WorldWideScience

Sample records for single source chemical

  1. Controlling single and few-layer graphene crystals growth in a solid carbon source based chemical vapor deposition

    International Nuclear Information System (INIS)

    Papon, Remi; Sharma, Subash; Shinde, Sachin M.; Vishwakarma, Riteshkumar; Tanemura, Masaki; Kalita, Golap

    2014-01-01

    Here, we reveal the growth process of single and few-layer graphene crystals in the solid carbon source based chemical vapor deposition (CVD) technique. Nucleation and growth of graphene crystals on a polycrystalline Cu foil are significantly affected by the injection of carbon atoms with pyrolysis rate of the carbon source. We observe micron length ribbons like growth front as well as saturated growth edges of graphene crystals depending on growth conditions. Controlling the pyrolysis rate of carbon source, monolayer and few-layer crystals and corresponding continuous films are obtained. In a controlled process, we observed growth of large monolayer graphene crystals, which interconnect and merge together to form a continuous film. On the other hand, adlayer growth is observed with an increased pyrolysis rate, resulting few-layer graphene crystal structure and merged continuous film. The understanding of monolayer and few-layer crystals growth in the developed CVD process can be significant to grow graphene with controlled layer numbers.

  2. Spray Chemical Vapor Deposition of Single-Source Precursors for Chalcopyrite I-III-VI2 Thin-Film Materials

    Science.gov (United States)

    Hepp, Aloysius F.; Banger, Kulbinder K.; Jin, Michael H.-C.; Harris, Jerry D.; McNatt, Jeremiah S.; Dickman, John E.

    2008-01-01

    Thin-film solar cells on flexible, lightweight, space-qualified substrates provide an attractive approach to fabricating solar arrays with high mass-specific power. A polycrystalline chalcopyrite absorber layer is among the new generation of photovoltaic device technologies for thin film solar cells. At NASA Glenn Research Center we have focused on the development of new single-source precursors (SSPs) for deposition of semiconducting chalcopyrite materials onto lightweight, flexible substrates. We describe the syntheses and thermal modulation of SSPs via molecular engineering. Copper indium disulfide and related thin-film materials were deposited via aerosol-assisted chemical vapor deposition using SSPs. Processing and post-processing parameters were varied in order to modify morphology, stoichiometry, crystallography, electrical properties, and optical properties to optimize device quality. Growth at atmospheric pressure in a horizontal hotwall reactor at 395 C yielded the best device films. Placing the susceptor closer to the evaporation zone and flowing a more precursor-rich carrier gas through the reactor yielded shinier-, smoother-, and denser-looking films. Growth of (112)-oriented films yielded more Cu-rich films with fewer secondary phases than growth of (204)/(220)-oriented films. Post-deposition sulfur-vapor annealing enhanced stoichiometry and crystallinity of the films. Photoluminescence studies revealed four major emission bands and a broad band associated with deep defects. The highest device efficiency for an aerosol-assisted chemical vapor deposited cell was one percent.

  3. Iron selenide films by aerosol assisted chemical vapor deposition from single source organometallic precursor in the presence of surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Raja Azadar [Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Badshah, Amin, E-mail: aminbadshah@yahoo.com [Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Younis, Adnan [School of Materials Science and Engineering, University of New South Wales, Sydney 2052, NSW (Australia); Khan, Malik Dilshad [Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Akhtar, Javeed [Department of Physics, COMSATS Institute of Information Technology, Park Road, Chak Shahzad, Islamabad (Pakistan)

    2014-09-30

    This article presents the synthesis and characterization (multinuclear nuclear magnetic resonance, Fourier transform infrared spectroscopy, carbon–hydrogen–nitrogen–sulfur analyzer, atomic absorption spectrometry and thermogravimetric analysis) of a single source organometallic precursor namely 1-acetyl-3-(4-ferrocenylphenyl)selenourea for the fabrication of iron selenide (FeSe) films on glass substrates using aerosol assisted chemical vapor deposition (AACVD). The changes in the morphologies of the films have been monitored by the use of two different surfactants i.e. triton X-100 and tetraoctylphosphonium bromide during AACVD. The role of surfactant has been evaluated by examining the interaction of the surfactants with the precursor by using UV–vis spectroscopy and cyclic voltammetry. The fabricated FeSe films have been characterized with powder X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. - Highlights: • Ferrocene incorporated selenourea (FIS) has been synthesized and characterized. • FeSe thin films have been fabricated from FIS. • Mechanism of film growth was studied with cyclic voltammetry and UV–vis spectroscopy.

  4. Single particle analysis of eastern Mediterranean aerosol particles: Influence of the source region on the chemical composition

    Science.gov (United States)

    Clemen, Hans-Christian; Schneider, Johannes; Köllner, Franziska; Klimach, Thomas; Pikridas, Michael; Stavroulas, Iasonas; Sciare, Jean; Borrmann, Stephan

    2017-04-01

    The Mediterranean region is one of the most climatically sensitive areas and is influenced by air masses of different origin. Aerosol particles are one important factor contributing to the Earth's radiative forcing, but knowledge about their composition and sources is still limited. Here, we report on results from the INUIT-BACCHUS-ACTRIS campaign, which was conducted at the Cyprus Atmospheric Observatory (CAO, Agia Marina Xyliatou) in Cyprus in April 2016. Our results show that the chemical composition of the aerosol particles in the eastern Mediterranean is strongly dependent on their source region. The composition of particles in a size range between 150 nm and 3 μm was measured using the Aircraft-based Laser ABlation Aerosol MAss spectrometer (ALABAMA), which is a single particle laser ablation instrument using a bipolar time-of-flight mass spectrometer. The mass spectral information on cations and anions allow for the analysis of different molecular fragments. The information about the source regions results from backward trajectories using HYSPLIT Trajectory Model (Trajectory Ensemble) on hourly basis. To assess the influence of certain source regions on the air masses arriving at CAO, we consider the number of trajectories that crossed the respective source region within defined time steps. For a more detailed picture also the height and the velocity of the air masses during their overpass above the source regions will be considered. During the campaign at CAO in April 2016 three main air mass source regions were observed: 1) Northern Central Europe, likely with an enhanced anthropogenic influence (e.g. sulfate and black carbon from combustion processes, fly ash particles from power plants, characterized by Sr and Ba), 2) Southwest Europe, with a higher influence of the Mediterranean Sea including sea salt particles (characterized by, e.g., NaxCly, NaClxNOy), 3) Northern Africa/Sahara, with air masses that are expected to have a higher load of mineral dust

  5. Single-photon sources

    International Nuclear Information System (INIS)

    Lounis, Brahim; Orrit, Michel

    2005-01-01

    The concept of the photon, central to Einstein's explanation of the photoelectric effect, is exactly 100 years old. Yet, while photons have been detected individually for more than 50 years, devices producing individual photons on demand have only appeared in the last few years. New concepts for single-photon sources, or 'photon guns', have originated from recent progress in the optical detection, characterization and manipulation of single quantum objects. Single emitters usually deliver photons one at a time. This so-called antibunching of emitted photons can arise from various mechanisms, but ensures that the probability of obtaining two or more photons at the same time remains negligible. We briefly recall basic concepts in quantum optics and discuss potential applications of single-photon states to optical processing of quantum information: cryptography, computing and communication. A photon gun's properties are significantly improved by coupling it to a resonant cavity mode, either in the Purcell or strong-coupling regimes. We briefly recall early production of single photons with atomic beams, and the operation principles of macroscopic parametric sources, which are used in an overwhelming majority of quantum-optical experiments. We then review the photophysical and spectroscopic properties and compare the advantages and weaknesses of various single nanometre-scale objects used as single-photon sources: atoms or ions in the gas phase and, in condensed matter, organic molecules, defect centres, semiconductor nanocrystals and heterostructures. As new generations of sources are developed, coupling to cavities and nano-fabrication techniques lead to improved characteristics, delivery rates and spectral ranges. Judging from the brisk pace of recent progress, we expect single photons to soon proceed from demonstrations to applications and to bring with them the first practical uses of quantum information

  6. GPC Single Source Letter

    Science.gov (United States)

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  7. Assessing Model Characterization of Single Source ...

    Science.gov (United States)

    Aircraft measurements made downwind from specific coal fired power plants during the 2013 Southeast Nexus field campaign provide a unique opportunity to evaluate single source photochemical model predictions of both O3 and secondary PM2.5 species. The model did well at predicting downwind plume placement. The model shows similar patterns of an increasing fraction of PM2.5 sulfate ion to the sum of SO2 and PM2.5 sulfate ion by distance from the source compared with ambient based estimates. The model was less consistent in capturing downwind ambient based trends in conversion of NOX to NOY from these sources. Source sensitivity approaches capture near-source O3 titration by fresh NO emissions, in particular subgrid plume treatment. However, capturing this near-source chemical feature did not translate into better downwind peak estimates of single source O3 impacts. The model estimated O3 production from these sources but often was lower than ambient based source production. The downwind transect ambient measurements, in particular secondary PM2.5 and O3, have some level of contribution from other sources which makes direct comparison with model source contribution challenging. Model source attribution results suggest contribution to secondary pollutants from multiple sources even where primary pollutants indicate the presence of a single source. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, deci

  8. Radioactive sources in chemical laboratories

    International Nuclear Information System (INIS)

    Janzekovic, H.; Krizman, M.

    2007-01-01

    Radioactive sources including all radioactive materials exceeding exemption levels have to be registered in national databases according to international standards based on the recommendations ICRP 60 and a proper licensing should take place as described for example in the 96/29/EURATOM. In spite of that, unregistered sources could be found, usually due to the fact that the owner is not aware of radiation characteristics of sources. The material inventories of chemical laboratories are typical and most frequent example where radioactive sources could be found. Five different types of sources could be identified. The most frequent type are chemicals, namely thorium and uranium compounds. They are used not due to their radioactivity but due to their chemical properties. As for all other sources a stringent control is necessary in order to assure their safe use. Around hundred of stored radioactive chemical items were found during inspections of such laboratories performed by the Slovenian Nuclear Safety Administration or qualified experts in a period December 2006 - July 2007. Users of such chemicals are usually not aware that thorium and uranium chemicals are radioactive and, as unsealed sources, they could be easily spilled out and produce contamination of persons, surfaces, equipment etc. The external exposure as well as the internal exposure including exposure due to inhalation could be present. No knowledge about special precautions is usually present in laboratories and leads to underestimating of a potential risk and unintentional exposure of the laboratory personnel, students etc. Due to the long decay times in decay series of Th -232, U-238 and U- 235 the materials are also radioactive today. Even more, in case of thorium chemicals the radioactivity increased substantially from the time of their production. The implementation of safety measures has been under way and includes a survey of the qualified experts, establishment of organizational structure in a

  9. Chemical Transfer (Single Small-Scale) Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry laboratoryThe Chemical Transfer Facility (CTF)  is the only U.S. single small-scale  facility, a single repository for the Army’s...

  10. A Source Book for Teaching Chemical Oceanography.

    Science.gov (United States)

    Loder, Theodore C.; Glibert, Patricia M.

    Chemical oceanography or marine chemistry are taught in many colleges and universities. This publication provides sources for instructors of such courses. The first section of this report is a detailed composite outline of a course in chemical oceanography. It includes fundamental topics taught in many chemical oceanography classes. The outline…

  11. Single-photon sources based on single molecules in solids

    International Nuclear Information System (INIS)

    Moerner, W E

    2004-01-01

    Single molecules in suitable host crystals have been demonstrated to be useful single-photon emitters both at liquid-helium temperatures and at room temperature. The low-temperature source achieved controllable emission of single photons from a single terrylene molecule in p-terphenyl by an adiabatic rapid passage technique. In contrast with almost all other single-molecule systems, terrylene single molecules show extremely high photostability under continuous, high-intensity irradiation. A room-temperature source utilizing this material has been demonstrated, in which fast pumping into vibrational sidebands of the electronically excited state achieved efficient inversion of the emissive level. This source yielded a single-photon emission probability p(1) of 0.86 at a detected count rate near 300 000 photons s -1 , with very small probability of emission of more than one photon. Thus, single molecules in solids can be considered as contenders for applications of single-photon sources such as quantum key distribution

  12. Single photon sources with single semiconductor quantum dots

    Science.gov (United States)

    Shan, Guang-Cun; Yin, Zhang-Qi; Shek, Chan Hung; Huang, Wei

    2014-04-01

    In this contribution, we briefly recall the basic concepts of quantum optics and properties of semiconductor quantum dot (QD) which are necessary to the understanding of the physics of single-photon generation with single QDs. Firstly, we address the theory of quantum emitter-cavity system, the fluorescence and optical properties of semiconductor QDs, and the photon statistics as well as optical properties of the QDs. We then review the localization of single semiconductor QDs in quantum confined optical microcavity systems to achieve their overall optical properties and performances in terms of strong coupling regime, efficiency, directionality, and polarization control. Furthermore, we will discuss the recent progress on the fabrication of single photon sources, and various approaches for embedding single QDs into microcavities or photonic crystal nanocavities and show how to extend the wavelength range. We focus in particular on new generations of electrically driven QD single photon source leading to high repetition rates, strong coupling regime, and high collection efficiencies at elevated temperature operation. Besides, new developments of room temperature single photon emission in the strong coupling regime are reviewed. The generation of indistinguishable photons and remaining challenges for practical single-photon sources are also discussed.

  13. Highly efficient sources of single indistinguishable photons

    DEFF Research Database (Denmark)

    Gregersen, Niels

    2013-01-01

    be electrically driven. Several design strategies addressing these requirements have been proposed. In the cavity-based source, light emission is controlled using resonant cavity quantum electrodynamics effects, whereas in the waveguide-based source, broadband electric field screening effects are employed......Solid-state sources capable of emitting single photons on demand are of great interest in quantum information applications. Ideally, such a source should emit exactly one photon into the collection optics per trigger, the emitted photons should be indistinguishable and the source should...

  14. Chemical Dynamics at the Advanced Light Source

    International Nuclear Information System (INIS)

    Baer, T.; Berrah, N.; Fadley, C.; Moore, C.B.; Neumark, D.M.; Ng, C.Y.; Ruscic, B.; Smith, N.V.; Suits, A.G.; Wodtke, A.M.

    1999-01-01

    A day-long retreat was held January 15, 1999 to chart the future directions for chemical dynamics studies at the Advanced Light Source. This represents an important period for the Chemical Dynamics Beamline, as the hardware is well-developed, most of the initial experimental objectives have been realized and the mission is now to identify the future scientific priorities for the beamline and attract users of the highest caliber. To this end, we have developed a detailed scientific program for the near term; identified and prioritized the long range scientific opportunities, identified essential new hardware, and outlined an aggressive outreach program to involve the chemical physics community

  15. ASTM Data Banks and Chemical Information Sources

    Science.gov (United States)

    Batik, Albert; Hale, Eleanor

    1972-01-01

    Among the data described are infrared indexes, mass spectral data, chromatographic data, X-ray emmission data, odor and taste threshold data, and thermodynamics data. This paper provides the chemical documentarian a complete reference source to a wide variety of analytical data. (Author/NH)

  16. Single Photon Sources in Silicon Carbide

    International Nuclear Information System (INIS)

    Brett Johnson

    2014-01-01

    Single photon sources in semiconductors are highly sought after as they constitute the building blocks of a diverse range of emerging technologies such as integrated quantum information processing, quantum metrology and quantum photonics. In this presentation, we show the first observation of single photon emission from deep level defects in silicon carbide (SiC). The single photon emission is photo-stable at room temperature and surprisingly bright. This represents an exciting alternative to diamond color centers since SiC possesses well-established growth and device engineering protocols. The defect is assigned to the carbon vacancy-antisite pair which gives rise to the AB photoluminescence lines. We discuss its photo-physical properties and their fabrication via electron irradiation. Preliminary measurements on 3C SiC nano-structures will also be discussed. (author)

  17. Carbon source in the future chemical industries

    Science.gov (United States)

    Hofmann, Peter; Heinrich Krauch, Carl

    1982-11-01

    Rising crude oil prices favour the exploitation of hitherto unutilised energy carriers and the realisation of new technologies in all sectors where carbon is used. These changed economic constraints necessitate both savings in conventional petrochemistry and a change to oil-independent carbon sources in the chemical industry. While, in coal chemistry, the synthesis and process principles of petrochemistry — fragmentation of the raw material and subsequent buildup of molecular structures — can be maintained, the raw material structure largely remains unchanged in the chemistry of renewable raw materials. This lecture is to demonstrate the structural as well as the technological and energy criteria of the chemistry of alternative carbon sources, to forecast the chances of commercial realization and to discuss some promising fields of research and development.

  18. Current Source Density Estimation for Single Neurons

    Directory of Open Access Journals (Sweden)

    Dorottya Cserpán

    2014-03-01

    Full Text Available Recent developments of multielectrode technology made it possible to measure the extracellular potential generated in the neural tissue with spatial precision on the order of tens of micrometers and on submillisecond time scale. Combining such measurements with imaging of single neurons within the studied tissue opens up new experimental possibilities for estimating distribution of current sources along a dendritic tree. In this work we show that if we are able to relate part of the recording of extracellular potential to a specific cell of known morphology we can estimate the spatiotemporal distribution of transmembrane currents along it. We present here an extension of the kernel CSD method (Potworowski et al., 2012 applicable in such case. We test it on several model neurons of progressively complicated morphologies from ball-and-stick to realistic, up to analysis of simulated neuron activity embedded in a substantial working network (Traub et al, 2005. We discuss the caveats and possibilities of this new approach.

  19. Distributed quantum computing with single photon sources

    International Nuclear Information System (INIS)

    Beige, A.; Kwek, L.C.

    2005-01-01

    Full text: Distributed quantum computing requires the ability to perform nonlocal gate operations between the distant nodes (stationary qubits) of a large network. To achieve this, it has been proposed to interconvert stationary qubits with flying qubits. In contrast to this, we show that distributed quantum computing only requires the ability to encode stationary qubits into flying qubits but not the conversion of flying qubits into stationary qubits. We describe a scheme for the realization of an eventually deterministic controlled phase gate by performing measurements on pairs of flying qubits. Our scheme could be implemented with a linear optics quantum computing setup including sources for the generation of single photons on demand, linear optics elements and photon detectors. In the presence of photon loss and finite detector efficiencies, the scheme could be used to build large cluster states for one way quantum computing with a high fidelity. (author)

  20. Sub-megahertz linewidth single photon source

    Directory of Open Access Journals (Sweden)

    Markus Rambach

    2016-12-01

    Full Text Available We report 100% duty cycle generation of sub-MHz single photon pairs at the rubidium D1 line using cavity-enhanced spontaneous parametric downconversion. The temporal intensity cross correlation function exhibits a bandwidth of 666±16 kHz for the single photons, an order of magnitude below the natural linewidth of the target transition. A half-wave plate inside our cavity helps to achieve triple resonance between pump, signal, and idler photon, reducing the bandwidth and simplifying the locking scheme. Additionally, stabilisation of the cavity to the pump frequency enables the 100% duty cycle. The quantum nature of the source is confirmed by the idler-triggered second-order autocorrelation function at τ=0 to be gs,s(2(0= 0.016±0.002 for a heralding rate of 5 kHz. The generated photons are well-suited for storage in quantum memory schemes with sub-natural linewidths, such as gradient echo memories.

  1. Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source

    International Nuclear Information System (INIS)

    Migdall, A.L.; Branning, D.; Castelletto, S.

    2002-01-01

    As typically implemented, single-photon sources cannot be made to produce single photons with high probability, while simultaneously suppressing the probability of yielding two or more photons. Because of this, single-photon sources cannot really produce single photons on demand. We describe a multiplexed system that allows the probabilities of producing one and more photons to be adjusted independently, enabling a much better approximation of a source of single photons on demand

  2. Creation and recovery of a W(111) single atom gas field ion source

    International Nuclear Information System (INIS)

    Pitters, Jason L.; Urban, Radovan; Wolkow, Robert A.

    2012-01-01

    Tungsten single atom tips have been prepared from a single crystal W(111) oriented wire using the chemical assisted field evaporation and etching method. Etching to a single atom tip occurs through a symmetric structure and leads to a predictable last atom unlike etching with polycrystalline tips. The single atom tip formation procedure is shown in an atom by atom removal process. Rebuilds of single atom tips occur on the same crystalline axis as the original tip such that ion emission emanates along a fixed direction for all tip rebuilds. This preparation method could be utilized and developed to prepare single atom tips for ion source development.

  3. Single crystal diamond detectors grown by chemical vapor deposition

    International Nuclear Information System (INIS)

    Tuve, C.; Angelone, M.; Bellini, V.; Balducci, A.; Donato, M.G.; Faggio, G.; Marinelli, M.; Messina, G.; Milani, E.; Morgada, M.E.; Pillon, M.; Potenza, R.; Pucella, G.; Russo, G.; Santangelo, S.; Scoccia, M.; Sutera, C.; Tucciarone, A.; Verona-Rinati, G.

    2007-01-01

    The detection properties of heteropitaxial (polycrystalline, pCVD) and homoepitaxial (single crystal, scCVD) diamond films grown by microwave chemical vapor deposition (CVD) in the Laboratories of Roma 'Tor Vergata' University are reported. The pCVD diamond detectors were tested with α-particles from different sources and 12 C ions produced by 15MV Tandem accelerator at Southern National Laboratories (LNS) in Catania (Italy). pCVDs were also used to monitor 14MeV neutrons produced by the D-T plasma at Joint European Torus (JET), Culham, U.K. The limit of pCVDs is the poor energy resolution. To overcome this problem, we developed scCVD diamonds using the same reactor parameters that optimized pCVD diamonds. scCVD were grown on a low cost (100) HPHT single crystal substrate. A detector 110μm thick was tested under α-particles and under 14MeV neutron irradiation. The charge collection efficiency spectrum measured under irradiation with a triple α-particle source shows three clearly resolved peaks, with an energy resolution of about 1.1%. The measured spectra under neutron irradiation show a well separated C(n,α 0 ) 9 Be12 reaction peak with an energy spread of 0.5MeV for 14.8MeV neutrons and 0.3MeV for 14.1MeV neutrons, which are fully compatible with the energy spread of the incident neutron beams

  4. Low Complexity Bayesian Single Channel Source Separation

    DEFF Research Database (Denmark)

    Beierholm, Thomas; Pedersen, Brian Dam; Winther, Ole

    2004-01-01

    can be estimated quite precisely using ML-II, but the estimation is quite sensitive to the accuracy of the priors as opposed to the source separation quality for known mixing coefficients, which is quite insensitive to the accuracy of the priors. Finally, we discuss how to improve our approach while...

  5. Single-photon source engineering using a Modal Method

    DEFF Research Database (Denmark)

    Gregersen, Niels

    Solid-state sources of single indistinguishable photons are of great interest for quantum information applications. The semiconductor quantum dot embedded in a host material represents an attractive platform to realize such a single-photon source (SPS). A near-unity efficiency, defined as the num...... nanowire SPSs...

  6. Radiological and chemical source terms for Solid Waste Operations Complex

    International Nuclear Information System (INIS)

    Boothe, G.F.

    1994-01-01

    The purpose of this document is to describe the radiological and chemical source terms for the major projects of the Solid Waste Operations Complex (SWOC), including Project W-112, Project W-133 and Project W-100 (WRAP 2A). For purposes of this document, the term ''source term'' means the design basis inventory. All of the SWOC source terms involve the estimation of the radiological and chemical contents of various waste packages from different waste streams, and the inventories of these packages within facilities or within a scope of operations. The composition of some of the waste is not known precisely; consequently, conservative assumptions were made to ensure that the source term represents a bounding case (i.e., it is expected that the source term would not be exceeded). As better information is obtained on the radiological and chemical contents of waste packages and more accurate facility specific models are developed, this document should be revised as appropriate. Radiological source terms are needed to perform shielding and external dose calculations, to estimate routine airborne releases, to perform release calculations and dose estimates for safety documentation, to calculate the maximum possible fire loss and specific source terms for individual fire areas, etc. Chemical source terms (i.e., inventories of combustible, flammable, explosive or hazardous chemicals) are used to determine combustible loading, fire protection requirements, personnel exposures to hazardous chemicals from routine and accident conditions, and a wide variety of other safety and environmental requirements

  7. Single channel blind source separation based on ICA feature extraction

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new technique is proposed to solve the blind source separation (BSS) given only a single channel observation. The basis functions and the density of the coefficients of source signals learned by ICA are used as the prior knowledge. Based on the learned prior information the learning rules of single channel BSS are presented by maximizing the joint log likelihood of the mixed sources to obtain source signals from single observation,in which the posterior density of the given measurements is maximized. The experimental results exhibit a successful separation performance for mixtures of speech and music signals.

  8. Equivalent properties of single event burnout induced by different sources

    International Nuclear Information System (INIS)

    Yang Shiyu; Cao Zhou; Da Daoan; Xue Yuxiong

    2009-01-01

    The experimental results of single event burnout induced by heavy ions and 252 Cf fission fragments in power MOSFET devices have been investigated. It is concluded that the characteristics of single event burnout induced by 252 Cf fission fragments is consistent to that in heavy ions. The power MOSFET in the 'turn-off' state is more susceptible to single event burnout than it is in the 'turn-on' state. The thresholds of the drain-source voltage for single event burnout induced by 173 MeV bromine ions and 252 Cf fission fragments are close to each other, and the burnout cross section is sensitive to variation of the drain-source voltage above the threshold of single event burnout. In addition, the current waveforms of single event burnouts induced by different sources are similar. Different power MOSFET devices may have different probabilities for the occurrence of single event burnout. (authors)

  9. Summit Petroleum Corporation Single Source Determination

    Science.gov (United States)

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  10. Single Source Determination for General Dynamics

    Science.gov (United States)

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  11. Applications of New Chemical Heat Sources Phase 1

    National Research Council Canada - National Science Library

    Bell, William

    2001-01-01

    Report developed under Small Business Innovative Research (SBIR) contract. This project has examined the application of new chemical heat sources, with emphasis on portable heaters for military field rations...

  12. Saudis trust and confidence in information sources about chemical ...

    African Journals Online (AJOL)

    AJL

    To communicate information on chemical pollution health risks effectively, policy makers must know .... opinions, and perception of environmental health risks,. (ii) know their .... information on health risks from multiple sources. Similarly when ...

  13. Single-Molecule Electronics: Chemical and Analytical Perspectives.

    Science.gov (United States)

    Nichols, Richard J; Higgins, Simon J

    2015-01-01

    It is now possible to measure the electrical properties of single molecules using a variety of techniques including scanning probe microcopies and mechanically controlled break junctions. Such measurements can be made across a wide range of environments including ambient conditions, organic liquids, ionic liquids, aqueous solutions, electrolytes, and ultra high vacuum. This has given new insights into charge transport across molecule electrical junctions, and these experimental methods have been complemented with increasingly sophisticated theory. This article reviews progress in single-molecule electronics from a chemical perspective and discusses topics such as the molecule-surface coupling in electrical junctions, chemical control, and supramolecular interactions in junctions and gating charge transport. The article concludes with an outlook regarding chemical analysis based on single-molecule conductance.

  14. 27-Level DC–AC inverter with single energy source

    International Nuclear Information System (INIS)

    Tsang, K.M.; Chan, W.L.

    2012-01-01

    Highlights: ► This paper reports a novel 27-level DC–AC inverter using only single renewable energy source. ► The efficiency of the inverter is very high. The output waveform is almost sinusoidal. ► The cost is low as the number of power switches required is only 12. - Abstract: A novel design of multilevel DC–AC inverter using only single renewable energy source is presented in this paper. The proposed approach enables multilevel output to be realised by a few cascaded H-bridges and a single energy source. As an illustration, a 27-level inverter has been implemented based on three cascaded H-bridges with a single energy source and two capacitors. Using the proposed novel switching strategy, 27 levels can be realized and the two virtual energy sources can be well regulated. Experimental results are included to demonstrate the effectiveness of the proposed inverter.

  15. Chemical reaction dynamics using the Advanced Light Source

    International Nuclear Information System (INIS)

    Yang, X.; Blank, D.A.; Heimann, P.A.; Lee, Y.T.; Suits, A.G.; Lin, J.; Wodtke, A.M.

    1995-01-01

    The recently commissioned Advanced Light Source (ALS) at Berkeley provides a high brightness, tunable VUV light source for chemical dynamics studies. A dedicated chemical dynamics beamline has been built at the ALS for studies of fundamental chemical processes. High flux (10(sup 16) photon/s with 2% bandwidth) VUV synchrotron radiation from 5 to 30 eV can be obtained from the beamline, whose source is the U8/10 undulator. Three endstations will be in operation for studies ranging from crossed beam reaction dynamics and photodissociation to high resolution photoionization dynamics and spectroscopy. A rotatable source crossed molecular beam apparatus (endstation one) has been established for unimolecular and bimolecular reactive scattering studies. Photodissociation of methylamine and ozone were carried out using VUV synchrotron radiation as the ionization detection technique at this endstation. Results show the advantages of the new endstation using VUV ionization as the detection scheme over similar machines using electron bombardment as the ionization source

  16. Chemical reaction dynamics using the Advanced Light Source

    International Nuclear Information System (INIS)

    Yang, X.; Blank, D.A.; Heimann, P.A.; Lee, Y.T.; Suits, A.G.; Lin, J.; Wodtke, A.M.

    1995-09-01

    The recently commissioned Advanced Light Source (ALS) at Berkeley provides a high brightness, tunable VUV light source for chemical dynamics studies. A dedicated chemical dynamics beamline has been built at the ALS for studies of fundamental chemical processes. High flux (10 16 photon/s with 2% bandwidth) VUV synchrotron radiation from 5 to 30 eV can be obtained from the beamline, whose source is the U8/10 undulator. Three endstations will be in operation for studies ranging from crossed beam reaction dynamics and photodissociation to high resolution photoionization dynamics and spectroscopy. A rotatable source crossed molecular beam apparatus (endstation one) has been established for unimolecular and bimolecular reactive scattering studies. Photodissociation of methylamine and ozone were carried out using VUV synchrotron radiation as the ionization detection technique at this endstation. Results show the advantages of the new endstation using VUV ionization as the detection scheme over similar machines using electron bombardment as the ionization source

  17. Methods for forming particles from single source precursors

    Science.gov (United States)

    Fox, Robert V [Idaho Falls, ID; Rodriguez, Rene G [Pocatello, ID; Pak, Joshua [Pocatello, ID

    2011-08-23

    Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.

  18. Photon statistics characterization of a single-photon source

    International Nuclear Information System (INIS)

    Alleaume, R; Treussart, F; Courty, J-M; Roch, J-F

    2004-01-01

    In a recent experiment, we reported the time-domain intensity noise measurement of a single-photon source relying on single-molecule fluorescence control. In this paper, we present data processing starting from photocount timestamps. The theoretical analytical expression of the time-dependent Mandel parameter Q(T) of an intermittent single-photon source is derived from ON↔OFF dynamics. Finally, source intensity noise analysis, using the Mandel parameter, is quantitatively compared with the usual approach relying on the time autocorrelation function, both methods yielding the same molecular dynamical parameters

  19. ACToR Chemical Structure processing using Open Source ...

    Science.gov (United States)

    ACToR (Aggregated Computational Toxicology Resource) is a centralized database repository developed by the National Center for Computational Toxicology (NCCT) at the U.S. Environmental Protection Agency (EPA). Free and open source tools were used to compile toxicity data from over 1,950 public sources. ACToR contains chemical structure information and toxicological data for over 558,000 unique chemicals. The database primarily includes data from NCCT research programs, in vivo toxicity data from ToxRef, human exposure data from ExpoCast, high-throughput screening data from ToxCast and high quality chemical structure information from the EPA DSSTox program. The DSSTox database is a chemical structure inventory for the NCCT programs and currently has about 16,000 unique structures. Included are also data from PubChem, ChemSpider, USDA, FDA, NIH and several other public data sources. ACToR has been a resource to various international and national research groups. Most of our recent efforts on ACToR are focused on improving the structural identifiers and Physico-Chemical properties of the chemicals in the database. Organizing this huge collection of data and improving the chemical structure quality of the database has posed some major challenges. Workflows have been developed to process structures, calculate chemical properties and identify relationships between CAS numbers. The Structure processing workflow integrates web services (PubChem and NIH NCI Cactus) to d

  20. Direct single-molecule dynamic detection of chemical reactions.

    Science.gov (United States)

    Guan, Jianxin; Jia, Chuancheng; Li, Yanwei; Liu, Zitong; Wang, Jinying; Yang, Zhongyue; Gu, Chunhui; Su, Dingkai; Houk, Kendall N; Zhang, Deqing; Guo, Xuefeng

    2018-02-01

    Single-molecule detection can reveal time trajectories and reaction pathways of individual intermediates/transition states in chemical reactions and biological processes, which is of fundamental importance to elucidate their intrinsic mechanisms. We present a reliable, label-free single-molecule approach that allows us to directly explore the dynamic process of basic chemical reactions at the single-event level by using stable graphene-molecule single-molecule junctions. These junctions are constructed by covalently connecting a single molecule with a 9-fluorenone center to nanogapped graphene electrodes. For the first time, real-time single-molecule electrical measurements unambiguously show reproducible large-amplitude two-level fluctuations that are highly dependent on solvent environments in a nucleophilic addition reaction of hydroxylamine to a carbonyl group. Both theoretical simulations and ensemble experiments prove that this observation originates from the reversible transition between the reactant and a new intermediate state within a time scale of a few microseconds. These investigations open up a new route that is able to be immediately applied to probe fast single-molecule physics or biophysics with high time resolution, making an important contribution to broad fields beyond reaction chemistry.

  1. Single-molecule chemical reactions on DNA origami

    DEFF Research Database (Denmark)

    Voigt, Niels Vinther; Tørring, Thomas; Rotaru, Alexandru

    2010-01-01

    as templates for building materials with new functional properties. Relatively large nanocomponents such as nanoparticles and biomolecules can also be integrated into DNA nanostructures and imaged. Here, we show that chemical reactions with single molecules can be performed and imaged at a local position...... on a DNA origami scaffold by atomic force microscopy. The high yields and chemoselectivities of successive cleavage and bond-forming reactions observed in these experiments demonstrate the feasibility of post-assembly chemical modification of DNA nanostructures and their potential use as locally......DNA nanotechnology and particularly DNA origami, in which long, single-stranded DNA molecules are folded into predetermined shapes, can be used to form complex self-assembled nanostructures. Although DNA itself has limited chemical, optical or electronic functionality, DNA nanostructures can serve...

  2. High brightness single photon sources based on photonic wires

    DEFF Research Database (Denmark)

    Claudon, J.; Bleuse, J.; Bazin, M.

    2009-01-01

    We present a novel single-photon-source based on the emission of a semiconductor quantum dot embedded in a single-mode photonic wire. This geometry ensures a very large coupling (> 95%) of the spontaneous emission to the guided mode. Numerical simulations show that a photon collection efficiency...

  3. Multi-photon absorption limits to heralded single photon sources

    Science.gov (United States)

    Husko, Chad A.; Clark, Alex S.; Collins, Matthew J.; De Rossi, Alfredo; Combrié, Sylvain; Lehoucq, Gaëlle; Rey, Isabella H.; Krauss, Thomas F.; Xiong, Chunle; Eggleton, Benjamin J.

    2013-01-01

    Single photons are of paramount importance to future quantum technologies, including quantum communication and computation. Nonlinear photonic devices using parametric processes offer a straightforward route to generating photons, however additional nonlinear processes may come into play and interfere with these sources. Here we analyse spontaneous four-wave mixing (SFWM) sources in the presence of multi-photon processes. We conduct experiments in silicon and gallium indium phosphide photonic crystal waveguides which display inherently different nonlinear absorption processes, namely two-photon (TPA) and three-photon absorption (ThPA), respectively. We develop a novel model capturing these diverse effects which is in excellent quantitative agreement with measurements of brightness, coincidence-to-accidental ratio (CAR) and second-order correlation function g(2)(0), showing that TPA imposes an intrinsic limit on heralded single photon sources. We build on these observations to devise a new metric, the quantum utility (QMU), enabling further optimisation of single photon sources. PMID:24186400

  4. Bryophytes - an emerging source for herbal remedies and chemical production

    DEFF Research Database (Denmark)

    Sabovljevic, Marko S.; Sabovljević, Aneta D.; Ikram, Nur Kusaira K.

    2016-01-01

    biomass in various ecosystems, bryophytes are a seldom part of ethnomedicine and rarely subject to medicinal and chemical analyses. Still, hundreds of novel natural products have been isolated from bryophytes. Bryophytes have been shown to contain numerous potentially useful natural products, including...... loss, plant growth regulators and allelopathic activities. Bryophytes also cause allergies and contact dermatitis. All these effects highlight bryophytes as potential source for herbal remedies and production of chemicals to be used in various products....

  5. Single-channel source separation using non-negative matrix factorization

    DEFF Research Database (Denmark)

    Schmidt, Mikkel Nørgaard

    -determined and its solution relies on making appropriate assumptions concerning the sources. This dissertation is concerned with model-based probabilistic single-channel source separation based on non-negative matrix factorization, and consists of two parts: i) three introductory chapters and ii) five published...... papers. The first part introduces the single-channel source separation problem as well as non-negative matrix factorization and provides a comprehensive review of existing approaches, applications, and practical algorithms. This serves to provide context for the second part, the published papers......, in which a number of methods for single-channel source separation based on non-negative matrix factorization are presented. In the papers, the methods are applied to separating audio signals such as speech and musical instruments and separating different types of tissue in chemical shift imaging....

  6. Source apportionment of toxic chemical pollutants at Trombay region

    International Nuclear Information System (INIS)

    Sahu, S.K.; Pandit, G.G.; Puranik, V.D.

    2007-05-01

    Anthropogenic activities like industrial production and transportation, a wide range of chemical pollutants such as trace and toxic metals, pesticides, polycyclic aromatic hydrocarbons etc. eventually find their way into various environmental compartments. One of the main issues of environmental pollution is the chemical composition of aerosols and their sources. In spite of all the efforts a considerable part of the atmospheric aerosol mass is still not accounted for. This report describes some of the activities of Environmental Assessment Division which are having direct relevance to the public health and regulatory bodies. Extensive studies were carried out in our laboratories for the Trombay site, over the years; on the organic as well as inorganic pollution in the environment to understand inter compartmental behaviour of these chemical pollutants. In this report an attempt has been made to collect different size fractionated ambient aerosols and to quantify the percentage contribution of each size fraction to the total aerosol mass. Subsequently, an effort has been made for chemical characterization (inorganic, organic and carbon content) of these particulate matter using different analytical techniques. The comprehensive data set on chemical characterization of particulate matter thus generated is being used with receptor modeling techniques to identify the possible sources contributing to the observed concentrations of the measured pollutants. The use of this comprehensive data set in receptor modeling has been helpful in distinguishing the source types in a better way. Receptor modeling techniques are powerful tools that can be used to locate sources of pollutants to the atmosphere. The major advantage of the receptor models is that actual ambient data are used to apportion source contributions, negating the need for dispersion calculations. Pollution sources affecting the sampling site were statistically identified using varimax rotated factor analysis of

  7. Application of large radiation sources in chemical processing industry

    International Nuclear Information System (INIS)

    Krishnamurthy, K.

    1977-01-01

    Large radiation sources and their application in chemical processing industry are described. A reference has also been made to the present developments in this field in India. Radioactive sources, notably 60 Co, are employed in production of wood-plastic and concrete-polymer composites, vulcanised rubbers, polymers, sulfochlorinated paraffin hydrocarbons and in a number of other applications which require deep penetration and high reliability of source. Machine sources of electrons are used in production of heat shrinkable plastics, insulation materials for cables, curing of paints etc. Radiation sources have also been used for sewage hygienisation. As for the scene in India, 60 Co sources, gamma chambers and batch irradiators are manufactured. A list of the on-going R and D projects and organisations engaged in research in this field is given. (M.G.B.)

  8. Bubble Jet agent release cartridge for chemical single cell stimulation.

    Science.gov (United States)

    Wangler, N; Welsche, M; Blazek, M; Blessing, M; Vervliet-Scheebaum, M; Reski, R; Müller, C; Reinecke, H; Steigert, J; Roth, G; Zengerle, R; Paust, N

    2013-02-01

    We present a new method for the distinct specific chemical stimulation of single cells and small cell clusters within their natural environment. By single-drop release of chemical agents with droplets in size of typical cell diameters (d agent release cartridge with integrated fluidic structures and integrated agent reservoirs are shown, tested, and compared in this publication. The single channel setup features a fluidic structure fabricated by anisotropic etching of silicon. To allow for simultaneous release of different agents even though maintaining the same device size, the second type comprises a double channel fluidic structure, fabricated by photolithographic patterning of TMMF. Dispensed droplet volumes are V = 15 pl and V = 10 pl for the silicon and the TMMF based setups, respectively. Utilizing the agent release cartridges, the application in biological assays was demonstrated by hormone-stimulated premature bud formation in Physcomitrella patens and the individual staining of one single L 929 cell within a confluent grown cell culture.

  9. Energy Harvesting Research: The Road from Single Source to Multisource.

    Science.gov (United States)

    Bai, Yang; Jantunen, Heli; Juuti, Jari

    2018-06-07

    Energy harvesting technology may be considered an ultimate solution to replace batteries and provide a long-term power supply for wireless sensor networks. Looking back into its research history, individual energy harvesters for the conversion of single energy sources into electricity are developed first, followed by hybrid counterparts designed for use with multiple energy sources. Very recently, the concept of a truly multisource energy harvester built from only a single piece of material as the energy conversion component is proposed. This review, from the aspect of materials and device configurations, explains in detail a wide scope to give an overview of energy harvesting research. It covers single-source devices including solar, thermal, kinetic and other types of energy harvesters, hybrid energy harvesting configurations for both single and multiple energy sources and single material, and multisource energy harvesters. It also includes the energy conversion principles of photovoltaic, electromagnetic, piezoelectric, triboelectric, electrostatic, electrostrictive, thermoelectric, pyroelectric, magnetostrictive, and dielectric devices. This is one of the most comprehensive reviews conducted to date, focusing on the entire energy harvesting research scene and providing a guide to seeking deeper and more specific research references and resources from every corner of the scientific community. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Protecting single-photon entanglement with practical entanglement source

    Science.gov (United States)

    Zhou, Lan; Ou-Yang, Yang; Wang, Lei; Sheng, Yu-Bo

    2017-06-01

    Single-photon entanglement (SPE) is important for quantum communication and quantum information processing. However, SPE is sensitive to photon loss. In this paper, we discuss a linear optical amplification protocol for protecting SPE. Different from the previous protocols, we exploit the practical spontaneous parametric down-conversion (SPDC) source to realize the amplification, for the ideal entanglement source is unavailable in current quantum technology. Moreover, we prove that the amplification using the entanglement generated from SPDC source as auxiliary is better than the amplification assisted with single photons. The reason is that the vacuum state from SPDC source will not affect the amplification, so that it can be eliminated automatically. This protocol may be useful in future long-distance quantum communications.

  11. Processing of transmission data from an uncollimated single photon source

    International Nuclear Information System (INIS)

    Dikaios, N.; Dinelle, K.; Spinks, T.; Nikita, K.; Thielemans, K.

    2006-01-01

    The EXACT 3D PET scanner uses a Cs-137 single photon rotating point source for the transmission scan. As the source is un-collimated, the transmission data are contaminated by scatter. It has been suggested that segmentation of the reconstructed image can restore the quantitative information in the image. We study here if the results can be further improved by the application of a scale factor for every transaxial plane

  12. Piling up technology of goods irradiated by single plate source

    International Nuclear Information System (INIS)

    Xia Hezhou; Chen Yuxia; Cao Hongyun; Lin Yong; Zhou guoquan

    1999-01-01

    In the irradiation process of piling up goods in static state, four irradiation working sites and single plate source was adopted. The results showed that piling up in this way remarkably raised the irradiation quality of goods. The utilization rate of radioactive ray reached 22.27%

  13. Study of phenol extraction from coke-chemical sources

    Energy Technology Data Exchange (ETDEWEB)

    Catana, E.; Mateescu, I.; Giurcaneanu, V.; Bota, T.

    1990-09-01

    The paper presents an experimental study of the phase equilibrium in the coke-chemical tarphenols-solvent system (NaOH) solution and (phenolate solution) implied in the extraction of the phenols from coke-chemical sources. The possibility of using the phenolate solution as an extraction agent, thus making possible the improvement of the specific consumption and also simplifying the problem of the corrosion and of the waste water at the same time is presented. The influence of the solvent tar mass ratio on the selectivity of the process is discussed, this criterion being considered for establishing the conditions of the extraction. 2 figs., 7 tabs., 13 refs.

  14. Equitable Prices of Single-Source Drugs in Thailand.

    Science.gov (United States)

    Ngorsuraches, Surachat; Chaiyakan, Kanokkan

    2015-08-01

    In Thailand, total drug expenditure has grown rapidly. Recently, the Thai government has addressed the issue of drug pricing, but the prices of single-source drugs remain a major challenge. To examine equitable prices of single-source drugs in Thailand. A total of 98 single-source and high-expenditure drugs were examined. Unit prices from the Drug and Medical Supplies Information Center (DMSIC) and National Average Drug Acquisition Cost (NADAC) were used to represent drug prices at the provider level in Thailand and the U.S., respectively. Data for measuring drug affordability, e.g., dose and poverty line, were obtained from Micromedex online and the National Statistical Office (NSO). The U.S. drug prices were adjusted by the Human Development Index (HDI) to be equitable prices for Thailand. Purchasing Power Parity (PPP) was used to convert US currency into Thai baht. All prices in this study were based on the year 2012. Catastrophic, Impoverishment, and WHO/Health Action International (HAI) approaches were used to determine Thai citizens' ability to afford the study drugs. Finally, uncertainty analyses were conducted. From all study drugs, 55 single-source drugs were priced higher than their equitable prices, ranging from 0.38 to 422.36% higher. Among these, 28 items were antineoplastic drugs. The prices of drugs outside the National List of Essential Medicines (NLEM), as well as the country's newer drugs, tended to be higher than their calculated equitable prices. The majority of drugs in Thailand priced higher than equitable prices were unaffordable for most Thai citizens. The uncertainty analyses revealed that almost all results were relatively robust. Most single-source drug prices in Thailand were higher than their equitable prices, and were likely to be unaffordable to Thai citizens.

  15. A novel high-efficiency single-mode quantum dot single photon source

    DEFF Research Database (Denmark)

    Gerard, J.M.; Gregersen, Niels; Nielsen, Torben Roland

    2008-01-01

    We present a novel single-mode single photon source exploiting the emission of a semiconductor quantum dot (QD) located inside a photonic wire. Besides an excellent coupling (>95%) of QD spontaneous emission to the fundamental guided mode [1], we show that a single photon collection efficiency...... above 80% within a 0.5 numerical aperture can be achieved using a bottom Bragg mirror and a tapering of the nanowire tip. Because this photon collection strategy does not exploit the Purcell effect, it could also be efficiently applied to broadband single photon emitters such as F-centers in diamond....

  16. Stable single-photon source in the near infrared

    International Nuclear Information System (INIS)

    Gaebel, T; Popa, I; Gruber, A; Domhan, M; Jelezko, F; Wrachtrup, J

    2004-01-01

    Owing to their unsurpassed photostability, defects in solids may be ideal candidates for single-photon sources. Here we report on generation of single photons by optical excitation of a yet unexplored defect in diamond, the nickel-nitrogen complex (NE8) centre. The most striking feature of the defect is its emission bandwidth of 1.2 nm at room temperature. The emission wavelength of the defect is around 800 nm, which is suitable for telecom fibres. In addition, in this spectral region little background light from the diamond bulk material is detected. Consequently, a high contrast in antibunching measurements is achieved

  17. EFFECT OF ALTERNATIVE MULTINUTRIENT SOURCES ON SOIL CHEMICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Vanessa Martins

    2015-02-01

    Full Text Available The current high price of potassium chloride and the dependence of Brazil on imported materials to supply the domestic demand call for studies evaluating the efficiency of alternative sources of nutrients. The aim of this work was to evaluate the effect of silicate rock powder and a manganese mining by-product, and secondary materials originated from these two materials, on soil chemical properties and on brachiaria production. This greenhouse experiment was conducted in pots with 5 kg of soil (Latossolo Vermelho-Amarelo distrófico - Oxisol. The alternative nutrient sources were: verdete, verdete treated with NH4OH, phonolite, ultramafic rock, mining waste and the proportion of 75 % of these K fertilizers and 25 % lime. Mixtures containing 25 % of lime were heated at 800 ºC for 1 h. These sources were applied at rates of 0, 150, 300, 450 and 600 kg ha-1 K2O, and incubated for 45 days. The mixtures of heated silicate rocks with lime promoted higher increases in soil pH in decreasing order: ultramafic rock>verdete>phonolite>mining waste. Applying the mining waste-lime mixture increased soil exchangeable K, and available P when ultramafic rock was incorporated. When ultramafic rock was applied, the release of Ca2+ increased significantly. Mining subproduct released the highest amount of Zn2+ and Mn2+ to the soil. The application of alternative sources of K, with variable chemical composition, altered the nutrient availability and soil chemical properties, improving mainly plant development and K plant uptake, and are important nutrient sources.

  18. Ionization dual-zone static detector having single radioactive source

    International Nuclear Information System (INIS)

    Ried, L. Jr.; Wade, A.L.

    1977-01-01

    This ionization detector or combustion product detector includes a single radioactive source located in an ionization chamber, and the ionization chamber includes portions comprising a reference zone and a signal zone. Electrical circuitry connected to the reference and signal zones provides an output signal directly related to changes in voltages across the signal zone in relation to the amount of particulates of combustion present in the ionization chamber

  19. Single particle characterization, source apportionment, and aging effects of ambient aerosols in Southern California

    Science.gov (United States)

    Shields, Laura Grace

    Composed of a mixture of chemical species and phases and existing in a variety of shapes and sizes, atmospheric aerosols are complex and can have serious influence on human health, the environment, and climate. In order to better understand the impact of aerosols on local to global scales, detailed measurements on the physical and chemical properties of ambient particles are essential. In addition, knowing the origin or the source of the aerosols is important for policymakers to implement targeted regulations and effective control strategies to reduce air pollution in their region. One of the most ground breaking techniques in aerosol instrumentation is single particle mass spectrometry (SPMS), which can provide online chemical composition and size information on the individual particle level. The primary focus of this work is to further improve the ability of one specific SPMS technique, aerosol time-of-flight mass spectrometry (ATOFMS), for the use of identifying the specific origin of ambient aerosols, which is known as source apportionment. The ATOFMS source apportionment method utilizes a library of distinct source mass spectral signatures to match the chemical information of the single ambient particles. The unique signatures are obtained in controlled source characterization studies, such as with the exhaust emissions of heavy duty diesel vehicles (HDDV) operating on a dynamometer. The apportionment of ambient aerosols is complicated by the chemical and physical processes an individual particle can undergo as it spends time in the atmosphere, which is referred to as "aging" of the aerosol. Therefore, the performance of the source signature library technique was investigated on the ambient dataset of the highly aged environment of Riverside, California. Additionally, two specific subsets of the Riverside dataset (ultrafine particles and particles containing trace metals), which are known to cause adverse health effects, were probed in greater detail. Finally

  20. MICROORGANISMS: A MARVELOUS SOURCE OF SINGLE CELL PROTEINS

    Directory of Open Access Journals (Sweden)

    Agam Nangul

    2013-08-01

    Full Text Available The increasing global population living below the poverty line is driving the scientific community to search for non-conventional protein sources that can replace conventional expensive ones. Microbial proteins, or single-cell protein (SCP, represent a potential future nutrient source for human food and animal feed. These microbial proteins can be grown rapidly on substrates with minimum dependence on soil, water and climate conditions. They can be produced from algae, fungi and bacteria the chief sources of SCP. It is convenient to use microorganisms for production of SCP as they grow rapidly and have high protein content. Industrially, they can be produced from algal biomass, yeast, fungi. There are several other ways of getting SCP as well. Despite numerous advantages of SCP, they have disadvantages and toxic effects too, especially related to mycotoxins and bacterial toxins.

  1. Chemical reaction between single hydrogen atom and graphene

    International Nuclear Information System (INIS)

    Ito, Atsushi; Nakamura, Hiroaki; Takayama, Arimichi

    2007-04-01

    We study chemical reaction between a single hydrogen atom and a graphene, which is the elemental reaction between hydrogen and graphitic carbon materials. In the present work, classical molecular dynamics simulation is used with modified Brenner's empirical bond order potential. The three reactions, that is, absorption reaction, reflection reaction and penetration reaction, are observed in our simulation. Reaction rates depend on the incident energy of the hydrogen atom and the graphene temperature. The dependence can be explained by the following mechanisms: (1) The hydrogen atom receives repulsive force by π-electrons in addition to nuclear repulsion. (2) Absorbing the hydrogen atom, the graphene transforms its structure to the 'overhand' configuration such as sp 3 state. (3) The hexagonal hole of the graphene is expanded during the penetration of the hydrogen atom. (author)

  2. CADDIS Volume 2. Sources, Stressors and Responses: Unspecified Toxic Chemicals

    Science.gov (United States)

    Intro to the unspecified toxic chemicals module, when to list toxic chemicals as a candidate cause, ways to measure toxic chemicals, simple and detailed conceptual diagrams for toxic chemicals, toxic chemicals module references and literature reviews.

  3. Single-wall carbon nanotube chemical attachment at platinum electrodes

    International Nuclear Information System (INIS)

    Rosario-Castro, Belinda I.; Contes-de-Jesus, Enid J.; Lebron-Colon, Marisabel; Meador, Michael A.; Scibioh, M. Aulice; Cabrera, Carlos R.

    2010-01-01

    Self-assembled monolayer (SAM) techniques were used to adsorb 4-aminothiophenol (4-ATP) on platinum electrodes in order to obtain an amino-terminated SAM as the base for the chemical attachment of single-wall carbon nanotubes (SWCNTs). A physico-chemical, morphological and electrochemical characterizations of SWCNTs attached onto the modified Pt electrodes was done by using reflection-absorption infrared spectroscopy (RAIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and cyclic voltammetry (CV) techniques. The SWNTs/4-ATP/Pt surface had regions of small, medium, and large thickness of carbon nanotubes with heights of 100-200 nm, 700 nm to 1.5 μm, and 1.0-3.0 μm, respectively. Cyclic voltammetries (CVs) in sulfuric acid demonstrated that attachment of SWNTs on 4-ATP/Pt is markedly stable, even after 30 potential cycles. CV in ruthenium hexamine was similar to bare Pt electrodes, suggesting that SWNTs assembly is similar to a closely packed microelectrode array.

  4. Surface characterization of III-V MOCVD films from heterocyclic single-source precursors; Oberflaechencharakterisierung von III-V MOCVD-Filmen aus heterozyklischen Single Source Precursoren

    Energy Technology Data Exchange (ETDEWEB)

    Seemayer, Andreas

    2009-07-13

    In the present thesis the sublimation and evaporation properties of heterocyclic gallium and antimony containing single-source precursors as well as the chemical composition and morphology of the films fabricated from this were studied. The single-source precursors available by a new synthesis route were characterized concerning their evaporation properties and the obtained films studied surface-physically. By this way the process parameters were optimized and the applicability of the single-source precursors in HV-MOCVD processes studied. By evaporation experiments in the UHV it could be shown that thereby lighter ligands like ethyl- and methyl-groups lead to a lower contamination of the reaction space with carbon containing molecules. Furthermore it was expected that the 6-rings synthetized with short ligands exhibit a high stability. This however could not be confirmed. By unwanted parasitary reactions in the gaseous phase respectively dissociative sublimation in the gaseous phase a deposition of GaSb with these precursors was not possible. The 4-ring stabilized with tertiary-butyl and ethyl-groups caused in the evaporation the largest contamination of the gaseous phase, becauselonger-chain hydrocarbons exhibil only a bad pump cross section. By parasitary reactions originating elementary antimony is detectable in the gaseous phase. The films were studied concerning their chemical composition and their transport- respectively storage-conditioned surface contamination. Furthermore it has become clear that not only a purely synthetized precursor substance but also the reactor design is deciding for a successful deposition and a high film quality. First by successive optimization of the evaporation geometry it was possible to reduce the roughness of the produced GaSb films down to about 10 nm-30 nm.

  5. Localizing gravitational wave sources with single-baseline atom interferometers

    Science.gov (United States)

    Graham, Peter W.; Jung, Sunghoon

    2018-02-01

    Localizing sources on the sky is crucial for realizing the full potential of gravitational waves for astronomy, astrophysics, and cosmology. We show that the midfrequency band, roughly 0.03 to 10 Hz, has significant potential for angular localization. The angular location is measured through the changing Doppler shift as the detector orbits the Sun. This band maximizes the effect since these are the highest frequencies in which sources live for several months. Atom interferometer detectors can observe in the midfrequency band, and even with just a single baseline they can exploit this effect for sensitive angular localization. The single-baseline orbits around the Earth and the Sun, causing it to reorient and change position significantly during the lifetime of the source, and making it similar to having multiple baselines/detectors. For example, atomic detectors could predict the location of upcoming black hole or neutron star merger events with sufficient accuracy to allow optical and other electromagnetic telescopes to observe these events simultaneously. Thus, midband atomic detectors are complementary to other gravitational wave detectors and will help complete the observation of a broad range of the gravitational spectrum.

  6. Extracting and connecting chemical structures from text sources using chemicalize.org.

    Science.gov (United States)

    Southan, Christopher; Stracz, Andras

    2013-04-23

    Exploring bioactive chemistry requires navigating between structures and data from a variety of text-based sources. While PubChem currently includes approximately 16 million document-extracted structures (15 million from patents) the extent of public inter-document and document-to-database links is still well below any estimated total, especially for journal articles. A major expansion in access to text-entombed chemistry is enabled by chemicalize.org. This on-line resource can process IUPAC names, SMILES, InChI strings, CAS numbers and drug names from pasted text, PDFs or URLs to generate structures, calculate properties and launch searches. Here, we explore its utility for answering questions related to chemical structures in documents and where these overlap with database records. These aspects are illustrated using a common theme of Dipeptidyl Peptidase 4 (DPPIV) inhibitors. Full-text open URL sources facilitated the download of over 1400 structures from a DPPIV patent and the alignment of specific examples with IC50 data. Uploading the SMILES to PubChem revealed extensive linking to patents and papers, including prior submissions from chemicalize.org as submitting source. A DPPIV medicinal chemistry paper was completely extracted and structures were aligned to the activity results table, as well as linked to other documents via PubChem. In both cases, key structures with data were partitioned from common chemistry by dividing them into individual new PDFs for conversion. Over 500 structures were also extracted from a batch of PubMed abstracts related to DPPIV inhibition. The drug structures could be stepped through each text occurrence and included some converted MeSH-only IUPAC names not linked in PubChem. Performing set intersections proved effective for detecting compounds-in-common between documents and merged extractions. This work demonstrates the utility of chemicalize.org for the exploration of chemical structure connectivity between documents and

  7. Chemical Source Localization Fusing Concentration Information in the Presence of Chemical Background Noise.

    Science.gov (United States)

    Pomareda, Víctor; Magrans, Rudys; Jiménez-Soto, Juan M; Martínez, Dani; Tresánchez, Marcel; Burgués, Javier; Palacín, Jordi; Marco, Santiago

    2017-04-20

    We present the estimation of a likelihood map for the location of the source of a chemical plume dispersed under atmospheric turbulence under uniform wind conditions. The main contribution of this work is to extend previous proposals based on Bayesian inference with binary detections to the use of concentration information while at the same time being robust against the presence of background chemical noise. For that, the algorithm builds a background model with robust statistics measurements to assess the posterior probability that a given chemical concentration reading comes from the background or from a source emitting at a distance with a specific release rate. In addition, our algorithm allows multiple mobile gas sensors to be used. Ten realistic simulations and ten real data experiments are used for evaluation purposes. For the simulations, we have supposed that sensors are mounted on cars which do not have among its main tasks navigating toward the source. To collect the real dataset, a special arena with induced wind is built, and an autonomous vehicle equipped with several sensors, including a photo ionization detector (PID) for sensing chemical concentration, is used. Simulation results show that our algorithm, provides a better estimation of the source location even for a low background level that benefits the performance of binary version. The improvement is clear for the synthetic data while for real data the estimation is only slightly better, probably because our exploration arena is not able to provide uniform wind conditions. Finally, an estimation of the computational cost of the algorithmic proposal is presented.

  8. Methods of forming single source precursors, methods of forming polymeric single source precursors, and single source precursors and intermediate products formed by such methods

    Science.gov (United States)

    Fox, Robert V.; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin; Margulieux, Kelsey R.; Holland, Andrew W.

    2012-12-04

    Methods of forming single source precursors (SSPs) include forming intermediate products having the empirical formula 1/2{L.sub.2N(.mu.-X).sub.2M'X.sub.2}.sub.2, and reacting MER with the intermediate products to form SSPs of the formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2, wherein L is a Lewis base, M is a Group IA atom, N is a Group IB atom, M' is a Group IIIB atom, each E is a Group VIB atom, each X is a Group VIIA atom or a nitrate group, and each R group is an alkyl, aryl, vinyl, (per)fluoro alkyl, (per)fluoro aryl, silane, or carbamato group. Methods of forming polymeric or copolymeric SSPs include reacting at least one of HE.sup.1R.sup.1E.sup.1H and MER with one or more substances having the empirical formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2 or L.sub.2N(.mu.-X).sub.2M'(X).sub.2 to form a polymeric or copolymeric SSP. New SSPs and intermediate products are formed by such methods.

  9. Methods of forming single source precursors, methods of forming polymeric single source precursors, and single source precursors formed by such methods

    Science.gov (United States)

    Fox, Robert V.; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin; Margulieux, Kelsey R.; Holland, Andrew W.

    2014-09-09

    Methods of forming single source precursors (SSPs) include forming intermediate products having the empirical formula 1/2{L.sub.2N(.mu.-X).sub.2M'X.sub.2}.sub.2, and reacting MER with the intermediate products to form SSPs of the formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2, wherein L is a Lewis base, M is a Group IA atom, N is a Group IB atom, M' is a Group IIIB atom, each E is a Group VIB atom, each X is a Group VIIA atom or a nitrate group, and each R group is an alkyl, aryl, vinyl, (per)fluoro alkyl, (per)fluoro aryl, silane, or carbamato group. Methods of forming polymeric or copolymeric SSPs include reacting at least one of HE.sup.1R.sup.1E.sup.1H and MER with one or more substances having the empirical formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2 or L.sub.2N(.mu.-X).sub.2M'(X).sub.2 to form a polymeric or copolymeric SSP. New SSPs and intermediate products are formed by such methods.

  10. Improvement of Source Number Estimation Method for Single Channel Signal.

    Directory of Open Access Journals (Sweden)

    Zhi Dong

    Full Text Available Source number estimation methods for single channel signal have been investigated and the improvements for each method are suggested in this work. Firstly, the single channel data is converted to multi-channel form by delay process. Then, algorithms used in the array signal processing, such as Gerschgorin's disk estimation (GDE and minimum description length (MDL, are introduced to estimate the source number of the received signal. The previous results have shown that the MDL based on information theoretic criteria (ITC obtains a superior performance than GDE at low SNR. However it has no ability to handle the signals containing colored noise. On the contrary, the GDE method can eliminate the influence of colored noise. Nevertheless, its performance at low SNR is not satisfactory. In order to solve these problems and contradictions, the work makes remarkable improvements on these two methods on account of the above consideration. A diagonal loading technique is employed to ameliorate the MDL method and a jackknife technique is referenced to optimize the data covariance matrix in order to improve the performance of the GDE method. The results of simulation have illustrated that the performance of original methods have been promoted largely.

  11. Single bunch transfer system for the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Sheehan, J.; Singh, O.; Rambo, W.

    1983-01-01

    The accelerator system at the National Synchrotron Light Source consists of an S-band 85 MeV linac and three synchrotron rings. The electron beam from the linac is accelerated by the booster ring to 600 MeV and transferred to one of the two storage rings. The smaller of the two rings operates between 300 and 800 MeV emtting photons in the vacuum ultraviolet (VUV), while the larger storage ring operates up to 2.5 GeV and emits photons in the x-ray spectrum. A system is described for loading the storage rings by filling a single-phase space bunch in the booster ring and transferring it at the end of each booster cycle into a selected bucket in one of the storage rings. By controlling the timing of the transfer on successive transfer cycles, many fill patterns may be obtained

  12. Uncharted constellations asterisms, single-source and rebrands

    CERN Document Server

    Barentine, John C

    2016-01-01

    This book compiles an array of interesting constellations that fell by the wayside before the IAU established the modern canon of constellations. That decision left out lesser known ones whose history is nevertheless interesting, but at last author John Barentine is giving them their due. This book is a companion to "The Alternate Constellations", highlighting the more obscure configurations.  The 16 constellations found in this volume fall into one or more of three broad categories: asterims, such as the Big Dipper in Ursa Major; single-sourced constellations introduced on surviving charts by a cartographer perhaps currying the favor of sponsors; and re-brands, new figures meant to displace existing constellations, often for an ideological reason. All of them reveal something unique about the development of humanity's map of the sky. .

  13. Efficiency factor of a chemical nuclear reactor with gamma sources

    International Nuclear Information System (INIS)

    Anguis T, C.

    1975-01-01

    A chemonuclear reactor is simulated in order to calculate the efficiency factor of molecular species in chemical reactions induced by gamma radiation, with the purpose to obtain information for its design and consider the electromagnetic energy as a possible solution to the present problem of energy. The research is based on a mathematical model of succesive Compton processes applied to spherical and cylindrical geometry and corroborated through the absorbed dose and the experimental date of the increase factor, for the radioisotopic sources Co-60 and Cs-137 relating the quantity of energy deposited into various cylinders with the G value, the relation radius/height of the reactor is optimized according to the molecular production. This is illustrated with the radiolysis of a solution of CH 3 OH/H 2 O which forms H 2 and with the obtainment of C 2 H 5 Br that represents and industrial process induced radioactively. The results show a greater energy deposition with Cs-137 but a larger production of H 2 /hr with Co-60, and besides we can find high production values of C 2 H 5 Br. The cylinder with more advantages is that whose relation R/H is of 0.5. It can be concluded that the final selection of the reactor should be made after a more intense study of the used isotope and the source activity. The efficiency factor of H 2 can be increased selecting the appropriate type and concentration of solute of the irradiated aqueous solutions

  14. Chemical Cocktails Enable Hepatic Reprogramming of Mouse Fibroblasts with a Single Transcription Factor

    Directory of Open Access Journals (Sweden)

    Ren Guo

    2017-08-01

    Full Text Available Liver or hepatocytes transplantation is limited by the availability of donor organs. Functional hepatocytes independent of the donor sources may have wide applications in regenerative medicine and the drug industry. Recent studies have demonstrated that chemical cocktails may induce reprogramming of fibroblasts into a range of functional somatic cells. Here, we show that mouse fibroblasts can be transdifferentiated into the hepatocyte-like cells (iHeps using only one transcription factor (TF (Foxa1, Foxa2, or Foxa3 plus a chemical cocktail. These iHeps show typical epithelial morphology, express multiple hepatocyte-specific genes, and acquire hepatocyte functions. Genetic lineage tracing confirms the fibroblast origin of these iHeps. More interestingly, these iHeps are expandable in vitro and can reconstitute the damaged hepatic tissues of the fumarylacetoacetate hydrolase-deficient (Fah−/− mice. Our study provides a strategy to generate functional hepatocyte-like cells by using a single TF plus a chemical cocktail and is one step closer to generate the full-chemical iHeps.

  15. CHEMICAL EVOLUTION OF RED MSX SOURCES IN THE SOUTHERN SKY

    International Nuclear Information System (INIS)

    Yu, Naiping; Xu, Jinlong

    2016-01-01

    Red Midcourse Space Experiment ( MSX ) Sources (RMSs) are regarded as excellent candidates of massive star-forming regions. In order to characterize the chemical properties of massive star formation, we made a systematic study of 87 RMSs in the southern sky, using archival data taken from the Atacama Pathfinder Experiment Telescope Large Area Survey of the Galaxy (ATLASGAL), the Australia Telescope Compact Array, and the Millimetre Astronomy Legacy Team Survey at 90 GHz (MALT90). According to previous multiwavelength observations, our sample could be divided into two groups: massive young stellar objects and H ii regions. Combined with the MALT90 data, we calculated the column densities of N 2 H + , C 2 H, HC 3 N, and HNC and found that they are not much different from previous studies made in other massive star-forming regions. However, their abundances are relatively low compared to infrared dark clouds (IRDCs). The abundances of N 2 H + and HNC in our sample are at least 1 mag lower than those found in IRDCs, indicating chemical depletions in the relatively hot gas. Besides, the fractional abundances of N 2 H + , C 2 H, and HC 3 N seem to decrease as a function of their Lyman continuum fluxes (N L ), indicating that these molecules could be destroyed by UV photons when H ii regions have formed inside. We also find that the C 2 H abundance decreases faster than HC 3 N with respect to N L . The abundance of HNC has a tight correlation with that of N 2 H + , indicating that it may be also preferentially formed in cold gas. We regard our RMSs as being in a relatively late evolutionary stage of massive star formation.

  16. Chemical Evolution of Red MSX Sources in the Southern Sky

    Science.gov (United States)

    Yu, Naiping; Xu, Jinlong

    2016-12-01

    Red Midcourse Space Experiment (MSX) Sources (RMSs) are regarded as excellent candidates of massive star-forming regions. In order to characterize the chemical properties of massive star formation, we made a systematic study of 87 RMSs in the southern sky, using archival data taken from the Atacama Pathfinder Experiment Telescope Large Area Survey of the Galaxy (ATLASGAL), the Australia Telescope Compact Array, and the Millimetre Astronomy Legacy Team Survey at 90 GHz (MALT90). According to previous multiwavelength observations, our sample could be divided into two groups: massive young stellar objects and H II regions. Combined with the MALT90 data, we calculated the column densities of N2H+, C2H, HC3N, and HNC and found that they are not much different from previous studies made in other massive star-forming regions. However, their abundances are relatively low compared to infrared dark clouds (IRDCs). The abundances of N2H+ and HNC in our sample are at least 1 mag lower than those found in IRDCs, indicating chemical depletions in the relatively hot gas. Besides, the fractional abundances of N2H+, C2H, and HC3N seem to decrease as a function of their Lyman continuum fluxes (N L ), indicating that these molecules could be destroyed by UV photons when H II regions have formed inside. We also find that the C2H abundance decreases faster than HC3N with respect to N L . The abundance of HNC has a tight correlation with that of N2H+, indicating that it may be also preferentially formed in cold gas. We regard our RMSs as being in a relatively late evolutionary stage of massive star formation.

  17. CHEMICAL EVOLUTION OF RED MSX SOURCES IN THE SOUTHERN SKY

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Naiping; Xu, Jinlong [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2016-12-20

    Red Midcourse Space Experiment ( MSX ) Sources (RMSs) are regarded as excellent candidates of massive star-forming regions. In order to characterize the chemical properties of massive star formation, we made a systematic study of 87 RMSs in the southern sky, using archival data taken from the Atacama Pathfinder Experiment Telescope Large Area Survey of the Galaxy (ATLASGAL), the Australia Telescope Compact Array, and the Millimetre Astronomy Legacy Team Survey at 90 GHz (MALT90). According to previous multiwavelength observations, our sample could be divided into two groups: massive young stellar objects and H ii regions. Combined with the MALT90 data, we calculated the column densities of N{sub 2}H{sup +}, C{sub 2}H, HC{sub 3}N, and HNC and found that they are not much different from previous studies made in other massive star-forming regions. However, their abundances are relatively low compared to infrared dark clouds (IRDCs). The abundances of N{sub 2}H{sup +} and HNC in our sample are at least 1 mag lower than those found in IRDCs, indicating chemical depletions in the relatively hot gas. Besides, the fractional abundances of N{sub 2}H{sup +}, C{sub 2}H, and HC{sub 3}N seem to decrease as a function of their Lyman continuum fluxes (N {sub L}), indicating that these molecules could be destroyed by UV photons when H ii regions have formed inside. We also find that the C{sub 2}H abundance decreases faster than HC{sub 3}N with respect to N{sub L}. The abundance of HNC has a tight correlation with that of N{sub 2}H{sup +}, indicating that it may be also preferentially formed in cold gas. We regard our RMSs as being in a relatively late evolutionary stage of massive star formation.

  18. Chemical composition and sources of atmospheric aerosols at Djougou (Benin)

    Science.gov (United States)

    Ouafo-Leumbe, Marie-Roumy; Galy-Lacaux, Corinne; Liousse, Catherine; Pont, Veronique; Akpo, Aristide; Doumbia, Thierno; Gardrat, Eric; Zouiten, Cyril; Sigha-Nkamdjou, Luc; Ekodeck, Georges Emmanuel

    2017-06-01

    In the framework of the INDAAF (International Network to study Deposition and Atmospheric chemistry in AFrica) program, atmospheric aerosols were collected in PM2.5 and PM10 size fractions at Djougou, Benin, in the West Africa, from November, 2005 to October, 2009. Particulate carbon, ionic species, and trace metals were analyzed. Weekly PM2.5 and PM10 total mass concentrations varied between 0.7 and 47.3 µg m-3 and 1.4-148.3 µg m-3, respectively. We grouped the aerosol chemical compounds into four classes: dust, particulate organic matter (POM), elemental carbon (EC), and ions. We studied the annual variation of each class to determine their contribution in the total aerosol mass concentration and finally to investigate their potential emission sources. On an annual basis, the species presented a well-marked seasonality, with the peak of mass concentration for both sizes registered in dry season, 67 ± 2 to 86 ± 9 versus 14 ± 9 to 34 ± 5% in wet season. These values emphasized the seasonality of the emissions and the relative weak interannual standard deviation indicates the low variability of the seasonality. At the seasonal scale, major contributions to the aerosol chemistry in the dry season are: dust (26-59%), POM (30-59%), EC (5-9%), and ions (3-5%), suggesting a predominance of Sahelian and Saharan dust emissions and biomass burning source in this season. In the wet season, POM is predominant, followed by dust, EC, and ions. These results point out the contribution of surrounded biofuel combustion used for cooking and biogenic emissions during the wet season.

  19. Productivity of a nuclear chemical reactor with gamma radioisotopic sources

    International Nuclear Information System (INIS)

    Anguis T, C.

    1975-01-01

    According to an established mathematical model of successive Compton interaction processes the made calculations for major distances are extended checking the acceptability of the spheric geometry model for the experimental data for radioisotopic sources of Co-60 and Cs-137. Parameters such as the increasing factor and the absorbed dose served as comparative base. calculations for the case of a punctual source succession inside a determined volume cylinder are made to obtain the total dose, the deposited energy by each photons energetic group and the total absorbed energy inside the reactor. Varying adequately the height/radius relation for different cylinders, the distinct energy depositions are compared in each one of them once a time standardized toward a standard value of energy emitted by the reactor volume. A relation between the quantity of deposited energy in each point of the reactor and the conversion values of chemical species is established. They are induced by electromagnetic radiation and that are reported as ''G'' in the scientific literature (number of molecules formed or disappeared by each 100 e.v. of energy). Once obtained the molecular performance inside the reactor for each type of geometry, it is optimized the height/radius relation according to the maximum production of molecules by unity of time. It is completed a bibliographical review of ''G'' values reported by different types of aqueous solutions with the purpose to determine the maximum performance of molecular hydrogen as a function of pH of the solution and of the used type of solute among other factors. Calculations for the ethyl bromide production as an example of one of the industrial processes which actually work using the gamma radiation as reactions inductor are realized. (Author)

  20. Dose performance and image quality: Dual source CT versus single source CT in cardiac CT angiography

    International Nuclear Information System (INIS)

    Wang Min; Qi Hengtao; Wang Ximing; Wang Tao; Chen, Jiu-Hong; Liu Cheng

    2009-01-01

    Objective: To evaluate dose performance and image quality of 64-slice dual source CT (DSCT) in comparison to 64-slice single source CT (SSCT) in cardiac CT angiography (CTA). Methods: 100 patients examined by DSCT and 60 patients scanned by SSCT were included in this study. Objective indices such as image noise, contrast-to-noise ratio and signal-to-noise ratio were analyzed. Subjective image quality was assessed by two cardiovascular radiologists in consensus using a four-point scale (1 = excellent to 4 = not acceptable). Estimation of effective dose was performed on the basis of dose length product (DLP). Results: At low heart rates ( 0.05), but, at high heart rates (>70 bpm), DSCT provided robust image quality (P 70 bpm), DSCT is able to provide robust diagnostic image quality at doses far below that of SSCT.

  1. Novel edible oil sources: Microwave heating and chemical properties.

    Science.gov (United States)

    Hashemi, Seyed Mohammad Bagher; Mousavi Khaneghah, Amin; Koubaa, Mohamed; Lopez-Cervantes, Jaime; Yousefabad, Seyed Hossein Asadi; Hosseini, Seyedeh Fatemeh; Karimi, Masoumeh; Motazedian, Azam; Asadifard, Samira

    2017-02-01

    The aim of this work was to investigate the effect of various microwave heating times (1, 3, 5, 10, and 15min) on the chemical properties of novel edible oil sources, including Mashhadi melon (Cucumis melo var. Iranians cv. Mashhadi), Iranian watermelon (Citrullus lanatus cv. Fire Fon), pumpkin (Cucurbita pepo subsp. pepo var. Styriaca), and yellow apple (Malus domestica cv. Golden Delicious) seed oils. The evaluated parameters were peroxide value (PV), conjugated diene (CD) and triene (CT) values, carbonyl value (CV), p-anisidine value (AnV), oil stability index (OSI), radical scavenging activity (RSA), total tocopherols, total phenolics, as well as chlorophyll and carotenoid contents. Results showed that extended microwave heating involves decreased quality of the seed oils, mainly due to the formation of primary and secondary oxidation products. Microwave heating time also affects the total contents of chlorophylls, carotenoids, phenolics and tocopherols, which clearly decrease by increasing the exposure time. The order of oxidative stability of the analyzed edible oils was pumpkin>Mashhadi melon>Iranian watermelon>yellow apple. The obtained results demonstrated the promising potential of these novel edible oils for different food applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Epitaxial Oxide Thin Films Grown by Solid Source Metal-Organic Chemical Vapor Deposition.

    Science.gov (United States)

    Lu, Zihong

    1995-01-01

    The conventional liquid source metal-organic chemical vapor deposition (MOCVD) technique is capable of producing large area, high quality, single crystal semiconductor films. However, the growth of complex oxide films by this method has been hampered by a lack of suitable source materials. While chemists have been actively searching for new source materials, the research work reported here has demonstrated the successful application of solid metal-organic sources (based on tetramethylheptanedionate) to the growth of high quality thin films of binary compound cerium dioxide (CeO_2), and two more complex materials, the ternary compound lithium niobate (LiNbO_3), with two cations, and the quaternary compound strontium barium niobate (SBN), with three cations. The growth of CeO_2 thin films on (1012)Al_2O_3 substrates has been used as a model to study the general growth behavior of oxides. Factors affecting deposition rate, surface morphology, out-of-plane mosaic structure, and film orientation have been carefully investigated. A kinetic model based on gas phase prereaction is proposed to account for the substrate temperature dependence of film orientation found in this system. Atomically smooth, single crystal quality cerium dioxide thin films have been obtained. Superconducting YBCO films sputtered on top of solid source MOCVD grown thin cerium dioxide buffer layers on sapphire have been shown to have physical properties as good as those of YBCO films grown on single crystal MgO substrates. The thin film growth of LiNbO_3 and Sr_{1-x}Ba _{x}Nb_2 O_6 (SBN) was more complex and challenging. Phase purity, transparency, in-plane orientation, and the ferroelectric polarity of LiNbO _3 films grown on sapphire substrates was investigated. The first optical quality, MOCVD grown LiNbO _3 films, having waveguiding losses of less than 2 dB/cm, were prepared. An important aspect of the SBN film growth studies involved finding a suitable single crystal substrate material. Mg

  3. Chemical characterization of freshly emitted particulate matter from aircraft exhaust using single particle mass spectrometry

    Science.gov (United States)

    Abegglen, Manuel; Brem, B. T.; Ellenrieder, M.; Durdina, L.; Rindlisbacher, T.; Wang, J.; Lohmann, U.; Sierau, B.

    2016-06-01

    Non-volatile aircraft engine emissions are an important anthropogenic source of soot particles in the upper troposphere and in the vicinity of airports. They influence climate and contribute to global warming. In addition, they impact air quality and thus human health and the environment. The chemical composition of non-volatile particulate matter emission from aircraft engines was investigated using single particle time-of-flight mass spectrometry. The exhaust from three different aircraft engines was sampled and analyzed. The soot particulate matter was sampled directly behind the turbine in a test cell at Zurich Airport. Single particle analyses will focus on metallic compounds. The particles analyzed herein represent a subset of the emissions composed of the largest particles with a mobility diameter >100 nm due to instrumental restrictions. A vast majority of the analyzed particles was shown to contain elemental carbon, and depending on the engine and the applied thrust the elemental carbon to total carbon ratio ranged from 83% to 99%. The detected metallic compounds were all internally mixed with the soot particles. The most abundant metals in the exhaust were Cr, Fe, Mo, Na, Ca and Al; V, Ba, Co, Cu, Ni, Pb, Mg, Mn, Si, Ti and Zr were also detected. We further investigated potential sources of the ATOFMS-detected metallic compounds using Inductively Coupled Plasma Mass Spectrometry. The potential sources considered were kerosene, engine lubrication oil and abrasion from engine wearing components. An unambiguous source apportionment was not possible because most metallic compounds were detected in several of the analyzed sources.

  4. Saudis trust and confidence in information sources about chemical ...

    African Journals Online (AJOL)

    The presence of toxic chemicals in the environment has drawn increasing concern in Saudi Arabia in recent years. Public health officials recognize a direct link between health problems and exposure to these chemicals. To communicate information on chemical pollution health risks effectively, policy makers must know ...

  5. Temporal resolution and motion artifacts in single-source and dual-source cardiac CT

    International Nuclear Information System (INIS)

    Schöndube, Harald; Allmendinger, Thomas; Stierstorfer, Karl; Bruder, Herbert; Flohr, Thomas

    2013-01-01

    Purpose: The temporal resolution of a given image in cardiac computed tomography (CT) has so far mostly been determined from the amount of CT data employed for the reconstruction of that image. The purpose of this paper is to examine the applicability of such measures to the newly introduced modality of dual-source CT as well as to methods aiming to provide improved temporal resolution by means of an advanced image reconstruction algorithm. Methods: To provide a solid base for the examinations described in this paper, an extensive review of temporal resolution in conventional single-source CT is given first. Two different measures for assessing temporal resolution with respect to the amount of data involved are introduced, namely, either taking the full width at half maximum of the respective data weighting function (FWHM-TR) or the total width of the weighting function (total TR) as a base of the assessment. Image reconstruction using both a direct fan-beam filtered backprojection with Parker weighting as well as using a parallel-beam rebinning step are considered. The theory of assessing temporal resolution by means of the data involved is then extended to dual-source CT. Finally, three different advanced iterative reconstruction methods that all use the same input data are compared with respect to the resulting motion artifact level. For brevity and simplicity, the examinations are limited to two-dimensional data acquisition and reconstruction. However, all results and conclusions presented in this paper are also directly applicable to both circular and helical cone-beam CT. Results: While the concept of total TR can directly be applied to dual-source CT, the definition of the FWHM of a weighting function needs to be slightly extended to be applicable to this modality. The three different advanced iterative reconstruction methods examined in this paper result in significantly different images with respect to their motion artifact level, despite exactly the same

  6. Temporal resolution and motion artifacts in single-source and dual-source cardiac CT.

    Science.gov (United States)

    Schöndube, Harald; Allmendinger, Thomas; Stierstorfer, Karl; Bruder, Herbert; Flohr, Thomas

    2013-03-01

    The temporal resolution of a given image in cardiac computed tomography (CT) has so far mostly been determined from the amount of CT data employed for the reconstruction of that image. The purpose of this paper is to examine the applicability of such measures to the newly introduced modality of dual-source CT as well as to methods aiming to provide improved temporal resolution by means of an advanced image reconstruction algorithm. To provide a solid base for the examinations described in this paper, an extensive review of temporal resolution in conventional single-source CT is given first. Two different measures for assessing temporal resolution with respect to the amount of data involved are introduced, namely, either taking the full width at half maximum of the respective data weighting function (FWHM-TR) or the total width of the weighting function (total TR) as a base of the assessment. Image reconstruction using both a direct fan-beam filtered backprojection with Parker weighting as well as using a parallel-beam rebinning step are considered. The theory of assessing temporal resolution by means of the data involved is then extended to dual-source CT. Finally, three different advanced iterative reconstruction methods that all use the same input data are compared with respect to the resulting motion artifact level. For brevity and simplicity, the examinations are limited to two-dimensional data acquisition and reconstruction. However, all results and conclusions presented in this paper are also directly applicable to both circular and helical cone-beam CT. While the concept of total TR can directly be applied to dual-source CT, the definition of the FWHM of a weighting function needs to be slightly extended to be applicable to this modality. The three different advanced iterative reconstruction methods examined in this paper result in significantly different images with respect to their motion artifact level, despite exactly the same amount of data being used

  7. Single-Photon Source for Quantum Information Based on Single Dye Molecule Fluorescence in Liquid Crystal Host

    International Nuclear Information System (INIS)

    Lukishova, S.G.; Knox, R.P.; Freivald, P.; McNamara, A.; Boyd, R.W.; Stroud, Jr. C.R.; Schmid, A.W.; Marshall, K.L.

    2006-01-01

    This paper describes a new application for liquid crystals: quantum information technology. A deterministically polarized single-photon source that efficiently produces photons exhibiting antibunching is a pivotal hardware element in absolutely secure quantum communication. Planar-aligned nematic liquid crystal hosts deterministically align the single dye molecules which produce deterministically polarized single (antibunched) photons. In addition, 1-D photonic bandgap cholesteric liquid crystals will increase single-photon source efficiency. The experiments and challenges in the observation of deterministically polarized fluorescence from single dye molecules in planar-aligned glassy nematic-liquid-crystal oligomer as well as photon antibunching in glassy cholesteric oligomer are described for the first time

  8. High brightness fiber laser pump sources based on single emitters and multiple single emitters

    Science.gov (United States)

    Scheller, Torsten; Wagner, Lars; Wolf, Jürgen; Bonati, Guido; Dörfel, Falk; Gabler, Thomas

    2008-02-01

    Driven by the potential of the fiber laser market, the development of high brightness pump sources has been pushed during the last years. The main approaches to reach the targets of this market had been the direct coupling of single emitters (SE) on the one hand and the beam shaping of bars and stacks on the other hand, which often causes higher cost per watt. Meanwhile the power of single emitters with 100μm emitter size for direct coupling increased dramatically, which also pushed a new generation of wide stripe emitters or multi emitters (ME) of up to 1000μm emitter size respectively "minibars" with apertures of 3 to 5mm. The advantage of this emitter type compared to traditional bars is it's scalability to power levels of 40W to 60W combined with a small aperture which gives advantages when coupling into a fiber. We show concepts using this multiple single emitters for fiber coupled systems of 25W up to 40W out of a 100μm fiber NA 0.22 with a reasonable optical efficiency. Taking into account a further efficiency optimization and an increase in power of these devices in the near future, the EUR/W ratio pushed by the fiber laser manufacturer will further decrease. Results will be shown as well for higher power pump sources. Additional state of the art tapered fiber bundles for photonic crystal fibers are used to combine 7 (19) pump sources to output powers of 100W (370W) out of a 130μm (250μm) fiber NA 0.6 with nominal 20W per port. Improving those TFB's in the near future and utilizing 40W per pump leg, an output power of even 750W out of 250μm fiber NA 0.6 will be possible. Combined Counter- and Co-Propagated pumping of the fiber will then lead to the first 1kW fiber laser oscillator.

  9. Chemical Disequilibria and Sources of Gibbs Free Energy Inside Enceladus

    Science.gov (United States)

    Zolotov, M. Y.

    2010-12-01

    Non-photosynthetic organisms use chemical disequilibria in the environment to gain metabolic energy from enzyme catalyzed oxidation-reduction (redox) reactions. The presence of carbon dioxide, ammonia, formaldehyde, methanol, methane and other hydrocarbons in the eruptive plume of Enceladus [1] implies diverse redox disequilibria in the interior. In the history of the moon, redox disequilibria could have been activated through melting of a volatile-rich ice and following water-rock-organic interactions. Previous and/or present aqueous processes are consistent with the detection of NaCl and Na2CO3/NaHCO3-bearing grains emitted from Enceladus [2]. A low K/Na ratio in the grains [2] and a low upper limit for N2 in the plume [3] indicate low temperature (possibly enzymes if organisms were (are) present. The redox conditions in aqueous systems and amounts of available Gibbs free energy should have been affected by the production, consumption and escape of hydrogen. Aqueous oxidation of minerals (Fe-Ni metal, Fe-Ni phosphides, etc.) accreted on Enceladus should have led to H2 production, which is consistent with H2 detection in the plume [1]. Numerical evaluations based on concentrations of plume gases [1] reveal sufficient energy sources available to support metabolically diverse life at a wide range of activities (a) of dissolved H2 (log aH2 from 0 to -10). Formaldehyde, carbon dioxide [c.f. 4], HCN (if it is present), methanol, acetylene and other hydrocarbons have the potential to react with H2 to form methane. Aqueous hydrogenations of acetylene, HCN and formaldehyde to produce methanol are energetically favorable as well. Both favorable hydrogenation and hydration of HCN lead to formation of ammonia. Condensed organic species could also participate in redox reactions. Methane and ammonia are the final products of these putative redox transformations. Sulfates may have not formed in cold and/or short-term aqueous environments with a limited H2 escape. In contrast to

  10. Photoacoustic thermal flowmetry with a single light source

    Science.gov (United States)

    Liu, Wei; Lan, Bangxin; Hu, Leo; Chen, Ruimin; Zhou, Qifa; Yao, Junjie

    2017-09-01

    We report a photoacoustic thermal flowmetry based on optical-resolution photoacoustic microscopy (OR-PAM) using a single laser source for both thermal tagging and photoacoustic excitation. When an optically absorbing medium is flowing across the optical focal zone of OR-PAM, a small volume of the medium within the optical focus is repeatedly illuminated and heated by a train of laser pulses with a high repetition rate. The average temperature of the heated volume at each laser pulse is indicated by the photoacoustic signal excited by the same laser pulse due to the well-established linear relationship between the Grueneisen coefficient and the local temperature. The thermal dynamics of the heated medium volume, which are closely related to the flow speed, can therefore be measured from the time course of the detected photoacoustic signals. Here, we have developed a lumped mathematical model to describe the time course of the photoacoustic signals as a function of the medium's flow speed. We conclude that the rising time constant of the photoacoustic signals is linearly dependent on the flow speed. Thus, the flow speed can be quantified by fitting the measured photoacoustic signals using the derived mathematical model. We first performed proof-of-concept experiments using defibrinated bovine blood flowing in a plastic tube. The experiment results have demonstrated that the proposed method has high accuracy (˜±6%) and a wide range of measurable flow speeds. We further validated the method by measuring the blood flow speeds of the microvasculature in a mouse ear in vivo.

  11. Observing single molecule chemical reactions on metal nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    Emory, S. R. (Steven R.); Ambrose, W. Patrick; Goodwin, P. M. (Peter M); Keller, Richard A.

    2001-01-01

    We report the study of the photodecomposition of single Rhodamine 6G (R6G) dye molecules adsorbed on silver nanoparticles. The nanoparticles were immobilized and spatially isolated on polylysine-derivatized glass coverslips, and confocal laser microspectroscopy was used to obtain surface-enhanced Raman scattering (SERS) spectra from individual R6G molecules. The photodecomposition of these molecules was observed with 150-ms temporal resolution. The photoproduct was identified as graphitic carbon based on the appearance of broad SERS vibrational bands at 1592 cm{sup -1} and 1340 cm{sup -1} observed in both bulk and averaged single-molecule photoproduct spectra. In contrast, when observed at the single-molecule level, the photoproduct yielded sharp SERS spectra. The inhomogeneous broadening of the bulk SERS spectra is due to a variety of photoproducts in different surface orientations and is a characteristic of ensemble-averaged measurements of disordered systems. These single-molecule studies indicate a photodecomposition pathway by which the R6G molecule desorbs from the metal surface, an excited-state photoreaction occurs, and the R6G photoproduct(s) readsorbs to the surface. A SERS spectrum is obtained when either the intact R6G or the R6G photoproduct(s) are adsorbed on a SERS-active site. This work further illustrates the power of single-molecule spectroscopy (SMS) to reveal unique behaviors of single molecules that are not discernable with bulk measurements.

  12. Single-collision studies of hot atom energy transfer and chemical reaction

    International Nuclear Information System (INIS)

    Valentini, J.J.

    1991-01-01

    This report discusses research in the collision dynamics of translationally hot atoms, with funding with DOE for the project ''Single-Collision Studies of Hot Atom Energy Transfer and Chemical Reaction,'' Grant Number DE-FG03-85ER13453. The work reported here was done during the period September 9, 1988 through October 31, 1991. During this period this DOE-funded work has been focused on several different efforts: (1) experimental studies of the state-to-state dynamics of the H + RH → H 2 R reactions where RH is CH 4 , C 2 H 6 , or C 3 H 8 , (2) theoretical (quasiclassical trajectory) studies of hot hydrogen atom collision dynamics, (3) the development of photochemical sources of translationally hot molecular free radicals and characterization of the high resolution CARS spectroscopy of molecular free radicals, (4) the implementation of stimulated Raman excitation (SRE) techniques for the preparation of vibrationally state-selected molecular reactants

  13. chemical profiles of honeys originating from different floral sources

    African Journals Online (AJOL)

    2015-02-05

    Feb 5, 2015 ... FLORAL SOURCES AND GEOGRAPHIC LOCATIONS EXAMINED BY A ... quality honeys retail for premium prices, but these honeys are increasingly being counterfeited ... distinguish between two floral sources in Malaysia.

  14. Plant cell tissue culture: A potential source of chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Scott, C.D.; Dougall, D.K.

    1987-08-01

    Higher plants produce many industrially important products. Among these are drugs and medicinal chemicals, essential oils and flavors, vegetable oils and fats, fine and specialty chemicals, and even some commodity chemicals. Although, currently, whole-plant extraction is the primary means of harvesting these materials, the advent of plant cell tissue culture could be a much more effective method of producing many types of phytochemicals. The use of immobilized plant cells in an advanced bioreactor configuration with excretion of the product into the reactor medium may represent the most straightforward way of commercializing such techniques for lower-value chemicals. Important research and development opportunities in this area include screening for plant cultures for nonmedical, lower-value chemicals; understanding and controlling plant cell physiology and biochemistry; optimizing effective immobilization methods; developing more efficient bioreactor concepts; and perfecting product extraction and purification techniques. 62 refs., 2 figs.

  15. Ultrafast electrical control of a resonantly driven single photon source

    International Nuclear Information System (INIS)

    Cao, Y.; Bennett, A. J.; Ellis, D. J. P.; Shields, A. J.; Farrer, I.; Ritchie, D. A.

    2014-01-01

    We demonstrate generation of a pulsed stream of electrically triggered single photons in resonance fluorescence, by applying high frequency electrical pulses to a single quantum dot in a p-i-n diode under resonant laser excitation. Single photon emission was verified, with the probability of multiple photon emission reduced to 2.8%. We show that despite the presence of charge noise in the emission spectrum of the dot, resonant excitation acts as a “filter” to generate narrow bandwidth photons

  16. Investigation on a Novel Discontinuous Pulse-Width Modulation Algorithm for Single-phase Voltage Source Rectifier

    DEFF Research Database (Denmark)

    Qu, Hao; Yang, Xijun; Guo, Yougui

    2014-01-01

    Single-phase voltage source converter (VSC) is an important power electronic converter (PEC), including single-phase voltage source inverter (VSI), single-phase voltage source rectifier (VSR), single-phase active power filter (APF) and single-phase grid-connection inverter (GCI). Single-phase VSC...

  17. Nanofabrication of Plasmonic Circuits Containing Single Photon Sources

    DEFF Research Database (Denmark)

    Siampour, Hamidreza; Kumar, Shailesh; Bozhevolnyi, Sergey I.

    2017-01-01

    Nanofabrication of photonic components based on dielectric loaded surface plasmon polariton waveguides (DLSPPWs) excited by single nitrogen vacancy (NV) centers in nanodiamonds is demonstrated. DLSPPW circuits are built around NV containing nanodiamonds, which are certified to be single-photon...... emitters, using electron-beam lithography of hydrogen silsesquioxane (HSQ) resist on silver-coated silicon substrates. A propagation length of 20 ± 5 μm for the NV single-photon emission is measured with DLSPPWs. A 5-fold enhancement in the total decay rate, and 58% coupling efficiency to the DLSPPW mode...

  18. Single walled carbon nanotubes functionally adsorbed to biopolymers for use as chemical sensors

    Science.gov (United States)

    Johnson, Jr., Alan T.; Gelperin, Alan [Princeton, NJ; Staii, Cristian [Madison, WI

    2011-07-12

    Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.

  19. Physics-based approach to chemical source localization using mobile robotic swarms

    Science.gov (United States)

    Zarzhitsky, Dimitri

    2008-07-01

    , we have implemented chemotaxis on three laboratory-scale robots. Chemotaxis requires only chemical sensors; eventually, when small-scale anemometers capable of reliably detecting low air velocities become available, we plan to implement anemotaxis and fluxotaxis on the robots as well. Our chemotaxis robots use the physicomimetics control algorithm to arrange the team of vehicles into a triangular formation, which then traces an ethanol vapor plume to its source emitter. In agreement with our theoretical predictions, the swarm implementation shows a consistent gain in CPT performance as compared to a single-robot solution.

  20. Deterministic and Storable Single-Photon Source Based on a Quantum Memory

    International Nuclear Information System (INIS)

    Chen Shuai; Chen, Y.-A.; Strassel, Thorsten; Zhao Bo; Yuan Zhensheng; Pan Jianwei; Schmiedmayer, Joerg

    2006-01-01

    A single-photon source is realized with a cold atomic ensemble ( 87 Rb atoms). A single excitation, written in an atomic quantum memory by Raman scattering of a laser pulse, is retrieved deterministically as a single photon at a predetermined time. It is shown that the production rate of single photons can be enhanced considerably by a feedback circuit while the single-photon quality is conserved. Such a single-photon source is well suited for future large-scale realization of quantum communication and linear optical quantum computation

  1. The Chemical Composition of Different Sources of Liming Materials ...

    African Journals Online (AJOL)

    An incubation experiment was conducted to evaluate the effect of some liming materials on soil chemical properties. The treatments comprised Cocoa Husk Pod Ash (CPHA), Oyster Shell Ash (OSA), Palm Bunch Ash (PBA), Calcium Carbonate (CaCO3), Kitchen Residues Ash (KRA) and Saw Dust Ash (SDA) at five levels ...

  2. Chemical score of different protein sources to four Macrobrachium species

    OpenAIRE

    Montoya-Martínez, Cynthia; Nolasco-Soria, Héctor; Carrillo-Farnés, Olimpia; Civera-Cerecedo, Roberto; Álvarez-González, Carlos; Vega-Villasante, Fernando

    2016-01-01

    Food production for aquaculture requires finding other protein sources or ingredients as potential alternatives in the formulation of aquaculture feeds, due to the shortage and high price of protein sources that are most commonly used. The aim of this analysis was to evaluate the relationship between the essential amino acids in 13 types of proteins available in the market with the essential amino acids found in the muscle of four of the most important farmed prawn species of the genus Macrob...

  3. Deterministic Single-Photon Source for Distributed Quantum Networking

    International Nuclear Information System (INIS)

    Kuhn, Axel; Hennrich, Markus; Rempe, Gerhard

    2002-01-01

    A sequence of single photons is emitted on demand from a single three-level atom strongly coupled to a high-finesse optical cavity. The photons are generated by an adiabatically driven stimulated Raman transition between two atomic ground states, with the vacuum field of the cavity stimulating one branch of the transition, and laser pulses deterministically driving the other branch. This process is unitary and therefore intrinsically reversible, which is essential for quantum communication and networking, and the photons should be appropriate for all-optical quantum information processing

  4. Photonic wires and trumpets for ultrabright single photon sources

    DEFF Research Database (Denmark)

    Gérard, Jean-Michel; Claudon, Julien; Bleuse, Joël

    2013-01-01

    as to tailor their radiation diagram in the far-field. We highlight the novel “photonic trumpet” geometry, which provides a clean Gaussian beam, and is much less sensitive to fabrication imperfections than the more common needle-like taper geometry. S4Ps based on a single QD in a PW with integrated bottom...

  5. Spatially single-mode source of bright squeezed vacuum

    OpenAIRE

    Pérez, A. M.; Iskhakov, T. Sh.; Sharapova, P.; Lemieux, S.; Tikhonova, O. V.; Chekhova, M. V.; Leuchs, G.

    2014-01-01

    Bright squeezed vacuum, a macroscopic nonclassical state of light, can be obtained at the output of a strongly pumped non-seeded traveling-wave optical parametric amplifier (OPA). By constructing the OPA of two consecutive crystals separated by a large distance we make the squeezed vacuum spatially single-mode without a significant decrease in the brightness or squeezing.

  6. Seismic and source characteristics of large chemical explosions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Adushkin, V.V.; Kostuchenko, V.N.; Pernik, L.M.; Sultanov, D.D.; Zcikanovsky, V.I.

    1995-01-01

    From the very beginning of its arrangement in 1947, the Institute for Dynamics of the Geospheres RAS (former Special Sector of the Institute for physics of the Earth, RAS) was providing scientific observations of effects of nuclear explosions, as well as large-scale detonations of HE, on environment. This report presents principal results of instrumental observations obtained from various large-scale chemical explosions conducted in the Former-Soviet Union in the period of time from 1957 to 1989. Considering principal aim of the work, tamped and equivalent chemical explosions have been selected with total weights from several hundreds to several thousands ton. In particular, the selected explosions were aimed to study scaling law from excavation explosions, seismic effect of tamped explosions, and for dam construction for hydropower stations and soil melioration. Instrumental data on surface explosions of total weight in the same range aimed to test military technics and special objects are not included.

  7. Novel single photon sources for new generation of quantum communications

    Science.gov (United States)

    2017-06-13

    including the time for reviewing instructions, searching existing    data sources, gathering and maintaining the data needed, and completing and...and enable absolutely secured information transfer between distant nodes – key prerequisite for quantum cryptography. Experiment : the experimental... format showing authors, title, journal, issue, pages, and date, for each category list the following: a) papers published in peer-reviewed journals

  8. 76 FR 31964 - Announcement of the Award of Nine Single-Source Expansion Supplement Grants

    Science.gov (United States)

    2011-06-02

    ... the Award of Nine Single-Source Expansion Supplement Grants AGENCY: Office of Refugee Resettlement, ACF, HHS. ACTION: Notice to announce the award of nine single-source expansion supplement grants to.... Maintaining Funding Level of Matching Grant Program (a) Maintaining Funding Level--Subject to the availability...

  9. Fabrication of radiation sources for educational purposes from chemical fertilizers using compressing and forming method

    International Nuclear Information System (INIS)

    Kawano, Takao

    2008-01-01

    Chemical fertilizers contain potassium, which is composed of a small amount of naturally occurring potassium-40. The potassium-40 radionuclide emits beta and gamma radiation. Three brands of chemical fertilizer were used to fabricate disk-shaped radiation sources and the fabricated radiation sources were examined for applicability to an educational radiation course. In the examination, tests to determine dependence of count rate on distance, shielding thickness, and shielding materials were conducted using the radiation sources. Results showed that radiation sources fabricated from the three brands of chemical fertilizer were equivalent for explaining radiation characteristics, particularly those related to the dependence of radiation strength on distance and shielding thickness. The relation between shielding effect and mass density can be explained qualitatively. Thus, chemical fertilizer radiation sources can be a useful teaching aid for educational courses to better promote understanding of radiation characteristics and the principles of radiation protection. (author)

  10. Single or multiple synchronization transitions in scale-free neuronal networks with electrical or chemical coupling

    International Nuclear Information System (INIS)

    Hao Yinghang; Gong, Yubing; Wang Li; Ma Xiaoguang; Yang Chuanlu

    2011-01-01

    Research highlights: → Single synchronization transition for gap-junctional coupling. → Multiple synchronization transitions for chemical synaptic coupling. → Gap junctions and chemical synapses have different impacts on synchronization transition. → Chemical synapses may play a dominant role in neurons' information processing. - Abstract: In this paper, we have studied time delay- and coupling strength-induced synchronization transitions in scale-free modified Hodgkin-Huxley (MHH) neuron networks with gap-junctions and chemical synaptic coupling. It is shown that the synchronization transitions are much different for these two coupling types. For gap-junctions, the neurons exhibit a single synchronization transition with time delay and coupling strength, while for chemical synapses, there are multiple synchronization transitions with time delay, and the synchronization transition with coupling strength is dependent on the time delay lengths. For short delays we observe a single synchronization transition, whereas for long delays the neurons exhibit multiple synchronization transitions as the coupling strength is varied. These results show that gap junctions and chemical synapses have different impacts on the pattern formation and synchronization transitions of the scale-free MHH neuronal networks, and chemical synapses, compared to gap junctions, may play a dominant and more active function in the firing activity of the networks. These findings would be helpful for further understanding the roles of gap junctions and chemical synapses in the firing dynamics of neuronal networks.

  11. Single or multiple synchronization transitions in scale-free neuronal networks with electrical or chemical coupling

    Energy Technology Data Exchange (ETDEWEB)

    Hao Yinghang [School of Physics, Ludong University, Yantai 264025 (China); Gong, Yubing, E-mail: gongyubing09@hotmail.co [School of Physics, Ludong University, Yantai 264025 (China); Wang Li; Ma Xiaoguang; Yang Chuanlu [School of Physics, Ludong University, Yantai 264025 (China)

    2011-04-15

    Research highlights: Single synchronization transition for gap-junctional coupling. Multiple synchronization transitions for chemical synaptic coupling. Gap junctions and chemical synapses have different impacts on synchronization transition. Chemical synapses may play a dominant role in neurons' information processing. - Abstract: In this paper, we have studied time delay- and coupling strength-induced synchronization transitions in scale-free modified Hodgkin-Huxley (MHH) neuron networks with gap-junctions and chemical synaptic coupling. It is shown that the synchronization transitions are much different for these two coupling types. For gap-junctions, the neurons exhibit a single synchronization transition with time delay and coupling strength, while for chemical synapses, there are multiple synchronization transitions with time delay, and the synchronization transition with coupling strength is dependent on the time delay lengths. For short delays we observe a single synchronization transition, whereas for long delays the neurons exhibit multiple synchronization transitions as the coupling strength is varied. These results show that gap junctions and chemical synapses have different impacts on the pattern formation and synchronization transitions of the scale-free MHH neuronal networks, and chemical synapses, compared to gap junctions, may play a dominant and more active function in the firing activity of the networks. These findings would be helpful for further understanding the roles of gap junctions and chemical synapses in the firing dynamics of neuronal networks.

  12. Mass transfer with complex reversible chemical reactions—I. Single reversible chemical reaction

    NARCIS (Netherlands)

    Versteeg, G.F.; Kuipers, J.A.M.; Beckum, F.P.H. van; Swaaij, W.P.M. van

    1989-01-01

    An improved numerical technique was used in order to develop an absorption model with which it is possible to calculate rapidly absorption rates for the phenomenon of mass transfer accompanied by a complex reversible chemical reaction. This model can be applied for the calculation of the mass

  13. A singly charged ion source for radioactive 11C ion acceleration

    Science.gov (United States)

    Katagiri, K.; Noda, A.; Nagatsu, K.; Nakao, M.; Hojo, S.; Muramatsu, M.; Suzuki, K.; Wakui, T.; Noda, K.

    2016-02-01

    A new singly charged ion source using electron impact ionization has been developed to realize an isotope separation on-line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive 11C ion beams. Low-energy electron beams are used in the electron impact ion source to produce singly charged ions. Ionization efficiency was calculated in order to decide the geometric parameters of the ion source and to determine the required electron emission current for obtaining high ionization efficiency. Based on these considerations, the singly charged ion source was designed and fabricated. In testing, the fabricated ion source was found to have favorable performance as a singly charged ion source.

  14. Exploring sources of biogenic secondary organic aerosol compounds using chemical analysis and the FLEXPART model

    Directory of Open Access Journals (Sweden)

    J. Martinsson

    2017-09-01

    Full Text Available Molecular tracers in secondary organic aerosols (SOAs can provide information on origin of SOA, as well as regional scale processes involved in their formation. In this study 9 carboxylic acids, 11 organosulfates (OSs and 2 nitrooxy organosulfates (NOSs were determined in daily aerosol particle filter samples from Vavihill measurement station in southern Sweden during June and July 2012. Several of the observed compounds are photo-oxidation products from biogenic volatile organic compounds (BVOCs. Highest average mass concentrations were observed for carboxylic acids derived from fatty acids and monoterpenes (12. 3 ± 15. 6 and 13. 8 ± 11. 6 ng m−3, respectively. The FLEXPART model was used to link nine specific surface types to single measured compounds. It was found that the surface category sea and ocean was dominating the air mass exposure (56 % but contributed to low mass concentration of observed chemical compounds. A principal component (PC analysis identified four components, where the one with highest explanatory power (49 % displayed clear impact of coniferous forest on measured mass concentration of a majority of the compounds. The three remaining PCs were more difficult to interpret, although azelaic, suberic, and pimelic acid were closely related to each other but not to any clear surface category. Hence, future studies should aim to deduce the biogenic sources and surface category of these compounds. This study bridges micro-level chemical speciation to air mass surface exposure at the macro level.

  15. MOCVD of hexagonal boron nitride thin films on Si(100) using new single source precursors

    CERN Document Server

    Boo, J H; Yu, K S; Kim, Y S; Kim, Y S; Park, J T

    1999-01-01

    We have been carried out the growth of hexagonal boron nitride (h-BN) thin films on Si(100) substrates by low pressure metal-organic chemical vapor deposition (LPMOCVD) method using triethylborane tert-butylamine complex (TEBTBA), Et sub 3 BNH sub 2 ( sup t Bu), and triethylborane isopropylamine complex (TEBIPA), Et sub 3 BNH sub 2 ( sup t Pr) as a new single molecular precursors in the temperature range of 850 approx 1000 .deg. C. polycrystalline, crack-free h-BN film was successfully grown on Si(100) substrate at 850 .deg. C using TEBTBA. This growth temperature is very lower than those in previous reports. Carbon-rich polycrystalline BN was also obtained at 900 .deg. C from TEBIPA. With increasing substrate temperature to 1000 .deg. C, however, BC sub 4 N-like species are strongly formed along with h-BN and the BN films obtained from both TEBTBA and TEBIPA but almost polycrystalline. To our best knowledge, this is the first report of the growth of h-BN films formed with the new single source precursors of ...

  16. Northeast Hub Partners and United Salts Single Source Determination

    Science.gov (United States)

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  17. Single Source Determination for Coors/TriGen

    Science.gov (United States)

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  18. Single-source gamma radiation procedures for improved calibration and measurements in porous media

    International Nuclear Information System (INIS)

    Oostrom, M.; Hofstee, C.; Dane, H.; Lenhard, R.J.

    1998-01-01

    When dual-energy gamma radiation systems are employed for measurements in porous media, count rates from both sources are often used to compute parameter values. However, for several applications, the count rates of just one source are insufficient. These applications include the determination of volumetric liquid content values in two-liquid systems and salt concentration values in water-saturated porous media. Single-energy gamma radiation procedures for three applications are described in this paper. Through an error analysis, single-source procedures are shown to reduce the probable error in the determinations considerably. Example calculations and simple column experiments were conducted for each application to compare the performance of the new single-source and standard dual-source methods. In all cases, the single-source methods provided more reliable data than the traditional dual-source methods. In addition, a single-source calibration procedure is proposed to determine incident count rates indirectly. This procedure, which requires packing under saturated conditions, can be used in all single- and dual-source applications and yields accurate porosity and dry bulk density values

  19. Combustion flame-plasma hybrid reactor systems, and chemical reactant sources

    Science.gov (United States)

    Kong, Peter C

    2013-11-26

    Combustion flame-plasma hybrid reactor systems, chemical reactant sources, and related methods are disclosed. In one embodiment, a combustion flame-plasma hybrid reactor system comprising a reaction chamber, a combustion torch positioned to direct a flame into the reaction chamber, and one or more reactant feed assemblies configured to electrically energize at least one electrically conductive solid reactant structure to form a plasma and feed each electrically conductive solid reactant structure into the plasma to form at least one product is disclosed. In an additional embodiment, a chemical reactant source for a combustion flame-plasma hybrid reactor comprising an elongated electrically conductive reactant structure consisting essentially of at least one chemical reactant is disclosed. In further embodiments, methods of forming a chemical reactant source and methods of chemically converting at least one reactant into at least one product are disclosed.

  20. Technology development for a single-photon source

    International Nuclear Information System (INIS)

    Enzmann, Roland

    2011-01-01

    The growth of InAs-quantum dots on GaAs-substrate is established concerning low quantum dot densities (ca. 1 pro μm 2 ) and high densities (> 100 pro μm 2 ). However it is not possible to reach the telecommunication wavelength regime around 1.55 μm with InAs-quantum dots on GaAs-substrate. In contrast to this, InP based materials, in general, provide the emission wavelength of 1.55 μm. But the effort to fabricate InAs nanostructures on InP based material system by molecular beam epitaxy does not lead to quantum dots but in general to quantum dashes, which arise in high surface densities. To enable the growth of InAs-quantum dots based on InP several detailed growth studies on to InP-substrate lattice matched matrix material Al x Ga y In 1-x-y As were performed. Thereby the influence of growth rate, growth temperature, InAs coverage and the indium content on the growth surface have been investigated. InAs has been deposited on a thin indiumfree ''sublayer''. The corresponding growth studies showed that a 0.6 nm thick GaSb sublayer is the best choice. Using this technique quantum dots with surface densities from 1 to 150 per μm 2 could be realized. To make low quantum dot densities also on layers containing much aluminium possible, the Al x Ga y In 1-x-y As alloy was grown in the digital alloy growth mode, that is to say the pseudo binaries Al 0,48 In 0,52 As and Ga 0,47 In 0,53 As are grown by the second. By varying the bandgap of the matrix material, viz. by varying the aluminum content, single quantum dots emitting in the range from 1100 nm to 1560 nm could be realized. This way as well the optical O-band (1.3 μm) with an aluminum content of 13% as the optical C-band (1.55 μm) with an aluminum content of 4% could be realized. Another possibility to tailor the emission wavelength of quantum dots are so called stacked dots. In the process two layer of quantum dots, separated with a thin spacer layer, were deposited upon each other. By this way a redshift of

  1. Sources of toxicity and exposure information for identifying chemicals of high concern to children

    International Nuclear Information System (INIS)

    Stone, Alex; Delistraty, Damon

    2010-01-01

    Due to the large number of chemicals in commerce without adequate toxicity characterization data, coupled with an ineffective federal policy for chemical management in the United States, many states are grappling with the challenge to identify toxic chemicals that may pose a risk to human health and the environment. Specific populations (e.g., children, elderly) are particularly sensitive to these toxic chemicals. In 2008, the Children's Safe Product Act (CSPA) was passed in Washington State. The CSPA included specific requirements to identify High Priority Chemicals (HPCs) and Chemicals of High Concern to Children (CHCCs). To implement this legislation, a methodology was developed to identify HPCs from authoritative scientific and regulatory sources on the basis of toxicity criteria. Another set of chemicals of concern was then identified from authoritative sources, based on their potential exposure to children. Exposure potential was evaluated by identifying chemicals detected in biomonitoring studies (i.e., human tissues), as well as those present in residential exposure media (e.g., indoor air, house dust, drinking water, consumer products). Accordingly, CHCCs were defined as HPCs that also appear in biomonitoring studies or relevant exposure media. For chemicals with unique Chemical Abstracts Service (CAS) numbers, we identified 2044 HPCs and 2219 chemicals with potential exposure to children, resulting in 476 CHCCs. The process of chemical identification is dynamic, so that chemicals may be added or subtracted as new information becomes available. Although beyond the scope of this paper, the 476 CHCCs will be prioritized in a more detailed assessment, based on the strength and weight of evidence of toxicity and exposure data. Our approach was developed to be flexible which allows the addition or removal of specific sources of toxicity or exposure information, as well as transparent to allow clear identification of inputs. Although the methodology was

  2. Remote Access Revolution: Chemical Crystallographers Enter a New Era at Diamond Light Source Beamline I19

    Directory of Open Access Journals (Sweden)

    Natalie T. Johnson

    2017-12-01

    Full Text Available Since the inception of the use of synchrotron radiation in the structural characterisation of crystalline materials by single-crystal diffraction in the late 20th century, the field has undergone an explosion of technological developments. These cover all aspects of the experiments performed, from the construction of the storage rings and insertion devices, to the end user functionalities in the experimental hutches. Developments in automation have most frequently been driven by the macromolecular crystallography community. The drive towards greater access to ever-brighter X-ray sources has benefited the entire field. Herein, we detail the revolution that is now occurring within the chemical crystallography community, utilising many of the tools developed by their more biologically oriented colleagues, along with specialised functionalities that are tailored to the small-molecule world. We discuss the benefits of utilising the advanced features of Diamond Light Source beamline I19 in the newly developed remote access mode and the step-change in productivity that can be established as a result.

  3. Nested Penning Trap as a Source of Singly Charged Ions

    International Nuclear Information System (INIS)

    Ordonez, C.A.

    2003-01-01

    In the work reported, the possibility of using a nested Penning trap as a high purity source of low-charge-state ions is studied. For the configuration considered, a relatively dense ion plasma is confined by a three-dimensional electric potential well. The three-dimensional well is produced by the electric field generated by both the trap electrodes and a trapped electron plasma. The ion and electron plasmas are each considered to have Maxwellian velocity distributions. However, it is shown that the electron plasma must have a temperature that is higher than that of the ion plasma when the ions have low charge states. The work reported includes a self-consistent prediction of a possible plasma equilibrium

  4. Applications of sealed sources in chemical engineering. I

    International Nuclear Information System (INIS)

    Thyn, J.; Pokorny, J.; Cabrnoch, J.

    1977-01-01

    The vertical and horizontal distribution of the concentration of milling balls was observed radiometrically ( 241 Am) on a model (1:4) of the vertical mill of the MOLINEX type. The basic relations are derived for the calculation of the distribution of the density of solid particles and relations for the estimation of errors in measurement. A description is given of the model equipment, of the configuration of the radiation source, of the detector and of the experimental conditions. The results are discussed of measurements for three configurations on the shaft of the excentrically mounted mixing discs (4, 6 and 9 pieces) at 10 rev.s -1 for one revolution direction. The effect of the number of revolutions and of the revolution direction was observed for 6 mixing elements. (B.S.)

  5. High-quality asynchronous heralded single-photon source at telecom wavelength

    International Nuclear Information System (INIS)

    Fasel, Sylvain; Alibart, Olivier; Tanzilli, Sebastien; Baldi, Pascal; Beveratos, Alexios; Gisin, Nicolas; Zbinden, Hugo

    2004-01-01

    We report on the experimental realization and characterization of an asynchronous heralded single-photon source based on spontaneous parametric down-conversion. Photons at 1550 nm are heralded as being inside a single-mode fibre with more than 60% probability, and the multi-photon emission probability is reduced by a factor of up to more than 500 compared to Poissonian light sources. These figures of merit, together with the choice of telecom wavelength for the heralded photons, are compatible with practical applications needing very efficient and robust single-photon sources

  6. Single-photon sources for quantum technologies - Results of the joint research project SIQUTE

    DEFF Research Database (Denmark)

    Kück, S.; López, M.; Rodiek, B.

    2017-01-01

    In this presentation, the results of the joint research project “Single-Photon Sources for Quantum Technologies” (SIQUTE) [1] will be presented. The focus will be on the development of absolutely characterized single-photon sources, on the realization of an efficient waveguide-based single-photon......-photon source at the telecom wavelengths of 1.3 µm and 1.55 µm, on the implementation of the quantum-enhanced resolution in confocal fluorescence microscopy and on the development of a detector for very low photon fluxes...

  7. Counteracting chemical chaperone effects on the single-molecule α-synuclein structural landscape

    OpenAIRE

    Ferreon, Allan Chris M.; Moosa, Mahdi Muhammad; Gambin, Yann; Deniz, Ashok A.

    2012-01-01

    Protein structure and function depend on a close interplay between intrinsic folding energy landscapes and the chemistry of the protein environment. Osmolytes are small-molecule compounds that can act as chemical chaperones by altering the environment in a cellular context. Despite their importance, detailed studies on the role of these chemical chaperones in modulating structure and dimensions of intrinsically disordered proteins have been limited. Here, we used single-molecule Förster reson...

  8. Coupling an electrospray source and a solids probe/chemical ionization source to a selected ion flow tube apparatus

    International Nuclear Information System (INIS)

    Melko, Joshua J.; Ard, Shaun G.; Shuman, Nicholas S.; Viggiano, Albert A.; Pedder, Randall E.; Taormina, Christopher R.

    2015-01-01

    A new ion source region has been constructed and attached to a variable temperature selected ion flow tube. The source features the capabilities of electron impact, chemical ionization, a solids probe, and electrospray ionization. The performance of the instrument is demonstrated through a series of reactions from ions created in each of the new source regions. The chemical ionization source is able to create H 3 O + , but not as efficiently as similar sources with larger apertures. The ability of this source to support a solids probe, however, greatly expands our capabilities. A variety of rhenium cations and dications are created from the solids probe in sufficient abundance to study in the flow tube. The reaction of Re + with O 2 proceeds with a rate constant that agrees with the literature measurements, while the reaction of Re 2 2+ is found to charge transfer with O 2 at about 60% of the collision rate; we have also performed calculations that support the charge transfer pathway. The electrospray source is used to create Ba + , which is reacted with N 2 O to create BaO + , and we find a rate constant that agrees with the literature

  9. The influence of different single dietary sources on moult induction in laying hens.

    Science.gov (United States)

    Mansoori, Behzad; Modirsanei, Mehrdad; Farkhoy, Mohsen; Kiaei, Mohammad-Mehdi; Honarzad, Jila

    2007-11-01

    An investigation was carried out to assess the possibility of using single dietary sources as alternatives to feed deprivation for the induction of moult in commercial laying hens. The study involved six dietary groups of 29 laying hens: unmoulted, dried tomato pomace, alfalfa meal, rice bran, cumin seed meal and feed withdrawal. The birds received the above diets during the moulting period (11 days), and body weight loss and ovary weight regression were measured. Post-moult production parameters (number of eggs produced per hen per day, egg weight, shell weight, yolk colour and Haugh unit) were measured for 12 weeks. Results showed that all dietary sources were as effective as feed withdrawal in causing ovary weight regression in birds. Birds provided with tomato pomace or alfalfa showed lower weight losses than feed-deprived birds at the end of the moulting period. Hens moulted by tomato pomace or alfalfa exhibited post-moult levels of egg production over a 12 week period that were superior to those of hens moulted by feed withdrawal. Post-moult eggs laid by hens moulted by all dietary sources were of comparable quality to eggs from feed-deprived hens and superior to those from unmoulted hens. As fibrous feeds with low metabolisable energy and an appreciable amount of protein, dried tomato pomace and alfalfa meal may be fed to hens on an ad libitum basis for effective moult induction while reducing the stress of severe starvation and retaining comparable egg quality and production. Copyright © 2007 Society of Chemical Industry.

  10. Generalised perturbation theory and source of information through chemical measurements

    International Nuclear Information System (INIS)

    Lelek, V.; Marek, T.

    2001-01-01

    It is important to make all analyses and collect all information from the work of the new facility (which the transmutation demonstration unit will surely be) to be sure that the operation corresponds to the forecast or to correct the equations of the facility. The behaviour of the molten salt reactor and in particular the system of measurement are very different from that of the solid fuel reactor. Key information from the long time kinetics could be the nearly on line knowledge of the fuel composition. In this work it is shown how to include it into the control and use such data for the correction of neutron cross-sections for the high actinides or other characteristics. Also the problem of safety - change of the boundary problem to the initial problem - is mentioned. The problem is transformed into the generalised perturbation theory in which the adjoint function is obtained through the solution of the equations with right hand side having the form of source. Such an approach should be a theoretical base for the calculation of the sensitivity coefficients. (authors)

  11. Single-Molecule Sensing with Nanopore Confinement: from Chemical Reactions to Biological Interactions.

    Science.gov (United States)

    Lin, Yao; Ying, Yi-Lun; Gao, Rui; Long, Yi-Tao

    2018-03-25

    The nanopore can generate an electrochemical confinement for single-molecule sensing which help understand the fundamental chemical principle in nanoscale dimensions. By observing the generated ionic current, individual bond-making and bond-breaking steps, single biomolecule dynamic conformational changes and electron transfer processes that occur within pore can be monitored with high temporal and current resolution. These single-molecule studies in nanopore confinement are revealing information about the fundamental chemical and biological processes that cannot be extracted from ensemble measurements. In this concept, we introduce and discuss the electrochemical confinement effects on single-molecule covalent reactions, conformational dynamics of individual molecules and host-guest interactions in protein nanopores. Then, we extend the concept of nanopore confinement effects to confine electrochemical redox reactions in solid-state nanopores for developing new sensing mechanisms. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Single gold nanoparticle plasmonic spectroscopy for study of chemical-dependent efflux function of single ABC transporters of single live Bacillus subtilis cells.

    Science.gov (United States)

    Browning, Lauren M; Lee, Kerry J; Cherukuri, Pavan K; Huang, Tao; Songkiatisak, Preeyaporn; Warren, Seth; Xu, Xiao-Hong Nancy

    2018-03-26

    ATP-binding cassette (ABC) membrane transporters serve as self-defense transport apparatus in many living organisms and they can selectively extrude a wide variety of substrates, leading to multidrug resistance (MDR). The detailed molecular mechanisms remain elusive. Single nanoparticle plasmonic spectroscopy highly depends upon their sizes, shapes, chemical and surface properties. In our previous studies, we have used the size-dependent plasmonic spectra of single silver nanoparticles (Ag NPs) to study the real-time efflux kinetics of the ABC (BmrA) transporter and MexAB-OprM transporter in single live cells (Gram-positive and Gram-negative bacterium), respectively. In this study, we prepared and used purified, biocompatible and stable (non-aggregated) gold nanoparticles (Au NPs) (12.4 ± 0.9 nm) to study the efflux kinetics of single BmrA membrane transporters of single live Bacillus subtillis cells, aiming to probe chemical dependent efflux functions of BmrA transporters and their potential chemical sensing capability. Similar to those observed using Ag NPs, accumulation of the intracellular Au NPs in single live cells (WT and ΔBmrA) highly depends upon the cellular expression of BmrA and the NP concentration (0.7 and 1.4 nM). The lower accumulation of intracellular Au NPs in WT (normal expression of BmrA) than ΔBmrA (deletion of bmrA) indicates that BmrA extrudes the Au NPs out of the WT cells. The accumulation of Au NPs in the cells increases with NP concentration, suggesting that the Au NPs most likely passively diffuse into the cells, similar to antibiotics. The result demonstrates that such small Au NPs can serve as imaging probes to study the efflux function of the BmrA membrane transporter in single live cells. Furthermore, the dependence of the accumulation rate of intracellular Au NPs in single live cells upon the expression of BmrA and the concentration of the NPs is about twice higher than that of the same sized Ag NPs. This interesting finding

  13. Force-induced chemical reactions on the metal centre in a single metalloprotein molecule

    Science.gov (United States)

    Zheng, Peng; Arantes, Guilherme M.; Field, Martin J.; Li, Hongbin

    2015-01-01

    Metalloproteins play indispensable roles in biology owing to the versatile chemical reactivity of metal centres. However, studying their reactivity in many metalloproteins is challenging, as protein three-dimensional structure encloses labile metal centres, thus limiting their access to reactants and impeding direct measurements. Here we demonstrate the use of single-molecule atomic force microscopy to induce partial unfolding to expose metal centres in metalloproteins to aqueous solution, thus allowing for studying their chemical reactivity in aqueous solution for the first time. As a proof-of-principle, we demonstrate two chemical reactions for the FeS4 centre in rubredoxin: electrophilic protonation and nucleophilic ligand substitution. Our results show that protonation and ligand substitution result in mechanical destabilization of the FeS4 centre. Quantum chemical calculations corroborated experimental results and revealed detailed reaction mechanisms. We anticipate that this novel approach will provide insights into chemical reactivity of metal centres in metalloproteins under biologically more relevant conditions. PMID:26108369

  14. Supramolecular Systems and Chemical Reactions in Single-Molecule Break Junctions.

    Science.gov (United States)

    Li, Xiaohui; Hu, Duan; Tan, Zhibing; Bai, Jie; Xiao, Zongyuan; Yang, Yang; Shi, Jia; Hong, Wenjing

    2017-04-01

    The major challenges of molecular electronics are the understanding and manipulation of the electron transport through the single-molecule junction. With the single-molecule break junction techniques, including scanning tunneling microscope break junction technique and mechanically controllable break junction technique, the charge transport through various single-molecule and supramolecular junctions has been studied during the dynamic fabrication and continuous characterization of molecular junctions. This review starts from the charge transport characterization of supramolecular junctions through a variety of noncovalent interactions, such as hydrogen bond, π-π interaction, and electrostatic force. We further review the recent progress in constructing highly conductive molecular junctions via chemical reactions, the response of molecular junctions to external stimuli, as well as the application of break junction techniques in controlling and monitoring chemical reactions in situ. We suggest that beyond the measurement of single molecular conductance, the single-molecule break junction techniques provide a promising access to study molecular assembly and chemical reactions at the single-molecule scale.

  15. Time-domain single-source integral equations for analyzing scattering from homogeneous penetrable objects

    KAUST Repository

    Valdé s, Felipe; Andriulli, Francesco P.; Bagci, Hakan; Michielssen, Eric

    2013-01-01

    Single-source time-domain electric-and magnetic-field integral equations for analyzing scattering from homogeneous penetrable objects are presented. Their temporal discretization is effected by using shifted piecewise polynomial temporal basis

  16. Synthesis of anisotropic CdS nanostructures via a single-source route

    CSIR Research Space (South Africa)

    Rajasekhar Pullabhotla, VSR

    2011-02-01

    Full Text Available A cadmium tetrahydroisoquinoline dithiocarbamate (DTC) complex has been used as single-source precursor for the synthesis of highly faceted hexadecylamine (HDA) capped CdS nanoparticles. Hexagonal and close to cubic shaped particles with distinct...

  17. Single-source mechanical loading system produces biaxial stresses in cylinders

    Science.gov (United States)

    Flower, J. F.; Stafford, R. L.

    1967-01-01

    Single-source mechanical loading system proportions axial-to-hoop tension loads applied to cylindrical specimens. The system consists of hydraulic, pneumatic, and lever arrangements which produce biaxial loading ratios.

  18. Room-Temperature Single-Photon Source for Secure Quantum Communication

    Data.gov (United States)

    National Aeronautics and Space Administration — We are asking for four years of support for PhD student Justin Winkler's work on a research project entitled "Room temperature single photon source for secure...

  19. Natural radiation sources fabricated from potassic chemical fertilizers and application to radiation education

    International Nuclear Information System (INIS)

    Kawano, Takao

    2010-01-01

    Potassic chemical fertilizers contain potassium, a small part of which is potassium-40. Since potassium-40 is a naturally occurring radioisotope, potassic chemical fertilizers are often used for demonstrations of the existence of natural radioisotopes and radiation. To fabricate radiation sources as educational tools, the compression and formation method developed by our previous study was applied to 13 brands of commercially available chemical fertilizers containing different amounts of potassium. The suitability (size, weight, and solidness) of thus fabricated sources was examined and 12 of them were selected as easy-to-use radiation sources at radiation educational courses. The radiation strength (radiation count rate measured by a GM survey meter) and potassium content of the 12 sources were examined. It was found that the count rate was wholly proportional to the percentage of potassium, and a new educational application was proposed and discussed for understanding that the substance emitting radiation must be the potassium present in the raw fertilizers. (author)

  20. Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source.

    Science.gov (United States)

    Gazzano, O; Almeida, M P; Nowak, A K; Portalupi, S L; Lemaître, A; Sagnes, I; White, A G; Senellart, P

    2013-06-21

    We demonstrate the unambiguous entangling operation of a photonic quantum-logic gate driven by an ultrabright solid-state single-photon source. Indistinguishable single photons emitted by a single semiconductor quantum dot in a micropillar optical cavity are used as target and control qubits. For a source brightness of 0.56 photons per pulse, the measured truth table has an overlap with the ideal case of 68.4±0.5%, increasing to 73.0±1.6% for a source brightness of 0.17 photons per pulse. The gate is entangling: At a source brightness of 0.48, the Bell-state fidelity is above the entangling threshold of 50% and reaches 71.0±3.6% for a source brightness of 0.15.

  1. Nonequilibrium Chemical Effects in Single-Molecule SERS Revealed by Ab Initio Molecular Dynamics Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Sean A.; Apra, Edoardo; Govind, Niranjan; Hess, Wayne P.; El-Khoury, Patrick Z.

    2017-02-03

    Recent developments in nanophotonics have paved the way for achieving significant advances in the realm of single molecule chemical detection, imaging, and dynamics. In particular, surface-enhanced Raman scattering (SERS) is a powerful analytical technique that is now routinely used to identify the chemical identity of single molecules. Understanding how nanoscale physical and chemical processes affect single molecule SERS spectra and selection rules is a challenging task, and is still actively debated. Herein, we explore underappreciated chemical phenomena in ultrasensitive SERS. We observe a fluctuating excited electronic state manifold, governed by the conformational dynamics of a molecule (4,4’-dimercaptostilbene, DMS) interacting with a metallic cluster (Ag20). This affects our simulated single molecule SERS spectra; the time trajectories of a molecule interacting with its unique local environment dictates the relative intensities of the observable Raman-active vibrational states. Ab initio molecular dynamics of a model Ag20-DMS system are used to illustrate both concepts in light of recent experimental results.

  2. Single walled carbon nanotubes with functionally adsorbed biopolymers for use as chemical sensors

    Science.gov (United States)

    Johnson, Jr., Alan T

    2013-12-17

    Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA or RNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.

  3. An Oblivious O(1)-Approximation for Single Source Buy-at-Bulk

    KAUST Repository

    Goel, Ashish; Post, Ian

    2009-01-01

    We consider the single-source (or single-sink) buy-at-bulk problem with an unknown concave cost function. We want to route a set of demands along a graph to or from a designated root node, and the cost of routing x units of flow along an edge

  4. Modeling and Design of High-Efficiency Single-Photon Sources

    DEFF Research Database (Denmark)

    Gregersen, Niels; Nielsen, Per Kær; Mørk, Jesper

    2013-01-01

    be electrically driven. Several design strategies addressing these requirements have been proposed. In the cavity-based source, light emission is controlled using resonant cavity quantum electrodynamics effects, whereas in the waveguide-based source, broadband electric field screening effects are employed......Solid-state sources capable of emitting single photons on demand are of great interest in quantum information applications. Ideally, such a source should emit exactly one photon into the collection optics per trigger, the emitted photons should be indistinguishable, and the source should...

  5. Design and simulation of ion optics for ion sources for production of singly charged ions

    Science.gov (United States)

    Zelenak, A.; Bogomolov, S. L.

    2004-05-01

    During the last 2 years different types of the singly charged ion sources were developed for FLNR (JINR) new projects such as Dubna radioactive ion beams, (Phase I and Phase II), the production of the tritium ion beam and the MASHA mass separator. The ion optics simulations for 2.45 GHz electron cyclotron resonance source, rf source, and the plasma ion source were performed. In this article the design and simulation results of the optics of new ion sources are presented. The results of simulation are compared with measurements obtained during the experiments.

  6. Design and simulation of ion optics for ion sources for production of singly charged ions

    International Nuclear Information System (INIS)

    Zelenak, A.; Bogomolov, S.L.

    2004-01-01

    During the last 2 years different types of the singly charged ion sources were developed for FLNR (JINR) new projects such as Dubna radioactive ion beams, (Phase I and Phase II), the production of the tritium ion beam and the MASHA mass separator. The ion optics simulations for 2.45 GHz electron cyclotron resonance source, rf source, and the plasma ion source were performed. In this article the design and simulation results of the optics of new ion sources are presented. The results of simulation are compared with measurements obtained during the experiments

  7. A calderón-preconditioned single source combined field integral equation for analyzing scattering from homogeneous penetrable objects

    KAUST Repository

    Valdé s, Felipe; Andriulli, Francesco P.; Bagci, Hakan; Michielssen, Eric

    2011-01-01

    A new regularized single source equation for analyzing scattering from homogeneous penetrable objects is presented. The proposed equation is a linear combination of a Calderón-preconditioned single source electric field integral equation and a

  8. Vertically aligned single-walled carbon nanotubes by chemical assembly--methodology, properties, and applications.

    Science.gov (United States)

    Diao, Peng; Liu, Zhongfan

    2010-04-06

    Single-walled carbon nanotubes (SWNTs), as one of the most promising one-dimension nanomaterials due to its unique structure, peculiar chemical, mechanical, thermal, and electronic properties, have long been considered as an important building block to construct ordered alignments. Vertically aligned SWNTs (v-SWNTs) have been successfully prepared by using direct growth and chemical assembly strategies. In this review, we focus explicitly on the v-SWNTs fabricated via chemical assembly strategy. We provide the readers with a full and systematic summary covering the advances in all aspects of this area, including various approaches for the preparation of v-SWNTs using chemical assembly techniques, characterization, assembly kinetics, and electrochemical properties of v-SWNTs. We also review the applications of v-SWNTs in electrochemical and bioelectrochemical sensors, photoelectric conversion, and scanning probe microscopy.

  9. Random telegraph signals by alkanethiol-protected Au nanoparticles in chemically assembled single-electron transistors

    International Nuclear Information System (INIS)

    Kano, Shinya; Azuma, Yasuo; Tanaka, Daisuke; Sakamoto, Masanori; Teranishi, Toshiharu; Smith, Luke W.; Smith, Charles G.; Majima, Yutaka

    2013-01-01

    We have studied random telegraph signals (RTSs) in a chemically assembled single-electron transistor (SET) at temperatures as low as 300 mK. The RTSs in the chemically assembled SET were investigated by measuring the source–drain current, using a histogram of the RTS dwell time, and calculating the power spectrum density of the drain current–time characteristics. It was found that the dwell time of the RTS was dependent on the drain voltage of the SET, but was independent of the gate voltage. Considering the spatial structure of the chemically assembled SET, the origin of the RTS is attributed to the trapped charges on an alkanethiol-protected Au nanoparticle positioned near the SET. These results are important as they will help to realize stable chemically assembled SETs in practical applications

  10. Single-neuron identification of chemical constituents, physiological changes, and metabolism using mass spectrometry.

    Science.gov (United States)

    Zhu, Hongying; Zou, Guichang; Wang, Ning; Zhuang, Meihui; Xiong, Wei; Huang, Guangming

    2017-03-07

    The use of single-cell assays has emerged as a cutting-edge technique during the past decade. Although single-cell mass spectrometry (MS) has recently achieved remarkable results, deep biological insights have not yet been obtained, probably because of various technical issues, including the unavoidable use of matrices, the inability to maintain cell viability, low throughput because of sample pretreatment, and the lack of recordings of cell physiological activities from the same cell. In this study, we describe a patch clamp/MS-based platform that enables the sensitive, rapid, and in situ chemical profiling of single living neurons. This approach integrates modified patch clamp technique and modified MS measurements to directly collect and detect nanoliter-scale samples from the cytoplasm of single neurons in mice brain slices. Abundant possible cytoplasmic constituents were detected in a single neuron at a relatively fast rate, and over 50 metabolites were identified in this study. The advantages of direct, rapid, and in situ sampling and analysis enabled us to measure the biological activities of the cytoplasmic constituents in a single neuron, including comparing neuron types by cytoplasmic chemical constituents; observing changes in constituent concentrations as the physiological conditions, such as age, vary; and identifying the metabolic pathways of small molecules.

  11. Life from the stars?. [extraterrestrial sources contributing to chemical evolution on Earth

    Science.gov (United States)

    Pendleton, Yvonne J.; Cruikshank, Dale P.

    1994-01-01

    Scientists are now seriously considering the possibility that organic matter from interstellar space could have influenced, or even spurred, the origin of life on Earth. Various aspects of chemical evolution are discussed along with possible extraterrestrial sources responsible for contributing to Earth's life-producing, chemical composition. Specific topics covered include the following: interstellar matter, molecular clouds, asteroid dust, organic molecules in our solar system, interplanetary dust and comets, meteoritic composition, and organic-rich solar-system bodies.

  12. Demonstration of acoustic source localization in air using single pixel compressive imaging

    Science.gov (United States)

    Rogers, Jeffrey S.; Rohde, Charles A.; Guild, Matthew D.; Naify, Christina J.; Martin, Theodore P.; Orris, Gregory J.

    2017-12-01

    Acoustic source localization often relies on large sensor arrays that can be electronically complex and have large data storage requirements to process element level data. Recently, the concept of a single-pixel-imager has garnered interest in the electromagnetics literature due to its ability to form high quality images with a single receiver paired with shaped aperture screens that allow for the collection of spatially orthogonal measurements. Here, we present a method for creating an acoustic analog to the single-pixel-imager found in electromagnetics for the purpose of source localization. Additionally, diffraction is considered to account for screen openings comparable to the acoustic wavelength. A diffraction model is presented and incorporated into the single pixel framework. In this paper, we explore the possibility of applying single pixel localization to acoustic measurements. The method is experimentally validated with laboratory measurements made in an air waveguide.

  13. Post-processing with linear optics for improving the quality of single-photon sources

    International Nuclear Information System (INIS)

    Berry, Dominic W; Scheel, Stefan; Myers, Casey R; Sanders, Barry C; Knight, Peter L; Laflamme, Raymond

    2004-01-01

    Triggered single-photon sources produce the vacuum state with non-negligible probability, but produce a much smaller multiphoton component. It is therefore reasonable to approximate the output of these photon sources as a mixture of the vacuum and single-photon states. We show that it is impossible to increase the probability for a single photon using linear optics and photodetection on fewer than four modes. This impossibility is due to the incoherence of the inputs; if the inputs were pure-state superpositions, it would be possible to obtain a perfect single-photon output. In the more general case, a chain of beam splitters can be used to increase the probability for a single photon, but at the expense of adding an additional multiphoton component. This improvement is robust against detector inefficiencies, but is degraded by distinguishable photons, dark counts or multiphoton components in the input

  14. Chemical compositions of subway particles in Seoul, Korea determined by a quantitative single particle analysis.

    Science.gov (United States)

    Kang, Sunni; Hwang, HeeJin; Park, YooMyung; Kim, HyeKyoung; Ro, Chul-Un

    2008-12-15

    A novel single particle analytical technique, low-Z particle electron probe X-ray microanalysis, was applied to characterize seasonal subway samples collected at a subway station in Seoul, Korea. For all 8 samples collected twice in each season, 4 major types of subway particles, based on their chemical compositions, are significantly encountered: Fe-containing; soil-derived; carbonaceous; and secondary nitrate and/or sulfate particles. Fe-containing particles are generated indoors from wear processes at rail-wheel-brake interfaces while the others may be introduced mostly from the outdoor urban atmosphere. Fe-containing particles are the most frequently encountered with relative abundances in the range of 61-79%. In this study, it is shown that Fe-containing subway particles almost always exist either as partially or fully oxidized forms in underground subway microenvironments. Their relative abundances of Fe-containing particles increase as particle sizes decrease. Relative abundances of Fe-containing particles are higher in morning samples than in afternoon samples because of heavier train traffic in the morning. In the summertime samples, Fe-containing particles are the most abundantly encountered, whereas soil-derived and nitrate/sulfate particles are the least encountered, indicating the air-exchange between indoor and outdoor environments is limited in the summer, owing to the air-conditioning in the subway system. In our work, it was observed that the relative abundances of the particles of outdoor origin vary somewhat among seasonal samples to a lesser degree, reflecting that indoor emission sources predominate.

  15. A single-source photon source model of a linear accelerator for Monte Carlo dose calculation.

    Science.gov (United States)

    Nwankwo, Obioma; Glatting, Gerhard; Wenz, Frederik; Fleckenstein, Jens

    2017-01-01

    To introduce a new method of deriving a virtual source model (VSM) of a linear accelerator photon beam from a phase space file (PSF) for Monte Carlo (MC) dose calculation. A PSF of a 6 MV photon beam was generated by simulating the interactions of primary electrons with the relevant geometries of a Synergy linear accelerator (Elekta AB, Stockholm, Sweden) and recording the particles that reach a plane 16 cm downstream the electron source. Probability distribution functions (PDFs) for particle positions and energies were derived from the analysis of the PSF. These PDFs were implemented in the VSM using inverse transform sampling. To model particle directions, the phase space plane was divided into a regular square grid. Each element of the grid corresponds to an area of 1 mm2 in the phase space plane. The average direction cosines, Pearson correlation coefficient (PCC) between photon energies and their direction cosines, as well as the PCC between the direction cosines were calculated for each grid element. Weighted polynomial surfaces were then fitted to these 2D data. The weights are used to correct for heteroscedasticity across the phase space bins. The directions of the particles created by the VSM were calculated from these fitted functions. The VSM was validated against the PSF by comparing the doses calculated by the two methods for different square field sizes. The comparisons were performed with profile and gamma analyses. The doses calculated with the PSF and VSM agree to within 3% /1 mm (>95% pixel pass rate) for the evaluated fields. A new method of deriving a virtual photon source model of a linear accelerator from a PSF file for MC dose calculation was developed. Validation results show that the doses calculated with the VSM and the PSF agree to within 3% /1 mm.

  16. A single-source photon source model of a linear accelerator for Monte Carlo dose calculation.

    Directory of Open Access Journals (Sweden)

    Obioma Nwankwo

    Full Text Available To introduce a new method of deriving a virtual source model (VSM of a linear accelerator photon beam from a phase space file (PSF for Monte Carlo (MC dose calculation.A PSF of a 6 MV photon beam was generated by simulating the interactions of primary electrons with the relevant geometries of a Synergy linear accelerator (Elekta AB, Stockholm, Sweden and recording the particles that reach a plane 16 cm downstream the electron source. Probability distribution functions (PDFs for particle positions and energies were derived from the analysis of the PSF. These PDFs were implemented in the VSM using inverse transform sampling. To model particle directions, the phase space plane was divided into a regular square grid. Each element of the grid corresponds to an area of 1 mm2 in the phase space plane. The average direction cosines, Pearson correlation coefficient (PCC between photon energies and their direction cosines, as well as the PCC between the direction cosines were calculated for each grid element. Weighted polynomial surfaces were then fitted to these 2D data. The weights are used to correct for heteroscedasticity across the phase space bins. The directions of the particles created by the VSM were calculated from these fitted functions. The VSM was validated against the PSF by comparing the doses calculated by the two methods for different square field sizes. The comparisons were performed with profile and gamma analyses.The doses calculated with the PSF and VSM agree to within 3% /1 mm (>95% pixel pass rate for the evaluated fields.A new method of deriving a virtual photon source model of a linear accelerator from a PSF file for MC dose calculation was developed. Validation results show that the doses calculated with the VSM and the PSF agree to within 3% /1 mm.

  17. Fast-grown CdS quantum dots: Single-source precursor approach vs microwave route

    Energy Technology Data Exchange (ETDEWEB)

    Fregnaux, Mathieu [Laboratoire de Chimie et Physique: Approche Multi-échelles des Milieux Complexes, Institut Jean Barriol, Université de Lorraine, 1 Boulevard Arago, 57070 Metz (France); Dalmasso, Stéphane, E-mail: stephane.dalmasso@univ-lorraine.fr [Laboratoire de Chimie et Physique: Approche Multi-échelles des Milieux Complexes, Institut Jean Barriol, Université de Lorraine, 1 Boulevard Arago, 57070 Metz (France); Durand, Pierrick [Laboratoire de Cristallographie, Résonance Magnétique et Modélisations, Institut Jean Barriol, Université de Lorraine, UMR CNRS 7036, Faculté des Sciences, BP 70239, 54506 Vandoeuvre lès Nancy (France); Zhang, Yudong [Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux, Université de Lorraine, UMR CNRS 7239, Ile du Saulcy, 57045 Metz cedex 01 (France); Gaumet, Jean-Jacques; Laurenti, Jean-Pierre [Laboratoire de Chimie et Physique: Approche Multi-échelles des Milieux Complexes, Institut Jean Barriol, Université de Lorraine, 1 Boulevard Arago, 57070 Metz (France)

    2013-10-01

    A cross-disciplinary protocol of characterization by joint techniques enables one to closely compare chemical and physical properties of CdS quantum dots (QDs) grown by single source precursor methodology (SSPM) or by microwave synthetic route (MWSR). The results are discussed in relation with the synthesis protocols. The QD average sizes, reproducible as a function of the temperatures involved in the growth processes, range complementarily in 2.8–4.5 nm and 4.5–5.2 nm for SSPM and MWSR, respectively. Hexagonal and cubic structures after X-ray diffraction on SSPM and MWSR grown CdS QDs, respectively, are tentatively correlated to a better crystalline quality of the latter with respect to the further ones, suggested by (i) a remarkable stability of the MWSR grown QDs after exposure to air during several days and (ii) no evidence of their fragmentation during mass spectrometry (MS) analyses, after a fair agreement between size dispersities obtained by transmission electron microscopy (TEM) and MS, in contrast with the discrepancy found for the SSPM grown QDs. Correlatively, a better optical quality is suggested for the MWSR grown QDs by the resolution of n > 1 excitonic transitions in their absorption spectra. The QD average sizes obtained by TEM and deduced from MS are in overall agreement. This agreement is improved for the MWSR grown QDs, taking into account a prolate shape of the QDs also observed in the TEM images. For both series of samples, the excitonic responses vs the average sizes are consistent with the commonly admitted empirical energy-size correspondence. A low energy PL band is observed in the case of the SSPM grown QDs. Its decrease in intensity with QD size increase suggests a surface origin tentatively attributed to S vacancies. In the case of the MWSR grown QDs, the absence of this PL is tentatively correlated to an absence of S vacancies and therefore to the stable behavior observed when the QDs are exposed to air. - Highlights: • Single

  18. Multi-Sensor Integration to Map Odor Distribution for the Detection of Chemical Sources

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    2016-07-01

    Full Text Available This paper addresses the problem of mapping odor distribution derived from a chemical source using multi-sensor integration and reasoning system design. Odor localization is the problem of finding the source of an odor or other volatile chemical. Most localization methods require a mobile vehicle to follow an odor plume along its entire path, which is time consuming and may be especially difficult in a cluttered environment. To solve both of the above challenges, this paper proposes a novel algorithm that combines data from odor and anemometer sensors, and combine sensors’ data at different positions. Initially, a multi-sensor integration method, together with the path of airflow was used to map the pattern of odor particle movement. Then, more sensors are introduced at specific regions to determine the probable location of the odor source. Finally, the results of odor source location simulation and a real experiment are presented.

  19. Single source precursors for fabrication of I-III-VI{sub 2} thin-film solar cells via spray CVD

    Energy Technology Data Exchange (ETDEWEB)

    Hollingsworth, J.A.; Banger, K.K.; Jin, M.H.-C.; Harris, J.D.; Cowen, J.E.; Bohannan, E.W.; Switzer, J.A.; Buhro, W.E.; Hepp, A.F

    2003-05-01

    The development of thin-film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power (W/kg). Thin-film fabrication studies demonstrate that ternary single source precursors can be used in either a hot, or cold-wall spray chemical vapour deposition reactor, for depositing CuInS{sub 2}, CuGaS{sub 2} and CuGaInS{sub 2} at reduced temperatures (400-450 sign C), which display good electrical and optical properties suitable for photovoltaic devices. X-ray diffraction studies, energy dispersive spectroscopy and scanning electron microscopy confirmed the formation of the single phase CIS, CGS, CIGS thin-films on various substrates at reduced temperatures.

  20. Propagation characteristics of audible noise generated by single corona source under positive DC voltage

    Directory of Open Access Journals (Sweden)

    Xuebao Li

    2017-10-01

    Full Text Available The directivity and lateral profile of corona-generated audible noise (AN from a single corona source are measured through experiments carried out in the semi-anechoic laboratory. The experimental results show that the waveform of corona-generated AN consists of a series of random sound pressure pulses whose pulse amplitudes decrease with the increase of measurement distance. A single corona source can be regarded as a non-directional AN source, and the A-weighted SPL (sound pressure level decreases 6 dB(A as doubling the measurement distance. Then, qualitative explanations for the rationality of treating the single corona source as a point source are given on the basis of the Ingard’s theory for sound generation in corona discharge. Furthermore, we take into consideration of the ground reflection and the air attenuation to reconstruct the propagation features of AN from the single corona source. The calculated results agree with the measurement well, which validates the propagation model. Finally, the influence of the ground reflection on the SPL is presented in the paper.

  1. Recombinant human albumin supports single cell cloning of CHO cells in chemically defined media.

    Science.gov (United States)

    Zhu, Jiang; Wooh, Jong Wei; Hou, Jeff Jia Cheng; Hughes, Benjamin S; Gray, Peter P; Munro, Trent P

    2012-01-01

    Biologic drugs, such as monoclonal antibodies, are commonly made using mammalian cells in culture. The cell lines used for manufacturing should ideally be clonal, meaning derived from a single cell, which represents a technically challenging process. Fetal bovine serum is often used to support low cell density cultures, however, from a regulatory perspective, it is preferable to avoid animal-derived components to increase process consistency and reduce the risk of contamination from adventitious agents. Chinese hamster ovary (CHO) cells are the most widely used cell line in industry and a large number of serum-free, protein-free, and fully chemically defined growth media are commercially available, although these media alone do not readily support efficient single cell cloning. In this work, we have developed a simple, fully defined, single-cell cloning media, specifically for CHO cells, using commercially available reagents. Our results show that a 1:1 mixture of CD-CHO™ and DMEM/F12 supplemented with 1.5 g/L of recombinant albumin (Albucult®) supports single cell cloning. This formulation can support recovery of single cells in 43% of cultures compared to 62% in the presence of serum. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  2. Sourcing for Quality: Cooperating with a Single Supplier or Developing Two Competing Suppliers?

    Directory of Open Access Journals (Sweden)

    Jingxian Chen

    2016-01-01

    Full Text Available Supplier efforts regarding product quality are an important issue in outsourcing and play a critical role in a manufacturer’s choice of sourcing strategy. Consider a manufacturer that wants to outsource the manufacturing of two substitute products to external suppliers. This paper studies the strategic interactions under two sourcing strategies: single and dual sourcing. A four-stage noncooperative game model is established to describe each member’s decisions. We further propose four decision scenarios: single sourcing with and without manufacturer quality investment sharing and dual sourcing when suppliers cooperate or do not cooperate on quality decisions. By the backward induction approach, we obtain analytical equilibrium solutions for each decision scenario. By comparing each pair of equilibrium profiles, we find that an appropriate proportion of quality investment sharing by the manufacturer can enable a cooperating strategy with a single supplier to be the dominant strategy. When the manufacturer does not want to share or does not want to share a relatively large portion of its supplier’s quality investment, it will always prefer to develop two competing suppliers when the cost of dual sourcing is sufficiently low. However, dual sourcing can be extremely risky for the manufacturer because the suppliers could provide a relatively low product quality level by cooperating on the quality decision to extract the manufacturer’s profit.

  3. Calibrate the aerial surveying instrument by the limited surface source and the single point source that replace the unlimited surface source

    CERN Document Server

    Lu Cun Heng

    1999-01-01

    It is described that the calculating formula and surveying result is found on the basis of the stacking principle of gamma ray and the feature of hexagonal surface source when the limited surface source replaces the unlimited surface source to calibrate the aerial survey instrument on the ground, and that it is found in the light of the exchanged principle of the gamma ray when the single point source replaces the unlimited surface source to calibrate aerial surveying instrument in the air. Meanwhile through the theoretical analysis, the receiving rate of the crystal bottom and side surfaces is calculated when aerial surveying instrument receives gamma ray. The mathematical expression of the gamma ray decaying following height according to the Jinge function regularity is got. According to this regularity, the absorbing coefficient that air absorbs the gamma ray and the detective efficiency coefficient of the crystal is calculated based on the ground and air measuring value of the bottom surface receiving cou...

  4. Important sources and chemical species of ambient fine particles related to adverse health effects

    Science.gov (United States)

    Heo, J.

    2017-12-01

    Although many epidemiological studies have reported that exposure to ambient fine particulate matter (PM2.5) has been linked to increases in mortality and mobidity health outcomes, the key question of which chemical species and sources of PM2.5 are most harmful to public health remains unanswered in the air pollution research area. This study was designed to address the key question with evaluating the risks of exposure to chemical species and source-specific PM2.5 mass on morbidity. Hourly measurements of PM2.5 mass and its major chemical species, including organic carbon, elemental carbon, ions, and trace elements, were observed from January 1 to December 31, 2013 at four of the PM2.5 supersites in urban environments in Korea and the reuslts were used in a positive matrix factorization to estimate source contributions to PM2.5 mass. Nine sources, including secondary sulfate, secondary nitrate, mobile, biomass burning, roadway emission, industry, oil combustion, soil, and aged sea salt, were identified and secondary inorganic aerosol factors (i.e. secondary sulfalte, and secondary nitrate) were the dominant sources contributing to 40% of the total PM2.5 mass in the study region. In order to evaluate the risks of exposure to chemical species and sources of PM2.5 on morbidity, emergency room visits for cardivascular disease and respiratory disease were considered. Hourly health outcomes were compared with hourly measurments of the PM2.5 chemical species and sources using a poission generalized linear model incorporating natural splines, as well as time-stratified case-crossover design. The PM2.5 mass and speveral chemical components, such as organic carbon, elemetal carbon, zinc, and potassium, were strongly associated with morbidity. Source-apporitionmened PM2.5 mass derived from biomass burning, and mobile sources, was significantly associated with cardiovascular and respiratory diseases. The findings represent that local combustion may be particularly important

  5. Counteracting chemical chaperone effects on the single-molecule α-synuclein structural landscape.

    Science.gov (United States)

    Ferreon, Allan Chris M; Moosa, Mahdi Muhammad; Gambin, Yann; Deniz, Ashok A

    2012-10-30

    Protein structure and function depend on a close interplay between intrinsic folding energy landscapes and the chemistry of the protein environment. Osmolytes are small-molecule compounds that can act as chemical chaperones by altering the environment in a cellular context. Despite their importance, detailed studies on the role of these chemical chaperones in modulating structure and dimensions of intrinsically disordered proteins have been limited. Here, we used single-molecule Förster resonance energy transfer to test the counteraction hypothesis of counterbalancing effects between the protecting osmolyte trimethylamine-N-oxide (TMAO) and denaturing osmolyte urea for the case of α-synuclein, a Parkinson's disease-linked protein whose monomer exhibits significant disorder. The single-molecule experiments, which avoid complications from protein aggregation, do not exhibit clear solvent-induced cooperative protein transitions for these osmolytes, unlike results from previous studies on globular proteins. Our data demonstrate the ability of TMAO and urea to shift α-synuclein structures towards either more compact or expanded average dimensions. Strikingly, the experiments directly reveal that a 21 [urea][TMAO] ratio has a net neutral effect on the protein's dimensions, a result that holds regardless of the absolute osmolyte concentrations. Our findings shed light on a surprisingly simple aspect of the interplay between urea and TMAO on α-synuclein in the context of intrinsically disordered proteins, with potential implications for the biological roles of such chemical chaperones. The results also highlight the strengths of single-molecule experiments in directly probing the chemical physics of protein structure and disorder in more chemically complex environments.

  6. Counteracting chemical chaperone effects on the single-molecule α-synuclein structural landscape

    Science.gov (United States)

    Ferreon, Allan Chris M.; Moosa, Mahdi Muhammad; Deniz, Ashok A.

    2012-01-01

    Protein structure and function depend on a close interplay between intrinsic folding energy landscapes and the chemistry of the protein environment. Osmolytes are small-molecule compounds that can act as chemical chaperones by altering the environment in a cellular context. Despite their importance, detailed studies on the role of these chemical chaperones in modulating structure and dimensions of intrinsically disordered proteins have been limited. Here, we used single-molecule Förster resonance energy transfer to test the counteraction hypothesis of counterbalancing effects between the protecting osmolyte trimethylamine-N-oxide (TMAO) and denaturing osmolyte urea for the case of α-synuclein, a Parkinson’s disease-linked protein whose monomer exhibits significant disorder. The single-molecule experiments, which avoid complications from protein aggregation, do not exhibit clear solvent-induced cooperative protein transitions for these osmolytes, unlike results from previous studies on globular proteins. Our data demonstrate the ability of TMAO and urea to shift α-synuclein structures towards either more compact or expanded average dimensions. Strikingly, the experiments directly reveal that a 2∶1 [urea]∶[TMAO] ratio has a net neutral effect on the protein’s dimensions, a result that holds regardless of the absolute osmolyte concentrations. Our findings shed light on a surprisingly simple aspect of the interplay between urea and TMAO on α-synuclein in the context of intrinsically disordered proteins, with potential implications for the biological roles of such chemical chaperones. The results also highlight the strengths of single-molecule experiments in directly probing the chemical physics of protein structure and disorder in more chemically complex environments. PMID:22826265

  7. A PMMA coated PMN–PT single crystal resonator for sensing chemical agents

    International Nuclear Information System (INIS)

    Frank, Michael; Kassegne, Sam; Moon, Kee S

    2010-01-01

    A highly sensitive lead magnesium niobate–lead titanate (PMN–PT) single crystal resonator coated with a thin film of polymethylmethacrylate (PMMA) useful for detecting chemical agents such as acetone, methanol, and isopropyl alcohol is presented. Swelling of the cured PMMA polymer layer in the presence of acetone, methanol, and isopropyl alcohol vapors is sensed as a mass change transduced to an electrical signal by the PMN–PT thickness shear mode sensor. Frequency change in the PMN–PT sensor is demonstrated to vary according to the concentration of the chemical vapor present within the sensing chamber. For acetone, the results indicate a frequency change more than 6000 times greater than that which would be expected from a quartz crystal microbalance coated with PMMA. This study is the first of its kind to demonstrate vapor loading of adsorbed chemical agents onto a polymer coated PMN–PT resonator

  8. SURFACE AND LIGHTNING SOURCES OF NITROGEN OXIDES OVER THE UNITED STATES: MAGNITUDES, CHEMICAL EVOLUTION, AND OUTFLOW

    Science.gov (United States)

    We use observations from two aircraft during the ICARTT campaign over the eastern United States and North Atlantic during summer 2004, interpreted with a global 3-D model of tropospheric chemistry (GEOS-Chem) to test current understanding of regional sources, chemical evolution...

  9. Cross correlations of quantum key distribution based on single-photon sources

    International Nuclear Information System (INIS)

    Dong Shuangli; Wang Xiaobo; Zhang Guofeng; Sun Jianhu; Zhang Fang; Xiao Liantuan; Jia Suotang

    2009-01-01

    We theoretically analyze the second-order correlation function in a quantum key distribution system with real single-photon sources. Based on single-event photon statistics, the influence of the modification caused by an eavesdropper's intervention and the effects of background signals on the cross correlations between authorized partners are presented. On this basis, we have shown a secure range of correlation against the intercept-resend attacks.

  10. A highly efficient single-photon source based on a quantum dot in a photonic nanowire

    DEFF Research Database (Denmark)

    Claudon, Julien; Bleuse, Joel; Malik, Nitin Singh

    2010-01-01

    –4 or a semiconductor quantum dot5–7. Achieving a high extraction efficiency has long been recognized as a major issue, and both classical solutions8 and cavity quantum electrodynamics effects have been applied1,9–12. We adopt a different approach, based on an InAs quantum dot embedded in a GaAs photonic nanowire......The development of efficient solid-state sources of single photons is a major challenge in the context of quantum communication,optical quantum information processing and metrology1. Such a source must enable the implementation of a stable, single-photon emitter, like a colour centre in diamond2...

  11. Bright quantum dot single photon source based on a low Q defect cavity

    DEFF Research Database (Denmark)

    Maier, Sebastian; Gold, Peter; Forchel, A.

    2014-01-01

    The quasi-planar single photon source presented in this paper shows an extraction efficiency of 42% without complex photonic resonator geometries or lithography steps as well as a high purity with a g2(0) value of 0.023.......The quasi-planar single photon source presented in this paper shows an extraction efficiency of 42% without complex photonic resonator geometries or lithography steps as well as a high purity with a g2(0) value of 0.023....

  12. A single source microwave photonic filter using a novel single-mode fiber to multimode fiber coupling technique.

    Science.gov (United States)

    Chang, John; Fok, Mable P; Meister, James; Prucnal, Paul R

    2013-03-11

    In this paper we present a fully tunable and reconfigurable single-laser multi-tap microwave photonic FIR filter that utilizes a special SM-to-MM combiner to sum the taps. The filter requires only a single laser source for all the taps and a passive component, a SM-to-MM combiner, for incoherent summing of signal. The SM-to-MM combiner does not produce optical interference during signal merging and is phase-insensitive. We experimentally demonstrate an eight-tap filter with both positive and negative programmable coefficients with excellent correspondence between predicted and measured values. The magnitude response shows a clean and accurate function across the entire bandwidth, and proves successful operation of the FIR filter using a SM-to-MM combiner.

  13. Single Amplified Genomes as Source for Novel Extremozymes: Annotation, Expression and Functional Assessment

    KAUST Repository

    Grötzinger, Stefan

    2017-12-01

    Enzymes, as nature’s catalysts, show remarkable abilities that can revolutionize the chemical, biotechnological, bioremediation, agricultural and pharmaceutical industries. However, the narrow range of stability of the majority of described biocatalysts limits their use for many applications. To overcome these restrictions, extremozymes derived from microorganisms thriving under harsh conditions can be used. Extremophiles living in high salinity are especially interesting as they operate at low water activity, which is similar to conditions used in standard chemical applications. Because only about 0.1 % of all microorganisms can be cultured, the traditional way of culture-based enzyme function determination needs to be overcome. The rise of high-throughput next-generation-sequencing technologies allows for deep insight into nature’s variety. Single amplified genomes (SAGs) specifically allow for whole genome assemblies from small sample volumes with low cell yields, as are typical for extreme environments. Although these technologies have been available for years, the expected boost in biotechnology has held off. One of the main reasons is the lack of reliable functional annotation of the genomic data, which is caused by the low amount (0.15 %) of experimentally described genes. Here, we present a novel annotation algorithm, designed to annotate the enzymatic function of genomes from microorganisms with low homologies to described microorganisms. The algorithm was established on SAGs from the extreme environment of selected hypersaline Red Sea brine pools with 4.3 M salinity and temperatures up to 68°C. Additionally, a novel consensus pattern for the identification of γ-carbonic anhydrases was created and applied in the algorithm. To verify the annotation, selected genes were expressed in the hypersaline expression system Halobacterium salinarum. This expression system was established and optimized in a continuously stirred tank reactor, leading to

  14. Estimation of sediment sources using selected chemical tracers in the Perry lake basin, Kansas, USA

    Science.gov (United States)

    Juracek, K.E.; Ziegler, A.C.

    2009-01-01

    The ability to achieve meaningful decreases in sediment loads to reservoirs requires a determination of the relative importance of sediment sources within the contributing basins. In an investigation of sources of fine-grained sediment (clay and silt) within the Perry Lake Basin in northeast Kansas, representative samples of channel-bank sources, surface-soil sources (cropland and grassland), and reservoir bottom sediment were collected, chemically analyzed, and compared. The samples were sieved to isolate the TOC), and 137Cs were selected for use in the estimation of sediment sources. To further account for differences in particle-size composition between the sources and the reservoir bottom sediment, constituent ratio and clay-normalization techniques were used. Computed ratios included TOC to TN, TOC to TP, and TN to TP. Constituent concentrations (TN, TP, TOC) and activities (137Cs) were normalized by dividing by the percentage of clay. Thus, the sediment-source estimations involved the use of seven sediment-source indicators. Within the Perry Lake Basin, the consensus of the seven indicators was that both channel-bank and surface-soil sources were important in the Atchison County Lake and Banner Creek Reservoir subbasins, whereas channel-bank sources were dominant in the Mission Lake subbasin. On the sole basis of 137Cs activity, surface-soil sources contributed the most fine-grained sediment to Atchison County Lake, and channel-bank sources contributed the most fine-grained sediment to Banner Creek Reservoir and Mission Lake. Both the seven-indicator consensus and 137Cs indicated that channel-bank sources were dominant for Perry Lake and that channel-bank sources increased in importance with distance downstream in the basin. ?? 2009 International Research and Training Centre on Erosion and Sedimentation and the World Association for Sedimentation and Erosion Research.

  15. Facile synthesis of graphene on single mode fiber via chemical vapor deposition

    International Nuclear Information System (INIS)

    Zhang, C.; Man, B.Y.; Jiang, S.Z.; Yang, C.; Liu, M.; Chen, C.S.; Xu, S.C.; Feng, D.J.; Bi, D.; Liu, F.Y.; Qiu, H.W.

    2014-01-01

    Direct deposition of graphene film on the standard single mode fiber is offered using a Cu-vapor-assisted chemical vapor deposition system. The gas flow of H 2 and Ar before the growth process plays a crucial role for the direct deposition of the graphene film and the layers of the graphene can be controlled by the growth time. With a large gas flow, Cu atoms are carried off with the gas flow and hard to deposit on the surface of the single mode fiber before the growth process. Consequently, uniform graphene film is obtained in this case. On the contrary, with a lower one, Cu atoms is facile to deposit on the surface of the single mode fiber and form nanodots acting as active catalytic sites for the growth of carbon nanotubes. This method presents us a promising transfer-free technique for fabrication of the photonic applications.

  16. Three-Level Z-Source Inverters Using a Single LC Impedance Network

    DEFF Research Database (Denmark)

    Loh, Poh Chiang; Lim, Sok Wei; Gao, Feng

    2007-01-01

    two LC impedance networks and two isolated dc sources, which can significantly increase the overall system cost and require a more complex modulator for balancing the network inductive voltage boosting. Offering a number of less costly alternatives, this letter presents the design and control of two...... three-level Z-source inverters, whose output voltage can be stepped down or up using only a single LC impedance network connected between the dc input source and either a neutral-point-clamped (NPC) or dc-link cascaded inverter circuitry. Through careful design of their modulation scheme, both inverters...

  17. Understanding Single-Thread Meandering Rivers with High Sinuosity on Mars through Chemical Precipitation Experiments

    Science.gov (United States)

    Lim, Y.; Kim, W.

    2015-12-01

    Meandering rivers are extremely ubiquitous on Earth, yet it is only recently that single-thread experimental channels with low sinuosity have been created. In these recent experiments, as well as in natural rivers, vegetation plays a crucial role in maintaining a meandering pattern by adding cohesion to the bank and inhibiting erosion. The ancient, highly sinuous channels found on Mars are enigmatic because presumably vegetation did not exist on ancient Mars. Under the hypothesis that Martian meandering rivers formed by chemical precipitation on levees and flood plain deposits, we conducted carbonate flume experiments to investigate the formation and evolution of a single-thread meander pattern without vegetation. The flow recirculating in the flume is designed to accelerate chemical reactions - dissolution of limestone using CO2 gas to produce artificial spring water and precipitation of carbonates to increase cohesion- with precise control of water discharge, sediment discharge, and temperature. Preliminary experiments successfully created a single-thread meandering pattern through chemical processes. Carbonate deposits focused along the channel sides improved the bank stability and made them resistant to erosion, which led to a stream confined in a narrow path. The experimental channels showed lateral migration of the bend through cut bank and point bar deposits; intermittent floods created overbank flow and encouraged cut bank erosion, which enhanced lateral migration of the channel, while increase in sediment supply improved lateral point bar deposition, which balanced erosion and deposition rates. This mechanism may be applied to terrestrial single-thread and/or meandering rivers with little to no vegetation or before its introduction to Earth and also provide the link between meandering river records on Mars to changes in Martian surface conditions.

  18. Recent Advances for High-Efficiency Sources of Single Photons Based on Photonic Nanowires

    DEFF Research Database (Denmark)

    Gerard, J. M.; Claudon, J.; Munsch, M.

    2012-01-01

    Photonic nanowires have recently been used to tailor the spontaneous emission of embedded quantum dots, and to develop record efficiency single-photon sources. We will present recent developments in this field mainly 1) the observation of a strong inhibition of the spontaneous emission of quantum...

  19. A high-efficiency electrically-pumped single-photon source based on a photonics nanowire

    DEFF Research Database (Denmark)

    Gregersen, Niels; Nielsen, Torben Roland; Mørk, Jesper

    An electrically-pumped single-photon source design with a predicted efficiency of 89% is proposed. The design is based on a quantum dot embedded in a photonic nanowire with tailored ends and optimized contact electrodes. Unlike cavity-based approaches, the photonic nanowire features broadband...

  20. High-efficiency single-photon source: The photonic wire geometry

    DEFF Research Database (Denmark)

    Claudon, J.; Bazin, Maela; Malik, Nitin S.

    2009-01-01

    We present a single-photon-source design based on the emission of a quantum dot embedded in a semiconductor (GaAs) nanowire. The nanowire ends are engineered (efficient metallic mirror and tip taper) to reach a predicted record-high collection efficiency of 90% with a realistic design. Preliminar...

  1. 77 FR 59931 - Single Source Program Expansion Supplement Award to Area Health Education Centers (AHEC) Program...

    Science.gov (United States)

    2012-10-01

    ... Program Expansion Supplement Award to Area Health Education Centers (AHEC) Program Grantee; Exception to... Competition--Single Source Program Expansion Supplement Award to Area Health Education Centers (AHEC) Program... supplement award to the University of Guam School of Nursing, an Area Health Education Center (AHEC) Program...

  2. Resource allocation for two source-destination pairs sharing a single relay with a buffer

    KAUST Repository

    Zafar, Ammar; Shaqfeh, Mohammad; Alouini, Mohamed-Slim; Alnuweiri, Hussein M.

    2014-01-01

    In this paper, we obtain the optimal resource allocation scheme in order to maximize the achievable rate region in a dual-hop system that consists of two independent source-destination pairs sharing a single half-duplex relay. The relay decodes

  3. Controlling light emission from single-photon sources using photonic nanowires

    DEFF Research Database (Denmark)

    Gregersen, Niels; Chen, Yuntian; Mørk, Jesper

    2012-01-01

    The photonic nanowire has recently emerged as an promising alternative to microcavity-based single-photon source designs. In this simple structure, a geometrical effect ensures a strong coupling between an embedded emitter and the optical mode of interest and a combination of tapers and mirrors a...

  4. 75 FR 25271 - Office of Refugee Resettlement; Urgent Single Source Grant to Survivors of Torture International...

    Science.gov (United States)

    2010-05-07

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Administration for Children and Families Office of Refugee Resettlement; Urgent Single Source Grant to Survivors of Torture International (SOTI) AGENCY: Office of Refugee... effects of torture. (2) Social and legal services for victims of torture. (3) Research and training for...

  5. Production of chemical energy carriers by non-expendable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Nitsch, J

    1976-01-01

    The different forms of energy (radiation, high-temperature heat and electricity) arising from non-expendable energy sources like solar energy can be used for the production of chemical energy-carriers. Possible methods are the splitting of water by means of photolysis, thermochemical cycles and electrolysis, as well as the storage of energy in closed loop chemical systems. These methods are described and efficiencies and costs of the production of these energy carriers are specified. Special problems of the long-distance transportation of hydrogen produced by solar energy are described and the resulting costs are estimated.

  6. Pollen source effects on growth of kernel structures and embryo chemical compounds in maize.

    Science.gov (United States)

    Tanaka, W; Mantese, A I; Maddonni, G A

    2009-08-01

    Previous studies have reported effects of pollen source on the oil concentration of maize (Zea mays) kernels through modifications to both the embryo/kernel ratio and embryo oil concentration. The present study expands upon previous analyses by addressing pollen source effects on the growth of kernel structures (i.e. pericarp, endosperm and embryo), allocation of embryo chemical constituents (i.e. oil, protein, starch and soluble sugars), and the anatomy and histology of the embryos. Maize kernels with different oil concentration were obtained from pollinations with two parental genotypes of contrasting oil concentration. The dynamics of the growth of kernel structures and allocation of embryo chemical constituents were analysed during the post-flowering period. Mature kernels were dissected to study the anatomy (embryonic axis and scutellum) and histology [cell number and cell size of the scutellums, presence of sub-cellular structures in scutellum tissue (starch granules, oil and protein bodies)] of the embryos. Plants of all crosses exhibited a similar kernel number and kernel weight. Pollen source modified neither the growth period of kernel structures, nor pericarp growth rate. By contrast, pollen source determined a trade-off between embryo and endosperm growth rates, which impacted on the embryo/kernel ratio of mature kernels. Modifications to the embryo size were mediated by scutellum cell number. Pollen source also affected (P embryo chemical compounds. Negative correlations among embryo oil concentration and those of starch (r = 0.98, P embryos with low oil concentration had an increased (P embryo/kernel ratio and allocation of embryo chemicals seems to be related to the early established sink strength (i.e. sink size and sink activity) of the embryos.

  7. Efficient fiber-coupled single-photon sources based on quantum dots

    DEFF Research Database (Denmark)

    Daveau, Raphaël Sura

    refrigeration with coupled quantum wells. Many photonic quantum information processing applications would benet from a highbrightness, ber-coupled source of triggered single photons. This thesis presents a study of such sources based on quantum dots coupled to unidirectional photonic-crystal waveguide devices.......6 %. This latter method opens a promising future for increasing the eciency and reliability of planar chip-based single-photon sources. Refrigeration of a solid-state system with light has potential applications for cooling small-scale electronic and photonic circuits. We show theoretically that two coupled...... semiconductor quantum wells are ecient cooling media because they support long-lived indirect electron-hole pairs. These pairs can be thermally excited to distinct higher-energy states with faster radiative recombination, thereby creating an ecient escape channel to remove thermal energy from the system. From...

  8. Identification and chemical characterization of industrial particulate matter sources in southwest Spain.

    Science.gov (United States)

    Alastuey, Andrés; Querol, Xavier; Plana, Feliciano; Viana, Mar; Ruiz, Carmen R; Sánchez de la Campa, Ana; de la Rosa, Jesús; Mantilla, Enrique; García dos Santos, Saul

    2006-07-01

    A detailed physical and chemical characterization of coarse particulate matter (PM10) and fine particulate matter (PM2.5) in the city of Huelva (in Southwestern Spain) was carried out during 2001 and 2002. To identify the major emission sources with a significant influence on PM10 and PM2.5, a methodology was developed based on the combination of: (1) real-time measurements of levels of PM10, PM2.5, and very fine particulate matter (PM1); (2) chemical characterization and source apportionment analysis of PM10 and PM2.5; and (3) intensive measurements in field campaigns to characterize the emission plumes of several point sources. Annual means of 37, 19, and 16 microg/m3 were obtained for the study period for PM10, PM2.5, and PM1, respectively. High PM episodes, characterized by a very fine grain size distribution, are frequently detected in Huelva mainly in the winter as the result of the impact of the industrial emission plumes on the city. Chemical analysis showed that PM at Huelva is characterized by high PO4(3-) and As levels, as expected from the industrial activities. Source apportionment analyses identified a crustal source (36% of PM10 and 31% of PM2.5); a traffic-related source (33% of PM10 and 29% of PM2.5), and a marine aerosol contribution (only in PM10, 4%). In addition, two industrial emission sources were identified in PM10 and PM2.5: (1) a petrochemical source, 13% in PM10 and 8% in PM2.5; and (2) a mixed metallurgical-phosphate source, which accounts for 11-12% of PM10 and PM2.5. In PM2.5 a secondary source has been also identified, which contributed to 17% of the mass. A complete characterization of industrial emission plumes during their impact on the ground allowed for the identification of tracer species for specific point sources, such as petrochemical, metallurgic, and fertilizer and phosphate production industries.

  9. PbO networks composed of single crystalline nanosheets synthesized by a facile chemical precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Samberg, Joshua P. [Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way, Engineering Building I, Raleigh, NC 27695-7907 (United States); Kajbafvala, Amir, E-mail: amir.kajbafvala@gmail.com [Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way, Engineering Building I, Raleigh, NC 27695-7907 (United States); Koolivand, Amir [Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695 (United States)

    2014-03-01

    Graphical abstract: - Highlights: • Synthesis of PbO networks through a simple chemical precipitation route. • The synthesis method is rapid and low-cost. • Each network is composed of single crystalline PbO nanosheets. • A possible growth mechanism is proposed for synthesized PbO networks. - Abstract: For the field of energy storage, nanostructured lead oxide (PbO) shows immense potential for increased specific energy and deep discharge for lead acid battery technologies. In this work, PbO networks composed of single crystalline nanosheets were synthesized utilizing a simple, low cost and rapid chemical precipitation method. The PbO networks were prepared in a single reaction vessel from starting reagents of lead acetate dehydrate, ammonium hydroxide and deionized water. Lead acetate dehydrate was chosen as a reagent, as opposed to lead nitrate, to eliminate the possibility of nitrate contamination of the final product. X-ray diffraction (XRD) analysis, high resolution scanning electron microscopy (HRSEM) and high resolution transmission electron microscopy (HRTEM) analysis were used to characterize the synthesized PbO networks. The reproducible method described herein synthesized pure β-PbO (massicot) powders, with no byproducts. A possible formation mechanism for these PbO networks is proposed. The growth is found to proceed predominately in the 〈1 1 1〉 and 〈2 0 0〉 directions while being limited in the 〈0 1 1〉 direction.

  10. PbO networks composed of single crystalline nanosheets synthesized by a facile chemical precipitation method

    International Nuclear Information System (INIS)

    Samberg, Joshua P.; Kajbafvala, Amir; Koolivand, Amir

    2014-01-01

    Graphical abstract: - Highlights: • Synthesis of PbO networks through a simple chemical precipitation route. • The synthesis method is rapid and low-cost. • Each network is composed of single crystalline PbO nanosheets. • A possible growth mechanism is proposed for synthesized PbO networks. - Abstract: For the field of energy storage, nanostructured lead oxide (PbO) shows immense potential for increased specific energy and deep discharge for lead acid battery technologies. In this work, PbO networks composed of single crystalline nanosheets were synthesized utilizing a simple, low cost and rapid chemical precipitation method. The PbO networks were prepared in a single reaction vessel from starting reagents of lead acetate dehydrate, ammonium hydroxide and deionized water. Lead acetate dehydrate was chosen as a reagent, as opposed to lead nitrate, to eliminate the possibility of nitrate contamination of the final product. X-ray diffraction (XRD) analysis, high resolution scanning electron microscopy (HRSEM) and high resolution transmission electron microscopy (HRTEM) analysis were used to characterize the synthesized PbO networks. The reproducible method described herein synthesized pure β-PbO (massicot) powders, with no byproducts. A possible formation mechanism for these PbO networks is proposed. The growth is found to proceed predominately in the 〈1 1 1〉 and 〈2 0 0〉 directions while being limited in the 〈0 1 1〉 direction

  11. Disk shaped radiation sources for education purposes made of chemical fertilizer

    International Nuclear Information System (INIS)

    Kawano, Takao

    2008-01-01

    A method for fabricating a disk-shaped radiation source from material containing natural radioisotopes was developed. In this compression and formation method, a certain amount of powdered material is placed in a stainless steel formwork and compressed to form a solid disk. Using this method, educational radiation sources were fabricated using commercially available chemical fertilizers that naturally contain the radionuclide, 40 K, which emits either beta or gamma rays, at each disintegration. The compression and formation method was evaluated by inspecting eleven radiation sources thus fabricated. Then the suitability of the fertilizer radiation source as an education aid was evaluated. The results showed that the method could be used to fabricate radiation sources without the need for learning special skills or techniques. It was also found that the potassium fertilizer radiation source could be used to demonstrate that the inverse-square law can be applied to the distance between the radiation source and detector, and that an exponential relationship can be seen between the shielding effectiveness and the total thickness of the shielding materials. It is concluded that a natural fertilizer radiation source is an appropriate aid for demonstrating the characteristics of radiation. (author)

  12. Attainment of chemical equilibrium in effusive beam sources of the heterogeneous reaction type

    International Nuclear Information System (INIS)

    Hildenbrand, D.L.

    1979-01-01

    Effusive beam sources derived from gas-solid reactions provide a very important pathway for widening the scope of high temperature thermodynamic studies, but the attainment of chemical equilibrium within these sources is problematical. Some of the underlying kinetic factors associated with the use of these sources are discussed. As one might expect, it is important to maximize the ratio of reactive surface area to exit orifice area. Equilibrium seems to be achieved more readily among the products of gas-solid reactions than among reactant and products, as suggested by the quasi-equilibrium model. Some experiences with the use of heterogeneous reaction sources are described, and two definitive tests for the establishment of equilibrium are outlined

  13. Purposeful synthesis of chemical elements and ecologically pure mobile sources of energy

    International Nuclear Information System (INIS)

    Krivitsky, V. A.; Gareev, F. A.

    2007-01-01

    It is well known [1] that the natural geo-transmutation of chemical elements occurs in the atmosphere and earth in the regions of a strong change in geo-, bio-, acoustic-, and electromagnetic fields. The mineral row materials contain the same accompanying chemical combinations which are independent of mineral deposit [2]. This means that the formation of chemical elements occurs in the same physical and chemical conditions. These conditions were simulated on the fundamental cooperative resonance synchronization principle [1]. The experimental facility was constructed on the basis of our model which provided with the calculated final chemical elements. These experimental results indicate new possibilities for, simulating, inducing and controlling nuclear reactions by low energy external fields. The borrowing from the geo-transmutation mechanisms of chemical elements creates the fundamental directions in low energy nuclear reaction researches for construction of new ecologically pure mobile sources of energy independent of oil, gas and coal, new substances, and technologies. References [1] F.A. Gareev, I.E. Zhidkova, E-print arXiv Nucl-th/0610002 2006. [2] V.A. Krivzskii, Transmutazija ximicheskix elementov v evolyuzii Semli (in Russian), Moscow 2003

  14. Quantitative analysis of chemical elements in single cells using nuclear microprobe and nano-probe

    International Nuclear Information System (INIS)

    Deves, Guillaume

    2010-01-01

    The study of the role of trace elements at cellular level requires the use of state-of-the-art analytical tools that could achieve enough sensitivity and spatial resolution. We developed a new methodology for the accurate quantification of chemical element distribution in single cells based on a combination of ion beam analysis techniques STIM, PIXE and RBS. The quantification procedure relies on the development of a STIM data analysis software (Paparamborde). Validity of this methodology and limits are discussed here. The method allows the quantification of trace elements (μg/g) with a 19.8 % uncertainty in cellular compartments with mass below 0.1 ng. The main limit of the method lies in the poor number of samples that can be analyzed, due to long irradiation times required and limited access to ion beam analysis facilities. This is the reason why we developed a database for cellular chemical composition capitalization (BDC4). BDC4 has been designed in order to use cellular chemical composition as a tracer for biological activities and is expected to provide in the future reference chemical compositions for any cellular type or compartment. Application of the STIM-PIXE-RBS methodology to the study of nuclear toxicology of cobalt compounds is presented here showing that STIM analysis is absolutely needed when organic mass loss appears during PIXE-RBS irradiation. (author)

  15. Single crystal growth and surface chemical stability of KPb2Br5

    Science.gov (United States)

    Atuchin, V. V.; Isaenko, L. I.; Kesler, V. G.; Tarasova, A. Yu.

    2011-03-01

    Single crystal of KPb2Br5 has been grown using the Bridgman technique. Initially the synthesis of stoichiometric KPb2Br5 compound was performed from high purity bromide salts. Electronic structure of KPb2Br5 has been determined with X-ray photoelectron spectroscopy for powdered sample fabricated by grinding in air. Drastic chemical interaction of KPb2Br5 with atmosphere has not been detected. Chemical bonding in potassium- and lead-containing bromides is considered using binding energy differences ΔK=(BE K 2p3/2-BE Br 3d) and ΔPb=(BE Pb 4f7/2-BE Br 3d), respectively, as representative parameters.

  16. Development of Single Crystal Chemical Vapor Deposition Diamonds for Detector Applications

    International Nuclear Information System (INIS)

    Kagan, Harris; Gan, K.K.; Kass, Richard

    2009-01-01

    Diamond was studied as a possible radiation hard technology for use in future high radiation environments. With the commissioning of the LHC expected in 2009, and the LHC upgrades expected in 2013, all LHC experiments are planning for detector upgrades which require radiation hard technologies. Chemical Vapor Deposition (CVD) diamond has now been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle and CDF and is installed in all LHC experiments. As a result, this material is now being discussed as an alternative sensor material for tracking very close to the interaction region of the super-LHC where the most extreme radiation conditions will exist. Our work addressed the further development of the new material, single-crystal Chemical Vapor Deposition diamond, towards reliable industrial production of large pieces and new geometries needed for detector applications.

  17. Online Chemical Characterization of Food-Cooking Organic Aerosols: Implications for Source Apportionment.

    Science.gov (United States)

    Reyes-Villegas, Ernesto; Bannan, Thomas; Le Breton, Michael; Mehra, Archit; Priestley, Michael; Percival, Carl; Coe, Hugh; Allan, James D

    2018-04-11

    Food-cooking organic aerosols (COA) are one of the primary sources of submicron particulate matter in urban environments. However, there are still many questions surrounding source apportionment related to instrumentation as well as semivolatile partitioning because COA evolve rapidly in the ambient air, making source apportionment more complex. Online measurements of emissions from cooking different types of food were performed in a laboratory to characterize particles and gases. Aerosol mass spectrometer (AMS) measurements showed that the relative ionization efficiency for OA was higher (1.56-3.06) relative to a typical value of 1.4, concluding that AMS is over-estimating COA and suggesting that previous studies likely over-estimated COA concentrations. Food-cooking mass spectra were generated using AMS, and gas and particle food markers were identified with filter inlets for gases and aerosols-chemical ionization mass spectrometer (CIMS) measurements to be used in future food cooking-source apportionment studies. However, there is a considerable variability in both gas and particle markers, and dilution plays an important role in the particle mass budget, showing the importance of using these markers with caution during receptor modeling. These findings can be used to better understand the chemical composition of COA, and they provides useful information to be used in future source-apportionment studies.

  18. Chemical fingerprinting and source tracing of obsidian: the central Mediterranean trade in black gold.

    Science.gov (United States)

    Tykot, Robert H

    2002-08-01

    Chemical fingerprinting using major or trace element composition is used to characterize the Mediterranean island sources of obsidian and can even differentiate as many as nine flows in the Monte Arci region of Sardinia. Analysis of significant numbers of obsidian artifacts from Neolithic sites in the central Mediterranean reveals specific patterns of source exploitation and suggests particular trade mechanisms and routes. The use of techniques such as X-ray fluorescence, the electron microprobe, neutron activation analysis, and laser ablation ICP mass spectrometry are emphasized in order to produce quantitative results while minimizing damage to valuable artifacts.

  19. Determination of the chemical yield on the Fricke dosimetry for 192Ir sources used in brachytherapy

    International Nuclear Information System (INIS)

    David, M.G.; Albuquerque, M.A.G.; Almeida, C.E. de; Rosado, P.H.

    2015-01-01

    With the aim of developing a primary standard for the absorbed dose to water, for the 192 Ir sources used in high dose rate brachytherapy, this work focuses on the determination of the chemical yield, G(Fe +3 ), using Fricke dosimetry, for the energy of those sources . The G(Fe +3 ) were determined the for three qualities of x-ray beams (150, 250 and 300 kV ) and for 60 Co energy. The G(Fe +3 ) value for the average energy of 192 Ir was obtained by linear fit, the found value was 1,555 ± 0,015 μmol/J. (author)

  20. Industrially synthesized single-walled carbon nanotubes: compositional data for users, environmental risk assessments, and source apportionment

    Energy Technology Data Exchange (ETDEWEB)

    Plata, D L; Gschwend, P M [Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Reddy, C M [Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States)], E-mail: dplata@whoi.edu

    2008-05-07

    Commercially available single-walled carbon nanotubes (SWCNTs) contain large percentages of metal and carbonaceous impurities. These fractions influence the SWCNT physical properties and performance, yet their chemical compositions are not well defined. This lack of information also precludes accurate environmental risk assessments for specific SWCNT stocks, which emerging local legislation requires of nanomaterial manufacturers. To address these needs, we measured the elemental, molecular, and stable carbon isotope compositions of commercially available SWCNTs. As expected, catalytic metals occurred at per cent levels (1.3-29%), but purified materials also contained unexpected metals (e.g., Cu, Pb at 0.1-0.3 ppt). Nitrogen contents (up to 0.48%) were typically greater in arc-produced SWCNTs than in those derived from chemical vapor deposition. Toluene-extractable materials contributed less than 5% of the total mass of the SWCNTs. Internal standard losses during dichloromethane extractions suggested that metals are available for reductive dehalogenation reactions, ultimately resulting in the degradation of aromatic internal standards. The carbon isotope content of the extracted material suggested that SWCNTs acquired much of their carbonaceous contamination from their storage environment. Some of the SWCNTs, themselves, were highly depleted in {sup 13}C relative to petroleum-derived chemicals. The distinct carbon isotopic signatures and unique metal 'fingerprints' may be useful as environmental tracers allowing assessment of SWCNT sources to the environment.

  1. Rhombic Coulomb diamonds in a single-electron transistor based on an Au nanoparticle chemically anchored at both ends.

    Science.gov (United States)

    Azuma, Yasuo; Onuma, Yuto; Sakamoto, Masanori; Teranishi, Toshiharu; Majima, Yutaka

    2016-02-28

    Rhombic Coulomb diamonds are clearly observed in a chemically anchored Au nanoparticle single-electron transistor. The stability diagrams show stable Coulomb blockade phenomena and agree with the theoretical curve calculated using the orthodox model. The resistances and capacitances of the double-barrier tunneling junctions between the source electrode and the Au core (R1 and C1, respectively), and those between the Au core and the drain electrode (R2 and C2, respectively), are evaluated as 4.5 MΩ, 1.4 aF, 4.8 MΩ, and 1.3 aF, respectively. This is determined by fitting the theoretical curve against the experimental Coulomb staircases. Two-methylene-group short octanedithiols (C8S2) in a C8S2/hexanethiol (C6S) mixed self-assembled monolayer is concluded to chemically anchor the core of the Au nanoparticle at both ends between the electroless-Au-plated nanogap electrodes even when the Au nanoparticle is protected by decanethiol (C10S). This is because the R1 value is identical to that of R2 and corresponds to the tunneling resistances of the octanedithiol chemically bonded with the Au core and the Au electrodes. The dependence of the Coulomb diamond shapes on the tunneling resistance ratio (R1/R2) is also discussed, especially in the case of the rhombic Coulomb diamonds. Rhombic Coulomb diamonds result from chemical anchoring of the core of the Au nanoparticle at both ends between the electroless-Au-plated nanogap electrodes.

  2. Volatile chemical products emerging as largest petrochemical source of urban organic emissions

    Science.gov (United States)

    McDonald, Brian C.; de Gouw, Joost A.; Gilman, Jessica B.; Jathar, Shantanu H.; Akherati, Ali; Cappa, Christopher D.; Jimenez, Jose L.; Lee-Taylor, Julia; Hayes, Patrick L.; McKeen, Stuart A.; Cui, Yu Yan; Kim, Si-Wan; Gentner, Drew R.; Isaacman-VanWertz, Gabriel; Goldstein, Allen H.; Harley, Robert A.; Frost, Gregory J.; Roberts, James M.; Ryerson, Thomas B.; Trainer, Michael

    2018-02-01

    A gap in emission inventories of urban volatile organic compound (VOC) sources, which contribute to regional ozone and aerosol burdens, has increased as transportation emissions in the United States and Europe have declined rapidly. A detailed mass balance demonstrates that the use of volatile chemical products (VCPs)—including pesticides, coatings, printing inks, adhesives, cleaning agents, and personal care products—now constitutes half of fossil fuel VOC emissions in industrialized cities. The high fraction of VCP emissions is consistent with observed urban outdoor and indoor air measurements. We show that human exposure to carbonaceous aerosols of fossil origin is transitioning away from transportation-related sources and toward VCPs. Existing U.S. regulations on VCPs emphasize mitigating ozone and air toxics, but they currently exempt many chemicals that lead to secondary organic aerosols.

  3. Large-Eddy Simulation of Chemically Reactive Pollutant Transport from a Point Source in Urban Area

    Science.gov (United States)

    Du, Tangzheng; Liu, Chun-Ho

    2013-04-01

    Most air pollutants are chemically reactive so using inert scalar as the tracer in pollutant dispersion modelling would often overlook their impact on urban inhabitants. In this study, large-eddy simulation (LES) is used to examine the plume dispersion of chemically reactive pollutants in a hypothetical atmospheric boundary layer (ABL) in neutral stratification. The irreversible chemistry mechanism of ozone (O3) titration is integrated into the LES model. Nitric oxide (NO) is emitted from an elevated point source in a rectangular spatial domain doped with O3. The LES results are compared well with the wind tunnel results available in literature. Afterwards, the LES model is applied to idealized two-dimensional (2D) street canyons of unity aspect ratio to study the behaviours of chemically reactive plume over idealized urban roughness. The relation among various time scales of reaction/turbulence and dimensionless number are analysed.

  4. Potential of Palm Olein as Green Lubricant Source: Lubrication Analysis and Chemical Characterisation

    International Nuclear Information System (INIS)

    Darfizzi Derawi; Jumat Salimon

    2014-01-01

    Palm olein (PO o ) is widely used as edible oil in tropical countries. The lubrication properties and chemical compositions of PO o being considered to be used as renewable raw material for bio lubricant synthesis. PO o is suitable to be used directly as bio lubricant for medium temperature industrial applications. Palm olein has good viscosity index, oxidative stability, flash and fire point as a lubricant source. PO o contains unsaturated triacylglycerols (TAG): Palmitin-Olein-Olein, POO (33.3 %), Palmitin-Olein-Palmitin, POP (29.6 %), which are very important to produce good lubricant properties. This unsaturated bond is preferable in chemical modification to produce bio lubricant. The chemical compositions of PO o were tested by using high performance liquid chromatography (HPLC) and gas chromatography (GC) techniques. (author)

  5. Single DNA molecules as probes for interrogating silica surfaces after various chemical treatments

    International Nuclear Information System (INIS)

    Liu Xia; Wu Zhan; Nie Huagui; Liu Ziling; He Yan; Yeung, E.S.

    2007-01-01

    We examined the adsorption of single YOYO-1-labeled λ-DNA molecules at glass surfaces after treatment with various chemical cleaning methods by using total internal reflection fluorescence microscopy (TIRFM). The characteristics of these surfaces were further assessed using contact angle (CA) measurements and atomic force microscopy (AFM). By recording the real-time dynamic motion of DNA molecules at the liquid/solid interface, subtle differences in adsorption affinities were revealed. The results indicate that the driving force for adsorption of DNA molecules on glass surfaces is mainly hydrophobic interaction. We also found that surface topography plays a role in the adsorption dynamics

  6. On-demand generation of background-free single photons from a solid-state source

    Science.gov (United States)

    Schweickert, Lucas; Jöns, Klaus D.; Zeuner, Katharina D.; Covre da Silva, Saimon Filipe; Huang, Huiying; Lettner, Thomas; Reindl, Marcus; Zichi, Julien; Trotta, Rinaldo; Rastelli, Armando; Zwiller, Val

    2018-02-01

    True on-demand high-repetition-rate single-photon sources are highly sought after for quantum information processing applications. However, any coherently driven two-level quantum system suffers from a finite re-excitation probability under pulsed excitation, causing undesirable multi-photon emission. Here, we present a solid-state source of on-demand single photons yielding a raw second-order coherence of g(2 )(0 )=(7.5 ±1.6 )×10-5 without any background subtraction or data processing. To this date, this is the lowest value of g(2 )(0 ) reported for any single-photon source even compared to the previously reported best background subtracted values. We achieve this result on GaAs/AlGaAs quantum dots embedded in a low-Q planar cavity by employing (i) a two-photon excitation process and (ii) a filtering and detection setup featuring two superconducting single-photon detectors with ultralow dark-count rates of (0.0056 ±0.0007 ) s-1 and (0.017 ±0.001 ) s-1, respectively. Re-excitation processes are dramatically suppressed by (i), while (ii) removes false coincidences resulting in a negligibly low noise floor.

  7. Cause-specific stillbirth and exposure to chemical constituents and sources of fine particulate matter.

    Science.gov (United States)

    Ebisu, Keita; Malig, Brian; Hasheminassab, Sina; Sioutas, Constantinos; Basu, Rupa

    2018-01-01

    The stillbirth rate in the United States is relatively high, but limited evidence is available linking stillbirth with fine particulate matter (PM 2.5 ), its chemical constituents and sources. In this study, we explored associations between cause-specific stillbirth and prenatal exposures to those pollutants with using live birth and stillbirth records from eight California locations during 2002-2009. ICD-10 codes were used to identify cause of stillbirth from stillbirth records. PM 2.5 total mass and chemical constituents were collected from ambient monitors and PM 2.5 sources were quantified using Positive Matrix Factorization. Conditional logistic regression was applied using a nested case-control study design (N = 32,262). We found that different causes of stillbirth were associated with different PM 2.5 sources and/or chemical constituents. For stillbirths due to fetal growth, the odds ratio (OR) per interquartile range increase in gestational age-adjusted exposure to PM 2.5 total mass was 1.23 (95% confidence interval (CI): 1.06, 1.44). Similar associations were found with resuspended soil (OR=1.25, 95% CI: 1.10, 1.42), and secondary ammonium sulfate (OR=1.45, 95% CI: 1.18, 1.78). No associations were found between any pollutants and stillbirths caused by maternal complications. This study highlighted the importance of investigating cause-specific stillbirth and the differential toxicity levels of specific PM 2.5 sources and chemical constituents. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Time-domain single-source integral equations for analyzing scattering from homogeneous penetrable objects

    KAUST Repository

    Valdés, Felipe

    2013-03-01

    Single-source time-domain electric-and magnetic-field integral equations for analyzing scattering from homogeneous penetrable objects are presented. Their temporal discretization is effected by using shifted piecewise polynomial temporal basis functions and a collocation testing procedure, thus allowing for a marching-on-in-time (MOT) solution scheme. Unlike dual-source formulations, single-source equations involve space-time domain operator products, for which spatial discretization techniques developed for standalone operators do not apply. Here, the spatial discretization of the single-source time-domain integral equations is achieved by using the high-order divergence-conforming basis functions developed by Graglia alongside the high-order divergence-and quasi curl-conforming (DQCC) basis functions of Valdés The combination of these two sets allows for a well-conditioned mapping from div-to curl-conforming function spaces that fully respects the space-mapping properties of the space-time operators involved. Numerical results corroborate the fact that the proposed procedure guarantees accuracy and stability of the MOT scheme. © 2012 IEEE.

  9. Chemical Principles and Interference in the Electrical Conductance of Single Molecules

    DEFF Research Database (Denmark)

    Borges, Anders Christian

    , the conductance of molecules can vary orders of magnitude and the concept of interference is believed to play a major role in this. This thesis investigates the links between single molecule conductance, chemistry and interference effects in short organic molecules. It is investigated to which extent...... the conductance can be understood in terms of separate contributions and when the effects of interference are important. Links between chemical principles and constructive- and destructive interference effects are demonstrated using a combination of simple models, atomistic calculations and Scanning......-Tunneling Microscope Break-Junction experiments (STM-BJ). It is demonstrated that these links can be used to design molecules exhibiting surprising interference effects and to interpret and predict the trends in the characteristic conductance of single molecules without resorting to numerical computational methods...

  10. Dealing with the Data Deluge: Handling the Multitude Of Chemical Biology Data Sources.

    Science.gov (United States)

    Guha, Rajarshi; Nguyen, Dac-Trung; Southall, Noel; Jadhav, Ajit

    2012-09-01

    Over the last 20 years, there has been an explosion in the amount and type of biological and chemical data that has been made publicly available in a variety of online databases. While this means that vast amounts of information can be found online, there is no guarantee that it can be found easily (or at all). A scientist searching for a specific piece of information is faced with a daunting task - many databases have overlapping content, use their own identifiers and, in some cases, have arcane and unintuitive user interfaces. In this overview, a variety of well known data sources for chemical and biological information are highlighted, focusing on those most useful for chemical biology research. The issue of using multiple data sources together and the associated problems such as identifier disambiguation are highlighted. A brief discussion is then provided on Tripod, a recently developed platform that supports the integration of arbitrary data sources, providing users a simple interface to search across a federated collection of resources.

  11. Finite state projection based bounds to compare chemical master equation models using single-cell data

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Zachary [School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States); Neuert, Gregor [Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 (United States); Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232 (United States); Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee 37232 (United States); Munsky, Brian [School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States); Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States)

    2016-08-21

    Emerging techniques now allow for precise quantification of distributions of biological molecules in single cells. These rapidly advancing experimental methods have created a need for more rigorous and efficient modeling tools. Here, we derive new bounds on the likelihood that observations of single-cell, single-molecule responses come from a discrete stochastic model, posed in the form of the chemical master equation. These strict upper and lower bounds are based on a finite state projection approach, and they converge monotonically to the exact likelihood value. These bounds allow one to discriminate rigorously between models and with a minimum level of computational effort. In practice, these bounds can be incorporated into stochastic model identification and parameter inference routines, which improve the accuracy and efficiency of endeavors to analyze and predict single-cell behavior. We demonstrate the applicability of our approach using simulated data for three example models as well as for experimental measurements of a time-varying stochastic transcriptional response in yeast.

  12. Silicon oxynitride films deposited by reactive high power impulse magnetron sputtering using nitrous oxide as a single-source precursor

    Energy Technology Data Exchange (ETDEWEB)

    Hänninen, Tuomas, E-mail: tuoha@ifm.liu.se; Schmidt, Susann; Jensen, Jens; Hultman, Lars; Högberg, Hans [Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping SE-581 83 (Sweden)

    2015-09-15

    Silicon oxynitride thin films were synthesized by reactive high power impulse magnetron sputtering of silicon in argon/nitrous oxide plasmas. Nitrous oxide was employed as a single-source precursor supplying oxygen and nitrogen for the film growth. The films were characterized by elastic recoil detection analysis, x-ray photoelectron spectroscopy, x-ray diffraction, x-ray reflectivity, scanning electron microscopy, and spectroscopic ellipsometry. Results show that the films are silicon rich, amorphous, and exhibit a random chemical bonding structure. The optical properties with the refractive index and the extinction coefficient correlate with the film elemental composition, showing decreasing values with increasing film oxygen and nitrogen content. The total percentage of oxygen and nitrogen in the films is controlled by adjusting the gas flow ratio in the deposition processes. Furthermore, it is shown that the film oxygen-to-nitrogen ratio can be tailored by the high power impulse magnetron sputtering-specific parameters pulse frequency and energy per pulse.

  13. Chemical mass balance source apportionment of fine and PM10 in the Desert Southwest, USA

    Directory of Open Access Journals (Sweden)

    Andrea L. Clements

    2016-03-01

    Full Text Available The Desert Southwest Coarse Particulate Matter Study was undertaken in Pinal County, Arizona, to better understand the origin and impact of sources of fine and coarse particulate matter (PM in rural, arid regions of the U.S. southwestern desert. The desert southwest experiences some of the highest PM10 mass concentrations in the country. To augment previously reported results, 6-week aggregated organic speciation data that included ambient concentrations of n-alkanes, polycyclic aromatic hydrocarbons, organic acids, and saccharides were used in chemical mass balance modeling (CMB. A set of re-suspended soil samples were analyzed for specific marker species to provide locally-appropriate source profiles for the CMB analysis. These profiles, as well as previously collected plant and fungal spore profiles from the region, were combined with published source profiles for other relevant sources and used in the CMB analysis. The six new region-specific source profiles included both organic and inorganic species for four crustal material sources, one plant detritus source, and one fungal spore source.Results indicate that up to half of the ambient PM2.5 was apportioned to motor vehicles with the highest regional contribution observed in the small urban center of Casa Grande. Daily levels of apportioned crustal material accounted for up to 50% of PM2.5 mass with the highest contributions observed at the sites closest to active agricultural areas. Apportioned secondary PM, biomass burning, and road dust typically contributed less than 35% as a group to the apportioned PM2.5 mass. Crustal material was the primary source apportioned to PM10 and accounted for between 50–90% of the apportioned mass. Of the other sources apportioned to PM10, motor vehicles and road dust were the largest contributors at the urban and one of the rural sites, whereas road dust and meat cooking operations were the largest contributors at the other rural site.

  14. Dye molecules as single-photon sources and large optical nonlinearities on a chip

    International Nuclear Information System (INIS)

    Hwang, J; Hinds, E A

    2011-01-01

    We point out that individual organic dye molecules, deposited close to optical waveguides on a photonic chip, can act as single-photon sources. A thin silicon nitride strip waveguide is expected to collect 28% of the photons from a single dibenzoterrylene molecule. These molecules can also provide large, localized optical nonlinearities, which are enough to discriminate between one photon or two through a differential phase shift of 2 0 per photon. This new atom-photon interface may be used as a resource for processing quantum information.

  15. Estimation of sediment sources using selected chemical tracers in the Perry lake basin, Kansas, USA

    Science.gov (United States)

    Juracek, K.E.; Ziegler, A.C.

    2009-01-01

    The ability to achieve meaningful decreases in sediment loads to reservoirs requires a determination of the relative importance of sediment sources within the contributing basins. In an investigation of sources of fine-grained sediment (clay and silt) within the Perry Lake Basin in northeast Kansas, representative samples of channel-bank sources, surface-soil sources (cropland and grassland), and reservoir bottom sediment were collected, chemically analyzed, and compared. The samples were sieved to isolate the phosphorus), organic and total carbon, 25 trace elements, and the radionuclide cesium-137 (137Cs). On the basis of substantial and consistent compositional differences among the source types, total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), and 137Cs were selected for use in the estimation of sediment sources. To further account for differences in particle-size composition between the sources and the reservoir bottom sediment, constituent ratio and clay-normalization techniques were used. Computed ratios included TOC to TN, TOC to TP, and TN to TP. Constituent concentrations (TN, TP, TOC) and activities (137Cs) were normalized by dividing by the percentage of clay. Thus, the sediment-source estimations involved the use of seven sediment-source indicators. Within the Perry Lake Basin, the consensus of the seven indicators was that both channel-bank and surface-soil sources were important in the Atchison County Lake and Banner Creek Reservoir subbasins, whereas channel-bank sources were dominant in the Mission Lake subbasin. On the sole basis of 137Cs activity, surface-soil sources contributed the most fine-grained sediment to Atchison County Lake, and channel-bank sources contributed the most fine-grained sediment to Banner Creek Reservoir and Mission Lake. Both the seven-indicator consensus and 137Cs indicated that channel-bank sources were dominant for Perry Lake and that channel-bank sources increased in importance with distance

  16. Gearbox Fault Diagnosis in a Wind Turbine Using Single Sensor Based Blind Source Separation

    Directory of Open Access Journals (Sweden)

    Yuning Qian

    2016-01-01

    Full Text Available This paper presents a single sensor based blind source separation approach, namely, the wavelet-assisted stationary subspace analysis (WSSA, for gearbox fault diagnosis in a wind turbine. Continuous wavelet transform (CWT is used as a preprocessing tool to decompose a single sensor measurement data into a set of wavelet coefficients to meet the multidimensional requirement of the stationary subspace analysis (SSA. The SSA is a blind source separation technique that can separate the multidimensional signals into stationary and nonstationary source components without the need for independency and prior information of the source signals. After that, the separated nonstationary source component with the maximum kurtosis value is analyzed by the enveloping spectral analysis to identify potential fault-related characteristic frequencies. Case studies performed on a wind turbine gearbox test system verify the effectiveness of the WSSA approach and indicate that it outperforms independent component analysis (ICA and empirical mode decomposition (EMD, as well as the spectral-kurtosis-based enveloping, for wind turbine gearbox fault diagnosis.

  17. Highly efficient electron gun with a single-atom electron source

    International Nuclear Information System (INIS)

    Ishikawa, Tsuyoshi; Urata, Tomohiro; Cho, Boklae; Rokuta, Eiji; Oshima, Chuhei; Terui, Yoshinori; Saito, Hidekazu; Yonezawa, Akira; Tsong, Tien T.

    2007-01-01

    The authors have demonstrated highly collimated electron-beam emission from a practical electron gun with a single-atom electron source; ∼80% of the total emission current entered the electron optics. This ratio was two or three orders of magnitude higher than those of the conventional electron sources such as a cold field emission gun and a Zr/O/W Schottky gun. At the pressure of less than 1x10 -9 Pa, the authors observed stable emission of 20 nA, which generates the specimen current of 5 pA required for scanning electron microscopes

  18. Interference with a quantum dot single-photon source and a laser at telecom wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Felle, M. [Toshiba Research Europe Limited, Cambridge Research Laboratory, 208 Cambridge Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Centre for Advanced Photonics and Electronics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Huwer, J., E-mail: jan.huwer@crl.toshiba.co.uk; Stevenson, R. M.; Skiba-Szymanska, J.; Ward, M. B.; Shields, A. J. [Toshiba Research Europe Limited, Cambridge Research Laboratory, 208 Cambridge Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Farrer, I.; Ritchie, D. A. [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Penty, R. V. [Centre for Advanced Photonics and Electronics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0FA (United Kingdom)

    2015-09-28

    The interference of photons emitted by dissimilar sources is an essential requirement for a wide range of photonic quantum information applications. Many of these applications are in quantum communications and need to operate at standard telecommunication wavelengths to minimize the impact of photon losses and be compatible with existing infrastructure. Here, we demonstrate for the first time the quantum interference of telecom-wavelength photons from an InAs/GaAs quantum dot single-photon source and a laser; an important step towards such applications. The results are in good agreement with a theoretical model, indicating a high degree of indistinguishability for the interfering photons.

  19. Interference with a quantum dot single-photon source and a laser at telecom wavelength

    International Nuclear Information System (INIS)

    Felle, M.; Huwer, J.; Stevenson, R. M.; Skiba-Szymanska, J.; Ward, M. B.; Shields, A. J.; Farrer, I.; Ritchie, D. A.; Penty, R. V.

    2015-01-01

    The interference of photons emitted by dissimilar sources is an essential requirement for a wide range of photonic quantum information applications. Many of these applications are in quantum communications and need to operate at standard telecommunication wavelengths to minimize the impact of photon losses and be compatible with existing infrastructure. Here, we demonstrate for the first time the quantum interference of telecom-wavelength photons from an InAs/GaAs quantum dot single-photon source and a laser; an important step towards such applications. The results are in good agreement with a theoretical model, indicating a high degree of indistinguishability for the interfering photons

  20. Moving source localization with a single hydrophone using multipath time delays in the deep ocean.

    Science.gov (United States)

    Duan, Rui; Yang, Kunde; Ma, Yuanliang; Yang, Qiulong; Li, Hui

    2014-08-01

    Localizing a source of radial movement at moderate range using a single hydrophone can be achieved in the reliable acoustic path by tracking the time delays between the direct and surface-reflected arrivals (D-SR time delays). The problem is defined as a joint estimation of the depth, initial range, and speed of the source, which are the state parameters for the extended Kalman filter (EKF). The D-SR time delays extracted from the autocorrelation functions are the measurements for the EKF. Experimental results using pseudorandom signals show that accurate localization results are achieved by offline iteration of the EKF.

  1. Synthesis of few layer single crystal graphene grains on platinum by chemical vapour deposition

    Directory of Open Access Journals (Sweden)

    S. Karamat

    2015-08-01

    Full Text Available The present competition of graphene electronics demands an efficient route which produces high quality and large area graphene. Chemical vapour deposition technique, where hydrocarbons dissociate in to active carbon species and form graphene layer on the desired metal catalyst via nucleation is considered as the most suitable method. In this study, single layer graphene with the presence of few layer single crystal graphene grains were grown on Pt foil via chemical vapour deposition. The higher growth temperature changes the surface morphology of the Pt foil so a delicate process of hydrogen bubbling was used to peel off graphene from Pt foil samples with the mechanical support of photoresist and further transferred to SiO2/Si substrates for analysis. Optical microscopy of the graphene transferred samples showed the regions of single layer along with different oriented graphene domains. Two type of interlayer stacking sequences, Bernal and twisted, were observed in the graphene grains. The presence of different stacking sequences in the graphene layers influence the electronic and optical properties; in Bernal stacking the band gap can be tunable and in twisted stacking the overall sheet resistance can be reduced. Grain boundaries of Pt provides low energy sites to the carbon species, therefore the nucleation of grains are more at the boundaries. The stacking order and the number of layers in grains were seen more clearly with scanning electron microscopy. Raman spectroscopy showed high quality graphene samples due to very small D peak. 2D Raman peak for single layer graphene showed full width half maximum (FWHM value of 30 cm−1. At points A, B and C, Bernal stacked grain showed FWHM values of 51.22, 58.45 and 64.72 cm−1, while twisted stacked grain showed the FWHM values of 27.26, 28.83 and 20.99 cm−1, respectively. FWHM values of 2D peak of Bernal stacked grain showed an increase of 20–30 cm−1 as compare to single layer graphene

  2. Wet chemical deposition of single crystalline epitaxial manganite thin films with atomically flat surface

    International Nuclear Information System (INIS)

    Mishra, Amita; Dutta, Anirban; Samaddar, Sayanti; Gupta, Anjan K.

    2013-01-01

    We report the wet chemical deposition of single crystalline epitaxial thin films of the colossal magneto-resistive manganite La 0.67 Sr 0.33 MnO 3 on the lattice-matched (001)-face of a La 0.3 Sr 0.7 Al 0.65 Ta 0.35 O 3 substrate. Topographic images of these films taken with a scanning tunneling microscope show atomically flat terraces separated by steps of monatomic height. The resistivity of these films shows an insulator-metal transition at 310 K, nearly coincident with the Curie temperature of 340 K, found from magnetization measurements. The films show a magnetoresistance of 7% at 300 K and 1.2 T. Their saturation magnetization value at low temperatures is consistent with that of the bulk. - Highlights: ► Wet chemical deposition of La 0.67 Sr 0.33 MnO 3 (LSMO) on a lattice-matched substrate. ► Single crystalline epitaxial LSMO films obtained. ► Flat terraces separated by monatomic steps observed by scanning tunneling microscope

  3. DBD plasma source operated in single-filamentary mode for therapeutic use in dermatology

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekaran, Priyadarshini; Mertmann, Philipp; Bibinov, Nikita; Awakowicz, Peter [Institute for Electrical Engineering and Plasma Technology, Ruhr-Universitaet Bochum, Universitaetsstr. 150, 44801 Bochum (Germany); Wandke, Dirk [CINOGY GmbH, Max-Naeder-Str. 15, 37114 Duderstadt (Germany); Vioel, Wolfgang, E-mail: rajasekaran@aept.rub.d, E-mail: mertmann@aept.rub.d, E-mail: Nikita.Bibinov@rub.d, E-mail: dirk.wandke@cinogy.co, E-mail: vioel@hawk-hhg.d, E-mail: awakowicz@aept.rub.d [University of Applied Sciences and Arts, Faculty of Natural Sciences and Technology, Von-Ossietzky-Str. 99, 37085 Goettingen (Germany)

    2009-11-21

    Our dielectric barrier discharge (DBD) plasma source for bio-medical application comprises a copper electrode covered with ceramic. Objects of high capacitance such as the human body can be used as the opposite electrode. In this study, the DBD source is operated in single-filamentary mode using an aluminium spike as the opposite electrode, to imitate the conditions when the discharge is ignited on a raised point, such as hair, during therapeutic use on the human body. The single-filamentary discharge thus obtained is characterized using optical emission spectroscopy, numerical simulation, voltage-current measurements and microphotography. For characterization of the discharge, averaged plasma parameters such as electron distribution function and electron density are determined. Fluxes of nitric oxide (NO), ozone (O{sub 3}) and photons reaching the treated surface are simulated. The calculated fluxes are finally compared with corresponding fluxes used in different bio-medical applications.

  4. A hybrid algorithm for stochastic single-source capacitated facility location problem with service level requirements

    Directory of Open Access Journals (Sweden)

    Hosseinali Salemi

    2016-04-01

    Full Text Available Facility location models are observed in many diverse areas such as communication networks, transportation, and distribution systems planning. They play significant role in supply chain and operations management and are one of the main well-known topics in strategic agenda of contemporary manufacturing and service companies accompanied by long-lasting effects. We define a new approach for solving stochastic single source capacitated facility location problem (SSSCFLP. Customers with stochastic demand are assigned to set of capacitated facilities that are selected to serve them. It is demonstrated that problem can be transformed to deterministic Single Source Capacitated Facility Location Problem (SSCFLP for Poisson demand distribution. A hybrid algorithm which combines Lagrangian heuristic with adjusted mixture of Ant colony and Genetic optimization is proposed to find lower and upper bounds for this problem. Computational results of various instances with distinct properties indicate that proposed solving approach is efficient.

  5. Calibrate the aerial surveying instrument by the limited surface source and the single point source that replace the unlimited surface source

    International Nuclear Information System (INIS)

    Lu Cunheng

    1999-01-01

    It is described that the calculating formula and surveying result is found on the basis of the stacking principle of gamma ray and the feature of hexagonal surface source when the limited surface source replaces the unlimited surface source to calibrate the aerial survey instrument on the ground, and that it is found in the light of the exchanged principle of the gamma ray when the single point source replaces the unlimited surface source to calibrate aerial surveying instrument in the air. Meanwhile through the theoretical analysis, the receiving rate of the crystal bottom and side surfaces is calculated when aerial surveying instrument receives gamma ray. The mathematical expression of the gamma ray decaying following height according to the Jinge function regularity is got. According to this regularity, the absorbing coefficient that air absorbs the gamma ray and the detective efficiency coefficient of the crystal is calculated based on the ground and air measuring value of the bottom surface receiving count rate (derived from total receiving count rate of the bottom and side surface). Finally, according to the measuring value, it is proved that imitating the change of total receiving gamma ray exposure rate of the bottom and side surfaces with this regularity in a certain high area is feasible

  6. In-Situ Ion Source Cleaning: Review of Chemical Mechanisms and Evaluation Data at Production Fabs

    International Nuclear Information System (INIS)

    Kaim, R.; Bishop, S.; Byl, O.; Eldridge, D.; Marganski, P.; Mayer, J.; Sweeney, J.; Yedave, S.; Fuchs, D.; Spreitzer, S.; Vogel, J.; Dunn, J.; Lundquist, P.; Rolland, J.; Romig, T.; Newman, D.; Mitchell, M.; Ditzler, K.

    2008-01-01

    Since the concept of chemical in-situ ion implanter cleaning was introduced at IIT2006 [1], evaluations of the XeF 2 cleaning technology have taken place or are ongoing at more than 40 production fabs worldwide. Testing has been focused on assessing effects of cleaning in the source arc chamber and extraction regions. In this paper we describe use of the cleaning technology in a production environment and summarize evaluation data showing advantages of the technology for improving ion source life, reducing glitching, improving beam auto-tuning and avoiding species cross-contamination. More details of the evaluations are given in several separate papers submitted to this Conference. We have supplemented the fab production data with laboratory experiments designed to investigate the reactivity of XeF 2 and fundamental aspects of the source deposition and cleaning processes. These experiments are summarized here, and more details can be found in separate papers submitted to this Conference

  7. Source and specificity of chemical cues mediating shelter preference of Caribbean spiny lobsters (Panulirus argus).

    Science.gov (United States)

    Horner, Amy J; Nickles, Scott P; Weissburg, Marc J; Derby, Charles D

    2006-10-01

    Caribbean spiny lobsters display a diversity of social behaviors, one of the most prevalent of which is gregarious diurnal sheltering. Previous research has demonstrated that shelter selection is chemically mediated, but the source of release and the identity of the aggregation signal are unknown. In this study, we investigated the source and specificity of the aggregation signal in Caribbean spiny lobsters, Panulirus argus. We developed a relatively rapid test of shelter choice in a 5000-l laboratory flume that simulated flow conditions in the spiny lobster's natural environment, and used it to examine the shelter preference of the animals in response to a variety of odorants. We found that both males and females associated preferentially with shelters emanating conspecific urine of either sex, but not with shelters emanating seawater, food odors, or the scent of a predatory octopus. These results demonstrate specificity in the cues mediating sheltering behavior and show that urine is at least one source of the aggregation signal.

  8. Studying Chemical Reactions, One Bond at a Time, with Single Molecule AFM Techniques

    Science.gov (United States)

    Fernandez, Julio M.

    2008-03-01

    The mechanisms by which mechanical forces regulate the kinetics of a chemical reaction are unknown. In my lecture I will demonstrate how we use single molecule force-clamp spectroscopy and protein engineering to study the effect of force on the kinetics of thiol/disulfide exchange. Reduction of disulfide bond via the thiol/disulfide exchange chemical reaction is crucial in regulating protein function and is of common occurrence in mechanically stressed proteins. While reduction is thought to proceed through a substitution nucleophilic bimolecular (SN2) reaction, the role of a mechanical force in modulating this chemical reaction is unknown. We apply a constant stretching force to single engineered disulfide bonds and measure their rate of reduction by dithiothreitol (DTT). We find that while the reduction rate is linearly dependent on the concentration of DTT, it is exponentially dependent on the applied force, increasing 10-fold over a 300 pN range. This result predicts that the disulfide bond lengthens by 0.34 å at the transition state of the thiol/disulfide exchange reaction. In addition to DTT, we also study the reduction of the engineered disulfide bond by the E. coli enzyme thioredoxin (Trx). Thioredoxins are enzymes that catalyze disulfide bond reduction in all organisms. As before, we apply a mechanical force in the range of 25-450 pN to the engineered disulfide bond substrate and monitor the reduction of these bonds by individual enzymes. In sharp contrast with the data obtained with DTT, we now observe two alternative forms of the catalytic reaction, the first requiring a reorientation of the substrate disulfide bond, causing a shortening of the substrate polypeptide by 0.76±0.07 å, and the second elongating the substrate disulfide bond by 0.21±0.01 å. These results support the view that the Trx active site regulates the geometry of the participating sulfur atoms, with sub-ångström precision, in order to achieve efficient catalysis. Single molecule

  9. Quantum Interference between Autonomous Single-Photon Sources from Doppler-Broadened Atomic Ensemble

    OpenAIRE

    Jeong, Teak; Lee, Yoon-Seok; Park, Jiho; Kim, Heonoh; Moon, Han Seb

    2017-01-01

    To realize a quantum network based on quantum entanglement swapping, bright and completely autonomous sources are essentially required. Here, we experimentally demonstrate Hong-Ou-Mandel (HOM) quantum interference between two independent bright photon pairs generated via the spontaneous four-wave mixing in Doppler-broadened ladder-type 87Rb atoms. Bright autonomous heralded single photons are operated in a continuous-wave (CW) mode with no synchronization or supplemental filters. The four-fol...

  10. Removal of Direct Current Link Harmonic Ripple in Single Phase Voltage Source Inverter Systems Using Supercapacitors

    Science.gov (United States)

    2016-09-01

    Khaligh, “Optimization of sizing and battery cycle life in battery/ultracapacitor hybrid energy storage systems for electric vehicle applications...depth cycling operation in photovoltaic system ,” in 22nd International Conference “Mixed Design of Integrated Circuits and Systems ,” Toruń, Poland...CURRENT LINK HARMONIC RIPPLE IN SINGLE-PHASE VOLTAGE SOURCE INVERTER SYSTEMS USING SUPERCAPACITORS by Gabriel D. Hernandez September 2016

  11. All-periodically poled, high-power, continuous-wave, single-frequency tunable UV source.

    Science.gov (United States)

    Aadhi, A; Chaitanya N, Apurv; Jabir, M V; Singh, R P; Samanta, G K

    2015-01-01

    We report on experimental demonstration of an all-periodically poled, continuous-wave (CW), high-power, single-frequency, ultra-violet (UV) source. Based on internal second-harmonic-generation (SHG) of a CW singly resonant optical parametric oscillator (OPO) pumped in the green, the UV source provides tunable radiation across 398.94-417.08 nm. The compact source comprising of a 25-mm-long MgO-doped periodically poled stoichiometric lithium tantalate (MgO:sPPLT) crystal of period Λ(SLT)=8.5  μm for OPO and a 5-mm-long, multi-grating (Λ(KTP)=3.3, 3.4, 3.6 and 3.8 μm), periodically poled potassium titanium phosphate (PPKTP) for intra-cavity SHG, provides as much as 336 mW of UV power at 398.94 nm, corresponding to a green-to-UV conversion efficiency of ∼6.7%. In addition, the singly resonant OPO (SRO) provides 840 mW of idler at 1541.61 nm and substantial signal power of 108 mW at 812.33 nm transmitted through the high reflective cavity mirrors. UV source provides single-frequency radiation with instantaneous line-width of ∼18.3  MHz and power >100  mW in Gaussian beam profile (ellipticity >92%) across the entire tuning range. Access to lower UV wavelengths requires smaller grating periods to compensate high phase-mismatch resulting from high material dispersion in the UV wavelength range. Additionally, we have measured the normalized temperature and spectral acceptance bandwidth of PPKTP crystal in the UV wavelength range to be ∼2.25°C·cm and ∼0.15  nm·cm, respectively.

  12. Mode Engineering of Single Photons from Cavity Spontaneous Parametric Down-Conversion Source and Quantum Dots

    Science.gov (United States)

    Paudel, Uttam

    Over the past decade, much effort has been made in identifying and characterizing systems that can form a building block of quantum networks, among which semiconductor quantum dots (QD) and spontaneous parametric down-conversion (SPDC) source are two of the most promising candidates. The work presented in this thesis will be centered on investigating and engineering the mentioned systems for generating customizable single photons. A type-II SPDC source can generate a highly flexible pair of entangled photons that can be used to interface disparate quantum systems. In this thesis, we have successfully implemented a cavity-SPDC source that emits polarization correlated photons at 942 nm with a lifetime of 950-1050ps that mode matches closely with InAs/GaAs QD photons. The source emits 80 photon pairs per second per mW pump power within the 150MHz bandwidth. Though the detection of idler photons, the source is capable of emitting heralded photons with g2?0.5 for up to 40 mW pump power. For a low pump power of 5 mW, the heralded g2 is 0.06, indicating that the system is an excellent heralded single photon source. By directly exciting a single QD with cavity-SPDC photons, we have demonstrated a heralded-absorption of SPDC photons by QD, resulting in the coupling of the two systems. Due to the large pump bandwidth, the emitted source is highly multimode in nature, requiring us to post-filter the downconverted field, resulting in a lower photon pair emission rate. We propose placing an intra-cavity etalon to suppress the multi-mode emissions and increase the photon count rate. Understanding and experimentally implementing two-photon interference (HOM) measurements will be crucial for building a scalable quantum network. A detailed theoretical description of HOM measurements is given and is experimentally demonstrated using photons emitted by QD. Through HOM measurements we demonstrated that the QD sample in the study is capable of emitting indistinguishable photons, with

  13. Multifragmentation of a very heavy nuclear system (I): selection of single-source events

    Energy Technology Data Exchange (ETDEWEB)

    Frankland, J.D.; Bacri, Ch.O.; Borderie, B. [Paris-11 Univ., Inst. de Physique Nucleaire, 91 - Orsay (France)] [and others

    2000-07-01

    A sample of 'single-source' events, compatible with the multifragmentation of very heavy fused systems, are isolated among well-measured {sup 155}Gd + {sup nat}U 36 A.MeV reactions by examining the evolution of the kinematics of fragments with Z {>=} 5 as a function of the dissipated energy and loss of memory of the entrance channel. Single-source events are found to be the result of very central collisions. Such central collisions may also lead to multiple fragment emission due to the decay of excited projectile- and target-like nuclei and so-called 'neck' emission, and for this reason the isolation of single-source events is very difficult. Event-selection criteria based on centrality of collisions, or on the isotropy of the emitted fragments in each event, are found to be inefficient to separate the two mechanisms, unless they take into account the redistribution of fragments' kinetic energies into directions perpendicular to the beam axis. The selected events are good candidates to look for bulk effects in the multifragmentation process. (authors)

  14. Towards radiocarbon dating of single foraminifera with a gas ion source

    Science.gov (United States)

    Wacker, L.; Lippold, J.; Molnár, M.; Schulz, H.

    2013-01-01

    Carbonate shells from foraminifera are often analysed for radiocarbon to determine the age of deep-sea sediments or to assess radiocarbon reservoir ages. However, a single foraminiferal test typically contains only a few micrograms of carbon, while most laboratories require more than 100 μg for radiocarbon dating with an accelerator mass spectrometry (AMS) system. The collection of the required amount of foraminifera for a single analyses is therefore time consuming and not always possible. Here, we present a convenient method to measure the radiocarbon content of foraminifera using an AMS system fitted with a gas ion source. CO2 is liberated from 150 to 1150 μg of carbonate in septum sealed vials by acid decomposition of the carbonate. The CO2 is collected on a zeolite trap and subsequently transferred to a syringe from where it is delivered to the ion source. A sample of 400 μg (50 μg C) typically gives a 12C- ion source current of 10-15 μA over 20 min, yielding a measurement precision of less than 7 per mil for a modern sample. Using this method, we were able to date a single 560 μg Cibicides pseudoungerianus test at 14,030 ± 160 radiocarbon years. Only a minor modification to our existing gas handling system was required and the system is fully automatable to further reduce the effort involved for sample preparation.

  15. Towards radiocarbon dating of single foraminifera with a gas ion source

    International Nuclear Information System (INIS)

    Wacker, L.; Lippold, J.; Molnár, M.; Schulz, H.

    2013-01-01

    Carbonate shells from foraminifera are often analysed for radiocarbon to determine the age of deep-sea sediments or to assess radiocarbon reservoir ages. However, a single foraminiferal test typically contains only a few micrograms of carbon, while most laboratories require more than 100 μg for radiocarbon dating with an accelerator mass spectrometry (AMS) system. The collection of the required amount of foraminifera for a single analyses is therefore time consuming and not always possible. Here, we present a convenient method to measure the radiocarbon content of foraminifera using an AMS system fitted with a gas ion source. CO 2 is liberated from 150 to 1150 μg of carbonate in septum sealed vials by acid decomposition of the carbonate. The CO 2 is collected on a zeolite trap and subsequently transferred to a syringe from where it is delivered to the ion source. A sample of 400 μg (50 μg C) typically gives a 12 C − ion source current of 10–15 μA over 20 min, yielding a measurement precision of less than 7 per mil for a modern sample. Using this method, we were able to date a single 560 μg Cibicides pseudoungerianus test at 14,030 ± 160 radiocarbon years. Only a minor modification to our existing gas handling system was required and the system is fully automatable to further reduce the effort involved for sample preparation.

  16. Towards radiocarbon dating of single foraminifera with a gas ion source

    Energy Technology Data Exchange (ETDEWEB)

    Wacker, L., E-mail: wacker@phys.ethz.ch [Laboratory of Ion Beam Physics, ETH Zurich, 8093 Zurich (Switzerland); Lippold, J. [Heidelberg Academy of Sciences, 69120 Heidelberg (Germany); Molnar, M. [Laboratory of Ion Beam Physics, ETH Zurich, 8093 Zurich (Switzerland); Institute of Nuclear Research, Hungarian Academy of Sciences, 4026 Debrecen (Hungary); Schulz, H. [Institute for Geosciencies, University of Tuebingen, 72076 Tuebingen (Germany)

    2013-01-15

    Carbonate shells from foraminifera are often analysed for radiocarbon to determine the age of deep-sea sediments or to assess radiocarbon reservoir ages. However, a single foraminiferal test typically contains only a few micrograms of carbon, while most laboratories require more than 100 {mu}g for radiocarbon dating with an accelerator mass spectrometry (AMS) system. The collection of the required amount of foraminifera for a single analyses is therefore time consuming and not always possible. Here, we present a convenient method to measure the radiocarbon content of foraminifera using an AMS system fitted with a gas ion source. CO{sub 2} is liberated from 150 to 1150 {mu}g of carbonate in septum sealed vials by acid decomposition of the carbonate. The CO{sub 2} is collected on a zeolite trap and subsequently transferred to a syringe from where it is delivered to the ion source. A sample of 400 {mu}g (50 {mu}g C) typically gives a {sup 12}C{sup -} ion source current of 10-15 {mu}A over 20 min, yielding a measurement precision of less than 7 per mil for a modern sample. Using this method, we were able to date a single 560 {mu}g Cibicides pseudoungerianus test at 14,030 {+-} 160 radiocarbon years. Only a minor modification to our existing gas handling system was required and the system is fully automatable to further reduce the effort involved for sample preparation.

  17. Multifragmentation of a very heavy nuclear system (I): selection of single-source events

    International Nuclear Information System (INIS)

    Frankland, J.D.; Bacri, Ch.O.; Borderie, B.; Rivet, M.F.; Squalli, M.; Auger, G.; Bellaize, N.; Bocage, F.; Bougault, R.; Brou, R.; Buchet, Ph.; Chbihi, A.; Colin, J.; Cussol, D.; Dayras, R.; Demeyer, A.; Dore, D.; Durand, D.; Galichet, E.; Genouin-Duhamel, E.; Gerlic, E.; Guinet, D.; Lautesse, Ph.; Laville, J.L.; Lecolley, J.F.; Legrain, R.; Le Neindre, N.; Lopez, O.; Louvel, M.; Maskay, A.M.; Nalpas, L.; Nguyen, A.D.; Parlog, M.; Peter, J.; Plagnol, E.; Rosato, E.; Saint-Laurent, F.; Salou, S.; Steckmeyer, J.C.; Stern, M.; Tabacaru, G.; Tamain, B.; Tirel, O.; Tassan-Got, L.; Vient, E.; Volant, C.; Wieleczko, J.P.

    2001-01-01

    A sample of 'single-source' events, compatible with the multifragmentation of very heavy fused systems, are isolated among well-measured 155 Gd+ nat U 36 A MeV reactions by examining the evolution of the kinematics of fragments with Z≥5 as a function of the dissipated energy and loss of memory of the entrance channel. Single-source events are found to be the result of very central collisions. Such central collisions may also lead to multiple fragment emission due to the decay of excited projectile- and target-like nuclei and so-called 'neck' emission, and for this reason the isolation of single-source events is very difficult. Event-selection criteria based on centrality of collisions, or on the isotropy of the emitted fragments in each event, are found to be inefficient to separate the two mechanisms, unless they take into account the redistribution of fragments' kinetic energies into directions perpendicular to the beam axis. The selected events are good candidates to look for bulk effects in the multifragmentation process

  18. Exposure buildup factors for a cobalt-60 point isotropic source for single and two layer slabs

    International Nuclear Information System (INIS)

    Chakarova, R.

    1992-01-01

    Exposure buildup factors for point isotropic cobalt-60 sources are calculated by the Monte Carlo method with statistical errors ranging from 1.5 to 7% for 1-5 mean free paths (mfp) thick water and iron single slabs and for 1 and 2 mfp iron layers followed by water layers 1-5 mfp thick. The computations take into account Compton scattering. The Monte Carlo data for single slab geometries are approximated by Geometric Progression formula. Kalos's formula using the calculated single slab buildup factors may be applied to reproduce the data for two-layered slabs. The presented results and discussion may help when choosing the manner in which the radiation field gamma irradiation units will be described. (author)

  19. On-demand semiconductor source of 780-nm single photons with controlled temporal wave packets

    Science.gov (United States)

    Béguin, Lucas; Jahn, Jan-Philipp; Wolters, Janik; Reindl, Marcus; Huo, Yongheng; Trotta, Rinaldo; Rastelli, Armando; Ding, Fei; Schmidt, Oliver G.; Treutlein, Philipp; Warburton, Richard J.

    2018-05-01

    We report on a fast, bandwidth-tunable single-photon source based on an epitaxial GaAs quantum dot. Exploiting spontaneous spin-flip Raman transitions, single photons at 780 nm are generated on demand with tailored temporal profiles of durations exceeding the intrinsic quantum dot lifetime by up to three orders of magnitude. Second-order correlation measurements show a low multiphoton emission probability [g2(0 ) ˜0.10 -0.15 ] at a generation rate up to 10 MHz. We observe Raman photons with linewidths as low as 200 MHz, which is narrow compared to the 1.1-GHz linewidth measured in resonance fluorescence. The generation of such narrow-band single photons with controlled temporal shapes at the rubidium wavelength is a crucial step towards the development of an optimized hybrid semiconductor-atom interface.

  20. The US EPA CompTox Chemistry Dashboard as a source of data to fill data gaps for chemical sources of risk

    Science.gov (United States)

    Chemical risk assessment is both time-consuming and difficult because it requires the assembly of data for chemicals generally distributed across multiple sources. The US EPA CompTox Chemistry Dashboard is a publicly accessible web-based application providing access to various da...

  1. Detecting infrared luminescence and non-chemical signaling of living cells: single cell mid-IR spectroscopy in cryogenic environments

    Science.gov (United States)

    Pereverzev, Sergey

    2017-02-01

    Many life-relevant interaction energies are in IR range, and it is reasonable to believe that some biochemical reactions inside cells can results in emission of IR photons. Cells can use this emission for non-chemical and non-electrical signaling. Detecting weak infrared radiation from live cells is complicated because of strong thermal radiation background and absorption of radiation by tissues. A microfluidic device with live cells inside a vacuum cryogenic environment should suppress this background, and thereby permit observation of live cell auto-luminescence or signaling in the IR regime. One can make IR-transparent windows not emitting in this range, so only the cell and a small amount of liquid around it will emit infrared radiation. Currently mid-IR spectroscopy of single cells requires the use of a synchrotron source to measure absorption or reflection spectra. Decreasing of thermal radiation background will allow absorption and reflection spectroscopy of cells without using synchrotron light. Moreover, cell auto-luminescence can be directly measured. The complete absence of thermal background radiation for cryogenically cooled samples allows the use IR photon-sensitive detectors and obtaining single molecule sensitivity in IR photo-luminescence measurements. Due to low photon energies, photo-luminescence measurements will be non-distractive for pressures samples. The technique described here is based upon US patent 9366574.

  2. Tracking single dynamic MEG dipole sources using the projected Extended Kalman Filter.

    Science.gov (United States)

    Yao, Yuchen; Swindlehurst, A Lee

    2011-01-01

    This paper presents two new algorithms based on the Extended Kalman Filter (EKF) for tracking the parameters of single dynamic magnetoencephalography (MEG) dipole sources. We assume a dynamic MEG dipole source with possibly both time-varying location and dipole orientation. The standard EKF-based tracking algorithm performs well under the assumption that the dipole source components vary in time as a Gauss-Markov process, provided that the background noise is temporally stationary. We propose a Projected-EKF algorithm that is adapted to a more forgiving condition where the background noise is temporally nonstationary, as well as a Projected-GLS-EKF algorithm that works even more universally, when the dipole components vary arbitrarily from one sample to the next.

  3. Spatial and frequency domain ring source models for the single muscle fiber action potential

    DEFF Research Database (Denmark)

    Henneberg, Kaj-åge; R., Plonsey

    1994-01-01

    In the paper, single-fibre models for the extracellular action potential are developed that will allow the potential to the evaluated at an arbitrary field point in the extracellular space. Fourier-domain models are restricted in that they evaluate potentials at equidistant points along a line...... parallel to the fibre axis. Consequently, they cannot easily evaluate the potential at the boundary nodes of a boundary-element electrode model. The Fourier-domain models employ axial-symmetric ring source models, and thereby provide higher accuracy that the line source model, where the source is lumped...... including anisotropy show that the spatial models require extreme care in the integration procedure owing to the singularity in the weighting functions. With adequate sampling, the spatial models can evaluate extracellular potentials with high accuracy....

  4. 75 FR 65494 - Award of Three Single-Source Expansion Supplements to The University of Colorado Health Sciences...

    Science.gov (United States)

    2010-10-25

    ... Single-Source Expansion Supplements to The University of Colorado Health Sciences Center in Aurora, CO...), Administration on Developmental Disabilities (ADD) has awarded three single-source expansion supplements for data... people with intellectual and developmental disabilities in all facets of community life. The University...

  5. 77 FR 65896 - Award of a Single-Source Replacement Grant to SOS Children's Villages Illinois in Chicago, IL

    Science.gov (United States)

    2012-10-31

    ....623] Award of a Single-Source Replacement Grant to SOS Children's Villages Illinois in Chicago, IL... (FYSB) announces the award of a single-source replacement grant to SOS Children's Villages Illinois in... grant. ACYF/FYSB has designated SOS Children's Villages Illinois, a 501(c)(3) non-profit organization...

  6. 77 FR 38070 - Office of Refugee Resettlement; Announcing the Award of a Single-Source Program Expansion...

    Science.gov (United States)

    2012-06-26

    ....676] Office of Refugee Resettlement; Announcing the Award of a Single- Source Program Expansion... (BCFS) in San Antonio, TX AGENCY: Office of Refugee Resettlement, ACF, HHS. ACTION: The Office of Refugee Resettlement announces the award of a single-source program expansion supplement grant from its...

  7. 77 FR 65195 - Announcement of the Award of Four Single-Source Program Expansion Supplement Grants To Support...

    Science.gov (United States)

    2012-10-25

    ... for Children and Families, Health and Human Services. ACTION: Notice of award of four single-source... Administration for Children and Families, Office of Head Start, announces the award of single-source program... systems and improved outcomes for young children and families including strategies to support parent...

  8. 77 FR 58404 - Announcing the Award of Two Urgent Single-Source Grants To Support Unaccompanied Alien Children...

    Science.gov (United States)

    2012-09-20

    ...] Announcing the Award of Two Urgent Single-Source Grants To Support Unaccompanied Alien Children Program...) announces the award of two urgent single-source grants from the Unaccompanied Alien Children's Program to... providing services under the Unaccompanied Alien Children's program. Award Grantee organization Location...

  9. 77 FR 61002 - Announcement of the Award of Single-Source Program Expansion Supplement Grants to Seven Assets...

    Science.gov (United States)

    2012-10-05

    ... training on money management and consumer issues. Grant recipients must finance the projects with a....602] Announcement of the Award of Single-Source Program Expansion Supplement Grants to Seven Assets... the award of single-source program expansion supplements to seven FY 2012 grantees under the Assets...

  10. CADDIS Volume 2. Sources, Stressors and Responses: Unspecified Toxic Chemicals - Detailed Conceptual Diagram

    Science.gov (United States)

    Intro to the unspecified toxic chemicals module, when to list toxic chemicals as a candidate cause, ways to measure toxic chemicals, simple and detailed conceptual diagrams for toxic chemicals, toxic chemicals module references and literature reviews.

  11. CADDIS Volume 2. Sources, Stressors and Responses: Unspecified Toxic Chemicals - Simple Conceptual Diagram

    Science.gov (United States)

    Intro to the unspecified toxic chemicals module, when to list toxic chemicals as a candidate cause, ways to measure toxic chemicals, simple and detailed conceptual diagrams for toxic chemicals, toxic chemicals module references and literature reviews.

  12. An efficient laser vaporization source for chemically modified metal clusters characterized by thermodynamics and kinetics

    Science.gov (United States)

    Masubuchi, Tsugunosuke; Eckhard, Jan F.; Lange, Kathrin; Visser, Bradley; Tschurl, Martin; Heiz, Ulrich

    2018-02-01

    A laser vaporization cluster source that has a room for cluster aggregation and a reactor volume, each equipped with a pulsed valve, is presented for the efficient gas-phase production of chemically modified metal clusters. The performance of the cluster source is evaluated through the production of Ta and Ta oxide cluster cations, TaxOy+ (y ≥ 0). It is demonstrated that the cluster source produces TaxOy+ over a wide mass range, the metal-to-oxygen ratio of which can easily be controlled by changing the pulse duration that influences the amount of reactant O2 introduced into the cluster source. Reaction kinetic modeling shows that the generation of the oxides takes place under thermalized conditions at less than 300 K, whereas metal cluster cores are presumably created with excess heat. These characteristics are also advantageous to yield "reaction intermediates" of interest via reactions between clusters and reactive molecules in the cluster source, which may subsequently be mass selected for their reactivity measurements.

  13. Online data sources for regulation and remediation of chemical production, distribution, use and disposal

    International Nuclear Information System (INIS)

    Snow, B.; Arnold, S.

    1995-01-01

    Environmental awareness is essential for todays corporation. Corporations have been held liable for the short-term and long-term effects of such chemicals as pharmaceuticals, agrochemicals and petrochemicals to name a few. Furthermore, corporations have been held accountable for disposal of wastes or by-products of chemical production. Responsibility for the environment either mandated by government agencies or done voluntarily is an economic factor for business operations. Remediation of environmental hazards on a voluntary basis has often created goodwill and a payoff for being socially responsible. Remediation also can result in new business opportunities or savings in production costs. To be environmentally aware and socially responsible, the chemist should know where to find regulatory information for countries worldwide. Using online data sources is an efficient method of seeking this information

  14. On the tungsten single crystal coatings achieved by chemical vapor transportation deposition

    Energy Technology Data Exchange (ETDEWEB)

    Shi, J.Q.; Shen, Y.B.; Yao, S.Y.; Zhang, P.J.; Zhou, Q.; Guo, Y.Z. [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Tan, C.W., E-mail: tanchengwen@bit.edu.cn [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); China Astronaut Research and Training Center, Beijing 100094 (China); Yu, X.D. [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); China Astronaut Research and Training Center, Beijing 100094 (China); Nie, Z.H. [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Ma, H.L. [China Astronaut Research and Training Center, Beijing 100094 (China); Cai, H.N. [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2016-12-15

    The tungsten single crystal has many excellent properties, namely a high melting point, high anti-creeping strength. Chemical vapor transportation deposition (CVTD) is a possible approach to achieve large-sized W single crystals for high-temperature application such as the cathode of a thermionic energy converter. In this work, CVTD W coatings were deposited on the monocrystalline molybdenum substrate (a tube with < 111 > axial crystalline orientation) using WCl{sub 6} as a transport medium. The microstructures of the coatings were investigated by a scanning electron microscope (SEM) and electron backscatter diffraction (EBSD). The as-deposited coatings are hexagonal prisms—rough surfaces perpendicular to < 110 > with alternating hill-like bulges and pits at the side edges of the prisms, and flat surfaces perpendicular to < 112 > with arc-shaped terraces at the side faces. This can be explained by two-dimensional nucleation -mediated lateral growth model. Some parts of the coatings contain hillocks of an exotic morphology (noted as “abnormal growth”). The authors hypothesize that the abnormal growth is likely caused by the defects of the Mo substrate, which facilitate W nucleation sites, cause orientation difference, and may even form boundaries in the coatings. A dislocation density of 10{sup 6} to 10{sup 7} (counts/cm{sup 2}) was revealed by an etch-pit method and synchrotron X-ray diffraction. As the depositing temperature rises, the dislocation density decreases, and no sub-boundaries are found on samples deposited over 1300 °C, as a result of atom diffusion and dislocation climbing. - Highlights: •The varied growth rate causes the different morphologies of different planes. •The W coating is a single crystal when only single hillocks appear. •The (110) plane tends to have the lowest dislocation density. •The dislocation density tends to decrease as the temperature increases.

  15. On the tungsten single crystal coatings achieved by chemical vapor transportation deposition

    International Nuclear Information System (INIS)

    Shi, J.Q.; Shen, Y.B.; Yao, S.Y.; Zhang, P.J.; Zhou, Q.; Guo, Y.Z.; Tan, C.W.; Yu, X.D.; Nie, Z.H.; Ma, H.L.; Cai, H.N.

    2016-01-01

    The tungsten single crystal has many excellent properties, namely a high melting point, high anti-creeping strength. Chemical vapor transportation deposition (CVTD) is a possible approach to achieve large-sized W single crystals for high-temperature application such as the cathode of a thermionic energy converter. In this work, CVTD W coatings were deposited on the monocrystalline molybdenum substrate (a tube with < 111 > axial crystalline orientation) using WCl 6 as a transport medium. The microstructures of the coatings were investigated by a scanning electron microscope (SEM) and electron backscatter diffraction (EBSD). The as-deposited coatings are hexagonal prisms—rough surfaces perpendicular to < 110 > with alternating hill-like bulges and pits at the side edges of the prisms, and flat surfaces perpendicular to < 112 > with arc-shaped terraces at the side faces. This can be explained by two-dimensional nucleation -mediated lateral growth model. Some parts of the coatings contain hillocks of an exotic morphology (noted as “abnormal growth”). The authors hypothesize that the abnormal growth is likely caused by the defects of the Mo substrate, which facilitate W nucleation sites, cause orientation difference, and may even form boundaries in the coatings. A dislocation density of 10 6 to 10 7 (counts/cm 2 ) was revealed by an etch-pit method and synchrotron X-ray diffraction. As the depositing temperature rises, the dislocation density decreases, and no sub-boundaries are found on samples deposited over 1300 °C, as a result of atom diffusion and dislocation climbing. - Highlights: •The varied growth rate causes the different morphologies of different planes. •The W coating is a single crystal when only single hillocks appear. •The (110) plane tends to have the lowest dislocation density. •The dislocation density tends to decrease as the temperature increases.

  16. Seasonal trends, chemical speciation and source apportionment of fine PM in Tehran

    Science.gov (United States)

    Arhami, Mohammad; Hosseini, Vahid; Zare Shahne, Maryam; Bigdeli, Mostafa; Lai, Alexandra; Schauer, James J.

    2017-03-01

    Frequent air pollution episodes have been reported for Tehran, Iran, mainly because of critically high levels of fine particulate matter (PM2.5). The composition and sources of these particles are poorly known, so this study aims to identify the major components and heavy metals in PM2.5 along with their seasonal trends and associated sources. 24-hour PM2.5 samples were collected at a main residential station every 6 days for a full year from February 2014 to February 2015. The samples were analyzed for ions, organic carbon (including water-soluble and insoluble portions), elemental carbon (EC), and all detectable elements. The dominant mass components, which were determined by means of chemical mass closure, were organic matter (35%), dust (25%), non-sea salt sulfate (11%), EC (9%), ammonium (5%), and nitrate (2%). Organic matter and EC together comprised 44% of fine PM on average (increased to >70% in the colder season), which reflects the significance of anthropogenic urban sources (i.e. vehicles). The contributions of different components varied considerably throughout the year, particularly the dust component that varied from 7% in the cold season to 56% in the hot and dry season. Principal component analyses were applied, resulting in 5 major source factors that explained 85% of the variance in fine PM. Factor 1, representing soil dust, explained 53%; Factor 2 denotes heavy metals mainly found in industrial sources and accounted for 18%; and rest of factors, mainly representing combustion sources, explained 14% of the variation. The levels of major heavy metals were further evaluated, and their trends showed considerable increases during cold seasons. The results of this study provide useful insight to fine PM in Tehran, which could help in identifying their health effects and sources, and also adopting effective control strategies.

  17. Physical and chemical properties of Red MSX Sources in the southern sky: H II regions

    Science.gov (United States)

    Yu, Naiping; Wang, Jun-Jie; Li, Nan

    2015-01-01

    We have studied the physical and chemical properties of 18 southern Red Midcourse Space Experiment Sources (RMSs), using archival data taken from the Atacama Pathfinder Experiment (APEX) Telescope Large Area Survey of the Galaxy, the Australia Telescope Compact Array, and the Millimeter Astronomy Legacy Team Survey at 90 GHz. Most of our sources have simple cometary/unresolved radio emissions at 4.8 and/or 8.6GHz. The large number of Lyman continuum fluxes (NL) indicates they are probably massive O- or early B-type star formation regions. Archival IRAS infrared data are used to estimate the dust temperature, which is about 30 K of our sources. Then, the H2 column densities and the volume-averaged H2 number densities are estimated using the 870 μm dust emissions. Large-scale infall and ionized accretions may be occurring in G345.4881+00.3148. We also attempt to characterize the chemical properties of these RMSs through molecular line (N2H+ (1-0) and HCO+ (1-0)) observations. Most of the detected N2H+ and HCO+ emissions match well with the dust emission, implying a close link to their chemical evolution in the RMSs. We found that the abundance of N2H+ is one order of magnitude lower than that in other surveys of infrared dark clouds, and a positive correlation between the abundances of N2H+ and HCO+. The fractional abundance of N2H+ with respect to H2 seems to decrease as a function of NL. These observed trends could be interpreted as an indication of enhanced destruction of N2H+, either by CO or through dissociative recombination with electrons produced by central UV photons.

  18. Single-crate stand-alone CAMAC control system for a negative ion source test facility

    International Nuclear Information System (INIS)

    Juras, R.C.; Ziegler, N.F.

    1979-01-01

    A single-crate CAMAC system was configured to control a negative ion source development facility at ORNL and control software was written for the crate microcomputer. The software uses inputs from a touch panel and a shaft encoder to control the various operating parameters of the test facility and uses the touch panel to display the operating status. Communication to and from the equipment at ion source potential is accomplished over optical fibers from an ORNL-built CAMAC module. A receiver at ion source potential stores the transmitted data and some of these stored values are then used to control discrete parameters of the ion source (i.e., power supply on or off). Other stored values are sent to a multiplexed digital-to-analog converter to provide analog control signals. A transmitter at ion source potential transmits discrete status information and several channels of analog data from an analog-to-digital converter back to the ground-potential receiver where it is stored to be read and displayed by the software

  19. Effect of single and combined treatment with gamma rays and some chemical mutagens in rice

    International Nuclear Information System (INIS)

    Lyong Van Hin; Mekhandzhiev, A.; Murzova, P.; Chilikov, I.

    1991-01-01

    Dry rice seeds of 3 cvs and 2 lines have been irradiated (Co 60 , 10 krad) and treated with 0.0012% sodium azide (NaN 3 ) and 0.2% ethylmethanesulfonate (EMS) in definite combinations. It is found that chlorophyll mutations are less frequent after single gamma irradiation. Sodium azide produces a higher percentage of mutations than EMS. Highest mutation frequency has been observed following combined treatment with gamma rays and chemical mutagens. The combined treatment has resulted in a considerably higher mutation effect than the theoretically expected one in the lines Nora and Mega, and in cv. Krasnodarski 424. Highest mutation spectrum has been found in cv. Krasnodarski 424 and in Nora line following combined treatment. 1 tab., 5 figs., 20 refs

  20. CdS nanowires formed by chemical synthesis using conjugated single-stranded DNA molecules

    Science.gov (United States)

    Sarangi, S. N.; Sahu, S. N.; Nozaki, S.

    2018-03-01

    CdS nanowires were successfully grown by chemical synthesis using two conjugated single-stranded (ss) DNA molecules, poly G (30) and poly C (30), as templates. During the early stage of the synthesis with the DNA molecules, the Cd 2+ interacts with Poly G and Poly C and produces the (Cd 2+)-Poly GC complex. As the growth proceeds, it results in nanowires. The structural analysis by grazing angle x-ray diffraction and transmission electron microscopy confirmed the zinc-blende CdS nanowires with the growth direction of . Although the nanowires are well surface-passivated with the DNA molecules, the photoluminescence quenching was caused by the electron transfer from the nanowires to the DNA molecules. The quenching can be used to detect and label the DNAs.

  1. Principles of Single-Laboratory Validation of Analytical Methods for Testing the Chemical Composition of Pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Ambrus, A. [Hungarian Food Safety Office, Budapest (Hungary)

    2009-07-15

    Underlying theoretical and practical approaches towards pesticide formulation analysis are discussed, i.e. general principles, performance characteristics, applicability of validation data, verification of method performance, and adaptation of validated methods by other laboratories. The principles of single laboratory validation of analytical methods for testing the chemical composition of pesticides are outlined. Also the theoretical background is described for performing pesticide formulation analysis as outlined in ISO, CIPAC/AOAC and IUPAC guidelines, including methodological characteristics such as specificity, selectivity, linearity, accuracy, trueness, precision and bias. Appendices I–III hereof give practical and elaborated examples on how to use the Horwitz approach and formulae for estimating the target standard deviation towards acceptable analytical repeatability. The estimation of trueness and the establishment of typical within-laboratory reproducibility are treated in greater detail by means of worked-out examples. (author)

  2. Chemiresistor Devices for Chemical Warfare Agent Detection Based on Polymer Wrapped Single-Walled Carbon Nanotubes.

    Science.gov (United States)

    Fennell, John F; Hamaguchi, Hitoshi; Yoon, Bora; Swager, Timothy M

    2017-04-28

    Chemical warfare agents (CWA) continue to present a threat to civilian populations and military personnel in operational areas all over the world. Reliable measurements of CWAs are critical to contamination detection, avoidance, and remediation. The current deployed systems in United States and foreign militaries, as well as those in the private sector offer accurate detection of CWAs, but are still limited by size, portability and fabrication cost. Herein, we report a chemiresistive CWA sensor using single-walled carbon nanotubes (SWCNTs) wrapped with poly(3,4-ethylenedioxythiophene) (PEDOT) derivatives. We demonstrate that a pendant hexafluoroisopropanol group on the polymer that enhances sensitivity to a nerve agent mimic, dimethyl methylphosphonate, in both nitrogen and air environments to concentrations as low as 5 ppm and 11 ppm, respectively. Additionally, these PEDOT/SWCNT derivative sensor systems experience negligible device performance over the course of two weeks under ambient conditions.

  3. A method for making an inert porous electrode for a chemical current source

    Energy Technology Data Exchange (ETDEWEB)

    Ksenzhek, O.S.; Litvinova, V.I.; Martynenko, T.L.; Raykhelson, L.B.; Shembel, Ye.M.; Sokolov, L.A.

    1983-01-01

    A method is proposed for making an inert, porous electrode for chemical current sources (KhIT) with a nonaqueous electrolyte on the basis of aprotonic solvents and an active cathode substance which is dissolved in the electrolyte. The method includes preparing an electrode mass from the starting material and subsequent formation of the electrode. To increase the energy capacity, after formation, the electrode is subjected to electrochemical anode polarization to potentials which correspond to the potential of electrochemical breakdown of the background electrolyte.

  4. Enhancing the brightness of electrically driven single-photon sources using color centers in silicon carbide

    Science.gov (United States)

    Khramtsov, Igor A.; Vyshnevyy, Andrey A.; Fedyanin, Dmitry Yu.

    2018-03-01

    Practical applications of quantum information technologies exploiting the quantum nature of light require efficient and bright true single-photon sources which operate under ambient conditions. Currently, point defects in the crystal lattice of diamond known as color centers have taken the lead in the race for the most promising quantum system for practical non-classical light sources. This work is focused on a different quantum optoelectronic material, namely a color center in silicon carbide, and reveals the physics behind the process of single-photon emission from color centers in SiC under electrical pumping. We show that color centers in silicon carbide can be far superior to any other quantum light emitter under electrical control at room temperature. Using a comprehensive theoretical approach and rigorous numerical simulations, we demonstrate that at room temperature, the photon emission rate from a p-i-n silicon carbide single-photon emitting diode can exceed 5 Gcounts/s, which is higher than what can be achieved with electrically driven color centers in diamond or epitaxial quantum dots. These findings lay the foundation for the development of practical photonic quantum devices which can be produced in a well-developed CMOS compatible process flow.

  5. Atmospheric Pressure Chemical Ionization Sources Used in The Detection of Explosives by Ion Mobility Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Waltman, Melanie J. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    2010-05-01

    Explosives detection is a necessary and wide spread field of research. From large shipping containers to airline luggage, numerous items are tested for explosives every day. In the area of trace explosives detection, ion mobility spectrometry (IMS) is the technique employed most often because it is a quick, simple, and accurate way to test many items in a short amount of time. Detection by IMS is based on the difference in drift times of product ions through the drift region of an IMS instrument. The product ions are created when the explosive compounds, introduced to the instrument, are chemically ionized through interactions with the reactant ions. The identity of the reactant ions determines the outcomes of the ionization process. This research investigated the reactant ions created by various ionization sources and looked into ways to manipulate the chemistry occurring in the sources.

  6. The uses of synchrotron radiation sources for elemental and chemical microanalysis

    International Nuclear Information System (INIS)

    Chen, J.R.; Chao, E.C.T.; Minkin, J.A.; Back, J.M.; Jones, K.W.; Rivers, M.L.; Sutton, S.R.

    1989-08-01

    Synchrotron radiation sources offer important features for the analysis of a material. Among these features is the ability to determine both the elemental composition of the material and the chemical state of its elements. For microscopic analysis synchrotron x-ray fluorescence (SXRF) microprobes now offer spatial resolutions of 10μm with minimum detection limits in the 1--10 ppM range depending on the nature of the sample and the synchrotron source used. This paper describes the properties of synchrotron radiation and their importance for elemental analysis, existing synchrotron facilities and those under construction that are optimum for SXRF microanalysis, and a number of applications including the high energy excitation of the K lines of heavy elements, microtomography, and XANES and EXAFS spectroscopies. 45 refs., 8 figs., 1 tab

  7. A study of the physico-chemical characteristics of a solid radon 222 source

    International Nuclear Information System (INIS)

    Chuiton, G.

    1990-01-01

    A solid radon 222 source is described; it is made of a manganese oxide impregnated acrylic felt disc on which radium 226 is fixed. The disc is incorporated into a scanning device allowing the passage through the felt of a radon 222 free gas (air or nitrogen) previously led to a relative humidity of air near to saturation. At the device outlet, a stable activity of radon 222 is obtained. The preparation, characteristics and radiochemical stability conditions of the 226 radium source are presented. Following a description of the scanning device, the radon 222 emanation coefficient is studied as a function of the relative humidity of air. The reliability of the device is assessed by an uncertainty calculation for the utilisation conditions recommended. Finally, an approach to the physico-chemical processes governing radon 222 emanation rate in the device is set forth [fr

  8. Sustainable Production of Fine Chemicals and Materials Using Nontoxic Renewable Sources.

    Science.gov (United States)

    Kokel, Anne; Török, Béla

    2018-02-01

    Due to declining hydrocarbon resources and strengthening environmental regulations, significant attention is directed toward sustainable and nontoxic supplies for the development of green technologies in a variety of industries. This account provides an overview on the sources and recent applications of such materials surveying the most common nontoxic and renewable resources that can be obtained from biological sources. Developing a broad array of technologies based on these materials would establish a truly sustainable green chemical industry. The study thematically discusses various compound groups, eg, carbohydrates, proteins, and triglycerides (oils). Since often the monomers or building blocks of these biopolymers are of significant importance and produced in large amounts, the applications of these compounds are also reviewed. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. The uses of synchrotron radiation sources for elemental and chemical microanalysis

    Science.gov (United States)

    Chen, J.R.; Chao, E.C.T.; Minkin, J.A.; Back, J.M.; Jones, K.W.; Rivers, M.L.; Sutton, S.R.

    1990-01-01

    Synchrotron radiation sources offer important features for the analysis of a material. Among these features is the ability to determine both the elemental composition of the material and the chemical state of its elements. For microscopic analysis synchrotron X-ray fluorescence (SXRF) microprobes now offer spatial resolutions of 10 ??m with minimum detection limits in the 1-10 ppm range depending on the nature of the sample and the synchrotron source used. This paper describes the properties of synchrotron radiation and their importance for elemental analysis, existing synchrotron facilities and those under construction that are optimum for SXRF microanalysis, and a number of applications including the high energy excitation of the K lines of heavy elements, microtomography, and XANES and EXAFS spectroscopies. ?? 1990.

  10. Sources of radioactive waste from light-water reactors and their physical and chemical properties

    International Nuclear Information System (INIS)

    Bell, M.J.; Collins, J.T.

    1979-01-01

    The general physical and chemical properties of waste streams in light-water reactors (LWRs) are described. The principal mechanisms for release and the release pathways to the environment are discussed. The calculation of liquid and gaseous source terms using one of the available models is presented. These calculated releases are compared with observed releases from operating LWRs. The computerized mathematical model used is the GALE Code which is the Nuclear Regulatory Commission (NRC) staff's model for calculating source terms for effluents from LWRs (USNRC76a, USNRC76b). Programs currently being conducted at operating reactors by the NRC, Electric Power Research Institute, and various utilities to better define the characteristics of waste streams and the performance of radwaste process equipment are described

  11. Suite of three protein crystallography beamlines with single superconducting bend magnet as the source

    International Nuclear Information System (INIS)

    MacDowell, Alastair A.; Celestre, Richard S.; Howells, Malcolm; McKinney, Wayne; Krupnick, James; Cambie, Daniella; Domning, Edward E; Duarte, Robert M.; Kelez, Nicholas; Plate, David W.; Cork, Carl W.; Earnest, Thomas N.; Dickert, Jeffery; Meigs, George; Ralston, Corie; Holton, James M.; Alber, Thomas; Berger, James M.; Agard, David A.; Padmore, Howard A.

    2004-01-01

    At the Advanced Light Source (ALS), three protein crystallography (PX) beamlines have been built that use as a source one of the three 6 Tesla single pole superconducting bending magnets (superbends) that were recently installed in the ring. The use of such single pole superconducting bend magnets enables the development of a hard x-ray program on a relatively low energy 1.9 GeV ring without taking up insertion device straight sections. The source is of relatively low power, but due to the small electron beam emittance, it has high brightness. X-ray optics are required to preserve the brightness and to match the illumination requirements for protein crystallography. This was achieved by means of a collimating premirror bent to a plane parabola, a double crystal monochromator followed by a toroidal mirror that focuses in the horizontal direction with a 2:1 demagnification. This optical arrangement partially balances aberrations from the collimating and toroidal mirrors such that a tight focused spot size is achieved. The optical properties of the beamline are an excellent match to those required by the small protein crystals that are typically measured. The design and performance of these new beamlines are described

  12. Suite of three protein crystallography beamlines with single superconducting bend magnet as the source.

    Science.gov (United States)

    MacDowell, Alastair A; Celestre, Rich S; Howells, Malcolm; McKinney, Wayne; Krupnick, James; Cambie, Daniella; Domning, Edward E; Duarte, Robert M; Kelez, Nicholas; Plate, David W; Cork, Carl W; Earnest, Thomas N; Dickert, Jeffery; Meigs, George; Ralston, Corie; Holton, James M; Alber, Tom; Berger, James M; Agard, David A; Padmore, Howard A

    2004-11-01

    At the Advanced Light Source, three protein crystallography beamlines have been built that use as a source one of the three 6 T single-pole superconducting bending magnets (superbends) that were recently installed in the ring. The use of such single-pole superconducting bend magnets enables the development of a hard X-ray program on a relatively low-energy 1.9 GeV ring without taking up insertion-device straight sections. The source is of relatively low power but, owing to the small electron beam emittance, it has high brightness. X-ray optics are required to preserve the brightness and to match the illumination requirements for protein crystallography. This was achieved by means of a collimating premirror bent to a plane parabola, a double-crystal monochromator followed by a toroidal mirror that focuses in the horizontal direction with a 2:1 demagnification. This optical arrangement partially balances aberrations from the collimating and toroidal mirrors such that a tight focused spot size is achieved. The optical properties of the beamline are an excellent match to those required by the small protein crystals that are typically measured. The design and performance of these new beamlines are described.

  13. Suite of three protein crystallography beamlines with single superconducting bend magnet as the source

    Energy Technology Data Exchange (ETDEWEB)

    MacDowell, Alastair A.; Celestre, Richard S.; Howells, Malcolm; McKinney, Wayne; Krupnick, James; Cambie, Daniella; Domning, Edward E; Duarte, Robert M.; Kelez, Nicholas; Plate, David W.; Cork, Carl W.; Earnest, Thomas N.; Dickert, Jeffery; Meigs, George; Ralston, Corie; Holton, James M.; Alber, Thomas; Berger, James M.; Agard, David A.; Padmore, Howard A.

    2004-08-01

    At the Advanced Light Source (ALS), three protein crystallography (PX) beamlines have been built that use as a source one of the three 6 Tesla single pole superconducting bending magnets (superbends) that were recently installed in the ring. The use of such single pole superconducting bend magnets enables the development of a hard x-ray program on a relatively low energy 1.9 GeV ring without taking up insertion device straight sections. The source is of relatively low power, but due to the small electron beam emittance, it has high brightness. X-ray optics are required to preserve the brightness and to match the illumination requirements for protein crystallography. This was achieved by means of a collimating premirror bent to a plane parabola, a double crystal monochromator followed by a toroidal mirror that focuses in the horizontal direction with a 2:1 demagnification. This optical arrangement partially balances aberrations from the collimating and toroidal mirrors such that a tight focused spot size is achieved. The optical properties of the beamline are an excellent match to those required by the small protein crystals that are typically measured. The design and performance of these new beamlines are described.

  14. Evaluating Chemical Tracers in Suburban Groundwater as Indicators of Nitrate-Nitrogen Sources

    Science.gov (United States)

    Nitka, A.; DeVita, W. M.; McGinley, P.

    2015-12-01

    The CDC reports that over 15 million US households use private wells. These wells are vulnerable to contamination. One of the most common contaminants in private wells is nitrate. Nitrate has a health standard of 10 mg/L. This standard is set to prevent methemaglobinemia, or "blue baby" syndrome, in infants. In extreme cases it can affect breathing and heart function, and even lead to death. Elevated nitrate concentrations have also been associated with increased risk of thyroid disease, diabetes, and certain types of cancer. Unlike municipal wells, there is no mandatory testing of private wells. It is the responsibility of users to have their well water tested. The objective of this research was to identify the most useful chemical tracers for determining sources of nitrate in private water supplies. Chemical characteristics, such as mobility in groundwater and water solubility, as well as frequency of use, were considered when choosing source indicators. Fourteen pharmaceuticals and personal care products unique to human use were chosen to identify wells impacted by septic waste. A bovine antibiotic and five pesticide metabolites were used to identify contamination from agricultural sources. Eighteen private wells were selected in a suburban area with septic systems and adjacent agricultural land. The wells were sampled five times and analyzed to provide a temporal profile of nitrate and the tracers. The artificial sweetener sucralose was found in >70% of private wells. Wells with sucralose detected had nitrate concentrations between 5-15 mg/L. The herbicide metabolite metolachlor ESA was detected in 50% of the wells. These wells typically had the highest nitrate concentrations, often >10 mg/L. The common use and frequent detection of these two compounds made them the most reliable indicators of nitrate sources evaluated in this study. This information will help well owners determine appropriate treatment and remediation options and could direct future

  15. Chemical composition and source apportionment of aerosol over the Klang valley

    International Nuclear Information System (INIS)

    Shamsiah Abdul Rahman; Mohd Suhaimi Hamzah; Abdul Khalik Wood; Nazaratul Ashifa Abdullah Salim; Mohd Suhaimi Elias; Eswiza Sanuri

    2009-01-01

    This paper reports the study of aerosol chemical composition of fine particles (PM 2.5) and possible sources of air pollution over the Klang Valley, Kuala Lumpur, based on the samples collected for a period of 6 years from July 2000 to Jun 2006. Samples collected were measured for mass, black carbon and elemental content of Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Br and Pb. The fine aerosol mass concentration ranged from 11 - 110 ?g/m3. Black carbon is the major component of the fine aerosol with the weight fraction of 20%, whilst S is the major elemental content with the weight fraction about 5% as relative to the fine particle mass. The factor analysis method, positive matrix factorization (PMF) was then used to confirm the possible sources. The result of PMF analysis produced five-factor sources that contribute to the fine particles in the Klang Valley area. The five factors represent sea spray, industry, motor vehicles, smoke and soil. Motor vehicle is the main source of particulates in the area, with an average contribution of 51% of the fine mass concentration, followed by industry, smoke, sea spray and soil, with average contribution of 28%, 14%, 3.6% and 2.1%, respectively. (Author)

  16. Chemical Source Inversion using Assimilated Constituent Observations in an Idealized Two-dimensional System

    Science.gov (United States)

    Tangborn, Andrew; Cooper, Robert; Pawson, Steven; Sun, Zhibin

    2009-01-01

    We present a source inversion technique for chemical constituents that uses assimilated constituent observations rather than directly using the observations. The method is tested with a simple model problem, which is a two-dimensional Fourier-Galerkin transport model combined with a Kalman filter for data assimilation. Inversion is carried out using a Green's function method and observations are simulated from a true state with added Gaussian noise. The forecast state uses the same spectral spectral model, but differs by an unbiased Gaussian model error, and emissions models with constant errors. The numerical experiments employ both simulated in situ and satellite observation networks. Source inversion was carried out by either direct use of synthetically generated observations with added noise, or by first assimilating the observations and using the analyses to extract observations. We have conducted 20 identical twin experiments for each set of source and observation configurations, and find that in the limiting cases of a very few localized observations, or an extremely large observation network there is little advantage to carrying out assimilation first. However, in intermediate observation densities, there decreases in source inversion error standard deviation using the Kalman filter algorithm followed by Green's function inversion by 50% to 95%.

  17. Toxicological and chemical insights into representative source and drinking water in eastern China.

    Science.gov (United States)

    Shi, Peng; Zhou, Sicong; Xiao, Hongxia; Qiu, Jingfan; Li, Aimin; Zhou, Qing; Pan, Yang; Hollert, Henner

    2018-02-01

    Drinking water safety is continuously threatened by the emergence of numerous toxic organic pollutants (TOPs) in environmental waters. In this study, an approach integrating in vitro bioassays and chemical analyses was performed to explore toxicological profiles of representative source and drinking water from waterworks of the Yangtze River (Yz), Taihu Lake (Th), and the Huaihe River (Hh) basins in eastern China. Overall, 34 of 96 TOPs were detected in all water samples, with higher concentrations in both source and drinking water samples of Hh, and pollutant profiles also differed across different river basins. Non-specific bioassays indicated that source water samples of Hh waterworks showed higher genotoxicity and mutagenicity than samples of Yz and Th. An EROD assay demonstrated dioxin-like toxicity which was detected in 5 of 7 source water samples, with toxin concentration levels ranging from 62.40 to 115.51 picograms TCDD equivalents per liter of water (eq./L). PAHs and PCBs were not the main contributors to observed dioxin-like toxicity in detected samples. All source water samples induced estrogenic activities of 8.00-129.00 nanograms 17β-estradiol eq./L, and estrogens, including 17α-ethinylestradiol and estriol, contributed 40.38-84.15% of the observed activities in examined samples. While drinking water treatments efficiently removed TOPs and their toxic effects, and estrogenic activity was still observed in drinking water samples of Hh. Altogether, this study indicated that the representative source water in eastern China, especially that found in Hh, may negatively affect human health, a finding that demonstrates an urgent requirement for advanced drinking water treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Bright single photon source based on self-aligned quantum dot–cavity systems

    DEFF Research Database (Denmark)

    Maier, Sebastian; Gold, Peter; Forchel, Alfred

    2014-01-01

    We report on a quasi-planar quantum-dot-based single-photon source that shows an unprecedented high extraction efficiency of 42% without complex photonic resonator geometries or post-growth nanofabrication. This very high efficiency originates from the coupling of the photons emitted by a quantum...... dot to a Gaussian shaped nanohill defect that naturally arises during epitaxial growth in a self-aligned manner. We investigate the morphology of these defects and characterize the photonic operation mechanism. Our results show that these naturally arising coupled quantum dot-defects provide a new...... avenue for efficient (up to 42% demonstrated) and pure (g2(0) value of 0.023) single-photon emission....

  19. New vacancy source in ultrahigh-purity aluminium single crystals with a low dislocation density

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Kaoru; Yamamoto, Satoshi [Shimane Univ., Faculty of Science and Engineering, Matsue, Shimane (Japan); Morikawa, Kimihiko [Hokkaido Univ., Institute for Low Temperature Science, Sapporo, Hokkaido (Japan); Kuga, Masanori [Kanazawa Univ., Faculty of Science, Kanazawa, Ishikawa (Japan); Okamoto, Hiroyuki [Kanazawa Univ., Faculty of Medicine, Kanazawa, Ishikawa (Japan); Hashimoto, Eiji [Hiroshima Univ., Hiroshima Synchrotron Radiation Center, Higashi-Hiroshima, Hiroshima (Japan)

    2004-05-01

    The vacancy generation process in ultrahigh-purity aluminum single crystals with a low dislocation density was investigated by synchrotron radiation topography using a white X-ray beam. Some straight lines were observed in the topographys taken after temperature rose to 300degC from room temperature, and they were confirmed to be rows of successive small interstitial-type dislocation loops grown as vacancy sources. It was concluded that the thermal generation mechanism of vacancies in ultrahigh-purity aluminum single crystals with a low dislocation density consists of the following two steps. First, small interstitial loops are heterogeneously formed in the crystal lattice; second, these convert to lengthened loops with the development of screw components and finally grow into rows of dislocation loops emitting vacancies into the lattice. (author)

  20. New vacancy source in ultrahigh-purity aluminium single crystals with a low dislocation density

    International Nuclear Information System (INIS)

    Mizuno, Kaoru; Yamamoto, Satoshi; Morikawa, Kimihiko; Kuga, Masanori; Okamoto, Hiroyuki; Hashimoto, Eiji

    2004-01-01

    The vacancy generation process in ultrahigh-purity aluminum single crystals with a low dislocation density was investigated by synchrotron radiation topography using a white X-ray beam. Some straight lines were observed in the topographys taken after temperature rose to 300degC from room temperature, and they were confirmed to be rows of successive small interstitial-type dislocation loops grown as vacancy sources. It was concluded that the thermal generation mechanism of vacancies in ultrahigh-purity aluminum single crystals with a low dislocation density consists of the following two steps. First, small interstitial loops are heterogeneously formed in the crystal lattice; second, these convert to lengthened loops with the development of screw components and finally grow into rows of dislocation loops emitting vacancies into the lattice. (author)

  1. Grid Integration of Single Stage Solar PV System using Three-level Voltage Source Converter

    Science.gov (United States)

    Hussain, Ikhlaq; Kandpal, Maulik; Singh, Bhim

    2016-08-01

    This paper presents a single stage solar PV (photovoltaic) grid integrated power generating system using a three level voltage source converter (VSC) operating at low switching frequency of 900 Hz with robust synchronizing phase locked loop (RS-PLL) based control algorithm. To track the maximum power from solar PV array, an incremental conductance algorithm is used and this maximum power is fed to the grid via three-level VSC. The use of single stage system with three level VSC offers the advantage of low switching losses and the operation at high voltages and high power which results in enhancement of power quality in the proposed system. Simulated results validate the design and control algorithm under steady state and dynamic conditions.

  2. Single Photon Source with a Diamond Nanocrystal on an Optical Nanofiber

    International Nuclear Information System (INIS)

    Lars Liebermeister

    2014-01-01

    The development of high yield single photon sources is crucial for applications in quantum information science as well as for experiments on the foundations of quantum physics. The NV-center in diamond is a promising solid state candidate. By using nanodiamonds the single photon emission can easily be coupled to integrated nano-optical and plasmonic structures. Our approach is to utilize efficient coupling of fluorescence of a single NV-center to the evanescent field of an optical nanofiber. A hybrid microscope (confocal microscope combined with an AFM) allows to optically characterize and preselect diamond nanocrystals and then to apply an AFM nanomanipulation technique to move a selected nanodiamond deterministically onto the tapered optical fiber. We report on first results with single diamond nanocrystals containing several NV-centers positioned on a tapered optical fiber. We observe fluorescence emission in the guided mode of the fiber. The second order correlation recorded between the free-space and the guided fluorescence shows pronounced antibunching. This demonstrated efficient evanescent coupling with low background. (author)

  3. Frequency-Stabilized Source of Single Photons from a Solid-State Qubit

    Directory of Open Access Journals (Sweden)

    Jonathan H. Prechtel

    2013-10-01

    Full Text Available Single quantum dots are solid-state emitters that mimic two-level atoms but with a highly enhanced spontaneous emission rate. A single quantum dot is the basis for a potentially excellent single-photon source. One outstanding problem is that there is considerable noise in the emission frequency, making it very difficult to couple the quantum dot to another quantum system. We solve this problem here with a dynamic feedback technique that locks the quantum-dot emission frequency to a reference. The incoherent scattering (resonance fluorescence represents the single-photon output, whereas the coherent scattering (Rayleigh scattering is used for the feedback control. The fluctuations in emission frequency are reduced to 20 MHz, just approximately 5% of the quantum-dot optical linewidth, even over several hours. By eliminating the 1/f-like noise, the relative fluctuations in quantum-dot noise power are reduced to approximately 10^{-5} at low frequency. Under these conditions, the antibunching dip in the resonance fluorescence is described extremely well by the two-level atom result. The technique represents a way of removing charge noise from a quantum device.

  4. On-demand semiconductor single-photon source with near-unity indistinguishability.

    Science.gov (United States)

    He, Yu-Ming; He, Yu; Wei, Yu-Jia; Wu, Dian; Atatüre, Mete; Schneider, Christian; Höfling, Sven; Kamp, Martin; Lu, Chao-Yang; Pan, Jian-Wei

    2013-03-01

    Single-photon sources based on semiconductor quantum dots offer distinct advantages for quantum information, including a scalable solid-state platform, ultrabrightness and interconnectivity with matter qubits. A key prerequisite for their use in optical quantum computing and solid-state networks is a high level of efficiency and indistinguishability. Pulsed resonance fluorescence has been anticipated as the optimum condition for the deterministic generation of high-quality photons with vanishing effects of dephasing. Here, we generate pulsed single photons on demand from a single, microcavity-embedded quantum dot under s-shell excitation with 3 ps laser pulses. The π pulse-excited resonance-fluorescence photons have less than 0.3% background contribution and a vanishing two-photon emission probability. Non-postselective Hong-Ou-Mandel interference between two successively emitted photons is observed with a visibility of 0.97(2), comparable to trapped atoms and ions. Two single photons are further used to implement a high-fidelity quantum controlled-NOT gate.

  5. Comparison of point-source pollutant loadings to soil and groundwater for 72 chemical substances.

    Science.gov (United States)

    Yu, Soonyoung; Hwang, Sang-Il; Yun, Seong-Taek; Chae, Gitak; Lee, Dongsu; Kim, Ki-Eun

    2017-11-01

    Fate and transport of 72 chemicals in soil and groundwater were assessed by using a multiphase compositional model (CompFlow Bio) because some of the chemicals are non-aqueous phase liquids or solids in the original form. One metric ton of chemicals were assumed to leak in a stylized facility. Scenarios of both surface spills and subsurface leaks were considered. Simulation results showed that the fate and transport of chemicals above the water table affected the fate and transport of chemicals below the water table, and vice versa. Surface spill scenarios caused much less concentrations than subsurface leak scenarios because leaching amounts into the subsurface environment were small (at most 6% of the 1 t spill for methylamine). Then, simulation results were applied to assess point-source pollutant loadings to soil and groundwater above and below the water table, respectively, by multiplying concentrations, impact areas, and durations. These three components correspond to the intensity of contamination, mobility, and persistency in the assessment of pollutant loading, respectively. Assessment results showed that the pollutant loadings in soil and groundwater were linearly related (r 2  = 0.64). The pollutant loadings were negatively related with zero-order and first-order decay rates in both soil (r = - 0.5 and - 0.6, respectively) and groundwater (- 1.0 and - 0.8, respectively). In addition, this study scientifically defended that the soil partitioning coefficient (K d ) significantly affected the pollutant loadings in soil (r = 0.6) and the maximum masses in groundwater (r = - 0.9). However, K d was not a representative factor for chemical transportability unlike the expectation in chemical ranking systems of soil and groundwater pollutants. The pollutant loadings estimated using a physics-based hydrogeological model provided a more rational ranking for exposure assessment, compared to the summation of persistency and transportability scores in

  6. An novel identification method of the environmental risk sources for surface water pollution accidents in chemical industrial parks.

    Science.gov (United States)

    Peng, Jianfeng; Song, Yonghui; Yuan, Peng; Xiao, Shuhu; Han, Lu

    2013-07-01

    The chemical industry is a major source of various pollution accidents. Improving the management level of risk sources for pollution accidents has become an urgent demand for most industrialized countries. In pollution accidents, the released chemicals harm the receptors to some extent depending on their sensitivity or susceptibility. Therefore, identifying the potential risk sources from such a large number of chemical enterprises has become pressingly urgent. Based on the simulation of the whole accident process, a novel and expandable identification method for risk sources causing water pollution accidents is presented. The newly developed approach, by analyzing and stimulating the whole process of a pollution accident between sources and receptors, can be applied to identify risk sources, especially on the nationwide scale. Three major types of losses, such as social, economic and ecological losses, were normalized, analyzed and used for overall consequence modeling. A specific case study area, located in a chemical industry park (CIP) along the Yangtze River in Jiangsu Province, China, was selected to test the potential of the identification method. The results showed that there were four risk sources for pollution accidents in this CIP. Aniline leakage in the HS Chemical Plant would lead to the most serious impact on the surrounding water environment. This potential accident would severely damage the ecosystem up to 3.8 km downstream of Yangtze River, and lead to pollution over a distance stretching to 73.7 km downstream. The proposed method is easily extended to the nationwide identification of potential risk sources.

  7. Role of crystal orientation on chemical mechanical polishing of single crystal copper

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Aibin, E-mail: abzhu@mail.xjtu.edu.cn; He, Dayong; Luo, Wencheng; Liu, Yangyang

    2016-11-15

    Highlights: • The role of crystal orientation in cooper CMP by quasi-continuum was studied. • The atom displacement diagrams were obtained and analyzed. • The stress distribution diagrams and load-displacement curves were analyzed. • This research is helpful to revealing the material removal mechanism of CMP. - Abstract: The material removal mechanism of single crystal copper in chemical mechanical polishing (CMP) has not been intensively investigated. And the role of crystal orientation in CMP of single crystal cooper is not quite clear yet. Quasi-continuum method was adopted in this paper to simulate the process of nano-particles grinding on single crystal copper in CMP process. Three different crystal orientations, i.e. x[100]y[001], x[001]y[110] and x[–211]y[111], were chosen for analysis. The atom displacement diagrams, stress distribution diagrams and load-displacement curves were obtained. After analyzing the deformation mechanism, residual stress of the work piece material and cutting force, results showed that, the crystal orientation of work piece has great influence on the deformation characteristics and surface quality of work piece during polishing. In the A(001)[100] orientation, the residual stress distribution after polishing is deeper, and the stress is larger than that in the B(110)[001] and C(111)[–211] orientations. And the average tangential cutting force in the A(001)[100] orientation is much larger than those in the other two crystal orientation. This research is helpful to revealing the material removal mechanism of CMP process.

  8. Gating circuit for single photon-counting fluorescence lifetime instruments using high repetition pulsed light sources

    International Nuclear Information System (INIS)

    Laws, W.R.; Potter, D.W.; Sutherland, J.C.

    1984-01-01

    We have constructed a circuit that permits conventional timing electronics to be used in single photon-counting fluorimeters with high repetition rate excitation sources (synchrotrons and mode-locked lasers). Most commercial time-to-amplitude and time-to-digital converters introduce errors when processing very short time intervals and when subjected to high-frequency signals. This circuit reduces the frequency of signals representing the pulsed light source (stops) to the rate of detected fluorescence events (starts). Precise timing between the start/stop pair is accomplished by using the second stop pulse after a start pulse. Important features of our design are that the circuit is insensitive to the simultaneous occurrence of start and stop signals and that the reduction in the stop frequency allows the start/stop time interval to be placed in linear regions of the response functions of commercial timing electronics

  9. Characterizing multi-photon quantum interference with practical light sources and threshold single-photon detectors

    Science.gov (United States)

    Navarrete, Álvaro; Wang, Wenyuan; Xu, Feihu; Curty, Marcos

    2018-04-01

    The experimental characterization of multi-photon quantum interference effects in optical networks is essential in many applications of photonic quantum technologies, which include quantum computing and quantum communication as two prominent examples. However, such characterization often requires technologies which are beyond our current experimental capabilities, and today's methods suffer from errors due to the use of imperfect sources and photodetectors. In this paper, we introduce a simple experimental technique to characterize multi-photon quantum interference by means of practical laser sources and threshold single-photon detectors. Our technique is based on well-known methods in quantum cryptography which use decoy settings to tightly estimate the statistics provided by perfect devices. As an illustration of its practicality, we use this technique to obtain a tight estimation of both the generalized Hong‑Ou‑Mandel dip in a beamsplitter with six input photons and the three-photon coincidence probability at the output of a tritter.

  10. Sythesis of metal sulfide nanomaerials via thermal decomposition of single-source percursors

    Energy Technology Data Exchange (ETDEWEB)

    Jen-La Plante, Ilan; Zeid, Tahani W.; Yang, Peidong; Mokari, Taleb

    2010-06-03

    In this report, we present a synthetic method for the formation of cuprous sulfide (Cu2S) and lead sulfide (PbS) nanomaterials directly on substrates from the thermolysis of single-source precursors. We find that the final morphology and arrangement of the nanomaterials may be controlled through the concentration of the dissolved precursors and choice of solvent. One-dimensional (1-D) morphologies may also be grown onto substrates with the addition of a metal catalyst layer through solution-liquid-solid (SLS) growth. These synthetic techniques may be expanded to other metal sulfide materials.

  11. Single Phase Current-Source Active Rectifier for Traction: Control System Design and Practical Problems

    Directory of Open Access Journals (Sweden)

    Jan Michalik

    2006-01-01

    Full Text Available This research has been motivated by industrial demand for single phase current-source active rectifier dedicated for reconstruction of older types of dc machine locomotives. This paper presents converters control structure design and simulations. The proposed converter control is based on the mathematical model and due to possible interaction with railway signaling and required low switching frequency employs synchronous PWM. The simulation results are verified by experimental tests performed on designed laboratory prototype of power of 7kVA

  12. A Single Rod Multi-modality Multi-interface Level Sensor Using an AC Current Source

    Directory of Open Access Journals (Sweden)

    Abdulgader Hwili

    2008-05-01

    Full Text Available Crude oil separation is an important process in the oil industry. To make efficient use of the separators, it is important to know their internal behaviour, and to measure the levels of multi-interfaces between different materials, such as gas-foam, foam-oil, oil-emulsion, emulsion-water and water-solids. A single-rod multi-modality multi-interface level sensor is presented, which has a current source, and electromagnetic modalities. Some key issues have been addressed, including the effect of salt content and temperature i.e. conductivity on the measurement.

  13. An improved cut-and-solve algorithm for the single-source capacitated facility location problem

    DEFF Research Database (Denmark)

    Gadegaard, Sune Lauth; Klose, Andreas; Nielsen, Lars Relund

    2018-01-01

    In this paper, we present an improved cut-and-solve algorithm for the single-source capacitated facility location problem. The algorithm consists of three phases. The first phase strengthens the integer program by a cutting plane algorithm to obtain a tight lower bound. The second phase uses a two......-level local branching heuristic to find an upper bound, and if optimality has not yet been established, the third phase uses the cut-and-solve framework to close the optimality gap. Extensive computational results are reported, showing that the proposed algorithm runs 10–80 times faster on average compared...

  14. Substance Flow Analysis and Source Mapping of Chemical UV-filters

    International Nuclear Information System (INIS)

    Eriksson, E.; Andersen, H. R.; Ledin, A.

    2008-01-01

    Chemical ultraviolet (UV)-filters are used in sunscreens to protect the skin from harmful UV radiation which may otherwise cause sunburns and skin cancer. Commonly used chemical UV-filters are known to cause endocrine disrupting effects in both aquatic and terrestrial animals as well as in human skin cells. Here, source mapping and substance flow analysis were applied to find the sources of six UV-filters (oxybenzone, avobenzone, 4-methylbenzylidene camphor, octyl methoxycinnamate, octyl dimethyl PABA and homosalate) and to identify the most dominant flows of these substances in Denmark. Urban water, composed of wastewater and surface waters, was found to be the primary recipient of UV-filters, whereby wastewater received an estimated 8.5-65 tonnes and surface waters received 7.1-51 tonnes in 2005. In wastewater treatment plants, their sorption onto sludge is perceived to be an important process and presence in effluents can be expected due to a lack of biodegradability. In addition, the use of UV-filters is expected to continue to increase significantly. Not all filters (e.g., octyl dimethyl PABA and homosalate) are used in Denmark. For example, 4-MBC is mainly associated with self-tanning liquids and private import of sunscreens

  15. Substance Flow Analysis and Source Mapping of Chemical UV-filters

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, E., E-mail: eve@env.dtu.dk; Andersen, H. R.; Ledin, A. [Technical University of Denmark, Department of Environmental Engineering (Denmark)

    2008-12-15

    Chemical ultraviolet (UV)-filters are used in sunscreens to protect the skin from harmful UV radiation which may otherwise cause sunburns and skin cancer. Commonly used chemical UV-filters are known to cause endocrine disrupting effects in both aquatic and terrestrial animals as well as in human skin cells. Here, source mapping and substance flow analysis were applied to find the sources of six UV-filters (oxybenzone, avobenzone, 4-methylbenzylidene camphor, octyl methoxycinnamate, octyl dimethyl PABA and homosalate) and to identify the most dominant flows of these substances in Denmark. Urban water, composed of wastewater and surface waters, was found to be the primary recipient of UV-filters, whereby wastewater received an estimated 8.5-65 tonnes and surface waters received 7.1-51 tonnes in 2005. In wastewater treatment plants, their sorption onto sludge is perceived to be an important process and presence in effluents can be expected due to a lack of biodegradability. In addition, the use of UV-filters is expected to continue to increase significantly. Not all filters (e.g., octyl dimethyl PABA and homosalate) are used in Denmark. For example, 4-MBC is mainly associated with self-tanning liquids and private import of sunscreens.

  16. Characterization of sildenafil citrate tablets of different sources by near infrared chemical imaging and chemometric tools.

    Science.gov (United States)

    Sabin, Guilherme P; Lozano, Valeria A; Rocha, Werickson F C; Romão, Wanderson; Ortiz, Rafael S; Poppi, Ronei J

    2013-11-01

    The chemical imaging technique by near infrared spectroscopy was applied for characterization of formulations in tablets of sildenafil citrate of six different sources. Five formulations were provided by Brazilian Federal Police and correspond to several trademarks of prohibited marketing and one was an authentic sample of Viagra. In a first step of the study, multivariate curve resolution was properly chosen for the estimation of the distribution map of concentration of the active ingredient in tablets of different sources, where the chemical composition of all excipients constituents was not truly known. In such cases, it is very difficult to establish an appropriate calibration technique, so that only the information of sildenafil is considered independently of the excipients. This determination was possible only by reaching the second-order advantage, where the analyte quantification can be performed in the presence of unknown interferences. In a second step, the normalized histograms of images from active ingredient were grouped according to their similarities by hierarchical cluster analysis. Finally it was possible to recognize the patterns of distribution maps of concentration of sildenafil citrate, distinguishing the true formulation of Viagra. This concept can be used to improve the knowledge of industrial products and processes, as well as, for characterization of counterfeit drugs. Copyright © 2013. Published by Elsevier B.V.

  17. Glycerol (byproduct of biodiesel production) as a source of fuels and chemicals : mini review

    Energy Technology Data Exchange (ETDEWEB)

    Fan, X.; Burton, R. [Piedmont Biofuels Industrial, Pittsboro, NC (United States); Zhou, Y. [Yonezawa Hamari Chemical, Ltd., Yonezawa, Yamagata (Japan)

    2010-07-01

    Glycerol, a byproduct of biodiesel production, is a potential renewable feedstock for the production of functional chemicals. This paper reviewed recent developments in the conversion of glycerol into value-added products, including citric acid, lactic acid, 1,3-dihydroxyacetone (DHA), 1,3-propanediol (1,3-PD), dichloro-2-propanol (DCP), acrolein, hydrogen, and ethanol. The new applications of glycerol will improve the economic viability of the biodiesel industry and capitalize on the oversupply of crude glycerol that the biodiesel industry has produced. Increasing abundance and attractive pricing make glycerol an attractive feedstock for deriving value-added chemical compounds. The processes turn glycerol into chemicals, materials, and fuels and fuel additives. Whereas glycerol from first-generation biodiesel production has low purity, glycerol from second-generation biodiesel production, which uses non-edible oil as a feedstock, produces a higher purity glycerol, minimizing the related impurity problem and potentially increasing the applications of glycerol. Glycerol is also being looked at as a carbon source for algal biomass fermentation. 36 refs.

  18. Size-segregated aerosol in a hot-spot pollution urban area: Chemical composition and three-way source apportionment.

    Science.gov (United States)

    Bernardoni, V; Elser, M; Valli, G; Valentini, S; Bigi, A; Fermo, P; Piazzalunga, A; Vecchi, R

    2017-12-01

    In this work, a comprehensive characterisation and source apportionment of size-segregated aerosol collected using a multistage cascade impactor was performed. The samples were collected during wintertime in Milan (Italy), which is located in the Po Valley, one of the main pollution hot-spot areas in Europe. For every sampling, size-segregated mass concentration, elemental and ionic composition, and levoglucosan concentration were determined. Size-segregated data were inverted using the program MICRON to identify and quantify modal contributions of all the measured components. The detailed chemical characterisation allowed the application of a three-way (3-D) receptor model (implemented using Multilinear Engine) for size-segregated source apportionment and chemical profiles identification. It is noteworthy that - as far as we know - this is the first time that three-way source apportionment is attempted using data of aerosol collected by traditional cascade impactors. Seven factors were identified: wood burning, industry, resuspended dust, regional aerosol, construction works, traffic 1, and traffic 2. Further insights into size-segregated factor profiles suggested that the traffic 1 factor can be associated to diesel vehicles and traffic 2 to gasoline vehicles. The regional aerosol factor resulted to be the main contributor (nearly 50%) to the droplet mode (accumulation sub-mode with modal diameter in the range 0.5-1 μm), whereas the overall contribution from the two factors related to traffic was the most important one in the other size modes (34-41%). The results showed that applying a 3-D receptor model to size-segregated samples allows identifying factors of local and regional origin while receptor modelling on integrated PM fractions usually singles out factors characterised by primary (e.g. industry, traffic, soil dust) and secondary (e.g. ammonium sulphate and nitrate) origin. Furthermore, the results suggested that the information on size

  19. Accuracy of Dual-Energy Virtual Monochromatic CT Numbers: Comparison between the Single-Source Projection-Based and Dual-Source Image-Based Methods.

    Science.gov (United States)

    Ueguchi, Takashi; Ogihara, Ryota; Yamada, Sachiko

    2018-03-21

    To investigate the accuracy of dual-energy virtual monochromatic computed tomography (CT) numbers obtained by two typical hardware and software implementations: the single-source projection-based method and the dual-source image-based method. A phantom with different tissue equivalent inserts was scanned with both single-source and dual-source scanners. A fast kVp-switching feature was used on the single-source scanner, whereas a tin filter was used on the dual-source scanner. Virtual monochromatic CT images of the phantom at energy levels of 60, 100, and 140 keV were obtained by both projection-based (on the single-source scanner) and image-based (on the dual-source scanner) methods. The accuracy of virtual monochromatic CT numbers for all inserts was assessed by comparing measured values to their corresponding true values. Linear regression analysis was performed to evaluate the dependency of measured CT numbers on tissue attenuation, method, and their interaction. Root mean square values of systematic error over all inserts at 60, 100, and 140 keV were approximately 53, 21, and 29 Hounsfield unit (HU) with the single-source projection-based method, and 46, 7, and 6 HU with the dual-source image-based method, respectively. Linear regression analysis revealed that the interaction between the attenuation and the method had a statistically significant effect on the measured CT numbers at 100 and 140 keV. There were attenuation-, method-, and energy level-dependent systematic errors in the measured virtual monochromatic CT numbers. CT number reproducibility was comparable between the two scanners, and CT numbers had better accuracy with the dual-source image-based method at 100 and 140 keV. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  20. Optimization of NANOGrav's time allocation for maximum sensitivity to single sources

    International Nuclear Information System (INIS)

    Christy, Brian; Anella, Ryan; Lommen, Andrea; Camuccio, Richard; Handzo, Emma; Finn, Lee Samuel

    2014-01-01

    Pulsar timing arrays (PTAs) are a collection of precisely timed millisecond pulsars (MSPs) that can search for gravitational waves (GWs) in the nanohertz frequency range by observing characteristic signatures in the timing residuals. The sensitivity of a PTA depends on the direction of the propagating GW source, the timing accuracy of the pulsars, and the allocation of the available observing time. The goal of this paper is to determine the optimal time allocation strategy among the MSPs in the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) for a single source of GW under a particular set of assumptions. We consider both an isotropic distribution of sources across the sky and a specific source in the Virgo cluster. This work improves on previous efforts by modeling the effect of intrinsic spin noise for each pulsar. We find that, in general, the array is optimized by maximizing time spent on the best-timed pulsars, with sensitivity improvements typically ranging from a factor of 1.5 to 4.

  1. A single-phase embedded Z-source DC-AC inverter.

    Science.gov (United States)

    Kim, Se-Jin; Lim, Young-Cheol

    2014-01-01

    In the conventional DC-AC inverter consisting of two DC-DC converters with unipolar output capacitors, the output capacitor voltages of the DC-DC converters must be higher than the DC input voltage. To overcome this weakness, this paper proposes a single-phase DC-AC inverter consisting of two embedded Z-source converters with bipolar output capacitors. The proposed inverter is composed of two embedded Z-source converters with a common DC source and output AC load. Though the output capacitor voltages of the converters are relatively low compared to those of a conventional inverter, an equivalent level of AC output voltages can be obtained. Moreover, by controlling the output capacitor voltages asymmetrically, the AC output voltage of the proposed inverter can be higher than the DC input voltage. To verify the validity of the proposed inverter, experiments were performed with a DC source voltage of 38 V. By controlling the output capacitor voltages of the converters symmetrically or asymmetrically, the proposed inverter can produce sinusoidal AC output voltages. The experiments show that efficiencies of up to 95% and 97% can be achieved with the proposed inverter using symmetric and asymmetric control, respectively.

  2. Chemical characteristics, deposition fluxes and source apportionment of precipitation components in the Jiaozhou Bay, North China

    Science.gov (United States)

    Xing, Jianwei; Song, Jinming; Yuan, Huamao; Li, Xuegang; Li, Ning; Duan, Liqin; Qu, Baoxiao; Wang, Qidong; Kang, Xuming

    2017-07-01

    To systematically illustrate the chemical characteristics, deposition fluxes and potential sources of the major components in precipitation, 49 rainwater and snow water samples were collected in the Jiaozhou Bay from June 2015 to May 2016. We determined the pH, electric conductivity (EC) and the concentrations of main ions (Na+, K+, Ca2 +, Mg2 +, NH4+, SO42 -, NO3-, Cl- and F-) as well as analyzed their source contributions and atmospheric transport. The results showed that the precipitation samples were severely acidified with an annual volume-weighted mean (VWM) pH of 4.77. The frequency of acid precipitation (pH pollution level over the Jiaozhou Bay. Surprisingly, NH4+ (40.4%), which is higher than Ca2 + (29.3%), is the dominant species of cations, which is different from that in most areas of China. SO42 - was the most abundant anions, and accounted for 41.6% of the total anions. The wet deposition fluxes of sulfur (S) was 12.98 kg ha- 1 yr- 1. Rainfall, emission intensity and long-range transport of natural and anthropogenic pollutants together control the concentrations and wet deposition fluxes of chemical components in the precipitation. Non-sea-salt SO42 - and NO3- were the primary acid components while NH4+ and non-sea-salt Ca2 + were the dominating neutralizing constituents. The comparatively lower rainwater concentration of Ca2 + in the Jiaozhou Bay than that in other regions in Northern China likely to be a cause for the strong acidity of precipitation. Based on the combined enrichment factor and correlation analysis, the integrated contributions of sea-salt, crustal and anthropogenic sources to the total ions of precipitation were estimated to be 28.7%, 14.5% and 56.8%, respectively. However, the marine source fraction of SO42 - may be underestimated as the contribution from marine phytoplankton was neglected. Therefore, the precipitation components in the Jiaozhou Bay present complex chemical characteristics under the combined effects of natural

  3. Dual-source CT coronary angiography in patients with atrial fibrillation: Comparison with single-source CT

    International Nuclear Information System (INIS)

    Wang Yining; Zhang Zhuhua; Kong Lingyan; Song Lan; Merges, Reto D.; Chen Jiuhong; Jin Zhengyu

    2008-01-01

    Objective: To evaluate the performance of dual-source computed tomography (DSCT) for the visualization of the coronary arteries in a population with atrial fibrillation (AF) compared to single-source CT (SSCT) and to explore the impact of patients' heart rate (HR) on image quality (IQ) and reconstruction timing. Methods: Thirty consecutive patients (11 male, 19 female; 69.0 ± 9.2 years old) with suspected coronary artery disease and permanent AF were examined on a DSCT scanner (120 kV, 400 mAs/rot, 0.33 s rotation time, 64 x 0.6 mm collimation, pitch 0.20-0.28, Siemens Somatom Definition). Patients were divided into two groups: low and medium HR group (HR ≤ 80 bpm, n = 14) and high HR group (HR > 80 bpm, n = 16). Five of the patients also underwent conventional coronary angiography (CAG). The raw data from both tube detector arrays were reconstructed as DSCT data using a routine algorithm (temporal resolution of 83 ms). The raw data from one tube detector array was reconstructed separately on the same system using a routine single source algorithm (temporal resolution of 83-165 ms) and defined as virtual SSCT data. Image quality was assessed using a four-point grading scale from excellent (1) to non-assessable (4). Results: IQ of the DSCT data was significantly better than that of the virtual SSCT data (mean score 1.33 ± 0.61 vs. 1.80 ± 1.02; Z = -8.755, P = 0.000). 98.6% of the segments shown in DSCT were diagnostic, compared with 89.9% of the segments in virtual SSCT, χ 2 = 32.595, P = 0.000. In DSCT group, IQ of low HR group was also better than that of high HR group, although the difference was not as big (mean score 1.25 ± 0.52 vs. 1.38 ± 0.66; Z = -2.227, P = 0.026). The mean HR of low HR group and high HR group were 67.4 ± 8.5 beats per minute (bpm) and 94.2 ± 8.8 bpm (t = -8.499, P = 0.000). The range of the variation of HR was higher in high HR group than in low HR group (mean difference between maximum and minimum HR 79.5 ± 21.0 vs. 49.9 ± 21

  4. Dual-source CT coronary angiography in patients with atrial fibrillation: Comparison with single-source CT

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yining [Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing (China)], E-mail: yiningpumc@hotmail.com; Zhang Zhuhua [Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing (China)], E-mail: yiningpumc@sina.com; Kong Lingyan [Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing (China)], E-mail: klyan78@hotmail.com; Song Lan [Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing (China)], E-mail: sallysonglan@sina.com; Merges, Reto D. [CT Research Collaboration, Siemens Ltd. (China)], E-mail: reto.merges@siemens.com; Chen Jiuhong [CT Research Collaboration, Siemens Ltd. (China)], E-mail: jiuhong.chen@siemens.com; Jin Zhengyu [Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing (China)], E-mail: jin_zhengyu@sina.com

    2008-12-15

    Objective: To evaluate the performance of dual-source computed tomography (DSCT) for the visualization of the coronary arteries in a population with atrial fibrillation (AF) compared to single-source CT (SSCT) and to explore the impact of patients' heart rate (HR) on image quality (IQ) and reconstruction timing. Methods: Thirty consecutive patients (11 male, 19 female; 69.0 {+-} 9.2 years old) with suspected coronary artery disease and permanent AF were examined on a DSCT scanner (120 kV, 400 mAs/rot, 0.33 s rotation time, 64 x 0.6 mm collimation, pitch 0.20-0.28, Siemens Somatom Definition). Patients were divided into two groups: low and medium HR group (HR {<=} 80 bpm, n = 14) and high HR group (HR > 80 bpm, n = 16). Five of the patients also underwent conventional coronary angiography (CAG). The raw data from both tube detector arrays were reconstructed as DSCT data using a routine algorithm (temporal resolution of 83 ms). The raw data from one tube detector array was reconstructed separately on the same system using a routine single source algorithm (temporal resolution of 83-165 ms) and defined as virtual SSCT data. Image quality was assessed using a four-point grading scale from excellent (1) to non-assessable (4). Results: IQ of the DSCT data was significantly better than that of the virtual SSCT data (mean score 1.33 {+-} 0.61 vs. 1.80 {+-} 1.02; Z = -8.755, P = 0.000). 98.6% of the segments shown in DSCT were diagnostic, compared with 89.9% of the segments in virtual SSCT, {chi}{sup 2} = 32.595, P = 0.000. In DSCT group, IQ of low HR group was also better than that of high HR group, although the difference was not as big (mean score 1.25 {+-} 0.52 vs. 1.38 {+-} 0.66; Z = -2.227, P = 0.026). The mean HR of low HR group and high HR group were 67.4 {+-} 8.5 beats per minute (bpm) and 94.2 {+-} 8.8 bpm (t = -8.499, P = 0.000). The range of the variation of HR was higher in high HR group than in low HR group (mean difference between maximum and minimum HR

  5. A calderón-preconditioned single source combined field integral equation for analyzing scattering from homogeneous penetrable objects

    KAUST Repository

    Valdés, Felipe

    2011-06-01

    A new regularized single source equation for analyzing scattering from homogeneous penetrable objects is presented. The proposed equation is a linear combination of a Calderón-preconditioned single source electric field integral equation and a single source magnetic field integral equation. The equation is immune to low-frequency and dense-mesh breakdown, and free from spurious resonances. Unlike dual source formulations, this equation involves operator products that cannot be discretized using standard procedures for discretizing standalone electric, magnetic, and combined field operators. Instead, the single source equation proposed here is discretized using a recently developed technique that achieves a well-conditioned mapping from div- to curl-conforming function spaces, thereby fully respecting the space mapping properties of the operators involved, and guaranteeing accuracy and stability. Numerical results show that the proposed equation and discretization technique give rise to rapidly convergent solutions. They also validate the equation\\'s resonant free character. © 2006 IEEE.

  6. Typhoon impacts on chemical weathering source provenance of a High Standing Island watershed, Taiwan

    Science.gov (United States)

    Meyer, Kevin J.; Carey, Anne E.; You, Chen-Feng

    2017-10-01

    Chemical weathering source provenance changes associated with Typhoon Mindulle (2004) were identified for the Choshui River Watershed in west-central Taiwan using radiogenic Sr isotope (87Sr/86Sr) and major ion chemistry analysis of water samples collected before, during, and following the storm event. Storm water sampling over 72 h was conducted in 3 h intervals, allowing for novel insight into weathering regime changes in response to intense rainfall events. Chemical weathering sources were determined to be bulk silicate and disseminated carbonate minerals at the surface and silicate contributions from deep thermal waters. Loss on ignition analysis of collected rock samples indicate disseminated carbonate can compose over 25% by weight of surface mineralogy, but typically makes up ∼2-3% of watershed rock. 87Sr/86Sr and major element molar ratios indicate that Typhoon Mindulle caused a weathering regime switch from normal flow incorporating a deep thermal signature to that of a system dominated by surface weathering. The data suggest release of silicate solute rich soil pore waters during storm events, creating a greater relative contribution of silicate weathering to the solute load during periods of increased precipitation and runoff. Partial depletion of this soil solute reservoir and possible erosion enhanced carbonate weathering lead to increased importance of carbonates to the weathering regime as the storm continues. Major ion data indicate that complex mica weathering (muscovite, biotite, illite, chlorite) may represent an important silicate weathering pathway in the watershed. Deep thermal waters represent an important contribution to river solutes during normal non-storm flow conditions. Sulfuric acid sourced from pyrite weathering is likely a major weathering agent in the Choshui River watershed.

  7. VULCAN: An Open-source, Validated Chemical Kinetics Python Code for Exoplanetary Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Shang-Min; Grosheintz, Luc; Kitzmann, Daniel; Heng, Kevin [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012, Bern (Switzerland); Lyons, James R. [Arizona State University, School of Earth and Space Exploration, Bateman Physical Sciences, Tempe, AZ 85287-1404 (United States); Rimmer, Paul B., E-mail: shang-min.tsai@space.unibe.ch, E-mail: kevin.heng@csh.unibe.ch, E-mail: jimlyons@asu.edu [University of St. Andrews, School of Physics and Astronomy, St. Andrews, KY16 9SS (United Kingdom)

    2017-02-01

    We present an open-source and validated chemical kinetics code for studying hot exoplanetary atmospheres, which we name VULCAN. It is constructed for gaseous chemistry from 500 to 2500 K, using a reduced C–H–O chemical network with about 300 reactions. It uses eddy diffusion to mimic atmospheric dynamics and excludes photochemistry. We have provided a full description of the rate coefficients and thermodynamic data used. We validate VULCAN by reproducing chemical equilibrium and by comparing its output versus the disequilibrium-chemistry calculations of Moses et al. and Rimmer and Helling. It reproduces the models of HD 189733b and HD 209458b by Moses et al., which employ a network with nearly 1600 reactions. We also use VULCAN to examine the theoretical trends produced when the temperature–pressure profile and carbon-to-oxygen ratio are varied. Assisted by a sensitivity test designed to identify the key reactions responsible for producing a specific molecule, we revisit the quenching approximation and find that it is accurate for methane but breaks down for acetylene, because the disequilibrium abundance of acetylene is not directly determined by transport-induced quenching, but is rather indirectly controlled by the disequilibrium abundance of methane. Therefore we suggest that the quenching approximation should be used with caution and must always be checked against a chemical kinetics calculation. A one-dimensional model atmosphere with 100 layers, computed using VULCAN, typically takes several minutes to complete. VULCAN is part of the Exoclimes Simulation Platform (ESP; exoclime.net) and publicly available at https://github.com/exoclime/VULCAN.

  8. Fabrication of single-phase ε-GaSe films on Si(100) substrate by metal organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chia-Chen; Zeng, Jia-Xian; Lan, Shan-Ming [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Uen, Wu-Yih, E-mail: uenwuyih@ms37.hinet.net [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Liao, Sen-Mao [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Yang, Tsun-Neng; Ma, Wei-Yang [Institute of Nuclear Energy Research, P.O. Box 3-11, Lungtan 32500, Taiwan (China); Chang, Kuo-Jen [Chung-Shan Institute of Science and Technology, No.15, Shi Qi Zi, Gaoping Village, Longtan Township, Taoyuan County, Taiwan (China)

    2013-09-02

    Single-phase ε-gallium selenide (GaSe) films were fabricated on Si(100) substrate by metal organic chemical vapor deposition using dual-source precursors: triethylgallium (TEG) and hydrogen selenide (H{sub 2}Se) with the flow ratio of [H{sub 2}Se]/[TEG] being maintained at 1.2. In particular, an arsine (AsH{sub 3}) flow was introduced to the Si substrate before the film deposition to induce an arsenic (As)-passivation effect on the substrate. The crystalline structure of GaSe films prepared was analyzed using X-ray diffraction and the surface morphology of them was characterized by scanning electron microscopy. It was found that the film quality could be improved by the As-passivation effect. The optical properties of the films were studied by temperature dependent photoluminescence (PL) measurements. PL spectra obtained with different distributions and intensities favored for resolving the superior material quality of the films produced on the substrate with As-passivation compared to those produced on the substrate without As-passivation. The former was dominated by the excitonic emissions for the whole temperature range of 20–300 K examined, while the latter was initially dominated by the defect-related emission at 1.907 eV for a low-temperature range ≦ 80 K and then became dominated by the weak excitonic emission band instead. The ε modification of GaSe films prepared was further recognized by the Raman scattering measurements conducted at room temperature. - Highlights: • Gallium selenide (GaSe) layered structures are fabricated on Si(100) substrate. • Metal–organic chemical vapor deposition is used for film fabrication. • Arsenic-passivation effects of Si substrate on the GaSe film quality are analyzed. • Photoluminescence measurements of GaSe polycrystals are reported.

  9. Polyquant CT: direct electron and mass density reconstruction from a single polyenergetic source

    Science.gov (United States)

    Mason, Jonathan H.; Perelli, Alessandro; Nailon, William H.; Davies, Mike E.

    2017-11-01

    Quantifying material mass and electron density from computed tomography (CT) reconstructions can be highly valuable in certain medical practices, such as radiation therapy planning. However, uniquely parameterising the x-ray attenuation in terms of mass or electron density is an ill-posed problem when a single polyenergetic source is used with a spectrally indiscriminate detector. Existing approaches to single source polyenergetic modelling often impose consistency with a physical model, such as water-bone or photoelectric-Compton decompositions, which will either require detailed prior segmentation or restrictive energy dependencies, and may require further calibration to the quantity of interest. In this work, we introduce a data centric approach to fitting the attenuation with piecewise-linear functions directly to mass or electron density, and present a segmentation-free statistical reconstruction algorithm for exploiting it, with the same order of complexity as other iterative methods. We show how this allows both higher accuracy in attenuation modelling, and demonstrate its superior quantitative imaging, with numerical chest and metal implant data, and validate it with real cone-beam CT measurements.

  10. Chemical composition and sources of particle pollution in affluent and poor neighborhoods of Accra, Ghana

    International Nuclear Information System (INIS)

    Zhou, Zheng; Dionisio, Kathie L; Verissimo, Thiago G; Kerr, Americo S; Coull, Brent; Arku, Raphael E; Koutrakis, Petros; Spengler, John D; Vallarino, Jose; Hughes, Allison F; Agyei-Mensah, Samuel; Ezzati, Majid

    2013-01-01

    The highest levels of air pollution in the world now occur in developing country cities, where air pollution sources differ from high-income countries. We analyzed particulate matter (PM) chemical composition and estimated the contributions of various sources to particle pollution in poor and affluent neighborhoods of Accra, Ghana. Elements from earth’s crust were most abundant during the seasonal Harmattan period between late December and late January when Saharan dust is carried to coastal West Africa. During Harmattan, crustal particles accounted for 55 μg m −3 (37%) of fine particle (PM 2.5 ) mass and 128 μg m −3 (42%) of PM 10 mass. Outside Harmattan, biomass combustion, which was associated with higher black carbon, potassium, and sulfur, accounted for between 10.6 and 21.3 μg m −3 of fine particle mass in different neighborhoods, with its contribution largest in the poorest neighborhood. Other sources were sea salt, vehicle emissions, tire and brake wear, road dust, and solid waste burning. Reducing air pollution in African cities requires policies related to energy, transportation and urban planning, and forestry and agriculture, with explicit attention to impacts of each strategy in poor communities. Such cross-sectoral integration requires emphasis on urban environment and urban poverty in the post-2015 Development Agenda. (letter)

  11. Chemical composition, sources and secondary processes of aerosols in Baoji city of northwest China

    Science.gov (United States)

    Wang, Y. C.; Huang, R.-J.; Ni, H. Y.; Chen, Y.; Wang, Q. Y.; Li, G. H.; Tie, X. X.; Shen, Z. X.; Huang, Y.; Liu, S. X.; Dong, W. M.; Xue, P.; Fröhlich, R.; Canonaco, F.; Elser, M.; Daellenbach, K. R.; Bozzetti, C.; El Haddad, I.; Prévôt, A. S. H.; Canagaratna, M. R.; Worsnop, D. R.; Cao, J. J.

    2017-06-01

    Particulate air pollution is a severe environmental problem in China, affecting visibility, air quality, climate and human health. However, previous studies focus mainly on large cities such as Beijing, Shanghai, and Guangzhou. In this study, an Aerodyne Aerosol Chemical Speciation Monitor was deployed in Baoji, a middle size inland city in northwest China from 26 February to 27 March 2014. The non-refractory submicron aerosol (NR-PM1) was dominated by organics (55%), followed by sulfate (16%), nitrate (15%), ammonium (11%) and chloride (3%). A source apportionment of the organic aerosol (OA) was performed with the Sofi (Source Finder) interface of ME-2 (Multilinear Engine), and six main sources/factors were identified and classified as hydrocarbon-like OA (HOA), cooking OA (COA), biomass burning OA (BBOA), coal combustion OA (CCOA), less oxidized oxygenated OA (LO-OOA) and more oxidized oxygenated OA (MO-OOA), which contributed 20%, 14%, 13%, 9%, 23% and 21% of total OA, respectively. The contribution of secondary components shows increasing trends from clean days to polluted days, indicating the importance of secondary aerosol formation processes in driving particulate air pollution. The formation of LO-OOA and MO-OOA is mainly driven by photochemical reactions, but significantly influenced by aqueous-phase chemistry during periods of low atmospheric oxidative capacity.

  12. The source, discharge, and chemical characteristics of water from Agua Caliente Spring, Palm Springs, California

    Science.gov (United States)

    Contributors: Brandt, Justin; Catchings, Rufus D.; Christensen, Allen H.; Flint, Alan L.; Gandhok, Gini; Goldman, Mark R.; Halford, Keith J.; Langenheim, V.E.; Martin, Peter; Rymer, Michael J.; Schroeder, Roy A.; Smith, Gregory A.; Sneed, Michelle; Martin, Peter

    2011-01-01

    Agua Caliente Spring, in downtown Palm Springs, California, has been used for recreation and medicinal therapy for hundreds of years and currently (2008) is the source of hot water for the Spa Resort owned by the Agua Caliente Band of the Cahuilla Indians. The Agua Caliente Spring is located about 1,500 feet east of the eastern front of the San Jacinto Mountains on the southeast-sloping alluvial plain of the Coachella Valley. The objectives of this study were to (1) define the geologic structure associated with the Agua Caliente Spring; (2) define the source(s), and possibly the age(s), of water discharged by the spring; (3) ascertain the seasonal and longer-term variability of the natural discharge, water temperature, and chemical characteristics of the spring water; (4) evaluate whether water-level declines in the regional aquifer will influence the temperature of the spring discharge; and, (5) estimate the quantity of spring water that leaks out of the water-collector tank at the spring orifice.

  13. Portable digital lock-in instrument to determine chemical constituents with single-color absorption measurements for Global Health Initiatives

    Science.gov (United States)

    Vacas-Jacques, Paulino; Linnes, Jacqueline; Young, Anna; Gerrard, Victoria; Gomez-Marquez, Jose

    2014-03-01

    Innovations in international health require the use of state-of-the-art technology to enable clinical chemistry for diagnostics of bodily fluids. We propose the implementation of a portable and affordable lock-in amplifier-based instrument that employs digital technology to perform biochemical diagnostics on blood, urine, and other fluids. The digital instrument is composed of light source and optoelectronic sensor, lock-in detection electronics, microcontroller unit, and user interface components working with either power supply or batteries. The instrument performs lock-in detection provided that three conditions are met. First, the optoelectronic signal of interest needs be encoded in the envelope of an amplitude-modulated waveform. Second, the reference signal required in the demodulation channel has to be frequency and phase locked with respect to the optoelectronic carrier signal. Third, the reference signal should be conditioned appropriately. We present three approaches to condition the signal appropriately: high-pass filtering the reference signal, precise offset tuning the reference level by low-pass filtering, and by using a voltage divider network. We assess the performance of the lock-in instrument by comparing it to a benchmark device and by determining protein concentration with single-color absorption measurements. We validate the concentration values obtained with the proposed instrument using chemical concentration measurements. Finally, we demonstrate that accurate retrieval of phase information can be achieved by using the same instrument.

  14. Portable digital lock-in instrument to determine chemical constituents with single-color absorption measurements for Global Health Initiatives

    Energy Technology Data Exchange (ETDEWEB)

    Vacas-Jacques, Paulino [Little Devices Group, SUTD-MIT International Design Center, Cambridge, Massachusetts 02139 (United States); Wellman Center for Photomedicine and Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Linnes, Jacqueline [Little Devices Group, SUTD-MIT International Design Center, Cambridge, Massachusetts 02139 (United States); Biomedical Engineering Department, Boston University, Boston, Massachusetts 02215 (United States); Young, Anna; Gomez-Marquez, Jose [Little Devices Group, SUTD-MIT International Design Center, Cambridge, Massachusetts 02139 (United States); Gerrard, Victoria [Little Devices Group, SUTD-MIT International Design Center, Cambridge, Massachusetts 02139 (United States); Opportunity Lab, Singapore University for Technology and Design, Singapore 138682 (Singapore)

    2014-03-15

    Innovations in international health require the use of state-of-the-art technology to enable clinical chemistry for diagnostics of bodily fluids. We propose the implementation of a portable and affordable lock-in amplifier-based instrument that employs digital technology to perform biochemical diagnostics on blood, urine, and other fluids. The digital instrument is composed of light source and optoelectronic sensor, lock-in detection electronics, microcontroller unit, and user interface components working with either power supply or batteries. The instrument performs lock-in detection provided that three conditions are met. First, the optoelectronic signal of interest needs be encoded in the envelope of an amplitude-modulated waveform. Second, the reference signal required in the demodulation channel has to be frequency and phase locked with respect to the optoelectronic carrier signal. Third, the reference signal should be conditioned appropriately. We present three approaches to condition the signal appropriately: high-pass filtering the reference signal, precise offset tuning the reference level by low-pass filtering, and by using a voltage divider network. We assess the performance of the lock-in instrument by comparing it to a benchmark device and by determining protein concentration with single-color absorption measurements. We validate the concentration values obtained with the proposed instrument using chemical concentration measurements. Finally, we demonstrate that accurate retrieval of phase information can be achieved by using the same instrument.

  15. Fiber Optic Chemical Nanosensors Based on Engineered Single-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    M. Consales

    2008-01-01

    Full Text Available In this contribution, a review of the development of high-performance optochemical nanosensors based on the integration of carbon nanotubes with the optical fiber technology is presented. The paper first provide an overview of the amazing features of carbon nanotubes and their exploitation as highly adsorbent nanoscale materials for gas sensing applications. Successively, the attention is focused on the operating principle, fabrication, and characterization of fiber optic chemosensors in the Fabry-Perot type reflectometric configuration, realized by means of the deposition of a thin layer of single-walled carbon nanotubes (SWCNTs upon the distal end of standard silica optical fibers. This is followed by an extensive review of the excellent sensing capabilities of the realized SWCNTs-based chemical nanosensors against volatile organic compounds and other pollutants in different environments (air and water and operating conditions (room temperature and cryogenic temperatures. The experimental results reported here reveal that ppm and sub-ppm chemical detection limits, low response times, as well as fast and complete recovery of the sensor responses have been obtained in most of the investigated cases. This evidences the great potentialities of the proposed photonic nanosensors based on SWCNTs to be successfully employed for practical environmental monitoring applications both in liquid and vapor phase as well as for space. Furthermore, the use of novel SWCNTs-based composites as sensitive fiber coatings is proposed to enhance the sensing performance and to improve the adhesion of carbon nanotubes to the fiber surface. Finally, new advanced sensing configurations based on the use of hollow-core optical fibers coated and partially filled by carbon nanotubes are also presented.

  16. An Oblivious O(1)-Approximation for Single Source Buy-at-Bulk

    KAUST Repository

    Goel, Ashish

    2009-10-01

    We consider the single-source (or single-sink) buy-at-bulk problem with an unknown concave cost function. We want to route a set of demands along a graph to or from a designated root node, and the cost of routing x units of flow along an edge is proportional to some concave, non-decreasing function f such that f(0) = 0. We present a polynomial time algorithm that finds a distribution over trees such that the expected cost of a tree for any f is within an O(1)-factor of the optimum cost for that f. The previous best simultaneous approximation for this problem, even ignoring computation time, was O(log |D|), where D is the multi-set of demand nodes. We design a simple algorithmic framework using the ellipsoid method that finds an O(1)-approximation if one exists, and then construct a separation oracle using a novel adaptation of the Guha, Meyerson, and Munagala [10] algorithm for the single-sink buy-at-bulk problem that proves an O(1) approximation is possible for all f. The number of trees in the support of the distribution constructed by our algorithm is at most 1 + log |D|. © 2009 IEEE.

  17. Chemical composition and sources of PM1 and PM2.5 in Beijing in autumn.

    Science.gov (United States)

    Zhang, Yanyun; Lang, Jianlei; Cheng, Shuiyuan; Li, Shengyue; Zhou, Ying; Chen, Dongsheng; Zhang, Hanyu; Wang, Haiyan

    2018-02-20

    Beijing, the capital of China, suffers from severe atmospheric aerosol pollution; nevertheless, a comprehensive study of the constituents and sources of PM 1 is still lacking, and the differences between PM 1 and PM 2.5 are still unclear. In this study, an intensive observation was conducted to reveal the pollution characteristics of PM 1 and PM 2.5 in Beijing in autumn. Positive matrix factorization (PMF), backward trajectories and a potential source contribution function (PSCF) model were used to identify the source categories and source areas of PM 1 and PM 2.5 . The results showed that the average concentrations of PM 1 and PM 2.5 reached 78.20μg/m 3 and 95.47μg/m 3 during the study period, respectively. PM 1 contributed greatly to PM 2.5 . The PM 1 /PM 2.5 value increased from 73.6% to 90.1% with PM 1 concentration growing from 150μg/m 3 . Higher secondary inorganic aerosol (SIA) proportions (31.3%-70.8%) were found in PM 1 . The higher fraction of SIA, OC, EC and typical elements in PM 1 illustrated that anthropogenic components accumulated more in smaller size particles. Three typical weather patterns causing the heavy pollution in autumn were found as follows: (1) Siberian high and uniform high pressure field, (2) cold front and low-voltage system, and (3) uniform low pressure field. A PMF analysis indicated that secondary aerosols and coal combustion, vehicle, industry, biomass burning, and dust were the important sources of PM, accounting for 53.8%, 8.0%, 13.0%, 13.2% and 12.0% of PM 1 , respectively, and for 47.5%, 9.9%, 12.4%, 8.4% and 21.8% of PM 2.5 , respectively. The HYSPLIT and chemical components analysis indicated the potential contribution from biomass burning and fertilization ammonia emissions to PM 1 in autumn. The source areas were similar for PM 1 and PM 1-2.5 under general polluted conditions, but during the heavily polluted periods, the source areas were distributed in farther regions from Beijing for PM 1 than for PM 1-2.5 . Copyright

  18. Chemical composition and sources of organic aerosols over London from the ClearfLo 2012 campaigns

    Science.gov (United States)

    Finessi, Emanuela; Holmes, Rachel; Hopkins, James; Lee, James; Harrison, Roy; Hamilton, Jacqueline

    2014-05-01

    Air quality in urban areas represents a major public health issue with around one third of the European population concentrated in cities and numbers expected to increase at global scale, particularly in developing countries. Particulate matter (PM) represents a primary threat for human health as numerous studies have confirmed the association between increased levels of cardiovascular and respiratory diseases with the exposure to PM. Despite considerable efforts made in improving air quality and progressively stricter emissions regulations, the PM concentrations have not changed much over the past decades for reasons that remain unclear, and highlight that studies on PM source apportionment are required for the formulation of effective policy. We investigated the chemical composition of organic aerosol (OA) collected during two intensive field campaigns held in winter and summer 2012 in the frame of the project Clean air for London (http://www.clearflo.ac.uk/). PM samples were collected both at a city background site (North Kensington) and at a rural site 50 km southeast of London (Detling) with 8 to 24 hours sampling schedule and analysed using off-line methods. Thermal-optical analysis was used to quantify OC-EC components while a suite of soft ionization mass spectrometric techniques was deployed for detailed chemical characterization. Liquid chromatography mass Spectrometry (LC-MSn) was mostly used for the simultaneous detection and quantification of various tracers for both primary and secondary OA sources. Well-established markers for wood burning primary OA like levoglucosan and azelaic acid were quantified together with various classes of nitroaromatics including methyl-nitrocatechols that are potential tracers for wood burning secondary OA. In addition, oxidation products of biogenic VOCs such as isoprene and monoterpenes were also quantified for both seasons and sites. A non-negligible contribution from biogenic SOA to urban OA was found in summertime

  19. Boosting up quantum key distribution by learning statistics of practical single-photon sources

    International Nuclear Information System (INIS)

    Adachi, Yoritoshi; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki

    2009-01-01

    We propose a simple quantum-key-distribution (QKD) scheme for practical single-photon sources (SPSs), which works even with a moderate suppression of the second-order correlation g (2) of the source. The scheme utilizes a passive preparation of a decoy state by monitoring a fraction of the signal via an additional beam splitter and a detector at the sender's side to monitor photon-number splitting attacks. We show that the achievable distance increases with the precision with which the sub-Poissonian tendency is confirmed in higher photon-number distribution of the source, rather than with actual suppression of the multiphoton emission events. We present an example of the secure key generation rate in the case of a poor SPS with g (2) =0.19, in which no secure key is produced with the conventional QKD scheme, and show that learning the photon-number distribution up to several numbers is sufficient for achieving almost the same distance as that of an ideal SPS.

  20. A bright single-photon source based on a photonic trumpet

    DEFF Research Database (Denmark)

    Munsch, Mathieu; Malik, Nitin S.; Bleuse, Joël

    Fiber-like photonic nanowires, which are optical waveguides made of a high refractive index material n, have recently emerged as non-resonant systems providing an efficient spontaneous emission (SE) control. When they embed a quantum emitter like a quantum dot (QD), they find application to the r......Fiber-like photonic nanowires, which are optical waveguides made of a high refractive index material n, have recently emerged as non-resonant systems providing an efficient spontaneous emission (SE) control. When they embed a quantum emitter like a quantum dot (QD), they find application...... to the realization of bright sources of quantum light and, reversibly, provide an efficient interface between propagating photons and the QD. For a wire diameter ∼ λ/n (λ is the operation wavelength), the fraction of QD SE coupled to the fundamental guided mode exceeds 90%. The collection of the photons can...... be brought close to unity with a proper engineering of the wire ends. In particular, a tapering of the top wire end is necessary to achieve a directive far-field emission pattern [1]. Recently, we have realized a single-photon source featuring a needle-like taper. The source efficiency, though record...

  1. Chemical characterization of atmospheric particles and source apportionment in the vicinity of a steelmaking industry

    International Nuclear Information System (INIS)

    Almeida, S.M.; Lage, J.; Fernández, B.; Garcia, S.; Reis, M.A.; Chaves, P.C.

    2015-01-01

    The objective of this work was to provide a chemical characterization of atmospheric particles collected in the vicinity of a steelmaking industry and to identify the sources that affect PM 10 levels. A total of 94 PM samples were collected in two sampling campaigns that occurred in February and June/July of 2011. PM 2.5 and PM 2.5–10 were analyzed for a total of 22 elements by Instrumental Neutron Activation Analysis and Particle Induced X-ray Emission. The concentrations of water soluble ions in PM 10 were measured by Ion Chromatography and Indophenol-Blue Spectrophotometry. Positive Matrix Factorization receptor model was used to identify sources of particulate matter and to determine their mass contribution to PM 10 . Seven main groups of sources were identified: marine aerosol identified by Na and Cl (22%), steelmaking and sinter plant represented by As, Cr, Cu, Fe, Ni, Mn, Pb, Sb and Zn (11%), sinter plant stack identified by NH 4 + , K and Pb (12%), an unidentified Br source (1.8%), secondary aerosol from coke making and blast furnace (19%), fugitive emissions from the handling of raw material, sinter plant and vehicles dust resuspension identified by Al, Ca, La, Si, Ti and V (14%) and sinter plant and blast furnace associated essentially with Fe and Mn (21%). - Highlights: • Emissions from steelworks are very complex. • The larger steelworks contribution to PM 10 was from blast furnace and sinter plant. • Sinter plant stack emissions contributed for 12% of the PM 10 mass. • Secondary aerosol from coke making and blast furnace contributed for 19% of the PM 10 . • Fugitive dust emissions highly contribute to PM 10 mass

  2. Chemical characterization of atmospheric particles and source apportionment in the vicinity of a steelmaking industry

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, S.M., E-mail: smarta@ctn.ist.utl.pt [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 139.7 km, 2695-066 Bobadela LRS (Portugal); Lage, J. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 139.7 km, 2695-066 Bobadela LRS (Portugal); Fernández, B. [Global R& D, ArcelorMittal, Avilés (Spain); Garcia, S. [Instituto de Soldadura e Qualidade, Av. Prof. Dr. Cavaco Silva, 33, 2740-120 Porto Salvo (Portugal); Reis, M.A.; Chaves, P.C. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 139.7 km, 2695-066 Bobadela LRS (Portugal)

    2015-07-15

    The objective of this work was to provide a chemical characterization of atmospheric particles collected in the vicinity of a steelmaking industry and to identify the sources that affect PM{sub 10} levels. A total of 94 PM samples were collected in two sampling campaigns that occurred in February and June/July of 2011. PM{sub 2.5} and PM{sub 2.5–10} were analyzed for a total of 22 elements by Instrumental Neutron Activation Analysis and Particle Induced X-ray Emission. The concentrations of water soluble ions in PM{sub 10} were measured by Ion Chromatography and Indophenol-Blue Spectrophotometry. Positive Matrix Factorization receptor model was used to identify sources of particulate matter and to determine their mass contribution to PM{sub 10}. Seven main groups of sources were identified: marine aerosol identified by Na and Cl (22%), steelmaking and sinter plant represented by As, Cr, Cu, Fe, Ni, Mn, Pb, Sb and Zn (11%), sinter plant stack identified by NH{sub 4}{sup +}, K and Pb (12%), an unidentified Br source (1.8%), secondary aerosol from coke making and blast furnace (19%), fugitive emissions from the handling of raw material, sinter plant and vehicles dust resuspension identified by Al, Ca, La, Si, Ti and V (14%) and sinter plant and blast furnace associated essentially with Fe and Mn (21%). - Highlights: • Emissions from steelworks are very complex. • The larger steelworks contribution to PM{sub 10} was from blast furnace and sinter plant. • Sinter plant stack emissions contributed for 12% of the PM{sub 10} mass. • Secondary aerosol from coke making and blast furnace contributed for 19% of the PM{sub 10}. • Fugitive dust emissions highly contribute to PM{sub 10} mass.

  3. Chemical source characterization of residential wood combustion emissions in Denver, Colorado; Bakersfield, California; and Mammoth Lakes, California

    International Nuclear Information System (INIS)

    Houck, J.E.; Goulet, J.M.; Chow, J.C.; Watson, J.G.

    1989-01-01

    The chemical composition of residential wood combustion particulate emissions was determined for fireplaces and woodstoves. Burn rates, burn patterns, wood burning appliances, and cordwood types characteristic of Denver, Colorado; Bakersfield, California; and Mammoth Lakes, California, were used during sample collection. Samples were collected using a dilution/cooling system to ensure that condensible compounds were captured. Analyses for 44 chemical species were conducted. Source profiles for use in chemical mass balance (CMB) modeling were calculated from the analytical data. The principal chemical species comprising the profiles were organic compounds and elemental carbon. The minor chemical species were sulfur, chlorine, potassium, sodium, calcium, zinc, nitrate, and ammonium. Virtually all potassium was in a water-soluble form, and sulfur emissions between fireplaces and woodstoves were noted. Area-specific source profiles for fireplaces, woodstoves, and overall residential wood combustion are presented

  4. Chemical characterization and source apportionment of submicron aerosols measured in Senegal during the 2015 SHADOW campaign

    Science.gov (United States)

    Rivellini, Laura-Hélèna; Chiapello, Isabelle; Tison, Emmanuel; Fourmentin, Marc; Féron, Anaïs; Diallo, Aboubacry; N'Diaye, Thierno; Goloub, Philippe; Canonaco, Francesco; Prévôt, André Stephan Henry; Riffault, Véronique

    2017-09-01

    The present study offers the first chemical characterization of the submicron (PM1) fraction in western Africa at a high time resolution, thanks to collocated measurements of nonrefractory (NR) species with an Aerosol Chemical Speciation Monitor (ACSM), black carbon and iron concentrations derived from absorption coefficient measurements with a 7-wavelength Aethalometer, and total PM1 determined by a TEOM-FDMS (tapered element oscillating microbalance-filtered dynamic measurement system) for mass closure. The field campaign was carried out over 3 months (March to June 2015) as part of the SHADOW (SaHAran Dust Over West Africa) project at a coastal site located in the outskirts of the city of Mbour, Senegal. With an averaged mass concentration of 5.4 µg m-3, levels of NR PM1 in Mbour were 3 to 10 times lower than those generally measured in urban and suburban polluted environments. Nonetheless the first half of the observation period was marked by intense but short pollution events (NR PM1 concentrations higher than 15 µg m-3), sea breeze phenomena and Saharan desert dust outbreaks (PM10 up to 900 µg m-3). During the second half of the campaign, the sampling site was mainly under the influence of marine air masses. The air masses on days under continental and sea breeze influences were dominated by organics (36-40 %), whereas sulfate particles were predominant (40 %) for days under oceanic influence. Overall, measurements showed that about three-quarters of the total PM1 were explained by NR PM1, BC (black carbon) and Fe (a proxy for dust) concentrations, leaving approximately one-quarter for other refractory species. A mean value of 4.6 % for the Fe / PM1 ratio was obtained. Source apportionment of the organic fraction, using positive matrix factorization (PMF), highlighted the impact of local combustion sources, such as traffic and residential activities, which contribute on average to 52 % of the total organic fraction. A new organic aerosol (OA) source

  5. Design of radiation-chemical devices with gamma source for sewage treatment

    International Nuclear Information System (INIS)

    Mendel'son, Eh.L.; Gol'din, V.A.; Breger, A.Kh.

    1981-01-01

    The semiempirical method of calculating conductivity of radiation- chemical devices (RCD) with γ-sources to purify domestic and industrial drainage waters and other processes in liquid phase systems which meet definite requirements based on taking into account the structure of the technological process, is suggested RCD of a new type is developed. It is coaxially cylindrical. A correcting coefficient which takes into account the difference in the actual time of keeping a current of drainage water in the device and its avaraged calculation value, conditioned by the longtitudinal transfer of a substance in the device, is determined. It is shown that the above RCD productivity can be considerably increased due to creating the structure of adisplacement current which provides the equality of absorbed doses in all its elements [ru

  6. Aqueous organic chemistry in the atmosphere: sources and chemical processing of organic aerosols.

    Science.gov (United States)

    McNeill, V Faye

    2015-02-03

    Over the past decade, it has become clear that aqueous chemical processes occurring in cloud droplets and wet atmospheric particles are an important source of organic atmospheric particulate matter. Reactions of water-soluble volatile (or semivolatile) organic gases (VOCs or SVOCs) in these aqueous media lead to the formation of highly oxidized organic particulate matter (secondary organic aerosol; SOA) and key tracer species, such as organosulfates. These processes are often driven by a combination of anthropogenic and biogenic emissions, and therefore their accurate representation in models is important for effective air quality management. Despite considerable progress, mechanistic understanding of some key aqueous processes is still lacking, and these pathways are incompletely represented in 3D atmospheric chemistry and air quality models. In this article, the concepts, historical context, and current state of the science of aqueous pathways of SOA formation are discussed.

  7. Thermal-mechanical-hydrological-chemical responses in the single heater test at the ESF

    International Nuclear Information System (INIS)

    Lin, W.; Blair, S.; Buettner, M

    1997-01-01

    The Single Heater Test (SHT) is conducted in the Exploratory Studies Facility (ESF) to study the thermal-mechanical responses of the rock mass. A set of boreholes were drilled in the test region for conducting a scoping test of the coupled thermal-mechanical- hydrological-chemical (TMHC) processes. The holes for the TMHC tests include electrical resistivity tomography (ERT), neutron logging/temperature, hydrological, and optical multiple point borehole extensometers. A 4-kW heater was installed in the heater hole, and was energized on August 26, 1996. Some observed movements of the water around the heater are associated with a possible dry-out region near the heater. The water that has been moved is more dilute than the in situ ground water, except for the concentration of Ca. This indicates that fractures are the major water pathways, and the displaced water may have reached an equilibrium with carbonate minerals on the fracture surfaces. No mechanical-hydrological coupling has been observed. The tests are on-going, and more data will be collected and analyzed

  8. Design of a high-pressure single pulse shock tube for chemical kinetic investigations

    International Nuclear Information System (INIS)

    Tranter, R. S.; Brezinsky, K.; Fulle, D.

    2001-01-01

    A single pulse shock tube has been designed and constructed in order to achieve extremely high pressures and temperatures to facilitate gas-phase chemical kinetic experiments. Postshock pressures of greater than 1000 atmospheres have been obtained. Temperatures greater than 1400 K have been achieved and, in principle, temperatures greater than 2000 K are easily attainable. These high temperatures and pressures permit the investigation of hydrocarbon species pyrolysis and oxidation reactions. Since these reactions occur on the time scale of 0.5--2 ms the shock tube has been constructed with an adjustable length driven section that permits variation of reaction viewing times. For any given reaction viewing time, samples can be withdrawn through a specially constructed automated sampling apparatus for subsequent species analysis with gas chromatography and mass spectrometry. The details of the design and construction that have permitted the successful generation of very high-pressure shocks in this unique apparatus are described. Additional information is provided concerning the diaphragms used in the high-pressure shock tube

  9. Variations in amounts and potential sources of volatile organic chemicals in new cars

    International Nuclear Information System (INIS)

    Chien, Y.-C.

    2007-01-01

    This study examines inter-brand, intra-brand and intra-model variations in volatile organic chemical (VOC) levels inside new cars. The effect of temperature on interior VOC levels was examined using model automobiles with and without the air-conditioning running. Potential sources of VOC were assessed by comparing VOC levels with two interior trims (leather and fabric) and by analyzing VOC emissions from various interior components. Five brands of new car, both domestic and imported, were tested. Twelve targeted VOCs were collected on solid sorbents and analyzed using thermal desorption and GC/FID. VOCs from interior parts and adhesives were identified using solid phase micro-extraction (SPME) coupled with GC/MS. The VOC concentrations varied markedly among brands and within models, and individual VOC levels ranged from below the detection limit (a few μg per cubic meter) to thousands of μg per cubic meter. The intra-model variability (mean, 47%) in the VOC levels was approximately 50% that within each brand (mean, 95%). Although interior trim levels affected VOC levels, the effects differed among brands. Reduction of the cabin temperature reduced most VOC levels, but the impact was not statistically significant. Screening tests for VOCs from interior parts revealed that butylated hydroxytoluene (BHT), a common anti-oxidant, was the most common chemical. Long-chain aliphatic hydrocarbons, particularly C14-C17, were identified in most grease (lubricant) samples, and toluene and xylenes were ubiquitously present in adhesive samples. Process-related compounds, such as plasticizer, were also identified in interior parts. In-cabin VOC levels varied significantly among makes/models and interior trims. Concerned consumers should purchase older new cars from manufacturers since VOC levels inside car cabins normally declines over time. Improved processes or materials with lower VOC emission potential should be used to minimize in-cabin VOC sources for new cars

  10. Chemical and Microbiological Analysis of Certain Water Sources and Industrial Wastewater Samples in Dakahlia Governorate

    International Nuclear Information System (INIS)

    El-Fadaly, H.; El-Defrawy, M.M.; El-Zawawy, F.; Makia, D.

    1999-01-01

    The chemical analysis included quantitative measurement of electrical conductivity, alkalinity , hardness sulphate, ph, total dissolved solids, chloride, as well as dissolved oxygen was carried out. The microbiological examination for different water sources and industrial wastewater samples was also conducted. some of heavy metals, Co 2+ Cu 2+ Fe 3+ and Mn 2+ were determined in fresh water, while other metals, such as Cr 6+ , Co 2+ , Zn 2+ and Ni 2+ were measured in industrial wastewater. Results of the chemical analysis showed that all measured parameters were found within the limitation either national or international law, except some samples which showed higher values than the permissible limits for some measured parameters. The microbiological analysis exhibited presence of yeasts, fungi and bacteria. Most bacterial isolates were short rod, spore formers as well as coccoid shaped bacteria. The efficiency of water treatment process on the reduction of microbial load was also calculated. Regarding the pathogenic bacteria, data showed that neither water samples nor industrial wastewater contain pathogens when using specific cultivation media for the examination. Furthermore, data proved the possibility of recycling of the tested industrial wastewater on which some microorganisms can grow. Data showed that the percent of heavy metals removal can reach to more than 70% in some cases as a result to bacterial treatment of industrial wastewater

  11. Xenon gas field ion source from a single-atom tip

    Science.gov (United States)

    Lai, Wei-Chiao; Lin, Chun-Yueh; Chang, Wei-Tse; Li, Po-Chang; Fu, Tsu-Yi; Chang, Chia-Seng; Tsong, T. T.; Hwang, Ing-Shouh

    2017-06-01

    Focused ion beam (FIB) systems have become powerful diagnostic and modification tools for nanoscience and nanotechnology. Gas field ion sources (GFISs) built from atomic-size emitters offer the highest brightness among all ion sources and thus can improve the spatial resolution of FIB systems. Here we show that the Ir/W(111) single-atom tip (SAT) can emit high-brightness Xe+ ion beams with a high current stability. The ion emission current versus extraction voltage was analyzed from 150 K up to 309 K. The optimal emitter temperature for maximum Xe+ ion emission was ˜150 K and the reduced brightness at the Xe gas pressure of 1 × 10-4 torr is two to three orders of magnitude higher than that of a Ga liquid metal ion source, and four to five orders of magnitude higher than that of a Xe inductively coupled plasma ion source. Most surprisingly, the SAT emitter remained stable even when operated at 309 K. Even though the ion current decreased with increasing temperature, the current at room temperature (RT) could still reach over 1 pA when the gas pressure was higher than 1 × 10-3 torr, indicating the feasibility of RT-Xe-GFIS for application to FIB systems. The operation temperature of Xe-SAT-GFIS is considerably higher than the cryogenic temperature required for the helium ion microscope (HIM), which offers great technical advantages because only simple or no cooling schemes can be adopted. Thus, Xe-GFIS-FIB would be easy to implement and may become a powerful tool for nanoscale milling and secondary ion mass spectroscopy.

  12. Real-time sensing and discrimination of single chemicals using the channel of phi29 DNA packaging nanomotor.

    Science.gov (United States)

    Haque, Farzin; Lunn, Jennifer; Fang, Huaming; Smithrud, David; Guo, Peixuan

    2012-04-24

    A highly sensitive and reliable method to sense and identify a single chemical at extremely low concentrations and high contamination is important for environmental surveillance, homeland security, athlete drug monitoring, toxin/drug screening, and earlier disease diagnosis. This article reports a method for precise detection of single chemicals. The hub of the bacteriophage phi29 DNA packaging motor is a connector consisting of 12 protein subunits encircled into a 3.6 nm channel as a path for dsDNA to enter during packaging and to exit during infection. The connector has previously been inserted into a lipid bilayer to serve as a membrane-embedded channel. Herein we report the modification of the phi29 channel to develop a class of sensors to detect single chemicals. The lysine-234 of each protein subunit was mutated to cysteine, generating 12-SH ring lining the channel wall. Chemicals passing through this robust channel and interactions with the SH group generated extremely reliable, precise, and sensitive current signatures as revealed by single channel conductance assays. Ethane (57 Da), thymine (167 Da), and benzene (105 Da) with reactive thioester moieties were clearly discriminated upon interaction with the available set of cysteine residues. The covalent attachment of each analyte induced discrete stepwise blockage in current signature with a corresponding decrease in conductance due to the physical blocking of the channel. Transient binding of the chemicals also produced characteristic fingerprints that were deduced from the unique blockage amplitude and pattern of the signals. This study shows that the phi29 connector can be used to sense chemicals with reactive thioesters or maleimide using single channel conduction assays based on their distinct fingerprints. The results demonstrated that this channel system could be further developed into very sensitive sensing devices.

  13. Performance Evaluation of the Single-Phase Split-Source Inverter Using an Alternative DC-AC Configuration

    DEFF Research Database (Denmark)

    Abdelhakim, Ahmed; Mattavelli, Paolo; Davari, Pooya

    2018-01-01

    This paper investigates and evaluates the performance of a single-phase split-source inverter (SSI), where an alternative unidirectional dc-ac configuration is used. Such configuration is utilized in order to use two common-cathode diodes in a single-device instead of using two separate diodes, r...

  14. Steps towards single source--collecting data about quality of life within clinical information systems.

    Science.gov (United States)

    Fritz, Fleur; Ständer, Sonja; Breil, Bernhard; Dugas, Martin

    2010-01-01

    Information about the quality of life from patients being treated in routine medical care is important for the attending physician. This data is also needed in research for example to evaluate the therapy and the course of the disease respectively. Especially skin diseases often negatively affect the quality of life. Therefore we aimed to design a concept to collect such data during treatment and use it for both medical care and research in the setting of dermatology. We performed a workflow analysis and implemented a designated form using the tools of the local clinical information system. Quality of life data is now collected within the clinical information system during treatment and is used for discharge letters, progress overviews as well as research about the treatment and course of disease. This concept which contributes to the single source approach was feasible within dermatology and is ready to be expanded into other domains.

  15. I19, the small-molecule single-crystal diffraction beamline at Diamond Light Source.

    Science.gov (United States)

    Nowell, Harriott; Barnett, Sarah A; Christensen, Kirsten E; Teat, Simon J; Allan, David R

    2012-05-01

    The dedicated small-molecule single-crystal X-ray diffraction beamline (I19) at Diamond Light Source has been operational and supporting users for over three years. I19 is a high-flux tunable-wavelength beamline and its key details are described in this article. Much of the work performed on the beamline involves structure determination from small and weakly diffracting crystals. Other experiments that have been supported to date include structural studies at high pressure, studies of metastable species, variable-temperature crystallography, studies involving gas exchange in porous materials and structural characterizations that require analysis of the diffuse scattering between Bragg reflections. A range of sample environments to facilitate crystallographic studies under non-ambient conditions are available as well as a number of options for automation. An indication of the scope of the science carried out on the beamline is provided by the range of highlights selected for this paper.

  16. Prograph Based Analysis of Single Source Shortest Path Problem with Few Distinct Positive Lengths

    Directory of Open Access Journals (Sweden)

    B. Bhowmik

    2011-08-01

    Full Text Available In this paper we propose an experimental study model S3P2 of a fast fully dynamic programming algorithm design technique in finite directed graphs with few distinct nonnegative real edge weights. The Bellman-Ford’s approach for shortest path problems has come out in various implementations. In this paper the approach once again is re-investigated with adjacency matrix selection in associate least running time. The model tests proposed algorithm against arbitrarily but positive valued weighted digraphs introducing notion of Prograph that speeds up finding the shortest path over previous implementations. Our experiments have established abstract results with the intention that the proposed algorithm can consistently dominate other existing algorithms for Single Source Shortest Path Problems. A comparison study is also shown among Dijkstra’s algorithm, Bellman-Ford algorithm, and our algorithm.

  17. Highly efficient photonic nanowire single-photon sources for quantum information applications

    DEFF Research Database (Denmark)

    Gregersen, Niels; Claudon, J.; Munsch, M.

    2013-01-01

    to a collection efficiency of only 1-2 %, and efficient light extraction thus poses a major challenge in SPS engineering. Initial efforts to improve the efficiency have exploited cavity quantum electrodynamics (cQED) to efficiently couple the emitted photons to the optical cavity mode. An alternative approach......Within the emerging field of optical quantum information processing, the current challenge is to construct the basic building blocks for the quantum computing and communication systems. A key component is the singlephoton source (SPS) capable of emitting single photons on demand. Ideally, the SPS...... must feature near-unity efficiency, where the efficiency is defined as the number of detected photons per trigger, the probability g(2)(τ=0) of multi-photon emission events should be 0 and the emitted photons are required to be indistinguishable. An optically or electrically triggered quantum light...

  18. Morphology-controlled synthesis of ZnS nanostructures via single-source approaches

    International Nuclear Information System (INIS)

    Han, Qiaofeng; Qiang, Fei; Wang, Meijuan; Zhu, Junwu; Lu, Lude; Wang, Xin

    2010-01-01

    ZnS nanoparticles of various morphologies, including hollow or solid spherical, and polyhedral shape, were synthesized from single-source precursor Zn(S 2 COC 2 H 5 ) 2 without using a surfactant or template. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy. The results indicate that ZnS hollow and solid spheres assembled by nanoparticles can be easily generated by the solution phase thermalysis of Zn(S 2 COC 2 H 5 ) 2 at 80 o C using N, N-dimethylformamide (DMF) and ethylene glycol (EG) or water as solvents, respectively, whereas solvothermal process of the same precursor led to ZnS nanoparticles of polyhedral shape with an average size of 120 nm. The optical properties of these ZnS nanostructures were investigated by room-temperature luminescence and UV-vis diffuse reflectance spectra.

  19. Formation of Micro and Mesoporous Amorphous Silica-Based Materials from Single Source Precursors

    Directory of Open Access Journals (Sweden)

    Mohd Nazri Mohd Sokri

    2016-03-01

    Full Text Available Polysilazanes functionalized with alkoxy groups were designed and synthesized as single source precursors for fabrication of micro and mesoporous amorphous silica-based materials. The pyrolytic behaviors during the polymer to ceramic conversion were studied by the simultaneous thermogravimetry-mass spectrometry (TG-MS analysis. The porosity of the resulting ceramics was characterized by the N2 adsorption/desorption isotherm measurements. The Fourier transform infrared spectroscopy (FT-IR and Raman spectroscopic analyses as well as elemental composition analysis were performed on the polymer-derived amorphous silica-based materials, and the role of the alkoxy group as a sacrificial template for the micro and mesopore formations was discussed from a viewpoint to establish novel micro and mesoporous structure controlling technologies through the polymer-derived ceramics (PDCs route.

  20. Influence of modulation method on using LC-traps with single-phase voltage source converters

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Min, Huang; Bai, Haofeng

    2015-01-01

    The switching-frequency LC-trap filter has recently been employed with high-order passive filters for Voltage Source Inverters (VSIs). This paper investigates the influence of modulation method on using the LC-traps with single-phase VSIs. Two-level (bipolar) and three-level (unipolar) modulations...... that include phase distortion and alternative phase opposition distortion methods are analyzed. Harmonic filtering performances of four LC-trap-based filters with different locations of LC-traps are compared. It is shown that the use of parallel-LC-traps in series with filter inductors, either grid...... or converter side, has a worse harmonic filtering performance than using series-LC-trap in the shunt branch. Simulations and experimental results are presented for verifications....

  1. Reference-Frame-Independent and Measurement-Device-Independent Quantum Key Distribution Using One Single Source

    Science.gov (United States)

    Li, Qian; Zhu, Changhua; Ma, Shuquan; Wei, Kejin; Pei, Changxing

    2018-04-01

    Measurement-device-independent quantum key distribution (MDI-QKD) is immune to all detector side-channel attacks. However, practical implementations of MDI-QKD, which require two-photon interferences from separated independent single-photon sources and a nontrivial reference alignment procedure, are still challenging with current technologies. Here, we propose a scheme that significantly reduces the experimental complexity of two-photon interferences and eliminates reference frame alignment by the combination of plug-and-play and reference frame independent MDI-QKD. Simulation results show that the secure communication distance can be up to 219 km in the finite-data case and the scheme has good potential for practical MDI-QKD systems.

  2. Natural and anthropogenic sources of chemical elements in sediment profiles from the Admiralty Bay, Antarctica

    International Nuclear Information System (INIS)

    Ribeiro, A.P.; Figueira, R.C.L.; Silva, C.R.A.; Franca, E.J.; Mahiques, M.M.; Bicego, M.C.; Montone, R.C.

    2010-01-01

    Full text: The Antarctic Continent and its surrounding Southern Ocean are the least known regions of the world, mainly due to the most unfavorable climatic conditions, in which sampling for environmental studies are quite difficult to be carried out. Admiralty Bay on the King George Island (Antarctica) hosts three research stations, Arctowski, Ferraz and Macchu Picchu, which are operate by Poland, Brazil and Peru, respectively. Therefore, human activities in this region require the use of fossil fuel as an energy source, which is also considered the main source of pollutants in the area. This work investigated the natural and anthropogenic inputs of chemical elements in sediment samples collected close to Ferraz Station, during the 25 th Brazilian Antarctica Expedition in the 2006/2007 austral summer. Total concentrations of As, Zn and Sc were determined in sediment profiles by using the Instrumental Neutron Activation Analysis (INAA). The analytical technique employed to determine the major elements such as Fe, Al, Ca, Mn and Ti was X-ray fluorescence (XRF) spectroscopy. For estimating the sedimentation rate, High Resolution Gamma Ray Spectrometry was applied to determine 137 Cs, after 30 days, to achieve secular equilibrium. According to the enrichment factor and the geochronology analysis, the most relevant enrichment was observed for As in the sediment samples, suggesting the increasing of its content due to the Brazilian activities in the Admiralty Bay. Despite some evidences of anthropogenic contribution, the study indicated low level of environmental risk for this region. (author)

  3. Identification of recharge sources of groundwater in the Joganjigawa Fan, Toyama, using isotopic and chemical data

    International Nuclear Information System (INIS)

    Mizutani, Yoshihiko; Sakurai, Kazuhiro

    1988-01-01

    The Joganjigawa Fan, an area of rice farming of 50 km 2 lies to the southeast of Toyama city and was formed in the Late Quarternary by terrestrial gravel deposition by the Joganji River. To identify sources of water in shallow aquifers (maximum depth 100 m) beneath the fan, studies of hydrogen and oxygen isotopes in the ground and surface waters of the fan have been made. Major rivers flowing onto the fan are from higher-altitude catchments (maximum altitude 3000 m) and have lower δ 18 D and δO values than rainfall on the fan. The isotopic measurements indicate that the aquifers are mainly recharged by infiltration of the irrigation water, which is derived from the Joganji River, and local precipitations from the surface. In narrow areas along the Jinzu and its tributary the Kumano Rivers, the aquifers are locally recharged from the Jinzu and Kumano Rivers, respectively. Chemical data support this identification of sources of water in the aquifers. (author)

  4. Chemical and isotopic methods for characterization of pollutant sources in rain water

    International Nuclear Information System (INIS)

    Verma, M.P.

    1996-01-01

    The acid rain formation is related with industrial pollution. An isotopic and chemical study of the spatial and temporary distribution of the acidity in the rain gives information about the acidity source. The predominant species in the acid rain are nitrates and sulfates. For the rain monitoring is required the determination of the anion species such as HCO 3 , Cl, SO 4 , NO 3 and p H. So it was analyzed the cations Na + , K + , Ca 2+ and Mg 2+ to determine the quality analysis. All of them species can be determined with enough accuracy, except HCO 3 by modern equipment such as, liquid chromatograph, atomic absorption, etc. The HCO 3 concentration is determined by traditional methods like acid-base titration. This work presents the fundamental concepts of the titration method for samples with low alkalinity (carbonic species), for rain water. There is presented a general overview over the isotopic methods for the characterization of the origin of pollutant sources in the rain. (Author)

  5. Chemical composition, sources, and aging process of submicron aerosols in Beijing: Contrast between summer and winter

    Science.gov (United States)

    Hu, Weiwei; Hu, Min; Hu, Wei; Jimenez, Jose L.; Yuan, Bin; Chen, Wentai; Wang, Ming; Wu, Yusheng; Chen, Chen; Wang, Zhibin; Peng, Jianfei; Zeng, Limin; Shao, Min

    2016-02-01

    To investigate the seasonal characteristics of submicron aerosol (PM1) in Beijing urban areas, a high-resolution time-of-flight aerosol-mass-spectrometer (HR-ToF-AMS) was utilized at an urban site in summer (August to September 2011) and winter (November to December 2010), coupled with multiple state of the art online instruments. The average mass concentrations of PM1 (60-84 µg m-3) and its chemical compositions in different campaigns of Beijing were relatively consistent in recent years. In summer, the daily variations of PM1 mass concentrations were stable and repeatable. Eighty-two percent of the PM1 mass concentration on average was composed of secondary species, where 62% is secondary inorganic aerosol and 20% secondary organic aerosol (SOA). In winter, PM1 mass concentrations changed dramatically because of the different meteorological conditions. The high average fraction (58%) of primary species in PM1 including primary organic aerosol (POA), black carbon, and chloride indicates primary emissions usually played a more important role in the winter. However, aqueous chemistry resulting in efficient secondary formation during occasional periods with high relative humidity may also contribute substantially to haze in winter. Results of past OA source apportionment studies in Beijing show 45-67% of OA in summer and 22-50% of OA in winter can be composed of SOA. Based on the source apportionment results, we found 45% POA in winter and 61% POA in summer are from nonfossil sources, contributed by cooking OA in both seasons and biomass burning OA (BBOA) in winter. Cooking OA, accounting for 13-24% of OA, is an important nonfossil carbon source in all years of Beijing and should not be neglected. The fossil sources of POA include hydrocarbon-like OA from vehicle emissions in both seasons and coal combustion OA (CCOA) in winter. The CCOA and BBOA were the two main contributors (57% of OA) for the highest OA concentrations (>100 µg m-3) in winter. The POA

  6. Electrical Transport and Low-Frequency Noise in Chemical Vapor Deposited Single-Layer MoS2 Devices

    Science.gov (United States)

    2014-03-18

    PERSON 19b. TELEPHONE NUMBER Pullickel Ajayan Deepak Sharma, Matin Amani, Abhishek Motayed, Pankaj B. Shah, A. Glen Birdwell, Sina Najmaei, Pulickel...in chemical vapor deposited single-layer MoS2 devices Deepak Sharma1,2, Matin Amani3, Abhishek Motayed2,4, Pankaj B Shah3, A Glen Birdwell3, Sina

  7. Automatic vs. manual curation of a multi-source chemical dictionary: the impact on text mining

    Science.gov (United States)

    2010-01-01

    Background Previously, we developed a combined dictionary dubbed Chemlist for the identification of small molecules and drugs in text based on a number of publicly available databases and tested it on an annotated corpus. To achieve an acceptable recall and precision we used a number of automatic and semi-automatic processing steps together with disambiguation rules. However, it remained to be investigated which impact an extensive manual curation of a multi-source chemical dictionary would have on chemical term identification in text. ChemSpider is a chemical database that has undergone extensive manual curation aimed at establishing valid chemical name-to-structure relationships. Results We acquired the component of ChemSpider containing only manually curated names and synonyms. Rule-based term filtering, semi-automatic manual curation, and disambiguation rules were applied. We tested the dictionary from ChemSpider on an annotated corpus and compared the results with those for the Chemlist dictionary. The ChemSpider dictionary of ca. 80 k names was only a 1/3 to a 1/4 the size of Chemlist at around 300 k. The ChemSpider dictionary had a precision of 0.43 and a recall of 0.19 before the application of filtering and disambiguation and a precision of 0.87 and a recall of 0.19 after filtering and disambiguation. The Chemlist dictionary had a precision of 0.20 and a recall of 0.47 before the application of filtering and disambiguation and a precision of 0.67 and a recall of 0.40 after filtering and disambiguation. Conclusions We conclude the following: (1) The ChemSpider dictionary achieved the best precision but the Chemlist dictionary had a higher recall and the best F-score; (2) Rule-based filtering and disambiguation is necessary to achieve a high precision for both the automatically generated and the manually curated dictionary. ChemSpider is available as a web service at http://www.chemspider.com/ and the Chemlist dictionary is freely available as an XML file in

  8. Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide

    DEFF Research Database (Denmark)

    Daveau, Raphaël S.; Balram, Krishna C.; Pregnolato, Tommaso

    2017-01-01

    Many photonic quantum information processing applications would benefit from a high brightness, fiber-coupled source of triggered single photons. Here, we present a fiber-coupled photonic-crystal waveguide (PCWG) singlephoton source relying on evanescent coupling of the light field from a tapered...

  9. 77 FR 30294 - Award of a Single Source Cooperative Agreement Grant to the Congressional Hunger Center in...

    Science.gov (United States)

    2012-05-22

    ... Source Cooperative Agreement Grant to the Congressional Hunger Center in Washington, DC AGENCY: Office of...) announces the award of a single source cooperative agreement to the Congressional Hunger Center in Washington, DC to support a Bill Emerson National Hunger Fellow. C.F.D.A. Number: 93.647. Statutory Authority...

  10. 75 FR 62838 - Award of a Single-Source Expansion Supplement to the Research Foundation of CUNY on Behalf of...

    Science.gov (United States)

    2010-10-13

    ...-Source Expansion Supplement to the Research Foundation of CUNY on Behalf of Hunter College School of... single-source program expansion supplement to the Research Foundation of CUNY on behalf of Hunter College... removal, of the relative's options to become a placement resource for the child. The supplemental funding...

  11. Physical and Liquid Chemical Simulant Formulations for Transuranic Waste in Hanford Single-Shell Tanks

    International Nuclear Information System (INIS)

    Rassat, Scot D.; Bagaasen, Larry M.; Mahoney, Lenna A.; Russell, Renee L.; Caldwell, Dustin D.; Mendoza, Donaldo P.

    2003-01-01

    CH2M HILL Hanford Group, Inc. (CH2M HILL) is in the process of identifying and developing supplemental process technologies to accelerate the tank waste cleanup mission. A range of technologies is being evaluated to allow disposal of Hanford waste types, including transuranic (TRU) process wastes. Ten Hanford single-shell tanks (SSTs) have been identified whose contents may meet the criteria for designation as TRU waste: the B-200 series (241-B-201, -B-202, -B 203, and B 204), the T-200 series (241-T-201, T 202, -T-203, and -T-204), and Tanks 241-T-110 and -T-111. CH2M HILL has requested vendor proposals to develop a system to transfer and package the contact-handled TRU (CH-TRU) waste retrieved from the SSTs for subsequent disposal at the Waste Isolation Pilot Plant (WIPP). Current plans call for a modified ''dry'' retrieval process in which a liquid stream is used to help mobilize the waste for retrieval and transfer through lines and vessels. This retrieval approach requires that a significant portion of the liquid be removed from the mobilized waste sludge in a ''dewatering'' process such as centrifugation prior to transferring to waste packages in a form suitable for acceptance at WIPP. In support of CH2M HILL's effort to procure a TRU waste handling and packaging process, Pacific Northwest National Laboratory (PNNL) developed waste simulant formulations to be used in evaluating the vendor's system. For the SST CH-TRU wastes, the suite of simulants includes (1) nonradioactive chemical simulants of the liquid fraction of the waste, (2) physical simulants that reproduce the important dewatering properties of the waste, and (3) physical simulants that can be used to mimic important rheological properties of the waste at different points in the TRU waste handling and packaging process. To validate the simulant formulations, their measured properties were compared with the limited data for actual TRU waste samples. PNNL developed the final simulant formulations

  12. Optically pumped semiconductor lasers: Conception and characterization of a single mode source for Cesium atoms manipulation

    International Nuclear Information System (INIS)

    Cocquelin, B.

    2009-02-01

    Lasers currently used in atomic clocks or inertial sensors are suffering from a lack of power, narrow linewidth or compactness for future spatial missions. Optically pumped semiconductor lasers, which combine the approach of classical solid state lasers and the engineering of semiconductor laser, are considered here as a candidate to a metrological laser source dedicated to the manipulation of Cesium atoms in these instruments. These lasers have demonstrated high power laser emission in a circular single transverse mode, as well as single longitudinal mode emission, favoured by the semiconductor structure and the external cavity design. We study the definition and the characterization of a proper semiconductor structure for the cooling and the detection of Cesium atoms at 852 nm. A compact and robust prototype tunable on the Cesium D2 hyperfine structure is built. The laser frequency is locked to an atomic transition thanks to a saturated absorption setup. The emission spectral properties are investigated, with a particular attention to the laser frequency noise and the laser linewidth. Finally, we describe and model the thermal properties of the semiconductor structure, which enables the simulation of the laser power characteristic. The experimental parameters are optimised to obtain the maximum output power with our structure. Thanks to our analysis, we propose several ways to overcome these limitations, by reducing the structure heating. (authors)

  13. Design and Fabrication of a Single Cusp Magnetic Field Type Hydrogen ion Source

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su Hun

    1996-02-15

    A single-cusp type hydrogen ion source has been designed and fabricated. In order to increase the efficiency of the plasma production, a single-cusp type magnet circuit and an electrostatic reflector were installed. The Poission Group Code was used to predict the distribution of magnetic field in the plasma chamber. In order to design the accel.-decel. extraction part for forming the ion beam with low emmitance and high current density, EGUN code was used. The results of calculation show that the configuration of plasma electrode strongly affects the beam quality and the deceleration electrode only functions the repression of the electron stream. When the plasma-accel potential is -20kV and an accel.-decel. potential is 1kV, the calculated extraction current, normalized emittance and perveance are 20.6mA, 1.28x 10{sup -7} m {center_dot} rad and 7.87 x 10{sup -9}A {center_dot} V{sup -3/2}, respectively. This study on the improvement of beam quality and the achievement of high ion beam current will contribute to the analysis of fusion plasma and the research on the surface physics.

  14. Design and Fabrication of a Single Cusp Magnetic Field Type Hydrogen ion Source

    International Nuclear Information System (INIS)

    Kim, Su Hun

    1996-02-01

    A single-cusp type hydrogen ion source has been designed and fabricated. In order to increase the efficiency of the plasma production, a single-cusp type magnet circuit and an electrostatic reflector were installed. The Poission Group Code was used to predict the distribution of magnetic field in the plasma chamber. In order to design the accel.-decel. extraction part for forming the ion beam with low emmitance and high current density, EGUN code was used. The results of calculation show that the configuration of plasma electrode strongly affects the beam quality and the deceleration electrode only functions the repression of the electron stream. When the plasma-accel potential is -20kV and an accel.-decel. potential is 1kV, the calculated extraction current, normalized emittance and perveance are 20.6mA, 1.28x 10 -7 m · rad and 7.87 x 10 -9 A · V -3/2 , respectively. This study on the improvement of beam quality and the achievement of high ion beam current will contribute to the analysis of fusion plasma and the research on the surface physics

  15. Measurement system of correlation functions of microwave single photon source in real time

    Science.gov (United States)

    Korenkov, A.; Dmitriev, A.; Astafiev, O.

    2018-02-01

    Several quantum setups, such as quantum key distribution networks[1] and quantum simulators (e.g. boson sampling), by their design rely on single photon sources (SPSs). These quantum setups were demonstrated to operate in optical frequency domain. However, following the steady advances in circuit quantum electrodynamics, a proposal has been made recently[2] to demonstrate boson sampling with microwave photons. This in turn requires the development of reliable microwave SPS. It's one of the most important characteristics are the first-order and the second-order correlation functions g1 and g2. The measurement technique of g1 and g2 is significantly different from that in the optical domain [3],[4] because of the current unavailability of microwave single-photon detectors. In particular, due to high levels of noise present in the system a substantial amount of statistics in needed to be acquired. This work presents a platform for measurement of g1 and g2 that processes the incoming data in real time, maximizing the efficiency of data acquisition. The use of field-programmable gate array (FPGA) electronics, common in similar experiments[3] but complex in programming, is avoided; instead, the calculations are performed on a standard desktop computer. The platform is used to perform the measurements of the first-order and the second-order correlation functions of the microwave SPS.

  16. Preliminary study of single contrast enhanced dual energy heart imaging using dual-source CT

    International Nuclear Information System (INIS)

    Peng Jin; Zhang Longjiang; Zhou Changsheng; Lu Guangming; Ma Yan; Gu Haifeng

    2009-01-01

    Objective: To evaluate the feasibility and preliminary applications of single contrast enhanced dual energy heart imaging using dual-source CT (DSCT). Methods: Thirty patients underwent dual energy heart imaging with DSCT, of which 6 cases underwent SPECT or DSA within one week. Two experienced radiologists assessed image quality of coronary arteries and iodine map of myocardium. and correlated the coronary artery stenosis with the perfusion distribution of iodine map. Results: l00% (300/300) segments reached diagnostic standards. The mean score of image for all patients was 4.68±0.57. Mural coronary artery was present in 10 segments in S cases, atherosclerotic plaques in 32 segments in 12 cases, of which 20 segments having ≥50% stenosis, 12 segments ≤50% stenosis; dual energy CT coronary angiography was consistent with the DSA in 3 patients. 37 segmental perfusion abnormalities on iodine map were found in 15 cases, including 28 coronary blood supply segment narrow segment and 9 no coronary stenosis (including three negative segments in SPECD. Conclusion: Single contrast enhanced dual energy heart imaging can provide good coronary artery and myocardium perfusion images in the patients with appropriate heart rate, which has a potential to be used in the clinic and further studies are needed. (authors)

  17. Measuring temporal summation in visual detection with a single-photon source.

    Science.gov (United States)

    Holmes, Rebecca; Victora, Michelle; Wang, Ranxiao Frances; Kwiat, Paul G

    2017-11-01

    Temporal summation is an important feature of the visual system which combines visual signals that arrive at different times. Previous research estimated complete summation to last for 100ms for stimuli judged "just detectable." We measured the full range of temporal summation for much weaker stimuli using a new paradigm and a novel light source, developed in the field of quantum optics for generating small numbers of photons with precise timing characteristics and reduced variance in photon number. Dark-adapted participants judged whether a light was presented to the left or right of their fixation in each trial. In Experiment 1, stimuli contained a stream of photons delivered at a constant rate while the duration was systematically varied. Accuracy should increase with duration as long as the later photons can be integrated with the proceeding ones into a single signal. The temporal integration window was estimated as the point that performance no longer improved, and was found to be 650ms on average. In Experiment 2, the duration of the visual stimuli was kept short (100ms or photons was varied to explore the efficiency of summation over the integration window compared to Experiment 1. There was some indication that temporal summation remains efficient over the integration window, although there is variation between individuals. The relatively long integration window measured in this study may be relevant to studies of the absolute visual threshold, i.e., tests of single-photon vision, where "single" photons should be separated by greater than the integration window to avoid summation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Single-event burnout hardening of planar power MOSFET with partially widened trench source

    Science.gov (United States)

    Lu, Jiang; Liu, Hainan; Cai, Xiaowu; Luo, Jiajun; Li, Bo; Li, Binhong; Wang, Lixin; Han, Zhengsheng

    2018-03-01

    We present a single-event burnout (SEB) hardened planar power MOSFET with partially widened trench sources by three-dimensional (3D) numerical simulation. The advantage of the proposed structure is that the work of the parasitic bipolar transistor inherited in the power MOSFET is suppressed effectively due to the elimination of the most sensitive region (P-well region below the N+ source). The simulation result shows that the proposed structure can enhance the SEB survivability significantly. The critical value of linear energy transfer (LET), which indicates the maximum deposited energy on the device without SEB behavior, increases from 0.06 to 0.7 pC/μm. The SEB threshold voltage increases to 120 V, which is 80% of the rated breakdown voltage. Meanwhile, the main parameter characteristics of the proposed structure remain similar with those of the conventional planar structure. Therefore, this structure offers a potential optimization path to planar power MOSFET with high SEB survivability for space and atmospheric applications. Project supported by the National Natural Science Foundation of China (Nos. 61404161, 61404068, 61404169).

  19. Compact PEM fuel cell system combined with all-in-one hydrogen generator using chemical hydride as a hydrogen source

    International Nuclear Information System (INIS)

    Kim, Jincheol; Kim, Taegyu

    2015-01-01

    Highlights: • Compact fuel cell system was developed for a portable power generator. • Novel concept using an all-in-one reactor for hydrogen generation was proposed. • Catalytic reactor, hydrogen chamber and separator were combined in a volume. • The system can be used to drive fuel cell-powered unmanned autonomous systems. - Abstract: Compact fuel cell system was developed for a portable power generator. The power generator features a polymer electrolyte membrane fuel cell (PEMFC) using a chemical hydride as a hydrogen source. The hydrogen generator extracted hydrogen using a catalytic hydrolysis from a sodium borohydride alkaline solution. A novel concept using an all-in-one reactor was proposed in which a catalyst, hydrogen chamber and byproduct separator were combined in a volume. In addition, the reactor as well as a pump, cooling fans, valves and controller was integrated in a single module. A 100 W PEMFC stack was connected with the hydrogen generator and was evaluated at various load conditions. It was verified that the stable hydrogen supply was achieved and the developed system can be used to drive fuel cell-powered unmanned autonomous systems.

  20. Chemical vapor deposition growth of single-walled carbon nanotubes with controlled structures for nanodevice applications.

    Science.gov (United States)

    Chen, Yabin; Zhang, Jin

    2014-08-19

    Single-walled carbon nanotubes (SWNTs), a promising substitute to engineer prospective nanoelectronics, have attracted much attention because of their superb structures and physical properties. The unique properties of SWNTs rely sensitively on their specific chiral structures, including the diameters, chiral angles, and handedness. Furthermore, high-performance and integrated circuits essentially require SWNT samples with well-aligned arrays, of single conductive type and of pure chirality. Although much effort has been devoted to chemical vapor deposition (CVD) growth of SWNTs, their structure control, growth mechanism, and structural characterizations are still the primary obstacles for the fabrication and application of SWNT-based nanodevices. In this Account, we focus on our established CVD growth methodology to fulfill the requirements of nanodevice applications. A rational strategy was successfully exploited to construct complex architectures, selectively enrich semiconducting (s) or metallic (m) SWNTs, and control chirality. First, well-aligned and highly dense SWNT arrays are beneficial for nanodevice integration. For the directed growth mode, anisotropic interactions between the SWNTs and the crystallographic structure of substrate are crucial for their growth orientation. Just as crystals possess various symmetries, SWNTs with controlled geometries have the corresponding turning angles. Their complex architectures come from the synergetic effect of lattice and gas flow directed modes. Especially, the aligned orientations of SWNTs on graphite are chirality-selective, and their chiral angles, handedness, and (n,m) index have been conveniently and accurately determined. Second, UV irradiation and sodium dodecyl sulfate (SDS) washing-off methods have been explored to selectively remove m-SWNTs, leaving only s-SWNT arrays on the surface. Moreover, the UV-assisted technique takes the advantages of low cost and high efficiency and it directly produces a high

  1. Tungsten chemical vapor deposition characteristics using SiH4 in a single wafer system

    International Nuclear Information System (INIS)

    Rosler, R.S.; Mendonca, J.; Rice, M.J. Jr.

    1988-01-01

    Several workers have recently begun using silane as a high-rate, low-temperature alternative to hydrogen for the reduction of WF 6 in the chemical vapor deposition of W. The deposition and film characteristics of both selective and blanket W using this new chemistry are explored in a radiantly heated single wafer system using closed-loop temperature control with a thermocouple in direct contact with the backside of the wafer. Selective W deposition rates of up to 1.5 μm/min were measured over the temperature range 250--550 0 C with blanket W rates typically 2--5 x lower. Resistivity is in the 10--15 μΩcm range at 300 0 C for SiH 4 /WF 6 ratios of 0.2 to 1.0, while above 400 0 C the range is 7.5--8.5 μΩcm. Si content in the W films is quite low at 10 16 to 10 17 atoms/cm 3 . Adhesion to silicon is excellent at temperatures of 350 0 C and above. Selective W using SiH 4 reduction for doped silicon contact fill shows none of the consumption or encroachment problems common to H 2 reduction, although selectivity is more sensitive. Contact resistance for p + and n + silicon contacts are comparable to aluminum controls and to previously published data. Blanket deposition into narrow geometries gives ≥0% step coverage and without keyholes in the 250--450 0 C deposition temperature range. For low-SiH 4 flows, deposition at 500 0 C causes small keyholes, while at 550 0 C even larger keyholes result. At higher SiH 4 flows, keyholes are typically not seen from 250 to 550 0 C

  2. Reactive hydro- end chlorocarbons in the troposphere and lower stratosphere : sources, distributions, and chemical impact

    Science.gov (United States)

    Scheeren, H. A.

    2003-09-01

    The work presented in this thesis focuses on measurements of chemical reactive C2 C7 non-methane hydrocarbons (NMHC) and C1 C2 chlorocarbons with atmospheric lifetimes of a few hours up to about a year. The group of reactive chlorocarbons includes the most abundant atmospheric species with large natural sources, which are chloromethane (CH3Cl), dichloromethane (CH2Cl2), and trichloromethane (CHCl3), and tetrachloroethylene (C2Cl4) with mainly anthropogenic sources. The NMHC and chlorocarbons are present at relatively low quantities in our atmosphere (10-12 10-9 mol mol-1 of air). Nevertheless, they play a key role in atmospheric photochemistry. For example, the oxidation of NMHC plays a dominant role in the formation of ozone in the troposphere, while the photolysis of chlorocarbons contributes to enhanced ozone depletion in the stratosphere. In spite of their important role, however, their global source and sinks budgets are still poorly understood. Hence, this study aims at improving our understanding of the sources, distribution, and chemical role of reactive NMHC and chlorocarbons in the troposphere and lower stratosphere. To meet this aim, a comprehensive data set of selected C2 C7 NMHC and chlorocarbons has been analyzed, derived from six aircraft measurement campaigns with two different jet aircrafts (the Dutch TUD/NLR Cessna Citation PH-LAB, and the German DLR Falcon) conducted between 1995 and 2001 (STREAM 1995 and 1997 and 1998, LBA-CLAIRE 1998, INDOEX 1999, MINOS 2001). The NMHC and chlorocarbons have been detected by gas-chromatography (GC-FID/ECD) in pre-concentrated whole air samples collected in stainless steel canister on-board the measurement aircrafts. The measurement locations include tropical (Maldives/Indian Ocean and Surinam), midlatitude (Western Europe and Canada) and polar regions (Lapland/northern Sweden) between the equator to about 70ºN, covering different seasons and pollution levels in the troposphere and lower stratosphere. Of

  3. VizieR Online Data Catalog: Chemical properties of red MSX sources (RMSs) (Yu+, 2016)

    Science.gov (United States)

    Yu, N.; Xu, J.

    2017-05-01

    Our molecular line data come from the Millimetre Astronomy Legacy Team Survey at 90GHz (MALT90) (e.g., Foster+ 2011, J/ApJS/197/25; Jackson+ 2013PASA...30...57J). This project is performed with Mopra, a 22m single-dish radio telescope located near Coonabarabran in New South Wales, Australia. The angular resolution of Mopra is 38", with a beam efficiency between 0.49 at 86GHz and 0.42 at 115GHz. The pointing accuracy of the main MALT90 maps is about 8", and the absolute flux uncertainty is in the range of 10%-17% depending on the transition in question. The target clumps of this survey are selected from the 870um Atacama Pathfinder Experiment (APEX) Telescope Large Area Survey of the Galaxy (ATLASGAL; Schuller+ 2009A&A...504..415S; Contreras+ 2013, J/A+A/549/A45; superseded by J/A+A/568/A41). Using Australia Telescope Compact Array (ATCA), Urquhart+ (2007, J/A+A/461/11) observed radio emissions of 826 Red Midcourse Space Experiment (MSX) Sources (RMSs) in the southern sky. We also have checked our sources with the data taken from the Sydney University Molonglo Sky Survey (SUMSS) carried out at 843MHz with the Molonglo Observatory Synthesis Telescope (MOST; Mauch+ 2003, VIII/81). See section 2 for further explanations. (5 data files).

  4. Single sources in the low-frequency gravitational wave sky: properties and time to detection by pulsar timing arrays

    Science.gov (United States)

    Kelley, Luke Zoltan; Blecha, Laura; Hernquist, Lars; Sesana, Alberto; Taylor, Stephen R.

    2018-06-01

    We calculate the properties, occurrence rates and detection prospects of individually resolvable `single sources' in the low-frequency gravitational wave (GW) spectrum. Our simulations use the population of galaxies and massive black hole binaries from the Illustris cosmological hydrodynamic simulations, coupled to comprehensive semi-analytic models of the binary merger process. Using mock pulsar timing arrays (PTA) with, for the first time, varying red-noise models, we calculate plausible detection prospects for GW single sources and the stochastic GW background (GWB). Contrary to previous results, we find that single sources are at least as detectable as the GW background. Using mock PTA, we find that these `foreground' sources (also `deterministic'/`continuous') are likely to be detected with ˜20 yr total observing baselines. Detection prospects, and indeed the overall properties of single sources, are only moderately sensitive to binary evolution parameters - namely eccentricity and environmental coupling, which can lead to differences of ˜5 yr in times to detection. Red noise has a stronger effect, roughly doubling the time to detection of the foreground between a white-noise only model (˜10-15 yr) and severe red noise (˜20-30 yr). The effect of red noise on the GWB is even stronger, suggesting that single source detections may be more robust. We find that typical signal-to-noise ratios for the foreground peak near f = 0.1 yr-1, and are much less sensitive to the continued addition of new pulsars to PTA.

  5. Decontamination of chemical and biological warfare agents with a single multi-functional material.

    Science.gov (United States)

    Amitai, Gabi; Murata, Hironobu; Andersen, Jill D; Koepsel, Richard R; Russell, Alan J

    2010-05-01

    We report the synthesis of new polymers based on a dimethylacrylamide-methacrylate (DMAA-MA) co-polymer backbone that support both chemical and biological agent decontamination. Polyurethanes containing the redox enzymes glucose oxidase and horseradish peroxidase can convert halide ions into active halogens and exert striking bactericidal activity against gram positive and gram negative bacteria. New materials combining those biopolymers with a family of N-alkyl 4-pyridinium aldoxime (4-PAM) halide-acrylate co-polymers offer both nucleophilic activity for the detoxification of organophosphorus nerve agents and internal sources of halide ions for generation of biocidal activity. Generation of free bromine and iodine was observed in the combined material resulting in bactericidal activity of the enzymatically formed free halogens that caused complete kill of E. coli (>6 log units reduction) within 1 h at 37 degrees C. Detoxification of diisopropylfluorophosphate (DFP) by the polyDMAA MA-4-PAM iodide component was dose-dependent reaching 85% within 30 min. A subset of 4-PAM-halide co-polymers was designed to serve as a controlled release reservoir for N-hydroxyethyl 4-PAM (HE 4-PAM) molecules that reactivate nerve agent-inhibited acetylcholinesterase (AChE). Release rates for HE 4-PAM were consistent with hydrolysis of the HE 4-PAM from the polymer backbone. The HE 4-PAM that was released from the polymer reactivated DFP-inhibited AChE at a similar rate to the oxime antidote 4-PAM. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  6. Physico-chemical characterisation of material fractions in residual and source-segregated household waste in Denmark

    DEFF Research Database (Denmark)

    Götze, Ramona; Pivnenko, Kostyantyn; Boldrin, Alessio

    2016-01-01

    differences in the physico-chemical properties of residual and source-segregated waste fractions were found for many parameters related to organic matter, but also for elements of environmental concern. Considerable differences in potentially toxic metal concentrations between the individual recyclable......Physico-chemical waste composition data are paramount for the assessment and planning of waste management systems. However, the applicability of data is limited by the regional, temporal and technical scope of waste characterisation studies. As Danish and European legislation aims for higher...... recycling rates evaluation of source-segregation and recycling chains gain importance. This paper provides a consistent up-to-date dataset for 74 physico-chemical parameters in 49 material fractions from residual and 24 material fractions from source-segregated Danish household waste. Significant...

  7. Source apportionment of fine particulate matter in China in 2013 using a source-oriented chemical transport model.

    Science.gov (United States)

    Shi, Zhihao; Li, Jingyi; Huang, Lin; Wang, Peng; Wu, Li; Ying, Qi; Zhang, Hongliang; Lu, Li; Liu, Xuejun; Liao, Hong; Hu, Jianlin

    2017-12-01

    China has been suffering high levels of fine particulate matter (PM 2.5 ). Designing effective PM 2.5 control strategies requires information about the contributions of different sources. In this study, a source-oriented Community Multiscale Air Quality (CMAQ) model was applied to quantitatively estimate the contributions of different source sectors to PM 2.5 in China. Emissions of primary PM 2.5 and gas pollutants of SO 2 , NO x , and NH 3 , which are precursors of particulate sulfate, nitrate, and ammonium (SNA, major PM 2.5 components in China), from eight source categories (power plants, residential sources, industries, transportation, open burning, sea salt, windblown dust and agriculture) were separately tracked to determine their contributions to PM 2.5 in 2013. Industrial sector is the largest source of SNA in Beijing, Xi'an and Chongqing, followed by agriculture and power plants. Residential emissions are also important sources of SNA, especially in winter when severe pollution events often occur. Nationally, the contributions of different source sectors to annual total PM 2.5 from high to low are industries, residential sources, agriculture, power plants, transportation, windblown dust, open burning and sea salt. Provincially, residential sources and industries are the major anthropogenic sources of primary PM 2.5 , while industries, agriculture, power plants and transportation are important for SNA in most provinces. For total PM 2.5 , residential and industrial emissions are the top two sources, with a combined contribution of 40-50% in most provinces. The contributions of power plants and agriculture to total PM 2.5 are about 10%, respectively. Secondary organic aerosol accounts for about 10% of annual PM 2.5 in most provinces, with higher contributions in southern provinces such as Yunnan (26%), Hainan (25%) and Taiwan (21%). Windblown dust is an important source in western provinces such as Xizang (55% of total PM 2.5 ), Qinghai (74%), Xinjiang (59

  8. Wintertime aerosol chemical composition and source apportionment of the organic fraction across Ireland

    Science.gov (United States)

    Ovadnevaite, J.; Lin, C.; Ceburnis, D.; Huang, R. J. J.; O'Dowd, C. D. D.

    2017-12-01

    A national wide characterization of PM1 was studied for the first time using a high-time resolution Aerosol Chemical Speciation Monitor (ACSM) and Aethalometer in Ireland during the heating season. Dublin, the capital of Ireland, is the most polluted area with an average PM1 of 7.6 μg/m3, with frequent occurrence of peak concentration over 200 μg/m3 primarily due to solid fuels burning, while Mace Head, in the west coast, is least polluted with an average PM1 of 0.8 μg/m3 due to the distance from the emission sources. The organic aerosol is the most dominant species across Ireland, contributing 65%, 58%, 32%, 33% to total PM1 mass in Dublin, Birr, Carnsore Point, and Mace Head, respectively. Birr, a small town in the midland of Ireland, has comparable PM1 levels (4.8 μg/m3) and similar chemical compositions with that in Dublin. Carnsore Point, on the southeast coast, has similar composition with that at Mace Head, but nearly 3 times the levels of PM1 mass due to its relative closeness to other European countries. Positive matrix factorization (PMF) with the multi-linear engine (ME-2) was performed on the organic matrix to quantify the contribution of factor candidates. Peat burning was found to be the dominant factor across Ireland, contributing more than 40% of the total organic mass in Dublin and Birr while OOA is dominant at rural Carnsore Point and Mace Head. Possible geographic origins of PM1 species and organic factors using polar plots were explored. The findings of solid fuels burning (primarily peat burning) driving the pollution episodes suggest an elimination or controlled emission of solid fuels burning would reduce PM1 by at least 50%.

  9. Source of single photons and interferometry with one photon. From the Young's slit experiment to the delayed choice

    International Nuclear Information System (INIS)

    Jacques, V.

    2007-11-01

    This manuscript is divided in two independent parts. In the first part, we study the wave-particle duality for a single photon emitted by the triggered photoluminescence of a single NV color center in a diamond nano-crystal. We first present the realization of a single-photon interference experiment using a Fresnel's bi-prism, in a scheme equivalent to the standard Young's double-slit textbook experiment. We then discuss the complementarity between interference and which-path information in this two-path interferometer. We finally describe the experimental realization of Wheeler's delayed-choice Gedanken experiment, which is a fascinating and subtle illustration of wave-particle duality. The second part of the manuscript is devoted to the efficiency improvement of single-photon sources. We first describe the implementation of a new single-photon source based on the photoluminescence of a single nickel-related defect center in diamond. The photophysical properties of such defect make this single-photon source well adapted to open-air quantum cryptography. We finally demonstrate an original method that leads to an improvement of single-molecule photo stability at room temperature. (author)

  10. Distributed least-squares estimation of a remote chemical source via convex combination in wireless sensor networks.

    Science.gov (United States)

    Cao, Meng-Li; Meng, Qing-Hao; Zeng, Ming; Sun, Biao; Li, Wei; Ding, Cheng-Jun

    2014-06-27

    This paper investigates the problem of locating a continuous chemical source using the concentration measurements provided by a wireless sensor network (WSN). Such a problem exists in various applications: eliminating explosives or drugs, detecting the leakage of noxious chemicals, etc. The limited power and bandwidth of WSNs have motivated collaborative in-network processing which is the focus of this paper. We propose a novel distributed least-squares estimation (DLSE) method to solve the chemical source localization (CSL) problem using a WSN. The DLSE method is realized by iteratively conducting convex combination of the locally estimated chemical source locations in a distributed manner. Performance assessments of our method are conducted using both simulations and real experiments. In the experiments, we propose a fitting method to identify both the release rate and the eddy diffusivity. The results show that the proposed DLSE method can overcome the negative interference of local minima and saddle points of the objective function, which would hinder the convergence of local search methods, especially in the case of locating a remote chemical source.

  11. Distributed Least-Squares Estimation of a Remote Chemical Source via Convex Combination in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Meng-Li Cao

    2014-06-01

    Full Text Available This paper investigates the problem of locating a continuous chemical source using the concentration measurements provided by a wireless sensor network (WSN. Such a problem exists in various applications: eliminating explosives or drugs, detecting the leakage of noxious chemicals, etc. The limited power and bandwidth of WSNs have motivated collaborative in-network processing which is the focus of this paper. We propose a novel distributed least-squares estimation (DLSE method to solve the chemical source localization (CSL problem using a WSN. The DLSE method is realized by iteratively conducting convex combination of the locally estimated chemical source locations in a distributed manner. Performance assessments of our method are conducted using both simulations and real experiments. In the experiments, we propose a fitting method to identify both the release rate and the eddy diffusivity. The results show that the proposed DLSE method can overcome the negative interference of local minima and saddle points of the objective function, which would hinder the convergence of local search methods, especially in the case of locating a remote chemical source.

  12. Molecular dynamics simulation of chemical vapor deposition of amorphous carbon. Dependence on H/C ratio of source gas

    International Nuclear Information System (INIS)

    Ito, Atsushi M.; Takayama, Arimichi; Nakamura, Hiroaki; Saito, Seiki; Ohno, Noriyasu; Kajita, Shin

    2011-01-01

    By molecular dynamics simulation, the chemical vapor deposition of amorphous carbon onto graphite and diamond surfaces was studied. In particular, we investigated the effect of source H/C ratio, which is the ratio of the number of hydrogen atoms to the number of carbon atoms in a source gas, on the deposition process. In the present simulation, the following two source gas conditions were tested: one was that the source gas was injected as isolated carbon and hydrogen atoms, and the other was that the source gas was injected as hydrocarbon molecules. Under the former condition, we found that as the source H/C ratio increases, the deposition rate of carbon atoms decreases exponentially. This exponential decrease in the deposition rate with increasing source H/C ratio agrees with experimental data. However, under the latter molecular source condition, the deposition rate did not decrease exponentially because of a chemical reaction peculiar to the type of hydrocarbon in the source gas. (author)

  13. Dosimetry is Key to Good Epidemiology: Workers at Mallinckrodt Chemical Works had Seven Different Source Exposures.

    Science.gov (United States)

    Ellis, Elizabeth D; Boice, John D; Golden, Ashley P; Girardi, David J; Cohen, Sarah S; Mumma, Michael T; Shore, Roy E; Leggett, Richard W; Kerr, George D

    2018-04-01

    Mallinckrodt Chemical Works was the earliest uranium processing facility in the Manhattan Project, beginning in 1942. Even then, concern existed about possible health effects resulting from exposure to radiation and pitchblende dust. This concern was well founded as the facility processed Belgian Congo pitchblende ore that was up to 60% pure uranium with high U content and up to 100 mg of radium per ton. Workers were exposed to external gamma radiation plus internal radiation from inhalation and ingestion of pitchblende dust (uranium, radium, and silica). Multiple sources of exposure were available for organ dose reconstruction to a degree unique for an epidemiologic study. Personal film badge measures available from 1945 captured external exposures. Additional external exposure included 15,518 occupational medical x-rays and 210 radiation exposure records from other facilities outside of Mallinckrodt employment. Organ dose calculations considered organ-specific coefficients that account for photon energy and job-specific orientation of workers to the radiation source during processing. Intakes of uranium and radium were based on 39,451 uranium urine bioassays and 2,341 breath radon measurements, and International Commission on Radiological Protection (ICRP) Publication 68 biokinetic models were used to estimate organ-specific radiation absorbed dose. Estimates of exposure to airborne radon and its short-lived progeny were based on radon measurements in work areas where radium-containing materials were handled or stored, together with estimated exposure times in these areas based on job titles. Dose estimates for radon and its short-lived progeny were based on models and methods recently recommended in ICRP Publication 137. This comprehensive dosimetric approach follows methods outlined by the National Council on Radiation Protection Scientific Committee 6-9 for the Million Worker Study. Annual doses were calculated for six organs: lung, brain, heart, kidney, colon

  14. Design and synthesis of single-source molecular precursors to homogeneous multi-component oxide materials

    Science.gov (United States)

    Fujdala, Kyle Lee

    This dissertation describes the syntheses of single-source molecular precursors to multi-component oxide materials. These molecules possess a core metal or element with various combinations of -OSi(O tBu)3, -O2P(OtBu) 2, and -OB[OSi(OtBu)3] 2 ligands. Such molecules decompose under mild thermolytic conditions (models for oxide-supported metal species and multi-component oxides. Significantly, the first complexes to contain three or more heteroelements suitable for use in the TMP method have been synthesized. Compounds for use as single-source molecular precursors have been synthesized containing Al, B, Cr, Hf, Mo, V, W, and Zr, and their thermal transformations have been examined. Heterogeneous catalytic reactions have been examined for selected materials. Also, cothermolyses of molecular precursors and additional molecules (i.e., metal alkoxides) have been utilized to provide materials with several components for potential use as catalysts or catalyst supports. Reactions of one and two equivs of HOSi(OtBu) 3 with Cr(OtBu)4 afforded the first Cr(IV) alkoxysiloxy complexes (tBuO) 3CrOSi(OtBu)3 and ( tBuO)2Cr[OSi(OtBu) 3]2, respectively. The high-yielding, convenient synthesis of (tBuO)3CrOSi(O tBu)3 make this complex a useful single-source molecular precursor, via the TMP method, to Cr/Si/O materials. The thermal transformations of (tBuO)3CrOSi(O tBu)3 and (tBuO) 2Cr[OSi(OtBu)3]2 to chromia-silica materials occurr at low temperatures (≤180°C), to give isobutene as the major carbon-containing product. The material generated from the solid-state conversion of (tBuO) 3CrOSi(OtBu)3 (CrOS ss) has an unexpectedly high surface area of 315 m2 g-1 that is slightly reduced to 275 m2 g-1 after calcination at 500°C in O2. The xerogel obtained by the thermolysis of an n-octane solution of (tBuO)3CrOSi(O tBu)3 (CrOSixg) has a surface area of 315 m2 g-1 that is reduced to 205 m2 g-1 upon calcination at 500°C. Powder X-ray diffraction (PXRD) analysis revealed that Cr2O 3 is

  15. Assessing single and joint effects of chemicals on the survival and reproduction of Folsomia candida (Collembola) in soil

    International Nuclear Information System (INIS)

    Amorim, M.J.B.; Pereira, C.; Menezes-Oliveira, V.B.; Campos, B.; Soares, A.M.V.M.; Loureiro, S.

    2012-01-01

    Chemicals are often found in the environment as complex mixtures. There has been a large effort in the last decade to assess the combined effect of chemicals, using the conceptual models of Concentration Addition and Independent Action, but also including synergistic, antagonistic, dose-level and dose–ratio dependent deviations from these models. In the present study, single and mixture toxicity of atrazine, dimethoate, lindane, zinc and cadmium were studied in Folsomia candida, assessing survival and reproduction. Different response patterns were observed for the different endpoints and synergistic patterns were observed when pesticides were present. Compared with the previously tested Enchytraeus albidus and Porcellionides pruinosus, the mixture toxicity pattern for F. candida was species specific. The present study highlights the importance of studying toxicity of chemicals mixtures due to the observed potentiation of effects and confirms that for an adequate ecologically relevant risk assessment different organisms and endpoints should be included. - Highlights: ► Folsomia candida (Collembola) were exposed to binary mixtures of atrazine, dimethoate, lindane, zinc and cadmium. ► Synergistic response patterns were often observed when pesticides were present in the mixtures. ► Response patterns upon mixture exposure differed within endpoints (survival vs. reproduction) in some cases. ► As to single chemical toxicity, response patterns for mixture exposures seem to be also species specific. - Exposure to chemical mixtures in Folsomia candida showed potentiation of effects. Mixture toxicity patterns differ among species and endpoint measured.

  16. Low temperature metalorganic chemical vapor deposition of gallium nitride using dimethylhydrazine as nitrogen source

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Y.J.; Hong, L.S.; Huang, K.F.; Tsay, J.E

    2002-11-01

    Gallium nitride (GaN) films have been homoepitaxially grown by low pressure metalorganic chemical vapor deposition technique using dimethylhydrazine (DMHy) and trimethylgallium (TMG) as the reactants at low temperatures ranging from 873 to 923 K and a constant pressure of 10 Torr. The potential of utilizing DMHy as a nitrogen source is evaluated through understanding the kinetics of GaN film growth. A growth rate dependency study with respect to DMHy and TMG concentrations indicates that Langmuir-Hinshelwood typed reaction dominates the film growth. From a model fitting to the experimental film growth rate, the adsorption equilibrium constant of DMHy is found to be approximately 1/20 that of TMG, indicating that V/III feed ratio can be reduced down to 20 to obtain a stoichiometric GaN film. Based on X-ray photoelectron spectroscope measurement, the films formed by DMHy, however, accompany significant carbon contamination due to the strong C-N bonding in DMHy. The contamination can be relieved effectively by introducing H{sub 2} into the reaction.

  17. Low temperature metalorganic chemical vapor deposition of gallium nitride using dimethylhydrazine as nitrogen source

    International Nuclear Information System (INIS)

    Hsu, Y.J.; Hong, L.S.; Huang, K.F.; Tsay, J.E.

    2002-01-01

    Gallium nitride (GaN) films have been homoepitaxially grown by low pressure metalorganic chemical vapor deposition technique using dimethylhydrazine (DMHy) and trimethylgallium (TMG) as the reactants at low temperatures ranging from 873 to 923 K and a constant pressure of 10 Torr. The potential of utilizing DMHy as a nitrogen source is evaluated through understanding the kinetics of GaN film growth. A growth rate dependency study with respect to DMHy and TMG concentrations indicates that Langmuir-Hinshelwood typed reaction dominates the film growth. From a model fitting to the experimental film growth rate, the adsorption equilibrium constant of DMHy is found to be approximately 1/20 that of TMG, indicating that V/III feed ratio can be reduced down to 20 to obtain a stoichiometric GaN film. Based on X-ray photoelectron spectroscope measurement, the films formed by DMHy, however, accompany significant carbon contamination due to the strong C-N bonding in DMHy. The contamination can be relieved effectively by introducing H 2 into the reaction

  18. Vacuum ultraviolet beamline at the Swiss Light Source for chemical dynamics studies

    International Nuclear Information System (INIS)

    Johnson, Melanie; Bodi, Andras; Schulz, Lothar; Gerber, Thomas

    2009-01-01

    A bend-magnet vacuum ultraviolet (VUV) beamline, intended for chemical dynamics studies, was constructed and brought into operation at the Swiss Light Source (SLS) of the Paul Scherrer Institut. The beamline delivers synchrotron radiation in the 5-30 eV photon energy range with a photon flux of 10 11 photons/s at 10 eV and 10 12 photons/s at 20 eV with a resolving power of 2500. The resolving power increases to 10 4 at the cost of photon flux. An in-house designed rare gas filter is used to suppress higher harmonic radiation by a factor of >10 4 , yielding purely monochromatic light in the energy range of 5-21.6 eV. The filter is compact, easy to align, requires a total pumping power of less than 645 l/s and consumes only 3 normal l/h of filter gas. It is located at the end of the beamline, right in front of the experimental endstation. It is usually operated at a higher pressure than the endstation, which offers the additional benefit of protecting the beamline vacuum from sample contamination.

  19. The APHH China Research Programme: Chemical Composition and Source Apportionment of Particulate Matter in Beijing

    Science.gov (United States)

    Vu, T.; Shi, Z.; Liu, D.; Harrison, R. M.; Wu, X.; Brean, J.; Fu, P.

    2017-12-01

    There is increasing evidence that atmospheric particles have adverse effects on human health due to their high toxic properties. Consequently, atmospheric particles are getting much attention from the public, especially from developing megacities which have a large population and high air pollution levels. Beijing, which is one of largest megacities of the world with more than 20 million inhabitants living under very poor air quality conditions is an ideal metropolitan region to study the processes and sources of atmospheric particles in order to improve strategies for air pollution management. This study is aimed to investigate comprehensively the sources of particles in Beijing by application of a wide range of instruments, techniques and modelling approaches. Two intensive sampling campaigns were carried out during the winter 2016 and the summer 2017 at the Institute of Atmospheric Physics (IAP, the urban site) and Pinggu (the rural site) in Beijing. Online instruments including Api-TOF, PSM, and SMPS systems were deployed to investigate the size distribution and chemical composition of particles. Contemporaneously, both fine and coarse particles were collected on PTFE and quartz fibre filters using high and medium volume air samplers. Those filters were then analysed for quantification of inorganic ions by ion chromatography, elemental composition using XRF, PIXE and ICP-MS techniques, and EC/OC using a Sunset OC-EC aerosol analyser, organic markers using GC-MS techniques. The mean daily concentration of PM2.5 at the urban site of Beijing was 92.0±66.4 µg/m3 and 31.2±14.7 µg/m3 for winter and summer campaigns, while those levels measured at the rural site were 86.7±58.9 and 27.6±13.3 µg/m3. The concentration of OC and EC measured during the winter campaign was 22.3 and 3.4 µg/m3 respectively. By using a mass closure model, it was found that secondary inorganic aerosols and soil dust accounted for 32.6% and 9.7% of fine particles at IAP. High

  20. Prediction Of pKa From Chemical Structure Using Free And Open-Source Tools

    Science.gov (United States)

    The ionization state of a chemical, reflected in pKa values, affects lipophilicity, solubility, protein binding and the ability of a chemical to cross the plasma membrane. These properties govern the pharmacokinetic parameters such as absorption, distribution, metabolism, excreti...

  1. In-source collision induced dissociation of inorganic explosives for mass spectrometric signature detection and chemical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, Thomas P., E-mail: thomas.forbes@nist.gov; Sisco, Edward

    2015-09-10

    The trace detection, bulk quantification, and chemical imaging of inorganic explosives and components was demonstrated utilizing in-source collision induced dissociation (CID) coupled with laser desorption/ionization mass spectrometry (LDI-MS). The incorporation of in-source CID provided direct control over the extent of adduct and cluster fragmentation as well as organic noise reduction for the enhanced detection of both the elemental and molecular ion signatures of fuel-oxidizer mixtures and other inorganic components of explosive devices. Investigation of oxidizer molecular anions, specifically, nitrates, chlorates, and perchlorates, identified that the optimal in-source CID existed at the transition between fragmentation of the ionic salt bonds and molecular anion bonds. The chemical imaging of oxidizer particles from latent fingerprints was demonstrated, including both cation and anion components in positive and negative mode mass spectrometry, respectively. This investigation demonstrated LDI-MS with in-source CID as a versatile tool for security fields, as well as environmental monitoring and nuclear safeguards, facilitating the detection of elemental and molecular inorganic compounds at nanogram levels. - Highlights: • In-source CID enhanced detection of elemental inorganics up to 1000-fold. • In-source CID optimization of polyatomic oxidizers enhanced detection up to 100-fold. • Optimal CID identified at transition from breaking ionic salt to molecular anion bonds. • Trace detection of inorganic explosives at nanogram levels was demonstrated. • Oxidizer particles were chemically imaged directly from latent fingerprints.

  2. Adrenal incidentaloma triage with single source (fast kVp switch) dual energy CT

    Science.gov (United States)

    Glazer, Daniel I; Keshavarzi, Nahid R; Parker, Robert A; Kaza, Ravi K; Platt, Joel F; Francis, Isaac R

    2015-01-01

    Purpose To evaluate single source dual energy CT (DECT) for distinguishing benign and indeterminate adrenal nodules, with attention to effects of phase of intravenous contrast enhancement. Materials and methods An IRB-approved, HIPAA-compliant retrospective review revealed 273 contrast-enhanced abdominal DECTs from November 2009–March 2012. 50 adrenal nodules ≥ 0.8 cm were identified in 41 patients: 22 female, 19 male, average age 66 (range 36–88 years). CT post-processing and measurements were independently performed by two radiologists (R1 and R2) for each nodule: (1) HU on true non-contrast images; (2) post-contrast HU on monochromatic spectral images at 40, 75, and 140 keV; (3) post-contrast material density (mg/cc) on virtual non-contrast (VNC) images. Nodules were separated into benign (VNC images, benign nodules had significantly lower material density (R1: 992.4 mg/cc ± 9.9; R2: 992.7 mg/cc ±9.6) than indeterminate nodules (R1: 1001.1mg/cc ±20.5 (p .038); R2: 1007.6 HU ±13.4 (p <.0001). Conclusion DECT tools can mathematically subtract iodine or minimize its effects in high energy reconstructions, approximating non-contrast imaging and potentially reducing the need for additional studies to triage adrenal nodules detected on post-contrast DECT exams. PMID:25055267

  3. Resource allocation for two source-destination pairs sharing a single relay with a buffer

    KAUST Repository

    Zafar, Ammar

    2014-05-01

    In this paper, we obtain the optimal resource allocation scheme in order to maximize the achievable rate region in a dual-hop system that consists of two independent source-destination pairs sharing a single half-duplex relay. The relay decodes the received information and possesses buffers to enable storing the information temporarily before forwarding it to the respective destination. We consider both non-orthogonal transmission with successive interference cancellation at the receivers and orthogonal transmission. Also, we consider Gaussian block-fading channels and we assume that the channel state information is known and that no delay constraints are required. We show that, with the aid of buffering at the relay, joint user-and-hop scheduling is optimal and can enhance the achievable rate significantly. This is due to the joint exploitation of multiuser diversity and multihop diversity in the system. We provide closed-form expressions to characterize the average achievable rates in a generic form as functions of the statistical model of the channels. Furthermore, we consider sub-optimal schemes that exploit the diversity in the system partially and we provide numerical results to compare the different schemes and demonstrate the gains of the optimal one. © 2014 IEEE.

  4. Evolution of the zinc compound nanostructures in zinc acetate single-source solution

    International Nuclear Information System (INIS)

    Wang Ying; Li Yinhua; Zhou Zhengzhi; Zu Xihong; Deng Yulin

    2011-01-01

    A series of nanostructured zinc compounds with different nanostructures such as nanobelts, flake-like, flower-like, and twinning crystals was synthesized using zinc acetate (Zn(Ac) 2 ) as a single-source. The evolution of the zinc compounds from layered basic zinc acetate (LBZA) to bilayered basic zinc acetate (BLBZA) and twinned ZnO nano/microcrystal was studied. The low-angle X-ray diffraction spectra indicate the layered spacing is 1.34 and 2.1 nm for LBZA and BLBZA, respectively. The Fourier transform infrared (FTIR) spectra results confirmed that the bonding force of acetate anion with zinc cations decreases with the phase transformation from Zn(Ac) 2 to BLBZA, and finally to LBZA. The OH − groups gradually replaced the acetate groups coordinated to the matrix zinc cation, and the acetate groups were released completely. Finally, the Zn(OH) 2 and ZnO were formed at high temperature. The conversion process from Zn(Ac) 2 to ZnO with release of acetate anions can be described as Zn(Ac) 2 → BLBZA → LBZA → Zn(OH) 2 → ZnO.

  5. Characteristics and Source Apportionment of Marine Aerosols over East China Sea Using a Source-oriented Chemical Transport Model

    Science.gov (United States)

    Kang, M.; Zhang, H.; Fu, P.

    2017-12-01

    Marine aerosols exert a strong influence on global climate change and biogeochemical cycling, as oceans cover beyond 70% of the Earth's surface. However, investigations on marine aerosols are relatively limited at present due to the difficulty and inconvenience in sampling marine aerosols as well as their diverse sources. East China Sea (ECS), lying over the broad shelf of the western North Pacific, is adjacent to the Asian mainland, where continental-scale air pollution could impose a heavy load on the marine atmosphere through long-range atmospheric transport. Thus, contributions of major sources to marine aerosols need to be identified for policy makers to develop cost effective control strategies. In this work, a source-oriented version of the Community Multiscale Air Quality (CMAQ) model, which can directly track the contributions from multiple emission sources to marine aerosols, is used to investigate the contributions from power, industry, transportation, residential, biogenic and biomass burning to marine aerosols over the ECS in May and June 2014. The model simulations indicate significant spatial and temporal variations of concentrations as well as the source contributions. This study demonstrates that the Asian continent can greatly affect the marine atmosphere through long-range transport.

  6. Modeling of Single Event Transients With Dual Double-Exponential Current Sources: Implications for Logic Cell Characterization

    Science.gov (United States)

    Black, Dolores A.; Robinson, William H.; Wilcox, Ian Z.; Limbrick, Daniel B.; Black, Jeffrey D.

    2015-08-01

    Single event effects (SEE) are a reliability concern for modern microelectronics. Bit corruptions can be caused by single event upsets (SEUs) in the storage cells or by sampling single event transients (SETs) from a logic path. An accurate prediction of soft error susceptibility from SETs requires good models to convert collected charge into compact descriptions of the current injection process. This paper describes a simple, yet effective, method to model the current waveform resulting from a charge collection event for SET circuit simulations. The model uses two double-exponential current sources in parallel, and the results illustrate why a conventional model based on one double-exponential source can be incomplete. A small set of logic cells with varying input conditions, drive strength, and output loading are simulated to extract the parameters for the dual double-exponential current sources. The parameters are based upon both the node capacitance and the restoring current (i.e., drive strength) of the logic cell.

  7. Physical and chemical study of single aerosol particles using optical trapping cavity ringdown spectroscopy

    Science.gov (United States)

    2016-08-30

    scope that views the trapped particle walking through the ringdown beam step by step. (b) An image that shows the traces of the particle (MWCNT... walking through the RD beam . 5 a b c Fig.3 The OT-CRDS single particle scope views oscillations of a trapped particle. (a) Image of a trapped...and walking single carbon- nanotube particles of ?50 µm in size and viewing those properties via changes of ringdown time. This single- aerosol

  8. Chemical characteristics and sources of PM1 during the 2016 summer in Hangzhou.

    Science.gov (United States)

    Li, Kangwei; Chen, Linghong; White, Stephen J; Zheng, Xianjue; Lv, Biao; Lin, Chao; Bao, Zhier; Wu, Xuecheng; Gao, Xiang; Ying, Fang; Shen, Jiandong; Azzi, Merched; Cen, Kefa

    2018-01-01

    During the 2016 Hangzhou G20 Summit, the chemical composition of submicron particles (PM 1 ) was measured by a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) along with a suite of collocated instruments. The campaign was undertaken between August 5 and September 23, 2016. The impacts of emission controls and meteorological conditions on PM 1 chemical composition, diurnal cycles, organic aerosol (OA) source apportionment, size distribution and elemental ratios were characterized in detail. Excluding rainy days, the mean PM 1 mass concentration during G20 was 30.3 μg/m 3 , similar to that observed before G20 (28.6 μg/m 3 ), but much lower than that after G20 (42.7 μg/m 3 ). The aerosol chemistry during the three periods was substantially different. Before G20, high PM 1 loading mostly occurred at daytime, with OA accounting for 60.1% of PM 1 , followed by sulfate (15.6%) and ammonium (9.1%). During G20, the OA fraction decreased from 60.1% to 44.6%, whereas secondary inorganic aerosol (SIA) increased from 31.8% to 49.5%. After G20, SIA dominated high PM 1 loading, especially at nighttime. Further analysis showed that the nighttime regional transport might play an unfavorable role in the slight increase of secondary PM 1 during G20, while the strict emissions controls were implemented. The OA (O/C = 0.58) during G20 was more aged, 48.7% and 13.7% higher than that before and after G20 respectively. Our study highlighted that the emission controls during G20 were of great success in lowering locally produced aerosol and pollutants, despite of co-existence of nighttime regional transport containing aerosol high in low-volatile organics and sulfate. It was implied that not only are emissions controls on both local and regional scale important, but that the transport of pollutants needs to be sufficiently well accounted for, to ensure the successful implementation of air pollution mitigation campaigns in China. Copyright © 2017 Elsevier Ltd

  9. Chemical characteristics and methane potentials of source-separated and pre-treated organic municipal solid waste

    DEFF Research Database (Denmark)

    Hansen, Trine Lund; Svärd, Å; Angelidaki, Irini

    2003-01-01

    A research project has investigated the biogas potential of pre-screened source-separated organic waste. Wastes from five Danish cities have been pre-treated by three methods: screw press; disc screen; and shredder and magnet. This paper outlines the sampling procedure used, the chemical...... composition of the wastes and the estimated methane potentials....

  10. Nonradioactive Environmental Emissions Chemical Source Term for the Double-Shell Tank (DST) Vapor Space During Waste Retrieval Operations

    International Nuclear Information System (INIS)

    MAY, T.H.

    2000-01-01

    A nonradioactive chemical vapor space source term for tanks on the Phase 1 and the extended Phase 1 delivery, storage, and disposal mission was determined. Operations modeled included mixer pump operation and DST waste transfers. Concentrations of ammonia, specific volatile organic compounds, and quantitative volumes of aerosols were estimated

  11. 71Ga Chemical Shielding and Quadrupole Coupling Tensors of the Garnet Y(3)Ga(5)O(12) from Single-Crystal (71)Ga NMR

    DEFF Research Database (Denmark)

    Vosegaard, Thomas; Massiot, Dominique; Gautier, Nathalie

    1997-01-01

    A single-crystal (71)Ga NMR study of the garnet Y(3)Ga(5)O(12) (YGG) has resulted in the determination of the first chemical shielding tensors reported for the (71)Ga quadrupole. The single-crystal spectra are analyzed in terms of the combined effect of quadrupole coupling and chemical shielding ...

  12. A Single Sex Pheromone Receptor Determines Chemical Response Specificity of Sexual Behavior in the Silkmoth Bombyx mori

    OpenAIRE

    Sakurai, Takeshi; Mitsuno, Hidefumi; Haupt, Stephan Shuichi; Uchino, Keiro; Yokohari, Fumio; Nishioka, Takaaki; Kobayashi, Isao; Sezutsu, Hideki; Tamura, Toshiki; Kanzaki, Ryohei

    2011-01-01

    In insects and other animals, intraspecific communication between individuals of the opposite sex is mediated in part by chemical signals called sex pheromones. In most moth species, male moths rely heavily on species-specific sex pheromones emitted by female moths to identify and orient towards an appropriate mating partner among a large number of sympatric insect species. The silkmoth, Bombyx mori, utilizes the simplest possible pheromone system, in which a single pheromone component, (E, Z...

  13. Near-equilibrium chemical vapor deposition of high-quality single-crystal graphene directly on various dielectric substrates.

    Science.gov (United States)

    Chen, Jianyi; Guo, Yunlong; Jiang, Lili; Xu, Zhiping; Huang, Liping; Xue, Yunzhou; Geng, Dechao; Wu, Bin; Hu, Wenping; Yu, Gui; Liu, Yunqi

    2014-03-05

    By using near-equilibrium chemical vapor deposition, it is demonstrated that high-quality single-crystal graphene can be grown on dielectric substrates. The maximum size is about 11 μm. The carrier mobility can reach about 5650 cm(2) V(-1) s(-1) , which is comparable to those of some metal-catalyzed graphene crystals, reflecting the good quality of the graphene lattice. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Space Vector Pulse Width Modulation Strategy for Single-Phase Three-Level CIC T-source Inverter

    DEFF Research Database (Denmark)

    Shults, Tatiana E.; Husev, Oleksandr O.; Blaabjerg, Frede

    2016-01-01

    This paper presents a novel space vector pulse-width modulation strategy for a single-phase three-level buck-boost inverter based on an impedance-source network. The case study system is based on T-source inverter with continuous input current. To demonstrate the improved performance of the inver......This paper presents a novel space vector pulse-width modulation strategy for a single-phase three-level buck-boost inverter based on an impedance-source network. The case study system is based on T-source inverter with continuous input current. To demonstrate the improved performance...... of the inverter, the strategy was compared the traditional pulse-width modulation. It is shown that the approach proposed has fewer switching states and does not suffer from neutral point misbalance....

  15. Phytoplankton blooms: an overlooked marine source of natural endocrine disrupting chemicals.

    Science.gov (United States)

    Gong, Yinhan; Wang, Xiaochong; Indran, Inthrani Raja; Zhang, Shi-Jun; Lv, Zhengbing; Li, Jun; Holmes, Michael; Tang, Ying Zhong; Yong, E L

    2014-09-01

    We had previously reported high androgenic and estrogenic activities in seawaters in confined clusters close to Singapore. Further investigations revealed a hitherto unsuspected link between estrogenic/androgenic activity and net phytoplankton count. The primary objective of this study was to investigate the cause of a correlation between net phytoplankton and endocrine activity, and corroborate this observation, and rule out other possible confounding factors. Our secondary objective was to study if these estrogenic secretions can impact human health. Five species of phytoplankton, Gymnodinium catenatum, Prorocentrum minimum, Alexandrium leei, Chattonella marina, and Fibrocapsa japonica, were isolated from Singapore waters and mass cultured and the cells and culture media screened for estrogenic and androgenic activity using human cell-based bioassays. The raphidophytes C. marina and F. japonica displayed significant estrogenic activity whilst the dinoflagellates G. catenatum and P. minimum displayed significant androgenic activity in both the cell extracts and the cell culture media extract. Our data shows that selected phytoplankton isolates are potent secretors of estrogenic and androgenic substances, which are potential endocrine disrupting chemicals (EDCs). As the harmful nature of EDCs is largely due to their bioaccumulation in the aquatic food chain our findings imply that the impact of these phytoplankton secretions needs to be investigated especially for seafoods, which are only a single trophic level away from phytoplankton. Alternatively, should these phytoplankton-origin EDCs not accumulate through marine food chains to significantly impact humans or marine mammals, our results indicate that functional assays could greatly over-estimate the risk from naturally occurring EDCs produced by marine phytoplankton. It remains to be determined if these EDCs affect zooplankton and other organisms that directly feed on marine phytoplankton, or if the secreted

  16. Effect of Single and Double Stage Chemically Treated Kenaf Fibers on Mechanical Properties of Polyvinyl Alcohol Film

    Directory of Open Access Journals (Sweden)

    Md Ershad Ali

    2014-12-01

    Full Text Available The physico-mechanical properties of lignocellulosic kenaf fiber reinforced polyvinyl alcohol (PVA biocomposite films were investigated. To improve the properties of the biocomposite, kenaf fibers were chemically treated separately in a single stage (with Cr2(SO4312(H2O and double stages (with CrSO4 and NaHCO3 to improve the adhesion and compatibility between the kenaf fiber and PVA matrix. PVA was reinforced with various compositions of chemically treated kenaf fiber by using a solution casting technique. Microstructural analyses and mechanical tests were subsequently conducted. Scanning electron microscopic analysis indicated that chemical treatment improved the uniformity distribution of kenaf fiber within the PVA matrix. FTIR and XRD analyses confirmed the presence of chromium on the fiber surface. The tensile strength of PVA reinforced with chemical treated kenaf fiber was found to be higher than those reinforced with untreated kenaf. The Young’s modulus, flexural strength, and flexural modulus increased with fiber loading for both untreated and treated kenaf fiber reinforced PVA films. The double stage treated kenaf fiber showed better mechanical properties and lower moisture uptake than the single stage treated kenaf fiber.

  17. Chemical characteristics and source apportionment of PM2.5 in Lanzhou, China.

    Science.gov (United States)

    Tan, Jihua; Zhang, Leiming; Zhou, Xueming; Duan, Jingchun; Li, Yan; Hu, Jingnan; He, Kebin

    2017-12-01

    Daily PM 2.5 samples were collected during winter 2012 and summer 2013 at an urban site in Lanzhou and were analyzed for chemical compounds including water soluble inorganic ions (WSIN), trace elements, water soluble organic carbon (WSOC), carbonaceous species (OC/EC), polycyclic aromatic hydrocarbons (PAHs), and humic-like substances (HULIS). The seasonal-average reconstructed PM 2.5 mass was 120.5μgm -3 in winter and 34.1μgm -3 in summer. The top three groups of species in PM 2.5 were OC (35.4±13.9μgm -3 ), WSIN (34.89±14.21μgm -3 ), and EC (13.80±5.41μgm -3 ) in winter and WSIN (11.25±3.25μgm -3 ), OC (9.74±3.30μgm -3 ), and EC (4.44±2.00μgm -3 ) in summer. EC exceeded SO 4 2- on most of the days. Several anthropogenic produced primary pollutants such as PAHs, Cl - , Pb, Cd and OCpri were 4-22 times higher in winter than summer. Carcinogenic substances such as Arsenic, BaP, Pb, and Cd in PM 2.5 exceeded the WHO guideline limits by 274%, 153%, 23% and 7%, respectively. Positive Matric Factorization analysis identified seven source factors including steel industry, secondary aerosols, coal combustion, power plants, vehicle emissions, crustal dust, and smelting industry, which contributed 7.1%, 33.0%, 28.7%, 3.12%, 8.8%, 13.3%, and 6.0%, respectively, to PM 2.5 in winter, and 6.7%, 14.8%, 3.1%, 3.4%, 25.2%, 11.6% and 35.2% in summer. Smelting industry and steel industry were identified for the first time as sources of PM 2.5 in this city, and power plant was distinguished from industrial boiler and residential coal burning. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Sources and contamination rate of port sediments: evidences from dimensional, mineralogical, and chemical investigations

    Science.gov (United States)

    Lucchetti, Gabriella; Cutroneo, Laura; Carbone, Cristina; Consani, Sirio; Vagge, Greta; Canepa, Giuseppe; Capello, Marco

    2017-04-01

    Ports are complex environments due to their complicated geometry (quays, channels, and piers), the presence of human activities (vessel traffic, yards, industries, and discharges), and natural factors (stream and torrent inputs, sea action, and currents). Due to the many activities that take place in a port, sediments and waters are often contaminated by different kinds of chemicals, such as hydrocarbons, dioxins, pesticides, nutrients, and metals. The contamination rate of a port basin is site specific and depends on the sources of contamination in the nearby urban system as well as the port system itself, such as city discharges and sewers, river intake, vessel traffic, factories (Taylor and Owens, 2009). Moreover, two important sources and vehicles of contaminants are: a) anthropogenic road deposited sediments derived from the runoff of the port and city area, and natural road deposited sediments derived from rivers and torrents, and b) airborne particulate matter and sediments (Taylor and Owens, 2009). The Port of Genoa is situated at the apex of the Ligurian Sea in the north western Mediterranean Sea and is characterised by the presence of several commercial activities that have contributed, over the years, and still contribute today, to the contaminant accumulation in both the water column and the bottom sediments. This port basin includes the mouth of several streams and the mouth of the Bisagno and the Polcevera Torrents, along the banks of which can be found several small towns, quarries, factories, and the suburbs of the city of Genoa, a ferry terminal, different container terminals, marinas, dry docks, the coal power plant of Genoa, and different wastewater treatment plant discharges. Starting from these considerations, we have examined the marine environment of a port from the point of view of the water mass circulation, hydrological characteristics, distribution of the sediment grain size, mineralogical characteristics, and metal concentrations of the

  19. Oxygenated Organic Chemicals in the Pacific Troposphere: Distribution, Sources and Chemistry

    Science.gov (United States)

    Singh, Hanwant B.; Salas, L.; Chatfield, R.; Czech, E.; Fried, A.; Evans, M.; Jacob, D. J.; Blake, D.; Heikes, B.; Talbot, R.

    2003-01-01

    Airborne measurements of a large number of oxygenated organic chemicals (Oxorgs) were carried out in the Pacific troposphere (0.1-12 km) in the Spring of 2001 (Feb. 24-April 10). Specifically these measuremen ts included acetone, methylethyl ketone (MEK), methanol, ethanol, ace taldehyde, propionaldehyde, PANS, and organic nitrates. Complementary measurements of formaldehyde, organic peroxides, and tracers were al so available. Ox-orgs were abundant in the clean troposphere and were greatly enhanced in the outflow regions from Asia. Their mixing ratios were typically highest in the lower troposphere and declined toward s the upper troposphere and the lowermost stratosphere. Their total a bundance (Ox-orgs) significantly exceeded that of NMHC (C2-C8 NMHC). A comparison of these data with observations collected some seven yea rs earlier (Feb.-March, 1994), did not reveal any significant changes . Throughout the troposphere mixing ratios of Ox-orgs were strongly c orrelated with each other as well as with tracers of fossil and bioma sshiof'uel combustion. Analysis of the relative enhancement of selected Oxorgs with respect to CH3Cl and CO in twelve sampled plumes, origi nating from fires, is used to assess their primary and secondary sour ces from biomass combustion. The composition of these plumes also ind icates a large shift of reactive nitrogen into the PAN reservoir ther eby limiting ozone formation. The Harvard 3-D photochemical model, th at uses state of the art chemistry and source information, is used to compare simulated and observed mixing ratios of selected species. A 1 -D model is used to explore the chemistry of aldehydes. These results will be presented.

  20. Chemically-resolved volatility measurements of organic aerosol fom different sources.

    Science.gov (United States)

    Huffman, J A; Docherty, K S; Mohr, C; Cubison, M J; Ulbrich, I M; Ziemann, P J; Onasch, T B; Jimenez, J L

    2009-07-15

    A newly modified fast temperature-stepping thermodenuder (TD) was coupled to a High Resolution Time-of-Flight Aerosol Mass Spectrometer for rapid determination of chemically resolved volatility of organic aerosols (OA) emitted from individual sources. The TD-AMS system was used to characterize primary OA (POA) from biomass burning, trash burning surrogates (paper and plastic), and meat cooking as well as chamber-generated secondary OA (SOA) from alpha-pinene and gasoline vapor. Almost all atmospheric models represent POA as nonvolatile, with no allowance for evaporation upon heating or dilution, or condensation upon cooling. Our results indicate that all OAs observed show semivolatile behavior and that most POAs characterized here were at least as volatile as SOA measured in urban environments. Biomass-burning OA (BBOA) exhibited a wide range of volatilities, but more often showed volatility similar to urban OA. Paper-burning resembles some types of BBOA because of its relatively high volatility and intermediate atomic oxygen-to-carbon (O/C) ratio, while meat-cooking OAs (MCOA) have consistently lower volatility than ambient OA. Chamber-generated SOA under the relatively high concentrations used intraditional experiments was significantly more volatile than urban SOA, challenging extrapolation of traditional laboratory volatility measurements to the atmosphere. Most OAs sampled show increasing O/C ratio and decreasing H/C (hydrogen-to-carbon) ratio with temperature, further indicating that more oxygenated OA components are typically less volatile. Future experiments should systematically explore a wider range of mass concentrations to more fully characterize the volatility distributions of these OAs.

  1. Single window for issuing licenses for export and import of ionizing radiation sources and transit of radioactive sources

    International Nuclear Information System (INIS)

    Sandev, T.; Stamenov, R.; Misevska, A.; Georgievska-Dimitrevski, B.; Angelovski, G.

    2009-01-01

    In this paper we present the electronic system for application and issuing licenses for export, import and transit of goods (EXIM), particularly for ionizing radiation sources, in the Republic of Macedonia. This system is a modern and helpful tool for simple issuing licenses, for establishing a unique database and it represents a harmonized system for exchanging information between the governmental, public and private legal persons in the Republic of Macedonia. (author)

  2. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  3. Fourier Transform Near Infrared Microspectroscopy, Infrared Chemical Imaging, High-Resolution Nuclear Magnetic Resonance and Fluorescence Microspectroscopy Detection of Single Cancer Cells and Single Viral Particles

    CERN Document Server

    Baianu,I C; Hofmann, N E; Korban, S S; Lozano, P; You, T

    2004-01-01

    Single Cancer Cells from Human tumors are being detected and imaged by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR)Hyperspectral Imaging and Fluorescence Correlation Microspectroscopy. The first FT-NIR chemical, microscopic images of biological systems approaching one micron resolution are here reported. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are also presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as two cubic microns. Related, HR-NMR analyses of oil contents in somatic embryos as well as 99% accurate calibrations are also presented here with nanoliter precision. Such high-resolution, 400 MHz H-1 NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. >~20%) compared to the average levels in non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monito...

  4. A High Performance Chemical Simulation Preprocessor and Source Code Generator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Numerical simulations of chemical kinetics are a critical component of aerospace research, Earth systems research, and energy research. These simulations enable a...

  5. Room-temperature single-photon sources with definite circular and linear polarizations based on single-emitter fluorescence in liquid crystal hosts

    International Nuclear Information System (INIS)

    Winkler, Justin M; Lukishova, Svetlana G; Bissell, Luke J

    2013-01-01

    Definite circular and linear polarizations of room-temperature single-photon sources, which can serve as polarization bases for quantum key distribution, are produced by doping planar-aligned liquid crystal hosts with single fluorescence emitters. Chiral 1-D photonic bandgap microcavities for a single handedness of circularly polarized light were prepared from both monomeric and oligomeric cholesteric liquid crystals. Fluorescent emitters, such as nanocrystal quantum dots, nitrogen vacancy color centers in nanodiamonds, and rare-earth ions in nanocrystals, were doped into these microcavity structures and used to produce circularly polarized fluorescence of definite handedness. Additionally, we observed circularly polarized resonances in the spectrum of nanocrystal quantum dot fluorescence at the edge of the cholesteric microcavity's photonic stopband. For this polarization we obtained a ∼4.9 enhancement of intensity compared to the polarization of the opposite handedness that propagates without photonic bandgap microcavity effects. Such a resonance is indicative of coupling of quantum dot fluorescence to the cholesteric microcavity mode. We have also used planar-aligned nematic liquid crystal hosts to align DiI dye molecules doped into the host, thereby providing a single-photon source of linear polarization of definite direction. Antibunching is demonstrated for fluorescence of nanocrystal quantum dots, nitrogen vacancy color centers, and dye molecules in these liquid crystal structures.

  6. Revealing chemical processes and kinetics of drug action within single living cells via plasmonic Raman probes.

    Science.gov (United States)

    Li, Shan-Shan; Guan, Qi-Yuan; Meng, Gang; Chang, Xiao-Feng; Wei, Ji-Wu; Wang, Peng; Kang, Bin; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-05-23

    Better understanding the drug action within cells may extend our knowledge on drug action mechanisms and promote new drugs discovery. Herein, we studied the processes of drug induced chemical changes on proteins and nucleic acids in human breast adenocarcinoma (MCF-7) cells via time-resolved plasmonic-enhanced Raman spectroscopy (PERS) in combination with principal component analysis (PCA). Using three popular chemotherapy drugs (fluorouracil, cisplatin and camptothecin) as models, chemical changes during drug action process were clearly discriminated. Reaction kinetics related to protein denaturation, conformational modification, DNA damage and their associated biomolecular events were calculated. Through rate constants and reaction delay times, the different action modes of these drugs could be distinguished. These results may provide vital insights into understanding the chemical reactions associated with drug-cell interactions.

  7. Standard Specification for Sampling Single-Phase Geothermal Liquid or Steam for Purposes of Chemical Analysis

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1983-01-01

    1.1 This specification covers the basic requirements for equipment to be used for the collection of uncontaminated and representative samples from single-phase geothermal liquid or steam. Geopressured liquids are included. See Fig 1.

  8. Chemical characterization and source apportionment of size-resolved particles in Hong Kong sub-urban area

    Science.gov (United States)

    Gao, Yuan; Lee, Shun-Cheng; Huang, Yu; Chow, Judith C.; Watson, John G.

    2016-03-01

    Size-resolved particulate matter (PM) samples were collected with a 10-stage Micro-Orifice Uniform Deposit Impactor (MOUDI) at a sub-urban site (Tung Chung) in Hong Kong for four non-consecutive months representing four seasons from 2011 to 2012. Major chemical components were water-soluble anions (i.e., Cl-, NO3-, and SO42 -), cations (i.e., NH4+, Na+, K+, and Ca2 +), organic and elemental carbon and elements. Both chemical mass closure and positive matrix factorization (PMF) were employed to understand the chemical composition, resolve particle size modes, and evaluate the PM sources. Tri-modal size distributions were found for PM mass and major chemical components (e.g., SO42 -, NH4+, and OC). Mass median aerodynamic diameters (MMADs) with similar standard deviations (1.32 burning. Secondary SO42 - is also the most dominant component in the droplet mode, accounting for 23% of PM mass, followed by an industrial source (19%). Engine exhaust, secondary NO3-, and sea salt each accounted for 13-15% of PM mass. Sea salt and soil are the dominated sources in the coarse mode, accounting for 80% of coarse mass.

  9. Modelling single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources

    NARCIS (Netherlands)

    Loch, R.A.; Sobierajski, R.; Louis, Eric; Bosgra, J.; Bosgra, J.; Bijkerk, Frederik

    2012-01-01

    The single shot damage thresholds of multilayer optics for highintensity short-wavelength radiation sources are theoretically investigated, using a model developed on the basis of experimental data obtained at the FLASH and LCLS free electron lasers. We compare the radiation hardness of commonly

  10. 77 FR 58404 - Announcing the Award of Three Single-Source Program Expansion Supplement Grants to Unaccompanied...

    Science.gov (United States)

    2012-09-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Office of Refugee Resettlement [CFDA Number 93.676... Children's Shelter Care Grantees AGENCY: Office of Refugee Resettlement, ACF, HHS. ACTION: The Office of Refugee Resettlement announces the award of three single-source program expansion supplement grants from...

  11. Intrinsic and environmental effects on the interference properties of a high-performance quantum dot single-photon source

    DEFF Research Database (Denmark)

    Gerhardt, Stefan; Iles-Smith, Jake; McCutcheon, Dara

    2018-01-01

    We report a joint experimental and theoretical study of the interference properties of a single-photon source based on a In(Ga)As quantum dot embedded in a quasiplanar GaAs microcavity. Using resonant laser excitation with a pulse separation of 2 ns, we find near-perfect interference of the emitt...... in excitonic Rabi oscillations....

  12. Using Extensible Markup Language (XML) for the Single Source Delivery of Educational Resources by Print and Online: A Case Study

    Science.gov (United States)

    Walsh, Lucas

    2007-01-01

    This article seeks to provide an introduction to Extensible Markup Language (XML) by looking at its use in a single source publishing approach to the provision of teaching resources in both hardcopy and online. Using the development of the International Baccalaureate Organisation's online Economics Subject Guide as a practical example, this…

  13. Characteristics of PM10 Chemical Source Profiles for Geological Dust from the South-West Region of China

    Directory of Open Access Journals (Sweden)

    Yayong Liu

    2016-11-01

    Full Text Available Ninety-six particulate matter (PM10 chemical source profiles for geological sources in typical cities of southwest China were acquired from Source Profile Shared Service in China. Twenty-six elements (Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Sr, Cd, Sn, Sb, Ba, Be, Tl and Pb, nine ions (F−, Cl−, SO42−, NO3−, Na+, NH4+, K+, Mg2+ and Ca2+, and carbon-containing species (organic carbon and elemental carbon were determined to construct these profiles. Individual source profiles were averaged and compared to quantify similarities and differences in chemical abundances using the profile-compositing method. Overall, the major components of PM10 in geological sources were crustal minerals and undefined fraction. Different chemical species could be used as tracers for various types of geological dust in the region that resulted from different anthropogenic influence. For example, elemental carbon, V and Zn could be used as tracers for urban paved road dust; Al, Si, K+ and NH4+ for agricultural soil; Al and Si for natural soil; and SO42− for urban resuspended dust. The enrichment factor analysis showed that Cu, Se, Sr and Ba were highly enriched by human activities in geological dust samples from south-west China. Elemental ratios were taken to highlight the features of geological dust from south-west China by comparing with northern urban fugitive dust, loess and desert samples. Low Si/Al and Fe/Al ratios can be used as markers to trace geological sources from southwestern China. High Pb/Al and Zn/Al ratios observed in urban areas demonstrated that urban geological dust was influenced seriously by non-crustal sources.

  14. Sensitivity of a Chemical Mass Balance model for PM2.5 to source profiles for differing styles of cooking

    Science.gov (United States)

    Abdullahi, K. L.; Delgado-Saborit, J. M.; Harrison, Roy M.

    2018-04-01

    Use of a Chemical Mass Balance model is one of the two most commonly used approaches to estimating atmospheric concentrations of cooking aerosol. Such models require the input of chemical profiles for each of the main sources contributing to particulate matter mass and there is appreciable evidence from the literature that not only the mass emission but also the chemical composition of particulate matter varies according to the food being prepared and the style of cooking. In this study, aerosol has been sampled in the laboratory from four different styles of cooking, i.e. Indian, Chinese, Western and African cooking. The chemical profiles of molecular markers have been quantified and are used individually within a Chemical Mass Balance model applied to air samples collected in a multi-ethnic area of Birmingham, UK. The model results give a source contribution estimate for cooking aerosol which is consistent with other comparable UK studies, but also shows a very low sensitivity of the model to the cooking aerosol profile utilised. A survey of local restaurants suggested a wide range of cooking styles taking place which may explain why no one profile gives an appreciably better fit in the CMB model.

  15. The action of chemical and mechanical stresses on single and dual species biofilm removal of drinking water bacteria.

    Science.gov (United States)

    Gomes, I B; Lemos, M; Mathieu, L; Simões, M; Simões, L C

    2018-08-01

    The presence of biofilms in drinking water distribution systems (DWDS) is a global public health concern as they can harbor pathogenic microorganisms. Sodium hypochlorite (NaOCl) is the most commonly used disinfectant for microbial growth control in DWDS. However, its effect on biofilm removal is still unclear. This work aims to evaluate the effects of the combination of chemical (NaOCl) and mechanical stresses on the removal of single and dual species biofilms of two bacteria isolated from DWDS and considered opportunistic, Acinectobacter calcoaceticus and Stenotrophomonas maltophilia. A rotating cylinder reactor was successfully used for the first time in drinking water biofilm studies with polyvinyl chloride as substratum. The single and dual species biofilms presented different characteristics in terms of metabolic activity, mass, density, thickness and content of proteins and polysaccharides. Their complete removal was not achieved even when a high NaOCl concentrations and an increasing series of shear stresses (from 2 to 23Pa) were applied. In general, NaOCl pre-treatment did not improve the impact of mechanical stress on biofilm removal. Dual species biofilms were colonized mostly by S. maltophilia and were more susceptible to chemical and mechanical stresses than these single species. The most efficient treatment (93% biofilm removal) was the combination of NaOCl at 175mg·l -1 with mechanical stress against dual species biofilms. Of concern was the high tolerance of S. maltophilia to chemical and mechanical stresses in both single and dual species biofilms. The overall results demonstrate the inefficacy of NaOCl on biofilm removal even when combined with high shear stresses. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Chemical mass balance source apportionment of TSP in a lignite-burning area of Western Macedonia, Greece

    Science.gov (United States)

    Samara, Constantini

    Total suspended particle mass concentrations (TSP) were determined in the Kozani-Ptolemais-Florina basin (western Macedonia, Greece), an area with intensive lignite burning for power generation. The study was conducted over a 1-year period (November 2000-November 2001) at 10 receptor sites located at variable distances from the power plants. Ambient TSP samples were analyzed for 27 major, minor and trace elements. Particulate emissions were also collected from a variety of sources including fly ash, lignite dust, automobile traffic, domestic heating, and open-air burning of agricultural biomass and refuse, and analyzed for the same chemical components. Ambient and source chemical profiles were used for source identification and apportionment of TSP by employing a chemical mass balance (CMB) receptor model. Diesel burning in vehicular traffic and in the power plants for generator start up was found to be the major contributor to ambient TSP levels at all 10 sites. Other sources with significant contributions were domestic coal burning, vegetative burning (wood combustion and agricultural burns) and refuse open-air burning. Fly ash escaping the electrostatic precipitators of the power plants was a minor contributor to ambient TSP.

  17. Analysis of mechanical properties of N2in situ doped polycrystalline 3C-SiC thin films by chemical vapor deposition using single-precursor hexamethyildisilane

    International Nuclear Information System (INIS)

    Kim, Kang-San; Han, Ki-Bong; Chung, Gwiy-Sang

    2010-01-01

    This paper describes the mechanical properties of poly (polycrystalline) 3C-SiC thin films with N 2 in situ doping. In this work, in situ doped poly 3C-SiC film was deposited by using the atmospheric pressure chemical vapor deposition (APCVD) method at 1200 deg. C using single-precursor hexamethyildisilane: Si 2 (CH 3 ) 6 (HMDS) as Si and C precursors, and 0∼100 sccm N 2 as the dopant source gas. The mechanical properties of doped poly 3C-SiC thin films were measured by nano-indentation. Young's modulus and hardness were measured to be 285 and 35 GPa at 0 sccm N 2 , respectively. Young's modulus and hardness decreased with increasing N 2 flow rate. Surface morphology was evaluated by atomic force microscopy (AFM) according to N 2 flow rate.

  18. Comparison of Microbial and Chemical Source Tracking Markers To Identify Fecal Contamination Sources in the Humber River (Toronto, Ontario, Canada) and Associated Storm Water Outfalls.

    Science.gov (United States)

    Staley, Zachery R; Grabuski, Josey; Sverko, Ed; Edge, Thomas A

    2016-11-01

    Storm water runoff is a major source of pollution, and understanding the components of storm water discharge is essential to remediation efforts and proper assessment of risks to human and ecosystem health. In this study, culturable Escherichia coli and ampicillin-resistant E. coli levels were quantified and microbial source tracking (MST) markers (including markers for general Bacteroidales spp., human, ruminant/cow, gull, and dog) were detected in storm water outfalls and sites along the Humber River in Toronto, Ontario, Canada, and enumerated via endpoint PCR and quantitative PCR (qPCR). Additionally, chemical source tracking (CST) markers specific for human wastewater (caffeine, carbamazepine, codeine, cotinine, acetaminophen, and acesulfame) were quantified. Human and gull fecal sources were detected at all sites, although concentrations of the human fecal marker were higher, particularly in outfalls (mean outfall concentrations of 4.22 log 10 copies, expressed as copy numbers [CN]/100 milliliters for human and 0.46 log 10 CN/100 milliliters for gull). Higher concentrations of caffeine, acetaminophen, acesulfame, E. coli, and the human fecal marker were indicative of greater raw sewage contamination at several sites (maximum concentrations of 34,800 ng/liter, 5,120 ng/liter, 9,720 ng/liter, 5.26 log 10 CFU/100 ml, and 7.65 log 10 CN/100 ml, respectively). These results indicate pervasive sewage contamination at storm water outfalls and throughout the Humber River, with multiple lines of evidence identifying Black Creek and two storm water outfalls with prominent sewage cross-connection problems requiring remediation. Limited data are available on specific sources of pollution in storm water, though our results indicate the value of using both MST and CST methodologies to more reliably assess sewage contamination in impacted watersheds. Storm water runoff is one of the most prominent non-point sources of biological and chemical contaminants which can

  19. Single Amplified Genomes as Source for Novel Extremozymes: Annotation, Expression and Functional Assessment

    KAUST Repository

    Grö tzinger, Stefan

    2017-01-01

    Enzymes, as nature’s catalysts, show remarkable abilities that can revolutionize the chemical, biotechnological, bioremediation, agricultural and pharmaceutical industries. However, the narrow range of stability of the majority of described

  20. Internal validation of STRmix™ for the interpretation of single source and mixed DNA profiles.

    Science.gov (United States)

    Moretti, Tamyra R; Just, Rebecca S; Kehl, Susannah C; Willis, Leah E; Buckleton, John S; Bright, Jo-Anne; Taylor, Duncan A; Onorato, Anthony J

    2017-07-01

    The interpretation of DNA evidence can entail analysis of challenging STR typing results. Genotypes inferred from low quality or quantity specimens, or mixed DNA samples originating from multiple contributors, can result in weak or inconclusive match probabilities when a binary interpretation method and necessary thresholds (such as a stochastic threshold) are employed. Probabilistic genotyping approaches, such as fully continuous methods that incorporate empirically determined biological parameter models, enable usage of more of the profile information and reduce subjectivity in interpretation. As a result, software-based probabilistic analyses tend to produce more consistent and more informative results regarding potential contributors to DNA evidence. Studies to assess and internally validate the probabilistic genotyping software STRmix™ for casework usage at the Federal Bureau of Investigation Laboratory were conducted using lab-specific parameters and more than 300 single-source and mixed contributor profiles. Simulated forensic specimens, including constructed mixtures that included DNA from two to five donors across a broad range of template amounts and contributor proportions, were used to examine the sensitivity and specificity of the system via more than 60,000 tests comparing hundreds of known contributors and non-contributors to the specimens. Conditioned analyses, concurrent interpretation of amplification replicates, and application of an incorrect contributor number were also performed to further investigate software performance and probe the limitations of the system. In addition, the results from manual and probabilistic interpretation of both prepared and evidentiary mixtures were compared. The findings support that STRmix™ is sufficiently robust for implementation in forensic laboratories, offering numerous advantages over historical methods of DNA profile analysis and greater statistical power for the estimation of evidentiary weight, and

  1. Single particle measurements of the chemical composition of cirrus ice residue during CRYSTAL-FACE

    Science.gov (United States)

    Cziczo, D. J.; Murphy, D. M.; Hudson, P. K.; Thomson, D. S.

    2004-02-01

    The first real-time, in situ, investigation of the chemical composition of the residue of cirrus ice crystals was performed during July 2002. This study was undertaken on a NASA WB-57F high-altitude research aircraft as part of CRYSTAL-FACE, a field campaign which sought to further our understanding of the relation of clouds, water vapor, and climate by characterizing, among other parameters, anvil cirrus formed about the Florida peninsula. A counter flow virtual impactor (CVI) was used to separate cirrus ice from the unactivated interstitial aerosol particles and evaporate condensed-phase water. Residual material, on a crystal-by-crystal basis, was subsequently analyzed using the NOAA Aeronomy Laboratory's Particle Analysis by Laser Mass Spectrometry (PALMS) instrument. Sampling was performed from 5 to 15 km altitude and from 12° to 28° north latitude within cirrus originating over land and ocean. Chemical composition measurements provided several important results. Sea salt was often incorporated into cirrus, consistent with homogeneous ice formation by aerosol particles from the marine boundary layer. Size measurements showed that large particles preferentially froze over smaller ones. Meteoritic material was found within ice crystals, indicative of a relation between stratospheric aerosol particles and tropospheric clouds. Mineral dust was the dominant residue observed in clouds formed during a dust transport event from the Sahara, consistent with a heterogeneous freezing mechanism. These results show that chemical composition and size are important determinants of which aerosol particles form cirrus ice crystals.

  2. Three-input gate logic circuits on chemically assembled single-electron transistors with organic and inorganic hybrid passivation layers.

    Science.gov (United States)

    Majima, Yutaka; Hackenberger, Guillaume; Azuma, Yasuo; Kano, Shinya; Matsuzaki, Kosuke; Susaki, Tomofumi; Sakamoto, Masanori; Teranishi, Toshiharu

    2017-01-01

    Single-electron transistors (SETs) are sub-10-nm scale electronic devices based on conductive Coulomb islands sandwiched between double-barrier tunneling barriers. Chemically assembled SETs with alkanethiol-protected Au nanoparticles show highly stable Coulomb diamonds and two-input logic operations. The combination of bottom-up and top-down processes used to form the passivation layer is vital for realizing multi-gate chemically assembled SET circuits, as this combination enables us to connect conventional complementary metal oxide semiconductor (CMOS) technologies via planar processes. Here, three-input gate exclusive-OR (XOR) logic operations are demonstrated in passivated chemically assembled SETs. The passivation layer is a hybrid bilayer of self-assembled monolayers (SAMs) and pulsed laser deposited (PLD) aluminum oxide (AlO[Formula: see text]), and top-gate electrodes were prepared on the hybrid passivation layers. Top and two-side-gated SETs showed clear Coulomb oscillation and diamonds for each of the three available gates, and three-input gate XOR logic operation was clearly demonstrated. These results show the potential of chemically assembled SETs to work as logic devices with multi-gate inputs using organic and inorganic hybrid passivation layers.

  3. Stochastic Mapping for Chemical Plume Source Localization With Application to Autonomous Hydrothermal Vent Discovery

    Science.gov (United States)

    2007-02-01

    silkworm moth Bombyx mori to a series of silkworm moth mimics called PheGMots (Pheromone Guided Mobile Robots). Two European groups at the University of...coastal and estuarine sea floor. Chemical plumes in these habitats are thus turbulent themselves and, like atmospheric odor plumes, consist of discrete...their habitats are typically lower than in air, and they too must react to chemical stimulus on the time scales associated with the small scale

  4. The importance of proper crystal-chemical and geometrical reasoning demonstrated using layered single and double hydroxides

    International Nuclear Information System (INIS)

    Richardson, Ian G.

    2013-01-01

    The importance and utility of proper crystal-chemical and geometrical reasoning in structural studies is demonstrated through the consideration of layered single and double hydroxides. New yet fundamental information is provided and it is evident that the crystal chemistry of the double hydroxide phases is much more straightforward than is apparent from the literature. Atomistic modelling techniques and Rietveld refinement of X-ray powder diffraction data are widely used but often result in crystal structures that are not realistic, presumably because the authors neglect to check the crystal-chemical plausibility of their structure. The purpose of this paper is to reinforce the importance and utility of proper crystal-chemical and geometrical reasoning in structural studies. It is achieved by using such reasoning to generate new yet fundamental information about layered double hydroxides (LDH), a large, much-studied family of compounds. LDH phases are derived from layered single hydroxides by the substitution of a fraction (x) of the divalent cations by trivalent. Equations are derived that enable calculation of x from the a parameter of the unit cell and vice versa, which can be expected to be of widespread utility as a sanity test for extant and future structure determinations and computer simulation studies. The phase at x = 0 is shown to be an α form of divalent metal hydroxide rather than the β polymorph. Crystal-chemically sensible model structures are provided for β-Zn(OH) 2 and Ni- and Mg-based carbonate LDH phases that have any trivalent cation and any value of x, including x = 0 [i.e. for α-M(OH) 2 ·mH 2 O phases

  5. Compact source of narrow-band counterpropagating polarization-entangled photon pairs using a single dual-periodically-poled crystal

    International Nuclear Information System (INIS)

    Gong, Yan-Xiao; Xie, Zhen-Da; Xu, Ping; Zhu, Shi-Ning; Yu, Xiao-Qiang; Xue, Peng

    2011-01-01

    We propose a scheme for the generation of counterpropagating polarization-entangled photon pairs from a dual-periodically-poled crystal. Compared with the usual forward-wave-type source, this source, in the backward-wave way, has a much narrower bandwidth. With a 2-cm-long bulk crystal, the bandwidths of the example sources are estimated to be 3.6 GHz, and the spectral brightnesses are more than 100 pairs/(s GHz mW). Two concurrent quasi-phase-matched spontaneous parametric down-conversion processes in a single crystal enable our source to be compact and stable. This scheme does not rely on any state projection and applies to both degenerate and nondegenerate cases, facilitating applications of the entangled photons.

  6. Source contributions and mass loadings for chemicals of emerging concern: Chemometric application of pharmaco-signature in different aquatic systems

    International Nuclear Information System (INIS)

    Jiang, Jheng-Jie; Lee, Chon-Lin; Brimblecombe, Peter; Vydrova, Lucie; Fang, Meng-Der

    2016-01-01

    To characterize the source contributions of chemicals of emerging concern (CECs) from different aquatic environments of Taiwan, we collected water samples from different aquatic systems, which were screened for 30 pharmaceuticals and illicit drugs. The total estimated mass loadings of CECs were 23.1 g/d in southern aquatic systems and 133 g/d in central aquatic systems. We developed an analytical framework combining pollutant fingerprinting, hierarchical cluster analysis (HCA), and principal component analysis with multiple linear regression (PCA-MLR) to infer the pharmaco-signature and source contributions of CECs. Based on this approach, we estimate source contributions of 62.2% for domestic inputs, 16.9% for antibiotics application, and 20.9% for drug abuse/medication in southern aquatic system, compared with 47.3% domestic, 35.1% antibiotic, and 17.6% drug abuse/medication inputs to central aquatic systems. The proposed pharmaco-signature method provides initial insights into the profile and source apportionment of CECs in complex aquatic systems, which are of importance for environmental management. - Highlights: • Pharmaco-signature provides first insights into the profile and source apportionment of CECs. • Performing HCA and PCA-MLR can discern the potential source of CECs in different aquatic systems. • Chemometric results resolved 3 factors: domestic inputs, antibiotic application and drug abuse. - The proposed pharmaco-signature method provides initial insights into the profile and source apportionment of CECs in complex aquatic systems.

  7. Elliptical quantum dots as on-demand single photons sources with deterministic polarization states

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Chu-Hsiang; Demory, Brandon; Ku, Pei-Cheng, E-mail: peicheng@umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48105 (United States); Zhang, Lei; Hill, Tyler A.; Deng, Hui [Department of Mechanical Engineering, University of Michigan, 2350 Hayward St., Ann Arbor, Michigan 48105 (United States)

    2015-11-09

    In quantum information, control of the single photon's polarization is essential. Here, we demonstrate single photon generation in a pre-programmed and deterministic polarization state, on a chip-scale platform, utilizing site-controlled elliptical quantum dots (QDs) synthesized by a top-down approach. The polarization from the QD emission is found to be linear with a high degree of linear polarization and parallel to the long axis of the ellipse. Single photon emission with orthogonal polarizations is achieved, and the dependence of the degree of linear polarization on the QD geometry is analyzed.

  8. InGaAsP/InP-air-aperture microcavities for single-photon sources at 1.55-μm telecommunication band

    Science.gov (United States)

    Guo, Sijie; Zheng, Yanzhen; Weng, Zhuo; Yao, Haicheng; Ju, Yuhao; Zhang, Lei; Ren, Zhilei; Gao, Ruoyao; Wang, Zhiming M.; Song, Hai-Zhi

    2016-11-01

    InGaAsP/InP-air-aperture micropillar cavities are proposed to serve as 1.55-μm single photon sources, which are indispensable in silica-fiber based quantum information processing. Owing to air-apertures introduced to InP layers, and adiabatically tapered distributed Bragg-reflector structures used in the central cavity layers, the pillar diameters can be less than 1 μm, achieving mode volume as small as (λ/n)3, and the quality factors are more than 104 - 105, sufficient to increase the quantum dot emission rate for 100 times and create strong coupling between the optical mode and the 1.55- μm InAs/InP quantum dot emitter. The mode wavelengths and quality factors are found weakly changing with the cavity size and the deviation from the ideal shape, indicating the robustness against the imperfection of the fabrication technique. The fabrication, simply epitaxial growth, dry and chemical etching, is a damage-free and monolithic process, which is advantageous over previous hybrid cavities. The above properties satisfy the requirements of efficient, photonindistinguishable and coherent 1.55-μm quantum dot single photon sources, so the proposed InGaAsP/InP-air-aperture micropillar cavities are prospective candidates for quantum information devices at telecommunication band.

  9. Catalyst Design Using Nanoporous Iron for the Chemical Vapor Deposition Synthesis of Single-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Tarek M. Abdel-Fattah

    2013-01-01

    Full Text Available Single-walled carbon nanotubes (SWNTs have been synthesized via a novel chemical vapor deposition (CVD approach utilizing nanoporous, iron-supported catalysts. Stable aqueous dispersions of the CVD-grown nanotubes using an anionic surfactant were also obtained. The properties of the as-produced SWNTs were characterized through atomic force microscopy and Raman spectroscopy and compared with purified SWNTs produced via the high-pressure CO (HiPCO method as a reference, and the nanotubes were observed with greater lengths than those of similarly processed HiPCO SWNTs.

  10. Passivated graphene transistors fabricated on a millimeter-sized single-crystal graphene film prepared with chemical vapor deposition

    International Nuclear Information System (INIS)

    Lin, Meng-Yu; Lee, Si-Chen; Lin, Shih-Yen; Wang, Cheng-Hung; Chang, Shu-Wei

    2015-01-01

    In this work, we first investigate the effects of partial pressures and flow rates of precursors on the single-crystal graphene growth using chemical vapor depositions on copper foils. These factors are shown to be critical to the growth rate, seeding density and size of graphene single crystals. The prepared graphene films in millimeter sizes are then bubbling transferred to silicon-dioxide/silicon substrates for high-mobility graphene transistor fabrications. After high-temperature annealing and hexamethyldisilazane passivation, the water attachment is removed from the graphene channel. The elimination of uncontrolled doping and enhancement of carrier mobility accompanied by these procedures indicate that they are promising for fabrications of graphene transistors. (paper)

  11. SHEDS-HT: an integrated probabilistic exposure model for prioritizing exposures to chemicals with near-field and dietary sources.

    Science.gov (United States)

    Isaacs, Kristin K; Glen, W Graham; Egeghy, Peter; Goldsmith, Michael-Rock; Smith, Luther; Vallero, Daniel; Brooks, Raina; Grulke, Christopher M; Özkaynak, Halûk

    2014-11-04

    United States Environmental Protection Agency (USEPA) researchers are developing a strategy for high-throughput (HT) exposure-based prioritization of chemicals under the ExpoCast program. These novel modeling approaches for evaluating chemicals based on their potential for biologically relevant human exposures will inform toxicity testing and prioritization for chemical risk assessment. Based on probabilistic methods and algorithms developed for The Stochastic Human Exposure and Dose Simulation Model for Multimedia, Multipathway Chemicals (SHEDS-MM), a new mechanistic modeling approach has been developed to accommodate high-throughput (HT) assessment of exposure potential. In this SHEDS-HT model, the residential and dietary modules of SHEDS-MM have been operationally modified to reduce the user burden, input data demands, and run times of the higher-tier model, while maintaining critical features and inputs that influence exposure. The model has been implemented in R; the modeling framework links chemicals to consumer product categories or food groups (and thus exposure scenarios) to predict HT exposures and intake doses. Initially, SHEDS-HT has been applied to 2507 organic chemicals associated with consumer products and agricultural pesticides. These evaluations employ data from recent USEPA efforts to characterize usage (prevalence, frequency, and magnitude), chemical composition, and exposure scenarios for a wide range of consumer products. In modeling indirect exposures from near-field sources, SHEDS-HT employs a fugacity-based module to estimate concentrations in indoor environmental media. The concentration estimates, along with relevant exposure factors and human activity data, are then used by the model to rapidly generate probabilistic population distributions of near-field indirect exposures via dermal, nondietary ingestion, and inhalation pathways. Pathway-specific estimates of near-field direct exposures from consumer products are also modeled

  12. The photonic nanowire: an emerging platform for highly efficient single-photon sources for quantum information applications

    DEFF Research Database (Denmark)

    Gregersen, Niels; Munsch, Mathieu; Malik, Nitin S.

    2013-01-01

    Efficient coupling between a localized quantum emitter and a well defined optical channel represents a powerful route to realize single-photon sources and spin-photon interfaces. The tailored fiber-like photonic nanowire embedding a single quantum dot has recently demonstrated an appealing...... potential. However, the device requires a delicate, sharp needle-like taper with performance sensitive to minute geometrical details. To overcome this limitation we demonstrate the photonic trumpet, exploiting an opposite tapering strategy. The trumpet features a strongly Gaussian far-field emission...

  13. The Sources of Chemical Contaminants in Food and Their Health Implications

    Science.gov (United States)

    Rather, Irfan A.; Koh, Wee Yin; Paek, Woon K.; Lim, Jeongheui

    2017-01-01

    Food contamination is a matter of serious concern, as the high concentration of chemicals present in the edibles poses serious health risks. Protecting the public from the degrees of the harmfulness of contaminated foods has become a daunting task. This article highlights the causes, types, and health implications of chemical contamination in food. The food contamination could be due to naturally occurring contaminants in the environment or artificially introduced by the human. The phases of food processing, packaging, transportation, and storage are also significant contributors to food contamination. The implications of these chemical contaminants on human health are grave, ranging from mild gastroenteritis to fatal cases of hepatic, renal, and neurological syndromes. Although, the government regulates such chemicals in the eatables by prescribing minimum limits that are safe for human consumption yet measures still need to be taken to curb food contamination entirely. Therefore, a variety of food needs to be inspected and measured for the presence of chemical contaminants. The preventative measures pertaining about the food contaminants problems are pointed out and discussed. PMID:29204118

  14. The Sources of Chemical Contaminants in Food and Their Health Implications

    Directory of Open Access Journals (Sweden)

    Irfan A. Rather

    2017-11-01

    Full Text Available Food contamination is a matter of serious concern, as the high concentration of chemicals present in the edibles poses serious health risks. Protecting the public from the degrees of the harmfulness of contaminated foods has become a daunting task. This article highlights the causes, types, and health implications of chemical contamination in food. The food contamination could be due to naturally occurring contaminants in the environment or artificially introduced by the human. The phases of food processing, packaging, transportation, and storage are also significant contributors to food contamination. The implications of these chemical contaminants on human health are grave, ranging from mild gastroenteritis to fatal cases of hepatic, renal, and neurological syndromes. Although, the government regulates such chemicals in the eatables by prescribing minimum limits that are safe for human consumption yet measures still need to be taken to curb food contamination entirely. Therefore, a variety of food needs to be inspected and measured for the presence of chemical contaminants. The preventative measures pertaining about the food contaminants problems are pointed out and discussed.

  15. Stand-Off Chemical Detection Using Photoacoustic Sensing Techniques—From Single Element to Phase Array

    Directory of Open Access Journals (Sweden)

    Deepa Gupta

    2018-01-01

    Full Text Available Technologies that can detect harmful chemicals, such as explosive devices, harmful gas leaks, airborne chemicals or/and biological agents, are heavily invested in by the government to prevent any possible catastrophic consequences. Some key features of such technology are, but not limited to, effective signal-to-noise ratio (SNR of the detected signal and extended distance between the detector and target. In this work, we describe the development of photoacoustic sensing techniques from simple to more complex systems. These techniques include passive and active noise filters, parabolic sound reflectors, a lock-in amplifier, and beam-forming with an array of microphones; using these techniques, we increased detection distance from a few cm in an indoor setting to over 41 feet in an outdoor setting. We also establish a theoretical mathematical model that explains the underlying principle of how SNR can be improved with an increasing number of microphone elements in the phase array. We validate this model with computational simulations as well as experimental results.

  16. Proximate chemical composition of giant ipil-ipil wood from different sources

    Energy Technology Data Exchange (ETDEWEB)

    Escolano, E U; Gonzales, E V; Semana, J A

    1978-01-01

    Studies of the chemical composition of seven samples of giant ipil-ipil (Leucaena leucocephala) yielded holocellulose, 69.8 to 73.9%; pentosans, 8.9 to 20.1%; lignin, 21.8 to 26%; alcohol-benzene solubles, 1.4 to 3.0%; caustic soda solubles, 13.0 to 16.4%; and ash, 0.7 to 0.9%. Based on chemical composition, this should be a suitable species for pulp and paper. (Refs. 11).

  17. Simulations of X-ray diffraction of shock-compressed single-crystal tantalum with synchrotron undulator sources.

    Science.gov (United States)

    Tang, M X; Zhang, Y Y; E, J C; Luo, S N

    2018-05-01

    Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic-plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of the diffraction patterns is discussed.

  18. Simulations of X-ray diffraction of shock-compressed single-crystal tantalum with synchrotron undulator sources

    Energy Technology Data Exchange (ETDEWEB)

    Tang, M. X.; Zhang, Y. Y.; E, J. C.; Luo, S. N.

    2018-04-24

    Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic–plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of the diffraction patterns is discussed.

  19. Nitrate source apportionment using a combined dual isotope, chemical and bacterial property, and Bayesian model approach in river systems

    Science.gov (United States)

    Xia, Yongqiu; Li, Yuefei; Zhang, Xinyu; Yan, Xiaoyuan

    2017-01-01

    Nitrate (NO3-) pollution is a serious problem worldwide, particularly in countries with intensive agricultural and population activities. Previous studies have used δ15N-NO3- and δ18O-NO3- to determine the NO3- sources in rivers. However, this approach is subject to substantial uncertainties and limitations because of the numerous NO3- sources, the wide isotopic ranges, and the existing isotopic fractionations. In this study, we outline a combined procedure for improving the determination of NO3- sources in a paddy agriculture-urban gradient watershed in eastern China. First, the main sources of NO3- in the Qinhuai River were examined by the dual-isotope biplot approach, in which we narrowed the isotope ranges using site-specific isotopic results. Next, the bacterial groups and chemical properties of the river water were analyzed to verify these sources. Finally, we introduced a Bayesian model to apportion the spatiotemporal variations of the NO3- sources. Denitrification was first incorporated into the Bayesian model because denitrification plays an important role in the nitrogen pathway. The results showed that fertilizer contributed large amounts of NO3- to the surface water in traditional agricultural regions, whereas manure effluents were the dominant NO3- source in intensified agricultural regions, especially during the wet seasons. Sewage effluents were important in all three land uses and exhibited great differences between the dry season and the wet season. This combined analysis quantitatively delineates the proportion of NO3- sources from paddy agriculture to urban river water for both dry and wet seasons and incorporates isotopic fractionation and uncertainties in the source compositions.

  20. Growth of single-wall carbon nanotubes by chemical vapor deposition for electrical devices

    OpenAIRE

    Furer, Jürg

    2006-01-01

    Carbon emerges in di®erent forms. Diamond and graphite have been well known mate- rials for centuries. Moreover fullerenes and nanotubes were discovered only a few years ago. H. W. Kroto et al. depicted the fullerenes in 1985 [1]. A few years later, in 1991, S. Iijima described carbon nanotubes (CNTs) for the ¯rst time [2] (Figure 1.1). CNTs have a close relation to graphite, since a single-wall carbon nanotube is like a rolled-up graphite mono layer. However a nanotube has wi...

  1. Use of advanced chemical fingerprinting in PAH source identification and allocation at a coal tar processing site

    International Nuclear Information System (INIS)

    Brown, J.S.; Boehm, P.D.; Douglas, G.S.

    1995-01-01

    Advanced chemical fingerprinting analyses were used to determine source allocation at a former coal tar processing facility which had been converted to a petroleum recycling site. Soil samples from the site had high petroleum hydrocarbon concentrations and elevated levels of polynuclear aromatic hydrocarbons (PAH). Comparisons of PAH distributions were used to differentiate the coal tar hydrocarbons from the petroleum hydrocarbons in soil samples. A more specific technique was needed to accurately allocate the contribution of the two sources to the observed PAH contamination in the soil. Petroleum biomarkers (steranes and triterpanes) which are present in crude oils and many refined petroleum products but are absent in coal tar were used to quantitatively allocate the source of the PAH contamination based on the relative ratio of the PAH to the biomarkers in soil samples. Using the resulting coal tar/petroleum source ratio the contribution of petroleum to the overall PAH contamination at the site was calculated. A multivariate statistical technique (principal component analysis or PCA) was used to provide an independent validation of the source allocation. The results of the source allocation provided a foundation for the site clean-up and remediation costs

  2. Exact results in nonequilibrium statistical mechanics: Formalism and applications in chemical kinetics and single-molecule free energy estimation

    Science.gov (United States)

    Adib, Artur B.

    In the last two decades or so, a collection of results in nonequilibrium statistical mechanics that departs from the traditional near-equilibrium framework introduced by Lars Onsager in 1931 has been derived, yielding new fundamental insights into far-from-equilibrium processes in general. Apart from offering a more quantitative statement of the second law of thermodynamics, some of these results---typified by the so-called "Jarzynski equality"---have also offered novel means of estimating equilibrium quantities from nonequilibrium processes, such as free energy differences from single-molecule "pulling" experiments. This thesis contributes to such efforts by offering three novel results in nonequilibrium statistical mechanics: (a) The entropic analog of the Jarzynski equality; (b) A methodology for estimating free energies from "clamp-and-release" nonequilibrium processes; and (c) A directly measurable symmetry relation in chemical kinetics similar to (but more general than) chemical detailed balance. These results share in common the feature of remaining valid outside Onsager's near-equilibrium regime, and bear direct applicability in protein folding kinetics as well as in single-molecule free energy estimation.

  3. Quantum dots assisted photocatalysis for the chemiluminometric determination of chemical oxygen demand using a single interface flow system

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre, Cristina I.C.; Frigerio, Christian [Requimte, Department of Chemistry, Faculty of Pharmacy, Porto University, Rua Anibal Cunha 164, 4099-030, Porto (Portugal); Santos, Joao L.M., E-mail: joaolms@ff.up.pt [Requimte, Department of Chemistry, Faculty of Pharmacy, Porto University, Rua Anibal Cunha 164, 4099-030, Porto (Portugal); Lima, Jose L.F.C. [Requimte, Department of Chemistry, Faculty of Pharmacy, Porto University, Rua Anibal Cunha 164, 4099-030, Porto (Portugal)

    2011-08-12

    Highlights: {yields} A novel flow method for the determination of chemical oxygen demand is proposed. {yields} CdTe nanocrystals are irradiated with UV light to generate strong oxidizing species. {yields} Reactive species promote a fast catalytic degradation of organic matter. {yields} Luminol is used as a chemiluminescence probe for indirect COD assessment. {yields} A single interface flow system was implemented to automate the assays. - Abstract: A novel flow method for the determination of chemical oxygen demand (COD) is proposed in this work. It relies on the combination of a fully automated single interface flow system, an on-line UV photocatalytic unit and quantum dot (QD) nanotechnology. The developed approach takes advantage of CdTe nanocrystals capacity to generate strong oxidizing species upon irradiation with UV light, which fostered a fast catalytic degradation of the organic compounds. Luminol was used as a chemiluminescence (CL) probe for indirect COD assessment, since it is easily oxidized by the QD generated species yielding a strong CL emission that is quenched in the presence of the organic matter. The proposed methodology allowed the determination of COD concentrations between 1 and 35 mg L{sup -1}, with good precision (R.S.D. < 1.1%, n = 3) and a sampling frequency of about 33 h{sup -1}. The procedure was applied to the determination of COD in wastewater certified reference materials and the obtained results showed an excellent agreement with the certified values.

  4. Comparing Multipollutant Emissions-Based Mobile Source Indicators to Other Single Pollutant and Multipollutant Indicators in Different Urban Areas

    Directory of Open Access Journals (Sweden)

    Michelle M. Oakes

    2014-11-01

    Full Text Available A variety of single pollutant and multipollutant metrics can be used to represent exposure to traffic pollutant mixtures and evaluate their health effects. Integrated mobile source indicators (IMSIs that combine air quality concentration and emissions data have recently been developed and evaluated using data from Atlanta, Georgia. IMSIs were found to track trends in traffic-related pollutants and have similar or stronger associations with health outcomes. In the current work, we apply IMSIs for gasoline, diesel and total (gasoline + diesel vehicles to two other cities (Denver, Colorado and Houston, Texas with different emissions profiles as well as to a different dataset from Atlanta. We compare spatial and temporal variability of IMSIs to single-pollutant indicators (carbon monoxide (CO, nitrogen oxides (NOx and elemental carbon (EC and multipollutant source apportionment factors produced by Positive Matrix Factorization (PMF. Across cities, PMF-derived and IMSI gasoline metrics were most strongly correlated with CO (r = 0.31–0.98, while multipollutant diesel metrics were most strongly correlated with EC (r = 0.80–0.98. NOx correlations with PMF factors varied across cities (r = 0.29–0.67, while correlations with IMSIs were relatively consistent (r = 0.61–0.94. In general, single-pollutant metrics were more correlated with IMSIs (r = 0.58–0.98 than with PMF-derived factors (r = 0.07–0.99. A spatial analysis indicated that IMSIs were more strongly correlated (r > 0.7 between two sites in each city than single pollutant and PMF factors. These findings provide confidence that IMSIs provide a transferable, simple approach to estimate mobile source air pollution in cities with differing topography and source profiles using readily available data.

  5. Novel Family of Single-Phase Modified Impedance-Source Buck-Boost Multilevel Inverters with Reduced Switch Count

    DEFF Research Database (Denmark)

    Husev, Oleksandr; Strzelecki, Ryszard; Blaabjerg, Frede

    2016-01-01

    This paper describes novel single-phase solutions with increased inverter voltage levels derived by means of a nonstandard inverter configuration and impedance source networks. Operation principles based on special modulation techniques are presented. Detailed component design guidelines along wi...... with simulation and experimental verification are also provided. Possible application fields are discussed, as well as advantages and disadvantages. Finally, future studies are addressed for the new solutions....

  6. Simultaneous optical coherence tomography and lipofuscin autofluorescence imaging of the retina with a single broadband light source at 480nm

    OpenAIRE

    Jiang, Minshan; Liu, Tan; Liu, Xiaojing; Jiao, Shuliang

    2014-01-01

    We accomplished spectral domain optical coherence tomography and auto-fluorescence microscopy for imaging the retina with a single broadband light source centered at 480 nm. This technique is able to provide simultaneous structural imaging and lipofuscin molecular contrast of the retina. Since the two imaging modalities are provided by the same group of photons, their images are intrinsically registered. To test the capabilities of the technique we periodically imaged the retinas of the same ...

  7. A Fuzzy Logic Based Three phase Inverter with Single DC Source for Grid Connected PV System Employing Three Phase Transformer

    OpenAIRE

    Mani, venkatesan; Ramachandran, Rajeswari; N, Deverajan

    2016-01-01

    A fuzzy based three phase inverter with single DC source for grid connected photo voltaic (PV) system employing three phase transformer is presented in this paper. Space Vector Pulse Width Modulation (SVPWM) control scheme is effectively used to generate the appropriate switching sequences to the inverter switches. The intend of the fuzzy logic approach is to meet high quality output, fast response and high robustness. Finally Total Harmonics Distortion (THD) generated by the inverter is comp...

  8. DNAPL Source Depletion During In Situ Chemical Oxidation (ISCO): Experimental and Modeling Studies (CD-ROM)

    National Research Council Canada - National Science Library

    Heiderscheidt, Jeffrey L

    2005-01-01

    ... contaminated by chlorinated solvents present as dense non-aqueous phase liquids (DNAPLs). However, there remain gaps in knowledge about ISCO effects on mass depletion from complex DNAPL source MnO2...

  9. Reactive hydro- end chlorocarbons in the troposphere and lower stratosphere : sources, distributions, and chemical impact

    NARCIS (Netherlands)

    Scheeren, H.A.

    2003-01-01

    The work presented in this thesis focuses on measurements of chemical reactive C2 C7 non-methane hydrocarbons (NMHC) and C1 C2 chlorocarbons with atmospheric lifetimes of a few hours up to about a year. The group of reactive chlorocarbons includes the most abundant atmospheric species with large

  10. Temporally delineated sources of major chemical species in high Arctic snow

    Directory of Open Access Journals (Sweden)

    K. M. Macdonald

    2018-03-01

    Full Text Available Long-range transport of aerosol from lower latitudes to the high Arctic may be a significant contributor to climate forcing in the Arctic. To identify the sources of key contaminants entering the Canadian High Arctic an intensive campaign of snow sampling was completed at Alert, Nunavut, from September 2014 to June 2015. Fresh snow samples collected every few days were analyzed for black carbon, major ions, and metals, and this rich data set provided an opportunity for a temporally refined source apportionment of snow composition via positive matrix factorization (PMF in conjunction with FLEXPART (FLEXible PARTicle dispersion model potential emission sensitivity analysis. Seven source factors were identified: sea salt, crustal metals, black carbon, carboxylic acids, nitrate, non-crustal metals, and sulfate. The sea salt and crustal factors showed good agreement with expected composition and primarily northern sources. High loadings of V and Se onto Factor 2, crustal metals, was consistent with expected elemental ratios, implying these metals were not primarily anthropogenic in origin. Factor 3, black carbon, was an acidic factor dominated by black carbon but with some sulfate contribution over the winter-haze season. The lack of K+ associated with this factor, a Eurasian source, and limited known forest fire events coincident with this factor's peak suggested a predominantly anthropogenic combustion source. Factor 4, carboxylic acids, was dominated by formate and acetate with a moderate correlation to available sunlight and an oceanic and North American source. A robust identification of this factor was not possible; however, atmospheric photochemical reactions, ocean microlayer reaction, and biomass burning were explored as potential contributors. Factor 5, nitrate, was an acidic factor dominated by NO3−, with a likely Eurasian source and mid-winter peak. The isolation of NO3− on a separate factor may reflect its complex atmospheric

  11. A Single Phase Doubly Grounded Semi-Z-Source Inverter for Photovoltaic (PV Systems with Maximum Power Point Tracking (MPPT

    Directory of Open Access Journals (Sweden)

    Tofael Ahmed

    2014-06-01

    Full Text Available In this paper, a single phase doubly grounded semi-Z-source inverter with maximum power point tracking (MPPT is proposed for photovoltaic (PV systems. This proposed system utilizes a single-ended primary inductor (SEPIC converter as DC-DC converter to implement the MPPT algorithm for tracking the maximum power from a PV array and a single phase semi-Z-source inverter for integrating the PV with AC power utilities. The MPPT controller utilizes a fast-converging algorithm to track the maximum power point (MPP and the semi-Z-source inverter utilizes a nonlinear SPWM to produce sinusoidal voltage at the output. The proposed system is able to track the MPP of PV arrays and produce an AC voltage at its output by utilizing only three switches. Experimental results show that the fast-converging MPPT algorithm has fast tracking response with appreciable MPP efficiency. In addition, the inverter shows the minimization of common mode leakage current with its ground sharing feature and reduction of the THD as well as DC current components at the output during DC-AC conversion.

  12. Analytic and Unambiguous Phase-Based Algorithm for 3-D Localization of a Single Source with Uniform Circular Array

    Directory of Open Access Journals (Sweden)

    Le Zuo

    2018-02-01

    Full Text Available This paper presents an analytic algorithm for estimating three-dimensional (3-D localization of a single source with uniform circular array (UCA interferometers. Fourier transforms are exploited to expand the phase distribution of a single source and the localization problem is reformulated as an equivalent spectrum manipulation problem. The 3-D parameters are decoupled to different spectrums in the Fourier domain. Algebraic relations are established between the 3-D localization parameters and the Fourier spectrums. Fourier sampling theorem ensures that the minimum element number for 3-D localization of a single source with a UCA is five. Accuracy analysis provides mathematical insights into the 3-D localization algorithm that larger number of elements gives higher estimation accuracy. In addition, the phase-based high-order difference invariance (HODI property of a UCA is found and exploited to realize phase range compression. Following phase range compression, ambiguity resolution is addressed by the HODI of a UCA. A major advantage of the algorithm is that the ambiguity resolution and 3-D localization estimation are both analytic and are processed simultaneously, hence computationally efficient. Numerical simulations and experimental results are provided to verify the effectiveness of the proposed 3-D localization algorithm.

  13. Density functional theory study of chemical sensing on surfaces of single-layer MoS2 and graphene

    International Nuclear Information System (INIS)

    Mehmood, F.; Pachter, R.

    2014-01-01

    In this work, density functional theory (DFT) calculations have been used to investigate chemical sensing on surfaces of single-layer MoS 2 and graphene, considering the adsorption of the chemical compounds triethylamine, acetone, tetrahydrofuran, methanol, 2,4,6-trinitrotoluene, o-nitrotoluene, o-dichlorobenzene, and 1,5-dicholoropentane. Physisorption of the adsorbates on free-standing surfaces was analyzed in detail for optimized material structures, considering various possible adsorption sites. Similar adsorption characteristics for the two surface types were demonstrated, where inclusion of a correction to the DFT functional for London dispersion was shown to be important to capture interactions at the interface of molecular adsorbate and surface. Charge transfer analyses for adsorbed free-standing surfaces generally demonstrated very small effects. However, charge transfer upon inclusion of the underlying SiO 2 substrate rationalized experimental observations for some of the adsorbates considered. A larger intrinsic response for the electron-donor triethylamine adsorbed on MoS 2 as compared to graphene was demonstrated, which may assist in devising chemical sensors for improved sensitivity

  14. The importance of proper crystal-chemical and geometrical reasoning demonstrated using layered single and double hydroxides

    Science.gov (United States)

    Richardson, Ian G.

    2013-01-01

    Atomistic modelling techniques and Rietveld refinement of X-ray powder diffraction data are widely used but often result in crystal structures that are not realistic, presumably because the authors neglect to check the crystal-chemical plausibility of their structure. The purpose of this paper is to reinforce the importance and utility of proper crystal-chemical and geometrical reasoning in structural studies. It is achieved by using such reasoning to generate new yet fundamental information about layered double hydroxides (LDH), a large, much-studied family of compounds. LDH phases are derived from layered single hydroxides by the substitution of a fraction (x) of the divalent cations by trivalent. Equations are derived that enable calculation of x from the a parameter of the unit cell and vice versa, which can be expected to be of widespread utility as a sanity test for extant and future structure determinations and computer simulation studies. The phase at x = 0 is shown to be an α form of divalent metal hydroxide rather than the β polymorph. Crystal-chemically sensible model structures are provided for β-Zn(OH)2 and Ni- and Mg-based carbonate LDH phases that have any trivalent cation and any value of x, including x = 0 [i.e. for α-M(OH)2·mH2O phases]. PMID:23719702

  15. A single sex pheromone receptor determines chemical response specificity of sexual behavior in the silkmoth Bombyx mori.

    Science.gov (United States)

    Sakurai, Takeshi; Mitsuno, Hidefumi; Haupt, Stephan Shuichi; Uchino, Keiro; Yokohari, Fumio; Nishioka, Takaaki; Kobayashi, Isao; Sezutsu, Hideki; Tamura, Toshiki; Kanzaki, Ryohei

    2011-06-01

    In insects and other animals, intraspecific communication between individuals of the opposite sex is mediated in part by chemical signals called sex pheromones. In most moth species, male moths rely heavily on species-specific sex pheromones emitted by female moths to identify and orient towards an appropriate mating partner among a large number of sympatric insect species. The silkmoth, Bombyx mori, utilizes the simplest possible pheromone system, in which a single pheromone component, (E, Z)-10,12-hexadecadienol (bombykol), is sufficient to elicit full sexual behavior. We have previously shown that the sex pheromone receptor BmOR1 mediates specific detection of bombykol in the antennae of male silkmoths. However, it is unclear whether the sex pheromone receptor is the minimally sufficient determination factor that triggers initiation of orientation behavior towards a potential mate. Using transgenic silkmoths expressing the sex pheromone receptor PxOR1 of the diamondback moth Plutella xylostella in BmOR1-expressing neurons, we show that the selectivity of the sex pheromone receptor determines the chemical response specificity of sexual behavior in the silkmoth. Bombykol receptor neurons expressing PxOR1 responded to its specific ligand, (Z)-11-hexadecenal (Z11-16:Ald), in a dose-dependent manner. Male moths expressing PxOR1 exhibited typical pheromone orientation behavior and copulation attempts in response to Z11-16:Ald and to females of P. xylostella. Transformation of the bombykol receptor neurons had no effect on their projections in the antennal lobe. These results indicate that activation of bombykol receptor neurons alone is sufficient to trigger full sexual behavior. Thus, a single gene defines behavioral selectivity in sex pheromone communication in the silkmoth. Our findings show that a single molecular determinant can not only function as a modulator of behavior but also as an all-or-nothing initiator of a complex species-specific behavioral sequence.

  16. A single sex pheromone receptor determines chemical response specificity of sexual behavior in the silkmoth Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Takeshi Sakurai

    2011-06-01

    Full Text Available In insects and other animals, intraspecific communication between individuals of the opposite sex is mediated in part by chemical signals called sex pheromones. In most moth species, male moths rely heavily on species-specific sex pheromones emitted by female moths to identify and orient towards an appropriate mating partner among a large number of sympatric insect species. The silkmoth, Bombyx mori, utilizes the simplest possible pheromone system, in which a single pheromone component, (E, Z-10,12-hexadecadienol (bombykol, is sufficient to elicit full sexual behavior. We have previously shown that the sex pheromone receptor BmOR1 mediates specific detection of bombykol in the antennae of male silkmoths. However, it is unclear whether the sex pheromone receptor is the minimally sufficient determination factor that triggers initiation of orientation behavior towards a potential mate. Using transgenic silkmoths expressing the sex pheromone receptor PxOR1 of the diamondback moth Plutella xylostella in BmOR1-expressing neurons, we show that the selectivity of the sex pheromone receptor determines the chemical response specificity of sexual behavior in the silkmoth. Bombykol receptor neurons expressing PxOR1 responded to its specific ligand, (Z-11-hexadecenal (Z11-16:Ald, in a dose-dependent manner. Male moths expressing PxOR1 exhibited typical pheromone orientation behavior and copulation attempts in response to Z11-16:Ald and to females of P. xylostella. Transformation of the bombykol receptor neurons had no effect on their projections in the antennal lobe. These results indicate that activation of bombykol receptor neurons alone is sufficient to trigger full sexual behavior. Thus, a single gene defines behavioral selectivity in sex pheromone communication in the silkmoth. Our findings show that a single molecular determinant can not only function as a modulator of behavior but also as an all-or-nothing initiator of a complex species

  17. Hybrid GaAs/AlGaAs Nanowire—Quantum dot System for Single Photon Sources

    DEFF Research Database (Denmark)

    Cirlin, G.; Reznik, R.; Shtrom, I.

    2018-01-01

    III–V nanowires, or a combination of the nanowires with quantum dots, are promising building blocks for future optoelectronic devices, in particular, single-photon emitters, lasers and photodetectors. In this work we present results of molecular beam epitaxial growth of combined nanostructures...

  18. Sources of variability in OSL dose measurements using single grains of quartz

    DEFF Research Database (Denmark)

    Thomsen, Kristina Jørkov; Murray, A.S.; Bøtter-Jensen, L.

    2005-01-01

    spread. In this preliminary study, dose distributions have been studied using single grains of heated and laboratory irradiated quartz. By heating the sample, the contribution from incomplete zeroing was excluded and at the same time the sample was sensitised. The laboratory gamma irradiation...

  19. Fundamental limitations in spontaneous emission rate of single-photon sources

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Khurgin, Jacob B.

    2016-01-01

    The rate of single-photon generation by quantum emitters (QEs) can be enhanced by placing a QE inside a resonant structure. This structure can represent an all-dielectric micro-resonator or waveguide and thus be characterized by ultra-low loss and dimensions on the order of wavelength. Or it can ...

  20. Quantum dot-micropillars: a bright source of coherent single photons

    DEFF Research Database (Denmark)

    Unsleber, Sebastian; He, Yu-Ming; Maier, Sebastian

    2016-01-01

    We present the efficient generation of coherent single photons based on quantum dots in micropillars. We utilize a scalable lithography scheme leading to quantum dot-micropillar devices with 74% extraction efficiency. Via pulsed strict resonant pumping, we show an indistinguishability of consecut...

  1. High temperature electron beam ion source for the production of single charge ions of most elements of the Periodic Table

    CERN Document Server

    Panteleev, V N; Barzakh, A E; Fedorov, D V; Ivanov, V S; Moroz, F V; Orlov, S Y; Seliverstov, D M; Stroe, L; Tecchio, L B; Volkov, Y M

    2003-01-01

    A new type of a high temperature electron beam ion source (HTEBIS) with a working temperature up to 2500 deg. C was developed for production of single charge ions of practically all elements. Off-line tests and on-line experiments making use of the developed ion source coupled with uranium carbide targets of different density, have been carried out. The ionization efficiency measured for stable atoms of many elements varied in the interval of 1-6%. Using the HTEBIS, the yields and on-line production efficiency of neutron rich isotopes of Mn, Fe, Co, Cu, Rh, Pd, Ag, Cd, In, Sn and isotopes of heavy elements Pb, Bi, Po and some others have been determined. The revealed confinement effect of the ions produced in the narrow electron beam inside a hot ion source cavity has been discussed.

  2. Search for continuous and single day emission from ultra-high-energy sources

    International Nuclear Information System (INIS)

    Chen, Mei-Li.

    1993-01-01

    Data from the CYGNUS experiment has been used to search the northern sky for point sources of continuous ultra-high-energy gamma radiation and to examine 51 candidate sources on a daily basis to search for episodic emission. In this paper, we make use of our most recent data to update our previously published results from these searches. The data sample is approximately twice as large as the published data set for continuous emission, and contains an additional year for the daily search. The latest results, up to the time of the conference, will be presented at the meeting

  3. Growth and physico chemical characterization of lanthanum neodymium oxalate single crystals

    International Nuclear Information System (INIS)

    Raju, K.S.; John, Varughese; Ittyachen, M.A.

    1998-01-01

    Single crystals of lanthanum neodymium oxalate (LNO) are grown in sodium meta silicate gels, by the diffusion of a mixture of aqueous solutions of lanthanum nitrate and neodymium nitrate into the test tube having the set gel containing oxalic acid. The bluish pink coloured tabular crystals of LNO having well defined hexagonal basal planes appear either as foggy or clear, the latter at the greater depths inside the gel. The coloration of LNO visually observed is evidenced in UV-visible spectrum, by the revelation of well pronounced characteristic peaks in the visible region (500-900 nm). X-ray diffraction (XRD) of powdered LNO is ordered, meaning crystalline in nature, besides its isostructurality with similarly grown lanthanum samarium oxalate crystals. The single crystallinity of LNO is established by its oscillation XRD pattern. Thermogravimetric analysis (TGA) and differential scanning colorimetry (DSC) support that LNO loses water of crystallization around 120 degC and CO and CO 2 around 350-450 degC, while the infrared absorption (IR) spectrum of LNO establishes the presence of oxalate (C 2 O 4 ) 2- ions. Energy dispersive x-ray analysis (EDAX) confirms the presence of La and Nd in the sample. X-ray photoelectron spectroscopic (XPS) studies of LNO establish the presence of La and Nd in their respective oxide states. An empirical structure for LNO has been proposed on the basis of these findings. The smokiness in the foggy LNO crystal has been attributed due to the gel inclusion during the growth process. (author)

  4. The AMES Laboratory chemical disposal site removal action: Source removal, processing, and disposal

    International Nuclear Information System (INIS)

    Shirley, R.S.

    1996-01-01

    The Ames Laboratory has historically supported the U.S. Department of Energy (USDOE) and its predecessor agencies by providing research into the purification and manufacturing of high purity uranium, thorium, and yttrium metals. Much of this work was accomplished in the late 1950s and early 1960s prior to the legislation of strict rules and regulations covering the disposal of radioactive and chemical wastes. As a result, approximately 800 cubic meters of low-level radioactive wastes, chemical wastes, and contaminated debris were disposed in nine near surface cells located in a 0.75 hectare plot of land owned by Iowa State University in Ames, Iowa. Under a national contract with the U.S. Army Corps of Engineers (USACE), OHM Remediation Services Corp (OHM) was tasked with providing turnkey environmental services to remove, process, package, transport, and coordinate the disposal of the waste materials and contaminated environmental media

  5. Sources

    International Nuclear Information System (INIS)

    Duffy, L.P.

    1991-01-01

    This paper discusses the sources of radiation in the narrow perspective of radioactivity and the even narrow perspective of those sources that concern environmental management and restoration activities at DOE facilities, as well as a few related sources. Sources of irritation, Sources of inflammatory jingoism, and Sources of information. First, the sources of irritation fall into three categories: No reliable scientific ombudsman to speak without bias and prejudice for the public good, Technical jargon with unclear definitions exists within the radioactive nomenclature, and Scientific community keeps a low-profile with regard to public information. The next area of personal concern are the sources of inflammation. This include such things as: Plutonium being described as the most dangerous substance known to man, The amount of plutonium required to make a bomb, Talk of transuranic waste containing plutonium and its health affects, TMI-2 and Chernobyl being described as Siamese twins, Inadequate information on low-level disposal sites and current regulatory requirements under 10 CFR 61, Enhanced engineered waste disposal not being presented to the public accurately. Numerous sources of disinformation regarding low level radiation high-level radiation, Elusive nature of the scientific community, The Federal and State Health Agencies resources to address comparative risk, and Regulatory agencies speaking out without the support of the scientific community

  6. Photocatalytic applications of Cr{sub 2}S{sub 3} synthesized from single and multi-source precursors

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Wajid [Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad (Pakistan); Badshah, Amin, E-mail: aminbadshah@qau.edu.pk [Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad (Pakistan); Hussain, Raja Azadar; Imtiaz-ud-Din [Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad (Pakistan); Aleem, Muhammad Adeel [The Pakistan Institute of Engineering and Applied Sciences (PIEAS) (Pakistan); Bahadur, Ali [Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad (Pakistan); Iqbal, Shahid [School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049 (China); Farooq, Muhammad Umar; Ali, Hassan [Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad (Pakistan)

    2017-06-15

    Most of the material research work is pertinent to the synthesis of transition-metal sulfides nanoparticles but here the studies are limited to the synthesis of chromium sulfide. However, the preparation method, presented in this work, may be extended to other metal chalcogenides nanoparticles for various potential applications. The ligand (precursor), 1-(2-chloro-4-nitrophenyl)-3,3-chlorobenzoyl and Cr{sub 2}S{sub 3} have been synthesized initially from single source precursor and then from multi source precursors. The target was to alter the morphologies of nanomaterial while altering the synthetic route and that was successfully achieved. Chromium sulfide nano-rods were synthesized using single source precursors while nanoparticles were fabricated using multi source precursors. Characterization were carried out through {sup 1}H and {sup 13}C NMR, scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction microscopy (PXRD), energy dispersive X-ray spectroscopy (EDX), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM). Our objective is to change the morphologies by changing the synthetic route so that is why further applications were done only for multi-source product, denying single source product. The metal sulfides nanoparticles exhibit higher activity than their bulk material for the photocatalytic degradation of organic dyes under visible-light irradiation. So, photocatalytic activity was successfully achieved under direct sunlight against five different cationic and anionic organic dyes including malachite green (MG), methylene blue (MB), rhodamine B (RhB), methyl violet (MV) and methyl orange (MO). These organic dyes MV, MG, MB, and RB were almost diminished or decolorized by Cr{sub 2}S{sub 3} within 110, 90, 100, and 130, minutes, respectively expect MO. - Highlights: • Synthesis of Cr{sub 2}S{sub 3} from single and multisource precursors is

  7. Local impacts, global sources: The governance of boundary-crossing chemicals.

    Science.gov (United States)

    Gorman, Hugh S; Gagnon, Valoree S; Norman, Emma S

    2016-12-01

    Over the last half century, a multijurisdictional, multiscale system of governance has emerged to address concerns associated with toxic chemicals that have the capacity to bioaccumulate in organisms and biomagnify in food chains, leading to fish consumption advisories. Components of this system of governance include international conventions (such as the Stockholm Convention on Persistent Organic Pollutants and the Minamata Convention on Mercury), laws enacted by nation states and their subjurisdictions, and efforts to adaptively manage regional ecosystems (such as the U.S.-Canadian Great Lakes). Given that many of these compounds - including mercury, industrial chemicals such as polychlorinated biphenyls, and pesticides such as toxaphene - circulate throughout the globe through cycles of deposition and reemission, regional efforts to eliminate the need for fish consumption advisories cannot be successful without efforts to reduce emissions everywhere in the world. This paper argues that the scientific community, by monitoring the concentrations of these compounds in the atmosphere and by modeling their fate and transport, play an important role in connecting the various jurisdictional scales of governance. In addition, the monitoring networks that this community of scientists has established can be visualized as a technology of governance essential in an era in which societies have the capacity to produce and release such chemicals on an industrial scale.

  8. Maintaining Microclimates during Nanoliter Chemical Dispensations Using Custom-Designed Source Plate Lids.

    Science.gov (United States)

    Foley, Bryan J; Drozd, Ashley M; Bollard, Mary T; Laspina, Denise; Podobedov, Nikita; Zeniou, Nicholas; Rao, Anjali S; Andi, Babak; Jackimowicz, Rick; Sweet, Robert M; McSweeney, Sean; Soares, Alexei S

    2016-02-01

    A method is described for using custom snap-on lids to protect chemicals in microtiter plates from evaporation and contamination. The lids contain apertures (diameter 1.5, 1.0, or 0.5 mm) through which the chemical building blocks can be transferred. The lid with 0.5 mm apertures was tested using a noncontact acoustic liquid handler; the 1.0 and 1.5 mm lids were tested using two tip-based liquid handlers. All of the lids reduced the rate at which solvents evaporated to room air, and greatly reduced the rate of contamination by water and oxygen from room air. In steady-state measurements, the lids reduced the rate of evaporation of methanol, 1-hexene, and water by 33% to 248%. In cycled experiments, the contamination of aqueous solvent with oxygen was reduced below detectability and the rate at which DMSO engorged atmospheric water was reduced by 81%. Our results demonstrate that the lids preserve the integrity of air-sensitive reagents during the time needed for different types of liquid handlers to perform dispensations. Controlling degradation and evaporation of chemical building blocks exposed to the atmosphere is increasingly useful as the reagent volume is reduced by advances in liquid handling technology, such as acoustic droplet ejection. © 2015 Society for Laboratory Automation and Screening.

  9. Environmental isotopes, chemical composition and groundwater sources in Al-Maghara area, Sinai, Egypt

    International Nuclear Information System (INIS)

    Nada, A.A.; Awad, M.A.; Froehlich, K.; El Behery, M.

    1991-01-01

    Groundwater samples collected from a number of localities, in Al-Maghara area, north central part of Sinai, were subject to various chemical and isotopic analysis. The purpose of the study is to determine whether the groundwaters are recently recharged or not in order to adopt an efficient water management policy. The hydrochemical results indicate that they are mainly of primary marine origin, dilution of this water by meteoric water changes its chemical composition to be mixed water type, which has the major chemical components: KCl, NaCl, Na 2 SO 4 , MgSO 4 , Mg(HCO 3 ) 2 and Ca(HCO 3 ) 2 . The tritium content confirm the meteoric water recharge recently especially for wells with high tritium content. The stable environmental isotopic composition of the groundwater reflects the isotopic composition of precipitation and flooding with some evaporation enrichment prior to infiltration. There is also mixing with palaeowater (water recharge in the past cooler climate periods), by leaking through faulting in the area. (orig.) [de

  10. Luminescence-induced noise in single photon sources based on BBO crystals

    Czech Academy of Sciences Publication Activity Database

    Machulka, R.; Lemr, Karel; Haderka, Ondřej; Lamperti, M.; Allevi, A.; Bondani, M.

    2014-01-01

    Roč. 47, č. 21 (2014), s. 215501 ISSN 0953-4075 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : luminescence * BBO crystal * photon source * noise * streak camera Subject RIV: BH - Optics , Masers, Lasers Impact factor: 1.975, year: 2014

  11. Quantum-tomographic cryptography with a semiconductor single-photon source

    International Nuclear Information System (INIS)

    Kaszlikowski, D.; Yang, L.J.; Yong, L.S.; Willeboordse, F.H.; Kwek, L.C.

    2005-01-01

    We analyze the security of so-called quantum-tomographic cryptography with the source producing entangled photons via an experimental scheme proposed by Fattal et al. [Phys. Rev. Lett. 92, 37903 (2004)]. We determine the range of the experimental parameters for which the protocol is secure against the most general incoherent attacks

  12. A chemically selective laser ion source for the on-line isotope separation

    International Nuclear Information System (INIS)

    Scheerer, F.

    1993-03-01

    In this thesis a laser ion source is presented. In a hot chamber the atoms of the elements to be studied are resonantly by light of pulsed dye lasers, which are pumped by pulsed copper-vapor lasers with extremely high pulse repetition rate (ν rep ∼ 10 kHz), stepwise excited and ionized. By the storage of the atoms in a hot chamber and the high pulse repetition rate of the copper-vapor lasers beyond the required high efficiency (ε ∼ 10%) can be reached. First preparing measurements were performed at the off-line separator at CERN with the rare earth elements ytterbium and thulium. Starting from the results of these measurements further tests of the laser ion source were performed at the on-line separator with in a thick tantalum target produced neutron-deficient ytterbium isotopes. Under application of a time-of-flight mass spectrometer in Mainz an efficient excitation scheme on the resonance ionization of tin was found. This excitation scheme is condition for an experiment at the GSI for the production of the extremely neutron-deficient, short-lived nucleus 102 Sn. In the summer 1993 is as first application of the newly developed laser ion source at the PSB-ISOLDE at CERN an astrophysically relevant experiment for the nuclear spectroscopy of the neutron-rich silver isotopes 124-129 Ag is planned. This experiment can because of the lacking selectivity of conventional ion sources only be performed by means of the here presented laser ion source. The laser ion source shall at the PSB-ISOLDE 1993 also be applied for the selective ionization of manganese. (orig./HSI) [de

  13. The correlationship between the metabolizable energy content, chemical composition and color score in different sources of corn DDGS.

    Science.gov (United States)

    Jie, Yong-Z; Zhang, Jian-Y; Zhao, Li-H; Ma, Qiu-G; Ji, Cheng

    2013-09-25

    This study was conducted to evaluate the apparent metabolizable energy (AME) and true metabolizable energy (TME) contents in 30 sources of corn distillers dried grains with solubles (DDGS) in adult roosters, and establish the prediction equations to estimate the AME and TME value based on its chemical composition and color score. Twenty-eight sources of corn DDGS made from several processing plants in 11 provinces of China and others imported from the United States. DDGS were analyzed for their metabolizable energy (ME) contents, measured for color score and chemical composition (crude protein, crude fat, ash, neutral detergent fiber, acid detergent fiber), to predict the equation of ME in DDGS. A precision-fed rooster assay was used, each DDGS sample was tube fed (50 g) to adult roosters. The experiment was conducted as a randomized incomplete block design with 3 periods. Ninety-five adult roosters were used in each period, with 90 being fed the DDGS samples and 5 being fasted to estimate basal endogenous energy losses. Results showed that the AME ranged from 5.93 to 12.19 MJ/kg, TME ranged from 7.28 to 13.54 MJ/kg. Correlations were found between ME and ash content (-0.64, P sources energy digestibility and metabolizable energy content.

  14. Phytoecdysteroids and flavonoid glycosides among Chilean and commercial sources of Chenopodium quinoa: variation and correlation to physico-chemical characteristics.

    Science.gov (United States)

    Graf, Brittany L; Rojo, Leonel E; Delatorre-Herrera, Jose; Poulev, Alexander; Calfio, Camila; Raskin, Ilya

    2016-01-30

    Little is known about varietal differences in the content of bioactive phytoecdysteroids (PE) and flavonoid glycosides (FG) from quinoa (Chenopodium quinoa Willd.). The aim of this study was to determine the variation in PE and FG content among 17 distinct quinoa sources and identify correlations to genotypic (highland vs. lowland) and physico-chemical characteristics (seed color, 100-seed weight, protein content, oil content). PE and FG concentrations exhibited over four-fold differences across quinoa sources, ranging from 138 ± 11 µg g(-1) to 570 ± 124 µg g(-1) total PE content and 192 ± 24 µg g(-1) to 804 ± 91 µg g(-1) total FG content. Mean FG content was significantly higher in highland Chilean varieties (583.6 ± 148.9 µg g(-1)) versus lowland varieties (228.2 ± 63.1 µg g(-1)) grown under the same environmental conditions (P = 0.0046; t-test). Meanwhile, PE content was positively and significantly correlated with oil content across all quinoa sources (r = 0.707, P = 0.002; Pearson correlation). FG content may be genotypically regulated in quinoa. PE content may be increased via enhancement of oil content. These findings may open new avenues for the improvement and development of quinoa as a functional food. © 2015 Society of Chemical Industry.

  15. Irradiation of zinc single crystal with 500 keV singly-charged carbon ions: surface morphology, structure, hardness, and chemical modifications

    Science.gov (United States)

    Waqas Khaliq, M.; Butt, M. Z.; Saleem, Murtaza

    2017-07-01

    Cylindrical specimens of (1 0 4) oriented zinc single crystal (diameter  =  6 mm and length  =  5 mm) were irradiated with 500 keV C+1 ions with the help of a Pelletron accelerator. Six specimens were irradiated in an ultra-high vacuum (~10‒8 Torr) with different ion doses, namely 3.94  ×  1014, 3.24  ×  1015, 5.33  ×  1015, 7.52  ×  1015, 1.06  ×  1016, and 1.30  ×  1016 ions cm-2. A field emission scanning electron microscope (FESEM) was utilized for the morphological study of the irradiated specimens. Formation of nano- and sub-micron size rods, clusters, flower- and fork-like structures, etc, was observed. Surface roughness of the irradiated specimens showed an increasing trend with the ions dose. Energy dispersive x-ray spectroscopy (EDX) helped to determine chemical modifications in the specimens. It was found that carbon content varied in the range 22.86-31.20 wt.% and that oxygen content was almost constant, with an average value of 10.16 wt.%. The balance content was zinc. Structural parameters, i.e. crystallite size and lattice strain, were determined by Williamson-Hall analysis using x-ray diffraction (XRD) patterns of the irradiated specimens. Both crystallite size and lattice strain showed a decreasing trend with the increasing ions dose. A good linear relationship between crystallite size and lattice strain was observed. Surface hardness depicted a decreasing trend with the ions dose and followed an inverse Hall-Petch relation. FTIR spectra of the specimens revealed that absorption bands gradually diminish as the dose of singly-charged carbon ions is increased from 3.94  ×  1014 ions cm-1 to 1.30  ×  1016 ions cm-1. This indicates progressive deterioration of chemical bonds with the increase in ion dose.

  16. Cigarette constituent health communications for smokers: impact of chemical, imagery, and source.

    Science.gov (United States)

    Kowitt, Sarah; Sheeran, Paschal; Jarman, Kristen L; Ranney, Leah M; Schmidt, Allison M; Noar, Seth M; Huang, Li-Ling; Goldstein, Adam O

    2017-10-03

    Communication campaigns are incorporating tobacco constituent messaging to reach smokers, yet there is a dearth of research on how such messages should be constructed or will be received by smokers. In a 2x2x2 experiment, we manipulated three cigarette constituent message components: (1) the toxic constituent of tobacco (arsenic vs. lead) with a corresponding health effect, (2) the presence or absence of an evocative image, and (3) the source of the message (FDA vs. no source). We recruited smokers (N = 1,669, 55.4% women) via an online platform and randomized them to 1 of the 8 message conditions. Participants viewed the message and rated its believability and perceived effectiveness, the credibility of the message source, and action expectancies (i.e., likelihood of seeking additional information and help with quitting as a result of seeing the message). We found significant main effects of image, constituent, and source on outcomes. The use of arsenic as the constituent, the presence of an evocative image, and the FDA as the source increased the believability, source credibility, and perceived effectiveness of the tobacco constituent health message. Multiple elements of a constituent message, including type of constituent, imagery, and message source, impact their reception among smokers. Specifically, communication campaigns targeting smokers that utilize arsenic as the tobacco constituent, visual imagery, and the FDA logo may be particularly effective in changing key outcomes that are associated with subsequent attitude and behavioral changes. This paper describes how components of communication campaigns about cigarette constituents are perceived. Multiple elements of a tobacco constituent message, including type of constituent, image, and message source may influence the reception of messages among current smokers. Communication campaigns targeting smokers that utilize arsenic as the tobacco constituent, visual imagery, and the FDA logo may be particularly

  17. Single-Use Energy Sources and Operating Room Time for Laparoscopic Hysterectomy: A Randomized Controlled Trial.

    Science.gov (United States)

    Holloran-Schwartz, M Brigid; Gavard, Jeffrey A; Martin, Jared C; Blaskiewicz, Robert J; Yeung, Patrick P

    2016-01-01

    To compare the intraoperative direct costs of a single-use energy device with reusable energy devices during laparoscopic hysterectomy. A randomized controlled trial (Canadian Task Force Classification I). An academic hospital. Forty-six women who underwent laparoscopic hysterectomy from March 2013 to September 2013. Each patient served as her own control. One side of the uterine attachments was desiccated and transected with the single-use device (Ligasure 5-mm Blunt Tip LF1537 with the Force Triad generator). The other side was desiccated and transected with reusable bipolar forceps (RoBi 5 mm), and transected with monopolar scissors using the same Covidien Force Triad generator. The instrument approach used was randomized to the attending physician who was always on the patient's left side. Resident physicians always operated on the patient's right side and used the converse instruments of the attending physician. Start time was recorded at the utero-ovarian pedicle and end time was recorded after transection of the uterine artery on the same side. Costs included the single-use device; amortized costs of the generator, reusable instruments, and cords; cleaning and packaging of reusable instruments; and disposal of the single-use device. Operating room time was $94.14/min. We estimated that our single use-device cost $630.14 and had a total time savings of 6.7 min per case, or 3.35 min per side, which could justify the expense of the device. The single-use energy device had significant median time savings (-4.7 min per side, p energy device that both desiccates and cuts significantly reduced operating room time to justify its own cost, and it also reduced total intraoperative direct costs during laparoscopic hysterectomy in our institution. Operating room cost per minute varies between institutions and must be considered before generalizing our results. Copyright © 2016 AAGL. Published by Elsevier Inc. All rights reserved.

  18. 78 FR 27240 - Announcing the Award of a New Single-Source Award to the National Council on Family Violence in...

    Science.gov (United States)

    2013-05-09

    ....095] Announcing the Award of a New Single-Source Award to the National Council on Family Violence in... single-source cooperative agreement to the National Council on Family Violence to support the National Domestic Violence Hotline (Hotline). SUMMARY: The Administration for Children and Families (ACF...

  19. Optical dating of single sand-sized grains of quartz: Sources of variability

    DEFF Research Database (Denmark)

    Duller, G.A.T.; Bøtter-Jensen, L.; Murray, A.S.

    2000-01-01

    of measuring single grains it is feasible to routinely measure the equivalent dose from many hundreds of grains from each sample. Analysis of such datasets requires assessment of the uncertainties on each equivalent dose since these may vary significantly. This paper assesses the significance of signal...... intensity, dose saturation characteristics and instrument uncertainty in equivalent dose calculation. (C) 2000 Elsevier Science Ltd. All rights reserved....

  20. Corrective action strategy for single-shell tanks containing organic chemicals

    International Nuclear Information System (INIS)

    Turner, D.A.

    1993-08-01

    A Waste Tank Organic Safety Program (Program) Plan is to be transmitted to the U.S. Department of Energy, Richland Operations Office (RL) for approval by December 31, 1993. In April 1993 an agreement was reached among cognizant U.S. Department of Energy - Headquarters (HQ), RL and Westinghouse Hanford Company (WHC) staff that the Program Plan would be preceded by a ''Corrective Action Strategy,'' which addressed selected planning elements supporting the Program Plan. The ''Corrective Action Strategy'' would be reviewed and consensus reached regarding the planning elements. A Program Plan reflecting this consensus would then be prepared. A preliminary ''corrective action strategy'' is presented for resolving the organic tanks safety issue based on the work efforts recommended in the ISB (Interim Safety Basis for Hanford Site tank farm facilities). A ''corrective action strategy'' logic was prepared for individual SSTs (single-shell tanks), or a group of SSTs having similar characteristics, as appropriate. Four aspects of the organic tanks safety issue are addressed in the ISB: SSTs with the potential for combustion in the tank's headspace; combustion of a floating organic layer as a pool fire; surface fires in tanks that formerly held floating organic layers; SSTs with the potential for organic-nitrate reactions. A preliminary ''corrective action strategy'' for each aspect of the organic tanks safety issue is presented

  1. Micro-PIXE for the quantitative imaging of chemical elements in single cells

    International Nuclear Information System (INIS)

    Ortega, R.

    2013-01-01

    Full text: The knowledge of the intracellular distribution of biological relevant metals is important to understand their mechanisms of action in cells, either for physiological, toxicological or pathological processes. However, the direct detection of trace metals in single cells is a challenging task that requires sophisticated analytical developments. The aim of this seminar will be to present the recent achievements in this field using micro-PIXE analysis. The combination of micro-PIXE with RBS (Rutherford Backscattering Spectrometry) and STIM (Scanning Transmission lon Microscopy) allows the quantitative determination of trace metal content within sub-cellular compartments. The application of STlM analysis will be more specifically highlighted as it provides high spatial resolution imaging (<200 nm) and excellent mass sensitivity (<0.1 ng). Application of the STIM-PIXE-RBS methodology is absolutely needed when organic mass loss appears during PIXE-RBS irradiation. This combination of STIM-PIXE-RBS provides fully quantitative determination of trace element content, expressed in μg/g, which is a quite unique capability for micro-PIXE compared to other micro-analytical methods such as the electron and synchrotron X-ray fluorescence or the techniques based on mass spectrometry. Examples of micro-PIXE studies for subcellular imaging of trace elements in the various fields of interest will be presented such as metal-based toxicology, pharmacology, and neuro degeneration [1] R. Ortega, G. Devés, A. Carmona. J. R. Soc. Interface, 6, (2009) S649-S658. (author)

  2. Chemical and morphological modifications of single layer graphene submitted to annealing in water vapor

    Science.gov (United States)

    Rolim, Guilherme Koszeniewski; Corrêa, Silma Alberton; Galves, Lauren Aranha; Lopes, João Marcelo J.; Soares, Gabriel Vieira; Radtke, Cláudio

    2018-01-01

    Modifications of single layer graphene transferred to SiO2/Si substrates resulting from annealing in water vapor were investigated. Near edge X-ray absorption fine structure spectroscopy evidenced graphene puckering between 400 and 500 °C. Synchrotron radiation based X-ray photoelectron spectroscopy showed variation of sp2 and sp3C bonding configurations specially in this same temperature range. Moreover, oxygen related functionalities are formed as a result of water vapor annealing. Based on these results and complementary Raman and nuclear reaction analysis, one distinguishes three different regimes of water interaction with graphene concerning modifications of the graphene layer. In the low temperature range (200-400 °C), no prominent modification of graphene itself is observed. At higher temperatures (400-500 °C), to accommodate newly formed oxygen functionalities, the flat and continuous sp2 bonding network of graphene is disrupted, giving rise to a puckered layer. For 600 °C and above, shrinking of graphene domains and a higher doping level take place.

  3. QuantifyMe: An Open-Source Automated Single-Case Experimental Design Platform †

    Science.gov (United States)

    Sano, Akane; Ferguson, Craig; Mohan, Akshay; Picard, Rosalind W.

    2018-01-01

    Smartphones and wearable sensors have enabled unprecedented data collection, with many products now providing feedback to users about recommended step counts or sleep durations. However, these recommendations do not provide personalized insights that have been shown to be best suited for a specific individual. A scientific way to find individualized recommendations and causal links is to conduct experiments using single-case experimental design; however, properly designed single-case experiments are not easy to conduct on oneself. We designed, developed, and evaluated a novel platform, QuantifyMe, for novice self-experimenters to conduct proper-methodology single-case self-experiments in an automated and scientific manner using their smartphones. We provide software for the platform that we used (available for free on GitHub), which provides the methodological elements to run many kinds of customized studies. In this work, we evaluate its use with four different kinds of personalized investigations, examining how variables such as sleep duration and regularity, activity, and leisure time affect personal happiness, stress, productivity, and sleep efficiency. We conducted a six-week pilot study (N = 13) to evaluate QuantifyMe. We describe the lessons learned developing the platform and recommendations for its improvement, as well as its potential for enabling personalized insights to be scientifically evaluated in many individuals, reducing the high administrative cost for advancing human health and wellbeing. PMID:29621133

  4. QuantifyMe: An Open-Source Automated Single-Case Experimental Design Platform

    Directory of Open Access Journals (Sweden)

    Sara Taylor

    2018-04-01

    Full Text Available Smartphones and wearable sensors have enabled unprecedented data collection, with many products now providing feedback to users about recommended step counts or sleep durations. However, these recommendations do not provide personalized insights that have been shown to be best suited for a specific individual. A scientific way to find individualized recommendations and causal links is to conduct experiments using single-case experimental design; however, properly designed single-case experiments are not easy to conduct on oneself. We designed, developed, and evaluated a novel platform, QuantifyMe, for novice self-experimenters to conduct proper-methodology single-case self-experiments in an automated and scientific manner using their smartphones. We provide software for the platform that we used (available for free on GitHub, which provides the methodological elements to run many kinds of customized studies. In this work, we evaluate its use with four different kinds of personalized investigations, examining how variables such as sleep duration and regularity, activity, and leisure time affect personal happiness, stress, productivity, and sleep efficiency. We conducted a six-week pilot study (N = 13 to evaluate QuantifyMe. We describe the lessons learned developing the platform and recommendations for its improvement, as well as its potential for enabling personalized insights to be scientifically evaluated in many individuals, reducing the high administrative cost for advancing human health and wellbeing.

  5. QuantifyMe: An Open-Source Automated Single-Case Experimental Design Platform.

    Science.gov (United States)

    Taylor, Sara; Sano, Akane; Ferguson, Craig; Mohan, Akshay; Picard, Rosalind W

    2018-04-05

    Smartphones and wearable sensors have enabled unprecedented data collection, with many products now providing feedback to users about recommended step counts or sleep durations. However, these recommendations do not provide personalized insights that have been shown to be best suited for a specific individual. A scientific way to find individualized recommendations and causal links is to conduct experiments using single-case experimental design; however, properly designed single-case experiments are not easy to conduct on oneself. We designed, developed, and evaluated a novel platform, QuantifyMe, for novice self-experimenters to conduct proper-methodology single-case self-experiments in an automated and scientific manner using their smartphones. We provide software for the platform that we used (available for free on GitHub), which provides the methodological elements to run many kinds of customized studies. In this work, we evaluate its use with four different kinds of personalized investigations, examining how variables such as sleep duration and regularity, activity, and leisure time affect personal happiness, stress, productivity, and sleep efficiency. We conducted a six-week pilot study ( N = 13) to evaluate QuantifyMe. We describe the lessons learned developing the platform and recommendations for its improvement, as well as its potential for enabling personalized insights to be scientifically evaluated in many individuals, reducing the high administrative cost for advancing human health and wellbeing.

  6. Raman spectroscopy and single-photon source in an ion-cavity system

    International Nuclear Information System (INIS)

    Goncalves de Barros, H.

    2010-01-01

    The work presented in this thesis explores the interaction between a single trapped 40Ca+ ion and the electromagnetic field inside a high-finesse optical cavity. The coupling takes place via the use of a vacuum stimulated Raman transition, which transfers atomic population from the S1/2 to the D3/2 manifolds of the calcium ion producing a photon in the cavity. This photon is measured and properties of the system are evaluated. Spectroscopy measurements of the Raman transitions are performed and all possible transitions are identified for different polarizations of both drive laser and cavity fields. The system is also used to deterministically produce single photons. Simulation curves quantitatively match the experimental results within calibration error bars. The single-photon creation efficiency obtained in this work overcomes previous ion-cavity setups and is comparable to state-of-the-art systems composed of a neutral atom and a cavity operating in the strong coupling regime. (author)

  7. Chemical constituents in clouds and rainwater in the Puerto Rican rainforest: potential sources and seasonal drivers

    Science.gov (United States)

    A. Gioda; O.L. Mayol-Bracero; F. N. Scatena; K. C. Weathers; V. L. Mateus; W. H. McDowell

    2013-01-01

    Cloud- and rain-water samples collected between 1984 and 2007 in the Luquillo Experimental Forest, Puerto Rico, were analyzed in order to understand the main processes and sources that control their chemistry. Three sites were used: El Verde Field Station (380 m asl), Bisley (361 m asl), and East Peak (1051 m asl). Bulk rainwater samples were collected from all sites,...

  8. Chemical Contaminants in the Wadden Sea: sources, transport, fate and effects

    NARCIS (Netherlands)

    Laane, R.W.P.M.; Vethaak, A.D.; Gandrass, J.; Vorkamp, K.; Köhler, A.; Larsen, M.M.; Strand, J.

    2013-01-01

    The Wadden Sea receives contaminants from various sources and via various transport routes. The contaminants described in this overview are various metals (Cd, Cu, Hg, Pb and Zn) and various organic contaminants (polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and lindane

  9. Source apportionment of aerosol particles at a European air pollution hot spot using particle number size distributions and chemical composition.

    Science.gov (United States)

    Leoni, Cecilia; Pokorná, Petra; Hovorka, Jan; Masiol, Mauro; Topinka, Jan; Zhao, Yongjing; Křůmal, Kamil; Cliff, Steven; Mikuška, Pavel; Hopke, Philip K

    2018-03-01

    Ostrava in the Moravian-Silesian region (Czech Republic) is a European air pollution hot spot for airborne particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), and ultrafine particles (UFPs). Air pollution source apportionment is essential for implementation of successful abatement strategies. UFPs or nanoparticles of diameter hot-spot including nanoparticles, Positive Matrix Factorization (PMF) was applied to highly time resolved particle number size distributions (NSD, 14 nm-10 μm) and PM 0.09-1.15 chemical composition. Diurnal patterns, meteorological variables, gaseous pollutants, organic markers, and associations between the NSD factors and chemical composition factors were used to identify the pollution sources. The PMF on the NSD reveals two factors in the ultrafine size range: industrial UFPs (28%, number mode diameter - NMD 45 nm), industrial/fresh road traffic nanoparticles (26%, NMD 26 nm); three factors in the accumulation size range: urban background (24%, NMD 93 nm), coal burning (14%, volume mode diameter - VMD 0.5 μm), regional pollution (3%, VMD 0.8 μm) and one factor in the coarse size range: industrial coarse particles/road dust (2%, VMD 5 μm). The PMF analysis of PM 0.09-1.15 revealed four factors: SIA/CC/BB (52%), road dust (18%), sinter/steel (16%), iron production (16%). The factors in the ultrafine size range resolved with NSD have a positive correlation with sinter/steel production and iron production factors resolved with chemical composition. Coal combustion factor resolved with NSD has moderate correlation with SIA/CC/BB factor. The organic markers homohopanes correlate with coal combustion and the levoglucosan correlates with urban background. The PMF applications to NSD and chemical composition datasets are complementary. PAHs in PM 1 were found to be associated with coal combustion factor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Chemical speciation and source apportionment of Non-Methane Volatile Organic Compounds (NMVOCs) in a Middle Eastern country

    Science.gov (United States)

    Salameh, Therese; Sauvage, Stéphane; Afif, Charbel; Borbon, Agnès; Locoge, Nadine

    2014-05-01

    NMVOCs, emitted from various sources, are of particular interest since they contribute to the formation of tropospheric ozone, PAN and secondary organic aerosols resulting in negative impacts on human health, climate and on the environment. To identify abatement measures, a profound knowledge of emission sources and their composition is a prerequisite. Air pollution in the Middle East region remains difficult to assess and understand because of a lack of ground-based measurements and the limited information on NMVOC chemical speciation and source apportionment. Based on a large database of NMVOC observations obtained in Beirut, the capital of Lebanon (a developing country in the Middle East region, located in Western Asia on the eastern shore of the Mediterranean Sea), the overall objective of this work is to apportion the sources of NMVOCs encountered in Lebanon. First, source profiles were determined with field measurements close to the main potential emitters namely the road transport, gasoline vapour, power generation and solvent uses. The results obtained are compared to other studies held in other regions and are used to assess the emission inventory developed for Lebanon. Secondly, two intensive field campaigns were held in a receptor site in Beirut during summer 2011 and winter 2012 in order to obtain a large time resolved dataset. The PMF analysis of this dataset was applied to apportion anthropogenic sources in this area. In both seasons, combustion (road transport and power generation) and gasoline evaporation, especially in winter, were the main sources contributing to the NMVOCs in Beirut. The results will support model implementation especially by completing the emission inventory established for the year 2010 by Waked et al. 2012 according to the EEA/EMEP guidelines because of the lack of Lebanon-specific emission factor.

  11. Oxygen source-oriented control of atmospheric pressure chemical vapor deposition of VO2 for capacitive applications

    Directory of Open Access Journals (Sweden)

    Dimitra Vernardou

    2016-06-01

    Full Text Available Vanadium dioxides of different crystalline orientation planes have successfully been fabricated by chemical vapor deposition at atmospheric pressure using propanol, ethanol and O2 gas as oxygen sources. The thick a-axis textured monoclinic vanadium dioxide obtained through propanol presented the best electrochemical response in terms of the highest specific discharge capacity of 459 mAh g-1 with a capacitance retention of 97 % after 1000 scans under constant specific current of 2 A g-1. Finally, the electrochemical impedance spectroscopy indicated that the charge transfer of Li+ through the vanadium dioxide / electrolyte interface was easier for this sample enhancing significantly its capacitance performance.

  12. Single-particle and collective properties around closed shells probed by in-source laser spectroscopy

    CERN Document Server

    Cocolios, Thomas Elias; Van Duppen, P

    2010-01-01

    Resonant laser ionisation is a very versatile tool in nuclear physics, used for the production of clean radioactive ion beams as well as for the study of ground-state and isomer properties. In this Ph.D. work, many aspects of resonant laser ionisation are investigated, from improving the performance of laser ion sources at ISOL facilities to the measurement of magnetic dipole moments and charge radii. The LISOL gas catcher ion source relies on resonant laser ionisation for increased efficiency and selectivity. Using a $^{252}$Cf fission source, the element dependence of the non-resonant contribution to the ion beam has been investigated. The efficiency of extraction for a non-laser-ionised element ranges from 0.03% for krypton to 74% for ceasium. A relationship with the ionisation potential is proposed, although a few elements like rubidium and cerium do not verify this relationship. In order to suppress those non-resonantly-ionised elements, two new approaches are proposed. First, the dual-chamber gas catche...

  13. 3D chemical imaging based on a third-generation synchrotron source

    Energy Technology Data Exchange (ETDEWEB)

    Bleuet, P.; Gergaud, P. [CEA, LETI, MINATEC, F-38054 Grenoble, (France); Lemelle, L. [Ecole Normale Super Lyon, CNRS, USR, UMR 5570, F-3010 Lyon, (France); Bleuet, P.; Tucoulou, R.; Cloetens, P.; Susini, J. [European Synchrotron Radiat Facil, F-38043 Grenoble, (France); Delette, G. [CEA LITEN DEHT LPCE, F-38054 Grenoble, (France); Simionovici, A. [Univ Grenoble 1, Lab Geodynam Chaines Alpines, F-38041 Grenoble, (France)

    2010-07-01

    Data acquisition and reconstruction for tomography have been extensively studied for the past 30 years, mainly for medical diagnosis and non-destructive testing. In these fields, imaging is typically limited to sample morphology. However, in many cases, that is insufficient, and 3D chemical imaging becomes essential. This review highlights synchrotron X-ray fluorescence tomography, a well-established non-destructive technique that makes tomography richer by reconstructing the quantitative elemental distribution within samples down to the micrometer scale or even less. We compare the technique to others and illustrate it through results covering different scientific applications. (authors)

  14. 3D simulation of the thermal and chemical plumes using open source software

    International Nuclear Information System (INIS)

    Saenz Temino, J. L.; Lerones Martin, J.; Gonzalez Delgado, J.

    2013-01-01

    The interaction of thermal and chemical plumes in the region of the Irish Sea near the site has been simulated using a finite element model representative of the local hydrodynamic regime, concluding how the method of selected cooling, open cycle, is physically and environmentally feasible. Furthermore, tunnel lengths required for each scenario under discussion have been preliminarily defined, varying in a range from 1800 to 2300 meters for a unit (1 tunnel), 4400-6300 meters of two units (2 tunnels) and 8000 meters to three units (2 tunnels), depending on the chosen technology.

  15. Elimination of micropollutants and hazardous substances at the source in the chemical and pharmaceutical industry.

    Science.gov (United States)

    Blöcher, C

    2007-01-01

    Industrial wastewater, especially from chemical and pharmaceutical production, often contains substances that need to be eliminated before being discharged into a biological treatment plant and following water bodies. This can be done within the production itself, in selected waste water streams or in a central treatment plant. Each of these approaches has certain advantages and disadvantages. Furthermore, a variety of wastewater treatment processes exist that can be applied at each stage, making it a challenging task to choose the best one in economic and ecological terms. In this work a general approach for that and examples from practice are discussed.

  16. Monitoring of seismic events from a specific source region using a single regional array: A case study

    Science.gov (United States)

    Gibbons, S. J.; Kværna, T.; Ringdal, F.

    2005-07-01

    In the monitoring of earthquakes and nuclear explosions using a sparse worldwide network of seismic stations, it is frequently necessary to make reliable location estimates using a single seismic array. It is also desirable to screen out routine industrial explosions automatically in order that analyst resources are not wasted upon detections which can, with a high level of confidence, be associated with such a source. The Kovdor mine on the Kola Peninsula of NW Russia is the site of frequent industrial blasts which are well recorded by the ARCES regional seismic array at a distance of approximately 300 km. We describe here an automatic procedure for identifying signals which are likely to result from blasts at the Kovdor mine and, wherever possible, for obtaining single array locations for such events. Carefully calibrated processing parameters were chosen using measurements from confirmed events at the mine over a one-year period for which the operators supplied Ground Truth information. Phase arrival times are estimated using an autoregressive method and slowness and azimuth are estimated using broadband f{-} k analysis in fixed frequency bands and time-windows fixed relative to the initial P-onset time. We demonstrate the improvement to slowness estimates resulting from the use of fixed frequency bands. Events can be located using a single array if, in addition to the P-phase, at least one secondary phase is found with both an acceptable slowness estimate and valid onset-time estimate. We evaluate the on-line system over a twelve month period; every event known to have occured at the mine is detected by the process and 32 out of 53 confirmed events were located automatically. The remaining events were classified as “very likely” Kovdor events and were subsequently located by an analyst. The false alarm rate is low; only 84 very likely Kovdor events were identified during the whole of 2003 and none of these were subsequently located at a large distance from

  17. [Temporal-spatial Variation and Source Identification of Hydro-chemical Characteristics in Shima River Catchment, Dongguan City].

    Science.gov (United States)

    Gao, Lei; Chen, Jian-yao; Wang, Jiang; Ke, Zhi-ting; Zhu, Ai-ping; Xu, Kai

    2015-05-01

    Shima River catchment is of strategic importance to urban water supply in Dongjiang portable water source area. To investigate the hydro-chemical characteristics of Shima River, 39 river water samples were collected in February, June and November, 2012 to analyze the major ions (K+, Na+, Ca2+, Mg2+, Cl-, SO4(2-) , HCO3-) and nutritive salts (PO4(3-), NO3- and NH4+) and to discuss the temporal-spatial variation and controlling factors of hydro-chemical composition, relative sources identification of varied ions was performed as well. The results showed that the hydro-chemical composition exhibited significant differences in different periods. The average concentration of total dissolved solid ( TDS) and nutritive salts in different investigated periods followed the decreasing order of November > February > June. The dominant anion of Shima River was HCO3-, and Na+ + K+ were the major cations in February and November which were changed to Ca2+ in June, the hydro-chemical types were determined as HCO(3-)-Na+ and HCO(3-)- Ca2+ in dry (February and November) and rainy (June) seasons, respectively. Spatial variations of concentration of nutritive salts were mainly affected by the discharges of N- and P-containing waste water resulted from human activities. The ratio between N and P of water sample (R7) was 18.4:1 which boosted the "crazy growth" of phytoplankton and led to severe eutrophication. According to Gibbs distribution of water samples, dissolution of hydatogenic rocks was the primary factor to control the major cations of river water in dry season, however, the hydro-chemical composition was significantly affected by the combination of hydatogenic and carbonate rocks in rainy season. The deposition of sea-salts contributed less to chemical substances in river. Correlation analysis revealed that K+, Na+, Mg2+, Cl- and SO4(2-) were partly derived from the application of fertilizer and the discharge of industrial effluent; Waste water of poultry feeding and

  18. Noise-tolerance analysis for detection and reconstruction of absorbing inhomogeneities with diffuse optical tomography using single- and phase-correlated dual-source schemes

    International Nuclear Information System (INIS)

    Kanmani, B; Vasu, R M

    2007-01-01

    An iterative reconstruction procedure is used to invert intensity data from both single- and phase-correlated dual-source illuminations for absorption inhomogeneities. The Jacobian for the dual source is constructed by an algebraic addition of the Jacobians estimated for the two sources separately. By numerical simulations, it is shown that the dual-source scheme performs superior to the single-source system in regard to (i) noise tolerance in data and (ii) ability to reconstruct smaller and lower contrast objects. The quality of reconstructions from single-source data, as indicated by mean-square error at convergence, is markedly poorer compared to their dual-source counterpart, when noise in data was in excess of 2%. With fixed contrast and decreasing inhomogeneity diameter, our simulations showed that, for diameters below 7 mm, the dual-source scheme has a higher percentage contrast recovery compared to the single-source scheme. Similarly, the dual-source scheme reconstructs to a higher percentage contrast recovery from lower contrast inhomogeneity, in comparison to the single-source scheme

  19. Pumping requirements and options for molecular beam epitaxy and gas source molecular beam epitaxy/chemical beam epitaxy

    International Nuclear Information System (INIS)

    McCollum, M.J.; Plano, M.A.; Haase, M.A.; Robbins, V.M.; Jackson, S.L.; Cheng, K.Y.; Stillman, G.E.

    1989-01-01

    This paper discusses the use of gas sources in growth by MBE as a result of current interest in growth of InP/InGaAsP/InGaAs lattice matched to InP. For gas flows greater than a few sccm, pumping speed requirements dictate the use of turbomolecular or diffusion pumps. GaAs samples with high p-type mobilities have been grown with diffusion pumped molecular beam epitaxial system. According to the authors, this demonstration of the inherent cleanliness of a properly designed diffusion pumping system indicates that a diffusion pump is an excellent inexpensive and reliable choice for growth by molecular beam epitaxy and gas source molecular beam epitaxy/chemical beam epitaxy

  20. Synthesis of Monodispersed Spherical Single Crystalline Silver Particles by Wet Chemical Process; Shisshiki kagakuho ni yoru tanbunsankyujo tankesshoginryushi no gose

    Energy Technology Data Exchange (ETDEWEB)

    Ueyama, Ryousuke.; Harada, Masahiro.; Ueyama, Tamotsu.; Harada, Akio. [Daiken Chemistry Industry Corporation, Osaka (Japan); Yamamoto, Takashi. [National Defence Academy, Kanagawa (Japan). Dept. of Electrical Engineering; Shiosaki, Tadashi. [Nara Institute of Science and Technology, Nara (Japan). Graduate School of Materials Science; Kuribayashi, Kiyoshi. [Teikyo University of Science and Technology, Yamanashi (Japan). Dept. of Materials

    1999-01-01

    Ultrafine silver monodispersed particle were prepared by wet chemical process. To decrease the reduction speed, an important factor in generating monodispersed particles is to control the following three factors: synthesis temperature, concentration of aggregation-relaxing agent added, and concentration of silver nitrate solution. Synthesis of monodispersed spherical Ag particles, used as metal powders for electrode, became possible using the nucleus grouwth reaction method. This process also allowed the control of the diameter of the powder particles. The silver particles were distributed in ta narrow particle diameter range with on average of 0.5 {mu}m. Transmission electron microscopy (TEM) revealed that single-crystalline silver particles were prepared by the present method. (author)