Maclennan, John; Morgan, Daniel; Houghton, Bruce; Hartley, Margaret E.; Sides, Isobel
2016-01-01
Modeling of volcanic processes is limited by a lack of knowledge of the time scales of storage, mixing, and final ascent of magmas into the shallowest portions of volcanic plumbing systems immediately prior to eruption. It is impossible to measure these time scales directly; however, micro-analytical techniques provide indirect estimates based on the extent of diffusion of species through melts and crystals. We use diffusion in olivine phenocrysts from the A.D. 1959 Kīlauea Iki (Hawai‘i, USA)...
Time scale of scour around a pile in combined waves and current
DEFF Research Database (Denmark)
Petersen, Thor Ugelvig; Sumer, B. Mutlu; Fredsøe, Jørgen
The time scale of the scour process around a circular vertical pile is studied in combined waves and current. A series of tests were carried out in a flume with pile diameters 40 mm and 75 mm, in both steady current, waves and combined waves and current. In the combined wave and current flow regime...... the waves and the current were co-directional. All the tests were conducted in the live bed regime. The time scale of scour in combined waves and current is governed by three parameters, namely the current-velocity-to-wave-velocity ratio (Ucw), the Keulegan–Carpenter number (KC) and Shields parameter (Θw...
Rapid-mixing studies on the time-scale of radiation damage in cells
International Nuclear Information System (INIS)
Adams, G.E.; Michael, B.D.; Asquith, J.C.; Shenoy, M.A.; Watts, M.E.; Whillans, D.W.
1975-01-01
Rapid mixing studies were performed to determine the time scale of radiation damage in cells. There is evidence that the sensitizing effects of oxygen and other chemical dose-modifying agents on the response of cells to ionizing radiation involve fast free-radical processes. Fast response technique studies in bacterial systems have shown that extremely fast processes occur when the bacteria are exposed to oxygen or other dose-modifying agents during irradiation. The time scales observed were consistent with the involvement of fast free-radical reactions in the expression of these effects
New Bounds of Ostrowski–Gruss Type Inequality for (k + 1 Points on Time Scales
Directory of Open Access Journals (Sweden)
Eze R. Nwaeze
2017-11-01
Full Text Available The aim of this paper is to present three new bounds of the Ostrowski--Gr\\"uss type inequality for points $x_0,x_1,x_2,\\cdots,x_k$ on time scales. Our results generalize result of Ng\\^o and Liu, and extend results of Ujevi\\'c to time scales with $(k+1$ points. We apply our results to the continuous, discrete, and quantum calculus to obtain many new interesting inequalities. An example is also considered. The estimates obtained in this paper will be very useful in numerical integration especially for the continuous case.
Time-dependent approach to collisional ionization using exterior complex scaling
International Nuclear Information System (INIS)
McCurdy, C. William; Horner, Daniel A.; Rescigno, Thomas N.
2002-01-01
We present a time-dependent formulation of the exterior complex scaling method that has previously been used to treat electron-impact ionization of the hydrogen atom accurately at low energies. The time-dependent approach solves a driven Schroedinger equation, and scales more favorably with the number of electrons than the original formulation. The method is demonstrated in calculations for breakup processes in two dimensions (2D) and three dimensions for systems involving short-range potentials and in 2D for electron-impact ionization in the Temkin-Poet model for electron-hydrogen atom collisions
STM studies of an atomic-scale gate electrode formed by a single charged vacancy in GaAs
Lee, Donghun; Daughton, David; Gupta, Jay
2009-03-01
Electric-field control of spin-spin interactions at the atomic level is desirable for the realization of spintronics and spin-based quantum computation. Here we demonstrate the realization of an atomic-scale gate electrode formed by a single charged vacancy on the GaAs(110) surface[1]. We can position these vacancies with atomic precision using the tip of a home-built, low temperature STM. Tunneling spectroscopy of single Mn acceptors is used to quantify the electrostatic field as a function of distance from the vacancy. Single Mn acceptors are formed by substituting Mn adatoms for Ga atoms in the first layer of the p-GaAs(110) surface[2]. Depending on the distance, the in-gap resonance of single Mn acceptors can shift as much as 200meV. Our data indicate that the electrostatic field decays according to a screened Coulomb potential. The charge state of the vacancy can be switched to neutral, as evidenced by the Mn resonance returning to its unperturbed position. Reversible control of the local electric field as well as charged states of defects in semiconductors can open new insights such as realizing an atomic-scale gate control and studying spin-spin interactions in semiconductors. http://www.physics.ohio-state.edu/sim jgupta [1] D. Lee and J.A. Gupta (in preparation) [2] D. Kitchen et al., Nature 442, 436-439 (2006)
Scales are a visible peeling or flaking of outer skin layers. These layers are called the stratum ... Scales may be caused by dry skin, certain inflammatory skin conditions, or infections. Examples of disorders that ...
Rullan, Marc; Benzinger, Dirk; Schmidt, Gregor W; Milias-Argeitis, Andreas; Khammash, Mustafa
2018-05-17
Transcription is a highly regulated and inherently stochastic process. The complexity of signal transduction and gene regulation makes it challenging to analyze how the dynamic activity of transcriptional regulators affects stochastic transcription. By combining a fast-acting, photo-regulatable transcription factor with nascent RNA quantification in live cells and an experimental setup for precise spatiotemporal delivery of light inputs, we constructed a platform for the real-time, single-cell interrogation of transcription in Saccharomyces cerevisiae. We show that transcriptional activation and deactivation are fast and memoryless. By analyzing the temporal activity of individual cells, we found that transcription occurs in bursts, whose duration and timing are modulated by transcription factor activity. Using our platform, we regulated transcription via light-driven feedback loops at the single-cell level. Feedback markedly reduced cell-to-cell variability and led to qualitative differences in cellular transcriptional dynamics. Our platform establishes a flexible method for studying transcriptional dynamics in single cells. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Optimization of NANOGrav's time allocation for maximum sensitivity to single sources
International Nuclear Information System (INIS)
Christy, Brian; Anella, Ryan; Lommen, Andrea; Camuccio, Richard; Handzo, Emma; Finn, Lee Samuel
2014-01-01
Pulsar timing arrays (PTAs) are a collection of precisely timed millisecond pulsars (MSPs) that can search for gravitational waves (GWs) in the nanohertz frequency range by observing characteristic signatures in the timing residuals. The sensitivity of a PTA depends on the direction of the propagating GW source, the timing accuracy of the pulsars, and the allocation of the available observing time. The goal of this paper is to determine the optimal time allocation strategy among the MSPs in the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) for a single source of GW under a particular set of assumptions. We consider both an isotropic distribution of sources across the sky and a specific source in the Virgo cluster. This work improves on previous efforts by modeling the effect of intrinsic spin noise for each pulsar. We find that, in general, the array is optimized by maximizing time spent on the best-timed pulsars, with sensitivity improvements typically ranging from a factor of 1.5 to 4.
Plane-dependent ML scatter scaling: 3D extension of the 2D simulated single scatter (SSS) estimate
Rezaei, Ahmadreza; Salvo, Koen; Vahle, Thomas; Panin, Vladimir; Casey, Michael; Boada, Fernando; Defrise, Michel; Nuyts, Johan
2017-08-01
Scatter correction is typically done using a simulation of the single scatter, which is then scaled to account for multiple scatters and other possible model mismatches. This scaling factor is determined by fitting the simulated scatter sinogram to the measured sinogram, using only counts measured along LORs that do not intersect the patient body, i.e. ‘scatter-tails’. Extending previous work, we propose to scale the scatter with a plane dependent factor, which is determined as an additional unknown in the maximum likelihood (ML) reconstructions, using counts in the entire sinogram rather than only the ‘scatter-tails’. The ML-scaled scatter estimates are validated using a Monte-Carlo simulation of a NEMA-like phantom, a phantom scan with typical contrast ratios of a 68Ga-PSMA scan, and 23 whole-body 18F-FDG patient scans. On average, we observe a 12.2% change in the total amount of tracer activity of the MLEM reconstructions of our whole-body patient database when the proposed ML scatter scales are used. Furthermore, reconstructions using the ML-scaled scatter estimates are found to eliminate the typical ‘halo’ artifacts that are often observed in the vicinity of high focal uptake regions.
Time-sliced perturbation theory for large scale structure I: general formalism
Energy Technology Data Exchange (ETDEWEB)
Blas, Diego; Garny, Mathias; Sibiryakov, Sergey [Theory Division, CERN, CH-1211 Genève 23 (Switzerland); Ivanov, Mikhail M., E-mail: diego.blas@cern.ch, E-mail: mathias.garny@cern.ch, E-mail: mikhail.ivanov@cern.ch, E-mail: sergey.sibiryakov@cern.ch [FSB/ITP/LPPC, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne (Switzerland)
2016-07-01
We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein-de Sitter universe, the time evolution of the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This paves the way towards the systematic resummation of infrared effects in large scale structure formation. We also argue that the approach proposed here provides a natural framework to account for the influence of short-scale dynamics on larger scales along the lines of effective field theory.
Influence of the time scale on the construction of financial networks.
Emmert-Streib, Frank; Dehmer, Matthias
2010-09-30
In this paper we investigate the definition and formation of financial networks. Specifically, we study the influence of the time scale on their construction. For our analysis we use correlation-based networks obtained from the daily closing prices of stock market data. More precisely, we use the stocks that currently comprise the Dow Jones Industrial Average (DJIA) and estimate financial networks where nodes correspond to stocks and edges correspond to none vanishing correlation coefficients. That means only if a correlation coefficient is statistically significant different from zero, we include an edge in the network. This construction procedure results in unweighted, undirected networks. By separating the time series of stock prices in non-overlapping intervals, we obtain one network per interval. The length of these intervals corresponds to the time scale of the data, whose influence on the construction of the networks will be studied in this paper. Numerical analysis of four different measures in dependence on the time scale for the construction of networks allows us to gain insights about the intrinsic time scale of the stock market with respect to a meaningful graph-theoretical analysis.
Acceleration for 2D time-domain elastic full waveform inversion using a single GPU card
Jiang, Jinpeng; Zhu, Peimin
2018-05-01
Full waveform inversion (FWI) is a challenging procedure due to the high computational cost related to the modeling, especially for the elastic case. The graphics processing unit (GPU) has become a popular device for the high-performance computing (HPC). To reduce the long computation time, we design and implement the GPU-based 2D elastic FWI (EFWI) in time domain using a single GPU card. We parallelize the forward modeling and gradient calculations using the CUDA programming language. To overcome the limitation of relatively small global memory on GPU, the boundary saving strategy is exploited to reconstruct the forward wavefield. Moreover, the L-BFGS optimization method used in the inversion increases the convergence of the misfit function. A multiscale inversion strategy is performed in the workflow to obtain the accurate inversion results. In our tests, the GPU-based implementations using a single GPU device achieve >15 times speedup in forward modeling, and about 12 times speedup in gradient calculation, compared with the eight-core CPU implementations optimized by OpenMP. The test results from the GPU implementations are verified to have enough accuracy by comparing the results obtained from the CPU implementations.
Optimized quantum sensing with a single electron spin using real-time adaptive measurements
Bonato, C.; Blok, M. S.; Dinani, H. T.; Berry, D. W.; Markham, M. L.; Twitchen, D. J.; Hanson, R.
2016-03-01
Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz-1/2 over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.
Mesinger, F.
The traditional views hold that high-resolution limited area models (LAMs) down- scale large-scale lateral boundary information, and that predictability of small scales is short. Inspection of various rms fits/errors has contributed to these views. It would follow that the skill of LAMs should visibly deteriorate compared to that of their driver models at more extended forecast times. The limited area Eta Model at NCEP has an additional handicap of being driven by LBCs of the previous Avn global model run, at 0000 and 1200 UTC estimated to amount to about an 8 h loss in accuracy. This should make its relative skill compared to that of the Avn deteriorate even faster. These views are challenged by various Eta results including rms fits to raobs out to 84 h. It is argued that it is the largest scales that contribute the most to the skill of the Eta relative to that of the Avn.
Thermal diffuse scattering in time-of-flight neutron diffraction studied on SBN single crystals
International Nuclear Information System (INIS)
Prokert, F.; Savenko, B.N.; Balagurov, A.M.
1994-01-01
At time-of-flight (TOF) diffractometer D N-2, installed at the pulsed reactor IBR-2 in Dubna, Sr x Ba 1-x Nb 2 O 6 mixed single crystals (SBN-x) of different compositions (0.50 < x< 0.75) were investigated between 15 and 773 K. The diffraction patterns were found to be strongly influenced by the thermal diffuse scattering (TDS). The appearance of the TDS from the long wavelength acoustic models of vibration in single crystals is characterized by the ratio of the velocity of sound to the velocity of neutron. Due to the nature of the TOF Laue diffraction technique used on D N-2, the TDS around Bragg peaks has rather a complex profile. An understanding of the TDS close to Bragg peaks is essential in allowing the extraction of the diffuse scattering occurring at the diffuse ferroelectric phase transition in SBN crystals. 11 refs.; 9 figs.; 1 tab. (author)
Probing quantum entanglement in the Schwarzschild space-time beyond the single-mode approximation
He, Juan; Ding, Zhi-Yong; Ye, Liu
2018-05-01
In this paper, we deduce the vacuum structure for Dirac fields in the background of Schwarzschild space-time beyond the single-mode approximation and discuss the performance of quantum entanglement between particle and antiparticle modes of a Dirac field with Hawking effect. It is shown that Hawking radiation does not always destroy the physically accessible entanglement, and entanglement amplification may happen in some cases. This striking result is different from that of the single-mode approximation, which holds that the Hawking radiation can only destroy entanglement. Lastly, we analyze the physically accessible entanglement relation outside the event horizon and demonstrate that the monogamy inequality is constantly established regardless of the choice of given parameters.
Real-time imaging systems for superconducting nanowire single-photon detector arrays
Energy Technology Data Exchange (ETDEWEB)
Hofherr, Matthias
2014-07-01
Superconducting nanowire singe-photon detectors (SNSPD) are promising detectors in the field of applications, where single-photon resolution is required like in quantum optics, spectroscopy or astronomy. These cryogenic detectors gain from a broad spectrum in the optical and infrared range and deliver low dark counts and low jitter. This work provides a piece of deeper physical understanding of detector functionality in combination with highly engineered readout development. A detailed analysis focuses on the intrinsic detection mechanism of SNSPDs related to the detection in the infrared regime and the evolution of dark counts. With this fundamental knowledge, the next step is the development of a multi-pixel readout at cryogenic conditions. It is demonstrated, how two auspicious multi-pixel readout concepts can be realized, which enables statistical framing like in imaging applications using RSFQ electronics with fast framing rates and the readout of a detector array with continuous real-time single-photon resolution.
Intracranial MRA: single volume vs. multiple thin slab 3D time-of-flight acquisition.
Davis, W L; Warnock, S H; Harnsberger, H R; Parker, D L; Chen, C X
1993-01-01
Single volume three-dimensional (3D) time-of-flight (TOF) MR angiography is the most commonly used noninvasive method for evaluating the intracranial vasculature. The sensitivity of this technique to signal loss from flow saturation limits its utility. A recently developed multislab 3D TOF technique, MOTSA, is less affected by flow saturation and would therefore be expected to yield improved vessel visualization. To study this hypothesis, intracranial MR angiograms were obtained on 10 volunteers using three techniques: MOTSA, single volume 3D TOF using a standard 4.9 ms TE (3D TOFA), and single volume 3D TOF using a 6.8 ms TE (3D TOFB). All three sets of axial source images and maximum intensity projection (MIP) images were reviewed. Each exam was evaluated for the number of intracranial vessels visualized. A total of 502 vessel segments were studied with each technique. With use of the MIP images, 86% of selected vessels were visualized with MOTSA, 64% with 3D TOFA (TE = 4.9 ms), and 67% with TOFB (TE = 6.8 ms). Similarly, with the axial source images, 91% of selected vessels were visualized with MOTSA, 77% with 3D TOFA (TE = 4.9 ms), and 82% with 3D TOFB (TE = 6.8 ms). There is improved visualization of selected intracranial vessels in normal volunteers with MOTSA as compared with single volume 3D TOF. These improvements are believed to be primarily a result of decreased sensitivity to flow saturation seen with the MOTSA technique. No difference in overall vessel visualization was noted for the two single volume 3D TOF techniques.
The scaling of burnout data for a single fluid at a fixed pressure
International Nuclear Information System (INIS)
Kirby, G.J.
1966-12-01
The success of the scaling factor concept in linking burnout measurements made in two different fluids has been amply demonstrated. This memorandum investigates the possibility of linking measurements made on two different systems in the same fluid. It seems that good accuracy may be obtained for systems whose linear dimensions differ by as much as a factor of two; this offers the possibility of saving very substantial amounts of power in testing reactor fuel element. A novel conclusion is that systems do not need to be geometrically similar in order to be linked by scaling factors. (author)
Multi-scale Modeling of Compressible Single-phase Flow in Porous Media using Molecular Simulation
Saad, Ahmed Mohamed
2016-01-01
potential model that accounts for the molecular quadrupole moment of fluids with non-spherical molecules such as CO2. The potential model was used to simulate the thermodynamic equilibrium properties for single-phase and two-phase systems using the canonical
DEFF Research Database (Denmark)
Puig Arnavat, Maria; Shang, Lei; Sárossy, Zsuzsa
2016-01-01
The increasing demand for biomass pellets requires the investigation of alternative raw materials for pelletizetion. In the present paper, the pelletization process of fescue, alfalfa, sorghum, triticale, miscanthus and willow is studied to determine if results obtained in a single pellet press (...
International Nuclear Information System (INIS)
Voigt, C.; Denker, H.; Timmen, L.
2016-01-01
The latest generation of optical atomic clocks is approaching the level of one part in 10 18 in terms of frequency stability and uncertainty. For clock comparisons and the definition of international time scales, a relativistic redshift effect of the clock frequencies has to be taken into account at a corresponding uncertainty level of about 0.1 m 2 s -2 and 0.01 m in terms of gravity potential and height, respectively. Besides the predominant static part of the gravity potential, temporal variations must be considered in order to avoid systematic frequency shifts. Time-variable gravity potential components induced by tides and non-tidal mass redistributions are investigated with regard to the level of one part in 10 18 . The magnitudes and dominant time periods of the individual gravity potential contributions are investigated globally and for specific laboratory sites together with the related uncertainty estimates. The basics of the computation methods are presented along with the applied models, data sets and software. Solid Earth tides contribute by far the most dominant signal with a global maximum amplitude of 4.2 m 2 s -2 for the potential and a range (maximum-to-minimum) of up to 1.3 and 10.0 m 2 s -2 in terms of potential differences between specific laboratories over continental and intercontinental scales, respectively. Amplitudes of the ocean tidal loading potential can amount up to 1.25 m 2 s -2 , while the range of the potential between specific laboratories is 0.3 and 1.1 m 2 s -2 over continental and intercontinental scales, respectively. These are the only two contributors being relevant at a 10 -17 level. However, several other time-variable potential effects can particularly affect clock comparisons at the 10 -18 level. Besides solid Earth pole tides, these are non-tidal mass redistributions in the atmosphere, the oceans and the continental water storage. (authors)
Schepke, Ulf; Meijer, Henny J A; Kerdijk, Wouter; Cune, Marco S
2015-09-01
Digital impression-making techniques are supposedly more patient friendly and less time-consuming than analog techniques, but evidence is lacking to substantiate this assumption. The purpose of this in vivo within-subject comparison study was to examine patient perception and time consumption for 2 complete-arch impression-making methods: a digital and an analog technique. Fifty participants with a single missing premolar were included. Treatment consisted of implant therapy. Three months after implant placement, complete-arch digital (Cerec Omnicam; Sirona) and analog impressions (semi-individual tray, Impregum; 3M ESPE) were made, and the participant's opinion was evaluated with a standard questionnaire addressing several domains (inconvenience, shortness of breath, fear of repeating the impression, and feelings of helplessness during the procedure) with the visual analog scale. All participants were asked which procedure they preferred. Operating time was measured with a stopwatch. The differences between impressions made for maxillary and mandibular implants were also compared. The data were analyzed with paired and independent sample t tests, and effect sizes were calculated. Statistically significant differences were found in favor of the digital procedure regarding all subjective domains (P<.001), with medium to large effect sizes. Of all the participants, over 80% preferred the digital procedure to the analog procedure. The mean duration of digital impression making was 6 minutes and 39 seconds (SD=1:51) versus 12 minutes and 13 seconds (SD=1:24) for the analog impression (P<.001, effect size=2.7). Digital impression making for the restoration of a single implant crown takes less time than analog impression making. Furthermore, participants preferred the digital scan and reported less inconvenience, less shortness of breath, less fear of repeating the impression, and fewer feelings of helplessness during the procedure. Copyright © 2015 Editorial Council
Cosmological special relativity the large scale structure of space, time and velocity
Carmeli, Moshe
1997-01-01
This book deals with special relativity theory and its application to cosmology. It presents Einstein's theory of space and time in detail, and describes the large scale structure of space, time and velocity as a new cosmological special relativity. A cosmological Lorentz-like transformation, which relates events at different cosmic times, is derived and applied. A new law of addition of cosmic times is obtained, and the inflation of the space at the early universe is derived, both from the cosmological transformation. The book will be of interest to cosmologists, astrophysicists, theoretical
Cosmological special relativity the large scale structure of space, time and velocity
Carmeli, Moshe
2002-01-01
This book presents Einstein's theory of space and time in detail, and describes the large-scale structure of space, time and velocity as a new cosmological special relativity. A cosmological Lorentz-like transformation, which relates events at different cosmic times, is derived and applied. A new law of addition of cosmic times is obtained, and the inflation of the space at the early universe is derived, both from the cosmological transformation. The relationship between cosmic velocity, acceleration and distances is given. In the appendices gravitation is added in the form of a cosmological g
International Nuclear Information System (INIS)
Kyrala, G.A.
1987-01-01
A two-source shear pattern recording is proposed as a method for single-shot measurement of the pulse shape from nearly monochromatic sources whose pulse lengths are shorter than their coherence times. The basis of this method relies on the assertion that if two identical electromagnetic pulses are recombined with a time delay greater than the sum of their pulse widths, the recordable spatial pattern has no fringes in it. At an arbitrary delay, translated into an actual spatial recording position, the recorded modulated intensity will sample the corresponding laser intensity at that delay time, but with a modulation due to the coherence function of the electromagnetic pulse. Two arrangements are proposed for recording the pattern. The principles, the design parameters, and the methodologies of these arrangements are presented. Resolutions of the configurations and their limitations are given as well
Multiple Time-Instances Features of Degraded Speech for Single Ended Quality Measurement
Directory of Open Access Journals (Sweden)
Rajesh Kumar Dubey
2017-01-01
Full Text Available The use of single time-instance features, where entire speech utterance is used for feature computation, is not accurate and adequate in capturing the time localized information of short-time transient distortions and their distinction from plosive sounds of speech, particularly degraded by impulsive noise. Hence, the importance of estimating features at multiple time-instances is sought. In this, only active speech segments of degraded speech are used for features computation at multiple time-instances on per frame basis. Here, active speech means both voiced and unvoiced frames except silence. The features of different combinations of multiple contiguous active speech segments are computed and called multiple time-instances features. The joint GMM training has been done using these features along with the subjective MOS of the corresponding speech utterance to obtain the parameters of GMM. These parameters of GMM and multiple time-instances features of test speech are used to compute the objective MOS values of different combinations of multiple contiguous active speech segments. The overall objective MOS of the test speech utterance is obtained by assigning equal weight to the objective MOS values of the different combinations of multiple contiguous active speech segments. This algorithm outperforms the Recommendation ITU-T P.563 and recently published algorithms.
Time-scale effects on the gain-loss asymmetry in stock indices
Sándor, Bulcsú; Simonsen, Ingve; Nagy, Bálint Zsolt; Néda, Zoltán
2016-08-01
The gain-loss asymmetry, observed in the inverse statistics of stock indices is present for logarithmic return levels that are over 2 % , and it is the result of the non-Pearson-type autocorrelations in the index. These non-Pearson-type correlations can be viewed also as functionally dependent daily volatilities, extending for a finite time interval. A generalized time-window shuffling method is used to show the existence of such autocorrelations. Their characteristic time scale proves to be smaller (less than 25 trading days) than what was previously believed. It is also found that this characteristic time scale has decreased with the appearance of program trading in the stock market transactions. Connections with the leverage effect are also established.
Linking Time and Space Scales in Distributed Hydrological Modelling - a case study for the VIC model
Melsen, Lieke; Teuling, Adriaan; Torfs, Paul; Zappa, Massimiliano; Mizukami, Naoki; Clark, Martyn; Uijlenhoet, Remko
2015-04-01
One of the famous paradoxes of the Greek philosopher Zeno of Elea (~450 BC) is the one with the arrow: If one shoots an arrow, and cuts its motion into such small time steps that at every step the arrow is standing still, the arrow is motionless, because a concatenation of non-moving parts does not create motion. Nowadays, this reasoning can be refuted easily, because we know that motion is a change in space over time, which thus by definition depends on both time and space. If one disregards time by cutting it into infinite small steps, motion is also excluded. This example shows that time and space are linked and therefore hard to evaluate separately. As hydrologists we want to understand and predict the motion of water, which means we have to look both in space and in time. In hydrological models we can account for space by using spatially explicit models. With increasing computational power and increased data availability from e.g. satellites, it has become easier to apply models at a higher spatial resolution. Increasing the resolution of hydrological models is also labelled as one of the 'Grand Challenges' in hydrology by Wood et al. (2011) and Bierkens et al. (2014), who call for global modelling at hyperresolution (~1 km and smaller). A literature survey on 242 peer-viewed articles in which the Variable Infiltration Capacity (VIC) model was used, showed that the spatial resolution at which the model is applied has decreased over the past 17 years: From 0.5 to 2 degrees when the model was just developed, to 1/8 and even 1/32 degree nowadays. On the other hand the literature survey showed that the time step at which the model is calibrated and/or validated remained the same over the last 17 years; mainly daily or monthly. Klemeš (1983) stresses the fact that space and time scales are connected, and therefore downscaling the spatial scale would also imply downscaling of the temporal scale. Is it worth the effort of downscaling your model from 1 degree to 1