WorldWideScience

Sample records for single star polymer

  1. Star Polymers.

    Science.gov (United States)

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.

  2. Star-Branched Polymers (Star Polymers)

    KAUST Repository

    Hirao, Akira; Hayashi, Mayumi; Ito, Shotaro; Goseki, Raita; Higashihara, Tomoya; Hadjichristidis, Nikolaos

    2015-01-01

    The synthesis of well-defined regular and asymmetric mixed arm (hereinafter miktoarm) star-branched polymers by the living anionic polymerization is reviewed in this chapter. In particular, much attention is being devoted to the synthetic

  3. Star-Branched Polymers (Star Polymers)

    KAUST Repository

    Hirao, Akira

    2015-09-01

    The synthesis of well-defined regular and asymmetric mixed arm (hereinafter miktoarm) star-branched polymers by the living anionic polymerization is reviewed in this chapter. In particular, much attention is being devoted to the synthetic development of miktoarm star polymers since 2000. At the present time, the almost all types of multiarmed and multicomponent miktoarm star polymers have become feasible by using recently developed iterative strategy. For example, the following well-defined stars have been successfully synthesized: 3-arm ABC, 4-arm ABCD, 5-arm ABCDE, 6-arm ABCDEF, 7-arm ABCDEFG, 6-arm ABC, 9-arm ABC, 12-arm ABC, 13-arm ABCD, 9-arm AB, 17-arm AB, 33-arm AB, 7-arm ABC, 15-arm ABCD, and 31-arm ABCDE miktoarm star polymers, most of which are quite new and difficult to synthesize by the end of the 1990s. Several new specialty functional star polymers composed of vinyl polymer segments and rigid rodlike poly(acetylene) arms, helical polypeptide, or helical poly(hexyl isocyanate) arms are introduced.

  4. Single-molecule imaging reveals topological isomer-dependent diffusion by 4-armed star and dicyclic 8-shaped polymers

    KAUST Repository

    Habuchi, Satoshi; Fujiwara, Susumu; Yamamoto, Takuya; Tezuka, Yasuyuki

    2015-01-01

    Diffusion dynamics of topological isomers of polymer molecules was investigated at the single-molecule level in a melt state by employing the fluorophore-incorporated 4-armed star and the corresponding doubly-cyclized, 8-shaped poly(THF) chains

  5. Single-molecule imaging reveals topological isomer-dependent diffusion by 4-armed star and dicyclic 8-shaped polymers

    KAUST Repository

    Habuchi, Satoshi

    2015-04-21

    Diffusion dynamics of topological isomers of polymer molecules was investigated at the single-molecule level in a melt state by employing the fluorophore-incorporated 4-armed star and the corresponding doubly-cyclized, 8-shaped poly(THF) chains. While the single-molecule fluorescence imaging experiment revealed that the diffusion of the 4-armed star polymer was described by a single Gaussian distribution, the diffusion of the 8-shaped polymer exhibited a double Gaussian distribution behaviour. We reasoned that the two 8-shaped polymeric isomers have distinct diffusion modes in the melt state, although ensemble-averaged experimental methods cannot detect differences in overall conformational state of the isomers. The single-molecule experiments suggested that one of the 8-shaped polymeric isomer, having the horizontally oriented form, causes an efficient threading with the linear matrix chains which leads to the slower diffusion compared with the corresponding 4-armed star polymer, while the other 8-shaped polymeric isomer, having the vertically oriented form, displayed faster diffusion by the suppression of effective threading with the linear matrix chains due to its contracted chain conformation.

  6. Universal size properties of a star-ring polymer structure in disordered environments

    Science.gov (United States)

    Haydukivska, K.; Blavatska, V.

    2018-03-01

    We consider the complex polymer system, consisting of a ring polymer connected to the f1-branched starlike structure, in a good solvent in the presence of structural inhomogeneities. In particular cases f1=1 and f1=2 , such a system restores the synthesized tadpole-shaped polystyrenes [Doi et al., Macromolecules 46, 1075 (2013), 10.1021/ma302511j]. We assume that structural defects are correlated at large distances x according to a power law x-a. Applying the direct polymer renormalization approach, we evaluate the universal size characteristics such as the ratio of the radii of gyration of star-ring and star topologies, and compare the effective sizes of single arms in complex structures and isolated polymers of the same total molecular weight. The nontrivial impact of disorder on these quantities is analyzed.

  7. Multiscale simulations of star polymer melts

    NARCIS (Netherlands)

    Liu, L.

    2014-01-01

    Depending on the architecture, polymers are observed to show different dynamical and rheological properties. The results obtained from this work will not only contribute to a fundamental understanding of the character of star polymeric systems, but also possibly help to design industrial

  8. The evolution of single stars

    International Nuclear Information System (INIS)

    Tayler, R.J.

    1982-01-01

    The general outline of the evolution of single stars is well understood but at most stages of evolution important uncertainties remain. This paper contains a very personal view of what are the major uncertainties and of what problems remain to be solved before one can be satisfied with the theory. It is suggested that some problems may be essentially insoluble even with the very large and fast computers that are currently available. (author)

  9. Collapse of Telechelic Star Polymers to Watermelon Structures

    Science.gov (United States)

    Verso, Federica Lo; Likos, Christos N.; Mayer, Christian; Löwen, Hartmut

    2006-05-01

    Conformational properties of star-shaped polymer aggregates that carry attractive end groups, called telechelic star polymers, are investigated by simulation and analytical variational theory. We focus on the case of low telechelic star polymer functionalities, f≤5, a condition which allows aggregation of all attractive monomers on one site. We establish the functionality- and polymerization-number dependence of the transition temperature from the “star burst” to the “watermelon” macroparticle structure. Extensions to telechelic stars featuring partially collapsed configurations are also discussed.

  10. Structure analysis of adsorbed star-like polymers with GISAS and SFM

    CERN Document Server

    Wolkenhauer, M; Wunnicke, O; Stamm, M; Roovers, J; Krosigk, G V; Cubitt, R

    2002-01-01

    The lateral structures of dried adsorbed binary mixtures of star polymers were investigated. Blends of protonated and deuterated polybutadiene stars were prepared from cyclohexane solutions and adsorbed onto silicon substrates. The number of arms and the molecular weight of the arms was varied. With grazing incidence small angle scattering techniques (GISAS) and scanning force microscopy (SFM), different dominant in-plane length scales were determined. The morphology of these structures is dominated by blob-like structures created from single stars or agglomerates of star polymers. (orig.)

  11. How Massive Single Stars End Their Life

    Science.gov (United States)

    Heger, A.; Fryer, C. L.; Woosley, S. E.; Langer, N.; Hartmann, D. H.

    2003-01-01

    How massive stars die-what sort of explosion and remnant each produces-depends chiefly on the masses of their helium cores and hydrogen envelopes at death. For single stars, stellar winds are the only means of mass loss, and these are a function of the metallicity of the star. We discuss how metallicity, and a simplified prescription for its effect on mass loss, affects the evolution and final fate of massive stars. We map, as a function of mass and metallicity, where black holes and neutron stars are likely to form and where different types of supernovae are produced. Integrating over an initial mass function, we derive the relative populations as a function of metallicity. Provided that single stars rotate rapidly enough at death, we speculate on stellar populations that might produce gamma-ray bursts and jet-driven supernovae.

  12. Entropy-induced separation of star polymers in porous media

    International Nuclear Information System (INIS)

    Blavats'ka, V.; Ferber, C. von; Holovatch, Yu.

    2006-01-01

    We present a quantitative picture of the separation of star polymers in a solution where part of the volume is influenced by a porous medium. To this end, we study the impact of long-range-correlated quenched disorder on the entropy and scaling properties of f-arm star polymers in a good solvent. We assume that the disorder is correlated on the polymer length scale with a power-law decay of the pair correlation function g(r)∼r -a . Applying the field-theoretical renormalization group approach we show in a double expansion in ε=4-d and δ=4-a that there is a range of correlation strengths δ for which the disorder changes the scaling behavior of star polymers. In a second approach we calculate for fixed space dimension d=3 and different values of the correlation parameter a the corresponding scaling exponents γ f that govern entropic effects. We find that γ f -1, the deviation of γ f from its mean field value is amplified by the disorder once we increase δ beyond a threshold. The consequences for a solution of diluted chain and star polymers of equal molecular weight inside a porous medium are that star polymers exert a higher osmotic pressure than chain polymers and in general higher branched star polymers are expelled more strongly from the correlated porous medium. Surprisingly, polymer chains will prefer a stronger correlated medium to a less or uncorrelated medium of the same density while the opposite is the case for star polymers

  13. Synthesis of cationic star polymers by simplified electrochemically mediated ATRP

    Directory of Open Access Journals (Sweden)

    P. Chmielarz

    2016-10-01

    Full Text Available Cyclodextrin-based cationic star polymers were synthesized using β-cyclodextrin (β-CD core, and 2-(dimethylamino ethyl methacrylate (DMAEMA as hydrophilic arms. Star-shaped polymers were prepared via a simplified electrochemically mediated ATRP (seATRP under potentiostatic and galvanostatic conditions. The polymerization results showed molecular weight (MW evolution close to theoretical values, and maintained narrow molecular weight distribution (MWD of obtained stars. The rate of the polymerizations was controlled by applying more positive potential values thereby suppressing star-star coupling reactions. Successful chain extension of the ω-functional arms with a hydrophobic n-butyl acrylate (BA formed star block copolymers and confirmed the living nature of the β-CD-PDMAEMA star polymers prepared by seATRP. Novelty of this work is that the β-CD-PDMAEMA-b-PBA cationic star block copolymers were synthesized for the first time via seATRP procedure, utilizing only 40 ppm of catalyst complex. The results from 1H NMR spectral studies support the formation of cationic star (copolymers.

  14. Nano-Star-Shaped Polymers for Drug Delivery Applications.

    Science.gov (United States)

    Yang, Da-Peng; Oo, Ma Nwe Nwe Linn; Deen, Gulam Roshan; Li, Zibiao; Loh, Xian Jun

    2017-11-01

    With the advancement of polymer engineering, complex star-shaped polymer architectures can be synthesized with ease, bringing about a host of unique properties and applications. The polymer arms can be functionalized with different chemical groups to fine-tune the response behavior or be endowed with targeting ligands or stimuli responsive moieties to control its physicochemical behavior and self-organization in solution. Rheological properties of these solutions can be modulated, which also facilitates the control of the diffusion of the drug from these star-based nanocarriers. However, these star-shaped polymers designed for drug delivery are still in a very early stage of development. Due to the sheer diversity of macromolecules that can take on the star architectures and the various combinations of functional groups that can be cross-linked together, there remain many structure-property relationships which have yet to be fully established. This review aims to provide an introductory perspective on the basic synthetic methods of star-shaped polymers, the properties which can be controlled by the unique architecture, and also recent advances in drug delivery applications related to these star candidates. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synthesis and characterisation of star polymer/silicon carbide nanocomposites

    International Nuclear Information System (INIS)

    Majewski, Peter; Choudhury, Namita Roy; Spori, Doris; Wohlfahrt, Ellen; Wohlschloegel, Markus

    2006-01-01

    A new type of composite material's preparation and property are reported in this paper. The composite was formed by solution blending a styrene ethylene butylenes (SEBS) star polymer with silicon carbide at various compositions. The composites were characterised using spectroscopic, microscopic and thermal techniques. Photo-acoustic Fourier transform infrared spectroscopy (PA-FT-IR) and transmission electron microscopy (TEM) results show that the SiC resides uniformly in the organic network. Thermogravimetric analysis (TGA) of the hybrid shows that the thermal stability of the composite is higher than that of the star polymer. The maximum decomposition temperature increases by 73 deg. C. Dynamic mechanical analysis (DMA) of the hybrid shows that the storage modulus of the star polymer increases after the composite formation, indicating the existence of thermodynamically stable SiC nanoparticles mostly in the micro-phase separated multiarm structure of the polymer

  16. CHAPTER 1. Miktoarm Star (µ-Star) Polymers: A Successful Story

    KAUST Repository

    Iatrou, Hermis; Avgeropoulos, Apostolos; Sakellariou, Georgios; Pitsikalis, Marinos; Hadjichristidis, Nikolaos

    2017-01-01

    The term miktoarm stars (coming from the Greek word μιτσ meaning mixed) was adopted in 1992 by our group for star polymers with either chemical (e.g., AB), molecular weight (e.g., AA′), topological (e.g., (AB)-junction-(BA)), or functional group (e.g., AA) asymmetry. The first μ-stars synthesized by anionic polymerization, on the one hand, guided polymer chemists working with other types of polymerization techniques towards this direction and, on the other hand, helped polymer physicists to carry out experiments and develop theories on the influence of the architecture on the morphology of block copolymers. Synthetic strategies based on anionic polymerization, as well as a few examples showing the influence of the miktoarm structure on the morphology of block copolymers, are reviewed in this chapter.

  17. CHAPTER 1. Miktoarm Star (µ-Star) Polymers: A Successful Story

    KAUST Repository

    Iatrou, Hermis

    2017-04-13

    The term miktoarm stars (coming from the Greek word μιτσ meaning mixed) was adopted in 1992 by our group for star polymers with either chemical (e.g., AB), molecular weight (e.g., AA′), topological (e.g., (AB)-junction-(BA)), or functional group (e.g., AA) asymmetry. The first μ-stars synthesized by anionic polymerization, on the one hand, guided polymer chemists working with other types of polymerization techniques towards this direction and, on the other hand, helped polymer physicists to carry out experiments and develop theories on the influence of the architecture on the morphology of block copolymers. Synthetic strategies based on anionic polymerization, as well as a few examples showing the influence of the miktoarm structure on the morphology of block copolymers, are reviewed in this chapter.

  18. White polymer light-emitting diodes based on star-shaped polymers with an orange dendritic phosphorescent core.

    Science.gov (United States)

    Zhu, Minrong; Li, Yanhu; Cao, Xiaosong; Jiang, Bei; Wu, Hongbin; Qin, Jingui; Cao, Yong; Yang, Chuluo

    2014-12-01

    A series of new star-shaped polymers with a triphenylamine-based iridium(III) dendritic complex as the orange-emitting core and poly(9,9-dihexylfluorene) (PFH) chains as the blue-emitting arms is developed towards white polymer light-emitting diodes (WPLEDs). By fine-tuning the content of the orange phosphor, partial energy transfer and charge trapping from the blue backbone to the orange core is realized to achieve white light emission. Single-layer WPLEDs with the configuration of ITO (indium-tin oxide)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/polymer/CsF/Al exhibit a maximum current efficiency of 1.69 cd A(-1) and CIE coordinates of (0.35, 0.33), which is very close to the pure white-light point of (0.33, 0.33). To the best of our knowledge, this is the first report on star-shaped white-emitting single polymers that simultaneously consist of fluorescent and phosphorescent species. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Dynamic Properties of Star-Branched Polymer Brushes

    International Nuclear Information System (INIS)

    Sikorski, A.; Romiszowski, P.

    2004-01-01

    We studied a simplified model of a polymer brush. It consisted of star-branched chains, which were restricted to a simple cubic lattice. Each star-branched macromolecule consisted of three linear arms of equal length emanating from a common origin (the branching point). The chains were grafted to an impenetrable surface, i.e. they were terminally attached to the surface with one arm. The number of chains was varied from low to high grafting density. The model system was studied at good solvent conditions because the excluded volume effect was the only potential of interaction included in the model. The properties of this model system were studied by means of Monte Carlo simulation. The sampling algorithm was based on local changes of chain conformations. The dynamic properties of the polymer brush were studied and correlated with its structure. The differences in relaxation times of particular star arms were shown. The short-time mobility of polymer layers was analyzed. The lateral self-diffusion of chains was also studied and discussed. (author)

  20. Self and collective dynamics of ordered star polymer solutions

    CERN Document Server

    Stellbrink, J; Monkenbusch, M; Richter, D; Ehlers, G; Schleger, P

    2002-01-01

    We investigated the dynamics of 18-arm polyisoprene star polymer solutions well above their overlap concentration c sup *. Combining neutron spin echo spectroscopy (NSE) and selective H/D labelling, we were able to separate inter- (collective) and intra-star (self) dynamics. Only at low Q-vectors do self and collective dynamics become discernible. Here, collective dynamics are found to be consistent with a colloidal approach resulting from star-star interactions. The collective short time diffusion coefficient D sub e sub f sub f is well described by the term D sub 0 /S(Q), with D sub 0 the diffusion coefficient at infinite dilution. At Q sub m , the peak position in the structure factor S(Q), no difference is observable between collective and self dynamics. For covering the slowed-down dynamics at Q sub m the time range of NSE was extended for the first time up to 350 ns using long wavelengths, lambda=19 A, at IN15 (ILL, Grenoble). We found that S(Q,t)/S(Q,0) relaxes into a concentration-dependent plateau. T...

  1. Utilization of star-shaped polymer architecture in the creation of high-density polymer brush coatings for the prevention of platelet and bacteria adhesion

    Science.gov (United States)

    Totani, Masayasu; Terada, Kayo; Terashima, Takaya; Kim, Ill Yong; Ohtsuki, Chikara; Xi, Chuanwu; Tanihara, Masao

    2014-01-01

    We demonstrate utilization of star-shaped polymers as high-density polymer brush coatings and their effectiveness to inhibit the adhesion of platelets and bacteria. Star polymers consisting of poly(2-hydroxyethyl methacrylate) (PHEMA) and/or poly(methyl methacrylate) (PMMA), were synthesized using living radical polymerization with a ruthenium catalyst. The polymer coatings were prepared by simple drop casting of the polymer solution onto poly(ethylene terephthalate) (PET) surfaces and then dried. Among the star polymers prepared in this study, the PHEMA star polymer (star-PHEMA) and the PHEMA/PMMA (mol. ratio of 71/29) heteroarm star polymer (star-H71M29) coatings showed the highest percentage of inhibition against platelet adhesion (78–88% relative to noncoated PET surface) and Escherichia coli (94–97%). These coatings also showed anti-adhesion activity against platelets after incubation in Dulbecco's phosphate buffered saline or surfactant solution for 7 days. In addition, the PMMA component of the star polymers increased the scratch resistance of the coating. These results indicate that the star-polymer architecture provides high polymer chain density on PET surfaces to prevent adhesion of platelets and bacteria, as well as coating stability and physical durability to prevent exposure of bare PET surfaces. The star polymers provide a simple and effective approach to preparing anti-adhesion polymer coatings on biomedical materials against the adhesion of platelets and bacteria. PMID:25485105

  2. Programmed Switching of Single Polymer Conformation on DNA Origami

    DEFF Research Database (Denmark)

    Krissanaprasit, Abhichart; Madsen, Mikael; Knudsen, Jakob Bach

    2016-01-01

    -molecule conjugated polymer. The polymer is functionalized with short single-stranded (ss) DNA strands that extend from the backbone of the polymer and serve as handles. The DNA polymer conjugate can be aligned on DNA origami in three well-defined geometries (straight line, left-turned, and right-turned pattern......) by DNA hybridization directed by single-stranded guiding strands and ssDNA tracks extending from the origami surface and polymer handle. We demonstrate switching of a conjugated organic polymer conformation between left- and right-turned conformations of the polymer on DNA origami based on toehold...

  3. Mechanical transduction via a single soft polymer

    Science.gov (United States)

    Hou, Ruizheng; Wang, Nan; Bao, Weizhu; Wang, Zhisong

    2018-04-01

    Molecular machines from biology and nanotechnology often depend on soft structures to perform mechanical functions, but the underlying mechanisms and advantages or disadvantages over rigid structures are not fully understood. We report here a rigorous study of mechanical transduction along a single soft polymer based on exact solutions to the realistic three-dimensional wormlike-chain model and augmented with analytical relations derived from simpler polymer models. The results reveal surprisingly that a soft polymer with vanishingly small persistence length below a single chemical bond still transduces biased displacement and mechanical work up to practically significant amounts. This "soft" approach possesses unique advantages over the conventional wisdom of rigidity-based transduction, and potentially leads to a unified mechanism for effective allosterylike transduction and relay of mechanical actions, information, control, and molecules from one position to another in molecular devices and motors. This study also identifies an entropy limit unique to the soft transduction, and thereby suggests a possibility of detecting higher efficiency for kinesin motor and mutants in future experiments.

  4. Star polymer-based unimolecular micelles and their application in bio-imaging and diagnosis.

    Science.gov (United States)

    Jin, Xin; Sun, Pei; Tong, Gangsheng; Zhu, Xinyuan

    2018-02-03

    As a novel kind of polymer with covalently linked core-shell structure, star polymers behave in nanostructure in aqueous medium at all concentration range, as unimolecular micelles at high dilution condition and multi-micelle aggregates in other situations. The unique morphologies endow star polymers with excellent stability and functions, making them a promising platform for bio-application. A variety of functions including imaging and therapeutics can be achieved through rational structure design of star polymers, and the existence of plentiful end-groups on shell offers the opportunity for further modification. In the last decades, star polymers have become an attracting platform on fabrication of novel nano-systems for bio-imaging and diagnosis. Focusing on the specific topology and physicochemical properties of star polymers, we have reviewed recent development of star polymer-based unimolecular micelles and their bio-application in imaging and diagnosis. The main content of this review summarizes the synthesis of integrated architecture of star polymers and their self-assembly behavior in aqueous medium, focusing especially on the recent advances on their bio-imaging application and diagnosis use. Finally, we conclude with remarks and give some outlooks for further exploration in this field. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Investigation of star polymer nanoshells for use in diagnostic imaging and photothermal cancer therapy applications

    Science.gov (United States)

    Gomez, Lizabeth

    Gold nanoshells can be designed to possess high light scattering and strong absorption of near-infrared light. Thus, they have the potential to be used in biological applications as contrast agents for diagnostic imaging as well as for thermal ablation of tumor cells in future cancer treatments. In this study, gold nanoshells with dye-loaded star polymer cores were investigated. Uniform near-infrared gold nanoshells with 100 nm diameters were successfully generated using different batches of star polymer templates and were characterized by UV-visible spectroscopy and scanning electron microscopy. The star polymers used were block copolymer structures with a hydrophobic polystyrene (PS) core and a hydrophilic poly(N,N-dimethylaminoethylmethracrylate) (DMAEMA) outer shell. Within this work, a general procedure was established in order to achieve a desired gold nanoshell size regardless of the star polymer batch used, since the synthesis process conditions can cause star polymers to vary in size as well in the number and length of amino-functionalized arms. Control of the gold nanoshell diameter was optimized after an in-depth analysis of the synthesis parameters that affected the formation and final size of the dye-loaded star polymer gold nanoshells. The main parameters examined were pH of the gold seeds used to nucleate the templates and the ratio of star polymer to gold hydroxide used during the growth of the outer gold shell.

  6. A supramolecular miktoarm star polymer based on porphyrin metal complexation in water.

    Science.gov (United States)

    Hou, Zhanyao; Dehaen, Wim; Lyskawa, Joël; Woisel, Patrice; Hoogenboom, Richard

    2017-07-25

    A novel supramolecular miktoarm star polymer was successfully constructed in water from a pyridine end-decorated polymer (Py-PmDEGA) and a metalloporphyrin based star polymer (ZnTPP-(PEG) 4 ) via metal-ligand coordination. The Py-PmDEGA moiety was prepared via a combination of reversible addition-fragmentation chain transfer polymerization (RAFT) and subsequent aminolysis and Michael addition reactions to introduce the pyridine end-group. The ZnTPP(PEG) 4 star-polymer was synthesized by the reaction between tetrakis(p-hydroxyphenyl)porphyrin and toluenesulfonyl-PEG, followed by insertion of a zinc ion into the porphyrin core. The formation of a well-defined supramolecular AB 4 -type miktoarm star polymer was unambiguously demonstrated via UV-Vis spectroscopic titration, isothermal titration calorimetry (ITC) and diffusion ordered NMR spectroscopy (DOSY).

  7. STAR POLYMERS IN GOOD SOLVENTS FROM DILUTE TO CONCENTRATED REGIMES: CROSSOVER APPROACH

    Directory of Open Access Journals (Sweden)

    S.B.Kiselev

    2002-01-01

    Full Text Available An introduction is given to the crossover theory of the conformational and thermodynamic properties of star polymers in good solvents. The crossover theory is tested against Monte Carlo simulation data for the structure and thermodynamics of model star polymers. In good solvent conditions, star polymers approach a "universal" limit as N → ∞, however, there are two types of approach towards this limit. In the dilute regime, a critical degree of polymerization N* is found to play a similar role as the Ginzburg number in the crossover theory for critical phenomena in simple fluids. A rescaled penetration function is found to control the free energy of star polymer solutions in the dilute and semidilute regions. This equation of state captures the scaling behaviour of polymer solutions in the dilute/semidilute regimes and also performs well in the concentrated regimes, where the details of the monomer-monomer interactions become important.

  8. Disorder effects on the static scattering function of star branched polymers

    Directory of Open Access Journals (Sweden)

    V. Blavatska

    2012-10-01

    Full Text Available We present an analysis of the impact of structural disorder on the static scattering function of f-armed star branched polymers in d dimensions. To this end, we consider the model of a star polymer immersed in a good solvent in the presence of structural defects, correlated at large distances r according to a power law ~r-a. In particular, we are interested in the ratio g(f of the radii of gyration of star and linear polymers of the same molecular weight, which is a universal experimentally measurable quantity. We apply a direct polymer renormalization approach and evaluate the results within the double ϵ = 4 - d, δ = 4 - a-expansion. We find an increase of g(f with an increasing δ. Therefore, an increase of disorder correlations leads to an increase of the size measure of a star relative to linear polymers of the same molecular weight.

  9. Response of single polymers to localized step strains

    NARCIS (Netherlands)

    Panja, D.

    2009-01-01

    In this paper, the response of single three-dimensional phantom and self-avoiding polymers to localized step strains are studied for two cases in the absence of hydrodynamic interactions: (i) Polymers tethered at one end with the strain created at the point of tether, and (ii) free polymers with the

  10. Palladium N-Heterocyclic Carbene Precatalyst Site Isolated in the Core of a Star Polymer

    KAUST Repository

    Bukhriakov, Konstantin; Mugemana, Clement; Vu, Khanh B.; Rodionov, Valentin

    2015-01-01

    An approach for supporting a Pd-NHC complex on a soluble star polymer with nanoscale dimensions is described. The resulting star polymer catalyst exhibits excellent activity in cross-coupling reactions, is stable in air and moisture, and is easily recoverable and recyclable. These properties are distinct and unattainable with the small-molecule version of the same catalyst. © 2015 American Chemical Society.

  11. Palladium N-Heterocyclic Carbene Precatalyst Site Isolated in the Core of a Star Polymer

    KAUST Repository

    Bukhriakov, Konstantin

    2015-10-02

    An approach for supporting a Pd-NHC complex on a soluble star polymer with nanoscale dimensions is described. The resulting star polymer catalyst exhibits excellent activity in cross-coupling reactions, is stable in air and moisture, and is easily recoverable and recyclable. These properties are distinct and unattainable with the small-molecule version of the same catalyst. © 2015 American Chemical Society.

  12. Polystyrene star-shaped polymers made by the new In-Inmethod

    International Nuclear Information System (INIS)

    Fazeli, N.; Afshar Toromi, F.

    2002-01-01

    Three main methods are usually used for the synthesis of star-shaped polymers, where each one has its own advantages and disadvantages. Among these techniques, i n-out m ethod is the best one to produce hetero arm star polymers with narrow molecular weight distribution and long arms with active sites at the end of the second-generation arms. This method, however, has some difficulties during the synthesis of hetero-arm star polymers with styrene or dienes as the second monomers. The reason is that in the o ut s tep, the carbanions of the growing chain attack the existing double bonds of the other cores and produce an irreversible gel. The new i n-in m ethod mentioned in this paper, is used to synthesize double-star polystyrene polymers with relatively narrow molecular weight distribution and without occurrence of any gelation during the process. With the monomers, which are able to attack the existing double bonds of the cores of the star polymers, it is also possible to produce-hetero-arm star polymers using this new method

  13. Determination of the interaction parameter and topological scaling features of symmetric star polymers in dilute solution

    KAUST Repository

    Rai, Durgesh K.; Beaucage, Gregory; Ratkanthwar, Kedar; Beaucage, Peter; Ramachandran, Ramnath; Hadjichristidis, Nikolaos

    2015-01-01

    Star polymers provide model architectures to understand the dynamic and rheological effects of chain confinement for a range of complex topological structures like branched polymers, colloids, and micelles. It is important to describe the structure of such macromolecular topologies using small-angle neutron and x-ray scattering to facilitate understanding of their structure-property relationships. Modeling of scattering from linear, Gaussian polymers, such as in the melt, has applied the random phase approximation using the Debye polymer scattering function. The Flory-Huggins interaction parameter can be obtained using neutron scattering by this method. Gaussian scaling no longer applies for more complicated chain topologies or when chains are in good solvents. For symmetric star polymers, chain scaling can differ from ν=0.5(df=2) due to excluded volume, steric interaction between arms, and enhanced density due to branching. Further, correlation between arms in a symmetric star leads to an interference term in the scattering function first described by Benoit for Gaussian chains. In this work, a scattering function is derived which accounts for interarm correlations in symmetric star polymers as well as the polymer-solvent interaction parameter for chains of arbitrary scaling dimension using a hybrid Unified scattering function. The approach is demonstrated for linear, four-arm and eight-arm polyisoprene stars in deuterated p-xylene.

  14. Determination of the interaction parameter and topological scaling features of symmetric star polymers in dilute solution

    KAUST Repository

    Rai, Durgesh K.

    2015-07-15

    Star polymers provide model architectures to understand the dynamic and rheological effects of chain confinement for a range of complex topological structures like branched polymers, colloids, and micelles. It is important to describe the structure of such macromolecular topologies using small-angle neutron and x-ray scattering to facilitate understanding of their structure-property relationships. Modeling of scattering from linear, Gaussian polymers, such as in the melt, has applied the random phase approximation using the Debye polymer scattering function. The Flory-Huggins interaction parameter can be obtained using neutron scattering by this method. Gaussian scaling no longer applies for more complicated chain topologies or when chains are in good solvents. For symmetric star polymers, chain scaling can differ from ν=0.5(df=2) due to excluded volume, steric interaction between arms, and enhanced density due to branching. Further, correlation between arms in a symmetric star leads to an interference term in the scattering function first described by Benoit for Gaussian chains. In this work, a scattering function is derived which accounts for interarm correlations in symmetric star polymers as well as the polymer-solvent interaction parameter for chains of arbitrary scaling dimension using a hybrid Unified scattering function. The approach is demonstrated for linear, four-arm and eight-arm polyisoprene stars in deuterated p-xylene.

  15. Preparation of a Mini-Library of Thermo-Responsive Star (NVCL/NVP-VAc Polymers with Tailored Properties Using a Hexafunctional Xanthate RAFT Agent

    Directory of Open Access Journals (Sweden)

    Norma Aidé Cortez-Lemus

    2017-12-01

    Full Text Available A mini-library of star-shaped thermoresponsive polymers having six arms was prepared using a hexafunctional xanthate by reversible addition–fragmentation chain transfer (RAFT polymerization. Star polymers with homopolymeric arms of poly(N-vinylcaprolactam (PNVCL, copolymeric arms of poly(N-vinylcaprolactam-co-N-vinylpyrrolidone (PNVCL-co-PNVP and also arms of block copolymers of PNVCL-b-PVAc, (PNVCL-co-PNVP-b-PVAc, and combinations of them changing the order of the block was achieved exploiting the R-RAFT synthetic methodology (or R-group approach, wherein the thiocarbonyl group is transferred to the polymeric chain end. Taking advantage of the RAFT benefits, the molecular weight of the star polymers was controlled (Mn = 11,880–153,400 g/mol to yield star polymers of different sizes and lower critical solution temperature (LCST values. Removing the xanthate group of the star polymers allowed for the introduction of specific functional groups at the ends of the star arms and resulted in an increase of the LCST values. Star PNVCL-b-PVAc diblock copolymers with PVAc contents of 5–26 mol % were prepared; the hydrophobic segment (PVAc is located at the end of the star arms. Interestingly, when the PVAc content was 5–7 mol %, the hydrodynamic diameter (Dh value of the aggregates formed in water was almost the same sa the Dh of the corresponding PNVCL star homopolymers. It is proposed that these star block copolymers self-assemble into single flowerlike micelles, showing great stability in aqueous solution. Star block copolymers with the PVAc hydrophobic block in the core of the star, such as PVAc-b-(PNVCL-co-PNVP, form micellar aggregates in aqueous solution with Dh values in the range from ~115 to 245 nm while maintaining a thermoresponsive behavior. Micellar aggregates of selected star polymers were used to encapsulate methotrexate (MTX showing their potential in the temperature controlled release of this antineoplasic drug. The importance

  16. Self-Assembly of Telechelic Tyrosine End-Capped PEO Star Polymers in Aqueous Solution.

    Science.gov (United States)

    Edwards-Gayle, Charlotte J C; Greco, Francesca; Hamley, Ian W; Rambo, Robert P; Reza, Mehedi; Ruokolainen, Janne; Skoulas, Dimitrios; Iatrou, Hermis

    2018-01-08

    We investigate the self-assembly of two telechelic star polymer-peptide conjugates based on poly(ethylene oxide) (PEO) four-arm star polymers capped with oligotyrosine. The conjugates were prepared via N-carboxy anhydride-mediated ring-opening polymerization from PEO star polymer macroinitiators. Self-assembly occurs above a critical aggregation concentration determined via fluorescence probe assays. Peptide conformation was examined using circular dichroism spectroscopy. The structure of self-assembled aggregates was probed using small-angle X-ray scattering and cryogenic transmission electron microscopy. In contrast to previous studies on linear telechelic PEO-oligotyrosine conjugates that show self-assembly into β-sheet fibrils, the star architecture suppresses fibril formation and micelles are generally observed instead, a small population of fibrils only being observed upon pH adjustment. Hydrogelation is also suppressed by the polymer star architecture. These peptide-functionalized star polymer solutions are cytocompatible at sufficiently low concentration. These systems present tyrosine at high density and may be useful in the development of future enzyme or pH-responsive biomaterials.

  17. Osmotic pressure and virial coefficients of star and comb polymer solutions: dissipative particle dynamics.

    Science.gov (United States)

    Wang, Tzu-Yu; Fang, Che-Ming; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2009-03-28

    The effects of macromolecular architecture on the osmotic pressure pi and virial coefficients (B(2) and B(3)) of star and comb polymers in good solvents are studied by dissipative particle dynamics simulations for both dilute and semiconcentrated regimes. The dependence of the osmotic pressure on polymer concentration is directly calculated by considering two reservoirs separated by a semipermeable, fictitious membrane. Our simulation results show that the ratios A(n+1) identical with B(n+1)/R(g)(3n) are essentially constant and A(2) and A(3) are arm number (f) dependent, where R(g) is zero-density radius of gyration. The value of dimensionless virial ratio g = A(3)/A(2)(2) increases with arm number of stars whereas it is essentially arm number independent for comb polymers. In semiconcentrated regime the scaling relation between osmotic pressure and volume fraction, pi proportional to phi(lambda), still holds for both star and comb polymers. For comb polymers, the exponent lambda is close to lambda(*) (approximately = 2.73 for linear chains) and is independent of the arm number. However, for star polymers, the exponent lambda deviates from lambda(*) and actually grows with increasing the arm number. This may be attributed to the significant ternary interactions near the star core in the many-arm systems.

  18. Uniform Distance Scaling Behavior of Planet-Satellite Nanostructures Made by Star Polymers.

    Science.gov (United States)

    Rossner, Christian; Tang, Qiyun; Glatter, Otto; Müller, Marcus; Vana, Philipp

    2017-02-28

    Planet-satellite nanostructures from RAFT star polymers and larger (planet) as well as smaller (satellite) gold nanoparticles are analyzed in experiments and computer simulations regarding the influence of arm number of star polymers. A uniform scaling behavior of planet-satellite distances as a function of arm length was found both in the dried state (via transmission electron microscopy) after casting the nanostructures on surfaces and in the colloidally dispersed state (via simulations and small-angle X-ray scattering) when 2-, 3-, and 6-arm star polymers were employed. This indicates that the planet-satellite distances are mainly determined by the arm length of star polymers. The observed discrepancy between TEM and simulated distances can be attributed to the difference of polymer configurations in dried and dispersed state. Our results also show that these distances are controlled by the density of star polymers end groups, and the number of grabbed satellite particles is determined by the magnitude of the corresponding density. These findings demonstrate the feasibility to precisely control the planet-satellite structures at the nanoscale.

  19. Three Arm Star Homo- And Co-Polymers Via Atom Transfer Radical Polymerization

    International Nuclear Information System (INIS)

    Amin, A.; Sobh, R.A.; Ayoub, M.M.H.

    2005-01-01

    Star homo and co-polymers of some vinyl monomers such as methylmethacrylate, butylmethacrylate and styrene (MMA, BMA, St.) were prepared using N, N, N', N' tetramethylethylenediamine ligand/ CuBr catalytic system via atom transfer radical polymerization (ATRP). Three armed benzene based core was successfully used as initiator. Low polydispersities and regular molecular weight values were obtained in most cases especially at low conversions. MMA and BuMA showed comparable behavior where controlled and true ATRP was observed even at the high conversions. However, styrene monomer recorded irregular high polydispersities at high conversions in spite of the relatively low molecular weight values. 1HNMR confirmed the structures of the resulting polymers. Transmission Electron microscope (TEM) proved the nano-structure of the star polymers. The thermal behavior of the MMA star homo and copolymers was studied. The effect of the star shape on the thermal behavior was very clear with respect to the linear ones

  20. SANS structural characterization of fullerenol-derived star polymers in solutions

    CERN Document Server

    Jeng, U S; Wang, L Y; Chiang, L Y; Ho, D L; Han, C C

    2002-01-01

    We have studied the chain conformations of fullerenol-derived star polymers in two organic solvents using small-angle neutron scattering (SANS). The SANS results indicate that the six poly(urethane-ether) arms, chemically bonded on the fullerenol of the C sub 6 sub 0 -based star polymer, have a Gaussian chain conformation in toluene. However, these arms exhibit a pronounced excluded-volume effect in dimethylformamide solutions. We use a scattering model, with the polydispersity of the polymer taken into account, and a fractal model to extract the radius of gyration R sub g values and the persistence lengths of the C sub 6 sub 0 -star polymers in these two organic solutions. (orig.)

  1. Arm retraction dynamics of entangled star polymers: A forward flux sampling method study

    Science.gov (United States)

    Zhu, Jian; Likhtman, Alexei E.; Wang, Zuowei

    2017-07-01

    The study of dynamics and rheology of well-entangled branched polymers remains a challenge for computer simulations due to the exponentially growing terminal relaxation times of these polymers with increasing molecular weights. We present an efficient simulation algorithm for studying the arm retraction dynamics of entangled star polymers by combining the coarse-grained slip-spring (SS) model with the forward flux sampling (FFS) method. This algorithm is first applied to simulate symmetric star polymers in the absence of constraint release (CR). The reaction coordinate for the FFS method is determined by finding good agreement of the simulation results on the terminal relaxation times of mildly entangled stars with those obtained from direct shooting SS model simulations with the relative difference between them less than 5%. The FFS simulations are then carried out for strongly entangled stars with arm lengths up to 16 entanglements that are far beyond the accessibility of brute force simulations in the non-CR condition. Apart from the terminal relaxation times, the same method can also be applied to generate the relaxation spectra of all entanglements along the arms which are desired for the development of quantitative theories of entangled branched polymers. Furthermore, we propose a numerical route to construct the experimentally measurable relaxation correlation functions by effectively linking the data stored at each interface during the FFS runs. The obtained star arm end-to-end vector relaxation functions Φ (t ) and the stress relaxation function G(t) are found to be in reasonably good agreement with standard SS simulation results in the terminal regime. Finally, we demonstrate that this simulation method can be conveniently extended to study the arm-retraction problem in entangled star polymer melts with CR by modifying the definition of the reaction coordinate, while the computational efficiency will depend on the particular slip-spring or slip

  2. Single clay sheets inside electrospun polymer nanofibers

    Science.gov (United States)

    Sun, Zhaohui

    2005-03-01

    Nanofibers were prepared from polymer solution with clay sheets by electrospinning. Plasma etching, as a well controlled process, was used to supply electrically excited gas molecules from a glow discharge. To reveal the structure and arrangement of clay layers in the polymer matrix, plasma etching was used to remove the polymer by controlled gasification to expose the clay sheets due to the difference in reactivity. The shape, flexibility, and orientation of clay sheets were studied by transmission and scanning electron microscopy. Additional quantitative information on size distribution and degree of exfoliation of clay sheets were obtained by analyzing electron micrograph of sample after plasma etching. Samples in various forms including fiber, film and bulk, were thinned by plasma etching. Morphology and dispersion of inorganic fillers were studied by electron microscopy.

  3. Universal shape characteristics for the mesoscopic star-shaped polymer via dissipative particle dynamics simulations

    Science.gov (United States)

    Kalyuzhnyi, O.; Ilnytskyi, J. M.; Holovatch, Yu; von Ferber, C.

    2018-05-01

    In this paper we study the shape characteristics of star-like polymers in various solvent quality using a mesoscopic level of modeling. The dissipative particle dynamics simulations are performed for the homogeneous and four different heterogeneous star polymers with the same molecular weight. We analyse the gyration radius and asphericity at the poor, good and θ-solvent regimes. Detailed explanation based on interplay between enthalpic and entropic contributions to the free energy and analyses on of the asphericity of individual branches are provided to explain the increase of the apsphericity in θ-solvent regime.

  4. Understanding constraint release in star/linear polymer blends

    KAUST Repository

    Shivokhin, M. E.

    2014-04-08

    In this paper, we exploit the stochastic slip-spring model to quantitatively predict the stress relaxation dynamics of star/linear blends with well-separated longest relaxation times and we analyze the results to assess the validity limits of the two main models describing the corresponding relaxation mechanisms within the framework of the tube picture (Doi\\'s tube dilation and Viovy\\'s constraint release by Rouse motions of the tube). Our main objective is to understand and model the stress relaxation function of the star component in the blend. To this end, we divide its relaxation function into three zones, each of them corresponding to a different dominating relaxation mechanism. After the initial fast Rouse motions, relaxation of the star is dominated at intermediate times by the "skinny" tube (made by all topological constraints) followed by exploration of the "fat" tube (made by long-lived obstacles only). At longer times, the tube dilation picture provides the right shape for the relaxation of the stars. However, the effect of short linear chains results in time-shift factors that have never been described before. On the basis of the analysis of the different friction coefficients involved in the relaxation of the star chains, we propose an equation predicting these time-shift factors. This allows us to develop an analytical equation combining all relaxation zones, which is verified by comparison with simulation results. © 2014 American Chemical Society.

  5. Core Cross-linked Star Polymers for Temperature/pH Controlled Delivery of 5-Fluorouracil

    Directory of Open Access Journals (Sweden)

    Elizabeth Sánchez-Bustos

    2016-01-01

    Full Text Available RAFT polymerization with cross-linking was used to prepare core cross-linked star polymers bearing temperature sensitive arms. The arms consisted of a diblock copolymer containing N-isopropylacrylamide (NIPAAm and 4-methacryloyloxy benzoic acid (4MBA in the temperature sensitive block and poly(hexyl acrylate forming the second hydrophobic block, while ethyleneglycol dimethacrylate was used to form the core. The acid comonomer provides pH sensitivity to the arms and also increases the transition temperature of polyNIPAAm to values in the range of 40 to 46°C. Light scattering and atomic force microscopy studies suggest that loose core star polymers were obtained. The star polymers were loaded with 5-fluorouracil (5-FU, an anticancer agent, in values of up to 30 w/w%. In vitro release experiments were performed at different temperatures and pH values, as well as with heating and cooling temperature cycles. Faster drug release was obtained at 42°C or pH 6, compared to normal physiological conditions (37°C, pH 7.4. The drug carriers prepared acted as nanopumps changing the release kinetics of 5-FU when temperatures cycles were applied, in contrast with release rates at a constant temperature. The prepared core cross-linked star polymers represent advanced drug delivery vehicles optimized for 5-FU with potential application in cancer treatment.

  6. Quantification of interaction and topological parameters of polyisoprene star polymers under good solvent conditions

    KAUST Repository

    Rai, Durgesh K.

    2016-05-05

    Mass fractal scaling, reflected in the mass fractal dimension df, is independently impacted by topology, reflected in the connectivity dimension c, and by tortuosity, reflected in the minimum dimension dmin. The mass fractal dimension is related to these other dimensions by df=cdmin. Branched fractal structures have a higher mass fractal dimension compared to linear structures due to a higher c, and extended structures have a lower dimension compared to convoluted self-avoiding and Gaussian walks due to a lower dmin. It is found, in this work, that macromolecules in thermodynamic equilibrium display a fixed mass fractal dimension df under good solvent conditions, regardless of chain topology. These equilibrium structures accommodate changes in chain topology such as branching c by a decrease in chain tortuosity dmin. Symmetric star polymers are used to understand the structure of complex macromolecular topologies. A recently published hybrid Unified scattering function accounts for interarm correlations in symmetric star polymers along with polymer-solvent interaction for chains of arbitrary scaling dimension. Dilute solutions of linear, three-arm and six-arm polyisoprene stars are studied under good solvent conditions in deuterated p-xylene. Reduced chain tortuosity can be viewed as steric straightening of the arms. Steric effects for star topologies are quantified, and it is found that steric straightening of arms is more significant for lower-molecular-weight arms. The observation of constant df is explained through a modification of Flory-Krigbaum theory for branched polymers.

  7. Constitutional Isomers of Dendrimer-like Star Polymers: Design, Synthesis and Conformational and Structural Properties; TOPICAL

    International Nuclear Information System (INIS)

    Pople, John A.

    2001-01-01

    The design, synthesis and solution properties of six constitutional isomers of dendrimer-like star polymers is described. Each of the polymers have comparable molecular weights ((approx) 80,000 g/mol), narrow polydispersities ( and lt; 1.19) and an identical number of branching junctures (45) and surface hydroxyl functionalities (48). The only difference in the six isomers is the placement of the branching junctures. The polymers are constructed from high molecular weight poly(e-caprolactone) with branching junctures derived from 2,2'-bis(hydroxylmethyl) propionic acid (bis-MPA) emanating from a central core. The use of various generations of dendritic initiators and dendrons coupled with the ring opening polymerization of e-caprolactones allowed a modular approach to the dendrimer-like star polymer isomers. The most pronounced effects on the physical properties/morphology and hydrodynamic volume was for those polymers in which the branching was distributed throughout the sample in a dendrimer-like fashion. The versatility of this approach has provided the possibility of understanding the relationship between architecture and physical properties. Dynamic light scattering and small angle X-ray scattering techniques were used to determine the hydrodynamic radius Rh and radius of gyration Rg respectively. The relationship between Rg and molecular weight was indicative of a compact star-like structure, and did not show advanced bias towards either the dense core or dense shell models. The radial density distribution of the isomers was therefore modeled according to a many arm star polymer, and good agreement was found with experimental measures of Rh/Rg

  8. Non-classical light emission from single conjugated polymers

    Science.gov (United States)

    Hollars, Christopher; Lane, Stephen; Huser, Thomas

    2002-03-01

    Photon-antibunching from single, isolated molecules of collapsed-chain poly[2-methoxy,5-(2’-ethyl-hexyloxy)-p-phenylene-vinylene] (MEH-PPV) has been observed using confocal microscopy techniques. Efficient inter-segment energy transfer in collapsed-chain conjugated polymers leads to emission from an average of only 2-3 active sites on a polymer chain that is composed of hundreds of quasi-chromophores. These few centers consist of the segments with the lowest excitation energy and are supplied by the efficient light-harvesting and energy transfer of the surrounding higher-energy segments. This effect depends on the conformation of the polymer molecules, which is controlled by solvent polarity. These results provide new insight into the controversial photophysics of conjugated polymers and their application in optoelectronic devices.

  9. Electrochemical Interrogation of G3-Poly(propylene thiophenoimine Dendritic Star Polymer in Phenanthrene Sensing

    Directory of Open Access Journals (Sweden)

    Hlamulo R. Makelane

    2015-09-01

    Full Text Available A novel dendritic star-copolymer, generation 3 poly(propylene thiophenoimine (G3PPT-co-poly(3-hexylthiophene (P3HT star co-polymer on gold electrode (i.e., Au|G3PPT-co-P3HT was used as a sensor system for the determination of phenanthrene (PHE. The G3PPT-co-P3HT star co-polymer was synthesized via in situ electrochemical co-polymerization of generation 3 poly (propylene thiophenoimine and poly (3-hexylthiophene on gold electrode. 1HNMR spectroscopy was used to determine the regioregularity of the polymer composites, whereas Fourier transform infrared spectroscopy and scanning electron microscopy were used to study their structural and morphological properties. Au|G3PPT-co-P3HT in the absence of PHE, exhibited reversible electrochemistry attributable to the oligo (thiophene ‘pendants’ of the dendrimer. PHE produced an increase in the voltammetric signals (anodic currents due to its oxidation on the dendritic material to produce catalytic current, thereby suggesting the suitability of the Au|G3PPT-co-P3HT electrode as a PHE sensor. The electrocatalysis of PHE was made possible by the rigid and planar oligo-P3HT species (formed upon the oxidation of the oligo (thiophene pendants of the star-copolymer, which allowed the efficient capture (binding and detection (electrocatalytic oxidation of PHE molecules.

  10. Single rotating stars and the formation of bipolar planetary nebula

    Energy Technology Data Exchange (ETDEWEB)

    García-Segura, G. [Instituto de Astronomía, Universidad Nacional Autónoma de Mexico, Km. 103 Carr. Tijuana-Ensenada, 22860 Ensenada, B. C. (Mexico); Villaver, E. [Departamento de Física Teórica, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Langer, N. [Argelander-Institut für Astronomie, Universität Bonn, D-53121 Bonn (Germany); Yoon, S.-C. [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul, 151-747 (Korea, Republic of); Manchado, A., E-mail: ggs@astrosen.unam.mx [Instituto de Astrofísica de Canarias, Via Láctea s/n, E-38200 La Laguna, Tenerife (Spain)

    2014-03-10

    We have computed new stellar evolution models that include the effects of rotation and magnetic torques under different hypotheses. The goal is to test whether a single star can sustain the rotational velocities needed in the envelope for magnetohydrodynamical(MHD) simulations to shape bipolar planetary nebulae (PNe) when high mass-loss rates take place. Stellar evolution models with main sequence masses of 2.5 and 5 M {sub ☉} and initial rotational velocities of 250 km s{sup –1} have been followed through the PNe formation phase. We find that stellar cores have to be spun down using magnetic torques in order to reproduce the rotation rates observed for white dwarfs. During the asymptotic giant branch phase and beyond, the magnetic braking of the core has a practically null effect on increasing the rotational velocity of the envelope since the stellar angular momentum is efficiently removed by the wind. We have also tested the best possible case scenarios in rather non-physical contexts to give enough angular momentum to the envelope. We find that we cannot get the envelope of a single star to rotate at the speeds needed for MHD simulations to form bipolar PNe. We conclude that single stellar rotators are unlikely to be the progenitors of bipolar PNe under the current MHD model paradigm.

  11. Hierarchical self-assembly of telechelic star polymers: from soft patchy particles to gels and diamond crystals

    International Nuclear Information System (INIS)

    Capone, Barbara; Coluzza, Ivan; Blaak, Ronald; Likos, Christos N; Verso, Federica Lo

    2013-01-01

    The design of self-assembling materials in the nanometer scale focuses on the fabrication of a class of organic and inorganic subcomponents that can be reliably produced on a large scale and tailored according to their vast applications for, e.g. electronics, therapeutic vectors and diagnostic imaging agent carriers, or photonics. In a recent publication (Capone et al 2012 Phys. Rev. Lett. 109 238301), diblock copolymer stars have been shown to be a novel system, which is able to hierarchically self-assemble first into soft patchy particles and thereafter into more complex structures, such as the diamond and cubic crystal. The self-aggregating single star patchy behavior is preserved from extremely low up to high densities. Its main control parameters are related to the architecture of the building blocks, which are the number of arms (functionality) and the fraction of attractive end-monomers. By employing a variety of computational and theoretical tools, ranging from the microscopic to the mesoscopic, coarse-grained level in a systematic fashion, we investigate the crossover between the formation of microstructure versus macroscopic phase separation, as well as the formation of gels and networks in these systems. We finally show that telechelic star polymers can be used as building blocks for the fabrication of open crystal structures, such as the diamond or the simple-cubic lattice, taking advantage of the strong correlation between single-particle patchiness and lattice coordination at finite densities. (paper)

  12. Molecular weight (hydrodynamic volume) dictates the systemic pharmacokinetics and tumour disposition of PolyPEG star polymers.

    Science.gov (United States)

    Khor, Song Yang; Hu, Jinming; McLeod, Victoria M; Quinn, John F; Williamson, Mark; Porter, Christopher J H; Whittaker, Michael R; Kaminskas, Lisa M; Davis, Thomas P

    2015-11-01

    Herein we report for the first time the biological fate of poly[(oligoethylene glycol) acrylate] (POEGA) star polymers synthesised via a versatile arm-first reversible addition-fragmentation chain transfer (RAFT) polymerisation approach. The biopharmaceutical behaviour of three different molecular weight (49, 64 and 94kDa) POEGA stars was evaluated in rats and nude mice bearing human MDA MB-231 tumours after intravenous administration. The 94kDa star polymer exhibited a longer plasma exposure time than the 49kDa or 64kDa star polymer; an observation attributable to differences in the rates of both polymer biodegradation and urinary excretion. Tumour biodistribution also correlated with molecular weight and was greatest for the longest circulating 94kDa star. Different patterns of liver and spleen biodistribution were observed between mice and rats for the different sized polymers. The polymers were also well-tolerated in vivo and in vitro at therapeutic concentrations. Advances in nanotechnology has enabled scientists to produce nanoparticle as drug carriers in cancer therapeutics. In this article, the authors studied the biological fate of poly[(oligoethylene glycol) acrylate] (POEGA) star polymers of different size, after intravenous injections. This would allow the subsequent comparison to other drug delivery systems for better drug delivery. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Core Cross-Linked Multiarm Star Polymers with Aggregation-Induced Emission and Temperature Responsive Fluorescence Characteristics

    KAUST Repository

    Zhang, Zhen; Bilalis, Panagiotis; Zhang, Hefeng; Gnanou, Yves; Hadjichristidis, Nikolaos

    2017-01-01

    Aggregation-induced emission (AIE) active core cross-linked multiarm star polymers, carrying polystyrene (PS), polyethylene (PE), or polyethylene-b-polycaprolactone (PE-b-PCL) arms, have been synthesized through an “arm-first” strategy, by atom

  14. Star-shaped Polymers through Simple Wavelength-Selective Free-Radical Photopolymerization.

    Science.gov (United States)

    Eibel, Anna; Fast, David E; Sattelkow, Jürgen; Zalibera, Michal; Wang, Jieping; Huber, Alex; Müller, Georgina; Neshchadin, Dmytro; Dietliker, Kurt; Plank, Harald; Grützmacher, Hansjörg; Gescheidt, Georg

    2017-11-06

    Star-shaped polymers represent highly desired materials in nanotechnology and life sciences, including biomedical applications (e.g., diagnostic imaging, tissue engineering, and targeted drug delivery). Herein, we report a straightforward synthesis of wavelength-selective multifunctional photoinitiators (PIs) that contain a bisacylphosphane oxide (BAPO) group and an α-hydroxy ketone moiety within one molecule. By using three different wavelengths, these photoactive groups can be selectively addressed and activated, thereby allowing the synthesis of ABC-type miktoarm star polymers through a simple, highly selective, and robust free-radical polymerization method. The photochemistry of these new initiators and the feasibility of this concept were investigated in unprecedented detail by using various spectroscopic techniques. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Biodegradable star HPMA polymer-drug conjugates: biodegradability, distribution and anti-tumor efficacy

    Czech Academy of Sciences Publication Activity Database

    Etrych, Tomáš; Kovář, Lubomír; Strohalm, Jiří; Chytil, Petr; Říhová, Blanka; Ulbrich, Karel

    2011-01-01

    Roč. 154, č. 3 (2011), s. 241-248 ISSN 0168-3659 R&D Projects: GA AV ČR IAA400500806; GA AV ČR IAAX00500803; GA ČR GAP301/11/0325 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z50200510 Keywords : star polymer * HPMA copolymers * drug release Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.732, year: 2011

  16. Star polymer-drug conjugates with pH-controlled drug release and carrier degradation

    Czech Academy of Sciences Publication Activity Database

    Kostková, Hana; Schindler, Lucie; Kotrchová, Lenka; Kovář, Marek; Šírová, Milada; Kostka, Libor; Etrych, Tomáš

    2017-01-01

    Roč. 2017, 3 January (2017), s. 1-10, č. článku 8675435. ISSN 1687-4110 R&D Projects: GA MŠk(CZ) LQ1604 Institutional support: RVO:61389013 ; RVO:61388971 Keywords : star conjugate * HPMA copolymer * doxorubicin Subject RIV: CD - Macromolecular Chemistry; EE - Microbiology, Virology (MBU-M) OBOR OECD: Polymer science; Microbiology (MBU-M) Impact factor: 1.871, year: 2016

  17. Viscoelasticity, nonlinear shear start-up, and relaxation of entangled star polymers

    KAUST Repository

    Snijkers, Frank

    2013-07-23

    We report on a detailed rheological investigation of well-defined symmetric entangled polymer stars of low functionality with varying number of arms, molar mass of the arms, and solvent content. Emphasis is placed on the response of the stars in simple shear, during start-up, and for relaxation upon flow cessation. To reduce experimental artifacts associated with edge fracture (primarily) and wall slip, we employ a homemade cone-partitioned plate fixture which was successfully implemented in recent studies. Reliable data for these highly entangled stars could be obtained for Weissenberg numbers below 300. The appearance of a stress overshoot during start-up with a corresponding strain approaching a value of 2 suggests that in the investigated shear regime the stars orient but do not stretch. This is corroborated by the fact that the empirical Cox-Merx rule appears to be validated, within experimental error. On the other hand, the (shear) rate dependent steady shear viscosity data exhibit a slope smaller than the convective constraint release slope of -1 (for linear polymers) for the investigated range of rates. The broadness of the stress overshoot reflects the broad linear relaxation spectrum of the stars. The initial stress relaxation rate, reflecting the initial loss of entanglements due to the action of convective constraint release in steady shear flow, increases with Weissenberg number. More importantly, when compared against the relevant rates for comb polymers with relatively short arms, the latter are slower at larger Weissenberg numbers. At long times, the relaxation data are consistent with the linear viscoelastic data on these systems. © 2013 American Chemical Society.

  18. RAFT Synthesis and Self-Assembly of Free-Base Porphyrin Cored Star Polymers

    Directory of Open Access Journals (Sweden)

    Lin Wu

    2011-01-01

    Full Text Available Reversible addition fragmentation chain transfer (RAFT synthesis and self-assembly of free-base porphyrin cored star polymers are reported. The polymerization, in the presence of a free-base porphyrin cored chain transfer agent (CTA-FBP, produced porphyrin star polymers with controlled molecular weights and narrow polydispersities for a number of monomers including N, N-dimethylacrylamide (DMA and styrene (St. Well-defined amphiphilic star block copolymers, P-(PS-PDMA4 and P-(PDMA-PS4 (P: porphyrin, were also prepared and used for self-assembly studies. In methanol, a selective solvent for PDMA, spherical micelles were observed for both block copolymers as characterized by TEM. UV-vis studies suggested star-like micelles were formed from P-(PS-PDMA4, while P-(PDMA-PS4 aggregated into flower-like micelles. Spectrophotometric titrations indicated that the optical response of these two micelles to external ions was a function of micellar structures. These structure-related properties will be used for micelle studies and functional material development in the future.

  19. Photocrosslinkable Star Polymers via RAFT-Copolymerizations with N-Ethylacrylate-3,4-dimethylmaleimide

    Directory of Open Access Journals (Sweden)

    Philipp Vana

    2013-06-01

    Full Text Available This paper describes the Z-RAFT-star copolymerization of n-butyl acrylate (BA and N-isopropyl acrylamide (NIPAm, respectively, with N-ethylacrylate-3,4-dimethylmaleimide (1.1, a monomer carrying a UV-reactive unit that undergoes photocrosslinking. Addition of 1.1 slows down the polymerization rate both for BA and for NIPAm polymerization. Double star formation due to radical attack to the 3,4-dimethylmaleimide moiety was found in the case of BA. Dead polymer formation, presumably due to aminolysis as side-reaction, was pronounced in the NIPAm system. These two effects broadened the molar mass distributions, but did not impede the formation of functional star polymers. The composition of the copolymers as well as the reactivity ratios for the applied comonomers were determined via NMR spectroscopy (BA-co-1.1 r1.1 = 2.24 rBA = 0.95; NIPAm-co-1.1 r1.1 = 0.96 rNIPAm = 0.05. In both cases, the comonomer is consumed preferably in the beginning of the polymerization, thus forming gradient copolymer stars with the UV-reactive units being located in the outer sphere.

  20. Structural studies of three-arm star block copolymers exposed to extreme stretch suggests persistent polymer tube

    DEFF Research Database (Denmark)

    Garvey, Christopher J.; Almdal, Kristoffer; Dorokhin, Andriy

    2018-01-01

    We present structural SANS-studies of a three-armed polystyrene star polymer with short deuterated segments at the end of each arm. We show that the form factor of the three-armed star molecules in the relaxed state agrees with that of the random phase approximation of Gaussian chains. Upon...

  1. Integral equation theory study on the phase separation in star polymer nanocomposite melts.

    Science.gov (United States)

    Zhao, Lei; Li, Yi-Gui; Zhong, Chongli

    2007-10-21

    The polymer reference interaction site model theory is used to investigate phase separation in star polymer nanocomposite melts. Two kinds of spinodal curves were obtained: classic fluid phase boundary for relatively low nanoparticle-monomer attraction strength and network phase boundary for relatively high nanoparticle-monomer attraction strength. The network phase boundaries are much more sensitive with nanoparticle-monomer attraction strength than the fluid phase boundaries. The interference among the arm number, arm length, and nanoparticle-monomer attraction strength was systematically investigated. When the arm lengths are short, the network phase boundary shows a marked shift toward less miscibility with increasing arm number. When the arm lengths are long enough, the network phase boundaries show opposite trends. There exists a crossover arm number value for star polymer nanocomposite melts, below which the network phase separation is consistent with that of chain polymer nanocomposite melts. However, the network phase separation shows qualitatively different behaviors when the arm number is larger than this value.

  2. Synthesis and Rheological Properties of an Associative Star Polymer in Aqueous Solutions

    DEFF Research Database (Denmark)

    Hietala, Sami; Mononen, Pekka; Strandman, Satu

    2007-01-01

    synthesised by atom transfer radical. polymerization (ATRP) was found to fonn hydrogels at room temperature at polymer concentrations. Cp, over 22 gIL due to the interpolymer drophobic association of the PS blocks. Increasing Cp leads to stronger elastic networks at room temperature that show a gel......Rheological properties of aqueous solutions and hydrogels fonned by an amphiphiIic star block copolymer poly(acrylic acid)-blockpolystyrene (PAAS4-b-PS6)4. were investigated as a function of the polymer concentration (Cp), temperature, and added saIt concentration. The water-soluble polymer......-to-solution transition with increasing temperature. Increase of ionic strength decreases the moduli compared with the pure hydrogel but did not affect the gel-sol transition temperature significantly. Small-angle X-ray experiments showed two distinct scattering correlation peaks for samples above the gelling Cp, which...

  3. A New All-Solid-State Hyperbranched Star Polymer Electrolyte for Lithium Ion Batteries: Synthesis and Electrochemical Properties

    International Nuclear Information System (INIS)

    Wang, Ailian; Xu, Hao; Zhou, Qian; Liu, Xu; Li, Zhengyao; Gao, Rui; Wu, Na; Guo, Yuguo; Li, Huayi; Zhang, Liaoyun

    2016-01-01

    Highlights: • A new hyperbranched multi-arm star polymer was successfully synthesized. • The star polymer electrolyte has good thermal stability and forming-film property. • The ion conductivity electrolyte can reach 8.3 × 10"−"5 S cm"−"1 at room temperature. • The star polymer electrolyte has wide electrochemical windows of 4.7 V. - Abstract: A new hyperbranched multi-arm star polymer with hyperbranched polystyrene (HBPS) as core and polymethyl methacrylate-block-poly(ethylene glycol) methyl ether methacrylate(PMMA-b-PPEGMA) as arms was firstly synthesized by atom transfer radical polymerization. The obtained hyperbranched multi-arm star polymer (HBPS-(PMMA-b-PPEGMA)_x) exhibited good thermal stability with a thermal decomposition temperature of 372 °C. The transparent, free-standing, flexible polymer electrolyte film of the blending of HBPS-(PMMA-b-PPEGMA)_x and lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) was successfully fabricated by a solution casting method. The ionic conductivity of the hyperbranched star polymer electrolyte with a molar ratio of [EO]/[Li] of 30 could reach 8.3 × 10"−"5 S cm"−"1 at 30 °C (with the content of PPEGMA of 83.7%), and 2.0 × 10"−"4 S cm"−"1 at 80 °C (with the content of PPEGMA of 51.6%). The effect of the concentration of lithium salts on ionic conductivity was also investigated. The obtained all-solid-state polymer electrolyte possessed a wide electrochemical stability window of 4.7 V (vs. Li"+/Li), and a lithium-ion transference number (t_L_i"+) up to 0.31. The interfacial impedance of the fabricated LiÔöépolymer electrolyteÔöéLi symmetric cell based on hyperbranched star multi-arm polymer electrolyte exhibited good interfacial compatibility between all-solid-state polymer electrolyte and electrodes. The excellent properties of the hyperbranched star polymer electrolyte made it attractive as solid-state polymer electrolyte for lithium-ion batteries.

  4. Single-Chain Folding of Synthetic Polymers: A Critical Update.

    Science.gov (United States)

    Altintas, Ozcan; Barner-Kowollik, Christopher

    2015-11-23

    The current contribution serves as a critical update to a previous feature article from us (Macromol. Rapid Commun. 2012, 33, 958-971), and highlights the latest advances in the preparation of single chain polymeric nanoparticles and initial-yet promising-attempts towards mimicking the structure of natural biomacromolecules via single-chain folding of well-defined linear polymers via so-called single chain selective point folding and repeat unit folding. The contribution covers selected examples from the literature published up to ca. September 2015. Our aim is not to provide an exhaustive review but rather highlight a selection of new and exciting examples for single-chain folding based on advanced macromolecular precision chemistry. Initially, the discussion focuses on the synthesis and characterization of single-chain folded structures via selective point folding. The second part of the feature article addresses the folding of well-defined single-chain polymers by means of repeat unit folding. The current state of the art in the field of single-chain folding indicates that repeat unit folding-driven nanoparticle preparation is well-advanced, while initial encouraging steps towards building selective point folding systems have been taken. In addition, a summary of the-in our view-open key questions is provided that may guide future biomimetic design efforts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Dynamical behavior of a single polymer chain under nanometric confinement

    Science.gov (United States)

    Lagrené, K.; Zanotti, J.-M.; Daoud, M.; Farago, B.; Judeinstein, P.

    2010-10-01

    We address the dynamical behavior of a single polymer chain under nanometric confinement. We consider a polymer melt made of a mixture of hydrogenated and deuterated high molecular mass Poly(Ethylene Oxide) (PEO). The confining material is a membrane of Anodic Aluminum Oxide (AAO), a macroscopically highly ordered confining system made of parallel cylindrical channels. We use Neutron Spin-Echo (NSE) under the Zero Average Contrast (ZAC) condition to, all at once, i) match the intense porous AAO detrimental elastic SANS (Small Angle Neutron Scattering) contribution to the total intermediate scattering function I(Q,t) and ii) measure the Q dependence of the dynamical modes of a single chain under confinement. The polymer dynamics is probed on an extremely broad spacial ([2.2 10-2 Å-1, 0.2 Å-1]) and temporal ([0.1 ns, 600 ns]) ranges. We do not detect any influence of confinement on the polymer dynamics. This result is discussed in the framework of the debate on the existence of a "corset effect" recently suggested by NMR relaxometry data.

  6. Unconventional phase transitions in a constrained single polymer chain

    International Nuclear Information System (INIS)

    Klushin, L I; Skvortsov, A M

    2011-01-01

    Phase transitions were recognized among the most fascinating phenomena in physics. Exactly solved models are especially important in the theory of phase transitions. A number of exactly solved models of phase transitions in a single polymer chain are discussed in this review. These are three models demonstrating the second order phase transitions with some unusual features: two-dimensional model of β-structure formation, the model of coil–globule transition and adsorption of a polymer chain grafted on the solid surface. We also discuss models with first order phase transitions in a single macromolecule which admit not only exact analytical solutions for the partition function with explicit finite-size effects but also the non-equilibrium free energy as a function of the order parameter (Landau function) in closed analytical form. One of them is a model of mechanical desorption of a macromolecule, which demonstrates an unusual first order phase transition with phase coexistence within a single chain. Features of first and second order transitions become mixed here due to phase coexistence which is not accompanied by additional interfacial free energy. Apart from that, there exist several single-chain models belonging to the same class (adsorption of a polymer chain tethered near the solid surface or liquid–liquid interface, and escape transition upon compressing a polymer between small pistons) that represent examples of a highly unconventional first order phase transition with several inter-related unusual features: no simultaneous phase coexistence, and hence no phase boundary, non-concave thermodynamic potential and non-equivalence of conjugate ensembles. An analysis of complex zeros of partition functions upon approaching the thermodynamic limit is presented for models with and without phase coexistence. (topical review)

  7. Rheological Properties of Associative Star Polymers in Aqueous Solutions: Effect of Hydrophobe Length and Polymer Topology

    DEFF Research Database (Denmark)

    Hietala, Sami; Strandman, Satu; Jarvi, Paula

    2009-01-01

    triblock copolymer. These polymers, synthesized by atom transfer radical polymerization (ATRP), were found to form hydrogels due to intermolecular association originating from the PS blocks. The increasing length of the PS block was observed to lead to more elastic networks due to increased hydrophobic...

  8. Macromolecular 'size' and 'hardness' drives structure in solvent-swollen blends of linear, cyclic, and star polymers.

    Science.gov (United States)

    Gartner, Thomas E; Jayaraman, Arthi

    2018-01-17

    In this paper, we apply molecular simulation and liquid state theory to uncover the structure and thermodynamics of homopolymer blends of the same chemistry and varying chain architecture in the presence of explicit solvent species. We use hybrid Monte Carlo (MC)/molecular dynamics (MD) simulations in the Gibbs ensemble to study the swelling of ∼12 000 g mol -1 linear, cyclic, and 4-arm star polystyrene chains in toluene. Our simulations show that the macroscopic swelling response is indistinguishable between the various architectures and matches published experimental data for the solvent annealing of linear polystyrene by toluene vapor. We then use standard MD simulations in the NPT ensemble along with polymer reference interaction site model (PRISM) theory to calculate effective polymer-solvent and polymer-polymer Flory-Huggins interaction parameters (χ eff ) in these systems. As seen in the macroscopic swelling results, there are no significant differences in the polymer-solvent and polymer-polymer χ eff between the various architectures. Despite similar macroscopic swelling and effective interaction parameters between various architectures, the pair correlation function between chain centers-of-mass indicates stronger correlations between cyclic or star chains in the linear-cyclic blends and linear-star blends, compared to linear chain-linear chain correlations. Furthermore, we note striking similarities in the chain-level correlations and the radius of gyration of cyclic and 4-arm star architectures of identical molecular weight. Our results indicate that the cyclic and star chains are 'smaller' and 'harder' than their linear counterparts, and through comparison with MD simulations of blends of soft spheres with varying hardness and size we suggest that these macromolecular characteristics are the source of the stronger cyclic-cyclic and star-star correlations.

  9. Single mode dye-doped polymer photonic crystal lasers

    International Nuclear Information System (INIS)

    Christiansen, Mads B; Buß, Thomas; Smith, Cameron L C; Petersen, Sidsel R; Jørgensen, Mette M; Kristensen, Anders

    2010-01-01

    Dye-doped polymer photonic crystal (PhC) lasers fabricated by combined nanoimprint and photolithography are studied for their reproducibility and stability characteristics. We introduce a phase shift in the PhC lattice that substantially improves the yield of single wavelength emission. Single mode emission and reproducibility of laser characteristics are important if the lasers are to be mass produced in, e.g., optofluidic sensor chips. The fabrication yield is above 85% with highly reproducible wavelengths (within 0.5%), and the temperature dependence on the wavelength is found to be −0.045 or −0.066 nm K -1 , depending on the material

  10. Single mode dye-doped polymer photonic crystal lasers

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Buss, Thomas; Smith, Cameron

    2010-01-01

    Dye-doped polymer photonic crystal (PhC) lasers fabricated by combined nanoimprint and photolithography are studied for their reproducibility and stability characteristics. We introduce a phase shift in the PhC lattice that substantially improves the yield of single wavelength emission. Single mode...... emission and reproducibility of laser characteristics are important if the lasers are to be mass produced in, e. g., optofluidic sensor chips. The fabrication yield is above 85% with highly reproducible wavelengths (within 0.5%), and the temperature dependence on the wavelength is found to be -0.045 or -0...

  11. Star Polymers Reduce Islet Amyloid Polypeptide Toxicity via Accelerated Amyloid Aggregation.

    Science.gov (United States)

    Pilkington, Emily H; Lai, May; Ge, Xinwei; Stanley, William J; Wang, Bo; Wang, Miaoyi; Kakinen, Aleksandr; Sani, Marc-Antonie; Whittaker, Michael R; Gurzov, Esteban N; Ding, Feng; Quinn, John F; Davis, Thomas P; Ke, Pu Chun

    2017-12-11

    Protein aggregation into amyloid fibrils is a ubiquitous phenomenon across the spectrum of neurodegenerative disorders and type 2 diabetes. A common strategy against amyloidogenesis is to minimize the populations of toxic oligomers and protofibrils by inhibiting protein aggregation with small molecules or nanoparticles. However, melanin synthesis in nature is realized by accelerated protein fibrillation to circumvent accumulation of toxic intermediates. Accordingly, we designed and demonstrated the use of star-shaped poly(2-hydroxyethyl acrylate) (PHEA) nanostructures for promoting aggregation while ameliorating the toxicity of human islet amyloid polypeptide (IAPP), the peptide involved in glycemic control and the pathology of type 2 diabetes. The binding of PHEA elevated the β-sheet content in IAPP aggregates while rendering a new morphology of "stelliform" amyloids originating from the polymers. Atomistic molecular dynamics simulations revealed that the PHEA arms served as rodlike scaffolds for IAPP binding and subsequently accelerated IAPP aggregation by increased local peptide concentration. The tertiary structure of the star nanoparticles was found to be essential for driving the specific interactions required to impel the accelerated IAPP aggregation. This study sheds new light on the structure-toxicity relationship of IAPP and points to the potential of exploiting star polymers as a new class of therapeutic agents against amyloidogenesis.

  12. Preparation of pH-sensitive amphiphilic block star polymers, their self-assembling characteristics and release behavior on encapsulated molecules

    KAUST Repository

    Song, Xiaowan; Cao, Ming; Chen, Peng; Xia, Ru; Zheng, Zhengzhi; Miao, Jibin; Yang, Bin; Su, Lifen; Qian, Jiasheng; Feng, Xiaoshuang

    2016-01-01

    Poly(ethylene glycol) (PEG), a polymer with excellent biocompatibility, was widely used to form nanoparticles for drug delivery applications. In this paper, based on PEG, a series of pH-sensitive amphiphilic block star polymers of poly

  13. White Polymer Light-Emitting Diodes Based on Exciplex Electroluminescence from Polymer Blends and a Single Polymer.

    Science.gov (United States)

    Liang, Junfei; Zhao, Sen; Jiang, Xiao-Fang; Guo, Ting; Yip, Hin-Lap; Ying, Lei; Huang, Fei; Yang, Wei; Cao, Yong

    2016-03-09

    In this Article, we designed and synthesized a series of polyfluorene derivatives, which consist of the electron-rich 4,4'-(9-alkyl-carbazole-3,6-diyl)bis(N,N-diphenylaniline) (TPA-Cz) in the side chain and the electron-deficient dibenzothiophene-5,5-dioxide (SO) unit in the main chain. The resulting copolymer PF-T25 that did not comprise the SO unit exhibited blue light-emission with the Commission Internationale de L'Eclairage coordinates of (0.16, 0.10). However, by physically blending PF-T25 with a blue light-emitting SO-based oligomer, a novel low-energy emission correlated to exciplex emerged due to the appropriate energy level alignment of TPA-Cz and the SO-based oligomers, which showed extended exciton lifetime as confirmed by time-resolved photoluminescent spectroscopy. The low-energy emission was also identified in copolymers consisting of SO unit in the main chain, which can effectively compensate for the high-energy emission to produce binary white light-emission. Polymer light-emitting diodes based on the exciplex-type single greenish-white polymer exhibit the peak luminous efficiency of 2.34 cd A(-1) and the maximum brightness of 12 410 cd m(-2), with Commission Internationale de L'Eclairage color coordinates (0.27, 0.39). The device based on such polymer showed much better electroluminescent stability than those based on blending films. These observations indicated that developing a single polymer with the generated exciplex emission can be a novel and effective molecular design strategy toward highly stable and efficient white polymer light-emitting diodes.

  14. Force-induced desorption of 3-star polymers: a self-avoiding walk model

    Science.gov (United States)

    Janse van Rensburg, E. J.; Whittington, S. G.

    2018-05-01

    We consider a simple cubic lattice self-avoiding walk model of 3-star polymers adsorbed at a surface and then desorbed by pulling with an externally applied force. We determine rigorously the free energy of the model in terms of properties of a self-avoiding walk, and show that the phase diagram includes four phases, namely a ballistic phase where the extension normal to the surface is linear in the length, an adsorbed phase and a mixed phase, in addition to the free phase where the model is neither adsorbed nor ballistic. In the adsorbed phase all three branches or arms of the star are adsorbed at the surface. In the ballistic phase two arms of the star are pulled into a ballistic phase, while the remaining arm is in a free phase. In the mixed phase two arms in the star are adsorbed while the third arm is ballistic. The phase boundaries separating the ballistic and mixed phases, and the adsorbed and mixed phases, are both first order phase transitions. The presence of the mixed phase is interesting because it does not occur for pulled, adsorbed self-avoiding walks. In an atomic force microscopy experiment it would appear as an additional phase transition as a function of force.

  15. Precision Attitude Determination System (PADS) system design and analysis: Single-axis gimbal star tracker

    Science.gov (United States)

    1974-01-01

    The feasibility is evaluated of an evolutionary development for use of a single-axis gimbal star tracker from prior two-axis gimbal star tracker based system applications. Detailed evaluation of the star tracker gimbal encoder is considered. A brief system description is given including the aspects of tracker evolution and encoder evaluation. System analysis includes evaluation of star availability and mounting constraints for the geosynchronous orbit application, and a covariance simulation analysis to evaluate performance potential. Star availability and covariance analysis digital computer programs are included.

  16. Rapidly rotating single late-type giants: New FK Comae stars?

    Science.gov (United States)

    Fekel, Francis C.

    1986-01-01

    A group of rapidly rotating single late-type giants was found from surveys of chromospherically active stars. These stars have V sin I's ranging from 6 to 46 km/sec, modest ultraviolet emission line fluxes, and strong H alpha absorption lines. Although certainly chromospherically active, their characteristics are much less extreme than those of FK Com and one or two other similar systems. One possible explanation for the newly identified systems is that they have evolved from stars similar to FK Com. The chromospheric activity and rotation of single giant stars like FK Com would be expected to decrease with time as they do in single dwarfs. Alternatively, this newly identified group may have evolved from single rapidly rotating A, or early F stars.

  17. Monte Carlo simulations of lattice models for single polymer systems

    Science.gov (United States)

    Hsu, Hsiao-Ping

    2014-10-01

    Single linear polymer chains in dilute solutions under good solvent conditions are studied by Monte Carlo simulations with the pruned-enriched Rosenbluth method up to the chain length N ˜ O(10^4). Based on the standard simple cubic lattice model (SCLM) with fixed bond length and the bond fluctuation model (BFM) with bond lengths in a range between 2 and sqrt{10}, we investigate the conformations of polymer chains described by self-avoiding walks on the simple cubic lattice, and by random walks and non-reversible random walks in the absence of excluded volume interactions. In addition to flexible chains, we also extend our study to semiflexible chains for different stiffness controlled by a bending potential. The persistence lengths of chains extracted from the orientational correlations are estimated for all cases. We show that chains based on the BFM are more flexible than those based on the SCLM for a fixed bending energy. The microscopic differences between these two lattice models are discussed and the theoretical predictions of scaling laws given in the literature are checked and verified. Our simulations clarify that a different mapping ratio between the coarse-grained models and the atomistically realistic description of polymers is required in a coarse-graining approach due to the different crossovers to the asymptotic behavior.

  18. Monte Carlo simulations of lattice models for single polymer systems

    International Nuclear Information System (INIS)

    Hsu, Hsiao-Ping

    2014-01-01

    Single linear polymer chains in dilute solutions under good solvent conditions are studied by Monte Carlo simulations with the pruned-enriched Rosenbluth method up to the chain length N∼O(10 4 ). Based on the standard simple cubic lattice model (SCLM) with fixed bond length and the bond fluctuation model (BFM) with bond lengths in a range between 2 and √(10), we investigate the conformations of polymer chains described by self-avoiding walks on the simple cubic lattice, and by random walks and non-reversible random walks in the absence of excluded volume interactions. In addition to flexible chains, we also extend our study to semiflexible chains for different stiffness controlled by a bending potential. The persistence lengths of chains extracted from the orientational correlations are estimated for all cases. We show that chains based on the BFM are more flexible than those based on the SCLM for a fixed bending energy. The microscopic differences between these two lattice models are discussed and the theoretical predictions of scaling laws given in the literature are checked and verified. Our simulations clarify that a different mapping ratio between the coarse-grained models and the atomistically realistic description of polymers is required in a coarse-graining approach due to the different crossovers to the asymptotic behavior

  19. Single-Point Incremental Forming of Two Biocompatible Polymers: An Insight into Their Thermal and Structural Properties

    Directory of Open Access Journals (Sweden)

    Luis Marcelo Lozano-Sánchez

    2018-04-01

    Full Text Available Sheets of polycaprolactone (PCL and ultra-high molecular weight polyethylene (UHMWPE were fabricated and shaped by the Single-Point Incremental Forming process (SPIF. The performance of these biocompatible polymers in SPIF was assessed through the variation of four main parameters: the diameter of the forming tool, the spindle speed, the feed rate, and the step size based on a Box–Behnken design of experiments of four variables and three levels. The design of experiments allowed us to identify the parameters that most affect the forming of PCL and UHMWPE. The study was completed by means of a deep characterization of the thermal and structural properties of both polymers. These properties were correlated to the performance of the polymers observed in SPIF, and it was found that the polymer chains are oriented as a consequence of the SPIF processing. Moreover, by X-ray diffraction it was proved that polymer chains behave differently on each surface of the fabricated parts, since the chains on the surface in contact with the forming tool are oriented horizontally, while on the opposite surface they are oriented in the vertical direction. The unit cell of UHMWPE is distorted, passing from an orthorhombic cell to a monoclinic due to the slippage between crystallites. This slippage between crystallites was observed in both PCL and UHMWPE, and was identified as an alpha star thermal transition located in the rubbery region between the glass transition and the melting point of each polymer.

  20. Effect of Chain Conformation on the Single-Molecule Melting Force in Polymer Single Crystals: Steered Molecular Dynamics Simulations Study.

    Science.gov (United States)

    Feng, Wei; Wang, Zhigang; Zhang, Wenke

    2017-02-28

    Understanding the relationship between polymer chain conformation as well as the chain composition within the single crystal and the mechanical properties of the corresponding single polymer chain will facilitate the rational design of high performance polymer materials. Here three model systems of polymer single crystals, namely poly(ethylene oxide) (PEO), polyethylene (PE), and nylon-66 (PA66) have been chosen to study the effects of chain conformation, helical (PEO) versus planar zigzag conformation (PE, PA66), and chain composition (PE versus PA66) on the mechanical properties of a single polymer chain. To do that, steered molecular dynamics simulations were performed on those polymer single crystals by pulling individual polymer chains out of the crystals. Our results show that the patterns of force-extension curve as well as the chain moving mode are closely related to the conformation of the polymer chain in the single crystal. In addition, hydrogen bonds can enhance greatly the force required to stretch the polymer chain out of the single crystal. The dynamic breaking and reformation of multivalent hydrogen bonds have been observed for the first time in PA66 at the single molecule level.

  1. Phase transitions of single polymer chains and of polymer solutions: insights from Monte Carlo simulations

    International Nuclear Information System (INIS)

    Binder, K; Paul, W; Strauch, T; Rampf, F; Ivanov, V; Luettmer-Strathmann, J

    2008-01-01

    The statistical mechanics of flexible and semiflexible macromolecules is distinct from that of small molecule systems, since the thermodynamic limit can also be approached when the number of (effective) monomers of a single chain (realizable by a polymer solution in the dilute limit) is approaching infinity. One can introduce effective attractive interactions into a simulation model for a single chain such that a swollen coil contracts when the temperature is reduced, until excluded volume interactions are effectively canceled by attractive forces, and the chain conformation becomes almost Gaussian at the theta point. This state corresponds to a tricritical point, as the renormalization group theory shows. Below the theta temperature a fluid globule is predicted (at nonzero concentration then phase separation between dilute and semidilute solutions occurs), while at still lower temperature a transition to a solid phase (crystal or glass) occurs. Monte Carlo simulations have shown, however, that the fluid globule phase may become suppressed, when the range of the effective attractive forces becomes too short, with the result that a direct (ultimately first-order) transition from the swollen coil to the solid occurs. This behavior is analogous to the behavior of colloidal particles with a very short range of attractive forces, where liquid-vapor-type phase separation may be suppressed. Analogous first-order transitions from swollen coils to dense rodlike or toroidal structures occur for semiflexible polymers. Finally, the modifications of the behavior discussed when the polymers are adsorbed at surfaces are also mentioned, and possible relations to wetting behavior of polymer solutions are addressed.

  2. Low-loss single mode light waveguides in polymer

    Science.gov (United States)

    Sieber, Heinrich; Boehm, Hans-Jürgen; Hollenbach, Uwe; Mohr, Jürgen; Ostrzinski, Ute; Pfeiffer, Karl; Szczurowski, Marcin; Urbanczyk, Waclaw

    2012-06-01

    We report on the development of a UV-lithography manufacturing process for low loss single mode light waveguides in a novel polymer and the characterization of the fabricated components in a broad wavelength range from 808 nm to 1550 nm. The main focus of this work lies in providing a quick and cost efficient production technique for single mode waveguides and low loss integrated optical circuits. To achieve this goal we chose a novel photo-structurable polymer host-guest-system consisting of SU8 and a low refractive dopant monomer. Near and far-field measurements at different wavelengths show that the mode propagating within a well designed integrated waveguide structure and the mode of a standard fiber can exhibit a mode overlap value of approximately 1 and suffer only very low coupling losses. We demonstrate excess loss of 0.14 dB/cm for 808 nm, 0.33 dB/cm for 1310 nm and 2.86 dB/cm for 1550 nm. Typical insertion loss values of straight waveguides with a length of 36 mm are 0.9 dB for 808 nm, 1.5 dB for 1310 nm and 10.4 dB for 1550 nm. Polarization dependent loss was found to be less than 0.2 dB on sets of test structures of 36 mm length. We measured material attenuation in the novel polymer material before cross-linking of approximately 0.04 dB/cm for 808 nm and around 0.20 dB/cm for 1310 nm respectively. The presented production technique is suitable to provide low loss and low cost integrated optical circuits for sensor and communication applications in a broad wavelength range.

  3. Thermal radio emission from the winds of single stars

    International Nuclear Information System (INIS)

    Abbott, D.C.

    1985-01-01

    Observations of thermal emission at radio wavelengths provides a powerful diagnostic of the rate of mass loss and temperature of the winds of early-type stars. Some winds are also strong sources of nonthermal emission. Case studies of known thermal and nonthermal sources provide empirical criteria for classifying the observed radio radiation. Mass loss rates are derived for 37 OB and Wolf-Rayet stars considered definite or probable thermal wind sources by these criteria. The rate of mass loss is strongly linked to stellar luminosity in OB stars and probably linked to stellar mass in Wolf-Rayet stars, with no measurable correlation with any other stellar property. A few late-type giants and supergiants also have detectable thermal emission, which arises from extended, accelerating, partially-ionized chromospheres. (orig.)

  4. Conformational and Structural Properties of High Functionality Dendrimer-like Star Polymers Synthesized from Living Polymerization Techniques; TOPICAL

    International Nuclear Information System (INIS)

    Pople, John A.

    2001-01-01

    The design, synthesis and solution properties of dendritic-linear hybrid macromolecules is described. The synthetic strategy employs living ring-opening polymerization in combination with selective and quantitative organic transformations for the preparation of new molecular architectures similar to classical star polymers and dendrimers. The polymers were constructed from high molecular weight poly(e-caprolactone) initiated from the surface hydroxyl groups of dendrimers derived from bis(hydroxymethyl) propionic acid (bis-MPA) in the presence of stannous 2-ethyl hexanoate (Sn(Oct)2). In this way, star and hyperstar poly(e-caprolactones) were elaborated depending on the generation of dendrimer employed. The ROP from these hydroxy groups was found to be a facile process leading to controlled molecular weight, low dispersity products (Mw/Mn) and lt; 1.15. In addition to the use of dendrimers as building blocks to star polymers, functional dendrons derived from bis-MPA were attached to chain ends of the star polymers, yielding structures that closely resemble that of the most advanced dendrimers. Measurements of the solution properties (hydrodynamic volume vs. molecular weight) on the dendritic-linear hybrids show a deviation from linearity, with a lower than expected hydrodynamic volume, analogous to the solution properties of dendrimers of high generation number. The onset of the deviation begins with the polymers initiated from the second generation dendrimer of bis-MPA and becomes more exaggerated with the higher generations. It was found that polymerization amplifies the nonlinear solution behavior of dendrimers. Small angle neutron scattering (SANS) measurements revealed that the radius of gyration scaled with arm functionality (f) as f 2/3, in accordance with the Daoud-Cotton model for many arm star polymer

  5. Fe3O4 nanoparticles modified by CD-containing star polymer for MRI and drug delivery.

    Science.gov (United States)

    Cha, Ruitao; Li, Juanjuan; Liu, Yang; Zhang, Yifan; Xie, Qian; Zhang, Mingming

    2017-10-01

    Fe 3 O 4 nanoparticles with ultrasmall sizes show good T 1 or T 1 +T 2 contrast abilities, and have attracted considerable interest in the field of magnetic resonance imaging (MRI) contrast agents. For effective biomedical applications, the colloidal stability and biocompatibility of the Fe 3 O 4 nanoparticles need to be improved without reducing MRI relaxivity. In this paper, star polymers were used as coating materials to modify Fe 3 O 4 nanoparticles in view of their dense molecular architecture with moderate flexibility. The star polymer was composed of a β-cyclodextrin (β-CD) core and poly(2-(dimethylamino) ethyl methacrylate) (PDMAEMA) arms. Meanwhile, reduced glutathione (GSH), as a model drug, was also associated with the star polymer. Thus, a new platform for simultaneous diagnosis and treatment was achieved. Compared to the Fe 3 O 4 nanoparticles coated with linear polymers, the Fe 3 O 4 nanoparticles coated with star polymers (Fe 3 O 4 @GCP) possessed higher GSH association capacity and better stability in serum-containing solution. GSH could be released from Fe 3 O 4 @GCP nanoparticles in response to pH value of the solution. Since the sulfhydryl group on GSH is able to combine free radicals, Fe 3 O 4 @GCP nanoparticles exhibited less cytotoxicity compared to the Fe 3 O 4 nanoparticles without including GSH. Furthermore, the nanoparticles could also serve as good T 1 MRI contrast agent, and the MRI relaxivity of Fe 3 O 4 @GCP nanoparticles did not decrease after coated with the star polymer. These results indicate that the precisely designed Fe 3 O 4 @GCP nanoparticles could be used as a versatile promising theranostic nano-platform. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effect of oligonucleic acid (ONA) backbone features on assembly of ONA-star polymer conjugates: a coarse-grained molecular simulation study.

    Science.gov (United States)

    Condon, Joshua E; Jayaraman, Arthi

    2017-10-04

    Understanding the impact of incorporating new physical and chemical features in oligomeric DNA mimics, termed generally as "oligonucleic acids" (ONAs), on their structure and thermodynamics will be beneficial in designing novel materials for a variety of applications. In this work, we conduct coarse-grained molecular simulations of ONA-star polymer conjugates with varying ONA backbone flexibility, ONA backbone charge, and number of arms in the star polymer at a constant ONA strand volume fraction to elucidate the effect of these design parameters on the thermodynamics and assembly of multi-arm ONA-star polymer conjugates. We quantify the thermo-reversible behavior of the ONA-star polymer conjugates by quantifying the hybridization of the ONA strands in the system as a function of temperature (i.e. melting curve). Additionally, we characterize the assembly of the ONA-star polymer conjugates by tracking cluster formation and percolation as a function of temperature, as well as cluster size distribution at temperatures near the assembly transition region. The key results are as follows. The melting temperature (T m ) of the ONA strands decreases upon going from a neutral to a charged ONA backbone and upon increasing flexibility of the ONA backbone. Similar behavior is seen for the assembly transition temperature (T a ) with varying ONA backbone charge and flexibility. While the number of arms in the ONA-star polymer conjugate has a negligible effect on the ONA T m in these systems, as the number of ONA-star polymer arms increase, the assembly temperature T a increases and local ordering in the assembled state improves. By understanding how factors like ONA backbone charge, backbone flexibility, and ONA-star polymer conjugate architecture impact the behavior of ONA-star polymer conjugate systems, we can better inform how the selection of ONA chemistry will influence resulting ONA-star polymer assembly.

  7. Advanced Electroactive Single Crystal and Polymer Actuator Concepts for Passive Optics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes large stroke and high precision piezoelectric single crystal and electroactive polymer actuator concepts?HYBrid Actuation System (HYBAS)...

  8. Core Cross-Linked Multiarm Star Polymers with Aggregation-Induced Emission and Temperature Responsive Fluorescence Characteristics

    KAUST Repository

    Zhang, Zhen

    2017-05-19

    Aggregation-induced emission (AIE) active core cross-linked multiarm star polymers, carrying polystyrene (PS), polyethylene (PE), or polyethylene-b-polycaprolactone (PE-b-PCL) arms, have been synthesized through an “arm-first” strategy, by atom transfer radical copolymerization (ATRP) of a double styrene-functionalized tetraphenylethene (TPE-2St) used as a cross-linker with linear arm precursors possessing terminal ATRP initiating moieties. Polyethylene macroinitiator (PE–Br) was prepared via the polyhomologation of dimethylsulfoxonium methylide with triethylborane followed by oxidation/hydrolysis and esterification of the produced PE–OH with 2-bromoisobutyryl bromide; polyethylene-block-poly(ε-caprolactone) diblock macroinitiator was derived by combining polyhomologation with ring-opening polymerization (ROP). All synthesized star polymers showed AIE-behavior either in solution or in bulk. At high concentration in good solvents (e.g., THF, or toluene) they exhibited low photoluminescence (PL) intensity due to the inner filter effect. In sharp contrast to the small molecule TPE-2St, the star polymers were highly emissive in dilute THF solutions. This can be attributed to the cross-linked structure of poly(TPE-2St) core which restricts the intramolecular rotation and thus induces emission. In addition, the PL intensity of PE star polymers in THF(solvent)/n-hexane(nonsolvent) mixtures, due to their nearly spherical shape, increased when the temperature decreased from 55 to 5 °C with a linear response in the range 40–5 °C.

  9. Emerging synthetic strategies for core cross-linked star (CCS) polymers and applications as interfacial stabilizers: bridging linear polymers and nanoparticles.

    Science.gov (United States)

    Chen, Qijing; Cao, Xueteng; Xu, Yuanyuan; An, Zesheng

    2013-10-01

    Core cross-linked star (CCS) polymers become increasingly important in polymer science and are evaluated in many value-added applications. However, limitations exist to varied degrees for different synthetic methods. It is clear that improvement in synthetic efficiency is fundamental in driving this field moving even further. Here, the most recent advances are highlighted in synthetic strategies, including cross-linking with cross-linkers of low solubility, polymerization-induced self-assembly in aqueous-based heterogeneous media, and cross-linking via dynamic covalent bonds. The understanding of CCS polymers is also further refined to advocate their role as an intermediate between linear polymers and polymeric nanoparticles, and their use as interfacial stabilizers is rationalized within this context. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Structural Studies of Three-Arm Star Block Copolymers Exposed to Extreme Stretch Suggests a Persistent Polymer Tube

    Science.gov (United States)

    Mortensen, Kell; Borger, Anine L.; Kirkensgaard, Jacob J. K.; Garvey, Christopher J.; Almdal, Kristoffer; Dorokhin, Andriy; Huang, Qian; Hassager, Ole

    2018-05-01

    We present structural small-angle neutron scattering studies of a three-armed polystyrene star polymer with short deuterated segments at the end of each arm. We show that the form factor of the three-armed star molecules in the relaxed state agrees with that of the random phase approximation of Gaussian chains. Upon exposure to large extensional flow conditions, the star polymers change conformation resulting in a highly stretched structure that mimics a fully extended three-armed tube model. All three arms are parallel to the flow, one arm being either in positive or negative stretching direction, while the two other arms are oriented parallel, right next to each other in the direction opposite to the first arm.

  11. Tuning the Solubility of Copper Complex in Atom Transfer Radical Self-Condensing Vinyl Polymerizations to Control Polymer Topology via One-Pot to the Synthesis of Hyperbranched Core Star Polymers

    Directory of Open Access Journals (Sweden)

    Zong-Cheng Chen

    2014-09-01

    Full Text Available In this paper, we propose a simple one-pot methodology for proceeding from atom transfer reaction-induced conventional free radical polymerization (AT-FRP to atom transfer self-condensing vinyl polymerization (AT-SCVP through manipulation of the catalyst phase homogeneity (i.e., CuBr/2,2'-bipyridine (CuBr/Bpy in a mixture of styrene (St, 4-vinyl benzyl chloride (VBC, and ethyl 2-bromoisobutyrate. Tests of the solubilities of CuBr/Bpy and CuBr2/Bpy under various conditions revealed that both temperature and solvent polarity were factors affecting the solubility of these copper complexes. Accordingly, we obtained different polymer topologies when performing AT-SCVP in different single solvents. We investigated two different strategies to control the polymer topology in one-pot: varying temperature and varying solvent polarity. In both cases, different fractions of branching revealed the efficacy of varying the polymer topology. To diversify the functionality of the peripheral space, we performed chain extensions of the resulting hyperbranched poly(St-co-VBC macroinitiator (name as: hbPSt MI with either St or tBA (tert-butyl acrylate. The resulting hyperbranched core star polymer had high molecular weights (hbPSt-g-PSt: Mn = 25,000, Đ = 1.77; hbPSt-g-PtBA: Mn = 27,000, Đ = 1.98; hydrolysis of the tert-butyl groups of the later provided a hyperbranched core star polymer featuring hydrophilic poly(acrylic acid segments.

  12. Preparation, Single-Molecule Manipulation, and Energy Transfer Investigation of a Polyfluorene-graft-DNA polymer.

    Science.gov (United States)

    Madsen, Mikael; Christensen, Rasmus S; Krissanaprasit, Abhichart; Bakke, Mette R; Riber, Camilla F; Nielsen, Karina S; Zelikin, Alexander N; Gothelf, Kurt V

    2017-08-04

    Conjugated polymers have been intensively studied due to their unique optical and electronic properties combined with their physical flexibility and scalable bottom up synthesis. Although the bulk qualities of conjugated polymers have been extensively utilized in research and industry, the ability to handle and manipulate conjugated polymers at the nanoscale lacks significantly behind. Here, the toolbox for controlled manipulation of conjugated polymers was expanded through the synthesis of a polyfluorene-DNA graft-type polymer (poly(F-DNA)). The polymer possesses the characteristics associated with the conjugated polyfluorene backbone, but the protruding single-stranded DNA provides the material with an exceptional addressability. This study demonstrates controlled single-molecule patterning of poly(F-DNA), as well as energy transfer between two different polymer-DNA conjugates. Finally, highly efficient DNA-directed quenching of polyfluorene fluorescence was shown. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. First detection of nonflare microwave emissions from the coronae of single late-type dwarf stars

    Science.gov (United States)

    Gary, D. E.; Linsky, J. L.

    1981-01-01

    Results are presented of a search for nonflare microwave radiation from the coronae of nearby late-type dwarf stars comparable to the sun: single stars without evidence for either a large wind or circumstellar envelope. The observing program consisted of flux measurements of six stars over a 24-h period with the VLA in the C configuration at a wavelength of 6 cm with 50 MHz bandwidth. Positive detections at 6 cm were made for Chi 1 Ori (0.6 mJy) and the flare star UV Cet (1.55 mJy), and upper limits were obtained for the stars Pi 1 UMa, Xi Boo A, 70 Oph A and Epsilon Eri. It is suggested that Chi 1 Ori, and possibly UV Cet, represent the first detected members of a new class of radio sources which are driven by gyroresonance emission, i.e. cyclotron emission from nonrelativistic Maxwellian electrons.

  14. RADIAL VELOCITIES OF GALACTIC O-TYPE STARS. II. SINGLE-LINED SPECTROSCOPIC BINARIES

    International Nuclear Information System (INIS)

    Williams, S. J.; Gies, D. R.; Hillwig, T. C.; McSwain, M. V.; Huang, W.

    2013-01-01

    We report on new radial velocity measurements of massive stars that are either suspected binaries or lacking prior observations. This is part of a survey to identify and characterize spectroscopic binaries among O-type stars with the goal of comparing the binary fraction of field and runaway stars with those in clusters and associations. We present orbits for HDE 308813, HD 152147, HD 164536, BD–16°4826, and HDE 229232, Galactic O-type stars exhibiting single-lined spectroscopic variation. By fitting model spectra to our observed spectra, we obtain estimates for effective temperature, surface gravity, and rotational velocity. We compute orbital periods and velocity semiamplitudes for each system and note the lack of photometric variation for any system. These binaries probably appear single-lined because the companions are faint and because their orbital Doppler shifts are small compared to the width of the rotationally broadened lines of the primary.

  15. Physics of Polymers under Nanoscopic Confinement: a Single Molecule Study

    NARCIS (Netherlands)

    Keshavarz, M.

    2016-01-01

    Physicist Masoumeh Keshavarz studied the thermal motion of a fluorescently labelled, individual “reporter” polymer molecule, surrounded and entangled by a gel of similar but unlabelled polymers. Owing to their extreme length and stiffness, it is possible to follow the shape and the motion of the

  16. The Pharmacokinetics and Biodistribution of a 64 kDa PolyPEG Star Polymer After Subcutaneous and Pulmonary Administration to Rats.

    Science.gov (United States)

    Khor, Song Yang; Hu, Jinming; McLeod, Victoria M; Quinn, John F; Porter, Christopher J H; Whittaker, Michael R; Kaminskas, Lisa M; Davis, Thomas P

    2016-01-01

    PolyPEG star polymers have potential utility as cost-effective polymeric drug delivery vehicles, and as such, it is important to develop an understanding of their biopharmaceutical behavior. Moreover, although a number of studies have evaluated the utility of PolyPEG stars in vitro, investigation of these novel materials in vivo has been limited. Herein, we evaluated the pharmacokinetics of a 64 kDa tritiated PEG-based star polymer after subcutaneous and pulmonary administration in rats. After subcutaneous administration, the star polymer showed near complete bioavailability (∼80%) and a similar organ biodistribution profile to the polymer after intravenous administration. After intratracheal instillation to the lungs, the star polymer showed limited bioavailability (∼3%), and most of the administered radiolabel was recovered in lung tissue and feces after 6 d. The data reported here suggest that star polymers display similar pharmaceutical behavior to PEGylated dendrimers after subcutaneous and inhaled delivery and may therefore be used as similar, but more cost-effective drug delivery vehicles. Copyright © 2016. Published by Elsevier Inc.

  17. Symbiotic stars

    International Nuclear Information System (INIS)

    Boyarchuk, A.A.

    1975-01-01

    There are some arguments that the symbiotic stars are binary, where one component is a red giant and the other component is a small hot star which is exciting a nebula. The symbiotic stars belong to the old disc population. Probably, symbiotic stars are just such an evolutionary stage for double stars as planetary nebulae for single stars. (Auth.)

  18. Well-defined single-chain polymer nanoparticles via thiol-Michael addition

    NARCIS (Netherlands)

    Kröger, A. Pia P.; Boonen, Roy J.E.A.; Paulusse, Jos M.J.

    2017-01-01

    A synthetic strategy has been developed giving facile access to well-defined single-chain polymer nanoparticles (SCNPs) from styrene-, acrylate- and methacrylate-based polymers. Random copolymers (polydispersity indices 1.10–1.15) of methyl (meth)acrylate, benzyl methacrylate or styrene containing

  19. Non-equilibrium dynamics of single polymer adsorption to solid surfaces

    NARCIS (Netherlands)

    Panja, D.; Barkema, G.T.; Kolomeisky, A.B.

    2009-01-01

    The adsorption of polymers to surfaces is crucial for understanding many fundamental processes in nature. Recent experimental studies indicate that the adsorption dynamics is dominated by non-equilibrium effects. We investigate the adsorption of a single polymer of length N to a planar solid surface

  20. Novel, Solvent-Free, Single Ion Conductive Polymer Electrolytes

    National Research Council Canada - National Science Library

    Florjanczyk, Zbigniew

    2008-01-01

    This project report concerns studies on the synthesis of new polymer electrolytes for application in lithium and lithium-ion batteries characterized by limited participation of anions in the transport...

  1. A soluble star-shaped silsesquioxane-cored polymer-towards novel stabilization of pH-dependent high internal phase emulsions.

    Science.gov (United States)

    Xing, Yuxiu; Peng, Jun; Xu, Kai; Gao, Shuxi; Gui, Xuefeng; Liang, Shengyuan; Sun, Longfeng; Chen, Mingcai

    2017-08-30

    A well-defined pH-responsive star-shaped polymer containing poly(N,N-dimethylaminoethyl methacrylate) (PDMA) arms and a cage-like methacryloxypropyl silsesquioxane (CMSQ-T 10 ) core was used as an interfacial stabilizer for emulsions consisting of m-xylene and water. We explored the properties of the CMSQ/PDMA star-shaped polymer using the characteristic results of nuclear magnetic resonance (NMR) spectroscopy, size exclusion chromatography (SEC), dynamic light scattering (DLS), and zeta potential and conductivity measurements. The interfacial tension results showed that the CMSQ/PDMA star-shaped polymer reduced the interfacial tension between water and oil in a pH-dependent manner. Gelled high internal phase emulsions (HIPEs) including o/w and w/o types were formed in the pH ranges of 1.2-5.8 and 9.1-12.3 with the CMSQ/PDMA star-shaped polymer as a stabilizer, when the oil fractions were 80-90 vol% and 10-20 vol%, respectively. The soluble star-shaped polymer aggregated spontaneously to form a microgel that adsorbed to the two immiscible phases. Images of the fluorescently labeled polymers demonstrated that there was a star-shaped polymer in the continuous phase, and the non-Pickering stabilization based on the percolating network of the star-shaped polymer also contributed to the stabilization of the HIPE. This pH-dependent HIPE was prepared with a novel stabilization mechanism consisting of microgel adsorption and non-Pickering stabilization. Moreover, the preparation of HIPEs provided the possibility of their application in porous materials and responsive materials.

  2. A design of calibration single star simulator with adjustable magnitude and optical spectrum output system

    Science.gov (United States)

    Hu, Guansheng; Zhang, Tao; Zhang, Xuan; Shi, Gentai; Bai, Haojie

    2018-03-01

    In order to achieve multi-color temperature and multi-magnitude output, magnitude and temperature can real-time adjust, a new type of calibration single star simulator was designed with adjustable magnitude and optical spectrum output in this article. xenon lamp and halogen tungsten lamp were used as light source. The control of spectrum band and temperature of star was realized with different multi-beam narrow band spectrum with light of varying intensity. When light source with different spectral characteristics and color temperature go into the magnitude regulator, the light energy attenuation were under control by adjusting the light luminosity. This method can completely satisfy the requirements of calibration single star simulator with adjustable magnitude and optical spectrum output in order to achieve the adjustable purpose of magnitude and spectrum.

  3. Determination of the mass-ratio distribution, I: single-lined spectroscopic binary stars

    NARCIS (Netherlands)

    Hogeveen, S.J.

    1992-01-01

    For single-lined spectroscopic binary stars (sbi), the mass ratio q = Msec=Mprim is calculated from the mass function f(m), which is determined from observations. For statistical investigations of the mass-ratio distribution, the term sin^3 i, that remains in the cubic equation from which q is

  4. Poly(glycolide multi-arm star polymers: Improved solubility via limited arm length

    Directory of Open Access Journals (Sweden)

    Florian K. Wolf

    2010-06-01

    Full Text Available Due to the low solubility of poly(glycolic acid (PGA, its use is generally limited to the synthesis of random copolyesters with other hydroxy acids, such as lactic acid, or to applications that permit direct processing from the polymer melt. Insolubility is generally observed for PGA when the degree of polymerization exceeds 20. Here we present a strategy that allows the preparation of PGA-based multi-arm structures which significantly exceed the molecular weight of processable oligomeric linear PGA (<1000 g/mol. This was achieved by the use of a multifunctional hyperbranched polyglycerol (PG macroinitiator and the tin(II-2-ethylhexanoate catalyzed ring-opening polymerization of glycolide in the melt. With this strategy it is possible to combine high molecular weight with good molecular weight control (up to 16,000 g/mol, PDI = 1.4–1.7, resulting in PGA multi-arm star block copolymers containing more than 90 wt % GA. The successful linkage of PGA arms and PG core via this core first/grafting from strategy was confirmed by detailed NMR and SEC characterization. Various PG/glycolide ratios were employed to vary the length of the PGA arms. Besides fluorinated solvents, the materials were soluble in DMF and DMSO up to an average arm length of 12 glycolic acid units. Reduction in the Tg and the melting temperature compared to the homopolymer PGA should lead to simplified processing conditions. The findings contribute to broadening the range of biomedical applications of PGA.

  5. Single-step electrospinning to bioactive polymer nanofibers

    Czech Academy of Sciences Publication Activity Database

    Gentsch, R.; Pippig, F.; Schmidt, S.; Černoch, Peter; Polleux, J.; Börner, H. G.

    2011-01-01

    Roč. 44, č. 3 (2011), s. 453-461 ISSN 0024-9297 Institutional research plan: CEZ:AV0Z40500505 Keywords : electrospinning * polymer-peptide conjugate * block copolymer Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.167, year: 2011

  6. Covalent bond force profile and cleavage in a single polymer chain

    Science.gov (United States)

    Garnier, Lionel; Gauthier-Manuel, Bernard; van der Vegte, Eric W.; Snijders, Jaap; Hadziioannou, Georges

    2000-08-01

    We present here the measurement of the single-polymer entropic elasticity and the single covalent bond force profile, probed with two types of atomic force microscopes (AFM) on a synthetic polymer molecule: polymethacrylic acid in water. The conventional AFM allowed us to distinguish two types of interactions present in this system when doing force spectroscopic measurements: the first interaction is associated with adsorption sites of the polymer chains onto a bare gold surface, the second interaction is directly correlated to the rupture process of a single covalent bond. All these bridging interactions allowed us to stretch the single polymer chain and to determine the various factors playing a role in the elasticity of these molecules. To obtain a closer insight into the bond rupture process, we moved to a force sensor stable in position when measuring attractive forces. By optimizing the polymer length so as to fulfill the elastic stability conditions, we were able for the first time to map out the entire force profile associated with the cleavage of a single covalent bond. Experimental data coupled with molecular quantum mechanical calculations strongly suggest that the breaking bond is located at one end of the polymer chain.

  7. SINGLE-LINED SPECTROSCOPIC BINARY STAR CANDIDATES IN THE RAVE SURVEY

    International Nuclear Information System (INIS)

    Matijevic, G.; Zwitter, T.; Bienayme, O.; Siebert, A.; Watson, F. G.; Bland-Hawthorn, J.; Parker, Q. A.; Freeman, K. C.; Gilmore, G.; Grebel, E. K.; Helmi, A.; Munari, U.; Siviero, A.; Navarro, J. F.; Reid, W.; Seabroke, G. M.; Steinmetz, M.; Williams, M.; Wyse, R. F. G.

    2011-01-01

    Repeated spectroscopic observations of stars in the RAdial Velocity Experiment (RAVE) database are used to identify and examine single-lined binary (SB1) candidates. The RAVE latest internal database (VDR3) includes radial velocities, atmospheric parameters, and other parameters for approximately a quarter of a million different stars with slightly less than 300,000 observations. In the sample of ∼20,000 stars observed more than once, 1333 stars with variable radial velocities were identified. Most of them are believed to be SB1 candidates. The fraction of SB1 candidates among stars with several observations is between 10% and 15% which is the lower limit for binarity among RAVE stars. Due to the distribution of time spans between the re-observation that is biased toward relatively short timescales (days to weeks), the periods of the identified SB1 candidates are most likely in the same range. Because of the RAVE's narrow magnitude range most of the dwarf candidates belong to the thin Galactic disk while the giants are part of the thick disk with distances extending to up to a few kpc. The comparison of the list of SB1 candidates to the VSX catalog of variable stars yielded several pulsating variables among the giant population with radial velocity variations of up to few tens of km s -1 . There are 26 matches between the catalog of spectroscopic binary orbits (S B 9 ) and the whole RAVE sample for which the given periastron time and the time of RAVE observation were close enough to yield a reliable comparison. RAVE measurements of radial velocities of known spectroscopic binaries are consistent with their published radial velocity curves.

  8. Multi-level single mode 2D polymer waveguide optical interconnects using nano-imprint lithography

    NARCIS (Netherlands)

    Khan, M.U.; Justice, J.; Petäjä, J.; Korhonen, T.; Boersma, A.; Wiegersma, S.; Karppinen, M.; Corbett, B.

    2015-01-01

    Single and multi-layer passive optical interconnects using single mode polymer waveguides are demonstrated using UV nano-imprint lithography. The fabrication tolerances associated with imprint lithography are investigated and we show a way to experimentally quantify a small variation in index

  9. Application of dimensional regularization to single chain polymer static properties: Conformational space renormalization of polymers. III

    International Nuclear Information System (INIS)

    Oono, Y.; Ohta, T.; Freed, K.F.

    1981-01-01

    A dimensional regularization approach to the renormalization group treatment of polymer excluded volume is formulated in chain conformation space where monomers are specified by their spatial positions and their positions along the chain and the polymers may be taken to be monodisperse. The method utilizes basic scale invariance considerations. First, it is recognized that long wavelength macroscopic descriptions must be well defined in the limit that the minimum atomic or molecular scale L is set to zero. Secondly, the microscopic theory is independent of the conveniently chosen macroscopic scale of length k. The freedom of choice of k is exploited along with the assumed renormalizability of the theory to provide the renormalization group equations which directly imply the universal scaling laws for macroscopic properties. The renormalizability of the model implies the existence of the general relations between the basic macroparameters, such as chain length, excluded volume, etc., and their microscopic counterparts in the microscopic model for the system. These macro--micro relations are defined through the condition that macroscopic quantities be well defined for polymer chains for any spatial dimensionality. The method is illustrated by calculating the end vector distribution function for all values of end vectors R. The evaluation of this distribution function currently requires the use of expansions in e = 4-d. In this case our distribution reduces to known limits for R→0 or infinity. Subsequent papers will present calculations of the polymer coherent scattering function, the monomer spatial distribution function, and concentration dependent properties

  10. Self-healing in single and multiple fiber(s reinforced polymer composites

    Directory of Open Access Journals (Sweden)

    Woldesenbet E.

    2010-06-01

    Full Text Available You Polymer composites have been attractive medium to introduce the autonomic healing concept into modern day engineering materials. To date, there has been significant research in self-healing polymeric materials including several studies specifically in fiber reinforced polymers. Even though several methods have been suggested in autonomic healing materials, the concept of repair by bleeding of enclosed functional agents has garnered wide attention by the scientific community. A self-healing fiber reinforced polymer composite has been developed. Tensile tests are carried out on specimens that are fabricated by using the following components: hollow and solid glass fibers, healing agent, catalysts, multi-walled carbon nanotubes, and a polymer resin matrix. The test results have demonstrated that single fiber polymer composites and multiple fiber reinforced polymer matrix composites with healing agents and catalysts have provided 90.7% and 76.55% restoration of the original tensile strength, respectively. Incorporation of functionalized multi-walled carbon nanotubes in the healing medium of the single fiber polymer composite has provided additional efficiency. Healing is found to be localized, allowing multiple healing in the presence of several cracks.

  11. Molecular dynamics simulation of AFM studies of a single polymer chain

    International Nuclear Information System (INIS)

    Wang Wenhai; Kistler, Kurt A.; Sadeghipour, Keya; Baran, George

    2008-01-01

    Single polymer chain force-extension behavior measured by Atomic Force Microscopy (AFM) was interpreted by molecular dynamics (MD) simulation performed by applying a bead-spring (coarse-graining) model in which the bond potential function between adjacent beads is described by a worm-like chain (WLC) model. Simulation results indicate that caution should be applied when interpreting experimental AFM data, because the data vary depending on the point of AFM tip-polymer chain attachment. This approach offers an effective way for eventual analysis of the mechanical behavior of complex polymer networks

  12. Molecular dynamics simulation of AFM studies of a single polymer chain

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wenhai [Center for Bioengineering and Biomaterials, College of Engineering, Temple University, 1947 N. 12th Street, Philadelphia, PA 19122 (United States); Kistler, Kurt A. [Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA 19122 (United States); Sadeghipour, Keya [Center for Bioengineering and Biomaterials, College of Engineering, Temple University, 1947 N. 12th Street, Philadelphia, PA 19122 (United States); Baran, George [Center for Bioengineering and Biomaterials, College of Engineering, Temple University, 1947 N. 12th Street, Philadelphia, PA 19122 (United States)], E-mail: grbaran@temple.edu

    2008-11-24

    Single polymer chain force-extension behavior measured by Atomic Force Microscopy (AFM) was interpreted by molecular dynamics (MD) simulation performed by applying a bead-spring (coarse-graining) model in which the bond potential function between adjacent beads is described by a worm-like chain (WLC) model. Simulation results indicate that caution should be applied when interpreting experimental AFM data, because the data vary depending on the point of AFM tip-polymer chain attachment. This approach offers an effective way for eventual analysis of the mechanical behavior of complex polymer networks.

  13. Epoxy/anhydride thermosets modified with end-capped star polymers with poly(ethyleneimine cores of different molecular weight and poly(ε–caprolactone arms

    Directory of Open Access Journals (Sweden)

    C. Acebo

    2015-09-01

    Full Text Available Multiarm star polymers, with a hyperbranched poly(ethyleneimine (PEI core and poly(ε-caprolactone (PCL arms end-capped with acetyl groups were synthesized by ring-opening polymerization of ε-caprolactone from PEI cores of different molecular weight. These star polymers were used as toughening agents for epoxy/anhydride thermosets. The curing process was studied by calorimetry, thermomechanical analysis and infrared spectroscopy. The final properties of the resulting materials were determined by thermal and mechanical tests. The addition of the star polymers led to an improvement up to 130% on impact strength and a reduction in the thermal stresses up to 55%. The structure and molecular weight of the modifier used affected the morphology of the resulting materials. Electron microscopy showed phase-separated morphologies with nano-sized fine particles well adhered to the epoxy/anhydride matrix when the higher molecular weight modifier was used.

  14. Thermoresponsive Supramolecular Chemotherapy by "V"-Shaped Armed β-Cyclodextrin Star Polymer to Overcome Drug Resistance.

    Science.gov (United States)

    Fan, Xiaoshan; Cheng, Hongwei; Wang, Xiaoyuan; Ye, Enyi; Loh, Xian Jun; Wu, Yun-Long; Li, Zibiao

    2018-04-01

    Pump mediated drug efflux is the key reason to result in the failure of chemotherapy. Herein, a novel star polymer β-CD-v-(PEG-β-PNIPAAm) 7 consisting of a β-CD core, grafted with thermo-responsive poly(N-isopropylacrylamide) (PNIPAAm) and biocompatible poly(ethylene glycol) (PEG) in the multiple "V"-shaped arms is designed and further fabricated into supramolecular nanocarriers for drug resistant cancer therapy. The star polymer could encapsulate chemotherapeutics between β-cyclodextrin and anti-cancer drug via inclusion complex (IC). Furthermore, the temperature induced chain association of PNIPAAm segments facilitated the IC to form supramolecular nanoparticles at 37 °C, whereas the presence of PEG impart great stability to the self-assemblies. When incubated with MDR-1 membrane pump regulated drug resistant tumor cells, much higher and faster cellular uptake of the supramolecular nanoparticles were detected, and the enhanced intracellular retention of drugs could lead to significant inhibition of cell growth. Further in vivo evaluation showed high therapeutic efficacy in suppressing drug resistant tumor growth without a significant impact on the normal functions of main organs. This work signifies thermo-responsive supramolecular chemotherapy is promising in combating pump mediated drug resistance in both in vitro and in vivo models, which may be encouraging for the advanced drug delivery platform design to overcome drug resistant cancer. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. STAR FORMATION IN ULTRA-FAINT DWARFS: CONTINUOUS OR SINGLE-AGE BURSTS?

    International Nuclear Information System (INIS)

    Webster, David; Bland-Hawthorn, Joss; Sutherland, Ralph

    2015-01-01

    We model the chemical evolution of six ultra-faint dwarfs (UFDs): Bootes I, Canes Venatici II, Coma Berenices, Hercules, Leo IV, and Ursa Major I based on their recently determined star formation histories. We show that two single-age bursts cannot explain the observed [α/Fe] versus [Fe/H] distribution in these galaxies and that some self-enrichment is required within the first burst. An alternative scenario is modeled, in which star formation is continuous except for short interruptions when one or more supernovae temporarily blow the dense gas out from the center of the system. This model allows for self-enrichment and can reproduce the chemical abundances of the UFDs in which the second burst is only a trace population. We conclude that the most likely star formation history is one or two extended periods of star formation, with the first burst lasting for at least 100 Myr. As found in earlier work, the observed properties of UFDs can be explained by formation at a low mass (M vir ∼10 7 M ⊙ ), rather than being stripped remnants of much larger systems

  16. STAR FORMATION IN ULTRA-FAINT DWARFS: CONTINUOUS OR SINGLE-AGE BURSTS?

    Energy Technology Data Exchange (ETDEWEB)

    Webster, David; Bland-Hawthorn, Joss [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Sutherland, Ralph, E-mail: d.webster@physics.usyd.edu.au [Research School of Astronomy and Astrophysics, Australian National University, Cotter Rd, Weston, ACT 2611 (Australia)

    2015-01-30

    We model the chemical evolution of six ultra-faint dwarfs (UFDs): Bootes I, Canes Venatici II, Coma Berenices, Hercules, Leo IV, and Ursa Major I based on their recently determined star formation histories. We show that two single-age bursts cannot explain the observed [α/Fe] versus [Fe/H] distribution in these galaxies and that some self-enrichment is required within the first burst. An alternative scenario is modeled, in which star formation is continuous except for short interruptions when one or more supernovae temporarily blow the dense gas out from the center of the system. This model allows for self-enrichment and can reproduce the chemical abundances of the UFDs in which the second burst is only a trace population. We conclude that the most likely star formation history is one or two extended periods of star formation, with the first burst lasting for at least 100 Myr. As found in earlier work, the observed properties of UFDs can be explained by formation at a low mass (M{sub vir}∼10{sup 7} M{sub ⊙}), rather than being stripped remnants of much larger systems.

  17. Efficient polymer white-light-emitting diodes with a single-emission layer of fluorescent polymer blend

    International Nuclear Information System (INIS)

    Niu Qiaoli; Xu Yunhua; Jiang Jiaxing; Peng Junbiao; Cao Yong

    2007-01-01

    Efficient polymer white-light-emitting diodes (WPLEDs) have been fabricated with a single layer of fluorescent polymer blend. The device structure consists of ITO/PEDOT/PVK/emissive layer/Ba/Al. The emissive layer is a blend of poly(9,9-dioctylfluorene) (PFO), phenyl-substituted PPV derivative (P-PPV) and a copolymer of 9,9-dioctylfluorene and 4,7-di(4-hexylthien-2-yl)-2,1,3-benzothiadiazole (PFO-DHTBT), which, respectively, emits blue, green and red light. The emission of pure and efficient white light was implemented by tuning the blend weight ratio of PFO: P-PPV: PFO-DHTBT to 96:4:0.4. The maximum current efficiency and luminance are, respectively, 7.6 cd/A at 6.7 V and 11930 cd/m 2 at 11.2 V. The CIE coordinates of white-light emission were stable with the drive voltages

  18. Experimental studies of the dynamic mechanical response of a single polymer chain

    DEFF Research Database (Denmark)

    Thormann, Esben; Evans, Drew R.; Craig, Vincent S. J.

    2006-01-01

    The high-frequency and low-amplitude dynamic mechanical response from a single poly(vinyl alcohol) chain was investigated. Modification of a commercial atomic force microscope enabled high-frequency and low-amplitude periodic deformations of polymer chains during extension to be performed...... mechanical response from poly(vinyl alcohol) does not differ from its static response. This result is not unexpected as poly(vinyl alcohol) is a highly flexible polymer with intramolecular relaxation processes taking place on a short time scale. The choice of a polymer with a fast relaxation allows its...... static properties to be recovered from the dynamic measurements and enables the method suggested in this paper for decoupling the polymer response from the hydrodynamic response to be validated....

  19. Broadband Dielectric Spectroscopy and Quasi-Elastic Neutron Scattering on Single-Ion Polymer Conductors

    Science.gov (United States)

    Soles, Christopher; Peng, Hua-Gen; Page, Kirt; Snyder, Chad; Pandy, Ashoutosh; Jeong, Youmi; Runt, James; NIST Collaboration; Pennsylvania Collaboration

    2011-03-01

    The application of solid polymer electrolytes in rechargeable batteries has not been fully realized after decades of research due to its low conductivity. Dramatic increases of the ion conductivity are needed and this progress requires the understanding of conduction mechanism. We address this topic in two fronts, namely, the effect of plasticizer additives and geometric confinement on the charge transfer mechanism. To this end, we combine broadband dielectric spectroscopy (BDS) to characterize the ion mobility and quasi-elastic neutron scattering (QENS) to quantify segmental motion on a single-ion model polymer electrolyte. Deuterated small molecules were used as plasticizers so that the segmental motion of the polymer electrolyte could be monitored by QENS to understand the mechanism behind the increased conductivity. Anodic aluminum oxide (AAO) membranes with well defined channel sizes are used as the matrix to study the transport of ions solvated in a 1D polymer electrolyte.

  20. WR 110: A SINGLE WOLF-RAYET STAR WITH COROTATING INTERACTION REGIONS IN ITS WIND?

    International Nuclear Information System (INIS)

    Chene, A.-N.; Moffat, A. F. J.; Fahed, R.; St-louis, N.; Muntean, V.; Chevrotiere, A. De La; Cameron, C.; Matthews, J. M.; Gamen, R. C.; Lefevre, L.; Rowe, J. F.; Guenther, D. B.; Kuschnig, R.; Weiss, W. W.; Rucinski, S. M.; Sasselov, D.

    2011-01-01

    A 30 day contiguous photometric run with the Microvariability and Oscillations of STars (MOST) satellite on the WN5-6b star WR 110 (HD 165688) reveals a fundamental periodicity of P = 4.08 ± 0.55 days along with a number of harmonics at periods P/n, with n ∼ 2, 3, 4, 5, and 6, and a few other possible stray periodicities and/or stochastic variability on timescales longer than about a day. Spectroscopic radial velocity studies fail to reveal any plausible companion with a period in this range. Therefore, we conjecture that the observed light-curve cusps of amplitude ∼0.01 mag that recur at a 4.08 day timescale may arise in the inner parts, or at the base, of a corotating interaction region (CIR) seen in emission as it rotates around with the star at constant angular velocity. The hard X-ray component seen in WR 110 could then be a result of a high velocity component of the CIR shock interacting with the ambient wind at several stellar radii. Given that most hot, luminous stars showing CIRs have two CIR arms, it is possible that either the fundamental period is 8.2 days or, more likely in the case of WR 110, there is indeed a second weaker CIR arm for P = 4.08 days, that occurs ∼two-thirds of a rotation period after the main CIR. If this interpretation is correct, WR 110 therefore joins the ranks with three other single WR stars, all WN, with confirmed CIR rotation periods (WR 1, WR 6, and WR 134), albeit with WR 110 having by far the lowest amplitude photometric modulation. This illustrates the power of being able to secure intense, continuous high-precision photometry from space-based platforms such as MOST. It also opens the door to revealing low-amplitude photometric variations in other WN stars, where previous attempts have failed. If all WN stars have CIRs at some level, this could be important for revealing sources of magnetism or pulsation in addition to rotation periods.

  1. Polymer architecture and drug delivery.

    Science.gov (United States)

    Qiu, Li Yan; Bae, You Han

    2006-01-01

    Polymers occupy a major portion of materials used for controlled release formulations and drug-targeting systems because this class of materials presents seemingly endless diversity in topology and chemistry. This is a crucial advantage over other classes of materials to meet the ever-increasing requirements of new designs of drug delivery formulations. The polymer architecture (topology) describes the shape of a single polymer molecule. Every natural, seminatural, and synthetic polymer falls into one of categorized architectures: linear, graft, branched, cross-linked, block, star-shaped, and dendron/dendrimer topology. Although this topic spans a truly broad area in polymer science, this review introduces polymer architectures along with brief synthetic approaches for pharmaceutical scientists who are not familiar with polymer science, summarizes the characteristic properties of each architecture useful for drug delivery applications, and covers recent advances in drug delivery relevant to polymer architecture.

  2. Polymer functionalized single-walled carbon nanotube composites and semi-fluorinated quaternary ammonium polymer colloids and coatings

    Science.gov (United States)

    Paul, Abhijit

    Scope and Method of Study: Current study focused on understanding of "wetting" and "dewetting" phenomena between surfaces of single-walled carbon nanotubes (SWCNT) which are lightly grafted with polymer chains by reversible-deactivation radical polymerization, when they are mixed with matrix chains of the same architecture as grafts. Effects of grafts to matrix chain lengths on SWCNT dispersion in matrix polymers were studied by measuring electrical conductivity, glass transition temperature, and storage and loss moduli of nanocomposites. Another area of work was to design semi-fluorinated copolymers with core-shell morphology by emulsion polymerization, study their catalytic activities for hydrolyses of Paraoxon, a toxic insecticide, in the forms of both colloidal dispersions and films, and to characterize the surfaces of the films by atomic force microscopy and by dynamic contact angle measurements. Findings and Conclusions: The glass transition temperature ( Tg) of polystyrene (PS) filled with SWCNT grafted with PS of different lengths increased from 99 to 109 °C at 6 wt% of SWCNT followed by a plateau. The heat capacity (DeltaCp ) at Tg continued to decrease only for the smallest chain length grafted PS nanocomposites. SWCNT/PS nanocomposites had low electrical conductivity and showed no percolation threshold due to the thick polymer coatings. A key finding was that the SWCNT surface can accommodate only a fixed numbers of styrene units. Similar results on change in Tg were obtained for SWCNT/PMMA nanocomposites when molecular weight of matrix (Mmatrix) ≥ molecular weight of grafts (Mgraft). No change in DeltaCp was observed for SWCNT/PMMA nanocomposites. "Wetting" to "dewetting" occurred Mmatrix/ Mgraft ≈ 1. For Mmatrix > Mgraft, electrical conductivity of nanocomposites reached the value of 10-9 S cm-1 at 1.0 wt% nanotube loading and had percolation threshold of electrical conductivity at ˜0.25 wt% SWCNT. Raman and UV-vis-NIR data confirmed that

  3. All-in-polymer injection molded device for single cell capture using multilevel silicon master fabrication

    DEFF Research Database (Denmark)

    Tanzi, S.; Larsen, S.T.; Matteucci, M.

    2012-01-01

    This work demonstrates a novel all-in-polymer device for single cell capture applicable for biological recordings. The chip is injection molded and comprises a "cornered" (non planar) aperture. It has been demonstrated how cornered apertures are straightforward to mold in PDMS [1,2]. In this stud...

  4. Single-molecule study on polymer diffusion in a melt state: Effect of chain topology

    KAUST Repository

    Habuchi, Satoshi; Fujiwara, Susumu; Yamamoto, Takuya; Vá cha, Martin; Tezuka, Yasuyuki

    2013-01-01

    We report a new methodology for studying diffusion of individual polymer chains in a melt state, with special emphasis on the effect of chain topology. A perylene diimide fluorophore was incorporated into the linear and cyclic poly(THF)s, and real-time diffusion behavior of individual chains in a melt of linear poly(THF) was measured by means of a single-molecule fluorescence imaging technique. The combination of mean squared displacement (MSD) and cumulative distribution function (CDF) analysis demonstrated the broad distribution of diffusion coefficient of both the linear and cyclic polymer chains in the melt state. This indicates the presence of spatiotemporal heterogeneity of the polymer diffusion which occurs at much larger time and length scales than those expected from the current polymer physics theory. We further demonstrated that the cyclic chains showed marginally slower diffusion in comparison with the linear counterparts, to suggest the effective suppression of the translocation through the threading-entanglement with the linear matrix chains. This coincides with the higher activation energy for the diffusion of the cyclic chains than of the linear chains. These results suggest that the single-molecule imaging technique provides a powerful tool to analyze complicated polymer dynamics and contributes to the molecular level understanding of the chain interaction. © 2013 American Chemical Society.

  5. Single-molecule study on polymer diffusion in a melt state: Effect of chain topology

    KAUST Repository

    Habuchi, Satoshi

    2013-08-06

    We report a new methodology for studying diffusion of individual polymer chains in a melt state, with special emphasis on the effect of chain topology. A perylene diimide fluorophore was incorporated into the linear and cyclic poly(THF)s, and real-time diffusion behavior of individual chains in a melt of linear poly(THF) was measured by means of a single-molecule fluorescence imaging technique. The combination of mean squared displacement (MSD) and cumulative distribution function (CDF) analysis demonstrated the broad distribution of diffusion coefficient of both the linear and cyclic polymer chains in the melt state. This indicates the presence of spatiotemporal heterogeneity of the polymer diffusion which occurs at much larger time and length scales than those expected from the current polymer physics theory. We further demonstrated that the cyclic chains showed marginally slower diffusion in comparison with the linear counterparts, to suggest the effective suppression of the translocation through the threading-entanglement with the linear matrix chains. This coincides with the higher activation energy for the diffusion of the cyclic chains than of the linear chains. These results suggest that the single-molecule imaging technique provides a powerful tool to analyze complicated polymer dynamics and contributes to the molecular level understanding of the chain interaction. © 2013 American Chemical Society.

  6. Non-equilibrium dynamics of single polymer adsorption to solid surfaces

    International Nuclear Information System (INIS)

    Panja, Debabrata; Barkema, Gerard T; Kolomeisky, Anatoly B

    2009-01-01

    The adsorption of polymers to surfaces is crucial for understanding many fundamental processes in nature. Recent experimental studies indicate that the adsorption dynamics is dominated by non-equilibrium effects. We investigate the adsorption of a single polymer of length N to a planar solid surface in the absence of hydrodynamic interactions. We find that for weak adsorption energies the adsorption timescales ∼N (1+2ν)/(1+ν) , where ν is the Flory exponent for the polymer. We argue that in this regime the single chain adsorption is closely related to a field-driven polymer translocation through narrow pores. Surprisingly, for high adsorption energies the adsorption time becomes longer, as it scales as ∼N 1+ν , which is explained by strong stretching of the unadsorbed part of the polymer close to the adsorbing surface. These two dynamic regimes are separated by an energy scale that is characterized by non-equilibrium contributions during the adsorption process. (fast track communication)

  7. Real-time observation of conformational switching in single conjugated polymer chains.

    Science.gov (United States)

    Tenopala-Carmona, Francisco; Fronk, Stephanie; Bazan, Guillermo C; Samuel, Ifor D W; Penedo, J Carlos

    2018-02-01

    Conjugated polymers (CPs) are an important class of organic semiconductors that combine novel optoelectronic properties with simple processing from organic solvents. It is important to study CP conformation in solution to understand the physics of these materials and because it affects the properties of solution-processed films. Single-molecule techniques are unique in their ability to extract information on a chain-to-chain basis; however, in the context of CPs, technical challenges have limited their general application to host matrices or semiliquid environments that constrain the conformational dynamics of the polymer. We introduce a conceptually different methodology that enables measurements in organic solvents using the single-end anchoring of polymer chains to avoid diffusion while preserving polymer flexibility. We explore the effect of organic solvents and show that, in addition to chain-to-chain conformational heterogeneity, collapsed and extended polymer segments can coexist within the same chain. The technique enables real-time solvent-exchange measurements, which show that anchored CP chains respond to sudden changes in solvent conditions on a subsecond time scale. Our results give an unprecedented glimpse into the mechanism of solvent-induced reorganization of CPs and can be expected to lead to a new range of techniques to investigate and conformationally manipulate CPs.

  8. The VLT-FLAMES Tarantula Survey. XII. Rotational velocities of the single O-type stars

    Science.gov (United States)

    Ramírez-Agudelo, O. H.; Simón-Díaz, S.; Sana, H.; de Koter, A.; Sabín-Sanjulían, C.; de Mink, S. E.; Dufton, P. L.; Gräfener, G.; Evans, C. J.; Herrero, A.; Langer, N.; Lennon, D. J.; Maíz Apellániz, J.; Markova, N.; Najarro, F.; Puls, J.; Taylor, W. D.; Vink, J. S.

    2013-12-01

    Context. The 30 Doradus (30 Dor) region of the Large Magellanic Cloud, also known as the Tarantula nebula, is the nearest starburst region. It contains the richest population of massive stars in the Local Group, and it is thus the best possible laboratory to investigate open questions on the formation and evolution of massive stars. Aims: Using ground-based multi-object optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS), we aim to establish the (projected) rotational velocity distribution for a sample of 216 presumably single O-type stars in 30 Dor. The sample is large enough to obtain statistically significant information and to search for variations among subpopulations - in terms of spectral type, luminosity class, and spatial location - in the field of view. Methods: We measured projected rotational velocities, νesini, by means of a Fourier transform method and a profile fitting method applied to a set of isolated spectral lines. We also used an iterative deconvolution procedure to infer the probability density, P(νe), of the equatorial rotational velocity, νe. Results: The distribution of νesini shows a two-component structure: a peak around 80 kms-1 and a high-velocity tail extending up to ~600 kms-1. This structure is also present in the inferred distribution P(νe) with around 80% of the sample having 0 rate less than 20% of their break-up velocity. For the bulk of the sample, mass loss in a stellar wind and/or envelope expansion is not efficient enough to significantly spin down these stars within the first few Myr of evolution. If massive-star formation results in stars rotating at birth with a large portion of their break-up velocities, an alternative braking mechanism, possibly magnetic fields, is thus required to explain the present-day rotational properties of the O-type stars in 30 Dor. The presence of a sizeable population of fast rotators is compatible with recent population synthesis computations that

  9. Viscoelasticity, nonlinear shear start-up, and relaxation of entangled star polymers

    KAUST Repository

    Snijkers, Frank; Ratkanthwar, Kedar; Vlassopoulos, Dimitris; Hadjichristidis, Nikolaos

    2013-01-01

    in recent studies. Reliable data for these highly entangled stars could be obtained for Weissenberg numbers below 300. The appearance of a stress overshoot during start-up with a corresponding strain approaching a value of 2 suggests that in the investigated

  10. Conjugated Polymer-Assisted Dispersion of Single-Wall Carbon Nanotubes : The Power of Polymer Wrapping

    NARCIS (Netherlands)

    Samanta, Suman Kalyan; Fritsch, Martin; Scherf, Ullrich; Gomulya, Widianta; Bisri, Satria Zulkarnaen; Loi, Maria Antonietta

    CONSPECTUS: The future application of single-walled carbon nanotubes (SWNTs) in electronic (nano)devices is closely coupled to the availability of pure, semiconducting SWNTs and preferably, their defined positioning on suited substrates. Commercial carbon nanotube raw mixtures contain metallic as

  11. Tracing Single Electrons in a Disordered Polymer Film at Room Temperature.

    Science.gov (United States)

    Wilma, Kevin; Issac, Abey; Chen, Zhijian; Würthner, Frank; Hildner, Richard; Köhler, Jürgen

    2016-04-21

    The transport of charges lies at the heart of essentially all modern (opto-) electronic devices. Although inorganic semiconductors built the basis for current technologies, organic materials have become increasingly important in recent years. However, organic matter is often highly disordered, which directly impacts the charge carrier dynamics. To understand and optimize device performance, detailed knowledge of the transport mechanisms of charge carriers in disordered matter is therefore of crucial importance. Here we report on the observation of the motion of single electrons within a disordered polymer film at room temperature, using single organic chromophores as probe molecules. The migration of a single electron gives rise to a varying electric field in its vicinity, which is registered via a shift of the emission spectra (Stark shift) of a chromophore. The spectral shifts allow us to determine the electron mobility and reveal for each nanoenvironment a distinct number of different possible electron-transfer pathways within the rugged energy landscape of the disordered polymer matrix.

  12. Empirical Accurate Masses and Radii of Single Stars with TESS and Gaia

    Science.gov (United States)

    Stassun, Keivan G.; Corsaro, Enrico; Pepper, Joshua A.; Gaudi, B. Scott

    2018-01-01

    We present a methodology for the determination of empirical masses of single stars through the combination of three direct observables with Gaia and Transiting Exoplanet Survey Satellite (TESS): (i) the surface gravity via granulation-driven variations in the TESS light curve, (ii) the bolometric flux at Earth via the broadband spectral energy distribution, and (iii) the distance via the Gaia parallax. We demonstrate the method using 525 Kepler stars for which these measures are available in the literature, and show that the stellar masses can be measured with this method to a precision of ∼25%, limited by the surface-gravity precision of the granulation “flicker” method (∼0.1 dex) and by the parallax uncertainties (∼10% for the Kepler sample). We explore the impact of expected improvements in the surface gravity determinations—through the application of granulation background fitting and the use of recently published granulation-metallicity relations—and improvements in the parallaxes with the arrival of the Gaia second data release. We show that the application of this methodology to stars that will be observed by TESS should yield radii good to a few percent and masses good to ≈10%. Importantly, the method does not require the presence of an orbiting, eclipsing, or transiting body, nor does it require spatial resolution of the stellar surface. Thus, we can anticipate the determination of fundamental, accurate stellar radii and masses for hundreds of thousands of bright single stars—across the entire sky and spanning the Hertzsprung–Russell diagram—including those that will ultimately be found to host planets.

  13. Single-mode solid-state polymer dye laser fabricated with standard I-line UV lithography

    DEFF Research Database (Denmark)

    Balslev, Søren; Mironov, Andrej; Nilsson, Daniel

    2005-01-01

    We present single-mode solid-state polymer dye lasers fabricated with standard UV lithography. The lasers use a high-order Bragg grating and rely on index-tuning of a photosensitive polymer for waveguiding. The gain medium is Rhodamine 6G.......We present single-mode solid-state polymer dye lasers fabricated with standard UV lithography. The lasers use a high-order Bragg grating and rely on index-tuning of a photosensitive polymer for waveguiding. The gain medium is Rhodamine 6G....

  14. Star polymers by ATRP of styrene and acrylates employing multifunctional initiators

    DEFF Research Database (Denmark)

    Jankova, Katja Atanassova; Bednarek, Melania; Hvilsted, Søren

    2005-01-01

    -bromoisobutyrates or 2-bromopropionates as obtained by reaction with acid bromides. Star polystyrene (PS) is produced by using these macroinitiators and neat styrene in a controlled manner by ATRP at 110 degrees C, employing the catalytic system CuBr and bipyridine. M. up to 51,000 associated with narrow molecular...... weight distributions (PDI degrade thermally in nitrogen in a two-step process in which the first low-temperature step involves...... scission of the ester linkages and the second step corresponds to the normal PS degradation. Star poly(methyl acrylates) with various cores are likewise prepared in a controlled manner by ATRP of methyl acrylate in bulk and in solution at 6080 degrees C with the 1,1,4,7,7-pentamethyldiethylene triamine...

  15. Single-Molecule Imaging Reveals Topology Dependent Mutual Relaxation of Polymer Chains

    KAUST Repository

    Abadi, Maram

    2015-08-24

    The motion and relaxation of linear and cyclic polymers under entangled conditions are investigated by means of a newly developed single-molecule tracking technique, cumulative-area (CA) tracking. CA tracking enables simultaneous quantitative characterization of the diffusion mode, diffusion rate, and relaxation time that have been impossible with a widely used conventional single-molecule localization and tracking method, by analyzing cumulative areas occupied by the moving molecule. Using the novel approach, we investigate the motion and relaxation of entangled cyclic polymers, which have been an important but poorly understood question. Fluorescently labeled 42 kbp linear or cyclic tracer dsDNAs in concentrated solutions of unlabeled linear or cyclic DNAs are used as model systems. We show that CA tracking can explicitly distinguish topology-dependent diffusion mode, rate, and relaxation time, demonstrating that the method provides an invaluable tool for characterizing topological interaction between the entangled chains. We further demonstrate that the current models proposed for the entanglement between cyclic polymers which are based on cyclic chains moving through an array of fixed obstacles cannot correctly describe the motion of the cyclic chain under the entangled conditions. Our results rather suggest the mutual relaxation of the cyclic chains, which underscore the necessity of developing a new model to describe the motion of cyclic polymer under the entangled conditions based on the mutual interaction of the chains.

  16. Single-Molecule Imaging Reveals Topology Dependent Mutual Relaxation of Polymer Chains

    KAUST Repository

    Abadi, Maram; Serag, Maged F.; Habuchi, Satoshi

    2015-01-01

    The motion and relaxation of linear and cyclic polymers under entangled conditions are investigated by means of a newly developed single-molecule tracking technique, cumulative-area (CA) tracking. CA tracking enables simultaneous quantitative characterization of the diffusion mode, diffusion rate, and relaxation time that have been impossible with a widely used conventional single-molecule localization and tracking method, by analyzing cumulative areas occupied by the moving molecule. Using the novel approach, we investigate the motion and relaxation of entangled cyclic polymers, which have been an important but poorly understood question. Fluorescently labeled 42 kbp linear or cyclic tracer dsDNAs in concentrated solutions of unlabeled linear or cyclic DNAs are used as model systems. We show that CA tracking can explicitly distinguish topology-dependent diffusion mode, rate, and relaxation time, demonstrating that the method provides an invaluable tool for characterizing topological interaction between the entangled chains. We further demonstrate that the current models proposed for the entanglement between cyclic polymers which are based on cyclic chains moving through an array of fixed obstacles cannot correctly describe the motion of the cyclic chain under the entangled conditions. Our results rather suggest the mutual relaxation of the cyclic chains, which underscore the necessity of developing a new model to describe the motion of cyclic polymer under the entangled conditions based on the mutual interaction of the chains.

  17. Accelerated Combinatorial High Throughput Star Polymer Synthesis via a Rapid One-Pot Sequential Aqueous RAFT (rosa-RAFT) Polymerization Scheme.

    Science.gov (United States)

    Cosson, Steffen; Danial, Maarten; Saint-Amans, Julien Rosselgong; Cooper-White, Justin J

    2017-04-01

    Advanced polymerization methodologies, such as reversible addition-fragmentation transfer (RAFT), allow unprecedented control over star polymer composition, topology, and functionality. However, using RAFT to produce high throughput (HTP) combinatorial star polymer libraries remains, to date, impracticable due to several technical limitations. Herein, the methodology "rapid one-pot sequential aqueous RAFT" or "rosa-RAFT," in which well-defined homo-, copolymer, and mikto-arm star polymers can be prepared in very low to medium reaction volumes (50 µL to 2 mL) via an "arm-first" approach in air within minutes, is reported. Due to the high conversion of a variety of acrylamide/acrylate monomers achieved during each successive short reaction step (each taking 3 min), the requirement for intermediary purification is avoided, drastically facilitating and accelerating the star synthesis process. The presented methodology enables RAFT to be applied to HTP polymeric bio/nanomaterials discovery pipelines, in which hundreds of complex polymeric formulations can be rapidly produced, screened, and scaled up for assessment in a wide range of applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Production and characterization of polymer nanocomposite with aligned single wall carbon nanotubes

    International Nuclear Information System (INIS)

    Chen Wei; Tao Xiaoming

    2006-01-01

    We reported a simple method to fabricate polymer nanocomposites with single-walled carbon nanotubes (SWNTs) having exceptional alignment and improved mechanical properties. The composite films were fabricated by casting a suspension of single walled carbon nanotubes in a solution of thermoplastic polyurethane and tetrahydrofuran. The orientation as well as dispersion of nanotubes was determined by scanning electron microscopy, transmission electron microscopy and polarized Raman spectroscopy. The macroscopic alignment probably results from solvent-polymer interaction induced orientation of soft segment chain during swelling and moisture curing. The tensile behavior of the aligned nanotube composite film was also studied. At a 0.5 wt.% nanotube loading, a 1.9-fold increase in Young's modulus was achieved

  19. Efficient Synthesis of Single-Chain Polymer Nanoparticles via Amide Formation

    Directory of Open Access Journals (Sweden)

    Ana Sanchez-Sanchez

    2015-01-01

    Full Text Available Single-chain technology (SCT allows the transformation of individual polymer chains to folded/collapsed unimolecular soft nanoparticles. In this work we contribute to the enlargement of the SCT toolbox by demonstrating the efficient synthesis of single-chain polymer nanoparticles (SCNPs via intrachain amide formation. In particular, we exploit cross-linking between active methylene groups and isocyanate moieties as powerful “click” chemistry driving force for SCNP construction. By employing poly(methyl methacrylate- (PMMA- based copolymers bearing β-ketoester units distributed randomly along the copolymer chains and bifunctional isocyanate cross-linkers, SCNPs were successfully synthesized at r.t. under appropriate reaction conditions. Characterization of the resulting SCNPs was carried out by means of a combination of techniques including size exclusion chromatography (SEC, infrared (IR spectroscopy, proton nuclear magnetic resonance (1H NMR spectroscopy, dynamic light scattering (DLS, and elemental analysis (EA.

  20. A micromotor based on polymer single crystals and nanoparticles: toward functional versatility

    Science.gov (United States)

    Liu, Mei; Liu, Limei; Gao, Wenlong; Su, Miaoda; Ge, Ya; Shi, Lili; Zhang, Hui; Dong, Bin; Li, Christopher Y.

    2014-07-01

    We report a multifunctional micromotor fabricated by the self-assembly technique using multifunctional materials, i.e. polymer single crystals and nanoparticles, as basic building blocks. Not only can this micromotor achieve autonomous and directed movement, it also possesses unprecedented functions, including enzymatic degradation-induced micromotor disassembly, sustained release and molecular detection.We report a multifunctional micromotor fabricated by the self-assembly technique using multifunctional materials, i.e. polymer single crystals and nanoparticles, as basic building blocks. Not only can this micromotor achieve autonomous and directed movement, it also possesses unprecedented functions, including enzymatic degradation-induced micromotor disassembly, sustained release and molecular detection. Electronic supplementary information (ESI) available: Experimental section, Fig. S1-S8 and Video S1-S4. See DOI: 10.1039/c4nr02593h

  1. Quantifying bacterial adhesion on antifouling polymer brushes via single-cell force spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Rodriguez-Emmenegger, Cesar; Janel, S.; de los Santos Pereira, Andres; Bruns, M.; Lafont, F.

    2015-01-01

    Roč. 6, č. 31 (2015), s. 5740-5751 ISSN 1759-9954 R&D Projects: GA ČR(CZ) GJ15-09368Y; GA MŠk(CZ) ED1.1.00/02.0109 Grant - others:OPPK(XE) CZ.2.16/3.1.00/21545 Program:OPPK Institutional support: RVO:61389013 Keywords : antifouling polymer brushes * single-cell force spectroscopy * bacterial adhesion Subject RIV: BO - Biophysics Impact factor: 5.687, year: 2015

  2. Optical measuring system with an interrogator and a polymer-based single-mode fibre optic sensor system

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to an optical measuring system comprising a polymer-based single-mode fibre-optic sensor system (102), an optical interrogator (101), and an optical arrangement (103) interconnecting the optical interrogator (101) and the polymer-based single-mode fibre-optic sensor...... system (102). The invention further relates to an optical interrogator adapted to be connected to a polymer-based single-mode fibre-optic sensor system via an optical arrangement. The interrogator comprises a broadband light source arrangement (104) and a spectrum analysing arrangement which receives...

  3. Single-polymer dynamics under constraints: scaling theory and computer experiment

    International Nuclear Information System (INIS)

    Milchev, Andrey

    2011-01-01

    The relaxation, diffusion and translocation dynamics of single linear polymer chains in confinement is briefly reviewed with emphasis on the comparison between theoretical scaling predictions and observations from experiment or, most frequently, from computer simulations. Besides cylindrical, spherical and slit-like constraints, related problems such as the chain dynamics in a random medium and the translocation dynamics through a nanopore are also considered. Another particular kind of confinement is imposed by polymer adsorption on attractive surfaces or selective interfaces-a short overview of single-chain dynamics is also contained in this survey. While both theory and numerical experiments consider predominantly coarse-grained models of self-avoiding linear chain molecules with typically Rouse dynamics, we also note some recent studies which examine the impact of hydrodynamic interactions on polymer dynamics in confinement. In all of the aforementioned cases we focus mainly on the consequences of imposed geometric restrictions on single-chain dynamics and try to check our degree of understanding by assessing the agreement between theoretical predictions and observations. (topical review)

  4. Short wave infrared hyperspectral imaging for recovered post-consumer single and mixed polymers characterization

    Science.gov (United States)

    Bonifazi, Giuseppe; Palmieri, Roberta; Serranti, Silvia

    2015-03-01

    Postconsumer plastics from packing and packaging represent about the 60% of the total plastic wastes (i.e. 23 million of tons) produced in Europe. The EU Directive (2014/12/EC) fixes as target that the 60%, by weight, of packaging waste has to be recovered, or thermally valorized. When recovered, the same directive established that packaging waste has to be recycled in a percentage ranging between 55% (minimum) and 60% (maximum). The non-respect of these rules can produce that large quantities of end-of-life plastic products, specifically those utilized for packaging, are disposed-off, with a strong environmental impact. The application of recycling strategies, finalized to polymer recovery, can represent an opportunity to reduce: i) not renewable raw materials (i.e. oil) utilization, ii) carbon dioxide emissions and iii) amount of plastic waste disposed-off. Aim of this work was to perform a full characterization of different end-of-life polymers based products, constituted not only by single polymers but also of mixtures, in order to realize their identification for quality control and/or certification assessment. The study was specifically addressed to characterize the different recovered products as resulting from a recycling plant where classical processing flow-sheets, based on milling, classification and separation, are applied. To reach this goal, an innovative sensing technique, based on the utilization of a HyperSpectral[b] I[/b]maging (HSI) device working in the SWIR region (1000-2500 nm), was investigated. Following this strategy, single polymers and/or mixed polymers recovered were correctly recognized. The main advantage of the proposed approach is linked to the possibility to perform "on-line" analyses, that is directly on the different material flow streams, as resulting from processing, without any physical sampling and classical laboratory "off-line" determination.

  5. Phase behavior of diblock copolymer/star-shaped polymer thin film mixtures.

    Science.gov (United States)

    Zhao, Junnan; Sakellariou, Georgios; Green, Peter F

    2016-05-07

    We investigated the phase behavior of thin film, thickness h≈ 100 nm, mixtures of a polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymer with star-shaped polystyrene (SPS) molecules of varying functionalities f, where 4 ≤f≤ 64, and molecular weights per arm Marm. The miscibility of the system and the surface composition varied appreciably with Marm and f. For large values of Marm, regardless of f, the miscibility of the system was qualitatively similar to that of linear chain PS/PS-b-P2VP mixtures - the copolymer chains aggregate to form micelles, each composed of an inner P2VP core and PS corona, which preferentially segregate to the free surface. On the other hand, for large f and small Marm, SPS molecules preferentially resided at the free surface. Moreover, blends containing SPS molecules with the highest values of f and lowest values of Marm were phase separated. These observations are rationalized in terms of competing entropic interactions and the dependence of the surface tension of the star-shaped molecules on Marm and f.

  6. Low-metallicity massive single stars with rotation. Evolutionary models applicable to I Zwicky 18

    NARCIS (Netherlands)

    Szécsi, D.; Langer, N.; Yoon, S.C.; Sanyal, D.; de Mink, S.; Evans, C.J.; Dermine, T.

    2015-01-01

    Context. Low-metallicity environments such as the early Universe and compact star-forming dwarf galaxies contain many massive stars. These stars influence their surroundings through intense UV radiation, strong winds and explosive deaths. A good understanding of low-metallicity environments requires

  7. Looped star polymers show conformational transition from spherical to flat toroidal shapes.

    Science.gov (United States)

    Reiss, Pascal; Fritsche, Miriam; Heermann, Dieter W

    2011-11-01

    Inspired by the topological organization of the circular Escherichia coli chromosome, which is compacted by separate domains, we study a polymer architecture consisting of a central ring to which either looped or linear side chains are grafted. A shape change from a spherical to a toroidal organization takes place as soon as the inner ring becomes large enough for the attached arms to fit within its circumference. Building up a torus, the system flattens, depending on the effective bending rigidity of the chain induced by entropic repulsion of the attached loops and, to a lesser extent, linear arms. Our results suggest that the natural formation of a toroidal structure with a decreased amount of writhe induced by a specific underlying topology could be one driving force, among others, that nature exploits to ensure proper packaging of the genetic material within a rod-shaped, bacterial envelope.

  8. Origins of the helical wrapping of phenyleneethynylene polymers about single-walled carbon nanotubes.

    Science.gov (United States)

    Von Bargen, Christopher D; MacDermaid, Christopher M; Lee, One-Sun; Deria, Pravas; Therien, Michael J; Saven, Jeffery G

    2013-10-24

    The highly charged, conjugated polymer poly[p-{2,5-bis(3-propoxysulfonicacidsodiumsalt)}phenylene]ethynylene (PPES) has been shown to wrap single-wall carbon nanotubes (SWNTs), adopting a robust helical superstructure. Surprisingly, PPES adopts a helical rather than a linear conformation when adhered to SWNTs. The complexes formed by PPES and related polymers upon helical wrapping of a SWNT are investigated using atomistic molecular dynamics (MD) simulations in the presence and absence of aqueous solvent. In simulations of the PPES/SWNT system in an aqueous environment, PPES spontaneously takes on a helical conformation. A potential of mean force, ΔA(ξ), is calculated as a function of ξ, the component of the end-to-end vector of the polymer chain projected on the SWNT axis; ξ is a monotonic function of the polymer's helical pitch. ΔA(ξ) provides a means to quantify the relative free energies of helical conformations of the polymer when wrapped about the SWNT. The aqueous system possesses a global minimum in ΔA(ξ) at the experimentally observed value of the helical pitch. The presence of this minimum is associated with preferred side chain conformations, where the side chains adopt conformations that provide van der Waals contact between the tubes and the aliphatic components of the side chains, while exposing the anionic sulfonates for aqueous solvation. The simulations provide a free energy estimate of a 0.2 kcal/mol/monomer preference for the helical over the linear conformation of the PPES/SWNT system in an aqueous environment.

  9. Non-covalent functionalization of single wall carbon nanotubes and graphene by a conjugated polymer

    KAUST Repository

    Jiwuer, Jilili

    2014-07-07

    We report first-principles calculations on the binding of poly[(9,9-bis-(6-bromohexylfluorene-2,7-diyl)-co-(benzene-1,4-diyl)] to a (8,0) single wall carbon nanotube (SWCNT) and to graphene. Considering different relative orientations of the subsystems, we find for the generalized gradient approximation a non-binding state, whereas the local density approximation predicts reasonable binding energies. The results coincide after inclusion of van der Waals corrections, which demonstrates a weak interaction between the polymer and SWCNT/graphene, mostly of van der Waals type. Accordingly, the density of states shows essentially no hybridization. The physisorption mechanism explains recent experimental observations and suggests that the conjugated polymer can be used for non-covalent functionalization.

  10. Non-covalent functionalization of single wall carbon nanotubes and graphene by a conjugated polymer

    KAUST Repository

    Jiwuer, Jilili; Abdurahman, Ayjamal; Gü lseren, Oğuz; Schwingenschlö gl, Udo

    2014-01-01

    We report first-principles calculations on the binding of poly[(9,9-bis-(6-bromohexylfluorene-2,7-diyl)-co-(benzene-1,4-diyl)] to a (8,0) single wall carbon nanotube (SWCNT) and to graphene. Considering different relative orientations of the subsystems, we find for the generalized gradient approximation a non-binding state, whereas the local density approximation predicts reasonable binding energies. The results coincide after inclusion of van der Waals corrections, which demonstrates a weak interaction between the polymer and SWCNT/graphene, mostly of van der Waals type. Accordingly, the density of states shows essentially no hybridization. The physisorption mechanism explains recent experimental observations and suggests that the conjugated polymer can be used for non-covalent functionalization.

  11. White-light-emitting diode based on a single-layer polymer

    Science.gov (United States)

    Wang, B. Z.; Zhang, X. P.; Liu, H. M.

    2013-05-01

    A broad-band light-emitting diode was achieved in a single-layer device based on pure poly(9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-1,4-phenylenediamine) (PFB). Electromer emission was observed in the red with a center wavelength of about 620 nm in electroluminescence (EL) spectrum. This kind of emission exhibits strong dependence on the thickness of the PFB layer, so that the shape of the EL spectrum may be adjusted through changing the thickness of the active polymer layer to balance between the intrinsic PFB emission in the blue and the electromer emission in the red. Thus, white light emission may be achieved from such a single-layer single-material diode.

  12. Chromospheric Ca II H and K and H-alpha emission in single and binary stars of spectral types F6-M2

    International Nuclear Information System (INIS)

    Strassmeier, K.G.; Fekel, F.C.; Bopp, B.W.; Dempsey, R.C.; Henry, G.W.

    1990-01-01

    New observations of the Ca II H and K and H-epsilon region and/or the Balmer H-alpha line are presented for 100 mostly very active stars but also for weak or inactive stars with suspected activity. Correlations between chromospheric activity at Ca II H and K and H-alpha and effective surface temperature and rotation are identified, and several new stars with chromospheric Ca II H and K emission are discovered. No single activity-rotation relation can be derived for all luminosity classes, and there is clear evidence that evolved stars are generally more active than main-sequence stars of the same rotation period. Binary within the evolved stars appears to play no role, while main-sequence binary stars show generally higher levels of activity than their single counterparts. Chromospheric emission in the Ca II H and K lines depends on surface temperature in that flux declines with cooler temperature. 63 refs

  13. Self-Assembled CNT-Polymer Hybrids in Single-Walled Carbon Nanotubes Dispersed Aqueous Triblock Copolymer Solutions

    Science.gov (United States)

    Vijayaraghavan, D.; Manjunatha, A. S.; Poojitha, C. G.

    2018-04-01

    We have carried out scanning electron microscopy (SEM), differential scanning calorimetry (DSC), small angle X-ray scattering (SAXS), electrical conductivity, and 1H NMR studies as a function of temperature on single-walled carbon nanotubes (SWCNTs) dispersed aqueous triblock copolymer (P123) solutions. The single-walled carbon nanotubes in this system aggregate to form bundles, and the bundles aggregate to form net-like structures. Depending on the temperature and phases of the polymer, this system exhibits three different self-assembled CNT-polymer hybrids. We find CNT-unimer hybrid at low temperatures, CNT-micelle hybrid at intermediate temperatures wherein the polymer micelles are adsorbed in the pores of the CNT nets, and another type of CNT-micelle hybrid at high temperatures wherein the polymer micelles are adsorbed on the surface of the CNT bundles. Our DSC thermogram showed two peaks related to these structural changes in the CNT-polymer hybrids. Temperature dependence of the 1H NMR chemical shifts of the molecular groups of the polymer and the AC electrical conductivity of the composite also showed discontinuous changes at the temperatures at which the CNT-polymer hybrid's structural changes are seen. Interestingly, for a higher CNT concentration (0.5 wt.%) in the system, the aggregated polymer micelles adsorbed on the CNTs exhibit cone-like and cube-like morphologies at the intermediate and at high temperatures respectively.

  14. Polymer optical fiber Bragg grating inscription with a single UV laser pulse

    DEFF Research Database (Denmark)

    Pospori, Andreas; Marques, A.T.; Bang, Ole

    2017-01-01

    We experimentally demonstrate the first polymer optical fiber Bragg grating inscribed with only one krypton fluoride laser pulse. The device has been recorded in a single-mode poly(methyl methacrylate) optical fiber, with a core doped with benzyl dimethyl ketal for photosensitivity enhancement. One...... laser pulse with a duration of 15 ns, which provide energy density of 974 mJ/cm2, is adequate to introduce a refractive index change of 0.74×10-4 in the fiber core. After the exposure, the reflectivity of the grating increases for a few minutes following a second order exponential saturation...

  15. Effects of topology on the adsorption of singly tethered ring polymers to attractive surfaces.

    Science.gov (United States)

    Li, Bing; Sun, Zhao-Yan; An, Li-Jia

    2015-07-14

    We investigate the effect of topology on the equilibrium behavior of singly tethered ring polymers adsorbed on an attractive surface. We focus on the change of square radius of gyration Rg(2), the perpendicular component Rg⊥(2) and the parallel component Rg‖(2) to the adsorbing surface, the mean contacting number of monomers with the surface , and the monomer distribution along z-direction during transition from desorption to adsorption. We find that both of the critical point of adsorption εc and the crossover exponent ϕ depend on the knot type when the chain length of ring ranges from 48 to 400. The behaviors of Rg(2), Rg⊥(2), and Rg‖(2) are found to be dependent on the topology and the monomer-surface attractive strength. At weak adsorption, the polymer chains with more complex topology are more adsorbable than those with simple topology. However, at strong adsorption, the polymer chains with complex topology are less adsorbable. By analyzing the distribution of monomer along z-direction, we give a possible mechanism for the effect of topology on the adsorption behavior.

  16. Determination of the optical constants of polymer light-emitting diode films from single reflection measurements

    International Nuclear Information System (INIS)

    Zhu Dexi; Shen Weidong; Ye Hui; Liu Xu; Zhen Hongyu

    2008-01-01

    We present a simple and fast method to determine the optical constant and physical thickness of polymer films from a single reflectivity measurement. A self-consistent dispersion formula of the Forouhi-Bloomer model was introduced to fit the measured spectral curves by a modified 'Downhill' simplex algorithm. Four widely used polymer light-emitting diodes materials: poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylenevinylene], poly(9,9-dioctylfluoreny-2,7-diyl) (PFO), poly(N-vinyl carbazole) and poly(3,4-ethylene dioxythiophene) : poly(styrenesulfonate) were investigated by this technique. The refractive indices over the whole visible region as well as the optical band gap extracted by this method agree well with those reported in the literature. The determined physical thicknesses present a deviation less than 4% compared with the experimental values measured by the stylus profiler. The influence of scattering loss on the fitted results is discussed to demonstrate the applicability of this technology for polymer films.

  17. Metal-free, single-polymer device exhibits resistive memory effect

    KAUST Repository

    Bhansali, Unnat Sampatraj; Khan, Yasser; Cha, Dong Kyu; Almadhoun, Mahmoud N.; Li, Ruipeng; Chen, Long; Amassian, Aram; Odeh, Ihab N.; Alshareef, Husam N.

    2013-01-01

    All-polymer, write-once-read-many times resistive memory devices have been fabricated on flexible substrates using a single polymer, poly(3,4- ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). Spin-cast or inkjet-printed films of solvent-modified PEDOT:PSS are used as electrodes, while the unmodified or as-is PEDOT:PSS is used as the semiconducting active layer. The all-polymer devices exhibit an irreversible but stable transition from a low resistance state (ON) to a high resistance state (OFF) at low voltages caused by an electric-field-induced morphological rearrangement of PEDOT and PSS at the electrode interface. However, in the metal-PEDOT:PSS-metal devices, we have shown a metal filament formation switching the device from an initial high resistance state (OFF) to the low resistance state (ON). The all-PEDOT:PSS memory device has low write voltages (<3 V), high ON/OFF ratio (>10 3), good retention characteristics (>10 000 s), and stability in ambient storage (>3 months). © 2013 American Chemical Society.

  18. Phthalimide containing donor-acceptor polymers for effective dispersion of single-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Baris Yilmaz

    2015-08-01

    Full Text Available Single-walled carbon nanotubes have been dispersed by novel phthalimide containing donor-acceptor type copolymers in organic media. Brominated phthalimide comonomer has been copolymerized with several electron rich structures using Suzuki and Stille coupling reactions. Carbon nanotube dispersion capability of the resultant polymers has been assessed by exploiting the non-covalent interaction of nanotube surface with the pi-system of conjugated backbone of polymers. Four polymers have been found to be good candidates for individually dispersing nanotubes in solution. In order to identify the dispersed nanotube species, 2D excitation-emission map and Raman spectroscopy have been performed. Molecular dynamics modelling has been utilized to reveal the binding energies of dispersants with the nanotube surface and the simulation results have been compared with the experimental findings. Both experimental and theoretical results imply the presence of a complex mechanism that governs the extent of dispersion capacity and selectivity of each conjugated polymeric dispersant in solubilizing carbon nanotubes.

  19. Metal-free, single-polymer device exhibits resistive memory effect

    KAUST Repository

    Bhansali, Unnat Sampatraj

    2013-12-23

    All-polymer, write-once-read-many times resistive memory devices have been fabricated on flexible substrates using a single polymer, poly(3,4- ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). Spin-cast or inkjet-printed films of solvent-modified PEDOT:PSS are used as electrodes, while the unmodified or as-is PEDOT:PSS is used as the semiconducting active layer. The all-polymer devices exhibit an irreversible but stable transition from a low resistance state (ON) to a high resistance state (OFF) at low voltages caused by an electric-field-induced morphological rearrangement of PEDOT and PSS at the electrode interface. However, in the metal-PEDOT:PSS-metal devices, we have shown a metal filament formation switching the device from an initial high resistance state (OFF) to the low resistance state (ON). The all-PEDOT:PSS memory device has low write voltages (<3 V), high ON/OFF ratio (>10 3), good retention characteristics (>10 000 s), and stability in ambient storage (>3 months). © 2013 American Chemical Society.

  20. Microfluidic Fabrication of Porous Polymer Microspheres: Dual Reactions in Single Droplets

    KAUST Repository

    Gong, Xiuqing

    2009-06-16

    We report the microfluidic fabrication of macroporous polymer microspheres via the simultaneous reactions within single droplets, induced by LTV irradiation. The aqueous phase of the reaction is the decomposition of H 2O2 to yield oxygen, whereas the organic phase is the polymerization of NO A 61, ethylene glycol dimethacrylate (EGDMA), and tri (propylene glycol) diacrylate (TPGDA) precursors. We first used a liquid polymer precursor to encapsulate a multiple number of magnetic Fe3O 4 colloidal suspension (MCS) droplets in a core-shell structure, for the purpose of studying the number of such encapsulated droplets that can be reliably controlled through the variation of flow rates. It was found that the formation of one shell with one, two, three, or more encapsulated droplets is possible. Subsequently, the H2O2 solution was encapsulated in the same way, after which we investigated its decomposition under UV irradiation, which simultaneously induces the polymerization of the encapsulating shell. Because the H2O2 decomposition leads to the release of oxygen, porous microspheres were obtained from a combined H2O2 decomposition/polymer precursor polymerization reaction. The multiplicity of the initially encapsulated H2O 2 droplets ensures the homogeneous distribution of the pores. The pores inside the micrometer-sized spheres range from several micrometers to tens of micrometers, and the maximum internal void volume fraction can attain 70%, similar to that of high polymerized high internal phase emulsion (polyHIPE). © 2009 American Chemical Society.

  1. Single-Molecule Luminescence and High Efficiency Photovoltaic Cells Based on Percolated Conducting Carbon Nanotubes Scaffolds Templated with Light-Harvesting Conjugated Polymers and Nanohybrids

    National Research Council Canada - National Science Library

    Yang, Arnold C

    2009-01-01

    .... Nanocomposites constructed by surface-grafted multiwall carbon nanotubes (CNTs) with conjugated polymers dispersed in a polymer matrix were synthesized to form novel optoelectronic materials that exploit single-molecule effects...

  2. End-anchored polymers in good solvents from the single chain limit to high anchoring densities.

    Science.gov (United States)

    Whitmore, Mark D; Grest, Gary S; Douglas, Jack F; Kent, Michael S; Suo, Tongchuan

    2016-11-07

    An increasing number of applications utilize grafted polymer layers to alter the interfacial properties of solid substrates, motivating refinement in our theoretical understanding of such layers. To assess existing theoretical models of them, we have investigated end-anchored polymer layers over a wide range of grafting densities, σ, ranging from a single chain to high anchoring density limits, chain lengths ranging over two orders of magnitude, for very good and marginally good solvent conditions. We compare Monte Carlo and molecular dynamics simulations, numerical self-consistent field calculations, and experimental measurements of the average layer thickness, h, with renormalization group theory, the Alexander-de Gennes mushroom theory, and the classical brush theory. Our simulations clearly indicate that appreciable inter-chain interactions exist at all simulated areal anchoring densities so that there is no mushroom regime in which the layer thickness is independent of σ. Moreover, we find that there is no high coverage regime in which h follows the predicted scaling, h ∼ Nσ 1/3 , for classical polymer brushes either. Given that no completely adequate analytic theory seems to exist that spans wide ranges of N and σ, we applied scaling arguments for h as a function of a suitably defined reduced anchoring density, defined in terms of the solution radius of gyration of the polymer chains and N. We find that such a scaling approach enables a smooth, unified description of h in very good solvents over the full range of anchoring density and chain lengths, although this type of data reduction does not apply to marginal solvent quality conditions.

  3. CHARACTERIZING LENSES AND LENSED STARS OF HIGH-MAGNIFICATION SINGLE-LENS GRAVITATIONAL MICROLENSING EVENTS WITH LENSES PASSING OVER SOURCE STARS

    International Nuclear Information System (INIS)

    Choi, J.-Y.; Shin, I.-G.; Park, S.-Y.; Han, C.; Gould, A.; Gaudi, B. S.; Henderson, C. B.; Sumi, T.; Udalski, A.; Beaulieu, J.-P.; Street, R.; Dominik, M.; Allen, W.; Almeida, L. A.; Bos, M.; Christie, G. W.; Depoy, D. L.; Dong, S.; Drummond, J.; Gal-Yam, A.

    2012-01-01

    We present the analysis of the light curves of nine high-magnification single-lens gravitational microlensing events with lenses passing over source stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176, MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2009-BLG-174, MOA-2010-BLG-436, MOA-2011-BLG-093, MOA-2011-BLG-274, OGLE-2011-BLG-0990/MOA-2011-BLG-300, and OGLE-2011-BLG-1101/MOA-2011-BLG-325. For all of the events, we measure the linear limb-darkening coefficients of the surface brightness profile of source stars by measuring the deviation of the light curves near the peak affected by the finite-source effect. For seven events, we measure the Einstein radii and the lens-source relative proper motions. Among them, five events are found to have Einstein radii of less than 0.2 mas, making the lenses very low mass star or brown dwarf candidates. For MOA-2011-BLG-274, especially, the small Einstein radius of θ E ∼ 0.08 mas combined with the short timescale of t E ∼ 2.7 days suggests the possibility that the lens is a free-floating planet. For MOA-2009-BLG-174, we measure the lens parallax and thus uniquely determine the physical parameters of the lens. We also find that the measured lens mass of ∼0.84 M ☉ is consistent with that of a star blended with the source, suggesting that the blend is likely to be the lens. Although we did not find planetary signals for any of the events, we provide exclusion diagrams showing the confidence levels excluding the existence of a planet as a function of the separation and mass ratio.

  4. CHARACTERIZING LENSES AND LENSED STARS OF HIGH-MAGNIFICATION SINGLE-LENS GRAVITATIONAL MICROLENSING EVENTS WITH LENSES PASSING OVER SOURCE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.-Y.; Shin, I.-G.; Park, S.-Y.; Han, C. [Department of Physics, Institute for Astrophysics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Gould, A.; Gaudi, B. S.; Henderson, C. B. [Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); Sumi, T. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Beaulieu, J.-P. [Institut d' Astrophysique de Paris, UMR7095 CNRS-Universite Pierre and Marie Curie, 98 bis boulevard Arago, 75014 Paris (France); Street, R. [Las Cumbres Observatory Global Telescope Network, 6740B Cortona Dr, Suite 102, Goleta, CA 93117 (United States); Dominik, M. [School of Physics and Astronomy, SUPA, University of St. Andrews, North Haugh, St. Andrews, KY16 9SS (United Kingdom); Allen, W. [Vintage Lane Observatory, Blenheim (New Zealand); Almeida, L. A. [Instituto Nacional de Pesquisas Espaciais/MCTI, Sao Jose dos Campos, Sao Paulo (Brazil); Bos, M. [Molehill Astronomical Observatory, North Shore (New Zealand); Christie, G. W. [Auckland Observatory, P.O. Box 24-180, Auckland (New Zealand); Depoy, D. L. [Department of Physics, Texas A and M University, College Station, TX (United States); Dong, S. [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Drummond, J. [Possum Observatory, Patutahi (New Zealand); Gal-Yam, A. [Benoziyo Center for Astrophysics, Weizmann Institute (Israel); Collaboration: muFUN Collaboration; MOA Collaboration; OGLE Collaboration; PLANET Collaboration; RoboNet Collaboration; MiNDSTEp Consortium; and others

    2012-05-20

    We present the analysis of the light curves of nine high-magnification single-lens gravitational microlensing events with lenses passing over source stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176, MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2009-BLG-174, MOA-2010-BLG-436, MOA-2011-BLG-093, MOA-2011-BLG-274, OGLE-2011-BLG-0990/MOA-2011-BLG-300, and OGLE-2011-BLG-1101/MOA-2011-BLG-325. For all of the events, we measure the linear limb-darkening coefficients of the surface brightness profile of source stars by measuring the deviation of the light curves near the peak affected by the finite-source effect. For seven events, we measure the Einstein radii and the lens-source relative proper motions. Among them, five events are found to have Einstein radii of less than 0.2 mas, making the lenses very low mass star or brown dwarf candidates. For MOA-2011-BLG-274, especially, the small Einstein radius of {theta}{sub E} {approx} 0.08 mas combined with the short timescale of t{sub E} {approx} 2.7 days suggests the possibility that the lens is a free-floating planet. For MOA-2009-BLG-174, we measure the lens parallax and thus uniquely determine the physical parameters of the lens. We also find that the measured lens mass of {approx}0.84 M{sub Sun} is consistent with that of a star blended with the source, suggesting that the blend is likely to be the lens. Although we did not find planetary signals for any of the events, we provide exclusion diagrams showing the confidence levels excluding the existence of a planet as a function of the separation and mass ratio.

  5. Effect of chain stiffness on the structure of single-chain polymer nanoparticles

    Science.gov (United States)

    Moreno, Angel J.; Bacova, Petra; Lo Verso, Federica; Arbe, Arantxa; Colmenero, Juan; Pomposo, José A.

    2018-01-01

    Polymeric single-chain nanoparticles (SCNPs) are soft nano-objects synthesized by purely intramolecular cross-linking of single polymer chains. By means of computer simulations, we investigate the conformational properties of SCNPs as a function of the bending stiffness of their linear polymer precursors. We investigate a broad range of characteristic ratios from the fully flexible case to those typical of bulky synthetic polymers. Increasing stiffness hinders bonding of groups separated by short contour distances and increases looping over longer distances, leading to more compact nanoparticles with a structure of highly interconnected loops. This feature is reflected in a crossover in the scaling behaviour of several structural observables. The scaling exponents change from those characteristic for Gaussian chains or rings in θ-solvents in the fully flexible limit, to values resembling fractal or ‘crumpled’ globular behaviour for very stiff SCNPs. We characterize domains in the SCNPs. These are weakly deformable regions that can be seen as disordered analogues of domains in disordered proteins. Increasing stiffness leads to bigger and less deformable domains. Surprisingly, the scaling behaviour of the domains is in all cases similar to that of Gaussian chains or rings, irrespective of the stiffness and degree of cross-linking. It is the spatial arrangement of the domains which determines the global structure of the SCNP (sparse Gaussian-like object or crumpled globule). Since intramolecular stiffness can be varied through the specific chemistry of the precursor or by introducing bulky side groups in its backbone, our results propose a new strategy to tune the global structure of SCNPs.

  6. Controlled and tunable polymer particles' production using a single microfluidic device

    Science.gov (United States)

    Amoyav, Benzion; Benny, Ofra

    2018-04-01

    Microfluidics technology offers a new platform to control liquids under flow in small volumes. The advantage of using small-scale reactions for droplet generation along with the capacity to control the preparation parameters, making microfluidic chips an attractive technology for optimizing encapsulation formulations. However, one of the drawback in this methodology is the ability to obtain a wide range of droplet sizes, from sub-micron to microns using a single chip design. In fact, typically, droplet chips are used for micron-dimension particles, while nanoparticles' synthesis requires complex chips design (i.e., microreactors and staggered herringbone micromixer). Here, we introduce the development of a highly tunable and controlled encapsulation technique, using two polymer compositions, for generating particles ranging from microns to nano-size using the same simple single microfluidic chip design. Poly(lactic-co-glycolic acid) (PLGA 50:50) or PLGA/polyethylene glycol polymeric particles were prepared with focused-flow chip, yielding monodisperse particle batches. We show that by varying flow rate, solvent, surfactant and polymer composition, we were able to optimize particles' size and decrease polydispersity index, using simple chip designs with no further related adjustments or costs. Utilizing this platform, which offers tight tuning of particle properties, could offer an important tool for formulation development and can potentially pave the way towards a better precision nanomedicine.

  7. Study of the Molecular Dynamics of Multiarm Star Polymers with a Poly(ethyleneimine Core and Poly(lactide Multiarms

    Directory of Open Access Journals (Sweden)

    Frida Román

    2017-02-01

    Full Text Available Multiarm star polymers, denoted PEIx-PLAy and containing a hyperbranched poly(ethyleneimine (PEI core of different molecular weights x and poly(lactide (PLA arms with y ratio of lactide repeat units to N links were used in this work. Samples were preconditioned to remove the moisture content and then characterized by thermogravimetric analysis (TGA, differential scanning calorimetry (DSC and dielectric relaxation spectroscopy (DRS. The glass transition temperature, Tg, is between 48 and 50 °C for all the PEIx-PLAy samples. The dielectric curves show four dipolar relaxations: γ, β, α, and α′ in order of increasing temperature. The temperatures at which these relaxations appear, together with their dependence on the frequency, allows relaxation maps to be drawn, from which the activation energies of the sub-Tg γ- and β-relaxations and the Vogel–Fulcher–Tammann parameters of the α-relaxation glass transition are obtained. The dependence of the characteristic features of these relaxations on the molecular weight of the PEI core and on the ratio of lactide repeat units to N links permits the assignation of molecular motions to each relaxation. The γ-relaxation is associated with local motions of the –OH groups of the poly(lactide chains, the β-relaxation with motions of the main chain of poly(lactide, the α-relaxation with global motions of the complete assembly of PEI core and PLA arms, and the α′-relaxation is related to the normal mode relaxation due to fluctuations of the end-to-end vector in the PLA arms, without excluding the possibility that it could be a Maxwell–Wagner–Sillars type ionic peak because the material may have nano-regions of different conductivity.

  8. Study of the Molecular Dynamics of Multiarm Star Polymers with a Poly(ethyleneimine) Core and Poly(lactide) Multiarms.

    Science.gov (United States)

    Román, Frida; Colomer, Pere; Calventus, Yolanda; Hutchinson, John M

    2017-02-04

    Multiarm star polymers, denoted PEI x -PLA y and containing a hyperbranched poly(ethyleneimine) (PEI) core of different molecular weights x and poly(lactide) (PLA) arms with y ratio of lactide repeat units to N links were used in this work. Samples were preconditioned to remove the moisture content and then characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and dielectric relaxation spectroscopy (DRS). The glass transition temperature, T g , is between 48 and 50 °C for all the PEI x -PLA y samples. The dielectric curves show four dipolar relaxations: γ, β, α, and α' in order of increasing temperature. The temperatures at which these relaxations appear, together with their dependence on the frequency, allows relaxation maps to be drawn, from which the activation energies of the sub- T g γ- and β-relaxations and the Vogel-Fulcher-Tammann parameters of the α-relaxation glass transition are obtained. The dependence of the characteristic features of these relaxations on the molecular weight of the PEI core and on the ratio of lactide repeat units to N links permits the assignation of molecular motions to each relaxation. The γ-relaxation is associated with local motions of the -OH groups of the poly(lactide) chains, the β-relaxation with motions of the main chain of poly(lactide), the α-relaxation with global motions of the complete assembly of PEI core and PLA arms, and the α'-relaxation is related to the normal mode relaxation due to fluctuations of the end-to-end vector in the PLA arms, without excluding the possibility that it could be a Maxwell-Wagner-Sillars type ionic peak because the material may have nano-regions of different conductivity.

  9. Scaling from single molecule to macroscopic adhesion at polymer/metal interfaces.

    Science.gov (United States)

    Utzig, Thomas; Raman, Sangeetha; Valtiner, Markus

    2015-03-10

    Understanding the evolution of macroscopic adhesion based on fundamental molecular interactions is crucial to designing strong and smart polymer/metal interfaces that play an important role in many industrial and biomedical applications. Here we show how macroscopic adhesion can be predicted on the basis of single molecular interactions. In particular, we carry out dynamic single molecule-force spectroscopy (SM-AFM) in the framework of Bell-Evans' theory to gain information about the energy barrier between the bound and unbound states of an amine/gold junction. Furthermore, we use Jarzynski's equality to obtain the equilibrium ground-state energy difference of the amine/gold bond from these nonequilibrium force measurements. In addition, we perform surface forces apparatus (SFA) experiments to measure macroscopic adhesion forces at contacts where approximately 10(7) amine/gold bonds are formed simultaneously. The SFA approach provides an amine/gold interaction energy (normalized by the number of interacting molecules) of (36 ± 1)k(B)T, which is in excellent agreement with the interaction free energy of (35 ± 3)k(B)T calculated using Jarzynski's equality and single-molecule AFM experiments. Our results validate Jarzynski's equality for the field of polymer/metal interactions by measuring both sides of the equation. Furthermore, the comparison of SFA and AFM shows how macroscopic interaction energies can be predicted on the basis of single molecular interactions, providing a new strategy to potentially predict adhesive properties of novel glues or coatings as well as bio- and wet adhesion.

  10. Unexpected differences between thermal and photoinitiated cationic curing of a diglycidyl ether of bisphenol A modified with a multiarm star poly(styrene-b-poly(ε-caprolactone polymer

    Directory of Open Access Journals (Sweden)

    J. M. Morancho

    2013-07-01

    Full Text Available The effect of adding a multiarm star poly(styrene-b-poly(ε-caprolactone polymer on the cationic thermal and photoinitiated curing of diglycidyl ether of bisphenol A was studied. This star-polymer decelerated the thermal curing of diglycidyl ether of bisphenol A and modified the final structure of the epoxy matrix. The photocuring was influenced significantly by the addition of the multiarm star. When the proportion of this modifier added was 5%, much more time was necessary for complete photocuring (160 min at 40ºC. In the presence of 10% of modifier, the degree of photocuring reached was very low (0.196 at 120°C. A subsequent thermal post-curing was necessary to cure completely the system. During photocuring in presence of poly(styrene-b-poly(ε-caprolactone, the formation of dormant species, which are reactivated when the temperature increases, takes places. The kinetics of the thermal curing and the photocuring was analyzed using an isoconversional method due to the complexity of the reactive process. Applying this method, it has been confirmed the dependence of activation energy on the degree of conversion. The fracture morphology analyzed by scanning electron microscopy exhibited a second phase originated during photocuring by the presence of the modifier.

  11. INVERSION SYMMETRY, ARCHITECTURE AND DISPERSITY, AND THEIR EFFECTS ON THERMODYNAMICS IN BULK AND CONFINED REGIONS: FROM RANDOMLY BRANCHED POLYMERS TO LINEAR CHAINS, STARS AND DENDRIMERS

    Directory of Open Access Journals (Sweden)

    P.D.Gujrati

    2002-01-01

    Full Text Available Theoretical evidence is presented in this review that architectural aspects can play an important role, not only in the bulk but also in confined geometries by using our recursive lattice theory, which is equally applicable to fixed architectures (regularly branched polymers, stars, dendrimers, brushes, linear chains, etc. and variable architectures, i.e. randomly branched structures. Linear chains possess an inversion symmetry (IS of a magnetic system (see text, whose presence or absence determines the bulk phase diagram. Fixed architectures possess the IS and yield a standard bulk phase diagram in which there exists a theta point at which two critical lines C and C' meet and the second virial coefficient A2 vanishes. The critical line C appears only for infinitely large polymers, and an order parameter is identified for this criticality. The critical line C' exists for polymers of all sizes and represents phase separation criticality. Variable architectures, which do not possess the IS, give rise to a topologically different phase diagram with no theta point in general. In confined regions next to surfaces, it is not the IS but branching and monodispersity, which becomes important in the surface regions. We show that branching plays no important role for polydisperse systems, but become important for monodisperse systems. Stars and linear chains behave differently near a surface.

  12. Preparation of pH-sensitive amphiphilic block star polymers, their self-assembling characteristics and release behavior on encapsulated molecules

    KAUST Repository

    Song, Xiaowan

    2016-05-28

    Poly(ethylene glycol) (PEG), a polymer with excellent biocompatibility, was widely used to form nanoparticles for drug delivery applications. In this paper, based on PEG, a series of pH-sensitive amphiphilic block star polymers of poly(ethylene glycol)-block-poly(ethoxy ethyl glycidyl ether) (PEG-b-PEEGE) with different hydrophobic length were synthesized by living anionic ring-opening polymerization method. The products were characterized using 1H NMR and gel permeation chromatography. These copolymers could self-assemble in aqueous solution to form micellar structure with controlled morphologies. Transmission electron microscopy showed that the nanoparticles are spherical or rodlike with different hydrophilic mass fractions. The pH response of polymeric aggregates from PEG-b-PEEGE was detected by fluorescence probe technique at different pH. A pH-dependent release behavior was observed and pH-responsiveness of PEG-b-PEEGE was affected by the hydrophobic block length. These results demonstrated that star-shaped polymers (PEG-b-PEEGE) are attractive candidates as anticancer drug delivery carriers. © 2016 Springer-Verlag Berlin Heidelberg

  13. Translocation of "rod-coil" polymers: probing the structure of single molecules within nanopores.

    Science.gov (United States)

    de Haan, Hendrick W; Slater, Gary W

    2013-01-25

    Using simulation and analytical techniques, we demonstrate that it is possible to extract structural information about biological molecules by monitoring the dynamics as they translocate through nanopores. From Langevin dynamics simulations of polymers exhibiting discrete changes in flexibility (rod-coil polymers), distinct plateaus are observed in the progression towards complete translocation. Characterizing these dynamics via an incremental mean first passage approach, the large steps are shown to correspond to local barriers preventing the passage of the coils while the rods translocate relatively easily. Analytical replication of the results provides insight into the corrugated nature of the free energy landscape as well as the dependence of the effective barrier heights on the length of the coil sections. Narrowing the width of the pore or decreasing the charge on either the rod or the coil segments are both shown to enhance the resolution of structural details. The special case of a single rod confined within a nanopore is also studied. Here, sufficiently long flexible sections attached to either end are demonstrated to act as entropic anchors which can effectively trap the rod within the pore for an extended period of time. Both sets of results suggest new experimental approaches for the control and study of biological molecules within nanopores.

  14. Chemiresistor Devices for Chemical Warfare Agent Detection Based on Polymer Wrapped Single-Walled Carbon Nanotubes.

    Science.gov (United States)

    Fennell, John F; Hamaguchi, Hitoshi; Yoon, Bora; Swager, Timothy M

    2017-04-28

    Chemical warfare agents (CWA) continue to present a threat to civilian populations and military personnel in operational areas all over the world. Reliable measurements of CWAs are critical to contamination detection, avoidance, and remediation. The current deployed systems in United States and foreign militaries, as well as those in the private sector offer accurate detection of CWAs, but are still limited by size, portability and fabrication cost. Herein, we report a chemiresistive CWA sensor using single-walled carbon nanotubes (SWCNTs) wrapped with poly(3,4-ethylenedioxythiophene) (PEDOT) derivatives. We demonstrate that a pendant hexafluoroisopropanol group on the polymer that enhances sensitivity to a nerve agent mimic, dimethyl methylphosphonate, in both nitrogen and air environments to concentrations as low as 5 ppm and 11 ppm, respectively. Additionally, these PEDOT/SWCNT derivative sensor systems experience negligible device performance over the course of two weeks under ambient conditions.

  15. Molecular Design for Preparation of Hexagonal-Ordered Porous Films Based on Side-chain Type Liquid-Crystalline Star Polymer.

    Science.gov (United States)

    Naka, Yumiko; Takayama, Hiromu; Koyama, Teruhisa; Le, Khoa V; Sasaki, Takeo

    2018-05-02

    Fabrication of regularly porous films by the breath-figure method has attracted much attention. The simple, low-cost technique uses the condensation of water droplets to produce these structures, but the phenomenon itself is complex, requiring control over many interacting parameters that change throughout the process. Developing a unified understanding for the molecular design of polymers to prepare ordered porous films is challenging, but required for further advancements. In this article, the effects of the chemical structure of polymers in the breath-figure technique were systematically explored using side-chain type liquid-crystalline (LC) star polymers. The formation of porous films was affected by the structure of the polymers. Although the entire film surface of poly(11-[4-(4-cyanobiphenyl)oxy]undecyl methacrylate) (P11CB) had a hexagonal ordered porous structure over a certain Mn value, regularly arranged holes did not easily form in poly(methyl methacrylate) (PMMA), even though the main chain of PMMA is similar to that of P11CB. Comparing P11CB and poly(11-[(1,1'-biphenyl)-4-yloxy]undecyl methacrylate) (P11B) (P11CB without cyano groups) showed that the local polar groups in hydrophobic polymers promoted the formation of ordered porous films. No holes formed in poly(4-cyanobiphenyl methacrylate) (P0CB) (P11CB without alkyl spacers) films due to its hydrophilicity. The introduction of alkyl chains in P0CB allowed the preparation of honeycomb-structured films by increasing the internal tension. However, alkyl chains in the side chain alone did not result in a porous structure, as in the case of poly(11-[(1,1'-biphenyl)-4-yloxy]undecyl methacrylate) (P11). Aromatic rings are also required to increase the Tg and improve film formability. In the present study, suitable molecular designs of polymers were found, specifically hydrophobic polymers with local polar groups, to form a regularly porous structure. Development of clear guidelines for the molecular

  16. Theoretical characterization of a class of orange dopants for white-light-emitting single polymers

    International Nuclear Information System (INIS)

    Hu, Bo; Yao, Chan; Wang, Qingwei; Zhang, Hao; Yu, Jiankang

    2012-01-01

    New single-polymer white electroluminescent systems containing two individual emission species − polyfluorene as a blue host and 2,1,3-benzothiadiazole(BTD) derivative as an orange dopant − have been designed and investigated on the basis of the quantum chemical calculations. Calculations show that the change of chemical composition along the backbone in BTD-based derivative yields modifications to the electronic and optical properties. Furthermore, by introducing electron-donating groups [−CH 3 , –OCH 3 , and –NH 2 ] on terminal N,N-disubstituted amino groups, desirable orange emission can be obtained and may be further combined with polyfluorene to form white light. Also, we estimate the reorganization energies upon cation or anion formation as one of the important parameters of mobility with the charge hopping model to determine whether the molecular structural changes may improve the hole/electron transport. The electrostatic surface potentials are finally taken into account to evaluate stability. -- Graphical abstract: New single-polymer white electroluminescent systems containing two individual emission species − polyfluorene as a blue host and 2,1,3-benzothiadiazole(BTD) derivative as an orange dopant − have been designed and investigated on the basis of the quantum chemical calculations. Highlights: ► The change of chemical composition along the backbone yields modifications to the electronic and optical properties. ► Introducing [–CH 3 , –OCH 3 , and –NH 2 ] on terminal N,N-disubstituted amino groups, desirable orange emission can be obtained. ► Desirable orange emission may be further combined with polyfluorene to form white light. ► Designed BTD-based derivatives can function as good hole or ambipolar transport materials in the OLEDs. ► According to the calculated electrostatic surface potentials, OMC-PZ has better stability than that of OMC-PZT.

  17. Comparison of the cellular transport mechanism of cationic, star-shaped polymers and liposomes in HaCat cells

    Directory of Open Access Journals (Sweden)

    Luo H

    2017-02-01

    Full Text Available Heng-Cong Luo,1,2,* Na Li,1,* Li Yan,1 Kai-jin Mai,3 Kan Sun,1 Wei Wang,1 Guo-Juan Lao,1 Chuan Yang,1 Li-Ming Zhang,3 Meng Ren1 1Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Medical Research Center, Sun Yat-Sen University, Guangzhou, People’s Republic of China; 2Department of Endocrinology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China; 3School of Materials Science and Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Several biological barriers must be overcome to achieve efficient nonviral gene delivery. These barriers include target cell uptake, lysosomal degradation, and dissociation from the carrier. In this study, we compared the differences in the uptake mechanism of cationic, star-shaped polymer/MMP-9siRNA complexes (β-CD-(D37/MMP-9siRNA complexes: polyplexes and commercial liposome/MMP-9siRNA complexes (Lipofectamine® 2000/MMP-9siRNA complexes: liposomes. The uptake pathway and transfection efficiency of the polyplexes and liposomes were determined by fluorescence microscopy, flow cytometry, and reverse transcriptase-polymerase chain reaction. The occurrence of intracellular processing was assessed by confocal laser scanning microscopy. Endosomal acidification inhibitors were used to explore the endosomal escape mechanisms of the polyplexes and lysosomes. We concluded that the polyplexes were internalized by non-caveolae- and non-clathrin-mediated pathways, with no lysosomal trafficking, thereby inducing successful transfection, while the majority of liposomes were internalized by clathrin-dependent endocytosis (CDE, caveolae-mediated endocytosis, and macropinocytosis, and only CDE induced successful transfection. Liposomes might escape more quickly than polyplexes, and

  18. Synthesis of Cyclic Polymers and Characterization of Their Diffusive Motion in the Melt State at the Single Molecule Level

    KAUST Repository

    Habuchi, Satoshi

    2016-09-26

    We demonstrate a method for the synthesis of cyclic polymers and a protocol for characterizing their diffusive motion in a melt state at the single molecule level. An electrostatic self-assembly and covalent fixation (ESA-CF) process is used for the synthesis of the cyclic poly(tetrahydrofuran) (poly(THF)). The diffusive motion of individual cyclic polymer chains in a melt state is visualized using single molecule fluorescence imaging by incorporating a fluorophore unit in the cyclic chains. The diffusive motion of the chains is quantitatively characterized by means of a combination of mean-squared displacement (MSD) analysis and a cumulative distribution function (CDF) analysis. The cyclic polymer exhibits multiple-mode diffusion which is distinct from its linear counterpart. The results demonstrate that the diffusional heterogeneity of polymers that is often hidden behind ensemble averaging can be revealed by the efficient synthesis of the cyclic polymers using the ESA-CF process and the quantitative analysis of the diffusive motion at the single molecule level using the MSD and CDF analyses.

  19. Injection molded polymer chip for electrochemical and electrophysiological recordings from single cells

    DEFF Research Database (Denmark)

    Tanzi, Simone; Larsen, Simon Tylsgaard; Taboryski, Rafael J.

    We present a novel method to fabricate an all in polymer injection molded chip for electrochemical cell recordings and lateral cell trapping. The complete device is molded in thermoplastic polymer and it results from assembling two halves. We tested spin-coated conductive polymer poly(3,4-ethylen...

  20. Synthesis of Cyclic Polymers and Characterization of Their Diffusive Motion in the Melt State at the Single Molecule Level

    KAUST Repository

    Habuchi, Satoshi; Yamamoto, Takuya; Tezuka, Yasuyuki

    2016-01-01

    We demonstrate a method for the synthesis of cyclic polymers and a protocol for characterizing their diffusive motion in a melt state at the single molecule level. An electrostatic self-assembly and covalent fixation (ESA-CF) process is used

  1. Temperature dependent evolution of wrinkled single-crystal silicon ribbons on shape memory polymers.

    Science.gov (United States)

    Wang, Yu; Yu, Kai; Qi, H Jerry; Xiao, Jianliang

    2017-10-25

    Shape memory polymers (SMPs) can remember two or more distinct shapes, and thus can have a lot of potential applications. This paper presents combined experimental and theoretical studies on the wrinkling of single-crystal Si ribbons on SMPs and the temperature dependent evolution. Using the shape memory effect of heat responsive SMPs, this study provides a method to build wavy forms of single-crystal silicon thin films on top of SMP substrates. Silicon ribbons obtained from a Si-on-insulator (SOI) wafer are released and transferred onto the surface of programmed SMPs. Then such bilayer systems are recovered at different temperatures, yielding well-defined, wavy profiles of Si ribbons. The wavy profiles are shown to evolve with time, and the evolution behavior strongly depends on the recovery temperature. At relatively low recovery temperatures, both wrinkle wavelength and amplitude increase with time as evolution progresses. Finite element analysis (FEA) accounting for the thermomechanical behavior of SMPs is conducted to study the wrinkling of Si ribbons on SMPs, which shows good agreement with experiment. Merging of wrinkles is observed in FEA, which could explain the increase of wrinkle wavelength observed in the experiment. This study can have important implications for smart stretchable electronics, wrinkling mechanics, stimuli-responsive surface engineering, and advanced manufacturing.

  2. Magnetic orientation of single-walled carbon nanotubes or their composites using polymer wrapping

    Directory of Open Access Journals (Sweden)

    Hiroaki Yonemura et al

    2008-01-01

    Full Text Available The magnetic orientation of single-walled carbon nanotubes (SWNTs or the SWNT composites wrapped with polymer using poly[2-methoxy-5-(2'-ethylhexyloxy-1,4-phenylene vinylene] (MEHPPV as the conducting polymer were examined. The formation of SWNT/MEHPPV composites was confirmed by examining absorption and fluorescence spectra. The N,N-dimethylformamide solution of SWNT/MEHPPV composites or the aqueous solution of the shortened SWNTs was introduced dropwise onto a mica or glass plate. The magnetic processing of the composites or the SWNTs was carried out using a superconducting magnet with a horizontal direction (8 T. The AFM images indicated that the SWNT/MEHPPV composites or the SWNTs were oriented randomly without magnetic processing, while with magnetic processing (8 T, they were oriented with the tube axis of the composites or the SWNTs parallel to the magnetic field. In polarized absorption spectra of SWNT/MEHPPV composites on glass plates without magnetic processing, the absorbance due to semiconducting SWNT in the near-IR region in horizontal polarized light was almost the same as that in vertical polarized light. In contrast, with magnetic processing (8 T, the absorbance due to semiconducting SWNT in the horizontal polarization direction against the direction of magnetic field was stronger than that in the vertical polarization direction. Similar results were obtained from the polarized absorption spectra for the shortened SWNTs. These results of polarized absorption spectra also support the magnetic orientation of the SWNT/MEHPPV composites or the SWNTs. On the basis of a comparison of the composites and the SWNTs alone, the magnetic orientation of SWNT/MEHPPV composites is most likely ascribable to the anisotropy in susceptibilities of SWNTs.

  3. Collisions Between Single Stars in Dense Clusters: Runaway Formation of a Massive Object

    NARCIS (Netherlands)

    Freitag, M.; Gürkan, M.A.; Rasio, F.A.

    2007-01-01

    Using Monte Carlo codes, we follow the collisional evolution of clusters in a variety of scenarios. We consider the conditions under which a cluster of main-sequence stars may undergo rapid core collapse due to mass segregation, thus entering a phase of runaway collisions, forming a very massive

  4. Single-step generation of metal-plasma polymer multicore@shell nanoparticles from the gas phase.

    Science.gov (United States)

    Solař, Pavel; Polonskyi, Oleksandr; Olbricht, Ansgar; Hinz, Alexander; Shelemin, Artem; Kylián, Ondřej; Choukourov, Andrei; Faupel, Franz; Biederman, Hynek

    2017-08-17

    Nanoparticles composed of multiple silver cores and a plasma polymer shell (multicore@shell) were prepared in a single step with a gas aggregation cluster source operating with Ar/hexamethyldisiloxane mixtures and optionally oxygen. The size distribution of the metal inclusions as well as the chemical composition and the thickness of the shells were found to be controlled by the composition of the working gas mixture. Shell matrices ranging from organosilicon plasma polymer to nearly stoichiometric SiO 2 were obtained. The method allows facile fabrication of multicore@shell nanoparticles with tailored functional properties, as demonstrated here with the optical response.

  5. Single event and TREE latchup mitigation for a star tracker sensor: An innovative approach to system level latchup mitigation

    International Nuclear Information System (INIS)

    Kimbrough, J.R.; Colella, N.J.; Davis, R.W.; Bruener, D.B.; Coakley, P.G.; Lutjens, S.W.; Mallon, C.E.

    1994-08-01

    Electronic packages designed for spacecraft should be fault-tolerant and operate without ground control intervention through extremes in the space radiation environment. If designed for military use, the electronics must survive and function in a nuclear radiation environment. This paper presents an innovative ''blink'' approach rather than the typical ''operate through'' approach to achieve system level latchup mitigation on a prototype star tracker camera. Included are circuit designs, flash x-ray test data, and heavy ion data demonstrating latchup mitigation protecting micro-electronics from current latchup and burnout due to Single Event Latchup (SEL) and Transient Radiation Effects on Electronics (TREE)

  6. Porous Polystyrene Monoliths and Microparticles Prepared from Core Cross-linked Star (CCS) Polymers-Stabilized Emulsions.

    Science.gov (United States)

    Chen, Qijing; Shi, Ting; Han, Fei; Li, Zihan; Lin, Chao; Zhao, Peng

    2017-08-17

    A hydrophobic CCS polymer of poly(benzyl methacrylate) (PBzMA) was prepared in toluene by reversible addition-fragmentation chain transfer (RAFT)-mediated dispersion polymerization. The CCS polymer, with poly(benzyl methacrylate) as the arm and crosslinked N, N'-bis(acryloyl)cystamine (BAC) as the core, was confirmed by characterization with gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy. Three kinds of oils (toluene, anisole and styrene) were chosen to study the emulsification properties of PBzMA CCS polymer. The oils can be emulsified by CCS polymer to form water-in-oil (w/o) emulsions. Moreover, w/o high internal phase emulsions (HIPEs) can be obtained with the increase of toluene and styrene volume fractions from 75% to 80%. Porous polystyrene monolith and microparticles were prepared from the emulsion templates and characterized by the scanning electronic microscopy (SEM). With the internal phase volume fraction increased, open-pore porous monolith was obtained.

  7. Single-chain statistics and the upper wave-vector cutoff in polymer blends

    International Nuclear Information System (INIS)

    Holyst, R.; Vilgis, T.A.

    1994-01-01

    We derive the equation for the single-chain correlation function in polymer blends. The chains in the incompressible blend have a radius of gyration smaller than the radius of gyration for ideal chains. The chains shrink progressively as we approach the critical temperature T c . The correction responsible for shrinking is proportional to 1/ √N , where N is the polymerization index. At T=T c and for N=1000, the size of the chain has been estimated to be 10% smaller than the size of the ideal coil. The estimate relies on the appropriate cutoff. In the limit of N→∞ the chains approach the random walk limit. Additionally, we propose in this paper a self-consistent determination of the radius of gyration and the upper wave-vector cutoff. Our model is free from any divergences such as were encountered in the previous mean-field studies; we make an estimate of the chain size at the true critical temperature and not the mean-field one

  8. Single Mode SU8 Polymer Based Mach-Zehnder Interferometer for Bio-Sensing Application

    Science.gov (United States)

    Boiragi, Indrajit; Kundu, Sushanta; Makkar, Roshan; Chalapathi, Krishnamurthy

    2011-10-01

    This paper explains the influence of different parameters to the sensitivity of an optical waveguide Mach-Zehnder Interferometer (MZI) for real time detection of biomolecules. The sensing principle is based on the interaction of evanescence field with the biomolecules that get immobilized on sensing arm. The sensitivity has been calculated by varying the sensing window length, wavelength and concentration of bio-analyte. The maximum attainable sensitivity for the preferred design is the order of 10-8 RIU at 840 nm wavelength with a sensing window length of 1cm. All the simulation work has been carried out with Opti-BPMCAD for the optimization of MZI device parameters. The SU8 polymers are used as a core and clad material to fabricate the waveguide. The refractive index of cladding layer is optimized by varying the curing temperature for a fixed time period and the achieved index difference between core and clad is Δn = 0.0151. The fabricated MZI device has been characterized with LASER beam profiler at 840 nm wavelength. This study demonstrates the effectiveness of the different parameter to the sensitivity of a single mode optical waveguide Mach-Zehnder Interferometer for bio-sensing application.

  9. Impact of charge carrier injection on single-chain photophysics of conjugated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Felix J.; Vogelsang, Jan, E-mail: jan.vogelsang@physik.uni-regensburg.de; Lupton, John M. [Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg (Germany)

    2016-06-27

    Charges in conjugated polymer materials have a strong impact on the photophysics and their interaction with the primary excited state species has to be taken into account in understanding device properties. Here, we employ single-molecule spectroscopy to unravel the influence of charges on several photoluminescence (PL) observables. The charges are injected either stochastically by a photochemical process or deterministically in a hole-injection sandwich device configuration. We find that upon charge injection, besides a blue-shift of the PL emission and a shortening of the PL lifetime due to quenching and blocking of the lowest-energy chromophores, the non-classical photon arrival time distribution of the multichromophoric chain is modified towards a more classical distribution. Surprisingly, the fidelity of photon antibunching deteriorates upon charging, whereas one would actually expect the opposite: the number of chromophores to be reduced. A qualitative model is presented to explain the observed PL changes. The results are of interest to developing a microscopic understanding of the intrinsic charge-exciton quenching interaction in devices.

  10. Magnetic Inflation and Stellar Mass. II. On the Radii of Single, Rapidly Rotating, Fully Convective M-Dwarf Stars

    Science.gov (United States)

    Kesseli, Aurora Y.; Muirhead, Philip S.; Mann, Andrew W.; Mace, Greg

    2018-06-01

    Main-sequence, fully convective M dwarfs in eclipsing binaries are observed to be larger than stellar evolutionary models predict by as much as 10%–15%. A proposed explanation for this discrepancy involves effects from strong magnetic fields, induced by rapid rotation via the dynamo process. Although, a handful of single, slowly rotating M dwarfs with radius measurements from interferometry also appear to be larger than models predict, suggesting that rotation or binarity specifically may not be the sole cause of the discrepancy. We test whether single, rapidly rotating, fully convective stars are also larger than expected by measuring their R\\sin i distribution. We combine photometric rotation periods from the literature with rotational broadening (v\\sin i) measurements reported in this work for a sample of 88 rapidly rotating M dwarf stars. Using a Bayesian framework, we find that stellar evolutionary models underestimate the radii by 10 % {--}15{ % }-2.5+3, but that at higher masses (0.18 theory is 13%–18%, and we argue that the discrepancy is unlikely to be due to effects from age. Furthermore, we find no statistically significant radius discrepancy between our sample and the handful of M dwarfs with interferometric radii. We conclude that neither rotation nor binarity are responsible for the inflated radii of fully convective M dwarfs, and that all fully convective M dwarfs are larger than models predict.

  11. A SYSTEMATIC SEARCH FOR COROTATING INTERACTION REGIONS IN APPARENTLY SINGLE GALACTIC WOLF-RAYET STARS. II. A GLOBAL VIEW OF THE WIND VARIABILITY

    International Nuclear Information System (INIS)

    Chene, A.-N.; St-Louis, N.

    2011-01-01

    This study is the second part of a survey searching for large-scale spectroscopic variability in apparently single Wolf-Rayet (WR) stars. In a previous paper (Paper I), we described and characterized the spectroscopic variability level of 25 WR stars observable from the northern hemisphere and found 3 new candidates presenting large-scale wind variability, potentially originating from large-scale structures named corotating interaction regions (CIRs). In this second paper, we discuss an additional 39 stars observable from the southern hemisphere. For each star in our sample, we obtained 4-5 high-resolution spectra with a signal-to-noise ratio of ∼100 and determined its variability level using the approach described in Paper I. In total, 10 new stars are found to show large-scale spectral variability of which 7 present CIR-type changes (WR 8, WR 44, WR55, WR 58, WR 61, WR 63, WR 100). Of the remaining stars, 20 were found to show small-amplitude changes and 9 were found to show no spectral variability as far as can be concluded from the data on hand. Also, we discuss the spectroscopic variability level of all single galactic WR stars that are brighter than v ∼ 12.5, and some WR stars with 12.5 < v ≤ 13.5, i.e., all the stars presented in our two papers and four more stars for which spectra have already been published in the literature. We find that 23/68 stars (33.8%) present large-scale variability, but only 12/54 stars (∼22.1%) are potentially of CIR type. Also, we find that 31/68 stars (45.6%) only show small-scale variability, most likely due to clumping in the wind. Finally, no spectral variability is detected based on the data on hand for 14/68 (20.6%) stars. Interestingly, the variability with the highest amplitude also has the widest mean velocity dispersion.

  12. Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Stefani, Alessio

    2016-01-01

    We have fabricated the first single-mode step-index and humidity insensitive polymer optical fiber operating in the 850 nm wavelength ranges. The step-index preform is fabricated using injection molding, which is an efficient method for cost effective, flexible and fast preparation of the fiber...... preform. The fabricated single-mode step-index (SI) polymer optical fiber (POF) has a 4.8µm core made from TOPAS grade 5013S-04 with a glass transition temperature of 134°C and a 150 µm cladding made from ZEONEX grade 480R with a glass transition temperature of 138°C. The key advantages of the proposed...... SIPOF are low water absorption, high operating temperature and chemical inertness to acids and bases and many polar solvents as compared to the conventional poly-methyl-methacrylate (PMMA) and polystyrene based POFs. In addition, the fiber Bragg grating writing time is short compared to microstructured...

  13. Label-Free Raman Hyperspectral Imaging of Single Cells Cultured on Polymer Substrates.

    Science.gov (United States)

    Sinjab, Faris; Sicilia, Giovanna; Shipp, Dustin W; Marlow, Maria; Notingher, Ioan

    2017-12-01

    While Raman hyperspectral imaging has been widely used for label-free mapping of biomolecules in cells, these measurements require the cells to be cultured on weakly Raman scattering substrates. However, many applications in biological sciences and engineering require the cells to be cultured on polymer substrates that often generate large Raman scattering signals. Here, we discuss the theoretical limits of the signal-to-noise ratio in the Raman spectra of cells in the presence of polymer signals and how optical aberrations may affect these measurements. We show that Raman spectra of cells cultured on polymer substrates can be obtained using automatic subtraction of the polymer signals and demonstrate the capabilities of these methods in two important applications: tissue engineering and in vitro toxicology screening of drugs. Apart from their scientific and technological importance, these applications are examples of the two most common measurement configurations: (1) cells cultured on an optically thick polymer substrate measured using an immersion/dipping objective; and (2) cells cultured on a transparent polymer substrate and measured using an inverted optical microscope. In these examples, we show that Raman hyperspectral data sets with sufficient quality can be successfully acquired to map the distribution of common biomolecules in cells, such as nucleic acids, proteins, and lipids, as well as detecting the early stages of apoptosis. We also discuss strategies for further improvements that could expand the application of Raman hyperspectral imaging on polymer substrates even further in biomedical sciences and engineering.

  14. NITROAROMATIC COMPOUND SENSING APPLICATION OF HEXA-ARMED DANSYL END-CAPPED POLY(epsilon-CAPROLACTONE STAR POLYMER WITH PHOSPHAZENE CORE

    Directory of Open Access Journals (Sweden)

    Merve DANDAN DOGANCI

    2016-09-01

    Full Text Available Hexa-armed dansyl end-capped poly(ε-caprolactone star polymer with phosphazene core (N3P3-(PCL-Dansyl6 was prepared in a two-step synthetic procedure including ring opening polymerization (ROP of ε-caprolactone (ε-CL and esterification reactions. The obtained fluorescence-active polymer was employed as a fluorescent probe towards certain nitroaromatic compounds (2,4,6-trinitrotoluene (TNT, 2,4-dinitrotoluene, 2,6-dinitrotoluene, 2-nitrotoluene, 3-nitrotoluene, 2,4,6-trinitrophenol (picric acid, 2,4-dinitrophenol, 4-nitrophenol, and 1,2-dinitrobenzene. Fluorescence intensity of N3P3-(PCL-Dansyl6 was decreased gradually upon the addition of nitroaromatic compounds and the highest quenching efficiency was found to be 100% with TNT. Besides, N3P3-(PCL-Dansyl6 gave exceptionally selective response toward nitroaromatic compounds, even in the presence of toxic metal cations such as Pb2+, Co2+, Hg2+, Mn2+, Cd2+ and Zn2+.

  15. The [Fe(III)[Fe(III)(L1)2]3] star-type single-molecule magnet.

    Science.gov (United States)

    Saalfrank, Rolf W; Scheurer, Andreas; Bernt, Ingo; Heinemann, Frank W; Postnikov, Andrei V; Schünemann, Volker; Trautwein, Alfred X; Alam, Mohammad S; Rupp, Holger; Müller, Paul

    2006-06-21

    Star-shaped complex [Fe(III)[Fe(III)(L1)2]3] (3) was synthesized starting from N-methyldiethanolamine H2L1 (1) and ferric chloride in the presence of sodium hydride. For 3, two different high-spin iron(III) ion sites were confirmed by Mössbauer spectroscopy at 77 K. Single-crystal X-ray structure determination revealed that 3 crystallizes with four molecules of chloroform, but, with only three molecules of dichloromethane. The unit cell of 3.4CHCl3 contains the enantiomers (delta)-[(S,S)(R,R)(R,R)] and (lambda)-[(R,R)(S,S)(S,S)], whereas in case of 3.3CH2Cl2 four independent molecules, forming pairs of the enantiomers [lambda-(R,R)(R,R)(R,R)]-3 and [lambda-(S,S)(S,S)(S,S)]-3, were observed in the unit cell. According to SQUID measurements, the antiferromagnetic intramolecular coupling of the iron(III) ions in 3 results in a S = 10/2 ground state multiplet. The anisotropy is of the easy-axis type. EPR measurements enabled an accurate determination of the ligand-field splitting parameters. The ferric star 3 is a single-molecule magnet (SMM) and shows hysteretic magnetization characteristics below a blocking temperature of about 1.2 K. However, weak intermolecular couplings, mediated in a chainlike fashion via solvent molecules, have a strong influence on the magnetic properties. Scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) were used to determine the structural and electronic properties of star-type tetranuclear iron(III) complex 3. The molecules were deposited onto highly ordered pyrolytic graphite (HOPG). Small, regular molecule clusters, two-dimensional monolayers as well as separated single molecules were observed. In our STS measurements we found a rather large contrast at the expected locations of the metal centers of the molecules. This direct addressing of the metal centers was confirmed by DFT calculations.

  16. Equivalence of chain conformations in the surface region of a polymer melt and a single Gaussian chain under critical conditions.

    Science.gov (United States)

    Skvortsov, A M; Leermakers, F A M; Fleer, G J

    2013-08-07

    In the melt polymer conformations are nearly ideal according to Flory's ideality hypothesis. Silberberg generalized this statement for chains in the interfacial region. We check the Silberberg argument by analyzing the conformations of a probe chain end-grafted at a solid surface in a sea of floating free chains of concentration φ by the self-consistent field (SCF) method. Apart from the grafting, probe chain and floating chains are identical. Most of the results were obtained for a standard SCF model with freely jointed chains on a six-choice lattice, where immediate step reversals are allowed. A few data were generated for a five-choice lattice, where such step reversals are forbidden. These coarse-grained models describe the equilibrium properties of flexible atactic polymer chains at the scale of the segment length. The concentration was varied over the whole range from φ = 0 (single grafted chain) to φ = 1 (probe chain in the melt). The number of contacts with the surface, average height of the free end and its dispersion, average loop and train length, tail size distribution, end-point and overall segment distributions were calculated for a grafted probe chain as a function of φ, for several chain lengths and substrate∕polymer interactions, which were varied from strong repulsion to strong adsorption. The computations show that the conformations of the probe chain in the melt do not depend on substrate∕polymer interactions and are very similar to the conformations of a single end-grafted chain under critical conditions, and can thus be described analytically. When the substrate∕polymer interaction is fixed at the value corresponding to critical conditions, all equilibrium properties of a probe chain are independent of φ, over the whole range from a dilute solution to the melt. We believe that the conformations of all flexible chains in the surface region of the melt are close to those of an appropriate single chain in critical conditions, provided

  17. Adsorption of a single polymer chain on a surface: effects of the potential range.

    Science.gov (United States)

    Klushin, Leonid I; Polotsky, Alexey A; Hsu, Hsiao-Ping; Markelov, Denis A; Binder, Kurt; Skvortsov, Alexander M

    2013-02-01

    We investigate the effects of the range of adsorption potential on the equilibrium behavior of a single polymer chain end-attached to a solid surface. The exact analytical theory for ideal lattice chains interacting with a planar surface via a box potential of depth U and width W is presented and compared to continuum model results and to Monte Carlo (MC) simulations using the pruned-enriched Rosenbluth method for self-avoiding chains on a simple cubic lattice. We show that the critical value U(c) corresponding to the adsorption transition scales as W(-1/ν), where the exponent ν=1/2 for ideal chains and ν≈3/5 for self-avoiding walks. Lattice corrections for finite W are incorporated in the analytical prediction of the ideal chain theory U(c)≈(π(2)/24)(W+1/2)(-2) and in the best-fit equation for the MC simulation data U(c)=0.585(W+1/2)(-5/3). Tail, loop, and train distributions at the critical point are evaluated by MC simulations for 1≤W≤10 and compared to analytical results for ideal chains and with scaling theory predictions. The behavior of a self-avoiding chain is remarkably close to that of an ideal chain in several aspects. We demonstrate that the bound fraction θ and the related properties of finite ideal and self-avoiding chains can be presented in a universal reduced form: θ(N,U,W)=θ(NU(c),U/U(c)). By utilizing precise estimations of the critical points we investigate the chain length dependence of the ratio of the normal and lateral components of the gyration radius. Contrary to common expectations this ratio attains a limiting universal value /=0.320±0.003 only at N~5000. Finite-N corrections for this ratio turn out to be of the opposite sign for W=1 and for W≥2. We also study the N dependence of the apparent crossover exponent φ(eff)(N). Strong corrections to scaling of order N(-0.5) are observed, and the extrapolated value φ=0.483±0.003 is found for all values of W. The strong correction to scaling effects found here explain why

  18. On the Wrapping of Polyglycolide, Poly(Ethylene Oxide), and Polyketone Polymer Chains Around Single-Walled Carbon Nanotubes Using Molecular Dynamics Simulations

    Science.gov (United States)

    Rouhi, S.; Alizadeh, Y.; Ansari, R.

    2015-02-01

    By using molecular dynamics simulations, the interaction between a single-walled carbon nanotube and three different polymers has been studied in this work. The effects of various parameters such as the nanotube geometry and temperature on the interaction energy and radius of gyration of polymers have been explored. By studying the snapshots of polymers along the single-walled carbon nanotube, it has been shown that 50 ps can be considered as a suitable time after which the shape of polymer chains around the nanotube remains almost unchanged. It is revealed that the effect of temperature on the interaction energy and radius of gyration of polymers in the range of 250 to 500 K is not significant Also, it is shown that the interaction energy depends on the nanotube diameter.

  19. Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template

    KAUST Repository

    Zhu, Jie

    2014-02-12

    Mesoporous zeolites are useful solid catalysts for conversion of bulky molecules because they offer fast mass transfer along with size and shape selectivity. We report here the successful synthesis of mesoporous aluminosilicate zeolite Beta from a commercial cationic polymer that acts as a dual-function template to generate zeolitic micropores and mesopores simultaneously. This is the first demonstration of a single nonsurfactant polymer acting as such a template. Using high-resolution electron microscopy and tomography, we discovered that the resulting material (Beta-MS) has abundant and highly interconnected mesopores. More importantly, we demonstrated using a three-dimensional electron diffraction technique that each Beta-MS particle is a single crystal, whereas most previously reported mesoporous zeolites are comprised of nanosized zeolitic grains with random orientations. The use of nonsurfactant templates is essential to gaining single-crystalline mesoporous zeolites. The single-crystalline nature endows Beta-MS with better hydrothermal stability compared with surfactant-derived mesoporous zeolite Beta. Beta-MS also exhibited remarkably higher catalytic activity than did conventional zeolite Beta in acid-catalyzed reactions involving large molecules. © 2014 American Chemical Society.

  20. Evolution models of helium white dwarf-main-sequence star merger remnants: the mass distribution of single low-mass white dwarfs

    Science.gov (United States)

    Zhang, Xianfei; Hall, Philip D.; Jeffery, C. Simon; Bi, Shaolan

    2018-02-01

    It is not known how single white dwarfs with masses less than 0.5Msolar -- low-mass white dwarfs -- are formed. One way in which such a white dwarf might be formed is after the merger of a helium-core white dwarf with a main-sequence star that produces a red giant branch star and fails to ignite helium. We use a stellar-evolution code to compute models of the remnants of these mergers and find a relation between the pre-merger masses and the final white dwarf mass. Combining our results with a model population, we predict that the mass distribution of single low-mass white dwarfs formed through this channel spans the range 0.37 to 0.5Msolar and peaks between 0.45 and 0.46Msolar. Helium white dwarf--main-sequence star mergers can also lead to the formation of single helium white dwarfs with masses up to 0.51Msolar. In our model the Galactic formation rate of single low-mass white dwarfs through this channel is about 8.7X10^-3yr^-1. Comparing our models with observations, we find that the majority of single low-mass white dwarfs (<0.5Msolar) are formed from helium white dwarf--main-sequence star mergers, at a rate which is about $2$ per cent of the total white dwarf formation rate.

  1. Photovoltaic response and values of state dipole moments in single-layered pyrazoloquinoline/polymer composites

    Science.gov (United States)

    Gondek, E.; Kityk, I. V.; Danel, A.; Sanetra, J.

    2008-06-01

    We report the photovoltaic response of composite films formed by polymer transport matrices poly(3-octylthiophene) (P3OT) and poly(3-decylthiophene) (PDT) with incorporated 1 H-pyrazolo[3,4- b]quinoline (PAQ) chromophore (see the first figure). The photovoltage (PV) data were obtained for different substituted PAQ possessing different state dipole moments. The photovoltaic cells were formed between ITO and aluminum electrodes. We found that the PV signal of polymer/PAQ substantially depends on the state dipole moments of the pyrazoloquinoline chromophore. This fact indicates on a possibility of significant enhancement of PV efficiency by appropriate variations of the state dipole moments of chromophore. This results in photoinduced electron transfer from polymer serving as donors to PAQ being the electron acceptor. Despite an efficiency of the PV devices is below 1%, however, it may be substantially enhanced in future varying the chromophore state dipole moments appropriately.

  2. Single-ion conducting polymer-silicate nanocomposite electrolytes for lithium battery applications

    International Nuclear Information System (INIS)

    Kurian, Mary; Galvin, Mary E.; Trapa, Patrick E.; Sadoway, Donald R.; Mayes, Anne M.

    2005-01-01

    Solid-state polymer-silicate nanocomposite electrolytes based on an amorphous polymer poly[(oxyethylene) 8 methacrylate], POEM, and lithium montmorillonite clay were fabricated and characterized to investigate the feasibility of their use as 'salt-free' electrolytes in lithium polymer batteries. X-ray scattering and transmission electron microscopy studies indicate the formation of an intercalated morphology in the nanocomposites due to favorable interactions between the polymer matrix and the clay. The morphology of the nanocomposite is intricately linked to the amount of silicate in the system. At low clay contents, dynamic rheological testing verifies that silicate incorporation enhances the mechanical properties of POEM, while impedance spectroscopy shows an improvement in electrical properties. With clay content ≥15 wt.%, mechanical properties are further improved but the formation of an apparent superlattice structure correlates with a loss in the electrical properties of the nanocomposite. The use of suitably modified clays in nanocomposites with high clay contents eliminates this superstructure formation, yielding materials with enhanced performance

  3. STUDY OF SINGLE WALLED CARBON NANOTUBE REINFORCED POLYMER COMPOSITES BY HANSEN SOLUBILITY PARAMETERS

    DEFF Research Database (Denmark)

    Ma, Jing

    reinforcement of the polymer by the addition of SWNTs. Existence of agglomerates, voids, and the lower glass transition temperature of epoxy resin, may give the negative effect on the mechanical properties of nanocomposite materials. In the design aspect of the composite material, HSP could help match SWNTs...

  4. Optical coupling structure made by imprinting between single-mode polymer waveguide and embedded VCSEL

    NARCIS (Netherlands)

    Karppinen, M.; Salminen, N.; Korhonen, T.; Alajoki, T.; Petäjä, J.; Bosman, E.; Steenberge, G. van; Justice, J.; Khan, U.; Corbett, B.; Boersma, A.

    2015-01-01

    Polymer-based integrated optics is attractive for inter-chip optical interconnection applications, for instance, for coupling photonic devices to fibers in high density packaging. In such a hybrid integration scheme, a key challenge is to achieve efficient optical coupling between the photonic chips

  5. LAMOST telescope reveals that Neptunian cousins of hot Jupiters are mostly single offspring of stars that are rich in heavy elements.

    Science.gov (United States)

    Dong, Subo; Xie, Ji-Wei; Zhou, Ji-Lin; Zheng, Zheng; Luo, Ali

    2018-01-09

    We discover a population of short-period, Neptune-size planets sharing key similarities with hot Jupiters: both populations are preferentially hosted by metal-rich stars, and both are preferentially found in Kepler systems with single-transiting planets. We use accurate Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Data Release 4 (DR4) stellar parameters for main-sequence stars to study the distributions of short-period [Formula: see text] Kepler planets as a function of host star metallicity. The radius distribution of planets around metal-rich stars is more "puffed up" compared with that around metal-poor hosts. In two period-radius regimes, planets preferentially reside around metal-rich stars, while there are hardly any planets around metal-poor stars. One is the well-known hot Jupiters, and the other one is a population of Neptune-size planets ([Formula: see text]), dubbed "Hoptunes." Also like hot Jupiters, Hoptunes occur more frequently in systems with single-transiting planets although the fraction of Hoptunes occurring in multiples is larger than that of hot Jupiters. About [Formula: see text] of solar-type stars host Hoptunes, and the frequencies of Hoptunes and hot Jupiters increase with consistent trends as a function of [Fe/H]. In the planet radius distribution, hot Jupiters and Hoptunes are separated by a "valley" at approximately Saturn size (in the range of [Formula: see text]), and this "hot-Saturn valley" represents approximately an order-of-magnitude decrease in planet frequency compared with hot Jupiters and Hoptunes. The empirical "kinship" between Hoptunes and hot Jupiters suggests likely common processes (migration and/or formation) responsible for their existence.

  6. Characterizing Lenses and Lensed Stars of High-magnification Single-lens Gravitational Microlensing Events with Lenses Passing over Source Stars

    DEFF Research Database (Denmark)

    Choi, J.-Y.; Shin, I.-G.; Park, S.-Y.

    2012-01-01

    ☉ is consistent with that of a star blended with the source, suggesting that the blend is likely to be the lens. Although we did not find planetary signals for any of the events, we provide exclusion diagrams showing the confidence levels excluding the existence of a planet as a function of the separation...

  7. "Journey to the Stars": Presenting What Stars Are to Global Planetarium Audiences by Blending Astrophysical Visualizations Into a Single Immersive Production at the American Museum of Natural History

    Science.gov (United States)

    Emmart, Carter; Mac Low, M.; Oppenheimer, B. R.; Kinzler, R.; Paglione, T. A. D.; Abbott, B. P.

    2010-01-01

    "Journey to the Stars" is the latest and fourth space show based on storytelling from data visualization at the Rose Center for Earth and Space at the American Museum of Natural History. This twenty five minute, full dome movie production presents to planetarium audiences what the stars are, where they come from, how they vary in type and over time, and why they are important to life of Earth. Over forty scientists from around the world contributed their research to what is visualized into roughly fifteen major scenes. How this production is directed into a consolidated immersive informal science experience with learning goals is an integrative process with many inputs and concerns for scientific accuracy. The goal is a seamless merger of visualizations at varying spatial and temporal scales with acuity toward depth perception, revealing unseen phenomena, and the layering of concepts together to build an understanding of stars; to blend our common experience of them in the sky with the uncommon meaning we have come to know through science. Scripted by Louise Gikow who has worked for Children's Television Workshop, narrated by Whoopie Goldberg, and musically scored by Robert Miller, this production strives to guide audiences through challenging scientific concepts by complimenting the natural beauty the subject matter presents with understandable prose and musical grandeur. "Journey to the Stars" was produced in cooperation with NASA's Science Mission Directorate, Heliophysics Division and is in release at major planetariums, worldwide.

  8. Evolution models of helium white dwarf--main-sequence star merger remnants: the mass distribution of single low-mass white dwarfs

    OpenAIRE

    Zhang, Xianfei; Hall, Philip D.; Jeffery, C. Simon; Bi, Shaolan

    2017-01-01

    It is not known how single white dwarfs with masses less than 0.5Msolar -- low-mass white dwarfs -- are formed. One way in which such a white dwarf might be formed is after the merger of a helium-core white dwarf with a main-sequence star that produces a red giant branch star and fails to ignite helium. We use a stellar-evolution code to compute models of the remnants of these mergers and find a relation between the pre-merger masses and the final white dwarf mass. Combining our results with ...

  9. Direct observation of the transition from free to constrained single segment motion in entangled polymer melts

    International Nuclear Information System (INIS)

    Monkenbusch, M.; Wischnewski, A.; Willner, L.; Richter, D.

    2004-01-01

    Incoherent neutron-spin-echo spectroscopy (NSE) has been employed to directly determine the time-dependent mean-squared segment displacement 2 > of a polymer chain in the melt covering the transition from free to constraint Rouse relaxation along the virtual tube of the reptation model. The predicted transition of the time dependence of 2 > from 2 >∝t 1/2 to ∝t 1/4 is clearly corroborated by the incoherent NSE results

  10. Transmission Electron Microscopy of Single Wall Carbon Nanotube/Polymer Nanocomposites: A First-Principles Study

    Science.gov (United States)

    Sola, Francisco; Xia, Zhenhai; Lebrion-Colon, Marisabel; Meador, Michael A.

    2012-01-01

    The physics of HRTEM image formation and electron diffraction of SWCNT in a polymer matrix were investigated theoretically on the basis of the multislice method, and the optics of a FEG Super TWIN Philips CM 200 TEM operated at 80 kV. The effect of nanocomposite thickness on both image contrast and typical electron diffraction reflections of nanofillers were explored. The implications of the results on the experimental applicability to study dispersion, chirality and diameter of nanofillers are discussed.

  11. Neutron stars

    International Nuclear Information System (INIS)

    Irvine, J.M.

    1978-01-01

    The subject is covered in chapters entitled: introduction (resume of stellar evolution, gross characteristics of neutron stars); pulsars (pulsar characteristics, pulsars as neutron stars); neutron star temperatures (neutron star cooling, superfluidity and superconductivity in neutron stars); the exterior of neutron stars (the magnetosphere, the neutron star 'atmosphere', pulses); neutron star structure; neutron star equations of state. (U.K.)

  12. Fluorescence polarization measures energy funneling in single light-harvesting antennas--LH2 vs conjugated polymers.

    Science.gov (United States)

    Camacho, Rafael; Tubasum, Sumera; Southall, June; Cogdell, Richard J; Sforazzini, Giuseppe; Anderson, Harry L; Pullerits, Tõnu; Scheblykin, Ivan G

    2015-10-19

    Numerous approaches have been proposed to mimic natural photosynthesis using artificial antenna systems, such as conjugated polymers (CPs), dendrimers, and J-aggregates. As a result, there is a need to characterize and compare the excitation energy transfer (EET) properties of various natural and artificial antennas. Here we experimentally show that EET in single antennas can be characterized by 2D polarization imaging using the single funnel approximation. This methodology addresses the ability of an individual antenna to transfer its absorbed energy towards a single pool of emissive states, using a single parameter called energy funneling efficiency (ε). We studied individual peripheral antennas of purple bacteria (LH2) and single CP chains of 20 nm length. As expected from a perfect antenna, LH2s showed funneling efficiencies close to unity. In contrast, CPs showed lower average funneling efficiencies, greatly varying from molecule to molecule. Cyclodextrin insulation of the conjugated backbone improves EET, increasing the fraction of CPs possessing ε = 1. Comparison between LH2s and CPs shows the importance of the protection systems and the protein scaffold of LH2, which keep the chromophores in functional form and at such geometrical arrangement that ensures excellent EET.

  13. Fluorescence polarization measures energy funneling in single light-harvesting antennas—LH2 vs conjugated polymers

    Science.gov (United States)

    Camacho, Rafael; Tubasum, Sumera; Southall, June; Cogdell, Richard J.; Sforazzini, Giuseppe; Anderson, Harry L.; Pullerits, Tõnu; Scheblykin, Ivan G.

    2015-10-01

    Numerous approaches have been proposed to mimic natural photosynthesis using artificial antenna systems, such as conjugated polymers (CPs), dendrimers, and J-aggregates. As a result, there is a need to characterize and compare the excitation energy transfer (EET) properties of various natural and artificial antennas. Here we experimentally show that EET in single antennas can be characterized by 2D polarization imaging using the single funnel approximation. This methodology addresses the ability of an individual antenna to transfer its absorbed energy towards a single pool of emissive states, using a single parameter called energy funneling efficiency (ɛ). We studied individual peripheral antennas of purple bacteria (LH2) and single CP chains of 20 nm length. As expected from a perfect antenna, LH2s showed funneling efficiencies close to unity. In contrast, CPs showed lower average funneling efficiencies, greatly varying from molecule to molecule. Cyclodextrin insulation of the conjugated backbone improves EET, increasing the fraction of CPs possessing ɛ = 1. Comparison between LH2s and CPs shows the importance of the protection systems and the protein scaffold of LH2, which keep the chromophores in functional form and at such geometrical arrangement that ensures excellent EET.

  14. Prospective, Multi-Centre, Single-Arm Study of Mechanical Thrombectomy using Solitaire FR in Acute Ischemic Stroke-STAR

    Science.gov (United States)

    Pereira, Vitor M; Gralla, Jan; Davalos, Antoni; Bonafé, Alain; Castaño, Carlos; Chapot, Rene; Liebeskind, David S; Nogueira, Raul G; Arnold, Marcel; Sztajzel, Roman; Liebig, Thomas; Goyal, Mayank; Besselmann, Michael; Moreno, Alfredo; Schroth, Gerhard

    2013-01-01

    Background and Purpose Mechanical thrombectomy using stent retriever devices have been advocated to increase revascularization in intracranial vessel occlusion. We present the results of a large prospective study on the use of the Solitaire FR in patients with acute ischemic stroke. Methods STAR was an international, multicenter, prospective, single-arm study of Solitaire FR thrombectomy in patients with large vessel anterior circulation strokes treated within 8 hours of symptom onset. Strict criteria for site selection were applied. The primary endpoint was the revascularization rate (3TICI 2b) of the occluded vessel as determined by an independent core lab. The secondary endpoint was the rate of good functional outcome (defined as 90-day modified Rankin scale (mRS) 0–2). Results A total of 202 patients were enrolled across 14 comprehensive stroke centers in Europe, Canada and Australia. The median age was 72 years, 60% were female patients. The median National Institute of Health Stroke Scale (NIHSS) was 17. Most proximal intracranial occlusion was the internal carotid artery in 18%, the middle cerebral artery in 82%. Successful revascularization was achieved in 79.2% of patients. Device and/or procedure related severe adverse events were found in 7.4%. Favorable neurological outcome was found in 57.9%. The mortality rate was 6.9%. Any intracranial hemorrhagic transformation was found in 18.8% of patients, 1.5% were symptomatic. Conclusions In this single arm study, treatment with the Solitaire™ FR device in intracranial anterior circulation occlusions results in high rates of revascularization, low risk of clinically relevant procedural complications, and good clinical outcomes in combination with low mortality at 90 days. Clinical Trial Registration This study is registered with ClinicalTrials.gov, number NCT01327989. PMID:23908066

  15. Elucidation of polymer induced DNA condensation. Visualisation at the single molecular level

    International Nuclear Information System (INIS)

    Martin, Alison Laura

    2002-01-01

    DNA condensation is a phenomenon that has stimulated interest from biologists, physicists, and polymer chemists for decades. At the cellular level, this process is key to the packing of DNA within the nuclear envelope, and the exposure of the appropriate nucleic acid sequences in order for transcription to occur, and proteins to be produced. The advent of gene therapy has led to an invigoration of this subject area. In order to successfully deliver to, and transfect target cells, many delivery vectors condense the therapeutic DNA into small compact particles. The nature of these particles have a considerable influence on the ultimate expression of the administered nucleic acid material. In addition, at its most fundamental, DNA itself is a classical polyelectrolyte polymer, the behaviour of which has applicability to other charged polymeric systems. There are two core interwound themes to this investigation; the visualisation of DNA condensate morphology at ultra-resolution, and the elucidation of the mechanisms of formation of these structures. The technique of atomic force microscopy is central to these investigations. Methodologies have been devised allowing the visualisation of the tertiary structure and conformational behaviour of individual DNA condensates in near in situ conditions. Condensation of the nucleic acid material has been induced by two classes of cation; small molecular cations, like those found within eukaryotic cells, and a range of cationic polymers. The cationic polymers investigated all have considerable potential as gene delivery vectors. The resultant DNA condensates have been assessed and contrasted in terms of their tertiary morphology, lateral dimensions, and structural volume. Assessments have also been made regarding the influence of the molecular architecture of the cationic moiety and the nature of the input nucleic acid material on the resultant DNA condensates. With regard to the elucidation of the mechanisms of DNA condensate

  16. Drag reduction by polymer addition in single and two-phase gas-liquid flows in pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Bizotto, Vanessa Cristina; Paes, Diogo Melo; Franca, Fernando de Almeida [Universidade Estadual de Campinas, SP (Brazil). Centro de Estudos de Petroleo. LabPetro]. E-mails: vanessa@cepetro.unicamp.br; diogopaes10@hotmail.com; Sabadini, Edvaldo [Universidade Estadual de Campinas, SP (Brazil). Inst. de Quimica]. E-mails: sabadini@iqm.unicamp.br; ffranca@fem.unicamp.br

    2008-07-01

    Turbulence mechanisms, as the eddies formation frequency and size, promote energy dissipation that appears as pressure drop in pipe flows. Adding minute amounts of polymers - ppm - of high molecular weight to the solution can lead to the reduction of the viscous dissipation. The formed macromolecules interact with the eddies, cause the eddies coherence breakdown, damp the energy transport and reduces the pressure drop. This phenomenon is known as the hydrodynamic drag reduction (DR, for short). Thus, for a given pipe flow rate there is decrease in pressure head, which is a desired operating strategy when transporting liquids. Studies on the hydrodynamic drag reduction in polymeric systems have been carried out in collaboration by the Chemistry Institute and the Petroleum Laboratory - LabPetro, UNICAMP. These studies have allowed microscopic approaches to the engineering scales, tackling the most usual processes - single phase flows, as well as gas-liquid two-phase flows in pipelines, which are quite common in the chemical and the petroleum industries. Tests conducted in the Chemistry Institute comprised over-the-bench experimentations made with a rotational double-gap type rheometer. These quick performed tests used small amount of polymers, and provided information on the additive concentration, the drag reduction and the solution mechanical stability along a turbulent shearing process. The results indicated that 17% is the limiting drag reduction achieved when a 2 ppm aqueous solution of polyacrylamide - PAM - was tested. These tests, besides giving preliminary estimations, are limited in terms of engineering application due to the low shearing rates applied by the viscometer. The tests performed at LabPetro comprised pressure drop measurements in actual pipe flows, both water single and air-water two-phase flows, using the previous knowledge acquired with the viscometer tests. In the former case, the Prandtl-von Karman map has been drawn to show the %DR in terms

  17. Associate host in single-layer co-host polymer electrophosphorescent devices

    International Nuclear Information System (INIS)

    Wang Yuanmin; Teng Feng; Feng Bin; Wang Yongsheng; Xu Xurong

    2006-01-01

    The definition and role of 'host' in polymer LED materials are studied in the present work. 'Primary host' and 'associate host' have been proposed and the rules of how to select an associate host are reported. Based on our experiments and the analysis of the energy scheme of the devices, we suggest that the values of the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) are critical determinant in selecting a suitable associate host. On one hand, the associate host should be a hole-blocking material. This can confine the excitons in the active layer. On the other hand, the associate host should have a suitable LUMO that is convenient for electrons to transport

  18. Polymer Electrolytes

    Science.gov (United States)

    Hallinan, Daniel T.; Balsara, Nitash P.

    2013-07-01

    This review article covers applications in which polymer electrolytes are used: lithium batteries, fuel cells, and water desalination. The ideas of electrochemical potential, salt activity, and ion transport are presented in the context of these applications. Potential is defined, and we show how a cell potential measurement can be used to ascertain salt activity. The transport parameters needed to fully specify a binary electrolyte (salt + solvent) are presented. We define five fundamentally different types of homogeneous electrolytes: type I (classical liquid electrolytes), type II (gel electrolytes), type III (dry polymer electrolytes), type IV (dry single-ion-conducting polymer electrolytes), and type V (solvated single-ion-conducting polymer electrolytes). Typical values of transport parameters are provided for all types of electrolytes. Comparison among the values provides insight into the transport mechanisms occurring in polymer electrolytes. It is desirable to decouple the mechanical properties of polymer electrolyte membranes from the ionic conductivity. One way to accomplish this is through the development of microphase-separated polymers, wherein one of the microphases conducts ions while the other enhances the mechanical rigidity of the heterogeneous polymer electrolyte. We cover all three types of conducting polymer electrolyte phases (types III, IV, and V). We present a simple framework that relates the transport parameters of heterogeneous electrolytes to homogeneous analogs. We conclude by discussing electrochemical stability of electrolytes and the effects of water contamination because of their relevance to applications such as lithium ion batteries.

  19. Asteroseismology of OB stars with hundreds of single snapshot spectra (and a few time-series of selected targets)

    Science.gov (United States)

    Simón-Díaz, S.

    2015-01-01

    Imagine we could do asteroseismology of large samples of OB-type stars by using just one spectrum per target. That would be great! But this is probably a crazy and stupid idea. Or maybe not. Maybe we have the possibility to open a new window to investigate stellar oscillations in massive stars that has been in front of us for many years, but has not attracted very much our attention: the characterization and understanding of the so-called macroturbulent broadening in OB-type stars.

  20. Relaxation in Thin Polymer Films Mapped across the Film Thickness by Astigmatic Single-Molecule Imaging

    KAUST Repository

    Oba, Tatsuya; Vacha, Martin

    2012-01-01

    We have studied relaxation processes in thin supported films of poly(methyl acrylate) at the temperature corresponding to 13 K above the glass transition by monitoring the reorientation of single perylenediimide molecules doped into the films

  1. Efficient sampling of reversible cross-linking polymers: Self-assembly of single-chain polymeric nanoparticles

    Science.gov (United States)

    Oyarzún, Bernardo; Mognetti, Bortolo Matteo

    2018-03-01

    We present a new simulation technique to study systems of polymers functionalized by reactive sites that bind/unbind forming reversible linkages. Functionalized polymers feature self-assembly and responsive properties that are unmatched by the systems lacking selective interactions. The scales at which the functional properties of these materials emerge are difficult to model, especially in the reversible regime where such properties result from many binding/unbinding events. This difficulty is related to large entropic barriers associated with the formation of intra-molecular loops. In this work, we present a simulation scheme that sidesteps configurational costs by dedicated Monte Carlo moves capable of binding/unbinding reactive sites in a single step. Cross-linking reactions are implemented by trial moves that reconstruct chain sections attempting, at the same time, a dimerization reaction between pairs of reactive sites. The model is parametrized by the reaction equilibrium constant of the reactive species free in solution. This quantity can be obtained by means of experiments or atomistic/quantum simulations. We use the proposed methodology to study the self-assembly of single-chain polymeric nanoparticles, starting from flexible precursors carrying regularly or randomly distributed reactive sites. We focus on understanding differences in the morphology of chain nanoparticles when linkages are reversible as compared to the well-studied case of irreversible reactions. Intriguingly, we find that the size of regularly functionalized chains, in good solvent conditions, is non-monotonous as a function of the degree of functionalization. We clarify how this result follows from excluded volume interactions and is peculiar of reversible linkages and regular functionalizations.

  2. Construction and Self-Assembly of Single-Chain Polymer Nanoparticles via Coordination Association and Electrostatic Repulsion in Water.

    Science.gov (United States)

    Zhu, Zhengguang; Xu, Na; Yu, Qiuping; Guo, Lei; Cao, Hui; Lu, Xinhua; Cai, Yuanli

    2015-08-01

    Simultaneous coordination-association and electrostatic-repulsion interactions play critical roles in the construction and stabilization of enzymatic function metal centers in water media. These interactions are promising for construction and self-assembly of artificial aqueous polymer single-chain nanoparticles (SCNPs). Herein, the construction and self-assembly of dative-bonded aqueous SCNPs are reported via simultaneous coordination-association and electrostatic-repulsion interactions within single chains of histamine-based hydrophilic block copolymer. The electrostatic-repulsion interactions are tunable through adjusting the imidazolium/imidazole ratio in response to pH, and in situ Cu(II)-coordination leads to the intramolecular association and single-chain collapse in acidic water. SCNPs are stabilized by the electrostatic repulsion of dative-bonded block and steric shielding of nonionic water-soluble block, and have a huge specific surface area of function metal centers accessible to substrates in acidic water. Moreover, SCNPs can assemble into micelles, networks, and large particles programmably in response to the solution pH. These unique media-sensitive phase-transformation behaviors provide a general, facile, and versatile platform for the fabrication of enzyme-inspired smart aqueous catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Cationic star-shaped polymer as an siRNA carrier for reducing MMP-9 expression in skin fibroblast cells and promoting wound healing in diabetic rats

    Directory of Open Access Journals (Sweden)

    Li N

    2014-07-01

    Full Text Available Na Li,1,* Heng-Cong Luo,1,* Chuan Yang,1 Jun-Jie Deng,2 Meng Ren,1 Xiao-Ying Xie,1 Diao-Zhu Lin,1 Li Yan,1 Li-Ming Zhang2 1Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China; 2DSAPM Lab and PCFM Lab, Institute of Polymer Science, Department of Polymer and Materials Science, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, People’s Republic of China *These authors contributed equally to this work Background: Excessive expression of matrix metalloproteinase-9 (MMP-9 is deleterious to the cutaneous wound-healing process in the context of diabetes. The aim of the present study was to explore whether a cationic star-shaped polymer consisting of ß-cyclodextrin (ß-CD core and poly(amidoamine dendron arms (ß-CD-[D3]7 could be used as the gene carrier of small interfering RNA (siRNA to reduce MMP-9 expression for enhanced diabetic wound healing. Methods: The cytotoxicity of ß-CD-(D37 was investigated by 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay (MMT method in the rat CRL1213 skin fibroblast cell line. The transfection efficiency of ß-CD-(D37/MMP-9-small interfering RNA (siRNA complexes was determined by confocal microscopy and flow cytometry. Quantitative real time (RT polymerase chain reaction was performed to measure the gene expression of MMP-9 after the transfection by ß-CD-(D37/MMP-9-siRNA complexes. The ß-CD-(D37/MMP-9-siRNA complexes were injected on the wounds of streptozocin-induced diabetic rats. Wound closure was measured on days 4 and 7 post-wounding. Results: ß-CD-(D37 exhibited low cytotoxicity in fibroblast cells, and easily formed the complexes with MMP-9-siRNA. The ß-CD-(D37/MMP-9-siRNA complexes were readily taken up by fibroblast cells, resulting in the downregulation of MMP-9 gene expression (P<0.01. Animal experiments revealed that the treatment by ß-CD-(D37/MMP-9-siRNA complexes enhanced wound

  4. Wolf-Rayet stars

    Energy Technology Data Exchange (ETDEWEB)

    Sahade, J

    1981-12-01

    Aspects of the problems of the Wolf-Rayet stars related to their chemical composition, their evolutionary status, and their apparent dichotomy in two spectral sequences are discussed. Dogmas concerning WR stars are critically discussed, including the belief that WR stars lack hydrogen, that they are helium stars evolved from massive close binaries, and the existence of a second WR stage in which the star is a short-period single-lined binary. The relationship of WR stars with planetary nebulae is addressed, as is the membership of these stars in clusters and associations. The division of WR stars into WN and WC sequences is considered, questioning the reasonability of accounting for WR line formation in terms of abundance differences.

  5. DISCOVERY OF A POSSIBLY SINGLE BLUE SUPERGIANT STAR IN THE INTRA-CLUSTER REGION OF VIRGO CLUSTER OF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Ohyama, Youichi; Hota, Ananda [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China)

    2013-04-20

    IC 3418 is a dwarf irregular galaxy falling into the Virgo cluster, and a 17 kpc long trail is seen behind the galaxy, which is considered to have formed due to ram pressure stripping. The trail contains compact knots and diffuse blobs of ultraviolet and blue optical emission and, thus, it is a clear site of recent star formation but in an unusual environment, surrounded by a million degree intra-cluster medium. We report on our optical spectroscopy of a compact source in the trail, SDSS J122952.66+112227.8, and show that the optical spectrum is dominated by emission from a massive blue supergiant star. If confirmed, our report would mark the farthest star with spectroscopic observation. We interpret that a massive O-type star formed in situ in the trail has evolved recently out of the main sequence into this blue supergiant phase, and now lacks any detectable spectral sign of its associated H II region. We argue that turbulence within the ram pressure striped gaseous trail may play a dominant role for the star formation within such trails.

  6. DISCOVERY OF A POSSIBLY SINGLE BLUE SUPERGIANT STAR IN THE INTRA-CLUSTER REGION OF VIRGO CLUSTER OF GALAXIES

    International Nuclear Information System (INIS)

    Ohyama, Youichi; Hota, Ananda

    2013-01-01

    IC 3418 is a dwarf irregular galaxy falling into the Virgo cluster, and a 17 kpc long trail is seen behind the galaxy, which is considered to have formed due to ram pressure stripping. The trail contains compact knots and diffuse blobs of ultraviolet and blue optical emission and, thus, it is a clear site of recent star formation but in an unusual environment, surrounded by a million degree intra-cluster medium. We report on our optical spectroscopy of a compact source in the trail, SDSS J122952.66+112227.8, and show that the optical spectrum is dominated by emission from a massive blue supergiant star. If confirmed, our report would mark the farthest star with spectroscopic observation. We interpret that a massive O-type star formed in situ in the trail has evolved recently out of the main sequence into this blue supergiant phase, and now lacks any detectable spectral sign of its associated H II region. We argue that turbulence within the ram pressure striped gaseous trail may play a dominant role for the star formation within such trails.

  7. Light-controlled supramolecular helicity of a liquid crystalline phase using a helical polymer functionalized with a single chiroptical molecular switch

    NARCIS (Netherlands)

    Pijper, Dirk; Jongejan, Mahthild G. M.; Meetsma, Auke; Feringa, Ben L.

    2008-01-01

    Control over the preferred helical sense of a poly(n-hexyl isocyanate) (PHIC) by using a single light-driven molecular motor, covalently attached at the polymer's terminus, has been accomplished in solution via a combination of photochemical and thermal isomerizations. Here, we report that after

  8. Single-mode waveguides with SU-8 polymer core and cladding for MOEMS applications

    OpenAIRE

    Nordström, Maria; Zauner, Dan; Boisen, Anja; Hübner, Jörg

    2007-01-01

    Fabrication and optical characterization of singlemode polymeric embedded waveguides are performed. A specific material combination (SU-8 2005 as core and the modified SU-8 mr-L 6050XP as cladding) is chosen in order to obtain a small refractive index difference for single-mode propagation combined with the conventional fabrication method UV lithography to facilitate the integration of different types of optical detection methods on lab-on-a-chip systems. We analyze the behavior of the refrac...

  9. Network type sp3 boron-based single-ion conducting polymer electrolytes for lithium ion batteries

    Science.gov (United States)

    Deng, Kuirong; Wang, Shuanjin; Ren, Shan; Han, Dongmei; Xiao, Min; Meng, Yuezhong

    2017-08-01

    Electrolytes play a vital role in modulating lithium ion battery performance. An outstanding electrolyte should possess both high ionic conductivity and unity lithium ion transference number. Here, we present a facile method to fabricate a network type sp3 boron-based single-ion conducting polymer electrolyte (SIPE) with high ionic conductivity and lithium ion transference number approaching unity. The SIPE was synthesized by coupling of lithium bis(allylmalonato)borate (LiBAMB) and pentaerythritol tetrakis(2-mercaptoacetate) (PETMP) via one-step photoinitiated in situ thiol-ene click reaction in plasticizers. Influence of kinds and content of plasticizers was investigated and the optimized electrolytes show both outstanding ionic conductivity (1.47 × 10-3 S cm-1 at 25 °C) and high lithium transference number of 0.89. This ionic conductivity is among the highest ionic conductivity exhibited by SIPEs reported to date. Its electrochemical stability window is up to 5.2 V. More importantly, Li/LiFePO4 cells with the prepared single-ion conducting electrolytes as the electrolyte as well as the separator display highly reversible capacity and excellent rate capacity under room temperature. It also demonstrates excellent long-term stability and reliability as it maintains capacity of 124 mA h g-1 at 1 C rate even after 500 cycles without obvious decay.

  10. pH-induced inversion of water-in-oil emulsions to oil-in-water high internal phase emulsions (HIPEs) using core cross-linked star (CCS) polymer as interfacial stabilizer.

    Science.gov (United States)

    Chen, Qijing; Deng, Xiaoyong; An, Zesheng

    2014-06-01

    A pH-responsive core cross-linked star (CCS) polymer containing poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) arms was used as an interfacial stabilizer for emulsions containing toluene (80 v%) and water (20 v%). In the pH range of 12.1-9.3, ordinary water-in-oil emulsions were formed. Intermediate multiple emulsions of oil-in-water-in-oil and water-in-oil-in-water were formed at pH 8.6 and 7.5, respectively. Further lowering the pH resulted in the formation of gelled high internal phase emulsions of oil-in-water type in the pH range of 6.4-0.6. The emulsion behavior was correlated with interfacial tension, conductivity and configuration of the CCS polymer at different pH. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. White Dwarf Stars

    OpenAIRE

    Kepler, S. O.; Romero, Alejandra Daniela; Pelisoli, Ingrid; Ourique, Gustavo

    2017-01-01

    White dwarf stars are the final stage of most stars, born single or in multiple systems. We discuss the identification, magnetic fields, and mass distribution for white dwarfs detected from spectra obtained by the Sloan Digital Sky Survey up to Data Release 13 in 2016, which lead to the increase in the number of spectroscopically identified white dwarf stars from 5000 to 39000. This number includes only white dwarf stars with log g >= 6.5 stars, i.e., excluding the Extremely Low Mass white dw...

  12. Primitive-path statistics of entangled polymers: mapping multi-chain simulations onto single-chain mean-field models

    International Nuclear Information System (INIS)

    Steenbakkers, Rudi J A; Schieber, Jay D; Tzoumanekas, Christos; Li, Ying; Liu, Wing Kam; Kröger, Martin

    2014-01-01

    We present a method to map the full equilibrium distribution of the primitive-path (PP) length, obtained from multi-chain simulations of polymer melts, onto a single-chain mean-field ‘target’ model. Most previous works used the Doi–Edwards tube model as a target. However, the average number of monomers per PP segment, obtained from multi-chain PP networks, has consistently shown a discrepancy of a factor of two with respect to tube-model estimates. Part of the problem is that the tube model neglects fluctuations in the lengths of PP segments, the number of entanglements per chain and the distribution of monomers among PP segments, while all these fluctuations are observed in multi-chain simulations. Here we use a recently proposed slip-link model, which includes fluctuations in all these variables as well as in the spatial positions of the entanglements. This turns out to be essential to obtain qualitative and quantitative agreement with the equilibrium PP-length distribution obtained from multi-chain simulations. By fitting this distribution, we are able to determine two of the three parameters of the model, which govern its equilibrium properties. This mapping is executed for four different linear polymers and for different molecular weights. The two parameters are found to depend on chemistry, but not on molecular weight. The model predicts a constant plateau modulus minus a correction inversely proportional to molecular weight. The value for well-entangled chains, with the parameters determined ab initio, lies in the range of experimental data for the materials investigated. (paper)

  13. NuSTAR OBSERVATIONS OF GRB 130427A ESTABLISH A SINGLE COMPONENT SYNCHROTRON AFTERGLOW ORIGIN FOR THE LATE OPTICAL TO MULTI-GEV EMISSION

    International Nuclear Information System (INIS)

    Kouveliotou, C.; Granot, J.; Racusin, J. L.; Gehrels, N.; McEnery, J. E.; Zhang, W. W.; Bellm, E.; Harrison, F. A.; Vianello, G.; Oates, S.; Fryer, C. L.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Dermer, C. D.; Hailey, C. J.; Melandri, A.; Tagliaferri, G.; Mundell, C. G.; Stern, D. K.

    2013-01-01

    GRB 130427A occurred in a relatively nearby galaxy; its prompt emission had the largest GRB fluence ever recorded. The afterglow of GRB 130427A was bright enough for the Nuclear Spectroscopic Telescope ARray (NuSTAR) to observe it in the 3-79 keV energy range long after its prompt emission (∼1.5 and 5 days). This range, where afterglow observations were previously not possible, bridges an important spectral gap. Combined with Swift, Fermi, and ground-based optical data, NuSTAR observations unambiguously establish a single afterglow spectral component from optical to multi-GeV energies a day after the event, which is almost certainly synchrotron radiation. Such an origin of the late-time Fermi/Large Area Telescope >10 GeV photons requires revisions in our understanding of collisionless relativistic shock physics

  14. A NLTE line formation for neutral and singly-ionised calcium in model atmospheres of B-F stars

    Science.gov (United States)

    Sitnova, T. M.; Mashonkina, L. I.; Ryabchikova, T. A.

    2018-03-01

    We present non-local thermodynamic equilibrium (NLTE) line formation calculations for Ca I and Ca II in B-F stars. The sign and the magnitude of NLTE abundance corrections depend on line and stellar parameters. We determine calcium abundances for nine stars with reliable stellar parameters. For all stars, where the lines of both species could be measured, the NLTE abundances are found to be consistent within the error bars. We obtain consistent NLTE abundances from Ca II lines in the visible and near infra-red (IR, 8912-27, 9890 Å) spectrum range, in contrast with LTE, where the discrepancy between the two groups of lines ranges from -0.5 dex to 0.6 dex for different stars. Our NLTE method reproduces the Ca II 8912-27, 9890 Å lines observed in emission in the late B-type star HD 160762 with the classical plane-parallel and LTE model atmosphere. NLTE abundance corrections for lines of Ca I and Ca II were calculated in a grid of model atmospheres with 7000 K ≤ Teff ≤ 13000 K, 3.2 ≤ log g ≤ 5.0, -0.5 ≤ [Fe/H] ≤0.5, ξt= 2.0 km s-1. Our NLTE results can be applied for calcium NLTE abundance determination from Gaia spectra, given that accurate continuum normalisation and proper treatment of the hydrogen Paschen lines are provided. The NLTE method can be useful to refine calcium underabundances in Am stars and to provide accurate observational constraints on the models of diffusion.

  15. A NLTE line formation for neutral and singly ionized calcium in model atmospheres of B-F stars

    Science.gov (United States)

    Sitnova, T. M.; Mashonkina, L. I.; Ryabchikova, T. A.

    2018-07-01

    We present non-local thermodynamic equilibrium (NLTE) line formation calculations for Ca I and Ca II in B-F stars. The sign and the magnitude of NLTE abundance corrections depend on line and stellar parameters. We determine calcium abundances for nine stars with reliable stellar parameters. For all stars, where the lines of both species could be measured, the NLTE abundances are found to be consistent within the error bars. We obtain consistent NLTE abundances from Ca II lines in the visible and near infra-red (IR, 8912-27, 9890 Å) spectrum range, in contrast with LTE, where the discrepancy between the two groups of lines ranges from -0.5 to 0.6 dex for different stars. Our NLTE method reproduces the Ca II 8912-27, 9890 Å lines observed in emission in the late B-type star HD 160762 with the classical plane-parallel and LTE model atmosphere. NLTE abundance corrections for lines of Ca I and Ca II were calculated in a grid of model atmospheres with 7000 ≤ Teff ≤ 13 000 K, 3.2 ≤ log g ≤ 5.0, -0.5 ≤ [Fe/H] ≤0.5, ξt = 2.0 km s-1. Our NLTE results can be applied for calcium NLTE abundance determination from Gaia spectra, given that accurate continuum normalization and proper treatment of the hydrogen Paschen lines are provided. The NLTE method can be useful to refine calcium underabundances in Am stars and to provide accurate observational constraints on the models of diffusion.

  16. Single-mode waveguides with SU-8 polymer core and cladding for MOEMS applications

    DEFF Research Database (Denmark)

    Nordström, Maria; Zauner, Dan; Boisen, Anja

    2007-01-01

    Fabrication and optical characterization of singlemode polymeric embedded waveguides are performed. A specific material combination (SU-8 2005 as core and the modified SU-8 mr-L 6050XP as cladding) is chosen in order to obtain a small refractive index difference for single-mode propagation combined...... can fabricate waveguides with an index difference in the order of 10−3, where both the core material and the cladding material are based on SU-8. The refractive index measurements are performed on thin polymeric films, while further optical characterizations are performed on waveguides with a height...

  17. Coupling of a single active nanoparticle to a polymer-based photonic structure

    Directory of Open Access Journals (Sweden)

    Dam Thuy Trang Nguyen

    2016-03-01

    Full Text Available The engineered coupling between a guest moiety (molecule, nanoparticle and the host photonic nanostructure may provide a great enhancement of the guest optical response, leading to many attractive applications. In this article, we describe briefly the basic concept and some recent progress considering the coupling of a single nanoparticle into a photonic structure. Different kinds of nanoparticles of great interest including quantum dots and nitrogen-vacancy centers in nanodiamond for single photon source, nonlinear nanoparticles for efficient nonlinear effect and sensors, magnetic nanoparticles for Kerr magneto-optical effect, and plasmonic nanoparticles for ultrafast optical switching and sensors, are briefly reviewed. We focus further on the coupling of plasmonic gold nanoparticles and polymeric photonic structures by optimizing theoretically the photonic structures and developing efficient way to realize desired hybrid structures. The simple and low-cost fabrication technique, the optical enhancement of the fluorescent nanoparticles induced by the photonic structure, as well as the limitations, challenges and appealing prospects are discussed in details.

  18. Relaxation in Thin Polymer Films Mapped across the Film Thickness by Astigmatic Single-Molecule Imaging

    KAUST Repository

    Oba, Tatsuya

    2012-06-19

    We have studied relaxation processes in thin supported films of poly(methyl acrylate) at the temperature corresponding to 13 K above the glass transition by monitoring the reorientation of single perylenediimide molecules doped into the films. The axial position of the dye molecules across the thickness of the film was determined with a resolution of 12 nm by analyzing astigmatic fluorescence images. The average relaxation times of the rotating molecules do not depend on the overall thickness of the film between 20 and 110 nm. The relaxation times also do not show any dependence on the axial position within the films for the film thickness between 70 and 110 nm. In addition to the rotating molecules we observed a fraction of spatially diffusing molecules and completely immobile molecules. These molecules indicate the presence of thin (<5 nm) high-mobility surface layer and low-mobility layer at the interface with the substrate. (Figure presented) © 2012 American Chemical Society.

  19. Engineering single-polymer micelle shape using nonuniform spontaneous surface curvature

    Science.gov (United States)

    Moths, Brian; Witten, T. A.

    2018-03-01

    Conventional micelles, composed of simple amphiphiles, exhibit only a few standard morphologies, each characterized by its mean surface curvature set by the amphiphiles. Here we demonstrate a rational design scheme to construct micelles of more general shape from polymeric amphiphiles. We replace the many amphiphiles of a conventional micelle by a single flexible, linear, block copolymer chain containing two incompatible species arranged in multiple alternating segments. With suitable segment lengths, the chain exhibits a condensed spherical configuration in solution, similar to conventional micelles. Our design scheme posits that further shapes are attained by altering the segment lengths. As a first study of the power of this scheme, we demonstrate the capacity to produce long-lived micelles of horseshoe form using conventional bead-spring simulations in two dimensions. Modest changes in the segment lengths produce smooth changes in the micelle's shape and stability.

  20. A reactive polystyrene-block-polyisoprene star copolymer as a toughening agent in an epoxy thermoset

    KAUST Repository

    Francis, Raju; Baby, Deepa K.

    2015-01-01

    © 2015 Springer-Verlag Berlin Heidelberg A polystyrene-block-polyisoprene ((PS-b-PI)3) star polymer was synthesized by photochemical reversible addition fragmentation chain transfer (RAFT) polymerization. The obtained star polymer was epoxidized

  1. Three coordination polymers based on a star-like geometry 4, 4', 4'' -nitrilotribenzoic acid ligand and their framework dependent luminescent properties

    Science.gov (United States)

    Hu, Zhiyong; Zhao, Meng; Su, Jian; Xu, Shasha; Hu, Lei; Liu, Hui; Zhang, Qiong; Zhang, Jun; Wu, Jieying; Tian, Yupeng

    2018-02-01

    Three novel coordination polymers, [Zn(μ2-HTCA)(Phen)]n (1), {[Cd(μ3-HTCA)(Phen)]·2H2O}n (2), [Mn(μ2-HTCA)(Phen)(H2O)]n (3) were prepared by hydrothermal synthesis from the 4, 4', 4''-nitrilotribenzoicacid (H3TCA) and 1, 10-phenanthroline monohydrate (Phen) with different transition metal salts, which were characterized by elemental analysis, IR spectra, powder and single-crystal X-ray diffraction and thermogravimetric analysis. The photophysical properties of the complexes were investigated by solid-state diffuse reflectance spectra, photoluminescent properties, lifetime and quantum yield. For these complexes, it was found that the band gaps follow the order: 3 < 2 < 1 < 2.80 eV, fluorescence intensity order: 1 > H3TCA > 2 > 3; quantum yield order: H3TCA > 1 > 2 > 3; while the lifetime order: 1 > 2 > H3TCA > 3.

  2. Pressure drop and flow distribution characteristics of single and parallel serpentine flow fields for polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Baek, Seung Man; Kim, Charn Jung; Jeon, Dong Hyup; Nam, Jin Hyun

    2012-01-01

    This study numerically investigates pressure drop and flow distribution characteristics of serpentine flow fields (SFFs) that are designed for polymer electrolyte membrane fuel cells, which consider the Poiseuille flow with secondary pressure drop in the gas channel (GC) and the Darcy flow in the porous gas diffusion layer (GDL). The numerical results for a conventional SFF agreed well with those obtained via computational fluid dynamics simulations, thus proving the validity of the present flow network model. This model is employed to characterize various single and parallel SFFs, including multi-pass serpentine flow fields (MPSFFs). Findings reveal that under rib convection (convective flow through GDL under an interconnector rib) is an important transport process for conventional SFFs, with its intensity being significantly enhanced as GDL permeability increases. The results also indicate that under rib convection can be significantly improved by employing MPSFFs as the reactant flow field, because of the closely interlaced structure of GC regions that have different path lengths from the inlet. However, reactant flow rate through GCs proportionally decreases as under rib convection intensity increases, suggesting that proper optimization is required between the flow velocity in GCs and the under rib convection intensity in GDLs

  3. An electrochemical impedance spectroscopy study of polymer electrolyte membrane fuel cells electrocatalyst single wall carbon nanohorns-supported.

    Science.gov (United States)

    Brandão, Lúcia; Boaventura, Marta; Passeira, Carolina; Gattia, Daniele Mirabile; Marazzi, Renzo; Antisari, Marco Vittori; Mendes, Adélio

    2011-10-01

    Electrochemical impedance spectroscopy (EIS) was used to study the polymer electrolyte membrane fuel cells (PEMFC) performance when using single wall carbon nanohorns (SWNH) to support Pt nanoparticles. Additionally, as-prepared and oxidized SWNH Pt-supports were compared with conventional carbon black. Two different oxidizing treatments were considered: oxygen flow at 500 degrees C and reflux in an acid solution at 85 degrees C. Both oxidizing treatments increased SWNH surface area; oxygen treatment increased surface area 4 times while acid treatment increased 2.6 times. The increase in surface area should be related to the opening access to the inner tube of SWNH. Acid treatment of SWNH increased chemical fragility and decreased electrocatalyst load in comparison with as-prepared SWNH. On the other hand, the oxygen treated SWNH sample allowed to obtain the highest electrocatalyst load. The use of as-prepared and oxygen treated SWNH showed in both cases catalytic activities 60% higher than using conventional carbon black as electrocatalyst support in PEMFC. Moreover, EIS analysis indicated that the major improvement in performance is related to the cathode kinetics in the as-prepared SWNH sample, while concerning the oxidized SWNH sample, the improvements are related to the electrokinetics in both anode and cathode electrodes. These improvements should be related with differences in the hydrophobic character between SWNH and carbon black.

  4. Improving the drug delivery characteristics of graphene oxide based polymer nanocomposites through the “one-pot” synthetic approach of single-electron-transfer living radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Peng; Liu, Meiying; Tian, Jianwen; Deng, Fengjie [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wang, Ke [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China); Xu, Dazhuang [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Liu, Liangji [Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang 330006 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China)

    2016-08-15

    Graphical abstract: The PEGylated graphene oxides with high water dispersibility, good biocompatibility as well as high drug loading capability were fabricated via “one-pot” SET-LRP. - Highlights: • Surface modification of graphene oxide with polymers. • One-pot single-electron-transfer living radical polymerization. • Improving drug delivery characteristics. • The synthetic approach is rather simple, universal and effective. - Abstract: Graphene oxide (GO) based polymer nanocomposites have attracted extensive research interest recently for their outstanding physicochemical properties and potential applications. However, surface modification of GO with synthetic polymers has demonstrated to be trouble for most polymerization procedures are occurred under non-aqueous solution, which will in turn lead to the restacking of GO. In this work, a facile and efficient “one-pot” strategy has been developed for surface modification of GO with synthetic polymers through single-electron-transfer living radical polymerization (SET-LRP). The GO based polymer nanocomposites were obtained via SET-LRP in aqueous solution using poly(ethylene glycol) methyl ether methacrylate (PEGMA) as the monomer and 11-bromoundecanoic acid as the initiator, which could be effectively adsorbed on GO through hydrophobic interaction. The successful preparation of GO based polymer nanocomposites was confirmed by a series of characterization techniques such as {sup 1}H nuclear magnetic resonance, Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. The resultant products exhibit high water disperisibility, excellent biocompatibility and high efficient drug loading capability, making these PEGylated GO nanocomposites promising candidates for biomedical applications.

  5. Shape memory polymers

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Thomas S.; Bearinger, Jane P.

    2017-08-29

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  6. Shape memory polymers

    Science.gov (United States)

    Wilson, Thomas S.; Bearinger, Jane P.

    2015-06-09

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  7. Pressure-sensing properties of single-walled carbon nanotubes covered with a corona-poled piezoelectric polymer

    Energy Technology Data Exchange (ETDEWEB)

    Ikawa, Takeshi; Tabata, Hiroshi, E-mail: tabata@eei.eng.osaka-u.ac.jp; Yoshizawa, Takeshi; Utaka, Ken; Kubo, Osamu; Katayama, Mitsuhiro [Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2016-07-18

    Single-walled carbon nanotubes (SWNTs) have been studied extensively as sensing elements for chemical and biochemical sensors because of their excellent electrical properties, their ultrahigh ratio of surface area to volume, and the consequent extremely high sensitivity of their surface to the surrounding environment. The extremely high sensitivity indicates that SWNTs can operate as excellent transducers when combined with piezoelectric materials. In this paper, we present a touch sensor based on SWNT thin-film transistors (SWNT-TFTs) covered with a thin film of the piezoelectric polymer poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)). Devices were fabricated by spin-coating a P(VDF-TrFE) layer on an SWNT-TFT, which was followed by in situ corona poling to polarize the P(VDF-TrFE) layer. We studied the effect of the corona polarity on the device characteristics and revealed that poling with a negative corona discharge induced a large amount of hole doping in the SWNTs and improved the touch-sensing performance of the devices, while a positive discharge had a negligible effect. The poled devices exhibited regular, stable, and positive drain current modulation in response to intermittent pressing, and the response was proportional to the magnitude of the applied pressure, suggesting that it was caused by the piezoelectric effect of the polarized P(VDF-TrFE) layer. Furthermore, we also fabricated a device using horizontally aligned SWNTs with a lower SWNT density as an alternative transducer to an SWNT thin film, which demonstrated sensitivity as high as 70%/MPa.

  8. Controlled synthesis of biodegradable lactide polymers and copolymers using novel in situ generated or single-site stereoselective polymerisation initiators

    NARCIS (Netherlands)

    Zhong, Zhiyuan; Dijkstra, Pieter J.; Feijen, Jan

    2004-01-01

    Polylactides and their copolymers are key biodegradable polymers used widely in biomedical, pharmaceutical and ecological applications. The development of synthetic pathways and catalyst/initiator systems to produce pre-designed polylactides, as well as the fundamental understanding of the

  9. Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yung-Ting [Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Taiwan (China); Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan 10617, Taiwan (China); Liu, Shun-Wei [Department of Electronic Engineering, Mingchi University of Technology, New Taipei, Taiwan 24301, Taiwan (China); Yuan, Chih-Hsien; Lee, Chih-Chien [Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan 10607, Taiwan (China); Ho, Yu-Hsuan; Wei, Pei-Kuen [Research Center for Applied Science Academia Sinica, Taipei, Taiwan 11527, Taiwan (China); Chen, Kuan-Yu [Chilin Technology Co., LTD, Tainan City, Taiwan 71758, Taiwan (China); Lee, Yi-Ting; Wu, Min-Fei; Chen, Chin-Ti, E-mail: cchen@chem.sinica.edu.tw, E-mail: chihiwu@cc.ee.ntu.edu.tw [Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Taiwan (China); Wu, Chih-I, E-mail: cchen@chem.sinica.edu.tw, E-mail: chihiwu@cc.ee.ntu.edu.tw [Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan 10617, Taiwan (China)

    2013-11-07

    Single-layer blue phosphorescence organic light emitting diodes (OLEDs) with either small-molecule or polymer hosts are fabricated using solution process and the performances of devices with different hosts are investigated. The small-molecule device exhibits luminous efficiency of 14.7 cd/A and maximum power efficiency of 8.39 lm/W, which is the highest among blue phosphorescence OLEDs with single-layer solution process and small molecular hosts. Using the same solution process for all devices, comparison of light out-coupling enhancement, with brightness enhancement film (BEF), between small-molecule and polymer based OLEDs is realized. Due to different dipole orientation and anisotropic refractive index, polymer-based OLEDs would trap less light than small molecule-based OLEDs internally, about 37% better based simulation results. In spite of better electrical and spectroscopic characteristics, including ambipolar characteristics, higher carrier mobility, higher photoluminescence quantum yield, and larger triplet state energy, the overall light out-coupling efficiency of small molecule-based devices is worse than that of polymer-based devices without BEF. However, with BEF for light out-coupling enhancement, the improved ratio in luminous flux and luminous efficiency for small molecule based device is 1.64 and 1.57, respectively, which are significantly better than those of PVK (poly-9-vinylcarbazole) devices. In addition to the theoretical optical simulation, the experimental data also confirm the origins of differential light-outcoupling enhancement. The maximum luminous efficiency and power efficiency are enhanced from 14.7 cd/A and 8.39 lm/W to 23 cd/A and 13.2 lm/W, respectively, with laminated BEF, which are both the highest so far for single-layer solution-process blue phosphorescence OLEDs with small molecule hosts.

  10. Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts

    International Nuclear Information System (INIS)

    Chang, Yung-Ting; Liu, Shun-Wei; Yuan, Chih-Hsien; Lee, Chih-Chien; Ho, Yu-Hsuan; Wei, Pei-Kuen; Chen, Kuan-Yu; Lee, Yi-Ting; Wu, Min-Fei; Chen, Chin-Ti; Wu, Chih-I

    2013-01-01

    Single-layer blue phosphorescence organic light emitting diodes (OLEDs) with either small-molecule or polymer hosts are fabricated using solution process and the performances of devices with different hosts are investigated. The small-molecule device exhibits luminous efficiency of 14.7 cd/A and maximum power efficiency of 8.39 lm/W, which is the highest among blue phosphorescence OLEDs with single-layer solution process and small molecular hosts. Using the same solution process for all devices, comparison of light out-coupling enhancement, with brightness enhancement film (BEF), between small-molecule and polymer based OLEDs is realized. Due to different dipole orientation and anisotropic refractive index, polymer-based OLEDs would trap less light than small molecule-based OLEDs internally, about 37% better based simulation results. In spite of better electrical and spectroscopic characteristics, including ambipolar characteristics, higher carrier mobility, higher photoluminescence quantum yield, and larger triplet state energy, the overall light out-coupling efficiency of small molecule-based devices is worse than that of polymer-based devices without BEF. However, with BEF for light out-coupling enhancement, the improved ratio in luminous flux and luminous efficiency for small molecule based device is 1.64 and 1.57, respectively, which are significantly better than those of PVK (poly-9-vinylcarbazole) devices. In addition to the theoretical optical simulation, the experimental data also confirm the origins of differential light-outcoupling enhancement. The maximum luminous efficiency and power efficiency are enhanced from 14.7 cd/A and 8.39 lm/W to 23 cd/A and 13.2 lm/W, respectively, with laminated BEF, which are both the highest so far for single-layer solution-process blue phosphorescence OLEDs with small molecule hosts

  11. Molecular level computational studies of polyethylene and polyacrylonitrile composites containing single walled carbon nanotubes: effect of carboxylic acid functionalization on nanotube-polymer interfacial properties

    Directory of Open Access Journals (Sweden)

    Shayesteh eHaghighatpanah

    2014-09-01

    Full Text Available Molecular dynamics and molecular mechanics methods have been used to investigate additive-polymer interfacial properties in single walled carbon nanotube – polyethylene and single walled carbon nanotube – polyacrylonitrile composites. Properties such as the interfacial shear stress and bonding energy are similar for the two composites. In contrast, functionalizing the single walled carbon nanotubes with carboxylic acid groups leads to an increase in these properties, with a larger increase for the polar polyacrylonitrile composite. Increasing the percentage of carbon atoms that were functionalized from 1% to 5% also leads to an increase in the interfacial properties. In addition, the interfacial properties depend on the location of the functional groups on the single walled carbon nanotube wall.

  12. Infrared laser dissociation of single megadalton polymer ions in a gated electrostatic ion trap: the added value of statistical analysis of individual events.

    Science.gov (United States)

    Halim, Mohammad A; Clavier, Christian; Dagany, Xavier; Kerleroux, Michel; Dugourd, Philippe; Dunbar, Robert C; Antoine, Rodolphe

    2018-05-07

    In this study, we report the unimolecular dissociation mechanism of megadalton SO 3 -containing poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) polymer cations and anions with the aid of infrared multiphoton dissociation coupled to charge detection ion trap mass spectrometry. A gated electrostatic ion trap ("Benner trap") is used to store and detect single gaseous polymer ions generated by positive and negative polarity in an electrospray ionization source. The trapped ions are then fragmented due to the sequential absorption of multiple infrared photons produced from a continuous-wave CO 2 laser. Several fragmentation pathways having distinct signatures are observed. Highly charged parent ions characteristically adopt a distinctive "stair-case" pattern (assigned to the "fission" process) whereas low charge species take on a "funnel like" shape (assigned to the "evaporation" process). Also, the log-log plot of the dissociation rate constants as a function of laser intensity between PAMPS positive and negative ions is significantly different.

  13. Comparative Study on Dispersion and Interfacial Properties of Single Walled Carbon Nanotube/Polymer Composites Using Hansen Solubility Parameters

    DEFF Research Database (Denmark)

    Ma, Jing; Larsen, Mikael

    2013-01-01

    fabricated by solution blending 1 wt % SWNTs with various modification (nonmodified, nitric acid functionalized, and amine functionalized SWNTs) and three kinds of polymeric materials (polycarbonate, polyvinylidene fluoride, and epoxy). Chemical compatibilities between SWNTs and solvents or polymers...... are calculated by the Hansen solubility parameters (HSP) method. The dispersion of the SWNTs in solvents is evaluated by dynamic light scattering. The dispersion of SWNTs in polymers evaluated by a light optical microscope (LOM) generally agrees with the HSP prediction. The strain transfer from the matrix...

  14. The dance of the double stars

    International Nuclear Information System (INIS)

    Theokas, A.

    1985-01-01

    The paper concerns pairs of stars orbiting one another. The evolutionary path model for close binary stars, involving a mass transfer of gases between the stars, is described. The life history of a single star; cataclysmic variables; the algol paradox, matter and lagranges' point; x-ray binaries and bursters; and pulsars; are all briefly discussed. (U.K.)

  15. Sm-doped CeO2 single buffer layer for YBCO coated conductors by polymer assisted chemical solution deposition (PACSD) method

    International Nuclear Information System (INIS)

    Li, G.; Pu, M.H.; Sun, R.P.; Wang, W.T.; Wu, W.; Zhang, X.; Yang, Y.; Cheng, C.H.; Zhao, Y.

    2008-01-01

    An over 150 nm thick Sm 0.2 Ce 0.8 O 1.9-x (SCO) single buffer layer has been deposited on bi-axially textured NiW (2 0 0) alloy substrate. Highly in-plane and out-of-plane oriented, dense, smooth and crack free SCO single layer has been obtained via a polymer-assisted chemical solution deposition (PACSD) approach. YBCO thin film has been deposited equally via a PACSD route on the SCO-buffered NiW, the as grown YBCO yielding a sharp transition at T c0 = 87 K as well as J c (0 T, 77 K) ∼ 1 MA/cm 2 . These results indicates that RE (lanthanides other than Ce) doping may be an effective approach to improve the critical thickness of solution derived CeO 2 film, which renders it a promising candidate as single buffer layer for YBCO coated conductors

  16. Stars and Star Myths.

    Science.gov (United States)

    Eason, Oliver

    Myths and tales from around the world about constellations and facts about stars in the constellations are presented. Most of the stories are from Greek and Roman mythology; however, a few Chinese, Japanese, Polynesian, Arabian, Jewish, and American Indian tales are also included. Following an introduction, myths are presented for the following 32…

  17. Equivalence of chain conformations in the surface region of a polymer melt and a single Gaussian chain nder critical conditions

    NARCIS (Netherlands)

    Skvortsov, A.M.; Leermakers, F.A.M.; Fleer, G.J.

    2013-01-01

    In the melt polymer conformations are nearly ideal according to Flory's ideality hypothesis. Silberberg generalized this statement for chains in the interfacial region. We check the Silberberg argument by analyzing the conformations of a probe chain end-grafted at a solid surface in a sea of

  18. Visualizing spatial and temporal heterogeneity of single molecule rotational diffusion in a glassy polymer by defocused wide-field imaging

    NARCIS (Netherlands)

    Uji-i, Hiroshi; Melnikov, Sergey M.; Deres, Ania; Bergamini, Giacomo; Schryver, Frans De; Herrmann, Andreas; Müllen, Klaus; Enderlein, Jörg; Hofkens, Johan

    2006-01-01

    Defocused wide-field fluorescence microscopy was used to follow the 3D molecular rotational diffusion of a fluorescent probe molecule in a polymer thin film. The technique allows for visualizing the molecular reorientation both in-plane and out-of-plane. The local environmental change driven by

  19. Templating Organosilicate Vitrification Using Unimolecular Self Organizing Polymers: Evolution of Morphology and Nanoporosity Development with Network Formation

    International Nuclear Information System (INIS)

    Kim, H.-C.

    2004-01-01

    Star-shaped polymers with a compatibilizing outer corona were dispersed into a thermosetting organosilicate matrix and used to create a nanoporous material. These environmentally responsive copolymers create nano-sized domains through a matrix-mediated collapse of the interior core of the core-corona polymeric structure. This approach relies on the outer corona of the star to compatibilize the insoluble core with the thermosetting resin and prevent aggregation such that these individual molecules template the crosslinking of the matrix and ultimately generate a single hole. The organic polymer was selectively thermalized leaving behind its latent image in the matrix with a pore size that reflected the size of the polymer molecule, and provided the expected reduction in dielectric constant. The morphology development as a function of arm number, molecular weight and volume fraction in mixtures with organosilicates as a function of cure/network conversion was investigated by SAXS, SANS, DMA, TEM and FE-SEM measurements. Amphiphilic star-shaped polymers of various block lengths and arm number, prepared by tandem controlled ring-opening polymerization (ROP) and atom transfer radical polymerization (ATRP) from dendritic initiators, were further tailored to facilitate contrast enhancement for various measurements by the incorporation of either ferrocenyl units or deuterated monomers. The pore sizes achieved by the star and dendrimer-like star macromolecular architectures range from ∼7 to 40nm, depending on the molecular weight and architecture

  20. A sirolimus-eluting bioabsorbable polymer-coated stent (MiStent) versus an everolimus-eluting durable polymer stent (Xience) after percutaneous coronary intervention (DESSOLVE III): a randomised, single-blind, multicentre, non-inferiority, phase 3 trial.

    Science.gov (United States)

    de Winter, Robbert J; Katagiri, Yuki; Asano, Taku; Milewski, Krzysztof P; Lurz, Philipp; Buszman, Pawel; Jessurun, Gillian A J; Koch, Karel T; Troquay, Roland P T; Hamer, Bas J B; Ophuis, Ton Oude; Wöhrle, Jochen; Wyderka, Rafał; Cayla, Guillaume; Hofma, Sjoerd H; Levesque, Sébastien; Żurakowski, Aleksander; Fischer, Dieter; Kośmider, Maciej; Goube, Pascal; Arkenbout, E Karin; Noutsias, Michel; Ferrari, Markus W; Onuma, Yoshinobu; Wijns, William; Serruys, Patrick W

    2018-02-03

    MiStent is a drug-eluting stent with a fully absorbable polymer coating containing and embedding a microcrystalline form of sirolimus into the vessel wall. It was developed to overcome the limitation of current durable polymer drug-eluting stents eluting amorphous sirolimus. The clinical effect of MiStent sirolimus-eluting stent compared with a durable polymer drug-eluting stents has not been investigated in a large randomised trial in an all-comer population. We did a randomised, single-blind, multicentre, phase 3 study (DESSOLVE III) at 20 hospitals in Germany, France, Netherlands, and Poland. Eligible participants were any patients aged at least 18 years who underwent percutaneous coronary intervention in a lesion and had a reference vessel diameter of 2·50-3·75 mm. We randomly assigned patients (1:1) to implantation of either a sirolimus-eluting bioresorbable polymer stent (MiStent) or an everolimus-eluting durable polymer stent (Xience). Randomisation was done by local investigators via web-based software with random blocks according to centre. The primary endpoint was a non-inferiority comparison of a device-oriented composite endpoint (DOCE)-cardiac death, target-vessel myocardial infarction, or clinically indicated target lesion revascularisation-between the groups at 12 months after the procedure assessed by intention-to-treat. A margin of 4·0% was defined for non-inferiority of the MiStent group compared with the Xience group. All participants were included in the safety analyses. This trial is registered with ClinicalTrials.gov, number NCT02385279. Between March 20, and Dec 3, 2015, we randomly assigned 1398 patients with 2030 lesions; 703 patients with 1037 lesions were assigned to MiStent, of whom 697 received the index procedure, and 695 patients with 993 lesions were asssigned to Xience, of whom 690 received the index procedure. At 12 months, the primary endpoint had occurred in 40 patients (5·8%) in the sirolimus-eluting stent group and in 45

  1. By Draconis Stars

    Science.gov (United States)

    Bopp, Bernard W.

    An optical spectroscopic survey of dK-M stars has resulted in the discovery of several new H-alpha emission objects. Available optical data suggest these stars have a level of chromospheric activity midway between active BY Dra stars and quiet dM's. These "marginal" BY Dra stars are single objects that have rotation velocities slightly higher than that of quiet field stars but below that of active flare/BY Dra objects. The marginal BY Dra stars provide us with a class of objects rotating very near a "trigger velocity" (believed to be 5 km/s) which appears to divide active flare/BY Dra stars from quiet dM's. UV data on Mg II emission fluxes and strength of transition region features such as C IV will serve to fix activity levels in the marginal objects and determine chromosphere and transition-region heating rates. Simultaneous optical magnetic field measures will be used to explore the connection between fieldstrength/filling-factor and atmospheric heating. Comparison of these data with published information on active and quiet dM stars will yield information on the character of the stellar dynamo as it makes a transition from "low" to "high" activity.

  2. Upscaling from single cells to modules – fabrication of vacuum- and ITO-free polymer solar cells on flexible substrates with long lifetime

    DEFF Research Database (Denmark)

    Carlé, Jon Eggert; Helgesen, Martin; Madsen, Morten Vesterager

    2014-01-01

    is comparable to single cell devices prepared using the same process. This proves that it is possible to scale up new materials in an ITO free device context to modules without having an efficiency drop, due to reliable and consistent processing. The main loss observed was due to the packaging using barrier...... modules. We studied from single cells (1 cm2) to modules comprising four serially connected devices with a total active area of 8 cm2. Four different polymers (P3HT, PV-D4610, PDTSTTz-4 and PBDTTTz-4) were applied in the preparation of the modules and efficiencies of more than 3% were achieved which...... materials. The photochemical stability of the materials was therefore studied using intense light along with the operational stability of the corresponding devices according to the ISOS-D-1 and ISOS-L-1 standards. For devices under constant illumination we found that barrier materials from Mitsubishi and 3M...

  3. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star.......Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star....

  4. Regulation of StAR by the N-terminal Domain and Coinduction of SIK1 and TIS11b/Znf36l1 in Single Cells.

    Science.gov (United States)

    Lee, Jinwoo; Tong, Tiegang; Duan, Haichuan; Foong, Yee Hoon; Musaitif, Ibrahim; Yamazaki, Takeshi; Jefcoate, Colin

    2016-01-01

    The cholesterol transfer function of steroidogenic acute regulatory protein (StAR) is uniquely integrated into adrenal cells, with mRNA translation and protein kinase A (PKA) phosphorylation occurring at the mitochondrial outer membrane (OMM). The StAR C-terminal cholesterol-binding domain (CBD) initiates mitochondrial intermembrane contacts to rapidly direct cholesterol to Cyp11a1 in the inner membrane (IMM). The conserved StAR N-terminal regulatory domain (NTD) includes a leader sequence targeting the CBD to OMM complexes that initiate cholesterol transfer. Here, we show how the NTD functions to enhance CBD activity delivers more efficiently from StAR mRNA in adrenal cells, and then how two factors hormonally restrain this process. NTD processing at two conserved sequence sites is selectively affected by StAR PKA phosphorylation. The CBD functions as a receptor to stimulate the OMM/IMM contacts that mediate transfer. The NTD controls the transit time that integrates extramitochondrial StAR effects on cholesterol homeostasis with other mitochondrial functions, including ATP generation, inter-organelle fusion, and the major permeability transition pore in partnership with other OMM proteins. PKA also rapidly induces two additional StAR modulators: salt-inducible kinase 1 (SIK1) and Znf36l1/Tis11b. Induced SIK1 attenuates the activity of CRTC2, a key mediator of StAR transcription and splicing, but only as cAMP levels decline. TIS11b inhibits translation and directs the endonuclease-mediated removal of the 3.5-kb StAR mRNA. Removal of either of these functions individually enhances cAMP-mediated induction of StAR. High-resolution fluorescence in situ hybridization (HR-FISH) of StAR RNA reveals asymmetric transcription at the gene locus and slow RNA splicing that delays mRNA formation, potentially to synchronize with cholesterol import. Adrenal cells may retain slow transcription to integrate with intermembrane NTD activation. HR-FISH resolves individual 3.5-kb StAR

  5. Polymer films

    Science.gov (United States)

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  6. Altered lower extremity joint mechanics occur during the star excursion balance test and single leg hop after ACL-reconstruction in a collegiate athlete.

    Science.gov (United States)

    Samaan, Michael A; Ringleb, Stacie I; Bawab, Sebastian Y; Greska, Eric K; Weinhandl, Joshua T

    2018-03-01

    The effects of ACL-reconstruction on lower extremity joint mechanics during performance of the Star Excursion Balance Test (SEBT) and Single Leg Hop (SLH) are limited. The purpose of this study was to determine if altered lower extremity mechanics occur during the SEBT and SLH after ACL-reconstruction. One female Division I collegiate athlete performed the SEBT and SLH tasks, bilaterally, both before ACL injury and 27 months after ACL-reconstruction. Maximal reach, hop distances, lower extremity joint kinematics and moments were compared between both time points. Musculoskeletal simulations were used to assess muscle force production during the SEBT and SLH at both time points. Compared to the pre-injury time point, SEBT reach distances were similar in both limbs after ACL-reconstruction except for the max anterior reach distance in the ipsilateral limb. The athlete demonstrated similar hop distances, bilaterally, after ACL-reconstruction compared to the pre-injury time point. Despite normal functional performance during the SEBT and SLH, the athlete exhibited altered lower extremity joint mechanics during both of these tasks. These results suggest that measuring the maximal reach and hop distances for these tasks, in combination with an analysis of the lower extremity joint mechanics that occur after ACL-reconstruction, may help clinicians and researchers to better understand the effects of ACL-reconstruction on the neuromuscular system during the SEBT and SLH.

  7. Synthesis, crystal structure, and magnetic properties of two-dimensional divalent metal glutarate/dipyridylamine coordination polymers, with a single crystal-to-single crystal transformation in the copper derivative

    International Nuclear Information System (INIS)

    Montney, Matthew R.; Supkowski, Ronald M.; Staples, Richard J.; LaDuca, Robert L.

    2009-01-01

    Hydrothermal reaction of divalent metal chlorides with glutaric acid and 4,4'-dipyridylamine (dpa) has afforded an isostructural family of coordination polymers with formulation [M(glu)(dpa)] n (M=Co (1), Ni (2), Cu (3); glu=glutarate). Square pyramidal coordination is seen in 1-3, with semi-ligation of a sixth donor to produce a '5+1' extended coordination sphere. Neighboring metal atoms are linked into 1D [M(glu)] n neutral chains through chelating/monodentate bridging glutarate moieties with a syn-anti binding mode, and semi-chelation of the pendant carboxylate oxygen. These chains further connect into 2D layers through dipodal dpa ligands. Neighboring layers stack into the pseudo 3D crystal structure of 1-3 through supramolecular hydrogen bonding between dpa amine units and the semi-chelated glutarate oxygen atoms. The variable temperature magnetic behavior of 1-3 was explored and modeled as infinite 1D Heisenberg chains. Notably, complex 3 undergoes a thermally induced single crystal-to-single crystal transformation between centric and acentric space groups, with a conformationally disordered unilayer structure at 293 K and an ordered bilayer structure at 173 K. All materials were further characterized via infrared spectroscopy and elemental and thermogravimetric analyses. - Graphical abstract: The coordination polymers [M(glu)(dpa)] n (M=Co (1), Ni (2), Cu (3); glu=glutarate, dpa=4,4'-dipyridylamine) exhibit 2D layer structures based on 1D [M(glu)] n chains linked through dpa tethers. Antiferromagnetic coupling is observed for 2 and 3, while ferromagnetism is predominant in 1. Compound 3 undergoes a thermally induced single crystal-to-single crystal transformation from an acentric to a centrosymmetric space group

  8. Low-power logic computing realized in a single electric-double-layer MoS2 transistor gated with polymer electrolyte

    Science.gov (United States)

    Guo, Junjie; Xie, Dingdong; Yang, Bingchu; Jiang, Jie

    2018-06-01

    Due to its mechanical flexibility, large bandgap and carrier mobility, atomically thin molybdenum disulphide (MoS2) has attracted widespread attention. However, it still lacks a facile route to fabricate a low-power high-performance logic gates/circuits before it gets the real application. Herein, we reported a facile and environment-friendly method to establish the low-power logic function in a single MoS2 field-effect transistor (FET) configuration gated with a polymer electrolyte. Such low-power and high-performance MoS2 FET can be implemented by using water-soluble polyvinyl alcohol (PVA) polymer as proton-conducting electric-double-layer (EDL) dielectric layer. It exhibited an ultra-low voltage (1.5 V) and a good performance with a high current on/off ratio (Ion/off) of 1 × 105, a large electron mobility (μ) of 47.5 cm2/V s, and a small subthreshold swing (S) of 0.26 V/dec, respectively. The inverter can be realized by using such a single MoS2 EDL FET with a gain of ∼4 at the operation voltage of only ∼1 V. Most importantly, the neuronal AND logic computing can be also demonstrated by using such a double-lateral-gate single MoS2 EDL transistor. These results show an effective step for future applications of 2D MoS2 FETs for integrated electronic engineering and low-energy environment-friendly green electronics.

  9. Sm-doped CeO{sub 2} single buffer layer for YBCO coated conductors by polymer assisted chemical solution deposition (PACSD) method

    Energy Technology Data Exchange (ETDEWEB)

    Li, G.; Pu, M.H.; Sun, R.P.; Wang, W.T.; Wu, W.; Zhang, X.; Yang, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); Cheng, C.H. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia); Zhao, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia)], E-mail: yzhao@home.swjtu.edu.cn

    2008-10-20

    An over 150 nm thick Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9-x} (SCO) single buffer layer has been deposited on bi-axially textured NiW (2 0 0) alloy substrate. Highly in-plane and out-of-plane oriented, dense, smooth and crack free SCO single layer has been obtained via a polymer-assisted chemical solution deposition (PACSD) approach. YBCO thin film has been deposited equally via a PACSD route on the SCO-buffered NiW, the as grown YBCO yielding a sharp transition at T{sub c0} = 87 K as well as J{sub c}(0 T, 77 K) {approx} 1 MA/cm{sup 2}. These results indicates that RE (lanthanides other than Ce) doping may be an effective approach to improve the critical thickness of solution derived CeO{sub 2} film, which renders it a promising candidate as single buffer layer for YBCO coated conductors.

  10. Radio stars

    International Nuclear Information System (INIS)

    Hjellming, R.M.

    1976-01-01

    Any discussion of the radio emission from stars should begin by emphasizing certain unique problems. First of all, one must clarify a semantic confusion introduced into radio astronomy in the late 1950's when most new radio sources were described as radio stars. All of these early 'radio stars' were eventually identified with other galactic and extra-galactic objects. The study of true radio stars, where the radio emission is produced in the atmosphere of a star, began only in the 1960's. Most of the work on the subject has, in fact, been carried out in only the last few years. Because the real information about radio stars is quite new, it is not surprising that major aspects of the subject are not at all understood. For this reason this paper is organized mainly around three questions: what is the available observational information; what physical processes seem to be involved; and what working hypotheses look potentially fruitful. (Auth.)

  11. Shooting stars

    International Nuclear Information System (INIS)

    Maurette, M.; Hammer, C.

    1985-01-01

    A shooting star passage -even a star shower- can be sometimes easily seen during moonless black night. They represent the partial volatilization in earth atmosphere of meteorites or micrometeorites reduced in cosmic dusts. Everywhere on earth, these star dusts are searched to be gathered. This research made one year ago on the Greenland ice-cap is this article object; orbit gathering projects are also presented [fr

  12. Mobile Phone Text Messages to Support Treatment Adherence in Adults With High Blood Pressure (SMS-Text Adherence Support [StAR]): A Single-Blind, Randomized Trial.

    Science.gov (United States)

    Bobrow, Kirsten; Farmer, Andrew J; Springer, David; Shanyinde, Milensu; Yu, Ly-Mee; Brennan, Thomas; Rayner, Brian; Namane, Mosedi; Steyn, Krisela; Tarassenko, Lionel; Levitt, Naomi

    2016-02-09

    We assessed the effect of automated treatment adherence support delivered via mobile phone short message system (SMS) text messages on blood pressure. In this pragmatic, single-blind, 3-arm, randomized trial (SMS-Text Adherence Support [StAR]) undertaken in South Africa, patients treated for high blood pressure were randomly allocated in a 1:1:1 ratio to information only, interactive SMS text messaging, or usual care. The primary outcome was change in systolic blood pressure at 12 months from baseline measured with a validated oscillometric device. All trial staff were masked to treatment allocation. Analyses were intention to treat. Between June 26, 2012, and November 23, 2012, 1372 participants were randomized to receive information-only SMS text messages (n=457), interactive SMS text messages (n=458), or usual care (n=457). Primary outcome data were available for 1256 participants (92%). At 12 months, the mean adjusted change in systolic blood pressure compared with usual care was -2.2 mm Hg (95% confidence interval, -4.4 to -0.04) with information-only SMS and -1.6 mm Hg (95% confidence interval, -3.7 to 0.6) with interactive SMS. Odds ratios for the proportion of participants with a blood pressure high blood pressure, we found a small reduction in systolic blood pressure control compared with usual care at 12 months. There was no evidence that an interactive intervention increased this effect. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02019823. South African National Clinical Trials Register, number SANCTR DOH-27-1212-386; Pan Africa Trial Register, number PACTR201411000724141. © 2016 American Heart Association, Inc.

  13. Single cyanide-bridged Mo(W)/S/Cu cluster-based coordination polymers: Reactant- and stoichiometry-dependent syntheses, effective photocatalytic properties

    International Nuclear Information System (INIS)

    Zhang, Jinfang; Wang, Chao; Wang, Yinlin; Chen, Weitao; Cifuentes, Marie P.; Humphrey, Mark G.; Zhang, Chi

    2015-01-01

    The systematic study on the reaction variables affecting single cyanide-bridged Mo(W)/S/Cu cluster-based coordination polymers (CPs) is firstly demonstrated. Five anionic single cyanide-bridged Mo(W)/S/Cu cluster-based CPs {[Pr_4N][WS_4Cu_3(CN)_2]}_n (1), {[Pr_4N][WS_4Cu_4(CN)_3]}_n (2), {[Pr_4N][WOS_3Cu_3(CN)_2]}_n (3), {[Bu_4N][WOS_3Cu_3(CN)_2]}_n (4) and {[Bu_4N][MoOS_3Cu_3(CN)_2]}_n (5) were prepared by varying the molar ratios of the starting materials, and the specific cations, cluster building blocks and central metal atoms in the cluster building blocks. 1 possesses an anionic 3D diamondoid framework constructed from 4-connected T-shaped clusters [WS_4Cu_3]"+ and single CN"− bridges. 2 is fabricated from 6-connected planar ‘open’ clusters [WS_4Cu_4]"2"+ and single CN"− bridges, forming an anionic 3D architecture with an “ACS” topology. 3 and 4 exhibit novel anionic 2-D double-layer networks, both constructed from nest-shaped clusters [WOS_3Cu_3]"+ linked by single CN"− bridges, but containing the different cations [Pr_4N]"+ and [Bu_4N]"+, respectively. 5 is constructed from nest-shaped clusters [MoOS_3Cu_3]"+ and single CN"− bridges, with an anionic 3D diamondoid framework. The anionic frameworks of 1-5, all sustained by single CN"− bridges, are non-interpenetrating and exhibit huge potential void volumes. Employing differing molar ratios of the reactants and varying the cluster building blocks resulted in differing single cyanide-bridged Mo(W)/S/Cu cluster-based CPs, while replacing the cation ([Pr_4N]"+ vs. [Bu_4N]"+) was found to have negligible impact on the nature of the architecture. Unexpectedly, replacement of the central metal atom (W vs. Mo) in the cluster building blocks had a pronounced effect on the framework. Furthermore, the photocatalytic activities of heterothiometallic cluster-based CPs were firstly explored by monitoring the photodegradation of methylene blue (MB) under visible light irradiation, which reveals that 2

  14. Electrode property of single-walled carbon nanotubes in all-solid-state lithium ion battery using polymer electrolyte

    International Nuclear Information System (INIS)

    Sakamoto, Y.; Ishii, Y.; Kawasaki, S.

    2016-01-01

    Electrode properties of single-walled carbon nanotubes (SWCNTs) in an all-solid-state lithium ion battery were investigated using poly-ethylene oxide (PEO) solid electrolyte. Charge-discharge curves of SWCNTs in the solid electrolyte cell were successfully observed. It was found that PEO electrolyte decomposes on the surface of SWCNTs.

  15. Electrode property of single-walled carbon nanotubes in all-solid-state lithium ion battery using polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Y.; Ishii, Y.; Kawasaki, S., E-mail: kawasaki.shinji@nitech.ac.jp [Nagoya Institute of Technology, Gokiso, Showa, Nagoya, Aichi (Japan)

    2016-07-06

    Electrode properties of single-walled carbon nanotubes (SWCNTs) in an all-solid-state lithium ion battery were investigated using poly-ethylene oxide (PEO) solid electrolyte. Charge-discharge curves of SWCNTs in the solid electrolyte cell were successfully observed. It was found that PEO electrolyte decomposes on the surface of SWCNTs.

  16. Fibrous polymer grafted magnetic chitosan beads with strong poly(cation-exchange) groups for single step purification of lysozyme.

    Science.gov (United States)

    Bayramoglu, Gulay; Tekinay, Turgay; Ozalp, V Cengiz; Arica, M Yakup

    2015-05-15

    Lysozyme is an important polypetide used in medical and food applications. We report a novel magnetic strong cation exchange beads for efficient purification of lysozyme from chicken egg white. Magnetic chitosan (MCHT) beads were synthesized via phase inversion method, and then grafted with poly(glycidyl methacrylate) (p(GMA)) via the surface-initiated atom transfer radical polymerization (SI-ATRP). Epoxy groups of the grafted polymer, were modified into strong cation-exchange groups (i.e., sulfonate groups) in the presence of sodium sulfite. The MCTH and MCTH-g-p(GMA)-SO3H beads were characterized by ATR-FTIR, SEM, and VSM. The sulphonate groups content of the modified MCTH-g-p(GMA)-4 beads was found to be 0.53mmolg(-1) of beads by the potentiometric titration method. The MCTH-g-p(GMA)-SO3H beads were first used as an ion-exchange support for adsorption of lysozyme from aqueous solution. The influence of different experimental parameters such as pH, contact time, and temperature on the adsorption process was evaluated. The maximum adsorption capacity was found to be 208.7mgg(-1) beads. Adsorption of lysozyme on the MCTH-g-p(GMA)-SO3H beads fitted to Langmuir isotherm model and followed the pseudo second-order kinetic. More than 93% of the adsorbed lysozyme was desorbed using Na2CO3 solution (pH 11.0). The purity of the lysozyme was checked by HPLC and SDS gel electrophoresis. In addition, the MCTH-g-p(GMA)-SO3H beads prepared in this work showed promising potential for separation of various anionic molecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star.......Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star....

  18. Star Imager

    DEFF Research Database (Denmark)

    Madsen, Peter Buch; Jørgensen, John Leif; Thuesen, Gøsta

    1997-01-01

    The version of the star imager developed for Astrid II is described. All functions and features are described as well as the operations and the software protocol.......The version of the star imager developed for Astrid II is described. All functions and features are described as well as the operations and the software protocol....

  19. Radio stars

    International Nuclear Information System (INIS)

    Hjellming, R.M.; Gibson, D.M.

    1985-01-01

    Studies of stellar radio emission became an important field of research in the 1970's and have now expanded to become a major area of radio astronomy with the advent of new instruments such as the Very Large Array in New Mexico and transcontinental telescope arrays. This volume contains papers from the workshop on stellar continuum radio astronomy held in Boulder, Colorado, and is the first book on the rapidly expanding field of radio emission from stars and stellar systems. Subjects covered include the observational and theoretical aspects of stellar winds from both hot and cool stars, radio flares from active double star systems and red dwarf stars, bipolar flows from star-forming regions, and the radio emission from X-ray binaries. (orig.)

  20. Electrowetting of liquid polymer on petal-mimetic microbowl-array surfaces for formation of microlens array with varying focus on a single substrate

    Science.gov (United States)

    Li, Xiangmeng; Shao, Jinyou; Li, Xiangming; Tian, Hongmiao

    2015-03-01

    In this paper, microlens array with varying focal lengths were fabricated on a single microbowl-array textured substrate. The solid microbowl-arrayed NOA61 (kind of polyurethane-based polymer with UV curablity) surface was resulted from nanoimprinting by polydimethylsiloxane (PDMS) mold. The PDMS mold was replicated from an SU-8 master which was generated by electron beam lithography. Such microbowl-arrayed surfaces demonstrate petal-mimetic highly adhesive hydrophobic wetting properties, which can promote an irreversible electrowetting (EW) effect and a dereased contact angle of water droplets as well as other liquid droplets by applying direct current (DC) voltage. To fabricate a microlens array with varying focal-lengths, liquid NOA61 was supplied from a syringe on the solid NOA61 microtextured film and DC voltage was applied succesively. After removing the DC voltage, these liquid NOA61 microdrops deposited on the solid microtextured NOA61 surface on tin-indium-oxide coated substrate could be solidified via UV irradiation, thus leading to microlens array with uneven numerical apertures on a single substrate. Numerical simulation was also done to verify the EW effect. Finally, optical imaging characterization was performed to confirm the varied focus of the NOA61 microdrops.

  1. Geometry effect on the behaviour of single and glue-laminated glass fibre reinforced polymer composite sandwich beams loaded in four-point bending

    International Nuclear Information System (INIS)

    Awad, Ziad K.; Aravinthan, Thiru; Manalo, Allan

    2012-01-01

    Highlights: ► Investigated the behaviour of single and glue-laminated GFRP sandwich beam. ► Effect of shear span to depth was a key factor affecting the overall behaviour. ► Comparison with prediction models gave reasonable results in specific regions. ► A failure map was developed to identify the shear and flexural failures of panels. -- Abstract: The research investigated the behaviour of single and glue laminated glass fibre reinforced polymer (GFRP) composite sandwich beams considering different spans and beam cross sections. The composite sandwich beams with different thicknesses (1, 2, 3, 4, and 5 sandwich layers) have been tested in four-point static flexural test with different shear span to depth ratio (a/d). The a/d ratios showed a direct effect on the flexural and shear behaviour. The capacity of the beam decreased with increasing a/d. Various failure modes were observed including core crushing, core shear, and top skin compression failure. The failure mode map developed based on the experimental finding and analytical prediction indicated that the failure mode is affected by the a/d with the number of glue laminated panels.

  2. Biodegradable Polymers

    OpenAIRE

    Vroman, Isabelle; Tighzert, Lan

    2009-01-01

    Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources) or from biological resources (renewable resources). In general natural polymers offer fewer advantages than synthetic polymers. ...

  3. A sirolimus-eluting bioabsorbable polymer-coated stent (MiStent) versus an everolimus-eluting durable polymer stent (Xience) after percutaneous coronary intervention (DESSOLVE III): a randomised, single-blind, multicentre, non-inferiority, phase 3 trial

    NARCIS (Netherlands)

    de Winter, Robbert J.; Katagiri, Yuki; Asano, Taku; Milewski, Krzysztof P.; Lurz, Philipp; Buszman, Pawel; Jessurun, Gillian A. J.; Koch, Karel T.; Troquay, Roland P. T.; Hamer, Bas J. B.; Ophuis, Ton Oude; Wöhrle, Jochen; Wyderka, Rafał; Cayla, Guillaume; Hofma, Sjoerd H.; Levesque, Sébastien; Żurakowski, Aleksander; Fischer, Dieter; Kośmider, Maciej; Goube, Pascal; Arkenbout, E. Karin; Noutsias, Michel; Ferrari, Markus W.; Onuma, Yoshinobu; Wijns, William; Serruys, Patrick W.

    2018-01-01

    Background MiStent is a drug-eluting stent with a fully absorbable polymer coating containing and embedding a microcrystalline form of sirolimus into the vessel wall. It was developed to overcome the limitation of current durable polymer drug-eluting stents eluting amorphous sirolimus. The clinical

  4. Symbiotic stars

    International Nuclear Information System (INIS)

    Kafatos, M.; Michalitsianos, A.G.

    1984-01-01

    Among the several hundred million binary systems estimated to lie within 3000 light years of the solar system, a tiny fraction, no more than a few hundred, belong to a curious subclass whose radiation has a wavelength distribution so peculiar that it long defied explanation. Such systems radiate strongly in the visible region of the spectrum, but some of them do so even more strongly at both shorter and longer wavelengths: in the ultraviolet region and in the infrared and radio regions. This odd distribution of radiation is best explained by the pairing of a cool red giant star and an intensely hot small star that is virtually in contact with its larger companion. Such objects have become known as symbiotic stars. On photographic plate only the giant star can be discerned, but evidence for the existence of the hot companion has been supplied by satellite-born instruments capable of detecting ultraviolet radiation. The spectra of symbiotic stars indicate that the cool red giant is surrounded by a very hot ionized gas. Symbiotic stars also flared up in outbursts indicating the ejection of material in the form of a shell or a ring. Symbiotic stars may therefore represent a transitory phase in the evolution of certain types of binary systems in which there is substantial transfer of matter from the larger partner to the smaller

  5. A non-local thermodynamical equilibrium line formation for neutral and singly ionized titanium in model atmospheres of reference A-K stars

    Science.gov (United States)

    Sitnova, T. M.; Mashonkina, L. I.; Ryabchikova, T. A.

    2016-09-01

    We construct a model atom for Ti I-II using more than 3600 measured and predicted energy levels of Ti I and 1800 energy levels of Ti II, and quantum mechanical photoionization cross-sections. Non-local thermodynamical equilibrium (NLTE) line formation for Ti I and Ti II is treated through a wide range of spectral types from A to K, including metal-poor stars with [Fe/H] down to -2.6 dex. NLTE leads to weakened Ti I lines and positive abundance corrections. The magnitude of NLTE corrections is smaller compared to the literature data for FGK atmospheres. NLTE leads to strengthened Ti II lines and negative NLTE abundance corrections. For the first time, we have performed NLTE calculations for Ti I-II in the 6500 ≤ Teff ≤ 13 000 K range. For four A-type stars, we derived in LTE an abundance discrepancy of up to 0.22 dex between Ti I and Ti II, which vanishes in NLTE. For four other A-B stars, with only Ti II lines observed, NLTE leads to a decrease of line-to-line scatter. An efficiency of inelastic Ti I + H I collisions was estimated from an analysis of Ti I and Ti II lines in 17 cool stars with -2.6 ≤ [Fe/H] ≤ 0.0. Consistent NLTE abundances from Ti I and Ti II were obtained by applying classical Drawinian rates for the stars with log g ≥ 4.1, and neglecting inelastic collisions with H I for the very metal-poor (VMP) giant HD 122563. For the VMP turn-off stars ([Fe/H] ≤ -2 and log g ≤ 4.1), we obtained the positive abundance difference Ti I-II already in LTE, which increases in NLTE. Accurate collisional data for Ti I and Ti II are necessary to help solve this problem.

  6. Utilization of highly purified single wall carbon nanotubes dispersed in polymer thin films for an improved performance of an electrochemical glucose sensor

    Energy Technology Data Exchange (ETDEWEB)

    Goornavar, Virupaxi [Molecular Toxicology Laboratory, Center for Biotechnology and Biomedical Sciences, Norfolk State University, 700 Park Avenue, Norfolk, VA 23504 (United States); Center for Materials Research, Norfolk State University, 555 Park Avenue, Norfolk, VA 23504 (United States); Jeffers, Robert [Molecular Toxicology Laboratory, Center for Biotechnology and Biomedical Sciences, Norfolk State University, 700 Park Avenue, Norfolk, VA 23504 (United States); Luna Innovations, Inc., 706 Forest St., Suite A, Charlottesville, VA 22902 (United States); Biradar, Santoshkumar [RICE University, 6100 Main St, Houston, TX 77251 (United States); Ramesh, Govindarajan T., E-mail: gtramesh@nsu.edu [Molecular Toxicology Laboratory, Center for Biotechnology and Biomedical Sciences, Norfolk State University, 700 Park Avenue, Norfolk, VA 23504 (United States); Center for Materials Research, Norfolk State University, 555 Park Avenue, Norfolk, VA 23504 (United States)

    2014-07-01

    In this work we report the improved performance an electrochemical glucose sensor based on a glassy carbon electrode (GCE) that has been modified with highly purified single wall carbon nanotubes (SWCNTs) dispersed in polyethyleneimine (PEI), polyethylene glycol (PEG) and polypyrrole (PPy). The single wall carbon nanotubes were purified by both thermal and chemical oxidation to achieve maximum purity of ∼ 98% with no damage to the tubes. The SWCNTs were then dispersed by sonication in three different organic polymers (1.0 mg/ml SWCNT in 1.0 mg/ml of organic polymer). The stable suspension was coated onto the GCE and electrochemical characterization was performed by Cyclic Voltammetry (CV) and Amperometry. The electroactive enzyme glucose oxidase (GOx) was immobilized on the surface of the GCE/(organic polymer–SWCNT) electrode. The amperometric detection of glucose was carried out at 0.7 V versus Ag/AgCl. The GCE/(SWCNT–PEI, PEG, PPY) gave a detection limit of 0.2633 μM, 0.434 μM, and 0.9617 μM, and sensitivities of 0.2411 ± 0.0033 μA mM{sup −1}, r{sup 2} = 0.9984, 0.08164 ± 0.001129 μA mM{sup −1}, r{sup 2} = 0.9975, 0.04189 ± 0.00087 μA mM{sup −1}, and r{sup 2} = 0.9944 respectively and a response time of less than 5 s. The use of purified SWCNTs has several advantages, including fast electron transfer rate and stability in the immobilized enzyme. The significant enhancement of the SWCNT modified electrode as a glucose sensor can be attributed to the superior conductivity and large surface area of the well dispersed purified SWCNTs. - Highlights: • Purification method employed here use cheap and green oxidants. • The method does not disrupt the electronic structure of nanotubes. • This method removes nearly < 2% metallic impurities. • Increases the sensitivity and performance of glassy carbon electrode • This system can detect as low as 0.066 μM of H{sub 2}O{sub 2} and 0.2633 μM of glucose.

  7. Single-ion polymer electrolyte membranes enable lithium-ion batteries with a broad operating temperature range.

    Science.gov (United States)

    Cai, Weiwei; Zhang, Yunfeng; Li, Jing; Sun, Yubao; Cheng, Hansong

    2014-04-01

    Conductive processes involving lithium ions are analyzed in detail from a mechanistic perspective, and demonstrate that single ion polymeric electrolyte (SIPE) membranes can be used in lithium-ion batteries with a wide operating temperature range (25-80 °C) through systematic optimization of electrodes and electrode/electrolyte interfaces, in sharp contrast to other batteries equipped with SIPE membranes that display appreciable operability only at elevated temperatures (>60 °C). The performance is comparable to that of batteries using liquid electrolyte of inorganic salt, and the batteries exhibit excellent cycle life and rate performance. This significant widening of battery operation temperatures coupled with the inherent flexibility and robustness of the SIPE membranes makes it possible to develop thin and flexible Li-ion batteries for a broad range of applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Enhanced efficiency of hybrid amorphous silicon solar cells based on single-walled carbon nanotubes/polymer composite thin film.

    Science.gov (United States)

    Rajanna, Pramod Mulbagal; Gilshteyn, Evgenia; Yagafarov, Timur; Alekseeva, Alena; Anisimov, Anton; Sergeev, Oleg; Neumueller, Alex; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert

    2018-01-09

    We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and a thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high quality SWCNTs with an enhanced conductivity by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with different SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit Jsc, open-circuit Voc, and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and efficiency of 3.4% under simulated one-sun AM 1.5G direct illumination. © 2018 IOP Publishing Ltd.

  9. Enhanced efficiency of hybrid amorphous silicon solar cells based on single-walled carbon nanotubes and polymer composite thin film

    Science.gov (United States)

    Rajanna, Pramod M.; Gilshteyn, Evgenia P.; Yagafarov, Timur; Aleekseeva, Alena K.; Anisimov, Anton S.; Neumüller, Alex; Sergeev, Oleg; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert G.

    2018-03-01

    We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high-quality SWCNTs with conductivity enhanced by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with varying SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit J sc , open-circuit V oc , and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and an efficiency of 3.4% under simulated one-sun AM 1.5 G direct illumination.

  10. Reactive bonding mediated high mass loading of individualized single-walled carbon nanotubes in an elastomeric polymer

    Science.gov (United States)

    Zhao, Liping; Li, Yongjin; Qiu, Jishan; You, Jichun; Dong, Wenyong; Cao, Xiaojun

    2012-09-01

    A reactive chemical bonding strategy was developed for the incorporation of a high mass loading of individual single-wall carbon nanotubes (SWCNTs) into an elastomeric matrix using a reactive ionic liquid as a linker. This method simultaneously prevented the agglomeration of SWCNTs and caused strong interfacial bonding, while the electronic properties of the SWCNTs remained intact. As a result, the high conductivity of the carbon nanotubes (CNTs) and the flexibility of the elastomeric matrix were retained, producing optimum electrical and mechanical properties. A composite material with a loading of 20 wt% SWCNTs was fabricated with excellent mechanical properties and a high conductivity (9500 S m-1). The method could be used to form transparent thin conductive films that could tolerate over 800 bend cycles at a bending angle of 180° while maintaining a constant sheet resistance.A reactive chemical bonding strategy was developed for the incorporation of a high mass loading of individual single-wall carbon nanotubes (SWCNTs) into an elastomeric matrix using a reactive ionic liquid as a linker. This method simultaneously prevented the agglomeration of SWCNTs and caused strong interfacial bonding, while the electronic properties of the SWCNTs remained intact. As a result, the high conductivity of the carbon nanotubes (CNTs) and the flexibility of the elastomeric matrix were retained, producing optimum electrical and mechanical properties. A composite material with a loading of 20 wt% SWCNTs was fabricated with excellent mechanical properties and a high conductivity (9500 S m-1). The method could be used to form transparent thin conductive films that could tolerate over 800 bend cycles at a bending angle of 180° while maintaining a constant sheet resistance. Electronic supplementary information (ESI) available: Conductivity test of the SEBS-SWCNTs film, transmission spectra and sheet resistance for the spin-coated SEBS-SWCNTs thin films on PET slides. See DOI: 10

  11. Dynamical Boson Stars

    Directory of Open Access Journals (Sweden)

    Steven L. Liebling

    2012-05-01

    Full Text Available The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s, John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called geons, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name boson stars. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single Killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.

  12. Star formation

    International Nuclear Information System (INIS)

    Woodward, P.R.

    1978-01-01

    Theoretical models of star formation are discussed beginning with the earliest stages and ending in the formation of rotating, self-gravitating disks or rings. First a model of the implosion of very diffuse gas clouds is presented which relies upon a shock at the edge of a galactic spiral arm to drive the implosion. Second, models are presented for the formation of a second generation of massive stars in such a cloud once a first generation has formed. These models rely on the ionizing radiation from massive stars or on the supernova shocks produced when these stars explode. Finally, calculations of the gravitational collapse of rotating clouds are discussed with special focus on the question of whether rotating disks or rings are the result of such a collapse. 65 references

  13. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star....

  14. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Andersen, Thomas Lykke

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star....

  15. Properties of symbiotic stars from studies in the optical region

    International Nuclear Information System (INIS)

    Ciatti, F.

    1982-01-01

    The author uses observations of symbiotic stars in the optical region to discuss the following aspects: definition, photometric and spectroscopic evolution, the three-component model, evidence for the binary nature, spectroscopic properties and anomalies, single-star interpretations, the ''very slow novae'' and BQ// stars and a comparison of symbiotic stars with other classes. (C.F.)

  16. STARS no star on Kauai

    International Nuclear Information System (INIS)

    Jones, M.

    1993-01-01

    The island of Kuai, home to the Pacific Missile Range Facility, is preparing for the first of a series of Star Wars rocket launches expected to begin early this year. The Strategic Defense Initiative plans 40 launches of the Stategic Target System (STARS) over a 10-year period. The focus of the tests appears to be weapons and sensors designed to combat multiple-warhead ICBMs, which will be banned under the START II Treaty that was signed in January. The focus of this article is to express the dubious value of testing the STARS at a time when their application will not be an anticipated problem

  17. Flare stars

    International Nuclear Information System (INIS)

    Nicastro, A.J.

    1981-01-01

    The least massive, but possibly most numerous, stars in a galaxy are the dwarf M stars. It has been observed that some of these dwarfs are characterized by a short increase in brightness. These stars are called flare stars. These flare stars release a lot of energy in a short amount of time. The process producing the eruption must be energetic. The increase in light intensity can be explained by a small area rising to a much higher temperature. Solar flares are looked at to help understand the phenomenon of stellar flares. Dwarfs that flare are observed to have strong magnetic fields. Those dwarf without the strong magnetic field do not seem to flare. It is believed that these regions of strong magnetic fields are associated with star spots. Theories on the energy that power the flares are given. Astrophysicists theorize that the driving force of a stellar flare is the detachment and collapse of a loop of magnetic flux. The mass loss due to stellar flares is discussed. It is believed that stellar flares are a significant contributor to the mass of interstellar medium in the Milky Way

  18. Polymer research by neutron scattering

    International Nuclear Information System (INIS)

    Richter, D.

    1993-01-01

    Polymer physics aims on an understanding of the macroscopic behavior of polymer systems on the basis of their molecular structure and dynamics. For this purpose neutrons serve as a unique probe, allowing a simultaneous investigation of polymer structure and dynamics on a molecular scale. Furthermore, hydrogen deuterium exchange facilitates molecular labeling and offers the possibility to observe selected chains or chain parts in dense systems. Neutron small angle scattering reveals information on the conformation and possible aggregation of polymer chains. Data on linear and star like molecules are shown as examples. High resolution neutron spin-echospectroscopy observes the molecular dynamics of long chain molecules. Results on the large scale motion of chins in polymer melts are presented. finally, experiments on chain relaxation close to the glass transition are displayed. Three distinctly different relaxation processes are revealed. (author)

  19. Polymer Nanocomposite Film with Metal Rich Surface Prepared by In Situ Single-Step Formation of Palladium Nanoparticles: An Interesting Way to Combine Specific Functional Properties

    Directory of Open Access Journals (Sweden)

    David Thompson

    2016-10-01

    Full Text Available This paper presents a continuous single-step route that permits preparation of a thermostable polymer/metal nanocomposite film and to combine different functional properties in a unique material. More precisely, palladium nanoparticles are in situ generated in a polyimide matrix thanks to a designed curing cycle which is applied to a polyamic acid/metal precursor solution cast on a glass plate. A metal-rich surface layer which is strongly bonded to the bulk film is formed in addition to homogeneously dispersed metal nanoparticles. This specific morphology leads to obtaining an optically reflective film. The metal nanoparticles act as gas diffusion barriers for helium, oxygen, and carbon dioxide; they induce a tortuosity effect which allows dividing the gas permeation coefficients by a factor near to 2 with respect to the neat polyimide matrix. Moreover, the ability of the in situ synthesized palladium nanoparticles to entrap hydrogen is evidenced. The nanocomposite film properties can be modulated as a function of the location of the film metal-rich surface with respect to the hydrogen feed. The synthesized nanocomposite could represent a major interest for a wide variety of applications, from specific coatings for aerospace or automotive industry, to catalysis applications or sensors.

  20. Thin-film morphology of inkjet-printed single-droplet organic transistors using polarized Raman spectroscopy: effect of blending TIPS-pentacene with insulating polymer.

    Science.gov (United States)

    James, David T; Kjellander, B K Charlotte; Smaal, Wiljan T T; Gelinck, Gerwin H; Combe, Craig; McCulloch, Iain; Wilson, Richard; Burroughes, Jeremy H; Bradley, Donal D C; Kim, Ji-Seon

    2011-12-27

    We report thin-film morphology studies of inkjet-printed single-droplet organic thin-film transistors (OTFTs) using angle-dependent polarized Raman spectroscopy. We show this to be an effective technique to determine the degree of molecular order as well as to spatially resolve the orientation of the conjugated backbones of the 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-Pentacene) molecules. The addition of an insulating polymer, polystyrene (PS), does not disrupt the π-π stacking of the TIPS-Pentacene molecules. Blending in fact improves the uniformity of the molecular morphology and the active layer coverage within the device and reduces the variation in molecular orientation between polycrystalline domains. For OTFT performance, blending enhances the saturation mobility from 0.22 ± 0.05 cm(2)/(V·s) (TIPS-Pentacene) to 0.72 ± 0.17 cm(2)/(V·s) (TIPS-Pentacene:PS) in addition to improving the quality of the interface between TIPS-Pentacene and the gate dielectric in the channel, resulting in threshold voltages of ∼0 V and steep subthreshold slopes.

  1. Polymer compound

    NARCIS (Netherlands)

    1995-01-01

    A Polymer compound comprising a polymer (a) that contains cyclic imidesgroups and a polymer (b) that contains monomer groups with a 2,4-diamino-1,3,5-triazine side group. According to the formula (see formula) whereby themole percentage ratio of the cyclic imides groups in the polymer compoundwith

  2. Phase transitions in single macromolecules: Loop-stretch transition versus loop adsorption transition in end-grafted polymer chains

    Science.gov (United States)

    Zhang, Shuangshuang; Qi, Shuanhu; Klushin, Leonid I.; Skvortsov, Alexander M.; Yan, Dadong; Schmid, Friederike

    2018-01-01

    We use Brownian dynamics simulations and analytical theory to compare two prominent types of single molecule transitions. One is the adsorption transition of a loop (a chain with two ends bound to an attractive substrate) driven by an attraction parameter ɛ and the other is the loop-stretch transition in a chain with one end attached to a repulsive substrate, driven by an external end-force F applied to the free end. Specifically, we compare the behavior of the respective order parameters of the transitions, i.e., the mean number of surface contacts in the case of the adsorption transition and the mean position of the chain end in the case of the loop-stretch transition. Close to the transition points, both the static behavior and the dynamic behavior of chains with different length N are very well described by a scaling ansatz with the scaling parameters (ɛ - ɛ*)Nϕ (adsorption transition) and (F - F*)Nν (loop-stretch transition), respectively, where ϕ is the crossover exponent of the adsorption transition and ν is the Flory exponent. We show that both the loop-stretch and the loop adsorption transitions provide an exceptional opportunity to construct explicit analytical expressions for the crossover functions which perfectly describe all simulation results on static properties in the finite-size scaling regime. Explicit crossover functions are based on the ansatz for the analytical form of the order parameter distributions at the respective transition points. In contrast to the close similarity in equilibrium static behavior, the dynamic relaxation at the two transitions shows qualitative differences, especially in the strongly ordered regimes. This is attributed to the fact that the surface contact dynamics in a strongly adsorbed chain is governed by local processes, whereas the end height relaxation of a strongly stretched chain involves the full spectrum of Rouse modes.

  3. EFFECTS OF ROTATIONALLY INDUCED MIXING IN COMPACT BINARY SYSTEMS WITH LOW-MASS SECONDARIES AND IN SINGLE SOLAR-TYPE STARS

    International Nuclear Information System (INIS)

    Chatzopoulos, E.; Robinson, Edward L.; Wheeler, J. Craig

    2012-01-01

    Many population synthesis and stellar evolution studies have addressed the evolution of close binary systems in which the primary is a compact remnant and the secondary is filling its Roche lobe, thus triggering mass transfer. Although tidal locking is expected in such systems, most studies have neglected the rotationally induced mixing that may occur. Here we study the possible effects of mixing in mass-losing stars for a range of secondary star masses and metallicities. We find that tidal locking can induce rotational mixing prior to contact and thus affect the evolution of the secondary star if the effects of the Spruit-Tayler dynamo are included both for angular momentum and chemical transport. Once contact is made, the effect of mass transfer tends to be more rapid than the evolutionary timescale, so the effects of mixing are no longer directly important, but the mass-transfer strips matter to inner layers that may have been affected by the mixing. These effects are enhanced for secondaries of 1-1.2 M ☉ and for lower metallicities. We discuss the possible implications for the paucity of carbon in the secondaries of the cataclysmic variable SS Cyg and the black hole candidate XTE J1118+480 and for the progenitor evolution of Type Ia supernovae. We also address the issue of the origin of blue straggler stars in globular and open clusters. We find that for models that include rotation consistent with that observed for some blue straggler stars, evolution is chemically homogeneous. This leads to tracks in the H-R diagram that are brighter and bluer than the non-rotating main-sequence turn-off point. Rotational mixing could thus be one of the factors that contribute to the formation of blue stragglers.

  4. Single cyanide-bridged Mo(W)/S/Cu cluster-based coordination polymers: Reactant- and stoichiometry-dependent syntheses, effective photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinfang, E-mail: zjf260@jiangnan.edu.cn [China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Wang, Chao [China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Wang, Yinlin; Chen, Weitao [China-Australia Joint Research Center for Functional Molecular Materials, Scientific Research Academy, Jiangsu University, Zhenjiang 212013 (China); Cifuentes, Marie P.; Humphrey, Mark G. [Research School of Chemistry, Australian National University, Canberra ACT 0200 (Australia); Zhang, Chi, E-mail: chizhang@jiangnan.edu.cn [China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China)

    2015-11-15

    The systematic study on the reaction variables affecting single cyanide-bridged Mo(W)/S/Cu cluster-based coordination polymers (CPs) is firstly demonstrated. Five anionic single cyanide-bridged Mo(W)/S/Cu cluster-based CPs {[Pr_4N][WS_4Cu_3(CN)_2]}{sub n} (1), {[Pr_4N][WS_4Cu_4(CN)_3]}{sub n} (2), {[Pr_4N][WOS_3Cu_3(CN)_2]}{sub n} (3), {[Bu_4N][WOS_3Cu_3(CN)_2]}{sub n} (4) and {[Bu_4N][MoOS_3Cu_3(CN)_2]}{sub n} (5) were prepared by varying the molar ratios of the starting materials, and the specific cations, cluster building blocks and central metal atoms in the cluster building blocks. 1 possesses an anionic 3D diamondoid framework constructed from 4-connected T-shaped clusters [WS{sub 4}Cu{sub 3}]{sup +} and single CN{sup −} bridges. 2 is fabricated from 6-connected planar ‘open’ clusters [WS{sub 4}Cu{sub 4}]{sup 2+} and single CN{sup −} bridges, forming an anionic 3D architecture with an “ACS” topology. 3 and 4 exhibit novel anionic 2-D double-layer networks, both constructed from nest-shaped clusters [WOS{sub 3}Cu{sub 3}]{sup +} linked by single CN{sup −} bridges, but containing the different cations [Pr{sub 4}N]{sup +} and [Bu{sub 4}N]{sup +}, respectively. 5 is constructed from nest-shaped clusters [MoOS{sub 3}Cu{sub 3}]{sup +} and single CN{sup −} bridges, with an anionic 3D diamondoid framework. The anionic frameworks of 1-5, all sustained by single CN{sup −} bridges, are non-interpenetrating and exhibit huge potential void volumes. Employing differing molar ratios of the reactants and varying the cluster building blocks resulted in differing single cyanide-bridged Mo(W)/S/Cu cluster-based CPs, while replacing the cation ([Pr{sub 4}N]{sup +} vs. [Bu{sub 4}N]{sup +}) was found to have negligible impact on the nature of the architecture. Unexpectedly, replacement of the central metal atom (W vs. Mo) in the cluster building blocks had a pronounced effect on the framework. Furthermore, the photocatalytic activities of heterothiometallic

  5. Polymer electronics

    CERN Document Server

    Hsin-Fei, Meng

    2013-01-01

    Polymer semiconductor is the only semiconductor that can be processed in solution. Electronics made by these flexible materials have many advantages such as large-area solution process, low cost, and high performance. Researchers and companies are increasingly dedicating time and money in polymer electronics. This book focuses on the fundamental materials and device physics of polymer electronics. It describes polymer light-emitting diodes, polymer field-effect transistors, organic vertical transistors, polymer solar cells, and many applications based on polymer electronics. The book also disc

  6. Symbiotic stars

    Science.gov (United States)

    Kafatos, M.; Michalitsianos, A. G.

    1984-01-01

    The physical characteristics of symbiotic star systems are discussed, based on a review of recent observational data. A model of a symbiotic star system is presented which illustrates how a cool red-giant star is embedded in a nebula whose atoms are ionized by the energetic radiation from its hot compact companion. UV outbursts from symbiotic systems are explained by two principal models: an accretion-disk-outburst model which describes how material expelled from the tenuous envelope of the red giant forms an inwardly-spiralling disk around the hot companion, and a thermonuclear-outburst model in which the companion is specifically a white dwarf which superheats the material expelled from the red giant to the point where thermonuclear reactions occur and radiation is emitted. It is suspected that the evolutionary course of binary systems is predetermined by the initial mass and angular momentum of the gas cloud within which binary stars are born. Since red giants and Mira variables are thought to be stars with a mass of one or two solar mass, it is believed that the original cloud from which a symbiotic system is formed can consist of no more than a few solar masses of gas.

  7. Photoluminescence in conjugated polymers

    International Nuclear Information System (INIS)

    Furst, J.E.; Laugesen, R.; Dastoor, P.; McNeill, C.

    2002-01-01

    Full text: Conjugated polymers combine the electronic and optical properties of semiconductors with the processability of polymers. They contain a sequence of alternate single and double carbon bonds so that the overlap of unhybridised p z orbitals creates a delocalised ρ system which gives semiconducting properties with p-bonding (valence) and p* -antibonding (conduction) bands. Photoluminesence (PL) in conjugated polymers results from the radiative decay of singlet excitons confined to a single chain. The present work is the first in a series of studies in our laboratory that will characterize the optical properties of conjugated polymers. The experiment involves the illumination of thin films of conjugated polymer with UV light (I=360 nm) and observing the subsequent fluorescence using a custom-built, fluorescence spectrometer. Photoluminesence spectra provide basic information about the structure of the polymer film. A typical spectrum is shown in the accompanying figure. The position of the first peak is related to the polymer chain length and resolved multiple vibronic peaks are an indication of film structure and morphology. We will also present results related to the optical degradation of these materials when exposed to air and UV light

  8. Biomedical applications of polymers

    CERN Document Server

    Gebelein, C G

    1991-01-01

    The biomedical applications of polymers span an extremely wide spectrum of uses, including artificial organs, skin and soft tissue replacements, orthopaedic applications, dental applications, and controlled release of medications. No single, short review can possibly cover all these items in detail, and dozens of books andhundreds of reviews exist on biomedical polymers. Only a few relatively recent examples will be cited here;additional reviews are listed under most of the major topics in this book. We will consider each of the majorclassifications of biomedical polymers to some extent, inclu

  9. Dark stars

    DEFF Research Database (Denmark)

    Maselli, Andrea; Pnigouras, Pantelis; Nielsen, Niklas Grønlund

    2017-01-01

    to the formation of compact objects predominantly made of dark matter. Considering both fermionic and bosonic (scalar φ4) equations of state, we construct the equilibrium structure of rotating dark stars, focusing on their bulk properties and comparing them with baryonic neutron stars. We also show that these dark......Theoretical models of self-interacting dark matter represent a promising answer to a series of open problems within the so-called collisionless cold dark matter paradigm. In case of asymmetric dark matter, self-interactions might facilitate gravitational collapse and potentially lead...... objects admit the I-Love-Q universal relations, which link their moments of inertia, tidal deformabilities, and quadrupole moments. Finally, we prove that stars built with a dark matter equation of state are not compact enough to mimic black holes in general relativity, thus making them distinguishable...

  10. Hybrid stars

    Indian Academy of Sciences (India)

    Hybrid stars. AsHOK GOYAL. Department of Physics and Astrophysics, University of Delhi, Delhi 110 007, India. Abstract. Recently there have been important developments in the determination of neutron ... number and the electric charge. ... available to the system to rearrange concentration of charges for a given fraction of.

  11. Pulsating stars

    CERN Document Server

    Catelan, M?rcio

    2014-01-01

    The most recent and comprehensive book on pulsating stars which ties the observations to our present understanding of stellar pulsation and evolution theory.  Written by experienced researchers and authors in the field, this book includes the latest observational results and is valuable reading for astronomers, graduate students, nuclear physicists and high energy physicists.

  12. Variable stars

    International Nuclear Information System (INIS)

    Feast, M.W.; Wenzel, W.; Fernie, J.D.; Percy, J.R.; Smak, J.; Gascoigne, S.C.B.; Grindley, J.E.; Lovell, B.; Sawyer Hogg, H.B.; Baker, N.; Fitch, W.S.; Rosino, L.; Gursky, H.

    1976-01-01

    A critical review of variable stars is presented. A fairly complete summary of major developments and discoveries during the period 1973-1975 is given. The broad developments and new trends are outlined. Essential problems for future research are identified. (B.R.H. )

  13. Star Products and Applications

    OpenAIRE

    Iida, Mari; Yoshioka, Akira

    2010-01-01

    Star products parametrized by complex matrices are defined. Especially commutative associative star products are treated, and star exponentials with respect to these star products are considered. Jacobi's theta functions are given as infinite sums of star exponentials. As application, several concrete identities are obtained by properties of the star exponentials.

  14. PHOTOREFRACTIVE POLYMERS

    NARCIS (Netherlands)

    Morichere, D; Malliaras, G.G; Krasnikov, V.V.; Bolink, H.J; Hadziioannou, G

    The use of polymers as photorefractive materials offers many advantages : flexibility in synthesis, doping, processing and low cost. The required functionalities responsible for photorefractivity, namely charge generation, transport, trapping and linear electrooptic effect are given in the polymer

  15. Photorefractive polymers

    NARCIS (Netherlands)

    Bolink, Hendrik Jan; Hadziioannou, G

    1997-01-01

    This thesis describes the synthesis and properties of photorefractive polymers. Photorefractive polymers are materials in which the refractive index can be varied by the interaction with light. Unlike in numerous other photosensitive materials, in photorefractive materials this occurs via

  16. Synthesis and crystal structures of multifunctional tosylates as basis for star-shaped poly(2-ethyl-2-oxazolines

    Directory of Open Access Journals (Sweden)

    Richard Hoogenboom

    2010-09-01

    Full Text Available The synthesis of well-defined polymer architectures is of major importance for the development of complex functional materials. In this contribution, we discuss the synthesis of a range of multifunctional star-shaped tosylates as potential initiators for the living cationic ring-opening polymerization (CROP of 2-oxazolines resulting in star-shaped polymers. The synthesis of the tosylates was performed by esterification of the corresponding alcohols with tosyl chloride. Recrystallization of these tosylate compounds afforded single crystals, and the X-ray crystal structures of di-, tetra- and hexa-tosylates are reported. The use of tetra- and hexa-tosylates, based on (dipentaerythritol as initiators for the CROP of 2-ethyl-2-oxazoline, resulted in very slow initiation and ill-defined polymers, which is most likely caused by steric hindrance in these initiators. As a consequence, a porphyrin-cored tetra-tosylate initiator was prepared, which yielded a well-defined star-shaped poly(2-ethyl-2-oxazoline by CROP as demonstrated by SEC with RI, UV and diode-array detectors, as well as by 1H NMR spectroscopy.

  17. Polymer Brushes

    NARCIS (Netherlands)

    Vos, de W.M.; Kleijn, J.M.; Keizer, de A.; Cosgrove, T.; Cohen Stuart, M.A.

    2010-01-01

    A polymer brush can be defined as a dense array of polymers end-attached to an interface that stretch out into the surrounding medium. Polymer brushes have been investigated for the past 30 years and have shown to be an extremely useful tool to control interfacial properties. This review is intended

  18. The origin of Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Doom, C.

    1987-01-01

    The paper reviews the origin of Wolf-Rayet (WR) stars, with emphasis on the so-called Population I WR stars which are associated with the young and luminous stellar population. A description is given of the observational characteristics i.e. classification, luminosities composition, etc. of WR stars. The origin and evolution of WR stars is described, including the single, binary, subtypes and ratio WR/O. The interaction of the WR stars with their environment is discussed with respect to the energy deposition and composition anomalies. A brief account of the discovery of WR stars in other galaxies is given. Finally, some of the main issues in the research into the structure and evolution of WR stars are outlined. (U.K.)

  19. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter; Brorsen, Michael

    Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004.......Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004....

  20. The STAR Vertex Position Detector

    Energy Technology Data Exchange (ETDEWEB)

    Llope, W.J., E-mail: llope@rice.edu [Rice University, Houston, TX 77005 (United States); Zhou, J.; Nussbaum, T. [Rice University, Houston, TX 77005 (United States); Hoffmann, G.W. [University of Texas, Austin, TX 78712 (United States); Asselta, K. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Brandenburg, J.D.; Butterworth, J. [Rice University, Houston, TX 77005 (United States); Camarda, T.; Christie, W. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Crawford, H.J. [University of California, Berkeley, CA 94720 (United States); Dong, X. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Engelage, J. [University of California, Berkeley, CA 94720 (United States); Eppley, G.; Geurts, F. [Rice University, Houston, TX 77005 (United States); Hammond, J. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Judd, E. [University of California, Berkeley, CA 94720 (United States); McDonald, D.L. [Rice University, Houston, TX 77005 (United States); Perkins, C. [University of California, Berkeley, CA 94720 (United States); Ruan, L.; Scheblein, J. [Brookhaven National Laboratory, Upton, NY 11973 (United States); and others

    2014-09-21

    The 2×3 channel pseudo Vertex Position Detector (pVPD) in the STAR experiment at RHIC has been upgraded to a 2×19 channel detector in the same acceptance, called the Vertex Position Detector (VPD). This detector is fully integrated into the STAR trigger system and provides the primary input to the minimum-bias trigger in Au+Au collisions. The information from the detector is used both in the STAR Level-0 trigger and offline to measure the location of the primary collision vertex along the beam pipe and the event “start time” needed by other fast-timing detectors in STAR. The offline timing resolution of single detector channels in full-energy Au+Au collisions is ∼100 ps, resulting in a start time resolution of a few tens of picoseconds and a resolution on the primary vertex location of ∼1 cm.

  1. Star block-copolymers: Enzyme-inspired catalysts for oxidation of alcohols in water

    KAUST Repository

    Mugemana, Clement

    2014-01-01

    A number of fluorous amphiphilic star block-copolymers containing a tris(benzyltriazolylmethyl)amine motif have been prepared. These polymers assembled into well-defined nanostructures in water, and their mode of assembly could be controlled by changing the composition of the polymer. The polymers were used for enzyme-inspired catalysis of alcohol oxidation. This journal is © the Partner Organisations 2014.

  2. New method to access hyperbranched polymers with uniform structure via one-pot polymerization of inimer in microemulsion.

    Science.gov (United States)

    Min, Ke; Gao, Haifeng

    2012-09-26

    A facile approach is presented for successful synthesis of hyperbranched polymers with high molecular weight and uniform structure by a one-pot polymerization of an inimer in a microemulsion. The segregated space in the microemulsion confined the inimer polymerization and particularly the polymer-polymer reaction within discrete nanoparticles. At the end of polymerization, each nanoparticle contained one hyperbranched polymer that had thousands of inimer units and low polydispersity. The hyperbranched polymers were used as multifunctional macroinitiators for synthesis of "hyper-star" polymers. When a degradable inimer was applied, the hyper-stars showed fast degradation into linear polymer chains with low molecular weight.

  3. Teaching stellar interferometry with polymer optical fibers

    Science.gov (United States)

    Illarramendi, M. A.; Arregui, L.; Zubia, J.; Hueso, R.; Sanchez-Lavega, A.

    2017-08-01

    In this manuscript we show the design of a simple experiment that reproduces the operation of the Michelson stellar interferometer by using step-index polymer optical fibers. The emission of stellar sources, single or binary stars, has been simulated by the laser light emerging from the output surface of the 2 meter-long polymer optical fiber. This light has an emission pattern that is similar to the emission pattern of stellar sources - circular, uniform, spatially incoherent, and quasi-monochromatic. Light coming from the fiber end faces passes through two identical pinholes located on a lid covering the objective of a small telescope, thus producing interference. Interference fringes have been acquired using a camera that is coupled to a telescope. The experiments have been carried out both outdoors in the daytime and indoors. By measuring the fringe visibilities, we have determined the size of our artificial stellar sources and the distance between them, when placing them at distances of 54 m from the telescope in the indoor measurements and of 75 m in the outdoor ones.

  4. 21 CFR 177.1420 - Isobutylene polymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Isobutylene polymers. 177.1420 Section 177.1420... FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1420 Isobutylene polymers. Isobutylene...

  5. Adsorption and flocculation by polymers and polymer mixtures.

    Science.gov (United States)

    Gregory, John; Barany, Sandor

    2011-11-14

    Polymers of various types are in widespread use as flocculants in several industries. In most cases, polymer adsorption is an essential prerequisite for flocculation and kinetic aspects are very important. The rates of polymer adsorption and of re-conformation (relaxation) of adsorbed chains are key factors that influence the performance of flocculants and their mode of action. Polyelectrolytes often tend to adopt a rather flat adsorbed configuration and in this state their action is mainly through charge effects, including 'electrostatic patch' attraction. When the relaxation rate is quite low, particle collisions may occur while the adsorbed chains are still in an extended state and flocculation by polymer bridging may occur. These effects are now well understood and supported by much experimental evidence. In recent years there has been considerable interest in the use of multi-component flocculants, especially dual-polymer systems. In the latter case, there can be significant advantages over the use of single polymers. Despite some complications, there is a broad understanding of the action of dual polymer systems. In many cases the sequence of addition of the polymers is important and the pre-adsorbed polymer can have two important effects: providing adsorption sites for the second polymer or causing a more extended adsorbed conformation as a result of 'site blocking'. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Mitigation of Critical Single Point Failure (SPF) Material - Laminac 4116 Binder Replacement Program for Parachute and Cluster Stars Illuminant Compositions for Hand Held Signals

    National Research Council Canada - National Science Library

    Lakshminarayanan, G. R; Chen, Gary; Ames, Richard; Lee, Wai T; Wejsa, James L

    2006-01-01

    Laminac 4116 binder has been identified as a single point failure (SPF) material since it is being produced by only one company and there is a possibility that the company may discontinue production due to low product demand...

  7. Amphiphilic Quantum Dots with Asymmetric, Mixed Polymer Brush Layers: From Single Core-Shell Nanoparticles to Salt-Induced Vesicle Formation

    Directory of Open Access Journals (Sweden)

    Brian R. Coleman

    2018-03-01

    Full Text Available A mixed micelle approach is used to produce amphiphilic brush nanoparticles (ABNPs with cadmium sulfide quantum dot (QD cores and surface layers of densely grafted (σ = ~1 chain/nm2 and asymmetric (fPS = 0.9 mixed polymer brushes that contain hydrophobic polystyrene (PS and hydrophilic poly(methyl methacrylate (PMAA chains (PS/PMAA-CdS. In aqueous media, the mixed brushes undergo conformational rearrangements that depend strongly on prior salt addition, giving rise to one of two pathways to fluorescent and morphologically disparate QD-polymer colloids. (A In the absence of salt, centrosymmetric condensation of PS chains forms individual core-shell QD-polymer colloids. (B In the presence of salt, non-centrosymmetric condensation of PS chains forms Janus particles, which trigger anisotropic interactions and amphiphilic self-assembly into the QD-polymer vesicles. To our knowledge, this is the first example of an ABNP building block that can form either discrete core-shell colloids or self-assembled superstructures in water depending on simple changes to the chemical conditions (i.e., salt addition. Such dramatic and finely tuned morphological variation could inform numerous applications in sensing, biolabeling, photonics, and nanomedicine.

  8. Self-assembly of star micelle into vesicle in solvents of variable quality: the star micelle retains its core-shell nanostructure in the vesicle.

    Science.gov (United States)

    Liu, Nijuan; He, Qun; Bu, Weifeng

    2015-03-03

    Intra- and intermolecular interactions of star polymers in dilute solutions are of fundamental importance for both theoretical interest and hierarchical self-assembly into functional nanostructures. Here, star micelles with a polystyrene corona and a small ionic core bearing platinum(II) complexes have been regarded as a model of star polymers to mimic their intra- and interstar interactions and self-assembled behaviors in solvents of weakening quality. In the chloroform/methanol mixture solvents, the star micelles can self-assemble to form vesicles, in which the star micelles shrink significantly and are homogeneously distributed on the vesicle surface. Unlike the morphological evolution of conventional amphiphiles from micellar to vesicular, during which the amphiphilic molecules are commonly reorganized, the star micelles still retain their core-shell nanostructures in the vesicles and the coronal chains of the star micelle between the ionic cores are fully interpenetrated.

  9. TURBOVELOCITY STARS: KICKS RESULTING FROM THE TIDAL DISRUPTION OF SOLITARY STARS

    International Nuclear Information System (INIS)

    Manukian, Haik; Guillochon, James; Ramirez-Ruiz, Enrico; O'Leary, Ryan M.

    2013-01-01

    The centers of most known galaxies host supermassive black holes (SMBHs). In orbit around these black holes are a centrally concentrated distribution of stars, both in single and in binary systems. Occasionally, these stars are perturbed onto orbits that bring them close to the SMBH. If the star is in a binary system, the three-body interaction with the SMBH can lead to large changes in orbital energy, depositing one of the two stars on a tightly-bound orbit, and its companion into a hyperbolic orbit that may escape the galaxy. In this Letter, we show that the disruption of solitary stars can also lead to large positive increases in orbital energy. The kick velocity depends on the amount of mass the star loses at pericenter, but not on the ratio of black hole to stellar mass, and are at most the star's own escape velocity. We find that these kicks are usually too small to result in the ejection of stars from the Milky Way, but can eject the stars from the black hole's sphere of influence, reducing their probability of being disrupted again. We estimate that ∼ 10 5 stars, ∼ 1% of all stars within 10 pc of the galactic center, are likely to have had mass removed by the central black hole through tidal interaction, and speculate that these 'turbovelocity' stars will at first be redder, but eventually bluer, and always brighter than their unharassed peers.

  10. A First Estimate of the X-Ray Binary Frequency as a Function of Star Cluster Mass in a Single Galactic System

    Science.gov (United States)

    Clark, D. M.; Eikenberry, S. S.; Brandl, B. R.; Wilson, J. C.; Carson, J. C.; Henderson, C. P.; Hayward, T. L.; Barry, D. J.; Ptak, A. F.; Colbert, E. J. M.

    2008-05-01

    We use the previously identified 15 infrared star cluster counterparts to X-ray point sources in the interacting galaxies NGC 4038/4039 (the Antennae) to study the relationship between total cluster mass and X-ray binary number. This significant population of X-Ray/IR associations allows us to perform, for the first time, a statistical study of X-ray point sources and their environments. We define a quantity, η, relating the fraction of X-ray sources per unit mass as a function of cluster mass in the Antennae. We compute cluster mass by fitting spectral evolutionary models to Ks luminosity. Considering that this method depends on cluster age, we use four different age distributions to explore the effects of cluster age on the value of η and find it varies by less than a factor of 4. We find a mean value of η for these different distributions of η = 1.7 × 10-8 M-1⊙ with ση = 1.2 × 10-8 M-1⊙. Performing a χ2 test, we demonstrate η could exhibit a positive slope, but that it depends on the assumed distribution in cluster ages. While the estimated uncertainties in η are factors of a few, we believe this is the first estimate made of this quantity to "order of magnitude" accuracy. We also compare our findings to theoretical models of open and globular cluster evolution, incorporating the X-ray binary fraction per cluster.

  11. Polymer chemistry (revised edition)

    International Nuclear Information System (INIS)

    Kim, Jae Mum

    1987-02-01

    This book deals with polymer chemistry, which is divided into fourteen chapters. The contents of this book are development of polymer chemistry, conception of polymer, measurement of polymer chemistry, conception of polymer, measurement of polymer, molecule structure of polymer, thermal prosperities of solid polymer, basic theory of polymerization, radical polymerization, ion polymerization, radical polymerization, copolymerization, polymerization by step-reaction, polymer reaction, crown polymer and inorganic polymer on classification and process of creation such as polymeric sulfur and carbon fiber.

  12. WR stars with ring nebulae

    International Nuclear Information System (INIS)

    Tutukov, A.

    1982-01-01

    It is shown that most of usually apparently single nitrogen WR stars with ring emission nebulae around them (WN + Neb) are a probable product of the evolution of a massive close binary with initial masses of components exceeding approximately 20 solar masses. (Auth.)

  13. Formation and evolution of star clusters and their host galaxies

    NARCIS (Netherlands)

    Kruijssen, J.M.D.

    2011-01-01

    The vast majority of galaxies contains large populations of stellar clusters, which are bound groups of a few tens to millions of stars. A cluster is formed from a single giant molecular cloud and therefore its stars share the same age and chemical composition. The formation and evolution of star

  14. RR Lyrae Stars in M4

    Science.gov (United States)

    Kuehn, Charles A.; Moskalik, Pawel; Drury, Jason A.

    2017-10-01

    Observations by Kepler/K2 have revolutionized the study of RR Lyrae stars by allowing the detection of new phenomna, such as low amplitude additional modes and period doubling, which had not previously been seen from the ground. During campaign 2, K2 observed the globular cluster M4, providiing the first opportunity to study a sizeable group of RR Lyrae stars that belong to a single population; the other RR Lyrae stars that have been observed from space are field stars in the galactic halo and thus belong to an assortment of populations. In this poster we present the results of our study of the RR Lyrae variables in M4 from K2 photometry. We have identified additional, low amplitude pulsation modes in both observed RRc stars. In 3 RRab stars we have found the Blazhko effect with periods of 16.6d, 22.4d, and 44.5d.

  15. RR Lyrae Stars in M4

    Directory of Open Access Journals (Sweden)

    Kuehn Charles A

    2017-01-01

    Full Text Available Observations by Kepler/K2 have revolutionized the study of RR Lyrae stars by allowing the detection of new phenomna, such as low amplitude additional modes and period doubling, which had not previously been seen from the ground. During campaign 2, K2 observed the globular cluster M4, providiing the first opportunity to study a sizeable group of RR Lyrae stars that belong to a single population; the other RR Lyrae stars that have been observed from space are field stars in the galactic halo and thus belong to an assortment of populations. In this poster we present the results of our study of the RR Lyrae variables in M4 from K2 photometry. We have identified additional, low amplitude pulsation modes in both observed RRc stars. In 3 RRab stars we have found the Blazhko effect with periods of 16.6d, 22.4d, and 44.5d.

  16. Life of a star

    International Nuclear Information System (INIS)

    Henbest, Nigel.

    1988-01-01

    The paper concerns the theory of stellar evolution. A description is given of:- how a star is born, main sequence stars, red giants, white dwarfs, supernovae, neutron stars and black holes. A brief explanation is given of how the death of a star as a supernova can trigger off the birth of a new generation of stars. Classification of stars and the fate of our sun, are also described. (U.K.)

  17. A reactive polystyrene-block-polyisoprene star copolymer as a toughening agent in an epoxy thermoset

    KAUST Repository

    Francis, Raju

    2015-12-29

    © 2015 Springer-Verlag Berlin Heidelberg A polystyrene-block-polyisoprene ((PS-b-PI)3) star polymer was synthesized by photochemical reversible addition fragmentation chain transfer (RAFT) polymerization. The obtained star polymer was epoxidized and used as a toughening agent in an epoxy thermoset. The incorporation of the epoxidized star polymer resulted in the formation of nanostructures and it was fixed by a crosslinking reaction. The formation of nanostructures in the thermosets follows the mechanism of reaction-induced microphase separation. The mechanical properties such as toughness and tensile strength were considerably increased due to the nanostructures formed by reactive blending.

  18. Multiblob coarse-graining for mixtures of long polymers and soft colloids

    Science.gov (United States)

    Locatelli, Emanuele; Capone, Barbara; Likos, Christos N.

    2016-11-01

    Soft nanocomposites represent both a theoretical and an experimental challenge due to the high number of the microscopic constituents that strongly influence the behaviour of the systems. An effective theoretical description of such systems invokes a reduction of the degrees of freedom to be analysed, hence requiring the introduction of an efficient, quantitative, coarse-grained description. We here report on a novel coarse graining approach based on a set of transferable potentials that quantitatively reproduces properties of mixtures of linear and star-shaped homopolymeric nanocomposites. By renormalizing groups of monomers into a single effective potential between a f-functional star polymer and an homopolymer of length N0, and through a scaling argument, it will be shown how a substantial reduction of the to degrees of freedom allows for a full quantitative description of the system. Our methodology is tested upon full monomer simulations for systems of different molecular weight, proving its full predictive potential.

  19. O stars and Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Conti, P.S.; Underhill, A.B.; Jordan, S.; Thomas, R.

    1988-01-01

    Basic information is given about O and Wolf-Rayet stars indicating how these stars are defined and what their chief observable properties are. Part 2 of the volume discussed four related themes pertaining to the hottest and most luminous stars. Presented are: an observational overview of the spectroscopic classification and extrinsic properties of O and Wolf-Rayet stars; the intrinsic parameters of luminosity, effective temperature, mass, and composition of the stars, and a discussion of their viability; stellar wind properties; and the related issues concerning the efforts of stellar radiation and wind on the immediate interstellar environment are presented

  20. O stars and Wolf-Rayet stars

    Science.gov (United States)

    Conti, Peter S.; Underhill, Anne B.; Jordan, Stuart (Editor); Thomas, Richard (Editor)

    1988-01-01

    Basic information is given about O and Wolf-Rayet stars indicating how these stars are defined and what their chief observable properties are. Part 2 of the volume discussed four related themes pertaining to the hottest and most luminous stars. Presented are: an observational overview of the spectroscopic classification and extrinsic properties of O and Wolf-Rayet stars; the intrinsic parameters of luminosity, effective temperature, mass, and composition of the stars, and a discussion of their viability; stellar wind properties; and the related issues concerning the efforts of stellar radiation and wind on the immediate interstellar environment are presented.

  1. Suspensions of polymer-grafted nanoparticles with added polymers-Structure and effective pair-interactions.

    Science.gov (United States)

    Chandran, Sivasurender; Saw, Shibu; Kandar, A K; Dasgupta, C; Sprung, M; Basu, J K

    2015-08-28

    We present the results of combined experimental and theoretical (molecular dynamics simulations and integral equation theory) studies of the structure and effective interactions of suspensions of polymer grafted nanoparticles (PGNPs) in the presence of linear polymers. Due to the absence of systematic experimental and theoretical studies of PGNPs, it is widely believed that the structure and effective interactions in such binary mixtures would be very similar to those of an analogous soft colloidal material-star polymers. In our study, polystyrene-grafted gold nanoparticles with functionality f = 70 were mixed with linear polystyrene (PS) of two different molecular weights for obtaining two PGNP:PS size ratios, ξ = 0.14 and 2.76 (where, ξ = Mg/Mm, Mg and Mm being the molecular weights of grafting and matrix polymers, respectively). The experimental structure factor of PGNPs could be modeled with an effective potential (Model-X), which has been found to be widely applicable for star polymers. Similarly, the structure factor of the blends with ξ = 0.14 could be modeled reasonably well, while the structure of blends with ξ = 2.76 could not be captured, especially for high density of added polymers. A model (Model-Y) for effective interactions between PGNPs in a melt of matrix polymers also failed to provide good agreement with the experimental data for samples with ξ = 2.76 and high density of added polymers. We tentatively attribute this anomaly in modeling the structure factor of blends with ξ = 2.76 to the questionable assumption of Model-X in describing the added polymers as star polymers with functionality 2, which gets manifested in both polymer-polymer and polymer-PGNP interactions especially at higher fractions of added polymers. The failure of Model-Y may be due to the neglect of possible many-body interactions among PGNPs mediated by matrix polymers when the fraction of added polymers is high. These observations point to the need for a new framework to

  2. Egyptian "Star Clocks"

    Science.gov (United States)

    Symons, Sarah

    Diagonal, transit, and Ramesside star clocks are tables of astronomical information occasionally found in ancient Egyptian temples, tombs, and papyri. The tables represent the motions of selected stars (decans and hour stars) throughout the Egyptian civil year. Analysis of star clocks leads to greater understanding of ancient Egyptian constellations, ritual astronomical activities, observational practices, and pharaonic chronology.

  3. MAGNETIC FIELDS OF STARS

    OpenAIRE

    Bychkov, V. D.; Bychkova, L. V.; Madej, J.

    2008-01-01

    Now it is known about 1212 stars of the main sequence and giants (from them 610 stars - it is chemically peculiarity (CP) stars) for which direct measurements of magnetic fields were spent (Bychkov et al.,2008). Let's consider, what representations were generated about magnetic fields (MT) of stars on the basis of available observations data.

  4. Processes and problems in secondary star formation

    International Nuclear Information System (INIS)

    Klein, R.I.; Whitaker, R.W.; Sandford, M.T. II.

    1984-03-01

    Recent developments relating the conditions in molecular clouds to star formation triggered by a prior stellar generation are reviewed. Primary processes are those that lead to the formation of a first stellar generation. The secondary processes that produce stars in response to effects caused by existing stars are compared and evaluated in terms of the observational data presently available. We discuss the role of turbulence to produce clumpy cloud structures and introduce new work on colliding inter-cloud gas flows leading to non-linear inhomogeneous cloud structures in an intially smooth cloud. This clumpy morphology has important consequences for secondary formation. The triggering processes of supernovae, stellar winds, and H II regions are discussed with emphasis on the consequences for radiation driven implosion as a promising secondary star formation mechanism. Detailed two-dimensional, radiation-hydrodynamic calculations of radiation driven implosion are discussed. This mechanism is shown to be highly efficient in synchronizing the formation of new stars in congruent to 1-3 x 10 4 years and could account for the recent evidence for new massive star formation in several UCHII regions. It is concluded that, while no single theory adequately explains the variety of star formation observed, a uniform description of star formation is likely to involve several secondary processes. Advances in the theory of star formation will require multiple dimensional calculations of coupled processes. The important non-linear interactions include hydrodynamics, radiation transport, and magnetic fields

  5. Processes and problems in secondary star formation

    International Nuclear Information System (INIS)

    Klein, R.I.; Whitaker, R.W.; Sandford, M.T. II

    1985-01-01

    Recent developments relating the conditions in molecular clouds to star formation triggered by a prior stellar generation are reviewed. Primary processes are those that lead to the formation of a first stellar generation. The secondary processes that produce stars in response to effects caused by existing stars are compared and evaluated in terms of observational data presently available. We discuss the role of turbulence to produce clumpy cloud structures and introduce new work on colliding intercloud gas flows leading to nonlinear inhomogeneous cloud structures in an initially smooth cloud. This clumpy morphology has important consequences for secondary formation. The triggering processes of supernovae, stellar winds, and H II regions are discussed with emphasis on the consequences for radiation-driven implosion as a promising secondary star formation mechanism. Detailed two-dimensional, radiation-hydrodynamic calculations of radiation-driven implosion are discussed. This mechanism is shown to be highly efficient in synchronizing the formation of new stars in -- 1-3 x 10/sup 4/ yr and could account for the recent evidence for new massive star formation in several ultracompact H II regions. It is concluded that, while no single theory adequately explains the variety of star formation observed, a uniform description of star formation is likely to involve several secondary processes. Advances in the theory of star formation will require multi-dimensional calculations of coupled processes. Important nonlinear interactions include hydrodynamics, radiation transport, and magnetic fields

  6. Evolution of massive close binary stars

    International Nuclear Information System (INIS)

    Masevich, A.G.; Tutukov, A.V.

    1982-01-01

    Some problems of the evolution of massive close binary stars are discussed. Most of them are nonevolutionized stars with close masses of components. After filling the Roche cavity and exchange of matter between the components the Wolf-Rayet star is formed. As a result of the supernovae explosion a neutron star or a black hole is formed in the system. The system does not disintegrate but obtains high space velocity owing to the loss of the supernovae envelope. The satellite of the neutron star or black hole - the star of the O or B spectral class loses about 10 -6 of the solar mass for a year. Around the neighbouring component a disc of this matter is formed the incidence of which on a compact star leads to X radiation appearance. The neutron star cannot absorb the whole matter of the widening component and the binary system submerges into the common envelope. As a result of the evolution of massive close binary systems single neutron stars can appear which after the lapse of some time become radiopulsars. Radiopulsars with such high space velocities have been found in our Galaxy [ru

  7. Studies on single polymer composites of poly(methyl methacrylate) reinforced with electrospun nanofibers with a focus on their dynamic mechanical properties

    CSIR Research Space (South Africa)

    Matabola, KP

    2011-07-01

    Full Text Available by dynamic mechanical analyser (DMA). 2. Experimental 2.1. Materials High molecular weight PMMA (PMMAhigh, Mw = 996 000 g/mol) was purchased from Sigma Aldrich (Schenelldorf, Germany). N,N-dimethylformamide (DMF) and tetrahydrofuran (THF) were obtained...% PMMA in a 1:1 THF:DMF solvent mixture. The electrospun PMMAhigh nanofibers were used as the reinforcing phase and a low molecular weight PMMA (PMMAlow, 90 000 g/mol, Altuglass V825- TL grade) purchased from Advanced Polymers (Altuglass...

  8. High-density polymer microarrays: identifying synthetic polymers that control human embryonic stem cell growth.

    Science.gov (United States)

    Hansen, Anne; Mjoseng, Heidi K; Zhang, Rong; Kalloudis, Michail; Koutsos, Vasileios; de Sousa, Paul A; Bradley, Mark

    2014-06-01

    The fabrication of high-density polymer microarray is described, allowing the simultaneous and efficient evaluation of more than 7000 different polymers in a single-cellular-based screen. These high-density polymer arrays are applied in the search for synthetic substrates for hESCs culture. Up-scaling of the identified hit polymers enables long-term cellular cultivation and promoted successful stem-cell maintenance. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Compact stars

    Science.gov (United States)

    Estevez-Delgado, Gabino; Estevez-Delgado, Joaquin

    2018-05-01

    An analysis and construction is presented for a stellar model characterized by two parameters (w, n) associated with the compactness ratio and anisotropy, respectively. The reliability range for the parameter w ≤ 1.97981225149 corresponds with a compactness ratio u ≤ 0.2644959374, the density and pressures are positive, regular and monotonic decrescent functions, the radial and tangential speed of sound are lower than the light speed, moreover, than the plausible stability. The behavior of the speeds of sound are determinate for the anisotropy parameter n, admitting a subinterval where the speeds are monotonic crescent functions and other where we have monotonic decrescent functions for the same speeds, both cases describing a compact object that is also potentially stable. In the bigger value for the observational mass M = 2.05 M⊙ and radii R = 12.957 Km for the star PSR J0348+0432, the model indicates that the maximum central density ρc = 1.283820319 × 1018 Kg/m3 corresponds to the maximum value of the anisotropy parameter and the radial and tangential speed of the sound are monotonic decrescent functions.

  10. Polymer Nanocomposites

    Indian Academy of Sciences (India)

    methods for the synthesis of polymer nanocomposites. In this article we .... ers, raw materials recovery, drug delivery and anticorrosion .... region giving rise to dose-packed absorption bands called an IR ... using quaternary ammonium salts.

  11. Neutron Stars and NuSTAR

    Science.gov (United States)

    Bhalerao, Varun

    2012-05-01

    My thesis centers around the study of neutron stars, especially those in massive binary systems. To this end, it has two distinct components: the observational study of neutron stars in massive binaries with a goal of measuring neutron star masses and participation in NuSTAR, the first imaging hard X-ray mission, one that is extremely well suited to the study of massive binaries and compact objects in our Galaxy. The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing high energy X-ray telescope to orbit. NuSTAR has an order-of-magnitude better angular resolution and has two orders of magnitude higher sensitivity than any currently orbiting hard X-ray telescope. I worked to develop, calibrate, and test CdZnTe detectors for NuSTAR. I describe the CdZnTe detectors in comprehensive detail here - from readout procedures to data analysis. Detailed calibration of detectors is necessary for analyzing astrophysical source data obtained by the NuSTAR. I discuss the design and implementation of an automated setup for calibrating flight detectors, followed by calibration procedures and results. Neutron stars are an excellent probe of fundamental physics. The maximum mass of a neutron star can put stringent constraints on the equation of state of matter at extreme pressures and densities. From an astrophysical perspective, there are several open questions in our understanding of neutron stars. What are the birth masses of neutron stars? How do they change in binary evolution? Are there multiple mechanisms for the formation of neutron stars? Measuring masses of neutron stars helps answer these questions. Neutron stars in high-mass X-ray binaries have masses close to their birth mass, providing an opportunity to disentangle the role of "nature" and "nurture" in the observed mass distributions. In 2006, masses had been measured for only six such objects, but this small sample showed the greatest diversity in masses

  12. BINARY DISRUPTION BY MASSIVE BLACK HOLES: HYPERVELOCITY STARS, S STARS, AND TIDAL DISRUPTION EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, Benjamin C. [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Rm 201, Salt Lake City, UT 84112 (United States); Kenyon, Scott J.; Geller, Margaret J.; Brown, Warren R., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: wbrown@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-04-20

    We examine whether disrupted binary stars can fuel black hole growth. In this mechanism, tidal disruption produces a single hypervelocity star (HVS) ejected at high velocity and a former companion star bound to the black hole. After a cluster of bound stars forms, orbital diffusion allows the black hole to accrete stars by tidal disruption at a rate comparable to the capture rate. In the Milky Way, HVSs and the S star cluster imply similar rates of 10{sup -5} to 10{sup -3} yr{sup -1} for binary disruption. These rates are consistent with estimates for the tidal disruption rate in nearby galaxies and imply significant black hole growth from disrupted binaries on 10 Gyr timescales.

  13. Giant CP stars

    International Nuclear Information System (INIS)

    Loden, L.O.; Sundman, A.

    1989-01-01

    This study is part of an investigation of the possibility of using chemically peculiar (CP) stars to map local galactic structure. Correct luminosities of these stars are therefore crucial. CP stars are generally regarded as main-sequence or near-main-sequence objects. However, some CP stars have been classified as giants. A selection of stars, classified in literature as CP giants, are compared to normal stars in the same effective temperature interval and to ordinary 'non giant' CP stars. There is no clear confirmation of a higher luminosity for 'CP giants', than for CP stars in general. In addition, CP characteristics seem to be individual properties not repeated in a component star or other cluster members. (author). 50 refs., 5 tabs., 3 figs

  14. Rates of star formation

    International Nuclear Information System (INIS)

    Larson, R.B.

    1977-01-01

    It is illustrated that a theoretical understanding of the formation and evolution of galaxies depends on an understanding of star formation, and especially of the factors influencing the rate of star formation. Some of the theoretical problems of star formation in galaxies, some approaches that have been considered in models of galaxy evolution, and some possible observational tests that may help to clarify which processes or models are most relevant are reviewed. The material is presented under the following headings: power-law models for star formation, star formation processes (conditions required, ways of achieving these conditions), observational indications and tests, and measures of star formation rates in galaxies. 49 references

  15. Energy production in stars

    International Nuclear Information System (INIS)

    Bethe, Hans.

    1977-01-01

    Energy in stars is released partly by gravitation, partly by nuclear reactions. For ordinary stars like our sun, nuclear reactions predominate. However, at the end of the life of a star very large amounts of energy are released by gravitational collapse; this can amount to as much as 10 times the total energy released nuclear reactions. The rotational energy of pulsars is a small remnant of the energy of gravitation. The end stage of small stars is generally a white dwarf, of heavy stars a neutron star of possibly a black hole

  16. Inorganic polymers and materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sneddon, Larry G.

    2001-01-01

    This DOE-sponsored project was focused on the design, synthesis, characterization, and applications of new types of boron and silicon polymers with a goal of attaining processable precursors to advanced ceramic materials of technological importance. This work demonstrated a viable design strategy for the systematic formation of polymeric precursors to ceramics based on the controlled functionalization of preformed polymers with pendant groups of suitable compositions and crosslinking properties. Both the new dipentylamine-polyborazylene and pinacolborane-hydridopolysilazane polymers, unlike the parent polyborazylene and other polyborosilazanes, are stable as melts and can be easily spun into polymer fibers. Subsequent pyrolyses of these polymer fibers then provide excellent routes to BN and SiNCB ceramic fibers. The ease of synthesis of both polymer systems suggests new hybrid polymers with a range of substituents appended to polyborazylene or polysilazane backbones, as well as other types of preceramic polymers, should now be readily achieved, thereby allowing even greater control over polymer and ceramic properties. This control should now enable the systematic tailoring of the polymers and derived ceramics for use in different technological applications. Other major recent achievements include the development of new types of metal-catalyzed methods needed for the polymerization and modification of inorganic monomers and polymers, and the modification studies of polyvinylsiloxane and related polymers with substituents that enable the formation of single source precursors to high-strength, sintered SiC ceramics.

  17. RADIAL VELOCITY MONITORING OF KEPLER HEARTBEAT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Shporer, Avi [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Fuller, Jim [TAPIR, Walter Burke Institute for Theoretical Physics, Mailcode 350-17, Caltech, Pasadena, CA 91125 (United States); Isaacson, Howard [Department of Astronomy, University of California, Berkeley CA 94720 (United States); Hambleton, Kelly; Prša, Andrej [Department of Astrophysics and Planetary Science, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085 (United States); Thompson, Susan E. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Kurtz, Donald W. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston, PR1 2HE (United Kingdom); Howard, Andrew W. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); O’Leary, Ryan M. [JILA, University of Colorado and NIST, 440 UCB, Boulder, 80309-0440 (United States)

    2016-09-20

    Heartbeat stars (HB stars) are a class of eccentric binary stars with close periastron passages. The characteristic photometric HB signal evident in their light curves is produced by a combination of tidal distortion, heating, and Doppler boosting near orbital periastron. Many HB stars continue to oscillate after periastron and along the entire orbit, indicative of the tidal excitation of oscillation modes within one or both stars. These systems are among the most eccentric binaries known, and they constitute astrophysical laboratories for the study of tidal effects. We have undertaken a radial velocity (RV) monitoring campaign of Kepler HB stars in order to measure their orbits. We present our first results here, including a sample of 22 Kepler HB systems, where for 19 of them we obtained the Keplerian orbit and for 3 other systems we did not detect a statistically significant RV variability. Results presented here are based on 218 spectra obtained with the Keck/HIRES spectrograph during the 2015 Kepler observing season, and they have allowed us to obtain the largest sample of HB stars with orbits measured using a single instrument, which roughly doubles the number of HB stars with an RV measured orbit. The 19 systems measured here have orbital periods from 7 to 90 days and eccentricities from 0.2 to 0.9. We show that HB stars draw the upper envelope of the eccentricity–period distribution. Therefore, HB stars likely represent a population of stars currently undergoing high eccentricity migration via tidal orbital circularization, and they will allow for new tests of high eccentricity migration theories.

  18. RADIAL VELOCITY MONITORING OF KEPLER HEARTBEAT STARS

    International Nuclear Information System (INIS)

    Shporer, Avi; Fuller, Jim; Isaacson, Howard; Hambleton, Kelly; Prša, Andrej; Thompson, Susan E.; Kurtz, Donald W.; Howard, Andrew W.; O’Leary, Ryan M.

    2016-01-01

    Heartbeat stars (HB stars) are a class of eccentric binary stars with close periastron passages. The characteristic photometric HB signal evident in their light curves is produced by a combination of tidal distortion, heating, and Doppler boosting near orbital periastron. Many HB stars continue to oscillate after periastron and along the entire orbit, indicative of the tidal excitation of oscillation modes within one or both stars. These systems are among the most eccentric binaries known, and they constitute astrophysical laboratories for the study of tidal effects. We have undertaken a radial velocity (RV) monitoring campaign of Kepler HB stars in order to measure their orbits. We present our first results here, including a sample of 22 Kepler HB systems, where for 19 of them we obtained the Keplerian orbit and for 3 other systems we did not detect a statistically significant RV variability. Results presented here are based on 218 spectra obtained with the Keck/HIRES spectrograph during the 2015 Kepler observing season, and they have allowed us to obtain the largest sample of HB stars with orbits measured using a single instrument, which roughly doubles the number of HB stars with an RV measured orbit. The 19 systems measured here have orbital periods from 7 to 90 days and eccentricities from 0.2 to 0.9. We show that HB stars draw the upper envelope of the eccentricity–period distribution. Therefore, HB stars likely represent a population of stars currently undergoing high eccentricity migration via tidal orbital circularization, and they will allow for new tests of high eccentricity migration theories.

  19. Regular Generalized Star Star closed sets in Bitopological Spaces

    OpenAIRE

    K. Kannan; D. Narasimhan; K. Chandrasekhara Rao; R. Ravikumar

    2011-01-01

    The aim of this paper is to introduce the concepts of τ1τ2-regular generalized star star closed sets , τ1τ2-regular generalized star star open sets and study their basic properties in bitopological spaces.

  20. Polymer nanocomposites: polymer and particle dynamics

    KAUST Repository

    Kim, Daniel; Srivastava, Samanvaya; Narayanan, Suresh; Archer, Lynden A.

    2012-01-01

    Polymer nanocomposites containing nanoparticles smaller than the random coil size of their host polymer chains are known to exhibit unique properties, such as lower viscosity and glass transition temperature relative to the neat polymer melt. It has

  1. Moments of inertia of neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Greif, Svenja Kim; Hebeler, Kai; Schwenk, Achim [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany); ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany)

    2016-07-01

    Neutron stars are unique laboratories for matter at extreme conditions. While nuclear forces provide systematic constraints on properties of neutron-rich matter up to around nuclear saturation density, the composition of matter at high densities is still unknown. Recent precise observations of 2 M {sub CircleDot} neutron stars made it possible to derive systematic constraints on the equation of state at high densities and also neutron star radii. Further improvements of these constraints require the observation of even heavier neutron stars or a simultaneous measurement of mass and radius of a single neutron star. Since the precise measurement of neutron star radii is an inherently difficult problem, the observation of moment of inertia of neutron stars provides a promising alternative, since they can be measured by pulsar timing experiments. We present a theoretical framework that allows to calculate moments of inertia microscopically, we show results based on state of the art equations of state and illustrate how future measurements of moments of inertia allow to constrain the equation of state and other properties of neutron stars.

  2. Synthesis and Properties of Star HPMA Copolymer Nanocarriers Synthesised by RAFT Polymerisation Designed for Selective Anticancer Drug Delivery and Imaging.

    Science.gov (United States)

    Chytil, Petr; Koziolová, Eva; Janoušková, Olga; Kostka, Libor; Ulbrich, Karel; Etrych, Tomáš

    2015-06-01

    High-molecular-weight star polymer drug nanocarriers intended for the treatment and/or visualisation of solid tumours were synthesised, and their physico-chemical and preliminary in vitro biological properties were determined. The water-soluble star polymer carriers were prepared by the grafting of poly(amido amine) (PAMAM) dendrimers by hetero-telechelic N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers, synthesised by the controlled radical Reversible Addition Fragmentation chain Transfer (RAFT) polymerisation. The well-defined star copolymers with Mw values ranging from 2 · 10(5) to 6 · 10(5) showing a low dispersity (approximately 1.2) were prepared in a high yield. A model anticancer drug, doxorubicin, was bound to the star polymer through a hydrazone bond, enabling the pH-controlled drug release in the target tumour tissue. The activated polymer arm ends of the star copolymer carrier enable a one-point attachment for the targeting ligands and/or a labelling moiety. In this study, the model TAMRA fluorescent dye was used to prove the feasibility of the polymer carrier visualisation by optical imaging in vitro. The tailor-made structure of the star polymer carriers should facilitate the synthesis of targeted polymer-drug conjugates, even polymer theranostics, for simultaneous tumour drug delivery and imaging. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Antimocrobial Polymer

    Science.gov (United States)

    McDonald, William F.; Huang, Zhi-Heng; Wright, Stacy C.

    2005-09-06

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from quaternary ammonium compounds, gentian violet compounds, substituted or unsubstituted phenols, biguanide compounds, iodine compounds, and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A)3P wherein A is hydroxyalkyl; and the antimicrobial agent is chlorhexidine, dimethylchlorophenol, cetyl pyridinium chloride, gentian violet, triclosan, thymol, iodine, and mixtures thereof.

  4. The evolution of massive stars

    International Nuclear Information System (INIS)

    Loore, C. de

    1980-01-01

    The evolution of stars with masses between 15 M 0 and 100 M 0 is considered. Stars in this mass range lose a considerable fraction of their matter during their evolution. The treatment of convection, semi-convection and the influence of mass loss by stellar winds at different evolutionary phases are analysed as well as the adopted opacities. Evolutionary sequences computed by various groups are examined and compared with observations, and the advanced evolution of a 15 M 0 and a 25 M 0 star from zero-age main sequence (ZAMS) through iron collapse is discussed. The effect of centrifugal forces on stellar wind mass loss and the influence of rotation on evolutionary models is examined. As a consequence of the outflow of matter deeper layers show up and when the mass loss rates are large enough layers with changed composition, due to interior nuclear reactions, appear on the surface. The evolution of massive close binaries as well during the phase of mass loss by stellar wind as during the mass exchange and mass loss phase due to Roche lobe overflow is treated in detail, and the value of the parameters governing mass and angular momentum losses are discussed. The problem of the Wolf-Rayet stars, their origin and the possibilities of their production either as single stars or as massive binaries is examined. Finally, the origin of X-ray binaries is discussed and the scenario for the formation of these objects (starting from massive ZAMS close binaries, through Wolf-Rayet binaries leading to OB-stars with a compact companion after a supernova explosion) is reviewed and completed, including stellar wind mass loss. (orig.)

  5. Polymer electronics

    CERN Document Server

    Geoghegan, Mark

    2013-01-01

    Polymer electronics is the science behind many important new developments in technology, such as the flexible electronic display (e-ink) and many new developments in transistor technology. Solar cells, light-emitting diodes, and transistors are all areas where plastic electronics is likely to, or is already having, a serious impact on our daily lives. With polymer transistors and light-emitting diodes now being commercialised, there is a clear need for a pedagogic text thatdiscusses the subject in a clear and concise fashion suitable for senior undergraduate and graduate students. The content

  6. Quark core stars, quark stars and strange stars

    International Nuclear Information System (INIS)

    Grassi, F.

    1988-01-01

    A recent one flavor quark matter equation of state is generalized to several flavors. It is shown that quarks undergo a first order phase transition. In addition, this equation of state depends on just one parameter in the two flavor case, two parameters in the three flavor case, and these parameters are constrained by phenomenology. This equation of state is then applied to the hadron-quark transition in neutron stars and the determination of quark star stability, the investigation of strange matter stability and possible strange star existence. 43 refs., 6 figs

  7. Characterization of Z-RAFT star polymerization of butyl acrylate by size-exclusion chromatography

    NARCIS (Netherlands)

    Boschmann, D.; Edam, R.; Schoenmakers, P.J.; Vana, P.

    2009-01-01

    Z-RAFT star polymerization of butyl acrylate using multifunctional trithiocarbonate-type RAFT agents carrying methyl propionate as the leaving group were used to form star polymers having 3, 4, and 6 arms. The polymerizations showed well controlled behavior up to high monomer conversions. By using a

  8. ENERGY STAR Certified Displays

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 7.0 ENERGY STAR Program Requirements for Displays that are effective as of July 1, 2016....

  9. ENERGY STAR Certified Boilers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Boilers that are effective as of October 1,...

  10. ENERGY STAR Certified Televisions

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 7.0 ENERGY STAR Program Requirements for Televisions that are effective as of October 30,...

  11. ENERGY STAR Certified Dehumidifiers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 4.0 ENERGY STAR Program Requirements for Dehumidifiers that are effective as of October...

  12. Observations of central stars

    International Nuclear Information System (INIS)

    Lutz, J.H.

    1978-01-01

    Difficulties occurring in the observation of central stars of planetary nebulae are reviewed with emphasis on spectral classifications and population types, and temperature determination. Binary and peculiar central stars are discussed. (U.M.G.)

  13. ENERGY STAR Certified Telephones

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Telephony (cordless telephones and VoIP...

  14. Star formation: Cosmic feast

    Science.gov (United States)

    Scaringi, Simone

    2017-03-01

    Low-mass stars form through a process known as disk accretion, eating up material that orbits in a disk around them. It turns out that the same mechanism also describes the formation of more massive stars.

  15. Autonomous Star Tracker Algorithms

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Kilsgaard, Søren

    1998-01-01

    Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances.......Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances....

  16. Covering tree with stars

    DEFF Research Database (Denmark)

    Baumbach, Jan; Guo, Jian-Ying; Ibragimov, Rashid

    2013-01-01

    We study the tree edit distance problem with edge deletions and edge insertions as edit operations. We reformulate a special case of this problem as Covering Tree with Stars (CTS): given a tree T and a set of stars, can we connect the stars in by adding edges between them such that the resulting ...

  17. America's Star Libraries

    Science.gov (United States)

    Lyons, Ray; Lance, Keith Curry

    2009-01-01

    "Library Journal"'s new national rating of public libraries, the "LJ" Index of Public Library Service, identifies 256 "star" libraries. It rates 7,115 public libraries. The top libraries in each group get five, four, or three Michelin guide-like stars. All included libraries, stars or not, can use their scores to learn from their peers and improve…

  18. On the kinematics of visual binary and multiple stars of the FK4 cataloque

    International Nuclear Information System (INIS)

    Starikova, G.A.

    1981-01-01

    Kinematic features of single, binary and multiple stars are considered. To compare kinematics of such stars with the kinematics of single stars the data on positions and proper motions of those stars which are given in the basic catalogue FK4. Single as well as visual binary and multiple stars united because of their limited content in FK4 have been subdivided by spectra and classes of luminosity into groups with account for known kinematic peculiarities of various spectral groups. Kinematic features for the studied spectral groups are given. By the stars of the FK4 catalogue for various spectral classes the difference of kinematic features of single, visual binary and multiple stars is obtained. However the values of these differences need to be specified due to small number of stars included in five of six groups considered

  19. Thin-film morphology of inkjet-printed single-droplet organic transistors using polarized Raman spectroscopy: effect of blending TIPS-pentacene with insulating polymer

    NARCIS (Netherlands)

    James, D.T.; Kjellander, B.K.C.; Smaal, W.T.T.; Gelinck, G.H.; Combe, C.; McCulloch, I.; Wilson, R.; Burroughes, J.H.; Bradley, D.D.C.; Kim, J.S.

    2011-01-01

    We report thin-film morphology studies of inkjet-printed single-droplet organic thin-film transistors (OTFTs) using angle-dependent polarized Raman spectroscopy. We show this to be an effective technique to determine the degree of molecular order as well as to spatially resolve the orientation of

  20. Polymer physics

    CERN Document Server

    Gedde, Ulf W

    1999-01-01

    This book is the result of my teaching efforts during the last ten years at the Royal Institute of Technology. The purpose is to present the subject of polymer physics for undergraduate and graduate students, to focus the fundamental aspects of the subject and to show the link between experiments and theory. The intention is not to present a compilation of the currently available literature on the subject. Very few reference citations have thus been made. Each chapter has essentially the same structure: starling with an introduction, continuing with the actual subject, summarizing the chapter in 30D-500 words, and finally presenting problems and a list of relevant references for the reader. The solutions to the problems presented in Chapters 1-12 are given in Chapter 13. The theme of the book is essentially polymer science, with the exclusion of that part dealing directly with chemical reactions. The fundamentals in polymer science, including some basic polymer chemistry, are presented as an introduction in t...

  1. Antimicrobial polymers.

    Science.gov (United States)

    Jain, Anjali; Duvvuri, L Sailaja; Farah, Shady; Beyth, Nurit; Domb, Abraham J; Khan, Wahid

    2014-12-01

    Better health is basic requirement of human being, but the rapid growth of harmful pathogens and their serious health effects pose a significant challenge to modern science. Infections by pathogenic microorganisms are of great concern in many fields such as medical devices, drugs, hospital surfaces/furniture, dental restoration, surgery equipment, health care products, and hygienic applications (e.g., water purification systems, textiles, food packaging and storage, major or domestic appliances etc.) Antimicrobial polymers are the materials having the capability to kill/inhibit the growth of microbes on their surface or surrounding environment. Recently, they gained considerable interest for both academic research and industry and were found to be better than their small molecular counterparts in terms of enhanced efficacy, reduced toxicity, minimized environmental problems, resistance, and prolonged lifetime. Hence, efforts have focused on the development of antimicrobial polymers with all desired characters for optimum activity. In this Review, an overview of different antimicrobial polymers, their mechanism of action, factors affecting antimicrobial activity, and application in various fields are given. Recent advances and the current clinical status of these polymers are also discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Dilute and dense axion stars

    Science.gov (United States)

    Visinelli, Luca; Baum, Sebastian; Redondo, Javier; Freese, Katherine; Wilczek, Frank

    2018-02-01

    Axion stars are hypothetical objects formed of axions, obtained as localized and coherently oscillating solutions to their classical equation of motion. Depending on the value of the field amplitude at the core |θ0 | ≡ | θ (r = 0) |, the equilibrium of the system arises from the balance of the kinetic pressure and either self-gravity or axion self-interactions. Starting from a general relativistic framework, we obtain the set of equations describing the configuration of the axion star, which we solve as a function of |θ0 |. For small |θ0 | ≲ 1, we reproduce results previously obtained in the literature, and we provide arguments for the stability of such configurations in terms of first principles. We compare qualitative analytical results with a numerical calculation. For large amplitudes |θ0 | ≳ 1, the axion field probes the full non-harmonic QCD chiral potential and the axion star enters the dense branch. Our numerical solutions show that in this latter regime the axions are relativistic, and that one should not use a single frequency approximation, as previously applied in the literature. We employ a multi-harmonic expansion to solve the relativistic equation for the axion field in the star, and demonstrate that higher modes cannot be neglected in the dense regime. We interpret the solutions in the dense regime as pseudo-breathers, and show that the life-time of such configurations is much smaller than any cosmological time scale.

  3. Hyperfast pulsars as the remnants of massive stars ejected from young star clusters

    Science.gov (United States)

    Gvaramadze, Vasilii V.; Gualandris, Alessia; Portegies Zwart, Simon

    2008-04-01

    Recent proper motion and parallax measurements for the pulsar PSR B1508+55 indicate a transverse velocity of ~1100kms-1, which exceeds earlier measurements for any neutron star. The spin-down characteristics of PSR B1508+55 are typical for a non-recycled pulsar, which implies that the velocity of the pulsar cannot have originated from the second supernova disruption of a massive binary system. The high velocity of PSR B1508+55 can be accounted for by assuming that it received a kick at birth or that the neutron star was accelerated after its formation in the supernova explosion. We propose an explanation for the origin of hyperfast neutron stars based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star which attained its peculiar velocity (similar to that of the pulsar) in the course of a strong dynamical three- or four-body encounter in the core of dense young star cluster. To check this hypothesis, we investigated three dynamical processes involving close encounters between: (i) two hard massive binaries, (ii) a hard binary and an intermediate-mass black hole (IMBH) and (iii) a single stars and a hard binary IMBH. We find that main-sequence O-type stars cannot be ejected from young massive star clusters with peculiar velocities high enough to explain the origin of hyperfast neutron stars, but lower mass main-sequence stars or the stripped helium cores of massive stars could be accelerated to hypervelocities. Our explanation for the origin of hyperfast pulsars requires a very dense stellar environment of the order of 106- 107starspc-3. Although such high densities may exist during the core collapse of young massive star clusters, we caution that they have never been observed.

  4. Polymer electronic devices and materials.

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, William Kent; Baca, Paul Martin; Dirk, Shawn M.; Anderson, G. Ronald; Wheeler, David Roger

    2006-01-01

    Polymer electronic devices and materials have vast potential for future microsystems and could have many advantages over conventional inorganic semiconductor based systems, including ease of manufacturing, cost, weight, flexibility, and the ability to integrate a wide variety of functions on a single platform. Starting materials and substrates are relatively inexpensive and amenable to mass manufacturing methods. This project attempted to plant the seeds for a new core competency in polymer electronics at Sandia National Laboratories. As part of this effort a wide variety of polymer components and devices, ranging from simple resistors to infrared sensitive devices, were fabricated and characterized. Ink jet printing capabilities were established. In addition to promising results on prototype devices the project highlighted the directions where future investments must be made to establish a viable polymer electronics competency.

  5. Dwarf Star Erupts in Giant Flare

    Science.gov (United States)

    2005-01-01

    This movie taken by NASA'S Galaxy Evolution Explorer shows one of the largest flares, or star eruptions, ever recorded at ultraviolet wavelengths. The star, called GJ 3685A, just happened to be in the Galaxy Evolution Explorer's field of view while the telescope was busy observing galaxies. As the movie demonstrates, the seemingly serene star suddenly exploded once, then even more intensely a second time, pouring out in total about one million times more energy than a typical flare from our Sun. The second blast of light constituted an increase in brightness by a factor of at least 10,000. Flares are huge explosions of energy stemming from a single location on a star's surface. They are caused by the brief destruction of a star's magnetic fields. Many types of stars experience them, though old, small, rapidly rotating 'red dwarfs' like GJ 3685A tend to flare more frequently and dramatically. These stars, called flare stars, can experience powerful eruptions as often as every few hours. Younger stars, in general, also erupt more often. One of the reasons astronomers study flare stars is to gain a better picture and history of flare events taking place on the Sun. A preliminary analysis of the GJ 3685A flare shows that the mechanisms underlying stellar eruptions may be more complex than previously believed. Evidence for the two most popular flare theories was found. Though this movie has been sped up (the actual flare lasted about 20 minutes), time-resolved data exist for each one-hundredth of a second. These observations were taken at 2 p.m. Pacific time, April 24, 2004. In the still image, the time sequence starts in the upper left panel, continues in the upper right, then moves to the lower left and ends in the lower right. The circular and linear features that appear below and to the right of GJ 3685A during the flare event are detector artifacts caused by the extreme brightness of the flare.

  6. Radiation damage of polymers in ultrasonic fields

    Energy Technology Data Exchange (ETDEWEB)

    Anbalagan, Poornnima

    2008-07-01

    Radiation damage has always been a topic of great interest in various fields of sciences. In this work, an attempt is made to probe into the effect of subthreshold ultrasonic waves on the radiation damage created by irradiation of deuterons in polymer samples wherein the polymer samples act as model systems. Two equal volumes of radiation damage were produced in a single polymer sample wherein a standing wave of ultrasound was introduced into one. Three polymers namely, Polycarbonate, Polymethylmethacrylate and Polyvinyl chloride were used in this work. Four independent techniques were used to analyze the irradiated samples and visualize the radiation damage. Interferometric measurements give a measure of the refractive index modulation in the irradiated sample. Polymers, being transparent, do not absorb in the visible region of the electromagnetic spectrum. UV-Vis absorption spectroscopy shows absorption peaks in the visible region in irradiated polymer samples. Ion irradiation causes coloration of polymers. The light microscope is used to measure the absorption of white light by the irradiated polymers. Positron annihilation spectroscopy is used to obtain a measure of the open volume created by irradiation in polymers. A comparison between the irradiated region and the region exposed to ultrasonic waves simultaneously with irradiation in a polymer sample shows the polymer specific influence of the ultrasonic standing wave. (orig.)

  7. Radiation damage of polymers in ultrasonic fields

    International Nuclear Information System (INIS)

    Anbalagan, Poornnima

    2008-01-01

    Radiation damage has always been a topic of great interest in various fields of sciences. In this work, an attempt is made to probe into the effect of subthreshold ultrasonic waves on the radiation damage created by irradiation of deuterons in polymer samples wherein the polymer samples act as model systems. Two equal volumes of radiation damage were produced in a single polymer sample wherein a standing wave of ultrasound was introduced into one. Three polymers namely, Polycarbonate, Polymethylmethacrylate and Polyvinyl chloride were used in this work. Four independent techniques were used to analyze the irradiated samples and visualize the radiation damage. Interferometric measurements give a measure of the refractive index modulation in the irradiated sample. Polymers, being transparent, do not absorb in the visible region of the electromagnetic spectrum. UV-Vis absorption spectroscopy shows absorption peaks in the visible region in irradiated polymer samples. Ion irradiation causes coloration of polymers. The light microscope is used to measure the absorption of white light by the irradiated polymers. Positron annihilation spectroscopy is used to obtain a measure of the open volume created by irradiation in polymers. A comparison between the irradiated region and the region exposed to ultrasonic waves simultaneously with irradiation in a polymer sample shows the polymer specific influence of the ultrasonic standing wave. (orig.)

  8. Strain hardening and anisotropy in solid polymers

    NARCIS (Netherlands)

    Senden, D.J.A.

    2013-01-01

    Mechanical properties of polymers strongly depend on the underlying microstructure. For instance, processing-induced molecular orientation may, in semi-crystalline polymers, lead to differences in lifetime up to a factor of 500 within a single injection molded product. Furthermore, enormous

  9. Rotating Stars in Relativity

    Directory of Open Access Journals (Sweden)

    Stergioulas Nikolaos

    2003-01-01

    Full Text Available Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on the equilibrium properties and on the nonaxisymmetric instabilities in f-modes and r-modes have been updated and several new sections have been added on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity.

  10. Nuclear physics of stars

    CERN Document Server

    Iliadis, Christian

    2015-01-01

    Most elements are synthesized, or ""cooked"", by thermonuclear reactions in stars. The newly formed elements are released into the interstellar medium during a star's lifetime, and are subsequently incorporated into a new generation of stars, into the planets that form around the stars, and into the life forms that originate on the planets. Moreover, the energy we depend on for life originates from nuclear reactions that occur at the center of the Sun. Synthesis of the elements and nuclear energy production in stars are the topics of nuclear astrophysics, which is the subject of this book

  11. From Single Microparticles to Microfluidic Emulsification: Fundamental Properties (Solubility, Density, Phase Separation from Micropipette Manipulation of Solvent, Drug and Polymer Microspheres

    Directory of Open Access Journals (Sweden)

    Koji Kinoshita

    2016-11-01

    Full Text Available The micropipette manipulation technique is capable of making fundamental single particle measurements and analyses. This information is critical for establishing processing parameters in systems such as microfluidics and homogenization. To demonstrate what can be achieved at the single particle level, the micropipette technique was used to form and characterize the encapsulation of Ibuprofen (Ibp into poly(lactic-co-glycolic acid (PLGA microspheres from dichloromethane (DCM solutions, measuring the loading capacity and solubility limits of Ibp in typical PLGA microspheres. Formed in phosphate buffered saline (PBS, pH 7.4, Ibp/PLGA/DCM microdroplets were uniformly solidified into Ibp/PLGA microparticles up to drug loadings (DL of 41%. However, at DL 50 wt% and above, microparticles showed a phase separated pattern. Working with single microparticles, we also estimated the dissolution time of pure Ibp microspheres in the buffer or in detergent micelle solutions, as a function of the microsphere size and compare that to calculated dissolution times using the Epstein-Plesset (EP model. Single, pure Ibp microparticles precipitated as liquid phase microdroplets that then gradually dissolved into the surrounding PBS medium. Analyzing the dissolution profiles of Ibp over time, a diffusion coefficient of 5.5 ± 0.2 × 10−6 cm2/s was obtained by using the EP model, which was in excellent agreement with the literature. Finally, solubilization of Ibp into sodium dodecyl sulfate (SDS micelles was directly visualized microscopically for the first time by the micropipette technique, showing that such micellization could increase the solubility of Ibp from 4 to 80 mM at 100 mM SDS. We also introduce a particular microfluidic device that has recently been used to make PLGA microspheres, showing the importance of optimizing the flow parameters. Using this device, perfectly smooth and size-homogeneous microparticles were formed for flow rates of 0.167 mL/h for

  12. Evolution of variable stars

    International Nuclear Information System (INIS)

    Becker, S.A.

    1986-08-01

    Throughout the domain of the H R diagram lie groupings of stars whose luminosity varies with time. These variable stars can be classified based on their observed properties into distinct types such as β Cephei stars, δ Cephei stars, and Miras, as well as many other categories. The underlying mechanism for the variability is generally felt to be due to four different causes: geometric effects, rotation, eruptive processes, and pulsation. In this review the focus will be on pulsation variables and how the theory of stellar evolution can be used to explain how the various regions of variability on the H R diagram are populated. To this end a generalized discussion of the evolutionary behavior of a massive star, an intermediate mass star, and a low mass star will be presented. 19 refs., 1 fig., 1 tab

  13. 21 CFR 177.1810 - Styrene block polymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Styrene block polymers. 177.1810 Section 177.1810... FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1810 Styrene block polymers. The styrene...

  14. Technology and development of self-reinforced polymer composites

    NARCIS (Netherlands)

    Alcock, B.; Peijs, T.

    2013-01-01

    In recent years there has been an increasing amount of interest, both commercially and scientifically, in the emerging field of "self-reinforced polymer composites". These materials, which are sometimes also referred to as "single polymer composites", or "all-polymer composites", were first

  15. Polymer blends

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Scott D.; Naik, Sanjeev

    2017-08-22

    The present invention provides, among other things, extruded blends of aliphatic polycarbonates and polyolefins. In one aspect, provided blends comprise aliphatic polycarbonates such as poly(propylene carbonate) and a lesser amount of a crystalline or semicrystalline polymer. In certain embodiments, provided blends are characterized in that they exhibit unexpected improvements in their elongation properties. In another aspect, the invention provides methods of making such materials and applications of the materials in applications such as the manufacture of consumer packaging materials.

  16. Novel approach to improve the attitude update rate of a star tracker.

    Science.gov (United States)

    Zhang, Shuo; Xing, Fei; Sun, Ting; You, Zheng; Wei, Minsong

    2018-03-05

    The star tracker is widely used in attitude control systems of spacecraft for attitude measurement. The attitude update rate of a star tracker is important to guarantee the attitude control performance. In this paper, we propose a novel approach to improve the attitude update rate of a star tracker. The electronic Rolling Shutter (RS) imaging mode of the complementary metal-oxide semiconductor (CMOS) image sensor in the star tracker is applied to acquire star images in which the star spots are exposed with row-to-row time offsets, thereby reflecting the rotation of star tracker at different times. The attitude estimation method with a single star spot is developed to realize the multiple attitude updates by a star image, so as to reach a high update rate. The simulation and experiment are performed to verify the proposed approaches. The test results demonstrate that the proposed approach is effective and the attitude update rate of a star tracker is increased significantly.

  17. NEW X-RAY DETECTIONS OF WNL STARS

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Stephen L. [Center for Astrophysics and Space Astronomy (CASA), University of Colorado, Boulder, CO 80309-0389 (United States); Zhekov, Svetozar A. [Space and Solar-Terrestrial Research Institute, Moskovska str. 6, Sofia-1000 (Bulgaria); Guedel, Manuel [Department of Astronomy, University of Vienna, Tuerkenschanzstr. 17, A-1180 Vienna (Austria); Schmutz, Werner [Physikalisch-Meteorologisches Observatorium Davos (PMOD), Dorfstrasse 33, CH-7260 Davos Dorf (Switzerland); Sokal, Kimberly R., E-mail: Stephen.Skinner@colorado.edu [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States)

    2012-05-15

    Previous studies have demonstrated that putatively single nitrogen-type Wolf-Rayet stars (WN stars) without known companions are X-ray sources. However, almost all WN star X-ray detections so far have been of earlier WN2-WN6 spectral subtypes. Later WN7-WN9 subtypes (also known as WNL stars) have proved more difficult to detect, an important exception being WR 79a (WN9ha). We present here new X-ray detections of the WNL stars WR 16 (WN8h) and WR 78 (WN7h). These new results, when combined with previous detections, demonstrate that X-ray emission is present in WN stars across the full range of spectral types, including later WNL stars. The two WN8 stars observed to date (WR 16 and WR 40) show unusually low X-ray luminosities (L{sub x} ) compared to other WN stars, and it is noteworthy that they also have the lowest terminal wind speeds (v{sub {infinity}}). Existing X-ray detections of about a dozen WN stars reveal a trend of increasing L{sub x} with wind luminosity L{sub wind} = (1/2)M-dot v{sup 2}{sub {infinity}}, suggesting that wind kinetic energy may play a key role in establishing X-ray luminosity levels in WN stars.

  18. NEW X-RAY DETECTIONS OF WNL STARS

    International Nuclear Information System (INIS)

    Skinner, Stephen L.; Zhekov, Svetozar A.; Güdel, Manuel; Schmutz, Werner; Sokal, Kimberly R.

    2012-01-01

    Previous studies have demonstrated that putatively single nitrogen-type Wolf-Rayet stars (WN stars) without known companions are X-ray sources. However, almost all WN star X-ray detections so far have been of earlier WN2-WN6 spectral subtypes. Later WN7-WN9 subtypes (also known as WNL stars) have proved more difficult to detect, an important exception being WR 79a (WN9ha). We present here new X-ray detections of the WNL stars WR 16 (WN8h) and WR 78 (WN7h). These new results, when combined with previous detections, demonstrate that X-ray emission is present in WN stars across the full range of spectral types, including later WNL stars. The two WN8 stars observed to date (WR 16 and WR 40) show unusually low X-ray luminosities (L x ) compared to other WN stars, and it is noteworthy that they also have the lowest terminal wind speeds (v ∞ ). Existing X-ray detections of about a dozen WN stars reveal a trend of increasing L x with wind luminosity L wind = (1/2)M-dot v 2 ∞ , suggesting that wind kinetic energy may play a key role in establishing X-ray luminosity levels in WN stars.

  19. Routing of individual polymers in designed patterns

    DEFF Research Database (Denmark)

    Knudsen, Jakob Bach; Liu, Lei; Kodal, Anne Louise Bank

    2015-01-01

    Synthetic polymers are ubiquitous in the modern world, but our ability to exert control over the molecular conformation of individual polymers is very limited. In particular, although the programmable self-assembly of oligonucleotides and proteins into artificial nanostructures has been...... demonstrated, we currently lack the tools to handle other types of synthetic polymers individually and thus the ability to utilize and study their single-molecule properties. Here we show that synthetic polymer wires containing short oligonucleotides that extend from each repeat can be made to assemble...... into arbitrary routings. The wires, which can be more than 200 nm in length, are soft and bendable, and the DNA strands allow individual polymers to self-assemble into predesigned routings on both two- and three-dimensional DNA origami templates. The polymers are conjugated and potentially conducting, and could...

  20. Routing of individual polymers in designed patterns

    Science.gov (United States)

    Knudsen, Jakob Bach; Liu, Lei; Bank Kodal, Anne Louise; Madsen, Mikael; Li, Qiang; Song, Jie; Woehrstein, Johannes B.; Wickham, Shelley F. J.; Strauss, Maximilian T.; Schueder, Florian; Vinther, Jesper; Krissanaprasit, Abhichart; Gudnason, Daniel; Smith, Anton Allen Abbotsford; Ogaki, Ryosuke; Zelikin, Alexander N.; Besenbacher, Flemming; Birkedal, Victoria; Yin, Peng; Shih, William M.; Jungmann, Ralf; Dong, Mingdong; Gothelf, Kurt V.

    2015-10-01

    Synthetic polymers are ubiquitous in the modern world, but our ability to exert control over the molecular conformation of individual polymers is very limited. In particular, although the programmable self-assembly of oligonucleotides and proteins into artificial nanostructures has been demonstrated, we currently lack the tools to handle other types of synthetic polymers individually and thus the ability to utilize and study their single-molecule properties. Here we show that synthetic polymer wires containing short oligonucleotides that extend from each repeat can be made to assemble into arbitrary routings. The wires, which can be more than 200 nm in length, are soft and bendable, and the DNA strands allow individual polymers to self-assemble into predesigned routings on both two- and three-dimensional DNA origami templates. The polymers are conjugated and potentially conducting, and could therefore be used to create molecular-scale electronic or optical wires in arbitrary geometries.

  1. Metal-poor star formation triggered by the feedback effects from Pop III stars

    Science.gov (United States)

    Chiaki, Gen; Susa, Hajime; Hirano, Shingo

    2018-04-01

    Metal enrichment by first-generation (Pop III) stars is the very first step of the matter cycle in structure formation and it is followed by the formation of extremely metal-poor (EMP) stars. To investigate the enrichment process by Pop III stars, we carry out a series of numerical simulations including the feedback effects of photoionization and supernovae (SNe) of Pop III stars with a range of masses of minihaloes (MHs), Mhalo, and Pop III stars, MPopIII. We find that the metal-rich ejecta reach neighbouring haloes and external enrichment (EE) occurs when the H II region expands before the SN explosion. The neighbouring haloes are only superficially enriched, and the metallicity of the clouds is [Fe/H] < -5. Otherwise, the SN ejecta fall back and recollapse to form an enriched cloud, i.e. an internal-enrichment (IE) process takes place. In the case where a Pop III star explodes as a core-collapse SN (CCSN), the MH undergoes IE, and the metallicity in the recollapsing region is -5 ≲ [Fe/H] ≲ -3 in most cases. We conclude that IE from a single CCSN can explain the formation of EMP stars. For pair-instability SNe (PISNe), EE takes place for all relevant mass ranges of MHs, consistent with the lack of observational signs of PISNe among EMP stars.

  2. Massive stars in galaxies

    International Nuclear Information System (INIS)

    Humphreys, R.M.

    1987-01-01

    The relationship between the morphologic type of a galaxy and the evolution of its massive stars is explored, reviewing observational results for nearby galaxies. The data are presented in diagrams, and it is found that the massive-star populations of most Sc spiral galaxies and irregular galaxies are similar, while those of Sb spirals such as M 31 and M 81 may be affected by morphology (via differences in the initial mass function or star-formation rate). Consideration is also given to the stability-related upper luminosity limit in the H-R diagram of hypergiant stars (attributed to radiation pressure in hot stars and turbulence in cool stars) and the goals of future observation campaigns. 88 references

  3. Pattern recognition of star constellations for spacecraft applications

    DEFF Research Database (Denmark)

    Liebe, Carl Christian

    1993-01-01

    A software system for a star imager for on-line satellite attitude determination is described. The system works with a single standard commercial CCD-camera with a high aperture lens and an onboard star catalogue. It is capable of both an initial course attitude determination without any prior kn...

  4. Pattern recognition of star constellations for spacecraft applications

    DEFF Research Database (Denmark)

    Liebe, Carl Christian

    1992-01-01

    A software system for a star imager for online satellite attitude determination is described. The system works with a single standard commercial CCD camera with a high aperture lens and an onboard star catalog. It is capable of both an initial coarse attitude determination without any prior knowl...

  5. Evolution of massive stars

    International Nuclear Information System (INIS)

    Loore, C. de

    1984-01-01

    The evolution of stars with masses larger than 15 sun masses is reviewed. These stars have large convective cores and lose a substantial fraction of their matter by stellar wind. The treatment of convection and the parameterisation of the stellar wind mass loss are analysed within the context of existing disagreements between theory and observation. The evolution of massive close binaries and the origin of Wolf-Rayet Stars and X-ray binaries is also sketched. (author)

  6. Hyperon-mixed neutron star matter and neutron stars

    International Nuclear Information System (INIS)

    Nishizaki, Shigeru; Takatsuka, Tatsuyuki; Yamamoto, Yasuo

    2002-01-01

    Effective Σ - n and Σ - Σ - interactions are derived from the G-matrix calculations for {n+Σ - } matter and employed in the investigation of hyperon mixing in neutron star matter. The threshold densities ρ t (Y) at which hyperons start to appear are between 2ρ 0 and 3ρ 0 (where ρ 0 is the normal nuclear density) for both Λ and Σ - , and their fractions increase rapidly with baryon density, reaching 10% already for ρ≅ρ t + ρ 0 . The mechanism of hyperon mixing and single-particle properties, such as the effective mass and the potential depth, are analyzed taking into account the roles of YN and NN interactions. The resulting equation of state is found to be too soft to sustain the observed neutron star mass M obs =1.44(solar mass). We discuss the reason for this and stress the necessity of the ''extra repulsion'' for YN and YY interactions to resolve this crucial problem. It is remarked that ρ t (Y) would be as large as 4ρ 0 for neutron stars compatible with M obs . A comment is given regarding the effects on the Y-mixing problem from a less attractive ΛΛ interaction, newly suggested by the NAGARA event. (author)

  7. Fast pulsars, strange stars

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1990-02-01

    The initial motivation for this work was the reported discovery in January 1989 of a 1/2 millisecond pulsar in the remnant of the spectacular supernova, 1987A. The status of this discovery has come into grave doubt as of data taken by the same group in February, 1990. At this time we must consider that the millisecond signal does not belong to the pulsar. The existence of a neutron star in remnant of the supernova is suspected because of recent observations on the light curve of the remnant, and of course by the neutrino burst that announced the supernova. However its frequency is unknown. I can make a strong case that a pulsar rotation period of about 1 ms divides those that can be understood quite comfortably as neutron stars, and those that cannot. What we will soon learn is whether there is an invisible boundary below which pulsar periods do not fall, in which case, all are presumable neutron stars, or whether there exist sub- millisecond pulsars, which almost certainly cannot be neutron stars. Their most plausible structure is that of a self-bound star, a strange-quark-matter star. The existence of such stars would imply that the ground state of the strong interaction is not, as we usually assume, hadronic matter, but rather strange quark matter. Let us look respectively at stars that are bound only by gravity, and hypothetical stars that are self-bound, for which gravity is so to speak, icing on the cake

  8. Covering tree with stars

    DEFF Research Database (Denmark)

    Baumbach, Jan; Guo, Jiong; Ibragimov, Rashid

    2015-01-01

    We study the tree edit distance problem with edge deletions and edge insertions as edit operations. We reformulate a special case of this problem as Covering Tree with Stars (CTS): given a tree T and a set of stars, can we connect the stars in by adding edges between them such that the resulting...... tree is isomorphic to T? We prove that in the general setting, CST is NP-complete, which implies that the tree edit distance considered here is also NP-hard, even when both input trees having diameters bounded by 10. We also show that, when the number of distinct stars is bounded by a constant k, CTS...

  9. Introduction to neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Lattimer, James M. [Dept. of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States)

    2015-02-24

    Neutron stars contain the densest form of matter in the present universe. General relativity and causality set important constraints to their compactness. In addition, analytic GR solutions are useful in understanding the relationships that exist among the maximum mass, radii, moments of inertia, and tidal Love numbers of neutron stars, all of which are accessible to observation. Some of these relations are independent of the underlying dense matter equation of state, while others are very sensitive to the equation of state. Recent observations of neutron stars from pulsar timing, quiescent X-ray emission from binaries, and Type I X-ray bursts can set important constraints on the structure of neutron stars and the underlying equation of state. In addition, measurements of thermal radiation from neutron stars has uncovered the possible existence of neutron and proton superfluidity/superconductivity in the core of a neutron star, as well as offering powerful evidence that typical neutron stars have significant crusts. These observations impose constraints on the existence of strange quark matter stars, and limit the possibility that abundant deconfined quark matter or hyperons exist in the cores of neutron stars.

  10. Strangeon and Strangeon Star

    Science.gov (United States)

    Xiaoyu, Lai; Renxin, Xu

    2017-06-01

    The nature of pulsar-like compact stars is essentially a central question of the fundamental strong interaction (explained in quantum chromo-dynamics) at low energy scale, the solution of which still remains a challenge though tremendous efforts have been tried. This kind of compact objects could actually be strange quark stars if strange quark matter in bulk may constitute the true ground state of the strong-interaction matter rather than 56Fe (the so-called Witten’s conjecture). From astrophysical points of view, however, it is proposed that strange cluster matter could be absolutely stable and thus those compact stars could be strange cluster stars in fact. This proposal could be regarded as a general Witten’s conjecture: strange matter in bulk could be absolutely stable, in which quarks are either free (for strange quark matter) or localized (for strange cluster matter). Strange cluster with three-light-flavor symmetry is renamed strangeon, being coined by combining “strange nucleon” for the sake of simplicity. A strangeon star can then be thought as a 3-flavored gigantic nucleus, and strangeons are its constituent as an analogy of nucleons which are the constituent of a normal (micro) nucleus. The observational consequences of strangeon stars show that different manifestations of pulsarlike compact stars could be understood in the regime of strangeon stars, and we are expecting more evidence for strangeon star by advanced facilities (e.g., FAST, SKA, and eXTP).

  11. Interacting binary stars

    CERN Document Server

    Sahade, Jorge; Ter Haar, D

    1978-01-01

    Interacting Binary Stars deals with the development, ideas, and problems in the study of interacting binary stars. The book consolidates the information that is scattered over many publications and papers and gives an account of important discoveries with relevant historical background. Chapters are devoted to the presentation and discussion of the different facets of the field, such as historical account of the development in the field of study of binary stars; the Roche equipotential surfaces; methods and techniques in space astronomy; and enumeration of binary star systems that are studied

  12. Polarization of Be stars

    International Nuclear Information System (INIS)

    Johns, M.W.

    1975-01-01

    Linear polarization of starlight may be produced by electron scattering in the extended atmospheres of early type stars. Techniques are investigated for the measurement and interpretation of this polarization. Polarimetric observations were made of twelve visual double star systems in which at least one member was a B type star as a means of separating the intrinsic stellar polarization from the polarization produced in the interstellar medium. Four of the double stars contained a Be star. Evidence for intrinsic polarization was found in five systems including two of the Be systems, one double star with a short period eclipsing binary, and two systems containing only normal early type stars for which emission lines have not been previously reported. The interpretation of these observations in terms of individual stellar polarizations and their wavelength dependence is discussed. The theoretical basis for the intrinsic polarization of early type stars is explored with a model for the disk-like extended atmospheres of Be stars. Details of a polarimeter for the measurement of the linear polarization of astronomical point sources are also presented with narrow band (Δ lambda = 100A) measurements of the polarization of γ Cas from lambda 4000 to lambda 5800

  13. ENERGY STAR Unit Reports

    Data.gov (United States)

    Department of Housing and Urban Development — These quarterly Federal Fiscal Year performance reports track the ENERGY STAR qualified HOME units that Participating Jurisdictions record in HUD's Integrated...

  14. An isoindigo containing donor-acceptor polymer: synthesis and photovoltaic properties of all-solution-processed ITO- and vacuum-free large area roll-coated single junction and tandem solar cells

    DEFF Research Database (Denmark)

    Brandt, Rasmus Guldbæk; Yue, Wei; Andersen, Thomas Rieks

    2015-01-01

    In this work, the design, synthesis, and characterization of a donor-acceptor polymer from dithieno[3,2-b:2',3'-d]pyrrole and isoindigo (i-ID) are presented. The synthesized polymer has been applied in large area ITO-free organic photovoltaics, both as spin coated and roll coated devices; the lat......In this work, the design, synthesis, and characterization of a donor-acceptor polymer from dithieno[3,2-b:2',3'-d]pyrrole and isoindigo (i-ID) are presented. The synthesized polymer has been applied in large area ITO-free organic photovoltaics, both as spin coated and roll coated devices...

  15. Luminescent lanthanide coordination polymers

    Energy Technology Data Exchange (ETDEWEB)

    Ma, L.; Evans, O.R.; Foxman, B.M.; Lin, W.

    1999-12-13

    One-dimensional lanthanide coordination polymers with the formula Ln(isonicotinate){sub 3}(H{sub 2}O){sub 2} (Ln = Ce, Pr, Nd, Sm, Eu, Tb; 1a-f) were synthesized by treating nitrate or perchlorate salts of Ln(III) with 4-pyridinecarboxaldehyde under hydro(solvo)thermal conditions. Single-crystal and powder X-ray diffraction studies indicate that these lanthanide coordination polymers adopt two different structures. While Ce(III), Pr(III), and Nd(III) complexes adopt a chain structure with alternating Ln-(carboxylate){sub 2}-Ln and Ln-(carboxylate){sub 4}-Ln linkages, Sm(III), Eu(III), and Tb(III) complexes have a doubly carboxylate-bridged infinite-chain structure with one chelating carboxylate group on each metal center. In both structures, the lanthanide centers also bind to two water molecules to yield an eight-coordinate, square antiprismatic geometry. The pyridine nitrogen atoms of the isonicotinate groups do not coordinate to the metal centers in these lanthanide(III) complexes; instead, they direct the formation of Ln(III) coordination polymers via hydrogen bonding with coordinated water molecules. Photoluminescence measurements show that Tb(isonicotinate){sub 3}(H{sub 2}O){sub 2} is highly emissive at room temperature with a quantum yield of {approximately}90%. These results indicate that highly luminescent lanthanide coordination polymers can be assembled using a combination of coordination and hydrogen bonds. Crystal data for 1a: monoclinic space group P2{sub 1}/c, a = 9.712(2) {angstrom}, b = 19.833(4) {angstrom}, c = 11.616(2) {angstrom}, {beta} = 111.89(3){degree}, Z = 4. Crystal data for 1f: monoclinic space group C2/c, a = 20.253(4) {angstrom}, b = 11.584(2) {angstrom}, c = 9.839(2) {angstrom}, {beta} = 115.64(3){degree}, Z = 8.

  16. Natural polymers: an overview

    CSIR Research Space (South Africa)

    John, MJ

    2012-08-01

    Full Text Available The scarcity of natural polymers during the world war years led to the development of synthetic polymers like nylon, acrylic, neoprene, styrene-butadiene rubber (SBR) and polyethylene. The increasing popularity of synthetic polymers is partly due...

  17. Field-Induced Single-Ion Magnet Behaviour in Two New Cobalt(II Coordination Polymers with 2,4,6-Tris(4-pyridyl-1,3,5-triazine

    Directory of Open Access Journals (Sweden)

    Dong Shao

    2017-12-01

    Full Text Available We herein reported the syntheses, crystal structures, and magnetic properties of a two-dimensional coordination polymer {[CoII(TPT2/3(H2O4][CH3COO]2·(H2O4}n (1 and a chain compound {[CoII(TPT2(CHOO2(H2O2]}n (2 based on the 2,4,6-Tris(4-pyridyl-1,3,5-triazine (TPT ligand. Structure analyses showed that complex 1 had a cationic hexagonal framework structure, while 2 was a neutral zig-zag chain structure with different distorted octahedral coordination environments. Magnetic measurements revealed that both complexes exhibit large easy-plane magnetic anisotropy with the zero-field splitting parameter D = 47.7 and 62.1 cm−1 for 1 and 2, respectively. This magnetic anisotropy leads to the field-induced slow magnetic relaxation behaviour. However, their magnetic dynamics are quite different; while complex 1 experienced a dominating thermally activated Orbach relaxation at the whole measured temperature region, 2 exhibited multiple relaxation pathways involving direct, Raman, and quantum tunneling (QTM processes at low temperatures and Orbach relaxation at high temperatures. The present complexes enlarge the family of framework-based single-ion magnets (SIMs and highlight the significance of the structural dimensionality to the final magnetic properties.

  18. Simultaneous Detection of Human C-Terminal p53 Isoforms by Single Template Molecularly Imprinted Polymers (MIPs) Coupled with Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)-Based Targeted Proteomics.

    Science.gov (United States)

    Jiang, Wenting; Liu, Liang; Chen, Yun

    2018-03-06

    Abnormal expression of C-terminal p53 isoforms α, β, and γ can cause the development of cancers including breast cancer. To date, much evidence has demonstrated that these isoforms can differentially regulate target genes and modulate their expression. Thus, quantification of individual isoforms may help to link clinical outcome to p53 status and to improve cancer patient treatment. However, there are few studies on accurate determination of p53 isoforms, probably due to sequence homology of these isoforms and also their low abundance. In this study, a targeted proteomics assay combining molecularly imprinted polymers (MIPs) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for simultaneous quantification of C-terminal p53 isoforms. Isoform-specific surrogate peptides (i.e., KPLDGEYFTLQIR (peptide-α) for isoform α, KPLDGEYFTLQDQTSFQK (peptide-β) for isoform β, and KPLDGEYFTLQMLLDLR (peptide-γ) for isoform γ) were first selected and used in both MIPs enrichment and mass spectrometric detection. The common sequence KPLDGEYFTLQ of these three surrogate peptides was used as single template in MIPs. In addition to optimization of imprinting conditions and characterization of the prepared MIPs, binding affinity and cross-reactivity of the MIPs for each surrogate peptide were also evaluated. As a result, a LOQ of 5 nM was achieved, which was >15-fold more sensitive than that without MIPs. Finally, the assay was validated and applied to simultaneous quantitative analysis of C-terminal p53 isoforms α, β, and γ in several human breast cell lines (i.e., MCF-10A normal cells, MCF-7 and MDA-MB-231 cancer cells, and drug-resistant MCF-7/ADR cancer cells). This study is among the first to employ single template MIPs and cross-reactivity phenomenon to select isoform-specific surrogate peptides and enable simultaneous quantification of protein isoforms in LC-MS/MS-based targeted proteomics.

  19. Small angle neutron scattering study on star di-block copolymers

    International Nuclear Information System (INIS)

    Ertugrul, O.

    2006-01-01

    Determining structural properties, phase transitions and stability of polymer mixtures is very important to produce new materials with desired and interesting properties. Small Angle Neutron Scattering Technique (SANS) has been one of the most powerful and intensely used methods for the characterization of polymers for last decades, m this study, we use a model based on Gaussian Random Phase Approximation (RPA) to describe Star Di-block Copolymers (SDC) mixtures with homo-polymers. We could able to predict the miscibility and phase transitions of the various mixtures along with their structure factors, producing a thermodynamic picture of the system. Also the results suggest that scattering intensity will be dictated by the structure factor of the core or shell parts of star polymer only, which depends on the homo-polymer type of the mixture

  20. Statistical mechanics of polymer networks of any topology

    International Nuclear Information System (INIS)

    Duplantier, B.

    1989-01-01

    The statistical mechanics is considered of any polymer network with a prescribed topology, in dimension d, which was introduced previously. The basic direct renormalization theory of the associated continuum model is established. It has a very simple multiplicative structure in terms of the partition functions of the star polymers constituting the vertices of the network. A calculation is made to O(ε 2 ), where d = 4 -ε, of the basic critical dimensions σ L associated with any L=leg vertex (L ≥ 1). From this infinite series of critical exponents, any topology-dependent critical exponent can be derived. This is applied to the configuration exponent γ G of any network G to O(ε 2 ), including L-leg star polymers. The infinite sets of contact critical exponents θ between multiple points of polymers or between the cores of several star polymers are also deduced. As a particular case, the three exponents θ 0 , θ 1 , θ 2 calculated by des Cloizeaux by field-theoretic methods are recovered. The limiting exact logarithmic laws are derived at the upper critical dimension d = 4. The results are generalized to the series of topological exponents of polymer networks near a surface and of tricritical polymers at the Θ-point. Intersection properties of networks of random walks can be studied similarly. The above factorization theory of the partition function of any polymer network over its constituting L-vertices also applies to two dimensions, where it can be related to conformal invariance. The basic critical exponents σ L and thus any topological polymer exponents are then exactly known. Principal results published elsewhere are recalled

  1. Stars and Flowers, Flowers and Stars

    Science.gov (United States)

    Minti, Hari

    2012-12-01

    The author, a graduated from the Bucharest University (1964), actually living and working in Israel, concerns his book to variable stars and flowers, two domains of his interest. The analogies includes double stars, eclipsing double stars, eclipses, Big Bang. The book contains 34 chapters, each of which concerns various relations between astronomy and other sciences and pseudosciences such as Psychology, Religion, Geology, Computers and Astrology (to which the author is not an adherent). A special part of the book is dedicated to archeoastronomy and ethnoastronomy, as well as to history of astronomy. Between the main points of interest of these parts: ancient sanctuaries in Sarmizegetusa (Dacia), Stone Henge(UK) and other. The last chapter of the book is dedicated to flowers. The book is richly illustrated. It is designed for a wide circle of readers.

  2. Relativistic calculations of coalescing binary neutron stars

    Indian Academy of Sciences (India)

    We have designed and tested a new relativistic Lagrangian hydrodynamics code, which treats gravity in the conformally flat approximation to general relativity. We have tested the resulting code extensively, finding that it performs well for calculations of equilibrium single-star models, collapsing relativistic dust clouds, and ...

  3. Studying RR Lyrae Stars in M4 with K2

    Science.gov (United States)

    Kuehn, Charles A.; Drury, Jason; Moskalik, Pawel

    2017-01-01

    Observations by Kepler/K2 have revolutionized the study of RR Lyrae stars by allowing the detection of new phenomena, such as low amplitude additional modes and period doubling, which had not previously been seen from the ground. During its campaign 2, K2 observed the globular cluster M4, providing the first opportunity to study a sizeable group of RR Lyrae stars that belong to a single population; the other RR Lyrae stars that have been observed from space are field stars in the galactic halo and thus belong to an assortment of populations. We present the results of our study of the RR Lyrae variables in M4 from K2 photometry. We have identified additional, low amplitude pulsation modes in the two observed RRc stars. In three RRab stars we have found the Blazhko effect with periods of 16.6 days, 22.4 days, and 44.5 days.

  4. A radial velocity survey of extremely hydrogen-deficient stars

    International Nuclear Information System (INIS)

    Jeffery, C.S.; Kiel Univ.; Drilling, J.S.; Heber, U.

    1987-01-01

    A radial velocity survey of hot extremely hydrogen-deficient stars has been carried out in order to search for possible binaries. The survey found three stars to have large velocity variations. Of these, two are known hydrogen-deficient binaries and one, HDE 320156 (= LSS 4300), is a suspected binary. HDE 320156 (= LSS 4300) is therefore confirmed to be a single-lined spectroscopic hydrogen-deficient binary. The hydrogen-deficient binary stars all show weak C-lines. The remaining stars in the sample are C-strong extreme-helium (EHe) stars and did not show large-amplitude velocity variations. Small-amplitude radial velocity variations known to be present amongst the EHe stars are largely undetected. Evidence for variability is, however, present in the known variable V2076 Oph (HD 160641) and in LS IV - 1 0 2 with amplitudes between 10 and 20 km s -1 . (author)

  5. Orientational cross correlations between entangled branch polymers in primitive chain network simulations

    Science.gov (United States)

    Masubuchi, Yuichi; Pandey, Ankita; Amamoto, Yoshifumi; Uneyama, Takashi

    2017-11-01

    Although it has not been frequently discussed, contributions of the orientational cross-correlation (OCC) between entangled polymers are not negligible in the relaxation modulus. In the present study, OCC contributions were investigated for 4- and 6-arm star-branched and H-branched polymers by means of multi-chain slip-link simulations. Owing to the molecular-level description of the simulation, the segment orientation was traced separately for each molecule as well as each subchain composing the molecules. Then, the OCC was calculated between different molecules and different subchains. The results revealed that the amount of OCC between different molecules is virtually identical to that of linear polymers regardless of the branching structure. The OCC between constituent subchains of the same molecule is significantly smaller than the OCC between different molecules, although its intensity and time-dependent behavior depend on the branching structure as well as the molecular weight. These results lend support to the single-chain models given that the OCC effects are embedded into the stress-optical coefficient, which is independent of the branching structure.

  6. High-velocity runaway stars from three-body encounters

    Science.gov (United States)

    Gvaramadze, V. V.; Gualandris, A.; Portegies Zwart, S.

    2010-01-01

    We performed numerical simulations of dynamical encounters between hard, massive binaries and a very massive star (VMS; formed through runaway mergers of ordinary stars in the dense core of a young massive star cluster) to explore the hypothesis that this dynamical process could be responsible for the origin of high-velocity (≥ 200 - 400 km s-1) early or late B-type stars. We estimated the typical velocities produced in encounters between very tight massive binaries and VMSs (of mass of ≥ 200 M⊙) and found that about 3 - 4% of all encounters produce velocities ≥ 400 km s-1, while in about 2% of encounters the escapers attain velocities exceeding the Milky Ways's escape velocity. We therefore argue that the origin of high-velocity (≥ 200 - 400 km s-1) runaway stars and at least some so-called hypervelocity stars could be associated with dynamical encounters between the tightest massive binaries and VMSs formed in the cores of star clusters. We also simulated dynamical encounters between tight massive binaries and single ordinary 50 - 100 M⊙ stars. We found that from 1 to ≃ 4% of these encounters can produce runaway stars with velocities of ≥ 300 - 400 km s-1 (typical of the bound population of high-velocity halo B-type stars) and occasionally (in less than 1% of encounters) produce hypervelocity (≥ 700 km s-1) late B-type escapers.

  7. Science Through ARts (STAR)

    Science.gov (United States)

    Kolecki, Joseph; Petersen, Ruth; Williams, Lawrence

    2002-01-01

    Science Through ARts (STAR) is an educational initiative designed to teach students through a multidisciplinary approach to learning. This presentation describes the STAR pilot project, which will use Mars exploration as the topic to be integrated. Schools from the United Kingdom, Japan, the United States, and possibly eastern Europe are expected to participate in the pilot project.

  8. European Stars and Stripes

    National Research Council Canada - National Science Library

    Hendricks, Nancy

    1994-01-01

    The European Stars and Stripes (ES&S) organization publishes a daily newspaper, The Stars and Stripes, for DoD personnel stationed in Germany, Italy, the United Kingdom, and other DoD activities in the U.S. European Command...

  9. Nebraska STARS: Achieving Results

    Science.gov (United States)

    Roschewski, Pat; Isernhagen, Jody; Dappen, Leon

    2006-01-01

    In 2000, the state of Nebraska passed legislation requiring the assessment of student performance on content standards, but its requirements were very different from those of any other state. Nebraska created what has come to be known as STARS (School-based Teacher-led Assessment and Reporting System). Under STARS, each of Nebraska's nearly 500…

  10. Convective overshooting in stars

    NARCIS (Netherlands)

    Andrássy, R.

    2015-01-01

    Numerous observations provide evidence that the standard picture, in which convective mixing is limited to the unstable layers of a star, is incomplete. The mixing layers in real stars are significantly more extended than what the standard models predict. Some of the observations require changing

  11. Observing Double Stars

    Science.gov (United States)

    Genet, Russell M.; Fulton, B. J.; Bianco, Federica B.; Martinez, John; Baxter, John; Brewer, Mark; Carro, Joseph; Collins, Sarah; Estrada, Chris; Johnson, Jolyon; Salam, Akash; Wallen, Vera; Warren, Naomi; Smith, Thomas C.; Armstrong, James D.; McGaughey, Steve; Pye, John; Mohanan, Kakkala; Church, Rebecca

    2012-05-01

    Double stars have been systematically observed since William Herschel initiated his program in 1779. In 1803 he reported that, to his surprise, many of the systems he had been observing for a quarter century were gravitationally bound binary stars. In 1830 the first binary orbital solution was obtained, leading eventually to the determination of stellar masses. Double star observations have been a prolific field, with observations and discoveries - often made by students and amateurs - routinely published in a number of specialized journals such as the Journal of Double Star Observations. All published double star observations from Herschel's to the present have been incorporated in the Washington Double Star Catalog. In addition to reviewing the history of visual double stars, we discuss four observational technologies and illustrate these with our own observational results from both California and Hawaii on telescopes ranging from small SCTs to the 2-meter Faulkes Telescope North on Haleakala. Two of these technologies are visual observations aimed primarily at published "hands-on" student science education, and CCD observations of both bright and very faint doubles. The other two are recent technologies that have launched a double star renaissance. These are lucky imaging and speckle interferometry, both of which can use electron-multiplying CCD cameras to allow short (30 ms or less) exposures that are read out at high speed with very low noise. Analysis of thousands of high speed exposures allows normal seeing limitations to be overcome so very close doubles can be accurately measured.

  12. Eclipsing binary stars with a δ Scuti component

    Science.gov (United States)

    Kahraman Aliçavuş, F.; Soydugan, E.; Smalley, B.; Kubát, J.

    2017-09-01

    Eclipsing binaries with a δ Sct component are powerful tools to derive the fundamental parameters and probe the internal structure of stars. In this study, spectral analysis of six primary δ Sct components in eclipsing binaries has been performed. Values of Teff, v sin I, and metallicity for the stars have been derived from medium-resolution spectroscopy. Additionally, a revised list of δ Sct stars in eclipsing binaries is presented. In this list, we have only given the δ Sct stars in eclipsing binaries to show the effects of the secondary components and tidal-locking on the pulsations of primary δ Sct components. The stellar pulsation, atmospheric and fundamental parameters (e.g. mass, radius) of 92 δ Sct stars in eclipsing binaries have been gathered. Comparison of the properties of single and eclipsing binary member δ Sct stars has been made. We find that single δ Sct stars pulsate in longer periods and with higher amplitudes than the primary δ Sct components in eclipsing binaries. The v sin I of δ Sct components is found to be significantly lower than that of single δ Sct stars. Relationships between the pulsation periods, amplitudes and stellar parameters in our list have been examined. Significant correlations between the pulsation periods and the orbital periods, Teff, log g, radius, mass ratio, v sin I and the filling factor have been found.

  13. Polymer dynamics from synthetic polymers to proteins

    Indian Academy of Sciences (India)

    Keywords. Polymer dynamics; reptation; domain dynamics biomolecules. Abstract. Starting from the standard model of polymer motion - the Rouse model - we briefly present some key experimental results on the mesoscopic dynamics of polymer systems. We touch the role of topological confinement as expressed in the ...

  14. Neutron Stars and Pulsars

    CERN Document Server

    Becker, Werner

    2009-01-01

    Neutron stars are the most compact astronomical objects in the universe which are accessible by direct observation. Studying neutron stars means studying physics in regimes unattainable in any terrestrial laboratory. Understanding their observed complex phenomena requires a wide range of scientific disciplines, including the nuclear and condensed matter physics of very dense matter in neutron star interiors, plasma physics and quantum electrodynamics of magnetospheres, and the relativistic magneto-hydrodynamics of electron-positron pulsar winds interacting with some ambient medium. Not to mention the test bed neutron stars provide for general relativity theories, and their importance as potential sources of gravitational waves. It is this variety of disciplines which, among others, makes neutron star research so fascinating, not only for those who have been working in the field for many years but also for students and young scientists. The aim of this book is to serve as a reference work which not only review...

  15. Spectrophotometry of carbon stars

    Energy Technology Data Exchange (ETDEWEB)

    Oganesyan, R.K.; Karapetyan, M.S.; Nersisyan, S.E.

    1986-01-01

    The results are given of the spectrophotometric investigation of 56 carbon stars in the spectral range from 4000 to 6800 A with resolution 3 A. The observed energy distributions of these stars are determined relative to the flux at the wavelength /sub 0/ = 5556; they are presented in the form of graphs. The energy distributions have been obtained for the first time for 35 stars. Variation in the line Ba II 4554 A has been found in the spectra of St Cam, UU Aur, and RV Mon. Large changes have taken place in the spectra of RT UMa and SS Vir. It is noted that the spectra of carbon stars have a depression, this being situated in different spectral regions for individual groups of stars.

  16. Rotating stars in relativity.

    Science.gov (United States)

    Paschalidis, Vasileios; Stergioulas, Nikolaos

    2017-01-01

    Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on equilibrium properties and on nonaxisymmetric oscillations and instabilities in f -modes and r -modes have been updated. Several new sections have been added on equilibria in modified theories of gravity, approximate universal relationships, the one-arm spiral instability, on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity including both hydrodynamic and magnetohydrodynamic studies of these objects.

  17. On the evolution of stars

    International Nuclear Information System (INIS)

    Kippenhahn, R.

    1989-01-01

    A popular survey is given of the present knowledge on evolution and ageing of stars. Main sequence stars, white dwarf stars, and red giant stars are classified in the Hertzsprung-Russell (HR)-diagram by measurable quantities: surface temperature and luminosity. From the HR-diagram it can be concluded to star mass and age. Star-forming processes in interstellar clouds as well as stellar burning processes are illustrated. The changes occurring in a star due to the depletion of the nuclear energy reserve are described. In this frame the phenomena of planetary nebulae, supernovae, pulsars, neutron stars as well as of black holes are explained

  18. Monte Carlo simulation of star/linear and star/star blends with chemically identical monomers

    Energy Technology Data Exchange (ETDEWEB)

    Theodorakis, P E [Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina (Greece); Avgeropoulos, A [Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina (Greece); Freire, J J [Departamento de Ciencias y Tecnicas FisicoquImicas, Universidad Nacional de Educacion a Distancia, Facultad de Ciencias, Senda del Rey 9, 28040 Madrid (Spain); Kosmas, M [Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece); Vlahos, C [Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece)

    2007-11-21

    The effects of chain size and architectural asymmetry on the miscibility of blends with chemically identical monomers, differing only in their molecular weight and architecture, are studied via Monte Carlo simulation by using the bond fluctuation model. Namely, we consider blends composed of linear/linear, star/linear and star/star chains. We found that linear/linear blends are more miscible than the corresponding star/star mixtures. In star/linear blends, the increase in the volume fraction of the star chains increases the miscibility. For both star/linear and star/star blends, the miscibility decreases with the increase in star functionality. When we increase the molecular weight of linear chains of star/linear mixtures the miscibility decreases. Our findings are compared with recent analytical and experimental results.

  19. Monte Carlo simulation of star/linear and star/star blends with chemically identical monomers

    Science.gov (United States)

    Theodorakis, P. E.; Avgeropoulos, A.; Freire, J. J.; Kosmas, M.; Vlahos, C.

    2007-11-01

    The effects of chain size and architectural asymmetry on the miscibility of blends with chemically identical monomers, differing only in their molecular weight and architecture, are studied via Monte Carlo simulation by using the bond fluctuation model. Namely, we consider blends composed of linear/linear, star/linear and star/star chains. We found that linear/linear blends are more miscible than the corresponding star/star mixtures. In star/linear blends, the increase in the volume fraction of the star chains increases the miscibility. For both star/linear and star/star blends, the miscibility decreases with the increase in star functionality. When we increase the molecular weight of linear chains of star/linear mixtures the miscibility decreases. Our findings are compared with recent analytical and experimental results.

  20. Monte Carlo simulation of star/linear and star/star blends with chemically identical monomers

    International Nuclear Information System (INIS)

    Theodorakis, P E; Avgeropoulos, A; Freire, J J; Kosmas, M; Vlahos, C

    2007-01-01

    The effects of chain size and architectural asymmetry on the miscibility of blends with chemically identical monomers, differing only in their molecular weight and architecture, are studied via Monte Carlo simulation by using the bond fluctuation model. Namely, we consider blends composed of linear/linear, star/linear and star/star chains. We found that linear/linear blends are more miscible than the corresponding star/star mixtures. In star/linear blends, the increase in the volume fraction of the star chains increases the miscibility. For both star/linear and star/star blends, the miscibility decreases with the increase in star functionality. When we increase the molecular weight of linear chains of star/linear mixtures the miscibility decreases. Our findings are compared with recent analytical and experimental results

  1. Star Cluster Structure from Hierarchical Star Formation

    Science.gov (United States)

    Grudic, Michael; Hopkins, Philip; Murray, Norman; Lamberts, Astrid; Guszejnov, David; Schmitz, Denise; Boylan-Kolchin, Michael

    2018-01-01

    Young massive star clusters (YMCs) spanning 104-108 M⊙ in mass generally have similar radial surface density profiles, with an outer power-law index typically between -2 and -3. This similarity suggests that they are shaped by scale-free physics at formation. Recent multi-physics MHD simulations of YMC formation have also produced populations of YMCs with this type of surface density profile, allowing us to narrow down the physics necessary to form a YMC with properties as observed. We show that the shallow density profiles of YMCs are a natural result of phase-space mixing that occurs as they assemble from the clumpy, hierarchically-clustered configuration imprinted by the star formation process. We develop physical intuition for this process via analytic arguments and collisionless N-body experiments, elucidating the connection between star formation physics and star cluster structure. This has implications for the early-time structure and evolution of proto-globular clusters, and prospects for simulating their formation in the FIRE cosmological zoom-in simulations.

  2. Models for symbiotic stars in the light of the data

    International Nuclear Information System (INIS)

    Friedjung, M.

    1982-01-01

    Different single and binary models of symbiotic stars are examined. Single star models encounter a number of problems, and binary models are probable. There are however difficulties in the interpretation of radial velocities. Accretion disks play a role in some cases, but winds especially from the cool component must be taken into account in realistic models. There is some evidence of excess heating of the outer layers of the cool component. Outbursts may be related to sudden changes in the characteristics of the cool star wind. (Auth.)

  3. Young and Waltzing Binary Stars

    Science.gov (United States)

    2001-10-01

    - 90k] [Normal - JPEG: 750 x 800 pix - 240k] ESO PR Photo 29e/01 ESO PR Photo 29e/01 [Preview - JPEG: 375 x 400 pix - 112k] [Normal - JPEG: 750 x 800 pix - 280k] ESO PR Photo 29c/01 ESO PR Photo 29c/01 [Preview - JPEG: 375 x 400 pix - 94k] [Normal - JPEG: 750 x 800 pix - 256k] ESO PR Photo 29f/01 ESO PR Photo 29f/01 [Preview - JPEG: 375 x 400 pix - 112k] [Normal - JPEG: 750 x 800 pix - 280k] Caption : Six individual frames from the ADONIS movie of the RXJ 0529.4+0041 eclipsing, binary stellar system, corresponding to the time around the "primary" and "secondary" eclipses, respectively. For a detailed explanation, read the text. ESO PR Video Clip 06/01 [512 x 448 pix MPEG] ESO PR Video Clip 06/01 (150 frames/00:06 min) [MPEG Video; 512 x 448 pix; 871 k] ESO Video Clip 06/01 shows the ADONIS images of the RXJ 0529.4+0041 eclipsing, binary stellar system, as recorded in three near-infrared filters (J, H, and K; to the left), with the observed light-curves (top) and a graphical representation of the system during a full orbit, as it would look like to a nearby observer. More details in the text The ADONIS images have been combined into an instructive movie ( PR Video Clip 06/01 ). The left-hand panel shows the eclipsing binary system (it is the upper right and brighter of the two objects; the light from the two stars merge into a single point of light) and the well visible third component (lower left), as they were recorded by ADONIS in the three different filter bands. As the two stars in the binary system move around each other in their orbits, eclipses occur and the brightness of the binary system clearly changes - it may help to play the movie several times to see this more clearly. For reference, the Universal Time (UT) and the orbital phase (increasing from 0 to 1 during a full revolution) are continuously displayed in the movie. The right-hand panel shows a build-up of the observed light curves for the binary system. It represents the brightness difference between

  4. Depleted depletion drives polymer swelling in poor solvent mixtures.

    Science.gov (United States)

    Mukherji, Debashish; Marques, Carlos M; Stuehn, Torsten; Kremer, Kurt

    2017-11-09

    Establishing a link between macromolecular conformation and microscopic interaction is a key to understand properties of polymer solutions and for designing technologically relevant "smart" polymers. Here, polymer solvation in solvent mixtures strike as paradoxical phenomena. For example, when adding polymers to a solvent, such that all particle interactions are repulsive, polymer chains can collapse due to increased monomer-solvent repulsion. This depletion induced monomer-monomer attraction is well known from colloidal stability. A typical example is poly(methyl methacrylate) (PMMA) in water or small alcohols. While polymer collapse in a single poor solvent is well understood, the observed polymer swelling in mixtures of two repulsive solvents is surprising. By combining simulations and theoretical concepts known from polymer physics and colloidal science, we unveil the microscopic, generic origin of this collapse-swelling-collapse behavior. We show that this phenomenon naturally emerges at constant pressure when an appropriate balance of entropically driven depletion interactions is achieved.

  5. Fundamental radiation effect on polymers energy transfer from radiation to polymer

    International Nuclear Information System (INIS)

    Seguchi, T.

    2007-01-01

    Polymer modification as cross-link, chain scission, and graft-polymerization by radiation is initiated by the quantum energy transferred from radiation to polymers. The active species for chemical reactions are produced through ionization or activation of polymer molecules for any radiation source. The energy transfer occurs mainly by ionic interaction between radiation and polymer molecule, and the contribution from the collision interaction is miner. The radiation of electromagnetic wave as X-ray or γ-ray generates the energetic electron which induces ionic interaction with polymer molecule. The energy loss profile along the penetration to polymer material is much different among the radiation sources of EB, γ-ray, and ion beams in the macroscopic mechanism. In this article, the behavior of single event, that is, the event induced by one electron, γ-ray, ion, and neutron is described by the macroscopic mechanism and by the microscopic mechanism. (authors)

  6. Confining multiple polymers between sticky walls: a directed walk model of two polymers

    International Nuclear Information System (INIS)

    Wong, Thomas; Rechnitzer, Andrew; Owczarek, Aleksander L

    2014-01-01

    We study a model of two polymers confined to a slit with sticky walls. More precisely, we find and analyse the exact solution of two directed friendly walks in such a geometry on the square lattice. We compare the infinite slit limit, in which the length of the polymer (thermodynamic limit) is taken to infinity before the width of the slit is considered to become large, to the opposite situation where the order of the limits are swapped, known as the half-plane limit when one polymer is modelled. In contrast with the single polymer system we find that the half-plane and infinite slit limits coincide. We understand this result in part due to the tethering of polymers on both walls of the slit. We also analyse the entropic force exerted by the polymers on the walls of the slit. Again the results differ significantly from single polymer models. In a single polymer system both attractive and repulsive regimes were seen, whereas in our two walk model only repulsive forces are observed. We do, however, see that the range of the repulsive force is dependent on the parameter values. This variation can be explained by the adsorption of the walks on opposite walls of the slit. (paper)

  7. Making star teams out of star players.

    Science.gov (United States)

    Mankins, Michael; Bird, Alan; Root, James

    2013-01-01

    Top talent is an invaluable asset: In highly specialized or creative work, for instance, "A" players are likely to be six times as productive as "B" players. So when your company has a crucial strategic project, why not multiply all that firepower and have a team of your best performers tackle it? Yet many companies hesitate to do this, believing that all-star teams don't work: Big egos will get in the way. The stars won't be able to work with one another. They'll drive the team Leader crazy. Mankins, Bird, and Root of Bain & Company believe it's time to set aside that thinking. They have seen all-star teams do extraordinary work. But there is a right way and a wrong way to organize them. Before you can even begin to assemble such a team, you need to have the right talent management practices, so you hire and develop the best people and know what they're capable of. You have to give the team appropriate incentives and leaders and support staffers who are stars in their own right. And projects that are ill-defined or small scale are not for all-star teams. Use them only for critical missions, and make sure their objectives are clear. Even with the right setup, things can still go wrong. The wise executive will take steps to manage egos, prune non-team-players, and prevent average coworkers from feeling completely undervalued. She will also invest a lot of time in choosing the right team Leader and will ask members for lots of feedback to monitor how that leader is doing.

  8. Stability of boson stars

    International Nuclear Information System (INIS)

    Gleiser, M.

    1988-01-01

    Boson stars are gravitationally bound, spherically symmetric equilibrium configurations of cold, free, or interacting complex scalar fields phi. As these equilibrium configurations naturally present local anisotropy, it is sensible to expect departures from the well-known stability criteria for fluid stars. With this in mind, I investigate the dynamical instability of boson stars against charge-conserving, small radial perturbations. Following the method developed by Chandrasekhar, a variational base for determining the eigenfrequencies of the perturbations is found. This approach allows one to find numerically an upper bound for the central density where dynamical instability occurs. As applications of the formalism, I study the stability of equilibrium configurations obtained both for the free and for the self-interacting [with V(phi) = (λ/4)chemical bondphichemical bond 4 ] massive scalar field phi. Instabilities are found to occur not for the critical central density as in fluid stars but for central densities considerably higher. The departure from the results for fluid stars is sensitive to the coupling λ; the higher the value of λ, the more the stability properties of boson stars approach those of a fluid star. These results are linked to the fractional anisotropy at the radius of the configuration

  9. From clouds to stars

    International Nuclear Information System (INIS)

    Elmegreen, B.G.

    1982-01-01

    At the present time, the theory of star formation must be limited to what we know about the lowest density gas, or about the pre-main sequence stars themselves. We would like to understand two basic processes: 1) how star-forming clouds are created from the ambient interstellar gas in the first place, and 2) how small parts of these clouds condense to form individual stars. We are interested also in knowing what pre-main sequence stars are like, and how they can interact with their environment. These topics are reviewed in what follows. In this series of lectures, what we know about the formation of stars is tentatively described. The lectures begin with a description of the interstellar medium, and then they proceed along the same direction that a young star would follow during its creation, namely from clouds through the collapse phase and onto the proto-stellar phase. The evolution of viscous disks and two models for the formation of the solar system are described in the last lectures. The longest lectures, and the topics that are covered in most detail, are not necessarily the ones for which we have the most information. Physically intuitive explanations for the various processes are emphasized, rather then mathematical explanations. In some cases, the mathematical aspects are developed as well, but only when the equations can be used to give important numerical values for comparison with the observations

  10. Nuclear physics of stars

    CERN Document Server

    Iliadis, Christian

    2007-01-01

    Thermonuclear reactions in stars is a major topic in the field of nuclear astrophysics, and deals with the topics of how precisely stars generate their energy through nuclear reactions, and how these nuclear reactions create the elements the stars, planets and - ultimately - we humans consist of. The present book treats these topics in detail. It also presents the nuclear reaction and structure theory, thermonuclear reaction rate formalism and stellar nucleosynthesis. The topics are discussed in a coherent way, enabling the reader to grasp their interconnections intuitively. The book serves bo

  11. Entropy Production of Stars

    Directory of Open Access Journals (Sweden)

    Leonid M. Martyushev

    2015-06-01

    Full Text Available The entropy production (inside the volume bounded by a photosphere of main-sequence stars, subgiants, giants, and supergiants is calculated based on B–V photometry data. A non-linear inverse relationship of thermodynamic fluxes and forces as well as an almost constant specific (per volume entropy production of main-sequence stars (for 95% of stars, this quantity lies within 0.5 to 2.2 of the corresponding solar magnitude is found. The obtained results are discussed from the perspective of known extreme principles related to entropy production.

  12. Strong Selective Adsorption of Polymers.

    Science.gov (United States)

    Ge, Ting; Rubinstein, Michael

    2015-06-09

    A scaling theory is developed for selective adsorption of polymers induced by the strong binding between specific monomers and complementary surface adsorption sites. By "selective" we mean specific attraction between a subset of all monomers, called "sticky", and a subset of surface sites, called "adsorption sites". We demonstrate that, in addition to the expected dependence on the polymer volume fraction ϕ bulk in the bulk solution, selective adsorption strongly depends on the ratio between two characteristic length scales, the root-mean-square distance l between neighboring sticky monomers along the polymer, and the average distance d between neighboring surface adsorption sites. The role of the ratio l / d arises from the fact that a polymer needs to deform to enable the spatial commensurability between its sticky monomers and the surface adsorption sites for selective adsorption. We study strong selective adsorption of both telechelic polymers with two end monomers being sticky and multisticker polymers with many sticky monomers between sticky ends. For telechelic polymers, we identify four adsorption regimes at l / d 1, we expect that the adsorption layer at exponentially low ϕ bulk consists of separated unstretched loops, while as ϕ bulk increases the layer crosses over to a brush of extended loops with a second layer of weakly overlapping tails. For multisticker chains, in the limit of exponentially low ϕ bulk , adsorbed polymers are well separated from each other. As l / d increases, the conformation of an individual polymer changes from a single-end-adsorbed "mushroom" to a random walk of loops. For high ϕ bulk , adsorbed polymers at small l / d are mushrooms that cover all the adsorption sites. At sufficiently large l / d , adsorbed multisticker polymers strongly overlap. We anticipate the formation of a self-similar carpet and with increasing l / d a two-layer structure with a brush of loops covered by a self-similar carpet. As l / d exceeds the

  13. Carbon Stars T. Lloyd Evans

    Indian Academy of Sciences (India)

    that the features used in estimating luminosities of ordinary giant stars are just those whose abundance ... This difference between the spectral energy distributions (SEDs) of CH stars and the. J stars, which belong to .... that the first group was binaries, as for the CH stars of the solar vicinity, while those of the second group ...

  14. On the illumination of neutron star accretion discs

    Science.gov (United States)

    Wilkins, D. R.

    2018-03-01

    The illumination of the accretion disc in a neutron star X-ray binary by X-rays emitted from (or close to) the neutron star surface is explored through general relativistic ray tracing simulations. The applicability of the canonical suite of relativistically broadened emission line models (developed for black holes) to discs around neutron stars is evaluated. These models were found to describe well emission lines from neutron star accretion discs unless the neutron star radius is larger than the innermost stable orbit of the accretion disc at 6 rg or the disc is viewed at high inclination, above 60° where shadowing of the back side of the disc becomes important. Theoretical emissivity profiles were computed for accretion discs illuminated by hotspots on the neutron star surfaces, bands of emission and emission by the entirety of the hot, spherical star surface and in all cases, the emissivity profile of the accretion disc was found to be well represented by a single power law falling off slightly steeper than r-3. Steepening of the emissivity index was found where the emission is close to the disc plane and the disc can appear truncated when illuminated by a hotspot at high latitude. The emissivity profile of the accretion disc in Serpens X-1 was measured and found to be consistent with a single unbroken power law with index q=3.5_{-0.4}^{+0.3}, suggestive of illumination by the boundary layer between the disc and neutron star surface.

  15. Polymer nanocomposites: polymer and particle dynamics

    KAUST Repository

    Kim, Daniel

    2012-01-01

    Polymer nanocomposites containing nanoparticles smaller than the random coil size of their host polymer chains are known to exhibit unique properties, such as lower viscosity and glass transition temperature relative to the neat polymer melt. It has been hypothesized that these unusual properties result from fast diffusion of the nanostructures in the host polymer, which facilitates polymer chain relaxation by constraint release and other processes. In this study, the effects of addition of sterically stabilized inorganic nanoparticles to entangled cis-1,4-polyisoprene and polydimethylsiloxane on the overall rheology of nanocomposites are discussed. In addition, insights about the relaxation of the host polymer chains and transport properties of nanoparticles in entangled polymer nanocomposites are presented. The nanoparticles are found to act as effective plasticizers for their entangled linear hosts, and below a critical, chemistry and molecular-weight dependent particle volume fraction, lead to reduced viscosity, glass transition temperature, number of entanglements, and polymer relaxation time. We also find that the particle motions in the polymer host are hyperdiffusive and at the nanoparticle length scale, the polymer host acts like a simple, ideal fluid and the composites\\' viscosity rises with increasing particle concentration. © 2012 The Royal Society of Chemistry.

  16. Short-Period Binary Stars: Observations, Analyses, and Results

    CERN Document Server

    Milone, Eugene F; Hobill, David W

    2008-01-01

    Short-period binaries run the gamut from widely separated stars to black-hole pairs; in between are systems that include neutron stars and white dwarfs, and partially evolved systems such as tidally distorted and over-contact systems. These objects represent stages of evolution of binary stars, and their degrees of separation provide critical clues to how their evolutionary paths differ from that of single stars. The widest and least distorted systems provide astronomers with the essential precise data needed to study all stars: mass and radius. The interactions of binary star components, on the other hand, provide a natural laboratory to observe how the matter in these stars behaves under different and often varying physical conditions. Thus, cataclysmic variables with and without overpoweringly strong magnetic fields, and stars with densities from that found in the Sun to the degenerate matter of white dwarfs and the ultra-compact states of neutron stars and black holes are all discussed. The extensive inde...

  17. AgSTAR

    Science.gov (United States)

    AgSTAR promotes biogas recovery projects, which generate renewable energy and other beneficial products from the anaerobic digestion of livestock manure and organic wastes while decreasing greenhouse gas emissions from the agriculture sector.

  18. Orbiting radiation stars

    International Nuclear Information System (INIS)

    Foster, Dean P; Langford, John; Perez-Giz, Gabe

    2016-01-01

    We study a spherically symmetric solution to the Einstein equations in which the source, which we call an orbiting radiation star (OR-star), is a compact object consisting of freely falling null particles. The solution avoids quantum scale regimes and hence neither relies upon nor ignores the interaction of quantum mechanics and gravitation. The OR-star spacetime exhibits a deep gravitational well yet remains singularity free. In fact, it is geometrically flat in the vicinity of the origin, with the flat region being of any desirable scale. The solution is observationally distinct from a black hole because a photon from infinity aimed at an OR-star escapes to infinity with a time delay. (paper)

  19. Cataclysmic Variable Stars

    Science.gov (United States)

    Hellier, Coel

    2001-01-01

    Cataclysmic variable stars are the most variable stars in the night sky, fluctuating in brightness continually on timescales from seconds to hours to weeks to years. The changes can be recorded using amateur telescopes, yet are also the subject of intensive study by professional astronomers. That study has led to an understanding of cataclysmic variables as binary stars, orbiting so closely that material transfers from one star to the other. The resulting process of accretion is one of the most important in astrophysics. This book presents the first account of cataclysmic variables at an introductory level. Assuming no previous knowledge of the field, it explains the basic principles underlying the variability, while providing an extensive compilation of cataclysmic variable light curves. Aimed at amateur astronomers, undergraduates, and researchers, the main text is accessible to those with no mathematical background, while supplementary boxes present technical details and equations.

  20. SX Phoenicis stars

    International Nuclear Information System (INIS)

    Nemec, J.; Mateo, M.

    1990-01-01

    The purpose of this paper is to review the basic observational information concerning SX Phe stars, including recent findings such as the discovery of about 40 low-luminosity variable stars in the Carina dwarf galaxy and identification of at least one SX Phe star in the metal-rich globular cluster M71. Direct evidence supporting the hypothesis that at least some BSs are binary systems comes from the discovery of two contact binaries and a semidetached binary among the 50 BSs in the globular cluster NGC 5466. Since these systems will coalesce on a time scale 500 Myr, it stands to reason that many (if not most) BSs are coalesced binaries. The merger hypothesis also explains the relatively-large masses (1.0-1.2 solar masses) that have been derived for SX Phe stars and halo BSs, and may also account for the nonvariable BSs in the 'SX Phe instability strip'. 132 refs

  1. Kinetic Parameters of Thermal Degradation of Polymers

    Institute of Scientific and Technical Information of China (English)

    朱新生; 程嘉祺

    2003-01-01

    The derivative expressions between activation energy (E) and the temperature at the maximum mass loss rate(Tmax) and between activation energy (E) and exponent (N) were deduced in the light of Arrhenius theory. It was found that the increase of activation energy results in the decrease of exponent and the increase of Tmax. The kinetic parameters were involved in the analysis of the thermal degradation of several polymers. The degradation kinetics of these polymers well complied with the prediction of the derivative expressions for the polymer degradation with single mechanism dominated.

  2. Microring embedded hollow polymer fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Linslal, C. L., E-mail: linslal@gmail.com; Sebastian, S.; Mathew, S.; Radhakrishnan, P.; Nampoori, V. P. N.; Girijavallabhan, C. P.; Kailasnath, M. [International School of Photonics, Cochin University of Science and Technology, Cochin 22 (India)

    2015-03-30

    Strongly modulated laser emission has been observed from rhodamine B doped microring resonator embedded in a hollow polymer optical fiber by transverse optical pumping. The microring resonator is fabricated on the inner wall of a hollow polymer fiber. Highly sharp lasing lines, strong mode selection, and a collimated laser beam are observed from the fiber. Nearly single mode lasing with a side mode suppression ratio of up to 11.8 dB is obtained from the strongly modulated lasing spectrum. The microring embedded hollow polymer fiber laser has shown efficient lasing characteristics even at a propagation length of 1.5 m.

  3. Flexible ITO-Free Polymer Solar Cells

    DEFF Research Database (Denmark)

    Angmo, Dechan; Krebs, Frederik C

    2013-01-01

    Indium tin oxide (ITO) is the material-of-choice for transparent conductors in any optoelectronic application. However, scarce resources of indium and high market demand of ITO have created large price fluctuations and future supply concerns. In polymer solar cells (PSCs), ITO is the single......-cost alternatives to ITO suitable for use in PSCs. These alternatives belong to four material groups: polymers; metal and polymer composites; metal nanowires and ultra-thin metal films; and carbon nanotubes and graphene. We further present the progress of employing these alternatives in PSCs and identify future...

  4. Sounds of a Star

    Science.gov (United States)

    2001-06-01

    Acoustic Oscillations in Solar-Twin "Alpha Cen A" Observed from La Silla by Swiss Team Summary Sound waves running through a star can help astronomers reveal its inner properties. This particular branch of modern astrophysics is known as "asteroseismology" . In the case of our Sun, the brightest star in the sky, such waves have been observed since some time, and have greatly improved our knowledge about what is going on inside. However, because they are much fainter, it has turned out to be very difficult to detect similar waves in other stars. Nevertheless, tiny oscillations in a solar-twin star have now been unambiguously detected by Swiss astronomers François Bouchy and Fabien Carrier from the Geneva Observatory, using the CORALIE spectrometer on the Swiss 1.2-m Leonard Euler telescope at the ESO La Silla Observatory. This telescope is mostly used for discovering exoplanets (see ESO PR 07/01 ). The star Alpha Centauri A is the nearest star visible to the naked eye, at a distance of a little more than 4 light-years. The new measurements show that it pulsates with a 7-minute cycle, very similar to what is observed in the Sun . Asteroseismology for Sun-like stars is likely to become an important probe of stellar theory in the near future. The state-of-the-art HARPS spectrograph , to be mounted on the ESO 3.6-m telescope at La Silla, will be able to search for oscillations in stars that are 100 times fainter than those for which such demanding observations are possible with CORALIE. PR Photo 23a/01 : Oscillations in a solar-like star (schematic picture). PR Photo 23b/01 : Acoustic spectrum of Alpha Centauri A , as observed with CORALIE. Asteroseismology: listening to the stars ESO PR Photo 23a/01 ESO PR Photo 23a/01 [Preview - JPEG: 357 x 400 pix - 96k] [Normal - JPEG: 713 x 800 pix - 256k] [HiRes - JPEG: 2673 x 3000 pix - 2.1Mb Caption : PR Photo 23a/01 is a graphical representation of resonating acoustic waves in the interior of a solar-like star. Red and blue

  5. Spectrophotometry of carbon stars

    International Nuclear Information System (INIS)

    Gow, C.E.

    1975-01-01

    Observations of over one hundred carbon stars have been made with the Indiana rapid spectral scanner in the red and, when possible, in the visual and blue regions of the spectrum. Five distinct subtypes of carbon stars (Barium, CH, R, N, and hydrogen deficient) are represented in the list of observed stars, although the emphasis was placed on the N stars when the observations were made. The rapid scanner was operated in the continuous sweep mode with the exit slit set at twenty angstroms, however, seeing fluctuations and guiding errors smear the spectrum to an effective resolution of approximately thirty angstroms. Nightly observations of Hayes standard stars yielded corrections for atmospheric extinction and instrumental response. The reduction scheme rests on two assumptions, that thin clouds are gray absorbers and the wavelength dependence of the sky transparency does not change during the course of the night. Several stars have been observed in the blue region of the spectrum with the Indiana SIT vidicon spectrometer at two angstroms resolution. It is possible to derive a color temperature for the yellow--red spectral region by fitting a black-body curve through two chosen continuum points. Photometric indices were calculated relative to the blackbody curve to measure the C 2 Swan band strength, the shape of the CN red (6,1) band to provide a measure of the 12 C/ 13 C isotope ratio, and in the hot carbon stars (Barium, CH, and R stars) the strength of an unidentified feature centered at 400 angstroms. An extensive abundance grid of model atmospheres was calculated using a modified version of the computer code ATLAS

  6. Young Stars with SALT

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, Adric R. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Alam, Munazza K.; Rice, Emily L.; Cruz, Kelle L. [Department of Astrophysics, The American Museum of Natural History, New York, NY 10024 (United States); Henry, Todd J., E-mail: arr@caltech.edu [RECONS Institute, Chambersburg, PA (United States)

    2017-05-10

    We present a spectroscopic and kinematic analysis of 79 nearby M dwarfs in 77 systems. All of these dwarfs are low-proper-motion southern hemisphere objects and were identified in a nearby star survey with a demonstrated sensitivity to young stars. Using low-resolution optical spectroscopy from the Red Side Spectrograph on the South African Large Telescope, we have determined radial velocities, H-alpha, lithium 6708 Å, and potassium 7699 Å equivalent widths linked to age and activity, and spectral types for all of our targets. Combined with astrometric information from literature sources, we identify 44 young stars. Eighteen are previously known members of moving groups within 100 pc of the Sun. Twelve are new members, including one member of the TW Hydra moving group, one member of the 32 Orionis moving group, 9 members of Tucana-Horologium, one member of Argus, and two new members of AB Doradus. We also find 14 young star systems that are not members of any known groups. The remaining 33 star systems do not appear to be young. This appears to be evidence of a new population of nearby young stars not related to the known nearby young moving groups.

  7. STAR facility tritium accountancy

    International Nuclear Information System (INIS)

    Pawelko, R. J.; Sharpe, J. P.; Denny, B. J.

    2008-01-01

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5 g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed. (authors)

  8. Diamond turning of thermoplastic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Smith, E.; Scattergood, R.O.

    1988-12-01

    Single point diamond turning studies were made using a series of thermoplastic polymers with different glass transition temperatures. Variations in surface morphology and surface roughness were observed as a function of cutting speed. Lower glass transition temperatures facilitate smoother surface cuts and better surface finish. This can be attributed to the frictional heating that occurs during machining. Because of the very low glass transition temperatures in polymeric compared to inorganic glasses, the precision machining response can be very speed sensitive.

  9. Relaxation near Supermassive Black Holes Driven by Nuclear Spiral Arms: Anisotropic Hypervelocity Stars, S-stars, and Tidal Disruption Events

    Energy Technology Data Exchange (ETDEWEB)

    Hamers, Adrian S. [Institute for Advanced Study, School of Natural Sciences, Einstein Drive, Princeton, NJ 08540 (United States); Perets, Hagai B., E-mail: hamers@ias.edu [Technion—Israel Institute of Technology, Haifa 32000 (Israel)

    2017-09-10

    Nuclear spiral arms are small-scale transient spiral structures found in the centers of galaxies. Similarly to their galactic-scale counterparts, nuclear spiral arms can perturb the orbits of stars. In the case of the Galactic center (GC), these perturbations can affect the orbits of stars and binaries in a region extending to several hundred parsecs around the supermassive black hole (SMBH), causing diffusion in orbital energy and angular momentum. This diffusion process can drive stars and binaries to close approaches with the SMBH, disrupting single stars in tidal disruption events (TDEs), or disrupting binaries, leaving a star tightly bound to the SMBH and an unbound star escaping the galaxy, i.e., a hypervelocity star (HVS). Here, we consider diffusion by nuclear spiral arms in galactic nuclei, specifically the Milky Way GC. We determine nuclear-spiral-arm-driven diffusion rates using test-particle integrations and compute disruption rates. Our TDE rates are up to 20% higher compared to relaxation by single stars. For binaries, the enhancement is up to a factor of ∼100, and our rates are comparable to the observed numbers of HVSs and S-stars. Our scenario is complementary to relaxation driven by massive perturbers. In addition, our rates depend on the inclination of the binary with respect to the Galactic plane. Therefore, our scenario provides a novel potential source for the observed anisotropic distribution of HVSs. Nuclear spiral arms may also be important for accelerating the coalescence of binary SMBHs and for supplying nuclear star clusters with stars and gas.

  10. Asteroseismology of white dwarf stars

    OpenAIRE

    Córsico, A. H.

    2014-01-01

    Most of low- and intermediate-mass stars that populate the Universe will end their lives as white dwarf stars. These ancient stellar remnants have encrypted inside a precious record of the evolutionary history of the progenitor stars, providing a wealth of information about the evolution of stars, star formation, and the age of a variety of stellar populations, such as our Galaxy and open and globular clusters. While some information like surface chemical composition, temperature and gravity ...

  11. Stellar model chromospheres. XIII - M dwarf stars

    Science.gov (United States)

    Giampapa, M. S.; Worden, S. P.; Linsky, J. L.

    1982-01-01

    Single-component, homogeneous model chromospheres that are consistent with high-resolution profiles of the Ca II K line calibrated in surface flux units for three dMe and 2 dM stars observed at quiescent times are constructed. The models reveal several systematic trends. Large values of the ratio of T(min) to T(eff) are derived, indicating a large amount of nonradiative heating present in the upper photospheres of M dwarf stars. It is also found that the lower chromospheric temperature gradient is similar for all the M dwarf stars. Since for the models here the chromospheric K line emission strength is most sensitive to the total amount of chromospheric material present within the approximate temperature range T(min)-6000 K, increasing the emission strength is not simply due to increasing chromospheric temperature gradients. It is also found that both the electron density and electron temperature at one thermalization length in the K line below the top of the chromospheres are greater in the dMe stars than in the dM stars. The M dwarf models here have microturbulent velocities between 1 and 2 km/sec, which are much smaller than for solar chromosphere models.

  12. Tidal Love Numbers of Neutron Stars

    International Nuclear Information System (INIS)

    Hinderer, Tanja

    2008-01-01

    For a variety of fully relativistic polytropic neutron star models we calculate the star's tidal Love number k 2 . Most realistic equations of state for neutron stars can be approximated as a polytrope with an effective index n ∼ 0.5-1.0. The equilibrium stellar model is obtained by numerical integration of the Tolman-Oppenheimer-Volkhov equations. We calculate the linear l = 2 static perturbations to the Schwarzschild spacetime following the method of Thorne and Campolattaro. Combining the perturbed Einstein equations into a single second-order differential equation for the perturbation to the metric coefficient g tt and matching the exterior solution to the asymptotic expansion of the metric in the star's local asymptotic rest frame gives the Love number. Our results agree well with the Newtonian results in the weak field limit. The fully relativistic values differ from the Newtonian values by up to ∼24%. The Love number is potentially measurable in gravitational wave signals from inspiralling binary neutron stars.

  13. The nature of OH/IR stars

    International Nuclear Information System (INIS)

    Herman, J.

    1983-01-01

    In this work masers in evolved stars are studied, in particular the emission from the OH radical. The time variability of the OH masers was measured over a period of five years with the Dwingeloo Radio Telescope. These single-dish observations proved that most of the underlying stars are very long period variables, apparently a kind of extension of the well-known long period Mira variables. The mean OH fluxes and epochs were obtained as well as a confirmation of the radiative coupling between the maser and the star (by comparison with infrared data provided by other observers), the degree of saturation, and, most important of all, a determination of the linear dimensions of the circumstellar shells. Multi-element interferometer observations were made in order to study the spatial structure of OH masers. By combining the phase lag measurements and the spatial extent distances to individual stars could be determined with a high, unprecedented accuracy. Infrared broad-band photometry was done in the wavelength region from 3 μm to 20 μm, where most of the energy of these objects is radiated. The space density and galactic distribution of OH/IR stars are discussed and compared with the appearance of OH masers in the solar neighbourhood. (Auth.)

  14. Degradable conjugated polymers for the selective sorting of semiconducting carbon nanotubes

    Science.gov (United States)

    Gopalan, Padma; Arnold, Michael Scott; Kansiusarulsamy, Catherine Kanimozhi; Brady, Gerald Joseph; Shea, Matthew John

    2018-04-10

    Conjugated polymers composed of bi-pyridine units linked to 9,9-dialkyl fluorenyl-2,7-diyl units via imine linkages along the polymer backbone are provided. Also provided are semiconducting single-walled carbon nanotubes coated with the conjugated polymers and methods of sorting and separating s-SWCNTs from a sample comprising a mixture of s-SWCNTs and metallic single-walled carbon nanotubes using the conjugated polymers.

  15. A robust star identification algorithm with star shortlisting

    Science.gov (United States)

    Mehta, Deval Samirbhai; Chen, Shoushun; Low, Kay Soon

    2018-05-01

    A star tracker provides the most accurate attitude solution in terms of arc seconds compared to the other existing attitude sensors. When no prior attitude information is available, it operates in "Lost-In-Space (LIS)" mode. Star pattern recognition, also known as star identification algorithm, forms the most crucial part of a star tracker in the LIS mode. Recognition reliability and speed are the two most important parameters of a star pattern recognition technique. In this paper, a novel star identification algorithm with star ID shortlisting is proposed. Firstly, the star IDs are shortlisted based on worst-case patch mismatch, and later stars are identified in the image by an initial match confirmed with a running sequential angular match technique. The proposed idea is tested on 16,200 simulated star images having magnitude uncertainty, noise stars, positional deviation, and varying size of the field of view. The proposed idea is also benchmarked with the state-of-the-art star pattern recognition techniques. Finally, the real-time performance of the proposed technique is tested on the 3104 real star images captured by a star tracker SST-20S currently mounted on a satellite. The proposed technique can achieve an identification accuracy of 98% and takes only 8.2 ms for identification on real images. Simulation and real-time results depict that the proposed technique is highly robust and achieves a high speed of identification suitable for actual space applications.

  16. Hyperon-mixed neutron star matter and neutron stars

    CERN Document Server

    Nishizaki, S; Yamamoto, Y

    2002-01-01

    Effective SIGMA sup - n and SIGMA sup -SIGMA sup - interactions are derived from the G-matrix calculations for left brace n+SIGMA sup -right brace matter and employed in the investigation of hyperon mixing in neutron star matter. The threshold densities rho sub t (Y) at which hyperons start to appear are between 2 rho sub 0 and 3 rho sub 0 (where rho sub 0 is the normal nuclear density) for both LAMBDA and SIGMA sup - , and their fractions increase rapidly with baryon density, reaching 10% already for rho approx = rho sub t + rho sub 0. The mechanism of hyperon mixing and single-particle properties, such as the effective mass and the potential depth, are analyzed taking into account the roles of YN and NN interactions. The resulting equation of state is found to be too soft to sustain the observed neutron star mass M sub o sub b sub s =1.44(solar mass). We discuss the reason for this and stress the necessity of the ''extra repulsion'' for YN and YY interactions to resolve this crucial problem. It is remarked ...

  17. The galactic distribution of Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Hidayat, B.; Supelli, K.; Hucht, K.A. van der

    1982-01-01

    On the basis of the most recent compilation of narrow-band photometry and absolute visual magnitudes of Wolf-Rayet stars, and adopting a normal interstellar extinction law in all directions, the galactic distribution of 132 of the 159 known galactic WR stars is presented and discussed. The spiral structure is found to be more clearly pronounced than in earlier studies. Furthermore the authors find an indication of two spiral arms at r=4 and 6 kpc. There appears to be an asymmetry of the z-distribution of single stars with respect to galactic longitude. The location of the WC8.5 and WC9 stars between 4.5 and 9 kpc from the galactic center is discussed in the context of Maeder's red supergiant to WR star scenario. (Auth.)

  18. Breaking strain of neutron star crust and gravitational waves.

    Science.gov (United States)

    Horowitz, C J; Kadau, Kai

    2009-05-15

    Mountains on rapidly rotating neutron stars efficiently radiate gravitational waves. The maximum possible size of these mountains depends on the breaking strain of the neutron star crust. With multimillion ion molecular dynamics simulations of Coulomb solids representing the crust, we show that the breaking strain of pure single crystals is very large and that impurities, defects, and grain boundaries only modestly reduce the breaking strain to around 0.1. Because of the collective behavior of the ions during failure found in our simulations, the neutron star crust is likely very strong and can support mountains large enough so that their gravitational wave radiation could limit the spin periods of some stars and might be detectable in large-scale interferometers. Furthermore, our microscopic modeling of neutron star crust material can help analyze mechanisms relevant in magnetar giant flares and microflares.

  19. Hypervelocity stars from young stellar clusters in the Galactic Centre

    Science.gov (United States)

    Fragione, G.; Capuzzo-Dolcetta, R.; Kroupa, P.

    2017-05-01

    The enormous velocities of the so-called hypervelocity stars (HVSs) derive, likely, from close interactions with massive black holes, binary stars encounters or supernova explosions. In this paper, we investigate the origin of HVSs as consequence of the close interaction between the Milky Way central massive black hole and a passing-by young stellar cluster. We found that both single and binary HVSs may be generated in a burst-like event, as the cluster passes near the orbital pericentre. High-velocity stars will move close to the initial cluster orbital plane and in the direction of the cluster orbital motion at the pericentre. The binary fraction of these HVS jets depends on the primordial binary fraction in the young cluster. The level of initial mass segregation determines the value of the average mass of the ejected stars. Some binary stars will merge, continuing their travel across and out of the Galaxy as blue stragglers.

  20. Synthesis and Characterization of Well-Defined Regular Star Polyisoprenes with 3, 4, 6 and 8 Arms

    KAUST Repository

    Ratkanthwar, Kedar R.; Hadjichristidis, Nikolaos; Pudukulathan, Zubaidha

    2013-01-01

    Three series of regular well-defined star polyisoprenes (PIs) with 3, 4 and 6 arms (each series: same arm molecular weight) have been synthesized by anionic polymerization high vacuum techniques and chlorosilane chemistry. In addition, three linear PIs with practically the double arm molecular weight of the corresponding series (2-arm star PIs) have been synthesized, as well as one 8-arm star PI. All intermediate (arms) and final (stars) products have been characterized by size exclusion chromatography (SEC), SEC-multi-angle laser light scattering (SEC-MALLS) and nuclear magnetic resonance (NMR) spectroscopy. The Tg of the star PIs was determined by differential scanning calorimetry. These model polymeric materials are essential for polymer physics and polymer physical chemistry in order to establish the structure/property relationships.

  1. Wolf-Rayet Stars

    Science.gov (United States)

    Hamann, Wolf-Rainer; Sander, Andreas; Todt, Helge

    Nearly 150 years ago, the French astronomers Charles Wolf and Georges Rayet described stars with very conspicuous spectra that are dominated by bright and broad emission lines. Meanwhile termed Wolf-Rayet Stars after their discoverers, those objects turned out to represent important stages in the life of massive stars. As the first conference in a long time that was specifically dedicated to Wolf-Rayet stars, an international workshop was held in Potsdam, Germany, from 1.-5. June 2015. About 100 participants, comprising most of the leading experts in the field as well as as many young scientists, gathered for one week of extensive scientific exchange and discussions. Considerable progress has been reported throughout, e.g. on finding such stars, modeling and analyzing their spectra, understanding their evolutionary context, and studying their circumstellar nebulae. While some major questions regarding Wolf-Rayet stars still remain open 150 years after their discovery, it is clear today that these objects are not just interesting stars as such, but also keystones in the evolution of galaxies. These proceedings summarize the talks and posters presented at the Potsdam Wolf-Rayet workshop. Moreover, they also include the questions, comments, and discussions emerging after each talk, thereby giving a rare overview not only about the research, but also about the current debates and unknowns in the field. The Scientific Organizing Committee (SOC) included Alceste Bonanos (Athens), Paul Crowther (Sheffield), John Eldridge (Auckland), Wolf-Rainer Hamann (Potsdam, Chair), John Hillier (Pittsburgh), Claus Leitherer (Baltimore), Philip Massey (Flagstaff), George Meynet (Geneva), Tony Moffat (Montreal), Nicole St-Louis (Montreal), and Dany Vanbeveren (Brussels).

  2. Models of symbiotic stars

    Science.gov (United States)

    Friedjung, Michael

    1993-01-01

    One of the most important features of symbiotic stars is the coexistence of a cool spectral component that is apparently very similar to the spectrum of a cool giant, with at least one hot continuum, and emission lines from very different stages of ionization. The cool component dominates the infrared spectrum of S-type symbiotics; it tends to be veiled in this wavelength range by what appears to be excess emission in D-type symbiotics, this excess usually being attributed to circumstellar dust. The hot continuum (or continua) dominates the ultraviolet. X-rays have sometimes also been observed. Another important feature of symbiotic stars that needs to be explained is the variability. Different forms occur, some variability being periodic. This type of variability can, in a few cases, strongly suggest the presence of eclipses of a binary system. One of the most characteristic forms of variability is that characterizing the active phases. This basic form of variation is traditionally associated in the optical with the veiling of the cool spectrum and the disappearance of high-ionization emission lines, the latter progressively appearing (in classical cases, reappearing) later. Such spectral changes recall those of novae, but spectroscopic signatures of the high-ejection velocities observed for novae are not usually detected in symbiotic stars. However, the light curves of the 'symbiotic nova' subclass recall those of novae. We may also mention in this connection that radio observations (or, in a few cases, optical observations) of nebulae indicate ejection from symbiotic stars, with deviations from spherical symmetry. We shall give a historical overview of the proposed models for symbiotic stars and make a critical analysis in the light of the observations of symbiotic stars. We describe the empirical approach to models and use the observational data to diagnose the physical conditions in the symbiotics stars. Finally, we compare the results of this empirical

  3. WO-Type Wolf-Rayet Stars: the Last Hurrah of the Most Massive Stars?

    Science.gov (United States)

    Massey, Philip

    2014-10-01

    WO-type Wolf-Rayet (WR) stars are considered the final evolutionary stage of the highest mass stars, immediate precursors to Type Ic (He-poor) core-collapse supernovae. These WO stars are rare, and until recently only 6 were known. Our knowledge about their physical properties is mostly based on a single object, Sand 2 in the LMC. It was the only non-binary WO star both bright and unreddened enough that its FUV and NUV spectra could be obtained by FUSE and HST/FOS. A non-LTE analysis showed that Sand 2 is very hot and its (C+O)/He abundance ratio is higher than that found in WC-type WRs, suggesting it is indeed highly evolved. However, the O VI resonance doublet in the FUV required a considerably cooler temperature (120,000 K) model than did the optical O VI lines (170,000 K). Further, the enhanced chemical abundances did not match the predictions of stellar evolutionary models. Another non-LTE study found a 3x higher (C+O)/He abundance ratio and a cooler temperature. We have recently discovered two other bright, single, and lightly reddened WOs in the LMC, allowing us to take a fresh look at these important objects. Our newly found WOs span a range in excitation type, from WO1 (the highest) to WO4 (the lowest). Sand 2 is intermediate (WO3). We propose to use COS to obtain FUV and NUV data of all three stars for as comprehensive a study as is currently possible. These UV data will be combined with our optical Magellan spectra for a detailed analysis with CMFGEN with the latest atomic data. Knowing the degree of chemical evolution of these WO stars is crucial to determining their evolutionary status, and thus in understanding the final stages of the most massive stars.

  4. THE GALACTIC O-STAR SPECTROSCOPIC SURVEY (GOSSS). II. BRIGHT SOUTHERN STARS

    International Nuclear Information System (INIS)

    Sota, A.; Apellániz, J. Maíz; Alfaro, E. J.; Morrell, N. I.; Barbá, R. H.; Arias, J. I.; Walborn, N. R.; Gamen, R. C.

    2014-01-01

    We present the second installment of GOSSS, a massive spectroscopic survey of Galactic O stars, based on new homogeneous, high signal-to-noise ratio, R ∼ 2500 digital observations from both hemispheres selected from the Galactic O-Star Catalog (GOSC). In this paper we include bright stars and other objects drawn mostly from the first version of GOSC, all of them south of δ = –20°, for a total number of 258 O stars. We also revise the northern sample of Paper I to provide the full list of spectroscopically classified Galactic O stars complete to B = 8, bringing the total number of published GOSSS stars to 448. Extensive sequences of exceptional objects are given, including the early Of/WN, O Iafpe, Ofc, ON/OC, Onfp, Of?p, and Oe types, as well as double/triple-lined spectroscopic binaries. The new spectral subtype O9.2 is also discussed. The magnitude and spatial distributions of the observed sample are analyzed. We also present new results from OWN, a multi-epoch high-resolution spectroscopic survey coordinated with GOSSS that is assembling the largest sample of Galactic spectroscopic massive binaries ever attained. The OWN data combined with additional information on spectroscopic and visual binaries from the literature indicate that only a very small fraction (if any) of the stars with masses above 15-20 M ☉ are born as single systems. In the future we will publish the rest of the GOSSS survey, which is expected to include over 1000 Galactic O stars

  5. Understanding constraint release in star/linear polymer blends

    KAUST Repository

    Shivokhin, M. E.; Van Ruymbeke, Evelyne; Bailly, Christian M E; Kouloumasis, D.; Hadjichristidis, Nikolaos; Likhtman, Alexei E.

    2014-01-01

    of the two main models describing the corresponding relaxation mechanisms within the framework of the tube picture (Doi's tube dilation and Viovy's constraint release by Rouse motions of the tube). Our main objective is to understand and model the stress

  6. Polymer systems testing: Final report

    International Nuclear Information System (INIS)

    1993-01-01

    Los Alamos National Laboratory (LANL) is in the process of decontaminating lead shielding material. The procedure involves abrasive surface etching of the shielding to remove the outer layer of lead that contains the majority of the radioactive contaminants. This procedure generates a small volume of mixed waste in the form of a wet residue containing lead, abrasive grit (Al 2 O 3 ), uranium and water. IC Technologies, Inc. (ICT) has developed several processes for the treatment of mixed wastes involving stabilizing/encapsulating the waste in a polymer monolith. The objective of the test program was to verify the applicability of ICT's technology to this specific waste stream and provide LANL baseline data on the performance of polymer encapsulation techniques. Polymer microencapsulation of lead shielding/blasting grit (surrogate) mixed waste was evaluated. Two polymers, melamine formaldehyde and polyester xylene, were used to examine the effect of waste loading on Toxicity Characteristic Leaching Procedure (TCLP) extract Pb concentration. Six levels of waste loading were evaluated by eleven tests. Significant reduction in Pb solubility during TCLP was achieved. Additional optimization to the single-stage microencapsulation technique utilized will be necessary to mitigate the toxic (RCRA) characteristic of the waste

  7. Circulation of Stars

    Science.gov (United States)

    Boitani, P.

    2016-01-01

    Since the dawn of man, contemplation of the stars has been a primary impulse in human beings, who proliferated their knowledge of the stars all over the world. Aristotle sees this as the product of primeval and perennial “wonder” which gives rise to what we call science, philosophy, and poetry. Astronomy, astrology, and star art (painting, architecture, literature, and music) go hand in hand through millennia in all cultures of the planet (and all use catasterisms to explain certain phenomena). Some of these developments are independent of each other, i.e., they take place in one culture independently of others. Some, on the other hand, are the product of the “circulation of stars.” There are two ways of looking at this. One seeks out forms, the other concentrates on the passing of specific lore from one area to another through time. The former relies on archetypes (for instance, with catasterism), the latter constitutes a historical process. In this paper I present some of the surprising ways in which the circulation of stars has occurred—from East to West, from East to the Far East, and from West to East, at times simultaneously.

  8. Four new Delta Scuti stars

    Science.gov (United States)

    Schutt, R. L.

    1991-01-01

    Four new Delta Scuti stars are reported. Power, modified into amplitude, spectra, and light curves are used to determine periodicities. A complete frequency analysis is not performed due to the lack of a sufficient time base in the data. These new variables help verify the many predictions that Delta Scuti stars probably exist in prolific numbers as small amplitude variables. Two of these stars, HR 4344 and HD 107513, are possibly Am stars. If so, they are among the minority of variable stars which are also Am stars.

  9. Microgel polymer composite fibres

    OpenAIRE

    Kehren, Dominic

    2014-01-01

    In this thesis some novel ideas and advancements in the field of polymer composite fibres, specifically microgel-based polymer composite fibres have been achieved. The main task was to investigate and understand the electrospinning process of microgels and polymers and the interplay of parameter influences, in order to fabricate reproducible and continuously homogenous composite fibres. The main aim was to fabricate a composite material which combines the special properties of polymer fibres ...

  10. Diketopyrrolopyrrole Polymers for Organic Solar Cells.

    Science.gov (United States)

    Li, Weiwei; Hendriks, Koen H; Wienk, Martijn M; Janssen, René A J

    2016-01-19

    Conjugated polymers have been extensively studied for application in organic solar cells. In designing new polymers, particular attention has been given to tuning the absorption spectrum, molecular energy levels, crystallinity, and charge carrier mobility to enhance performance. As a result, the power conversion efficiencies (PCEs) of solar cells based on conjugated polymers as electron donor and fullerene derivatives as electron acceptor have exceeded 10% in single-junction and 11% in multijunction devices. Despite these efforts, it is notoriously difficult to establish thorough structure-property relationships that will be required to further optimize existing high-performance polymers to their intrinsic limits. In this Account, we highlight progress on the development and our understanding of diketopyrrolopyrrole (DPP) based conjugated polymers for polymer solar cells. The DPP moiety is strongly electron withdrawing and its polar nature enhances the tendency of DPP-based polymers to crystallize. As a result, DPP-based conjugated polymers often exhibit an advantageously broad and tunable optical absorption, up to 1000 nm, and high mobilities for holes and electrons, which can result in high photocurrents and good fill factors in solar cells. Here we focus on the structural modifications applied to DPP polymers and rationalize and explain the relationships between chemical structure and organic photovoltaic performance. The DPP polymers can be tuned via their aromatic substituents, their alkyl side chains, and the nature of the π-conjugated segment linking the units along the polymer chain. We show that these building blocks work together in determining the molecular conformation, the optical properties, the charge carrier mobility, and the solubility of the polymer. We identify the latter as a decisive parameter for DPP-based organic solar cells because it regulates the diameter of the semicrystalline DPP polymer fibers that form in the photovoltaic blends with

  11. A STAR IN THE M31 GIANT STREAM: THE HIGHEST NEGATIVE STELLAR VELOCITY KNOWN

    International Nuclear Information System (INIS)

    Caldwell, Nelson; Kenyon, Scott J.; Morrison, Heather; Harding, Paul; Schiavon, Ricardo; Rose, James A.

    2010-01-01

    We report on a single star, B030D, observed as part of a large survey of objects in M31, which has the unusual radial velocity of -780 km s -1 . Based on details of its spectrum, we find that the star is an F supergiant, with a circumstellar shell. The evolutionary status of the star could be one of a post-main-sequence close binary, a symbiotic nova, or less likely, a post-asymptotic giant branch star, which additional observations could help sort out. Membership of the star in the Andromeda Giant Stream can explain its highly negative velocity.

  12. Neutron star/red giant encounters in globular clusters

    International Nuclear Information System (INIS)

    Bailyn, C.D.

    1988-01-01

    The author presents a simple expression for the amount by which xsub(crit) is diminished as a star evolves xsub(crit) Rsub(crit)/R*, where Rsub(crit) is the maximum distance of closest approach between two stars for which the tidal energy is sufficient to bind the system, and R* is the radius of the star on which tides are being raised. Also it is concluded that tidal capture of giants by neutron stars resulting in binary systems is unlikely in globular clusters. However, collisions between neutron stars and red giants, or an alternative process involving tidal capture of a main-sequence star into an initially detached binary system, may result either in rapidly rotating neutron stars or in white dwarf/neutron star binaries. (author)

  13. Thermosetting Phthalocyanine Polymers

    Science.gov (United States)

    Fohlen, G.; Parker, J.; Achar, B.

    1985-01-01

    Group of phthalocyanine polymers resist thermal degradation. Polymers expected semiconducting. Principal applications probably in molded or laminated parts that have to withstand high temperatures. Polymers made from either of two classes of monomer: Bisphthalonitriles with imide linkages or Bisphthalonitriles with ester-imide linkages.

  14. based gel polymer electrolytes

    Indian Academy of Sciences (India)

    (PVdF) as a host polymer, lithium perchlorate (LiClO4), lithium triflate ... TG/DTA studies showed the thermal stability of the polymer electrolytes. .... are observed while comparing pure XRD spectra with .... batteries as its operating temperature is normally in the .... chain ion movements and the conductivity of the polymer.

  15. Aerogel / Polymer Composite Materials

    Science.gov (United States)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)

    2017-01-01

    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  16. Heavy Metal Stars

    Science.gov (United States)

    2001-08-01

    La Silla Telescope Detects Lots of Lead in Three Distant Binaries Summary Very high abundances of the heavy element Lead have been discovered in three distant stars in the Milky Way Galaxy . This finding strongly supports the long-held view that roughly half of the stable elements heavier than Iron are produced in common stars during a phase towards the end of their life when they burn their Helium - the other half results from supernova explosions. All the Lead contained in each of the three stars weighs about as much as our Moon. The observations show that these "Lead stars" - all members of binary stellar systems - have been more enriched with Lead than with any other chemical element heavier than Iron. This new result is in excellent agreement with predictions by current stellar models about the build-up of heavy elements in stellar interiors. The new observations are reported by a team of Belgian and French astronomers [1] who used the Coude Echelle Spectrometer on the ESO 3.6-m telescope at the La Silla Observatory (Chile). PR Photo 26a/01 : A photo of HD 196944 , one of the "Lead stars". PR Photo 26b/01 : A CES spectrum of HD 196944 . The build-up of heavy elements Astronomers and physicists denote the build-up of heavier elements from lighter ones as " nucleosynthesis ". Only the very lightest elements (Hydrogen, Helium and Lithium [2]) were created at the time of the Big Bang and therefore present in the early universe. All the other heavier elements we now see around us were produced at a later time by nucleosynthesis inside stars. In those "element factories", nuclei of the lighter elements are smashed together whereby they become the nuclei of heavier ones - this process is known as nuclear fusion . In our Sun and similar stars, Hydrogen is being fused into Helium. At some stage, Helium is fused into Carbon, then Oxygen, etc. The fusion process requires positively charged nuclei to move very close to each other before they can unite. But with increasing

  17. Atomic diffusion in stars

    CERN Document Server

    Michaud, Georges; Richer, Jacques

    2015-01-01

    This book gives an overview of atomic diffusion, a fundamental physical process, as applied to all types of stars, from the main sequence to neutron stars. The superficial abundances of stars as well as their evolution can be significantly affected. The authors show where atomic diffusion plays an essential role and how it can be implemented in modelling.  In Part I, the authors describe the tools that are required to include atomic diffusion in models of stellar interiors and atmospheres. An important role is played by the gradient of partial radiative pressure, or radiative acceleration, which is usually neglected in stellar evolution. In Part II, the authors systematically review the contribution of atomic diffusion to each evolutionary step. The dominant effects of atomic diffusion are accompanied by more subtle effects on a large number of structural properties throughout evolution. One of the goals of this book is to provide the means for the astrophysicist or graduate student to evaluate the importanc...

  18. GRACE star camera noise

    Science.gov (United States)

    Harvey, Nate

    2016-08-01

    Extending results from previous work by Bandikova et al. (2012) and Inacio et al. (2015), this paper analyzes Gravity Recovery and Climate Experiment (GRACE) star camera attitude measurement noise by processing inter-camera quaternions from 2003 to 2015. We describe a correction to star camera data, which will eliminate a several-arcsec twice-per-rev error with daily modulation, currently visible in the auto-covariance function of the inter-camera quaternion, from future GRACE Level-1B product releases. We also present evidence supporting the argument that thermal conditions/settings affect long-term inter-camera attitude biases by at least tens-of-arcsecs, and that several-to-tens-of-arcsecs per-rev star camera errors depend largely on field-of-view.

  19. Molecules in stars

    International Nuclear Information System (INIS)

    Tsuji, T.

    1986-01-01

    Recently, research related to molecules in stars has rapidly expanded because of progress in related fields. For this reason, it is almost impossible to cover all the topics related to molecules in stars. Thus, here the authors focus their attention on molecules in the atmospheres of cool stars and do not cover in any detail topics related to circumstellar molecules originating from expanding envelopes located far from the stellar surface. However, the authors do discuss molecules in quasi-static circumstellar envelopes (a recently discovered new component of circumstellar envelopes) located near the stellar surface, since molecular lines originating from such envelopes show little velocity shift relative to photospheric lines, and hence they directly affect the interpretation and analysis of stellar spectra

  20. CARBON NEUTRON STAR ATMOSPHERES

    International Nuclear Information System (INIS)

    Suleimanov, V. F.; Klochkov, D.; Werner, K.; Pavlov, G. G.

    2014-01-01

    The accuracy of measuring the basic parameters of neutron stars is limited in particular by uncertainties in the chemical composition of their atmospheres. For example, the atmospheres of thermally emitting neutron stars in supernova remnants might have exotic chemical compositions, and for one of them, the neutron star in Cas A, a pure carbon atmosphere has recently been suggested by Ho and Heinke. To test this composition for other similar sources, a publicly available detailed grid of the carbon model atmosphere spectra is needed. We have computed this grid using the standard local thermodynamic equilibrium approximation and assuming that the magnetic field does not exceed 10 8  G. The opacities and pressure ionization effects are calculated using the Opacity Project approach. We describe the properties of our models and investigate the impact of the adopted assumptions and approximations on the emergent spectra