WorldWideScience

Sample records for single spanwise wire

  1. Control of flow past a circular cylinder via a spanwise surface wire: effect of the wire scale

    Energy Technology Data Exchange (ETDEWEB)

    Ekmekci, Alis [University of Toronto Institute for Aerospace Studies, Toronto, ON (Canada); Rockwell, Donald [Lehigh University, Department of Mechanical Engineering, Bethlehem, PA (United States)

    2011-09-15

    Flow phenomena induced by a single spanwise wire on the surface of a circular cylinder are investigated via a cinema technique of particle image velocimetry (PIV). The primary aim of this investigation is to assess the effect of the wire scale. To this end, consideration is given to wires with different diameters that are 0.5, 1.2, and 2.9% of the cylinder diameter. The Reynolds number has a subcritical value of 10,000. Compared to the thickness of the unperturbed boundary layer developing around the cylinder between 5 and 75 from the forward stagnation point, the former two wires have smaller scales and the latter has a larger scale. Two angular locations of the wire, defined with respect to the forward stagnation point of the cylinder, are found to be critical. When the wire is located at these critical angles, either the most significant extension or the contraction of the time-mean separation bubble occurs in the near wake. These critical angles depend on the wire scale: the smaller the wire, the larger the critical angle. The small-scale and large-scale wires that have diameters of 1.2 and 2.9% of the cylinder diameter induce bistable shear-layer oscillations between different separation modes when placed at their respective critical angles corresponding to maximum extension of the near-wake bubble. These oscillations have irregular time intervals that are much longer than the time scale associated with the classical Karman instability. Moreover, the large-scale wire can either significantly attenuate or intensify the Karman mode of vortex shedding at the critical states; in contrast, the small-scale wires do not notably alter the strength of the Karman instability. (orig.)

  2. Single wire drift chamber design

    Energy Technology Data Exchange (ETDEWEB)

    Krider, J.

    1987-03-30

    This report summarizes the design and prototype tests of single wire drift chambers to be used in Fermilab test beam lines. The goal is to build simple, reliable detectors which require a minimum of electronics. Spatial resolution should match the 300 ..mu..m rms resolution of the 1 mm proportional chambers that they will replace. The detectors will be used in beams with particle rates up to 20 KHz. Single track efficiency should be at least 99%. The first application will be in the MT beamline, which has been designed for calibration of CDF detectors. A set of four x-y modules will be used to track and measure the momentum of beam particles.

  3. Near-field optical spectroscopy of single quantum wires

    Science.gov (United States)

    Harris, T. D.; Gershoni, D.; Grober, R. D.; Pfeiffer, L.; West, K.; Chand, N.

    1996-02-01

    Low temperature near-field scanning optical microscopy is used for spectroscopic studies of single, nanometer dimension, cleaved edge overgrown quantum wires. A direct experimental comparison between a two dimensional system and a single genuinely one dimensional quantum wire system, inaccessible to conventional far field optical spectroscopy, is enabled by the enhanced spatial resolution. We show that the photoluminescence of a single quantum wire is easily distinguished from that of the surrounding quantum well. Emission from localized centers is shown to dominate the photoluminescence from both wires and wells at low temperatures. A factor of 3 absorption enhancement for these wires compared to the wells is concluded from the photoluminescence excitation data.

  4. Drag reduction in a turbulent boundary layer on a flexible sheet undergoing a spanwise traveling wave motion

    Science.gov (United States)

    Itoh, Motoyuki; Tamano, Shinji; Yokota, Kazuhiko; Taniguchi, Shinya

    The effect of a spanwise traveling-wave motion on a zero-pressure-gradient turbulent boundary layer over a flexible sheet was investigated at low Reynolds numbers using a single hot-wire anemometer for turbulence statistics and two laser displacement sensors for displacements of the flexible sheet. It was found that the log-law region of the mean velocity on the flexible sheet was slightly narrower compared with a rigid wall. The energy spectra of streamwise velocity fluctuations on the flexible sheet undergoing the spanwise traveling-wave motion were smaller in a region of frequency which corresponded to the bursting frequency in the canonical wall turbulence. This indicates that the bursting event near the flexible sheet was directly affected by the surface wave motion. It was revealed that a drag reduction of up to 7.5% could be obtained by the spanwise traveling-wave motion, estimating the friction coefficients through the growth rate of the momentum thickness.

  5. Optimization of the Single Staggered Wire and Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Arsana I Made

    2016-01-01

    Full Text Available Wire and tube heat exchanger consists of a coiled tube, and wire is welded on the two sides of it in normal direction of the tube. Generally,wire and tube heat exchanger uses inline wire arrangement between the two sides, whereas in this study, it used staggered wire arrangement that reduces the restriction of convection heat transfer. This study performed the optimization of single staggered wire and tube heat exchanger to increase the capacity and reduce the mass of the heat exchanger. Optimization was conducted with the Hooke-Jeeves method, which aims to optimize the geometry of the heat exchanger, especially on the diameter (dw and the distance between wires (pw. The model developed to present heat transfer correlations on single staggered wire and tube heat exchanger was valid. The maximum optimization factor obtained when the diameter wire was 0.9 mm and the distance between wires (pw was 11 mm with the fref value = 1.5837. It means that the optimized design only using mass of 59,10 % and could transfer heat about 98,5 % from the basis design.

  6. Single Wire Detector Performance Over One Year of Operation

    CERN Document Server

    Hervas Aguilar, David Alberto

    2014-01-01

    Abstract When ionizing radiation passes through gas chambers in single wire detectors gas molecules separate into ions and electrons. By applying a strong localized electric field near the single wire an avalanche of electrons is created and it can be collected. The current produced in the wire is then proportional to the energy of the particle detected. Nevertheless, many factors can contribute to detector aging effects which are visible in a loss of gain caused by deposition of contaminants on the collecting wire. This study consists on novel data analysis techniques used to process large amounts of data produced by two simultaneously running single wire detectors. Aging effects are analyzed while environmental fluctuations are corrected for. A series of scripts carry out data filtering, data matching, corrections, and finally trend plotting by using ROOT’s extensive libraries developed at CERN.

  7. Spatial averaging of streamwise and spanwise velocity measurements in wall-bounded turbulence using ∨- and ×-probes

    International Nuclear Information System (INIS)

    Philip, Jimmy; Baidya, Rio; Hutchins, Nicholas; Monty, Jason P; Marusic, Ivan

    2013-01-01

    The effect of finite dimensions of ∨- and ×-probes is investigated for the measurement of mean and variances of streamwise and spanwise velocities in wall-turbulence. The probes are numerically simulated using a Direct Numerical Simulation database of channel flow at a friction Reynolds number (Re τ ) of 934 by varying the probe parameters, namely, the wire-lengths (l), the angle between the wires (θ) and the spacing between the wires (Δs). A single inclined wire is first studied to isolate the effect of l and θ. Analytical expressions for the variances of the streamwise and spanwise velocities are derived by applying a linear-box-type filter to the unfiltered velocity field for both ∨- and ×-probes (at θ = 45°, and arbitrary l and Δs). A similar expression for the streamwise variance in the case of a single inclined wire (for arbitrary l and θ) is also derived. These analytical expressions, supplemented with a model for the correlation over the wire-length, compare favourably with the numerical simulation results, and more importantly explain various trends that are observed in the variances with varying parameters. Close to the wall (where the errors are generally higher) the errors in spanwise variances of the ×-probes are much lower than the ∨-probes, owing to an ‘error-cancelling’ mechanism present in ×-probes due to the effect of l and Δs, as well as due to the procedure of recovering the velocities from two wires. The errors in the streamwise variances are comparable for both ∨- and ×-probes. On the other hand, mean velocities are measured with almost no error by the ∨-probe, whereas the ×-probe induces finite errors in mean velocities due to the fact that the two wires experience different mean velocities in ×-probes unlike ∨-probes. These results are explained using the corresponding analytical results, which also show that under the effect of a linear filter, measured variances depend only on the fluctuating velocities

  8. Positioning and joining of organic single-crystalline wires

    Science.gov (United States)

    Wu, Yuchen; Feng, Jiangang; Jiang, Xiangyu; Zhang, Zhen; Wang, Xuedong; Su, Bin; Jiang, Lei

    2015-01-01

    Organic single-crystal, one-dimensional materials can effectively carry charges and/or excitons due to their highly ordered molecule packing, minimized defects and eliminated grain boundaries. Controlling the alignment/position of organic single-crystal one-dimensional architectures would allow on-demand photon/electron transport, which is a prerequisite in waveguides and other optoelectronic applications. Here we report a guided physical vapour transport technique to control the growth, alignment and positioning of organic single-crystal wires with the guidance of pillar-structured substrates. Submicrometre-wide, hundreds of micrometres long, highly aligned, organic single-crystal wire arrays are generated. Furthermore, these organic single-crystal wires can be joined within controlled angles by varying the pillar geometries. Owing to the controllable growth of organic single-crystal one-dimensional architectures, we can present proof-of-principle demonstrations utilizing joined wires to allow optical waveguide through small radii of curvature (internal angles of ~90–120°). Our methodology may open a route to control the growth of organic single-crystal one-dimensional materials with potential applications in optoelectronics. PMID:25814032

  9. Spatial perturbation of a wing-tip vortex using pulsed span-wise jets

    Science.gov (United States)

    Heyes, A. L.; Smith, D. A. R.

    The separation distance required between transport aircraft to avoid wake vortices remains a limiting factor on airport capacity. The dissipation of the wake can be accelerated by perturbing co-operative instabilities between multiple pairs of vortices. This paper presents the results of a preliminary experimental investigation into the use of pulsed span-wise air jets in the wing tip to perturb a single tip vortex in the very near field. Velocity measurements were made using PIV and hot-wire anemometry. The results demonstrate that the vortex position can be modulated at frequencies up to 50 Hz and, as such, the method shows promise for forcing instability in multiple vortex wakes.

  10. Nanoline templates for single atom wires on Si(001)

    Energy Technology Data Exchange (ETDEWEB)

    Koester, Sigrun A.; Owen, James H.G.; Bianco, Francois; Mazur, Daniel; Renner, Chrisoph [Universite de Geneve, Section Physique/DPMC, Geneve (Switzerland); Rodriguez-Prieto, Alvaro; Bowler, David R. [London Centre for Nanotechnology (LCN), University College London (United Kingdom)

    2010-07-01

    Low dimensional structures are of wide scientific and technological interest. The physics of single atom metallic wires is already described in detail by theory, but a more systematic experimental verification is still desirable. The experimental problems are mainly caused by the difficulties of growing electronically isolated wires which is necessary to test the expected properties from existing theories. Here we introduce templates on a Si(001) surface which enable the growth of self-assembled single atom wires on top of them. The main template consists of a Si reconstruction called the Haiku structure which develops underneath self-assembled Bi nanowires. By hydrogenation the Si surface can be passivated and additionally the Bi dimers are stripped off while the underlying reconstruction of the Si surface remains intact. In addition the Bi nanowire by itself can be considered as a template.

  11. Dosimetry of wires and single ribbons of Iridium 192

    International Nuclear Information System (INIS)

    Mazzucco, L.D.

    1998-01-01

    The objective of this work is in order to present in table formats the dosimetry of wires and single ribbons of Iridium with lengths 1-12 cm for each one linear source along the bisector which is perpendicular at tissue sources (water) computed for linear activity 1 mCi/cm in the case of wires, and 1 mCi/seed for ribbons. The above tables are of direct use, adaptable at particular cases so they facilitate logarithmic graphics of doses in function of the distance for interpolation and use in the treatments planning. It was shown that for two sources with identical linear activity and total length, one of the equidistant seeds at 1 cm (ribbon) and one wire on the other hand, the differences in dose rates in near positions can be about the 15% so corroborating that it is not possible to use wire tables for seeds neither vice versa. Moreover it was elaborated tables of practical direct use for dose rate in water at c Gy/hr for wires and Ribbons 1-12 cm length and from 0.5-10 cm of distance in the perpendicular bisector at the Iridium implant. (Author)

  12. Comparative investigation on magnetic capture selectivity between single wires and a real matrix

    Science.gov (United States)

    Ren, Peng; Chen, Luzheng; Liu, Wenbo; Shao, Yanhai; Zeng, Jianwu

    2018-03-01

    High gradient magnetic separation (HGMS) achieves the effective separation to fine weakly magnetic minerals through a magnetic matrix. In practice, the matrix is made of numerous magnetic wires, so that an insight into the magnetic capture characteristics of single wires to magnetic minerals would provide a basic foundation for the optimum design and choice of real matrix. The magnetic capture selectivity of cylindrical and rectangular single wires in concentrating ilmenite minerals were investigated through a cyclic pulsating HGMS separator with its key operating parameters (magnetic induction, feed velocity and pulsating frequency) varied, and their capture selectivity characteristics were parallelly compared with that of a real 3.0 mm cylindrical matrix. It was found that the cylindrical single wires have superior capture selectivity to the rectangular one; and, the single wires and the real matrix have basically the same capture trend with changes in the key operating parameters, but the single wires have a much higher capture selectivity than that of real matrix.

  13. Epitaxially aligned cuprous oxide nanowires for all-oxide, single-wire solar cells.

    Science.gov (United States)

    Brittman, Sarah; Yoo, Youngdong; Dasgupta, Neil P; Kim, Si-in; Kim, Bongsoo; Yang, Peidong

    2014-08-13

    As a p-type semiconducting oxide that can absorb visible light, cuprous oxide (Cu2O) is an attractive material for solar energy conversion. This work introduces a high-temperature, vapor-phase synthesis that produces faceted Cu2O nanowires that grow epitaxially along the surface of a lattice-matched, single-crystal MgO substrate. Individual wires were then fabricated into single-wire, all-oxide diodes and solar cells using low-temperature atomic layer deposition (ALD) of TiO2 and ZnO films to form the heterojunction. The performance of devices made from pristine Cu2O wires and chlorine-exposed Cu2O wires was investigated under one-sun and laser illumination. These faceted wires allow the fabrication of well-controlled heterojunctions that can be used to investigate the interfacial properties of all-oxide solar cells.

  14. Ultra-Low Power Optical Transistor Using a Single Quantum Dot Embedded in a Photonic Wire

    DEFF Research Database (Denmark)

    Nguyen, H.A.; Grange, T.; Malik, N.S.

    2017-01-01

    Using a single InAs quantum dot embedded in a GaAs photonic wire, we realize a giant non-linearity between two optical modes to experimentally demonstrate an all-optical transistor triggered by 10 photons.......Using a single InAs quantum dot embedded in a GaAs photonic wire, we realize a giant non-linearity between two optical modes to experimentally demonstrate an all-optical transistor triggered by 10 photons....

  15. Screech Tones from Rectangular Jets with Spanwise Oblique Shock-Cell Structures

    Science.gov (United States)

    Raman, Ganesh

    1996-01-01

    Understanding screech is especially important for the design of advanced aircraft because screech can cause sonic fatigue failure of aircraft structures. Although the connection between shock-cell spacing and screech frequency is well understood, the relation between non-uniformities in the shock-cell structures and the resulting amplitude, mode, and steadiness of screech have remained unexplored. This paper addresses the above issues by intentionally producing spanwise (larger nozzle dimension) variations in the shock-cell structures and studying the resulting spanwise screech mode. The spanwise oblique shock-cell structures were produced using imperfectly expanded convergent-divergent rectangular nozzles (aspect ratio = 5) with nonuniform exit geometries. Three geometries were studied: (a) a nozzle with a spanwise uniform edge, (b) a nozzle with a spanwise oblique (single bevelled) edge, and (c) a nozzle that had two spanwise oblique (double bevelled) cuts to form an arrowhead-shaped nozzle. For all nozzles considered, the screech mode was antisymmetric in the transverse (smaller nozzle dimension) direction allowing focus on changes in the spanwise direction. Three types of spanwise modes were observed: symmetric (1), antisymmetric (2), and oblique (3). The following significant results emerged: (1) for all cases the screech mode corresponds with the spanwise shock-cell structure, (2) when multiple screech modes are present, the technique presented here makes it possible to distinguish between coexisting and mutually exclusive modes, (3) the strength of shocks 3 and 4 influences the screech source amplitude and determines whether screech is unsteady. The results presented here offer hope for a better understanding of screech and for tailoring shock-containing jets to minimize fatigue failure of aircraft components.

  16. Rotary slanted single wire CTA – a useful tool for 3D flows investigations

    Directory of Open Access Journals (Sweden)

    Jonáš P.

    2013-04-01

    Full Text Available The procedure is described of experimental investigation of a statistically stationary generally nonisothermal 3D flow by means of a constant temperature anemometer (CTA using single slanted heated wire, rotary round the fixed axis. The principle of this procedure is quite clear. The change of the heated wire temperature modifies ratio of CTA sensitivities to temperature and velocity fluctuations. Turning the heated wire through a proper angle changes the sensitivity to components of the instantaneous velocity vector. Some recommendations are presented based on long time experiences, e.g. on the choice of probe, on the probe calibration, to the measurement organization and to the evaluation of results.

  17. Development of CRID [Cerenkov Ring Imaging Detector] single electron wire detector

    International Nuclear Information System (INIS)

    Aston, D.; Bean, A.; Bienz, T.

    1989-02-01

    We describe the R and D effort to define the design parameters, method of construction and experimental results from the single electron wire detectors. These detectors will be used for particle identification using the Cerenkov Ring Imaging techniques in the SLD experiment at SLAC. We present measurements of pulse heights for several gases as a function of gas gain, charge division performance on a single electron signal using both 7 μm and 33 μm diameter carbon wires, photon feedback in TMAE laden gas, average pulse shape, and its comparison with the predicted shape and cross-talk. In addition, we present results of wire aging tests, and other tests associated with construction of this unusual type of wire chamber. 12 refs., 9 figs

  18. Atomic Configuration and Conductance of Tantalum Single-Atom Contacts and Single-Atom Wires

    Science.gov (United States)

    Kizuka, Tokushi; Murata, Satoshi

    2017-09-01

    The tensile deformation and successive fracture process of tantalum (Ta) nanocontacts (NCs) while applying various bias voltages was observed in situ by high-resolution transmission electron microscopy using a picometer-precision dual-goniometer nanotip manipulation technique. Simultaneously, the variation in the conductance of the contacts was measured. The NCs were thinned atom by atom during mechanical elongation, resulting in the formation of two types of single-atom cross-sectional contacts: single-atom contacts (SACs) and single-atom wires (SAWs), in which two electrodes, typically nanotips, are connected by a single shared atom or a one-line array of single atoms, respectively. When the bias voltage was 11 mV, Ta SACs were formed during tensile deformation; however, elongation of the single-atom cross-sectional part did not occur. In contrast, when the bias voltage was increased to 200 mV, Ta SACs were first formed during the tensile deformation, followed by elongation of the single-atom cross section up to a length of three atoms, i.e., the formation of SAWs. Thus, the present observation shows that Ta SAWs are stable even at such a high bias voltage. The conductance of the SACs was approximately 0.10G0 (G0 = 2e2/h, where e is the electron charge and h is Planck’s constant), whereas the conductance of the three-atom-long SAWs ranged from 0.01G0 to 0.22G0. Lower conductances were observed for linear SAWs, whereas higher conductances resulted from kinked SAWs.

  19. Coupling of single quantum emitters to plasmons propagating on mechanically etched wires

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Huck, Alexander; Lu, Ying-Wei

    2013-01-01

    We demonstrate the coupling of a single nitrogen vacancy center in a nanodiamond to propagating plasmonic modes of mechanically etched silver nanowires. The mechanical etch is performed on single crystalline silver nanoplates by the tip of an atomic force microscope cantilever to produce wires...

  20. The influnece of the partial single reduction on mechanical properties wires made from trip steel with 0,43 % C

    Directory of Open Access Journals (Sweden)

    S. Wiewiórowska

    2015-01-01

    Full Text Available Large strain inhomogeneity is caused by the shape of deformation zone of die and by the friction between tool and deformed wire for multistage wire drawing processes. The influence on the value of the redundant strain by the use of different partial single reductions during all wire drawing process was observed. This problem is particularly important for TRIP steel wires drawing processes because the strain intensity influences on the speed of retained austenite transformation into martensite.

  1. Optimization of Single-Sensor Two-State Hot-Wire Anemometer Transmission Bandwidth.

    Science.gov (United States)

    Ligęza, Paweł

    2008-10-28

    Hot-wire anemometric measurements of non-isothermal flows require the use of thermal compensation or correction circuitry. One possible solution is a two-state hot-wire anemometer that uses the cyclically changing heating level of a single sensor. The area in which flow velocity and fluid temperature can be measured is limited by the dimensions of the sensor's active element. The system is designed to measure flows characterized by high velocity and temperature gradients, although its transmission bandwidth is very limited. In this study, we propose a method to optimize the two-state hot-wire anemometer transmission bandwidth. The method is based on the use of a specialized constanttemperature system together with variable dynamic parameters. It is also based on a suitable measurement cycle paradigm. Analysis of the method was undertaken using model testing. Our results reveal a possible significant broadening of the two-state hot-wire anemometer's transmission bandwidth.

  2. Single and nested tungsten-wire-array dynamics and applications to inertial confinement fusion

    Science.gov (United States)

    Cuneo, Michael

    2005-10-01

    Wire array z-pinches show great promise as x-ray sources for indirect-drive inertial confinement fusion (ICF). The double z-pinch hohlraum, for example, has produced capsule radiation drive symmetric to within 3%. This ICF concept will require that each of two 20-mm-diam arrays scale to x-ray powers ˜1 PW, to drive high-yield (>0.2 GJ) capsules to ignition. High-yield fusion will also require a temporally shaped radiation pulse to drive a low-entropy capsule implosion. Recently, improved understanding of high current (11-19 MA) single and nested wire-array dynamics has enabled significant progress towards these goals. As at lower currents, a single wire array (and both the outer and inner arrays of a nested system) shows a wire ablation phase, axial modulation of the ablation rate, a larger ablation rate for larger diameter wires, trailing mass and trailing current. These processes and others produce a broad mass profile that may impact the optimization of x-ray output for single and nested arrays. Our new insights into wire array physics have led to 20-mm-diam single and nested arrays with peak powers of 150-190 TW at implosion times of 55-90 ns, increased from 60-120 TW at 95-110 ns, improving power scaling. Radiation pulse shapes required for 3-shock isentropic compression of high-yield ICF capsules have also been demonstrated with nested wire arrays operating in current-transfer mode. In collaboration with: D.B. Sinars, R.A. Vesey, E.M. Waisman, W.A. Stygar, D.E. Bliss, S.V. Lebedev, J.P. Chittenden, P.V. Sasorov, R.W. Lemke, E.P. Yu, B.B. Afeyan, G.R. Bennett, M.G. Mazarakis, M.R. Lopez, M.E. Savage, J.L. Porter, T.A. Mehlhorn.

  3. Photonic wires and trumpets for ultrabright single photon sources

    DEFF Research Database (Denmark)

    Gérard, Jean-Michel; Claudon, Julien; Bleuse, Joël

    2013-01-01

    as to tailor their radiation diagram in the far-field. We highlight the novel “photonic trumpet” geometry, which provides a clean Gaussian beam, and is much less sensitive to fabrication imperfections than the more common needle-like taper geometry. S4Ps based on a single QD in a PW with integrated bottom...

  4. METHOD FOR MANUFACTURING A SINGLE CRYSTAL NANO-WIRE.

    NARCIS (Netherlands)

    Van Den Berg, Albert; Bomer, Johan; Carlen Edwin, Thomas; Chen, Songyue; Kraaijenhagen Roderik, Adriaan; Pinedo Herbert, Michael

    2011-01-01

    A method for manufacturing a single crystal nano-structure is provided comprising the steps of providing a device layer with a 100 structure on a substrate; providing a stress layer onto the device layer; patterning the stress layer along the 110 direction of the device layer; selectively removing

  5. METHOD FOR MANUFACTURING A SINGLE CRYSTAL NANO-WIRE

    NARCIS (Netherlands)

    Van Den Berg, Albert; Bomer, Johan; Carlen Edwin, Thomas; Chen, Songyue; Kraaijenhagen Roderik, Adriaan; Pinedo Herbert, Michael

    2012-01-01

    A method for manufacturing a single crystal nano-structure includes providing a device layer with a 100 structure on a substrate; providing a stress layer onto the device layer; patterning the stress layer along the 110 direction of the device layer; selectively removing parts of the stress layer to

  6. Spatial averaging of velocity measurements in wall-bounded turbulence: single hot-wires

    International Nuclear Information System (INIS)

    Philip, Jimmy; Hutchins, Nicholas; Monty, Jason P; Marusic, Ivan

    2013-01-01

    Recent advancements in velocity measurements to understand high Reynolds number (Re) wall turbulence have pushed the boundaries of sensor size required to resolve the smallest scales. We present here a framework for studying the effect of finite sensor size on velocity measurements, and scrutinize in detail the behaviour of single-wire hot-wires. Starting with a general linear filter, expressions for the filtered correlation, spectrum and the corresponding variance are derived. Considering the special case of a box-type filter and a simple model for the two-point correlation, theoretical results are developed, which are favourably compared with the numerical simulation of hot-wires based on the turbulent channel flow direct numerical simulation databases. The results clarify the reason why previous studies found the approximate shape of the spectra not resolved by hot-wires as Gaussian. The length scale based on the correlation over the sensor length is found to be the appropriate length scale for characterizing averaging due to finite sensor size. The efficacy of the linear box filter is established by comparing the numerical simulation of hot-wires with experiments conducted at matched sensor lengths and Re in a channel flow, at least for hot-wire lengths of less than 40 in viscous scaling. Finally, a model of the streamwise two-point correlation is presented, which is employed to estimate the filtering effect on the peak of the streamwise velocity variances for a range of Re, and the model results compare favourably with that obtained from measurements. Even though the theoretical results are compared here in the case of wall turbulence, they are suitable for hot-wire measurements in turbulent flows in general. (paper)

  7. Investigation of Photovoltaic Properties of Single Core-Shell GaN/InGaN Wires.

    Science.gov (United States)

    Messanvi, A; Zhang, H; Neplokh, V; Julien, F H; Bayle, F; Foldyna, M; Bougerol, C; Gautier, E; Babichev, A; Durand, C; Eymery, J; Tchernycheva, M

    2015-10-07

    We report the investigation of the photovoltaic properties of core-shell GaN/InGaN wires. The radial structure is grown on m-plane {11̅00} facets of self-assembled c̅-axis GaN wires elaborated by metal-organic vapor phase epitaxy (MOVPE) on sapphire substrates. The conversion efficiency of wires with radial shell composed of thick In0.1Ga0.9N layers and of 30× In0.18Ga0.82N/GaN quantum wells are compared. We also investigate the impact of the contact nature and layout on the carrier collection and photovoltaic performances. The contact optimization results in an improved conversion efficiency of 0.33% and a fill factor of 83% under 1 sun (AM1.5G) on single wires with a quantum well-based active region. Photocurrent spectroscopy demonstrates that the response ascribed to the absorption of InGaN/GaN quantum wells appears at wavelengths shorter than 440 nm.

  8. Single Particle Transport Through Carbon Nanotube Wires: Effect of Defects and Polyhedral Cap

    Science.gov (United States)

    Anantram, M. P.; Govidan, T. R.

    1999-01-01

    The ability to manipulate carbon nanotubes with increasing precision has enabled a large number of successful electron transport experiments. These studies have primarily focussed on characterizing transport through both metallic and semiconducting wires. Tans et al. demonstrated ballistic transport in single-wall nanotubes for the first time, although the experimental configuration incurred large contact resistance. Subsequently, methods of producing low contact resistances have been developed and two terminal conductances smaller than 50 k-ohms have been repeatably demonstrated in single-wall and multi-wall nanotubes. In multi-wall nanotubes, Frank et al. demonstrated a resistance of approximately h/2e(exp 2) in a configuration where the outermost layer made contact to a liquid metal. This was followed by the work of de Pablo et al. where a resistance of h(bar)/27e(exp 2) (approximately 478 ohms) was measured in a configuration where electrical contact was made to many layers of a multi-wall nanotube. Frank et al. and Pablo et al. note that each conducting layer contributes a conductance of only 2e(exp 2)/h, instead of the 4e(exp 2)/h that a single particle mode counting picture yields. These small resistances have been obtained in microns long nanotubes, making them the best conducting molecular wires to date. The large conductance of nanotube wires stems from the fact that the crossing bands of nanotubes are robust to defect scattering.

  9. Cu-Al-Ni Shape Memory Single Crystal Wires with High Transformation Temperature

    Science.gov (United States)

    Hautcoeur, Alain; Fouché, Florian; Sicre, Jacques

    2016-01-01

    CN-250X is a new material with higher performance than Nickel-Titanium Shape Memory Alloy (SMA). For space mechanisms, the main disadvantage of Nickel-Titanium Shape Memory Alloy is the limited transformation temperature. The new CN-250X Nimesis alloy is a Cu-Al-Ni single crystal wire available in large quantity because of a new industrial process. The triggering of actuators made with this Cu-Al-Ni single crystal wire can range from ambient temperature to 200 C in cycling and even to 250 C in one-shot mode. Another advantage of CN-250X is a better shape recovery (8 to 10%) than Ni-Ti (6 to 7%). Nimesis is the first company able to produce this type of material with its new special industrial process. A characterization study is presented in this work, including the two main solicitation modes for this material: tensile and torsion. Different tests measure the shape recovery of Cu-Al-Ni single crystals wires during heating from room temperature to a temperature higher than temperature of end of martensitic transformation.

  10. One-dimensional Si-in-Si(001) template for single-atom wire growth

    Science.gov (United States)

    Owen, J. H. G.; Bianco, F.; Köster, S. A.; Mazur, D.; Bowler, D. R.; Renner, Ch.

    2010-08-01

    Single atom metallic wires of arbitrary length are of immense technological and scientific interest. We present atomic-resolution scanning tunneling microscope data of a silicon-only template, which modeling predicts to enable the self-organized growth of isolated micrometer long surface and subsurface single-atom chains. It consists of a one-dimensional, defect-free Si reconstruction four dimers wide—the Haiku core—formed by hydrogenation of self-assembled Bi-nanolines on Si(001) terraces, independent of any step edges. We discuss the potential of this Si-in-Si template as an appealing alternative to vicinal surfaces for nanoscale patterning.

  11. EXPERIMENTAL DETERMINATION OF LONGITUDINAL COMPONENT OF MAGNETIC FLUX IN FERROMAGNETIC WIRE OF SINGLE-CORE POWER CABLE ARMOUR

    Directory of Open Access Journals (Sweden)

    I.A. Kostiukov

    2014-12-01

    Full Text Available A problem of determination of effective longitudinal magnetic permeability of single core power cable armour is defined. A technique for experimental determination of longitudinal component of magnetic flux in armour spiral ferromagnetic wire is proposed.

  12. Noise-based logic hyperspace with the superposition of 2 states in a single wire

    Science.gov (United States)

    Kish, Laszlo B.; Khatri, Sunil; Sethuraman, Swaminathan

    2009-05-01

    In the introductory paper [L.B. Kish, Phys. Lett. A 373 (2009) 911], about noise-based logic, we showed how simple superpositions of single logic basis vectors can be achieved in a single wire. The superposition components were the N orthogonal logic basis vectors. Supposing that the different logic values have “on/off” states only, the resultant discrete superposition state represents a single number with N bit accuracy in a single wire, where N is the number of orthogonal logic vectors in the base. In the present Letter, we show that the logic hyperspace (product) vectors defined in the introductory paper can be generalized to provide the discrete superposition of 2 orthogonal system states. This is equivalent to a multi-valued logic system with 2 logic values per wire. This is a similar situation to quantum informatics with N qubits, and hence we introduce the notion of noise-bit. This system has major differences compared to quantum informatics. The noise-based logic system is deterministic and each superposition element is instantly accessible with the high digital accuracy, via a real hardware parallelism, without decoherence and error correction, and without the requirement of repeating the logic operation many times to extract the probabilistic information. Moreover, the states in noise-based logic do not have to be normalized, and non-unitary operations can also be used. As an example, we introduce a string search algorithm which is O(√{M}) times faster than Grover's quantum algorithm (where M is the number of string entries), while it has the same hardware complexity class as the quantum algorithm.

  13. Nanoscale heterostructures with molecular-scale single-crystal metal wires.

    Science.gov (United States)

    Kundu, Paromita; Halder, Aditi; Viswanath, B; Kundu, Dipan; Ramanath, Ganpati; Ravishankar, N

    2010-01-13

    Creating nanoscale heterostructures with molecular-scale (synthesis of nanoscale heterostructures with single-crystal molecular-scale Au nanowires attached to different nanostructure substrates. Our method involves the formation of Au nanoparticle seeds by the reduction of rocksalt AuCl nanocubes heterogeneously nucleated on the substrates and subsequent nanowire growth by oriented attachment of Au nanoparticles from the solution phase. Nanoscale heterostructures fabricated by such site-specific nucleation and growth are attractive for many applications including nanoelectronic device wiring, catalysis, and sensing.

  14. Single and double pass solar air heaters with wire mesh as packing bed

    Energy Technology Data Exchange (ETDEWEB)

    Aldabbagh, L.B.Y.; Egelioglu, F. [Mechanical Engineering Department, Eastern Mediterranean University, Magosa, Mersin 10 (Turkey); Ilkan, M. [School of Computing and Tecnology, Eastern Mediterranean University, Magosa, Mersin 10 (Turkey)

    2010-09-15

    The thermal performances of single and double pass solar air heaters with steel wire mesh layers are used instead of a flat absorber plate are investigated experimentally. The effects of mass flow rate of air on the outlet temperature and thermal efficiency were studied. The results indicate that the efficiency increases with increasing the mass flow rate for the range of the flow rate used in this work between 0.012 and 0.038 kg/s. For the same flow rate, the efficiency of the double pass is found to be higher than the single pass by 34-45%. Moreover, the maximum efficiencies obtained for the single and the double pass air collectors are 45.93 and 83.65% respectively for the mass flow rate of 0.038 kg/s. Comparison of the results of a packed bed collector with those of a conventional collector shows a substantial enhancement in the thermal efficiency. (author)

  15. Guidewires used in first intentional single wiring strategy for chronic total occlusions of the left anterior descending coronary artery.

    Science.gov (United States)

    Nassar, Yasser S; Boudou, Nicolas; Dumonteil, Nicolas; Lhermusier, Thibault; Carrie, Didier

    2013-04-01

    Percutaneous coronary intervention (PCI) for chronic total occlusion (CTO) of the left anterior descending (LAD) specifically is associated with improved long-term 5 year survival as compared to PCI failure. The procedure is associated with usage of different types of dedicated guidewires by simple or complex techniques aiming to reopen the occluded artery. To describe types and outcome of guidewires used in LAD-CTO utilizing a first intentional single wiring simple strategy. A single center prospective registry for all consecutive patients with a PCI attempt to a native LAD CTO. The initial strategy for lesion crossing was Single wiring. A total of 30 patients with LAD CTO lesions (100%), were recorded. Mean age was 71.6 + 15 years, 77% were Males, risk factors Hypertension in 63%, Diabetes 27%, Dyslipidemia 57%, smoking 40%, hereditary in 13% of patients. Isolated guidewire (GW) success rate was very high 93%. Single wiring was the prevailing technique used in 97% of successfull lesions (83% of total cases) while only 3% were by multiple wiring techniques. Successful single antegrade wiring represented 63% with a GW success rate of 92% of cases. Successful single retrograde wiring represented 13% with a GW success rate of 67%. Successful Crossing GW types in our patients were 44% Soft Tapered GWs; fielder XT (44%), 36% were Soft Non Tapered Pilot 50 (28%), whisper (8%), while 16% were Stiff Non tapered GWs; Miracle 12 (8%), Miracle 6 (4%), Miracle 3 (4%), and 4% were Stiff Tapered GWs; Progress 200 (4%). Single wiring as an initial strategy in PCI for LAD-CTO lesions has a high success rate and is associated with a 44% majority of Soft Tapered GWs, 36% Soft Non Tapered, 16% Stiff Non tapered GWs, and 4% Stiff Tapered GWs.

  16. Mechanical properties and formation mechanisms of a wire of single gold atoms

    DEFF Research Database (Denmark)

    Rubio-Bollinger, G.; Bahn, Sune Rastad; Agrait, N.

    2001-01-01

    A scanning tunneling microscope supplemented with a force sensor is used to study the mechanical properties of a novel metallic nanostructure: a freely suspended chain of single gold atoms. We find that the bond strength of the nanowire is about twice that of a bulk metallic bond. We perform ab i...... stiffness of the nanostructure is strongly affected by the detailed local atomic arrangement at the chain bases.......A scanning tunneling microscope supplemented with a force sensor is used to study the mechanical properties of a novel metallic nanostructure: a freely suspended chain of single gold atoms. We find that the bond strength of the nanowire is about twice that of a bulk metallic bond. We perform ab...... initio calculations of the force at chain fracture and compare quantitatively with experimental measurements. The observed mechanical failure and nanoelastic processes involved during atomic wire fabrication are investigated using molecular dynamics simulations, and we find that the total effective...

  17. First-principles study of magnetic ordering of an Al infinite single-row atomic wire.

    Science.gov (United States)

    Ota, Tadashi; Hirose, Kikuji; Ono, Tomoya

    2009-02-11

    In this paper we present a detailed analysis of the atomic and spin-electronic structure of an Al infinite single-row atomic wire (Al-ISAW). Our work is based on ab initio self-consistent field calculations within the local density approximation, and we predict structural transformations during elongation using the norm-conserving (NC) and projector augmented-wave (PAW) pseudopotentials. The results obtained by the NC pseudopotential are in good agreement with those obtained by the PAW pseudopotential. We confirm that the Al-ISAW shows a metal-insulator transition and fractures when elongated beyond the equilibrium length. Then, a wire with antiferromagnetic ordering is found to be the lowest energetically. We find that the magnitude of spin polarization in the vicinity of nuclei is marginal and does not play an important role in the Peierls instability. The present results show that the NC pseudopotential can give an accurate physical picture of the atomic and spin-electronic structures of the Al-ISAW.

  18. Numeric Simulation of Heat Transfer from a Single Round Tube Shielded with Wire Mesh

    Directory of Open Access Journals (Sweden)

    Dymo B.V.

    2015-08-01

    Full Text Available This paper presents the results of development and investigation of heat transfer at transverse flow of round tube with wire screen using the software ANSYS Fluent 3D-model. Selection of optimal parameters of the finite element model, in particular, transition shear stress transport model as well and boundary conditions are realized. Instructed and combined net is used at numerical calculations. This net is built with the help of generators grid-torus ANSYS CFX Mesh 14.0. The problem of verification of conformity of the numerical model of the heat transfer of a single screen-covered round tubes according to physical experiment for the same tubes in the range of Reynolds numbers Re = (5000...35000 was studied. We established that discrepancy between physical experiments and numerical simulation results not exceeds 5% with respect to the data of physical experiment.

  19. Radial approach and single wiring as first intentional strategies in chronic total occlusions of the left anterior descending coronary artery.

    Science.gov (United States)

    Nassar, Yasser; Boudou, Nicolas; Carrie, Didier

    2013-04-01

    Percutaneous coronary intervention (PCI) for chronic total occlusion (CTO) of the left anterior descending coronary artery (LAD) specifically is associated with improved long-term 5 years survival as compared to PCI failure. Simpler PCI techniques may be successful and safer than complex techniques which are perceived to have high failure rates and technical complexity. We aimed to describe the safety and effectiveness of first intentional single wiring and radial approach in the treatment of patients with a CTO of the native LAD coronary artery at Toulouse Rangueil university hospitals. The study was a single center prospective registry. All patients showed evidence of myocardial viability in LAD territory. The operators' initial strategy was to start by a radial access as a first choice whenever feasible; if not, a femoral access was chosen. The initial strategy for lesion crossing in either antegrade or retrograde approaches was single wiring by lesion crossing using one guidewire (GW) as a simple technique. A total of 30 patients with 30 LAD CTO lesions (100%) were recorded. Mean age was 71.6 + 15 years, 77% were males and 23% were females. The access route was radial 66% of the time and femoral 54% of the time and with double access for contralateral injection in 40% of the patients. Sheaths and catheters sizes 6F were used in 53% of the patients, and 7F in 73% of the patients. Overall lesion success rate was 83% of lesions. Single wiring was the prevailing technique used in 97% of successful lesions (83% of total cases), while only 3% were by multiple wiring techniques. Successful single antegrade wiring represented 63% of our total study cases with a GW success rate of 92% of cases. Successful single retrograde wiring represented 13% of our cases with a GW success rate of 67%. Q-wave myocardial infarction (MI), stent thrombosis, stroke, emergency coronary artery bypass graft (CABG), major bleeding, radiation dermatitis, cardiac tamponade or clinical

  20. Dosimetry of wires and single ribbons of Iridium 192; Dosimetria de alambres y ribbons individuales de Iridio-192

    Energy Technology Data Exchange (ETDEWEB)

    Mazzucco, L.D. [Centro Medico Nuclear S.R.L. San Juan (Argentina)

    1998-12-31

    The objective of this work is in order to present in table formats the dosimetry of wires and single ribbons of Iridium with lengths 1-12 cm for each one linear source along the bisector which is perpendicular at tissue sources (water) computed for linear activity 1 mCi/cm in the case of wires, and 1 mCi/seed for ribbons. The above tables are of direct use, adaptable at particular cases so they facilitate logarithmic graphics of doses in function of the distance for interpolation and use in the treatments planning. It was shown that for two sources with identical linear activity and total length, one of the equidistant seeds at 1 cm (ribbon) and one wire on the other hand, the differences in dose rates in near positions can be about the 15% so corroborating that it is not possible to use wire tables for seeds neither vice versa. Moreover it was elaborated tables of practical direct use for dose rate in water at c Gy/hr for wires and Ribbons 1-12 cm length and from 0.5-10 cm of distance in the perpendicular bisector at the Iridium implant. (Author)

  1. Time-resolved PIV of a turbulent boundary layer over a spanwise-oscillating surface

    Science.gov (United States)

    Gouder, Kevin; Morrison, Jonathan

    2012-11-01

    This work reports measurements of a turbulent boundary layer at Reθ ~ 2500, over a resonant spanwise-oscillating surface driven by a linear electromagnetic motor. Time-resolved PIV measurements of velocity are presented and supplemented by hot-wire measurements of velocity and direct drag measurements of friction drag using a drag balance. A maximum of 16% surface friction reduction, as calculated by the diminution of the wall-normal streamwise velocity gradient was obtained. The PIV laser beam was parallel to the plane of the oscillating surface at a height of y+ ~ 15, hence, top-down views of the near-wall turbulence activity and the effect of the surface oscillation on its evolution were obtained. It has been shown that the imposition of a spanwise Stokes-like layer at a non-dimensional period of T+ =Tuτ2 / ν ~ 100 at peak-peak oscillation amplitudes equal to or larger than the mean streak spacing enabled the direct manipulation of the quasi-streamwise near-wall structures and caused fundamental changes in their evolution leading to reductions, for example, in the near-wall values of the mean-square of the streamwise fluctuating velocity component. This work was supported by Qinetiq, Airbus and EPSRC.

  2. Influence of ITO-Silver Wire Electrode Structure on the Performance of Single-Crystal Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Wern-Dare Jheng

    2012-01-01

    Full Text Available This study aimed to explore the effect of various electrode forms on single-crystal silicon solar cells by changing their front and back electrode structures. The high light penetration depth of the Indium Tin Oxide (ITO and the high conductivity of the silver wire that were coated on the single crystal silicon solar cells increased photoelectron export, thus increasing the efficiency of the solar cell. The experiment utilized a sol-gel solution containing phosphorus that was spin coated on single-crystal silicon wafers; this phosphorus also served as a phosphorus diffusion source. A p-n junction was formed after annealing at high temperature, and the substrate was coated with silver wires and ITO films of various structures to produce the electrodes. This study proposed that applying a heat treatment to the aluminum of back electrodes would result in a higher efficiency for single-crystal silicon solar cells, whereas single-crystal silicon solar cells containing front electrodes with ITO film coated with silver wires would result in efficiencies that are higher than those achieved using pure ITO thin-film electrodes.

  3. Wake behind circular cylinder excited by spanwise periodic disturbances

    Science.gov (United States)

    Sasaki, Yudai; Uchida, Iwami; Sakakibara, Jun

    2017-11-01

    We experimentally investigated the influence of flow control of the wake behind a circular cylinder excited by temporal periodic disturbances with spanwise phase variations using plasma actuators, motivated by reducing drag forces by suppressing development of large scale vortices. Plasma actuators were segmented in the spanwise direction, phase differences were given to adjacent electrodes. This experiment was conducted at Re =8000 and the wake was visualized by PIV. Compared to without forcing, when the phase difference is 180° and non-dimensional forcing frequency is higher than approximately 1.0, small vortices induced by periodic disturbance emerged in the free shear layer and the drag forces decreased.

  4. Application of ZnO single-crystal wire grown by the thermal evaporation method as a chemical gas sensor for hydrogen sulfide.

    Science.gov (United States)

    Park, N K; Lee, S Y; Lee, T J

    2011-01-01

    A zinc oxide single-crystal wire was synthesized for application as a gas-sensing material for hydrogen sulfide, and its gas-sensing properties were investigated in this study. The gas sensor consisted of a ZnO thin film as the buffer layer and a ZnO single-crystal wire. The ZnO thin film was deposited over a patterning silicon substrate with a gold electrode by the CFR method. The ZnO single-crystal wire was synthesized over the ZnO thin film using zinc and activated carbon as the precursor for the thermal evaporation method at 800 degrees C. The electrical properties of the gas sensors that were prepared for the growth of ZnO single-crystal wire varied with the amount of zinc contained in the precursor. The charged current on the gas sensors increased with the increasing amount of zinc in the precursor. It was concluded that the charged current on the gas sensors was related to ZnO single-crystal wire growth on the silicon substrate area between the two electrodes. The charged current on the gas sensor was enhanced when the ZnO single-crystal wire was exposed to a H2S stream. The experimental results obtained in this study confirmed that a ZnO single-crystal wire can be used as a gas sensor for H2S.

  5. A highly crystalline single Au wire network as a high temperature transparent heater.

    Science.gov (United States)

    Rao, K D M; Kulkarni, Giridhar U

    2014-06-07

    A transparent conductor which can generate high temperatures finds important applications in optoelectronics. In this article, a wire network made of Au on quartz is shown to serve as an effective high temperature transparent heater. The heater has been fabricated by depositing Au onto a cracked sacrificial template. The highly interconnected Au wire network thus formed exhibited a transmittance of ∼87% in a wide spectral range with a sheet resistance of 5.4 Ω □(-1). By passing current through the network, it could be joule heated to ∼600 °C within a few seconds. The extraordinary thermal performance and stability owe much to the seamless junctions present in the wire network. Furthermore, the wire network gets self-annealed through joule heating as seen from its increased crystallinity. Interestingly, both transmittance and sheet resistance improved following annealing to 92% and 3.2 Ω □(-1), respectively.

  6. Experimental testing of spanwise morphing trailing edge concept

    Science.gov (United States)

    Pankonien, Alexander; Inman, Daniel J.

    2013-04-01

    Aircraft wings with smooth, hinge-less morphing ailerons exhibit increased chordwise aerodynamic efficiency over conventional hinged ailerons. Ideally, the wing would also use these morphing ailerons to smoothly vary its airfoil shape between spanwise stations to optimize the lift distribution and further increase aerodynamic efficiency. However, the mechanical complexity or added weight of achieving such a design has traditionally exceeded the potential aerodynamic gains. By expanding upon the previously developed cascading bimorph concept, this work uses embedded Macro-Fiber Composites and a flexure box mechanism, created using multi-material 3D printing, to achieve the Spanwise Morphing Trailing Edge (SMTE) concept. The morphing actuators are spaced spanwise along the wing with an elastomer spanning the gaps between them, which allows for optimization of the spanwise lift distribution while maintaining the continuity and efficiency of the morphing trailing edge. The concept is implemented in a representative section of a UAV wing with a 305 mm chord. A novel honeycomb skin is created from an elastomeric material using a 3D printer. The actuation capabilities of the concept are evaluated with and without spanning material on a test stand, free of aerodynamic loads. In addition, the actuation restrictions of the spanning elastomer, necessary in adapting the morphing concept from 2D to 3D, are characterized. Initial aerodynamic results from the 1'×1' wind-tunnel also show the effects of aerodynamic loading on the actuation range of the SMTE concept for uniform morphing.

  7. Influence of Spanwise Boundary Conditions on Slat Noise Simulations

    Science.gov (United States)

    Lockard, David P.; Choudhari, Meelan M.; Buning, Pieter G.

    2015-01-01

    The slat noise from the 30P/30N high-lift system is being investigated through computational fluid dynamics simulations with the OVERFLOW code in conjunction with a Ffowcs Williams-Hawkings acoustics solver. In the present study, two different spanwise grids are being used to investigate the effect of the spanwise extent and periodicity on the near-field unsteady structures and radiated noise. The baseline grid with periodic boundary conditions has a short span equal to 1/9th of the stowed chord, whereas the other, longer span grid adds stretched grids on both sides of the core, baseline grid to allow inviscid surface boundary conditions at both ends. The results indicate that the near-field mean statistics obtained using the two grids are similar to each other, as are the directivity and spectral shapes of the radiated noise. However, periodicity forces all acoustic waves with less than one wavelength across the span to be two-dimensional, without any variation in the span. The spanwise coherence of the acoustic waves is what is needed to make estimates of the noise that would be radiated from realistic span lengths. Simulations with periodic conditions need spans of at least six slat chords to allow spanwise variation in the low-frequencies associated with the peak of broadband slat noise. Even then, the full influence of the periodicity is unclear, so employing grids with a fine, central region and highly stretched meshes that go to slip walls may be a more efficient means of capturing the spanwise decorrelation of low-frequency acoustic phenomena.

  8. Noise-based logic hyperspace with the superposition of 2{sup N} states in a single wire

    Energy Technology Data Exchange (ETDEWEB)

    Kish, Laszlo B. [Texas A and M University, Department of Electrical and Computer Engineering, College Station, TX 77843-3128 (United States)], E-mail: laszlo.kish@ece.tamu.edu; Khatri, Sunil; Sethuraman, Swaminathan [Texas A and M University, Department of Electrical and Computer Engineering, College Station, TX 77843-3128 (United States)

    2009-05-11

    In the introductory paper [L.B. Kish, Phys. Lett. A 373 (2009) 911], about noise-based logic, we showed how simple superpositions of single logic basis vectors can be achieved in a single wire. The superposition components were the N orthogonal logic basis vectors. Supposing that the different logic values have 'on/off' states only, the resultant discrete superposition state represents a single number with N bit accuracy in a single wire, where N is the number of orthogonal logic vectors in the base. In the present Letter, we show that the logic hyperspace (product) vectors defined in the introductory paper can be generalized to provide the discrete superposition of 2{sup N} orthogonal system states. This is equivalent to a multi-valued logic system with 2{sup 2{sup N}} logic values per wire. This is a similar situation to quantum informatics with N qubits, and hence we introduce the notion of noise-bit. This system has major differences compared to quantum informatics. The noise-based logic system is deterministic and each superposition element is instantly accessible with the high digital accuracy, via a real hardware parallelism, without decoherence and error correction, and without the requirement of repeating the logic operation many times to extract the probabilistic information. Moreover, the states in noise-based logic do not have to be normalized, and non-unitary operations can also be used. As an example, we introduce a string search algorithm which is O({radical}(M)) times faster than Grover's quantum algorithm (where M is the number of string entries), while it has the same hardware complexity class as the quantum algorithm.

  9. Performance of single wire earth return transformers with amorphous alloy core in a rural electric energy distribution system

    Directory of Open Access Journals (Sweden)

    Benedito Antonio Luciano

    2012-10-01

    Full Text Available In this paper are presented some considerations about the performance of single wire earth return amorphous alloy core transformers in comparison with conventional silicon steel sheets cores transformers used in rural electric energy distribution network. It has been recognized that amorphous metal core transformers improve electrical power distribution efficiency by reducing transformer core losses. This reduction is due to some electromagnetic properties of the amorphous alloys such as: high magnetic permeability, high resistivity, and low coercivity. Experimental results obtained with some single-phase, 60 Hz, 5 kVA amorphous core transformers installed in a rural area electric distribution system in Northern Brazil have been confirming their superior performance in comparison to identical nominal rated transformers built with conventional silicon steel cores, particularly with regard to the excitation power and to the no-load losses.

  10. Direct momentum-resolved observation of one-dimensional confinement of externally doped electrons within a single subnanometer-scale wire.

    Science.gov (United States)

    Song, Inkyung; Oh, Dong-Hwa; Shin, Ha-Chul; Ahn, Sung-Joon; Moon, Youngkwon; Woo, Sun-Hee; Choi, Hyoung Joon; Park, Chong-Yun; Ahn, Joung Real

    2015-01-14

    Cutting-edge research in the band engineering of nanowires at the ultimate fine scale is related to the minimum scale of nanowire-based devices. The fundamental issue at the subnanometer scale is whether angle-resolved photoemission spectroscopy (ARPES) can be used to directly measure the momentum-resolved electronic structure of a single wire because of the difficulty associated with assembling single wire into an ordered array for such measurements. Here, we demonstrated that the one-dimensional (1D) confinement of electrons, which are transferred from external dopants, within a single subnanometer-scale wire (subnanowire) could be directly measured using ARPES. Convincing evidence of 1D electron confinement was obtained using two different gold subnanowires with characteristic single metallic bands that were alternately and spontaneously ordered on a stepped silicon template, Si(553). Noble metal atoms were adsorbed at room temperature onto the gold subnanowires while the overall structure of the wires was maintained. Only one type of gold subnanowire could be controlled using external noble metal dopants without transforming the metallic band of the other type of gold subnanowires. This result was confirmed by scanning tunnelling microscopy experiments and first-principles calculations. The selective control clearly showed that externally doped electrons could be confined within a single gold subnanowire. This experimental evidence was used to further investigate the effects of the disorder induced by external dopants on a single subnanowire using ARPES.

  11. Step potential in single wire earth return system; Potencial de passo em sistema monofilar com retorno por terra

    Energy Technology Data Exchange (ETDEWEB)

    Silva Junior, Amancio R.; Caminha Junior, Isidoro C.; Watabe, Celso F.; Romero, Andrea G. [Mato Grosso do Sul Univ., Campo Grande, MS (Brazil). Dept. de Engenharia Eletrica

    1997-12-31

    It was built on the dependence of the campus of Mato Grosso do Sul University, an experimental line single wire earth return (SWER). It was realized, weekly, during the years of 1996, measurement of step potential, with a unique landing (primary only) and, primary and secondary connected. It was verified that: the most critical measurement happened when the earth presented superficial resistivity of 455,31 {Omega} x m, the highest step potential for not causing ventricular fibrillation was 249,93 V, needing a short circuit currents of 11,07 kA, the primary and secondary resistance earth presented values 42 {Omega} and 77 {Omega} respectively. There was no significant alteration when was used only the primary landing. (author) 11 refs., 2 figs.

  12. Spanwise vortex dislocation in the wake of segmented blunt trailing edge

    Science.gov (United States)

    Deshpande, P. J.; Sharma, S. D.

    2012-10-01

    Dislocation of the Karman vortex is forced in the near wake behind a two dimensional blunt trailing edge aerofoil to induce strong three dimensionality to weaken the Karman vortex and inhibit its periodic shedding by segmenting the trailing edge in a novel way, different from a rectangular segmented trailing edge tried in the past. Symmetrical trapezoidal prismatic blocks, with the major and the minor sides being equal to 4 and 2 base heights, respectively, are attached to the base at regular intervals along the span which could be varied in order to render multiple wavelengths of spanwise discontinuity to ensure that at least one of the modes of dislocation is triggered independent of the Reynolds number. Hot-wire measurements confirm effectiveness of the trailing edge configurations with trapezoidal prismatic blocks in creating controlled dislocation along the span which annihilates the Karman vortices and suppresses their periodic shedding completely. Flow visualization in a water tunnel reinforces the hot-wire results and clearly shows that the classical Karman vortex street, seen behind the plain base model, disappears when segmented trailing edge is used. In comparison, the rectangular segmented trailing edge is found to attenuate the Karman vortex strength only partially. However, the base pressure measurements have shown improvement in reducing the associated base drag only by 3-4%. The segmented trailing edges designed for the present study are found to generate strong streamwise vortices that effectively transfer energy from the Karman vortices resulting in suppression of the unsteadiness but, perhaps, lower pressures in their core may be restricting the further rise in the base pressure due to the induced effect.

  13. PECULIAR FEATURES OF MACHINING MARKS FORMATION ON SURFACE ОF TITANIUM SPECIMEN WITH SINGLE ELECTRO CONTACT ACTION OF WIRE ELECTRODE-TOOL

    Directory of Open Access Journals (Sweden)

    M. G. Kiselev

    2013-01-01

    Full Text Available The paper presents an investigation of shape and geometry parameters of machining marks obtained on the surface of titanium specimen with a single electro contact action of a wire electrode-tool. A description of the developed unit and methodology for execution of experimental investigations has been given in the paper. The paper provides and analyzes experimentally obtained data showing the effect of conditions and modes of single electro contact action of wire tool-electrode on the shape and geometrical parameters of machining marks obtained on the surface of titanium specimen. It is shown that the formation of these traces occurs in the context of joint action of both the electrical erosion and mechanical action of the working part of the wire electrode-tool on the surface of the titanium specimen that expands technological capabilities of electro contact treatment while  solving problems associated with targeted modification of the original work-piece surfaces.

  14. Spanwise drag variation on low Re wings -- revisited

    Science.gov (United States)

    Yang, Shanling; Spedding, Geoffrey

    2011-11-01

    Aerodynamic performance measurement and prediction of airfoils and wings at chord Reynolds numbers below 105 is both difficult and increasingly important in application to small-scale aircraft. Not only are the aerodynamics strongly affected by the dynamics of the unstable laminar boundary layer but the flow is decreasingly likely to be two-dimensional as Re decreases. The spanwise variation of the flow along a two-dimensional geometry is often held to be responsible for the large variations in measured profile drag coefficient. Here we measure local two-dimensional drag coefficients along a finite wing using non-intrusive PIV methods. Variations in Cd (y) can be related to local flow variations on the wing itself. Integrated values can be compared with force balance data, and the proper description of drag components at low Re will be discussed.

  15. Single-Wire Electric-Field Coupling Power Transmission Using Nonlinear Parity-Time-Symmetric Model with Coupled-Mode Theory

    Directory of Open Access Journals (Sweden)

    Xujian Shu

    2018-03-01

    Full Text Available The output power and transmission efficiency of the traditional single-wire electric-field coupling power transmission (ECPT system will drop sharply with the increase of the distance between transmitter and receiver, thus, in order to solve the above problem, in this paper, a new nonlinear parity-time (PT-symmetric model for single-wire ECPT system based on coupled-mode theory (CMT is proposed. The proposed model for single-wire ECPT system not only achieves constant output power but also obtains a high constant transmission efficiency against variable distance, and the steady-state characteristics of the single-wire ECPT system are analyzed. Based on the theoretical analysis and circuit simulation, it shows that the transmission efficiency with constant output power remains 60% over a transmission distance of approximately 34 m without the need for any tuning. Furthermore, the application of a nonlinear PT-symmetric circuit based on CMT enables robust electric power transfer to moving devices or vehicles.

  16. Long-term outcomes of tension band wiring with a single K-wire in Rockwood type IV/V acute acromio-clavicular dislocations: 25 cases.

    Science.gov (United States)

    Lateur, G; Boudissa, M; Rubens-Duval, B; Mader, R; Rouchy, R C; Pailhé, R; Saragaglia, D

    2016-09-01

    Our objective was to evaluate the long-term functional and radiological outcomes of tension band wiring with a single K-wire for acute Rockwood types IV and V acromio-clavicular dislocation (ACD). Single-centre cross-sectional non-randomised observational cohort study of 25 shoulders treated surgically between January 2002 and December 2004, in 25 patients, 23 males and 2 females, with a mean age of 35±11years (24-46). The evaluation criteria were the absolute and weighted Constant scores, QuickDASH score, subjective shoulder value (SSV), visual analogue scale (VAS) pain score at rest and during activities, and radiographic features in clinically symptomatic patients. Mean values were as follows: follow-up, 150±17months (133-167); absolute Constant score, 88±17 (71-105); weighted Constant score, 92.5±12.5 (80-105); QuickDASH, 15.5±7 (8.5-22.5); SSV, 88±17% (71-105); VAS pain score at rest, 0.2±0.7 (0-0.9); and VAS pain score while active, 1.4±2.3 (0-3.7). The weighted Constant score was less than 70% in only 8% of patients. Of the 17 patients for whom radiographs were obtained, 8 had acromio-clavicular osteoarthritis. Mean coraco-clavicular distance was 12.3±4.3mm (8-16.6) and mean acromio-clavicular distance was 5±5mm (0-10). The recurrence rate was 8%. Tension band wiring with a single K-wire for acute acromio-clavicular dislocation reliably provides good long-term functional outcomes. Recurrences are uncommon and few patients experience symptoms (8%). IV, retrospective study. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Landing Gear Components Noise Study - PIV and Hot-Wire Measurements

    Science.gov (United States)

    Hutcheson, Florence V.; Burley, Casey L.; Stead, Daniel J.; Becker, Lawrence E.; Price, Jennifer L.

    2010-01-01

    PIV and hot-wire measurements of the wake flow from rods and bars are presented. The test models include rods of different diameters and cross sections and a rod juxtaposed to a plate. The latter is representative of the latch door that is attached to an aircraft landing gear when the gear is deployed, while the single and multiple rod configurations tested are representative of some of the various struts and cables configuration present on an aircraft landing gear. The test set up is described and the flow measurements are presented. The effect of model surface treatment and freestream turbulence on the spanwise coherence of the vortex shedding is studied for several rod and bar configurations.

  18. Basic Wiring.

    Science.gov (United States)

    Kaltwasser, Stan; And Others

    This module is the first in a series of three wiring publications; it serves as the foundation for students enrolled in a wiring program. It is a prerequisite to either "Residential Wiring" or "Commercial and Industrial Wiring." The module contains 16 instructional units that cover the following topics: occupational…

  19. THE KISSING BALLOON TECHNIQUE WITH 2 OVER-THE-WIRE BALLOON CATHETERS THROUGH A SINGLE 8-FRENCH GUIDING CATHETER

    NARCIS (Netherlands)

    DENHEIJER, P; BERNINK, PJLM; VANDIJK, RB; TWISK, SPM; LIE, KI

    Some of the newer over-the-wire coronary angioplasty catheters have shaft sizes of 3.0 French (F) or less. The inner diameter of modern 8-F guiding catheters is large enough to accommodate two of such balloon catheters. We report a kissing balloon procedure with two over-the-wire catheters through a

  20. Accurate measurements of local skin friction coefficient using hot-wire anemometry

    Science.gov (United States)

    Hutchins, Nick; Choi, Kwing-So

    2002-05-01

    The practicality and accuracy of many existing methods of local skin friction measurement suffer when the boundary layer flow under consideration is non-canonical. Such shortcomings are exacerbated in three-dimensional flows, by the necessity to map local cf over a wider area in order to characterise fully the contribution to global skin friction. These problems have led the authors to seek novel experimental methods of cf measurement. The technique proposed herein utilises velocity measurements made using hot-wire anemometry combined with accurate positioning of the sensor element in respect to the test surface. In essence it is proposed that the local skin friction can be evaluated via a single velocity measurement made at a known wall-normal distance within the linear region of the viscous sublayer. This technique relies on accurate probe positioning, and two methods of achieving this are outlined. A study of the hot-wire characteristics in near-wall proximity has revealed a previously unnoticed feature corresponding to probe-wall contact. It is shown that this anomaly can be used as a positional flag to accurately locate the aerodynamic origin of the hot-wire sensor. A second technique using a laser triangulation displacement sensor is also outlined. Both positional techniques are shown to offer positioning to a sufficient level of accuracy for the proposed cf measurement technique. Single-point local cf measurement is tested experimentally, demonstrating the improved repeatability and standard error as predicted by initial error analysis. In this way it is shown that a single 90 s velocity sample coupled with accurate wall positioning can define local cf to a standard error of σcf≈1.0%. Analysis of error contributions reveals that longer sampling periods can realise even greater accuracy. The proposed technique is also used to measure local cf in a three-dimensional boundary layer where micro-vortex generators have introduced large-scale spanwise

  1. Spanwise morphing trailing edge on a finite wing

    Science.gov (United States)

    Pankonien, Alexander M.; Inman, Daniel J.

    2015-04-01

    Unmanned Aerial Vehicles are prime targets for morphing implementation as they must adapt to large changes in flight conditions associated with locally varying wind or large changes in mass associated with payload delivery. The Spanwise Morphing Trailing Edge concept locally varies the trailing edge camber of a wing or control surface, functioning as a modular replacement for conventional ailerons without altering the spar box. Utilizing alternating active sections of Macro Fiber Composites (MFCs) driving internal compliant mechanisms and inactive sections of elastomeric honeycombs, the SMTE concept eliminates geometric discontinuities associated with shape change, increasing aerodynamic performance. Previous work investigated a representative section of the SMTE concept and investigated the effect of various skin designs on actuation authority. The current work experimentally evaluates the aerodynamic gains for the SMTE concept for a representative finite wing as compared with a conventional, articulated wing. The comparative performance for both wings is evaluated by measuring the drag penalty associated with achieving a design lift coefficient from an off-design angle of attack. To reduce experimental complexity, optimal control configurations are predicted with lifting line theory and experimentally measured control derivatives. Evaluated over a range of off-design flight conditions, this metric captures the comparative capability of both concepts to adapt or "morph" to changes in flight conditions. Even with this simplistic model, the SMTE concept is shown to reduce the drag penalty due to adaptation up to 20% at off-design conditions, justifying the increase in mass and complexity and motivating concepts capable of larger displacement ranges, higher fidelity modelling, and condition-sensing control.

  2. Wire Chamber

    CERN Multimedia

    Magnetoscriptive readout wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  3. Wire chamber

    CERN Multimedia

    1967-01-01

    Magnetoscriptive readout wire chamber.Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  4. Wire Array Photovoltaics

    Science.gov (United States)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  5. wire chamber

    CERN Multimedia

    Proportional multi-wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle. Proportional wire chambers allow a much quicker reading than the optical or magnetoscriptive readout wire chambers.

  6. Projeto de aterramento para sistema monofilar com retorno pelo terra Grounding project for single wire earth return system

    Directory of Open Access Journals (Sweden)

    Humberto C Bertolo

    2011-02-01

    Full Text Available Este trabalho apresenta o projeto de aterramento elétrico para Sistema Monofilar com Retorno pela Terra (MRT, em solicitações de baixas frequências, utilizando-se o método das imagens e considerando a simplificação do método dos potenciais constantes. Simulou-se o comportamento de três diferentes configurações de aterramento: hastes em triângulo, em quadrado vazio e para nove hastes, formando uma malha com quatro quadrados. A partir da simulação obtiveram-se o valor da resistência de aterramento para cada configuração e os potenciais gerados na superfície do solo. Com base nesses resultados foi possível comparar os valores tabelados para resistências mínimas, em função da potência do transformador, aplicados para diferentes concessionárias de energia que utilizam o Sistema MRT, com os valores calculados que mantêm os potenciais no solo em níveis seguros para seres humanos e animais. Os resultados mostraram que é possível utilizar aterramentos mais simples e mais baratos, pois os gradientes de tensões no solo se mantiveram em níveis seguros.This work presents a grounding project for a Single Wire Earth Return (SWER system in low frequency applications, through the use of the image method, a simplification of the constant potential method. The responses of three different grounding configurations were simulated: electrodes in triangular format, electrodes placed in the corners of a square and nine electrodes placed in the corners of a grid with four squares. With the mentioned simulation it was possible to calculate the ground resistance and the surface voltage of each configuration. Based on these results, it was possible to compare the values for minimal resistance, depending on the power of the transformer, applied to various power utilities that use the SWER system with the values that hold the potential in the soil at safe levels for human beings and animals. Results showed that it is possible to use simpler and

  7. wire chamber

    CERN Multimedia

    Was used in ISR (Intersecting Storage Ring) split field magnet experiment. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  8. Wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  9. wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  10. wire chamber

    CERN Multimedia

    1985-01-01

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  11. Assessment of spanwise domain size effect on the transitional flow past an airfoil

    KAUST Repository

    Zhang, Wei

    2015-10-19

    In most large-eddy and direct numerical simulations of flow past an isolated airfoil, the flow is assumed periodic in the spanwise direction. The size of the spanwise domain is an important geometrical parameter determining whether the turbulent flow is fully developed, and whether the separation and transition patterns are accurately modeled. In the present study, we investigate the incompressible flow past an isolated NACA0012 airfoil at the angle of attack of 5 degrees and Reynolds number 5 × 104. The spanwise domain size Lz, represented by the aspect ratio AR=Lz/C where C is the airfoil chord length, is varied in the range 0.1−0.80.1−0.8. The effect of varying the normalized spanwise domain size AR is examined via direct numerical simulation (DNS) on several aspects of the turbulent flow quantities including the time-averaged and time-dependent behavior as well as the spanwise variation of the selected statistical quantities. DNS results reveal that different aspect ratios result in close predictions of the time-averaged aerodynamic quantities, and the velocity field except for a slight difference in the separation bubble. Smaller aspect ratios tend to underpredict the turbulent fluctuations near the separation point but overpredict them inside the separation bubble. Large differences are observed for multiple statistical quantities near the reattachment point, especially the turbulent kinetic energy budget terms. The leading edge separation is notably three-dimensional for simulation at AR=0.8, while remaining quasi-2D for smaller aspect ratios. The spanwise two-point correlation coefficient shows significant dependence on the position of the probe and the velocity component analyzed: small aspect ratios do not produce uncorrelated results for all the velocity components. The simulation results demonstrate that examining only a few statistical quantities may result in a misleading conclusion regarding the sufficiency of the spanwise domain size. Reliable

  12. Synthetic Jet Interactions with Flows of Varying Separation Severity and Spanwise Flow Magnitude

    Science.gov (United States)

    Monastero, Marianne; Lindstrom, Annika; Amitay, Michael

    2017-11-01

    Flow physics associated with the interactions of synthetic jet actuators with a highly three-dimensional separated flow over a flapped airfoil were investigated experimentally and analyzed using stereo particle image velocimetry (SPIV) and surface pressure data. Increased understanding of active flow control devices in flows which are representative of airplane wings or tails can lead to actuator placement (i.e., chordwise location, spanwise spacing) with the greatest beneficial effect on performance. An array of discrete synthetic jets was located just upstream of the control surface hingeline and operated at a blowing ratio of 1 and non-dimensional frequency of 48. Detailed flowfield measurements over the control surface were conducted, where the airfoil's sweep angle and the control surface deflection angle were fixed at 20°. Focus was placed on the local and global flowfields as spanwise actuator spacing was varied. Moreover, surface pressure measurement for several sweep angles, control surface deflection angles, and angles of attack were also performed. Actuation resulted in an overall separation reduction and a dependence of local flowfield details (i.e. separation severity, spanwise flow magnitude, flow structures, and jet trajectory) on spanwise jet spacing. The Boeing Company.

  13. Genetic wiring maps of single-cell protein states reveal an off-switch for GPCR signalling.

    Science.gov (United States)

    Brockmann, Markus; Blomen, Vincent A; Nieuwenhuis, Joppe; Stickel, Elmer; Raaben, Matthijs; Bleijerveld, Onno B; Altelaar, A F Maarten; Jae, Lucas T; Brummelkamp, Thijn R

    2017-06-08

    As key executers of biological functions, the activity and abundance of proteins are subjected to extensive regulation. Deciphering the genetic architecture underlying this regulation is critical for understanding cellular signalling events and responses to environmental cues. Using random mutagenesis in haploid human cells, we apply a sensitive approach to directly couple genomic mutations to protein measurements in individual cells. Here we use this to examine a suite of cellular processes, such as transcriptional induction, regulation of protein abundance and splicing, signalling cascades (mitogen-activated protein kinase (MAPK), G-protein-coupled receptor (GPCR), protein kinase B (AKT), interferon, and Wingless and Int-related protein (WNT) pathways) and epigenetic modifications (histone crotonylation and methylation). This scalable, sequencing-based procedure elucidates the genetic landscapes that control protein states, identifying genes that cause very narrow phenotypic effects and genes that lead to broad phenotypic consequences. The resulting genetic wiring map identifies the E3-ligase substrate adaptor KCTD5 (ref. 1) as a negative regulator of the AKT pathway, a key signalling cascade frequently deregulated in cancer. KCTD5-deficient cells show elevated levels of phospho-AKT at S473 that could not be attributed to effects on canonical pathway components. To reveal the genetic requirements for this phenotype, we iteratively analysed the regulatory network linked to AKT activity in the knockout background. This genetic modifier screen exposes suppressors of the KCTD5 phenotype and mechanistically demonstrates that KCTD5 acts as an off-switch for GPCR signalling by triggering proteolysis of Gβγ heterodimers dissociated from the Gα subunit. Although biological networks have previously been constructed on the basis of gene expression, protein-protein associations, or genetic interaction profiles, we foresee that the approach described here will enable the

  14. Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment.

    Science.gov (United States)

    Song, Jinhui; Zhou, Jun; Wang, Zhong Lin

    2006-08-01

    This paper presents the experimental observation of piezoelectric generation from a single ZnO wire/belt for illustrating a fundamental process of converting mechanical energy into electricity at nanoscale. By deflecting a wire/belt using a conductive atomic force microscope tip in contact mode, the energy is first created by the deflection force and stored by piezoelectric potential, and later converts into piezoelectric energy. The mechanism of the generator is a result of coupled semiconducting and piezoelectric properties of ZnO. A piezoelectric effect is required to create electric potential of ionic charges from elastic deformation; semiconducting property is necessary to separate and maintain the charges and then release the potential via the rectifying behavior of the Schottky barrier at the metal-ZnO interface, which serves as a switch in the entire process. The good conductivity of ZnO is rather unique because it makes the current flow possible. This paper demonstrates a principle for harvesting energy from the environment. The technology has the potential of converting mechanical movement energy (such as body movement, muscle stretching, blood pressure), vibration energy (such as acoustic/ultrasonic wave), and hydraulic energy (such as flow of body fluid, blood flow, contraction of blood vessels) into electric energy that may be sufficient for self-powering nanodevices and nanosystems in applications such as in situ, real-time, and implantable biosensing, biomedical monitoring, and biodetection.

  15. Multi-anode wire straw tube tracker

    International Nuclear Information System (INIS)

    Oh, S.H.; Ebenstein, W.L.; Wang, C.W.

    2011-01-01

    We report on a test of a straw tube detector design having several anode (sense) wires inside a straw tube. The anode wires form a circle inside the tube and are read out independently. This design could solve several shortcomings of the traditional single wire straw tube design such as double hit capability and stereo configuration.

  16. Steam reforming of methane over Pt/Rh based wire mesh catalyst in single channel reformer for small scale syngas production

    DEFF Research Database (Denmark)

    Sigurdsson, Haftor Örn; Kær, Søren Knudsen

    2012-01-01

    of a catalytic parallel plate type heat exchanger (CPHE) reformer stack, where coated Pt/Rh based wire mesh is used as a catalyst. Heat is supplied to the endothermic reaction with infrared electric heaters. All the experiments were performed under atmospheric pressure and at stable operating conditions......The purpose of this study is to investigate a small scale steam methane reformer for syngas production for a micro combined heat and power (mCPH) unit under different operational conditions. The study presents an experimental analysis of the performance of a specially built single channel...... to evaluate the effect of flow maldistribution in a CPHE reformer stack on the CH4 conversion and H2 yield....

  17. Numerical investigation of the wake interaction between two model wind turbines with span-wise offset

    DEFF Research Database (Denmark)

    Sarmast, Sasan; Chivaee, Hamid Sarlak; Ivanell, Stefan

    2014-01-01

    Wake interaction between two model scale wind turbines with span-wise offset is investigated numerically using Large Eddy Simulation (LES) and the results are validated against the experimental data. An actuator line technique is used for modeling the rotor. The investigated setup refers...... to a series of experimental measurements of two model scale turbines conducted by NTNU in low speed wind tunnel in which the two wind turbines are aligned with a span-wise offset resulting in half wake interaction. Two levels of free-stream turbulence are tested, the minimum undisturbed level of about Ti ≈ 0.......23% and a high level of about Ti ≈ 10% using a passive upstream grid. The results show that the rotor characteristics for both rotors are well captured numerically even if the downstream rotor operates into stall regimes. There are however some difficulties in correct prediction of the thrust level...

  18. Large eddy simulation of spanwise rotating turbulent channel flow with dynamic variants of eddy viscosity model

    Science.gov (United States)

    Jiang, Zhou; Xia, Zhenhua; Shi, Yipeng; Chen, Shiyi

    2018-04-01

    A fully developed spanwise rotating turbulent channel flow has been numerically investigated utilizing large-eddy simulation. Our focus is to assess the performances of the dynamic variants of eddy viscosity models, including dynamic Vreman's model (DVM), dynamic wall adapting local eddy viscosity (DWALE) model, dynamic σ (Dσ ) model, and the dynamic volumetric strain-stretching (DVSS) model, in this canonical flow. The results with dynamic Smagorinsky model (DSM) and direct numerical simulations (DNS) are used as references. Our results show that the DVM has a wrong asymptotic behavior in the near wall region, while the other three models can correctly predict it. In the high rotation case, the DWALE can get reliable mean velocity profile, but the turbulence intensities in the wall-normal and spanwise directions show clear deviations from DNS data. DVSS exhibits poor predictions on both the mean velocity profile and turbulence intensities. In all three cases, Dσ performs the best.

  19. Normal loads program for aerodynamic lifting surface theory. [evaluation of spanwise and chordwise loading distributions

    Science.gov (United States)

    Medan, R. T.; Ray, K. S.

    1974-01-01

    A description of and users manual are presented for a U.S.A. FORTRAN 4 computer program which evaluates spanwise and chordwise loading distributions, lift coefficient, pitching moment coefficient, and other stability derivatives for thin wings in linearized, steady, subsonic flow. The program is based on a kernel function method lifting surface theory and is applicable to a large class of planforms including asymmetrical ones and ones with mixed straight and curved edges.

  20. Affects of spanwise heterogeneity and topographic height on Amplitude and Frequency modulation in channel flow turbulence

    Science.gov (United States)

    Awasthi, Ankit; Anderson, William

    2017-11-01

    We study the affects of spanwise heterogeneity on amplitude and frequency modulation of small-scale roughness-sublayer structures due to the passage of large-scale structures in the logarithmic region. Recent studies on amplitude and frequency modulation have prompted the development of a predictive model for near-wall dynamics. Such a model is of great interest to large-eddy simulation (LES), since near-wall processes are, by definition, never resolved. Here, we have used LES to model flows over a series of spanwise-heterogeneous topographies, where a domain with very long streamwise extent is used to ensure that very-large-scale motions are (or, can be) resolved. We report that the secondary flows globally disrupt the turbulence from channel physics, wherein the ``outer peak'' is either shifted to different wavelengths or nonexistent. This spectral density redistribution is assured to alter amplitude and frequency modulation rates within the roughness sublayer, and we present correlations of the small and large scales to demonstrate precisely that (following the wavelet decomposition, as outlined by). Thus, spanwise heterogeneity should be regarded as a model parameter in any rough-wall-generalized prognostic wall models. Air Force Office of Scientific Research, Grant # FA9550-14-1-0101.

  1. CdSe quantum dot in vertical ZnSe nanowire and photonic wire for efficient single-photon emission

    DEFF Research Database (Denmark)

    Cremel, Thibault; Bellet-Amalric, Edith; Cagnon, Laurent

    We’ve recently demonstrated that a CdSe quantum dot (QD) in a ZnSe nanowire (NW) can emit triggered single photons up to room temperature [1]. In this contribution, we present the possibilities of enhancing the photon emission and collection in such NW-QDs structures for a realistic application...... as a single photon source. We have grown vertically oriented ZnSe NWs (with typical diameter of 10 nm) by molecular beam epitaxy on a ZnSe(111)B buffer layer. The growth of a ZnMgSe passivating shell increases the (otherwise weak) ZnSe near-band-edge luminescence by two orders of magnitude. This has allowed...

  2. Emittance growth due to Tevatron flying wires

    Energy Technology Data Exchange (ETDEWEB)

    Syphers, M; Eddy, Nathan

    2004-06-01

    During Tevatron injection, Flying Wires have been used to measure the transverse beam size after each transfer from the Main Injector in order to deduce the transverse emittances of the proton and antiproton beams. This amounts to 36 + 9 = 45 flies of each of 3 wire systems, with an individual wire passing through each beam bunch twice during a single ''fly''. below they estimate the emittance growth induced by the interaction of the wires with the particles during these measurements. Changes of emittance from Flying Wire measurements conducted during three recent stores are compared with the estimations.

  3. Wire chamber gases

    International Nuclear Information System (INIS)

    Va'vra, J.

    1992-04-01

    In this paper, we describe new developments in gas mixtures which have occurred during the last 3--4 years. In particular, we discuss new results on the measurement and modeling of electron drift parameters, the modeling of drift chamber resolution, measurements of primary ionization and the choice of gas for applications such as tracking, single electron detection, X-ray detection and visual imaging. In addition, new results are presented on photon feedback, breakdown and wire aging

  4. Analysis of overvoltages in overhead ground wires of extra high voltage (EHV) power transmission line under single-phase-to-ground faults

    NARCIS (Netherlands)

    Dudurych, [No Value; Rosolowski, E

    2000-01-01

    Overhead ground wires (GW) of extra high voltage (EHV) power transmission lines, apart from lightning-induced overvoltage protection are frequently used for carrier-current communication. In this case the ground wires are suspended on insulators, the dielectric strength of which should be sufficient

  5. Constant DC-Capacitor Voltage-Control-Based Harmonics Compensation Strategy of Smart Charger for Electric Vehicles in Single-Phase Three-Wire Distribution Feeders

    Directory of Open Access Journals (Sweden)

    Fuka Ikeda

    2017-06-01

    Full Text Available This paper discusses harmonic current compensation of the constant DC-capacitor voltage-control (CDCVC-based strategy of smart chargers for electric vehicles (EVs in single-phase three-wire distribution feeders (SPTWDFs under nonlinear load conditions. The basic principle of the CDCVC-based harmonics compensation strategy under nonlinear load conditions is discussed in detail. The instantaneous power flowing into the three-leg pulse-width modulated (PWM rectifier, which performs as a smart charger, shows that the CDCVC-based strategy achieves balanced and sinusoidal source currents with a unity power factor. The CDCVC-based harmonics compensation strategy does not require any calculation blocks of fundamental reactive, unbalanced active, and harmonic currents. Thus, the authors propose a simplified algorithm to compensate for reactive, unbalanced active, and harmonic currents. A digital computer simulation is implemented to confirm the validity and high practicability of the CDCVC-based harmonics compensation strategy using PSIM software. Simulation results demonstrate that balanced and sinusoidal source currents with a unity power factor in SPTWDFs are obtained on the secondary side of the pole-mounted distribution transformer (PMDT during both the battery-charging and discharging operations in EVs, compensating for the reactive, unbalanced active, and harmonic currents.

  6. High-order moments of streamwise fluctuations in a turbulent channel flow with spanwise rotation

    Science.gov (United States)

    Xia, Zhenhua; Brethouwer, Geert; Chen, Shiyi

    2018-02-01

    It is well known that the spanwise rotation in turbulent channel flow alters the mean velocity distribution to a linear law. In the present work, we have studied the higher-order moments of the streamwise fluctuations in a turbulent channel flow with spanwise rotation. Our results show that in a significant part of the channel the 2 p -order moments, raised by the power 1 /p with p =1 ,2 ,...,6 , also follow linear behavior according to 1 /p=ap(y /h ) +bp . Here, u'+ is the streamwise velocity fluctuation normalized by the global friction velocity, h is the channel half width, and bp and ap are the intercept and the slope, respectively, which vary with Reynolds and rotation numbers. The linear regions can be extended by introducing a self-similar scaling, that is, 2 p -order moments as a function of 2 q -order moments. The slopes in the self-similar scaling ap/a1 do not reveal sub-Gaussian behavior as in nonrotating wall-bounded flows, but rather Gaussian or super-Gaussian behaviors.

  7. Effect of controlled spanwise bending on the stability of the leading-edge vortex

    Science.gov (United States)

    Bhattacharya, Samik; Scofield, Tyler

    2017-11-01

    When an airfoil is accelerated from rest at a high angle of attack, a leading-edge vortex (LEV) forms, which soon gets destabilized and convects downstream. In this work, we control the spanwise bending of a flat plate wing to actively influence the vorticity transfer from the LEV. Our aim is to investigate the effect of spanwise curvature variation on the geometry, growth, and stability of the LEV during the acceleration phase. A 3D printed flat-plate with a chord of 5 cm and span of 15 cm is towed in a small fish tank at different angles of attack greater than 15°. The plate starts from rest and reaches a Reynolds number of 5000 after travelling different multiples and submultiples of chord-length. We carry out dye-flow visualization and measure the circulation build up and the convection velocity of the LEV with the help of particle image velocimetry (PIV). The unsteady loads coming on to the wing is measured with a force sensor. An analytical scheme for computing the load from the measured displacement of the plate is presented and compared with the force sensor data. Preliminary results indicate that controlled curvature variation can influence the formation and stability of an LEV.

  8. Wind-up of a spanwise vortex in deepening transition and stall

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F.T.; Bowles, R.I. [University Coll., London (United Kingdom). Dept. of Mathematics; Walker, J.D.A. [Mechanical Engineering Department, Packard Laboratory No. 19, Lehigh University, Bethlehem, PA 18015 (United States)

    2000-09-01

    A fundamental flow problem of unsteady wind-up of a spanwise vortex is studied in this theoretical work on deepening dynamic stall and transition in a boundary layer, internal layer or related unsteady motion. It examines the nonlinear evolution of the spanwise vortex produced when the local wall pressure develops a maximum or minimum, subsequent to the finite-time break-up of an interacting layer and the impact of normal pressure gradients. The evolution is controlled by an inner-outer interaction between the effects of the normal pressure gradient and the momentum jumps across and outside the vortex, which is situated near the strong inflexion point induced in the mean flow. Although the work concentrates on a particular internal-flow context, many of the flow properties found are generic and in particular apply for a more general case including external flows. Analysis and associated computations point to two main distinct trends in the vortex response, depending to a large extent on a parameter gauging the relative strengths of the above effects. The response is either an explosive one, provoking enhanced wind-up, growth and pressure in the vortex, or it is implosive, causing the vortex to shrink and virtually empty itself through unwinding, leaving little local pressure variation. A further discussion includes the after-effects of this vortex response and some of the connections with experiments and direct computations on deepening stall and transition. (orig.)

  9. Noncontextual Wirings

    Science.gov (United States)

    Amaral, Barbara; Cabello, Adán; Cunha, Marcelo Terra; Aolita, Leandro

    2018-03-01

    Contextuality is a fundamental feature of quantum theory necessary for certain models of quantum computation and communication. Serious steps have therefore been taken towards a formal framework for contextuality as an operational resource. However, the main ingredient of a resource theory—a concrete, explicit form of free operations of contextuality—was still missing. Here we provide such a component by introducing noncontextual wirings: a class of contextuality-free operations with a clear operational interpretation and a friendly parametrization. We characterize them completely for general black-box measurement devices with arbitrarily many inputs and outputs. As applications, we show that the relative entropy of contextuality is a contextuality monotone and that maximally contextual boxes that serve as contextuality bits exist for a broad class of scenarios. Our results complete a unified resource-theoretic framework for contextuality and Bell nonlocality.

  10. A tentative opinion of modeling plasma formation in metallic wire Z pinch

    International Nuclear Information System (INIS)

    Ding Ning

    2002-01-01

    Numerous experiments in both single wire and in wire arrays have attracted much attention. For the wire array Z-pinch implosions the plasma formation in the metallic wire Z pinches is a key question. By means of analyzing a number of single-wire and multi-wire experiments, two models to describe the behavior of a wire array Z-pinch in initial phase are suggested. In this phase each wire carries a rising current and behaves independently in a way similar to that found in single wire Z-pinch experiments in which a comparable current in one wire is employed. Based on one- or/and two-dimensional magnetohydrodynamics (MHD) theory, one model is used to simulate the electrical explosion stage of the metallic wire, another is used to simulate the wire-plasma formation stage

  11. Direct Numerical Simulation of Supersonic Turbulent Boundary Layer with Spanwise Wall Oscillation

    Directory of Open Access Journals (Sweden)

    Weidan Ni

    2016-03-01

    Full Text Available Direct numerical simulations (DNS of Mach = 2.9 supersonic turbulent boundary layers with spanwise wall oscillation (SWO are conducted to investigate the turbulent heat transport mechanism and its relation with the turbulent momentum transport. The turbulent coherent structures are suppressed by SWO and the drag is reduced. Although the velocity and temperature statistics are disturbed by SWO differently, the turbulence transports of momentum and heat are simultaneously suppressed. The Reynolds analogy and the strong Reynolds analogy are also preserved in all the controlled flows, proving the consistent mechanisms of momentum transport and heat transport in the turbulent boundary layer with SWO. Despite the extra dissipation and heat induced by SWO, a net wall heat flux reduction can be achieved with the proper selected SWO parameters. The consistent mechanism of momentum and heat transports supports the application of turbulent drag reduction technologies to wall heat flux controls in high-speed vehicles.

  12. Stretched Wire Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, Gordon; /SLAC

    2005-09-06

    Stretched wires are beginning to play an important role in the alignment of accelerators and synchrotron light sources. Stretched wires are proposed for the alignment of the 130 meter long LCLS undulator. Wire position technology has reached sub-micron resolution yet analyses of perturbations to wire straightness are hard to find. This paper considers possible deviations of stretched wire from the simple 2-dimensional catenary form.

  13. Strength of stainless steel surgical wire in various fixation modes.

    Science.gov (United States)

    Schultz, R S; Boger, J W; Dunn, H K

    1985-09-01

    Although wire is a commonly used fixation device in orthopedics, little is known about the effects of fastening methods and configurations on the strength of wiring systems. Three sizes of stainless steel surgical wire were tested in noncyclic tensile loading. Load failure levels increased with enlarging wire diameter. Fastening twists were stronger than knots or the ASIF bend technique. The failure mode for twists was untwisting. More than two twists gave no additional strength to the system. Two commercial wire tightening devices gave stronger and more reproducible twists than did ordinary pliers. The addition of a tension equalizing loop opposite the fastening loop weakened the wire system by 10%-15%. The combination of two single wire loops was stronger than a continuous double loop of wire. The results from this study are intended to help the orthopedic surgeon optimize the use of wire.

  14. Implementation of Basic and Universal Gates In a single Circuit Based On Quantum-dot Cellular Automata Using Multi-Layer Crossbar Wire

    Science.gov (United States)

    Bhowmik, Dhrubajyoti; Saha, Apu Kr; Dutta, Paramartha; Nandi, Supratim

    2017-08-01

    Quantum-dot Cellular Automata (QCA) is one of the most substitutes developing nanotechnologies for electronic circuits, as a result of lower force utilization, higher speed and smaller size in correlation with CMOS innovation. The essential devices, a Quantum-dot cell can be utilized to logic gates and wires. As it is the key building block on nanotechnology circuits. By applying simple gates, the hardware requirements for a QCA circuit can be decreased and circuits can be less complex as far as level, delay and cell check. This article exhibits an unobtrusive methodology for actualizing novel upgraded simple and universal gates, which can be connected to outline numerous variations of complex QCA circuits. Proposed gates are straightforward in structure and capable as far as implementing any digital circuits. The main aim is to build all basic and universal gates in a simple circuit with and without crossbar-wire. Simulation results and physical relations affirm its handiness in actualizing each advanced circuit.

  15. Molecular wiring of olivine LiFePO4 by ruthenium(II)-bipyridine complexes and by their assemblies with single-walled carbon nanotubes

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav; Exnar, I.; Zakeeruddin, S. M.; Graetzel, M.

    2008-01-01

    Roč. 112, č. 23 (2008), s. 8708-8714 ISSN 1932-7447 R&D Projects: GA MŠk LC510; GA MŠk 1P05OC069; GA AV ČR IAA400400804; GA AV ČR KAN200100801 Institutional research plan: CEZ:AV0Z40400503 Keywords : molecular wiring * LiFePO4 * carbon nanotube Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.396, year: 2008

  16. Wire bonding in microelectronics

    CERN Document Server

    Harman, George G

    2010-01-01

    Wire Bonding in Microelectronics, Third Edition, has been thoroughly revised to help you meet the challenges of today's small-scale and fine-pitch microelectronics. This authoritative guide covers every aspect of designing, manufacturing, and evaluating wire bonds engineered with cutting-edge techniques. In addition to gaining a full grasp of bonding technology, you'll learn how to create reliable bonds at exceedingly high yields, test wire bonds, solve common bonding problems, implement molecular cleaning methods, and much more. Coverage includes: Ultrasonic bonding systems and technologies, including high-frequency systems Bonding wire metallurgy and characteristics, including copper wire Wire bond testing Gold-aluminum intermetallic compounds and other interface reactions Gold and nickel-based bond pad plating materials and problems Cleaning to improve bondability and reliability Mechanical problems in wire bonding High-yield, fine-pitch, specialized-looping, soft-substrate, and extreme-temperature wire bo...

  17. Water Desalination with Wires

    NARCIS (Netherlands)

    Porada, S.; Sales, B.B.; Hamelers, H.V.M.; Biesheuvel, P.M.

    2012-01-01

    We show the significant potential of water desalination using a novel capacitive wire-based technology in which anode/cathode wire pairs are constructed from coating a thin porous carbon electrode layer on top of electrically conducting rods (or wires). By alternately dipping an array of electrode

  18. Spanwise homogeneous buoyancy-drag model for Rayleigh-Taylor mixing and experimental evaluation

    International Nuclear Information System (INIS)

    Dimonte, Guy

    2000-01-01

    A buoyancy-drag model for Rayleigh-Taylor (RT) mixing is developed on the premise that the bubble and spike regions behave as distinct and spanwise homogeneous fluids. Then, mass conservation is applied accross the mixing zone to obtain their average mixture densities dynamically. These are used to explicitly calculate the inertia and buoyancy terms in the evolutionary equation. The only unknown parameter in the model is the Newtonian drag constant C∼2.5±0.6, which is determined from turbulent RT experiments over various Atwood numbers A and acceleration histories g(t). The bubble (i=2) and spike (i=1) amplitudes are found to obey the familiar h i =α i Agt 2 for a constant g and h i ∼t θ i for an impulsive g. For bubbles, both α 2 and θ 2 are insensitive to A. For the spikes, both α 1 and θ 1 increase as a power law with the density ratio. However, θ 1 is not universal because it depends on the initial value of h 1 /h 2 . (c) 2000 American Institute of Physics

  19. Linear modeling of turbulent skin-friction reduction due to spanwise wall motion

    Science.gov (United States)

    Duque-Daza, Carlos; Baig, Mirza; Lockerby, Duncan; Chernyshenko, Sergei; Davies, Christopher; University of Warwick Team; Imperial College Team; Cardiff University Team

    2012-11-01

    We present a study on the effect of streamwise-travelling waves of spanwise wall velocity on the growth of near-wall turbulent streaks using a linearized formulation of the Navier-Stokes equations. The changes in streak amplification due to the travelling waves induced by the wall velocity are compared to published results of direct numerical simulation (DNS) predictions of the turbulent skin-friction reduction over a range of parameters; a clear correlation between these two sets of results is observed. Additional linearized simulations but at a much higher Reynolds numbers, more relevant to aerospace applications, produce results that show no marked differences to those obtained at low Reynolds number. It is also observed that a close correlation exists between DNS data of drag reduction and a very simple characteristic of the ``generalized'' Stokes layer generated by the streamwise-travelling waves. Carlos.Duque-Daza@warwick.ac.uk - School of Engineering, University of Warwick, Coventry CV4 7AL, UK caduqued@unal.edu.co - Department of Mechanical and Mechatronics Engineering, Universidad Nacional de Colombia.

  20. Hairpin packet structure of a turbulent boundary layer in inclined wall-normal/spanwise planes

    Science.gov (United States)

    Lee, Jae Hwa; Sung, Hyung Jin

    2009-11-01

    Turbulent coherent structures associated with hairpin packet motions have been scrutinized using the instantaneous flow fields obtained from the direct numerical simulation (DNS) of a turbulent boundary layer (TBL). The Reynolds number based on the momentum thickness was varied in the range Reθ=890˜2560. This study focused on the hairpin packet motions in inclined wall-normal/spanwise planes. The hairpin vortex signature associated with the hairpin leg components in the vertical inclined plane consists of a counter-rotating vortex pair, upward and downward motions and a stagnation point induced by the Q2 and Q4 events. These hairpin signatures were observed in the instantaneous flow field, in the two-point correlations and in the conditionally averaged flow fields, respectively. We considered three inclined planes (45^o, 90^o, and 135^o) to investigate the spatial characteristics of the hairpin packet motions in the log and wake regions. The statistical flow fields showed that significantly different flow patterns are induced by the intersections of the three inclined planes with the hairpin packet motions.

  1. PS wire chamber

    CERN Document Server

    1970-01-01

    A wire chamber used at CERN's Proton Synchrotron accelerator in the 1970s. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  2. Resonant tunneling of electrons in quantum wires

    International Nuclear Information System (INIS)

    Krive, I.V.; Shekhter, R.I.; Jonson, M.; Krive, I.V.

    2010-01-01

    We considered resonant electron tunneling in various nanostructures including single wall carbon nanotubes, molecular transistors and quantum wires formed in two-dimensional electron gas. The review starts with a textbook description of resonant tunneling of noninteracting electrons through a double-barrier structure. The effects of electron-electron interaction in sequential and resonant electron tunneling are studied by using Luttinger liquid model of electron transport in quantum wires. The experimental aspects of the problem (fabrication of quantum wires and transport measurements) are also considered. The influence of vibrational and electromechanical effects on resonant electron tunneling in molecular transistors is discussed.

  3. Optimizing Spanwise & Streamwise Spacings of MHK Devices in a Trapezoidal River Channel

    Science.gov (United States)

    Roberts, J. D.; Barco, J.; Johnson, E.; James, S. C.; Jones, C. A.; Jepsen, R. A.

    2011-12-01

    The world is facing significant challenges meeting the energy demands for the future. Growing populations and developing economies as well as increasing energy expenditures highlight the need for a spectrum of energy sources. One promising renewable is marine and hydrokinetic (MHK) energy, which has the potential to make important contributions to future energy portfolios. Increasing interest in MHK energy has spurred to significant research on optimal placement of emerging technologies to maximize energy capture and minimize potential negative effects on the environment. Understanding changes to near- and far-field hydrodynamics is necessary to assess optimal placement. This work demonstrates a newly developed modeling tool that can be used to optimize MHK array layouts to maximize energy capture while minimizing potentially harmful environmental effects. SNL has developed and implemented modifications to an existing flow, sediment-dynamics, and water-quality code (SNL-EFDC) to qualify, quantify, and visualize the interaction and influence of MHK-device operation at a representative site using an appropriate and verified representation of momentum/energy extraction and turbulent wake generation. Various hypothetical MHK array configurations are simulated within a straight rectangular unidirectional flow conditions channel at several water column depths. Results show that the turbine-array power efficiency increased, nonlinearly, as turbine spacing was increased in both the spanwise and streamwise directions as well as when turbines were placed higher in the water column. Contour plots facilitate evaluation of tradeoffs between efficiency and spacing. In addition, results show that flow increases around and over/under the array leading to elevated velocities in the main channel, near the bank, and near the sediment bed, which may have potential implications for bank and bottom erosion, and navigation. SNL-EFDC's "MHK friendly" array-optimization tool is and will

  4. Transmission channels through Na and Al atom wire

    DEFF Research Database (Denmark)

    Kobayashi, N.; Brandbyge, Mads; Tsukada, M.

    1999-01-01

    First-principles calculations of the transmission channels of single-atom-width Na and Al atom wires bridged between metallic jellium electrodes are presented. For the Na wire, a single channel contributes to the conduction with an almost full quantization value, 2e(2)/h. The conductance...

  5. Effect of the wire width and magnetic field on the detection efficiency of superconducting nanowire single-photon detectors; Einfluss von Geometrie und magnetischem Feld auf die Effizienz supraleitender Nanodraht-Einzelphotonendetektoren

    Energy Technology Data Exchange (ETDEWEB)

    Lusche, Robert

    2015-06-24

    The aim of this thesis is to a gain deeper understanding of the single photon detection process in superconducting nanowire single-photon detectors (SNSPDs). A detailed knowledge of the physical principles and mechanisms which the detection process is based on helps to improve specific detector parameters and hence the suitability of such detectors for various applications. Several theoretical models of the detection process have been compared to the results of measurements of photon and dark count rates in meander-type TaN- and NbN-SNSPDs with different wire-widths in a broad range of wavelengths, transport currents and magnetic fields. In the first part of the thesis, measurements of the photon and dark count rates of TaN- and NbN-SNSPDs with varying wire width are described. For each meander spectra of the intrinsic detection efficiency (IDE) were derived. The IDE represents the probability that the SNSPD generates a measurable voltage pulse upon absorption of a photon. The recorded IDE spectra have shown a characteristic cut-off wavelength up to which photons were detected with a probability of 100 per cent. Furthermore it was found that the cut-off wavelengths increases linearly with the increase in the inverse wire width. This observation is best explained by the refined hot spot model. The second part of the thesis describes the influence of magnetic field on the photon and dark count rates of NbN-SNSPDs. In order to apply magnetic fields to the meanders a continuous-flow inset for mobile 4He storage dewars was constructed. It was shown for the first time, that the photon count rate exhibits a magnetic field dependence. Furthermore it could be shown that the measured dependence of the photon and dark count rate on the magnetic field is in good agreement with the theoretical model of vortex-assisted photon detection in narrow superconducting lines. Hence, within this thesis it could be confirmed that magnetic vortices are involved in the single photon

  6. Towards plant wires

    OpenAIRE

    Adamatzky, Andrew

    2014-01-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self...

  7. Photovoltaic Wire, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will investigate a new architecture for photovoltaic devices based on nanotechnology: photovoltaic wire. The...

  8. Photovoltaic Wire Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will investigate a new architecture for photovoltaic devices based on nanotechnology: photovoltaic wire. The...

  9. Charpak hemispherical wire chamber

    CERN Document Server

    1970-01-01

    pieces. Mesures are of the largest one. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  10. 1998 wire development workshop proceedings

    International Nuclear Information System (INIS)

    1998-04-01

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development

  11. Spanwise distribution of energy losses in steam turbine last stage nozzle

    Directory of Open Access Journals (Sweden)

    A. M. Tyukhtyaev

    2014-01-01

    Full Text Available In this work a numerical experiment is conducted to study the effect of the combination of complex nozzle sweep and lean on the performance of the steam turbine LPC last stage.To perform the numerical experiment, an automated search procedure has been developed using the CFD package NUMECA and the program IOSO. This procedure is designed to search for a combination of the nozzle tilt angles, which are key ones to determine the laws of the nozzle sweep and lean. The target function of the optimization process is the maximum efficiency level at constant mass flow rate of steam. The sweep and lean angles and the stagger of the nozzle were varying values during the search.To calculate the span-wise distribution of kinetic energy losses in last stage nozle on the basis of CFD calculation of vapor flow, using the Numeca CFView software, the article offers a method based on the calculation of steam parameters along the individual conditional streamlines. In the CFView program this method is implemented using the integrated programming language Python.As a result of the numerical experiment, the combination of angles has been found to improve the efficiency level by 1.8%, and reduce the total kinetic energy losses in the nozzle by 1.6%.Application the combined sweep and lean resulted in a decrease in the mass flow rate of steam in the shroud area, and due to this, increase in the hub area. The redistribution of the mass flow rate of steam and preload of the vapor flow to the hub led to decreasing the static pressure gradient and the reactivity degree in the nozzle height. Reduction of the pressure gradient and the preload of the vapor stream to the hub led to a decrease in the intensity of secondary flows at the hub area. The local preload of the steam flow to the shroud together with decreasing pressure gradient resulted in reduced intensity of secondary flows and reduced losses of kinetic energy in the shroud area. Increase in the static pressure in

  12. The structure of a three-dimensional boundary layer subjected to streamwise-varying spanwise-homogeneous pressure gradient

    International Nuclear Information System (INIS)

    Bentaleb, Y.; Leschziner, M.A.

    2013-01-01

    Highlights: • We study a spatially-evolving three-dimensional boundary layer. • We impose a streamwise-varying spanwise-homogeneous pressure gradient. • A collateral flow is formed close to the wall, and this is investigated alongside the skewed upper part of the boundary layer. • A wide range of flow-physical properties have been studied. -- Abstract: A spatially-evolving three-dimensional boundary layer, subjected to a streamwise-varying spanwise-homogeneous pressure gradient, equivalent to a body force, is investigated by way of direct numerical simulation. The pressure gradient, prescribed to change its sign half-way along the boundary layer, provokes strong skewing of the velocity vector, with a layer of nearly collateral flow forming close to the wall up to the position of maximum spanwise velocity. A wide range of flow-physical properties have been studied, with particular emphasis on the near-wall layer, including second-moments, major budget contributions and wall-normal two-point correlations of velocity fluctuations and their angles, relative to wall-shear fluctuations. The results illustrate the complexity caused by skewing, including a damping in turbulent mixing and a significant lag between strains and stresses. The study has been undertaken in the context of efforts to develop and test novel hybrid LES–RANS schemes for non-equilibrium near-wall flows, with an emphasis on three-dimensional near-wall straining. Fundamental flow-physical issues aside, the data derived should be of particular relevance to a priori studies of second-moment RANS closure and the development and validation of RANS-type near-wall approximations implemented in LES schemes for high-Reynolds-number complex flows

  13. Near-field optical spectroscopy of semiconductor quantum wires

    Science.gov (United States)

    Gershoni, D.; Harris, T. D.; Pfeiffer, L. N.

    1997-09-01

    We discuss low temperature near-field scanning optical spectroscopical studies of single, nanometer dimension, cleaved edge overgrown quantum wires. We use the enhanced spatial resolution of near-field microscopy, to spectroscopically investigate these single wires, which are inaccessible to conventional far-field optical spectroscopy. We thus performed a direct experimental comparison between a two-dimensional quantum system and a single genuine one-dimensional quantum system. We show that the photoluminescence of a single quantum wire is easily distinguished from that of the surrounding quantum well. Emission from localized centers is shown to dominate the photoluminescence from both wires and wells at low temperatures. A factor of three enhancement in the optical absorption of a wire, in comparison with that of a similar well, is concluded from the photoluminescence excitation data.

  14. Automating wiring formboard design

    NARCIS (Netherlands)

    Van den Berg, T.

    2013-01-01

    Increase in aircraft wiring complexity call for manufacturing design improvements to reduce cost and lead-time. To achieve such improvements, a joint research project was performed by the Flight Performance and Propulsion (FPP) group and Fokker Elmo BV, the second largest aircraft wiring harness

  15. Heat Transfer Analysis in Wire Bundles for Aerospace Vehicles

    Science.gov (United States)

    Rickman, S. L.; Iamello, C. J.

    2016-01-01

    Design of wiring for aerospace vehicles relies on an understanding of "ampacity" which refers to the current carrying capacity of wires, either, individually or in wire bundles. Designers rely on standards to derate allowable current flow to prevent exceedance of wire temperature limits due to resistive heat dissipation within the wires or wire bundles. These standards often add considerable margin and are based on empirical data. Commercial providers are taking an aggressive approach to wire sizing which challenges the conventional wisdom of the established standards. Thermal modelling of wire bundles may offer significant mass reduction in a system if the technique can be generalized to produce reliable temperature predictions for arbitrary bundle configurations. Thermal analysis has been applied to the problem of wire bundles wherein any or all of the wires within the bundle may carry current. Wire bundles present analytical challenges because the heat transfer path from conductors internal to the bundle is tortuous, relying on internal radiation and thermal interface conductance to move the heat from within the bundle to the external jacket where it can be carried away by convective and radiative heat transfer. The problem is further complicated by the dependence of wire electrical resistivity on temperature. Reduced heat transfer out of the bundle leads to higher conductor temperatures and, hence, increased resistive heat dissipation. Development of a generalized wire bundle thermal model is presented and compared with test data. The steady state heat balance for a single wire is derived and extended to the bundle configuration. The generalized model includes the effects of temperature varying resistance, internal radiation and thermal interface conductance, external radiation and temperature varying convective relief from the free surface. The sensitivity of the response to uncertainties in key model parameters is explored using Monte Carlo analysis.

  16. Pin Wire Coating Trip Report

    International Nuclear Information System (INIS)

    Spellman, G P

    2004-01-01

    A meeting to discuss the current pin wire coating problems was held at the Reynolds plant in Los Angeles on 2MAR04. The attendance list for Reynolds personnel is attached. there was an initial presentation which gave a brief history and the current status of pin wire coating at Reynolds. There was a presentation by Lori Primus on the requirements and issues for the coating. There was a presentation by Jim Smith of LANL on the chemistry and to some extent process development done to date. There was a long session covering what steps should be taken in the short term and, to a lesser extent, the long term. The coating currently being used is a blend of two polymers, polyethersulfone and polyparabanic acid (PPA) and some TiO2 filler. This system was accepted and put into production when the pin wire coating was outsourced to another company in 1974. When that company no longer was interested, the wire coating was brought in-house to Reynolds. At that time polyparabanic acid was actually a commercial product available from Exxon under the trade name Tradlon. However, it appears that the material used at Reynolds was synthesized locally. Also, it appears that a single large batch was synthesized in that time period and used up to 1997 when the supply ran out. The reason for the inclusion of TiO2 is not known although it does act as a rheological thickener. However, a more controlled thickening can be obtained with materials such as fumed silica. This material would have less likelihood of causing point imperfections in the coatings. Also, the mixing technique being used for all stages of the process is a relatively low shear ball mill process and the author recommends a high shear process such as a three roll paint mill, at least for the final mixing. Since solvent is added to the powder at Reynolds, it may be that they need to have the paint mill there

  17. Thermosonic wire bonding of IC devices using palladium wire

    International Nuclear Information System (INIS)

    Shze, J.H.; Poh, M.T.; Tan, R.M.

    1996-01-01

    The feasibility of replacing gold wire by palladium wire in thermosonic wire bonding of CMOS and bipolar devices are studied in terms of the manufacturability, physical, electrical and assembly performance. The results that palladium wire is a viable option for bonding the bipolar devices but not the CMOS devices

  18. FiberWire is superior in strength to stainless steel wire for tension band fixation of transverse patellar fractures.

    Science.gov (United States)

    Wright, P B; Kosmopoulos, V; Coté, R E; Tayag, T J; Nana, A D

    2009-11-01

    The metal implants used to achieve fixation of displaced transverse patellar fractures are associated with implant failure, postoperative pain and a significant re-operation rate. Recent studies have examined braided suture as a possible alternative to stainless steel wire to increase patient satisfaction and decrease re-operation rates, but suture has not demonstrated clearly superior fixation strength. FiberWire is a reinforced braided polyblend suture that has demonstrated superior characteristics to the previous sutures studied and has not to our knowledge been examined as a material for tension band fixation of transverse patellar fractures. Materials testing was performed on repeated samples of No. 5 FiberWire suture and 18-gauge stainless steel wire. The strength and stiffness of each material was measured. The two materials were then used for tension band fixation on a novel transverse patellar fracture model and tested to failure by three-point bending. The constructs included a single stainless steel wire, a single-strand FiberWire tied with a sliding knot, double-strand FiberWire tied with sliding knots and double-strand FiberWire tied with a Wagoner's Hitch. The fixation strength and stiffness of the constructs were measured. Unlike stainless steel, FiberWire maintained its initial stiffness until failure. Furthermore, during three-point-bend testing, double-strand FiberWire was found to have a significantly higher failure load than stainless steel wire when the suture was tied and locked under the tension produced by a modified Wagoner's Hitch. FiberWire is a potentially superior alternative to stainless steel wire in tension band fixation of transverse patellar fractures.

  19. Si Wire-Array Solar Cells

    Science.gov (United States)

    Boettcher, Shannon

    2010-03-01

    Micron-scale Si wire arrays are three-dimensional photovoltaic absorbers that enable orthogonalization of light absorption and carrier collection and hence allow for the utilization of relatively impure Si in efficient solar cell designs. The wire arrays are grown by a vapor-liquid-solid-catalyzed process on a crystalline (111) Si wafer lithographically patterned with an array of metal catalyst particles. Following growth, such arrays can be embedded in polymethyldisiloxane (PDMS) and then peeled from the template growth substrate. The result is an unusual photovoltaic material: a flexible, bendable, wafer-thickness crystalline Si absorber. In this paper I will describe: 1. the growth of high-quality Si wires with controllable doping and the evaluation of their photovoltaic energy-conversion performance using a test electrolyte that forms a rectifying conformal semiconductor-liquid contact 2. the observation of enhanced absorption in wire arrays exceeding the conventional light trapping limits for planar Si cells of equivalent material thickness and 3. single-wire and large-area solid-state Si wire-array solar cell results obtained to date with directions for future cell designs based on optical and device physics. In collaboration with Michael Kelzenberg, Morgan Putnam, Joshua Spurgeon, Daniel Turner-Evans, Emily Warren, Nathan Lewis, and Harry Atwater, California Institute of Technology.

  20. Towards plant wires.

    Science.gov (United States)

    Adamatzky, Andrew

    2014-08-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self-growing wetware circuits and devices, and integration of plant-based electronic components into future and emergent bio-hybrid systems. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Elastic anisotropy in multifilament Nb$_3$Sn superconducting wires

    CERN Document Server

    Scheuerlein, C; Alknes, P; Arnau, G; Bjoerstad, R; Bordini, B

    2015-01-01

    The elastic anisotropy caused by the texture in the Nb3Sn filaments of PIT and RRP wires has been calculated by averaging the estimates of Voigt and Reuss, using published Nb3Sn single crystal elastic constants and the Nb3Sn grain orientation distribution determined in both wire types by Electron Backscatter Diffraction. At ambient temperature the calculated Nb3Sn E-moduli in axial direction in the PIT and the RRP wire are 130 GPa and 140 GPa, respectively. The calculated E-moduli are compared with tensile test results obtained for the corresponding wires and extracted filament bundles.

  2. A new design of wire locators for drift tubes

    CERN Document Server

    Ilgner, C

    2004-01-01

    Every position-sensitive wire detector needs to solve the problem of wire positioning with a defined accuracy all over its sensitive volume. In particular, thin-walled drift tubes ("straws"), which are currently being attached to large detector units of several tens of square meters of surface, need to be equipped with wire locators along their signal wires. A wire locator has been developed together with an insertion device, especially for medium-sized drift tube systems, which significantly reduces the production time and avoids the danger of applying epoxy glue to the signal wire. The wire locator is being inserted in one single time-saving production step together with the signal wire itself. The proposed design is being compared to the rigid wire locators in use in the COMPASS straw tracking system at CERN. The investigation comprises both wire- centering capability and influence on the efficiency of adjacent detector regions, demonstrating the competitive performance of the proposed new system. Its suff...

  3. Cryogenic Pressure Seal for Wires

    Science.gov (United States)

    Ciana, J. J.

    1984-01-01

    High-pressure-seal formed by forcing polyurethane into space surrounding wire or cable in special fitting. Wire or cable routed through fitting then through a tightly fitting cap. Wire insulation left intact. Cap filled with sealant and forced onto the fitting: this pushes sealant into fitting so it seals wire or cable in fitting as well as in cap.

  4. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  5. 78 FR 54272 - Steel Wire Garment Hangers From China; Institution of a Five-Year Review

    Science.gov (United States)

    2013-09-03

    ... Commission defined a single Domestic Industry consisting of all domestic producers of steel wire garment... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-1123 (Review)] Steel Wire Garment Hangers... the antidumping duty order on steel wire garment hangers from China would be likely to lead to...

  6. Self-organization of mesoscopic silver wires by electrochemical deposition

    Directory of Open Access Journals (Sweden)

    Sheng Zhong

    2014-08-01

    Full Text Available Long, straight mesoscale silver wires have been fabricated from AgNO3 electrolyte via electrodeposition without the help of templates, additives, and surfactants. Although the wire growth speed is very fast due to growth under non-equilibrium conditions, the wire morphology is regular and uniform in diameter. Structural studies reveal that the wires are single-crystalline, with the [112] direction as the growth direction. A possible growth mechanism is suggested. Auger depth profile measurements show that the wires are stable against oxidation under ambient conditions. This unique system provides a convenient way for the study of self-organization in electrochemical environments as well as for the fabrication of highly-ordered, single-crystalline metal nanowires.

  7. Simultaneous Generations of Independent Millimeter Wave and 10 Gbit/s Wired Signal by Single Electrode Modulator in TDM-PON Network

    Science.gov (United States)

    Niazi, Shahab Ahmad; Zhang, Xiaoguang; Xi, Lixia; Idress, Muhammad

    2013-03-01

    We propose and present a cost effective and simple technique of simultaneous generation and propagation of millimeter wave with recently standardized 10 giga bit passive optical network (GPON) by mixing of 2.5 Gbit/s, 30 GHz radio wave with 10 Gbit/s based band signal and then modulated by single Mach Zehnder modulator (MZM). In this scheme, we have applied 1490 nm for downstream, 1310 nm for upstream transmission and ON OFF keying (OOK) modulation format to make it fully align with existing standards and infrastructure. Simulation results show error free transmission performance with negligible power penalty over 25 km bidirectional fiber. We also highlight the principles and discuss the main technical challenges for commercial realization of 60 GHz spectrum.

  8. STRS SpaceWire FPGA Module

    Science.gov (United States)

    Lux, James P.; Taylor, Gregory H.; Lang, Minh; Stern, Ryan A.

    2011-01-01

    An FPGA module leverages the previous work from Goddard Space Flight Center (GSFC) relating to NASA s Space Telecommunications Radio System (STRS) project. The STRS SpaceWire FPGA Module is written in the Verilog Register Transfer Level (RTL) language, and it encapsulates an unmodified GSFC core (which is written in VHDL). The module has the necessary inputs/outputs (I/Os) and parameters to integrate seamlessly with the SPARC I/O FPGA Interface module (also developed for the STRS operating environment, OE). Software running on the SPARC processor can access the configuration and status registers within the SpaceWire module. This allows software to control and monitor the SpaceWire functions, but it is also used to give software direct access to what is transmitted and received through the link. SpaceWire data characters can be sent/received through the software interface, as well as through the dedicated interface on the GSFC core. Similarly, SpaceWire time codes can be sent/received through the software interface or through a dedicated interface on the core. This innovation is designed for plug-and-play integration in the STRS OE. The SpaceWire module simplifies the interfaces to the GSFC core, and synchronizes all I/O to a single clock. An interrupt output (with optional masking) identifies time-sensitive events within the module. Test modes were added to allow internal loopback of the SpaceWire link and internal loopback of the client-side data interface.

  9. Cockpit canopy shattering using exploding wire techniques

    International Nuclear Information System (INIS)

    Novac, B M; Smith, I R; Downs, P R; Marston, P; Fahey, D

    2007-01-01

    This paper presents the principal experimental results provided by a preliminary investigation into the possibility of using exploding wire (EW) techniques to shatter the plastic cockpit canopy of a modern jet aircraft. The data provided forms the basis for a qualitative understanding of the physics of interaction between the plasma produced by an EW and the surrounding elasto-plastic material in which the wire is embedded. To optimize the shock-wave 'clean cutting' effect, the significance of the material, the dimensions of the exploding wire and the amplitude of the current and voltage pulses are all considered. This leads to important conclusions concerning both the characteristics of the EW and the optimum arrangement of the electrical circuit, with the single most important optimization factor being the peak electrical power input to the EW, rather than the dissipated Joule energy. A full-scale system relevant to an actual cockpit canopy shattering is outlined and relevant results are presented and discussed

  10. The wire array Z pinch programme at Imperial College

    International Nuclear Information System (INIS)

    Haines, M.G.; Lebedev, S.V.; Chittenden, J.P.; Bland, S.N.; Beg, F.N.; Dangor, A.E.; Pikuz, S.A.; Shelkovenko, T.A.

    2001-01-01

    Plasma formation and implosion dynamics of wire array z-pinches have been studied experimentally using the MAGPIE generator (1.4MA, 240ns) at Imperial College. Simulations and theory verify much of the data. Both laser probing and x-ray radiography show after an initial volumetric heating of the wires the presence of dense wire cores surrounded by low density coronal plasma. Radiography shows development of perturbations on the dense core of each wire, while laser probing shows inward jetting of the coronal plasma caused by the global JxB force, and these plasma streams are axially non-uniform on the same spatial scale as later seen in the wire cores. The spatial scale of these perturbations (∼0.5mm for Al, ∼0.25mm for W) increases with the size of the wire cores (∼0.25mm for Al, ∼0.1mm for W). The inward flow of the coronal plasma is usually field free and leads to formation on the array axis of a straight plasma column, the dynamics of which is strongly affected by radiation cooling. Images obtained by optical streak camera show that the wire cores start their inward motion late and the implosion trajectory deviates significantly from the expected from 0-D analysis. An increase of the number of wires (decrease of inter-wire gap) resulted in a transition to 0-D trajectory for aluminium wire arrays, but not for tungsten. In experiments with nested wire arrays two modes of behaviour are observed; in the first the inner array is transparent to the imploding outer array, but the current transfers to it, leading to a fast implosion. The second mode occurs when a significant fraction of current is flowing in the inner array and the two arrays apparently implode simultaneously. In both modes the x-ray pulse is significantly sharpened in comparison with that generated in implosion of a single wire array. (author)

  11. Wired to freedom

    DEFF Research Database (Denmark)

    Jepsen, Kim Sune Karrasch; Bertilsson, Margareta

    2017-01-01

    dimension of life science through a notion of public politics adopted from the political theory of John Dewey. We show how cochlear implantation engages different social imaginaries on the collective and individual levels and we suggest that users share an imaginary of being “wired to freedom” that involves...... new access to social life, continuous communicative challenges, common practices, and experiences. In looking at their lives as “wired to freedom,” we hope to promote a wider spectrum of civic participation in the benefit of future life science developments within and beyond the field of Cochlear...

  12. Wiring and lighting

    CERN Document Server

    Kitcher, Chris

    2013-01-01

    Wiring and Lighting provides a comprehensive guide to DIY wiring around the home. It sets out the regulations and legal requirements surrounding electrical installation work, giving clear guidelines that will enable the reader to understand what electrical work they are able to carry out, and what the testing and certification requirements are once the work is completed. Topics covered include: Different types of circuits; Types of cables and cable installation under floors and through joists; Isolating, earthing and bonding; Accessory boxes and fixings; Voltage bands; Detailed advice on safe

  13. Electric wiring domestic

    CERN Document Server

    Coker, A J

    1992-01-01

    Electric Wiring: Domestic, Tenth Edition, is a clear and reliable guide to the practical aspects of domestic electric wiring. Intended for electrical contractors, installation engineers, wiremen and students, its aim is to provide essential up to date information on modern methods and materials in a simple, clear, and concise manner. The main changes in this edition are those necessary to bring the work into line with the 16th Edition of the Regulations for Electrical Installations issued by the Institution of Electrical Engineers. The book begins by introducing the basic features of domestic

  14. Modern wiring practice

    CERN Document Server

    Steward, W E

    2012-01-01

    Continuously in print since 1952, Modern Wiring Practice has now been fully revised to provide an up-to-date source of reference to building services design and installation in the 21st century. This compact and practical guide addresses wiring systems design and electrical installation together in one volume, creating a comprehensive overview of the whole process for contractors and architects, as well as electricians and other installation engineers. Best practice is incorporated throughout, combining theory and practice with clear and accessible explanation, all

  15. Steady-state analysis of a faulted three-phase four-wire system supplying induction motors with neutrals connected and other single-phase line-to-neutral loads

    Science.gov (United States)

    Wood, M. E.

    1980-01-01

    Four wire Wye connected ac power systems exhibit peculiar steady state fault characteristics when the fourth wire of three phase induction motors is connected. The loss of one phase of power source due to a series or shunt fault results in currents higher than anticipated on the remaining two phases. A theoretical approach to compute the fault currents and voltages is developed. A FORTRAN program is included in the appendix.

  16. Practical wiring in SI units

    CERN Document Server

    Miller, Henry A

    2013-01-01

    Practical Wiring, Volume 1 is a 13-chapter book that first describes some of the common hand tools used in connection with sheathed wiring. Subsequent chapters discuss the safety in wiring, cables, conductor terminations, insulating sheathed wiring, conductor sizes, and consumer's control equipments. Other chapters center on socket outlets, plugs, lighting subcircuits, lighting accessories, bells, and primary and secondary cells. This book will be very valuable to students involved in this field of interest.

  17. Wire EDM for Refractory Materials

    Science.gov (United States)

    Zellars, G. R.; Harris, F. E.; Lowell, C. E.; Pollman, W. M.; Rys, V. J.; Wills, R. J.

    1982-01-01

    In an attempt to reduce fabrication time and costs, Wire Electrical Discharge Machine (Wire EDM) method was investigated as tool for fabricating matched blade roots and disk slots. Eight high-strength nickel-base superalloys were used. Computer-controlled Wire EDM technique provided high quality surfaces with excellent dimensional tolerances. Wire EDM method offers potential for substantial reductions in fabrication costs for "hard to machine" alloys and electrically conductive materials in specific high-precision applications.

  18. Wire chambers: Trends and alternatives

    International Nuclear Information System (INIS)

    Regler, Meinhard

    1992-01-01

    The subtitle of this year's Vienna Wire Chamber Conference - 'Recent Trends and Alternative Techniques' - signalled that it covered a wide range of science and technology. While an opening Vienna talk by wire chamber pioneer Georges Charpak many years ago began 'Les funerailles des chambres a fils (the burial of wire chambers)', the contrary feeling this year was that wire chambers are very much alive!

  19. Command Wire Sensor Measurements

    Science.gov (United States)

    2012-09-01

    CFAR Constant False Alarm Rate CWIE Command Wire-Improvised Explosive Device EMI Electromagnetic Induction GPR Ground Penetrating Radar...this, some type of constant false alarm rate ( CFAR ) receiver is required. CFAR automatically raises the threshold level to keep clutter echoes and

  20. Transport in quantum wires

    Indian Academy of Sciences (India)

    Transport in quantum wires. SIDDHARTHA LAL, SUMATHI RAO£ and DIPTIMAN SEN. Centre for Theoretical Studies, Indian Institute of Science, Bangalore 560 012, India. £ Harish-chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211 019, India. Abstract. With a brief introduction to one-dimensional channels ...

  1. Wire chamber conference

    International Nuclear Information System (INIS)

    Bartl, W.; Neuhofer, G.; Regler, M.

    1986-02-01

    This booklet contains program and the abstracts of the papers presented at the conference, most of them dealing with performance testing of various types of wire chambers. The publication of proceedings is planned as a special issue of 'Nuclear instruments and methods' later on. All abstracts are in English. An author index for the book of abstracts is given. (A.N.)

  2. Electronic transport in Si:P δ-doped wires

    DEFF Research Database (Denmark)

    Smith, J. S.; Drumm, D. W.; Budi, Akin

    2015-01-01

    Despite the importance of Si:P δ-doped wires for modern nanoelectronics, there are currently no computational models of electron transport in these devices. In this paper we present a nonequilibrium Green’s function model for electronic transport in a δ-doped wire, which is described by a tight......-binding Hamiltonian matrix within a single-band effective-mass approximation. We use this transport model to calculate the current-voltage characteristics of a number of δ-doped wires, achieving good agreement with experiment. To motivate our transport model we have performed density-functional calculations...... for a variety of δ-doped wires, each with different donor configurations. These calculations also allow us to accurately define the electronic extent of a δ-doped wire, which we find to be at least 4.6 nm....

  3. Dental Arch Wire

    Science.gov (United States)

    1979-01-01

    Straightening teeth is an arduous process requiring months, often years, of applying corrective pressure by means of arch wires-better known as brace-which may have to be changed several times in the course of treatment. A new method has been developed by Dr. George Andreasen, orthodontist and dental scientist at the University of Iowa. The key is a new type of arch wire material, called Nitinol, with exceptional elasticity which helps reduce the required number of brace changes. An alloy of nickel and titanium, Nitinol was originally developed for aerospace applications by the Naval Ordnance Laboratory, now the Naval Surface Weapons Laboratory, White Oaks, Maryland. NASA subsequently conducted additional research on the properties of Nitinol and on procedures for processing the metal.

  4. Vienna Wire Chamber Conference

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    After those of 1978 and 1980, a third Wire Chamber Conference was held from 15-18 February in the Technical University of Vienna. Eight invited speakers covered the field from sophisticated applications in biology and medicine, via software, to the state of the art of gaseous detectors. In some forty other talks the speakers tackled in more detail the topics of gaseous detectors, calorimetry and associated electronics and software

  5. Inverter design for four-wire microgrids

    OpenAIRE

    Heredero Peris, Daniel; Pagès Giménez, Marc; Montesinos Miracle, Daniel

    2015-01-01

    This paper presents a PQ four quadrant four-wire three-phase inverter for microgrids integration. The inverter is based in two full-bridge IGBT modules connected in a three-phase configuration plus a threephase parallelized neutral branch. This topology is galvanically isolated through a single-phase transformer bank. The converter operates as a non-ideal voltage-controlled voltage source inverter under AC droop strategy with hot-swap capability based on a dynamic virtual impedance.

  6. Dual wire welding torch and method

    Science.gov (United States)

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  7. Biofilm formation on stainless steel and gold wires for bonded retainers in vitro and in vivo and their susceptibility to oral antimicrobials.

    Science.gov (United States)

    Jongsma, Marije A; Pelser, Floris D H; van der Mei, Henny C; Atema-Smit, Jelly; van de Belt-Gritter, Betsy; Busscher, Henk J; Ren, Yijin

    2013-05-01

    Bonded retainers are used in orthodontics to maintain treatment result. Retention wires are prone to biofilm formation and cause gingival recession, bleeding on probing and increased pocket depths near bonded retainers. In this study, we compare in vitro and in vivo biofilm formation on different wires used for bonded retainers and the susceptibility of in vitro biofilms to oral antimicrobials. Orthodontic wires were exposed to saliva, and in vitro biofilm formation was evaluated using plate counting and live/dead staining, together with effects of exposure to toothpaste slurry alone or followed by antimicrobial mouthrinse application. Wires were also placed intra-orally for 72 h in human volunteers and undisturbed biofilm formation was compared by plate counting and live/dead staining, as well as by denaturing gradient gel electrophoresis for compositional differences in biofilms. Single-strand wires attracted only slightly less biofilm in vitro than multi-strand wires. Biofilms on stainless steel single-strand wires however, were much more susceptible to antimicrobials from toothpaste slurries and mouthrinses than on single-strand gold wires and biofilms on multi-strand wires. Also, in vivo significantly less biofilm was found on single-strand than on multi-strand wires. Microbial composition of biofilms was more dependent on the volunteer involved than on wire type. Biofilms on single-strand stainless steel wires attract less biofilm in vitro and are more susceptible to antimicrobials than on multi-strand wires. Also in vivo, single-strand wires attract less biofilm than multi-strand ones. Use of single-strand wires is preferred over multi-strand wires, not because they attract less biofilm, but because biofilms on single-strand wires are not protected against antimicrobials as in crevices and niches as on multi-strand wires.

  8. Metering Wheel-Wire Track Wire Boom Deployment Mechanism

    Science.gov (United States)

    Granoff, Mark S.

    2014-01-01

    The NASA MMS Spin Plane Double Probe (SDP) Deployer utilizes a helical path, rotating Metering Wheel and a spring loaded Wire "Holding" Track to pay out a "fixed end" 57 meter x 1.5 mm diameter Wire Boom stored between concentric storage cylinders. Unlike rotating spool type storage devices, the storage cylinders remain stationary, and the boom wire is uncoiled along the length of the cylinder via the rotation of the Metering Wheel. This uncoiling action avoids the need for slip-ring contacts since the ends of the wire can remain stationary. Conventional fixed electrical connectors (Micro-D type) are used to terminate to operational electronics.

  9. Communication and wiring in the cortical connectome.

    Science.gov (United States)

    Budd, Julian M L; Kisvárday, Zoltán F

    2012-01-01

    In cerebral cortex, the huge mass of axonal wiring that carries information between near and distant neurons is thought to provide the neural substrate for cognitive and perceptual function. The goal of mapping the connectivity of cortical axons at different spatial scales, the cortical connectome, is to trace the paths of information flow in cerebral cortex. To appreciate the relationship between the connectome and cortical function, we need to discover the nature and purpose of the wiring principles underlying cortical connectivity. A popular explanation has been that axonal length is strictly minimized both within and between cortical regions. In contrast, we have hypothesized the existence of a multi-scale principle of cortical wiring where to optimize communication there is a trade-off between spatial (construction) and temporal (routing) costs. Here, using recent evidence concerning cortical spatial networks we critically evaluate this hypothesis at neuron, local circuit, and pathway scales. We report three main conclusions. First, the axonal and dendritic arbor morphology of single neocortical neurons may be governed by a similar wiring principle, one that balances the conservation of cellular material and conduction delay. Second, the same principle may be observed for fiber tracts connecting cortical regions. Third, the absence of sufficient local circuit data currently prohibits any meaningful assessment of the hypothesis at this scale of cortical organization. To avoid neglecting neuron and microcircuit levels of cortical organization, the connectome framework should incorporate more morphological description. In addition, structural analyses of temporal cost for cortical circuits should take account of both axonal conduction and neuronal integration delays, which appear mostly of the same order of magnitude. We conclude the hypothesized trade-off between spatial and temporal costs may potentially offer a powerful explanation for cortical wiring patterns.

  10. Wire communication engineering

    International Nuclear Information System (INIS)

    Son, Byeong Tae

    1997-02-01

    This book describes wire telecommunication engineering/ It is divided into eleven chapter, which deal with Introduction with development of telecommunication, voice and sound wave and communication network, Telegraphy with summary of telegraphy, code of telegraphy, communication speed, morse and telex, Telephone on structure, circuit and image telephone, Traffic on telecommunication traffic, transmission of line about theory, cable line and loaded cable, carrier communication with carrier telegraphy and carrier telephone, optical communication with types, structure, specialty, laser and equipment, DATA, Mobile telecommunication on summary, mobile telephone, radio paging and digital mobile telecommunication, ISDN with channel of ISDN, and service of ISDN, and design of telecommunication.

  11. Wiring regulations in brief

    CERN Document Server

    Tricker, Ray

    2012-01-01

    Tired of trawling through the Wiring Regs?Perplexed by Part P?Confused by cables, conductors and circuits?Then look no further! This handy guide provides an on-the-job reference source for Electricians, Designers, Service Engineers, Inspectors, Builders, Students, DIY enthusiastsTopic-based chapters link areas of working practice - such as cables, installations, testing and inspection, special locations - with the specifics of the Regulations themselves. This allows quick and easy identification of the official requirements relating to the situati

  12. The Micro Wire Detector

    Energy Technology Data Exchange (ETDEWEB)

    Adeva, B.; Gomez, F.; Pazos, A.; Pfau, R.; Plo, M. E-mail: maximo.plo@cern.ch; Rodriguez, J.M.; Vazquez, P.; Labbe, J.C

    1999-10-11

    We present the performance of a new proportional gas detector. Its geometry consists of a cathode plane with 70x70 {mu}m{sup 2} apertures, crossed by 25 {mu}m anode strips to which it is attached by 50 {mu}m kapton spacers. In the region where the avalanche takes place, the anode strips are suspended in the gas mixture as in a standard wire chamber. This detector exhibits high rate capability and large gains, introducing very little material. (author)

  13. Epitaxial semiconductor quantum wires.

    Science.gov (United States)

    Wu, J; Chen, Y H; Wang, Z G

    2008-07-01

    The investigation on the direct epitaxial quantum wires (QWR) using MBE or MOCVD has been persuited for more than two decades, more lengthy in history as compared with its quantum dot counterpart. Up to now, QWRs with various structural configurations have been produced with different growth methods. This is a reviewing article consisting mainly of two parts. The first part discusses QWRs of various configurations, together with laser devices based on them, in terms of the two growth mechanisms, self-ordering and self-assembling. The second part gives a brief review of the electrical and optical properties of QWRs.

  14. 46 CFR 111.60-11 - Wire.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Wire. 111.60-11 Section 111.60-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-11 Wire. (a) Wire must be in an enclosure. (b) Wire must be...

  15. Numerical Investigation of Corrugated Wire Mesh Laminate

    Directory of Open Access Journals (Sweden)

    Jeongho Choi

    2013-01-01

    Full Text Available The aim of this work is to develop a numerical model of Corrugated Wire Mesh Laminate (CWML capturing all its complexities such as nonlinear material properties, nonlinear geometry and large deformation behaviour, and frictional behaviour. Development of such a model will facilitate numerical simulation of the mechanical behaviour of the wire mesh structure under various types of loading as well as the variation of the CWML configuration parameters to tailor its mechanical properties to suit the intended application. Starting with a single strand truss model consisting of four waves with a bilinear stress-strain model to represent the plastic behaviour of stainless steel, the finite element model is gradually built up to study single-layer structures with 18 strands of corrugated wire meshes consistency and double- and quadruple-layered laminates with alternating crossply orientations. The compressive behaviour of the CWML model is simulated using contact elements to model friction and is compared to the load-deflection behaviour determined experimentally in uniaxial compression tests. The numerical model of the CWML is then employed to conduct the aim of establishing the upper and lower bounds of stiffness and load capacity achievable by such structures.

  16. Corrosion of Wires on Wooden Wire-Bound Packaging Crates

    Science.gov (United States)

    Samuel L. Zelinka; Stan Lebow

    2015-01-01

    Wire-bound packaging crates are used by the US Army to transport materials. Because these crates may be exposed to harsh environments, they are dip-treated with a wood preservative (biocide treatment). For many years, zinc-naphthenate was the most commonly used preservative for these packaging crates and few corrosion problems with the wires were observed. Recently,...

  17. Improved superconducting magnet wire

    Science.gov (United States)

    Schuller, I.K.; Ketterson, J.B.

    1983-08-16

    This invention is directed to a superconducting tape or wire composed of alternating layers of copper and a niobium-containing superconductor such as niobium of NbTi, Nb/sub 3/Sn or Nb/sub 3/Ge. In general, each layer of the niobium-containing superconductor has a thickness in the range of about 0.05 to 1.5 times its coherence length (which for Nb/sub 3/Si is 41 A) with each copper layer having a thickness in the range of about 170 to 600 A. With the use of very thin layers of the niobium composition having a thickness within the desired range, the critical field (H/sub c/) may be increased by factors of 2 to 4. Also, the thin layers of the superconductor permit the resulting tape or wire to exhibit suitable ductility for winding on a magnet core. These compositions are also characterized by relatively high values of critical temperature and therefore will exhibit a combination of useful properties as superconductors.

  18. Disorder and Interaction Effects in Quantum Wires

    International Nuclear Information System (INIS)

    Smith, L W; Ritchie, D A; Farrer, I; Griffiths, J P; Jones, G A C; Thomas, K J; Pepper, M

    2012-01-01

    We present conductance measurements of quasi-one-dimensional quantum wires affected by random disorder in a GaAs/AlGaAs heterostructure. In addition to quantised conductance plateaux, we observe structure superimposed on the conductance characteristics when the channel is wide and the density is low. Magnetic field and temperature are varied to characterize the conductance features which depend on the lateral position of the 1D channel formed in a split-gate device. Our results suggest that there is enhanced backscattering in the wide channel limit, which gives rise to quantum interference effects. When the wires are free of disorder and wide, the confinement is weak so that the mutual repulsion of the electrons forces a single row to split into two. The relationship of this topological change to the disorder in the system will be discussed.

  19. Physical analysis for designing nested-wire arrays on Z-pinch implosion

    International Nuclear Information System (INIS)

    Yang Zhenhua; Liu Quan; Ding Ning; Ning Cheng

    2005-01-01

    Z-pinch experiments have demonstrated that the X-ray power increases 40% with a nested-wire array compared with that with a single-layered wire array. The design of the nested-wire array on Z accelerator is studied through the implosion dynamics and the growth of RT instabilities. The analysis shows that the nested-wire array does not produce more total X-ray radiation energy than the single-layered wire array, but it obviously increases the X-ray power. The radius of the outer array of the nested-wire array could be determined based on the radius of the optimized single-layered. The masses of the outer and inner arrays could be determined by the implosion time of the nested-wire array, which is roughly the same as that of the single-layered wire array. Some suggestions are put forward which may be helpful in the nested-wire array design for Z-pinch experiments. (authors)

  20. Oblique incidence type resistance wire proportional position detector

    International Nuclear Information System (INIS)

    Iwatani, Kazuo

    1977-01-01

    A high resistance wire, proportional counter is being developed for the use as the position detector to be installed at the focal plane of the magnet of high resolution, reaction particle analyzer for SF cyclotron. One of the difficulties to attain the target performance is its low positional resolution in case of the oblique incidence of particles with small energy loss in the counter in case of so-called single wire proportional counter. Adopting one of the solutions, proposed by Markham et al. of Michigan State University, that processes signals by ingenious cathode read-out and makes the detector into an equivalent ''thin'' counter, a high resistance wire detector still having simple read-out has been devised. The oblique incidence effect seems to be caused by the fluctuation (Landau distribution) of particle energy loss in counter gas. As a result of some discussion on this matter, the detector having increased five resistance wires instead of single wire, and having guard wires so as to make the electric field intensity in the vicinity of the cathode weak, has been manufactured to obtain the ''thin'' counter without considerably changing the overall thickness of the counter. Signal read-out is carried out by charge division method. As a result of the test, the positional resolution of Δx=1.0 mm has been attained when incidence angle was 35 deg and the collimation of particles was about 0.5 mm diameter for protons of 50 meV. (Wakatsuki, Y.)

  1. Wire and Packing Tape Sandwiches

    Science.gov (United States)

    Rabinowitz, Sandy

    2009-01-01

    In this article, the author describes how students can combine craft wire with clear packing tape to create a two-dimensional design that can be bent and twisted to create a three-dimensional form. Students sandwich wire designs between two layers of tape. (Contains 1 online resource.)

  2. Thermal Modeling of the Injection of Standard and Thermally Insulated Cored Wire

    Science.gov (United States)

    Castro-Cedeno, E.-I.; Jardy, A.; Carré, A.; Gerardin, S.; Bellot, J. P.

    2017-12-01

    Cored wire injection is a widespread method used to perform alloying additions during ferrous and non-ferrous liquid metal treatment. The wire consists of a metal casing that is tightly wrapped around a core of material; the casing delays the release of the material as the wire is immersed into the melt. This method of addition presents advantages such as higher repeatability and yield of cored material with respect to bulk additions. Experimental and numerical work has been performed by several authors on the subject of alloy additions, spherical and cylindrical geometries being mainly considered. Surprisingly this has not been the case for cored wire, where the reported experimental or numerical studies are scarce. This work presents a 1-D finite volume numerical model aimed for the simulation of the thermal phenomena which occurs when the wire is injected into a liquid metal bath. It is currently being used as a design tool for the conception of new types of cored wire. A parametric study on the effect of injection velocity and steel casing thickness for an Al cored wire immersed into a steel melt at 1863 K (1590 °C) is presented. The standard single casing wire is further compared against a wire with multiple casings. Numerical results show that over a certain range of injection velocities, the core contents' release is delayed in the multiple casing when compared to a single casing wire.

  3. Wire metamaterials: physics and applications.

    Science.gov (United States)

    Simovski, Constantin R; Belov, Pavel A; Atrashchenko, Alexander V; Kivshar, Yuri S

    2012-08-16

    The physics and applications of a broad class of artificial electromagnetic materials composed of lattices of aligned metal rods embedded in a dielectric matrix are reviewed. Such structures are here termed wire metamaterials. They appear in various settings and can operate from microwaves to THz and optical frequencies. An important group of these metamaterials is a wire medium possessing extreme optical anisotropy. The study of wire metamaterials has a long history, however, most of their important and useful properties have been revealed and understood only recently, especially in the THz and optical frequency ranges where the wire media correspond to the lattices of microwires and nanowires, respectively. Another group of wire metamaterials are arrays and lattices of nanorods of noble metals whose unusual properties are driven by plasmonic resonances. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. 3D Wire 2015

    DEFF Research Database (Denmark)

    Jordi, Moréton; F, Escribano; J. L., Farias

    , therefore, we’ve drawn conclusions and recommendations for future editions of the event, also generalizable to other experiences of gamification especially in events. This report details the methodology and working elements from the design phase, human resources and organization of production......This document is a general report on the implementation of gamification in 3D Wire 2015 event. As the second gamification experience in this event, we have delved deeply in the previous objectives (attracting public areas less frequented exhibition in previous years and enhance networking) and have...... proposed new ones (viralization of the event on social networks and improvement of the integration of international attendees). On the other hand we defined a set of research objectives related to the study of gamification in an eminently social place like an event. Most of the goals have been met and...

  5. Wire Array Solar Cells: Fabrication and Photoelectrochemical Studies

    Science.gov (United States)

    Spurgeon, Joshua Michael

    Despite demand for clean energy to reduce our addiction to fossil fuels, the price of these technologies relative to oil and coal has prevented their widespread implementation. Solar energy has enormous potential as a carbon-free resource but is several times the cost of coal-produced electricity, largely because photovoltaics of practical efficiency require high-quality, pure semiconductor materials. To produce current in a planar junction solar cell, an electron or hole generated deep within the material must travel all the way to the junction without recombining. Radial junction, wire array solar cells, however, have the potential to decouple the directions of light absorption and charge-carrier collection so that a semiconductor with a minority-carrier diffusion length shorter than its absorption depth (i.e., a lower quality, potentially cheaper material) can effectively produce current. The axial dimension of the wires is long enough for sufficient optical absorption while the charge-carriers are collected along the shorter radial dimension in a massively parallel array. This thesis explores the wire array solar cell design by developing potentially low-cost fabrication methods and investigating the energy-conversion properties of the arrays in photoelectrochemical cells. The concept was initially investigated with Cd(Se, Te) rod arrays; however, Si was the primary focus of wire array research because its semiconductor properties make low-quality Si an ideal candidate for improvement in a radial geometry. Fabrication routes for Si wire arrays were explored, including the vapor-liquid-solid growth of wires using SiCl4. Uniform, vertically aligned Si wires were demonstrated in a process that permits control of the wire radius, length, and spacing. A technique was developed to transfer these wire arrays into a low-cost, flexible polymer film, and grow multiple subsequent arrays using a single Si(111) substrate. Photoelectrochemical measurements on Si wire array

  6. X-ray backlighting density measurements of tungsten and aluminum wire and wire array z-pinches

    International Nuclear Information System (INIS)

    Hammer, D.A.; Pikuz, S.A.; Shelkovenko, T.A.; Greenly, J.B.; Sinars, D.B.; Mingaleev, A.R.

    1999-01-01

    Calibrated density measurements in both the coronal plasmas and dense cores of exploding W wire and wire array Z-pinches, powered by the ∼450 kA, 100 ns XP-pulser at Cornell University, have been made using two-frame x-ray backlighting in conjunction with known thickness W step wedges. The backlighting images are made by Mo wire X-pinch radiation filtered by 12.5 microm Ti impinging upon a sandwich of films (Micrat VR, Kodak GWL, Kodak DEF) which have different sensitivities to increase the dynamic range of the method. A W step wedge filter is placed in front of the films, giving absolute line density calibration of each exposure with estimated errors ranging from 20 to 50%. Assuming x-ray absorption by the W plasma is the same as for the solid material, the authors are able to measure W areal densities from 3.2 x 10 19 to 2 x 10 17 /cm 2 . These can be converted to number density assuming azimuthal symmetry. For example, for an exploded 7.5 microm wire with a 15--20 microm diameter dense core and a 1 mm corona diameter, the implied W volume density ranges from 2x10 18 to over 10 22 /cm 3 . Integration of the line density gives an estimate of the fraction of the wire mass in the corona and core. For example, with 100 kA peak current in a single 7.5 microm W wire, ∼70% (>90%) of the W mass is in the corona after 53 ns (61 ns). The authors also observe that the corona has large, roughly axisymmetric axial nonuniformity both in radius and in mass density. In addition, the coronal plasma contains more of the W mass, expands faster and is more uniform when the wire is surface-cleaned by preheating. In arrays of 2--8 wires with the same 100 kA total current, detectable coronal plasma appears after 25--35 ns, and much of it is swept toward the center of the array, forming a dense channel. The portion of the initial wire mass in the coronal plasma increases with smaller wire diameter and decreases with greater wire number: 15% for 4 x 13.5 microm, 35% for 4 x 7

  7. Plasma chemistry in wire chambers

    International Nuclear Information System (INIS)

    Wise, J.

    1990-05-01

    The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an 55 Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed

  8. Faraday and Kerr Effects Diagnostics for Underwater Exploding Wires

    Science.gov (United States)

    Sarkisov, G. S.; Fedotov-Gefen, A. V.; Krasik, Ya. E.

    2012-10-01

    Two-channel laser polarimeter was used to measure magnetic and electric fields in vicinity of underwater exploding wire. Nd:YAG Q-switch laser with 532nm wavelength, 100mJ energy and 5ns pulse width was used for probing. Single wire, parallel wires and X and V- shaped wires was used in experiments. Electric and magnetic field induced birefringes in the water results in changing of polarization stage of probing beam after propagation through this anisotropic medium. Magnetic field results in circular anisotropy of the water, while electric field creates linear anisotropy. Magnetic field results in rotation of polarization plan of linear-polarized probing beam. Electric field effect is more complicated- polarization plan of the laser beam subjected to pulsation and changing of ellipticity. Effect of electric field depends on initial probing geometry- angle between electrical field vector E and polarization plane of probing wave. In our exploding wire experiments we found influence of both Faraday and Kerr effects. It was demonstrated existence of Kerr effect inside bubbles at high voltage electrode. Effect of magnetic fields interaction for multi-wire loads was observed.

  9. Report on UQ Assessmentsto support SESAME wire-wrappedbundle experiment

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Emilian L. [ORNL; Pointer, William David [ORNL

    2017-10-01

    This work assesses the influence of assumptions made when generating a mesh of a wire-wrappedgeometry. The contact region between a wire and its adjacent pin is commonly modeled by eitherembedding the wire to the adjacent pin or trimming the wire so that a gap separates the wire from itsadjacent pin. These models are referred to as close-gap and open-gap approaches herein and are applied totwo geometries. The first geometry consists of a single pin wire-wrapped subchannel. A polyhedral meshand a hexahedral mesh are generated. The second and third geometry are a 7-pin and a 19-pinwire-wrapped bundles meshed with polyhedral elements only. Pressure drops are obtained with theSTAR-CCM+computational fluid dynamic package. Sensitivity analyses of the mesh density, the meshtype, and the turbulent models are performed. Numerical results show that the best match to theexperimental data and to the Cheng-Todreas correlation is obtained with the combination of a hexahedralmesh, the shear stress transport (SST) turbulent model, and the open-gap approach. In the case of the 7-pingeometry, the best results are obtained with the open-gap approach and the SST turbulent model. The19-pin geometry yields contradictory results to the 7-pin geometry results, and thus will require furtherinvestigations.

  10. An overview of NASA's digital fly-by-wire technology development program

    Science.gov (United States)

    Jarvis, C. R.

    1976-01-01

    The feasibility of using digital fly by wire systems to control aircraft was demonstrated by developing and flight testing a single channel system, which used Apollo hardware, in an F-8C test airplane. This is the first airplane to fly with a digital fly by wire system as its primary means of control and with no mechanical reversion capability. The development and flight test of a triplex digital fly by wire system, which will serve as an experimental prototype for future operational digital fly by wire systems, are underway.

  11. 49 CFR 393.28 - Wiring systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Wiring systems. 393.28 Section 393.28... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.28 Wiring systems. Electrical wiring shall be installed and maintained to conform to SAE J1292—Automobile, Truck, Truck-Tractor...

  12. Velocity derivative skewness in isotropic turbulence and its measurement with hot wires

    Energy Technology Data Exchange (ETDEWEB)

    Burattini, Paolo [Universite Libre de Bruxelles, Physique Statistique et des Plasmas, Brussels (Belgium); University of Newcastle, Discipline of Mechanical Engineering, Newcastle, NSW (Australia); Lavoie, Philippe [Imperial College London, Department of Aeronautics, London (United Kingdom); Antonia, Robert A. [University of Newcastle, Discipline of Mechanical Engineering, Newcastle, NSW (Australia)

    2008-09-15

    We investigate the effect of the hot wire resolution on the measurement of the velocity derivative skewness in homogeneous isotropic turbulence. Single- and cross-wire configurations (with different lengths and separations of the wires, and temporal sampling resolution) are considered. Predictions of the attenuation on the basis of a model for the energy spectrum are compared to experimental and numerical data in grid and box turbulence, respectively. It is shown that the model-based correction is accurate for the single wire but not for the cross-wire. In the latter case, the effect of the separation between the wires is opposite to that found in the experiments and simulations. Moreover, the attenuation predicted by the numerical data is in good agreement with that observed in the experiment. For both probe configurations, the sampling resolution has a sizeable attenuation effect, but, for the X-probe, the impact of the separation between the wires is more important. In both cases, the length of the wires has only a minor effect, in the non-dimensional range of wire length investigated. Finally, the present experimental data support the conclusion that the skewness is constant with the Reynolds number, in agreement with Kolmogorov's 41 theory. (orig.)

  13. Modeling birds on wires.

    Science.gov (United States)

    Aydoğdu, A; Frasca, P; D'Apice, C; Manzo, R; Thornton, J M; Gachomo, B; Wilson, T; Cheung, B; Tariq, U; Saidel, W; Piccoli, B

    2017-02-21

    In this paper we introduce a mathematical model to study the group dynamics of birds resting on wires. The model is agent-based and postulates attraction-repulsion forces between the interacting birds: the interactions are "topological", in the sense that they involve a given number of neighbors irrespective of their distance. The model is first mathematically analyzed and then simulated to study its main properties: we observe that the model predicts birds to be more widely spaced near the borders of each group. We compare the results from the model with experimental data, derived from the analysis of pictures of pigeons and starlings taken in New Jersey: two different image elaboration protocols allow us to establish a good agreement with the model and to quantify its main parameters. We also discuss the potential handedness of the birds, by analyzing the group organization features and the group dynamics at the arrival of new birds. Finally, we propose a more refined mathematical model that describes landing and departing birds by suitable stochastic processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Topology Optimized Photonic Wire Splitters

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Borel, Peter Ingo; Jensen, Jakob Søndergaard

    2006-01-01

    Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm.......Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm....

  15. Composite conductor containing superconductive wires

    Energy Technology Data Exchange (ETDEWEB)

    Larson, W.L.; Wong, J.

    1974-03-26

    A superconductor cable substitute made by coworking multiple rods of superconductive niobium--titanium or niobium--zirconium alloy with a common copper matrix to extend the copper and rods to form a final elongated product which has superconductive wires distributed in a reduced cross-section copper conductor with a complete metallurgical bond between the normal-conductive copper and the superconductor wires contained therein is described. The superconductor cable can be in the form of a tube.

  16. 30 CFR 75.701-4 - Grounding wires; capacity of wires.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding wires; capacity of wires. 75.701-4... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.701-4 Grounding wires; capacity of wires. Where grounding wires are used to ground metallic sheaths, armors, conduits, frames...

  17. 1 mil gold bond wire study.

    Energy Technology Data Exchange (ETDEWEB)

    Huff, Johnathon; McLean, Michael B.; Jenkins, Mark W.; Rutherford, Brian Milne

    2013-05-01

    In microcircuit fabrication, the diameter and length of a bond wire have been shown to both affect the current versus fusing time ratio of a bond wire as well as the gap length of the fused wire. This study investigated the impact of current level on the time-to-open and gap length of 1 mil by 60 mil gold bond wires. During the experiments, constant current was provided for a control set of bond wires for 250ms, 410ms and until the wire fused; non-destructively pull-tested wires for 250ms; and notched wires. The key findings were that as the current increases, the gap length increases and 73% of the bond wires will fuse at 1.8A, and 100% of the wires fuse at 1.9A within 60ms. Due to the limited scope of experiments and limited data analyzed, further investigation is encouraged to confirm these observations.

  18. HTS Wire Development Workshop: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The 1994 High-Temperature Superconducting Wire Development Workshop was held on February 16--17 at the St. Petersburg Hilton and Towers in St. Petersburg, Florida. The meeting was hosted by Florida Power Corporation and sponsored by the US Department of Energy`s Superconductivity Program for Electric Power Systems. The meeting focused on recent high-temperature superconducting wire development activities in the Department of Energy`s Superconductivity Systems program. The meeting opened with a general discussion on the needs and benefits of superconductivity from a utility perspective, the US global competitiveness position, and an outlook on the overall prospects of wire development. The meeting then focused on four important technology areas: Wire characterization: issues and needs; technology for overcoming barriers: weak links and flux pinning; manufacturing issues for long wire lengths; and physical properties of HTS coils. Following in-depth presentations, working groups were formed in each technology area to discuss the most important current research and development issues. The working groups identified research areas that have the potential for greatly enhancing the wire development effort. These areas are discussed in the summary reports from each of the working groups. This document is a compilation of the workshop proceedings including all general session presentations and summary reports from the working groups.

  19. Topology-optimized silicon photonic wire mode (de)multiplexer

    DEFF Research Database (Denmark)

    Frellsen, Louise Floor; Frandsen, Lars Hagedorn; Ding, Yunhong

    2015-01-01

    We have designed and for the first time experimentally verified a topology optimized mode (de)multiplexer, which demultiplexes the fundamental and the first order mode of a double mode photonic wire to two separate single mode waveguides (and multiplexes vice versa). The device has a footprint...

  20. Quantum photonics with quantum dots in photonic wires

    DEFF Research Database (Denmark)

    Munsch, Mathieu; Kuhlmann, Andreas; Cadeddu, Davide

    2016-01-01

    We present results from the spectroscopy of a single quantum dot in a photonic wire. The device presents a high photon extraction efficiency, and strong hybrid coupling to mechanical modes. We use resonance fluorescence to probe the emitter’s properties with the highest sensitivity. Weperform...

  1. Quantum optics with quantum dots in photonic wires

    DEFF Research Database (Denmark)

    Munsch, Mathieu; Cadeddu, Davide; Teissier, Jean

    2016-01-01

    We present an exploration of the spectroscopy of a single quantum dot in a photonic wire. The device presents a high photon extraction efficiency, and strong hybrid coupling to mechanical modes. We use resonance fluorescence to probe the emitter's properties with the highest sensitivity, allowing...

  2. Z-Pinch Wire-Electrode Contact Resistance Studies Using Weighted and Soft Metal Gasket Contacts*

    Science.gov (United States)

    Gomez, M. R.; Zier, J. C.; Thurtell, A. F.; French, D. M.; Gilgenbach, R. M.; Tang, W.; Lau, Y. Y.

    2008-11-01

    The contact made between z-pinch wires and electrodes has a significant effect on both the energy deposited in the wires and the uniformity of the expansion profile of the wires. We have shown that using soft metal gaskets can improve wire-electrode contact significantly over typical weighted contacts. Images of wire expansion profile and wire plasma emission will be presented for single and double wire shots on a 16 kA, 100 kV 4-stage Marx bank with 150 ns risetime. Bench resistance measurements for aluminum, stainless steel, and tungsten wires with diameters ranging from 7.5 um to 30 um will be presented. These measurements utilized both soft metal gasket contacts (gaskets include: indium, silver, aluminum, tin, and lead) and double-ended wire weight contacts (weights ranged from 0.4 g to 1.9 g). *This research was supported by U. S. DoE through Sandia National Laboratories award document numbers 240985, 768225, 790791 and 805234 to the University of Michigan. MRG supported by NNSA Fellowship and JCZ supported by NPSC Fellowship sponsored by Sandia National Labs.

  3. Skin-friction measurements with hot-wire gages

    Science.gov (United States)

    Houdeville, R.; Juillen, J. C.; Cousteix, J.

    1983-11-01

    The development of two hot-wire gauges for implantation in wind-tunnel models and their application to the measurement of skin-friction phenomena are reported. The measurement principle is explained; the design and calibration of a single-wire gage containing a thermocouple for temperature determination (Cousteix and Juillen, 1982-1983) are summarized; and sample results for 2D and 3D flows with positive pressure gradients are shown. An advanced design employing a thin hot film deposited on an 80-micron-diameter quartz fiber extending into a 1-mm-sq 0.8-mm-deep cavity is characterized and demonstrated on a pulsed flow on a flat plate, Tollmien-Schlichting waves, and a turbulent boundary layer. Two cold-wire temperature sensors are added to this gage to permit detection of the skin of the skin friction in the separated flow over a cylinder.

  4. Magnetoresistance peculiarities of bismuth wires in high magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Condrea, E., E-mail: condrea@nano.asm.md [Institute of Electronic Engineering and Nanotechnologies, Academy of Science of Moldova, 2028 Chisinau, Republic of Moldova (Moldova, Republic of); International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, 51-421 Wroclaw (Poland); Gilewski, A. [International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, 51-421 Wroclaw (Poland); MagNet, 50-421 Wroclaw (Poland); Nicorici, A. [Institute of Electronic Engineering and Nanotechnologies, Academy of Science of Moldova, 2028 Chisinau, Republic of Moldova (Moldova, Republic of)

    2016-03-11

    Magnetoresistance measurements of Bi wires performed in the magnetic field oriented along the bisector axis revealed unexpected anomalous peaks in a high magnetic field far above the quantum limit of the electrons. By combining a magnetic field and an uniaxial strain, we obtained a modification of the electronic structure; as a result, the quantum limit for light and heavy electrons is changed in a different way. For the case where heavy electrons are in the quantum limit, a correlation between the exit of the lowest Landau level of light electrons and the Lifshitz transition was found. - Highlights: • Glass-coated single-crystalline Bi wires attain high limit of elastic strain of up to 3.0%. • Selective modification of the electronic structure of Bi wires is obtained by combining a high magnetic field and uniaxial strain. • The correlation between the exit of the lowest Landau level of electrons and Lifshitz transition was found.

  5. Magnetoresistance peculiarities of bismuth wires in high magnetic field

    International Nuclear Information System (INIS)

    Condrea, E.; Gilewski, A.; Nicorici, A.

    2016-01-01

    Magnetoresistance measurements of Bi wires performed in the magnetic field oriented along the bisector axis revealed unexpected anomalous peaks in a high magnetic field far above the quantum limit of the electrons. By combining a magnetic field and an uniaxial strain, we obtained a modification of the electronic structure; as a result, the quantum limit for light and heavy electrons is changed in a different way. For the case where heavy electrons are in the quantum limit, a correlation between the exit of the lowest Landau level of light electrons and the Lifshitz transition was found. - Highlights: • Glass-coated single-crystalline Bi wires attain high limit of elastic strain of up to 3.0%. • Selective modification of the electronic structure of Bi wires is obtained by combining a high magnetic field and uniaxial strain. • The correlation between the exit of the lowest Landau level of electrons and Lifshitz transition was found.

  6. Soft X-ray radiation parameters of nested tungsten wire array

    International Nuclear Information System (INIS)

    Ning Jiamin; Jiang Shilun; Xu Rongkun; Xu Zeping; Li Zhenghong; Yang Jianlun

    2011-01-01

    Implosions with nested tungsten wire array were performed at the Angara-5-1 facility in Russian Research Centre. The experimental results of nested tungsten wire array are compared with those of single array. Radiation parameters of nested array are discussed based on four different dynamic models. When the implosions of outer and inner wire arrays are synchronized,the relatively uniform distribution of inner layer plasma will improve the uniformity of outer layer plasma. As compared with single array, nested array has an increase of 32% in X-ray radiation power. (authors)

  7. Fly-by-Wire versus Dual Mechanical Controls for the Advanced Scout Helicopter - Quantitative Comparison

    Science.gov (United States)

    1981-01-01

    was considered as utilizing single-piston, integrated actuator packages (IAPs) with single or multiple electrohydraulic servovalves ( EHSVs ) for control ...USAAVRADCOM.TR6OD.1 ADA096089 FLY-BY-WIRE VERSUS DUAL MECHANICAL CONTROLS FOR THE ADVANCED SCOUT HELICOPTER - QUANTITATIVE COMPARISON F. Gtnn LEVEL...associated with application of advanced control technology (including fly-by-wire, fiber optics, and digital control laws) to an ASH-sized helicopter. The

  8. Wire Rupture Optimization in Wire Electrical Discharge Machining using Taguchi Approach

    Directory of Open Access Journals (Sweden)

    Maher Ibrahem

    2017-01-01

    Full Text Available Wire electrical discharge machining (WEDM is one of the most important nontraditional machining process that is well-known for cutting difficult to machine materials. The wire electrode along with machining parameters control the WEDM process. This research work focuses on optimizing WEDM parameters using Taguchi technique to minimize wire rupture. Experiments have been done using the L18 orthogonal array. Each experiment is repeated three times to ensure accurate readings of the wire rupture. The statistical methods of signal to noise ratio (S/N ratio is applied to study effects of peak current, pulse width, charging time, wire speed, and wire tension on wire rupture. As a results, the peak current, pulse width, and wire tension have the most significant effect on wire rupture followed by charging time and wire speed. The developed analysis can be used in the metal cutting field to identify the optimum machining parameters for less wire rupture.

  9. Enhancing wire-composite bond strength of bonded retainers with wire surface treatment.

    Science.gov (United States)

    Oesterle, L J; Shellhart, W C; Henderson, S

    2001-06-01

    Bonded orthodontic retainers with wires embedded in composite resin are commonly used for orthodontic retention. The purpose of this study was to test, in vitro, various wire surface treatments to determine the optimal method of enhancing the wire-composite bond strength. Coaxial wires and stainless steel wires with different surface treatments were bonded to bovine enamel and then pulled along their long axes with an Instron universal testing machine. Wire surface treatments included placing a right-angle bend in the wire, microetching the wire, and treating the wire with adhesion promoters; combinations of treatments were also examined. The results demonstrated a 24-fold increase in the wire-composite bond strength of wire that was microetched (sandblasted), compared with that of untreated straight wire. The difference between the amount of force required to break the bond produced by microetching alone (246.1 +/- 46.0 MPa) and that required for the bonds produced by the retentive bend (87.8 +/- 16.3 MPa), the adhesion promoters (silane, 11.0 +/- 3.1 MPa; Metal Primer, 28.5 +/- 15.8 MPa), or for any combination of surface treatments, was statistically significant. Microetching a stainless steel wire produced a higher wire-composite bond strength than that obtained from a coaxial wire (113.5 +/- 27.5 MPa). The results of this study indicate that microetching or sandblasting a stainless steel wire significantly increases the strength of the wire-composite bond.

  10. Isolated olecranon fractures in children affected by osteogenesis imperfecta type I treated with single screw or tension band wiring system: Outcomes and pitfalls in relation to bone mineral density.

    Science.gov (United States)

    Persiani, Pietro; Ranaldi, Filippo M; Graci, Jole; De Cristo, Claudia; Zambrano, Anna; D'Eufemia, Patrizia; Martini, Lorena; Villani, Ciro

    2017-05-01

    The purpose of this study is to compare the results of 2 techniques, tension band wiring (TBW) and fixation with screws, in olecranon fractures in children affected with osteogenesis imperfecta (OI) type I. Between 2010 and 2014, 21 olecranon fractures in 18 children with OI (average age: 12 years old) were treated surgically. Ten patients were treated with the screw fixation and 11 with TBW. A total of 65% of olecranon fractures occurred as a result of a spontaneous avulsion of the olecranon during the contraction of the triceps muscle. The average follow-up was 36 months. Among the children treated with 1 screw, 5 patients needed a surgical revision with TBW due to a mobilization of the screw. In this group, the satisfactory results were 50%. In patients treated with TBW, the satisfactory results were 100% of the cases. The average Z-score, the last one recorded in the patients before the trauma, was -2.53 in patients treated with screw fixation and -2.04 in those treated with TBW. TBW represents the safest surgical treatment for patients suffering from OI type I, as it helps to prevent the rigidity of the elbow through an earlier recovery of the range of motion, and there was no loosening of the implant. In analyzing the average Z-score before any fracture, the fixation with screws has an increased risk of failure in combination with low bone mineral density.

  11. Put Your Cable Wiring to the Test.

    Science.gov (United States)

    Day, C. William

    2001-01-01

    Discusses why schools and universities should use testing procedures in any wire bid specification for cable wiring and also know how experienced the installers are in testing and installing structured cabling systems. Key cabling terms are included. (GR)

  12. Novel Wiring Technologies for Aerospace Applications

    Science.gov (United States)

    Gibson, Tracy L.; Parrish, Lewis M.

    2014-01-01

    Because wire failure in aerospace vehicles could be catastrophic, smart wiring capabilities have been critical for NASA. Through the years, researchers at Kennedy Space Center (KSC) have developed technologies, expertise, and research facilities to meet this need. In addition to aerospace applications, NASA has applied its knowledge of smart wiring, including self-healing materials, to serve the aviation industry. This webinar will discuss the development efforts of several wiring technologies at KSC and provide insight into both current and future research objectives.

  13. Clinical bending of nickel titanium wires

    OpenAIRE

    Stephen Chain; Priyank Seth; Namrata Rastogi; Kenneth Tan; Mayank Gupta; Richa Singh

    2015-01-01

    Since the evolution and the involvement of Nickel Titanium wires in the field of Orthodontics. The treatment plan has evolved with the use of low force Nickel Titanium wires. Because of their high springback, low stiffness, they are the key initial wires in leveling and alignment but have poor formability. Since poor formability limits its ability to create variable arch forms thus; limits the form of treatment. We have devised a method to bend the Nickel Titanium wires to help in our invento...

  14. Towards Unconventional Applications of Wire Bonding

    OpenAIRE

    Schröder, Stephan

    2018-01-01

    This thesis presents novel heterogeneous integration approaches of wire materials to fabricated and package MEMS devices by exploring unconventional applications of wire bonding technology. Wire bonding, traditionally endemic in the realm of device packaging to establish electrical die-to-package interconnections, is an attractive back-end technology, offering promising features, such as high throughput, flexibility and placement accuracy. Exploiting the advantages of state-of-the-art wire bo...

  15. Different mechanical properties in Seldinger guide wires

    Directory of Open Access Journals (Sweden)

    Wolfram Schummer

    2015-01-01

    Full Text Available Background and Aims: Most central venous catheters are placed using Seldinger guide wires. EN ISO 11070 is the guideline for testing guide wire flexing performance and tensile strength, and we can safely assume that guide wires in use meet these requirements. Unfortunately, EN ISO 11070 guidelines do not reflect the clinical requirements and we continue to see mechanical failures and their associated complications. Material and Methods: This in vitro study was performed in an accredited laboratory. With regard to flexing, we: (1 Established the minimum flexing performance needed to meet clinical requirements, (2 developed flexing performance tests which mimic clinical requirement, and (3 evaluated the mechanical properties of various guide wires relative to these requirements. With regard to tensile strength, we used the testing method prescribed in ISO 11070, but did not end the test at 5 Newton (N. We continued until the guide wire was damaged, or we reached maximum tractive force. We then did a wire-to-wire comparison. We examined two basic wire constructions, monofil and core and coil. Results: Tensile strength: All wires tested, except one, met EN ISO 11070 requirements for 5 N tensile strength. The mean of the wire types tested ranged from 15.06 N to 257.76 N. Flexing performance: None of the wires kinked. The monofil had no evidence of bending. Two core/coil wires displayed minor bending (angle 1.5°. All other wires displayed bending angles between 22.5° and 43.0°. Conclusion: We recommend that: (1 Clinicians use guide wires with high-end mechanical properties, (2 EN ISO 11070 incorporate our flexing test into their testing method, raise the flexing requirement to kink-proof, (3 and raise the tensile strength requirement to a minimum of 30 N, and (3 all manufacturers and suppliers be required to display mechanical properties of all guide wire, and guide wire kits sold.

  16. Vocational Preparation Curriculum: Electrical Wiring.

    Science.gov (United States)

    Usoro, Hogan

    This document is a curriculum guide for instructors teaching vocational preparation for electrical wiring to special needs students. The purpose of the curriculum guide is to provide minimum skills for disadvantaged and handicapped students entering the mainstream; to supplement vocational skills of those students already in a regular training…

  17. Transparency in nanophotonic quantum wires

    International Nuclear Information System (INIS)

    Singh, Mahi R

    2009-01-01

    We have studied the quantum optics of a photonic quantum nanowire doped with an ensemble of three-level nanoparticles. The wire is made from two photonic crystals A and B. Crystal A is embedded within crystal B and acts as a photonic nanowire. It is considered that the conduction band of crystal A lies below that of crystal B. As a result, photons are confined in crystal A and are reflected from crystal B. The bound states of the confined photons are calculated using the transfer matrix method. It is found that the number of bound states in the wire depends on the size of the wire and the energy difference between the conduction band extrema of crystals A and B. The absorption coefficient of the system has also been calculated using the Schroedinger equation method. It is considered that the nanoparticles interact with the photonic bound states. Numerical simulations show that when one of the resonance energies lies near the bound state, the system becomes transparent. However, when the resonance energy lies away from the bound state the crystal reverts to an absorbing state. Similarly, when the radius of the dielectric spheres is changed the location of the transparency peak is shifted. This means that the present system can be switched between two states by changing the size of the wire and the transition energy. These findings can be used to make new types of optical devices.

  18. Health care's 100 most wired.

    Science.gov (United States)

    Solovy, A; Serb, C

    1999-02-01

    They're wired all right, and America's 100 most techno-savvy hospitals and health systems share one more thing: a commitment to using technology to link with employees, patients, suppliers, and insurers. "We want to be a health care travel agency for our community," says one chief information officer. "And we see Internet technology as a key."

  19. Use of a wire extender during neuroprotected vertebral artery angioplasty and stenting.

    Science.gov (United States)

    Lesley, Walter S; Kumar, Ravi; Rangaswamy, Rajesh

    2010-09-01

    The off-label use of an extender wire during vertebral artery stenting and angioplasty with or with neuroprotection has not been previously reported. Retrospective, single-patient, technical report. After monorail balloon angioplasty was performed on a proximal left vertebral artery stenosis, the 190 cm long Accunet neuroprotection filter device was not long enough for delivery of an over-the-wire stent. After mating a 145 cm long, 0.014 inch extension wire to the filter device, a balloon-mounted Liberté stent was implanted with good angiographic and clinical results. The off-label use of an extender wire permits successful over-the-wire stenting on a monorail neuroprotection device for vertebral artery endosurgery.

  20. X-ray line emission and plasma conditions in exploded Fe wires

    International Nuclear Information System (INIS)

    Burkhalter, P.G.; Dozier, C.M.; Stallings, C.; Cowan, R.D.

    1978-01-01

    Single-wire Fe spectra collected from two different exploded-wire generators (Gamble II and Owl II) were analyzed to determined the ionization stages produced in the plasmas. The temperature for the hot-plasma pinches for both generators was 1.4 +- 0.2 keV at which an abundance of Fe XXIV transitions is produced. The Fe K spectra from exploded wires are basically similar to those produced in the pinched plasma generated randomly in the vacuum spark; however, the exploded wires have lower plasma temperatures than the hottest pinches produced in the vacuum spark. A detailed interpretation of the Fe L spectra formed in the exploded wires permitted line and ionization stage identifications in the 7-12-A region. Such spectroscopic data is useful for analysis of complex Fe spectra generated in multitemperature plasma devices like Tokamaks

  1. Imperfection analysis of flexible pipe armor wires in compression and bending

    DEFF Research Database (Denmark)

    Østergaard, Niels Højen; Lyckegaard, Anders; Andreasen, Jens H.

    2012-01-01

    The work presented in this paper is motivated by a specific failure mode known as lateral wire buckling occurring in the tensile armor layers of flexible pipes. The tensile armor is usually constituted by two layers of initially helically wound steel wires with opposite lay directions. During pipe...... laying in ultra deep waters, a flexible pipe experiences repeated bending cycles and longitudinal compression. These loading conditions are known to impose a danger to the structural integrity of the armoring layers, if the compressive load on the pipe exceeds the total maximum compressive load carrying...... ability of the wires. This may cause the wires to buckle in the circumferential pipe direction, when these are restrained against radial deformations by adjacent layers. In the present paper, a single armoring wire modeled as a long and slender curved beam embedded in a frictionless cylinder bent...

  2. Home and School Technology: Wired versus Wireless.

    Science.gov (United States)

    Van Horn, Royal

    2001-01-01

    Presents results of informal research on smart homes and appliances, structured home wiring, whole-house audio/video distribution, hybrid cable, and wireless networks. Computer network wiring is tricky to install unless all-in-one jacketed cable is used. Wireless phones help installers avoid pre-wiring problems in homes and schools. (MLH)

  3. On the preparation of superconducting wires

    International Nuclear Information System (INIS)

    Topare, R.J.; Chinchure, A.D.; Shah, S.S.; Hadole, G.B.

    1993-01-01

    The different methods of preparation of superconducting wires have been discussed. The powder-in-tube technique is followed for the preparation of YBCO and BISCCO superconducting wires. The results are discussed. The present status of the industries in preparing the superconducting wires having the maximum J c values is discussed. (author). 30 refs., 6 figs., 2 tabs

  4. Pre-wired systems prove their worth.

    Science.gov (United States)

    2012-03-01

    The 'new generation' of modular wiring systems from Apex Wiring Solutions have been specified for two of the world's foremost teaching hospitals - the Royal London and St Bartholomew's Hospital, as part of a pounds sterling 1 billion redevelopment project, to cut electrical installation times, reduce on-site waste, and provide a pre-wired, factory-tested, power and lighting system. HEJ reports.

  5. 75 FR 4584 - Wire Decking From China

    Science.gov (United States)

    2010-01-28

    ... COMMISSION Wire Decking From China AGENCY: United States International Trade Commission. ACTION: Scheduling... retarded, by reason of subsidized and less-than-fair-value imports from China of wire decking, provided for..., producers, or exporters in China of wire decking, and that such ] products are being sold in the United...

  6. Clinical bending of nickel titanium wires

    Directory of Open Access Journals (Sweden)

    Stephen Chain

    2015-01-01

    Full Text Available Since the evolution and the involvement of Nickel Titanium wires in the field of Orthodontics. The treatment plan has evolved with the use of low force Nickel Titanium wires. Because of their high springback, low stiffness, they are the key initial wires in leveling and alignment but have poor formability. Since poor formability limits its ability to create variable arch forms thus; limits the form of treatment. We have devised a method to bend the Nickel Titanium wires to help in our inventory but also customized the wire according to the treatment.

  7. Multicellular computing using conjugation for wiring.

    Science.gov (United States)

    Goñi-Moreno, Angel; Amos, Martyn; de la Cruz, Fernando

    2013-01-01

    Recent efforts in synthetic biology have focussed on the implementation of logical functions within living cells. One aim is to facilitate both internal "re-programming" and external control of cells, with potential applications in a wide range of domains. However, fundamental limitations on the degree to which single cells may be re-engineered have led to a growth of interest in multicellular systems, in which a "computation" is distributed over a number of different cell types, in a manner analogous to modern computer networks. Within this model, individual cell type perform specific sub-tasks, the results of which are then communicated to other cell types for further processing. The manner in which outputs are communicated is therefore of great significance to the overall success of such a scheme. Previous experiments in distributed cellular computation have used global communication schemes, such as quorum sensing (QS), to implement the "wiring" between cell types. While useful, this method lacks specificity, and limits the amount of information that may be transferred at any one time. We propose an alternative scheme, based on specific cell-cell conjugation. This mechanism allows for the direct transfer of genetic information between bacteria, via circular DNA strands known as plasmids. We design a multi-cellular population that is able to compute, in a distributed fashion, a Boolean XOR function. Through this, we describe a general scheme for distributed logic that works by mixing different strains in a single population; this constitutes an important advantage of our novel approach. Importantly, the amount of genetic information exchanged through conjugation is significantly higher than the amount possible through QS-based communication. We provide full computational modelling and simulation results, using deterministic, stochastic and spatially-explicit methods. These simulations explore the behaviour of one possible conjugation-wired cellular computing

  8. Vibrating wire for beam profile scanning

    Directory of Open Access Journals (Sweden)

    S. G. Arutunian

    1999-12-01

    Full Text Available A method that measures the transverse profile (emittance of the bunch by detecting radiation arising at the scattering of the bunch on scanning wire is widely used. In this work information about bunch scattering is obtained by measuring the oscillation frequency of the tightened scanning wire. In such a way, the system of radiation (or secondary particles extraction and measurement can be removed. The entire unit consists of a compact fork with tightened wire and a scanning system. Normal oscillation frequency of a wire depends on wire tension, its geometric parameters, and, in a second approximation, its elastic characteristics. Normal oscillations are generated by interaction of an alternating current through the wire with magnetic field of a permanent magnet. In this case, it is suggested that the magnetic field of the accelerator (field of dipole magnets or quadrupole magnets be used for excitation of oscillations. The dependence of oscillation frequency on beam scattering is determined by several factors, including changes of wire tension caused by transverse force of the beam and influence of beam self-field. Preliminary calculations show that the influence of wire heating will dominate. We have studied strain gauges on the basis of vibrating wire from various materials (tungsten, beryl bronze, and niobium zirconium alloys. A scheme of normal oscillation generation by alternating current in autogeneration circuit with automatic frequency adjustment was selected. A special method of wire fixation and elimination of transverse degrees of freedom allows us to achieve relative stability better than 10^{-5} during several days at a relative resolution of 10^{-6}. Experimental results and estimates of wire heating of existing scanners show that the wire heats up to a few hundred grades, which is enough for measurements. The usage of wire of micrometer thickness diminishes the problem of wire thermalization speed during the scanning of the bunch.

  9. Modifications in straight wire treatment.

    Science.gov (United States)

    Cardona, Alvin

    2010-01-01

    Orthodontic treatments have been modified with each new generation of clinicians. Today the emphasis is on facial esthetics and healthy temporomandibular joints. With orthopedic treatment, we can develop dental arches to get the necessary space to align the teeth and we can reach adequate function and esthetics, all within relatively good stability. By combining two-phase treatment with low friction fixed orthodontics and super elastic wires we produce light but continuous forces and we can provide better treatment than before. These types of forces cause physiological and functional orthopedic orthodontic reactions. The purpose of this article is to demonstrate our fixed orthopedic and orthodontic approach called "Modified Straight Wire" or "Physiologic Arch Technique." This technique is very successful with our patients because it can exert slow and continuous forces with minimal patient cooperation.

  10. Sintered wire cesium dispenser photocathode

    Science.gov (United States)

    Montgomery, Eric J; Ives, R. Lawrence; Falce, Louis R

    2014-03-04

    A photoelectric cathode has a work function lowering material such as cesium placed into an enclosure which couples a thermal energy from a heater to the work function lowering material. The enclosure directs the work function lowering material in vapor form through a low diffusion layer, through a free space layer, and through a uniform porosity layer, one side of which also forms a photoelectric cathode surface. The low diffusion layer may be formed from sintered powdered metal, such as tungsten, and the uniform porosity layer may be formed from wires which are sintered together to form pores between the wires which are continuous from the a back surface to a front surface which is also the photoelectric surface.

  11. Slice of LHC dipole wiring

    CERN Multimedia

    Dipole model slice made in 1994 by Ansaldo. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. 50’000 tonnes of steel sheets are used to make the magnet yokes that keep the wiring firmly in place. The yokes constitute approximately 80% of the accelerator's weight and, placed side by side, stretch over 20 km!

  12. A new wire chamber front-end system, based on the ASD-8 B chip

    Energy Technology Data Exchange (ETDEWEB)

    Kruesemann, B.A.M. E-mail: kruesemann@kvi.nl; Bassini, R.; Ellinghaus, F.; Frekers, D.; Hagemann, M.; Hannen, V.M.; Heynitz, H. von; Heyse, J.; Rakers, S.; Sohlbach, H.; Woertche, H.J

    1999-07-11

    The Focal-Plane Polarimeter (FPP) for the Big-Bite Spectrometer van den Berg (Nucl. Instr. and Meth. B 99 (1995) 637ff) at the KVI requires the read-out of four large-area MWPCs and two VDCs with 3872 wires in total. The EUROSUPERNOVA collaboration (SNOVA) developed a digital 16 channel preamplifier front-end board, housing two amplifier-shaper-discriminatorchips ASD-8 B. The main features of this board are a fast single-wire readout, a high integration density, a low power consumption and compatibility to common instrumentation standards. The board represents the first successfully running application of the ASD-8 for wire chamber readout. (author)

  13. A new wire chamber front-end system, based on the ASD-8 B chip

    CERN Document Server

    Kruesemann, B A M; Ellinghaus, F; Frekers, D; Hagemann, M; Hannen, V M; Heynitz, H V; Heyse, J; Rakers, S; Sohlbach, H; Wörtche, H J

    1999-01-01

    The Focal-Plane Polarimeter (FPP) for the Big-Bite Spectrometer van den Berg (Nucl. Instr. and Meth. B 99 (1995) 637ff) at the KVI requires the read-out of four large-area MWPCs and two VDCs with 3872 wires in total. The EUROSUPERNOVA collaboration (SNOVA) developed a digital 16 channel preamplifier front-end board, housing two amplifier-shaper-discriminatorchips ASD-8 B. The main features of this board are a fast single-wire readout, a high integration density, a low power consumption and compatibility to common instrumentation standards. The board represents the first successfully running application of the ASD-8 for wire chamber readout. (author)

  14. InP/InAlAs/InGaAs-quantum wires

    Energy Technology Data Exchange (ETDEWEB)

    Kappelt, M.; Tuerck, V.; Grundmann, M.; Bimberg, D. [Technische Univ., Berlin (Germany); Cerva, H. [Siemens AG, Muenchen (Germany)

    1996-12-31

    Single InGaAs quantum wires and stacked InGaAs quantum wires with InAlAs barriers have been fabricated on v-grooved InP substrates by low pressure metal-organic chemical vapor deposition. The authors have found growth conditions where the InAlAs barrier exhibits a resharpening effect, similar to that of AlgaAs utilized for growth on GaAs substrates. The existence of structural and electronic quantum wires in the bottom of the grooves is proven.

  15. Wire Position Monitoring with FPGA based Electronics

    International Nuclear Information System (INIS)

    Eddy, N.; Lysenko, O.

    2009-01-01

    This fall the first Tesla-style cryomodule cooldown test is being performed at Fermilab. Instrumentation department is preparing the electronics to handle the data from a set of wire position monitors (WPMs). For simulation purposes a prototype pipe with a WMP has been developed and built. The system is based on the measurement of signals induced in pickups by 320 MHz signal carried by a wire through the WPM. The wire is stretched along the pipe with a tensioning load of 9.07 kg. The WPM consists of four 50 (Omega) striplines spaced 90 o apart. FPGA based digitizer scans the WPM and transmits the data to a PC via VME interface. The data acquisition is based on the PC running LabView. In order to increase the accuracy and convenience of the measurements some modifications were required. The first is implementation of an average and decimation filter algorithm in the integrator operation in the FPGA. The second is the development of alternative tool for WPM measurements in the PC. The paper describes how these modifications were performed and test results of a new design. The last cryomodule generation has a single chain of seven WPMs (placed in critical positions: at each end, at the three posts and between the posts) to monitor a cold mass displacement during cooldown. The system was developed in Italy in collaboration with DESY. Similar developments have taken place at Fermilab in the frame of cryomodules construction for SCRF research. This fall preliminary cryomodule cooldown test is being performed. In order to prepare an appropriate electronic system for the test a prototype pipe with a WMP has been developed and built, figure 1. The system is based on the measurement of signals induced in pickups by 320 MHz signal carried by a wire through the WPM. The 0.5 mm diameter Cu wire is stretched along the pipe with a tensioning load of 9.07 kg and has a length of 1.1 m. The WPM consists of four 50 (Omega) striplines spaced 90 o apart. An FPGA based digitizer

  16. Wear of dragline wire ropes

    Energy Technology Data Exchange (ETDEWEB)

    Dayawansa, D.; Kuruppu, M.; Mashiri, F.; Bartosiewicz, H. [Monash University (Caulfield Campus), Caulfield East, Vic. (Australia). Department of Mechanical Engineering,

    2005-07-01

    Wire ropes are one of the most heavily used components in a dragline. Hoist ropes are subjected to fatigue due to the cyclic nature of load handling as well as due to rope bending over the sheaves and the drum under load. This leads to wire breaks due to fatigue. Accumulation of a number of wire breaks close to each other can have a detrimental effect on the rope. Furthermore, to allow for the increasing demand for higher load capacity coupled with the inconvenience of having very large ropes, the factor of safety is often compromised, which increases the wear rate. Drag ropes are also subjected to heavy loads. More importantly, they are allowed to drag along the rough mine surface subjecting them to external physical abrasion. This makes the life of drag ropes one of the lowest among those used in a dragline. Suspension and IBS ropes are relatively uniformly loaded during their regular usage although they need to withstand dynamic load cycles as well as bending. Hence they tend to last for a number of years on average. The paper analyses the wear types and their severity of each of these rope applications, and suggests methods to determine rope wear rates and the resulting rope life. The paper further gives suggestions for good operating and maintenance practice that can extend the rope life and help reduce the large expenditure associated with every major rope change in a dragline. 6 refs., 8 figs., 1 tab.

  17. Correlated electron phenomena in ultra-low disorder quantum wires

    International Nuclear Information System (INIS)

    Reilly, D.J.; Facer, G.R.; Dzurak, A.S.; Kane, B.E.; Clark, R.G.; Lumpkin, N.E.

    1999-01-01

    Full text: Quantum point contacts in the lowest disorder HEMTs display structure at 0.7 x 2e 2 /h, which cannot be interpreted within a single particle Landauer model. This structure has been attributed to a spontaneous spin polarisation at zero B field. We have developed novel GaAs/AlGaAs enhancement mode FETs, which avoid the random impurity potential present in conventional MODFET devices by using epitaxially grown gates to produce ultra-low-disorder QPCs and quantum wires using electron beam lithography. The ballistic mean free path within these devices exceeds 160 μm 2 . Quantum wires of 5 μm in length show up to 15 conductance plateaux, indicating that these may be the lowest-disorder quantum wires fabricated using conventional surface patterning techniques. These structures are ideal for the study of correlation effects in QPCs and quantum wires as a function of electron density. Our data provides strong evidence that correlation effects are enhanced as the length of the 1D region is increased and also that additional structure moves close to 0.5 x 2e 2 /h, the value expected for an ideal spin-split 1D level

  18. Preliminary study of Rayleigh-Taylor instability in wire-array Z-pinch

    International Nuclear Information System (INIS)

    He Kaihui; Feng Kaiming; Li Qiang; Gao Chunming

    2000-01-01

    It is important to research into the MHD Rayleigh-Taylor instability developed in Z-pinch implosion. A snowplough model of the single wire Z-pinch is presented. The perturbation amplitude of Rayleigh-Taylor instability in the wire-array Z-pinch is analyzed quantitatively. Sheared axial flow is put forward to mitigate and reduce the Rayleigh-Taylor instability. And other approaches used to mitigate MHD instability in such a super-fast process are explored

  19. Efficient production of hot plasmas through multiple-wire implosion in transmission line generators

    International Nuclear Information System (INIS)

    Bloomberg, H.W.

    1980-01-01

    Model equations for the implosion of multiple-wire arrays mounted across the electrodes of a transmission line generator are used to obtain an expression for the energy-coupling efficiency. For a useful class of imploding loads, the efficiency is shown to depend on a single dimensionless parameter. Furthermore, the efficiency curve has a maximum, and this permits an explicit optimization of the wire load parameters in terms of the machine parameters

  20. A Vibrating Wire System For Quadrupole Fiducialization

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Zachary

    2010-12-13

    A vibrating wire system is being developed to fiducialize the quadrupoles between undulator segments in the LCLS. This note provides a detailed analysis of the system. The LCLS will have quadrupoles between the undulator segments to keep the electron beam focused. If the quadrupoles are not centered on the beam axis, the beam will receive transverse kicks, causing it to deviate from the undulator axis. Beam based alignment will be used to move the quadrupoles onto a straight line, but an initial, conventional alignment must place the quadrupole centers on a straight line to 100 {micro}m. In the fiducialization step of the initial alignment, the position of the center of the quadrupole is measured relative to tooling balls on the outside of the quadrupole. The alignment crews then use the tooling balls to place the magnet in the tunnel. The required error on the location of the quadrupole center relative to the tooling balls must be less than 25 {micro}m. In this note, we analyze a system under construction for the quadrupole fiducialization. The system uses the vibrating wire technique to position a wire onto the quadrupole magnetic axis. The wire position is then related to tooling balls using wire position detectors. The tooling balls on the wire position detectors are finally related to tooling balls on the quadrupole to perform the fiducialization. The total 25 {micro}m fiducialization error must be divided between these three steps. The wire must be positioned onto the quadrupole magnetic axis to within 10 {micro}m, the wire position must be measured relative to tooling balls on the wire position detectors to within 15 {micro}m, and tooling balls on the wire position detectors must be related to tooling balls on the quadrupole to within 10 {micro}m. The techniques used in these three steps will be discussed. The note begins by discussing various quadrupole fiducialization techniques used in the past and discusses why the vibrating wire technique is our method

  1. Electro-mechanics of drift tube wires

    International Nuclear Information System (INIS)

    Milburn, R.H.

    1997-01-01

    The position and stability of the sense wires in very long drift tubes are affected by both gravitational and electrostatic forces, as well as by the wire tension. For a tube to be used as an element of a high-resolution detector all these forces and their effects must be understood in appropriately precise detail. In addition, the quality control procedures applied during manufacture and detector installation must be adequate to ensure that the internal wire positions remain within tolerances. It may be instructive to practitioners to review the simple theory of a taut wire in the presence of anisotropic gravitational and electrostatic fields to illustrate the conditions for stability, the equilibrium wire displacement from straightness, and the effect of the fields on the mechanical vibration frequencies. These last may be used to monitor the wire configuration externally. A number of practical formulae result and these are applied to illustrative examples. (orig.)

  2. Electromagnetic Behaviour of Metallic Wire Structures

    CERN Document Server

    Chui, S T

    2013-01-01

    Despite the recent development and interest in the photonics of metallic wire structures, the relatively simple concepts and physics often remain obscured or poorly explained to those who do not specialize in the field. Electromagnetic Behaviour of Metallic Wire Structures provides a clear and coherent guide to understanding these phenomena without excessive numerical calculations.   Including both background material and detailed derivations of the various different formulae applied, Electromagnetic Behaviour of Metallic Wire Structures describes how to extend basic circuit theory relating to voltages, currents, and resistances of metallic wire networks to include situations where the currents are no longer spatially uniform along the wire. This lays a foundation for a deeper understanding of the many new phenomena observed in meta-electromagnetic materials.   Examples of applications are included to support this new approach making Electromagnetic Behaviour of Metallic Wire Structures a comprehensive and ...

  3. Phosphorus in antique iron music wire.

    Science.gov (United States)

    Goodway, M

    1987-05-22

    Harpsichords and other wire-strung musical instruments were made with longer strings about the beginning of the 17th century. This change required stronger music wire. Although these changes coincided with the introduction of the first mass-produced steel (iron alloyed with carbon), carbon was not found in samples of antique iron harpsichord wire. The wire contained an amount of phosphorus sufficient to have impeded its conversion to steel, and may have been drawn from iron rejected for this purpose. The method used to select pig iron for wire drawing ensured the highest possible phosphorus content at a time when its presence in iron was unsuspected. Phosphorus as an alloying element has had the reputation for making steel brittle when worked cold. Nevertheless, in replicating the antique wire, it was found that lowcarbon iron that contained 0.16 percent phosphorus was easily drawn to appropriate gauges and strengths for restringing antique harpsichords.

  4. Radiofrequency Wire Recanalization of Chronically Thrombosed TIPS

    Energy Technology Data Exchange (ETDEWEB)

    Majdalany, Bill S., E-mail: bmajdala@med.umich.edu [University of Michigan Health System, Division of Interventional Radiology, Department of Radiology (United States); Elliott, Eric D., E-mail: eric.elliott@osumc.edu [The Ohio State University Wexner Medical Center, Division of Interventional Radiology, Department of Radiology (United States); Michaels, Anthony J., E-mail: Anthony.michaels@osumc.edu; Hanje, A. James, E-mail: James.Hanje@osumc.edu [The Ohio State University Wexner Medical Center, Division of Gastroenterology and Hepatology, Department of Medicine (United States); Saad, Wael E. A., E-mail: wsaad@med.umich.edu [University of Michigan Health System, Division of Interventional Radiology, Department of Radiology (United States)

    2016-07-15

    Radiofrequency (RF) guide wires have been applied to cardiac interventions, recanalization of central venous thromboses, and to cross biliary occlusions. Herein, the use of a RF wire technique to revise chronically occluded transjugular intrahepatic portosystemic shunts (TIPS) is described. In both cases, conventional TIPS revision techniques failed to revise the chronically thrombosed TIPS. RF wire recanalization was successfully performed through each of the chronically thrombosed TIPS, demonstrating initial safety and feasibility in this application.

  5. IEE wiring regulations explained and illustrated

    CERN Document Server

    Scaddan, Brian

    2013-01-01

    The IEE Wiring Regulations Explained and Illustrated, Second Edition discusses the recommendations of the IEE Regulations for the Electrical Equipment of Buildings for the safe selection or erection of wiring installations. The book emphasizes earthing, bonding, protection, and circuit design of electrical wirings. The text reviews the fundamental requirements for safety, earthing systems, the earth fault loop impedance, and supplementary bonding. The book also describes the different types of protection, such as protection against mechanical damage, overcurrent, under voltage (which prevents

  6. Progress in second-generation HTS wire development and manufacturing

    International Nuclear Information System (INIS)

    Selvamanickam, V.; Chen, Y.; Xiong, X.; Xie, Y.; Zhang, X.; Rar, A.; Martchevskii, M.; Schmidt, R.; Lenseth, K.; Herrin, J.

    2008-01-01

    2007 has marked yet another year of continued rapid progress in developing and manufacturing high-performance, long-length second-generation (2G) HTS wires at high speeds. Using ion beam assisted deposition (IBAD) MgO and associated buffer sputtering processes, SuperPower has now exceeded piece lengths of 1000 m of fully buffered tape reproducibly with excellent in-plane texture of 6-7 degrees and uniformity of about 2%. These kilometer lengths are produced at high speeds of about 350 m/h of 4 mm wide tape. In combination with metal organic chemical vapor deposition (MOCVD), 2G wires up to single piece lengths to 790 m with a minimum critical current value of 190 A/cm corresponding to a Critical current x Length performance of 150,100 Am have been achieved. Tape speeds up to 180 m/h have been reached MOCVD while maintaining critical currents above 200 A/cm in 100+ m lengths. Thick film MOCVD technology has been transitioned to Pilot manufacturing system where a minimum critical current of 320 A/cm has been demonstrated over a length of 155 m processed at a speed of 70 m/h in 4 mm width. Finally, nearly 10,000 m of 2G wire has been produced, exhaustively tested, and delivered to the Albany Cable project. The average minimum critical current of the wire delivered in 225 segments of 43-44 m is 70 A in 4 mm widths. A 30 m cable has been fabricated with this wire by Sumitomo Electric and has been installed in the power grid of National Grid in downtown Albany and is the world's first 2G device installed in the grid

  7. Progress in second-generation HTS wire development and manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V. [SuperPower, Inc., 450 Duane Avenue, Schenectady, NY 12304 (United States)], E-mail: vselva@superpower-inc.com; Chen, Y.; Xiong, X.; Xie, Y.; Zhang, X.; Rar, A.; Martchevskii, M.; Schmidt, R.; Lenseth, K.; Herrin, J. [SuperPower, Inc., 450 Duane Avenue, Schenectady, NY 12304 (United States)

    2008-09-15

    2007 has marked yet another year of continued rapid progress in developing and manufacturing high-performance, long-length second-generation (2G) HTS wires at high speeds. Using ion beam assisted deposition (IBAD) MgO and associated buffer sputtering processes, SuperPower has now exceeded piece lengths of 1000 m of fully buffered tape reproducibly with excellent in-plane texture of 6-7 degrees and uniformity of about 2%. These kilometer lengths are produced at high speeds of about 350 m/h of 4 mm wide tape. In combination with metal organic chemical vapor deposition (MOCVD), 2G wires up to single piece lengths to 790 m with a minimum critical current value of 190 A/cm corresponding to a Critical current x Length performance of 150,100 Am have been achieved. Tape speeds up to 180 m/h have been reached MOCVD while maintaining critical currents above 200 A/cm in 100+ m lengths. Thick film MOCVD technology has been transitioned to Pilot manufacturing system where a minimum critical current of 320 A/cm has been demonstrated over a length of 155 m processed at a speed of 70 m/h in 4 mm width. Finally, nearly 10,000 m of 2G wire has been produced, exhaustively tested, and delivered to the Albany Cable project. The average minimum critical current of the wire delivered in 225 segments of 43-44 m is 70 A in 4 mm widths. A 30 m cable has been fabricated with this wire by Sumitomo Electric and has been installed in the power grid of National Grid in downtown Albany and is the world's first 2G device installed in the grid.

  8. Minimisation of the wire position uncertainties of the new CERN vacuum wire scanner

    CERN Document Server

    AUTHOR|(CDS)2069346; Barjau Condomines, A

    In the next years the luminosity of the LHC will be significantly increased. This will require a much higher accuracy of beam profile measurement than actually achievable by the current wire scanner. The new fast wire scanner is foreseen to measure small emittance beams throughout the LHC injector chain, which demands a wire travelling speed up to 20 ms-1 and position measurement accuracy of the order of a few microns. The vibrations of the mechanical parts of the system, and particularly the vibrations of the thin carbon wire, were identified as the major error sources of wire position uncertainty. Therefore the understanding of the wire vibrations is a high priority for the design and operation of the new device. This document presents the work performed to understand the main causes of the wire vibrations observed in one of the existing wire scanner and the new proposed design.

  9. Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL) provides a variety of research, design engineering and prototype fabrication services...

  10. submitter Dynamical Models of a Wire Scanner

    CERN Document Server

    Barjau, Ana; Dehning, Bernd

    2016-01-01

    The accuracy of the beam profile measurements achievable by the current wire scanners at CERN is limited by the vibrations of their mechanical parts. In particular, the vibrations of the carbon wire represent the major source of wire position uncertainty which limits the beam profile measurement accuracy. In the coming years, due to the Large Hadron Collider (LHC) luminosity upgrade, a wire traveling speed up to 20 $m s^{−1}$ and a position measurement accuracy of the order of 1 μm will be required. A new wire scanner design based on the understanding of the wire vibration origin is therefore needed. We present the models developed to understand the main causes of the wire vibrations observed in an existing wire scanner. The development and tuning of those models are based on measurements and tests performed on that CERN proton synchrotron (PS) scanner. The final model for the (wire + fork) system has six degrees-of-freedom (DOF). The wire equations contain three different excitation terms: inertia...

  11. Formation quality optimization of laser hot wire cladding for repairing martensite precipitation hardening stainless steel

    Science.gov (United States)

    Wen, Peng; Feng, Zhenhua; Zheng, Shiqing

    2015-01-01

    Laser cladding is an advantaged repairing technology due to its low heat input and high flexibility. With preheating wire by resistance heat, laser hot wire cladding shows better process stability and higher deposition efficiency compared to laser cold wire/powder cladding. Multi-pass layer were cladded on the surface of martensite precipitation hardening stainless steel FV520B by fiber laser with ER410NiMo wire. Wire feed rate and preheat current were optimized to obtain stable wire transfer, which guaranteed good formation quality of single pass cladding. Response surface methodology (RSM) was used to optimize processing parameters and predict formation quality of multi-pass cladding. Laser power P, scanning speed Vs, wire feed rate Vf and overlap ratio η were selected as the input variables, while flatness ratio, dilution and incomplete fusion value as the responses. Optimal clad layer with flat surface, low dilution and no incomplete fusion was obtained by appropriately reducing Vf, and increasing P, Vs and η. No defect like pore or crack was found. The tensile strength and impact toughness of the clad layer is respectively 96% and 86% of those of the substrate. The clad layer showed nonuniform microstructure and was divided into quenched areas with coarse lath martensite and tempered areas with tempered martensite due to different thermal cycles in adjacent areas. The tempered areas showed similar hardness to the substrate.

  12. Edge-on gating effect in molecular wires.

    Science.gov (United States)

    Lo, Wai-Yip; Bi, Wuguo; Li, Lianwei; Jung, In Hwan; Yu, Luping

    2015-02-11

    This work demonstrates edge-on chemical gating effect in molecular wires utilizing the pyridinoparacyclophane (PC) moiety as the gate. Different substituents with varied electronic demands are attached to the gate to simulate the effect of varying gating voltages similar to that in field-effect transistor (FET). It was observed that the orbital energy level and charge carrier's tunneling barriers can be tuned by changing the gating group from strong electron acceptors to strong electron donors. The single molecule conductance and current-voltage characteristics of this molecular system are truly similar to those expected for an actual single molecular transistor.

  13. FE modeling of Cu wire bond process and reliability

    NARCIS (Netherlands)

    Yuan, C.A.; Weltevreden, E.R.; Akker, P. van den; Kregting, R.; Vreugd, J. de; Zhang, G.Q.

    2011-01-01

    Copper based wire bonding technology is widely accepted by electronic packaging industry due to the world-wide cost reduction actions (compared to gold wire bond). However, the mechanical characterization of copper wire differs from the gold wire; hence the new wire bond process setting and new bond

  14. 47 CFR 76.804 - Disposition of home run wiring.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Disposition of home run wiring. 76.804 Section... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.804 Disposition of home run wiring. (a) Building-by-building disposition of home run wiring. (1) Where an MVPD owns the home run wiring in an MDU...

  15. Feasibility studies on the direct wire readout on wire scanners in electron accelerators; Durchfuehrbarkeitsstudien zur direkten Drahtauslese an Wirescannern in Elektronen-Beschleunigern

    Energy Technology Data Exchange (ETDEWEB)

    Markert, Michael

    2010-10-15

    This bachelor thesis deals essentially with the signal processing of a so-called wire scanner, a special monitor, which comes to application in the beam diagnostics of particle accelerators. In this direct wire readout the voltage signal, which is induced by the particle beam in the measurement wire of the wire scanner, shall be directly read out. The aim of this thesis is to show fundamental considerations and perform studies, which study, whether and how in the future by means of a suited data transmission as well as readout electronics conclusion on the most important parameters of the beam, like position and profile, are possible. The measurement system presented here is divided in three main components: Signal measurement, signal preparation, and signal stretching. A suited test facility was developed and is presented in detail, in which then all components, like for instance the transmission cables, the wire-scanner fork, and the developed measurement circuit, are studied, which are of importance for a faultless signal transmission and presentation. Extensive measurements on the single components, as well as calculations for the signal transmission on and in the wire scanner were performed, whereby a good agreement could be found. Thereafter a comparison and a selection of the component used in this project were made. Furthermore improvement proposals, new constructions, and outlooks are presented, which could be of importance in further works.

  16. Intra-wire resistance and AC loss in multi-filamentary MgB2 wires

    NARCIS (Netherlands)

    Zhou, Chao; Offringa, Wietse; Bergen, Anne-Henriette; Wessel, Wilhelm A.J.; Krooshoop, Hendrikus J.G.; Dhalle, Marc M.J.; Sumption, M.D.; Collings, E.W.; Rindfleisch, M.; Tomsic, M.; ten Kate, Herman H.J.; Nijhuis, Arend

    2013-01-01

    Intra-wire resistance and AC loss of various multi-filamentary MgB2 wires with filaments surrounded by Nb barriers have been measured and analyzed. The intra-wire resistance is measured with a direct four-probe voltage–current method at various temperatures. The AC loss is acquired by both vibrating

  17. THERMO-MECHANICALLY PROCESSED ROLLED WIRE FOR HIGH-STRENGTH ON-BOARD WIRE

    Directory of Open Access Journals (Sweden)

    V. A. Lutsenko

    2011-01-01

    Full Text Available It is shown that at twisting of wire of diameter 1,83 mm, produced by direct wire drawing of thermomechanically processed rolled wire of diameter 5,5 mm of steel 90, metal stratification is completely eliminated at decrease of carbon, manganese and an additional alloying of chrome.

  18. Rectangular waveguide-to-coplanar waveguide transitions at U-band using e-plane probe and wire bonding

    DEFF Research Database (Denmark)

    Dong, Yunfeng; Johansen, Tom Keinicke; Zhurbenko, Vitaliy

    2016-01-01

    This paper presents rectangular waveguide-to-coplanar waveguide (CPW) transitions at U-band (40–60 GHz) using E-plane probe and wire bonding. The designs of CPWs based on quartz substrate with and without aluminum cover are explained. The single and double layer rectangular waveguide......-to-CPW transitions using E-plane probe and wire bonding are designed. The proposed rectangular waveguide-to-CPW transition using wire bonding can provide 10 GHz bandwidth at U-band and does not require extra CPWs or connections between CPWs and chips. A single layer rectangular waveguide-to-CPW transition using E...

  19. The role of MgO content in ex situ MgB2 wires

    DEFF Research Database (Denmark)

    Kovac, P.; Hugek, I.; Meligek, T.

    2004-01-01

    An experimental study of the effect of MgO content in the MgB2 powder used for ex situ made composite wires was carried out. Two single-core MgB2/Fe/Cu wires were made using commercial MgB2 powders from Alfa Aesar containing different fraction of MgO. Critical temperature and critical currents...... of as-deformed and heat-treated wires were measured. The differences between the wires are discussed and correlated with the MgO content. It was found that by increasing the amount of MgO, the inter-grain connectivity worsens, but well distributed and low size MgO particles improve flux pinning....

  20. Spin transport in dangling-bond wires on doped H-passivated Si(100)

    International Nuclear Information System (INIS)

    Kepenekian, Mikaël; Robles, Roberto; Lorente, Nicolás; Rurali, Riccardo

    2014-01-01

    New advances in single-atom manipulation are leading to the creation of atomic structures on H-passivated Si surfaces with functionalities important for the development of atomic and molecular based technologies. We perform total-energy and electron-transport calculations to reveal the properties and understand the features of atomic wires crafted by H removal from the surface. The presence of dopants radically change the wire properties. Our calculations show that dopants have a tendency to approach the dangling-bond wires, and in these conditions, transport is enhanced and spin selective. These results have important implications in the development of atomic-scale spintronics showing that boron, and to a lesser extent phosphorous, convert the wires in high-quality spin filters. (paper)

  1. Long-Wearing Wire Guide For Welding Torch

    Science.gov (United States)

    Gutow, David A.; Burley, Richard K.; Gilbert, Jeffrey L.; Fogel, Irving

    1992-01-01

    Insert for wire-guide tube on tungsten/inert-gas welding apparatus extends life of guide tube and increases accuracy of weld. Hardened insert resists wear by sliding tungsten wire. Chamfer guides wire into insert.

  2. 29 CFR 1919.79 - Wire rope.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Wire rope. 1919.79 Section 1919.79 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED... recommended by the equipment or the wire rope manufacturer due to actual working condition requirements. In...

  3. Automatic inspection of railway overhead wires

    NARCIS (Netherlands)

    Smorenburg, C.; Valkenburg, A.L.G. van

    1988-01-01

    For the Netherlands railway company a system for inspection of the degree of wear of the contact wires is being developed. With an active sensor the reflective under-surface of the overhead wire is illuminated with a laserbeam and reflected radiation is detected by fast CCD detectors. With the

  4. Wire compensation: Performance, SPS MDs, pulsed system

    CERN Document Server

    Dorda, U

    2008-01-01

    A wire compensation (BBLR) scheme has been proposed in order to improve the long range beam-beam performance of the nominal LHC and its phase 1 and phase 2 upgrades[1]. In this paper we present experimental experience of the CERN SPS wires (BBLR) and report on progress with the RF BBLR.

  5. WIRED magazine announces rave awards nominees

    CERN Multimedia

    2002-01-01

    WIRED Magazine has anounced the nominees for its fourth annual WIRED Rave Awards, celebrating innovation and the individuals transforming commerce and culture. Jeffrey Hangst of the University of Aarhus has been nominated in the science category, for his work on the ATHENA Experiment, CERN (1/2 page).

  6. Kirschner Wire Breakage during Removal Requiring Retrieval

    Directory of Open Access Journals (Sweden)

    Kai Yuen Wong

    2016-01-01

    Full Text Available Kirschner wires (K-wires are widely used for fixation of fractures and dislocations in the hand as they are readily available, reliable, and cost-effective. Complication rates of up to 18% have been reported. However, K-wire breakage during removal is rare. We present one such case illustrating a simple technique for retrieval. A 35-year-old male presented with a distal phalanx fracture of his right middle finger. This open fracture was treated with K-wire fixation. Postoperatively, he developed a pin site infection with associated finger swelling. The K-wire broke during removal with the proximal piece completely retained in his middle phalanx. To minimise risk of osteomyelitis, the K-wire was removed with a novel surgical technique. He had full return of hand function. Intraoperative K-wire breakage has a reported rate of 0.1%. In our case, there was no obvious cause of breakage and the patient denied postoperative trauma. On the other hand, pin site infections are much more common with reported rates of up to 7% in the hand or wrist. K-wire fixation is a simple method for bony stabilisation but can be a demanding procedure with complications often overlooked. It is important to be aware of the potential sequelae.

  7. Hot-wire anemometer for spirography.

    Science.gov (United States)

    Plakk, P; Liik, P; Kingisepp, P H

    1998-01-01

    The use of a constant temperature hot-wire anemometer flow sensor for spirography is reported. The construction, operating principles and calibration procedure of the apparatus are described, and temperature compensation method is discussed. Frequency response is studied. It is shown that this hot-wire flow transducer satisfies common demands with respect to accuracy, response time and temperature variations.

  8. Role of surface on the size-dependent mechanical properties of copper nano-wire under tensile load: A molecular dynamics simulation

    Science.gov (United States)

    Liu, Wei-Ting; Hsiao, Chun-I.; Hsu, Wen-Dung

    2014-01-01

    In this study we have used atomistic simulations to investigate the role of surface on the size-dependent mechanical properties of nano-wires. In particular, we have performed computational investigation on single crystal face-centered cubic copper nano-wires with diameters ranging from 2 to 20 nm. The wire axis for all the nano-wires are considered along the [0 0 1] direction. Characterization of the initial optimized structures revealed clear differences in interatomic spacing, stress, and potential energy in all the nano-wires. The mechanical properties with respect to wire diameter are evaluated by applying tension along the [0 0 1] direction until yielding. We have discussed the stress-strain relationships, Young's modulus, and the variation in potential energy from surface to the center of the wire for all the cases. Our results indicate that the mechanical response (including yield strain, Young's modulus, and resilience) is directly related to the proportion of surface to bulk type atoms present in each nano-wire. Thus the size-dependent mechanical properties of single crystal copper nano-wire within elastic region are attributed to the surface to volume ratio (surface effect). Using the calculated response, we have formulated a mathematical relationship, which predicts the nonlinear correlation between the mechanical properties and the diameter of the wire.

  9. Assessment of SFR Wire Wrap Simulation Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Delchini, Marc-Olivier G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Popov, Emilian L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Pointer, William David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Swiler, Laura P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-30

    Predictive modeling and simulation of nuclear reactor performance and fuel are challenging due to the large number of coupled physical phenomena that must be addressed. Models that will be used for design or operational decisions must be analyzed for uncertainty to ascertain impacts to safety or performance. Rigorous, structured uncertainty analyses are performed by characterizing the model’s input uncertainties and then propagating the uncertainties through the model to estimate output uncertainty. This project is part of the ongoing effort to assess modeling uncertainty in Nek5000 simulations of flow configurations relevant to the advanced reactor applications of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. Three geometries are under investigation in these preliminary assessments: a 3-D pipe, a 3-D 7-pin bundle, and a single pin from the Thermal-Hydraulic Out-of-Reactor Safety (THORS) facility. Initial efforts have focused on gaining an understanding of Nek5000 modeling options and integrating Nek5000 with Dakota. These tasks are being accomplished by demonstrating the use of Dakota to assess parametric uncertainties in a simple pipe flow problem. This problem is used to optimize performance of the uncertainty quantification strategy and to estimate computational requirements for assessments of complex geometries. A sensitivity analysis to three turbulent models was conducted for a turbulent flow in a single wire wrapped pin (THOR) geometry. Section 2 briefly describes the software tools used in this study and provides appropriate references. Section 3 presents the coupling interface between Dakota and a computational fluid dynamic (CFD) code (Nek5000 or STARCCM+), with details on the workflow, the scripts used for setting up the run, and the scripts used for post-processing the output files. In Section 4, the meshing methods used to generate the THORS and 7-pin bundle meshes are explained. Sections 5, 6 and 7 present numerical results

  10. Guide Wire Entrapment during Central Venous Catheterization

    Directory of Open Access Journals (Sweden)

    Kyung Woo Kim

    2014-05-01

    Full Text Available We experienced a case of venous vessel wall entrapment between the introducer needle and the guide wire during an attempt to perform right internal jugular vein (IJV catheterization. The guide wire was introduced with no resistance but could not be withdrawn. We performed ultrasonography and C-arm fluoroscopy to confirm the entrapment location. We assumed the introducer needle penetrated the posterior vessel wall during the puncture and that only the guide wire entered the vein; an attempt to retract the wire pinched the vein wall between the needle tip and the guide wire. Careful examination with various diagnostic tools to determine the exact cause of entrapment is crucial for reducing catastrophic complications and achieving better outcomes during catheterization procedures.

  11. Device Performance Improvement of Double-Pass Wire Mesh Packed Solar Air Heaters under Recycling Operation Conditions

    Directory of Open Access Journals (Sweden)

    Chii-Dong Ho

    2016-01-01

    Full Text Available The improvement of device performance of a recycling solar air heater featuring a wire mesh packing was investigated experimentally and theoretically. The application of the wire mesh packing and recycle-effect concept to the present study were proposed aiming to strengthen the convective heat-transfer coefficient due to increased turbulence. Comparisons were made among different designs, including the single-pass, flat-plate double-pass and recycling double-pass wire mesh packed operations. The collector efficiency of the recycling double-pass wire mesh packed solar air heater was much higher than that of the other configurations for various recycle ratios and mass flow rates scenarios. The power consumption increment due to implementing wire mesh in solar air heaters was also discussed considering the economic feasibility. A fairly good agreement between theoretical predictions and experimental measurements was achieved with an analyzed error of 1.07%–9.32%.

  12. Experience with FiberWire for pectus bar attachment.

    Science.gov (United States)

    McMahon, L E; Johnson, K N; Jaroszewski, D E; Acosta, J M; Egan, J C; Bae, J; Ngyuen, H; Notrica, D M

    2014-08-01

    Minimally invasive repair of pectus excavatum has become an established method for repair of pectus excavatum. Bar displacement or rotation remains the most common complication of this repair requiring return to the operating room. Retrospective review of all patients at a single institution who underwent repair of pectus excavatum using FiberWire for bar stabilization between December 2009 and March 2013 was undertaken. 93 patients underwent minimally invasive pectus repair using FiberWire during the study period. The patients included 73 males and 20 females, with an average age of 14.6years (range 7-21years). Mean operative time was 102minutes (range 56-198minutes). No patients developed wound complications, two patients developed pain because of bar migration and required return to the OR, and no patients had recurrence of their pectus defect because of bar migration during the study period. Median length of follow-up was 17months (range 3-36months). Stabilization of pectus bars using circumferential rib fixation with FiberWire at multiple points on both sides of the bar appears to be effective in preventing bar rotation and displacement, and requires minimal change to the operation as it has been previously described. Early experience shows a low rate of complications. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Power generation with laterally packaged piezoelectric fine wires.

    Science.gov (United States)

    Yang, Rusen; Qin, Yong; Dai, Liming; Wang, Zhong Lin

    2009-01-01

    Converting mechanical energy into electricity could have applications in sensing, medical science, defence technology and personal electronics, and the ability of nanowires to 'scavenge' energy from ambient and environmental sources could prove useful for powering nanodevices. Previously reported nanowire generators were based on vertically aligned piezoelectric nanowires that were attached to a substrate at one end and free to move at the other. However, there were problems with the output stability, mechanical robustness, lifetime and environmental adaptability of such devices. Here we report a flexible power generator that is based on cyclic stretching-releasing of a piezoelectric fine wire that is firmly attached to metal electrodes at both ends, is packaged on a flexible substrate, and does not involve sliding contacts. Repeatedly stretching and releasing a single wire with a strain of 0.05-0.1% creates an oscillating output voltage of up to approximately 50 mV, and the energy conversion efficiency of the wire can be as high as 6.8%.

  14. A torquing shearing interferometer for cylindrical wire array experiments.

    Science.gov (United States)

    Pikuz, S A; Schrafel, P C; Shelkovenko, T A; Kusse, B R

    2008-10-01

    In standard shearing interferometry, a single probing beam passes through a perturbing medium and is then split into two beams. A linear shift results in an overlap, an interference, and a fringe pattern yielding the perturbing medium density profile. The probing beam usually needs to be larger than the perturbing medium so that part of it passes through a well separated low density region. During early time axial (end-on) views of imploding cylindrical wire arrays low density regions lie in between the high density regions that are near the initial wire positions. In addition, for end-on viewing, the probing beam diameter is limited by electrodes and is comparable to the array diameter. In this case a linear translation will not work but the overlap can be accomplished by an azimuthal rotation of one beam with respect to the other. Such a torquing shearing interferometer has been set up on the COBRA experiment to give time resolved, radial, and azimuthal electron density profiles during early time cylindrical wire array implosions.

  15. Minimum quench energy measurement for superconducting wires

    International Nuclear Information System (INIS)

    Seo, K.; Morita, M.; Nakamura, S.; Yamada, T.; Jizo, Y.

    1996-01-01

    The authors have developed a new method of measuring minimum quench energy (MQE) of superconducting wire. There have been conventional methods using heating wires, whose diameters are ∼0.1mm and are glued by epoxy resin. When they induce a pulse heat to superconducting wires, a duration of the pulse must be several hundreds micro seconds to demonstrate actual disturbances (for instance wire motion) in a superconducting magnet. In spite of this fact, thermal diffusion time constants of the conventional heaters are larger than the duration of the actual disturbance, because of these electrical insulator of the heating wire and the epoxy bind. Therefore, this kind of heater is not able to demonstrate the actual disturbance. To solve this problem, they have proposed a new constitution of a heater. In the method, heat generation is introduced in high resistive layer on a surface of a superconducting wire. The high resistive layer is consist of carbon paste. The thickness of the carbon paste layer is ∼20microm, thus a time constant of this heater is expected to be small enough to demonstrate the actual disturbance. Adopting the new method to the MQE measurement, they successfully evaluate MQE of superconducting wires with high precision. Several results are introduced in this paper

  16. Wire pad chamber for LHCb muon system

    CERN Document Server

    Botchine, B; Lazarev, V A; Sagidova, N; Vorobev, A P; Vorobyov, A; Vorobyov, Alexei

    2000-01-01

    2000-003 Wire pad chambers (WPC) have been proposed for the outer Region 4 of the LHCb Muon System. These are double gap MWPCs with small wire spacing allowing to obtain 99% detection efficiency in a 20 ns time window. The chambers have a rectangular shape with the vertical dimension from 20 cm in Station 1 to 30 cm in Station 5. The horizontal dimensions will be different with the maximal size of 3 meters in Station 5. The wires are in the vertical direction. The short wire length allows to use small wire spacing needed for high time resolution. Also, this helps to obtain the uniform gas gain over the whole chamber area. The WPC has one row of the wire pads formed by grouping wires in separate readout channels. Four WPC prototypes have been built at PNPI and tested in the PS beam at CERN. Here we report on the results from these tests. Also, the results of simulation of the WPC performance are presented.

  17. Double tension band wiring for treatment of olecranon fractures.

    Science.gov (United States)

    Kim, Wanlim; Choi, Sunghun; Yoon, Jun O; Park, Ho Youn; Kim, Sun Hwa; Kim, Jin Sam

    2014-12-01

    Although tension band wiring (TBW) is generally accepted as standard treatment for olecranon fractures, it has several shortcomings such as loss of reduction, skin irritation, and migration of the K-wires. To overcome these problems and increase fixation stability, we used a rigid fixation technique with double tension band wiring (DTBW). Here, we describe the technique and outcomes of the treatment. We retrospectively reviewed 21patients with olecranon fractures who were treated by DTBW. We evaluated clinical and radiological outcomes by checking the range of motion, loss of reduction, functional scoring, skin complications, and pin migration. There were 15 cases of Mayo type IIA fractures (71%) and 6 of type IIB fractures (29%). The mean follow-up period was 37 months (range, 12-58 mo). We also compared the mechanical stability of DTBW and TBW in a sawbone model using a single cycle load to failure protocol. All fractures united without displacement, and no migration of the K-wires was observed during the period of follow-up. Mean loss of elbow extension was 2° (range, 0°-15°) and mean elbow flexion was 134° (range, 125°-140°). The mean Mayo Elbow Performance Score was 94 (range, 70-100). Biomechanical testing revealed greater mechanical strength in the DTBW technique than in the TBW when measured by mean maximum failure load and mean bending moment at failure. DTBW produced good clinical and radiological outcomes and could be an effective option for the treatment of olecranon fractures by providing additional stability through a second TBW. Biomechanical comparison with a control group (TBW) supported the mechanical benefits of DTBW. Therapeutic IV. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  18. Multicellular Computing Using Conjugation for Wiring

    Science.gov (United States)

    Goñi-Moreno, Angel; Amos, Martyn; de la Cruz, Fernando

    2013-01-01

    Recent efforts in synthetic biology have focussed on the implementation of logical functions within living cells. One aim is to facilitate both internal “re-programming” and external control of cells, with potential applications in a wide range of domains. However, fundamental limitations on the degree to which single cells may be re-engineered have led to a growth of interest in multicellular systems, in which a “computation” is distributed over a number of different cell types, in a manner analogous to modern computer networks. Within this model, individual cell type perform specific sub-tasks, the results of which are then communicated to other cell types for further processing. The manner in which outputs are communicated is therefore of great significance to the overall success of such a scheme. Previous experiments in distributed cellular computation have used global communication schemes, such as quorum sensing (QS), to implement the “wiring” between cell types. While useful, this method lacks specificity, and limits the amount of information that may be transferred at any one time. We propose an alternative scheme, based on specific cell-cell conjugation. This mechanism allows for the direct transfer of genetic information between bacteria, via circular DNA strands known as plasmids. We design a multi-cellular population that is able to compute, in a distributed fashion, a Boolean XOR function. Through this, we describe a general scheme for distributed logic that works by mixing different strains in a single population; this constitutes an important advantage of our novel approach. Importantly, the amount of genetic information exchanged through conjugation is significantly higher than the amount possible through QS-based communication. We provide full computational modelling and simulation results, using deterministic, stochastic and spatially-explicit methods. These simulations explore the behaviour of one possible conjugation-wired cellular

  19. Improvement of electromechanical properties of an ITER internal tin Nb3Sn wire

    Science.gov (United States)

    Mondonico, G.; Seeber, B.; Senatore, C.; Flükiger, R.; Corato, V.; De Marzi, G.; Muzzi, L.

    2010-11-01

    The critical current of an internal tin Nb3Sn wire developed by Oxford Instruments, Superconducting Technology for International Thermonuclear Experimental Reactor (ITER) (OST type-I, billet No. 7567) has been studied under axial strain at fields between 12 and 19 T at 4.2 K. Simulating the situation in a cable in conduit, where thermally induced compressive strain is important, a single wire (strand) was jacketed with AISI 316L stainless steel. The reinforced wire shows an important increase in ɛm, the applied strain where Ic reaches its maximum, from 0.25% to 0.57%. In addition the irreversibility limit, ɛirr, is improved from 0.50% applied strain to >1.10%. It could also be shown that the Ic at zero intrinsic strain is almost identical. This demonstrates that jacketing does not influence the physical parameters of the original wire. Experimental data of the bare wire has been well fitted by different strain functions. However, it was not possible to model the data of the jacketed wire. There are indications that only models which take into account the multidimensional character of strain are able to describe the behavior but further development is required.

  20. Effect of AC electric fields on flame spread over electrical wire

    KAUST Repository

    Kim, Minkuk

    2011-01-01

    The effect of electric fields on the characteristics of flame spread over insulated electrical wire has been investigated experimentally by varying AC voltage and frequency applied to the wire in the normal gravity condition. The polyethylene (PE) insulated electrical wire was placed horizontally on electrically non-conducting posts and one end of the wire was connected to the high voltage terminal. Thus, the electrical system is the single electrode configuration. The wire was ignited at one end and the flame spread rate along the wire has been measured from the images using a video camera. Two distinct regimes existed depending on the applied AC frequency. In the low frequency regime, the flame spread rate decreased with the frequency and voltage. While in the high frequency regime, it decreased initially with voltage and then increased. At high frequency, the spread rate was even over that without applying electric fields. This result implies that fire safety codes developed without considering the effect of electric fields may require modifications. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  1. Polymer growth rate in a wire chamber with oxygen, water, or alcohol gas additives

    International Nuclear Information System (INIS)

    Boyarski, Adam M.

    2009-01-01

    The rate of polymer growth on wires was measured in a wire chamber while the chamber was aged initially with helium:isobutane (80:20) gas, and then with either oxygen, water, or alcohol added to the gas. At the completion of the aging process for each gas mixture, the carbon content on the wires was measured in a scanning electron microscope/energy dispersive X-ray (SEM/EDX) instrument. The same physical wires were used in all the gas mixtures, allowing measurement of polymer build-up or polymer depletion by each gas additive. It is found that the rate of polymer growth is not changed by the presence of oxygen, water, or alcohol. Conjecture that oxygen reduces breakdown by removing polymer deposits on field wires is negated by these measurements. Instead, it appears that the reduced breakdown is due to lower resistance in the polymer from oxygen ions being transported into the polymer. It is also observed that field wires bombarded by the electrons in the SEM and then placed back into the chamber show an abundance of single electrons being emitted, indicating that electron charge is trapped in the polymer layer and that a high electric field is necessary to remove the charge.

  2. Thermoelectric properties of the Bi-15 at%Sb wires in weak magnetic field

    International Nuclear Information System (INIS)

    Popov, I.A.

    2011-01-01

    Full text: At concentration Sb (0.08 1-x Sb x is the semiconductor with inverted - band specter. In such nanowires with the inverted spectrum, can be realized of a topological insulator (TI) state. Long individual single-crystal Bi-15at%Sb nanowires in glass capillary with diameters 0.1mkm-2mkm were fabricated by liquid phase casting. Multiple horizontal zone recrystallization of the nanowires was used for the homogenization of wires and to improve their structural perfection. The measurement the angular rotation diagrams transverse [H perpendicular I] magnetoresistance in a weak magnetic field at 300 K and 77 K have allowed to conclude that Bi 1-x Sb x wires all composition and diameter had same orientation (1011)- along the wire axis. In this case value the energy gap is approximately 25 meV. As it has been shown at realization of quantum dimensional effect, in semiconductor Bi-Sb wires, the gap should increase. In thin Bi-15at%Sb wires we observed adverse effect. It is visible, that at temperatures T 2 σ depending on diameter of wires, structure, temperature and a magnetic field is calculated. In connection with topological insulators, we will discuss the effect of the surface state in the thermoelectric properties. (author)

  3. Experimental Study on EHD Flow Transition in a Small Scale Wire-plate ESP

    Directory of Open Access Journals (Sweden)

    Wang Chuan

    2016-06-01

    Full Text Available The electrohydrodynamic (EHD flow induced by the corona discharge was experimentally investigated in an electrostatic precipitator (ESP. The ESP was a narrow horizontal Plexiglas box (1300 mm×60 mm×60 mm. The electrode set consisted of a single wire discharge electrode and two collecting aluminum plate electrodes. Particle Image Velocimetry (PIV method was used to visualize the EHD flow characteristics inside the ESP seeded with fine oil droplets. The influence of applied voltage (from 8 kV to 10 kV and primary gas flow (0.15 m/s, 0.2 m/s, 0.4 m/s on the EHD flow transition was elucidated through experimental analysis. The formation and transition of typical EHD flows from onset to the fully developed were described and explained. Experimental results showed that the EHD flow patterns change depends on the gas velocity and applied voltage. EHD flow starts with flow streamlines near collecting plates bending towards the wire electrode, forming two void regions. An oscillating jet forming the downstream appeared and moved towards the wire electrode as voltage increased. For higher velocities (≥0.2 m/s, the EHD transition became near wire phenomenon with a jet-like flow structure near the wire, forming a void region behind the wire and expanding as voltage increased. Fully developed EHD secondary flow in the form of counter-rotating vortices appeared upstream with high applied voltage.

  4. Problems associated with iridium-192 wire implants

    International Nuclear Information System (INIS)

    Arnott, S.J.; Law, J.; Ash, D.; Flynn, A.; Paine, C.H.; Durrant, K.R.; Barber, C.D.; Dixon-Brown, A.

    1985-01-01

    Three incidents are reported, from different radiotherapy centres, in which an implanted iridium-192 wire remained in the tissues of a patient after withdrawal of the plastic tubing in which it was contained. In each case the instrument used to cut the wire had probably formed a hook on the end of the wire which caused it to catch in the tissues. Detailed recommendations are made for avoiding such incidents in the future, the most important of which is that the patient should be effectively monitored after the supposed removal of all radioactive sources. (author)

  5. Investigation of wire motion in superconducting magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Tsuchiya, K.; Devred, A.

    1990-09-01

    The large Lorentz forces occuring during the excitation of superconducting magnets can provoke sudden motions of wire, which eventually release enough energy to trigger a quench. These wire motions are accompanied by two electromagnetic effects: an induced emf along the moved wire, and a local change in flux caused by the minute dislocation of current. Both effects cause spikes in the coil voltage. Voltage data recorded during the excitation of a superconducting quadrupole magnet which early exhibit such events are here reported. Interpretations of the voltage spikes in terms of energy release are also presented, leading to insights on the spectrum of the disturbances which occur in real magnets. 15 refs

  6. Detecting Majorana modes in one-dimensional wires by charge sensing

    Science.gov (United States)

    Ben-Shach, Gilad; Haim, Arbel; Appelbaum, Ian; Oreg, Yuval; Yacoby, Amir; Halperin, Bertrand I.

    2015-01-01

    The electron number parity of the ground state of a semiconductor nanowire proximity coupled to a bulk superconductor can alternate between the quantized values ±1 if parameters such as the wire length L , the chemical potential μ , or the magnetic field B are varied inside the topological superconductor phase. The parity jumps, which may be interpreted as changes in the occupancy of the fermion state formed from the pair of Majorana modes at opposite ends of the wire, are accompanied by jumps δ N in the charge of the nanowire, whose values decrease exponentially with the wire length. We study theoretically the dependence of δ N on system parameters, and compare the locations in the μ -B plane of parity jumps when the nanowire is or is not proximity coupled to a bulk superconductor. We show that, despite the fact that the wave functions of the Majorana modes are localized near the two ends of the wire, the charge-density jumps have spatial distributions that are essentially uniform along the wire length, being proportional to the product of the two Majorana wave functions. We explain how charge measurements, say by an external single-electron transistor, could reveal these effects. Whereas existing experimental methods require direct contact to the wire for tunneling measurements, charge sensing avoids this issue and provides an orthogonal measurement to confirm recent experimental developments. Furthermore, by comparing density of states measurements which show Majorana features at the wire ends with the uniformly distributed charge measurements, one can rule out alternative explanations for earlier results. We shed light on a parameter regime for these wire-superconductor hybrid systems, and propose a related experiment to measure spin density.

  7. 47 CFR 76.802 - Disposition of cable home wiring.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Disposition of cable home wiring. 76.802... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.802 Disposition of cable home wiring... cable operator shall not remove the cable home wiring unless it gives the subscriber the opportunity to...

  8. Automatic reel controls filler wire in welding machines

    Science.gov (United States)

    Millett, A. V.

    1966-01-01

    Automatic reel on automatic welding equipment takes up slack in the reel-fed filler wire when welding operation is terminated. The reel maintains constant, adjustable tension on the wire during the welding operation and rewinds the wire from the wire feed unit when the welding is completed.

  9. 47 CFR 32.2321 - Customer premises wiring.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Customer premises wiring. 32.2321 Section 32... Customer premises wiring. (a) This account shall include all amounts transferred from the former Account 232, Station Connections, inside wiring subclass. (b) Embedded Customer Premises Wiring is that...

  10. 30 CFR 77.701-3 - Grounding wires; capacity.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding wires; capacity. 77.701-3 Section 77... MINES Grounding § 77.701-3 Grounding wires; capacity. Where grounding wires are used to ground metallic sheaths, armors, conduits, frames, casings, and other metallic enclosures, such grounding wires will be...

  11. Wire Bonder: Kulicke and Soffa Model 4526

    Data.gov (United States)

    Federal Laboratory Consortium — Description:CORAL Name: Wire BonderNeeds Description.Scientific Opportunities / Applications:Wedge bonderSemi-automatic and manual modesIndependent Z-axis control,...

  12. Beam Profiling through Wire Chambing Tracking

    CERN Document Server

    Nash, W

    2013-01-01

    This note describes the calibration of the Delay Wire Chambers (DWCs) used during test runs of CALICE’s Tungsten Digital Hadron Calorimeter (W-DHCAL) prototype in CERN’s SPS beam line (10 – 300 GeV).

  13. Copyright and Wire Broadcasting Under Belgian Law

    Science.gov (United States)

    Namurois, Albert

    1975-01-01

    A discussion of a case whereby substantial damages, if not criminal proceedings, will sanction, according to circumstances, both television organizations and those who in certain conditions distribute their programs by wire or communicate them to the public. (Author/HB)

  14. Josephson junction arrays and superconducting wire networks

    International Nuclear Information System (INIS)

    Lobb, C.J.

    1992-01-01

    Techniques used to fabricate integrated circuits make it possible to construct superconducting networks containing as many as 10 6 wires or Josephson junctions. Such networks undergo phase transitions from resistive high-temperature states to ordered low-resistance low-temperature states. The nature of the phase transition depends strongly on controllable parameters such as the strength of the superconductivity in each wire or junction and the external magnetic field. This paper will review the physics of these phase transitions, starting with the simplest zero-magnetic field case. This leads to a Kosterlitz-Thouless transition when the junctions or wires are weak, and a simple mean-field fransition when the junctions or wires are strong. Rich behavior, resulting from frustration, occurs in the presence of a magnetic field. (orig.)

  15. Highly stretchable wrinkled gold thin film wires.

    Science.gov (United States)

    Kim, Joshua; Park, Sun-Jun; Nguyen, Thao; Chu, Michael; Pegan, Jonathan D; Khine, Michelle

    2016-02-08

    With the growing prominence of wearable electronic technology, there is a need to improve the mechanical reliability of electronics for more demanding applications. Conductive wires represent a vital component present in all electronics. Unlike traditional planar and rigid electronics, these new wearable electrical components must conform to curvilinear surfaces, stretch with the body, and remain unobtrusive and low profile. In this paper, the piezoresistive response of shrink induced wrinkled gold thin films under strain demonstrates robust conductive performance in excess of 200% strain. Importantly, the wrinkled metallic thin films displayed negligible change in resistance of up to 100% strain. The wrinkled metallic wires exhibited consistent performance after repetitive strain. Importantly, these wrinkled thin films are inexpensive to fabricate and are compatible with roll to roll manufacturing processes. We propose that these wrinkled metal thin film wires are an attractive alternative to conventional wires for wearable applications.

  16. Tensosensitivity of the Hot-Wire Probe

    National Research Council Canada - National Science Library

    Pak, A

    2002-01-01

    ...., on the anemometer type. In a constant current anemometer, it is possible to measure and separate out the noise moving to the electric circuit of the anemometer, it is not the case with hot-wire anemometers of other types...

  17. Molecular wires, switches and memories

    Science.gov (United States)

    Chen, Jia

    Molecular electronics, an emerging field, makes it possible to build individual molecules capable of performing functions identical or analogous to present- day conductors, switches, or memories. These individual molecules, with a nano-meter scale characteristic length, can be designed and chemically synthesized with specific atoms, geometries and charge distribution. This thesis focuses on the design, and measurements of molecular wires, and related strategically engineered structures-molecular switches and memories. The experimental system relies on a thermodynamically driven self-assembling process to attach molecules onto substrate surfaces without intervention from outside. The following topics will be discussed: directed nanoscale manipulation of self-assembled molecules using scanning tunneling microscope; investigation on through-bond transport of nanoscale symmetric metal/conjugated self- assembled monolayers (SAM)/metal junctions, where non- Ohmic thermionic emission was observed to be the dominant process, with isocyanide-Pd contacts showing the lowest thermionic barrier of 0.22 eV; the first realization of robust and large reversible switching behavior in an electronic device that utilizes molecules containing redox centers as the active component, exhibiting negative differential resistance (NDR) and large on-off peak-to-valley ratio (PVR); observation of erasable storage of higher conductivity states in these redox- center containing molecular devices, and demonstration of a two-terminal electronically programmable and erasable molecular memory cell with long bit retention time.

  18. Load-Deflection and Friction Properties of PEEK Wires as Alternative Orthodontic Wires.

    Science.gov (United States)

    Tada, Yoshifumi; Hayakawa, Tohru; Nakamura, Yoshiki

    2017-08-09

    Polyetheretherketone (PEEK) is now attracting attention as an alternative to metal alloys in the dental field. In the present study, we evaluated the load-deflection characteristics of PEEK wires in addition to their frictional properties. Three types of PEEK wires are used: two sizes of rectangular shape, 0.016 × 0.022 in² and 0.019 × 0.025 in² (19-25PEEK), and rounded shape, diameter 0.016 in (16PEEK). As a control, Ni-Ti orthodontic wire, diameter 0.016 in, was used. The three-point bending properties were evaluated in a modified three-point bending system for orthodontics. The static friction between the orthodontic wire and the bracket was also measured. The load-deflection curves were similar among Ni-Ti and PEEK wires, except for 16PEEK with slot-lid ligation. The bending force of 19-25PEEK wire was comparable with that of Ni-Ti wire. 19-25PEEK showed the highest load at the deflection of 1500 μm ( p 0.05). No significant difference was seen in static friction between all three PEEK wires and Ni-Ti wire ( p > 0.05). It is suggested that 19-25PEEK will be applicable for orthodontic treatment with the use of slot-lid ligation.

  19. Audio wiring guide how to wire the most popular audio and video connectors

    CERN Document Server

    Hechtman, John

    2012-01-01

    Whether you're a pro or an amateur, a musician or into multimedia, you can't afford to guess about audio wiring. The Audio Wiring Guide is a comprehensive, easy-to-use guide that explains exactly what you need to know. No matter the size of your wiring project or installation, this handy tool provides you with the essential information you need and the techniques to use it. Using The Audio Wiring Guide is like having an expert at your side. By following the clear, step-by-step directions, you can do professional-level work at a fraction of the cost.

  20. Note: Improved wire-wound heater.

    Science.gov (United States)

    Steinmann, Ricardo G; Vitoux, Hugo

    2015-01-01

    The authors have measured, at cryogenic temperature, the upper limit of the heat transfer in different configurations of a wire-wound heater. We found that the heat transferred has an upper limit of about 15 W/cm(2) and is dependent on the diameter of the wire. In this paper, we present three ways of increasing the heat transferred by this type of heater and its application in different continuous flow cryostats.

  1. Graphene wire medium: Homogenization and application

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Chigrin, Dmitry N.; Lavrinenko, Andrei

    2012-01-01

    In this contribution we analyze numerically the optical properties of the graphene wire medium, which unit cell consists of a stripe of graphene embedded into dielectric. We propose a simple method for retrieval of the isofrequency contour and effective permittivity tensor. As an example...... of the graphene wire medium application we demonstrate a reconfigurable hyperlens for the terahertz subwavelength imaging capable of resolving two sources with separation λ0/5 in the far-field....

  2. Novel use of the "buddy"wire.

    LENUS (Irish Health Repository)

    O'Hare, A

    2008-12-29

    Summary: During interventional procedures the tortuosity of the vasculature hampers catheter stability. The buddy wire may be used to aid and maintain vascular access.We describe a case of acute subarachnoid haemorrhage secondary to dissecting aneurysm of the vertebral artery.We discuss the value of the buddy wire during balloon occlusion of the vertebral artery not as it is typically used, but to actually prevent the balloon repeatedly entering the posterior inferior cerebellar artery during the procedure.

  3. A Magnetic Sensor with Amorphous Wire

    Directory of Open Access Journals (Sweden)

    Dongfeng He

    2014-06-01

    Full Text Available Using a FeCoSiB amorphous wire and a coil wrapped around it, we have developed a sensitive magnetic sensor. When a 5 mm long amorphous wire with the diameter of 0.1 mm was used, the magnetic field noise spectrum of the sensor was about 30 pT/ÖHz above 30 Hz. To show the sensitivity and the spatial resolution, the magnetic field of a thousand Japanese yen was scanned with the magnetic sensor.

  4. COBRA-IV wire wrap data comparisons

    International Nuclear Information System (INIS)

    Donovan, T.E.; George, T.L.; Wheeler, C.L.

    1979-02-01

    Thermal hydraulic analyses of hexagonally packed wire-wrapped fuel assemblies are complicated by the induced crossflow between adjacent subchannels. The COBRA-IV computer code simultaneously solves the hydrodynamics and thermodynamics of fuel assemblies. The modifications and the results are presented which are predicted by the COBRA-IV calculation. Comparisons are made with data measured in five experimental models of a wire-wrapped fuel assembly

  5. Wiring System Diagnostic Techniques for Legacy Aircraft

    Science.gov (United States)

    2003-02-01

    Reunions des specialistes des techniques de estion du cycle de vie pour vehicules aeriens vieillissants ] To order the complete compilation report, use...Ageing Mechanisms and Control. Specialists’ Meeting on Life Management Techniques for Ageing Air Vehicles [Les mecanismes vieillissants et le controle...be identified. Additionally, wiring failures tend to be intermittent in nature and can take considerable time to isolate. Wire modifications and

  6. Subchannel Analysis of Wire Wrapped SCWR Assembly

    Directory of Open Access Journals (Sweden)

    Jianqiang Shan

    2014-01-01

    Full Text Available Application of wire wrap spacers in SCWR can reduce pressure drop and obtain better mixing capability. As a consequence, the required coolant pumping power is decreased and the coolant temperature profile inside the fuel bundle is flattened which will obviously decrease the peak cladding temperature. The distributed resistance model for wire wrap was developed and implemented in ATHAS subchannel analysis code. The HPLWR wire wrapped assembly was analyzed. The results show that: (1 the assembly with wire wrap can obtain a more uniform coolant temperature profile than the grid spaced assembly, which will result in a lower peak cladding temperature; (2 the pressure drop in a wire wrapped assembly is less than that in a grid spaced assembly, which can reduce the operating power of pump effectively; (3 the wire wrap pitch has significant effect on the flow in the assembly. Smaller Hwire/Drod will result in stronger cross flow a more uniform coolant temperature profile, and also a higher pressure drop.

  7. Superconducting wires and methods of making thereof

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xingchen; Sumption, Michael D.; Peng, Xuan

    2018-03-13

    Disclosed herein are superconducting wires. The superconducting wires can comprise a metallic matrix and at least one continuous subelement embedded in the matrix. Each subelement can comprise a non-superconducting core, a superconducting layer coaxially disposed around the non-superconducting core, and a barrier layer coaxially disposed around the superconducting layer. The superconducting layer can comprise a plurality of Nb.sub.3Sn grains stabilized by metal oxide particulates disposed therein. The Nb.sub.3Sn grains can have an average grain size of from 5 nm to 90 nm (for example, from 15 nm to 30 nm). The superconducting wire can have a high-field critical current density (J.sub.c) of at least 5,000 A/mm.sup.2 at a temperature of 4.2 K in a magnetic field of 12 T. Also described are superconducting wire precursors that can be heat treated to prepare superconducting wires, as well as methods of making superconducting wires.

  8. Needleless electrospinning with twisted wire spinneret

    International Nuclear Information System (INIS)

    Holopainen, Jani; Penttinen, Toni; Santala, Eero; Ritala, Mikko

    2015-01-01

    A needleless electrospinning setup named ‘Needleless Twisted Wire Electrospinning’ was developed. The polymer solution is electrospun from the surface of a twisted wire set to a high voltage and collected on a cylindrical collector around the wire. Multiple Taylor cones are simultaneously self-formed on the downward flowing solution. The system is robust and simple with no moving parts aside from the syringe pump used to transport the solution to the top of the wire. The structure and process parameters of the setup and the results on the preparation of polyvinyl pyrrolidone (PVP), hydroxyapatite (HA) and bioglass fibers with the setup are presented. PVP fiber sheets with areas of 40 × 120 cm 2 and masses up to 1.15 g were prepared. High production rates of 5.23 g h −1 and 1.40 g h −1 were achieved for PVP and HA respectively. The major limiting factor of the setup is drying of the polymer solution on the wire during the electrospinning process which will eventually force to interrupt the process for cleaning of the wire. Possible solutions to this problem and other ways to develop the setup are discussed. The presented system provides a simple way to increase the production rate and area of fiber sheet as compared with the conventional needle electrospinning. (paper)

  9. 75 FR 60480 - In the Matter of Certain Bulk Welding Wire Containers and Components Thereof and Welding Wire...

    Science.gov (United States)

    2010-09-30

    ... COMMISSION In the Matter of Certain Bulk Welding Wire Containers and Components Thereof and Welding Wire... importation, or the sale within the United States after importation of certain bulk welding wire containers, components thereof, and welding wire by reason of infringement of certain claims of United States Patent Nos...

  10. Empolder and application of LiveWire program

    International Nuclear Information System (INIS)

    Zhang Bo; Li Jing; Wang Xiaoming

    2007-01-01

    LiveWire is a specific module of Netscape Web server to actualize CGI function; through LiveWire application program one can create dynamic web page on web site. This article introduces how to write LiveWire application code, have to compile, debug and manage LiveWire application programs, and how to apply LiveWire application program on Netscape Web server to create a dynamic web page. (authors)

  11. Wiring design for the control of electromagnetic interference (EMI)

    Science.gov (United States)

    Kopasakis, George

    1995-01-01

    Wiring design is only one important aspect of EMI control. Other important areas for EMI are: circuit design, filtering, grounding, bonding, shielding, lighting, electrostatic discharge (ESD), transient suppression, and electromagnetic pulse (EMP). Topics covered include: wire magnetic field emissions at low frequencies; wire radiated magnetic field emissions at frequencies; wire design guidelines for EMI control; wire design guidelines for EMI control; high frequency emissions from cables; and pulse frequency spectra.

  12. Reply to 'Comment on 'Lorentz contraction and current-carrying wires''

    International Nuclear Information System (INIS)

    Van Kampen, Paul

    2010-01-01

    This reply answers the issues raised in the Comment on my paper (van Kampen 2008 Eur. J. Phys. 29 879-83). The error of applying a single Lorentz transformation to a wire segment is discussed in some detail. (letters and comments)

  13. Composite superconducting MgB2 wires made by continuous process

    NARCIS (Netherlands)

    Kutukcu, Mehmet; Atamert, Serdar; Scandella, Jean Louis; Hopstock, Ron; Blackwood, Alexander C.; Dhulst, Chris; Mestdagh, Jan; Nijhuis, Arend; Glowacki, Bartek A.

    2018-01-01

    Previously developed manufacturing technology of a low-cost composite single core MgB2 superconductive wires has been investigated in details using monel sheath and titanium diffusion barrier. In this process Mg and nano-sized B as well as SiC dopant powders were fed continuously to a "U" shaped

  14. High spatial resolution spectroscopy of single semiconductor nanostructures

    Science.gov (United States)

    Harris, T. D.; Gershoni, D.; Pfeiffer, L.; Nirmal, M.; Trautman, J. K.; Macklin, J. J.

    1996-11-01

    Low-temperature near-field scanning optical microscopy is used for the first time in spectroscopic studies of single, nanometre dimension, cleaved edge overgrown quantum wires. A direct experimental comparison between a two-dimensional system and a single genuinely one-dimensional quantum wire system, inaccessible to conventional far-field optical spectroscopy, is enabled by the enhanced spatial resolution. We show that the photoluminescence of a single quantum wire is easily distinguished from that of the surrounding quantum well. Emission from localized centres is shown to dominate the photoluminescence from both wires and wells at low temperatures. A factor of three oscillator strength enhancement for these wires compared with the wells is concluded from the photoluminescence excitation data. We also report room-temperature spectroscopy and dynamics of single CdSe nanocrystals. Photochemistry, trap dynamics and spectroscopy are easily determined.

  15. Universal quantum computation in a semiconductor quantum wire network

    International Nuclear Information System (INIS)

    Sau, Jay D.; Das Sarma, S.; Tewari, Sumanta

    2010-01-01

    Universal quantum computation (UQC) using Majorana fermions on a two-dimensional topological superconducting (TS) medium remains an outstanding open problem. This is because the quantum gate set that can be generated by braiding of the Majorana fermions does not include any two-qubit gate and also no single-qubit π/8 phase gate. In principle, it is possible to create these crucial extra gates using quantum interference of Majorana fermion currents. However, it is not clear if the motion of the various order parameter defects (vortices, domain walls, etc.), to which the Majorana fermions are bound in a TS medium, can be quantum coherent. We show that these obstacles can be overcome using a semiconductor quantum wire network in the vicinity of an s-wave superconductor, by constructing topologically protected two-qubit gates and any arbitrary single-qubit phase gate in a topologically unprotected manner, which can be error corrected using magic-state distillation. Thus our strategy, using a judicious combination of topologically protected and unprotected gate operations, realizes UQC on a quantum wire network with a remarkably high error threshold of 0.14 as compared to 10 -3 to 10 -4 in ordinary unprotected quantum computation.

  16. Mixed and dynamic response of hot wires and cold wires and measurements of turbulence statistics

    DEFF Research Database (Denmark)

    Larsen, Søren Ejling; Højstrup, Jørgen; Fairall, C. W.

    1986-01-01

    Hot wires respond to temperature as well as to velocity, whereas cold wires respond to velocity as well as to temperature. The static and dynamic response characteristics are summarized and it is shown that the frequency transfer functions for the four different responses in general are different...

  17. Modeling and simulation of the fluid flow in wire electrochemical machining with rotating tool (wire ECM)

    Science.gov (United States)

    Klocke, F.; Herrig, T.; Zeis, M.; Klink, A.

    2017-10-01

    Combining the working principle of electrochemical machining (ECM) with a universal rotating tool, like a wire, could manage lots of challenges of the classical ECM sinking process. Such a wire-ECM process could be able to machine flexible and efficient 2.5-dimensional geometries like fir tree slots in turbine discs. Nowadays, established manufacturing technologies for slotting turbine discs are broaching and wire electrical discharge machining (wire EDM). Nevertheless, high requirements on surface integrity of turbine parts need cost intensive process development and - in case of wire-EDM - trim cuts to reduce the heat affected rim zone. Due to the process specific advantages, ECM is an attractive alternative manufacturing technology and is getting more and more relevant for sinking applications within the last few years. But ECM is also opposed with high costs for process development and complex electrolyte flow devices. In the past, few studies dealt with the development of a wire ECM process to meet these challenges. However, previous concepts of wire ECM were only suitable for micro machining applications. Due to insufficient flushing concepts the application of the process for machining macro geometries failed. Therefore, this paper presents the modeling and simulation of a new flushing approach for process assessment. The suitability of a rotating structured wire electrode in combination with an axial flushing for electrodes with high aspect ratios is investigated and discussed.

  18. Voltage profile and four-terminal resistance of an interacting quantum wire

    Science.gov (United States)

    Arrachea, Liliana; Naón, Carlos; Salvay, Mariano

    2008-06-01

    We investigate the behavior of the four-terminal resistance R4pt in a quantum wire described by a Luttinger liquid in two relevant situations: (i) in the presence of a single impurity within the wire and (ii) under the effect of asymmetries introduced by disordered voltage probes. In the first case, interactions leave a signature in a power-law behavior of R4pt as a function of the voltage V and the temperature T . In the second case interactions tend to mask the effect of the asymmetries. In both scenarios the occurrence of negative values of R4pt is explained in simple terms.

  19. Study of a large wire chamber; Etude d`une chambre de grande taille a un fil

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, C.; Del Moral, R. [Centre d`Etudes Nucleaires, Bordeaux-1 Univ., 33 Gradignan (France); Dufour, J-P. [URA451 Gradignan (France)

    1997-06-01

    We have tested a cylindrical large size single-wire chamber to check the possibility of obtaining high precision in the measurement with such detectors of the energy of the particles, dissipated entirely in the gas of the chamber. Such tests were carried out at the same time as preliminary studies of the multiwire systems devoted to measurements of individual energies, multiplicity and angular distributions for particle nuclei, with or without beta emission. The length of the chamber is 1 m, the diameter, 0.2 m and the wire diameter is 100 {mu}m. The composition of the chamber gas is 90% Ar and 10% CH{sub 4}. Several measurements were performed with this chamber and the energy spectrum from a 3 {alpha} source is given. The FWHM at 5.16 MeV is 76 keV which is a rather good value for a detector of 4 {mu}{pi} geometrical efficiency. On the basis of these results the project of a 8 wire detector was developed. The simulation of the operation of this chamber was made with the help of GARFIELD code of CERN. It was found that the field in the vicinity of the wire is very homogeneous. The paper presents also the equipotentials at 1 mm distance from the wire center. Also, are shown the gain fluctuations computed for 20 avalanches when the external tube potential and the potential center wire are matched in order to obtain a homogeneous field around the wires

  20. Wire inhomogeneity detector having a core with opposing pole pieces and guide pieces adjacent the opposing pole pieces

    International Nuclear Information System (INIS)

    Gibson, G.H.; Smits, R.G.; Eberhard, P.H.

    1989-01-01

    This patent describes a wire inhomogeneity detector assembly for detecting changes in the conductive properties of a wire as the wire is passed therethrough. It comprises: a coil assembly through which a wire containing conductive material is adapted to be pressed in a direction substantially perpendicular to a longitudinal axis of the coil assembly. The coil assembly comprising a single ferrite core having a pair of opposing pole pieces between which are an associated conductive wire to be tested is adapted to be passed, each of the pole pieces having a coil wound therearound. The coil assembly including a guide-block consisting of a pair of guide pieces mounted adjacent to ends of the opposing pole pieces for guiding an associated conductive wire between the pole pieces and for reducing stray magnetic field lines. The guide pieces being positioned closely adjacent an associated conductive wire passing therebetween; an impedance bridge adjusted to an null balance point operatively connected to the coil assembly which measures the impedance of the coil assembly and is unbalanced by changes in eddy currents generated in the coil assembly; and a filter detector alarm assembly operatively connected to an output of the impedance bridge. The filter detector alarm assembly including an input bandpass filter detector alarm assembly including an input bandpass filter operatively connected to a differential comparator, the output of which triggers an alarm

  1. Wire Array Z-Pinch Insights for Enhanced X-Ray Production

    Energy Technology Data Exchange (ETDEWEB)

    Apruzese, J.P.; Chittenden, J.P.; Greenly, J.B.; Haines, M.G.; Mock, R.C.; Mosher, D.; Peterson, D.L.; Reisman, D.B.; Sanford, T.W.L.; Sinars, D.B.; Spielman, R.B.; Whitnery, K.G.

    1999-01-04

    Comparisons of measured total radiated x-ray power from annular wire-array z-pinches with a variety of models as a function of wire number, array mass, and load radius are reviewed. The data, which are comprehensive, have provided important insights into the features of wire-array dynamics that are critical for high x-ray power generation. Collectively, the comparisons of the data with the model calculations suggest that a number of underlying dynamical mechanisms involving cylindrical asymmetries and plasma instabilities contribute to the measured characteristics. For example, under the general assumption that the measured risetime of the total-radiated-power pulse is related to the thickness of the plasma shell formed on axis, the Heuristic Model [IEEE Trans. Plasma Sci., 26, 1275 (1998)] agrees with the measured risetime under a number of specific assumptions about the way the breakdown of the wires, the wire-plasma expansion, and the Rayleigh-Taylor instability in the r-z plane, interact. Likewise, in the high wire-number regime (where the wires are calculated to form a plasma shell prior to significant radial motion of the shell) the comparisons show that the variation in the power of the radiation generated as a function of load mass and array radius can be simulated by the 2-D Eulerian-radiation-magnetohydrodynamics code (E-RMHC) [Phys. Plasmas 3, 368 (1996)], using a single random-density perturbation that seeds the Rayleigh-Taylor instability in the r-z plane. For a given pulse-power generator, the comparisons suggest that (1) the smallest interwire gaps compatible with practical load construction and (2) the minimum implosion time consistent with the optimum required energy coupling of the generator to the load should produce the highest total-radiated-power levels.

  2. Wire Array Z-Pinch Insights for Enhanced X-Ray Production

    International Nuclear Information System (INIS)

    Apruzese, J.P.; Chittenden, J.P.; Greenly, J.B.; Haines, M.G.; Mock, R.C.; Mosher, D.; Peterson, D.L.; Reisman, D.B.; Sanford, T.W.L.; Sinars, D.B.; Spielman, R.B.; Whitnery, K.G.

    1999-01-01

    Comparisons of measured total radiated x-ray power from annular wire-array z-pinches with a variety of models as a function of wire number, array mass, and load radius are reviewed. The data, which are comprehensive, have provided important insights into the features of wire-array dynamics that are critical for high x-ray power generation. Collectively, the comparisons of the data with the model calculations suggest that a number of underlying dynamical mechanisms involving cylindrical asymmetries and plasma instabilities contribute to the measured characteristics. For example, under the general assumption that the measured risetime of the total-radiated-power pulse is related to the thickness of the plasma shell formed on axis, the Heuristic Model [IEEE Trans. Plasma Sci., 26, 1275 (1998)] agrees with the measured risetime under a number of specific assumptions about the way the breakdown of the wires, the wire-plasma expansion, and the Rayleigh-Taylor instability in the r-z plane, interact. Likewise, in the high wire-number regime (where the wires are calculated to form a plasma shell prior to significant radial motion of the shell) the comparisons show that the variation in the power of the radiation generated as a function of load mass and array radius can be simulated by the 2-D Eulerian-radiation-magnetohydrodynamics code (E-RMHC) [Phys. Plasmas 3, 368 (1996)], using a single random-density perturbation that seeds the Rayleigh-Taylor instability in the r-z plane. For a given pulse-power generator, the comparisons suggest that (1) the smallest interwire gaps compatible with practical load construction and (2) the minimum implosion time consistent with the optimum required energy coupling of the generator to the load should produce the highest total-radiated-power levels

  3. Elastic properties of alternative versus single-stranded leveling archwires.

    Science.gov (United States)

    Rucker, Brian K; Kusy, Robert P

    2002-11-01

    The strength, stiffness, and range of single-stranded stainless steel (SS) and superelastic nickel-titanium (NiTi) archwires were compared with those of alternative leveling products, including nylon-coated and multistranded wires. Wire cross-sections were photographed after being potted in polymer, ground, and polished. Because the rectangular wires had rounded or beveled corners, gravimetric measurements and specific gravity calculations quantified the actual polygonal cross-sectional areas versus the ideal rectangular cross-sectional areas. Beveling reduced the cross-sectional areas by 7% to 8%; this decreased the wire stiffnesses by 15% to 19%. Using a testing machine, we measured the yield strengths, the elastic limits, and the ultimate tensile strengths in tension, and wire stiffnesses in 3-point bending. From cyclic loading tests, the elastic limits of the superelastic NiTi wires were approximately 90% and 45% of their ultimate tensile strengths for the round and rectangular wires, respectively. Using the measurements of the mechanical properties and geometric parameters of each wire, we computed the elastic property ratios (EPRs) versus a 16-mil (0.41 mm) NiTi wire. The single-stranded NiTi wires outperformed the alternative wires, whose EPRs varied from 0.05 to 0.32 for strength, from 0.11 to 1.55 for stiffness, and from 0.10 to 0.80 for range. Based on the current study and a review of the orthodontic literature, few superelastic wires are activated sufficiently in vivo to exhibit superelastic behavior. Therefore, the EPR data reported here for superelastic wires truly represent their performance in most clinical situations.

  4. Integrated Electrical Wire Insulation Repair System

    Science.gov (United States)

    Williams, Martha; Jolley, Scott; Gibson, Tracy; Parks, Steven

    2013-01-01

    An integrated system tool will allow a technician to easily and quickly repair damaged high-performance electrical wire insulation in the field. Low-melt polyimides have been developed that can be processed into thin films that work well in the repair of damaged polyimide or fluoropolymer insulated electrical wiring. Such thin films can be used in wire insulation repairs by affixing a film of this low-melt polyimide to the damaged wire, and heating the film to effect melting, flow, and cure of the film. The resulting repair is robust, lightweight, and small in volume. The heating of this repair film is accomplished with the use of a common electrical soldering tool that has been modified with a special head or tip that can accommodate the size of wire being repaired. This repair method can furthermore be simplified for the repair technician by providing replaceable or disposable soldering tool heads that have repair film already "loaded" and ready for use. The soldering tool heating device can also be equipped with a battery power supply that will allow its use in areas where plug-in current is not available

  5. EVALUATION OF INDUCTANCE WITH ELECTRICAL WIRES

    Directory of Open Access Journals (Sweden)

    V. Kudry

    2016-08-01

    Full Text Available In this paper proved the possibility of developing passive electronic inductive elements based replace metal wire that is wound inductor, the wire is made of electret. The relative permeability of the electret S  10 000, several orders of magnitude greater than the permeability of conventional insulation materials, i < 10, resulting current in the wire acquires properties bias current. The essence of innovation is to replace the source of of magnetic induction flow that pervades the core of the coil. According to the theory of electrodynamics, current bias, in contrast to conduction current, generated no movement of charge along the wire, but the change of the charge in the local volume.Equivalence bias current and conduction current is manifested in the possibility of forming a magnetic field. The flow through magnetic induction coil core regardless of the current it generates, creates voltage at its ends.The paper also shows the numeric characteristics that determine the effective frequency range, specified the reason why electric a wire with і < 10 can not generate magnetic flux through the core and serve as a passive reactive component.

  6. Percutaneous tension band wiring for patellar fractures.

    Science.gov (United States)

    Rathi, Akhilesh; Swamy, M K S; Prasantha, I; Consul, Ashu; Bansal, Abhishek; Bahl, Vibhu

    2012-08-01

    To evaluate outcome of percutaneous tension band wiring for transverse fractures of the patella. 16 men and 7 women aged 27 to 65 (mean, 40) years underwent percutaneous tension band wiring for transverse fractures of the patella with a displacement of >3 mm. Pain, operating time, mobility, functional score, and complications were evaluated. 20 patients underwent successful percutaneous tension band wiring. The remaining 3 patients in whom closed reduction failed underwent open reduction and tension band wiring. The mean operating time was 46 (range, 28-62) minutes. The mean follow-up period was 20 (range, 15-30) months. At the latest follow-up, all patients had regained full extension. The objective score was excellent in 20 patients and good in 3, whereas the subjective score was excellent in 17, good in 5, and fair in one. All patients had radiological union at week 8. One patient had patellofemoral arthritis (secondary to a postoperative articular step). Two patients developed superficial infections, which resolved after antibiotic therapy. Mean thigh muscle wasting was 0.7 (range, 0.4-1) cm. Three patients encountered hardware problems (impingement/irritation of the skin over the knee) necessitating implant removal. Percutaneous tension band wiring is a viable option for transverse fractures of the patella.

  7. Micro laser metal wire deposition for additive manufacturing of thin-walled structures

    Science.gov (United States)

    Demir, Ali Gökhan

    2018-01-01

    In this work, the micro laser metal wire deposition (μLMWD) process is studied as an additive manufacturing process for manufacturing thin walled structures with high aspect ratio. The developed μLMWD system consisted of a flash-pumped Nd:YAG laser source operating with ms-long pulses and an in-house developed wire feeding system. Processing conditions were investigated for single and multi-layer deposition in terms of geometry, microhardness and material use efficiency. Thin-walled structures with aspect ratio up to 20 were manufactured successfully, where layer width was between 700 and 800 μm. In multi-layer deposition conditions, the material use efficiency was observed to be close to 100%. The microhardness over the build direction was homogenous. The results show that the μLMWD process yields geometrical resolution close to powder-bed additive manufacturing processes, while maintaining the benefits of using wire feedstock.

  8. Effect of Size on Tensile Strength of Fine Polycrystalline Nickel Wires

    National Research Council Canada - National Science Library

    Rubenstein, Lester

    1966-01-01

    .... The tensile strength of recrystallized wires was diameter independent. The proportional limit stress of recrystallized wires was inversely related to power functions of wire diameter and grain size...

  9. Magnetic wires in MEMS and bio-medical applications

    International Nuclear Information System (INIS)

    Barbic, Mladen

    2002-01-01

    Magnetic wires of appropriate design have special features making them useful to micro-electromechanical systems and bio-medical applications. Several applications that exploit the properties of magnetic wires are reviewed including: (a) a magnetic micro-manipulation technique that utilizes integrated micro-coils and magnetic micro-wires for localized positioning of micron-sized magnetic objects, (b) integrated micro-coil/micro-wire system operating as a micro-fluidic micro-motor, (c) mechanical tweezers using magneto-static interaction between two magnetic micro-wires, and (d) ultra-high gradient magnetic separation system based on porous membranes partially filled with magnetic wires

  10. THE STRUCTURE ANALYTICAL RESEARCH OF POROUS PERMEABLE WIRE MATERIAL (in Russian

    Directory of Open Access Journals (Sweden)

    Andrzej JAKUBOWSKI

    2016-04-01

    Full Text Available The details of making technology of porous permeable material with use of wire are allowed to carry out the analytical research of structure and structural characteristics of wire winding body. Its permit for prognostication the final proper-ties of material, that is produced by the following deformation treatment (diameter reduction. Due to the regular orga-nized arrangement of wire, the coil of winding body is considered as a multispan continuous beam, but a contact of coils – as interaction of two cylinders. Possibility of exactly calculation of the contacts between coils is allowed to go over the single fragment displacements into deformation of whole winding body. During research of deformation processes in regards of winding body geometry and used wire mechanical properties, the structural characteristics of porous permea-ble wire material are expected. The optimal number of winding layers, eliminating the distortion of organized final struc-ture, is established. The material pressure–compactness relation is obtained in order to control the technological condi-tions of winding and drafting for guarantee the product required properties.

  11. Transport of energy by ultraintense laser-generated electrons in nail-wire targets

    Science.gov (United States)

    Ma, T.; Key, M. H.; Mason, R. J.; Akli, K. U.; Daskalova, R. L.; Freeman, R. R.; Green, J. S.; Highbarger, K.; Jaanimagi, P. A.; King, J. A.; Lancaster, K. L.; Hatchett, S. P.; Mackinnon, A. J.; MacPhee, A. G.; Norreys, P. A.; Patel, P. K.; Stephens, R. B.; Theobald, W.; Van Woerkom, L. D.; Wei, M. S.; Wilks, S. C.; Beg, F. N.

    2009-11-01

    Nail-wire targets (20 μm diameter copper wires with 80 μm hemispherical head) were used to investigate energy transport by relativistic fast electrons generated in intense laser-plasma interactions. The targets were irradiated using the 300 J, 1 ps, and 2×1020 Wṡcm-2 Vulcan laser at the Rutherford Appleton Laboratory. A spherically bent crystal imager, a highly ordered pyrolytic graphite spectrometer, and single photon counting charge-coupled device gave absolute Cu Kα measurements. Results show a concentration of energy deposition in the head and an approximately exponential fall-off along the wire with about 60 μm 1/e decay length due to resistive inhibition. The coupling efficiency to the wire was 3.3±1.7% with an average hot electron temperature of 620±125 keV. Extreme ultraviolet images (68 and 256 eV) indicate additional heating of a thin surface layer of the wire. Modeling using the hybrid E-PLAS code has been compared with the experimental data, showing evidence of resistive heating, magnetic trapping, and surface transport.

  12. A comparison of a 'J' wire and a straight wire in successful antegrade cannulation of the superficial femoral artery

    International Nuclear Information System (INIS)

    Gay, D.A.T.; Edwards, A.J.; Puckett, M.A.; Roobottom, C.A.

    2005-01-01

    AIMS: To evaluate the success of two different types of wire in common use in their ability to successfully cannulate the superficial femoral artery (SFA) using antegrade puncture. METHODS: 50 consecutive patients in whom antegrade infra-inguinal intervention was planned, underwent common femoral arterial puncture and then cannulation with either a standard 3 mm 'J' wire or a floppy tipped straight wire (William Cook--Europe). The frequency with which each type of wire entered the SFA or profunda femoris artery without image guidance was recorded. Further analysis was also made of the success of manipulation of the wire into the SFA following profunda cannulation and the use of alternative guide wires. RESULTS: In 19 out of 25 (76%) patients the 'J' wire correctly entered the SFA without image guidance. Only 5 out of 25 (25%) of straight wires entered the SFA with the initial pass (p<0.0001). Following further manipulation with the same wire all except 1 'J' wire was successfully negotiated into the SFA. The same was true for only 9 of the remaining straight wires with 11 patients requiring an alternative guide wire. CONCLUSIONS: When performing antegrade cannulation of the SFA a 'J' wire is more likely to be successful than a straight guide wire

  13. Reusable Hot-Wire Cable Cutter

    Science.gov (United States)

    Pauken, Michael T.; Steinkraus, Joel M.

    2010-01-01

    During the early development stage of balloon deployment systems for missions, nichrome wire cable cutters were often used in place of pyro-actuated cutters. Typically, a nichrome wire is wrapped around a bundle of polymer cables with a low melting point and connected to a relay-actuated electric circuit. The heat from the nichrome reduces the strength of the cable bundle, which quickly breaks under a mechanical load and can thus be used as a release mechanism for a deployment system. However, the use of hand-made heated nichrome wire for cutters is not very reliable. Often, the wrapped nichrome wire does not cut through the cable because it either pulls away from its power source or does not stay in contact with the cable being cut. Because nichrome is not readily soldered to copper wire, unreliable mechanical crimps are often made to connect the nichrome to an electric circuit. A self-contained device that is reusable and reliable was developed to sever cables for device release or deployment. The nichrome wire in this new device is housed within an enclosure to prevent it from being damaged by handling. The electric power leads are internally connected within the unit to the nichrome wire using a screw terminal connection. A bayonet plug, a quick and secure method of connecting the cutter to the power source, is used to connect the cutter to the power leads similar to those used in pyro-cutter devices. A small ceramic tube [0.25-in. wide 0.5-in. long (.6.4-mm wide 13-mm long)] houses a spiraled nichrome wire that is heated when a cable release action is required. The wire is formed into a spiral coil by wrapping it around a mandrel. It is then laid inside the ceramic tube so that it fits closely to the inner surface of the tube. The ceramic tube provides some thermal and electrical insulation so that most of the heat generated by the wire is directed toward the cable bundle in the center of the spiral. The ceramic tube is cemented into an aluminum block, which

  14. Comparative biomechanic study of flexor tendon repair using FiberWire.

    Science.gov (United States)

    Waitayawinyu, Thanapong; Martineau, Paul A; Luria, Shai; Hanel, Douglas P; Trumble, Thomas E

    2008-01-01

    FiberWire, an increasingly popular suture material, allows for strong flexor tendon repair that may allow early mobilization. This study was designed to evaluate the mechanical characteristics of FiberWire for flexor tendon repair and to identify the most effective repair technique using this material. Forty-nine human cadaver flexor tendons were randomized and tested biomechanically using one of the following techniques of flexor tendon repair performed with 3-0 FiberWire: (1) modified Kessler, (2) modified Pennington, (3) 2-strand multiple grasping, (4) 2-strand multiple locking, (5) 2-strand double cross-locks, (6) Massachusetts General Hospital, and (7) 4-strand locked cruciate. The ultimate tensile strength, 2-mm gap resistance, and failure mode of the repairs were evaluated. Knot unraveling was the most common failure mode of FiberWire repair in 4 of the 7 techniques. Four-strand repairs and locking repairs provided significantly more strength than 2-strand repairs and grasping repairs. Multiple grasping and multiple locking repairs with 2 knots were significantly weaker than single grasping and locking repairs with a single knot. Four-strand locked cruciate repairs were significantly stronger than the other techniques (mean ultimate tensile strength 107 N, 2-mm gap force 96 N). Two-strand double cross-locks repairs were stronger than the other 2-strand repairs (mean ultimate tensile strength 69 N, 2-mm gap force 53 N). The strength of the FiberWire repairs increased with locking repair and with increased number of strands but was not influenced by increased number of locking and grasping stitches. Four-strand locked cruciate and 2-strand double cross-locks provided the greatest strength and likely are appropriate for future clinical use in, respectively, 4-strand and 2-strand repairs. However, the poor knot-holding characteristics of FiberWire with the need of a greater number of knot throws may be of concern for surgeons using this product for flexor tendon

  15. A Wire Grid Paraboloid for Large Low Frequency Telescopes

    Science.gov (United States)

    Kuiper, Tom

    2017-05-01

    Planetary magnetic fields are usually studied remotely through their electron cyclotron maser (ECM) emission from electrons trapped in their magnetic fields. Jupiter has been well studied since the 1960's because its strong magnetic field allows emissions up to about 40 MHz to be observed. The emission from Earth and other outer planets is mostly below 1 MHz and can only be observed from space. It is reasonable to assume that most exoplanets with ECM must be observed at low frequencies from space. Even optimistic assumptions about the strength of such emission leads one to conclude that very large filled aperture telescopes, with a diameters of a kilometer or more, will be needed.This paper reports on a study of a copper wire reflector with a diameter of 1 km operating between 100 kHz and 3.75 MHz. It would require 200 kg of 0.5 mm diameter copper wire (AWG 24)) to be lifted to and deployed in space. For aluminum, the mass would be about 100 kg. By optimizing the wire spacing the mass can be reduced to 80% of a simple radial-azimuthal arrangement. A relatively flat reflector (0.6 ≤ f/D ≤ 1.0) needs to be anchored at about 5 points from center to ring along 24 radii. Station-keeping CubeSats could serve as anchors. A total of about 100-120 anchors would be needed for an f/D = 1 reflector, adding 200-300 kg. to the mass of the reflector. It would be possible to carry several such reflectors into space in a single payload.The Deep Space Network is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.

  16. Charge-signal multiplication mediated by urea wires inside Y-shaped carbon nanotubes.

    Science.gov (United States)

    Lv, Mei; He, Bing; Liu, Zengrong; Xiu, Peng; Tu, Yusong

    2014-07-28

    In previous studies, we reported molecular dynamics (MD) simulations showing that single-file water wires confined inside Y-shaped single-walled carbon nanotubes (Y-SWNTs) held strong and robust capability to convert and multiply charge signals [Y. S. Tu, P. Xiu, R. Z. Wan, J. Hu, R. H. Zhou, and H. P. Fang, Proc. Natl. Acad. Sci. U.S.A. 106, 18120 (2009); Y. Tu, H. Lu, Y. Zhang, T. Huynh, and R. Zhou, J. Chem. Phys. 138, 015104 (2013)]. It is fascinating to see whether the signal multiplication can be realized by other kinds of polar molecules with larger dipole moments (which make the experimental realization easier). In this article, we use MD simulations to study the urea-mediated signal conversion and multiplication with Y-SWNTs. We observe that when a Y-SWNT with an external charge of magnitude 1.0 e (the model of a signal at the single-electron level) is solvated in 1 M urea solutions, urea can induce drying of the Y-SWNT and fill its interiors in single-file, forming Y-shaped urea wires. The external charge can effectively control the dipole orientation of the urea wire inside the main channel (i.e., the signal can be readily converted), and this signal can further be multiplied into 2 (or more) output signals by modulating dipole orientations of urea wires in bifurcated branch channels of the Y-SWNT. This remarkable signal transduction capability arises from the strong dipole-induced ordering of urea wires under extreme confinement. We also discuss the advantage of urea as compared with water in the signal multiplication, as well as the robustness and biological implications of our findings. This study provides the possibility for multiplying signals by using urea molecules (or other polar organic molecules) with Y-shaped nanochannels and might also help understand the mechanism behind signal conduction in both physical and biological systems.

  17. Use of Kirschner wires with eyelets for tension band wiring of olecranon fractures.

    Science.gov (United States)

    Kim, Jin Young; Lee, Young Ho; Gong, Hyun Sik; Lee, Sang Lim; Lee, Sang Ki; Baek, Goo Hyun

    2013-09-01

    To evaluate the clinical and radiographic outcomes of tension band wiring of displaced olecranon fractures treated using Kirschner wires with eyelets to assess their clinical performance with respect to complications such as backing out of the K-wires, restriction of forearm rotation, and neurovascular injury. The authors retrospectively reviewed 44 patients treated for an isolated, displaced olecranon fracture and checked range of motion, postoperative pain, complications, and incidence of hardware removal. The mean follow-up period was 41 months (range, 26-73 mo). All fractures united, and anatomical reduction was achieved in all cases at final follow-up. Mean elbow flexion was 135° (range, 115° to 140°), and mean elbow extension was 4° (range, 0° to 15°). No pin migration, restriction of forearm rotation, or neurovascular injury occurred. Hardware removal was performed in 8 cases (18%). Compared to previous results with conventional Kirschner wires, no meaningful improvement in postoperative pain level or in the rate of hardware removal was observed. Tension band wiring using the pin studied produced excellent clinical and radiologic outcomes for the treatment of isolated, displaced Mayo type IIA and some type IIB olecranon fractures. The pin was effective in preventing the backing out of Kirschner wires and avoiding the complications associated with anterior cortical engagement of Kirschner wires, such as neurovascular injury or restriction of forearm rotation. Copyright © 2013 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  18. Investigation of method for Stainless Steel Welding Wire as a Replacement for Arc Wire Comsumables

    Directory of Open Access Journals (Sweden)

    Koiprasert, H.

    2005-01-01

    Full Text Available Arc spraying as a coating method is being employed in various industrial applications as a part of maintenance service, and also as a surface engineering technique for many machine parts and components. The major cost in producing the arc spray coating is, however, based on the cost of the arc wire comsumables. This project was carried out to investigate the use of the commercially-available gas metal arc welding wire (GMAW wire as a cheaper alternative to the special-purpose arc wire comsumables. The wire material chosen for this early study is the 316L stainless steel, due to its popularity in many applications as a built-up coating for worn parts. The physical properties of the coatings produced from the two sets of 316L stainless steel wire were determined to be different in the percentage of porosity and the oxide content. The mechanical properties, including the tensile bond strength and the wear rate of the coatings produced from the two types of sprayed wire, were also different. This will, in turn, result in a slight difference in the performance of thecoatings.

  19. Modeling of Service-Drop Wires and Interior-Wiring Cables for Lightning Overvoltage Studies

    Science.gov (United States)

    Matsuura, Susumu; Noda, Taku; Nakamura, Masatoshi; Sakai, Hiroshi

    As the information society progresses, a variety of electronic appliances have come into wide use in common houses. If a lightning stroke causes faults or incorrect operations of these electronic appliances, a social economic loss is considered to be large. For this reason, the focus of lightning protection measures for distribution lines in Japan has expanded to include the low-voltage side of the distribution line in addition to the high-voltage side. In order to calculate lightning overvoltages at the low-voltage side, the surge characteristics of service-drop wires and interior-wiring cables have to be modeled accurately. First, this paper describes test results of the surge characteristics of service-drop wires and interior-wiring cables. The modal surge impedances and the propagation velocities of various service-drop wires and interior-wiring cables are obtained by the test. Based on the test results obtained, this paper proposes a modeling methodology of these wires and cables for accurate EMTP (Electro-Magnetic Transients Program) lightning overvoltage simulations. The proposed model is validated by comparing EMTP simulation results with field test results.

  20. Quantum conductance in silicon quantum wires

    CERN Document Server

    Bagraev, N T; Klyachkin, L E; Malyarenko, A M; Gehlhoff, W; Ivanov, V K; Shelykh, I A

    2002-01-01

    The results of investigations of electron and hole quantum conductance staircase in silicon quantum wires are presented. The characteristics of self-ordering quantum wells of n- and p-types, which from on the silicon (100) surface in the nonequilibrium boron diffusion process, are analyzed. The results of investigations of the quantum conductance as the function of temperature, carrier concentration and modulation degree of silicon quantum wires are given. It is found out, that the quantum conductance of the one-dimensional channels is observed, for the first time, at an elevated temperature (T >= 77 K)

  1. Numerical Simulation of Wire-Coating

    DEFF Research Database (Denmark)

    Wapperom, Peter; Hassager, Ole

    1999-01-01

    A finite element program has been used to analyze the wire-coating process of an MDPE melt. The melt is modeled by a nonisothermal Carreau model. The emphasis is on predicting an accurate temperature field. Therefore, it is necessary to include the heat conduction in the metal parts. A comparison...... is made with the results of a simulation that models the heat conduction in the metal head by means of a Biot boundary condition. The influence of the wire velocity, inlet temperature and power-law index will be examined....

  2. Multifilament Cable Wire versus Conventional Wire for Sternal Closure in Patients Undergoing Major Cardiac Surgery.

    Science.gov (United States)

    Oh, You Na; Ha, Keong Jun; Kim, Joon Bum; Jung, Sung-Ho; Choo, Suk Jung; Chung, Cheol Hyun; Lee, Jae Won

    2015-08-01

    Stainless steel wiring remains the most popular technique for primary sternal closure. Recently, a multifilament cable wiring system (Pioneer Surgical Technology Inc., Marquette, MI, USA) was introduced for sternal closure and has gained wide acceptance due to its superior resistance to tension. We aimed to compare conventional steel wiring to multifilament cable fixation for sternal closure in patients undergoing major cardiac surgery. Data were collected retrospectively on 1,354 patients who underwent sternal closure after major cardiac surgery, using either the multifilament cable wiring system or conventional steel wires between January 2009 and October 2010. The surgical outcomes of these two groups of patients were compared using propensity score matching based on 18 baseline patient characteristics. Propensity score matching yielded 392 pairs of patients in the two groups whose baseline profiles showed no significant differences. No significant differences between the two groups were observed in the rates of early mortality (2.0% vs. 1.3%, p=0.578), major wound complications requiring reconstruction (1.3% vs. 1.3%, p>0.99), minor wound complications (3.6% vs. 2.0%, p=0.279), or mediastinitis (0.8% vs. 1.0%, p=1.00). Patients in the multifilament cable group had fewer sternal bleeding events than those in the conventional wire group, but this tendency was not statistically significant (4.3% vs. 7.4%, p=0.068). The surgical outcomes of sternal closure using multifilament cable wires were comparable to those observed when conventional steel wires were used. Therefore, the multifilament cable wiring system may be considered a viable option for sternal closure in patients undergoing major cardiac surgery.

  3. Comparison of subtransverse process wiring and sublaminar wiring in the treatment of idiopathic thoracic scoliosis.

    Science.gov (United States)

    Akmeşe, Ramazan; Kemal Us, Ali

    2013-04-01

    A retrospective study. The objectives of this study were to show the advantages of an alternative segmental spinal instrumentation technique, termed subtransverse process wiring, and compare it with a sublaminar wiring technique in the treatment of idiopathic thoracic scoliosis. High rates of neurological complications and the need for high experience limit the use of the sublaminar wiring technique, although it is an effective segmental spinal instrumentation technique in the treatment of scoliosis. This is the first study to correlate sublaminar wiring and subtransverse process wiring techniques clinically. In a retrospective study, 64 patients with idiopathic thoracic scoliosis were chosen randomly. Nineteen patients were treated with subtransverse process wires (group A), and 45 patients were treated with sublaminar wires (group B). The mean follow-up period was 50.9 months (25 to 90 mo) in group A and 57.9 months (26 to 108 mo) in group B. The average deformity correction was 26.5 degrees (52.9%) in group A and 28.9 degrees (54.1%) in group B. The average correction loss was 2.9 degrees (17.2%) in group A and 6.4 degrees (27%) in group B. None of the patients developed neurological complications in group A. In group B, 5 (11.1%) intraoperative dural tears, 4 (8.9%) neurological deficits, and 8 (14.4%) transient dysesthesia syndromes were seen. The average operation time was 3.6 hours (3 to 4 h) in group A and 4.9 hours (3.75 to 8 h) in group B. The average replacement of blood (erythrocyte suspension) was 2.9 U (2 to 5 U) in group A and 3.1 U (2 to 6 U) in group B. Sublaminar wiring is a time-consuming technique with high risks of neurological complications, whereas subtransverse process wiring is an easy and neurologically safe method, which maintains effective deformity correction and stability of the correction.

  4. Multifilament Cable Wire versus Conventional Wire for Sternal Closure in Patients Undergoing Major Cardiac Surgery

    Directory of Open Access Journals (Sweden)

    You Na Oh

    2015-08-01

    Full Text Available Background: Stainless steel wiring remains the most popular technique for primary sternal closure. Recently, a multifilament cable wiring system (Pioneer Surgical Technology Inc., Marquette, MI, USA was introduced for sternal closure and has gained wide acceptance due to its superior resistance to tension. We aimed to compare conventional steel wiring to multifilament cable fixation for sternal closure in patients undergoing major cardiac surgery. Methods: Data were collected retrospectively on 1,354 patients who underwent sternal closure after major cardiac surgery, using either the multifilament cable wiring system or conventional steel wires between January 2009 and October 2010. The surgical outcomes of these two groups of patients were compared using propensity score matching based on 18 baseline patient characteristics. Results: Propensity score matching yielded 392 pairs of patients in the two groups whose baseline profiles showed no significant differences. No significant differences between the two groups were observed in the rates of early mortality (2.0% vs. 1.3%, p=0.578, major wound complications requiring reconstruction (1.3% vs. 1.3%, p>0.99, minor wound complications (3.6% vs. 2.0%, p=0.279, or mediastinitis (0.8% vs. 1.0%, p=1.00. Patients in the multifilament cable group had fewer sternal bleeding events than those in the conventional wire group, but this tendency was not statistically significant (4.3% vs. 7.4%, p=0.068. Conclusion: The surgical outcomes of sternal closure using multifilament cable wires were comparable to those observed when conventional steel wires were used. Therefore, the multifilament cable wiring system may be considered a viable option for sternal closure in patients undergoing major cardiac surgery.

  5. Magnetic anisotropy and anisotropic ballistic conductance of thin magnetic wires

    International Nuclear Information System (INIS)

    Sabirianov, R.

    2006-01-01

    The magnetocrystalline anisotropy of thin magnetic wires of iron and cobalt is quite different from the bulk phases. The spin moment of monatomic Fe wire may be as high as 3.4 μ B , while the orbital moment as high as 0.5 μ B . The magnetocrystalline anisotropy energy (MAE) was calculated for wires up to 0.6 nm in diameter starting from monatomic wire and adding consecutive shells for thicker wires. I observe that Fe wires exhibit the change sign with the stress applied along the wire. It means that easy axis may change from the direction along the wire to perpendicular to the wire. We find that ballistic conductance of the wire depends on the direction of the applied magnetic field, i.e. shows anisotropic ballistic magnetoresistance. This effect occurs due to the symmetry dependence of the splitting of degenerate bands in the applied field which changes the number of bands crossing the Fermi level. We find that the ballistic conductance changes with applied stress. Even for thicker wires the ballistic conductance changes by factor 2 on moderate tensile stain in our 5x4 model wire. Thus, the ballistic conductance of magnetic wires changes in the applied field due to the magnetostriction. This effect can be observed as large anisotropic BMR in the experiment

  6. EDITORIAL More than a wire More than a wire

    Science.gov (United States)

    Demming, Anna

    2010-10-01

    Nanowires are the natural evolution of the connections in circuits when scaled down to nanometre sizes. On closer inspection, of course, the role of nanowires in developing new technologies is much more than just a current-bearing medium. By sizing the diameters of these objects down to the nanoscale, their properties become increasingly sensitive to factors such as the gas composition, temperature and incident light of their surrounding environment, as well as defects and variations in diameter. What becomes important in modern electronics innovations is not just what is connected, but how. Nanowires had already begun to attract the attention of researchers in the early 1990s as advances in imaging and measurement devices invited researchers to investigate the properties of these one-dimensional structures [1, 2]. This interest has sparked ingenious ways of fabricating nanowires such as the use of a DNA template. A collaboration of researchers at Louisiana Tech University in the US hs provided an overview of various methods to assemble conductive nanowires on a DNA template, including a summary of different approaches to stretching and positioning the templates [3]. Work in this area demonstrates a neat parallel for the role of DNA molecules as the building blocks of life and the foundations of nanoscale device architectures. Scientists at HP Labs in California are using nanowires to shrink the size of logic arrays [4]. One aspect of electronic interconnects that requires particular attention at nanoscale sizes is the effect of defects. The researchers at HP Labs demonstrate that their approach, which they name FPNI (field-programmable nanowire interconnect), is extremely tolerant of the high defect rates likely to be found in these nanoscale structures, and allows reduction in size and power without significantly sacrificing the clock rate. Another issue in scaling down electronics is the trend for an increasing resistivity with decreasing wire width. Researchers

  7. Evolution of cementite morphology in pearlitic steel wire during wet wire drawing

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Godfrey, Andrew; Hansen, Niels

    2010-01-01

    decreasing from 19 nm (ε = 0) to 2 nm (ε = 3.7) in correspondence with the reduction in wire diameter. The deformation of the cementite is strongly related to plastic deformation in the ferrite, with coarse slip steps, shear bands and cracks in the cementite plates/particles observed parallel to either {110...... microscope observations show that cementite plates become increasingly aligned with the wire axis as the drawing strain is increased. Measurements in the transmission electron microscope show that the cementite deforms plastically during wire drawing , with the average thickness of the cementite plates...

  8. Load-Deflection and Friction Properties of PEEK Wires as Alternative Orthodontic Wires

    OpenAIRE

    Tada, Yoshifumi; Hayakawa, Tohru; Nakamura, Yoshiki

    2017-01-01

    Polyetheretherketone (PEEK) is now attracting attention as an alternative to metal alloys in the dental field. In the present study, we evaluated the load-deflection characteristics of PEEK wires in addition to their frictional properties. Three types of PEEK wires are used: two sizes of rectangular shape, 0.016 ? 0.022 in2 and 0.019 ? 0.025 in2 (19-25PEEK), and rounded shape, diameter 0.016 in (16PEEK). As a control, Ni-Ti orthodontic wire, diameter 0.016 in, was used. The three-point bendin...

  9. STRUCTURE AND CHARACTERISTICS OF PATENTED HIGH-CARBON WIRE

    Directory of Open Access Journals (Sweden)

    A. Ju. Borisenko

    2011-01-01

    Full Text Available The influence of bainite structure on mechanical characteristics of wire of steel 80 after patenting is studied. The quantity and structure state of bainite, providing high complex of mechanical characteristics of high-carbon wire, is determined.

  10. Spectroscopic properties of colloidal indium phosphide quantum wires

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lin-Wang; Wang, Fudong; Yu, Heng; Li, Jingbo; Hang, Qingling; Zemlyanov, Dmitry; Gibbons, Patrick C.; Wang, Lin-Wang; Janes, David B.; Buhro, William E.

    2008-07-11

    Colloidal InP quantum wires are grown by the solution-liquid-solid (SLS) method, and passivated with the traditional quantum dots surfactants 1-hexadecylamine and tri-n-octylphosphine oxide. The size dependence of the band gaps in the wires are determined from the absorption spectra, and compared to other experimental results for InP quantum dots and wires, and to the predictions of theory. The photoluminescence behavior of the wires is also investigated. Efforts to enhance photoluminescence efficiencies through photochemical etching in the presence of HF result only in photochemical thinning or photo-oxidation, without a significant influence on quantum-wire photoluminescence. However, photo-oxidation produces residual dot and rod domains within the wires, which are luminescent. The results establish that the quantum-wire band gaps are weakly influenced by the nature of the surface passivation, and that colloidal quantum wires have intrinsically low photoluminescence efficiencies.

  11. The Effect of Wire Dimension, Type and Thickness of Coating Layer on Friction of Coated Stainless-Steel Arch Wires

    Directory of Open Access Journals (Sweden)

    Ahmed Abdulhussain Abbas

    2018-03-01

    Full Text Available Background/Purpose: Esthetic coated arch wires are the desired types to match esthetic brackets in the clinical orthodontics, but the presence of coating layer is greatly affect friction during sliding mechanics. The aims of this study were to evaluate the effect of total wire dimension with the type and thickness of coating layer on friction of coated stainless-steel wires. Methods: The sample of this study consisted of 140 segments of coated stainless-steel arch wires involving two wire dimensions (0.016 × 0.022 inch and 0.019 × 0.025 inch. The samples were supplied from seven companies (DB, RMO, TP, DANY, G&H, Highland and Hubit and the uncoated control samples were supplied from IOS company. Wire dimensions and thickness of coating layer were measured by the metallurgical light incident microscope and the static frictional force was measured using pulling the wire through set of ceramic brackets by the universal testing machine. The data were then statistically analyzed using ANOVA tests. Results: Generally measured wire dimensions do not match the stated dimensions by the manufacturer. The frictional forces of coated wires differ from uncoated control being higher in the labially coated wires and lesser in the fully Teflon coated wires owing to differences in the wire dimension, thickness of coating layer, and physical properties of coating materials. Conclusion: when tested in vitro, Teflon fully coated wires produce the least amount of friction.

  12. 2-D Fractal Wire Antenna Design and Performance

    Science.gov (United States)

    Tebbens, S. F.; Barton, C. C.; Peterman, D. J.; Ewing, J. J.; Abbott, C. S.; Rizki, M. M.

    2017-12-01

    A 2-D fractal wire antenna uses a fractal (self-similar) pattern to increase its length by iteration and can receive or transmit electromagnetic radiation. 2-D fractals are shapes that, at their mathematical limit (of infinite iterations) have an infinite length. The fractal dimension describes the degree of space filling. A fundamental property of fractal antennas lies in iteration (repetition) of a fractal pattern over a range of length scales. Iteration produces fractal antennas that can be very compact, wideband and multiband. As the number of iterations increases, the antenna tends to have additional frequencies that minimize far field return loss. This differs from traditional antenna designs in that a single fractal antenna can operate well at multiple frequencies. We have created a MATLAB code to generate deterministic and stochastic modes of fractal wire antennas with a range of fractal dimensions between 1 and 2. Variation in fractal dimension, stochasticity, and number of iterations have been computationally tested using COMSOL Multiphysics software to determine their effect on antenna performance.

  13. Bandwidth improvement for germanium photodetector using wire bonding technology.

    Science.gov (United States)

    Chen, Guanyu; Yu, Yu; Deng, Shupeng; Liu, Lei; Zhang, Xinliang

    2015-10-05

    We demonstrate an ultrahigh speed germanium photodetector by introducing gold wires into the discrete ground electrodes with standard wire bonding technology. To engineer the parasitic parameter, the physical dimension of the gold wire used for wire bonding is specially designed with an inductance of about 450 pH. Simulation and experimental results show that the bandwidth of the photodetector can be effectively extended from less than 30 GHz to over 60 GHz.

  14. Signals analysis of fluxgate array for wire rope defaults

    International Nuclear Information System (INIS)

    Gu Wei; Chu Jianxin

    2005-01-01

    In order to detecting the magnetic leakage fields of the wire rope defaults, a transducer made up of the fluxgate array is designed, and a series of the characteristic values of wire rope defaults signals are defined. By processing the characteristic signals, the LF or LMA of wire rope are distinguished, and the default extent is estimated. The experiment results of the new method for detecting the wire rope faults are introduced

  15. MDT WIRE TENSION MEASUREMENT USING AN ELECTROSTATIC METHOD

    CERN Document Server

    Balla, A; Esposito, B; Felici, G; Nedosekin, A; Ponzio, B; Russo, V; Spitalieri, M C

    1998-01-01

    An automated system to measure wire tension in MDT tubes is presented.The method uses electrostatic forces between wire and tube to excite mechanical oscillation around the wire harmonic resonance. A LC oscillating circuit is used to measure capacitance variation due towire oscillation. Wire tension is determined by the frequency at which the wirereaches the maximum oscillation amplitude. Both the excitation and measuring circuits are controlled by a computer.

  16. Electricity: Residential Wiring. Secondary Schools. Curriculum Guide.

    Science.gov (United States)

    Trust Territory of the Pacific Islands Dept. of Education, Saipan.

    This curriculum guide on residential wiring for secondary students is one of six developed for inservice teachers at Marianas High School in Saipan. The guide provides the rationale, description, goals, and objectives of the program; the program of studies and performance objectives by levels; samples of lesson plans for effective delivery of…

  17. Building Trades. Carpentry, Electrical Wiring, Plumbing.

    Science.gov (United States)

    Missouri Univ., Columbia. Instructional Materials Lab.

    This curriculum guide contains 21 units of self-paced, self-contained instructional materials in the complete building trades curriculum. It is divided into vocational areas of carpentry, electrical wiring, and plumbing. The purpose of the curriculum is to provide minimum skills for disadvantaged and handicapped students entering mainstream…

  18. Description of CBETA magnet tuning wire holders

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-07-19

    A non-­magnetic insert will be placed directly inside the permanent magnet blocks in every CBETA Halbach magnet in order to hold a set of iron “tuning wires”. These wires have various lengths around the perimeter of the aperture in order to cancel multipole field errors from the permanent magnet blocks.

  19. Selective deposition by hot wire ALD

    NARCIS (Netherlands)

    Kovalgin, Alexey Y.; Yang, Mengdi; Aarnink, Antonius A.I.; Wolters, Robertus A.M.

    2018-01-01

    A method for selectively depositing a metal nlm onto a substrate is disclosed. In particular, the method comprising nowing a metal precursor onto the substrate and nowing a non-metal precursor onto the substrate,while contacting the non-metal precursor with a hot wire. Specincally, a reaction

  20. Studying superconducting Nb$_{3}$Sn wire

    CERN Multimedia

    AUTHOR|(CDS)2099575

    2015-01-01

    Studying superconducting Nb$_{3}$Sn wire. From the current experience from LHC and HL-LHC we know that the performance requirements for Nb$_{3}$Sn conductor for future circular collider are challenging and should exceed that of present state-of-the-art materials.

  1. Studying superconducting Nb3Sn wire

    CERN Multimedia

    AUTHOR|(CDS)2099575

    2015-01-01

    Studying superconducting Nb3Sn wire. From the current experience from LHC and HL-LHC we know that the performance requirements for Nb3Sn conductor for future circular collider are challenging and should exceed that of present state-of-the-art materials.

  2. Niobium Titanium and Copper wire samples

    CERN Multimedia

    2009-01-01

    Two wire samples, both for carrying 13'000Amperes. I sample is copper. The other is the Niobium Titanium wiring used in the LHC magnets. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. Magnet coils are made of copper-clad niobium–titanium cables — each wire in the cable consists of 9’000 niobium–titanium filaments ten times finer than a hair. The cables carry up to 12’500 amps and must withstand enormous electromagnetic forces. At full field, the force on one metre of magnet is comparable ...

  3. Two-wire Interface for Digital Microphones

    NARCIS (Netherlands)

    Groothedde, Wouter; Klumperink, Eric A.M.; Nauta, Bram; Eschauzier, Rudolphe Gustave Hubertus; van Rijn, Nico

    2003-01-01

    A two-wire interface for a digital microphone circuit includes a power line and a ground line. The interface utilizes the ground line as a "voltage active line" to transmit both clock and data signals between the digital microphone circuit and a receiving circuit. The digital microphone circuit

  4. Two-Wire interface for digital microphones

    NARCIS (Netherlands)

    Groothedde, Wouter; Klumperink, Eric A.M.; Nauta, Bram; Eschauzier, Rudolphe Gustave Hubertus; van Rijn, Nico

    2005-01-01

    A two-wire interface for a digital microphone circuit includes a power line and a ground line. The interface utilizes the ground line as a "voltage active line" to transmit both clock and data signals between the digital microphone circuit and a receiving circuit. The digital microphone circuit

  5. Initial arch wires for tooth alignment during orthodontic treatment with fixed appliances.

    Science.gov (United States)

    Jian, Fan; Lai, Wenli; Furness, Susan; McIntyre, Grant T; Millett, Declan T; Hickman, Joy; Wang, Yan

    2013-04-30

    potentially confounding factor (such as bracket type, slot size, ligation method, extraction of teeth) which is likely to have influenced the outcome and was not controlled in the trial. None of the trials reported the important adverse outcome of root resorption.Three groups of comparisons were made.(1) Multistrand stainless steel initial arch wires compared to superelastic nickel titanium (NiTi) initial arch wires. There were four trials in this group, with different comparisons and outcomes reported at different times. No meta-analysis was possible. There is insufficient evidence from these trials to determine whether or not there is a difference in either rate of alignment or pain between stainless steel and NiTi initial arch wires.(2) Conventional (stabilised) NiTi initial arch wires compared to superelastic NiTi initial arch wires. There were two trials in this group, one reporting the outcome of alignment over 6 months and the other reporting pain over 1 week. There is insufficient evidence from these trials to determine whether or not there is any difference between conventional (stabilised) and superelastic NiTi initial arch wires with regard to either alignment or pain.(3) Single-strand superelastic NiTi initial arch wires compared to other NiTi (coaxial, copper NiTi (CuNiTi) or thermoelastic) initial arch wires. The three trials in this comparison each compared a different product against single-strand superelastic NiTi. There is very weak unreliable evidence, based on one very small study (n = 24) at high risk of bias, that coaxial superelastic NiTi may produce greater tooth movement over 12 weeks, but no information on associated pain or root resorption. This result should be interpreted with caution until further research evidence is available. There is insufficient evidence to determine whether or not there is a difference between either thermoelastic or CuNiTi and superelastic NiTi initial arch wires. There is no reliable evidence from the trials included in

  6. Structured Wiring Systems: Bringing Sanity to Network Cabling!

    Science.gov (United States)

    Learn, Larry L., Ed.

    1995-01-01

    While most organizations, including libraries, can benefit from a structured wiring system, few likely have the expertise and resources to place, specify, and install network cabling by themselves. This article reviews common wiring plans, addresses basic concepts of structured wiring systems, and discusses the importance and benefits of such a…

  7. Modeling, simulation and parametric optimization of wire EDM ...

    African Journals Online (AJOL)

    In the present work, quadratic mathematical models have been derived to represent the process behavior of wire electrical discharge machining (WEDM) operation. Experiments have been conducted with six process parameters: discharge current, pulse duration, pulse frequency, wire speed, wire tension and dielectric flow ...

  8. Bonding of a niobium wire to a niobium thin film

    NARCIS (Netherlands)

    Jaszczuk, W.; Jaszczuk, W.; ter Brake, Hermanus J.M.; Flokstra, Jakob; Veldhuis, Dick; Stammis, R.; Rogalla, Horst

    1991-01-01

    A method for bonding a niobium wire to a niobium thin film is described. The bonds are to be used as superconducting connections between wire-wound gradiometers and thin-film coupling coils on DC SQUIDS. The method is characterized by two steps. Firstly, the hardness of the niobium wire is reduced

  9. 77 FR 28404 - Galvanized Steel Wire From China and Mexico

    Science.gov (United States)

    2012-05-14

    ...)] Galvanized Steel Wire From China and Mexico Determinations On the basis of the record \\1\\ developed in the... reason of imports from Mexico of galvanized steel wire, provided for in subheadings 7217.20.30, 7217.20... galvanized steel wire from China and Mexico were sold at LTFV within the meaning of 733(b) of the Act (19 U.S...

  10. 76 FR 29266 - Galvanized Steel Wire From China and Mexico

    Science.gov (United States)

    2011-05-20

    ...)] Galvanized Steel Wire From China and Mexico Determinations On the basis of the record \\1\\ developed in the... reason of imports from China and Mexico of galvanized steel wire, provided for in subheading 7217.20.30... subsidized imports of galvanized steel wire from China and Mexico. Accordingly, effective March 31, 2011, the...

  11. 46 CFR 111.30-19 - Buses and wiring.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Buses and wiring. 111.30-19 Section 111.30-19 Shipping... REQUIREMENTS Switchboards § 111.30-19 Buses and wiring. (a) General. Each bus must meet the requirements of... 60092-302 (clause 7) (incorporated by reference; see 46 CFR 110.10-1). (b) Wiring. Instrumentation and...

  12. Basic Wiring. Third Edition. Teacher Edition [and] Student Edition.

    Science.gov (United States)

    Kaltwasser, Stan; Flowers, Gary; Blasingame, Don; Batson, Larry; Ipock, Dan; Carroll, Charles; Friesen, Wade; Fleming, Glenn

    This publication contains both a teacher edition and a student edition of materials for a foundation course in an electrical wiring program. The course introduces basic concepts and skills that are prerequisites to residential wiring and commercial and industrial wiring courses. The contents of the materials are tied to measurable and observable…

  13. 29 CFR 1926.404 - Wiring design and protection.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Wiring design and protection. 1926.404 Section 1926.404... Requirements § 1926.404 Wiring design and protection. (a) Use and identification of grounded and grounding... construction sites, which are not a part of the permanent wiring of the building or structure and which are in...

  14. 46 CFR 129.340 - Cable and wiring.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Cable and wiring. 129.340 Section 129.340 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.340 Cable and wiring. (a) If individual wires, rather than...

  15. 46 CFR 28.370 - Wiring methods and materials.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Wiring methods and materials. 28.370 Section 28.370... Operate With More Than 16 Individuals on Board § 28.370 Wiring methods and materials. (a) All cable and... not more than 10 percent. (c) Cable and wiring not serving equipment in a high risk fire area such as...

  16. 46 CFR 28.865 - Wiring methods and materials.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Wiring methods and materials. 28.865 Section 28.865... FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.865 Wiring methods and materials. (a) All cable... terminals is not more than 10 percent. (c) Cable and wiring not serving equipment in high risk fire areas...

  17. Interpolation Algorithm for Fast Evaluation of EM Coupling between Wires

    NARCIS (Netherlands)

    Marasini, C.; Lepelaars, E.S.A.M.; Zwamborn, A.P.M.

    2009-01-01

    Efficient and accurate evaluation of the EM field radiated by a current flowing along a wire is essential to solve the electromagnetic coupling between arbitrary oriented wires. In this paper, a numerically efficient algorithm for the evaluation of coupling is presented. The currents along the wires

  18. 77 FR 1504 - Stainless Steel Wire Rod From India

    Science.gov (United States)

    2012-01-10

    ... COMMISSION Stainless Steel Wire Rod From India Determination On the basis of the record \\1\\ developed in the... antidumping duty order on stainless steel wire rod From India would be likely to lead to continuation or... contained in USITC Publication 4300 (January 2012), entitled Stainless Steel Wire Rod From India...

  19. Experimental investigation of industrial copper deformed by wire ...

    African Journals Online (AJOL)

    drawing on microstructure and physical properties of industrial copper wires. Copper wires were provided by E.N.I.CA.Biskra (Algeria). We investigated some wires with different strain levels (as received, 1.20, 2.10, and ε = 3.35).

  20. A laser-wire system for the International Linear Collider

    Indian Academy of Sciences (India)

    Laser-wire; accelerator test facility; laser; optical system; Compton; beam emittance; MOPA; fiber laser. Abstract. A new laser-wire has been installed in the extraction line of the ATF at KEK. It aims at demonstrating that laser-wires can be used to measure micrometre scale beam size. In parallel, studies have been made to ...

  1. A laser-wire system for the International Linear Collider

    Indian Academy of Sciences (India)

    ... line of the ATF at KEK. It aims at demonstrating that laser-wires can be used to measure micrometre scale beam size. In parallel, studies have been made to specify a laser suitable for the ILC laser-wires. Keywords. Laser-wire; accelerator test facility; laser; optical system; Compton; beam emittance; MOPA; fiber laser.

  2. Lunar Module Wiring Design Considerations and Failure Modes

    Science.gov (United States)

    Interbartolo, Michael

    2009-01-01

    This slide presentation reviews the considerations for the design of wiring for the Lunar Module. Included are a review of the choice of conductors and insulations, the wire splicing (i.e., crimping, and soldering), the wire connectors, and the fabrication of the wire harnesses. The problems in fabrication include the wires being the wrong length, the damage due to the sharp edges, the requried use of temproary protective covers and inadequate training. The problems in the wire harness installation include damge from sharp eges, work on adjacent harnesses, connector damage, and breaking wires. Engineering suggestions from the Apollo-era in reference to the conductors that are reviewed include: the use of plated conductors, and the use of alloys for stronger wiring. In refernce to insulation, the suggestions from Apollo era include the use of polymer tape-wrap wire insulation due to the light weight, however, other types of modern insulation might be more cost-effective. In reference to wire splices and terminal boards the suggestions from the Apollo Era include the use of crimp splices as superior to solder splices, joining multiple wire to a common point using modular plug-ins might be more reliable, but are heavier than crimp splicing. For connectors, the lessons from the Apollo era indicate that a rear environmental seal that does not require additional potting is preferred, and pins should be crimped or welded to the incoming wires and be removable from the rear of the connector.

  3. Load-deflection characteristics of superelastic nickel-titanium wires.

    NARCIS (Netherlands)

    Bartzela, T.; Senn, C.; Wichelhaus, A.

    2007-01-01

    OBJECTIVE: To determine the mechanical properties of commercially available thermodynamic wires and to classify these wires mathematically into different groups. MATERIALS AND METHODS: The samples examined were 48 nickel-titanium (NiTi) alloy orthodontic wires commercially available from five

  4. 30 CFR 77.705 - Guy wires; grounding.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Guy wires; grounding. 77.705 Section 77.705... MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Grounding § 77.705 Guy wires; grounding. Guy wires from poles supporting high-voltage transmission lines shall be...

  5. An X-ray scanner for wire chambers

    Science.gov (United States)

    Akesson, T.; Arik, E.; Assamagan, K.; Baker, K.; Benjamin, D.; Bertelsen, H.; Bytchkov, V.; Callahan, J.; Capeans-Garrido, M.; Catinaccio, A.; Cetin, A.; Cwetanski, P.; Danielsson, H.; Dittus, F.; Dolgoshein, B.; Dressnandt, N.; Ebenstein, W. L.; Eerola, P.; Farthouat, P.; Froidevaux, D.; Grichkevitch, Y.; Hajduk, Z.; Hansen, J. R.; Keener, P. K.; Kekelidze, G.; Konovalov, S.; Kowalski, T.; Kramarenko, V. A.; Kruger, K.; Lundberg, B.; Luehring, F.; Manara, A.; McFarlane, K.; Mitsou, V. A.; Morozov, S.; Muraviev, S.; Nadtochy, A.; Newcomer, F. M.; Olszowska, J.; Ogren, H.; Oh, S. H.; Peshekhonov, V.; Price, M.; Rembser, C.; Romaniouk, A.; Rust, D. R.; Schegelsky, V.; Sapinski, M.; Shmeleva, A.; Smirnov, S.; Smirnova, L. N.; Sosnovtsev, V.; Soutchkov, S.; Spiridenkov, E.; Tikhomirov, V.; VanBerg, R.; Vassilakopoulos, V.; Wang, C.; Williams, H. H.

    2003-07-01

    The techniques to measure the position of sense wires and field wires, the gas gain and the gas flow rate inside wire chambers using a collimated and filtered X-ray beam are reported. Specific examples are given using barrel modules of the Transition Radiation Tracker of the ATLAS experiment.

  6. Electronic conductance of quantum wire with serial periodic potential structures

    International Nuclear Information System (INIS)

    Fayad, Hisham M.; Shabat, Mohammed M.; Abdus Salam International Centre for Theoretical Physics, Trieste

    2000-08-01

    A theory based on the total transfer matrix is presented to investigate the electronic conductance in a quantum wire with serial periodic potentials. We apply the formalism in computation of the electronic conductance in a wire with different physical parameters of the wire structure. The numerical results could be used in designing some future quantum electronic devices. (author)

  7. Research regarding wires elastic deformations influence on joints positioning of a wire-driven robotic arm

    Science.gov (United States)

    Ciofu, C.; Stan, G.

    2016-08-01

    In this paper, we present the influence of driving wires deformation on positioning precision of joints from an elephant's trunk robotic arm. Robotic arms driven by wires have the joint accuracy largely depending on wires rigidity. The joint moment of resistance causes elastic deformation of wires and it is determined by: manipulated object load, weight loads previous to the analyzed joint and inherent resistance moment of joint. Static load analysis emphasizes the particular wires elastic deformation of each driven joint from an elephant's trunk robotic arm with five degrees of freedom. We consider the case of a constant manipulated load. Errors from each driving system of joints are not part of the closed loop system. Thus, precision positioning depends on wires elastic deformation which is about microns and causes angle deviation of joints about tens of minutes of sexagesimal degrees. The closer the joints to base arm the smaller positioning precision of joint. The obtained results are necessary for further compensation made by electronic corrections in the programming algorithm of the elephant's trunk robotic arm to improve accuracy.

  8. U.S. Navy Wire-Rope Handbook. Volume 1. Design and Engineering of Wire-Rope Systems

    Science.gov (United States)

    1976-01-01

    percent nickel and are designated "Type 304 " and "Type 302" by the American Iron and Steel Institute ( AISI ). Type 304 stainless steel rope may be...from AISI Specifica- tion XYZ14 on Alloy Steel Wire) .... ............ ... 3-2 3-2. Typical Load-Elongation Behavior of Wire Rope .... ...... 3-9 3...Cosecants .......... ................... ... 10-S 10-11. Physical and Mechanical Properties of Wire ............ . .. 10-10 10-12. Wire Gauges

  9. Ab initio electron propagator theory of molecular wires. I. Formalism.

    Science.gov (United States)

    Dahnovsky, Yu; Zakrzewski, V G; Kletsov, A; Ortiz, J V

    2005-11-08

    Ab initio electron propagator methodology may be applied to the calculation of electrical current through a molecular wire. A new theoretical approach is developed for the calculation of the retarded and advanced Green functions in terms of the electron propagator matrix for the bridge molecule. The calculation of the current requires integration in a complex half plane for a trace that involves terminal and Green's-function matrices. Because the Green's-function matrices have complex poles represented by matrices, a special scheme is developed to express these "matrix poles" in terms of ordinary poles. An expression for the current is derived for a terminal matrix of arbitrary rank. For a single terminal orbital, the analytical expression for the current is given in terms of pole strengths, poles, and terminal matrix elements of the electron propagator. It is shown that Dyson orbitals with high pole strengths and overlaps with terminal orbitals are most responsible for the conduction of electrical current.

  10. Laparoscopic extraction of fractured Kirschner wire from the pelvis

    Directory of Open Access Journals (Sweden)

    Vinaykumar N Thati

    2014-01-01

    Full Text Available Kirschner wire is a sharp stainless steel guide wire commonly used in fixation of fractured bone segments. There are case reports of migrated K wire from the upper limb into the spine and chest, and from the lower limb in to the abdomen and pelvis. Here, we present a case report of accidental intra-operative fracture of K wire during percutaneous femoral nailing for sub-trochanteric fracture of right femur, which migrated in to the pelvis when the orthopaedician tried to retrieve the broken segment of the K wire. This case highlights the use of laparoscopy as minimally invasive surgical option.

  11. Enhanced THz guiding properties of curved two-wire lines.

    Science.gov (United States)

    Zha, Jingshu; Kim, Geun Ju; Jeon, Tae-In

    2016-03-21

    We present experimental and simulation studies of enhanced terahertz (THz) guiding properties of curved two-wire lines for several surface conditions. When a THz-wave propagates through curved two-wire lines, a rough wire surface with dielectric coating contributes to a lower bending loss compared to a smooth or rough wire surface without coating. Dielectric coating and rough surface confine the THz field to the wire surface making the bending loss low. The guiding property at a curve depth of 30 mm of a rough wire surface with 25-μm-thick coating is improved by 34% compared to that of a smooth wire without coating. Furthermore, computer simulation technology (CST) software visually shows the bending loss as same as the experimental studies.

  12. Low-noise two-wired buffer electrodes for bioelectric amplifiers.

    Science.gov (United States)

    Degen, Thomas; Torrent, Simon; Jäckel, Heinz

    2007-07-01

    Active buffer electrodes are known to improve the immunity of bioelectric recordings against power line interferences. A survey of published work reveals that buffer electrodes are almost exclusively designed using operational amplifiers (opamps). In this paper, we discuss the advantage of utilizing a single transistor instead. This allows for a simple electrode, which is small and requires only two wires. In addition, a single transistor adds considerably less noise when compared to an opamp with the same power consumption. We then discuss output resistance and gain as well as their respective effect on the common mode rejection ratio (CMRR). Finally, we demonstrate the use of two-wired buffer electrodes for a bioelectric amplifier.

  13. Silane-Induced N-Polarity in Wires Probed by a Synchrotron Nanobeam.

    Science.gov (United States)

    Salomon, Damien; Messanvi, Agnes; Eymery, Joël; Martínez-Criado, Gema

    2017-02-08

    Noncentrosymmetric one-dimensional structures are key driving forces behind advanced nanodevices. Owing to the critical role of silane injection in creating nanosized architectures, it has become a challenge to investigate the induced local lattice polarity in single GaN wires. Thus, if axial and radial structures are well-grown by a silane-mediated approach, an ideal model to study their polar orientations is formed. By combining synchrotron X-ray fluorescence and X-ray excited optical luminescence, we show here experimental evidence of the role of silane to promote the N-polarity, light emission, and elemental incorporation within single wires. In addition, our experiment demonstrates the ability to spatially examine carrier diffusion phenomena without electrical contacts, opening new avenues for further studies with simultaneous optical and elemental sensitivity at the nanoscale.

  14. Superconducting wire turns to electrical power

    CERN Document Server

    Sargent, P

    2003-01-01

    Two years after the discovery that magnesium diboride is a superconductor, engineers and entrepreneurs are keen to transform its properties into profit. The discovery of superconductivity at 39 K in the metallic compound magnesium diboride two years ago created quite a stir. Since then, physicists and chemists have come a long way in understanding the curious set of circumstances that lead to such a high critical temperature in this widely available material. At the same time, metallurgists, engineers and entrepreneurs have been focusing on the commercial potential of magnesium diboride as superconducting wire, which was the subject of a one-day meeting in Cambridge, UK, in April. Superconducting wire made from magnesium diboride could make 'second- generation' electrical machines commercially viable. (U.K.)

  15. Neutron refraction by cylindrical metal wires

    International Nuclear Information System (INIS)

    Plomp, J.; Barker, J.G.; Haan, V.O. de; Bouwman, W.G.; Well, A.A. van

    2007-01-01

    Undesired Small-Angle Neutron Scattering (SANS) from interior features of an object can be minimised by reducing the sample thickness. However, refraction effects produced by the exterior shape of the object depend upon the scattering cross-section and not on the thickness of the object. In the field of polarised neutrons a wire coil is often used to manipulate the polarisation vector of the neutron. In this paper, we show that the cylindrical shape of the wire together with the refractive index introduces an angular distribution in the neutron beam. This can be observed in instrumentation sensitive to SANS. We show results measured on three different SANS instruments: Ultra Small-Angle Neutrons Scattering (USANS), Spin-Echo Small-Angle Neutron Scattering (SESANS) and a Time-of-Flight (TOF) SESANS. These results are all in good agreement with the theory of refraction

  16. Neutron refraction by cylindrical metal wires

    Energy Technology Data Exchange (ETDEWEB)

    Plomp, J. [Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands)]. E-mail: j.plomp@tudelft.nl; Barker, J.G. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Haan, V.O. de [Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands); Bouwman, W.G. [Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands); Well, A.A. van [Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands)

    2007-05-01

    Undesired Small-Angle Neutron Scattering (SANS) from interior features of an object can be minimised by reducing the sample thickness. However, refraction effects produced by the exterior shape of the object depend upon the scattering cross-section and not on the thickness of the object. In the field of polarised neutrons a wire coil is often used to manipulate the polarisation vector of the neutron. In this paper, we show that the cylindrical shape of the wire together with the refractive index introduces an angular distribution in the neutron beam. This can be observed in instrumentation sensitive to SANS. We show results measured on three different SANS instruments: Ultra Small-Angle Neutrons Scattering (USANS), Spin-Echo Small-Angle Neutron Scattering (SESANS) and a Time-of-Flight (TOF) SESANS. These results are all in good agreement with the theory of refraction.

  17. From barbed wire to radar traps

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Several million DM are required already to protect the building sites of power plants. From the very beginning concrete, wood, and barbed wire are used to make a protective wall against intruders, or in official German, 'unauthorized persons'. This expensive provisional set-up is later supplanted by electronic alarm and safety systems. A review of available systems helps to give a picture of power plant protection. (orig.) 891 HP [de

  18. Visible emission from exploding wire in water

    Czech Academy of Sciences Publication Activity Database

    Šimek, Milan; Prukner, Václav; Schmidt, Jiří; Koláček, Karel; Štraus, Jaroslav; Frolov, Oleksandr

    2007-01-01

    Roč. 53, č. 10 (2007), s. 53-53 ISSN 0003-0503. [The 61st Annual Gaseous Electronic Conference. Dallas, Texas , 13.10.2008-17.10.2008] R&D Projects: GA ČR GA202/06/1324 Institutional research plan: CEZ:AV0Z20430508 Keywords : Exploding wire * emission Subject RIV: BL - Plasma and Gas Discharge Physics

  19. Wire chambers with their magnetostrictive readout

    CERN Multimedia

    1974-01-01

    This set of wire chamber planes shaped as a cylinder sector was installed inside the magnet of a polarized spin target modified to allow as well momentum analysis of the produced particles. The experiment (S126) was set up by the CERN-Trieste Collaboration in the PS beam m9 to measure spin effects in the associated production of of a positive kaon and a positive Sigma by interaction of a positive pion with polarized protons.

  20. METHOD OF MAKING WIRE FUEL ELEMENTS

    Science.gov (United States)

    Zambrow, J.L.

    1960-08-01

    A method is given for making a nuclear reactor fuel element in the form of a uranium-bearing wire clad with zirconium. A uranium bar is enclosed in a zirconium sheath which is coated with an oxide of magnesium, beryllium, or zirconium. The sheathed bar is then placed in a steel tube and reduced to the desired diameter by swaging at 800 to 900 deg C, after which the steel and oxide are removed.

  1. Contact conductance between graphene and quantum wires

    International Nuclear Information System (INIS)

    Li Haidong; Zheng Yisong

    2009-01-01

    The contact conductance between graphene and two quantum wires which serve as the leads to connect graphene and electron reservoirs is theoretically studied. Our investigation indicates that the contact conductance depends sensitively on the graphene-lead coupling configuration. When each quantum wire couples solely to one carbon atom, the contact conductance vanishes at the Dirac point if the two carbon atoms coupling to the two leads belong to the same sublattice of graphene. We find that such a feature arises from the chirality of the Dirac electron in graphene. Such a chirality associated with conductance zero disappears when a quantum wire couples to multiple carbon atoms. The general result irrelevant to the coupling configuration is that the contact conductance decays rapidly with the increase of the distance between the two leads. In addition, in the weak graphene-lead coupling limit, when the distance between the two leads is much larger than the size of the graphene-lead contact areas and the incident electron energy is close to the Dirac point, the contact conductance is proportional to the square of the product of the two graphene-lead contact areas, and inversely proportional to the square of the distance between the two leads

  2. Results of the Fermilab wire production program

    International Nuclear Information System (INIS)

    Strauss, B.P.; Remsbottom, R.H.; Reardon, P.J.; Curtis, C.W.; McDonald, W.K.

    1976-01-01

    In examining the various schedules of wire drawing and heat treating, the Critchlow type of schedule provided the highest and most uniform data from billet to billet. It consists of a long anneal at 400 +- 20 0 C at a cold work point giving about 99 percent reduction in area from the extrusion size. Several quick copper anneals at 300 0 C may be interspersed to aid in fabrication. A final anneal at finished size both peaks up the resistivity ratio of the copper as well as the critical current of the alloy by moving dislocations to subcell walls. Using this method, critical currents of 1.7 x 10 5 A/cm 2 could be maintained in all billets. The copper cladding and sinking method looks promising and should save production costs. In spite of this, it was important to attain good packing density in the billets to assure uniform filament pattern and reduce breakage in wire drawing. Overall, a procedure was found for fabricating wire in large production lots that would be acceptable for constructing dipole magnets. It is felt that this method could be peaked up with time

  3. Reliability of the wire drawing dies

    International Nuclear Information System (INIS)

    Sheikh, A.K.; Khany, S.E.

    1993-01-01

    A wear based model is proposed for the dies used in wire drawing process. Using this wear model, it is possible to predict life of the die corresponding to a wear limit criterion. Since various quantities in the model are random in nature the resulting die life will also be random quantity characterized by an appropriate distribution. Using a probabilistic characterization of the parameters of the predictive model, Monte Carlo simulations were conducted to establish the die life distribution. To asses the sensitivity of life distribution with respect to various contributing variables (parameters), the simulation runs were conducted at different levels of these variables (parameters). It is shown that wire drawing die life is Weibull distributed. To compare the simulated results with actual time to failure, data of dies was obtained from a large wire drawing company and was compared with corresponding scenario generated by Monte Carlo simulation. Results obtained by Monte Carlo simulations were very close to the actual time to failure data. (author)

  4. NA48: Wiring up for Change

    CERN Multimedia

    2001-01-01

    The NA48 Collaboration is rebuilding its drift chambers ready for the experiment to start up again this coming July. An intricate task involving the soldering of over 24,000 wires! The future of the NA48 experiment is coming right down to the wire, that is, the wires which the Collaboration is installing in the clean room of Hall 887 on the Prévessin site. Six days a week, technicians are working in shifts to rebuild the experiment's drift chambers. The original chambers were damaged when a section of a vacuum tube imploded at the end of 1999. A year ago, CERN gave the green light for this essential part of the spectrometer to be rebuilt, so the NA48 experiment, which studies CP violation (see box), still has a bright future ahead of it. Three years of data-taking ahead The NA48 experiment aims to penetrate the secrets of CP (Charge Parity) violation. Charge and parity are two parameters which distinguish a particle from an antiparticle. In other words, an electron possesses a negative electric ...

  5. Direct current voltage induced by microwave signal in a ferromagnetic wire

    OpenAIRE

    Yamaguchi, A.; Motoi, K.; Miyajima, H.; Nakatani, Y.

    2007-01-01

    Experimental results of rectification of a constant wave radio frequency (RF) current flowing in a single-layered ferromagnetic wire are presented. We show that a detailed external magnetic field dependence of the RF current induced a direct-current voltage spectrum. The mechanism of the rectification is discussed in a term of the spin transfer torque, and the rectification is closely related to resonant spin wave excitation with the assistant of the spin-polarized RF current. The micromagnet...

  6. Effect of residual stress on cavitation instabilities in constrained metal wires

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2004-01-01

    is on a single void growing very large in the metal wire, in the crack plane, perhaps involving a cavitation instability. Therefore, full finite strain elastic-plastic theory is used for the analyses, and remeshing procedures are applied to avoid unacceptable mesh distortion. Residual stresses induced by thermal...... contraction mismatch during cooling from the processing temperature can have a noticeable influence on the results, and this is quantified by the analyses....

  7. Thermosonic wire bonding of gold wire onto copper pad using the saturated interfacial phenomena

    Science.gov (United States)

    Jeng, Yeau-Ren; Aoh, Jong-Hing; Wang, Chang-Ming

    2001-12-01

    Copper has been used to replace conventional aluminium interconnection to improve the performance of deep submicron integrated circuits. This study used the saturated interfacial phenomena found in thermosonic ball bonding of gold wire onto aluminium pad to investigate thermosonic ball bonding of gold wire onto copper pad. The effects of preheat temperatures and ultrasonic powers on the bonding force were investigated by using a thermosonic bonding machine and a shear tester. This work shows that under proper preheat temperatures, the bonding force of thermosonic wire bonding can be explained based on interfacial microcontact phenomena such as energy intensity, interfacial temperature and real contact area. It is clearly shown that as the energy intensity is increased, the shear force increases, reaches a maximum, and then decreases. After saturation, i.e. the establishment of maximum atomic bonding, any type of additional energy input will damage the bonding, decreasing the shear force. If the preheat temperature is not within the proper range, the interfacial saturation phenomenon does not exist. For a preload of 0.5 N and a welding time of 15 ms in thermosonic wire bonding of gold wire onto copper pads, a maximum shear force of about 0.33 N is found where the interfacial energy intensity equals 1.8×106 J m-2 for preheat temperatures of 150°C and 170°C. Moreover, the corresponding optimal ultrasonic power is about 110 units.

  8. Chemical Sensor Based Upon Stress-Induced Changes in the Permeability of a Magnetoelastic Wire.

    Science.gov (United States)

    Hatab, Nahla A; Crane, Nichole A; Mee, David K; Howell, L Neville; Mooney, Larry R; Hallman, Russell L; Sepaniak, Michael J; Lamberti, Vincent E

    2017-07-05

    We introduce a chemical sensing technology, named ChIMES (Chemical Identification through Magneto-Elastic Sensing), that can detect a broad range of targets and that has the capability of untethered communication through a metallic or nonmetallic barrier. These features enable many applications in which penetrations into the sampled environment are unwanted or infeasible because of health, safety, or environmental concerns, such as following the decomposition of a dangerous material in a sealed container. The sensing element is passive and consists of a target response material hard-coupled to a magnetoelastic wire. When the response material encounters a target, it expands, imposing mechanical stress on the wire and altering its magnetic permeability. Using a remote excitation-detection coil set, the changes in permeability are observed by switching the magnetic domains in the wire and measuring the modifications in the Faraday voltage as the stress is varied. Sensors with different response materials can be arrayed and interrogated individually. We describe the sensor and its associated instrumentation, compare the performance of several types of wire, and evaluate analytical metrics of single and arrayed ChIMES sensors against a suite of volatile organic compounds.

  9. Simultaneous On-State Voltage and Bond-Wire Resistance Monitoring of Silicon Carbide MOSFETs

    Directory of Open Access Journals (Sweden)

    Nick Baker

    2017-03-01

    Full Text Available In fast switching power semiconductors, the use of a fourth terminal to provide the reference potential for the gate signal—known as a kelvin-source terminal—is becoming common. The introduction of this terminal presents opportunities for condition monitoring systems. This article demonstrates how the voltage between the kelvin-source and power-source can be used to specifically monitor bond-wire degradation. Meanwhile, the drain to kelvin-source voltage can be monitored to track defects in the semiconductor die or gate driver. Through an accelerated aging test on 20 A Silicon Carbide Metal-Oxide-Semiconductor-Field-Effect Transistors (MOSFETs, it is shown that there are opposing trends in the evolution of the on-state resistances of both the bond-wires and the MOSFET die. In summary, after 50,000 temperature cycles, the resistance of the bond-wires increased by up to 2 mΩ, while the on-state resistance of the MOSFET dies decreased by approximately 1 mΩ. The conventional failure precursor (monitoring a single forward voltage cannot distinguish between semiconductor die or bond-wire degradation. Therefore, the ability to monitor both these parameters due to the presence of an auxiliary-source terminal can provide more detailed information regarding the aging process of a device.

  10. Design of measuring system for wire diameter based on sub-pixel edge detection algorithm

    Science.gov (United States)

    Chen, Yudong; Zhou, Wang

    2016-09-01

    Light projection method is often used in measuring system for wire diameter, which is relatively simpler structure and lower cost, and the measuring accuracy is limited by the pixel size of CCD. Using a CCD with small pixel size can improve the measuring accuracy, but will increase the cost and difficulty of making. In this paper, through the comparative analysis of a variety of sub-pixel edge detection algorithms, polynomial fitting method is applied for data processing in measuring system for wire diameter, to improve the measuring accuracy and enhance the ability of anti-noise. In the design of system structure, light projection method with orthogonal structure is used for the detection optical part, which can effectively reduce the error caused by line jitter in the measuring process. For the electrical part, ARM Cortex-M4 microprocessor is used as the core of the circuit module, which can not only drive double channel linear CCD but also complete the sampling, processing and storage of the CCD video signal. In addition, ARM microprocessor can complete the high speed operation of the whole measuring system for wire diameter in the case of no additional chip. The experimental results show that sub-pixel edge detection algorithm based on polynomial fitting can make up for the lack of single pixel size and improve the precision of measuring system for wire diameter significantly, without increasing hardware complexity of the entire system.

  11. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    Science.gov (United States)

    Travelli, A.

    1985-10-25

    A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

  12. Preliminary experimental results of tungsten wire-array Z-pinches on primary test stand

    Science.gov (United States)

    Huang, Xian-Bin; Zhou, Shao-Tong; Dan, Jia-Kun; Ren, Xiao-Dong; Wang, Kun-Lun; Zhang, Si-Qun; Li, Jing; Xu, Qiang; Cai, Hong-Chun; Duan, Shu-Chao; Ouyang, Kai; Chen, Guang-Hua; Ji, Ce; Wei, Bing; Feng, Shu-Ping; Wang, Meng; Xie, Wei-Ping; Deng, Jian-Jun; Zhou, Xiu-Wen; Yang, Yi

    2015-07-01

    The Primary Test Stand (PTS) developed at the China Academy of Engineering Physics is a 20 TW pulsed power driver, which can deliver a ˜10 MA, 70 ns rise-time (10%-90%) current to a short-circuit load and has important applications in Z-pinch driven inertial confinement fusion and high energy density physics. Preliminary results of tungsten wire-array Z-pinch experiments on PTS are presented. The load geometries investigated include 15-mm-tall cylindrical single and nested arrays with diameter ranging from 13 mm to 30 mm, consisting of 132-300 tungsten wires with 5-10 μm in diameter. Multiple diagnostics were fielded to characterize the x-ray radiation from wire-array Z pinches. The x-ray peak power (˜50 TW) and total radiated energy (˜500 kJ) were obtained from a single 20-mm-diam array with 80-ns stagnation time. The highest x-ray peak power up to 80 TW with 2.4 ns FWHM was achieved by using a nested array with 20-mm outer diameter, and the total x-ray energy from the nested array is comparable to that of single array. Implosion velocity estimated from the time-resolved image measurement exceeds 30 cm/μs. The detailed experimental results and other findings are presented and discussed.

  13. Nucleation of Magnetization Reversal in Individual Nanosized Particles and Wires

    Science.gov (United States)

    Wernsdorfer, W.

    1997-03-01

    Low temperatures magnetization measurements of individual ferromagnetic particles and wires are presented. The detector was a Nb micro-bridge-DC-SQUID, elaborated using electron-beam lithography. We studied particles fabricated by electron beam lithography. They had an elliptic contour with axes between 50 and 1000 nm and a thickness between 5 and 50 nm and were made of Ni, Co, Fe (W. Wernsdorfer et al., J. Magn. Magn. Mat., 145, 33 (1995) and 151, 38 (1995), and Phys. Rev. B, 53, 3341 (1996).). Furthermore, we studied Ni and Co wires (cylinders) with diameters ranging from 40 nm to 100 nm and lengths up to 5000 nm (W. Wernsdorfer et al., Phys. Rev. Lett., 77, 1873 (1996)). They were produced by the technique of electrodeposition in nanoporous polycarbonate membranes (J. Meier, B. Doudin and J.-Ph. Ansermet, J. Appl. Phys, 79, 6010 (1996).). We studied nanoparticles and filled carbon nanotubes synthesized by arc-discharge, with dimensions between 10 and 500 nm. These particles are single crystalline and the surface roughness is about two atomic layers (C. Guerret-Pi=E9court, Y. Le Bouar, A. Loiseau and H. Pascard, Nature, 372, 761 (1994).). Finally, we studied single crystalline particles elaborated by colloidal self assemblies (M. P. Pileni et al., submitted.). The angular dependence of the magnetization reversal could be explained approximately by simple classical micromagnetic concepts: uniform rotation and curling. However, our measurement evidenced nucleation and propagation of domain walls except for the smallest particles of about 20 nm. The switching field distributions as a function of temperature and field sweeping rate and the probabilities of switching showed that the magnetization reversal was thermally activated. These measurements allowed us to estimate the "activation volume" which triggered the magnetization reversal. Our measurements showed for the first time that the magnetization reversal of a ferromagnetic nanoparticle of good quality can be

  14. Applications of surface analysis in the wire industry

    Science.gov (United States)

    Stout, David A.

    The quality of wire is judged not only by its physical properties such as tensile strength and fatigue resistance, but also by its surface finish. The surface roughness, oxide formation, cleanliness, and plating homogeneity and porosity are just a few of the surface properties than can influence the performance of a wire product. Coupled to this is the large amount of surface area generated in drawing wire. For example, a ten pound spool holds nine miles of 0.006″ diameter stainless steel wire. For these reasons surface analysis has become important both to the manufacturer and consumer of wire products. When surface analysis equipment such as AES, ESCA, and SIMS was first becoming commercially available in the late sixties and early seventies, the wire industry was beginning to enter a phase of technological development for many of its products. Wire manufacturers and users began using surface analysis to investigate such topics as adhesion of brass plated automobile tire cord to rubber and diffusion of layered deposits. Examples of surface analysis used for process control, problem solving, and project development include discoloration problems on stainless steel wire, welding problems with composite wires, diffusion formed brass coatings, and diffusion problems with solder coated and Cu plated steel wire.

  15. WIRELESS TENSION BAND WIRING FOR OLECRANON FRACTURES. Case Series.

    Science.gov (United States)

    Roukoz, Sami; Bayoud, Wael

    2016-01-01

    This retrospective study evaluates the results of wireless tension band wire (WTBW) which is a modified technique of tension band wires (TBW) for Mayo type II A and III A olecranon fractures. In this technique the K-wires of the TBW are replaced by a cerclage wire while keeping the figure of eight wiring. We reviewed retrospectively our WTBW cases done between 2000 and 2015 where we replaced the K-wires by a cerclage wire. In this technique no hardware migration is possible. Patients were evaluated clinically, radiographicaly and a DASH score was measured. Seventeen patients were reviewed with a mean age of 58.5 years. The mean follow-up period was 58.5 months. The mean DASH score was 12 with 7 patients having a DASH score of zero. Joint mobility was near normal compared to the other side with loss of a mean of 4º in elbow extension and a mean of 3º in elbow flexion. In comparison with other series, in addition to good results, hardware removal for medical reasons was the lowest in our technique. It was needed in three patients for pain on elbow contact and in one with ulnar nerve irritation. This represents a rate of 23.5%. Undesirable events related to the use of K-wires in standard tension band wiring, such as wire migration, wire protrusion through the skin and wire impingement, are absent in the wireless tension band wiring. The high rate of patient satisfaction, good clinical results as well as low rate of needed hardware removal make this technique preferable for fixing Mayo Type II A olecranon fractures.

  16. Aesthetic nickel titanium wires--how much do they deliver?

    Science.gov (United States)

    Kaphoor, Anil Abdul; Sundareswaran, Shobha

    2012-10-01

    The purpose of this study was to evaluate and compare the force levels of aesthetic Ni-Ti wires to regular Ni-Ti wires of the same dimension and evaluate their mechanical properties. Aesthetic and regular maxillary superelastic Ni-Ti wires (0.016 × 0.022) from four different manufacturers (G&H Wire Company, TP Orthodontics, GAC International, and Ortho Organizers) were selected and grouped I-IV. The loading and unloading values were compared using a three-point bending test. The unloading end values were also recorded to evaluate the recovery of archwires after each deflection. The unloading values were recorded at 0.5, 1.5, and 2.5 mm after loading deflections of 1, 2, and 3 mm, respectively. Cross-sectional scanning electron microscopy was used to assess the coating thickness of aesthetic wires. The results, statistically analysed, showed a significant decrease in force values for the aesthetic wires in groups I, III, and IV (P wires of the same dimension from the same manufacturer. There was no significant difference in force values for group II wires. A statistically significant decrease in force values of epoxy-coated wires was observed in groups I, III, and IV only. This is of obvious clinical significance during wire selection. The group II coated wires, however, exhibited forces comparable to their regular Ni-ti wires with a difference that was statistically insignificant. The end values of aesthetic wires showed almost complete recovery for groups I, II, and III after 2 and 3 mm deflections.

  17. Body of Knowledge (BOK) for Copper Wire Bonds

    Science.gov (United States)

    Rutkowski, E.; Sampson, M. J.

    2015-01-01

    Copper wire bonds have replaced gold wire bonds in the majority of commercial semiconductor devices for the latest technology nodes. Although economics has been the driving mechanism to lower semiconductor packaging costs for a savings of about 20% by replacing gold wire bonds with copper, copper also has materials property advantages over gold. When compared to gold, copper has approximately: 25% lower electrical resistivity, 30% higher thermal conductivity, 75% higher tensile strength and 45% higher modulus of elasticity. Copper wire bonds on aluminum bond pads are also more mechanically robust over time and elevated temperature due to the slower intermetallic formation rate - approximately 1/100th that of the gold to aluminum intermetallic formation rate. However, there are significant tradeoffs with copper wire bonding - copper has twice the hardness of gold which results in a narrower bonding manufacturing process window and requires that the semiconductor companies design more mechanically rigid bonding pads to prevent cratering to both the bond pad and underlying chip structure. Furthermore, copper is significantly more prone to corrosion issues. The semiconductor packaging industry has responded to this corrosion concern by creating a palladium coated copper bonding wire, which is more corrosion resistant than pure copper bonding wire. Also, the selection of the device molding compound is critical because use of environmentally friendly green compounds can result in internal CTE (Coefficient of Thermal Expansion) mismatches with the copper wire bonds that can eventually lead to device failures during thermal cycling. Despite the difficult problems associated with the changeover to copper bonding wire, there are billions of copper wire bonded devices delivered annually to customers. It is noteworthy that Texas Instruments announced in October of 2014 that they are shipping microcircuits containing copper wire bonds for safety critical automotive applications

  18. The HayWired earthquake scenario—Engineering implications

    Science.gov (United States)

    Detweiler, Shane T.; Wein, Anne M.

    2018-04-18

    The HayWired Earthquake Scenario—Engineering Implications is the second volume of U.S. Geological Survey (USGS) Scientific Investigations Report 2017–5013, which describes the HayWired scenario, developed by USGS and its partners. The scenario is a hypothetical yet scientifically realistic earthquake sequence that is being used to better understand hazards for the San Francisco Bay region during and after a magnitude-7 earthquake (mainshock) on the Hayward Fault and its aftershocks.Analyses in this volume suggest that (1) 800 deaths and 16,000 nonfatal injuries result from shaking alone, plus property and direct business interruption losses of more than $82 billion from shaking, liquefaction, and landslides; (2) the building code is designed to protect lives, but even if all buildings in the region complied with current building codes, 0.4 percent could collapse, 5 percent could be unsafe to occupy, and 19 percent could have restricted use; (3) people expect, prefer, and would be willing to pay for greater resilience of buildings; (4) more than 22,000 people could require extrication from stalled elevators, and more than 2,400 people could require rescue from collapsed buildings; (5) the average east-bay resident could lose water service for 6 weeks, some for as long as 6 months; (6) older steel-frame high-rise office buildings and new reinforced-concrete residential buildings in downtown San Francisco and Oakland could be unusable for as long as 10 months; (7) about 450 large fires could result in a loss of residential and commercial building floor area equivalent to more than 52,000 single-family homes and cause property (building and content) losses approaching $30 billion; and (8) combining earthquake early warning (ShakeAlert) with “drop, cover, and hold on” actions could prevent as many as 1,500 nonfatal injuries out of 18,000 total estimated nonfatal injuries from shaking and liquefaction hazards.

  19. System and method for evaluating a wire conductor

    Science.gov (United States)

    Panozzo, Edward; Parish, Harold

    2013-10-22

    A method of evaluating an electrically conductive wire segment having an insulated intermediate portion and non-insulated ends includes passing the insulated portion of the wire segment through an electrically conductive brush. According to the method, an electrical potential is established on the brush by a power source. The method also includes determining a value of electrical current that is conducted through the wire segment by the brush when the potential is established on the brush. The method additionally includes comparing the value of electrical current conducted through the wire segment with a predetermined current value to thereby evaluate the wire segment. A system for evaluating an electrically conductive wire segment is also disclosed.

  20. Successful removal of an intravesical electrical wire cable.

    Science.gov (United States)

    Ahn, Hyunsoo; Son, Hwancheol

    2014-08-01

    A few previous reports have described cases wherein electrical wire cables were inserted into the male urethra and bladder. Electrical wire cables are available at home and are easy to insert. However, after they coil in the patient's bladder, they are difficult to remove. In February 2013, a 30-year-old man presented to the emergency room of SMG-SNU Boramae Medical Center with a urethral foreign body. He had inserted an electrical wire cable into his urethra for the purpose of masturbation, despite having a regular sex partner and no underlying disease. A kidney-ureter-bladder radiography showed a tangled wire in his bladder and urethra. On the next day, we tried to remove the wire cystoscopically, but this proved to be impossible because of complex coiling and the slippery surface of the wire. A Pfannenstiel incision was made to remove the foreign body. No postoperative complications were noted.

  1. Surface cleaning of metal wire by atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Nakamura, T.; Buttapeng, C.; Furuya, S.; Harada, N.

    2009-01-01

    In this study, the possible application of atmospheric pressure dielectric barrier discharge plasma for the annealing of metallic wire is examined and presented. The main purpose of the current study is to examine the surface cleaning effect for a cylindrical object by atmospheric pressure plasma. The experimental setup consists of a gas tank, plasma reactor, and power supply with control panel. The gas assists in the generation of plasma. Copper wire was used as an experimental cylindrical object. This copper wire was irradiated with the plasma, and the cleaning effect was confirmed. The result showed that it is possible to remove the tarnish which exists on the copper wire surface. The experiment reveals that atmospheric pressure plasma is usable for the surface cleaning of metal wire. However, it is necessary to examine the method for preventing oxidization of the copper wire.

  2. Flexible, polymer-supported, Si wire array photoelectrodes

    Energy Technology Data Exchange (ETDEWEB)

    Spurgeon, Joshua M.; Boettcher, Shannon W.; Brunschwig, Bruce S.; Lewis, Nathan S. [California Institute of Technology, Division of Chemistry and Chemical Engineering, Pasadena, CA (United States); Kelzenberg, Michael D.; Atwater, Harry A. [California Institute of Technology, Division of Engineering and Applied Science, Pasadena, CA (United States)

    2010-08-10

    Arrays of oriented, crystalline Si wires are transferred into flexible, transparent polymer films. The polymer-supported Si wire arrays in liquid-junction photoelectrochemical cells yield current-potential behavior similar to the Si wires attached to the brittle growth substrate. These systems offer the potential for attaining high solar energy-conversion efficiencies using modest diffusion length, readily grown, crystalline Si in a flexible, processable form. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  3. The sub-wavelength imaging performance of disordered wire media

    International Nuclear Information System (INIS)

    Powell, David A.

    2008-01-01

    An analysis of the sub-wavelength imaging performance of disordered thin wire media is undertaken, in order to understand how its performance may be affected by manufacturing errors. The structure is found to be extremely robust to disorder which keeps the wires parallel. Variation in the orientation of the wires and their longitudinal position causes more significant degradation in the image quality, which is quantified numerically

  4. Modern trends of aircraft fly-by-wire systems

    Directory of Open Access Journals (Sweden)

    С. С. Юцкевич

    2013-07-01

    Full Text Available Specifics of civil aviation modern transport aircraft fly-by-wire control systems are described. A comparison of the systems-level hardware and software, expressed through modes of guidance, provision of aircraft Airbus A-320, Boeing B-777, Tupolev Tu-214, Sukhoi Superjet SSJ-100 are carried out. The possibility of transition from mechanical control wiring to control through fly-by-wire system in the backup channel is shown.

  5. Random Wiring, Ganglion Cell Mosaics, and the Functional Architecture of the Visual Cortex.

    Science.gov (United States)

    Schottdorf, Manuel; Keil, Wolfgang; Coppola, David; White, Leonard E; Wolf, Fred

    2015-11-01

    The architecture of iso-orientation domains in the primary visual cortex (V1) of placental carnivores and primates apparently follows species invariant quantitative laws. Dynamical optimization models assuming that neurons coordinate their stimulus preferences throughout cortical circuits linking millions of cells specifically predict these invariants. This might indicate that V1's intrinsic connectome and its functional architecture adhere to a single optimization principle with high precision and robustness. To validate this hypothesis, it is critical to closely examine the quantitative predictions of alternative candidate theories. Random feedforward wiring within the retino-cortical pathway represents a conceptually appealing alternative to dynamical circuit optimization because random dimension-expanding projections are believed to generically exhibit computationally favorable properties for stimulus representations. Here, we ask whether the quantitative invariants of V1 architecture can be explained as a generic emergent property of random wiring. We generalize and examine the stochastic wiring model proposed by Ringach and coworkers, in which iso-orientation domains in the visual cortex arise through random feedforward connections between semi-regular mosaics of retinal ganglion cells (RGCs) and visual cortical neurons. We derive closed-form expressions for cortical receptive fields and domain layouts predicted by the model for perfectly hexagonal RGC mosaics. Including spatial disorder in the RGC positions considerably changes the domain layout properties as a function of disorder parameters such as position scatter and its correlations across the retina. However, independent of parameter choice, we find that the model predictions substantially deviate from the layout laws of iso-orientation domains observed experimentally. Considering random wiring with the currently most realistic model of RGC mosaic layouts, a pairwise interacting point process, the

  6. Random Wiring, Ganglion Cell Mosaics, and the Functional Architecture of the Visual Cortex.

    Directory of Open Access Journals (Sweden)

    Manuel Schottdorf

    2015-11-01

    Full Text Available The architecture of iso-orientation domains in the primary visual cortex (V1 of placental carnivores and primates apparently follows species invariant quantitative laws. Dynamical optimization models assuming that neurons coordinate their stimulus preferences throughout cortical circuits linking millions of cells specifically predict these invariants. This might indicate that V1's intrinsic connectome and its functional architecture adhere to a single optimization principle with high precision and robustness. To validate this hypothesis, it is critical to closely examine the quantitative predictions of alternative candidate theories. Random feedforward wiring within the retino-cortical pathway represents a conceptually appealing alternative to dynamical circuit optimization because random dimension-expanding projections are believed to generically exhibit computationally favorable properties for stimulus representations. Here, we ask whether the quantitative invariants of V1 architecture can be explained as a generic emergent property of random wiring. We generalize and examine the stochastic wiring model proposed by Ringach and coworkers, in which iso-orientation domains in the visual cortex arise through random feedforward connections between semi-regular mosaics of retinal ganglion cells (RGCs and visual cortical neurons. We derive closed-form expressions for cortical receptive fields and domain layouts predicted by the model for perfectly hexagonal RGC mosaics. Including spatial disorder in the RGC positions considerably changes the domain layout properties as a function of disorder parameters such as position scatter and its correlations across the retina. However, independent of parameter choice, we find that the model predictions substantially deviate from the layout laws of iso-orientation domains observed experimentally. Considering random wiring with the currently most realistic model of RGC mosaic layouts, a pairwise interacting point

  7. Moral Hard-Wiring and Moral Enhancement.

    Science.gov (United States)

    Persson, Ingmar; Savulescu, Julian

    2017-05-01

    We have argued for an urgent need for moral bioenhancement; that human moral psychology is limited in its ability to address current existential threats due to the evolutionary function of morality to maximize cooperation in small groups. We address here Powell and Buchanan's novel objection that there is an 'inclusivist anomaly': humans have the capacity to care beyond in-groups. They propose that 'exclusivist' (group-based) morality is sensitive to environmental cues that historically indicated out-group threat. When this is not present, we are inclusivist. They conclude that moral bioenhancement is unnecessary or less effective than socio-cultural interventions. We argue that Powell and Buchanan underestimate the hard-wiring features of moral psychology; their appeal to adaptively plastic, conditionally expressed responses accounts for only a fragment of our moral psychology. In addition to restrictions on our altruistic concern that their account addresses - such as racism and sexism - there are ones it is ill-suited to address: that our concern is stronger for kin and friends and for concrete individuals rather than for statistical lives; also our bias towards the near future. Hard-wired features of our moral psychology that are not clearly restrictions in altruistic concern also include reciprocity, tit-for-tat, and others. Biomedical means are not the only, and maybe not the most important, means of moral enhancement. Socio-cultural means are of great importance and there are currently no biomedical interventions for many hard-wired features. Nevertheless research is desirable because the influence of these features is greater than our critics think. © 2017 The Authors Bioethics Published by John Wiley & Sons Ltd.

  8. Minimally invasive tension band wiring technique for olecranon fractures.

    Science.gov (United States)

    Takada, Naoya; Kato, Kenji; Fukuta, Makoto; Wada, Ikuo; Otsuka, Takanobu

    2013-12-01

    Some types of implants, such as plates, screws, wires, and nails, have been used for open reduction and internal fixation of olecranon fractures. A ≥ 10 cm longitudinal incision is used for open reduction and internal fixation of olecranon fractures. According to previous studies, tension band wiring is a popular method that gives good results. However, back out of the wires after the surgery is one of the main postoperative complications. Moreover, if the Kirschner wires are inserted through the anterior ulnar cortex, they may impinge on the radial neck, supinator muscle, or biceps tendon. Herein, we describe the minimally invasive tension band wiring technique using Ring-Pin. This technique can be performed through a 2 cm incision. Small skin incisions are advantageous from an esthetic viewpoint. Ring-Pin was fixed by using a dedicated cable wire that does not back out unless the cable wire breaks or slips out of the dedicated metallic clamp. As the pins are placed in intramedullary canal, this technique does not lead to postoperative complications that may occur after transcortical fixation by conventional tension band wiring. Minimally invasive tension band wiring is one of the useful options for the treatment of olecranon fractures with some advantages.

  9. Research on quantum efficiency of GaN wire photocathode

    Science.gov (United States)

    Xia, Sihao; Liu, Lei; Diao, Yu; Kong, Yike

    2017-02-01

    On the basis of three-dimensional continuity equation in semiconductors and finite difference method, the carrier concentration and the quantum efficiency of GaN wire photocathode as a function of incident photon energy are achieved. Results show that the quantum efficiency of the wire photocathode is largely enhanced compared with the conventional planar photocathode. The superiority of the wire photocathode is reflected in its structure with surrounding surfaces. The quantum efficiency of the wire photocathode largely depends on the wire width, surface reflectivity, surface escape probability and incident angle of light. The back interface recombination rate, however, has little influences on the quantum efficiency of the wire photocathode. The simulation results suggest that the optimal width for photoemission is 150-200 nm. Besides, the quantum efficiency increases and decreases linearly with increasing surface escape probability and surface reflectivity, respectively. With increasing ratio of wire spacing to wire height, the optimal incident angle of light is reduced. These simulations are expected to guide the preparation of a better performing GaN wire photocathode.

  10. Degradation of orthodontic wires under simulated cariogenic and erosive conditions

    Directory of Open Access Journals (Sweden)

    Laura Cavalcante Lima JABER

    2014-08-01

    Full Text Available This study examined the effect of cariogenic and erosive challenges (CCs and ECs, respectively on the degradation of copper-nickel-titanium (CuNiTi orthodontic wires. Sixty wire segments were divided into four treatment groups and exposed to CCs, ECs, artificial saliva, or dry storage (no-treatment control. CC and EC were simulated using a demineralizing solution (pH 4.3 and a citric acid solution (pH 2.3, respectively. Following treatment, the average surface roughness (Ra of the wires was assessed, and friction between the wires and a passive self-ligating bracket was measured. CuNiTi wires subjected to ECs exhibited significantly higher Ra values than did those that were stored in artificial saliva. In contrast, surface roughness was not affected by CCs. Finally, friction between the treated wires and brackets was not affected by ECs or CCs. Our results indicate that CuNiTi orthodontic wires may suffer degradation within the oral cavity, as ECs increased the surface roughness of these wires. However, rougher surfaces did not increase friction between the wire and the passive self-ligating bracket.

  11. Reduction of friction during wire drawing by electrode control

    Science.gov (United States)

    Su, Y.-Y.; Marek, M.

    1995-04-01

    In wire drawing, the wire is drawn through a series of dies sprayed with or immersed in an emulsion lubricant. The surface conditions of the wire play a vital part in the mechanism of lubrication, and the conditions can be affected by electrochemical parameters. The electrochemical behavior of copper in selected emulsions was studied, and laboratory friction as well as pilot plant tests were performed. Reduction of friction was detected at various potentials depending on the lubricant composition. Surface quality of the wire was improved by the electrode control.

  12. Metallurgical investigation of wire breakage of tyre bead grade

    Directory of Open Access Journals (Sweden)

    Piyas Palit

    2015-10-01

    Full Text Available Tyre bead grade wire is used for tyre making application. The wire is used as reinforcement inside the polymer of tyre. The wire is available in different size/section such as 1.6–0.80 mm thin Cu coated wire. During tyre making operation at tyre manufacturer company, wire failed frequently. In this present study, different broken/defective wire samples were collected from wire mill for detailed investigation of the defect. The natures of the defects were localized and similar in nature. The fracture surface was of finger nail type. Crow feet like defects including button like surface abnormalities were also observed on the broken wire samples. The defect was studied at different directions under microscope. Different advanced metallographic techniques have been used for detail investigation. The analysis revealed that, white layer of surface martensite was formed and it caused the final breakage of wire. In this present study we have also discussed about the possible reason for the formation of such kind of surface martensite (hard-phase.

  13. Fabrication of mesoscopic floating Si wires by introducing dislocations

    International Nuclear Information System (INIS)

    Motohashi, Mitsuya; Shimizu, Kazuya; Niwa, Masaaki; Suzuki, Toshiaki

    2014-01-01

    We fabricated a mesoscopic Si wire by introducing dislocations in a silicon wafer before HF anodization. The dislocations formed along the (111) crystal plane. The outline of the dislocation line was an inverted triangle. The resulting wire floated on a bridge girder and had a hybrid structure consisting of a porous layer and crystalline Si. The cross section of the wire had an inverted triangle shape. The wire formation mechanism is discussed in terms of carrier transport, crystal structure, and dislocation formation during anodization. (paper)

  14. Fabrication of mesoscopic floating Si wires by introducing dislocations

    Science.gov (United States)

    Motohashi, Mitsuya; Shimizu, Kazuya; Suzuki, Toshiaki; Niwa, Masaaki

    2014-12-01

    We fabricated a mesoscopic Si wire by introducing dislocations in a silicon wafer before HF anodization. The dislocations formed along the (111) crystal plane. The outline of the dislocation line was an inverted triangle. The resulting wire floated on a bridge girder and had a hybrid structure consisting of a porous layer and crystalline Si. The cross section of the wire had an inverted triangle shape. The wire formation mechanism is discussed in terms of carrier transport, crystal structure, and dislocation formation during anodization.

  15. Printed Wiring Board Cleaner Technologies Substitutes Assessment: Making Holes Conductive

    Science.gov (United States)

    This document presents comparative risk, competitiveness, and resource requirements on technologies for performing the “making holes conductive” function during printed wiring board manufacturing.

  16. Degradation of orthodontic wires under simulated cariogenic and erosive conditions.

    Science.gov (United States)

    Jaber, Laura Cavalcante Lima; Rodrigues, José Augusto; Amaral, Flávia Lucisano Botelho; França, Fabiana Mantovani Gomes; Basting, Roberta Tarkany; Turssi, Cecilia Pedroso

    2014-01-01

    This study examined the effect of cariogenic and erosive challenges (CCs and ECs, respectively) on the degradation of copper-nickel-titanium (CuNiTi) orthodontic wires. Sixty wire segments were divided into four treatment groups and exposed to CCs, ECs, artificial saliva, or dry storage (no-treatment control). CC and EC were simulated using a demineralizing solution (pH 4.3) and a citric acid solution (pH 2.3), respectively. Following treatment, the average surface roughness (Ra) of the wires was assessed, and friction between the wires and a passive self-ligating bracket was measured. CuNiTi wires subjected to ECs exhibited significantly higher Ra values than did those that were stored in artificial saliva. In contrast, surface roughness was not affected by CCs. Finally, friction between the treated wires and brackets was not affected by ECs or CCs. Our results indicate that CuNiTi orthodontic wires may suffer degradation within the oral cavity, as ECs increased the surface roughness of these wires. However, rougher surfaces did not increase friction between the wire and the passive self-ligating bracket.

  17. Ultrahigh-strength submicron-sized metallic glass wires

    International Nuclear Information System (INIS)

    Wang, Y.B.; Lee, C.C.; Yi, J.; An, X.H.; Pan, M.X.; Xie, K.Y.; Liao, X.Z.; Cairney, J.M.; Ringer, S.P.; Wang, W.H.

    2014-01-01

    In situ deformation experiments were performed in a transmission electron microscope to investigate the mechanical properties of submicron-sized Pd 40 Cu 30 Ni 10 P 20 metallic glass (MG) wires. Results show that the submicron-sized MG wires exhibit intrinsic ultrahigh tensile strength of ∼2.8 GPa, which is nearly twice as high as that in their bulk counterpart, and ∼5% elastic strain approaching the elastic limits. The tensile strength, engineering strain at failure and deformation mode of the submicron-sized MG wires depend on the diameter of the wires

  18. Seeded perturbations in wire array Z-Pinches

    International Nuclear Information System (INIS)

    Robinson, Allen Conrad; Fedin, Dmitry; Kantsyrev, Victor Leonidovich; Wunsch, Scott Edward; Oliver, Bryan Velten; Lebedev, Sergey V.; Coverdale, Christine Anne; Ouart, Nicholas D.; LePell, Paul David; Safronova, Alla S.; Shrestha, I.; McKenney, John Lee; Ampleford, David J.; Rapley, J.; Bott, S.C.; Palmer, J.B.A.; Sotnikov, Vladimir Isaakovich; Bland, Simon Nicholas; Ivanov, Vladimir V.; Chittenden, Jeremy Paul; Jones, B.; Garasi, Christopher Joseph; Hall, Gareth Neville; Yilmaz, M. Faith; Mehlhorn, Thomas Alan; Deeney, Christopher; Pokala, S.; Nalajala, V.

    2005-01-01

    Controlled seeding of perturbations is employed to study the evolution of wire array z-pinch implosion instabilities which strongly impact x-ray production when the 3D plasma stagnates on axis. Wires modulated in radius exhibit locally enhanced magnetic field and imploding bubble formation at discontinuities in wire radius due to the perturbed current path. Wires coated with localized spectroscopic dopants are used to track turbulent material flow. Experiments and MHD modeling offer insight into the behavior of z-pinch instabilities.

  19. The HayWired Earthquake Scenario

    Science.gov (United States)

    Detweiler, Shane T.; Wein, Anne M.

    2017-04-24

    ForewordThe 1906 Great San Francisco earthquake (magnitude 7.8) and the 1989 Loma Prieta earthquake (magnitude 6.9) each motivated residents of the San Francisco Bay region to build countermeasures to earthquakes into the fabric of the region. Since Loma Prieta, bay-region communities, governments, and utilities have invested tens of billions of dollars in seismic upgrades and retrofits and replacements of older buildings and infrastructure. Innovation and state-of-the-art engineering, informed by science, including novel seismic-hazard assessments, have been applied to the challenge of increasing seismic resilience throughout the bay region. However, as long as people live and work in seismically vulnerable buildings or rely on seismically vulnerable transportation and utilities, more work remains to be done.With that in mind, the U.S. Geological Survey (USGS) and its partners developed the HayWired scenario as a tool to enable further actions that can change the outcome when the next major earthquake strikes. By illuminating the likely impacts to the present-day built environment, well-constructed scenarios can and have spurred officials and citizens to take steps that change the outcomes the scenario describes, whether used to guide more realistic response and recovery exercises or to launch mitigation measures that will reduce future risk.The HayWired scenario is the latest in a series of like-minded efforts to bring a special focus onto the impacts that could occur when the Hayward Fault again ruptures through the east side of the San Francisco Bay region as it last did in 1868. Cities in the east bay along the Richmond, Oakland, and Fremont corridor would be hit hardest by earthquake ground shaking, surface fault rupture, aftershocks, and fault afterslip, but the impacts would reach throughout the bay region and far beyond. The HayWired scenario name reflects our increased reliance on the Internet and telecommunications and also alludes to the

  20. In-Situ Wire Damage Detection System

    Science.gov (United States)

    Williams, Martha K. (Inventor); Roberson, Luke B. (Inventor); Tate, Lanetra C. (Inventor); Smith, Trent M. (Inventor); Gibson, Tracy L. (Inventor); Jolley, Scott T. (Inventor); Medelius, Pedro J. (Inventor)

    2014-01-01

    An in-situ system for detecting damage in an electrically conductive wire. The system includes a substrate at least partially covered by a layer of electrically conductive material forming a continuous or non-continuous electrically conductive layer connected to an electrical signal generator adapted to delivering electrical signals to the electrically conductive layer. Data is received and processed to identify damage to the substrate or electrically conductive layer. The electrically conductive material may include metalized carbon fibers, a thin metal coating, a conductive polymer, carbon nanotubes, metal nanoparticles or a combination thereof.

  1. The HayWired earthquake scenario

    Science.gov (United States)

    Detweiler, Shane T.; Wein, Anne M.

    2017-04-24

    ForewordThe 1906 Great San Francisco earthquake (magnitude 7.8) and the 1989 Loma Prieta earthquake (magnitude 6.9) each motivated residents of the San Francisco Bay region to build countermeasures to earthquakes into the fabric of the region. Since Loma Prieta, bay-region communities, governments, and utilities have invested tens of billions of dollars in seismic upgrades and retrofits and replacements of older buildings and infrastructure. Innovation and state-of-the-art engineering, informed by science, including novel seismic-hazard assessments, have been applied to the challenge of increasing seismic resilience throughout the bay region. However, as long as people live and work in seismically vulnerable buildings or rely on seismically vulnerable transportation and utilities, more work remains to be done.With that in mind, the U.S. Geological Survey (USGS) and its partners developed the HayWired scenario as a tool to enable further actions that can change the outcome when the next major earthquake strikes. By illuminating the likely impacts to the present-day built environment, well-constructed scenarios can and have spurred officials and citizens to take steps that change the outcomes the scenario describes, whether used to guide more realistic response and recovery exercises or to launch mitigation measures that will reduce future risk.The HayWired scenario is the latest in a series of like-minded efforts to bring a special focus onto the impacts that could occur when the Hayward Fault again ruptures through the east side of the San Francisco Bay region as it last did in 1868. Cities in the east bay along the Richmond, Oakland, and Fremont corridor would be hit hardest by earthquake ground shaking, surface fault rupture, aftershocks, and fault afterslip, but the impacts would reach throughout the bay region and far beyond. The HayWired scenario name reflects our increased reliance on the Internet and telecommunications and also alludes to the

  2. Optical absorption in a thin nickel wire

    OpenAIRE

    INAGAKI, Takashi; Goudonnet, J.P.; ARAKAWA, E.T.

    1986-01-01

    Absorption of a 633-nm phonton in a cylindrical nickel wire with diameter 13 m was measured by a photoacoustic method as a function of angle of phonton incidence . A good photoacoustic signal was obtained with a 6-m W He-Ne laser as a light source without employing focusing optics. The absorption measured for p-polarized phontons was found to be in good agreement with geometrical optics calculation. For s-polarized light, however, significant excess absorption was found for >35.

  3. Circummandibular wiring made easy: A case report

    Directory of Open Access Journals (Sweden)

    Jasmeet Singh

    2014-10-01

    Full Text Available Mandibular fractures are less common in children as compared to adults. The treatment plan in children has to be modified as compared to adults considering the presence of tooth buds and potential disturbances in growth. Use of acrylic splints has been one of the popular techniques in children because of its relatively easy placement and reduced risk of hindrances to growth of jaw. These splints have been traditionally been fixed with the help of cements and circummandibular wires. We describe the use of intravenous cannula stilete instead of traditional bone awl to secure the splint in place.

  4. Wire-number effects on high-power annular z-pinches and some characteristics at high wire number

    Energy Technology Data Exchange (ETDEWEB)

    SANFORD,THOMAS W. L.

    2000-05-23

    Characteristics of annular wire-array z-pinches as a function of wire number and at high wire number are reviewed. The data, taken primarily using aluminum wires on Saturn are comprehensive. The experiments have provided important insights into the features of wire-array dynamics critical for high x-ray power generation, and have initiated a renaissance in z-pinches when high numbers of wires are used. In this regime, for example, radiation environments characteristic of those encountered during the early pulses required for indirect-drive ICF ignition on the NIF have been produced in hohlraums driven by x-rays from a z-pinch, and are commented on here.

  5. Percutaneous Kirschner wire (K-wire) fixation for humerus shaft fractures in children: A treatment concept.

    Science.gov (United States)

    Sahu, Ramji Lal

    2013-09-01

    Fractures of the humeral shaft are uncommon, representing less than 10 percent of all fractures in children. Humeral shaft fractures in children can be treated by immobilisation alone. A small number of fractures are unable to be reduced adequately or maintained in adequate alignment, and these should be treated surgically. In the present study, Kirschner wires (K-wire) were used to achieve a closed intramedullary fixation of humeral shaft fractures. The objective of this study was to evaluate the efficacy of intramedullary K-wires for the treatment of humeral shaft fracture in children. This prospective study was conducted in the Department of Orthopaedic surgery in M. M. Medical College from June 2005 to June 2010. Sixty-eight children with a mean age of 7.7 years (range, 2-14 years) were recruited from Emergency and out patient department having closed fracture of humerus shaft. All patients were operated under general anaesthesia. All patients were followed for 12 months. Out of 68 patients, 64 patients underwent union in 42-70 days with a mean of 56 days. Complications found in four patients who had insignificant delayed union which were united next 3 weeks. Intramedullary K-wires were removed after an average of 5 months without any complications. The results were excellent in 94.11% and good in 5% children. This technique is simple, quick to perform, safe and reliable and avoids prolonged hospitalization with good results and is economical.

  6. Isolated self-assembled InAs/InP(001) quantum wires obtained by controlling the growth front evolution

    International Nuclear Information System (INIS)

    Fuster, David; Alen, Benito; Gonzalez, Luisa; Gonzalez, Yolanda; Martinez-Pastor, Juan; Gonzalez, Maria Ujue; GarcIa, Jorge M

    2007-01-01

    In this work we explore the first stages of quantum wire (QWR) formation studying the evolution of the growth front for InAs coverages below the critical thickness, θ c , determined by reflection high energy electron diffraction (RHEED). Our results obtained by in situ measurement of the accumulated stress evolution during InAs growth on InP(001) show that the relaxation process starts at a certain InAs coverage θ R c . At this θ R , the spontaneous formation of isolated quantum wires takes place. For θ>θ R this ensemble of isolated nanostructures progressively evolves towards QWRs that cover the whole surface for θ θ c . These results allow for a better understanding of the self-assembling process of QWRs and enable the study of the individual properties of InAs/InP self-assembled single quantum wires

  7. Isolated self-assembled InAs/InP(001) quantum wires obtained by controlling the growth front evolution

    Energy Technology Data Exchange (ETDEWEB)

    Fuster, David [Instituto de Microelectronica de Madrid (CNM, CSIC), Isaac Newton 8, E-28760 Tres Cantos, Madrid (Spain); Alen, Benito [Instituto de Microelectronica de Madrid (CNM, CSIC), Isaac Newton 8, E-28760 Tres Cantos, Madrid (Spain); Gonzalez, Luisa [Instituto de Microelectronica de Madrid (CNM, CSIC), Isaac Newton 8, E-28760 Tres Cantos, Madrid (Spain); Gonzalez, Yolanda [Instituto de Microelectronica de Madrid (CNM, CSIC), Isaac Newton 8, E-28760 Tres Cantos, Madrid (Spain); Martinez-Pastor, Juan [Instituto de Ciencia de los Materiales, Universidad de Valencia, PO Box 2085, E-46071 Valencia (Spain); Gonzalez, Maria Ujue [Instituto de Microelectronica de Madrid (CNM, CSIC), Isaac Newton 8, E-28760 Tres Cantos, Madrid (Spain); GarcIa, Jorge M [Instituto de Microelectronica de Madrid (CNM, CSIC), Isaac Newton 8, E-28760 Tres Cantos, Madrid (Spain)

    2007-01-24

    In this work we explore the first stages of quantum wire (QWR) formation studying the evolution of the growth front for InAs coverages below the critical thickness, {theta}{sub c}, determined by reflection high energy electron diffraction (RHEED). Our results obtained by in situ measurement of the accumulated stress evolution during InAs growth on InP(001) show that the relaxation process starts at a certain InAs coverage {theta}{sub R}<{theta}{sub c}. At this {theta}{sub R}, the spontaneous formation of isolated quantum wires takes place. For {theta}>{theta}{sub R} this ensemble of isolated nanostructures progressively evolves towards QWRs that cover the whole surface for {theta} {theta}{sub c}. These results allow for a better understanding of the self-assembling process of QWRs and enable the study of the individual properties of InAs/InP self-assembled single quantum wires.

  8. Description and Flight Test Results of the NASA F-8 Digital Fly-by-Wire Control System

    Science.gov (United States)

    1975-01-01

    A NASA program to develop digital fly-by-wire (DFBW) technology for aircraft applications is discussed. Phase I of the program demonstrated the feasibility of using a digital fly-by-wire system for aircraft control through developing and flight testing a single channel system, which used Apollo hardware, in an F-8C airplane. The objective of Phase II of the program is to establish a technology base for designing practical DFBW systems. It will involve developing and flight testing a triplex digital fly-by-wire system using state-of-the-art airborne computers, system hardware, software, and redundancy concepts. The papers included in this report describe the Phase I system and its development and present results from the flight program. Man-rated flight software and the effects of lightning on digital flight control systems are also discussed.

  9. Flat Plate Boundary Layer Stimulation Using Trip Wires and Hama Strips

    Science.gov (United States)

    Peguero, Charles; Henoch, Charles; Hrubes, James; Fredette, Albert; Roberts, Raymond; Huyer, Stephen

    2017-11-01

    Water tunnel experiments on a flat plate at zero angle of attack were performed to investigate the effect of single roughness elements, i.e., trip wires and Hama strips, on the transition to turbulence. Boundary layer trips are traditionally used in scale model testing to force a boundary layer to transition from laminar to turbulent flow at a single location to aid in scaling of flow characteristics. Several investigations of trip wire effects exist in the literature, but there is a dearth of information regarding the influence of Hama strips on the flat plate boundary layer. The intent of this investigation is to better understand the effects of boundary layer trips, particularly Hama strips, and to investigate the pressure-induced drag of both styles of boundary layer trips. Untripped and tripped boundary layers along a flat plate at a range of flow speeds were characterized with multiple diagnostic measurements in the NUWC/Newport 12-inch water tunnel. A wide range of Hama strip and wire trip thicknesses were used. Measurements included dye flow visualization, direct skin friction and parasitic drag force, boundary layer profiles using LDV, wall shear stress fluctuations using hot film anemometry, and streamwise pressure gradients. Test results will be compared to the CFD and boundary layer model results as well as the existing body of work. Conclusions, resulting in guidance for application of Hama strips in model scale experiments and non-dimensional predictions of pressure drag will be presented.

  10. Broadband spectroscopy of magnetic response in a nano-scale magnetic wire

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, A., E-mail: yamaguti@lasti.u-hyogo.ac.jp [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Koto, Kamigori, Ako, Hyogo 678-1205 (Japan); Motoi, K.; Miyajima, H. [Department of Physics, Keio University, Hiyoshi, Yokohama, Kanagawa 223-8522 (Japan); Utsumi, Y. [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Koto, Kamigori, Ako, Hyogo 678-1205 (Japan)

    2014-09-01

    We measure the broadband spectra of magnetic response in a single layered ferromagnetic nano-scale wire in order to investigate the size effect on the ferromagnetic resonance. We found that the resonance frequency difference between 300-nm- and 5-μm-wide wires was varied by about 5 GHz due to the shape anisotropy. Furthermore, we experimentally detected the magnetization precession induced by the thermal fluctuation via the rectification of a radio-frequency (rf) current by incorporating an additional direct current (dc) by using Wheatstone bridge circuit. Our investigation renders that the shape anisotropy is of great importance to control the resonance frequency and to provide thermal stability of the microwave devices. - Highlights: • We describe an experimental investigation of the magnetic response of a single layered ferromagnetic nano-scale wire. • We present the conventional broadband microwave spectroscopy with a vector network analyzer and rectifying spectroscopy obtained with a Wheatstone bridge technique. • The investigation enables us to characterize the size effect on the ferromagnetic response and also to detect the magnetization precession induced by the thermal fluctuations.

  11. Spin-dependent transport in epitaxial Fe wires on GaAs(110); Spinabhaengiger Transport in epitaktischen Fe-Leiterbahnen auf GaAs(110)

    Energy Technology Data Exchange (ETDEWEB)

    Hassel, Christoph

    2009-08-11

    In the present thesis, the spin dependent transport in epitaxial Fe wires as well as in perpendicularly magnetized multilayer wires is investigated. The main focus is on the investigation of quantum transport phenomena, the domain wall resistance as well as the current induced domain wall motion. Epitaxial Fe wires are prepared from epitaxial Fe films by means of electron beam lithography. Because of the intrinsic magnetic anisotropy, it is possible to prepare wires with a remanent transversal magnetization. Magnetic force microscopy is used to image the magnetic state of single wires. The magnetization reversal behaviour of these wires is investigated in detail using magnetoresistance measurements. These measurements are dominated by effects of the anisotropic magnetoresistance and can be explained by micromagnetic calculations. For the first time, quantum transport phenomena in epitaxial Fe wires are studied by magnetoresistance measurements for temperatures down to 20 mK. These measurements clearly indicate that, independent of the wire width and orientation, no contribution due to weak electron localization can be observed. The results are quantitatively explained within the framework of enhanced electron-electron interactions. Furthermore, by reducing the wire width the onset of the transition from two-dimensional to one-dimensional behaviour is found. To determine the domain wall resistance, a different number of domain walls is created in various structures, whereby the epitaxial samples allow to investigate different domain wall structures. First, a technique based on the stray field of a magnetic force microscope tip is presented. Furthermore, the influence of the shape anisotropy on the coercive field of single wires is used. Contributions to the observed resistance change due to the anisotropic magnetoresistance are calculated using micromagnetic simulations. A positive intrinsic relative resistance increase of 0.2% within the domain wall is found at

  12. Successful percutaneous coronary intervention for complex bifurcated lesions with combination of "Reverse wire technique" and "Reverse bent wiring with the crusade catheter" novel wire manipulation technique.

    Science.gov (United States)

    Nomura, Tetsuya; Higuchi, Yusuke; Kato, Taku

    2016-04-01

    We encountered a case of percutaneous coronary intervention for complex bifurcated lesions in the mid portion of the left anterior descending (LAD) artery. The diagonal artery branched from the LAD artery with a markedly angulated pattern and there was severe stenosis from just proximal to this diagonal artery. The "reverse wire technique facilitated with the Crusade catheter" enabled us to cross a guidewire through to the markedly angulated diagonal side branch (SB). Next, we adopted a mini-crushing stent strategy for this true bifurcated lesion. Thereafter, we adopted "reverse bent wiring with the Crusade catheter" for wire re-crossing to the incarcerated side branch, and successfully completed all procedures. This technique for successful wire re-crossing is simple but can be very effective in specific situations in practical percutaneous coronary intervention (PCI). Many PCI operators may empirically adopt this kind of wire manipulation technique. However, this case is the first report in the world describing the application of a "reverse bent wiring with the Crusade catheter" for wire re-crossing through a double-folded stent strut to a SB at the optimal point of the bifurcation. In this case, we made the most of the Crusade catheter. This catheter is a very useful device for multifactorial use in practical PCI. It can help us to perform complex PCI procedures successfully. © 2015 Wiley Periodicals, Inc.

  13. Normal-Force and Hinge-Moment Characteristics at Transonic Speeds of Flap-Type Ailerons at Three Spanwise Locations on a 4-Percent-Thick Sweptback-Wing-Body Model and Pressure-Distribution Measurements on an Inboard Aileron

    Science.gov (United States)

    Runckel, Jack F.; Hieser, Gerald

    1961-01-01

    An investigation has been conducted at the Langley 16-foot transonic tunnel to determine the loading characteristics of flap-type ailerons located at inboard, midspan, and outboard positions on a 45 deg. sweptback-wing-body combination. Aileron normal-force and hinge-moment data have been obtained at Mach numbers from 0.80 t o 1.03, at angles of attack up to about 27 deg., and at aileron deflections between approximately -15 deg. and 15 deg. Results of the investigation indicate that the loading over the ailerons was established by the wing-flow characteristics, and the loading shapes were irregular in the transonic speed range. The spanwise location of the aileron had little effect on the values of the slope of the curves of hinge-moment coefficient against aileron deflection, but the inboard aileron had the greatest value of the slope of the curves of hinge-moment coefficient against angle of attack and the outboard aileron had the least. Hinge-moment and aileron normal-force data taken with strain-gage instrumentation are compared with data obtained with pressure measurements.

  14. Fabrication and characterization of ZnO nano wires/Cd Se/CuSCN eta-solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Tena-Zaera, R.; Ryan, M.A.; Abou, Katty; Hodes, G.; Bastide, St.; Levy-Clement, C. [LCMTR, Institut des sciences chimiques Seine-Amont, CNRS, 94 - Thiais (France); Tena-Zaera, R. [Valancia Univ., Dept. Fisica Aplicada i Electromagnetisme (Spain); Ryan, M.A. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA (United States); Hodes, G. [Weizmann Institute of Science, Dept. of Materials and Interfaces, Rehovot (Israel)

    2006-05-15

    ZnO/CdSe/CuSCN extremely thin absorber (eta)-solar cells based on ZnO nano-wires have been successfully realized using easily accessible electrochemical and solution deposition techniques. An n-type ZnO film consisting of free-standing single crystal nano-wires several microns high and 100-200 nm in diameter was-deposited on a conducting glass (SnO{sub 2}:F) substrate covered by a thin spray pyrolysis ZnO electronic blocking layer. A 30-40-nm-thin layer of CdSe absorber was electrodeposited, coating the ZnO nano-wires. The voids between the ZnO/CdSe nano-wires were filled with p-type CuSCN; the entire assembly formed a p-i-n junction. The ZnO/CdSe nano-wire layer exhibited a high light-trapping effect, with an effective absorbance of {approx}89% and effective reflectance of {approx}8% in the 400-800 nm region of the solar spectrum (AM1.5). The effects of an annealing process on the CdSe grain size and on the energy conversion efficiency of the eta-solar cell have been analyzed. The obtained efficiencies, for cells with annealed CdSe (1.5-2.3%) show that the ZnO/CdSe/CuSCN nano-heterostructure is an interesting option for developing new solar cell devices. (authors)

  15. Fabrication and characterization of ZnO nano wires/Cd Se/CuSCN eta-solar cell

    International Nuclear Information System (INIS)

    Tena-Zaera, R.; Ryan, M.A.; Abou, Katty; Hodes, G.; Bastide, St.; Levy-Clement, C.; Tena-Zaera, R.; Ryan, M.A.; Hodes, G.

    2006-01-01

    ZnO/CdSe/CuSCN extremely thin absorber (eta)-solar cells based on ZnO nano-wires have been successfully realized using easily accessible electrochemical and solution deposition techniques. An n-type ZnO film consisting of free-standing single crystal nano-wires several microns high and 100-200 nm in diameter was-deposited on a conducting glass (SnO 2 :F) substrate covered by a thin spray pyrolysis ZnO electronic blocking layer. A 30-40-nm-thin layer of CdSe absorber was electrodeposited, coating the ZnO nano-wires. The voids between the ZnO/CdSe nano-wires were filled with p-type CuSCN; the entire assembly formed a p-i-n junction. The ZnO/CdSe nano-wire layer exhibited a high light-trapping effect, with an effective absorbance of ∼89% and effective reflectance of ∼8% in the 400-800 nm region of the solar spectrum (AM1.5). The effects of an annealing process on the CdSe grain size and on the energy conversion efficiency of the eta-solar cell have been analyzed. The obtained efficiencies, for cells with annealed CdSe (1.5-2.3%) show that the ZnO/CdSe/CuSCN nano-heterostructure is an interesting option for developing new solar cell devices. (authors)

  16. Design of Tunnel Magnetoresistive-Based Circular MFL Sensor Array for the Detection of Flaws in Steel Wire Rope

    Directory of Open Access Journals (Sweden)

    Liu Xiucheng

    2016-01-01

    Full Text Available Tunnel magnetoresistive (TMR devices have superior performances in weak magnetic field detection. In this study, TMR devices were first employed to form a circular magnetic flux leakage (MFL sensor for slight wire rope flaw detection. Two versions of this tailor-made circular TMR-based sensor array were presented for the inspection of wire ropes with the diameters of 14 mm and 40 mm, respectively. Helmholtz-like coils or a ferrite magnet-based magnetizer was selected to provide the proper magnetic field, in order to meet the technical requirements of the TMR devices. The coefficient of variance in the flaw detection performance of the sensor array elements was experimentally estimated at 4.05%. Both versions of the MFL sensor array were able to detect multiple single-broken wire flaws in the wire ropes. The accurate axial and circumferential positions of these broken wire flaws were estimated from the MFL scanning image results. In addition, the proposed TMR-based sensor array was applied to detect the MFL signal induced by slight surface wear defects. A mutual correlation analysis method was used to distinguish the signals caused by the lift-off fluctuation from the MFL scanning image results. The MFL sensor arrays presented in this study provide inspiration for the designing of tailor-made TMR-based circular sensor arrays for cylindrical ferromagnetic structural inspections.

  17. A New Superconducting Wire for Future Accelerators

    CERN Multimedia

    2006-01-01

    The CARE/NED project has developed a new superconducting wire that can achieve very high currents (1400 amps) at high magnetic fields (12 teslas). Cross-section of the CARE/NED wire produced by SMI. As we prepare to enter a new phase of particle physics with the LHC, technological development is a continuous process to ensure the demands of future research are met. The next generation of colliders and upgrades of the present ones will require significantly larger magnetic fields for bending and focusing the particle beams. NED (Next European Dipole) is one of the projects taking on this challenge to push technology beyond the present limit (see: More about NED). The magnets in the LHC rely on niobium titanium (NbTi) as the superconducting material, with a maximum magnetic field of 8 to 10T (tesla). In order to exceed this limitation, a different material together with the corresponding technology needs to be developed. NED is assessing the suitability of niobium tin (Nb3Sn), which has the potential to at le...

  18. Wired and Wireless Camera Triggering with Arduino

    Science.gov (United States)

    Kauhanen, H.; Rönnholm, P.

    2017-10-01

    Synchronous triggering is an important task that allows simultaneous data capture from multiple cameras. Accurate synchronization enables 3D measurements of moving objects or from a moving platform. In this paper, we describe one wired and four wireless variations of Arduino-based low-cost remote trigger systems designed to provide a synchronous trigger signal for industrial cameras. Our wireless systems utilize 315 MHz or 434 MHz frequencies with noise filtering capacitors. In order to validate the synchronization accuracy, we developed a prototype of a rotating trigger detection system (named RoTriDeS). This system is suitable to detect the triggering accuracy of global shutter cameras. As a result, the wired system indicated an 8.91 μs mean triggering time difference between two cameras. Corresponding mean values for the four wireless triggering systems varied between 7.92 and 9.42 μs. Presented values include both camera-based and trigger-based desynchronization. Arduino-based triggering systems appeared to be feasible, and they have the potential to be extended to more complicated triggering systems.

  19. Wire chamber radiation detector with discharge control

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Mulera, T.A.

    1984-01-01

    A wire chamber radiation detector has spaced apart parallel electrodes and grids defining an ignition region in which charged particles or other ionizing radiations initiate brief localized avalanche discharges and defining an adjacent memory region in which sustained glow discharges are initiated by the primary discharges. Conductors of the grids at each side of the memory section extend in orthogonal directions enabling readout of the X-Y coordinates of locations at which charged particles were detected by sequentially transmitting pulses to the conductors of one grid while detecting transmissions of the pulses to the orthogonal conductors of the other grid through glow discharges. One of the grids bounding the memory region is defined by an array of conductive elements each of which is connected to the associated readout conductor through a separate resistance. The wire chamber avoids ambiguities and imprecisions in the readout of coordinates when large numbers of simultaneous or near simultaneous charged particles have been detected. Down time between detection periods and the generation of radio frequency noise are also reduced

  20. Humidity effects on wire insulation breakdown strength.

    Energy Technology Data Exchange (ETDEWEB)

    Appelhans, Leah

    2013-08-01

    Methods for the testing of the dielectric breakdown strength of insulation on metal wires under variable humidity conditions were developed. Two methods, an ASTM method and the twisted pair method, were compared to determine if the twisted pair method could be used for determination of breakdown strength under variable humidity conditions. It was concluded that, although there were small differences in outcomes between the two testing methods, the non-standard method (twisted pair) would be appropriate to use for further testing of the effects of humidity on breakdown performance. The dielectric breakdown strength of 34G copper wire insulated with double layer Poly-Thermaleze/Polyamide-imide insulation was measured using the twisted pair method under a variety of relative humidity (RH) conditions and exposure times. Humidity at 50% RH and below was not found to affect the dielectric breakdown strength. At 80% RH the dielectric breakdown strength was significantly diminished. No effect for exposure time up to 140 hours was observed at 50 or 80%RH.

  1. Fast and High Accuracy Wire Scanner

    CERN Document Server

    Koujili, M; Koopman, J; Ramos, D; Sapinski, M; De Freitas, J; Ait Amira, Y; Djerdir, A

    2009-01-01

    Scanning of a high intensity particle beam imposes challenging requirements on a Wire Scanner system. It is expected to reach a scanning speed of 20 m.s-1 with a position accuracy of the order of 1 μm. In addition a timing accuracy better than 1 millisecond is needed. The adopted solution consists of a fork holding a wire rotating by a maximum of 200°. Fork, rotor and angular position sensor are mounted on the same axis and located in a chamber connected to the beam vacuum. The requirements imply the design of a system with extremely low vibration, vacuum compatibility, radiation and temperature tolerance. The adopted solution consists of a rotary brushless synchronous motor with the permanent magnet rotor installed inside of the vacuum chamber and the stator installed outside. The accurate position sensor will be mounted on the rotary shaft inside of the vacuum chamber, has to resist a bake-out temperature of 200°C and ionizing radiation up to a dozen of kGy/year. A digital feedback controller allows maxi...

  2. Sample of superconducting wiring from the LHC

    CERN Multimedia

    The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. Magnet coils are made of copper-clad niobium–titanium cables — each wire in the cable consists of 9’000 niobium–titanium filaments ten times finer than a hair. The cables carry up to 12’500 amps and must withstand enormous electromagnetic forces. At full field, the force on one metre of magnet is comparable to the weight of a jumbo jet. Coil winding requires great care to prevent movements as the field changes. Friction can create hot spots wh...

  3. Sample of superconducting wiring (Niobium Titanium)

    CERN Multimedia

    About NbTi cable: The cable consists of 36 strands of superconducting wire, each strand has a diameter of 0.825 mm and houses 6300 superconducting filaments of niobium-titanium (Nb-Ti, a superconducting alloy). Each filament has a diameter of about 0.006 mm, i.e. 10 times smaller than a typical human hair. The filaments are embedded in a high-purity copper matrix. Copper is a normal conducting material. The filaments are in the superconductive state when the temperature is below about -263ºC (10.15 K). When the filaments leave the superconductive state, the copper acts as conductor transports the electrical current. Each strand of The NbTi cable (at superconducting state) has a current density of up to above 2000 A/mm2 at 9 T and -271ºC (2.15 K). A cable transport a current of about 13000 A at 10 T and -271ºC (2.15 K). About LHC superconducting wiring: The high magnetic fields needed for the LHC can only be reached using superconductors. At very low temperatures, superconductors have no electrical resista...

  4. Sample of superconducting wiring (Niobium Titanium)

    CERN Multimedia

    About NbTi cable: The cable consists of 36 strands of superconducting wire, each strand has a diameter of 0.825 mm and houses 6300 superconducting filaments of niobium-titanium (Nb-Ti, a superconducting alloy). Each filament has a diameter of about 0.006 mm, i.e. 10 times smaller than a typical human hair. The filaments are embedded in a high-purity copper matrix. Copper is a normal conducting material. The filaments are in the superconductive state when the temperature is below about -263ºC (10.15 K). When the filaments leave the superconductive state, the copper acts as conductor transports the electrical current. Each strand of The NbTi cable (at superconducting state) has a current density of up to above 2000 A/mm2 at 9 T and -271ºC (2.15 K). A cable transport a current of about 13000 A at 10 T and -271ºC (2.15 K). About LHC superconducting wiring: The high magnetic fields needed for the LHC can only be reached using superconductors. At very low temperatures, superconductors have no electrical resistan...

  5. Increased stability in laser metal wire deposition through feedback from optical measurements

    Science.gov (United States)

    Heralić, Almir; Christiansson, Anna-Karin; Ottosson, Mattias; Lennartson, Bengt

    2010-04-01

    Robotized laser metal-wire deposition is a fairly new technique being developed at University West in cooperation with Swedish industry for solid freeform fabrication of fully densed metal structures. It is developed around a standard welding cell and uses robotized fiber laser welding and wire filler material together with a layered manufacturing method to create metal structures. In this work a monitoring system, comprising two cameras and a projected laser line, is developed for on-line control of the deposition process. The controller is a combination of a PI-controller for the bead width and a feed-forward compensator for the bead height. It is evaluated through deposition of single-bead walls, and the results show that the process stability is improved when the proposed controller is used.

  6. Arc Interference Behavior during Twin Wire Gas Metal Arc Welding Process

    Directory of Open Access Journals (Sweden)

    Dingjian Ye

    2013-01-01

    Full Text Available In order to study arc interference behavior during twin wire gas metal arc welding process, the synchronous acquisition system has been established to acquire instantaneous information of arc profile including dynamic arc length variation as well as relative voltage and current signals. The results show that after trailing arc (T-arc is added to the middle arc (M-arc in a stable welding process, the current of M arc remains unchanged while the agitation increases; the voltage of M arc has an obvious increase; the shape of M arc changes, with increasing width, length, and area; the transfer frequency of M arc droplet increases and the droplet itself becomes smaller. The wire extension length of twin arc turns out to be shorter than that of single arc welding.

  7. Three Distinct Deformation Behaviors of Cementite Lamellae in a Cold-Drawn Pearlitic Wire

    Science.gov (United States)

    Xin, Tuo; Liu, Guiju; Liang, Wenshuang; Cai, Rongsheng; Feng, Honglei; Li, Chen; Li, Jian; Wang, Yiqian

    2018-03-01

    High-resolution transmission electron microscopy is used to investigate the deformation behaviors of cementite lamellae in the heavily cold-drawn piano wires. Three distinct morphologies of cementite are observed, namely, complete lamella, partly-broken lamella and nearly-disappeared lamella. For the complete cementite lamella, it remains a single-crystalline structure. For the partly-broken cementite lamella, polycrystalline structure and neck-down region appear to release the residual strain. The lattice expansion of ferrite takes place in two perpendicular directions indicating that the carbon atoms dissolve from cementite into ferrite lattices. An orientation relationship is found between ferrite and cementite phases in the cold-drawn pearlitic wire.

  8. Pool boiling heat transfer on thin wire in nitrogen-tetrafluoromethane mixtures

    International Nuclear Information System (INIS)

    Amano, Toshiyuki.

    1993-01-01

    Nucleate and film pool boiling heat transfer, critical heat fluxes, and minimum heat fluxes for nitrogen, tetrafluoromethane, and their mixtures were measured on a thin wire. The orientation of the wire was either horizontal or vertical. Critical heat fluxes and minimum heat fluxes for the mixtures in any concentration were larger than those for liquid nitrogen. The heat flux in nucleate boiling regimes for mixtures was represented well by an experimental formula. For a single-component liquid, transition from nucleate boiling to film boiling was observed for a stepwise heat input and rapid heating. It was found that there was no such transition for mixtures in contrast to the pure component. The nitrogen-tetrafluoromethane mixtures are recommended for use as cryogens of oxide superconductors having critical temperature higher than 110 K

  9. Broadband spectroscopy of magnetic response in a nano-scale magnetic wire

    Science.gov (United States)

    Yamaguchi, A.; Motoi, K.; Miyajima, H.; Utsumi, Y.

    2014-09-01

    We measure the broadband spectra of magnetic response in a single layered ferromagnetic nano-scale wire in order to investigate the size effect on the ferromagnetic resonance. We found that the resonance frequency difference between 300-nm- and 5-μm-wide wires was varied by about 5 GHz due to the shape anisotropy. Furthermore, we experimentally detected the magnetization precession induced by the thermal fluctuation via the rectification of a radio-frequency (rf) current by incorporating an additional direct current (dc) by using Wheatstone bridge circuit. Our investigation renders that the shape anisotropy is of great importance to control the resonance frequency and to provide thermal stability of the microwave devices.

  10. Numerical model for electrical explosion of copper wires in water

    Science.gov (United States)

    Chung, Kyoung-Jae; Lee, Kern; Hwang, Y. S.; Kim, Deok-Kyu

    2016-11-01

    This paper presents a simple but quite accurate numerical model for analyzing electrical explosion of copper wires in water. The numerical model solves a circuit equation coupled with one-dimensional magneto-hydrodynamic (MHD) equations with the help of appropriate wide-range equation of state (EOS) and electrical conductivity for copper. The MHD equations are formulated in a Lagrangian form to identify the interface between the wire and surrounding water clearly. A quotidian EOS (QEOS) that is known as the simplest form of EOS is utilized to build wide-range EOS for copper. In the QEOS, we consider the liquid-vapor phase transition, which is critical in analyzing the wire explosion system. For the electrical conductivity of copper, a semi-empirical set of equations covering from solid state to partially ionized plasma state are employed. Experimental validation has been performed with copper wires of various diameters, which are exploded by a microsecond timescale pulsed capacitive discharge. The simulation results show excellent agreements with the experimental results in terms of temporal motions of a plasma channel boundary and a shock front as well as current and voltage waveforms. It is found that the wire explodes (vaporizes) along the liquid branch of a binodal curve irrespective of wire dimension and operating voltage. After the explosion, the wire becomes a plasma state right away or after the current pause (dwell), depending on the operating conditions. It is worth noting that such a peculiar characteristic of wire explosion, i.e., current pause and restrike, is well simulated with the present numerical model. In particular, it is shown that the wire cools down along the vapor branch of the binodal curve during the current dwell, due to a significant difference of thermodynamic characteristics across the binodal curve. The influence of radiation for studying nonideal plasmas with a wire explosion technique and a physical process for shock wave formation

  11. [Separate vertical wiring combined with tension band and Kirschner-wire plus cerclage wire in the treatment of displaced inferior pole fractures of the patella].

    Science.gov (United States)

    Zhang, J; Jiang, X Y; Huang, X W

    2016-06-18

    To investigate the clinical efficacy and outcomes of two separate vertical wiring combined with tension band and Kirschner-wire plus cerclage wire in the treatment of displaced inferior pole fractures of the patella. From January 2013 to January 2015, 15 consecutive patients (mean age 54.5 years) with inferior pole fractures of the patella were retrospectively included in this study. All the patients underwent open reduction and internal fixation by separate vertical wiring combined with tension band and Kirschner-wire plus cerclage wire through longitudinal incision, 4.5 d (range: 3.1-5.9 d) after initial injury. A safety check for early knee range of motion was performed before wound closure. The complications including infection, nonunion, loss of fixation and any wire breakage or irritation from implant were recorded. Anteroposterior and lateral views of the knee joint obtained during the follow-up were used to assess bony union based on the time when the fracture line disappeared. At the time of the final outpatient follow up, functional evaluation of the knee joint was conducted by Bostman system. The follow-up time was 13.1 months (range: 12-19 months) after surgery on average, immediate motion without immobilization in all the cases was allowed and there was no case of reduction loss of the fracture and wire breakage. There was no case of irritation from the implant. At the final follow-up, the average range of motion (ROM) arc was 126.7° (range: 115°-140°), the average ROM lag versus contralateral healthy leg was 10.3° (range: 0°-35°). The mean Bostman score at the last follow-up was 28.9 (range: 27-30), and graded excellent in most cases. Two separate vertical wiring is an easy and effective method to reduce the displaced inferior pole fracture of patella. Augmentation of separate vertical wiring with tension band and Kirschner-wire plus cerclage wire in these patients provides enough strength to protected the early exercise of the knee joint and

  12. A KBE Application for Automatic Aircraft Wire Harness Routing

    NARCIS (Netherlands)

    Zhu, Z.; Van Tooren, M.J.L.; La Rocca, G.

    2012-01-01

    Wire harness design is an increasingly complex task. Knowledge Based Engineering (KBE) and optimization techniques can be used to support designers in handling this complexity. The wire harness design process can be divided in three main parts, namely electrical design, configuration design and

  13. Wiring the Schools: South Dakota Does It Right.

    Science.gov (United States)

    Christensen, Ray

    2001-01-01

    Describes a statewide project in South Dakota to wire its elementary and secondary school classrooms for distance education courses. Discusses the use of minimum-security inmates from state prisons to do the wiring; the rural environment; the governor's role; upgrading the electrical infrastructure; security concerns; political issues; inmate…

  14. Tension band wiring fi xation is associated with good functional ...

    African Journals Online (AJOL)

    Background: Tension band wiring (TBW) is a widely accepted technique for olecranon fractures. Various investigators have reported a significant rate of complications especially hardware prominence. The purpose of this study was to determine the clinical and radiological outcome after tension band wiring of olecranon ...

  15. Wave-to-wire Modelling of Wave Energy Converters

    DEFF Research Database (Denmark)

    Ferri, Francesco

    applicable, efficient and reliable wave-to-wire model tool is needed. A wave-to-wire model identifies the relation from the source of energy of a particular location to the expected device productivity. The latter being expressed in terms of electricity fed into the grid. The model needs to output a coarse...

  16. 46 CFR 120.340 - Cable and wiring requirements.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Cable and wiring requirements. 120.340 Section 120.340 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... INSTALLATION Power Sources and Distribution Systems § 120.340 Cable and wiring requirements. (a) If individual...

  17. 24 CFR 3280.814 - Painting of wiring.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Painting of wiring. 3280.814 Section 3280.814 Housing and Urban Development Regulations Relating to Housing and Urban Development... Painting of wiring. During painting or staining of the manufactured home, it shall be permitted to paint...

  18. 46 CFR 183.340 - Cable and wiring requirements.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Cable and wiring requirements. 183.340 Section 183.340 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.340 Cable and wiring...

  19. 78 FR 7452 - Steel Wire Garment Hangers From Vietnam; Determinations

    Science.gov (United States)

    2013-02-01

    ...), that an industry in the United States is materially injured by reason of imports of steel wire garment... Garment Hangers From Vietnam; Determinations On the basis of the record \\1\\ developed in the subject... duty orders on steel wire garment hangers from Vietnam. Background The Commission instituted these...

  20. 77 FR 72884 - Steel Wire Garment Hangers From Taiwan

    Science.gov (United States)

    2012-12-06

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-1197 (Final)] Steel Wire Garment Hangers... Tariff Act of 1930 (19 U.S.C. 1673d(b)) (the Act), that an industry in the United States is materially injured by reason of imports of steel wire garment hangers from Taiwan, provided for in subheading 7326.20...

  1. Development of the Cylindrical Wire Electrical Discharge Machining Process.

    Energy Technology Data Exchange (ETDEWEB)

    McSpadden, SB

    2002-01-22

    Results of applying the wire Electrical Discharge Machining (EDM) process to generate precise cylindrical forms on hard, difficult-to-machine materials are presented. A precise, flexible, and corrosion-resistant underwater rotary spindle was designed and added to a conventional two-axis wire EDM machine to enable the generation of free-form cylindrical geometries. A detailed spindle error analysis identifies the major source of error at different frequency. The mathematical model for the material removal of cylindrical wire EDM process is derived. Experiments were conducted to explore the maximum material removal rate for cylindrical and 2D wire EDM of carbide and brass work-materials. Compared to the 2D wire EDM, higher maximum material removal rates may be achieved in the cylindrical wire EDM. This study also investigates the surface integrity and roundness of parts created by the cylindrical wire EDM process. For carbide parts, an arithmetic average surface roughness and roundness as low as 0.68 and 1.7 {micro}m, respectively, can be achieved. Surfaces of the cylindrical EDM parts were examined using Scanning Electron Microscopy (SEM) to identify the craters, sub-surface recast layers and heat-affected zones under various process parameters. This study has demonstrated that the cylindrical wire EDM process parameters can be adjusted to achieve either high material removal rate or good surface integrity.

  2. Optimum driving of magnetostrictive amorphous wire micro-motor

    International Nuclear Information System (INIS)

    Takezawa, Masaaki; Ishizaki, Yuichi; Honda, Takashi; Yamasaki, Jiro

    2004-01-01

    Characteristics of a magnetostrictive vibration micro-motor were investigated in relation to a supporting position of a magnetostrictive amorphous wire for optimization of the motor. It was found that a vibration of the wire resembled a vibration mode of both ends free and a maximum rotational speed was obtained by supporting the nodes of vibration

  3. Notched K-wire for low thermal damage bone drilling.

    Science.gov (United States)

    Liu, Yao; Belmont, Barry; Wang, Yiwen; Tai, Bruce; Holmes, James; Shih, Albert

    2017-07-01

    The Kirschner wire (K-wire) is a common bone drilling tool in orthopedic surgery to affix fractured bone. Significant heat is produced due to both the cutting and the friction between the K-wire and the bone debris during drilling. Such heat can result in high temperatures, leading to osteonecrosis and other secondary injuries. To reduce thermal injury and other high-temperature associated complications, a new K-wire design with three notches along the three-plane trocar tip fabricated using a thin micro-saw tool is studied. These notches evacuate bone debris and reduce the clogging and heat generation during bone drilling. A set of four K-wires, one without notches and three notched, with depths of 0.5, 0.75, and 1mm, are evaluated. Bone drilling experiments conducted on bovine cortical bone show that notched K-wires could effectively decrease the temperature, thrust force, and torque during bone drilling. K-wires with notches 1mm deep reduced the thrust force and torque by approximately 30%, reduced peak temperatures by 43%, and eliminated blackened burn marks in bone. This study demonstrates that a simple modification of the tip of K-wires can effectively reduce bone temperatures during drilling. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  4. 30 CFR 75.516 - Power wires; support.

    Science.gov (United States)

    2010-07-01

    .... All power wires (except trailing cables on mobile equipment, specially designed cables conducting high-voltage power to underground rectifying equipment or transformers, or bare or insulated ground and return... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Power wires; support. 75.516 Section 75.516...

  5. Liquid Metal Machine Triggered Violin-Like Wire Oscillator.

    Science.gov (United States)

    Yuan, Bin; Wang, Lei; Yang, Xiaohu; Ding, Yujie; Tan, Sicong; Yi, Liting; He, Zhizhu; Liu, Jing

    2016-10-01

    The first ever oscillation phenomenon of a copper wire embraced inside a self-powered liquid metal machine is discovered. When contacting a copper wire to liquid metal machine, it would be swallowed inside and then reciprocally moves back and forth, just like a violin bow. Such oscillation could be easily regulated by touching a steel needle on the liquid metal surface.

  6. Loss of Guide Wire: A Lesson Learnt Review of Literature

    African Journals Online (AJOL)

    was stabilized, she underwent chest X-ray, plain abdominal radiography, and ultrasonography and the patient was .... Figure 1: Chest X-ray showing guide wire of catheter had entered in the inferior vena cava (IVC) via the right .... Consider a guide wire to be a delicate and fragile instrument. • When resistance to insertion is ...

  7. Multi responses optimization of wire EDM process parameters using ...

    African Journals Online (AJOL)

    The wire EDM was known as for its better efficiency to machining hardest material and give precise and accurate result comparing to other machining process. The intent of this experimental paper is to optimize the machining parameters of Wire Electrical Discharge Machining (WEDM) on En45A Alloy Steel with the ...

  8. Safe corridors for K-wiring in phalangeal fractures

    Directory of Open Access Journals (Sweden)

    C Rex

    2015-01-01

    Conclusion: K-wiring through the safe corridor has proved to yield the best clinical results because of least tethering of soft tissues as evidenced by performing "on-table active finger movement test" at the time of surgery. We strongly recommend K-wiring through safe portals in all phalangeal fractures.

  9. Low temperature annealing of cold-drawn pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Bech, Jakob Ilsted; Hansen, Niels

    2015-01-01

    Cold-drawn pearlitic steel wires are nanostructured and the flow stress at room temperature can reach values above 6 GPa. A typical characteristic of the nanostructured metals, is the low ductility and thermal stability. In order to optimize both the processing and application of the wires, the t...

  10. Representations of Education in HBO's "The Wire", Season 4

    Science.gov (United States)

    Trier, James

    2010-01-01

    "The Wire" is a crime drama that aired for five seasons on the Home Box Office (HBO) cable channel from 2002-2008. The entire series is set in Baltimore, Maryland, and as Kinder (2008) points out, "Each season "The Wire" shifts focus to a different segment of society: the drug wars, the docks, city politics, education, and the media" (p. 52). In…

  11. Water-cooled grid ''wires'' for direct converters

    International Nuclear Information System (INIS)

    Schwer, C.J.

    1976-01-01

    A study was conducted to determine the feasibility of internal convective cooling of grid ''wires'' for direct converters. Detailed computer calculations reveal that the use of small diameter water cooled tubes as grid ''wires'' is feasible for a considerable range of lengths and thermal fluxes

  12. Recent development of drastically innovative BSCCO wire (DI-BISCCO)

    International Nuclear Information System (INIS)

    Kikuchi, M.; Kato, T.; Ohkura, K.; Ayai, N.; Fujikami, J.; Fujino, K.; Kobayashi, S.; Ueno, E.; Yamazaki, K.; Yamade, S.; Hayashi, K.; Sato, K.; Nagai, T.; Matsui, Y.

    2006-01-01

    Up to this day, Ag-sheathed Bi2223 superconducting wires have been widely investigated and the long wires about 1000 m have been produced by using powder-in-tube (PIT) method on a commercial basis in the various facilities or companies. Although the wires are used for some applications such as HTS cables, magnets, motor and so on, the Bi2223 wires not only require much more improvements of the superconducting properties such as critical current, mechanical properties, but also longer and more uniform wires. Recently, the performances of Bi2223 wires have been drastically improved by using Controlled Over Pressure (CT-OP) sintering process. CT-OP process increased critical current (I c ) by more than 60% at 77 K and self field and improved the mechanical strength by more than 70%. The maximum I c was increased up to 166 A. These drastic improvements were caused by the higher density of Bi2223 filament up to almost 100% and better connectivity of the Bi2223 grains. The dense structure of the Bi2223 filaments prevents the ballooning phenomenon which is caused by the gasification of the trapped liquid nitrogen during temperature rise. Additionally, higher uniformity and higher production yield of long length wire were also achieved by exterminating defects during sintering. These high performance levels in CT-OP wires have contributed commercial level applications. We call as Drastically Innovative BSCCO (DI-BSCCO)

  13. Ultrasound-guided wire localization of lesions detected on ...

    African Journals Online (AJOL)

    Background: Wire localization for planned surgical treatment in the management of breast cancer is underutilized in our environment. The objective of this study is to assess the role of ultrasound-guided wire localization of breast masses detected on screening mammography and its impact on biopsy and breast ...

  14. Exciton dephasing in ZnSe quantum wires

    DEFF Research Database (Denmark)

    Wagner, Hans Peter; Langbein, Wolfgang Werner; Hvam, Jørn Märcher

    1998-01-01

    The homogeneous linewidths of excitons in wet-etched ZnSe quantum wires of lateral sizes down to 23 nm are studied by transient four-wave mixing. The low-density dephasing time is found to increase with decreasing wire width. This is attributed mainly to a reduction of electron-exciton scattering...

  15. Crewmember repairing the Regenerative Carbon Dioxide Removal System wiring.

    Science.gov (United States)

    1992-01-01

    Mission Pilot Ken Bowersox, busy at work on the wiring harness for the Regenerative Carbon Dioxide Removal System located under the mid deck floor. Photo shows Bowersox splicing wires together to 'fool' a faulty sensor that caused the 'air conditioner' to shut down.

  16. Hierarchical structures in cold-drawn pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Godfrey, Andrew; Hansen, Niels

    2013-01-01

    The microstructure and crystallography of drawn pearlitic steel wires have been quantified by a number of electron microscopy techniques including scanning electron microscopy, transmission electron microscopy, electron backscatter diffraction and nanobeam diffraction, with focus on the change...... in the structure and crystallography when a randomly oriented cementite structure in a patented wire during wire drawing is transformed into a lamellar structure parallel to the drawing axis. Changes in the interlamellar spacing and in the misorientation angle along and across the ferrite lamellae show significant...... through-diameter variations in wires drawn to large strains P 1.5. The structural evolution is hierarchical as the structural variations have their cause in a different macroscopic orientation of the cementite in the initial (patented) structure with respect to the wire axis. The through...

  17. Towards slide enhancement with the titanium-molybdenum wire?

    Science.gov (United States)

    Thiry, Pol; Barthélémi, Stéphane

    2010-12-01

    This study aims to improve the tribological properties of titanium-molybdenum wire. Following an analysis of the wire/bracket/ligation friction parameters and an overview of the technological research into means of reducing such friction,we set up several types of surface treatment in the laboratory by physical deposition in the vapor phase and using cold plasma technology. The specimens obtained underwent two types of tribological tests and were then subjected to traction and bending tests in order to determine the variations in their mechanical properties induced by the different types of treatment. For purposes of comparison, all the tests were conducted on untreated wire, TMA® Low-friction® wire and stainless steel wire and with two types of elastomeric ties. We were able to demonstrate some remarkable slide performances obtained using cold plasma nitriding while preserving the mechanical properties. A significant difference was observed relative to the other surface treatments.

  18. Method and apparatus for diamond wire cutting of metal structures

    Science.gov (United States)

    Parsells, Robert; Gettelfinger, Geoff; Perry, Erik; Rule, Keith

    2005-04-19

    A method and apparatus for diamond wire cutting of metal structures, such as nuclear reactor vessels, is provided. A diamond wire saw having a plurality of diamond beads with beveled or chamfered edges is provided for sawing into the walls of the metal structure. The diamond wire is guided by a plurality of support structures allowing for a multitude of different cuts. The diamond wire is cleaned and cooled by CO.sub.2 during the cutting process to prevent breakage of the wire and provide efficient cutting. Concrete can be provided within the metal structure to enhance cutting efficiency and reduce airborne contaminants. The invention can be remotely controlled to reduce exposure of workers to radioactivity and other hazards.

  19. Development of environmental-friendly wire and cable

    International Nuclear Information System (INIS)

    Ueno, Keiji

    1996-01-01

    The electron beam technology has been used in many industrial fields as a method of conventional polymer modification or optimum processability. The main industrial fields of radiation crosslinking are wire and cable, heat shrinkable tubings, plastic foams, precuring of tires, floppy disk curing, foods packaging films, and so on. The radiation crosslinking of wire and cable was started in 1961 in Japan and 15 wire and cable companies are now using electron beam accelerators for production or R and D. The dominant characteristics of crosslinking of insulation materials are application at high temperature, good oil and chemical resistibility and high mechanical properties. These radiation crosslinking wire and cable are applied widely in electronics equipments and automobiles. Recently, electronics manufacturers have indicated deep concern over the effects on the environment. Wire and cable also are required to be applicable for environmental preservation. (J.P.N.)

  20. Dynamic breaking of a single gold bond

    DEFF Research Database (Denmark)

    Pobelov, Ilya V.; Lauritzen, Kasper Primdal; Yoshida, Koji

    2017-01-01

    of a single Au-Au bond and show that the breaking force is dependent on the loading rate. We probe the temperature and structural dependencies of breaking and suggest that the paradox can be explained by fast breaking of atomic wires and slow breaking of point contacts giving very similar breaking forces....

  1. Magnetic domain propagation in Pt/Co/Pt micro wires with engineered coercivity gradients along and across the wire

    Energy Technology Data Exchange (ETDEWEB)

    Jarosz, A., E-mail: arctgh@ifmpan.poznan.pl [Institute of Molecular Physics, Polish Academy of Sciences, ul. M. Smoluchowskiego 17, 60-179 Poznań (Poland); Gaul, A. [Department of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel (Germany); Urbaniak, M. [Institute of Molecular Physics, Polish Academy of Sciences, ul. M. Smoluchowskiego 17, 60-179 Poznań (Poland); Ehresmann, A. [Department of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel (Germany); Stobiecki, F. [Institute of Molecular Physics, Polish Academy of Sciences, ul. M. Smoluchowskiego 17, 60-179 Poznań (Poland)

    2017-08-01

    Highlights: • Electron lithography and ion bombardment were used to modify the Co/Pt micro-wires. • Two-dimensional perpendicular magnetic anisotropy gradient was engineered. • Engineered anisotropy gradient allowed to control domain wall positions in the wires. • Simulations confirm the influence of defects on a remanent state of the wires. - Abstract: Pt(15 nm)/[Co(0.6 nm)/Pt(1.5 nm)]{sub 4} multilayers with perpendicular magnetic anisotropy were patterned into several-micrometer wide wires by electron-beam lithography. Bombarding the wires with He{sup +} ions with a fluence gradient along the wire results in a spatial gradient of switching fields that allows a controllable positioning of domain walls. The influence of the reduced anisotropy near the wire edges causes a remanent state in which the reversal close to the long edges precedes that in the middle of the wires. Experiments using Kerr microscopy prove this effect and micromagnetic simulations corroborate that a decrease of the anisotropy at the edges is responsible for the effect.

  2. Thermal instability during an electrical wire explosion

    International Nuclear Information System (INIS)

    Oreshkin, V. I.

    2008-01-01

    The development of thermal instabilities during an electrical wire explosion is analyzed in the present work based on the methods of small perturbation theory. For two cases, with and without allowance for motion, the dispersion equations are derived that describe a relationship between the instantaneous buildup increment and the axial wave vector component. It is demonstrated that the thermal instabilities are always formed during electrical explosion, irrespective of the explosion mode. There are three destabilizing factors leading to the development of the thermal instabilities: a temperature rise, an increase in the specific resistance with increasing temperature, and an increase in the specific resistance with decreasing density. The critical value of current density below which the sausage instabilities grow faster than the thermal ones and above which, on the contrary, the thermal instabilities are dominant can be found for each metal.

  3. Thermal instability during an electrical wire explosion

    Science.gov (United States)

    Oreshkin, V. I.

    2008-09-01

    The development of thermal instabilities during an electrical wire explosion is analyzed in the present work based on the methods of small perturbation theory. For two cases, with and without allowance for motion, the dispersion equations are derived that describe a relationship between the instantaneous buildup increment and the axial wave vector component. It is demonstrated that the thermal instabilities are always formed during electrical explosion, irrespective of the explosion mode. There are three destabilizing factors leading to the development of the thermal instabilities: a temperature rise, an increase in the specific resistance with increasing temperature, and an increase in the specific resistance with decreasing density. The critical value of current density below which the sausage instabilities grow faster than the thermal ones and above which, on the contrary, the thermal instabilities are dominant can be found for each metal.

  4. Step by Step Design of a High Order Power Filter for Three-Phase Three-Wire Grid-connected Inverter in Renewable Energy System

    DEFF Research Database (Denmark)

    Huang, Min; Blaabjerg, Frede; Yang, Yongheng

    2013-01-01

    Traditionally, when designing an LCL-filter, a three-phase inverter is simplified as a single-phase inverter for analysis and the output phase voltage is used to calculate the inverter-side current harmonics and to design inverter-side inductor. However, for a three-phase three-wire grid-tied sys......Traditionally, when designing an LCL-filter, a three-phase inverter is simplified as a single-phase inverter for analysis and the output phase voltage is used to calculate the inverter-side current harmonics and to design inverter-side inductor. However, for a three-phase three-wire grid...

  5. Arthrodesis of distal interphalangeal joints in the hand with interosseous wiring and intramedullary K-wire fixation.

    Science.gov (United States)

    Han, Soo Hong; Cha, Yoon Sik; Song, Won Tae

    2014-12-01

    To evaluate the efficacy of intramedullary K-wire fixation and interosseous wiring in the arthrodesis of the distal interphalangeal (DIP) joint with description of surgical procedure. We retrospectively analyzed 9 cases (7 women and 2 men) of DIP joint arthrodesis. The average age of patients was 44.2 years (range, 21 to 71 years) and the mean follow-up period was 19.6 months. Joint union was evaluated on the follow-up radiographs together with postoperative complications. All cases achieved radiologic union of the arthrodesis site. There was no surgical complication except for one case of skin irritation by the interosseous wire knot which was removed during the follow-up period. Intramedullary K-wire fixation and interosseous wiring could be an alternative procedure of arthrodesis in the DIP joint.

  6. The role of temperature in copper wire drawing

    Science.gov (United States)

    Noseda, Corrado

    Wire is produced by drawing, which consists of pulling a rod of the material to be processed through a series of funnel-shaped holes, or dies, of decreasing size. Drawing involves plastic deformation and friction within the contact zone between the wire and the die. These occurrences contribute to the generation of heat in the wire, which may affect its final properties. High drawing speeds and the use of several dies in one production line---to improve productivity---may accentuate heating to a point where recrystallization of the wire material sets in and its properties are affected. Also, excessive temperatures may lead to an accelerated deterioration of the lubricants used, to the point that the optimum lubrication mechanism is no longer prevailing, with consequent negative effects on the surface quality of the processed wire. A number of analytical models estimating the temperature increase in drawn wires, due to the dissipation of plastic deformation energy and to the friction between wire and die, were reviewed. While all models agree on the contribution of plastic deformation to heating, some discrepancies exist as to the effect of friction. The original treatment, developed in Germany in 1943, provided slightly higher peak temperature values than other models for the parameters used in the calculations, which are simulative of commercial practice on copper wire. A finite element study conducted in the framework of this research showed that the axial heat flow within the wire, which was assumed to be negligible in the reviewed analytical theories, could, in fact, not be disregarded. It also showed that a purely isothermal process cannot be obtained in practice, whatever adjustment of the process parameters is undertaken. In order to unequivocally correlate the effects of heating on the properties of wire and the temperature it experiences during commercial drawing, electrolytic tough pitch copper wire was drawn under independently controlled, quasi

  7. Genetic Control of Wiring Specificity in the Fly Olfactory System

    Science.gov (United States)

    Hong, Weizhe; Luo, Liqun

    2014-01-01

    Precise connections established between pre- and postsynaptic partners during development are essential for the proper function of the nervous system. The olfactory system detects a wide variety of odorants and processes the information in a precisely connected neural circuit. A common feature of the olfactory systems from insects to mammals is that the olfactory receptor neurons (ORNs) expressing the same odorant receptor make one-to-one connections with a single class of second-order olfactory projection neurons (PNs). This represents one of the most striking examples of targeting specificity in developmental neurobiology. Recent studies have uncovered central roles of transmembrane and secreted proteins in organizing this one-to-one connection specificity in the olfactory system. Here, we review recent advances in the understanding of how this wiring specificity is genetically controlled and focus on the mechanisms by which transmembrane and secreted proteins regulate different stages of the Drosophila olfactory circuit assembly in a coordinated manner. We also discuss how combinatorial coding, redundancy, and error-correcting ability could contribute to constructing a complex neural circuit in general. PMID:24395823

  8. Toward a Reduced-Wire Readout System for Ultrasound Imaging

    Science.gov (United States)

    Lim, Jaemyung; Arkan, Evren F.; Degertekin, F. Levent; Ghovanloo, Maysam

    2015-01-01

    We present a system-on-a-chip (SoC) for use in high-frequency capacitive micromachined ultrasonic transducer (CMUT) imaging systems. This SoC consists of trans-impedance amplifiers (TIA), delay locked loop (DLL) based clock multiplier, quadrature sampler, and pulse width modulator (PWM). The SoC down converts RF echo signal to baseband by quadrature sampling which facilitates modulation. To send data through a 1.6 m wire in the catheter which has limited bandwidth and is vulnerable to noise, the SoC creates a pseudo-digital PWM signal which can be used for back telemetry or wireless readout of the RF data. In this implementation, using a 0.35-μm std. CMOS process, the TIA and single-to-differential (STD) converter had 45 MHz bandwidth, the quadrature sampler had 10.1 dB conversion gain, and the PWM had 5-bit ENoB. Preliminary results verified front-end functionality, and the power consumption of a TIA, STD, quadrature sampler, PWM, and clock multiplier was 26 mW from a 3 V supply. PMID:25571135

  9. Wire array K-shell sources on the SPHINX generator

    Science.gov (United States)

    D'Almeida, Thierry; Lassalle, Francis; Grunenwald, Julien; Maury, Patrick; Zucchini, Frédéric; Niasse, Nicolas; Chittenden, Jeremy

    2014-10-01

    The SPHINX machine is a LTD based Z-pinch driver operated by the CEA Gramat (France) and primarily used for studying K-shell radiation effects. We present the results of experiments carried out with single and nested large diameter aluminium wire array loads driven by a current of ~5 MA in ~800 ns. The dynamic of the implosion is studied with filtered X-UV time-integrated pin-hole cameras. The plasma electron temperature and the characteristics of the sources are estimated with time and spatially dependent spectrographs and PCDs. It is shown that Al K-shell yields (>1 keV) up to 27 kJ are obtained for a total radiation of ~ 230 kJ. These results are compared with simulations performed using the latest implementation of the non-LTE DCA code Spk in the 3D Eulerian MHD framework Gorgon developed at Imperial College. Filtered synthetic bolometers and PCD signals, time-dependent spatially integrated spectra and X-UV images are produced and show a good agreement with the experimental data. The capabilities of a prospective SPHINX II machine (20 MA ~ 800 ns) are also assessed for a wider variety of sources (Ti, Cu and W).

  10. Connecting electrodes with light: one wire, many electrodes.

    Science.gov (United States)

    Choudhury, Moinul H; Ciampi, Simone; Yang, Ying; Tavallaie, Roya; Zhu, Ying; Zarei, Leila; Gonçales, Vinicius R; Gooding, J Justin

    2015-12-01

    The requirement of a wire to each electrode is central to the design of any electronic device but can also be a major restriction. For example it entails space restrictions and rigid device architecture in multi-electrode devices. The finite space that is taken up by the array of electrical terminals and conductive pads also severely limits the achievable density of electrodes in the device. Here it is shown that a travelling light pointer can be used to form transient electrical connections anywhere on a monolithic semiconductor electrode that is fitted with a single peripheral electrical terminal. This is achieved using hydrogen terminated silicon electrodes that are modified with well-defined organic monolayers. It is shown that electrochemical information can be either read from or written onto these surfaces. Using this concept it is possible to form devices that are equivalent to a conventional electrode array but that do not require a predetermined architecture, and where each element of the array is temporally "connected" using light stimulus; a step change in capability for electrochemistry.

  11. Primary experimental results of wire-array Z-pinches on PTS

    Science.gov (United States)

    Huang, X. B.; Zhou, S. T.; Ren, X. D.; Dan, J. K.; Wang, K. L.; Zhang, S. Q.; Li, J.; Xu, Q.; Cai, H. C.; Duan, S. C.; Ouyang, K.; Chen, G. H.; Ji, C.; Wang, M.; Feng, S. P.; Yang, L. B.; Xie, W. P.; Deng, J. J.

    2014-12-01

    The Primary Test Stand (PTS) developed at the China Academy of Engineering Physics is a multiterawatt pulsed power driver, which can deliver a ˜10 MA, 70 ns rise-time (10%-90%) current to a short circuit load and has important applications in Z-pinch driven inertial confinement fusion and high energy density physics. In this paper, primary results of tungsten wire-array Z-pinch experiments on PTS are presented. The load geometries investigated include 15-mm-tall cylindrical single and nested arrays with diameter ranging from 14.4-26.4 mm, and consisting of 132˜276 tungsten wires with 5˜10 μm in diameter. Multiple diagnostics were fielded to determine the characteristics of x-ray radiations and to obtain self-emitting images of imploding plasmas. X-ray power up to 80 TW with ˜3 ns FWMH is achieved by using nested wire arrays. The total x-ray energy exceeds 500 kJ and the peak radiation temperature is about 150 eV. Typical velocity of imploding plasmas goes around 3˜5×107 cm/s and the radial convergence ratio is between 10 and 20.

  12. A Transflective Nano-Wire Grid Polarizer Based Fiber-Optic Sensor

    Directory of Open Access Journals (Sweden)

    Yan-Qing Lu

    2011-02-01

    Full Text Available A transflective nano-wire grid polarizer is fabricated on a single mode fiber tip by focused ion beam machining. In contrast to conventional absorptive in-line polarizers, the wire grids reflect TE-mode, while transmitting TM-mode light so that no light power is discarded. A reflection contrast of 13.7 dB and a transmission contrast of 4.9 dB are achieved in the 1,550 nm telecom band using a 200-nm wire grid fiber polarizer. With the help of an optic circulator, the polarization states of both the transmissive and reflective lights in the fiber may be monitored simultaneously. A kind of robust fiber optic sensor is thus proposed that could withstand light power variations. To verify the idea, a fiber pressure sensor with the sensitivity of 0.24 rad/N is demonstrated. The corresponding stress-optic coefficient of the fiber is measured. In addition to pressure sensing, this technology could be applied in detecting any polarization state change induced by magnetic fields, electric currents and so on.

  13. Multi-Dimensional Radiation Transport in Dense Z-pinch Wire Array Plasmas

    Science.gov (United States)

    Jennings, C. A.; Chittenden, J. P.; Ciardi, A.; Sherlock, M.; Lebedev, S. V.

    2004-11-01

    Z-pinch wire arrays have proven to be an extremely efficient high yield, short pulse x-ray source with potential application to ICF. The characteristics of the x-ray pulse produced have been shown to be largely determined by non-uniform break up of the wires leading to a highly irregular distribution of mass which implodes towards the axis. Modelling the inherent 3D nature of these plasmas is already computationally very expensive, and so energy exchange through radiation is frequently neglected, assuming instead an optically thin radiation loss model. With a significant fraction of the total energy at late stages being radiated through a dense, optically thick plasma this approach is potentially inadequate in fully describing the implosion. We analyse the effects of radiative cooling and radiation transport on stagnation and precursor development in wire array z-pinch implosions. A three temperature multidimensional MHD code using a single group radiation diffusion model is used to study radiation trapping in the precursor, and the effects of preheating on the implosion dynamics. Energy exchange in the final stagnated plasma and its effects on the x-ray pulse shape is also discussed. This work was partially supported by the SSAA program of the NNSA through DoE cooperative agreement DE-F03-02NA00057.

  14. Transport of Energy by Ultra-Intense Laser-Generated Electrons in Nail-Wire Targets

    Science.gov (United States)

    Ma, T.; King, J. A.; Wei, M. S.; Beg, F. N.; Akli, K.; Stephens, R. B.; Hatchett, S. P.; Key, M. H.; MacKinnon, A. J.; Macphee, A. G.; Freeman, R. R.; van Woerkom, L.; Green, J. S.; Lancaster, K. L.; Norreys, P. A.; Theobald, W.; Mason, R.

    2008-04-01

    Understanding the transport of energy by relativistic fast electrons produced in petawatt (10^15 W) laser matter interactions is one of the key challenges in fast ignition of ICF. A simple and small target (nail-wire) was designed to investigate aspects of this transport. Nail-wire targets were irradiated using the Vulcan Petawatt Laser (0.8 ps, 3x10^20 W/cm-2) at the Rutherford Appleton Laboratory. A Cu Kα spherically bent crystal imager, a Highly Ordered Pyrolytic Graphite (HOPG) Spectrometer, and Single Photon Counting CCD were employed to give absolute Kα measurements. The penetration of hot electrons via the nail head into the bulk of the wire has been determined from the Kα data. XUV images (68 and 256 eV) indicate heating of a thin surface layer of the targets. A comparison of experimental results with the PIC/hybrid simulations using both LSP and e-PLAS will be presented at the meeting.

  15. Effects of reprocessing on chemical and morphological properties of guide wires used in angioplasty

    Directory of Open Access Journals (Sweden)

    Rogério Valentim Gelamo

    2013-09-01

    Full Text Available OBJECTIVE: To investigate the influence of the reprocessing technique of enzymatic bath with ultrasonic cleaning and ethylene oxide sterilization on the chemical properties and morphological structure of polymeric coatings of guide wire for regular guiding catheter. METHODS: These techniques simulated the routine of guide wire reprocessing in many hemodynamic services in Brazil and other countries. Samples from three different manufacturers were verified by scanning electron microscopy and X-ray photoelectron spectroscopy. RESULTS: A single or double sterilization of the catheters with ethylene oxide was not associated with morphological or chemical changes. However, scanning electron microscopy images showed that the washing method was associated with rough morphological changes, including superficial holes and bubbles, in addition to chemical changes of external atomic layers of polymeric coating surfaces, as detected by the X-ray photoelectron spectroscopy method, which is compatible with extended chemical changes on catheter surfaces. CONCLUSION: The reprocessing of the catheters with ethylene oxide was not associated with morphological or chemical changes, and it seemed appropriate to maintain guide wire coating integrity. However, the method combining chemical cleaning with mechanical vibration resulted in rough anatomical and chemical surface deterioration, suggesting that this reprocessing method should be discouraged.

  16. Electrically isolated, high melting point, metal wire arrays and method of making same

    Science.gov (United States)

    Simpson, John T.; Cunningham, Joseph P.; D'Urso, Brian R.; Hendricks, Troy R.; Schaeffer, Daniel A.

    2016-01-26

    A method of making a wire array includes the step of providing a tube of a sealing material and having an interior surface, and positioning a wire in the tube, the wire having an exterior surface. The tube is heated to soften the tube, and the softened tube is drawn and collapsed by a mild vacuum to bring the interior surface of the tube into contact with the wire to create a coated wire. The coated wires are bundled. The bundled coated wires are heated under vacuum to fuse the tube material coating the wires and create a fused rod with a wire array embedded therein. The fused rod is cut to form a wire array. A wire array is also disclosed.

  17. Comparisons between LES and Wind Tunnel Hot-Wire Measurements

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2012-01-01

    is constructed in a wind tunnel similar to the LM wind tunnel where the experiment for an NACA 0015 airfoil was carried out. The goal of this study is to validate the mixed scale SGS turbulence model against detailed measurements. Simulations are performed with the in-house EllipSys3D code on high performance...... computers. The stability and accuracy of the LES simulations are studied on various mesh configurations. The spanwise grid spacing is found important to produce correct flow disturbances along the airfoil span, which can affect the turbulent energy distribution.......Large-eddy simulations (LES) are carried out for flows over a NACA 0015 airfoil at AoA = 8o and a chord based Reynolds number of 1.71 × 106. To accurately simulate the complex flow on the suction side of the airfoil, a reasonably large number of grid points is required. The computational mesh...

  18. Flexural magneto-elastic vibrations of thin metal wires

    International Nuclear Information System (INIS)

    Lukyanov, A; Molokov, S

    2004-01-01

    Flexural vibrations of thin metal wires owing to a high, pulsed electric current have been investigated. The current is sufficiently low to inhibit melting but sufficiently high to induce stresses, leading to the wire fragmentation. The problem is treated numerically on the basis of the theory of three-dimensional linear elasticity. The model has been verified on the well-known exact, eigenmode solution for the flexural vibrations of an infinite wire. The agreement is excellent. Further, the model has been used to study vibrations owing to two sources. The first one is perturbations of wires owing to the Lorentz force leading to a kink-type instability similar to that in plasmas. As the main cause of the wire fragmentation has been previously found to be the thermal expansion of material owing to Joule heating, this problem mainly serves to compare results between the three-dimensional and the one-dimensional, thin-rod models. Comparison of the growth rate of the instability obtained by the two models has shown an excellent agreement. The second source of vibrations is the magnetic fields induced in the external electric circuit. The results show that depending on the shape of the circuit, the induced stresses may exceed 20 MPa for the aluminium wires used in the low-current experiments. Although the external fields are not the main source of the wire fragmentation, these values alone may cause the fracture process at elevated temperatures

  19. Experience of precision measuring distances by invar wires at accelerators

    International Nuclear Information System (INIS)

    Porubaj, N.I.

    1977-01-01

    With a view to determining the deformations and displacements of the ring foundation of the ITEP accelerator, the method of very accurate distance measurements by means of invar wires and strips is described. Measurement errors are analyzed. This method has allowed to measure distances up to 40 m with a mean-square error of less than 40 μm. The calibration accuracy of 3 and 25-m measuring wires has been determined to be +- 27 μm. Time instability of the wires is +- 16 μm. It is shown that strips are more stable in time than wires. Elongation of 6, 19, 25 and 38 m invar wires has been measured as function of the tension time. The error due to tension of a 38-m wire may be tangible. Data on thermal coefficient variation in time has been obtained for invar wires and strips. The multiannual measurements of the ring foundation deformations show that variations of the mean radius are caused by increases of concrete temperature. Temperature increase by only 1 deg caused mean radius increase of 0.3 mm

  20. Thermal performance in circular tube fitted with coiled square wires

    International Nuclear Information System (INIS)

    Promvonge, Pongjet

    2008-01-01

    The effects of wires with square cross section forming a coil used as a turbulator on the heat transfer and turbulent flow friction characteristics in a uniform heat flux, circular tube are experimentally investigated in the present work. The experiments are performed for flows with Reynolds numbers ranging from 5000 to 25,000. Two different spring coiled wire pitches are introduced. The results are also compared with those obtained from using a typical coiled circular wire, apart from the smooth tube. The experimental results reveal that the use of coiled square wire turbulators leads to a considerable increase in heat transfer and friction loss over those of a smooth wall tube. The Nusselt number increases with the rise of Reynolds number and the reduction of pitch for both circular and square wire coils. The coiled square wire provides higher heat transfer than the circular one under the same conditions. Also, performance evaluation criteria to assess the real benefits in using both coil wires of the enhanced tube are determined